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Preface

This volume presents selected papers from the eleventh International Conference
on Spectral and High-Order Methods (ICOSAHOM’16) that was held in Rio de
Janeiro, RJ, Brazil, during the week of June 27th to July 1st, 2016. These selected
papers were refereed by a member of scientific committee of ICOSAHOM as well
as by other leading scientists.

The first ICOSAHOM conference was held in Como, Italy, in 1989 and marked
the beginning of an international conference series in Montpellier, France (1992);
Houston, USA (1995); Tel Aviv, Israel (1998); Uppsala, Sweden (2001); Provi-
dence, USA (2004); Beijing, China (2007); Trondheim, Norway (2009); Gammarth,
Tunisia (2012); and Salt Lake City, USA (2014).

ICOSAHOM has established itself as the main meeting place for researchers
with interests in the theoretical, applied, and computational aspects of high-order
methods for the numerical solution of partial differential equations.

With about 200 participants, ICOSAHOM’16 took place in the Othon Palace
Hotel at the Copacabana Beach. The program consisted of nine invited lectures
spread out through the week, 16 mini-symposia, hosting approximately 155 talks,
and 22 contributed talks.

The content of these proceedings is organized as follows. First, contributions
from the invited speakers are included. The remainder of the volume consists of
refereed selected papers highlighting the broad spectrum of topics presented at
ICOSAHOM’16.

The success of the meeting was ensured through the financial support given by
the University of Campinas (UNICAMP), Pontifical Catholic University of Rio de
Janeiro (PUC-RJ), the Brazilian Research Council (CNPq), and the Coordination
for the Improvement of Higher Education Personnel (CAPES).

Special thanks go to members of our local organizing committee Philippe
Devloo, Alvaro Coutinho, and Saulo Pomponet de Oliveira. We would like also
to thank Creacteve Eventos, in special Alessandra Leitão and Michele Christinni,
and Sócrates Duarte from SWGE for their invaluable help in the organization of the
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conference. Thanks also to PhD students from UNICAMP and PUC-RJ who helped
during the event.

Campinas, SP, Brazil Marco L. Bittencourt
Rio de Janeiro, RJ, Brazil Ney A. Dumont
Lausanne, Switzerland Jan S. Hesthaven
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hp-Version Discontinuous Galerkin
Approximations of the Elastodynamics Equation

Paola F. Antonietti, Alberto Ferroni, Ilario Mazzieri, and Alfio Quarteroni

Abstract In this paper we extend the results contained in Antonietti et al. (J Sci
Comput 68(1):143-170, 2016) and consider the problem of approximating the
elastodynamics equation by means of hp-version discontinuous Galerkin methods.
For the resulting semi-discretized schemes we derive stability bounds as well as hp
error estimates in the energy and L2-norms. Our theoretical estimates are verified
through three dimensional numerical experiments.

1 Introduction

The present paper deals with the numerical modeling through the (linear) elas-
todynamics equation of seismic wave propagation phenomena in complex, three-
dimensional media. Currently, the numerical methods mostly employed to tackle
seismic wave propagation include finite differences, pseudo-spectral, spectral ele-
ment, and high–order/spectral element discontinuous (DG) Galerkin techniques. In
particular Spectral Element methods, firstly introduced for fluid dynamics problems
in the seminal paper [28], have become one of the most effective and powerful
approaches for solving three-dimensional seismic wave propagation problems in
strongly heterogeneous media thanks to their geometrical flexibility and high order
accuracy, which made them well suited to correctly approximate the wave field.
We refer to [14, 20, 22, 25, 35] for the first development of Spectral Element
methods for the elastodynamics equation, and, for example, to [21, 23, 36, 39]
for its application in computational seismology. In recent years, displacement-
based high–order/spectral element discontinuous Galerkin methods have also been

P.F. Antonietti (�) • A. Ferroni • I. Mazzieri
MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133
Milano, Italy
e-mail: paola.antonietti@polimi.it; alberto.ferroni@polimi.it; ilario.mazzieri@polimi.it

A. Quarteroni
CMCS, Ecole Polytechnique Federale de Lausanne (EPFL), Station 8, 1015 Lausanne,
Switzerland
e-mail: alfio.quarteroni@epfl.ch

© Springer International Publishing AG 2017
M.L. Bittencourt et al. (eds.), Spectral and High Order Methods for Partial
Differential Equations ICOSAHOM 2016, Lecture Notes in Computational
Science and Engineering 119, DOI 10.1007/978-3-319-65870-4_1
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4 P.F. Antonietti et al.

developed for linear and nonlinear (visco) elastic wave propagation problems,
mainly because the discretization parameters, i.e. the mesh-size and/or the poly-
nomial approximation degree, can be naturally tailored to the region of interests;
see e.g. [3–6, 12, 24, 26, 31–33]. Additionally, high–order/spectral element DG
methods feature very low dispersion and dissipation errors. A dispersion/dissipation
analysis based on the approach of [1] for DG approximations of elastic wave
propagation problems has been carried out in [3, 11] and [4], respectively, on
two-dimensional quadrilateral/triangular meshes: the extension to three-dimensions
has been addressed recently in [15]. Another interesting feature is their being
embarrassingly parallel and therefore naturally oriented towards high performance
parallel computing. DG methods are thus very well suited to deal with i) the intrinsic
multi-scale nature of seismic wave propagation problems, involving a relative broad
range of wavelengths; ii) the complexity of the geometrical constraints. The aim of
this paper is to extend to the hp-version the theoretical analysis developed in [5]
as well as to prove approximation bounds in the L2 norm. For the sake of brevity,
here we focus only on displacement DG formulation, but the present analysis can
be extended also to displacement-stress formulations. We show that, also in the
hp-version setting, stability and approximation properties hold without the need to
introduce an extra term that penalizes the time derivative of the displacement besides
the displacement itself, as considered in previous works [31–33]. Our semidiscrete
analysis represents an intermediate but essential step towards the analysis of stability
of the fully discrete scheme resulting after time integration.

The remaining part of manuscript is organized as follows. In Sect. 2 we introduce
the model problem and its hp-version discontinuous Galerkin approximation.
The stability analysis is presented in Sect. 3, whereas in Sect. 4 we present the
hp�version a priori error estimates in both the energy and L2 norms. Three-
dimensional numerical experiments verifying the theory are presented in Sect. 5.

2 Problem Statement and its hp-Version Discontinuous
Galerkin Approximation

Let˝ � Rd, d D 2; 3, be an open, bounded convex region with Lipschitz boundary
@˝ . Throughout the paper, ŒHm.˝/�d and ŒHm.˝/�d�dsym denote the standard Sobolev
spaces of vector–valued and symmetric tensor-valued functions defined over ˝ ,
respectively, and .�; �/˝ denote the standard inner product in any of the spaces
ŒL2.˝/�d or ŒL2.˝/�d�dsym . For given T > 0 and f D f.x; t/ 2 L2..0;T�I ŒL2.˝/�d/,
we consider the problem of approximating the variational formulation of the linear
elastodynamics equation with homogeneous Dirichlet boundary conditions: for all
t 2 .0;T� find u D u.t/ 2 V � ŒH1

0.˝/�
d such that:

.�utt; v/˝ C .D".u/; ".v//˝ D .f; v/˝ 8 v 2 V; (1)
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subjected to the (regular enough) initial conditions u0 and u1. Here, u W ˝ �
Œ0;T� �! R

d is the displacement vector field and ".u/ W ˝ �! R
d�d
sym is the

symmetric gradient. Moreover, � is the mass density, which is supposed to be a
strictly positive and uniformly bounded function, and D D D.x/ W Rd�d

sym �! R
d�d
sym is

the inverse of the compliance tensor defined as D� D 2��C�tr.�/I 8 � 2 R
d�d
sym .

I 2 R
d�d and tr.�/ are the identity and trace operators, respectively, and �;� 2

L1.˝/, �;� > 0, being the Lamé parameters.
Henceforth, C denotes a generic positive constant independent of the discretiza-

tion parameters, but that can depend on the physical quantities �, D as well as on
the final observation time T. Moreover, x � y and x � y will signify x � Cy and
x � Cy, respectively, with C as before.

2.1 Mesh, Trace Operators, and Discrete Spaces

We consider a sequence fThgh of shape-regular (not-necessarily matching) parti-
tions of ˝ into disjoint open elements K such that ˝ D [K2ThK, where each
K 2 Th is the affine image of a fixed master element bK, i.e., K D FK.bK/, bK being
either the open unit d-simplex or the open unit hypercube in R

d, d D 2; 3. An
interior face (for d D 2, “face” means “edge”) of Th is defined as the (non–empty)

interior of @K
C \ @K�, where K˙ are two adjacent elements of Th. Similarly, a

boundary face of Th is defined as the (non-empty) interior of @K \˝ , where K is a
boundary element of Th. We collect the interior and boundary faces in the sets FI

h
and FB

h , respectively, and define Fh D FI
h [ FB

h . We also assume the following
mesh-regularity: i) for any K 2 Th and for all F 2 Fh, F � @K, hK � hF; ii) for any
pair of elements K˙ 2 Th sharing a .d � 1/–dimensional face hK� � hKC

� hK� :
cf. [16, 29] for example.

Next, we introduce suitable trace operators, cf. [8]. Let F be an interior face
shared by two elements K˙ of Th, and let n˙ denote the normal unit vectors
on F pointing outward K˙, respectively. For (regular enough) vector-valued and
symmetric tensor-valued functions v and �, respectively, we define the weighted
average and jump operators as

fvgı D ıvC C .1 � ı/v�; f�gı D ı�C C .1 � ı/��; ı 2 Œ0; 1�;
ŒŒv�� D vC ˇ nC C v� ˇ n�; ŒŒ��� D �C nC C �� n�;

(2)

where v˙ and �˙ denote the traces of v and � on F taken within the interior of K˙,
respectively, and where v ˇ n D .vnT C nvT/=2. Notice that ŒŒv�� is a symmetric
tensor-valued function. On a boundary face F 2 FB

h , we set analogously

fvgı D v; f�gı D �; ŒŒv�� D vˇ n; ŒŒ��� D �n: (3)
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When ı D 1=2, we drop the subindex and simply write f�g.
Finally, to any element K 2 Th we assign a polynomial approximation degree

pK � 1, and define the hp-discontinuous finite element space

Vhp Dfu 2 ŒL2.˝/�d W u ı FK 2 ŒMpK .bK/�d 8 K 2 Thg;

where MpK .bK/ is either the space PpK .bK/ of polynomials of degree at most pK onbK,
if bK is the reference d-simplex, or the space QpK .bK/ of tensor–product polynomials
on bK of degree pK in each coordinate direction, if bK is the unit reference hypercube
in R

d. In the following we also assume that the following local bounded variation
holds: pK� � pKC

� pK� for any pair of elements K˙ 2 Th sharing a .d � 1/–
dimensional face, cf. [29] for example.

Given a face F 2 Fh of an element K 2 Th, i.e., F � @K the following inverse
inequality holds:

kvk2L2.F/ �
p2K
hK
kvk2L2.K/ 8v 2M

pK .K/;

cf. [34]. Finally, we recall the following interpolation estimates, cf. [9].

Lemma 1 For any real number sK � 0 and for any function v 2 ŒHsK .K/�d, K 2
Th, there exists ˘hv 2 Vhp such that

X

K2Th

kv �˘hpvkHr.K/ �
X

K2Th

hmin.sK ;pKC1/�r
K

psK�rK

kvkHsK .K/ 8r; 0 � r � s;

X

K2Th

kD� .v �˘hpv/kL2.@K/ �
X

K2Th

h
min.sK ;pKC1/�j�j�1=2
K

p
sK�j�j�1=2
K

kvkHsK .K/ 8�; 0 � j�j � k;

(4)

where � 2 N
d
0 is a multi-index of length j�j. Here, the second inequality holds

provided sK > 1=2 and k is the largest non-negative integer strictly less than s�1=2.

2.2 Semi-Discrete and Fully-Discrete Formulations

We are now ready to state the semi-discrete weak formulation: For any time t 2
.0;T�, find uh D uh.t/ 2 Vhp such that

.�uhtt; v/Th CA.uh; v/ D .f; v/Th 8 v 2 Vhp; (5)

subjected to the initial conditions uh0 and uh1, being uh0;u
h
1 2 Vhp suitable approx-

imations in Vhp of the initial data u0;u1, respectively. The bilinear form A.�; �/ W
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Vhp � Vhp �! R in (16) is given by

A.w; v/ D .".w/;D".v//Th � hfD".w/gı; ŒŒv��iFh

� hŒŒw��; fD".v/gıiFh C h�ŒŒw��; ŒŒv��iFh ; (6)

where we have used the shorthand notation .w; v/Th D
P

K2Th
.w; v/K and

.w; v/Fh D
P

F2Fh
.w; v/F. The above method corresponds to the family of Interior

Penalty (IP) methods: for ı D 1=2, we get the Symmetric Interior Penalty (SIP)
method [7, 41], whereas for ı ¤ 1=2 we obtain the weighted SIP method of
Stenberg, [38]. In (6) the stabilization function � 2 L1.Fh/ is defined facewise as

� D �.x/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

˛fDgmax.p2
KC

; p2K�

/

min.hKC
; hK�/

if x 2 @KC \ @K�;

˛fDgp
2
K

hK
if x 2 @K \ @˝;

(7)

By defining ŒHs.Th/�
d as the space of elementwise ŒHs.K/�d functions, s � 0, and

endowing the Vhp and Vhp C ŒH2.Th/�
d spaces with the (mesh-dependent) norms

kvk2DG D kD1=2".v/k2L2.Th/
C k�1=2ŒŒv��k2L2 .Fh/

8v 2 Vhp;

kjvjk2DG D kvk2DG C k��1=2f".v/gk2L2.Fh/
8v 2 Vhp C ŒH2.Th/�

d;
(8)

respectively, with kwkL2.Th/ D
p

.v; v/Th and kwkL2.Fh/ D
p

.v; v/Fh , with
standard arguments it is easy to prove the following result.

Lemma 2 The bilinear form A.�; �/ W Vhp � Vhp �! R defined as in (6) satisfies

jA.w; v/j � kvkDGkwkDG; A.v; v/ � kvk2DG 8w; v 2 Vhp; (9)

where the second estimates holds provided that the penalty parameter ˛ is chosen
large enough, cf. (7). Moreover,

jA.w; v/j � kjvjkDGkjwjkDG; 8w; v 2 Vhp C ŒH2.Th/�
d:

We remark that a sharp estimate on the minimum value ˛ so that the second estimate
in (9) holds can be obtained based on employing the results of [2].

The semi-discrete algebraic formulation of problem (16) reads as

M RU.t/C AU.t/ D F.t/; (10)

supplemented with initial conditions U.0/ D U0 and PU.0/ D V0. The vector U D
U.t/ contains, for any time t, the expansion coefficients of uh.t/ 2 Vhp in a chosen
basis. Analogously,M and A are the matrix representations of the mass and stiffness
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bilinear forms, respectively. By fixing a time-step �t > 0 and denoting by Ui 	
U.ti/ the approximation of U at time ti D i�t, we discretize (10) by the leap-frog
method

MUnC1 D .2M ��t2A/Un �MUn�1 C�t2Fn; n D 1; : : : :

with MU1 D .M � �t2

2
A/U0 C�tMV0 C �t2

2
F0.

3 Stability of the Semi-Discrete Formulation

We now prove stability in the following natural energy norm induced by the DG
methods described in the previous section:

kvk2E D k�1=2vtk20;Th
C kvk2DG 8v D v.t/ 2 C2.Œ0;T�IVhp/ 8 2 Œ0;T�:

(11)

First, we recall the following classical result, cf. [30, pag. 28].

Lemma 3 Let � 2 L2.0;T/ a positive function and 	 2 C0.0;T/ a non-negative
function such that

	2.t/ � CC
Z t

0

�.
/	.
/ d
 8t 2 .0;T/

with C a non-negative constant. Then,

	.t/ � pCC 1

2

Z t

0

�.
/ d
 8t 2 .0;T/

For the forthcoming analysis we will assume that the (possible) discontinuities of
the piecewise constant stiffness tensor D are aligned with the mesh partition Th.

Proposition 1 Let uh 2 C2..0;T�IVhp/ be the approximate solution obtained with
the SIP(ı) method (16), for a sufficiently large penalty parameter ˛, cf. (7). Then,

kuh.t/k2E � kuh.0/kE C
Z t

0

kf.
/kL2.˝/ d
 0 < t � T:

Proof We take v D uht 2 Vhp in (16) to obtain

1

2

d

dt

�

kuhk2E � 2hfD".uh/gı; ŒŒuh��iFh

�

D .f;uht /Th : (12)
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Integrating in time between 0 and t leads to

kuhk2E � 2hfD".uh/gı; ŒŒuh��iFh D kuh0k2E � 2hfD".uh.0//gı; ŒŒuh.0/��iFh

C 2
Z t

0

.f;uh
 /Th d
: (13)

We first observe that, for any F 2 Fh, and any w; v 2 Vhp, the Cauchy-Schwarz
inequality gives

X

F2Fh

ˇ

ˇhfD".w/gı; ŒŒv��iF
ˇ

ˇ � k��1=2fD".w/gk0;Fhk�1=2ŒŒv��k0;Fh

� 1p
˛
kD1=2".w/k0;Thk�1=2ŒŒv��k0;Fh

� 1p
˛
kwkDGkvkDG � 1p

˛
kwkEkvkE;

where in the second step we have employed the definition (7) of the penalty function
� , the local bounded variation property of the discretization parameters, together
with the trace-inverse inequality (2.1). From the Young inequality, we obtain

kuhk2E � 2hfD".uh/gı; ŒŒuh��iFh � kuhk2E ;

provided that the penalty parameter ˛ is chosen sufficiently large. This leads to

kuhk2E � kuh.0/k2E C
Z t

0

.f;uh
 /Th d
:

Next, we observe that, from the Cauchy-Schwarz inequality we have

Z t

0

.f;uh
 /Th d
 �
Z t

0

kfkTh;0k�1=2uh
kTh;0 �
Z t

0

kfkTh;0kuhkE d
;

which leads to

kuh.t/k2E � kuh.0/k2E C
Z t

0

kfkTh;0kuhkE d
:

The theorem follows by Lemma 3.
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4 Error Analysis of the Semi-Discrete Formulation

Before stating the main result of this section, we recall some preliminary results that
will be needed for the forthcoming analysis.

Lemma 4 For any v 2 ŒHsK .K/�d, sK � 0, K 2 Th, there exists ˘hpv 2 Vhp s.t.

kjv �˘hpvjk2DG �
X

K2Th

h2min.sK ;pKC1/�2
K

p2sK�3K

kvk2HsK .K/: (14)

Moreover, if v; vt 2 ŒHsK .K/�d, for any K 2 Th, then

kv �˘hpvk2E �
X

K2Th

h2min.sK ;pKC1/�2
K

p2sK�3K

�

kvtk2HsK .K/ C kvk2HsK .K/

�

: (15)

Proof We only show (15), as (14) is a particular case. Recalling the definition of the
energy norm k � kE and employing the estimates of Lemma 1 we obtain

k�1=2.vt �˘hpvt/k20;Th
�
X

K2Th

h2min.sK ;pKC1/
K

p2sKK

kvtk2HsK .K/;

kD1=2".v �˘hpv/k2L2.Th/
�
X

K2Th

h2min.sK ;pKC1/�2
K

p2sK�2K

kvk2HsK .K/;

k�1=2ŒŒv �˘hpv��k2L2.Fh/
�
X

K2Th

h2min.sK ;pKC1/�2
K

p2sK�3K

kvk2HsK .K/;

that is

kv�˘hpvk2E �
X

K2Th

h2min.sK ;pKC1/�2
K

p2sK�3
K

 

h2K
p3K
kvtk2HsK .K/ C

1

pK
kvk2HsK .K/ C kvk2HsK .K/

!

�
X

K2Th

h2min.sK ;pKC1/�2
K

p2sK�3
K

.kvtk2Hs.K/ C kvk2HsK .K//;

where the last step follows by observing that h2K
p3K
< 1 and 1

pK
< 1 for any K 2 Th.

4.1 Error Estimates in the Energy Norm

In this section we present a priori error estimates in the natural energy norm.
Assuming that the exact solution u is regular enough, i.e., ujK 2 ŒHsK .K/�d for
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any K 2 Th, with sK � 2, with standard arguments it is also possible to show that
formulation (16) is strongly consistent, i.e.,

.�utt; v/Th CA.u; v/ D .f; v/Th 8 v 2 Vhp: (16)

From the above identity, we can obtain the following relation for the error e D u�uh

.�ett; v/Th CA.e; v/ D 0 8 v 2 Vhp; (17)

which serves as the basis for the forthcoming error estimates.

Theorem 1 (A-Priori Error Estimate in the Energy Norm) Let u be the exact
solution of problem (1) and let uh be its approximation based on employing the
semidiscrete DG formulation given in (16), with a penalty parameter ˛ chosen large
enough, cf. (7). If, for any time t 2 Œ0;T�, the exact solution u.t/ and its two first
temporal derivatives belong ŒHsK .K/�d, K 2 Th, sK � 2, then

sup
t2.0;T�

ke.t/k2E � sup
t2.0;T�

8

<

:

X

K2Th

h2min.sK ;pKC1/�2
K

p2sK�3K

�

kut.t/k2HsK .K/ C ku.t/k2HsK .K/

�

9

=

;

C
Z T

0

X

K2Th

(

h2min.sK ;pKC1/�2
K

p2sK�3K

�

kutt.
/k2HsK .K/ C kut.
/k2HsK .K/

�

)

d
 :

Before reporting the proof of Theorem 1 we recall the integration by parts formula

Z t

0

.w; v
 /�d
 D .w.t/; v.t//� � .w.0/; v.0//� �
Z t

0

.w
 ; v/�d
; (18)

that holds for w; v regular enough and for any scalar product .�; �/�
Proof Let ˘hpu 2 Vhp be the interpolant defined as in Lemma 4. By decomposing
the error as e D e� � eh, with e� D u�˘hpu and eh D uh �˘hpu, (17) becomes:

.�ehtt; v/Th CA.eh; v/ D .�e�tt ; v/Th CA.e� ; v/ 8 v 2 Vhp:

By taking v D eh in the above identity, we have

1

2

d

dt

�

kehk2E � 2hŒŒeh��; fD".eh/gıiFh

�

D .�e�tt ; eht /Th CA.e� ; eht / : (19)

Reasoning as in the proof of Theorem 1, we have

kehk2E � 2hŒŒeh��; fD".eh/gıiFh � kehk2E;
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provided that the penalty parameter ˛ is chosen large enough; cf. (7). Integrat-
ing (19) in time between 0 and t and using that eh.0/ D uh.0/ � u�.0/ D 0, we
get

kehk2E �
Z t

0

.�e�tt ; e
h
t /Th d
 C

Z t

0

A.e� ; eht / d


�
Z t

0

ke�t kEkehkE d
 CA.e� ; eh/ �
Z t

0

A.e�t ; e
h/ d


�
Z t

0

ke�t kEkehkE d
 C kje� jkDGkehkDG C
Z t

0

kje�t jkDGkehkDG d
;

(20)

where the second step follows based on employing the Cauchy-Schwarz inequality
together with integration by parts formula (18) with w D e� , v D eh and .�; �/� D
A.�; �/, whereas the third one follows from Lemma (8). From the Young inequality

kje� jkDGkehkDG � 1

�
kje� jk2DG C �kehk2DG �

1

�
kje� jk2DG C �kehk2E;

we can suitably choose � and rewrite (25) as

kehk2E � Ckje� jk2DG C
Z t

0

.kje�t jkDG C ke�t kE/kehkDG d
: (21)

Applying Gronwall’s Lemma 3 we get

keh.t/kE � sup
t2Œ0;T�

kje�.t/jk2DG C
Z t

0

ke�t .
/kE d
 8t 2 .0;T�:

Finally, from the Cauchy-Schwarz inequality and the above bound, and taking the
supremum over t 2 .0;T�

sup
t2.0;T�

ke.t/k2E � sup
t2.0;T�

n

ke�.t/k2E C kje�.t/jk2DG

o

C
Z T

0

ke�t .
/k2E d
 :

The proof is completed by applying Lemma 4.

Remark 1 If the mesh size is quasi uniform, i.e. h D maxK2TK hK 	 hK for any
K 2 Th, the polynomial approximation degree is uniform, i.e. pK D p for any
K 2 Th, and the exact solution satisfies ujK ;utjK ;uttjK 2 ŒHs.K/�d for any K 2 Th
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and for any t 2 Œ0;T�, with s � pC 1, the error estimate of Theorem 1 becomes

sup
t2.0;T�

ke.t/k2E � h2p

p2s�3
sup

t2.0;T�

n

kut.t/k2Hs.˝/ C ku.t/k2Hs.˝/

o

C h2p

p2s�3

Z T

0

n

kutt.
/k2Hs.˝/ C kut.
/k2Hs.˝/

o

d
 :

The above bounds are optimal in h and suboptimal in p by a factor p1=2; see, e.g.,
[19, 29] for analogous bounds for stationary (scalar) second order elliptic problems.
Optimal error estimates with respect to the polynomial approximation degree can be
shown either using the projector of [17] provided the solution belongs to a suitable
augmented space, or whenever a continuous interpolant can be built; cf. [37].

4.2 Error Estimates in the L2 Norm

In this section we present a priori error estimates in the L2 norm. We follow the
approach of [13] for second order hyperbolic equations, and introduce, for a regular
enough vector-valued function w, the elliptic-projection operator˘w defined as

A.˘w; v/ D A.w; v/ 8v 2 Vhp: (22)

We immediately have

ku �˘ukDG � ku �˘hpukDG C k˘hpu �˘ukDG � kj˘hpu � ujkDG; (23)

where ˘hp is the interpolant of Lemma 4, and where the second step follows from
Lemma 2 and the definition (22)

k˘hpu�˘uk2DG � A.˘hpu �˘u; ˘hpu �˘u/ D A.˘hpu � u; ˘hpu�˘u/

� kj˘hpu� ujkDGk˘hpu �˘ukDG:

We also recall the following Poincaré–Friedrichs inequality valid for piecewise
vector–valued H1 functions

kvk2L2.Th/
�
X

K2Th

krvk2L2.K/ C
X

F2Fh

1

hF
kŒŒv��k2L2 .F/ 8v 2 ŒH1.Th/�

d;

cf. [10]. Using that
P

K2Th
krvkL2.K/ � k".v/kL2.Th/, and from the definition of the

DG norm and of the stabilization function (12), it immediately follows

kvk2L2.Th/
� kvkDG 8v 2 ŒH1.Th/�

d: (24)
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Theorem 2 (A-Priori Error Estimate in the L2 Norm) Under the Assumptions
of Theorem 1, it holds

sup
t2.0;T�

ke.t/k2L2.˝/ � sup
t2.0;T�

(

h2min.s;pC1/

p2s�2
�

kut.t/k2Hs.˝/ C ku.t/k2Hs.˝/

�

)

C
Z T

0

(

h2min.s;pC1/

p2s�2
�

kutt.
/k2Hs.˝/ C kut.
/k2Hs.˝/

�

)

d
 :

with h D maxK2Th hK, p D minK2Th pK and s D minK2Th sK .

Proof As in the proof of Theorem 1 we decompose the error as e D e� � eh, where
now e� D uh � ˘u and eh D u � ˘u, ˘u being the elliptic projector defined
in (22). With the above decomposition, the error equation (17) becomes:

.�ehtt; v/Th CA.eh; v/ D .�e�tt ; v/Th 8 v 2 Vhp:

By taking v D eh in the above identity and reasoning as in the proof of Theorem 1,
we have

kehk2E � 2hŒŒeh��; fD".eh/gıiFh � kehk2E;

provided that the penalty parameter ˛ is chosen large enough; cf. (7). Therefore,
integrating in time between 0 and t and using that eh.0/ D uh.0/ � u�.0/ D 0, we
get

kehk2E �
Z t

0

.�e�tt ; e
h
t /Th d
 �

Z t

0

ke�tt kL2.˝/kehkE d
 (25)

where the second step follows based on employing the Cauchy-Schwarz inequality.
Applying Gronwall’s Lemma 3 we get

keh.t/kE �
Z t

0

ke�tt .
/kL2.˝/ d
 8t 2 .0;T�:

Next, from the Cauchy-Schwarz inequality, the above bound and the Poincaré–
Friedrichs inequality (24), we immediately get

ku � uhkL2.Th/ � ke�kL2.Th/ C kehkL2.Th/ � ke�kL2.Th/ C kehkDG

� ke�kL2.Th/ C kehkE � ke�kL2.Th/ C
Z t

0

ke�tt .
/kL2.˝/ d
:
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The estimate of the terms on the right hand sides is based on employing a duality
argument; cf [13]. Let � be the solution of the problem

r � �.�/ D e� in˝; � D 0 on @˝:

As ˝ is convex, the above problem is well-posed and its unique solution � 2
ŒH2.˝/�d and satisfies k�kH2.˝/ � ke�kL2.˝/. Moreover, it holds

ke�k2L2.˝/ D .e� ; e�/L2.˝/ D A.�; e�/ D A.� � �� ; e�/ � kj� � �� jkDGkje� jkDG

where �� 2 Vhp is the interpolant of Lemma 4, and where the last steps follows
from Lemma 2. Employing the interpolation estimates of Lemma 4 we have

ke�k2L2.˝/ �
h

p1=2
k�kH2.˝/kje� jkDG � h

p1=2
ke�kL2.˝/kje� jkDG;

where h D maxK2Th hK and p D minK2Th pK . The proof is completed by employing
the error bounds of Theorem 1.

5 Numerical Results

The results of this section have been obtained with SPEED (http://speed.mox.
polimi.it/), an open source Fortran code developed at Politecnico di Milano by
the Laboratory for Modeling and Scientific Computing MOX of the Department of
Mathematics and the Department of Civil and Environmental Engineering. SPEED
is specifically designed for the simulation of seismic waves propagation problems,
including both the ground motion induced by large scale earthquakes and soil-
structure interaction in urban areas; see, e.g., [27]. Throughout the section we have
set �t D 10�5 so that the temporal component of the error is negligible compared
to the spatial one.

In the first example we consider an elastic wave propagation problem in ˝ D
.0; 1/3, with � D � D � D 1. The source term f and the initial data are chosen so
that the exact solution of problem (1) is given by

uex.x; y; z; t/ D sin.3�t/

2

6

4

� sin2.�x/ sin.2�y/ sin.2�z/
sin2.�y/ sin.2�x/ sin.2�z/
sin2.�z/ sin.2�x/ sin.2�y/

3

7

5 :

We first we consider both a tetrahedral and a hexahedral grid with mesh size h D 0:5
and let p varies from 2 to 8. In Fig. 1a we report the error computed in the energy
norm k�kE at t D T D 0:05 and as a function of the polynomial degree. As expected,
an exponential convergence is observed. For the sake of comparison Fig. 1a also

http://speed.mox.polimi.it/
http://speed.mox.polimi.it/
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3

2

4

Fig. 1 Example 1. (a) Computed errors versus p: computed errors measured in the energy norm
k � kE at t D T D 0:05 versus the polynomial degree p for a tetrahedral mesh (DG-Tet) and
a hexahedral grid (DG-Hex). The results are also compared with the corresponding one based
on employing conforming Spectral Element method on the same tetahedral grid (SE-Tet). (b)
Computed errors versus h: computed errors measured in the energy norm k �kE at t D T versus the
mesh size for p D 2; 3; 4. The dashed lines denote the expected slopes of the error curves

300 m
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Fig. 2 Example 2. Left: Computational domain ˝ D ˝1[˝2. The elastic wave propagates from
the bottom of ˝1 to the top surface of ˝2. Right: Computed time history of the x component of
the displacement ux recorded at R D .50; 50; 0/ m. The results are compared with a reference
semi-analytical solution uTH obtained with the Thomson-Haskell propagation matrix method

reports the corresponding computed errors obtained with a conforming Spectral
Element method on the same tetrahedral grid. Next, we investigate the behavior
of the error as a function of the grid size h for different polynomial degrees. We
consider a sequence of uniformly refined tetrahedral grids starting from an initial
decomposition of size h0 D 0:5. In Fig. 1b we report the computed errors measured
in energy norm k � kE at the final observation time t D T versus the grid size for
p D 2; 3; 4. As expected, the results confirm a convergence rate of order p.

In the second test we consider a plane wave propagating along the vertical
direction in a layered elastic half-space ˝ D .0; 100/ � .0; 100/ � .�300; 0/m,
see Fig. 2 (left). In Table 1 we report the depth and the material properties of the
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Table 1 Example 2. Material properties

Layer Depth [m] � [Kg=m3] cP [m=s] cS [m=s] Dumping � [1=s]

˝1 200 2200 4000 2000 �� 10�3

˝2 100 1800 600 300 �� 10�2

Fig. 3 Example 2. Snapshots of the x-component of the displacement ux.The deformed domain
(colored) is compared with the non distorted one (black line)

half-space ˝1 and the layer ˝2. The source plane wave is polarized in the x
direction and its time dependency is given by a unit amplitude Ricker wave with
peak frequency at 1 Hz. A dumping term proportional to 2��ut C 2�2u, with � as
in Table 1, is also added to the equation to take into account viscoelastic effects.
The subdomains ˝1 and ˝2 are discretized with a hexahedral and a tetrahedral
mesh, respectively, and the computational grids are built in order to have at least
five grid points per wavelength, with p D 4 in both ˝1 and ˝2. Finally, we impose
absorbing boundary conditions on the bottom surface, a free surface condition on the
top surface, and homogeneous Dirichlet conditions for the y and z component of the
displacement on the remaining boundaries. In Fig. 2 (right) we report the computed
solution which is also compared with a reference semi-analytical solution uTH based
on the Thomson-Haskell propagation matrix method, cf. [18, 40]. More precisely,
Fig. 2 (right) shows the time history of the x component of the displacement ux
recorded at the point R D .50; 50; 0/ m. Finally, in Fig. 3 we report four snapshots
of the deformed computational domain when invested by the plane wave. Two
relevant physical effects can be observed: i) the wave field is amplified at the top
of the domain due to the free surface condition; ii) reflections of the wave field take
place inside the layer ˝2 characterized by a softer material with respect to the half
space ˝1.
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A Polynomial Spectral Calculus for Analysis
of DG Spectral Element Methods

David A. Kopriva

Abstract We introduce a polynomial spectral calculus that follows from the
summation by parts property of the Legendre-Gauss-Lobatto quadrature. We use the
calculus to simplify the analysis of two multidimensional discontinuous Galerkin
spectral element approximations.

1 Introduction

The discontinuous Galerkin Spectral Element Method (DGSEM) introduced by
Black [4, 5] has the desired properties of spectral accuracy, geometric flexibility,
and excellent phase and dissipation properties [10, 21]. Spectral accuracy comes
from the use of high order polynomial approximations to the solutions and fluxes,
and high order Gauss quadratures for the inner products, e.g. [20]. Geometric
flexibility comes from the multi-element subdivision of the domain. The DGSEM
is now developed to the point of being efficient for large scale engineering level
computations, e.g. [1, 3, 8], among others.

Robustness, however, has been an issue with the DGSEM at high order. It
usually works, but it can go unstable even when the solutions are smooth. For
nonlinear problems, this is probably not surprising. Examples are demonstrated in
the computation of the Taylor-Green vortex problem, where instability at high orders
is seen [11]. But instability arises even in linear problems when the coefficients are
variable, which can come from inherent variability [2] or from variability introduced
by curved elements [16]. The instability, we will show, comes from aliasing errors
associated with the products of polynomials and insufficient Gauss quadrature
precision.

Robust (provably stable) versions of the DGSEM that start from a split form
of the partial differential equation (PDE) have recently been developed for linear
hyperbolic systems for static [16] and moving domains [19]. In addition to stability,
the approximations match the additional conservative and constant state preserving
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properties of the PDE [17]. The approach is applicable to nonlinear problems,
where, depending on the equations and split form, the methods are energy or entropy
stable [9, 12, 13].

In this paper, we introduce a polynomial spectral calculus that allows us to
mirror the continuous PDE analysis to show stability of Black’s and the split-form
approximations with a simple, compact notation applicable to any number of space
dimensions. For the split form method, we also show how to use the calculus to
demonstrate conservation and constant state preservation. The key starting point
of the calculus is the summation by parts property satisfied by the Gauss-Lobatto
quadrature [15], which allows us to write discrete versions of the Gauss law and
its variants. Those discrete Gauss laws, in turn, allow us to write algebraically
equivalent forms of the approximations, with which we can easily analyze their
properties.

2 Linear Hyperbolic Problems on Bounded Domains

As examples of the use of the discrete calculus, we will analyze two discontinuous
Galerkin spectral element approximations to the linear system of conservation laws

ut Cr � �!f D 0; (1)

where u
��!x ; t

�

D u .x1; x2; x3; t/ D Œu1 u2 : : : up�T is the state vector and

�!
f .u/ D

3
X

mD1
A.m/

��!x
�

uOxm � �!Au (2)

is the linear flux space-state vector, where Oxm is the unit vector in the mth coordinate
direction. For simplicity we will assume that the system has been symmetrized and
is hyperbolic so that

A.m/ D
�

A.m/
�T

and
3
X

mD1
˛mA.m/ D R

��!̨�
��!̨�R�1

��!̨� (3)

for any
�

�

�

�!̨��
�

2

2
D

3
P

mD1
˛2m ¤ 0 and some real diagonal matrix. We will also assume

that the matrices A.m/ have bounded derivatives in the sense that
�

�

�

�

r � �!A
�

�

�

�

2

<1; (4)
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where k�k2 is the matrix 2-norm. Additional constraints on the coefficient matrices
need to be added later to ensure that the derivatives of their interpolants converge
in the maximum norm. The product rule applied to (1) leads to the nonconservative
form of the system

ut C
�

r � �!A
�

uC�!A � ru D 0: (5)

With appropriate initial and characteristic boundary conditions on a bounded
domain ˝ 2 R

3 the problem is (i) well posed, (ii) conservative, and, under

conditions on
�!A , (iii) preserves a constant state. These properties are demonstrated

from a weak form of the average of the conservative, (1), and nonconservative, (5),
forms of the equation, the so-called “split-form”. To write the weak form, we define
the L2 inner product and norm

.u; v/ D
Z

˝

uTvdxdydz; kuk D
p

.u;u/: (6)

Then for any state vector � 2 L
2 .˝/,

.ut;�/C 1

2

�

r � �!f ;�
�

C 1

2

8

<

:

 

�

r � �!A
�

u;�

!

C
��!A � ru;�

�

9

=

;

D 0: (7)

From vector calculus, we have the extended Gauss law,

Z

˝

uTr � �!f dxdydz D
Z

@˝

uT
�!
f � OndS �

Z

˝

.ru/T � �!f dxdydz; (8)

where On is the outward unit normal. We write (8) in inner product form as

�

u;r � �!f
�

D
Z

@˝

uT
�!
f � OndS �

�

ru;�!f
�

: (9)

We can apply the extended Gauss law to the inner products in the braces in (7)

and use the fact that
�!A is symmetric to get an equivalent form that separates the

boundary and volume contributions

.ut;�/C
Z

@˝

�!
f � On�dS � 1

2

��!
f ;r�

�

C 1

2

8

<

:

 

�

r � �!A
�

u; �

!

�
 

u;r �
��!A�

�

!

9

=

;

D 0:

(10)

Constant state preservation, conservation and well-posedness are shown with
judicious choices of u and �. To find under what conditions a constant state is
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preserved, set u D c D constant in (7) to see that

�

ut; �
�C

 

�

r � �!A
�

c; �

!

D 0; (11)

from which it follows that ut D 0 if r � �!A D 0.
Global conservation is shown by selectively choosing each component of the

state vector � in (10) to be unity and again noting that the coefficient matrices are
symmetric to see that the terms in the braces cancel to leave

d

dt

Z

˝

udxdydz D �
Z

@˝

�!
f � OndS: (12)

To find conditions under which the initial boundary value problem is well-posed,
we choose � D u in (7) and note that

�

r � �!f C�!A � ru;u
�

D
Z

˝

r �
�

uT
�!Au

�

d�!x : (13)

Replacing those terms in (7) and multiplying the equation by two gives

d

dt
kuk2 C

Z

˝

r �
�

uT
�!Au

�

d�!x C
 

�

r � �!A
�

u;u

!

D 0: (14)

Gauss’ theorem allows us to replace the second term by a surface integral so

d

dt
kuk2 C

Z

@˝

uT
�!A � OnudS D �

 

�

r � �!A
�

u;u

!

: (15)

We bound the right hand side by

�
 

�

r � �!A
�

u;u

!

� max
˝
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�

�

�

r � �!A
�

�

�

�
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kuk2 � 2�kuk2 (16)

so

d

dt

�

e�2� t kuk2
�

� e�2� t
Z

@˝

uT
�!A � OnudS: (17)
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Integrating over the time interval Œ0;T� we write the energy in terms of the initial
value and a boundary integral

ku.T/k2 � e2�T ku.0/k2 C
Z T

0

Z

@˝

e2�.T�t/uT�!A � OnudSdt: (18)

To properly pose the problem we must impose appropriate boundary conditions.
From (3), we separate the waves traveling to the left and right of the boundary
relative to On as

�!A � On D
3
X

mD1
A.m/ Onm D RR�1 D PCR�1 CR�R�1 � AC CA�; (19)

where ˙ D ˙ jj and we have left off the explicit dependence on On. When we
replace the values of u along the boundary associated with the incoming� waves
with a boundary state, g, the solution can be bounded in terms of the initial and
boundary data,

ku.T/k2 C
Z T

0

Z

@˝

uTACudSdt � e2�T ku.0/k2 C
Z T

0

Z

@˝

e2�.T�t/gT jA�j gdSdt

� e2�T
(

ku.0/k2 C
Z T

0

Z

@˝

gT jA�j gdSdt
)

:

(20)

Furthermore, if r � �!A D 0, � D 0 and the energy does not grow in time except for
energy introduced at the boundaries,

ku.T/k2 C
Z T

0

Z

@˝

uTACudSdt � ku.0/k2 C
Z T

0

Z

@˝

gT jA�j gdSdt: (21)

3 A Polynomial Spectral Calculus

To follow the continuous problem analysis as closely as possible, we introduce a
discrete calculus that looks and behaves like the continuous one as much as possible.
We define the calculus for the reference domain E D Œ�1; 1�3 with coordinates
�!
� D �

�; 	; �
� D � O� C 	 O	 C � O� D

3
P

mD1
�.m/ O�m. Corresponding forms hold for two

dimensional problems.
We represent functions of the reference domain coordinates by polynomials of

degree N or less, i.e. as elements of PN.E/ � L
2.E/. A basis for the polynomials

on E is the tensor product of the one dimensional Lagrange basis. Using that basis,
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we write a polynomial, U, in terms of nodal values Uijk D U
�

�i; 	j; �k
�

as an upper
case letter, which for three space dimensions is

U D
N
X

i;j;kD0
Uijk`i.�/`j.	/`k.�/; (22)

where

`l .s/ D
N
Y

iD0Ii¤l

s � si
sl � si

(23)

is the one-dimensional Lagrange interpolating polynomial with the property
`l .sm/ D ılm, l;m D 0; 1; 2; : : : ;N. The points si; i D 0; 1; 2; : : : ;N are
the interpolation points, whose locations are chosen below. We also write the
interpolation operator, IN W L2 ! P

N , which projects square integrable functions on
E onto polynomials, as

I
N .u/ D

N
X

i;j;kD0
uijk`i.�/`j.	/`k.�/: (24)

The use of the tensor product means that one and two dimensions are special cases
of three dimensions, which is why we concentrate on three dimensional geometries
here.

Derivatives of polynomials on E evaluated at the nodes can be represented by
matrix-vector multiplication. For instance,

@U

@�

ˇ

ˇ

ˇ

ˇ

nml

D
N
X

i;j;kD0
Uijk`

0
i.�n/`j.	m/`k.�l/ D

N
X

iD0
Uiml`

0
i.�n/ �

N
X

iD0
UimlDni; (25)

where D is the derivative matrix. The gradient and divergence of a polynomial in
three space dimensions evaluated at a point

�

�n; 	m; �l
�

are therefore

rUjnml D
N
X

iD0
UimlDni

O� C
N
X

jD0
UnjlDmj O	C

N
X

kD0
UnmkDlk

O�;

r � �!F
ˇ

ˇ

ˇ

nml
D

N
X

iD0
F.1/imlDni C

N
X

jD0
F.2/njl Dmj C

N
X

kD0
F.3/nmkDlk:

(26)

The use of the calculus that we develop depends on the choice that the interpola-
tion nodes, si, are the nodes of the Legendre-Gauss-Lobatto (LGL) quadrature. We
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represent the one dimensional LGL quadrature of a function g.s/ using the notation

Z 1

�1
gds 	

N
X

iD0
g .si/!i �

Z

N
gds; (27)

where the !i are the LGL quadrature weights. The quadrature is exact if g 2
P
2N�1. By tensor product extension, we write three dimensional volume integral

approximations as

Z

E;N
gd�d	d� �

N
X

i;j;kD0
gijk!ijk; (28)

where !ijk D !i!j!k. Two-dimensional surface integral approximations are

Z

@E;N

�!g � OndS D
N
X

i;jD0
!ijg

.1/
�

�; 	i; �j
�

ˇ

ˇ

ˇ

1

�D�1 C
N
X

i;jD0
!ijg

.2/
�

�i; 	; �j
�

ˇ

ˇ

ˇ

1

	D�1

C
N
X

i;jD0
!ijg

.3/
�

�i; 	j; �
�

ˇ

ˇ

ˇ

1

�D�1

�
Z

N
g.1/d	d�

ˇ

ˇ

ˇ

1

�D�1 C
Z

N
g.2/d�d�

ˇ

ˇ

ˇ

1

	D�1 C
Z

N
g.3/d�d	

ˇ

ˇ

ˇ

1

�D�1:
(29)

Two space dimensional areas and edge integrals are defined similarly.
We define the discrete inner product of two functions f and g and the discrete

norm of f from the quadrature

. f ; g/E;N D
Z

E;N
fgd�d	d� �

N
X

i;j;kD0
fijkgijk!ijk; kfkE;N D

q

. f ; f /E;N : (30)

The definition is extended for vector arguments like

�!
f D

3
X

mD1
f.m/ O�m; (31)

for a state vector f.m/ D Œ f .m/1 f .m/2 : : : f .m/p �T as

��!
f ;�!g

�

N

D
Z

E;N

3
X

mD1

�

f.m/
�T

g.m/d�d	d� D
N
X

i;j;kD0
!ijk

3
X

mD1

�

f.m/ijk

�T
g.m/ijk ; (32)

and similarly for other arguments.
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The Lagrange basis functions are orthogonal with respect to the discrete inner
product defined in (30) [7]. In one space dimension, for instance,

�

`i; `j
�

E;N
D !jıij.

Also, from the definitions of the interpolation operator and the discrete inner
product,

. f ; g/E;N D
�

I
N .f / ; IN .g/

�

E;N
: (33)

Finally, the discrete norm is equivalent to the continuous norm [6] in that for
U 2 P

N ,

kUkE � kUkE;N � CkUkE; (34)

where C is a constant.
The crucial property for the analysis of the discrete approximation is the

summation by parts (SBP) property satisfied by the LGL quadrature. Let U;V 2 P
N .

Then the LGL quadrature, which is exact for polynomials of degree 2N�1, satisfies

Z

N
UV 0dx D UVj1�1 �

Z

N
U0Vdx .Summation By Parts/: (35)

The result extends to all space dimensions [15] with

�

U� ;V
�

N
D
Z

N
UVd	d�j1�D�1 �

�

U;V�
�

N

�

U	;V
�

N
D
Z

N
UVd�d�j1	D�1 �

�

U;V	
�

N

�

U� ;V
�

N
D
Z

N
UVd�d	j1�D�1 �

�

U;V�
�

N
:

(36)

We can use (35) and (36) to formulate a discrete integral calculus. If we replace

U in (36) by the components of a vector
�!
F , and sum, we get the Discrete Extended

Gauss Law (DXGL) originally derived in [15]: For any vector of polynomials
�!
F 2

P
N and any polynomial V 2 P

N ,

�

r � �!F ;V
�

N
D
Z

@E;N

�!
F � OnVdS �

��!
F ;rV

�

N
.Discrete Extended Gauss Law/;

(37)

where On is the unit outward normal at the faces of E. Carrying this further, if we set
V D 1 we get the Discrete Gauss Law (DGL)

�

r � �!F ; 1
�

N
D
Z

E;N
r � �!F d�d	d� D

Z

@E;N

�!
F � OndS .Discrete Gauss Law/:

(38)
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The DGL is exact for polynomial arguments of degree 2N � 1. By using the
appropriate definitions for the inner products, both discrete Gauss laws extend to

hold for state vectors
�!
F and V.

Next, we see that if we replace the vector flux
�!
F in (37) with r˚ 2 P

N , then we
get the discrete version of Green’s first identity,

�

r2˚;V
�

N
C .r˚;rV/N D

Z

@E;N
r˚ � OnVdS .Discrete Green0s First Identity/:

(39)

Swapping the variables ˚ and V and subtracting from the original gives Green’s
second identity

�

r2˚;V
�

N
�
�

r2V; ˚
�

N

D
Z

@E;N

�r˚ � OnV � rV � On˚� dS .Discrete Green0s Second Identity/ (40)

The discrete Green’s identities would be useful to prove stability of continuous
Galerkin spectral element methods of second order problems.

Other identities that do not involve quadratic products of polynomial arguments
hold discretely through exactness of the LGL quadrature. For instance,

Z

E;N
rVd�d	d� D

Z

@E;N
V OndS (41)

and
Z

E;N
r � �!F d�d	d� D

Z

@E;N
On � �!F dS: (42)

What we see, then, is that the well-known integral identities hold due to either
integration or summation by parts.

Whereas integration rules hold discretely, product differentiation rules do not
usually hold because differentiation and interpolation do not always commute. For
instance, the product rule does not generally hold. That is, for polynomials U;V ,

r
�

I
N .UV/

�

¤ I
N .UrV/C I

N .VrU/ (43)

unless the product UV 2 P
N . [7].
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4 Discontinuous Galerkin Spectral Element Approximations

We now use the polynomial calculus introduced in section 3 to formulate and
analyze discontinuous Galerkin spectral element approximations in three space
dimensions. The steps to derive two dimensional approximations are identical. The
domain ˝ is subdivided into Nel nonoverlapping hexahedral elements, er; r D
1; 2; : : : ;Nel. We assume here that the subdivision is conforming. Each element is

mapped from the reference element E by a transformation�!x D �!X
��!
�

�

. From the

transformation, we define the three covariant basis vectors

�!a i D @
�!
X

@� i
i D 1; 2; 3; (44)

and (volume weighted) contravariant vectors, formally written as

J�!a i D �!a j � �!a j; .i; j; k/ cyclic; (45)

where

J D �!a 1 �
��!a 2 � �!a 3

�

(46)

is the Jacobian of the transformation.
Under the mapping, the divergence of a spatial vector flux can be written

compactly in terms of the reference space variables as

r � �!f D 1

J

3
X

iD1

@

@� i

�

J�!a i � �!f
�

D 1

J

3
X

iD1

@Qfi
@� i
D 1

J r� �
Qf: (47)

The vector Qf is the volume weighted contravariant flux whose components are Qfi D
J�!a i � �!f .

The conservation law is then represented on the reference domain by another
conservation law

J ut Cr� �
� QAu

�

D 0; (48)

where we have defined the (volume weighted) contravariant coefficient matrices

Ai D J�!a i � �!A (49)
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and

QA D
3
X

iD1
Ai O� i: (50)

We can also construct the nonconservative form of the system on the reference
domain using the chain rule,

J ut C
�

r� � QA
�

uC QA � r�u D 0: (51)

We construct weak forms of the conservative and nonconservative equations
by taking the inner product of the equations with a test function � 2 L

2.E/ and
applying extended Gauss Law to the space derivative terms,

.J ut;�/E C
Z

E

Qf � OnT�dS �
�Qf;r��

�

E
D 0 (52)

and

.J ut;�/C
Z

E

Qf � OnT�dS �
�

u;r� � Qf .�/
�

E
C
�

�

r� � QA
�

u;�
�

E

D 0: (53)

When we average the two equations (52) and (53) we get the split weak form

.J ut;�/ �1
2

(

�Qf.u/;r��
�

E
C
�

u;r� � Qf .�/
�

E
�
�

�

r� � QA
�

u;�
�

E

)

C
Z

@E

�Qf � On
�T
�dS D 0: (54)

4.1 The DGSEM

The original DG spectral element method introduced by Black [4] starts from the
conservative weak form (52). We use the calculus now to show that it is stable
if the coefficient matrices QA are constant. If, in addition, characteristic boundary
conditions are used at physical boundaries, the approximation is optimally stable in
the sense that the global energy discretely matches (21).
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To construct the approximation, one approximates the solutions, fluxes, coeffi-
cient matrices and Jacobian with polynomial interpolants on element er ! E by

u 	 Ur 2 P
N

Qf 	 QFr .U/ D I
N

�

I
N
� QA

�

U
�

D
N
X

i;j;kD0
QAijkUijk`i

�

�
�

`j
�

	
�

`k
�

�
�

QA 	 I
N
� QA
�

J r 	 Jr D I
N
�

J r
�

:

(55)

From this point, we leave off the superscripts r and subscripts � on r� unless
necessary.

To continue the construction, one replaces the continuous inner products by
the discrete inner products, here being Gauss-Lobatto quadratures. The normal
boundary flux is replaced by a consistent numerical flux, Qf QF� �UL;URI On� where
UL;R are the left and right states at the element boundary, measured with respect
to the outward normal, On. The numerical flux ensures continuity of the normal
flux at element faces. Finally, � is restricted to elements of PN . The result of the
approximations is the formal statement of the method

ŒDGSEM� .JUt;�/N C
Z

@E;N

QF�;T�dS �
� QF .U/ ;r�

�

N
D 0: (56)

Details for going from the formal statement to the form to implement can be found
in [14].

Alternate, yet algebraically equivalent forms of the DGSEM can be derived by
applying the DXGL. For instance, if we apply the DXGL to the last inner product
in (56) we get the algebraically equivalent form

.JUt;�/N C
Z

@E;N

n QF� � QF � On
oT
�dSC

�

r � QF .U/ ;�
�

N
D 0: (57)

If the contravariant coefficient matrices are constant, implying that the original
problem is constant coefficient and the elements are rectangular in shape, then the
DGSEM approximation is strongly stable. To show stability, we set � D U in (57)
and define the volume weighted norm

kUk2J;N � .JU;U/N : (58)

Then

1

2

d

dt
kUk2J;N C

Z

@E;N

n QF� � QF � On
oT
UdSC

�

r � QF .U/ ;U
�

N
D 0: (59)
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With constant coefficients, the volume term in (59) can be converted to a surface
quadrature. The coefficient matrices being constant and symmetric implies that

�

r � QF .U/ ;U
�

N
D
�

r � IN
� QAU

�

;U
�

N

D
� QA � rU;U

�

N
„ ƒ‚ …

�

D
�

rU; QAU
�

N

D
�

rU; QF .U/
�

N
:

(60)

The key step is the second marked with the “*”, where the product rule applies
because QAU 2 P

N when QA is constant. We then substitute the equivalence (60) into
the DXGL to see that

�

r � QF .U/ ;U
�

N
D 1

2

Z

@E;N

� QF � On
�T

UdS: (61)

Therefore, the local energy changes according to

1

2

d

dt
kUk2J;N C

Z

@E;N

	

QF� � 1
2
QF � On


 T

UdS D 0; (62)

and stability depends solely on what happens on the element faces.
The change in the total energy is found by summing over all the elements.

Although the numerical flux is continuous at element interfaces, the solution and
flux are discontinuous. If we define the jump in a quantity with the usual notation
�V� D VR � VL, then

d

dt

0

@

Nel
X

rD1
kUrk2J;N

1

A � �2

8

ˆ

<

ˆ

:

X

Boundary
Faces

Z

@E;N

�

F� � 1
2
F � On

�T

UdS

�
X

Interior
Faces

Z

@E;N

�

F�;T �U� � 1
2

�
�

F � On�TU
��

dS

9

>

=

>

;

:

(63)

Stability is determined, therefore, only by the influence of the jumps at the ele-
ment boundaries and the physical boundary approximations through the numerical
flux. For linear problems, it is natural to choose an upwinded or central flux,

QF�
�

UL;URI On
�

D 1

2

	

QF
�

UL
�

� OnC QF
�

UR
�

� On



� �
ˇ

ˇ

ˇ

QA � On
ˇ

ˇ

ˇ

2

n

UR � UL
o

; (64)
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where � D 0 is the central flux and � D 1 is the fully upwind flux. With this
flux [16],

QF�;T �U� � 1
2

�
� QF � On

�T
U

�

D ��
2

�U�T
ˇ

ˇ

ˇ

QA � On
ˇ

ˇ

ˇ �U� � 0; (65)

so that the interior face terms in (63) are dissipative. To match the PDE energy
bound, (21), the fully upwind flux must be used at the physical boundaries. With
exterior values g set along incoming characteristics [18] and when � D 1,

�

F� � 1
2
QF � On

�T

U D 1

2
UTACUC 1

2

�

�

�

p

jA�jU �
p

jA�jg
�

�

�

2

2
� 1
2
gT jA�j g:

(66)

If we define the total energy by

kUk2J;N D
K
X

rD1
kUrk2J;N ; (67)

and integrate (63) in time, the total energy satisfies (c.f. (20))

kU.T/k2J;N C
X

Boundary
Faces

Z T

0

Z

@E;N
UTACUdSdt � kU.0/k2J;N

C
X

Boundary
Faces

Z T

0

Z

@E;N
gT jA�j gdSdt:

(68)

Finally, if the interpolant of the Jacobian is bounded from below, J > 0, then for
some positive constants c and C [16],

c kUk2L2.˝/ � kUk2J;N � C kUk2L2.˝/ ; (69)

which says that, like the continuous solution, the energy approximate solution is
bounded by the data in the continuous norm over the entire domain.

4.2 Stabilization by Split Form

If the contravariant coefficient matrices are not constant, then the key step in (60)
does not hold because interpolation and differentiation do not commute. We
show now that stability hangs on whether or not the dissipation introduced by
the numerical flux at the element interfaces and by the characteristic boundary
conditions is sufficient to counterbalance the aliasing errors associated with the
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volume term that remains. That balance shows why the approximation [DGSEM]
can be, but does not have to be, stable for variable coefficient problems or curved
elements.

The use of the polynomial calculus allows us to quickly and compactly construct
four algebraically equivalent representations of a split form approximation [16]
that is strongly stable, constant state preserving and globally conservative for non-
constant coefficient problems where the coefficient variation is due to inherent
variability in the PDE and/or due to variability introduced by the coefficient
mappings from curved elements to the reference element. It also allows us to
simplify the analysis done, for example, in [17].

The result of applying the approximations (55) and LGL quadrature to (54) is the
first split form of the DGSEM used in [16]. In accordance to common terminology,
this is the “weak” form

ŒW� .JUt;�/N �
1

2

8

<

:

� QF .U/ ;r�
�

N
C
�

U;r � QF .�/
�

N
�
 

r �
�

I
N
� QA
�

�

U;�

!

N

9

=

;

C
Z

@E;N

QF�;T�dS D 0:
(70)

We get alternative, yet algebraically equivalent forms by applying the DXGL (37)
to selected terms in (70). When we apply the DXGL to the first two inner products
in the braces and use the fact that the coefficient matrices are symmetric we get the
“strong” form

ŒS� .JUt;�/N C
1

2

(

�

r � QF .U/ ;�
�

N
C
�

I
N
� QA
�

� rU;�
�
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r �
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I
N
� QA
�

�

U;�

!

N

9

=

;

C
Z

@E;N

n QF� � QF � On
oT
�dS D 0:

(71)

If we rearrange the terms in ŒS� to “strong+correction” form

ŒSC�
�

JUt;�
�

N C
Z

@E;N

nQF� � QF � On
oT
�dSC

�

r � QF .U/ ;�
�

N

C 1

2

0

@

(

I
N
� QA
�

� rUCr �
�

I
N
� QA
�

�

U�r � QF .U/
)

;�

1

A

N

D 0;

(72)
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we see that the split form approximation is the strong form of the original
DGSEM (57) plus a correction term in the amount by which the product rule (43)
does not hold. When the product rule does hold, such as when the contravariant
coefficient matrices are constant, the correction term vanishes and we are back to
the original scheme of Black, [DGSEM].

We get a fourth algebraically equivalent “directly stable” form by applying the
DXGL to only the first inner product in the braces of the weak form ŒW�,

ŒDS� .JUt;�/N C
1

2

(

�

r � QF .U/ ;�
�

N
�
�

U;r � QF .�/
�

N
C
�

r � IN
�

QA
�

U;�
�

N

)

C
Z

@E;N

	

QF� � 1
2
QF � On


T

�dS D 0:
(73)

Any of the four equivalent forms ŒW� , ŒS� , ŒSC� , ŒDS� can be used as
is convenient for computation or theory. For instance, to show conservation, choose
the form ŒW� and selectively set each component of � to one. Then the first inner
product in the braces vanishes and the second and third cancel leaving

Z

E;N
JUtd� D �

Z

@E;N

QF�dS: (74)

Summing over all elements, the interior face contributions cancel leaving the global
conservation statement

d

dt

Nel
X

rD1

Z

E;N
JrUrd� D �

X

Boundary
Faces

Z

@E;N

QF�;rdS: (75)

To find conditions under which the approximation is constant state preserving,
use the form ŒS� with U D c D const in all elements. The first and third inner

products in the braces vanish provided that r �
�

I
N
� QA
�

�

D 0, and the second is

explicitly zero. Consistency of the numerical flux implies that QF� �c; cI On� D QF � On.
Therefore, .JUt;�/N D 0 for all � 2 P

N , which implies that at each node nml in
each element r, dUr

nml=dt D 0.
Finally, the split form approximation is optimally stable in the sense that

with the numerical flux (64), the norm of the approximate solution satisfies an
energy statement like (20). We show stability using ŒDS� and � D U. With the
substitution, the volume terms represented by the first two inner products in the
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braces immediately cancel. The third inner product in the braces can be bounded

 

r �
�

I
N
� QA
�

�

U;U

!

N

� max
E

�

�

�

�

�

�

�

�

�
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I
N
� QA
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J

�

�

�

�

�

�

�

�

�

2

.JU;U/N � 2 O�.JU;U/N ;

(76)

and under assumptions on the smoothness of
�!A [22] and positivity of the Jacobian

[16] the coefficient O� will converge spectrally to � . (If the divergence of the
interpolant vanishes, then O� D 0.) With the bound on the divergence of the
coefficient matrices,

1

2

d

dt
kUrk2J;N � �

Z

@E;N

	

QF� � 1
2
QFr � On


 T

UrdSC 1

2
2 O� r kUrk2J;N : (77)

The change in the total energy is again found by summing over all the elements. If
we introduce the integrating factor O� D max

r
O� r,

d

dt

0

@e�2 O� t
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rD1
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=
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:

(78)

The interface and boundary terms on the right hand side of (78) are identical to what
appeared in the original DGSEM, (63). Therefore, the total energy satisfies

kU.T/k2J;N C
X

Boundary
Faces

Z T

0

Z

@E;N
UTACUdSdt

� e2 O�T kU.0/k2J;N C
X
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Z T

0

Z

@E;N
e�2 O�.T�t/gT jA�j gdSdt:

(79)

As with the continuous solution, (21), if r � IN
� QA
�

D 0, O� D 0, and

�

�U.T/
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J;N C
X

Boundary
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Z T

0

Z
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UTACUdSdt �
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�U.0/
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2

J;N C
X

Boundary
Faces

Z T

0

Z

@E;N
gT jA�j gdSdt:

(80)
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Applying the norm equivalence (69), we see that the split form approximation is
strongly stable for variable coefficient problems and/or curved elements.

Finally, we can use the stability analysis of the split form approximation to write
the conditions needed for the original DGSEM to be stable when the coefficients are

variable and/or the elements are curved. For simplicity, let us suppose thatr��!A D 0
and external boundary states g D 0 so that the global energy should not increase and

instability is not masked by natural growth. Let us also assume that r � IN
� QA
�

D 0
so that O� also vanishes. Then by (79), the energy of the split form approximation
does not grow. With ŒDS� , ŒSC� and ŒDGSEM� , ŒSC� � ŒC�, where ŒC� is the
correction term

1

2

0

@

(

I
N
� QA
�

� rUCr �
�

I
N
� QA
�

�

U � r � QF.U/
)

;�

1

A

N

; (81)

the elemental energy for the DGSEM satisfies

1

2

d

dt
kUk2J;N � �

Z
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QF� � 1
2
QF � On
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� QA
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� rU � r � QF.U/
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ˇ
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ˇ

ˇ

ˇ

ˇ

:

(82)

The term in the braces of the volume term on the right of (82) is non-zero unless
the product rule holds. Therefore, for the DGSEM to be stable when the coefficients
are variable, the surface terms (including the dissipation arising from the physical
boundaries seen in (66)) must be sufficiently large to counteract any destabilizing
influence of (growth from) the volume term, which might require trying more
dissipative numerical fluxes than the characteristic upwind flux. Practice has shown
that at least at low order one can often find numerical fluxes for which the influence
of the surface terms is sufficiently dissipative. But (82) shows that the approximation
can be unstable if the aliasing growth contribution is larger than the dissipation
contribution from the element faces.

5 Summary

In this paper, we described a discrete integral spectral calculus for polynomial
spectral methods using Legendre-Gauss-Lobatto quadrature. This calculus allowed
us to write and analyze discontinuous Galerkin spectral element approximations in a
compact notation consistent with the continuous version. In particular, it is possible
to easily derive four algebraically equivalent forms of a split form approximation
for linear hyperbolic systems. These four equivalent forms can then be used to
show global conservation, constant state preservation (when applicable) and, most
importantly, strong stability of the split form approximation for variable coefficient
problems on curved elements.
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Certified Reduced Basis Method for Affinely
Parametric Isogeometric Analysis NURBS
Approximation

Denis Devaud and Gianluigi Rozza

Abstract In this work we apply reduced basis methods for parametric PDEs to
an isogeometric formulation based on NURBS. We propose an integrated and
complete work pipeline from CAD to parametrization of domain geometry, then
from full order to certified reduced basis solution. IsoGeometric Analysis (IGA),
as well as reduced basis methods for parametric PDEs growing research themes
in scientific computing and computational mechanics. Their combination enhances
the solution of some class of problems, especially the ones characterized by
parametrized geometries. This work shows that it is also possible for some class
of problems to deal with affine geometrical parametrization combined with a
NURBS IGA formulation. In this work we show a certification of accuracy and a
complete integration between IGA formulation and parametric certified greedy RB
formulation by introducing two numerical examples in heat transfer with different
parametrization.

1 Introduction and Motivation

In this work we apply reduced basis methods for parametric PDEs to an isogeo-
metric formulation based on NURBS. The motivation for this work is an integrated
and complete work pipeline from CAD to parametrization of domain geometry, then
from full order to certified reduced basis solution. IsoGeometric Analysis (IGA) is
a growing research theme in scientific computing and computational mechanics, as
well as reduced basis methods for parametric PDEs. Their combination enhances
the solution of some class of problems, especially the ones characterized by
parametrized geometries we introduced in this work. For a general overview on
Reduced Basis (RB) methods we recall [7, 14] and on IGA [3]. This work wants to
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demonstrate that it is also possible for some class of problems to deal with affine
geometrical parametrization combined with a NURBS IGA formulation. This is
what this work brings as original ingredients with respect to other works dealing
with reduced order methods and IGA (set in a non-affine formulation, and using
a POD [2] sampling without certification: see for example for potential flows [11]
and for Stokes flows [16]). In this work we show a certification of accuracy and a
complete integration between IGA formulation and parametric certified greedy RB
formulation. Section 2 recalls the abstract setting for parametrized PDEs, Sect. 3
recalls IGA setting, Sect. 4 deals with RB formulation, and Sect. 5 illustrates two
numerical examples in heat transfer with different parametrization.

2 Elliptic Coercive Parametrized Partial Differential
Equations

In what follows, elliptic coercive parametrized partial differential equations are
introduced [12, 13, 15]. We consider the following problem: given a parameter
� 2 D, evaluate

s.�/ D l.u.�//; (2.1)

where u.�/ 2 X is the solution of

a.u.�/; vI�/ D f .v/; 8v 2 X: (2.2)

Here a.�; �I�/ W X�X ! R is a bilinear, continuous and coercive form associated to
a parametrized partial differential equation for every � 2 D. The space X WD X.�/
is a Hilbert space on the computational domain � � R

d endowed with the scalar
product .�; �/X for d D 2; 3. Since second-order partial differential equations for
scalar problems are considered, we have H1

0.�/ � X � H1.�/, where H1.�/ WD
˚

v W �! X
ˇ

ˇ v 2 L2.�/;rv 2 L2.�/d
�

and H1
0.�/ is the space of functions in

H1.�/ whose traces vanish on the boundary. The space L2.�/ denotes the set of
square integrable functions. We require moreover that � admits a (multipatches)
NURBS representation. This is explained in more details in the next section. The
functions f W X ! R and l W X ! R are linear and continuous functionals. Finally,
the set D denotes the parameter domain and is assumed to be finite-dimensional.
More precisely, we write D WD Œa1; b1� � � � � � ŒaP; bP� � R

P for ai; bi 2 R,
i D 1; : : : ;P. We consider here both physical and geometrical parameters. The
geometrical case is further investigated in Sect. 3.3. For a sake of simplicity, the
so-called compliant case is considered, that is .i/ a is symmetric and .ii/ l D f .

One of the crucial assumptions to apply the reduced basis method is that a admits
an affine decomposition with respect to the parameter �, that is

a.u; vI�/ D
Q
X

qD1
‚q.�/aq.u; v/: (2.3)
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Here ‚q W D ! R denotes a (smooth) �-dependent function and aq W X � X ! R

is a �-independent bilinear continuous form for q D 1; : : : ;Q. Since the compliant
case is considered, we require moreover that aq is symmetric. We do not make any
further assumption on the coercivity of aq. Note that we have assumed that the right-
hand side of equation (2.2) is parameter-independent but in practice f may depend
on the parameter �. In that case, we express f .vI�/ as a sum of Qf products of
�-dependent functions and �-independent linear continuous forms on X.

For the bilinear form a.�; �I�/, we define its continuity and coercivity constants
for every � 2 D as

�.�/ WD sup
v2X

sup
w2X

a.v;wI�/
kvkXkwkX ;

and

˛.�/ WD inf
v2X

a.v; vI�/
kvk2X

;

where k � kX is the norm on X induced by the scalar product .�; �/X. Since a is
continuous and coercive, there exists 0 < ˛0 � �0 < 1 such that ˛0 � ˛.�/ �
�.�/ � �0 for all � 2 D.

In the following section, we introduce a NURBS approximation of the prob-
lem (2.1)–(2.2). Since it is computationally unaffordable to compute such solution
for every input parameter, we then consider a RB approximation of it.

3 Isogeometric Analysis NURBS Approximation

In this section, we introduce non-uniform rational B-splines (NURBS) approxi-
mation for the problem (2.1)–(2.2). First, a brief survey of B-splines and NURBS
functions is conducted and the proper approximation is introduced [1, 3, 8]. We then
present in Sect. 3.3 the affine preconditioning for parameter-dependent domains.
This is a necessary assumption to obtain the affine decomposition (2.3) which in
turn is crucial to perform RB approximation.

3.1 B-Splines

The B-splines functions are the basis to define NURBS. We give a brief introduction
to B-splines in what follows. In the context of isogeometric analysis, the notion of
patches is very important. They play the role of subdomains and material properties
are assumed to be uniform in each patch. Unlike standard finite element (FE) analy-
sis, the B-splines and NURBS basis functions are local to patches and not elements.
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The FE basis functions map the reference element in the parametric domain to each
element in the physical space. B-splines functions take a patch (a set of elements)
in the parameter space and map it to multiple elements in the physical domain.

Let us define a knot vector in one dimension as a set of non-decreasing
coordinates in the parameter domain denoted „ D ˚

�1; : : : ; �nCpC1
�

, where �i 2 R

is called the ith knot, i D 1; : : : ; n C p C 1. Here, p denotes the polynomial order
of the B-splines and n the number of basis functions. The B-splines are completely
defined by the knot vector „, the number of basis functions n and their order p.
Since this does not affect the construction of B-splines we set by convention �1 D 0
and �nCpC1 D 1. Note that repetitions are allowed in the knot vector and are used to
control the local regularity across each knot. A knot vector in which �1 and �nCpC1
are repeated p C 1 times is called open knot vector. In what follows, we consider
only open knot vectors but the construction is the same for general knot vectors.
Moreover, we may refer a patch as a subdomain and an element as a knot span, i.e.
an interval of the form Œ�i; �iC1�.

The B-spline functions are constructed recursively with respect to the polynomial
order. For p D 0 and an open knot vector„, we define

Ni;0.x/ WD
(

1 if �i � x � �iC1;
0 otherwise.

For p D 1; 2; : : : , we define recursively the B-spline basis functions as

Ni;p.x/ WD x � �i
�iCp � �i Ni;p�1.x/C �iCpC1 � x

�iCpC1 � �iC1NiC1;p�1.x/: (3.1)

We present in Fig. 1 an example of B-spline basis functions for n D 10, p D
3 and the knot vector � D f0; 0; 0; 0; 0:25; 0:25; 0:25; 0:5; 0:75; 0:75; 1; 1; 1; 1g.
Equation (3.1) is called the Cox-de-Boor recursion formula [4, 5]. Note that for
p D 0; 1, the B-spline basis functions coincide with the FE ones. The B-splines
constitute a partition of the unity, that is

n
X

iD1
Ni;p.x/ D 1; 8x 2 Œ0; 1�:

A second feature is that they are pointwise non-negative, i.e. Ni;p.x/ � 0 8x 2 Œ0; 1�.
This implies that the coefficients of the mass matrix are greater or equal than zero.
The support of Ni;p is Œ�i; �iCpC1�. The basis function Ni;p has p � mi continuous
derivatives, where mi is the multiplicity of �i, i.e. the number of repetitions of �i.
An important remark is that the B-spline basis functions are not interpolatory at the
location of knot values �i unless the multiplicity of �i is exactly p.

We are now in position to define B-spline curves, surfaces and solids in R
d. Let

us assume that we are given three sets of B-spline basis functions
˚

Ni;p
�

,
˚

Mj;q
�

and
˚

Lk;r
�

constructed on the knot vectors
˚

�1; : : : ; �nCpC1
�

,
˚

	1; : : : ; 	mCqC1
�

and
f�1; : : : ; �lCrC1g for i D 1; : : : ; n, j D 1; : : : ;m and k D 1; : : : ; l, respectively.
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Fig. 1 Example of B-spline basis functions for � D f0; 0; 0; 0; 0:25; 0:25; 0:25; 0:5; 0:75; 0:75;
1; 1; 1; 1g, n D 10 and p D 3. We see that the regularity is related to the multiplicity of each �i.
Moreover, for �i D 0:25 we have mi D p and we see that the basis function is interpolatory at this
knot

The B-spline curves are obtained by considering linear combinations of B-spline
basis functions. Let Ci 2 R

d be the coefficients referred as control points, for i D
1; : : : ; n. We then define a B-spline curve as

S.x/ WD
n
X

iD1
Ni;p.x/Ci:

Such curves have at least as many continuous derivatives across an element
boundary than its underlying B-spline basis function has across the corresponding
knot value. A crucial property of the B-spline curves is that an affine transformation
of the curve is obtained by applying the transformation to the control points.
It is the so-called affine covariance and play an important role in the affine
decomposition (2.3) when considering parameter-dependent domains. Now that the
univariate B-splines have been introduced, we generalize the definition to higher
dimensions by considering a tensor product structure.

Given a so-called control net
˚

Ci;j
� � R

d for i D 1; : : : ; n and j D 1; : : : ;m, we
define a B-spline surface as

S.x; y/ WD
n
X

iD1

m
X

jD1
Ni;p.x/Mj;q.y/Ci;j:

Several properties of the B-spline surfaces result from their tensor product struc-
tures. For instance, the basis also forms a partition of the unity and the number of
continuous partial derivatives are determined from the underlying one-dimensional
knot vectors and polynomial orders. The local support is also deducted from the one-
dimensional basis, that is the support of Ni;p.x/Mj;q.y/ is Œ�i; �iCpC1� � Œ	j; 	jCqC1�.

Finally, we introduce the definition of a B-spline solid. Considering a control
lattice

˚

Ci;j;k
�

for i D 1; : : : ; n, j D 1; : : : ;m and k D 1; : : : ; l, it is defined as

S.x; y; z/ WD
n
X

iD1

m
X

jD1

l
X

kD1
Ni;p.x/Mj;q.y/Lk;r.z/Ci;j;k :
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The properties of the B-spline solids are a direct extension of those presented in the
case of surfaces. In particular, the affine covariance property still holds for B-spline
surfaces and solids. Note that what has been presented here is valid for a single
patch. The case of multipatches geometries is introduced in the context of NURBS
basis functions in the next section.

For the purpose of the analysis presented in Sect. 3.4, we briefly discuss the
notions of h-refinement, p-refinement and k-refinement. A complete discussion can
be found in [3, 8]. The notion of h-refinement in FE analysis is similar to the knot
insertion in IGA. Let us consider a knot vector„ D f�1; : : : ; �nCpC1g and associated
control points fB1; : : : ;Bng. Considering a knot N� 2 Œ�k; �kC1Œ, we then build the
new knot vector as„ D f�1; : : : ; �k; N�; �kC1; : : : ; �nCpC1g and the associated control
points f NB1; : : : ; NBnC1g as

NBi WD ˛iBi C .1 � ˛i/Bi�1; (3.2)

where

˛i WD

8

ˆ

ˆ

<

ˆ

ˆ

:

1; 1 � i � k � p;
N���i

�iCp��i ; k � pC 1 � i � k;

0; kC 1 � i � nC pC 2:
(3.3)

By choosing the new control points as (3.2) and (3.3), it is possible to maintain
the continuity of the original basis functions. Note that it is possible to insert
repetition of already existing knot values. This will decrease the regularity of the
basis functions at this knot. An important remark is that the solution spanned by the
increased basis functions based contains the one spanned by the original B-splines.
This allows to keep the geometry unchanged by inserting new knots.

The second concept introduced here is the FE p-refinement, which analogous is
order elevation. It is possible to increase the polynomial order of the basis functions.
To keep the regularity of the previous B-splines, it is necessary to repeat each knot
value of the knot vector. As in the case of knot insertion, the new span contains the
one from the original basis functions.

The last notion is the one of k-refinement which does not have an analogous in
FE analysis. It is based on the principle that order elevation and knot insertion do not
commute. If we insert a new knot value N� , the continuity of the basis functions at this
knot will be Cp�1. If then we further increase the order of the basis, the multiplicity
of N� increase to keep this continuity. Instead, if we first increase the order of the basis
to q and then insert a new knot value, the continuity will be Cq�1 at this knot. This
second process is called k-refinement. It allows to control the number of new basis
functions. Hence the number of degrees of freedom associated to the B-splines will
also be kept under control, which in turn allows to keep low computational costs.
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3.2 Non-Uniform Rational B-Splines

The introduction of NURBS allows us to exactly represent domains that it is not
possible to describe considering polynomials. The construction of such geometries
in R

d are obtained by projective transformations in R
dC1. It is then possible to

construct for instance conic sections. Such projective transformation yields rational
polynomial functions.

The process to construct NURBS basis functions is presented here and follows
mainly [3, 8]. Let us consider a knot vector „, a number of basis functions n, a
polynomial order p and a set of control points fBw

i g in R
dC1 defining a B-spline

curve. Such points are called projective control points for the associated NURBS
curve. We then define the control points of the NURBS curve as follows

wi WD .Bw
i /dC1; i D 1; : : : ; d;

.Bi/j WD
�

Bw
i

�

j
=wi; i; j D 1; : : : ; d;

where .Bi/j is the jth component of the vector Bi. The scalars wi are called weights.
Let fNi;pg be the B-spline basis functions associated to „, n and p. Based on the
definition of the control points, we can introduce the NURBS basis functions defined
as

Rp
i .x/ WD

Ni;p.x/wi
Pn

i0D1 Ni0 ;p.x/wi0
: (3.4)

The associated NURBS curve is then defined as

C.x/ WD
n
X

iD1
Rp
i .x/Bi:

Considering the basis functions defined by (3.4), we define NURBS surfaces and
solids in the same manner. To do this, we define rational basis functions for surfaces
and solids. Let fMj;qg and fLk;rg be B-spline basis functions for 1 � j � m and
1 � k � l. Moreover, consider projective control nets and lattices fBw

i;jg and fBw
i;j;kg

in R
dC1, respectively. The weights to construct the NURBS basis functions are given

by

wi;j WD
�

Bw
i;j

�

dC1 ; i; j D 1; : : : ; d;

wi;j;k WD
�

Bw
i;j;k

�

dC1 ; i; j; k D 1; : : : ; d:
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Fig. 2 Examples of NURBS solids obtained considering multiple patches. The number of patches
used for each example are 3 (a), 4 (b), 3 (c), 4 (d) and 3 (e), respectively

We then define NURBS basis functions for surfaces and solids as

Rp;q
i;j .x; y/ WD

Ni;p.x/Mj;q.y/wi;j
Pn

i0D1
Pm

j0D1 Ni0 ;p.x/Mj0 ;q.y/wi0 ;j0
; i; j D 1 : : : ; d;

Rp;q;r
i;j;k .x; y; z/ WD

Ni;p.x/Mj;q.y/Lk;r.z/wi;j;k
Pn

i0D1
Pm

j0D1
Pl

k0D1 Ni0 ;p.x/Mj0 ;q.y/Lk0;r.z/wi0 ;j0;k0

; i; j; kD1 : : : ; d:

The properties stated for the B-spline basis functions also hold for the NURBS.
In particular, they form a partition of the unity and their continuity and support are
the same as the underlying B-splines. The affine covariance property also holds for
NURBS functions. Moreover, the basis functions are interpolatory at knot values
where the multiplicity is equal to the order. The notions of h-, p- and k-refinement
generalize to NURBS functions. Note that if all the weights are equal, the NURBS
coincide with the underlying B-splines due to the partition of the unity property.
In nearly all the practical applications, it is necessary to have multiple patches to
describe the domain with NURBS functions. This also allows to have different
material properties, each associated to a different patch. The only feature to pay
attention to is the regularity of the basis across the patches interfaces. Usually, C0 is
the only regularity guaranteed, but techniques can be used to increase it [3]. In Fig. 2,
we present several examples of NURBS solids obtained considering multipatches
representations.

To simplify the notations, we denote by Ri;p, 1 � i � n the NURBS basis
functions and fBig the associated control points for curves, surfaces and solids. We
also use the notation „ for the associated knot vectors. Note that it is a slight abuse
of notation because in the case of surfaces and solids, p and „ are vectors and
matrices, respectively.

For the purpose of our analysis, we require that the computational domain �
can be obtained through a NURBS parametrization. To introduce the notations, we
impose that � is parameter-independent. The parameter-dependent case is treated
in the next section. Let us consider the following decomposition of the domain

� D
Pdom
[

kD1
�

k
; (3.5)
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where�j\�k D ; for 1 � j < k � Pdom. We require that for every subdomain�k,
there exist pk, nk, „k, NURBS basis functions fRk

i;pg and associated control points
Bk WD fBk

i g such that for every y 2 �k, there exists x 2 Hd satisfying

y D Fk.x/ WD
nk
X

iD1
Rk
i;pk .x/B

k
i : (3.6)

Here Hd D Œ0; 1�d denotes the unit hypercube in d-dimension and Fk W .0; 1/d !
�k. Considering for every 1 � k � Pdom the functionFk defined above, we construct
a global mapping F W .0; 1/d ! � which describes the whole computational
domain. We assume that F is smooth and invertible. In that case, we say that
� admits a NURBS representation through F. So far, we have only considered
parameter-independent geometries. In the next section, we introduce the affine
preconditioning conditions for parameter-dependent domains.

3.3 Affine Preconditioning for Parameter-Dependent Domains

In many applications, it is of great interest to consider parameter-dependent
geometries. We introduce here the conditions that need to be fulfilled in that case
to be able to perform the RB method presented in this paper. In particular, it is
important that the affine decomposition (2.3) of the bilinear form a still holds. Let
us consider the domain splitting introduced in (3.5). The computational domain for
an input parameter � 2 D is denoted �o.�/. Here, the subscript o stands for the
original domain.

The domain �o.�/ needs to be represented as the image of a reference domain
through an affine mapping. Let us choose �ref 2 D as a parameter that represents
our reference domain, i.e. � D �o.�ref/. Moreover, we denote �k D �k

o.�ref/

while considering the decomposition (3.5). We need that for every 1 � k � Pdom,
there exists an affine mapping T k.�I�/ W �k ! �k

o.�/ such that

�
k
o.�/ D T k.�

kI�/:
The mappings T k.�I�/ have to be bijective and collectively continuous, that is

T k.xI�/ D T l.xI�/; 8x 2 �k \�l
; 1 � k < l � Pdom: (3.7)

Due to the affine covariance property of the NURBS functions, we only need to
require that the control points can be obtained as the image of reference control
points through an affine mapping. More formally, let us denote by fBk

i .�/g the
control points associated with the subdomains�k

o.�/. We then require that for every
1 � k � Pdom, there exists an affine mapping T k.�I�/ W �k ! �k

o.�/ such that

Bk
i .�/ D T k.Bk

i I�/;
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where fBk
i g are the control points associated to the reference subdomains �k.

Turning to the condition (3.7), we require that

T k.Bk
i I�/ D T l.Bk

i I�/; 8Bk
i 2 Bk \ Bl; 1 � k < l � Pdom:

In other words, we only need to ensure continuity of the mappings through the
control points defining the interfaces of patches to obtain the continuity on the whole

interface. More explicitly, we define the affine mappings T k for every x 2 �k
and

� 2 D as

T k.xI�/ WD Ck.�/C Gk.�/x;

where Ck W D ! R
d and Gk W D ! R

d�d for every 1 � k � Pdom. To define the
affine decomposition of the bilinear form a, we need to define the Jacobians and
inverse of the transformations as

Jk.�/ WD j det.Gk.�//j; (3.8)

Dk.�/ WD
�

Gk.�/
��1

; (3.9)

for 1 � k � Pdom. Based on the T k transformations, we can define a global affine
mapping T W �! �o.�/ as

T .xI�/ WD T k.xI�/; k D min
n

1 � l � Pdom

ˇ

ˇ

ˇ x 2 �l
o

:

The mapping T is globally bijective and piecewise affine. The choice of the
minimum is arbitrary and could be chosen differently.

In what follows, we give an example of an affine transformation applied to a 3-
dimensional toroidal solid. It is built on four patches, which yields Pdom D 4, and to
every patch are associated 27 control points. Based on that, it is possible to uniquely
determine Ck and Gk for 1 � k � Pdom. In that case, the transformations are given
by

Ck D

0

B

@

0

0

0

1

C

A ; Gk D

0

B

@

� 0 0

0 1 0

0 0 1

1

C

A ; 1 � k � 4; (3.10)

where we have considered the single parameter � that controls the semi-axis x.
In Fig. 3, the original domain and the transformed one for � D 1:5 are depicted
together with their lattices of control points. We see that the transformation is exactly
applied to the control points.

Now that our affine preconditioning assumption has been stated, we need to
express our bilinear form on the reference domain. The problem (2.1)–(2.2) is
defined on the original domain�o.�/. To be able to obtain the affine expansion (2.3)
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Fig. 3 Example of the affine transformation (3.10) applied to a torus. The original domain and its
lattice of control points are presented in (a) and (b), respectively. The torus after transformation is
depicted in (c) while its lattice is presented in (d)

for the bilinear form a arising from the weak formulation of a second-order PDE,
we need that the underlying integrals are defined on the reference domain. This
is presented in details in what follows for two-dimensional problems but the case
d D 3 is treated analogously. On the original domain, the problem is the following
one: given a parameter � 2 D, evaluate

so.�/ D l.uo.�//;

where uo.�/ 2 Xo is the solution of

ao.uo.�/; vI�/ D fo.v/; 8v 2 X:

Since we are considering second-order partial differential, we require that ao can
be written as

ao.v;wI�/ D
Pdom
X

kD1

Z

�k
o.�/

h

@v
@x1

@v
@x2

v
i

Ak
o.�/

2

6

4

@w
@x1
@w
@x2
v

3

7

5 ;

where Ak
o W D ! R

3�3 is a symmetric positive semi-definite matrix. We express the
right-hand side fo in the same way, that is

fo.v/ D
Pdom
X

kD1

Z

�k
0.�/

f ko v; (3.11)
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where f ko 2 R. Note that it is possible to have a parameter-dependent right-hand
side by simply replacing f ko by f ko .�/. As already discussed, we need �-independent
integrals to be able to fulfill the affine assumption (2.3) for the bilinear form a. We
then consider the problem (2.1)–(2.2) with the bilinear form a expressed as

a.v;wI�/ D
Pdom
X

kD1

Z

�k

h

@v
@x1

@v
@x2
v
i

Ak.�/

2

6

4

@w
@x1
@w
@x2
v

3

7

5 ; (3.12)

where the Ak W D! R
3�3 are defined for � 2 D as

Ak.�/ D Jk.�/Gk.�/Ak
o.�/

�

Gk.�/
�T
; 1 � k � Pdom:

Here the matrices Gk.�/ are defined as

Gk.�/ WD

0

B

@

Dk.�/
0

0

0 0 1

1

C

A ; 1 � k � Pdom;

where Jk.�/ and Dk.�/ are defined by (3.8) and (3.9), respectively. Note that this
holds under the assumptions presented at the begin of this section. In the same
manner, the right-hand side is expressed as

f .v/ D
Pdom
X

kD1

Z

�k
f k.�/v;

where f k W D ! R is defined by

f k.�/ D Jk.�/f ko ; 1 � k � Pdom:

We can then explicitly expand (3.12) to obtain the affine decomposition (2.3) for the
bilinear form a. In the development presented here, the Ak.�/ and f k.�/ are local to
patches and may represent different material properties and geometry variations.

3.4 Isogeometric Analysis NURBS Approximation of Elliptic
Coercive Parametrized PDEs

We present in this section the isogeometrical analysis NURBS approximation of the
problem (2.1)–(2.2). In this context, the isoparametric concept is considered, that is
the solution is represented in the same space as the geometry. In that case, the mesh
of the NURBS is defined as the product of the knot vectors and the elements are the
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knot spans. The degrees of freedom associated with the basis functions are called
control variables.

Let us assume that � admits a NURBS parametrization through F as defined
in (3.6). To simplify the notations, we consider a single set of indices f1; : : : ;N g
for the degrees of freedom and we write

F.x/ D
N
X

iD1
QRi;p.x/Bi; x 2 .0; 1/d; (3.13)

for NURBS basis functions f QRi;pg and associated control points fBig. To represent
our solution in a finite dimensional space, we need to define the basis functions

Ri;p WD QRi;p ı F�1; (3.14)

where F is the invertible mapping defined by (3.13). Based on that representation,
we construct the NURBS approximation space

XN WD span
˚

Ri;p
�

1�i�N � X: (3.15)

As already discussed in Sect. 3.1, the process of knot insertion does not change
the underlying geometry. In that setting, increasing N does not change the shape of
the parametrized domain and so we keep the exact parametrization while refining the
mesh. For approximation properties of NURBS approximation spaces, we refer the
reader to [1]. We approximate the solution of (2.1)–(2.2) by an element of XN . The
approximate problem is the following one: given a parameter � 2 D, evaluate

sN .�/ D l.uN .�//; (3.16)

where uN .�/ 2 XN is the solution of

a.uN .�/; vI�/ D f .v/; 8v 2 XN : (3.17)

Considering the basis fRi;pg for XN defined by (3.14), we extend the NURBS
solution uN .�/ for � 2 D as

uN .x;�/ D
N
X

iD1
uNi .�/Ri;p.x/; x 2 �;

where the coefficients uNi .�/ are called control variables. The regularity of uN .�/
follows from that of the NURBS basis. For instance, the continuity of the solution
across element boundaries depends on the continuity of the underlying basis
functions across the associated knot span.

Our goal then becomes to solve the problem (3.16)–(3.17) with high precision.
However, for real-time context and many query problems, it would be computa-
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tionally unaffordable to approximate the solution for each input parameter. For that
reason, we introduce in the next section a method to approximate such solution with
reduced computation costs.

4 Reduced Basis Method for Isogeometric Analysis NURBS
Approximation

As it has already been pointed out, it is computationally unaffordable to compute
a new NURBS solution for every input parameter �. The goal of the RB method
is then to approximate the NURBS solution uN .�/ with reduced computational
costs. ConsideringN sufficiently large, we have that uN .�/ is close enough to u.�/
in a certain norm so that the NURBS approximation can be viewed as the “truth”
solution.

Given a positive integer Nmax 
 N , we construct a sequence of approximation
spaces

XN
1 � XN

2 � � � � � XN
Nmax
� XN : (4.1)

Those spaces are obtained considering a Greedy algorithm presented more in details
in Sect. 4.1. The hierarchical hypothesis (4.1) is important to ensure the efficiency
of the method. Several spaces can be considered to construct such sequence, but
they all focus on the smooth parametric manifold MN WD ˚

uN .�/
ˇ

ˇ � 2 D
�

. If it
is smooth enough, we can expect it to be well approximated by low-dimensional
spaces. In what follows, we consider the special case of Lagrange reduced basis
spaces built using a master set of parameter points �n 2 D, 1 � n � Nmax. Other
examples such as the POD spaces [15] could be considered. For 1 � N � Nmax, we
define SN WD ˚�1; : : : ;�N

�

and the associated Lagrange RB spaces

XN
N WD span

n

uN .�n/
ˇ

ˇ

ˇ 1 � n � N
o

:

The selection of the snapshots uN .�n/ is one of the crucial points of the RB method
and is further investigated in the next section. We apply the Gram-Schmidt process
in the .�; �/X inner product to the snapshots uN .�n/ in order to obtain mutually
orthonormal functions �Nn . In that case, we have XN

N D span
˚

�Nn
ˇ

ˇ 1 � n � N
�

.
Since colinearities are avoided using the Gram-Schmidt process, we are ensured
that the N obtained is minimal. The RB approximation of the problem (3.16)–(3.17)
is obtained considering Galerkin projection: given� 2 D, evaluate

sNN .�/ D f .uNN .�//; (4.2)

where uNN .�/ 2 XN
N is the solution of

a.uNN .�/; vI�/ D f .v/; 8v 2 XN
N : (4.3)
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Since the particular compliant case is considered, we obtain

sN .�/ � sNN .�/ D kuN .�/ � uNN .�/k2�; (4.4)

where k � k� is the energy norm induced by the inner product a.�; �I�/. In Sect. 4.2,
we present an example of an inexpensive and efficient a posteriori error estimator
�N.�/ for kuN .�/ � uNN .�/k� on which the Greedy algorithm is based. Due
to the relation (4.4), it is possible to ensure that the error arising from the RB
approximation on our output of interest is bounded by a prescribed tolerance.

Since uNN .�/ 2 XN
N D span

˚

�Nn
ˇ

ˇ 1 � n � N
�

, we expand it as

uNN .�/ D
N
X

mD1
uNN;m.�/�

N
m : (4.5)

The unknowns then become the coefficients uNN;m.�/. Inserting (4.5) in (4.2)
and (4.3) and using the hypothesis that f is linear and a bilinear, we obtain

sNN .�/ D
N
X

mD1
uNN;m.�/f .�

N
m /;

and

N
X

mD1
uNN;m.�/a.�

N
m ; �

N
n I�/ D f .�Nn /; 1 � n � N: (4.6)

The stiffness matrix associated to the system (4.6) is of size N � N with N �
Nmax 
 N . It yields a considerably smaller computational effort than to solve the
system associated to (3.17), which matrix is of size N �N . However, the formation
of the stiffness matrix involves the computation of the �Nm associated with the N -
dimensional NURBS space.

This drawback is avoided by constructing an Offline-Online procedure taking
advantage of the affine decomposition (2.3). In the Offline stage, the Greedy
algorithm is used to construct the set of parameters SN . Then, the uN .�n/ and the
�Nn are built for 1 � n � N. The f .�Nn / and aq.�Nm ; �

N
n / are also formed and stored.

Note the importance here of the affine decomposition. It implies that the vector and
matrices stored are independent of the input parameter�.

In the Online part, the stiffness matrix associated to (4.6) is assembled consider-
ing the affine decomposition (2.3). This yields

a.�Nm ; �
N
n I�/ D

Q
X

qD1
‚q.�/aq.�Nm ; �

N
n /; 1 � m; n � N:
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The same process is applied to the right-hand side f . The N � N system (4.3) is
then solved to obtain uNN;m.�/, 1 � m � N. Finally, the output of interest (4.2) is
computed considering the coefficients obtained.

As already discussed, one of the main feature of the RB method is that we have
a posteriori error estimators �N.�/ for kuN .�/ � uNN .�/k2� D sN .�/ � sNN .�/
whose computation costs are independent of N . It allows us to certify our method
and make it reliable. A discussion on such estimators is presented in Sect. 4.2.

4.1 Greedy Algorithm for the Snapshots Selection

One of the most important step taking place in the Offline stage is the selection of
the parameters�n, 1 � n � N. Several algorithms are available in the literature [15]
but we introduce here a greedy procedure for completeness. The general idea of this
procedure is to retain at iteration N the snapshot uN .�N/ which approximation by
XN
N�1 is the worst. Let us assume that we are given a finite sample of points„ � D

and pick randomly a first parameter �1 2 „. Then for N D 2; : : : ;Nmax, compute

�N WD arg max
�2„ �N�1.�/;

where �N.�/ is a sharp and inexpensive a posteriori error estimator for kuN .�/ �
uNN .�/kH10 .�/ or kuN .�/ � uNN .�/k�. The algorithm is typically stopped when
�N.�/ is smaller than a prescribed tolerance for every � 2 „. It is clear that the
precision of the approximation spaces obtain increase with the size of the sample
considered.

Since XN
N�1 � XN

N , we expect to have �N.�/ � �N�1.�/, which ensures that
Nmax <1. Even if this procedure has not been proven to convergence, it is widely
used and many examples have been presented to illustrate its convergence. The
derivation of �N.�/ is crucial for the Greedy and we introduce an example of such
estimator in the next section.

4.2 A Posteriori Error Estimators for Elliptic Coercive Partial
Differential Equations

The main ingredient of the Greedy algorithm procedure is the computation of the
error estimator, which has to be independent of N . In fact, it is used online to certify
that the error of our RB approximation with respect to the truth solution is under
control. For completeness, the derivation of such estimator is presented here when
the so-called compliant case is considered, i.e. a is symmetric and f D l. See e.g.
[15] for the non-compliant case. Let us introduce the error eN .�/ D uN .�/ � uNN
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.�/ 2 XN which satisfies the following equation

a.eN .�/; vI�/ D f .vI�/� a.uNN .�/; vI�/ DW r.vI�/; 8v 2 XN (4.7)

where r.�I�/ 2 �XN �0 is the residual and
�

XN �0 denotes the dual space of XN .
To define our a posteriori error estimator, we need to have a lower bound ˛NLB.�/

of ˛N .�/ such that 0 < ˛NLB.�/ � ˛N .�/ 8� 2 D and the online costs to
compute ˛NLB.�/ are independent of N . We then define the following a posteriori
error estimator

�N.�/ WD
kr.�I�/k.XN /

0

˛NLB.�/
:

To compute kr.�I�/k.XN/
0 , the main ingredients are to use the affine assump-

tion (2.3) on a and the expansion (4.5) of uNN .�/ in the space XN
N . Then, using the

definition (4.7) of the residual, this leads to a system depending only on N for every
�, which makes the computation independent of N .

The procedure used to compute the coercivity lower bound ˛NLB.�/ is the so-
called successive constraint method (SCM) [10]. Considering sets based on param-
eter samples and the terms ‚q of the affine decomposition (2.3), it is possible to
reduce this problem to a linear optimization problem. This method works by taking
into account neighbour informations for the parameters and its precision increases
with the size of the neighbourhood considered. The SCM also creates a coercivity
upper bound ˛NUB.�/ of ˛N .�/ in the same manner. The algorithm is stopped when
max�2„

�

˛NUB.�/ � ˛NLB.�/
�

=˛NUB.�/ is smaller than a prescribed tolerance ".
We emphasize on the fact that it is very important that the costs associated to the

computation of �N are independent of N . That allows us to develop the Offline-
Online procedure discussed in Sect. 4, which is a crucial ingredient for the reduced
basis method.

5 Numerical Illustrations

In this section, we present several numerical illustrations of the method introduced
in this paper. The first example considered is a case of heat conduction involving
only physical parameters, i.e. we use different conductivity coefficients in regions
of the domain. Then a case containing geometrical parameters is introduced. The
aim of the first two illustrations is to present the possibilities that are allowed
while using NURBS basis functions. For this reason, both are computed over curvy
three dimensional domains. In particular, the second example illustrates the theory
developed in Sect. 3.3 to treat parameter dependent geometries. All computations
have been performed using the Matlab [17] packages GeoPDEs [6] and rbMIT
[9] for the NURBS and RB approximations, respectively.



58 D. Devaud and G. Rozza

Our goal in this section is to present standard examples to show that the method
under consideration yields indeed good results. For this reason, all cases involve
simple elliptic equations of the form

�r ��.�; x/ru� D f ; in �.�/;
u D g; on �D.�/;

�.�; x/ @u
@n D h; on �N.�/;

(5.1)

with �N \ �D D ; and @� D �N [ �D. In particular, note that f , g and
h are parameter independent. Moreover, we only deal with piecewise constant
conductivity coefficients �.�; x/. For all examples, the prescribed tolerance for the
greedy algorithm is 10�6.

5.1 Physical Parameters for Heat Conduction in a Pipeline

In this first example, we consider heat conduction in a pipeline. The domain
under consideration is depicted in Fig. 4. It is built on 5 different patches, one for
every straight part and one for each of the curvy ones. The domain is parameter
independent and we consider three parameters� D ��1; �2; �3

� 2 Œ1; 5�3, each one
being the conductivity coefficient in one of the straight portion. More precisely,

a.�; x/ WD �1��1 C ��2 C �2��3 C ��4 C �3��5;

where ��i is the characteristic function over the ith patch, 1 � i � 5. Let us denote
the input boundary by �in, the output by �out and the inner and outer circular ones
by �curve. The functions are given by f D 0, g D 0 and h D ��out and the associated
boundaries are given by �D WD �in and �N WD �curve [ �out. This simulation can be
interpreted as heat conduction in a metal pipe where different metals constitute the
structure and an imposed temperature is considered on one of the flat faces.

Fig. 4 Computation domain
for the pipeline test case. Five
patches were necessary to
build the structure, one for
each straight part and one for
each angle
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Fig. 5 Convergence of the greedy algorithm (see Sect. 4.1) for the pipeline test case of Sect. 5.1

Fig. 6 Reduced basis approximation of the pipeline test case for the physical parameters (a) � D
.1; 1; 1/ and (b) � D .3; 2; 5/. Note that the scale is not the same in both cases. The first case gives
rise to a perfect linear approximation, which is the expected behavior. The second one displays a
lack of smoothness at the interfaces of the patches. This is due to the fact that we have C1 continuity
inside each patch while only continuity is guaranteed at the interfaces

The number of degrees of freedom for the NURBS approximation is N D
16650 while the size of the RB space is 17, which yields a big reduction of the
computational costs. The computation time to perform the offline step is 27min and
the average evaluation time for the RB approximation is 5 � 10�4 s. We present in
Fig. 5 the convergence of the greedy algorithm.

Finally, in Fig. 6, we show the solution on the whole domain for different values
of the parameters. Note that the solution is not completely smooth at the interfaces
of the patches. This comes from the fact that we have C1 continuity in each of the
patch while we only have C0 continuity at the interfaces. Methods exist to obtain
more regularity at the interfaces (see e.g. [3]).
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5.2 Geometrical Parameters for Heat Conduction in a Cylinder

We present here the case of a parameter dependent geometry. The reference
domain is a cylinder of radius 2 and height 1 oriented in the z direction, i.e.
�.�ref/ WD f.r; �; z/ j r 2 Œ0; 2�; � 2 Œ0; 2��; z 2 Œ0; 1�g where .r; �; z/ denote the
cylindrical coordinates in R

3. The reference cylinder is depicted in Fig. 7a. To build
it, four patches were necessary.

The transformations under consideration are scaling with respect to the y and z
axis. More precisely, three parameters � D �

�1; �2; �3
� 2 Œ1; 5�3 are considered,

where �1 scales the portion of the domain for which y > 0, �2 the one where y < 0,
and �3 scales in the z direction. In other words, the transformation in the part of the
domain where y > 0 is given by

Ck D

0

B

@

0

0

0

1

C

A ; Gk D

0

B

@

1 0 0

0 �1 0

0 0 �3

1

C

A ;

while in the region y < 0 it reads

Ck D

0

B

@

0

0

0

1

C

A ; Gk D

0

B

@

1 0 0

0 �2 0

0 0 �3

1

C

A :

In Fig. 7, we present the domain after application of the affine transformation for
different values of the parameters.

Considering the conductivity coefficient in (5.1), we have �.�; x/ D 1. In
order to describe the boundary conditions, let us denote by �bot, �top and �curve the
bottom, top and curvy boundaries, respectively. We impose homogeneous Dirichlet
boundary conditions on �D WD �curve and unitary Neumann conditions on �N WD
�top [ �bot. Finally the right-hand side function is f D 10�B, where B is the ball of
radius 0:2 centered at .0; 0; 0:5/.

Turning to the computational costs, the number of degrees of freedom for the
NURBS approximation is N D 3240 and the one of the RB is N D 57. The whole

Fig. 7 Computational domain for the cylinder test case for different values of the parameters.
The original domain is presented in (a). Four patches were necessary to build the structure, one
for each quarter of the cylinder. The affine transformation from Sect. 5.2 were considered for (b)
� D .1; 3; 4/, (c) � D .3; 5; 2/ and (d) � D .1; 4; 1/
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Fig. 8 Convergence of the greedy algorithm (see Sect. 4.1) for the cylinder test case of Sect. 5.2

Fig. 9 Reduced basis approximation of the cylinder test case for (a) � D .1; 4; 1/ and
(c) � D .1; 1; 4/. The pictures (b) and (d) represent the value of the field on the plane
˚

.x; y; z/ 2 � j y D 0
�

for the values considered in (a) and (c), respectively. Note that different
scales have been used for the different values of the parameters

offline procedure took 30min while the average RB evaluation takes 5 � 10�4 s. In
Fig. 8, we show the convergence of the greedy algorithm for this case.

The solution for several values is depicted in Fig. 9. We present the RB
approximation on the whole domain as well as its evaluation on the plane
f.x; y; z/ 2 � j y D 0g.
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Towards p-Adaptive Spectral/hp Element
Methods for Modelling Industrial Flows

D. Moxey, C.D. Cantwell, G. Mengaldo, D. Serson, D. Ekelschot, J. Peiró,
S.J. Sherwin, and R.M. Kirby

Abstract There is an increasing requirement from both academia and industry
for high-fidelity flow simulations that are able to accurately capture complicated
and transient flow dynamics in complex geometries. Coupled with the growing
availability of high-performance, highly parallel computing resources, there is
therefore a demand for scalable numerical methods and corresponding software
frameworks which can deliver the next-generation of complex and detailed fluid
simulations to scientists and engineers in an efficient way. In this article we
discuss recent and upcoming advances in the use of the spectral/hp element method
for addressing these modelling challenges. To use these methods efficiently for
such applications, is critical that computational resolution is placed in the regions
of the flow where it is needed most, which is often not known a priori. We
propose the use of spatially and temporally varying polynomial order, coupled with
appropriate error estimators, as key requirements in permitting these methods to
achieve computationally efficient high-fidelity solutions to complex flow problems
in the fluid dynamics community.
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1 Introduction

Computational modelling is now regularly used in the fluid dynamics community,
giving insight into flow problems where experimentation is too difficult, impractical
or costly to realise. The complex geometries and time constraints involved in
modern industrial studies imply that, to date, most numerical simulations are
restricted to being steady in time. This limits their capabilities, particularly when the
problem of interest involves fundamentally unsteady flow dynamics, such as vortex
shedding. However, with the wider availability and reducing cost of large-scale
computing power, academic and industrial fluid dynamicists are increasingly look-
ing to perform finely-detailed unsteady simulations. These high-fidelity simulations
will allow us to obtain deeper insight into many challenging engineering problems,
where steady-state solvers struggle to capture the relevant unsteady flow structures.

One of the main challenges in conducting such simulations is that the complex
geometries that are a natural consequence of studying industrial problems will
inherently generate flow structures across a large range of time and length scales.
From a practical perspective, it becomes difficult or impossible to predict where
numerical resolution is required in the computational domain before the simulation
is run in order to accurately resolve the flow. Since uniform refinement across very
large domains is computationally prohibitive, the community is turning to adaptive
methods, where resolution is dynamically adjusted within the domain as a function
of time, in order to overcome this issue.

The spectral/hp element method [11] – in which an unstructured elemental
decomposition capable of resolving complex geometries is equipped with high-
order polynomial bases are used to give routes to convergence in terms of element
size h and polynomial order p – has been used in academic applications for several
years. However, it is now emerging as one of the enabling technologies for the
simulation of high-fidelity industrial simulations. From a numerical perspective,
these methods offer attractive properties such as low diffusion and dispersion errors,
meaning that for smooth solutions fewer degrees of freedom are required to attain
the same accuracy as compared to traditional low-order methods [19]. From a
computational perspective, the use of a higher polynomial order leads to compact
data structures and enables a balance between the computational and memory
intensiveness of the method. This is increasingly becoming a key factor in the
efficient use of modern many-core hardware.

On the whole, the development of adaptive methods has been mostly focused
around h-adaption, where the elements are refined or coarsened in order to adjust the
numerical resolution. The use of p-adaption, on the other hand, has received far less
attention. Most of the work in this area has focused on hp-adaption, which has been
an area of significant attention with various works investigating these techniques
for elliptic problems [4, 8, 24] that are not necessarily immediately applicable for
fluid-based problems. However, p-adaption has been shown to be a viable technique
in a study by Li and Jameson [14], where adaption in p was shown to provide the
highest accuracy with respect to the numerical resolution and computing time.



Towards p-Adaptive Spectral/hp Element Methods for Modelling Industrial Flows 65

However high-order methods have presented inherent difficulties that have only
started to be overcome in the last few years. These challenges are both mathematical
and practical. On the theoretical side, there has been a need to overcome stability
issues arising due to aliasing of the solution [17] and timestep size [6]; investigate
the generation of curved meshes which conform to the boundary of complex three-
dimensional domains [20, 22]; and investigate parallel scaling of these methods [27].
On the practical side, the mathematical complexity of the methods has necessitated
the development of software frameworks [3] to improve accessibility to academia
and industry. These developments now mean that these high-order methods are
being applied in very high Reynolds number flows that are of significant interest
to, for example, the aerodynamics and aeronautics community [15].

In this article, we will discuss some practicalities of implementing spectral/hp
element solvers which use a spatially variable polynomial order across computa-
tional domain. We do this both in the context of incompressible and compressible
flow. For the former we use a continuous Galerkin approach to solving a semi-
implicit form of the incompressible Navier-Stokes equations; for the latter we use a
discontinuous Galerkin projection with an explicit time-stepping method. Section 2
discusses the formulation of these methods and how variable polynomial orders are
handled in each case. Section 3 illustrates the capabilities of adaptivity in p, before
concluding with a brief outlook in Sect. 4.

2 Formulation

This section begins with a brief discussion of the formulation of the spectral/hp
element method, the basis being used to represent elemental expansions and how
this relates to discontinuous and continuous formulations. We then describe how
this formulation can be adapted to allow variable polynomial order across the
computational domain, provide implementation details and give an overview of the
techniques required to make this approach computationally tractable.

2.1 Domain Discretisation

The domain ˝ is subdivided into Nel non-overlapping elements ˝e, such that
˝ D SNel

eD1 ˝e. In two dimensions, these elements are a mixture of quadrilaterals
and triangles; in three dimensions, a mixture of hexahedra, triangular prisms,
square-based pyramids and tetrahedra are considered. We define a standard element
˝st for each shape. For example, a standard quadrilateral is defined by ˝st D
f.�1; �2/j�1; �2 2 Œ�1; 1�g. We equip each standard region with a set of polynomial
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basis functions �n with which to approximate functions. A scalar function u on an
element˝e is represented by an expansion

u.x/ D
M.e;P/
X

nD1
Ouen�n.�/; (1)

where points � 2 ˝st, x 2 ˝e, and the two are related through an invertible mapping
�e W ˝st ! ˝e such that x D �e.�/. The upper bound of the summation, M.e;P/,
defines the number of modes that represent the solution in the element ˝e and is a
function of both the polynomial order and the element type. We let Pk.˝

e/ denote
the polynomial space spanned by the M.e;P/ basis functions, with k the maximum
polynomial order, on the e-th elemental region.

In order to represent a function across the entire domain ˝ , we must select
an appropriate function space to represent our approximation. In this work we
will consider two classic discretisations: the continuous (CG) and discontinuous
Galerkin (DG) methods, which require the spaces

DCG.˝/ D fv 2 C0.˝/ j vj˝e 2 Pk.˝
e/g; (2)

DDG.˝/ D fv 2 L2.˝/ j vj˝e 2 Pk.˝
e/g (3)

with C0 and L2 being the usual spaces of continuous and square-integrable functions
respectively and k initially considered spatially constant across elements. We note
that in the context of discontinuous spectral element methods, significant effort
has recently been spent in the development of high-order flux reconstruction
schemes [10, 25]. While they are in principle different, these schemes can be cast
within the same framework as the discontinuous Galerkin method [9, 18]. Therefore,
the adaption technique described hereafter can be directly extended to the flux
reconstruction method.

2.1.1 Choice of Basis

The choice of the basis � is particularly important when variable polynomial order
across elements is required. We opt to use a set of functions that augment the usual
linear finite element modes with higher-order polynomials, defined as

 p.�/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1��
2
; p D 0;

1C�
2
; p D 1;

1��
2

1C�
2
P.1;1/p�2 .�/; p � 2;

(4)

where P.˛;ˇ/p .�/ is the p-th order Jacobi polynomial with coefficients ˛ and ˇ. In
one dimension on the segment Œ�1; 1�, we have that �n D  n in (1). In higher
dimensions, quadrilaterals and hexahedral expansion bases are defined using a
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local coefficients global coefficients

A

Fig. 1 Diagram describing assembly operation between two P4 quadrilaterals

tensor product of these one-dimensional functions. Other element types use a similar
choice of basis that still permits a tensorial expansion (for more details, see [11]).

There are several advantages to this choice of basis in the context of a mesh of
variable polynomial order. The first is that it results in a topological decomposition
of the basis, so that the modes of an element can be classified into vertex, edge-
interior, face-interior and volume-interior modes. Only vertex, edge and face modes
have support which extends to the boundary of the element; interior modes are
zero on the boundary. This is depicted for an order 4 quadrilateral in Fig. 1, where
black circles represent the boundary modes and grey the interior. When we discuss
the modification of any contributions along an edge of the element, this only
therefore requires the modification of coefficients along that edge, as opposed to
across the entire element. Additionally, this set of modes is hierarchical; that is,
the degree of each basis polynomial �p.�/ increases as a function of p. This is in
contrast to, for example, a classical spectral element method in which Lagrange
interpolants define a nodal basis depending on a choice of nodes �j. At order P these
are defined as

�p.�/ D `p.�/ D
qDP
Y

q¤p

� � �q
�p � �q

so that every basis function is of the same polynomial order P, whilst still yielding
a boundary-interior decomposition.

2.2 Implementation Details

2.2.1 Continuous Galerkin Formulation

The key operation of the CG formulation is assembly, wherein local elemental
contributions are gathered to impose the C0-continuity of the underlying function
space, as depicted visually in Fig. 1. The assembly operation associates a vector
of concatenated local elemental coefficients Oul D . Ou1; : : : ; OuNel/ to their global
counterparts Oug through an injective map. Here, we note that each Oue corresponds
to the vector of local coefficients in Eq. 1. The coefficients in Oug describe the
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Algorithm 1 Continuous C0 assembly operation
for e D 1! Nel do

for i D 1! M.e/ do
Oug[map[e][i]] += sign[e][i] Ouel [i]

end for
end for

contribution to the solution of the modes which span DCG.˝/. Mathematically, this
operation is expressed through a sparse matrix-vector operation Oug D A Oul. For a
uniform polynomial order mesh, the columns of A are non-zero where local degrees
of freedom meet to form global degrees of freedom, and zero otherwise, so that
the valency of a global degree of freedom i is defined as the number of non-zero
columns in the i-th row of A. In practice, the high sparsity of A means that we use
array indirection to implement the action of A without explicitly constructing it, as
defined in Algorithm 1.
We note that two arrays are required:

• map[e][i] stores the index of the global degree of freedom corresponding to mode
i of element˝e;

• sign[e][i] stores either 1 or -1 to align modes that are of odd polynomial orders
such that the basis remains continuous (see [11] for more details).

Throughout the rest of this section we will consider a Helmholtz problem

r2uC �u D f (5)

which is later used for incompressible simulations through the use of an operator
splitting scheme [13]. This is put into a weak form by defining appropriate finite-
dimensional test and trial spaces, multiplying each term by a test function and
integrating over the domain. After applying integration by parts we obtain the
equation

.LC �M/ Oug D Of

where L and M are the global Laplacian and mass matrices, respectively, and Of
is the Galerkin projection of f onto DCG.˝/. The assembly map is used not only
to calculate Of, but also to construct the matrices L and M from their constituent
elemental matrices, through the relationship

L D A

2

4

Nel
M

eD1
Le

3

5A>: (6)

We note that in practice, even at moderately low polynomial orders, LC �M is
rarely explicitly constructed. The use of the mapping above allows us to apply the
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Fig. 2 Diagram describing assembly operation between a P3 and P6 quadrilateral. The nodes here
correspond to vertex and edge modes of the hierarchical basis. Red arrows indicate the usual
connectivity; blue arrows indicate modes that are zeroed using the sign array

action of this operator and leverage the computational optimisations possible due to
the rich structure of the elemental matrices.

To modify this procedure for spatially varying polynomial orders, we must
address the situation depicted in Fig. 2, where two elements meet that differ in
polynomial orders; in this case a P3 and P6 quadrilateral. In the global space,
the edge connecting these elements (depicted in the middle of the figure) should
be at most an order 3 polynomial and so some additional logic is required to
discard the higher degrees of freedom contributed by the P6 quadrilateral in the
assembly process. To this end, we note that since we are using a hierarchical basis,
Algorithm 1 can remain unchanged by altering the sign and mapping arrays to easily
filter out the higher-order contributions. We impose that on the common edge, the
coefficients of the sign array on the P6 element are set to zero for the highlighted
modes corresponding to a polynomial degrees between 4 and 6. This ensures that
in the assembly operation, no contribution from these high-frequency modes is
included. The corresponding coefficients in the mapping array are set to point to one
of the known vertex coefficients to avoid memory overflow errors. We note that if the
basis were not to be of a hierarchical construction, then in general, all of the modes
along an edge can be of equal polynomial order. In this case, the above procedure
needs to be modified to perform a polynomial interpolation onto the correct space,
rather than simply zeroing elements of the sign array.

As a test of the validity of this approach, we consider the Helmholtz problem in
the a square Œ�1; 1�2, in which f is defined to obtain a prescribed solution u.x; y/ D
sin.�x/ sin.�y/. We consider a series of meshes with h elements in each direction.
We then solve Eq. (5) using the continuous Galerkin formulation for four cases.
uniform polynomial orders of P D 6 and P D 9, and then a mixed order where half
of the elements are set to P D 6, and half to P D 9. Figure 3 shows the L2 error
of these simulations, where we clearly observe the same convergence rate for all
simulations, and the mixed order case has a slightly lower error than the P D 6 case
as expected. Increasing the mixed order case to P D 7 lowers the error so that it lies
between the two uniform simulations.
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Fig. 3 Convergence of Helmholtz problem for simple square case

2.2.2 Discontinuous Galerkin Formulation

We now briefly discuss the implementation of variable polynomial order in the
discontinuous Galerkin (DG) formulation, which is described in greater detail in [5].
The use of DG is widely increasing in modern fluid dynamics codes and is especially
popular for discretising hyperbolic or mixed hyperbolic-parabolic systems, such as
the compressible Euler and Navier-Stokes equations, which form the cornerstone
of modern aerodynamics problems. To illustrate the discretisation we consider a
simple scalar conservation law

@u

@t
Cr � F.u/ D 0:

Using the variational form of the problem together with the function space DDG.˝/

defined in Eq. (3) leads to the discontinuous Galerkin method, wherein we consider
for each element the ODE system

d

dt

Z

˝e
u� dxC

Z

@˝e
�F.u/ � n ds D

Z

˝e
F.u/ � r� dx

where � is a test function lying in Pk.˝
e/ and n denotes the normal vector to the

element boundary @˝e. We also assume that these ODEs are discretised explicitly
in time, so that at each timestep we must calculate the volume term on the right hand
side, calculate the flux term on the left hand side, and then incorporate the flux term
into the volume term. The remaining first term on the left hand side, in an explicit
timestepping setting, corresponds to the action of the elemental mass matrix. The
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1 2

1 2

Fig. 4 Diagram describing treatment of variable polynomial order in DG for quadrilateral
elements

only place in which we need to consider the application of variable polynomial order
is therefore the second part of this process.

We again consider the problem of two quadrilaterals of different orders in Fig. 4.
We first note that since the discretisation in time considers all elemental degrees
of freedom, we must consider the boundary terms at the higher polynomial order
to avoid stability issues, otherwise there are degrees of freedom within the higher-
order element that become undetermined. Additionally, we wish to preserve the
locally conservative nature of the DG method, implying that in the notation of the
figure, we require

Z

�1

F.u/ ds D
Z

�2

F.u/ ds

where �1 and �2 are the edges of the two elements that intersect to make the trace
element � .

To project the trace contributions back into the volume consistently, on the higher
side we may simply copy the coefficients directly from � to �2. For �1, we have
a higher-degree polynomial that must be incorporated into a lower degree edge. To
do this in a conservative fashion, we perform a change of basis of the elemental
coefficients from the hierarchical basis of Eq. (4) onto an orthogonal space of
Legendre polynomials. We then apply a low-pass filter, by zeroing the unwanted
high-frequency polynomials. This is necessary since the basis functions given in
Eq. (4) are not orthogonal and performing a filtering in this space will alter the mean
flux, leading to a loss of conservation. Finally, we perform a change of basis back
to the lower-order hierarchical basis.

2.3 Efficiency Across a Range of Polynomial Orders

As a final note on implementation considerations, a clear observation that can be
made when using a variable polynomial order is that the sizes of elemental matrices
can vary drastically, particularly when considering three-dimensional elements. This
is important since operator evaluations, such as the Laplacian matrix of Eq. (6),



72 D. Moxey et al.

form the bulk of the computational cost of the spectral/hp element method, either in
computing quantities such as the inner product or in solving a system of equations
in an iterative fashion. Efficient evaluation of these operators across a wide range of
polynomial orders is therefore an important component to the efficacy of a variable
polynomial order simulation.

The underlying mathematical formulation and tensor-product form of the basis
admits a number of different implementation choices for the evaluation of these
operators, each of which admits differing performance across polynomial orders and
choice of hardware [1, 2, 16, 26]. Furthermore, the results of [21] suggest that for
modern hardware, where memory bandwidth is a valuable commodity, elemental
operations should be amalgamated wherever possible to minimise data transfer
and efficiently utilise the memory hierarchy. In the context of variable polynomial
orders, the amalgamation of elements that are of the same type and polynomial
order, combined with an appropriate implementation strategy as described in [21],
should be performed to maximise the computational performance of the method.

3 Results

This section gives a brief overview of results achieved to date using adaption in
the polynomial order p with the compressible and incompressible formulations,
focusing on error indicators and how this affects the ability to capture the underlying
flow physics, and on the computational cost of these approaches.

3.1 Incompressible Flow

In this section, we present an example of a simulation employing adaptive polyno-
mial order for solving the incompressible Navier-Stokes equations, which can be
represented as

@u
@t
D �.u � r/u� rpC �r2u; r � u D 0 (7)

where u is the velocity, p is the pressure, and � is the kinematic viscosity and,
without loss of generality, we set the density to be unity. Given a reference length
L and a reference velocity U, the Reynolds number is defined as Re D LU

�
. We

solve these equations using a CG-approach and a semi-implicit velocity-correction
scheme [13], whereby (7) is separated into an explicit convective term, an implicit
Poisson equation for pressure and three further implicit Helmholtz equations for the
velocity components.

In the procedure we employed, the polynomial order is adjusted during the
solution based on an estimate of the discretisation error in each element. This
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estimate for the error (sometimes called sensor) was based on the one used for
shock capture in [23]. In the present work, this is defined as

Se D
kuP � uP�1k22;e
kuPk22;e

; (8)

where uP is the solution obtained for the u velocity using the current polynomial
order P, uP�1 is the projection of this solution to a polynomial of order P � 1, k � k2
is the L2 norm and the subscript e indicates that this refers to a single element.

Considering this estimate for the discretisation error, the adaptive procedure can
be summarized as:

1. Advance the equations for nsteps time steps.
2. Calculate Se for each element.
3. Modify the polynomial order in each element:

• if Se � �u and P < Pmax, increase P by 1;
• if Se � �l and P > Pmin, decrease P by 1;
• maintain same P if none of the above is true.

4. Project the solution to the new polynomial space.
5. Repeat for nruns.

In the above, �u is the tolerance above which the polynomial order is increased,
�l � �u is the tolerance below which the polynomial order is decreased and Pmin and
Pmax are the minimum and maximum polynomial orders imposed on the procedure.

It is important to note that changing the polynomial order during the solution is
costly, due to the need to assemble and decompose the linear systems for the implicit
part of the method. Therefore, the choice of nsteps plays a key role in obtaining
an efficient solution. A lower value of nsteps will lead to the refinement step being
performed more frequently, at the expense of a higher average computational cost
per timestep.

To illustrate this method, we consider quasi-3D simulations of the incompressible
flow around a NACA0012 profile, shown in Fig. 5b, with Reynolds number Re D
50;000 and angle of attack ˛ D 15ı. A spectral/hp discretisation is applied in the
xy plane, with the span direction discretised by a Fourier series, as proposed in [12].
The adaptive procedure was employed only in the spectral/hp plane, with a fixed
number of modes used in the Fourier direction.

Figure 5 shows the distribution of polynomial order obtained using nsteps D
4;000, Pmin D 2 and Pmax D 9. It is clear that the boundary layers and the regions
of turbulent separated flow are represented by high order polynomials, while lower
orders are used in regions of laminar flow far from the wing. In this case, the average
number of degrees of freedom per element is approximately 49, which is equivalent
to the value for a constant P D 6 simulation.

Table 1 compares the cost of this simulation using the adaptive procedure with
the cost for several different values of constant polynomial order, and with using
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Fig. 5 Polynomial order distribution obtained for incompressible flow around a NACA0012
profile with Re D 50;000 and ˛ D 15ı. (a) Macro. (b) Representative flow solution. (c) Detail

Table 1 Comparison of the
computational cost of
adaptive order case of Fig. 5
with constant uniform
polynomial order and with
variable order without
adaptive procedure

Case Cost 1
Cost

P D 5 0:60 1:66

P D 6 0:72 1:39

P D 7 1:08 0:93

P D 8 1:19 0:84

P D 9 1:53 0:65

Variable order (fixed) 0:95 1:05

Adaptive order 1:00 1:00

The computational costs are normal-
ized with respect to the adaptive order
case

the same variable polynomial order distribution without performing the adaptive
procedure. We note that for this value of nsteps, the refinement procedure corresponds
to 5% of the computational cost. This is more than offset by the gains obtained from
using a more efficient distribution of degrees of freedom, with the adaptive case
presenting roughly the same cost as the P D 7 case, and being 35% faster than the
P D 9 case.
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3.2 Compressible Flow Using Explicit Timestepping

The accurate solution of compressible flow is an important topic in a number
of application areas. For instance, the aeronautical community is concerned with
accurately predicting the lift and drag coefficients of different wing configurations
whilst keeping the computational cost low. This allows considering a wide range of
geometries during the design lifecycle and provides the basis for aerodynamic shape
optimization. In these applications, the key to accurately predicting lift and drag lies
in determining the regions of the domain which influence these coefficients the most.
Adaptive methods, combined with appropriate error estimators, are one route to
producing fast, accurate and reliable results. This section describes progress made
in [5], where a goal-based error estimator based on an adjoint problem derived from
the underlying equations has been applied together with the p-adaptive techniques
described in the previous section. The error estimator derives an adjoint problem
from a coarsely-resolved base flow, the solution of which determines the areas of the
domain which have the greatest sensitivity to the lift and drag coefficients. Although
this technique has been explored previously, a review of which can be found in [7],
this has mostly focused around h-adaptivity where the element size is refined or
coarsened and p-adaptivity at low values of p. The purpose of this work has been to
consider a wider range of polynomial orders for this problem.

3.2.1 Governing Equations

We consider the compressible Navier-Stokes equations written in conservative form

@U
@t
Cr � F.U/ D r � Fv.U/;

where U D Œ�; �u1; �u2; �u3;E�> is the vector of conserved variables, � is the
density, .u1; u2; u3/ the velocity components and E is the specific total energy. F.U/
and Fv.U/ denote the usual inviscid and viscous flux terms respectively, where the
ideal gas law is used to close the system. For a more detailed outline, see [5].

3.2.2 Adaptive Procedure

Summarising the process at a very high level, the adaptivity procedure runs as
follows for this problem:

• Run a low-order simulation to obtain a steady flow field.
• Use this flow field to solve a goal-based adjoint problem by considering an

infinitesimal perturbation to the flow field.
• Compute a distribution of the polynomial order according to a goal-based error

estimator based on the adjoint solution.
• Using the techniques of Sect. 2, perform the simulation again to compute a

solution with a lower error of the lift or drag.



76 D. Moxey et al.

(a) (b)

Fig. 6 Variable polynomial order simulations of a compressible laminar NACA0012 wing, taken
from [5]. (a) x-momentum. (b) Convergence for different polynomial orders

For an in-depth overview of all of the techniques used in the computation of the
adjoint and error estimator, the interested reader should consult [5]. To highlight
the resolution capability of this adaptive method, a series of simulations have been
performed to compare the use of variable p with an appropriate error estimator
against a uniform refinement in p. We consider the simulation presented in [5],
where the laminar subsonic flow over a classical NACA0012 wing geometry is
studied at an angle of attack ˛ D 2ı, Mach number of 0.1 and Reynolds number
5,000. A number of simulations are considered:

• a high resolution case at P D 9 is used as a reference solution, the obtained
solution for the x-momentum for which can be seen in Fig. 6a;

• uniform polynomial order simulations are performed at P D 3; 5 and 7;
• variable polynomial orders are performed with 3 � P � 5! 9.

To compare these simulations we calculate the error as " D kcd � cd;refk where

cd D 2

�1u21A

I

�

u � Œcos˛; sin ˛� ds

is the drag coefficient, �1 and u1 are the farfield density and velocity, A the frontal
area of the wing and cd;ref denoting the drag coefficient of the reference P D 9 case.

The error obtained using these cases can be seen in Fig. 6b, where it is viewed
against the number of degrees of freedom NQ of the resulting mesh, where two
distinct trends can be observed. We see that increasing the polynomial order
uniformly does reduce the error obtaining in the drag coefficient at a reasonably
constant rate. However, the use of the goal-based error estimator, coupled with the
use of a variable polynomial order, allows us to greatly reduce the resolution (and
therefore the cost) required for these simulations. For example, the simulations at
3 � P � 8 and P D 7 have very comparable values of ". The main difference is
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Table 2 Summary of
normalised CPU cost and
error in drag cd for various
constant and spatially
variable polynomial orders,
compared to a uniform
simulation at P D 9

Case Cost "

P D 3 0:28 1.2� 10�3

P D 5 0:29 1.57� 10�4

P D 7 0:64 2.69� 10�5

P D 9 1:0 –

3 � P � 5 0:31 3.19� 10�4

3 � P � 6 0:32 7.44� 10�5

3 � P � 7 0:34 3.47� 10�5

3 � P � 8 0:36 2.71� 10�5

3 � P � 9 0:45 5.63� 10�6

that whereas the uniform case has around 2:5�105 degrees of freedom, the variable
case needs only 1�105 to produce a comparable error, which represents a significant
saving in the cost of the simulation. This can be observed in Table 2, where the CPU
time for each simulation is reported as a proportion of the reference P D 9 case.

4 Conclusions

In this article we have discussed the use and implementation of adaptive polynomial
order in the spectral/hp element method. The canonical flows considered here
show the clear benefits of this adaptive process, bringing a reduction in both the
computational cost and the number of degrees of freedom required to resolve a given
problem. However, there are still a number of challenges that need to be addressed
before these methods can be brought to bear on extremely large-scale problems.
Numerically, future work should focus around the development of more robust error
estimators, particularly in the context of unsteady simulations, perhaps based around
an unsteady formulation of the adjoint approach used for compressible simulations
in Sect. 3. We note that this is inherently more expensive than the sub-cell estimator,
however it will give a better indication of error throughout the domain. More
sophisticated techniques also need to be developed for parallel simulations. In
particular, the efficient preconditioning of these systems remains an open problem,
and very large-scale simulations require the development of adaptive load-balancing
techniques that can be used to re-distribute the workload evenly across processors
as the polynomial order changes. Finally, when dealing with complex geometries,
techniques need to be developed to couple the change in polynomial order to the
treatment of curvilinear surfaces and the elements that connect to them, in order to
preserve the accurate representation of the underlying geometry.
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A Perfect Absorbing Layer for High-Order
Simulation of Wave Scattering Problems

Li-Lian Wang and Zhiguo Yang

Abstract We report a novel approach to design artificial absorbing layers for
spectral-element discretisation of wave scattering problems with bounded scatterers.
It is essentially built upon two techniques: (i) a complex compression coordinate
transformation that compresses all outgoing waves in the open space into the
artificial layer, and then forces them to be attenuated and decay exponentially;
(ii) a substitution (for the unknown) that removes the singularity induced by the
transformation, and diminishes the oscillations near the inner boundary of the layer.
As a result, the solution in the absorbing layer has no oscillation and is well-behaved
for arbitrary high wavenumber and very thin layer. It is therefore well-suited and
perfect for high-order simulations of scattering problems.

1 Introduction

Many partial differential equations (PDEs) are naturally set in unbounded domains.
In order to solve them numerically, one has to truncate or reduce the infinite
physical domains in some way. A critical issue is how to carry out this without
inducing significant artificial errors to the solutions. A direct domain truncation
with a hard-wall or periodic boundary condition is a viable option for problems
with rapidly decaying solutions in space. For problems with decaying but slowly
varying solutions (e.g., elliptic and diffusion equations), a reliable approach is to
compress the solution at infinity to a finite domain by using a suitable coordinate
transformation, and then solve the transformed PDE in a finite domain with a
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hard-wall boundary condition. However, these techniques fail to work for wave
problems as the underlying solutions are typically oscillating and decay slowly.
Indeed, Johnson [13] remarked that “any real coordinate mapping from an infinite
to a finite domain will result in solutions that oscillate infinitely fast as the
boundary is approached – such fast oscillations cannot be represented by any
finite-resolution grid, and will instead effectively form a reflecting hard wall.” In
practice, the reduction of an unbounded domain by artificial boundary conditions
[12] and perfectly matched layers (PMLs) [3, 9] has been intensively studied for the
scattering problems.

In this report, we offer a new absorbing layer that is well-suited for high-order
discretisation of wave scattering problems. The idea stems from the concept of an
inside-out (or inverse) invisibility cloak for electromagnetic waves, first proposed by
Zharova et al. [18], which was based on a coordinate transformation that compresses
an open space to a finite cloaking layer with physically meaningful medium. Such
a layer was expected to prevent waves inside the enclosed region from propagating
outside of the layer. Ideally, the cloaking layer could be a perfect absorbing layer
for scattering problems. However, it was far from perfect, as the material parameters
therein were highly singular and the approximation of the solution suffered from the
curse of infinite oscillation [13]. We introduce two techniques to surmount these
obstacles: (i) complex compression coordinate transformation; and (ii) variable
substitution. This leads to a transformed problem in the absorbing layer with
the remarkable features: (i) its solution has no oscillation; and (ii) it is nearly
definite for arbitrary high wavenumber, as opposite to the strong indefiniteness
of the Helmholtz and Maxwell’s equations. To fix the idea, we focus on the two-
dimensional Helmholtz problem with a circular absorbing layer, and outline the
extension to the rectangular layer. We demonstrate that the proposed absorbing
layer is completely non-reflective and perfect for very thin layer, arbitrary high
wavenumber and incident angle.

It is noteworthy that (i) the idea of using complex transformations to damp the
waves is similar to complex stretching of PMLs [3, 8–10], but the transformation
herein compresses all outgoing waves into the layer, and also maps the far-field
boundary condition to the outer boundary naturally; and (ii) the use of substitution
u D veik�=

p
� is found in the context of infinite element methods for scattering

problems to capture the decay rate of outgoing wave, see e.g., [11], but the
substitution in (20) is adopted for different purpose with a different power in �:

2 Time-Harmonic Acoustic Scattering Problem

Consider the time-harmonic wave scattering governed by the Helmholtz equation:

�uC k2 u D 0 in ˝1 WD R
2 n NDI (1a)

u D g on @DI @ru � iku D o.r�1=2/ as r D jxj ! 1; (1b)
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scatterer
D

DΓ

f

abΩ

f

Ω

DΓ

scatterer
D

ab

Fig. 1 Schematic illustration of an absorbing layer˝ab: Left: annular layer. Right: polygonal layer

where the wavenumber k > 0; D � R
2 is a bounded scatterer with Lipschitz

boundary �D D @D, and the data g 2 H1=2.�D/ is generated by the incident
wave. In fact, the technique can be applied to solve the Helmholtz-type problems in
inhomogeneous, anisotropic media or with an external source, which are confined
in a bounded domain˝a enclosing ND; that is,

r � �Cru�C k2n u D f in ˝1; (2)

in place of (1a). Here, C 2 C
2�2 is a symmetric matrix, and n > 0 the reflective

index. Assume that exterior to ˝a; C D I2; n D 1 and f D 0:
To numerically solve the exterior problem (1) or (2) with (1b), we reduce the

infinite domain by surrounding the computational domain ˝f WD ˝a n ND via an
artificial layer ˝ab with a finite thickness. Without loss of generality, we consider
two types of layers: (i) ˝ab D fa < r < bg is a circular annulus (cf. Fig. 1 (left));
and (ii)˝ab is a polygonal annulus (cf. Fig. 1 (right)). The former is more convenient
to illustrate the idea and to compare with the PML techniques in [3, 7, 10], while the
latter is more practical and flexible to the geometry of the scatterer. In what follows,
we focus on the derivation of the PDE in ˝ab that couples with the Helmholtz
problem in ˝f to achieve the aforementioned goals.

The form of the transformed Helmholtz operator under a generic coordinate
transformation finds useful later on, which can be verified by knowledge of calculus.

Lemma 1 Define the Helmholtz operator:

QHŒQu� D �QuC k2 Qu: (3)

Given a coordinate transformation between Qx D .Qx; Qy/ and x D .x; y/ with the
Jacobian matrix

x D x.Qx/; y D y.Qx/I J WD @.x; y/

@.Qx; Qy/ D
"

@Qxx @Qyx
@Qxy @Qyy

#

; (4)
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we have the transformed Helmholtz operator

HŒu� D 1

n

˚r � �Cru�C k2 n u
�

; (5)

where u.x/ D Qu.Qx/ and

C D
"

C11 C12
C12 C22

#

D J Jt

det.J/
; n D 1

det.J/
: (6)

2.1 Real Compression Coordinate Transformation

We start with the “compression” coordinate transformation for the inside-out
invisibility cloak in [18]:

r D b � .b � a/2

�C b � 2a or � D s.r/

b � r
; s.r/ WD a2 C r.b � 2a/; (7)

for � 2 Œa;1/ and r 2 Œa; b/: This one-to-one mapping compresses the open space
exterior to a disk of radius � D a into the annulus a � r < b; where the inner circle
� D a.D r/ remains unchanged, while � D1 corresponds to r D b:

We now derive the equation in the compressed layer ˝ab by using Lemma 1.
By the chain rule involving the original Cartesian coordinates-.Qx; Qy/ with the polar
coordinates-.�; �/I and the physical Cartesian coordinates-.x; y/ with the polar
coordinates-.r; �/; we have

J D @.x; y/

@.Qx; Qy/ D
@.x; y/

@.r; �/

@.r; �/

@.�; �/

@.�; �/

@.Qx; Qy/ : (8)

A direct calculation leads to

J D RJ0Rt with J0 D
"

dr=d� 0

0 r=�

#

; R D
"

cos � � sin �
sin � cos �

#

: (9)

Then by (6),

C0 D R

"

c0 0

0 1=c0

#

Rt; n0 D �

r

d�

dr
; c0 WD �

r

dr

d�
: (10)

As a consequence of Lemma 1, we obtain the modified Helmholtz equation:

r � �C0ru
�C k2 n0 u D 0 in ˝ab: (11)
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Noting from (7) that

d�

dr
D
�b � a

b � r

�2 D
� dr

d�

��1
; r 2 .a; b/; (12)

we have

n0 D s.r/

r

.b � a/2

.b� r/3
; c0 D s.r/

r

b � r

.b � a/2
: (13)

It is evident that 1=c0; n ! 1; when r ! b�: This implies the wavenumber
becomes infinitely large near the outer boundary of layer ˝ab: In other words, the
solution u has infinite oscillation. It is no wonder that all the outgoing waves in the
open space are compressed into the finite layer ˝ab; so this induces the so-called
curse of infinite oscillation. Thus, it is advisable to use a complex compression
coordinate transformation to attenuate the waves.

2.2 Complex Compression Coordinate Transformation

Different from (7), we introduce the complex compression mapping

Q�.r/ D �.r/C i�0.�.r/ � a/; �.r/ D s.r/

b � r
; r 2 Œa; b/; (14)

where s.r/ D a2 C r.b � 2a/ as before, and �0 > 0 is a tuning parameter. For
notational convenience, we denote

˛ WD 1C i�0 D d Q�
d�
; ˇ WD 1C i�0

�

1 � a

�

�

D Q�
�
: (15)

Using Lemma 1, we can derive following PDE in ˝ab:

Theorem 1 Using the transformation (14), we derive the Helmholtz-type problem:

r � �Cru�C k2 n u D 0 in ˝ab; (16)

u D � at r D aI 1

˛

dr

d�
@ru� iku D o.j Q�j�1=2/ as r! b�; (17)

where � is from the solution of the interior Helmholtz equation at the inner
boundary r D a; and

C D R

"

c 0

0 1=c

#

Rt; n D ˛ˇ s.r/
r

.b � a/2

.b � r/3
; c D ˇ

˛

s.r/

r

b � r

.b � a/2
: (18)
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Moreover, if  2 L2.0; 2�/, we have the following point-wise bounds for all r 2
.a; b/;

ku.r; �/kL2.0;2�/ � exp
n

�k�0.� � a/
�

1 � a2

k2�2 C k2�20 .� � a/2

�1=2ok�kL2.0;2�/:
(19)

It is important to point out that the solution in the point-wise sense (19) decays
exponentially like O.e�k�0=.b�r// as r ! b�: We also observe from (18) that the
coefficients 1=c; n ! 1 as r ! b�: Though the product nu is well-behaved, the
problem (16)–(17) is still challenging for numerical solution due to the involved
singular coefficients.

2.3 Variable Substitution

To handle the singularity and remove essential oscillations of u, we introduce the
following substitution in ˝ab:

u D vw; w D
�a

�

�3=2

eik.��a/; (20)

where � D �.r/ is as in (7). It is important to remark that

(i) We incorporate the complex exponential to capture the oscillation of u; so that v
essentially has no oscillation for arbitrary high wavenumber and very thin layer
(see Fig. 2 below).

2.22.12

2.22.12

2.22.12

2.22.12

-0.2

-0.1

0

0.1

0.2
Re(u)

(a)

-0.2

-0.1

0

0.1

0.2
Im(u)

(b)

-0.2

-0.1

0

0.1
Re(u)
Re(v)

(c)

-0.2

-0.1

0

0.1
Im(u)
Im(v)

(d)

Fig. 2 Profiles of the solution (33) with k D 200; �0 D �=4 and a0 D 1 under the real
compression mapping (7) and complex compression mapping (14), and the substitution (20) with
r 2 .2; 2:2/ and along � D 0. (a) Refu.�.r/; 0/g under (7). (b) Imfu.�.r/; 0/g under (7). (c)
Refu. Q�.r/; 0/g under (14) vs. Refvg in (20). (d) Imfu. Q�.r/; 0/g under (14) vs. Imfvg in (20)
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(ii) In real implementation, we can build in the substitution into the basis functions,
and formally approximate u by non-conventional basis:

uN 2 span
˚

 j D w�j W 0 � j � N
�

; (21)

where v is essentially approximated by the usual polynomial or piecewise
polynomial basis f�jg in spectral/spectral-element methods.

Remark 1 Recall that for fixed m and large jzj (cf. [1]),

H.1/
m .z/ �

r

2

�z
ei.z� 12m�� 14 �/; �� < arg.z/ < 2�: (22)

By (60), we have the asymptotic estimates for fixed m W

jOum.r/j D j O mj
ˇ

ˇ

ˇ

H.1/
m
�

k Q�.r/�

H.1/
m .ka/

ˇ

ˇ

ˇ �
r

a

j Q�je
�k�0.��a/j O mj eik.��a/: (23)

In view of this, the complex exponential in (20) captures the oscillations of u near the
inner boundary r D a; so we expect v has no oscillation and decays exponentially
in the layer ˝ab: ut

We find it is more convenient to carry out the substitution through the variational
form. Let L2!.˝/ be a weighted space of square integrable functions with the inner
product and norm denoted by .�; �/!;˝ and k � k!;˝ as usual. Define the trace integral
hu; vi�b WD

H

�b
u Nv d�: Let ˝ D f̋ [˝ab; and assume g D 0: Formally, we define

the bilinear form associated with (1) in f̋ coupled with (16):

B
˝
.u; �/ WD B

f̋
.u; �/C B

˝ab
.u; �/ with B

f̋
.u; �/ D .ru;r�/ f̋ � k2.u; �/˝f ;

B˝ab
.u; �/ D .Cru;r�/˝ab � k2.n u; �/˝ab � hCru � n; �i�b ; (24)

where n D .cos �; sin �/t is the unit outer normal to �b:

Theorem 2 With the substitution u D vw and � D  w in (20), we have

B˝ab
.u; �/ D �$1Crv;r 

�

˝ab
C 1
˛

�

ˇ@nv; $2

�

˝ab
C 1
˛

�

ˇ$2v; @n 
�

˝ab
C�$3v; 

�

˝ab
;

(25)

where @n D n � r is the directional derivative along the normal direction, and

$1 D a3

�3
; $2 D a3

r

1

�2

�

� 3

2�
C ik

�

; $3 D a3.b� a/2

rs2.r/

��ˇ

˛
� ˛ˇ

�

k2 C ˇ

˛

9

4�2

�

;

˛ D 1C i�0; ˇ D 1C i�0
�

1 � a

�

�

;
1

�
D b � r

s.r/
; s.r/ D a2 C r.b� 2a/; r 2 .a; b/:

(26)
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Remark 2 Some remarks are in order.

(i) Compared with the singular coefficients in (18), we observe from (26) that the
involved coefficients become regular. In particular, $3 is uniformly bounded
above and below away from zero.

(ii) The DtN boundary condition is transformed to the outer boundary r D b; this
naturally eliminate the boundary term in (24).

(iii) When u is approximated by a non-conventional basis (21), we can use (25)–
(26) to compute the matrices of the linear system. In fact, ˝ab can be replaced
by any element of a non-overlapping partition of ˝ab: ut

Remarkably, the transformed problem in v is nearly definite for any wavenumber
k > 0, as opposite to the indefiniteness of the original problem.

Theorem 3 With the substitution u D vw in (20), we have

Re
˚

B˝ab.u; u/
� �c1.1 � ��1/k@rvk2!2 C c2k@�vk2! C c3kv.a; �/k2L2.0;2�/

C a3jIj2k2
Z 2�

0

Z b

a

�.r/

s2.r/
jvj2drd�;

(27)

where ! D b � r; jIj D b � a; " > 1 and

c1 D a3

bNc2jIj4
1

1C �20
; c2 D a3

bNc4jIj2 ; c3 D 3

2

1

1C �20
; Nc D maxfa; jIjg;

�.r/ D 15

4a2k2
�20

1C �20
t3 � 9

4a2k2
t2 � �20

1C �20
�

�20 � � C 2
�

tC .�20 � �/; t D a

�
:

(28)

For simplicity, we denote the coefficients (up to a sign) of the cubic polynomial
in t by f�ig3iD0; and define

e‚.t/ WD ‚.r/ D �3t3 � �2t2 � �1tC �0; t 2 .0; 1�: (29)

One verifies readily that

e‚0.t/ D 3�3
n�

t � �2

3�3

�2 � �22

9�23
� �1

3�3

o

;
�2

3�3
D 1C �20

5�0
;

e‚0.0/ D ��1 < 0; e‚0.1/ < 3�3
�3

5
� 4a

2k2

45

�

�20 � � C 2
�

�

:

If k2 � k20 WD 27=.4a2.�20 � � C 2// and 1 < � < �20 ; then e‚0.t/ < 0; and

e‚.1/ < e‚.t/ < e‚.0/ D �20 � �; t 2 .0; 1/I e‚.t/ � e‚.t�/ > 0; t 2 .0; t��;
(30)
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where

t� D �0

�1
D 1 � 1C ���20

1C .2 � �/��20
1

�20
; t� D 1 � 1

�20
C 2.� � 1/ 1

�40
C O.��60 /:

(31)

This implies

‚.r/ > 0 if � � a

t�
or a <

b � aC b.t�1� � 1/
b � aC a.t�1� � 1/

a � r < b: (32)

In particular, if �0 � 1; we have‚.r/ > 0 for all r 2 .a; b/:

2.4 Numerical Results

2.4.1 Illustration of the Solution in�ab Under Different Transformations

Consider the exterior problem

�uC k2 u D 0; � > a0I uj�Da0 D gI @�u � iku D o.��1=2/; (33)

where we take g D �exp
�

ika0 cos.� � �0/
�

with the incident angle �0. It is known
that it admits a unique series solution u.�; �/: As before, we reduce the unbounded
domain by an artificial annular layer˝ab with radius a > a0:

We plot in Fig. 2 the profiles of the solution under different transformations.
We see that the infinite oscillation of the solution in the layer ˝ab by the
real compression transformation (7). The solution decays exponentially with the
complex compression transformation, but it oscillates near r D a: However, with
the substitution (20), v becomes well-behaved in the layer, which actually we
approximate.

2.4.2 Spectral-Element Methods for Scattering Problems

We demonstrate that the proposed absorbing layer is totally non-reflective, and
robust for high wavenumber and very thin layer. To show the high accuracy, we
solve (1) with the scatterer D being a disk of radius a0; which is reduced to two
annuluses:˝ D ˝f [˝ab: Here, we use Fourier approximation in � direction, and
spectral-element method in radial direction [14]. Note that for r 2 Œa; b�; we use the
non-standard basis  j D w�j with �j being the usual polynomial nodal or modal
basis as in (21).

We also intend to compare our approach with the PML technique using the
complex coordinate stretching

Qr D rC i
Z r

a
�.t/dt; r 2 .a; b/; �.t/ > 0: (34)
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Typically, there are two choices of the absorbing function �.t/.

(i) Regular function (see, e.g., [7, 10]):

�.t/ D �1
� t � a

b � a

�n
; so Qr D rCi �1

b � a

nC 1
� r � a

b � a

�nC1
; r 2 .a; b/; (35)

where n is a positive integer and �1 > 0 is a tuning parameter.
(ii) Singular function (or unbounded absorbing function (see, e.g., [4, 5]):

�.t/ D �2

b � t
; so Qr D rC i �2 ln

�b � a

b � r

�

; r 2 .a; b/; (36)

where �2 > 0 plays the same role as �1:

Observe from (14) and (36) that the imaginary parts of both transformations
involve two different one-to-one mappings between .0;1/ and .a; b/; i.e.,

z D �.r/ � a

b � a
D r � a

b � r
; r D aC bz

1C z
; r 2 .a; b/; z 2 .0;1/; (37)

and

z D ln
�b � a

b � r

�

; r D b � .b � a/
1

ez
; r 2 .a; b/; z 2 .0;1/: (38)

It is noteworthy that the algebraic mapping (37) has been used for mapped spectral
methods in unbounded domains see, e.g., [6, 14], where at times one employs the
following logarithmic mapping similar to (38):

z D ln
�b � 2aC r

b � r

�

; r D b � .b � a/
2

1C ez
; r 2 .a; b/; z 2 .0;1/: (39)

Indeed, one can choose any of these singular mappings in (35) for the PML, but the
singularity of the coefficients in the PML equation is very different between (38)–
(39) and (37). In fact, the authors [4, 5] suggested the use of e.g., Gauss-quadrature
rules to avoid sampling the singular values at r D b; but it should be pointed out the
logarithmic singularity induced by (38) is more challenging to deal with than the
algebraic mapping (37).

We reiterate the significant differences of our approach from the PML: (i) we
use the compression transformation for both the real and imaginary parts in (36) so
we can directly transform the far-field radiation conditions to r D bI and (ii) more
importantly, the substitution allows us to remove the singularity and oscillation in
the layer leading to well-behaved functions which can be accurately approximated
by standard approximation tools.

In the test, we take g to be the same as in (33) with a0 D 1; �0 D 0, and use
Theorem 2 to compute the matrices related to the artificial layer. Let M be the
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cut-off number of the Fourier modes, and N D .N1;N/ be the number of points
in r-direction of two layers, respectively. We measure the maximum pointwise error
in ˝f : We take N1 D 200;M D ka with a D 2; b D 2:2 and vary N so that the
waves in the interior layer can be well-resolved, and the error should be dominated
by the approximation in the outer annulus. In Fig. 3a–b, we compare the accuracy
of the solver with PAL (�0 D 1:5), PML (n D 1; �1 D 1:89; 1:43 for k D 150; 200,
respectively: optimal value based on the rule in [7]) and UPML using unbounded
absorbing function (36) (�2 D 1=k W optimal value suggested by [5]). Observe that
our approach outperforms the PML with two choices of the absorbing functions,
and the advantage is even significant for high wavenumber. In addition, the effect of
the singularity related to UPML is observable for slightly large N.

We also study the influence of the thickness of the absorbing layer. In Fig. 3c, we
vary the thickness of the layer b� a D 0:02; 0:05; 0:1; 0:5 and plot the error against
N D 5; 10; � � � ; 40 with k D 100: For a fixed N, we observe the thinner the layer the
smaller the error, which shows the result is insensitive to the thickness. In Fig. 3d,
we plot Re.uN/j˝f and Re.vN/j˝ab with b � a D 0:02 and N D 40: Notice that the
approximation of v has no oscillation and is well-behaved in the layer.

In Fig. 3e–f, we further test PAL with a perfect conducting ellipse D with @D WD
f.x; y/ D �.cosh� cos �; sinh� sin �/; � 2 Œ0; 2�/g and fix .�; �/ D .0:8; 0:5/ with
k D 50; .a; b/ D .2; 2:2/. We partition ˝ D f˝.i/

f g8iD1 [ f˝.i/
ab g8iD1 into 16 non-

overlapping (curved) quadrilateral elements as shown in Fig. 3e. Using the Gordon-
Hall elemental transformation fTi

f ;T
i
abg W Œ�1; 1�2 7! f˝.i/

f ;˝
.i/
ab g; we define the
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Fig. 3 In (a)–(b): b D 2:2: In (c): k D 100: In (d): k D 100; b D 2:2;N D 40: In (e)–(f):
k D 50;N1 D 60; .a; b/ D .2; 2:2/; @D WD f.x; y/ D �.cosh� cos �; sinh� sin �/; � 2 Œ0; 2�/g
with .�; �/ D .0:8; 0:5/, �0 D 1:5; and for (e): N D 25. (a) PAL vs PML (k D 150). (b) PAL vs
PML (k D 200). (c) Errors vs thickness of ˝ab. (d) Re.uN / and Re.vN/. (e) Re.uN/ and Re.vN/.
(f) Error of (e) against N
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approximation space

uN 2 VN D
n

u 2 H1.˝/ W uj
˝
.i/
f
ı Ti

f 2 PN1 � PN1 ; uj˝.i/
ab
D vNw; vNj˝.i/

ab
ı Ti

ab 2 PN1 � PN

o

:

(40)

In Fig. 3e, we plot Re.uN/j˝f and Re.vN/j˝ab with .N1;N/ D .60; 25/. In Fig. 3f, we
take N1 D 60 (the interior layer can be well-resolved) and vary N D 5; 10; � � � ; 25
so that the maximum point-wise error in˝f should be dominated by N (the number
of points along the radial direction in ˝ab). We see the errors decay exponentially
for the spectral-element approximation, and a high accuracy can be achieved with a
small N:

2.4.3 Simulation of Cylindrical Inside-Out Cloak

We illustrate that with the lossy and dispersive materials in the cloaking layer ˝ab;

we can achieve the perfectness of the aforementioned inside-out cloak. Assume that
the scatterer D in (1) is penetrable, and place an active “point” source centred at
.x0; y0/ in the disk r < a W

f .x; y/ D A exp
�

� .x � x0/2 C .y � y0/2

2�2

�

; (41)

with .A; x0; y0; �/ D .105;�0:3;�0:3; 0:01/:We take k D 50, .a; b/ D .1; 1:5/ and
�0 D 0:1: In Fig. 4a, we plot Re.u/j˝f and Re.v/j˝ab with .N1;N/ D .50; 30/: We
depict in Fig. 4b–c the extracted profiles along x-axis. We see that the waves radiated
by the active source are completely absorbed by the cloaking layer˝ab. Indeed, the
unknown v in the layer is very well-behaved.
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Fig. 4 Inside-out cloaking phenomenon generated by a point source defined in (41) with k D 50,
.a; b/ D .1; 1:5/; �0 D 0:1; M D ka and ND .50; 30/. (a) Cloaking of a point source. (b) Profile
of u& v along x-axis. (c) Profile of u along x-axis
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3 Rectangular/Polygonal Absorbing Layer

In practice, the rectangular/polygonal layer is more desirable and flexible for e.g.,
elongated scatterers and for element methods. In fact, the two techniques for
designing the perfect annular absorbing layer can be extended to this setting. To
fix the idea, we set

˝f D fx 2 R
2 W jxij < Li; i D 1; 2g; ˝ D fx 2 R

2 W jxij < Li C di; i D 1; 2g;

with L1=L2 D d1=d2. Then, the absorbing layer consists of four trapezoidal pieces:
˝ab D ˝ n N̋ f D ˝r [˝ l [˝ t [˝b; whose non-parallel sides are rays from the
origin O; as illustrated in Fig. 5a.

Like (14), the complex compression coordinate transformation for the right and
top pieces˝r and ˝ t; respectively, takes the form:

Qx1 D �1.x1/C i�0.�1.x1/� L1/; Qx2 D Qx1x2=x1; x 2 ˝r; (42)

Qx2 D �2.x2/C i�0.�2.x2/� L2/; Qx1 D Qx2x1=x2; x 2 ˝ t; (43)

and for the left and bottom pieces ˝r and ˝ t; we transform by symmetry:

�Qx1.x1/; Qx2.x1; x2/
�j˝ l D � � Qx1.�x1/; Qx2.�x1; x2/

�j˝r ; (44)
�Qx1.x1; x2/; Qx2.x2/

�j˝b D �Qx1.x1;�x2/;�Qx2.�x2/
�j˝ t : (45)

In the above, we have

�1.x1/ D L21 C .d1 � L1/x1
L1 C d1 � x1

; �2.x2/ D L22 C .d2 � L2/x2
L2 C d2 � x2

: (46)

Like (7), the real transformation Mx1 D �1.x1/maps Mx1 2 ŒL1;1/ to x1 2 ŒL1;L1C
d1/: As a result, the trapezoid ˝r on the right is compressed along radial direction
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Fig. 5 In (b)–(c), @D WD f.x; y/ D �.cosh� cos �; sinh� sin �/; � 2 Œ0; 2�/g with .�; �/ D
.0:8; 0:5/, �0 D 1:5. (a) Schematic illustration of ˝ab. (b) Re.uN/ and Re.vN/. (c) Error of (a)
against N
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from an open “trapezoid” with L1 � Mx1 < 1 and two infinitely-long, non-parallel
sides on the same rays as ˝r: Likewise for three other trapezoidal pieces, they are
compressed from open “trapezoids”.

Using Lemma 1, we can derive the Helmholtz-type PDE as with that in
Theorem 1. Thanks to the symmetry of the layer, one only needs to calculate the
material parameters in ˝r and ˝ t:

Theorem 4 By the transformation (42)–(43), we have C and n take the form

C11 D ˇ1

˛

�1

x1�01
; C22 D ˛

ˇ1

x1�01
�1
C ˇ1

˛

�1�
0
1

x1

�x2
x1

�2� 1

�01
� ˛

ˇ1

x1
�1

�2

; (47a)

C12 D x2
x1

�ˇ1

˛

�1

x1�01
� 1

�

; n D ˛ˇ1 �1�
0
1

x1
; in ˝r; (47b)

and

C11 D ˛

ˇ2

x2�02
�2
C ˇ2

˛

�2�
0
2

x2

�x1
x2

�2� 1

�02
� ˛

ˇ2

x2
�2

�2

; C22 D ˇ2

˛

�2

x2�02
; (48a)

C12 D x1
x2

�ˇ2

˛

�2

x2�02
� 1

�

; n D ˛ˇ2 �2�
0
2

x2
; in ˝ t; (48b)

where ˛ D 1C �0i; and ˇi D Qxi=�i .i D 1; 2/: With the symmetric relations (44)–
(45), we have

fC11;C22; ng.x1; x2/j˝ l D fC11;C22; ng.�x1; x2/j˝r ; C12.x1; x2/j˝ l D �C12.�x1; x2/j˝r ;

(49)

fC11;C22; ng.x1; x2/j˝b D fC11;C22; ng.x1;�x2/j˝ t ; C12.x1; x2/j˝ t D �C12.x1;�x2/j˝ t :

(50)

We shall provide the derivations in a forthcoming work. Like (20), we use the
following substitution to diminish the singularity and essential oscillations:

u D vw; w D �

L1=�1
�3=2

eik r
x1
.�1�L1 / in ˝r; w D �

L2=�2
�3=2

eik r
x2
.�2�L2/ in ˝ t; (51)

w.x1; x2/j˝ l D w.�x1; x2/j˝r ; w.x1; x2/j˝b D w.x1;�x2/j˝ t ; with r D
q

x21 C x22: (52)

This can be implemented as in Theorem 2. The details shall be reported in a later
work.

To test our proposed method, we enclose the same elliptical scatterer with
the same setting as in Fig. 3e by a rectangular layer with .L1;L2/ D .1; 0:8/

and .d1; d2/ D .0:1; 0:08/. We partition ˝ D f˝.i/
f g8iD1 [ f˝.i/

ab g8iD1 into 16

non-overlapping quadrilateral elements as shown in Fig. 5b. Once again, the
spectral-element scheme can be implemented by the unconventional basis in (21)
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and uN 2 VN in (40) with w defined in (51)–(52). Let �0 D 0; k D 50; and �0 D 1:5,
we plot Re.uN/j˝f and Re.vN/j˝ab with .N1;N/ D .60; 30/ in Fig. 5b. We plot the
maximum error in ˝f with fixed N1 D 60 and N D 3; 6; � � � ; 30 in Fig. 5c. Observe
that the error decays exponentially as N increases, and the approximation in the
layer has no oscillation and is well-behaved.

4 Extensions and Discussions

We discuss various extensions and relevant futures works to conclude this report.

• The complex compression coordinate transformation (14) can be directly applied
to construct three-dimensional spherical absorbing layer. However, the substitu-
tion (20) should be replaced by

u D vw; w D
�a

�

�2

eik.��a/: (53)

• For 3D polyhedral layers, we can compress the outgoing waves of the open space
in radial direction as with the polygonal layer outlined previously. The related
real compression transformation can also be viewed as an inside-out polyhedral
cloak version of that for the polyhedral cloak in [16].

• It is of interest and necessity to theoretically analyse the well-posedness of the
reduced problem, and conduct the related error estimates, which the analysis in
[7, 8, 15] can shed light on, and we shall report in future works.

• Time-dependent formulations of the equation in the absorbing layer can be
obtained by taking the inverse Fourier transform in time of the time-harmonic
counterparts as with the PML technique, see e.g., [9]. Remarkably, Daniel et al.
in [2] proposed a high-order super-grid-scale absorbing layer, whose limiting
case can be viewed as the real compression mapping discussed in Sect. 2.1,
together with an artificial viscosity term to damp the waves. Different from
the PAL technique and the above idea, which only involve spatial coordinate
transformations, Zenginoğlu constructed a hyperboloidal layer in [17] by using a
space-time coordinate transformation along characteristic lines. The comparison
of the accuracy and efficiency between these methods is worthy of deep
investigation.
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Appendix 1. Proof of Theorem 1

Proof Given the transformation (14), (8) becomes

J D @.x; y/

@.Qx; Qy/ D
@.x; y/

@.r; �/

@.r; �/

@. Q�; �/
@. Q�; �/
@.Qx; Qy/ : (54)

With Q� in place of � in (9)–(10), we have

J D RJ1Rt with J1 D
"

dr=d Q� 0

0 r= Q�

#

; (55)

and

C D R

"

c 0

0 1=c

#

Rt; n D Q�
r

d Q�
dr
D ˛ˇ�

r

d�

dr
; c WD Q�

r

dr

d Q� D
ˇ

˛

�

r

dr

d�
: (56)

Then we can work out the explicit expressions of n; c in (18) as (13).
Note that the asymptotic boundary condition at r D b is transformed from the

Sommerfeld radiation condition in (1b).
We now derive the estimate (19). For this purpose, we expand the solution and

data in Fourier series:

fu; ‰g D
1
X

jmjD0
fOum.r/; O m.r/geim� ; (57)

where
˚Oum.r/; O m.r/

�

are the Fourier coefficients. Then we can reduce the prob-
lem (16)–(17) to

1

r

�

rc Ou0m
�0 � m2

r2c
Oum C k2n Oum D 0; r 2 Œa; b/; jmj D 0; 1; 2; � � � ; (58)

Oum D O m at r D aI 1

˛

dr

d�
Ou0m � iku D o.j Q�j�1=2/ as r! b�: (59)

One can verify by using the Bessel equation of Hankel function (cf. [1]):

r2y00 C ry0 C .r2 �m2/y D 0; y D H.1/
m .r/;

that the unique solution of (16)–(17) is

u D
1
X

jmjD0
Oum.r/eim� with Oum.r/ D O m

H.1/
m .k Q�/

H.1/
m .ka/

: (60)
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We next resort to a uniform estimate of Hankel functions first derived in [7,
Lemma 2.2]: For any complex z with Re.z/; Im.z/ � 0; and for any real ‚ such
that 0 < ‚ � jzj; we have for any real order �;

jH.1/
� .z/j � e

�Im.z/
�

1� ‚2

jzj2

�1=2

jH.1/
� .‚/j; (61)

which implies

max
jmj�0

ˇ

ˇ

ˇ

ˇ

H.1/
m .k Q�/

H.1/
m .ka/

ˇ

ˇ

ˇ

ˇ

� exp
n

�k�0.� � a/
�

1 � a2

k2�2 C k2�20 .� � a/2

�1=2o

; � > a:

(62)

Therefore, we can derive (19) by using the Parseval’s identity of Fourier series
and (62). ut

Appendix 2. Proof of Theorem 2

Proof We first deal with the boundary term hCru � n; �i�b in (24). By a direct
calculation and (56), we have

.@ru; r
�1@�u/t D Rtru; Cru � n D R diag.c; c�1/Rt ru � n D c @ru: (63)

Thus, using (56) and the substitutions: � D w and u D wv, we can write

hCru � n; �i�b D hcur ; �i�b D hc Nwur;  i�b D a3=2
�

ˇ

r

s

b � r

s.r/
e�ik.��a/ 1

˛

dr

d�
ur ;  



�b

D a3=2
�

ˇ

r

s

b � r

s.r/
e�ik.��a/� 1

˛

dr

d�
ur � iku

�

;  



�b

C ika3=2
�

ˇ

r

s

b � r

s.r/
e�ik.��a/u;  



�b

D a3=2
�

ˇ

r

s

b � r

s.r/
e�ik.��a/� 1

˛

dr

d�
ur � iku

�

;  



�b

C ika3
�

ˇ

r

.b � r/2

s2.r/
v;  



�b

:

Noting that the integral along �b is in �; we obtain from the transformed
Sommerfeld radiation condition (17) that hCru � n; �i�b ! 0 as r! b�:

We next deal with the other two terms in (24). Using the basic differentiation
rules

ru D wrv C vrw; r N� D Nwr N C N r Nw;
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we derive from (24) and a direct calculation that

B˝ab
.u; �/ D�jwj2Crv;r �

˝ab
C �wCrv � r Nw;  �

˝ab
C �v NwCrw;r �

˝ab

C �Crw � r Nw v;  �
˝ab
� k2

�jwj2 n v;  �
˝ab
:

(64)

As C is symmetric, one verifies readily that for any vectors a and b with two
components, we have .Ca/ � b D .Cb/ � a: Thus, we can rewrite

�

wCrv � r Nw;  �
˝ab
D �wCr Nw � rv;  �

˝ab
: (65)

As w is independent of �; we immediately get rw D dw
dr n: Then by (56),

Crw D dw

dr
R diag.c; c�1/Rt n D c

dw

dr
n: (66)

Thus, we have

wCr Nw D c w
d Nw
dr

n; NwCrw D c Nwdw

dr
n; Crw � r Nw D c

ˇ

ˇ

ˇ

dw

dr

ˇ

ˇ

ˇ

2

: (67)

Introducing

$1 D jwj2; $2 D c Nw˛
ˇ

dw

dr
; $3 D c

ˇ

ˇ

ˇ

dw

dr

ˇ

ˇ

ˇ

2 � k2jwj2n; @n D n � r; (68)

we can derive (25) from (64)–(65) and (67)–(68). By (20),

dw

dr
D w

d�

dr

�

� 3

2�
C ik

�

: (69)

We can work out f$jg3jD1 by using (12), (56) and (69). ut

Appendix 3. Proof of Theorem 3

Proof We take v D  in (25). By (56) and (63), we have

Re
�

$1Crv;rv
�

˝ab
D Re

Z 2�

0

Z b

a

n

cjvrj2 C 1

cr2
jv� j2

o

$1 rdrd�

D
Z 2�

0

Z b

a

n

Re
�ˇ

˛

� a3

r�2
dr

d�

o

jvrj2rdrd� C
Z 2�

0

Z b

a

n

Re
�˛

ˇ

� a3

r�4
d�

dr

o

jv� j2rdrd�:
(70)
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Using (26) and integration by parts leads to

Re
n 1

˛

�

ˇDnv; v$2

�

˝ab
C 1

˛

�

ˇv$2;Dnv
�

˝ab

o

D 2
Z 2�

0

Z b

a
Re
�ˇ

˛

�

Re.$2v Nvr/rdrd�

D
Z 2�

0

Z b

a
Re
�ˇ

˛

�

Re.$2/.@rjvj2/rdrd� � 2
Z 2�

0

Z b

a
Re
�ˇ

˛

�

Im.$2/Im.v Nvr/rdrd�

D 3

2

1

1C �20
kv.a; �/k2L2.0;2�/ C

3

2

Z 2�

0

Z b

a

n a3

r�4

� 4�20

1C �20
a

�
� 3

�d�

dr

o

jvj2rdrd�

� 2k
Z 2�

0

Z b

a
Re
�ˇ

˛

�a3

�2
Im.v Nvr/drd�:

(71)

It is evident that

Re
�

$3v; v
�

˝ab
D
Z 2�

0

Z b

a
Re.$3/jvj2rdrd�: (72)

Note from (15) that

Re
�ˇ

˛

�

D 1 � �20
1C �20

a

�
>

1

1C �20
; Re

�˛

ˇ

�

D 1C �0.1 � a=�/

1C �20 .1 � a=�/2
a

�
> 1:

(73)

Using the Cauchy-Schwarz inequality, we obtain

2k
Z 2�

0

Z b

a
Re
�ˇ

˛

�a3

�2
Im.v Nvr/drd� � 1

�

Z 2�

0

Z b

a

n

Re
�ˇ

˛

� a3

r�2
dr

d�

o

jvrj2rdrd�

C �k2
Z 2�

0

Z b

a

n

Re
�ˇ

˛

� a3

r�2
d�

dr

o

jvj2rdrd�;
(74)

where � is a positive constant independent of k. Thus, by (25), (70)–(74) and
collecting the terms, we obtain

Re
˚

B˝ab.u; u/
� �

�

1 � 1
�

�

Z 2�

0

Z b

a

n

Re
�ˇ

˛

� a3

r�2
dr

d�

o

jvrj2rdrd�

C
Z 2�

0

Z b

a

n

Re
�˛

ˇ

� a3

r�4
d�

dr

o

jv� j2rdrd� C 3

2

1

1C �20
kv.a; �/k2L2.0;2�/

C
Z 2�

0

Z b

a

	

Re.$3/C
�

3

2

1

�2

� 4�20

1C �20
a

�
� 3

�

� �k2Re
�ˇ

˛

�

�

a3

r�2
d�

dr




jvj2rdrd�:
(75)
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We next work out and estimate the functions in the brackets. We have

s.r/ D a2 C r.b � 2a/ � jIjNc; Nc WD maxfa; jIjg; jIj WD b � a: (76)

By (12), (26) and (76),

a3

r�2
dr

d�
D a3

jIj2
.b � r/4

rs2.r/
� a3

b Nc2jIj4 .b � r/4I a3

r�4
d�

dr
D a3jIj2

r

.b � r/2

s4.r/
� a3

b Nc4jIj2 .b � r/2;

(77)

so we can obtain the lower bounds of the first two terms.
With a careful calculation, we can work out the summation in the curly brackets

of the last term in (75) by using (12), (15) and (26). ut
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High Order Semi-Lagrangian Particle Methods

Georges-Henri Cottet and Petros Koumoutsakos

Abstract Semi-lagrangian (or remeshed) particle methods are conservative particle
methods where the particles are remeshed at each time-step. The numerical analysis
of these methods show that their accuracy is governed by the regularity and moment
properties of the remeshing kernel and that their stability is guaranteed by a
lagrangian condition which does not rely on the grid size. Turbulent transport and
more generally advection dominated flows are applications where these features
make them appealing tools. The adaptivity of the method and its ability to capture
fine scales at minimal cost can be further reinforced by remeshing particles on
adapted grids, in particular through wavelet-based multi-resolution analysis.

1 Accuracy Issues in Particle Methods

Particle methods are not in general associated with the concept of high accuracy.
They are instead viewed as numerical models, able to reproduce qualitative features
of advection dominated phenomena even with few particles, in particular in
situations with strongly unsteady dynamics. Examples of early applications of
particle methods which illustrate these capabilities in flow simulations are transition
to turbulence in wall bounded flows [23] or the study of vortex reconnection [25].
Free surface or compressible flows are other examples where particle methods can
give an intuitive qualitative understanding of the flow dynamics in situations where
Direct Numerical Simulations with classical discretization methods would require
prohibitive computational resources. This is in particular true for applications in
computer graphics [17] or in astrophysics [12, 20].

The numerical analysis of particle methods allows to understand the accuracy
issues that these methods face. Particle methods are based on the concept that Dirac
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masses give exact weak solutions to advection equations written in conservation
form. For simple linear advection equations, the approximations of exact solutions
by particles, measured on distribution spaces, therefore only relies on quadrature
estimates for initial conditions and right hand sides. A typical error estimate for the
solution U of an advection equation reads

k.U � Uh/.�; t/kW�m;p � C1 exp .C2T/ h
m

for t � T, where h is the initial inter-particle spacing,m is the order of the quadrature
rule using particle initial locations as quadrature points, C1 and C2 are positive
constants depending on the flow regularity, and W�m;p is the dual of Wm;q, with
1=pC 1=q D 1. When one wishes to recover smooth quantities U�h from the Dirac
masses carried by the particles, one needs to pay for the regularization involved in
the process and a typical error estimate becomes :

k.U �U�h/.�; t/kLp � C. �r C hm=�m/;

where r is the approximation order of the regularization used to mollify the particles
(the reference [6] provide detailed proofs of the above estimates in the context of
vortex methods).

This estimate immediately shows the dilemma of particle methods : the regu-
larization size must be small, and controls the overall accuracy of the method, but
it must contain enough particles so that the term hm=�m does not compromise the
convergence of the method. This constraint is even more stringent if particles are
involved in additional terms of the model, in particular pressure gradient terms (in
compressible flows) or diffusion terms. In the later case error terms of the form
hm=�mC2 arise. In any case, proper convergence would require, on top of � ! 0,
that h=� ! 0, the so-called overlapping condition. This condition is in practice
difficult to satisfy, in particular for 3D flows. Instead, a constant ratio h=� is most
often chosen in refinement studies.

On the other hand, even if the overlapping condition is not satisfied, particle
methods still enjoy conservation properties and some kind of adaptivity which goes
with the belief that “particles go where they are needed”. This belief is however
often more a hand-waving argument than a reasonable assumption based on solid
grounds. Figure 1 shows very simple examples which illustrate the shortcomings of
particle methods in the simulation of 2D inviscid vortex flows. In this case the 2D
Euler incompressible Euler equations in vorticity form

@!

@t
C div .u!/ D 0

are discretized by particles of vorticity. In the left picture, a typical particle
distribution is shown for an initial vorticity field with support in an ellipse. This
figure shows that particles tend to align along directions related to the flow
strain, creating gaps in the vorticity support. The right picture corresponds to an
axisymmetric initial vorticity field, leading to a stationary solution. In this example
!0.x/ D .1 � jxj2/3. Error curves, in the energy norm for the particle velocities,
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Fig. 1 Simulation with a grid-free vortex particle methods [7]. Left picture: particle distribution in
the simulation of an elliptical vortex patch. Right picture: error curves for a stationary axisymmetric
vortex. Solid line h D 0:005, dashed line h D 0:01. �=h D 1:5

corresponding to h D h0 D 0:1 and h D h0=2 are plotted, with a constant ratio h=�.
This figure shows that, despite the smoothness of the solution, the expected initial
gain in accuracy is almost completely lost after a short time due to the distortion of
the particle distribution.

Whenever point-wise values are required with some accuracy (for instance to
recover satisfactory spectra in turbulent flows or local pressure or vorticity values
on an obstacle) the overlapping condition cannot be ignored.

2 Remeshing and Semi-Lagrangian Particles

Although several methods have been considered to overcome the lack of overlapping
of particles while keeping their grid-free nature, particle remeshing is to our
knowledge the only tool which so far allowed to deliver in a clear-cut way
accurate results for complex two and three-dimensional dynamics, in particular
in incompressible flows. Remeshing was already used in early simulations for
some specific flow topology, like vortex sheets [15] or filaments [19], but its first
systematic use goes probably back to [13, 14], where pioneering results where
obtained for flow past a cylinder at challenging Reynolds numbers and for the
problem of axisymmetrization of elliptical vortices. The first numerical comparisons
of these methods with spectral methods in 3D turbulent flows were performed in [9].

Remeshing consists of redistributing particle masses on nearby grid points, in
a way that conserves as many moments of the particles as possible. The number
of moments, and hence the accuracy, dictates the size of the remeshing kernel.
Conserving the 3 first moments (including mass) in some sense guarantees that
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remeshing has not a diffusive net effect. This has been considered as a minimal
requirement in the references already cited and in all following works.

The remeshing frequency can be a point of debate. However there are two aspects
to consider. On the one hand remeshing a particle distribution which has already
been highly distorted is likely to produce numerical noise. On the other hand, the
time scale on which particles are distorted is the same as the one on which the
particle advection should be discretized, namely 1=jraj1, where a is the advecting
velocity field. It is therefore natural to remesh particles every few time-steps and
numerical truncation errors coming from remeshing must be accounted for in the
numerical analysis. Recently [10] particle methods have been analyzed from this
point of view - in other words as semi-lagrangian methods.

To describe the method and discuss its accuracy, let us consider the 1D model
linear advection problem - which is somehow the engine of particle methods in all
applications :

�t C .a�/x D 0; x 2 R; t > 0; (1)

where a is a given smooth velocity field. A particle method where particles are
remeshed at each time step can be recast as

�nC1i D
X

�nj �

 

x nC1
j � xi

�x

!

; i 2 Zd; n � 0: (2)

In the above equation�x is the grid size on which particles are remeshed (assuming
a regular grid), xj are the grid points and � is the remeshing interpolating kernel.
x nC1
j is the result of the advection at time tnC1 of the particle located at xj at time tn.

Note that to generalize the method to several dimensions one may use similar
formulas with remeshing kernels obtained by tensor products of 1D kernels (this
is the traditional way) or, following [18], one can alternate the advection steps in
successive directions, with classical recipes to increase the accuracy of the splitting
involved in this process. This later method is economical when one uses high order
kernels (with large supports) as, in 3D, its computational cost scales like O.3M/
instead of O.M3/ for a kernel involving M points in each direction.

The moment conservation properties mentioned earlier to be satisfied by the
remeshing kernel � can be expressed as

X

k2Z
.x � k/˛� .x � k/ D

8

<

:

1 if ˛ D 0
0 if 1 � ˛ � p

; x 2 R; (3)

for a given value of p � 1. An additional requirement is that � is globally in WrC1;1
and of class C1 in each integer interval (in practice � is a polynomial in these
intervals), and satisfies the interpolation property : � .i� j/ D ıij. In the simple case
of an Euler explicit scheme to advect particles, x nC1

j D xj C a.xj; tn/�t and when
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the time step satisfies the condition

�t < ja0j�1L1

; (4)

on can prove [10] that the consistency error of the semi-lagrangian method is
bounded by O.�t C�xˇ/ where ˇ D min . p; r/. Using higher order Runge-Kutta
schemes increase the time accuracy, as expected. Moreover, at least for kernels of
order up to 4, under appropriate decay properties for the kernel � one can prove for
a large class of kernels the stability of the method under the sole assumption (4).

Let us give a sketch of the consistency proof for the case r D p D 1 if a is only
a function of x and the Euler scheme is used to advance particles. We start from (2)
and assume that �nj D �.xj; tn/ where � is the exact smooth solution to the advection

equation and we want to prove that �nC1i D �.xi; tnC1/C O.�t2 C�x2/.
We write j D iC k and, in (2),

�nj D �ni C k�x �x.xi; tn/C O.�x2/:

Particle advection with the Euler scheme gives

x nC1
j D xj C aj�t D xi C k�xC ai�tC Œa.xi C k�x/� a.xi/�

and thus

�

 

x nC1
j � xi

�x

!

D � �kC �i C �Œa.xi C k�x/ � a.xi/�
�

D � .kC �i/C k�t a0.xi/ � 0.kC �i/C O.�x2/;

where we have used the notations

� D �t=�x ; �i D ai�:

We thus obtain

�nC1i D
X

k

h

�.xi; tn/C k�x �x.xi; tn/C O.�x2/
i

h

� .kC �i/C k�t a0.xi/ � 0.kC �i/C O.�x2/
i

:

The moment properties of order 0 and 1 yield

X

k

k� .kC �i/ D ��i ;
X

k

k� 0.kC �i/ D �1:
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We therefore have

�nC1i D �.xi; tn/ ��t a.xi/ �x.xi; tn/ ��t a0.xi/ �.xi; tn/C O.�t2 C�x2/
D �.xi; tn/ ��t.a �/x.xi; tn/C O.�t2 C�x2/

and, by (1),

�nC1i D �.xi; tnC1/C O.�t2 C�x2/

which proves our claim.
In the general consistency result mentioned above, one can also check that the

order of spatial accuracy is p whenever one can ensure that after the advection step
each grid cell contains exactly one particle. [10] contains explicit expressions of
kernels of order up to 6, denoted by p;r where p and r measure the moment and
regularity properties of the kernel. It also contains a number of refinement studies
which suggests that in practice for a kernel p;r the observed order of accuracy is
between min . p; r/ and p. Figure 2 shows the results of a typical refinement study on
a 2D level set benchmark. This case consists of a level set function corresponding to
a disk of radius 0:15 centered at .0:5; 0:15/ in the periodic box Œ0; 1�2. The velocity
field is given by

a.x1; x2; t/ D f .t/
�

� sin2.�x1/ sin.2�x2/; sin.2�x1/ sin2.�x2/
�

; (5)
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Fig. 2 Refinement study for the flow (5). CFL value is equal to 12. Black-circle curve :
kernel 2;1; red-square : kernel 4;2; blue-triangle : kernel 6;4; dashed lines indicate slopes
corresponding to second and fourth order convergence
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with f .t/ D cos.�t=12/. This field produces a strong filamentation of the solution
culminating at t D 6 then drives the solution back to its initial state at t D 12,
where numerical errors can be recorded. The actual convergence rate observed in
this example for the kernels 2;1, 4;2 and 6;4 are respectively 1:87, 3:17 and
5:92.

It is interesting to note that several authors have recently advocated the use of
particle methods to correct dissipative effects of finite-difference of finite-volume
level set methods. Roughly speaking the idea is to seed particles at sub-grid levels
near the interface and use these particles to rectify the location of the interface
(see [17] for instance). However [10] shows that, both in 2D and 3D, plain semi-
lagrangian particle methods, with appropriate remeshing kernels (second order is
actually enough) deliver better results with fewer points and larger time-steps.

The possibility of combining high accuracy with stability non constrained by
the grid size makes semi-lagrangian particle methods appealing tools for turbulent
transport. In [16] this was exploited to investigate universal scaling laws for
passive scalars advected in turbulent flows. In this study the accuracy of particle
methods was first compared to classical spectral methods. Figure 3 shows a typical
comparison of scalar spectra and of the pdf of the scalar dissipation for a turbulent
flow. In this experiment a second order kernel was used for the particle method.
These results, and several other diagnostics, indicate that except for the very tail
of the spectra most of the scales are well captured by the particle method with the
same resolution as for the spectral method. A factor 1:2 between the grids was found
sufficient to resolve satisfactorily the scalar also in the dissipative range. In the case
of high Schmidt numbers (ratio between flow viscosity and scalar diffusivity) even
with this requirement for slightly increased resolution, the gain in CPU time over
the spectral method resulting from the use of large time steps in the particle method
reached a factor 80.

3 Adaptive Semi-Lagrangian Particles

Remeshing particles somehow detracts particle methods from self adaptivity (how-
ever illusive that notion might be, as we have seen). To restore some kind of
adaptivity in the method it is natural to rely on the grid on which particles are
remeshed. Like for grid-based methods, one may envision several ways of doing
so. One way is to assume a priori that grid refinement is desirable in some parts
of the flow, typically zones which are close to fixed boundaries. Another way is to
adapt the grid to the smoothness of the solution itself.

3.1 Semi-Lagrangian Particle Methods on Non-Uniform Grids

In that case we assume that a non-uniform grid (the physical space) is obtained
by a predefined mapping from a cartesian uniform grid (the reference space). The
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Fig. 4 Vortex dipole impinging on a wall [8]. Top pictures: results at two successive times with
remeshing on an exponentially stretched grid. Bottom pictures: results with uniform grids at the
later time for the coarsest (left) and finest (right) grids. Only a small percentage of the active
particles are shown by dots

method works as follows [8]. At each time step, particles are pushed in the physical
space, then mapped in the reference space. In this space regular remeshing formulas
are used on cartesian grids, and particle locations are meshed back to the physical
space. Figure 4 is an illustration of this method in the context of 2D vortex particle
methods for the simulation of the rebound of a vortex dipole impinging on a wall. In
this example the grid is stretched in both directions in an exponential manner with
respect to the distance to the wall. Applications in 3D flows of similar technics can
for instance be found in [21].

3.2 Particle Methods with Adaptive Mesh Refinement

Particle remeshing also enables to incorporate Adaptive Mesh Refinement (AMR)
finite difference techniques [2] to adapt the particle discretization to the solution
itself. Bergdorf et al. [3] describes how to define, move and remesh patches of
particles at different resolution in a consistent way. Figure 5 illustrates how the
method allows to capture filaments ejected by an elliptical vortex in a 2D inviscid
flow. In this example the refinement was based on the vorticity gradients. We do not
enter more into the details of this method as we believe that it is outperformed by
the more recent wavelet-based method described below.
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Fig. 5 Blocks of refined particles in an AMR implementation of particle methods for the
simulation of an elliptical vortex [3]

3.3 Wavelet-Based Multi-Level Particle Methods

The concept of multi-resolution semi-lagrangian particle methods was recently
pushed further in [4], using wavelet tools. The idea of combining particle and
wavelet methods can actually already been found in [1]. In this reference wavelet
served as particle shapes in a grid-free method. The method however did not find
practical ways to address the issue of interacting and recombining wavelets. In [4]
instead, because particles are remeshed at every time-step on regular grids, particle
methods can inherit concepts and techniques used in the context of finite-difference
methods (see for instance [24]). Nonetheless the semi-lagrangian character of the
method introduces original and interesting features. To describe the method and
understand how it works, let us consider again the 1D advection equation on the
real line, first with constant velocity then in the general case. The multi-dimensional
case and the application to incompressible flows will be next outlined.

We consider Eq. (1). The method is based on the following classical wavelet
decomposition, in the framework of interpolating bi-orthogonal wavelets [5]:

�.x/ D
X

j

c0k�
0
j .x/C

X

j

L�1
X

lDl0

dlj 
l
k.x/ (6)
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where l0 (resp. l D L) corresponds to the coarsest (resp. finest) level. In the
above equation � l

j and  l
j are respectively the scaling and wavelet (or detail) basis

functions, centered around the grid point xlj D j�xl, where �xl D 2L0�l�x0 is the
grid size at level l. This decomposition allows to define the solution at the different
scales :

�l.x/ D
X

j

clj �
l
j.x/: (7)

Scale and detail coefficients are related between successive levels through classical
filtering operations :

cli D
X

j

Qh.2i�j/clC1j ; dli D
X

j

Qg.2i�j/clC1j ; clC1i D
X

j

Œh.2j�i/cljCg.2j�i/dlj� (8)

where the filter functions g, h, Qg, Qh depend on the particular wavelet system chosen.
Let us now describe one time-step of the algorithm, first for a constant velocity

value. The methods advances the solution scale by scale in the following manner.
Assume at time tn D n�t the solution is known on grid points belonging to the
nested grids .xlj/j;l. For each level l 2 ŒL0;L�
• a wavelet analysis selects grid points which correspond to detail coefficients dlj

above a given threshold
• particles are initialized on these grid points with, for grid values, the correspond-

ing scale parameters clj
• particles are pushed and remeshed on the grid .xlk/k.

For the remeshing step above to be consistent one needs to ensure that active
particles are always surrounded by “enough” particles carrying consistent values of
�l. This is done in a way similar to what would be done in a finite-difference method
by creating ghost particles in the neighborhood of the active particles. The values of
the solution assigned at time tn to these grid points is obtained by interpolation from
�l�1. In order to make sure that only relevant values at level l are retained at the end
of the iteration, a tag value equal to 0 is assigned to the ghost particles while the
value 1 is assigned to the active particles. These tag values are pushed and remeshed
along with the particles. After remeshing, only particles with tag values different
from 0 are retained.

Finally, when all active particles have been moved and remeshed at all scales,
values of the function at a given scale are updated by values at the next scale on
even points when available.

Figure 6 illustrates the method in the case of a translating top-hat profile. The
remeshing kernel is 2;1 which for a constant velocity corresponds to a second
order method. The scaling function is a piecewise linear function and the detail
coefficients correspond to central finite-differences of the second derivatives. In the
left picture we compare, after the time needed to travel 15 times the width of the
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Fig. 6 Advection of top-hat profile in a uniform field by a 2-level particle method. Left picture:
black curve : result for uniform coarse resolution; blue curve: result at the coarsest level for a 2-
level method; red squares active particle at the fine level. Right picture: number of active particles
as a function of time

top-hat, the results obtained with uniform one-level resolution at �x0 D 0:01 and
�x1 D 0:005 and the wavelet-based method using these two levels. For the two-
level case, only the coarse resolution is showed together with active particles at
the higher resolution. One can see that all solutions exhibit overshoots, as expected
from a second order method, but the two-level solution limits the overshoot even at
the coarse level and is very close to the higher resolution solution. The number of
active particles, shown on the right picture of the figure, increases to respond to the
oscillations created by the remeshing, then stabilizes.

Let us now consider the case of a non uniform velocity. In this case, scales are
not advected in an independent fashion but interact as a result of compression and
dilatation. To allow fine scales to appear from coarse scales, there are two options.
The first one is similar to what would be done in a finite difference method [24].
It consists of considering for each scale at the beginning of each step additional
ghost particles at the level immediately above on which values of solutions are
interpolated from the coarse scale. Another option, simpler and more specific to
particle methods, is to remesh each scale on a scale twice smaller. At the end of
the time-step, the value of the solution on this smaller scale is chosen to be either the
result of the remeshing either of the coarse grid or the fine grid, depending on
the value of the flag described earlier.

It is important to note that, in both options, the time scale on which the scale
l C 1 appears from scale l is governed by 1=ja0j1 which is consistent with the
maximum time step allowed for the particle method. In other words for time steps
corresponding to large CFL numbers, only scale l C 1 can appear form scale l if
the condition (4) is satisfied. Figure 7 illustrates the method for two scales for
an initial condition consisting on a sine wave advected in a velocity given by
a.x/ D 1 C cos.2�x/. As the wave travels to the right it is subject to successive
compressions/amplification and dilatation/damping. As a result, the number of
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Fig. 7 Multilevel particle method in a compression/dilatation flow. See Fig. 6 for captions

active particles oscillates (right picture). The left picture shows that the adaptive
method allows to recover the high resolution results.

To go beyond the 1d toy problem just considered, there are again two options.
One is to use the same ideas but to rely on multidimensional tensor product wavelets,
with the added complexity that one grid point is associated to several wavelets.
This is the option followed in [4]. The other one, presumably simpler and which
only uses 1D wavelets, would be to split advection into three successive directional
advections, along the lines of [18].

In vortex flows, where these methods have been primarily applied, an additional
work is to compute velocities created by multi-level vortices. The solution chosen
in [4] is to use a fast multipole method, where each particle associated to the value
of the solution and the associated grid size is accounted for in the Biot Savart law.
The left picture of Fig. 8 illustrates the method for the flow around swimming fishes
[11]. The power of the method is here fully apparent. The complex geometries and
the associated boundary conditions are dealt with by a penalization method an the
nested multi-level cartesian grids allow to capture at a minimal cost the fine vortices
created by the swimmers, despite the low accuracy of the penalization method. This
method has been implemented for both 2D and 3D geometries [22]. It has been in
particular applied in combination with optimization technics to determine efficient
swimming strategies [11].

4 Conclusion

Particle methods with particle remeshing at each time-step can be analyzed as
semi-lagrangian conservative methods. The accuracy of the method is governed by
moment and regularity properties of the remeshing kernel and high order kernels
can be derived in a systematic fashion. Adaptivity in the method can be reinforced
in particular by using wavelet-based multi-resolution analysis. In any case, the semi-
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Fig. 8 Multi-level vorticity particle method with penalization around complex geometries. Top
figure : 2D calculation around multiple fishes. Bottom picture: 3D vorticity passed a wind turbine
(from [22])

lagrangian nature of the method allows to use time-steps which are not constrained
by the grid size. In many applications this can lead to substantial computational
savings.
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Energy-Minimized High-Order Surface Meshes

Karsten Bock and Jörg Stiller

Abstract The construction of suitable curvilinear meshes for high-order methods
in computational fluid dynamics still remains a challenge. This paper investigates a
strictly local construction and optimization method for high-order surface meshes.
The optimization procedure combines fitting and minimization of energy func-
tionals related to bending and stretching. The weight of the energy functionals
in this combination is gradually reduced during the process by application of
blending functions. We apply the method to analytically defined smooth surfaces
as well as triangulated scanning data. For both classes of test cases the method
improves the mesh quality notably and preserves the accuracy of least-squares
fitting. Three different blending functions for the energy weighting have been
investigated. Furthermore, we incorporated and tested methods to reduce the
additional computational costs of performing the optimization.

1 Introduction

High-order methods like spectral element or discontinuous Galerkin methods are
popular in computational fluid dynamics for their superior convergence properties
compared with lower order methods. Yet, problems of interest in engineering
involve geometrically complex domains, which have to be represented accurately
with coarse meshes. This has established an increasing research interest in curved
high-order meshes. So far, commercial mesh generators do not feature high-order
mesh generation. Typically, high-order mesh generation starts from linear meshes
obtained by these generators and curves them subsequently. During this process the
meshes can get distorted, so that undulations and artifacts may even render the mesh
invalid. Different techniques intending to ensure the quality and validity of curved
meshes have been proposed, e.g. using elastic analogies [1, 2] or optimization
algorithms [3, 4]. It is worth noting, that these methods are motivated globally,
although mesh deformation is frequently carried out in a localized manner.
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The present paper describes our strictly local algorithm to construct quality
optimized, high-accuracy surface meshes. The approach involves quadratic energy
functionals in the fitting process. Our optimization method is applied to analytically
defined as well as scattered data test cases. In contrast to other optimization
methods, e.g. put forward in [5], our approach does not need the target surface
parametrization, which renders it particularly useful for scattered data surfaces. This
class of surface definition, often provided by scanning methods, is relevant in fields
like bio-medicine or engineering science.

In this paper we show that our method is capable of quality optimization while
simultaneously preserving accuracy. Furthermore, we present strategies to reduce
the additional computational costs invested in optimization.

The paper is organized as follows: In Sect. 2 we extend least-squares fitting to an
incremental mesh optimization algorithm based on surface entity energies. Section 3
presents the results for analytically defined smooth surface as well as scattered data
examples. Section 4 concludes the paper.

2 Surface Mesh Construction

Typically, curved mesh construction methods work in a bottom-up sequence starting
from an initial straight-sided mesh: (1) curving the boundary edges, (2) generating
the curved boundary patches and, (3) building the curved volume elements. Our
approach to build optimized high-order surface meshes follows this route too,
naturally, up to step (2). First, it is ensured that the vertices of the initial, linear
mesh are located on the surface. Sequentially, any entities built in a previous step
are utilized as boundary conditions in the following steps.

2.1 Incremental Curve Construction

As common in Computer Aided Geometric Design (CAGD) Literature [6, 7], we
use the Bernstein Bézier form to define curved mesh edges. A Bézier curve of order
n is written as

c .t/ D
n
X

iD0
biBn

i .t/ ; (1)

where Bn
i are the Bernstein polynomials and bi the control points defining the

form of the curves. Since the incremental curve construction method was described
in detail in [8], we will only revisit it briefly here. Curved mesh edges are
constructed by fitting them to surface-bound sampling points. The main concept
in the computation of optimized curves relies on the adjustment of these sampling
points in an incremental procedure minimizing curve energy. We achieve fitting by
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minimizing the average squared distance

Jx.bII tJ; xJ/ D 1

m

m
X

jD1

�

c.tj/ � xj
�2

(2)

of the curve to a set of m surface points xJ. In (2) tJ denotes the according set
of samples in parameter space and bI the set of the interior control points of the
curve. The surface-bound sampling points xJ are obtained by projection P to
the surface. This projection is carried out iteratively in an approximated surface
normal direction. At the moment we employ two projections: One for exact surface
definitions, and another one for application with discrete surface data in a facet
representation, typically originating from scanning methods. For a more detailed
description of the projection we refer to [8, 9].

To achieve energy-minimization we incorporate the energy functionals

E1 D
1
Z

0

Pc2.t/ dt (3)

and

E2 D
1
Z

0

Rc2.t/dt (4)

into the fitting in addition to the averaged squared distance. These functionals are
frequently used in CAGD and especially in surface fairing [10, 11] and relate to
physical stretching and bending energies, respectively.

Combining the energy functionals with (2) we obtain the curves control points
bI by minimizing

J.bII tJ; xJ;wE/ D .1 � wE/ NJx C wE

�

.1 � ˛c/ NE1 C ˛c NE2
�

, (5)

where the overbars indicate normalizations of the aforementioned functionals. In
this equation wE weights the energies and the distance to each other and the
parameter ˛c balances E1 and E2. Using equal weighting of energies, i.e. ˛c D 0:5

has proven a useful choice [8].
The core ingredient of the curve optimization strategy is creating an incremental

fitting process during which (5) is minimized in every step. A blending function
reduces the weight wE continuously with the step count k of the process. We start
out using wE D 1, meaning pure energy-minimization, and then gradually decrease
wE, finally reaching least-squares distance fitting with wE D 0 in the last step. We
remark, that in every step k of the process the sampling point set xJ is reconstructed
from the parameter set tJ and the previous steps curve by projection to the target
surface. Therefore, this method results in an optimized set of sampling points,
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leading to energy-optimized curves and, furthermore, preserves the polynomial
convergence rate, as previously shown by the authors in [8]. Generally, the blending
function w.k/ for wE can be chosen arbitrarily. In contrast to previous studies, we
compare three different blending functions here. Using the substitution b D k�1

kmax�1 ,
which includes the step count k and the maximum number of steps performed kmax,
we define: A linear blending function (labeled: lin)

wlin.k/ D 1 � b , (6)

a smooth rational (rat)

wrat.k/ D .1 � b/2

b2 C .1 � b/2
(7)

and an exponentially decaying blending (exp)

wexp.k/ D
8

<

:

pqb b ¤ 1
0 b D 1 .

(8)

The blending functions are shown in comparison in Fig. 1, where the exponential
blending is shown with p D 1

2
and q D 10, which represents the version used in this

paper.

2.2 Incremental Fitting of Triangular Patches

Triangular patches are built in Bernstein Bézier form

s.�/ D
X

iCjCkDn

bijkBn
ijk.�/ ; (9)

Fig. 1 Energy blending
functions used in incremental
curve and patch construction
methods. A linear, a smooth
rational and an exponential
formulation are used and
shown in comparison
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which uses barycentric coordinates � D .
1; 
2; 
3/
T , the triangle control points

bijk and the Bernstein polynomials Bn
ijk.�/. The latter are polynomials of order n and

defined as

Bn
ijk.�/ D

nŠ

iŠjŠkŠ

 i1 


j
2 


k
3 (10)

and commonly applied to triangular patches. Since the methods presented here
require the formulation of patches with a set of two independent parametric
coordinates, the transformation

� D
�

1 � u � v; u; v
�

(11)

is used, wherein u D 
2 and v D 
3 were chosen. With this the directional
derivatives

@us D @
2s � @
1s ; (12)

@vs D @
3s � @
1s (13)

follow and are applied during high-order patch construction.
The patch construction method is basically an extension of our curve construc-

tion. Equivalently to curve fitting, a squared distance functional

Jx
�

bII�J; xJ

�

D 1

m

m
X

jD1

�

s.�j/� xj
�2

(14)

is used for triangles. The computation of a set of triangle control points bI with
minimization of (14) requires a set of m sampling points in parameter space �J and
a corresponding set of surface-bound points xJ. The latter are obtained by projection
operator P.

Furthermore, we include patch energy functionals into the fitting process. Since
physical membrane stretching and plate bending energies are complicated to
minimize, we substitute them by the simplified quadratic approximations

E1 D
1
Z

0

1�v
Z

0

h

.@us/
2 C .@vs/2

i

du dv (15)

and

E2 D
1
Z

0

1�v
Z

0

h

.@uus/
2 C 2 .@uvs/2 C .@vvs/2

i

du dv , (16)
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respectively. Combining the functionals (14)–(16), where, again, the overbar indi-
cates normalization by a reference value, yields

J
�

bII�J; xJ; ˛p;wE;
�

D .1 � wE/NJx C wE

h

.1 � ˛p/ NE1 C ˛p NE2
i

. (17)

Minimization of functional (17) in each step of an incremental process results
in energy-optimized surface-fitted triangles. Specifically, the patch energies are
balanced by the factor ˛p and the weight wE between energies and squared distance
is reduced from 1 to 0 during the optimization by application of an blending function
w.k/.

3 Results

In the following we examine two classes of examples to study the curve and patch
curving methods described earlier. The first test case is an explicitly defined screw
surface, two scattered data surfaces follow—triangulations of a human left atrium
and a statue head.

We assess the geometric accuracy by the L2 error, which for curves is defined as

"x D

v

u

u

u

t

X

e

1
Z

0

�

ce �P Œce�
�2

dt (18)

and evaluated over all curved edges ce. Equivalently, we utilize the L2 error of all
triangular patches sf

"x D

v

u

u

u

t

X

f

1
Z

0

1�v
Z

0

�

sf �P
�

sf
�

�2

du dv . (19)

Both error formulations include the projection operator P, briefly described in
Sect. 2.1. Moreover, curve fairness is closely linked to curve energies and, therefore,
evaluated using the energy norms

"1;2 D
s

X

e

E1;2.ce/ (20)

incorporating the curve energy functionals (3) and (4), respectively. Lastly, triangu-
lar patch quality is evaluated by the quality measure

q D min
�f

0

B

@

j@us � @vsj
max
�f

j@us � @vsj

1

C

A (21)
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Fig. 2 Screw surface
example and the coarse mesh
used here. The mesh includes
32 triangles with an average
mesh spacing of ca. 11 times
the minimum curvature radius
rc of the surface

suggested in [12], which is based on the surface Jacobian. As a global quality
measure for the surface mesh we use qmin D min

f
.q/ the minimal element quality of

all faces.

3.1 Smooth Surfaces with Analytical Definition

In this section we use the analytically defined screw surface

F.x/ D
�

x cos.�z/C y sin.�z/
�2 C 16

9

�

x sin.�z/ � y cos.�z/
�2 � 1 D 0 (22)

as a test case to study the curve and patch construction methods and especially their
dependency on the choice of blending functions mentioned in Sect. 2.1. Figure 2
depicts the screw surface for the interval 0 � z � 2 as well as the mesh utilized
as an example here. This extremely coarse mesh includes 32 triangles, featuring
an average mesh spacing of approximately 11 times the minimum curvature radius
rc 	 0:117 of the screw surface. During the following tests, the coarse mesh was
curved using an order of n D 12 and the energies were balanced equally, i.e.
˛c D ˛p D 0:5.

In a first test scenario, we focus on curve construction. Therefore, the edges of
the mesh were curved using the incremental procedure described earlier. Through-
out this study the curve construction was carried out with different numbers
of incremental steps kc;max using the linear, rational and exponentially decaying
blending functions w.k/. Figure 3 contains the results of this study. Accuracy
is increased when allowing for a higher number of incremental steps during the
construction, as can be seen in the error plot in Fig. 3a. Evidently, the blending
function influences the error reduction rate. Using linear blending decreases the
error slower than applying an exponential blending. Curve energy norms "1 and "2
are shown in Fig. 3b, c. Since "1 is linked to stretching and curve length, it can only
be decreased slightly. However, considerable improvements are shown in "2 related
to curve bending. Again, linear blending exhibits the lowest rate of energy decrease,
while exponentially decaying blending is able to decrease the energy faster and to
lower absolute values. From these results we conclude that using the exponentially
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(a) (b) (c)

Fig. 3 Error and energy norm plots for different blendings in incremental curve optimization for
to the screw example (n D 12, ˛c D 0:5). (a) Edge L2 error. (b) Energy norm related to stretching.
(c) Energy norm related to bending

(a) (b)

Fig. 4 Error and quality plots for different blendings in incremental patch optimization applied
to the screw surface example (n D 12, kc;max D 150, ˛c D ˛p D 0:5). (a) Triangle L2 error.
(b) Minimum element quality

decaying blending achieves the desired results, curves of high accuracy with low
energies, with less steps, i.e. computational work, in comparison to utilizing the
rational or linear blending. Further tests not shown here confirmed these trendings
using different polynomial degrees and mesh spacings.

Figure 4 shows the results for the curved triangles computed with the three
blending functions when allowing for increasing number kp;max of incremental steps
during patch construction. The number of steps employed during the preceding
curve construction was kept at kc;max D 150 for this test. The L2 error plotted
in Fig. 4a decreases around an order of magnitude with as little as 25–50 patch
construction steps, which is reached slightly faster with the exponentially decaying
than with the rational blending. Linear blending is not as effective as the other two.
Minimum patch qualities qmin exhibit lesser dependency to the choice of blending,
as displayed in Fig. 4b. We remark, that the quality is improved considerably from
qmin 	 0:15 to 0:5 with the application of the incremental optimization process
using 50 or more steps.
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(a) (b) (c)

Fig. 5 Initial mesh of a human atrium with 1040 triangles and the resulting meshes of order
n D 15 with and without application of incremental optimization (kc;max D 150, kp;max D 100,
˛c D ˛p D 0:5). Underlying fine mesh courtesy of Spencer Sherwin and Chris Cantwell, Imperial
College London. (a) Initial coarse mesh. (b) No optimization. (c) Optimization applied

3.2 Scattered Surface Data

This section focuses on results obtained with scattered data surface definitions.
These are frequently encountered in engineering and medicine in conjunction with
scanning methods like computer tomography (CT) or magnetic resonance imaging
(MRI). We use triangulated fine meshes as an exact surface representation. These
were enhanced with an cubic interpolation, the PN Triangles proposed by Vlachos
et al. [13], wherein we compute the required vertex normals using the method of
Max [14]. The projection P is performed onto this interpolated surface employing
Phong normals [15] based on the linear fine mesh. For details we refer to [9].

The first example is a human atrium as pictured in Fig. 5. The fine mesh is derived
from CT scans and contains approximately 60;000 elements. From the fine grid we
derived a coarse one consisting of 1040 elements (Fig. 5a), from which the high-
order mesh n D 15 is build. Pure distance fitting results in the surface shown in
Fig. 5b. Zooming to the detail reveals artifacts and undulations, practically rendering
this mesh useless for computational purposes. After application of the incremental
optimization for curves and patches (˛c D ˛p D 0:5, kc D 100 and kp D 50 with
exponentially decaying blending), the mesh presented in Fig. 5c follows. It is of
visually higher quality and without artifacts. Especially for high polynomial orders
and coarse meshes the optimization can push the limits of order and mesh coarseness
for which suitable meshes can be obtained. Nevertheless, this comes along with
an increase in computational cost, since the curve construction was performed 100
times and the patch construction 50 times in the process.

To reduce computational costs, we propose restricting the optimizations to the
curves and triangles that actually need to be faired. Pursuing this idea, curves are
only optimized, if their length change exceeds a certain threshold during the initial
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(a) (b) (c)

Fig. 6 High-order mesh generation for a statue head example. Fine and coarse mesh are shown
as well as the resulting optimized mesh of order n D 18. ˛c D ˛p D 0:5. Underlying fine mesh
courtesy of Stefan Gumhold, TU Dresden. (a) Fine mesh. (b) Coarse mesh. (c) High-order mesh

curving of the linear edge by distance fitting. Subsequent to the initial construction
of triangular patches without optimization, the patch quality q is accessible. The
number of incremental steps to perform during the construction of a patch can then
be linked to its quality. With this strategy patches of high quality are not optimized,
applying the more optimization steps to other patches, the poorer their quality is.

This concept was tested using the scattered data example pictured in Fig. 6, a
scanned statue head. The fine mesh contains 381;236 elements, the coarse only
1043 triangles. Applying the optimization leads to an artifact-free high-order mesh
of order n D 12, pictured in Fig. 6c. When allowing full optimization for every
curve and patch, surface construction takes 3202 s on an Intel Core i7-860 CPU. For
each of the 1573 edges 150 increments were passed and equivalently 100 for each
of the 1043 triangles. Employing partial optimization, 150 increments were used
for 732 edges and 754 triangles were optimized using an average of 35 steps. The
computational time could be reduced to 993 s.

The limitation of optimization to elements of poorer quality and highly curved
edges is able to reduce computational costs. Furthermore, this yields a high-order
mesh of comparable quality to using full optimization, as the histogram in Fig. 7
exhibits. Optimizing the high-order mesh in full or partially improves element
qualities significantly, especially preventing any poor quality elements below
q D 0:35.

We remark, that the strict locality of our method enables every curve and element
to be processed individually in parallel. Revisiting the atrium example briefly, Fig. 8
shows the speedup and efficiency of an OpenMP-parallelized implementation tested
on a HPC node with two Intel Xeon X5660 CPUs. Two different examples have
been tested: The 1040 triangle mesh shown in Fig. 5a and a finer one consisting of
approximately 5000 elements. For the former a high-order mesh using n D 15 and
partial optimization has been computed (labeled: 1k, partial). The latter was curved
to order n D 5 applying the optimization for every mesh entity (label: 5k, full).
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Fig. 7 Statue example quality histogram showing the number of triangles N in classes of quality q.
Comparison of high-order mesh construction with no optimization performed, a full optimization
and a partial optimization

Fig. 8 Parallel speedup and efficiency of the mesh optimization method

All tests were repeated 50 times and the averaged computing times were used. Both
cases show reasonable scaling and efficiency.

4 Conclusions

Following the common route in high-order mesh generation we curve initially
linear starting meshes. In order to prevent artificial undulations, artifacts and
to ensure mesh quality we employ an optimization strategy based on energy-
minimization. The method combines least-squares fitting and energy-minimization
yielding an incremental optimization method. A key ingredient of this method is
the sequential reduction of the energy weighting in the mixed functional that is
minimized. Different blending functions have been analysed for this purpose: a
linear, a rational and an exponential one. Two different types of surface examples
were addressed: an analytically defined surface and a triangulations of surface
scans. The results illustrate that the optimization leads to improvement of visual
appearance and mesh quality. Moreover, the optimization preserves the fitting
accuracy, sometimes improving it. The mesh generation method is strictly local and
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requires only the projection to the target surface. This renders it particularly useful
for surface definitions without available parametrizations. An important class of
such definitions are triangulations obtained by scanning, as frequently encountered
in bio-medical and engineering applications.
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Stabilization of (G)EIM in Presence
of Measurement Noise: Application to Nuclear
Reactor Physics

J.P. Argaud, B. Bouriquet, H. Gong, Y. Maday, and O. Mula

Abstract The Empirical Interpolation Method (EIM) and its generalized version
(GEIM) can be used to approximate a physical system by combining data measured
from the system itself and a reduced model representing the underlying physics.
In presence of noise, the good properties of the approach are blurred in the sense
that the approximation error no longer converges but even diverges. We propose
to address this issue by a least-squares projection with constrains involving some a
priori knowledge of the geometry of the manifold formed by all the possible physical
states of the system. The efficiency of the approach, which we will call Constrained
Stabilized GEIM (CS-GEIM), is illustrated by numerical experiments dealing with
the reconstruction of the neutron flux in nuclear reactors. A theoretical justification
of the procedure will be presented in future works.

1 General Overview and Motivation of the Paper

For the sake of clarity, we shall start by formulating the goal of the paper in general
terms containing statements that will be clarified in the forthcoming sections.

Let X be a Banach space over a domain ˝ � R
d .d � 1/ being equipped with

the norm k:kX . Our goal is to approximate functions f from a given compact set
S � X which represent the states of a physical system taking place in ˝ . For this,
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any f 2 S will be approximated by combining two ingredients. The first is the
use of a certain amount m of measurements of f collected directly from the system
itself. We represent them as linear functionals of X 0 (the dual of X ) evaluated on f .
The second ingredient is the use of a (family of) subspace(s) Vn of finite dimension
n which is assumed to approximate well the set S. To limit the complexity in the
approximation and also economize in the amount of sensors to place in the system,
a desirable feature is to find appropriate sensors and the appropriate spaces Vn for
which m and n are moderate. A necessary hypothesis to allow this is to assume
some properties on the geometry of S expressed in terms of a rapid decay of the
Kolmogorov n-width of S in X ,

dn.S;X / WD inf
X�X

dim.X/�n
max
u2S min

v2X ku � vkX :

Under this hypothesis on the decay of dn.S;X /, one can in principle build a
sequence fXngn s.t. dist.S;Xn/ WD maxu2S minv2X ku� vkX � "; where dim.Xn/ D
n � n."/ is moderate.

Algorithms to build fXngn (or at least the first spaces in the sequence allowing
to approximate beyond a given accuracy) and find appropriate linear functionals
have been proposed in the community of reduced modeling (see [1–3]). Note that,
even if this is not required in the previous statements, the construction of the
spaces Xn is then recursive, i.e. Xn�1 � Xn. There, the approximation of f 2 S
is done by interpolation or related approximations. The methods (in practice mainly
based on a greedy procedure) are however not robust with respect to noise in the
measurements and this paper introduces a constrained least squares approximation
for which numerical experiments indicate its potential to address this obstruction.

2 Mathematical Setting

Let us assume that M D span.S/ (where the B denotes the closure in X of the set
B) admits a Schauder basis fqigi, i.e., for every f 2 X there exists a unique sequence
fci. f /g of scalars such that limn!1 k f �Pn

iD1 ci. f /qikX D 0: For every n � 1,
we define the n-dimensional subspace Xn WD spanfq1; : : : ; qng: Let us formulate
in a different manner the hypothesis made involving the Kolmogorov n-width of
S in X : let us assume that the error in approximating the functions of S in Xn is
maxf2S dist. f ;Xn/ � "n; where the sequence ."n/n decays at a nice rate with n.

Let now f�ig be the set of linear functionals of X 0 (of unity norm in X 0) such
that for every n � 1, f�1; : : : ; �ng and fq1; : : : ; qng are such that, for every n � 1

and every 1 � j � n, 8i; 1 � i � j �i.qj/ D ıi;j: For any n � 1, we can now
define a (generalized) interpolation operator Jn W X ! Xn such that for all f 2 X
�i. f / D �i

�

Jn. f /
�

; i 2 f1; : : : ; ng: By construction, for any n � 1 and any
f 2 X , Jn. f / D Jn�1. f / C cn. f /qn: where cn. f / D �n

�

f � Jn�1. f /
�

and, for
notational coherence, we set J0 D 0.
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Using Jn to approximate the functions of S yields the error bound

max
f2S k f � Jn. f /kX � .1Cn/ "n; (1)

where n WD supf2X kJn. f /kX =k fkX is the Lebesgue constant. The value of n

diverges at a certain rate so the behavior of maxf2S k f �JnŒ f �k with the dimension
is dictated by the trade-off between the rate of divergence of .n/ (that is generally
slow) and the convergence of ."n/ (that is generally very fast). Also, for any f 2 S

jcn. f /j � .1Cn�1/"n�1; n � 1 (2)

where0 D 0 and "0 D maxf2S k fk.
For any ˛ > 0, let us define the cone Kn.˛/ WD fv 2 Vn W v DPn

iD1 ciqi jcij �
˛.1Ci�1/"i�1g:We have for any n � 1 and any f 2 S Jn. f / 2 Kn.1/. In presence
of noise in the measurements, we assume that we receive values 	1. f /; : : : ; 	n. f /
such that 	i. f / � �i. f / C N .0; �2/ for i 2 f1; : : : ; ng. Interpolating from these
values yields an element in Xn denoted as Jn. f IN / that satisfies blurred error bound
with respect to (2) that, depending on the precise definition of � and the norm of X
can be

E

�

max
f2S k f � Jn. f IN /k

�

� .1Cn/ "n C .1Cn/
p
n�: (3)

The second term of the bound diverges as n increases and shows that the method
is not asymptotically robust in presence of noise. An illustration of this can be found
in the numerical results below. This motivates the search for other methods which
would ideally yield a bound of the form .1Cn/ "n C � and for which the error is
asymptotically at the level of the noise � .

We propose to correct the interpolation operator by using more the structure
of the manifold S that, at the discrete level, is expressed in the fact that the
approximation should belong to Kn. Indeed, the belonging of Jn. f IN / to Kn is not
satisfied any more except if there exists Qf in S such that �i. Qf / D 	i. f / for any i; 1 �
i � n (which is rarely the case). In addition, in order to minimize the effect of the
noise, we can increase the number of measurements and use m larger than n linear
functional evaluations at a given dimension n. This leads to propose a least-squares
projection on Kn. For a given n, we now collect the values 	n;1. f /; : : : ; 	n;m.n/. f /
with m.n/ � n and such that 	n;i. f / � �i. f / C N .0; �2/; 1 � i � m.n/: Any
f 2 S is now approximated by

An. f / D arg min
v2Kn.˛/

m.n/
X

iD1

�

�n;i.v/ � 	n;i. f /
�2

(4)

where ˛ > 1 is suitably chosen.
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In this paper, we are running the greedy algorithm of the so-called Generalized
Empirical Interpolation Method (GEIM, [1]), to generate a basis fqigi and the
linear functionals f�igi. This method is reported to have a nice behavior for the
Lebesgue constant, at least in case it is trained on a set S with small Kolmogorov
dimension (see [3]). This approach allows an empirical optimal selections of the
positions of the sensors that provide (in case where no noise pollutes the measures)
a stable representation of the physical system. The precise algorithm is documented
elsewhere (see [1] and [4]). Then, we approximate any f 2 S with the function
An. f / defined in (4) with ˛ D 2. We call this scheme Constrained Stabilized GEIM
(CS-GEIM).

Note that the above approach could also be used with a POD approach to provide
the imbedded spaces fXngn (that are more expensive to provide than the greedy
GEIM approach but are more accurate) and well chosen linear functionals �n;i the
choice of which infer on the behavior of the Lebesgue constantn.

3 Numerical Results

3.1 Modelling the Physical Problem

For the physical problem that we consider in this paper, the model is the two group
neutron diffusion equation: the flux � has two energy groups � D .�1; �2/. Index
1 denotes the high energy group and 2 the thermal energy 1. These are modeled by
the following parameter dependent PDE model:

8

<

:

�r �D1r�1
�C .˙a;1 C˙s;1!2/�1 D 1

keff

�

�1�˙f ;1�1 C �1�˙f ;2�2
�

�r �D2r�2
�C˙a;2�2 �˙s;1!2�1 D 1

keff

�

�2�˙f ;1�1 C �2�˙f ;2�2
�

;
(5)

here keff is the so-called multiplication factor and is not a data but an unknown of
the problem,1 and the given parameters are

• Di is the diffusion coefficient of group i with i 2 f1; 2g.
• ˙a;i is the macroscopic absorption cross section of group i.
• ˙s;1!2 is the macroscopic scattering cross section from group 1 to 2.
• ˙f ;i is the macroscopic fission cross section of group i.
• � is the average number of neutrons emitted per fission.
• �i is the fission spectrum of group i.

they are condensed in � D fD1;D2;˙a;1; ˙a;2; ˙s;1!2; �˙f ;1; �˙f ;2; �1; �2g.

1We omit here the technical details on the meaning of keff and refer to general references like [5].
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We assume that the parameters of our diffusion model range in, say,

D1 2 ŒD1;min;D1;max�; D2 2 ŒD2;min;D2;max�; : : : ; �2 2 Œ�2;min; �2;max�;

then D WD ŒD1;min;D1;max� � � � � � Œ�2;min; �2;max� is the set of all parameters and the
set of all possible states of the flux is given by

S WD f.�1; �2;P/.�/ W � 2 Dg; (6)

where the power P.�/ is defined from .�1; �2/.�/ as P.�/.x/ WD �˙f ;1�1.�/.x/C
�˙f ;2�2.�/.x/; 8x 2 ˝ We assume (see [6] for elements sustaining this
hypothesis) that the Kolmogorov-width decays rapidly, hence, it is possible to
approximate all the states of the flux (given by S) with an accuracy " in well-chosen
subspaces Xn � X of relatively small dimension n."/.

To ensure enough stability in the reconstruction and minimize the approximation
error, it is necessary to find the optimal placement of the sensors in the core. The
selection is done with GEIM. If we denote �.�i; x/; i 2 f1; 2g; the measurement
of �i at a position x 2 ˝ by a certain sensor, this measurement can be modeled by
a local average over �i centered at x 2 ˝ . Another possibility is to directly assume
that the value �i.x/ at point x is �.�i; x/.2 Note that, in principle, the measurement
could depend on other parameters apart from the position. We could imagine for
instance that we have sensors with different types of accuracy or different physical
properties. This flexibility is not included in the current notation but the reader will
be able to extrapolate from the current explanations.

A specificity of the approach here is that S is composed of vectorial functions
.�1; �2;P/.�/. We deliberately choose to take measurements only on one of the
components (say �2) and thus reconstruct the whole field �1; �2 and P with the
only knowledge of thermal flux measurements.

Another specificity of our approach is on the spatial location of the measure-
ments. We consider two cases:

• Case I: the sensors can be placed at any point in the domain of definition of �2.
• Case II: the admissible sensor locations are restricted to be deployed in a

restricted part of that domain;

We have already reported in [7] that these two specificities are well supported by
the (G)EIM approach, as long as the greedy method is taught to achieve the goal of
reconstructing the whole field .�1; �2;P/.�/.

Our aim here is to show that the noise can be controlled through our Constrained
Stabilized (G)EIM approach.

2In the following part of this work, we directly assume that the value �i.x/ at point x is �.�i; x/ as
measurement.
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3.2 Description of the 2D IAEA Benchmark

We consider the classical 2D IAEA Benchmark Problem [8], the core geometry
which can be seen in Fig. 1. The problem conditions and the requested results
are stated in page 437 of reference [8]. It is identified with the code 11-A2, and
its descriptive title is Two-dimensional LWR Problem, also known as 2D IAEA
Benchmark Problem. This problem represents the mid-plane z D 190 cm of the 3D
IAEA Benchmark Problem, that is used by references [9] and show in application
within [10].

The reactor domain is ˝ D region.1; 2; 3; 4/. The core and the reflector are
˝core D region.1; 2; 3/ and ˝refl D region.4/ respectively. We consider only the
value of D1j˝refl in the reflector ˝refl as a parameter (so p D 1 and � D D1j˝refl ).
We assume that D1j˝refl 2 Œ1:0; 3:0�. The rest of the coefficients of the diffusion
model (5) (including D1j˝core ) are fixed to the values indicated in Table 1. In
principle, one could also consider these coefficients as parameters but we have
decided to focus only on D1j˝refl because of its crucial role in the physical estate
of the core: its variation can be understood as a change in the boundary conditions
in˝core which, up to a certain extent, allows to compensate the bias of the diffusion

Fig. 1 Geometry of 2D IAEA benchmark, upper octant: region assignments, lower octant: fuel
assembly identification (from reference [10])
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Table 1 Coefficient values: diffusion coefficients Di (in cm) and macroscopic cross sections
(in cm�1)

Region D1 D2 ˙1!2 ˙a1 ˙a2 �˙f2 Materiala

1 1:5 0:4 0:02 0:01 0:080 0:135 Fuel 1

2 1:5 0:4 0:02 0:01 0:085 0:135 Fuel 2

3 1:5 0:4 0:02 0:01 0:130 0:135 Fuel 2 + rod

4 [1.0, 3.0] or 2.0b 0:3 0:04 0 0:010 0 Reflector
a Axial buckling B2zg D 0:8 � 10�4 for all regions and energy groups
b Here 2:0 is the exact value from reference [10]

model with respect to reality. We shall report in a future paper more extended
variations of the parameters and more involved problems, like the one addressed
in [11, 12] where a reduced basis is built to approximate the flux distribution
when the position of the control rods varies. In comparison to their approach, the
current methodology brings the additional ingredient of incorporating measurement
information to the reconstruction. Note that these papers support the idea that the
solution manifold in this frame of physics has a small Kolmogorov n-width.

3.3 Hypothesis of (CS-)GEIM Application

We propose to reconstruct .�1; �2;P/ as explained above (see [7]) i.e., �2 will be
approximated with its direct interpolant JnŒ�2� while �1 and P will be reconstructed
from the measurements of �2, using the same coefficients in a coherent basis set.
These are denoted as eJnŒ�1� and eJnŒP�. Fig. 2 shows the sensor locations given by
the GEIM greedy algorithm in cases I and II.

3.4 Numerical Results

Let us now turn to the analysis of the results. We study the performance of the
reconstruction strategy by considering first of all the decay of the errors

e.training/
n .�2/ WD max

�2D.training/
k�2.�/ � JnŒ�2�.�/kL2.˝/ (7)

in the greedy algorithm. Since both Case I and Case II yield very similar results,
we only present plots of Case II for the sake of concision. In Fig. 3a, the decay is
compared to an indicator of the optimal performance in L2.˝/ which is obtained by
a singular value decomposition of the snapshots �2.�/; 8� 2 D.training/. Note that
e.training/
n .�2/ decays at a similar rate as the SVD which suggests that GEIM behaves

in a quasi-optimal way (see [3]). We now estimate the accuracy to reconstruct
.�1; �2;P/.D1j˝refl/ for any D1j˝refl 2 Œ0:5; 2:0� which does not necessary belong
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(a) (b)

Fig. 2 Locations of the sensors chosen by the greedy EIM algorithm. (a) Case I (selection in ˝).
(b) Case II (selection in ˝core)
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n .�1/, e
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to the training set of snapshots. For this, we consider a test set of 300 parameters
D.test/ different from D.training/ and compute the errors

8

ˆ

ˆ

<

ˆ

ˆ

:

e.test/
n .�1/ WD max�2D.test/ k�1.�/ � eJnŒ�1�.�/kL2.˝/
e.test/
n .�2/ WD max�2D.test/ k�1.�/ � JnŒ�2�.�/kL2.˝/
e.test/
n .P/ WD max�2D.test/ kP.�/ � eJnŒP�.�/kL2.˝/

(8)

The decay of the errors (8) is plotted in Fig. 3b. The fact that e.test/
n .�2/ decays

very similarly to e.training/
n .�2/ confirms that the set of 300 training snapshots was

representative enough of the whole manifoldS. Also, the fast decay of e.test/
n .�1/ and

e.test/
n .P/ shows that the use of the operator eJn to approximate �1 and P is accurate

enough.
Instead of working with L2.˝/, it is also possible to work with other norms

(provided some spacial regularity in the manifold). A particularly relevant case in
neutronics is L1.˝/. Figure 4 shows the results of the reconstruction procedure
when working in this norm and Fig. 5 shows the behavior when considering the
H1.˝/ and working with its classical semi-norm jujH1.˝/ D

R

˝
jruj2.
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Figure 6a shows the behavior of the Lebesgue constants in both cases. We can
find that (1) the Lebesgue constant increases with GEIM interpolation function
dimension, (2) if detectors are limited in a domain part (Case II), the Lebesgue con-
stant gets worse, as an effect of the extrapolation that is required here, nevertheless
the increase is still moderate.

Figure 6b shows the coefficients upper limits described as rn.xn; �n/ � .1 C
n/"n (see (2)) (so jcnj � rn.xn; �n/) for Case I and Case II, which decreases quickly
with n.

We still focus on the 300 parameters D.test/, and compute the errors with Eq. (8),
for each test case, we perform the interpolation process with CS-GEIM a number
of times. Figure 7 shows the averaged L2.˝/ norm for the decay of e.test/

n .�1/,
e.test/
n .�2/ and e.test/

n .P/, with noise amplitude 10�2 for Case I and Case II. For
different measurement noise amplitude, the averaged errors in L2.˝/ norm, L1.˝/
norm and H1.˝/ norm are shown in Figs. 8, 9 and 10 respectively, for Case I and
Case II. The main conclusions are: in the noisy case, (1) CS-GEIM improves the
interpolation, with the error comparable to the noise input level, (2) in extrapolation
case, CS-GEIM reduces the interpolation error dramatically, which extends GEIM
practical use.
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Fig. 8 L2.˝/ norm: decay of e.training/
n .�2/, with noise amplitude 10�2; 10�4; 10�6. (a) Case I. (b)
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Fig. 10 H1.˝/ norm: decay of e.training/
n .�2/, with noise amplitude 10�2; 10�4; 10�6. (a) Case I.

(b) Case II
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Fig. 11 CS-GEIM with different n=m ratio, the input noise level is 10�2, for Case I

If we take more measurements with fixed number of interpolation functions, the
ratio n=m of the number of measurements n to the number of interpolation functions
m increases, so it is expected to have the same effect than to repeat independent
measure at the same point in order to measure the evaluation of the measure. We
consider the analytical function g.x; �/ � V..x1; x2/I .�1; �2// � ..x1 � �1/2 C
.x2 � �2/2/�1=2 for x 2 ˝ ��0; 1Œ2 and � 2 D � Œ�1;�0:01�2; we choose for
D.training/ a uniform discretization sample of 400 points3. Then we change the ratio
n=m of the number of measurements n to the number of interpolation functions
m with CS-GEIM process, see Figs.11 and 12 also show the error converges with
� n� 12 .

3We replace the synthetic neutron problem here by the above analytical function so as to be able to
have a more thorough and extensive numerical analysis
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2

4 Conclusions and Future Works

We have presented some results obtained with the Empirical Interpolation Method
(EIM) for the reconstruction of the whole field, solution to a simple but represen-
tative problem in nuclear reactor physics as an example of a set of parameterized
functions. With EIM, a high accuracy can be achieved in reconstructing the
physical fields, and also a better sensors deployment is proposed with which most
information can be extracted in a given precision even if only part of the field
(either in space or in component) is included in the measurement process. Then
an improved Empirical Interpolation Method (CS-(G)EIM) is proposed. With CS-
(G)EIM, (1) the behavior of the interpolant is improved when measurements suffer
from noise, (2) the error is dramatically improved in noisy extrapolation case, (3) it
is possible to decrease the error by increasing the number of measurements.

Further works and perspective are ongoing: (1) mathematical analysis of the
stable and accurate behavior of this stabilized approach, (2) in this work, our first
assumption is the model is perfect (i.e. we work on in silico solutions; a broader
class of methods which couple reduced models with measured data named PBDW
[13] are able to correct the bias of the model and use real data.
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Coupling DG-FEM and BEM for a Time
Harmonic Eddy Current Problem

Ana Alonso Rodríguez, Salim Meddahi, and Alberto Valli

Abstract We introduce and analyze a discontinuous Galerkin FEM/BEM method
for a time-harmonic eddy current problem written in terms of the magnetic field.
We use standard finite elements on a partition of the conductor domain coupled
with continuous boundary elements on the transmission interface. We prove quasi-
optimal error estimates in the energy norm.

1 Introduction

The usual setting of an eddy current problem distinguishes between a bounded
conductive region and the surrounding unbounded air region. When using the finite
element method for the numerical approximation of an eddy current problem it
is necessary to introduce a bounded computational domain and to approximate
the decay of the solution at infinity by imposing homogeneous condition on its
boundary. A more accurate strategy is to reduce the computational domain to
the conductor by considering non-local boundaries conditions provided by an
integral formulation of the exterior problem. The numerical approximation of this
formulation couples finite elements (FEM) and boundary elements (BEM). This
idea has been introduced in [4] by Bossavit and more recently in [1, 10, 11]. Our
aim here is to revisit the FEM/BEM formulation given in [11] in order to provide an
interior penalty discontinuous Galerkin (IPDG) approximation of the magnetic field
in the conducting domain.

Discontinuous Galerkin (DG) methods can provide efficient solvers for electro-
magnetic problems in domains with complex geometry, see [5]. However, we only
found few works applying DG methods to eddy current problems (see [14] for the
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time-harmonic regime and [2] for a time-domain problem) and we are not aware
about any DG-FEM/BEM formulation for this problem.

Due to the nonlocal character of the boundary integral operators, continuous
Galerkin approximations are usually used on the boundary. As a consequence, the
major difficulty that is encountered in the design of a DG-FEM/BEM method (cf.
[6, 8, 9] and [16, Section 4]) is the mismatch that occurs between the interior and the
boundary unknowns on the transmission interface. In our case, this difficulty appears
in the transmission condition (5) where we have two variables of different nature.
From one side (as the discrete variable representing  is H1.� /-conforming) we
have a globally surface-divergence free function, from the other side the tangential
trace of the DG approximation of the magnetic field is not H.div� /-conforming.
This impedes one to merge the two variables at the discrete level as in [11]. To
address this problem, we exploit the ability of DG-methods to incorporate essential
boundary conditions into the variational formulation and impose (5) weakly. As a
result, in comparison with [11], we have one further independent unknown on the
boundary. We show that the resulting IPDG-FEM/BEM scheme is uniformly stable
with respect to the mesh parameter in an adequate DG-norm. Moreover, under suit-
able regularity assumptions, we provide quasi-optimal asymptotic error estimates.

We end this section with some notations that will be useful in the sequel. Given a
real number r � 0 and a polyhedron O � R

d, .d D 2; 3/, we denote the norms and
seminorms of the usual Sobolev space Hr.O/ by k � kr;O and j � jr;O, respectively. We
use the convention L2.O/ WD H0.O/. We recall that, for any t 2 Œ�1; 1�, the spaces
Ht.@O/ have an intrinsic definition by localization on the Lipschitz surface @O (this
is due to their invariance under Lipschitz coordinate transformations). Moreover, for
all 0 < t � 1, H�t.@O/ is the dual of Ht.@O/ with respect to the pivot space L2.@O/.
Finally we consider H.curl;O/ WD fv 2 L2.O/3 W curlv 2 L2.O/3g and endow it
with its usual Hilbertian norm kvk2H.curl;O/ WD kvk20;O C kcurlvk20;O.

2 The Model Problem

Let ˝ � R
3 be a bounded polyhedral domain with a Lipschitz boundary � . We

denote by n the unit normal vector on � that points towards˝e WD R
3 n˝. For the

sake of simplicity, we assume that ˝ is simply connected and that � is connected.
We consider the eddy current problem

{!�hC curl e D 0 in ˝
e D ��1.curl h � je/ in ˝

h � n D rp � n on �

�h � n D �0 @p
@n

on �

��p D 0 in ˝e

p D O
�

1=jxj� as jxj ! 1;

(1)
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where ! > 0 is the angular frequency, �0 is the magnetic permeability of the free
space, and the conductivity � and the magnetic permeability � in the conductor
˝ are positive and piecewise constant functions with respect to a partition of the
domain ˝ into Lipschitz polyhedra. Here je denotes the (complex valued) applied
current density, e and h are the electric field and the magnetic field, respectively, and
p is the scalar magnetic potential in the exterior region˝e, namely, h D rp in ˝e.

A finite element formulation of problem (1) requires the approximation of the
decay of p at infinity by imposing a homogeneous Dirichlet boundary condition
on an artificial boundary † located sufficiently far from the conductor ˝ . A more
accurate strategy for solving problem (1) consists in reducing the computational
domain to the conductor˝ . This can be achieved by considering non-local boundary
conditions provided by the following integral equations relating the Cauchy data

� WD @p

@n
and  WD pj� on � (see, e.g., [15, Chap. 3]):

 D
�

1
2
I C K

�

 � V� (2)

� D �W C
�

1
2
I � Kt

�

� (3)

where V , K, Kt are the boundary integral operators representing the single layer,
double layer and adjoint of the double layer operators, respectively, and W is the
hypersingular operator. This yields to an exact formulation of problem (1) that is
adequate for a coupled FEM-BEM discretization strategy as:

{!�hC curl
�

��1.curl h� je/
�

D 0 in ˝ (4)

h � n D curl�  on � (5)

�

�0
h � n D �W C

�

1
2
I � Kt

�

� on � (6)

V�C
�

1
2
I � K

�

 D 0 on �; (7)

where curl� is the curl operator on the surface � , namely, curl�  D r�  � n..
In [11] it is shown that, using (5), the unknown  can be eliminated

from (6) and (7), and that the weak formulation of the reduced problem admits
a unique solution .h; �/ 2 H.curl;˝/ � H�1=20 .� /, where H�1=20 .� / WD
n

	 2 H�1=2.� /I h	; 1i� D 0
o

. Here, h�; �i� stands for the duality pairing between

H�1=2.� / and H1=2.� /. Then  2 H1=2.� / is uniquely determined, up to an

additive constant, from (5), so it is unique in H1=2
0 .� / WD

n

' 2 H1=2.� /I R
�
' D 0

o

.

Once the Cauchy data � and are known, the solution is computed in the exterior
domain˝e by using the integral representation formula

p.x/ D
Z

�

@E.jx � yj/
@ny

 .y/ dsy �
Z

�

E.jx � yj/�.y/ dsy in ˝e;
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where E.jxj/ WD 1
4�

1
jxj is the fundamental solution of the Laplace operator. Let us

recall some important properties of the boundary integral operators, see [15] for
details. They are formally defined at almost every point x 2 � by

V�.x/ WD
Z

�

E.jx � yj/�.y/ dsy; K'.x/ WD
Z

�

@E.jx � yj/
@ny

'.y/ dsy;

Kt�.x/ WD
Z

�

@E.jx � yj/
@nx

�.y/ dsy; W'.x/ WD � @

@nx

Z

�

@E.jx� yj/
@ny

'.y/ dsy:

They are bounded as mappings V W H�1=2.� / ! H1=2.� /, K W H1=2.� / !
H1=2.� / and W W H1=2 ! H�1=2.� /. Moreover, there exist constants CV > 0

and CW > 0 such that

h N�;V�i� � CV k�k2�1=2;� 8� 2 H�1=2.� / (8)

and

hW'; N'i� C
ˇ

ˇ

ˇ

ˇ

Z

�

'

ˇ

ˇ

ˇ

ˇ

2

� CW k'k21=2;� 8 ' 2 H1=2.� /: (9)

3 The DG-FEM/BEM Formulation

We consider a sequence fThgh of conforming and shape-regular triangulations of
˝. We assume that each partition Th consists of tetrahedra K of diameter hK ; the
unit outward normal vector to @K is denoted by nK . We also assume that the meshes
fThgh are aligned with the discontinuities of the piecewise constant coefficients �
and �. The parameter h WD maxK2ThfhKg represents the mesh size.

We denote by Fh the set of faces of the tetrahedra of the mesh, by F0
h the sets of

interior faces and by F�
h the set of boundary faces. Clearly Fh WD F0

h [F�
h . We

notice that
n

F�
h

o

h
is a shape-regular family of triangulations of � composed by tri-

angles T of diameter hT ; therefore from now on we will denote by T the faces on � .
Let Oh be either Th or F�

h and E be a generic element of Oh. We introduce for
any s � 0 the broken Sobolev spaces

Hs.Oh/ WD
Y

E2Oh

Hs.E/ and Hs.Oh/ WD
Y

E2Oh

Hs.E/3 :

For each w WD fwEg 2 Hs.Oh/, the components wE represents the restriction wjE.
When no confusion arises, the restrictions will be written without any subscript. The
space Hs.Oh/ is endowed with the Hilbertian norm

kwk2s;Oh
WD

X

E2Oh

kwEk2s;E:
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We use the same notation for the norm of the vectorial version Hs.Oh/. We use the
standard conventions L2.Oh/ WD H0.Oh/ and L2.Oh/ WD H0.Oh/ and introduce the
bilinear forms

.w; z/Oh D
X

E2Oh

Z

E
wEzE; and .w; z/Oh D

X

E2Oh

Z

E
wE � zE:

Hereafter, given an integer k � 0 and a domain D � R
3, Pk.D/ denotes the

space of polynomials of degree at most k on D. Let hF 2QF2Fh
P0.F/ be defined

by hFjF WD hF ;8F 2 Fh, where hF represents the diameter of the face F. We also
introducesF 2QF2Fh

P0.F/ defined by sF WD min.� jK ; � jK0/, if F D @K\@K0 2
F0

h and sF WD � jK , if F D @K \ � 2 F�
h .

We introduce, for m � 1, the finite element spaces

Xh WD
Y

K2Th

Pm.K/
3 ; h WD

8

ˆ

<

ˆ

:

� 2
Y

T2T�
h

Pm�1.T/I
Z

�

� D 0

9

>

=

>

;

and

‰h WD
	

� 2 C0.� /I �jT 2PmC1.T/ 8T 2 F�
h ;

Z

�

� D 0



:

Given v 2 H1Cs.Th/, with s > 1=2, we consider curlhv 2 Hs.Th/ given by
.curlhv/jK D curl vK , for all K 2 Th and introduce

Hs.curl;Th/ WD fv 2 Hs.Th/I curlhv 2 Hs.Th/g :

For .v; '/ 2 Hs.Th/ �H1.F�
h /, s > 1=2, we introduce the jumps �.v; '/� by

�.v; '/� WD
8

<

:

�v � n�F WD vK � nK C vK0 � nK0 if F D K \ K0 2 F0
h.˝/

vjT � n � curlT' if T 2 F�
h

and the averages fvg 2 L2.Fh/ by

fvg D
8

<

:

.vK C vK0/=2 if F D K \ K0 2 F0
h

vK if T � @K 2 F�
h

:
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In order to derive the DG-FEM/BEM discretization of (4)–(7) we assume that
h 2 H.curl;˝/ \ Hs.curl;Th/ and je 2 Hs.Th/ with s > 1=2. We test (6) with
' 2 H1=2.� / \H1.F�

h /, obtaining

�

�W C
�

1
2
I � Kt

�

�; '



�

D
�

�

�0
h � n; '



�

;

and use (4) together with an integration by parts on � to find

�

�W C
�

1
2
I � Kt

�

�; '



�

D �1
ı!�0

Z

�

curl e � n' D �1
ı!�0

Z

�

e � curl� ';
(10)

where, for economy of notations, we reintroduced here the electric field e WD
��1.curl h � je/. Moreover, we deduce from (4) that, for all v 2 Hs.curl;Th/,

X

K2Th

�

Z

K
.ı!�h � vC e � curl v/C

Z

@K
e � v � nK

�

D 0; (11)

We also obtain from (4) that curl e 2 L2.˝/3. Consequently, the jumps of the
tangential components of e 2 Hs.Th/\H.curl;˝/ vanish across the internal faces
F 2 F0

h and

X

K2Th

Z

@K
e � v � nK D

X

F2F0
h

Z

F
feg � �v � n�C

X

T2F�
h

Z

T
e � v � n:

Inserting this identity in (11) and adding the resulting equation to (10), due to the
fact that for T 2 F�

h one has �.v; '/�jT D vjT � n� curlT' we easily get

.ı!�h; v/Th C .e; curlhv/Th C hfeg; �.v; '/�iFh

C ı!�0

�

W �
�

1
2
I � Kt

�

�; '



�

D 0: (12)

Finally, testing (7) with 	 2 H�1=2.� / gives

{!�0h	;
�

1
2
I � K

�

 i� C {!�0h	;V�i� D 0: (13)

Inspired from (12) and (13) we propose the following DG-FEM/BEM formula-
tion for problem (1): Find .uh;  h/ 2 Xh �‰h and �h 2 h such that

Ah..uh;  h/; .v; '// � {!�0 h�h; . 12 I � K/'i� D Lh..v; '//
{!�0 h	; . 12 I � K/ hi� C {! �0h	;V�hi� D 0; (14)
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for all .v; '/ 2 Xh �‰h and 	 2 h, where

Ah..uh;  h/; .v; '// WD {!.�uh; v/ThC.��1curlhuh; curlhv/Th C {!�0hW h; 'i�
C hf��1curlhuhg; �.v; '/�iFh � hf��1curlhvg; �.uh;  h/�iFh

C ˛hs�1F h�1F �.uh;  h/�; �.v; '/�iFh ;

with a parameter ˛ � 0 and

Lh..v; '// WD .��1je; curlhv/Th C
D

f��1jeg; �.v; '/�
E

Fh

:

The following proposition shows that the DG-FEM/BEM scheme (14) is
consistent.

Proposition 1 Let ..h;  /; �/ 2 ŒH.curl;˝/�H1=2
0 .� /��H�1=20 .� / be the solution

of (4)–(7). Assume that ��1je 2 Hs.Th/ and that .h;  / 2 Hs.curl;Th/�H1.F�
h /,

with s > 1=2. Then

Ah..h;  /; .v; '// � {!�0h�; . 12 I � K/'i� D Lh..v; '//;
{!�0h	; . 12 I � K/ i� C {!�0h	;V�i� D 0;

for all .v; '/ 2 Xh � �h and 	 2 h.

Proof The result is a direct consequence of identities (12) and (13), having used the
fact that h 2 H.curl;˝/, so that �h � n�F D 0 for each F 2 F0

h, and Eq. (5), which
furnishes hjT � n D curlT for each T 2 F�

h .

4 Convergence Analysis

We introduce the bilinear form

Ah
�

..u; �/; �/; ..v; '/; 	/
� WD Ah..u; �/; .v; '//� {!�0h�; . 12 I � K/'i�

C {!�0h N	; . 12 I � K/ N�i� C {!�0h N	;V N�i�

and define in
�

Hs.curl;Th/ � ŒH1=2.� / \ H1.F�
h /�
� �H�1=2.� / the norms

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ..v; '/; 	/
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 WD k.!�/1=2vk20;˝ C k��1=2curlhvk20;˝ C ks�1=2

F h�1=2

F �.v; '/�k20;Fh

C !�0k'k21=2;� C !�0k	k2�1=2;�
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and
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ..v; '/; 	/
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

� WD
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ..v; '/; 	/
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 C ks1=2F h1=2F f��1curlhvgk20;Fh
:

The following discrete trace inequality is standard, (see, e.g., [7, Lemma 1.46]).

Lemma 1 For all integer k � 0 there exists a constant C� > 0, independent of h,
such that,

hKkvk20;@K � C�kvk20;K 8v 2Pk.K/; 8K 2 Th: (15)

It allow us to prove the following result.

Lemma 2 For all k � 0, there exists a constant C˝ > 0, independent of the mesh
size and the coefficients, such that

ks1=2F h1=2F f��1wgk0;Fh � C˝k��1=2wk0;˝ ; w 2
Y

K2Th

Pk.K/
3 (16)

Proof By definition of sF, for any w 2QK2Th
Pk.K/3 we obtain

ks1=2F h1=2F f��1wgk20;Fh
D
X

F2Fh

hFks1=2F f��1wgFk20;F

�
X

K2Th

X

F2F.K/
hFks1=2F ��1K wKk20;F �

X

K2Th

hKk��1=2K wKk20;@K ;

where F.K/ denotes the set of faces composing the boundary of K, namely,
F.K/ WD fF 2 FhI F � @Kg. Then the result follows from (15).

Proposition 2 There exists a constant M� > 0, independent of h, such that

jAh
�

..u; �/; �/; ..v; '/; 	/
� j � M�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ..u; �/; �/
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ�
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ..v; '/; 	/
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

for all ..v; '/; 	/ 2 .Xh � �h/ � h and for all ..u; �/; �/ 2 �

Hs.curl;Th/ �
ŒH1=2.� /\ H1.F�

h /�
� � H�1=2.� /, with s > 1=2.

Proof The result follows immediately from the Cauchy-Schwarz inequality, the
boundedness of the maps V W H�1=2.� / ! H1=2.� /, K W H1=2.� / ! H1=2.� /

and W W H1=2.� / ! H�1=2.� / and from the fact that the norms
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � ˇˇˇˇˇˇ and
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � ˇˇˇˇˇˇ�
are equivalent in .Xh �‰h/ �h (as a consequence of Lemma 2).

Proposition 3 There exists a constant ˇ� > 0, independent of h, such that

Re
h

.1 � {/Ah
�

..v; '/; 	/; ..Nv; N'/; N	/�
i

� ˇ�ˇˇˇˇˇˇ..v; '/	/ˇˇˇˇˇˇ2

for all ..v; '/; 	/ 2 .Xh � �h/ �h.
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Proof By the definition of Ah.�; �/ it follows

Re
h

.1 � {/Ah
�

..v; '/; 	/; ..Nv; N'/; N	/�
i

D !k�1=2vk20;˝ C k��1=2curlhvk20;˝
C ˛ks�1=2F h�1=2F �.v; '/h�k20;Fh

C !�0h	;V N	i� C !�0hW N'; 'i�
and using (8) and (9) we deduce the result with ˇ� D min.1; ˛;CV ;CW/.

The following Céa estimate is readily deduced from the consistency of the DG-
FEM/BEM scheme, Propositions 2 and 3.

Theorem 1 Assume that ��1je 2 Hs.Th/, with s > 1=2. Then, the DG-FEM/BEM
formulation (14) has a unique solution for any parameter ˛ � 0. Moreover if
..h;  /; �/ 2 ŒH.curl;˝/�H1=2

0 .� /��H�1=20 .� / and ..uh;  h/; �h/ 2 ..Xh��h/�
h/ are the solutions of (4)–(7) and (14), respectively, and .h;  / 2 Hs.curl;Th/�
H1.F�

h / with s > 1=2, then,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ..h � uh;  �  h/; � � �h/
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � .1C M�

ˇ�
/
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ..h� v;  � '/; � � 	/ˇˇˇˇˇˇ�;

for all ..v; '/; 	/ 2 .Xh � �h/ �h.

5 Asymptotic Error Estimates

We denote by ˘ curl
h the m-order H.curl;˝/-conforming Nédélec interpolation

operator of the second kind, see for example [3, 13] or [12, Section 8.2]. It is well
known that˘ curl

h is bounded on H.curl;˝/\Hs.curl;Th/ for s > 1=2. Moreover,
there exists a constant C > 0, independent of h, such that (cf. [12])

ku �˘ curl
h ukH.curl;˝/ � Chmin.s;m/

�kuks;Th C kcurlhuks;Th

�

: (17)

For each triangle T 2 F�
h we define the interpolation operator ��T W

H1=2Cs.T/!PmC1.T/, s > 1=2, uniquely determined by the conditions

��T '.aT/ D '.aT/; for all vertices aT of T; (18)

Z

e
��T 'q D

Z

e
'q 8q 2Pm�1.e/; for all edges e of T; (19)

Z

T
��T 'q D

Z

T
'q 8q 2Pm�2.T/: (20)
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The corresponding global interpolation operator ��h is H1.� /-conforming and
satisfies the following interpolation error estimate.

Lemma 3 Assume that ' 2 H1=2Cs.F�
h / \H1=2.� / with s > 1=2, then

k' � ��h 'kt;� � Chminf1=2Cs;mC2g�tk'k1=2Cs;F�
h
; t 2 f0; 1; 1=2g (21)

with a constant C > 0 independent of h.

Proof We notice that, as s > 1=2, H1=2Cs.F�
h /\ H1=2.� / � C0.� /. Hence, ��h is

bounded on HsC1=2.F�
h /\H1=2.� /. The interpolation error estimates for t D 0 and

t D 1 are standard. The case t D 1=2 is obtained from the interpolation inequality

k�k21=2;� � k�k0;� k�k1;� 8� 2 H1.� /:

We introduce L2t .� / D
˚

' 2 L2.� /3I ' � n D 0� and consider the m-order
Brezzi-Douglas-Marini (BDM) (see [3, 12]) finite element approximation of

H.div� ; � / WD
n

' 2 L2t .� /I div� ' 2 L2.� /
o

relatively to the mesh F�
h , where div� is the divergence operator on the surface � .

This approximation space is given by

BDM.F�
h / D

n

' 2 H.div� ; � /I 'jT 2Pm.T/
2; 8T 2 F�

h

o

:

The corresponding interpolation operator ˘BDM
h is bounded on H.div� ; � / \

Q

T2F�
h

Hı.T/2 for all ı > 0, and it is not difficult to check that is related to ˘ curl
h

through the following commuting diagram property:

.˘ curl
h v/�n D ˘BDM

h .v�n/ 8v 2 H.curl;˝/\Hs.curl;Th/; s > 1=2: (22)

Moreover the following result holds true.

Proposition 4 Let ..h;  /; �/ 2 ŒH.curl;˝/�H1=2
0 .� /��H�1=20 .� / be the solution

of (4)–(7). Assume that .h;  / 2 Hs.curl;Th/ �H1=2Cs.F�
h / with s > 1=2. Then,

.˘ curl
h h/ � n D curl� .��h  / on �: (23)

Proof Let us first prove that

˘BDM
h .curl�  / D curl� .��h  /: (24)

It is clear that curl� ��h  2 BDM.F�
h / and it can be shown that the tangential

fields ˘BDM
h .curl�  / and curl� ��h  have the same BDM-degrees of freedom in
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each F 2 F�
h , which gives (24). We deduce now (23) from (22), (24) and the

transmission condition (5).
We will also use the best L2.� /-approximation inh of a function 	 2 Hr.F�

h /,
with r > 0, the L2.Th/-orthogonal projection onto

Q

K2Th
Pm�1.K/3 of a function

w 2 Hr.Th/, with r > 1=2, and the following estimates:

Lemma 4 Assume that 	 2 Hr.F�
h / for some r � 0. Then,

k	 � �h	k�1=2;� � Chminfr;mgC1=2k	kr;F�
h
; (25)

where �h	 the best L
2.� /-approximation of 	 in h.

Proof See [15, Theorem 4.3.20].

Lemma 5 Let Pm�1
h be the L2.Th/-orthogonal projection onto

Q

K2Th
Pm�1.K/3.

For all K 2 Th and w 2 Hr.K/, r > 1=2, we have

h1=2K kw � Pm�1
h wk0;@K C kw � Pm�1

h wk0;K � Chminfr;mg
K kwkr;K ; (26)

with a constant C > 0 independent of h.

Proof See [7, Lemmas 1.58 and 1.59].
We are now ready to prove the main theorem of this section.

Theorem 2 Let ..h;  /; �/ 2 ŒH.curl;˝/ �H1=2
0 .� /� �H�1=20 .� / be the solution

of (4)–(7) and let ..hh;  h/; �h/ 2 ..Xh � �h/ � h/ be the solution of (14).
Assume that ��1je 2 Hs.Th/ and that .h;  / 2 Hs.curl;Th/ � HsC1=2.F�

h /,
� 2 Hs�1=2.F�

h / with s > 1=2. Then, there exists C > 0, independent of h, such that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ..h � hh;  �  h/; � � �h/
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � Chmin.s;m/
�

khks;Th C kcurl hks;Th

C k ksC1=2;F�
h
C k�ks�1=2;F�

h

�

:

Proof We deduce from Theorem 1 that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ..h � hh;  �  h/; � � �h/
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� .1C M�

ˇ�
/
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ..h �˘ curl
h h;  � ��h  /; � � �h�/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ�:
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By virtue of (23), we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ..h �˘ curl
h h;  � ��h  /; � � �h�/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

� D k.!�/1=2.h�˘ curl
h h/k20;˝

C k��1=2curlh.h�˘ curl
h h/k20;˝ C !�0k � ��h k21=2;� C !�0k� � �h�k2�1=2;�

C ks1=2F h1=2F f��1curlh.h�˘ curl
h h/gk20;Fh

: (27)

We deduce from the triangle inequality that

ks1=2F h1=2F f��1curl.h �˘ curl
h h/gk0;Fh D ks1=2F h1=2F f��1.I � Pm�1

h /curl h/gk0;Fh

C ks1=2F h1=2F f��1.Pm�1
h curl h � curl˘ curl

h h/gk0;Fh D A˝ C B˝ : (28)

Using (16) yields

B˝ � C˝k��1=2.Pm�1
h curl h� curl˘ curl

h h/k0;˝
D C˝k��1=2Pm�1

h curl.h �˘ curl
h h/k0;˝ � C˝k��1=2curl.h�˘ curl

h h/k0;˝ ; (29)

and it is straightforward to see that

A2˝ �
X

K2Th

hKk��1=2K .curl h � Pm�1
h curl h/k20;@K : (30)

Combining (27)–(30) we deduce that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ..h �˘ curl
h h;  � ��h  /; � � �h�/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

� � k.!�/1=2.h�˘ curl
h h/k20;˝

C .1C C2˝/k��1=2curl.h�˘ curl
h h/k20;˝ C !�0k � ��h  k21=2;�

C !�0k� � �h�k2�1=2;� C
X

K2Th

hKk��1=2K .curl h � Pm�1
h curl h/k20;@K :

Finally, applying the interpolation error estimates (17), (26), (21) and (25) we obtain

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ..h �˘ curl
h h;  � ��h  /; � � �h�/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ� � C
�

hmin.s;m/.khks;Th Ckcurl hks;Th/

C hminfsC1=2;mC2g�1=2k ksC1=2;F�
h
C hminfs�1=2;mgC1=2k�ks�1=2;F�

h

�

;

and the result follows.
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Remark 1 It is well-known that different choices of finite elements could be chosen
for the approximation of H.curl;˝/ and H1=2.� /. For instance, let us consider, for
m � 1, X.0/h WD

Q

K2Th
NDm.K/ and

‰
.0/
h WD

	

� 2 C0.� /I �jT 2Pm.T/ 8T 2 F�
h ;

Z

�

� D 0



;

where NDm.K/ �Pm.K/3 is the mth-order (local) Nédélec finite element space of
the first kind, see for example [3, 13]. The DG-FEM/BEM scheme (14) formulated
in terms of the discrete spaces .X.0/h � ‰.0/

h / � h provides, under the regularity
assumption of Theorem 2, the same order of convergence with less degrees of
freedom. However, in this case, the non-standard basis functions of NDm.K/ are
required for the implementation of the scheme.
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An LES Setting for DG-Based Implicit LES
with Insights on Dissipation and Robustness

Rodrigo C. Moura, Gianmarco Mengaldo, Joaquim Peiró,
and Spencer J. Sherwin

Abstract We suggest a new interpretation of implicit large eddy simulation (iLES)
approaches based on discontinuous Galerkin (DG) methods by analogy with the
LES-PLB framework (Pope, Fluid mechanics and the environment: dynamical
approaches. Springer, Berlin, 2001), where PLB stands for ‘projection onto local
basis functions’. Within this framework, the DG discretization of the unfiltered
compressible Navier-Stokes equations can be recognized as a Galerkin solution
of a PLB-based (and hence filtered) version of the equations with extra terms
originating from DG’s implicit subgrid-scale modelling. It is shown that for under-
resolved simulations of isotropic turbulence at very high Reynolds numbers, energy
dissipation is primarily determined by the property-jump term of the Riemann flux
employed. Additionally, in order to assess how this dissipation is distributed in
Fourier space, we compare energy spectra obtained from inviscid simulations of
the Taylor-Green vortex with different Riemann solvers and polynomial orders. An
explanation is proposed for the spectral ‘energy bump’ observed when the Lax-
Friedrichs flux is employed.

1 Introduction

Despite the rapid dissemination of DG-based implicit LES in recent years [1–
3], there is still a lack of fundamental research on DG’s suitability for under-
resolved turbulence simulations in general. More traditional (low-order) implicit
LES approaches advocate that suitable methods should have some sort of built-
in subgrid-scale model in their formulation [4]. For example, in [5], modified
equation analysis is applied to a particular finite volume scheme to reveal that
truncation terms of dissipative character implicitly play the role of a turbulence
model. A preliminary assessment on the potential of modified equations analysis
for DG-based iLES proved discouraging due to Taylor series convergence issues
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observed in the linear advection case [6]. However, recent studies on eigensolution
(dispersion-diffusion) analysis [7, 8] showed significant potential in clarifying why
and how to use DG-iLES. One of the relevant results is that DG’s upwind dissipation
seems to mimic the behaviour of hyper-viscosity, especially at higher polynomial
orders, where dissipation is only relevant at large wavenumbers.

This work presents an alternative way to analyse DG-iLES by analogy with the
LES-PLB framework proposed by Pope in [9], where PLB stands for ‘projection
onto local basis functions’. From this analogy, a DG discretization of the unfiltered
Navier-Stokes equations is shown to be equivalent to a standard Galerkin discretiza-
tion of a filtered (projected) version of the equations with additional terms related to
DG’s implicit subgrid-scale model. Subsequently, we consider isotropic turbulence
at very high Reynolds numbers and show that these extra terms stem from the
dissipative part of the Riemann flux employed. In order to gain additional insight
on DG’s dissipation in limit of vanishing viscosity, a numerical assessment of the
inviscid Taylor-Green vortex [10, 11] problem is performed. Different polynomial
orders and Riemann solvers are considered. The assessment is complemented with
results from eigensolution analysis which provides insight into the distribution of
dissipation in spectral space and on robustness issues.

2 LES-PLB Fundamentals

In the LES-PLB framework, the resolved field q is defined as a Galerkin projection
of the actual field q and has a basis-function representation (with, say, N modes) in
the form

q.x; t/ DPfq.x; t/g D
N
X

nD1
bqn.t/�n.x/ , (1)

where Pf�g stands for the Galerkin projection. The basis functions �n.x/ are chosen
to be local, i.e. non-zero only at bounded regions in space, and the coefficientsbqn.t/
are obtained from the projection procedure, namely

bqn.t/ DPnfq.x; t/g , (2)

in which Pnf�g denotes the local projection operator associated to basis function �n.
The residual field is naturally given by q0.x; t/ D q.x; t/�q.x; t/ and has a vanishing
projection, since Pfq0g DPfqg �Pfqg D q � q D 0.

Let the governing equations for q.x; t/ be compactly written as

@q

@t
D G.q/ , (3)
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whereby the evolution equation for q.x; t/ is given by

@q

@t
DPfG.q/g DPfG.qC q0/g , (4)

which, since q0 is not known in the LES framework, can be rewritten as

@q

@t
DPfG.q/g CR.q/ , R.q/ DPfG.q/g �PfG.q/g , (5)

where R.q/ embodies the residual motions. For the solution coefficients, one has

dbqn
dt
DPnfG.q/g CRn.q/ , Rn.q/ DPnfG.q/g �PnfG.q/g . (6)

When the number of basis functions employed is sufficient to resolve q accurately
(DNS limit), both q0 and R.q/ become negligible and Eq. (5) reduces to

@q

@t
DPfG.q/g , (7)

which, as emphasized by Pope in [9], is precisely the standard Galerkin method’s
statement for the solution of Eq. (3). Prior to the DNS limit, therefore, LES-PLB
amounts formally to a Galerkin method with an added source term associated to the
residual motions, R.q/, which requires modelling.

3 DG-Based iLES as LES-PLB

The compressible Navier-Stokes equations are given by Eq. (3) with

G.q/ D r � Fv.q;rq/� r � Fi.q/ , (8)

where Fv and Fi are the viscous and inviscid flux vectors, respectively, and q stands
for the conserved variables array. In DG, the numerical solution is approximated
through an hp discretization, namely

q.x; t/ 	 q.x; t/ D
X

e

N
X

mD1
bqem.t/�

e
m.x/ , (9)

where index e runs through all mesh elements ˝e composing the physical domain
˝ . Inside each˝e, the solution is represented through the element-wise coefficients
bqem and polynomial basis functions �e

m, which are zero outside ˝e.
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Since DG requires specific treatment for the viscous terms to ensure numerical
stability [12], typical DG formulations solve the original problem through the form

@q

@t
D r � Fv.q; g/� r � Fi.q/ � r � F.q; g/ , (10)

where the gradient variable g is introduced as an approximation to rq. The gradient
variable is obtained through the solution of the auxiliary equation according to the
numerics of the chosen viscous scheme. Usually, g D gfqg differs from rq.

The semi-discrete DG formulation at element˝e can be written as

Z

˝e

�n
@q

@t
d˝ D

Z

˝e

�nr � F.q; g/ d˝ C
I

@˝e

�nŒeF � F� � n d` , (11)

whereeF is a numerical flux based on information from both sides of the considered
interfaces and has viscous and inviscid contributions, see Eq. (10). Note that the
above is equivalent to either of the so-called “weak-weak” or “weak-strong” DG
forms, see e.g. [13], as long as nearly exact integrations are employed. This might
take however a very large number of quadrature points for under-resolved flows.

At this point, by comparing Eqs. (6) and (11), one is tempted to recognize
the boundary integral in Eq. (11) as the residual motions term Rn.q/ of Eq. (6).
However, since the remainder of Eq. (11) does not hold as a valid Galerkin method
due to the lack of inter-element communication (especially at very high Reynolds
when F.q; g/ looses its dependence on g), an interface contribution is still missing.
This is a subtle caveat since the exact form of interface contribution required to
recover a standard Galerkin method in a discontinuous setting is not known in
general. We will therefore assume that this contribution can be represented at
least approximately by a symmetrical interface flux, hereafter denoted by MF. We
remark that a symmetrical contribution is consistent with the continuous Galerkin
discretization, a well-known standard Galerkin method.

The second step towards conformity with Eq. (6) is the replacement of g with rq
in the argument of the volume integral on the right-hand side of Eq. (11), since a
standard Galerkin method should only rely explicitly q, see Eq. (7). By taking into
account those two steps, one can rewrite Eq. (11) as

Z

˝e

�n
@q

@t
d˝ D

Z

˝e

�nr � F.q;rq/ d˝ C
I

@˝e

�n MF � n dS C

C
Z

˝e

�nr � ŒFv.q; g/ � Fv.q;rq/� d˝ C
I

@˝e

�nŒeF � MF � F� � n dS . (12)

Comparing Eqs. (12) and (6) clearly shows that the DG approximation of the
unfiltered Navier-Stokes equations corresponds to an LES-PLB solution of the
large-eddy fields, whereas the residual motions are accounted for by the last two
integrals in Eq. (12). In fact, the first term in Eq. (12) corresponds to dbqn=dt, the
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following two terms represent PnfG.q/g and the last two integrals correspond to
Rn.q/, being therefore identified as DG’s implicit subgrid-scale modelling terms.

Unfortunately, Eq. (12) gives no obvious clue about how well the terms corre-
sponding to Rn.q/ can perform regarding subgrid-scale modelling. Also, Eq. (12)
is not in PDE form, which further complicates the physical interpretation of
these terms. However, these terms are designed upon numerical, but also physical
considerations, especially the inviscid flux term which relies on the solution of a
Riemann problem. The role of the inviscid fluxes will be discussed in the context
of homogeneous isotropic turbulence (HIT) in the next section. It is hoped that
subsequent works may help to clarify the role of different terms on physical grounds.

Interpreting DG-iLES through the LES-PLB setting is not only a way to assess
DG’s implicit subgrid-scale modelling, but also might provide insights on how to
adapt or design, for instance, numerical fluxes with improved turbulence-capturing
physics. Moreover, simply knowing how to interpret the resolved fields of DG-iLES
solutions as local Galerkin projections of the exact (DNS) solution might prove
useful in the construction of explicit LES models to be used with DG. At last, the
interpretation proposed for the resolved fields might also be relied upon when post-
processing DG-iLES results and analysing turbulence data.

4 Dissipation for HIT at Very High Reynolds Numbers

We now consider Eq. (12) in the limit of vanishing viscosity, which corresponds to
the DG discretization (in LES-PLB form) of the compressible Euler equations,

Z

˝e

�n
@q

@t
d˝C

Z

˝e

�nr � Fi.q/ d˝C
I

@˝e

�n MFi � n dS D
I

@˝e

�nŒFi C MFi �eFi� � n dS
(13)

whose right-hand side terms constitute Rn.q/.
Pre-multiplying Eq. (13) bybqen and adding up conveniently the resulting equa-

tions for n D 1; : : : ;N, yields, upon summation over all elements˝e,

@

@t

Z

˝

jjqjj2
2

d˝ C
X

e

Z

˝e

qT r � Fi d˝ C
X

e

I

@˝e

qT MFi � n dS D

D
X

f

I

Sf

n

qT1 ŒF1 C MF12 �eF12� � n12 C qT2 ŒF2 C MF21 �eF21� � n21
o

dS , (14)

where the overbar on q and the index i of the (inviscid) interface fluxes have been
omitted for simplicity. Summation on the right-hand side is performed over all
interfaces f of the domain, where fluxes from either sides of the corresponding
surfaces Sf are taken into account (as denoted by indices 1 and 2). Term @tjjqjj2=2 D
q @tq can be regarded as the rate of change of a ‘solution energy’, as it embodies
energies (in the L2 sense) of all the variables of state vector q.
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We assume Riemann solvers whose numerical fluxes can be written in the form

eF12 D F12 � 1
2
jJj .q2 � q1/ n12 , eF21 D F21 � 1

2
jJj .q1 � q2/ n21 , (15)

where F12 D F21 D 1
2
.F1 C F2/ and jJj is a solver-specific matrix possibly

related to the Jacobian j@F=@qj. While many Riemann fluxes are compatible with
the above form, see e.g. [14], it obviously does not account for all existing solvers. In
particular, the form above is compatible with Roe and (local) Lax-Friedrichs fluxes
[15], which are arguably the most common Riemann solvers used with DG methods.

Now by rewriting the right-hand side (RHS) of Eq. (14), which relates to DG’s
implicit dissipation of ‘solution energy’ at very high Reynolds numbers, one has

RHS D
X

f

I

Sf

n

�

A.q1; q2/CB.q1; q2/� C.q1; q2/
� � n12 CD.q1; q2/

o

dS ,

(16)
where A.q1; q2/, B.q1; q2/ and C.q1; q2/ are anti-symmetrical and given by

A D qT1F1 � qT2F2 , B D qT1 MF12 � qT2 MF21 , C D qT1F12 � qT2F21 , (17)

whereas D.q1; q2/ is symmetrical and defined as

D D qT1
jJj
2
.q2 � q1/C qT2

jJj
2
.q1 � q2/ D � ıqT jJj

2
ıq , (18)

in which ıq D ˙.q1 � q2/, as the above expression holds with either sign for ıq.
We note that the anti-symmetry of A, B and C is preserved upon statistical

averaging within a turbulent flow solution, i.e. A,B,C .q1; q2/ D �A,B,C .q2; q1/
implies hA,B,C .q1; q2/ i D �hA,B,C .q2; q1/ i. On the other hand, by the
rotational invariance property of isotropic turbulence, axis rotation or reflection can
not alter statistics. Since axis reflection at interfaces amounts to the swapping of
internal and external states, one has hA,B,C .q1; q2/ i D hA,B,C .q2; q1/ i. The
only possibility is therefore hA,B,C i D 0. As a result, averaging Eq. (16) leads to

hRHS i D �
X

f

I

Sf

hıqT jJj
2
ıqi dS . (19)

The conclusion obtained upon statistical averaging is that, at very high Reynolds
number, the effect of DG’s implicit LES model on the variation of solution
energy—cf. RHS in Eq. (14)—is primarily determined by the property-jump term
of the Riemann flux employed. This suggests that DG’s built-in model is mainly
dissipative and even somewhat physical, as it stems from upwinding. The dissipative
character is also expected from the quadratic form in Eq. (19), although it is only
formally guaranteed for positive definite jJj. While this condition is satisfied by e.g.
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the Lax-Friedrichs flux, where jJj D j�jmaxI, it does not hold for Riemann solvers
in general. This is however not discouraging, as being mostly (but not always)
dissipative might allow for some backscatter of turbulent kinetic energy. Further
study is nevertheless required regarding this point.

5 Insights from Inviscid TGV Test Cases

High-order simulations carried out with DG over the years have indicated that the
particular choice of the Riemann solver is not very important. Here, we compare the
performance of different solvers and show that, for under-resolved computations,
the Riemann flux choice can be quite important regarding both numerical stability
and solution quality when viscosity is negligible. Discussion is based on simulations
of the inviscid Taylor-Green vortex (TGV) problem, taken as representative of free
turbulence (away from walls) at very high Reynolds numbers.

The TGV flow was introduced in [10] as a model problem for the analysis
of transition and turbulence decay. The test problem was originally proposed for
the incompressible Navier-Stokes equations in a cubic domain with triply-periodic
boundary conditions. Here we adopt a modified version of the initial conditions
which is suited for compressible flow solvers, as done in [11], so that the Euler
equations (representing inviscid flow conditions) are solved within Œ��; ��3 at
a baseline Mach number of 0:1. Even though the Euler equations are simulated
directly, the presence of numerical diffusion is expected to make results consistent
with the dissipative solution of the viscous TGV problem in the limit of zero
viscosity. This is in contrast with the exact solution of the inviscid TGV where
energy is conserved.

The evolution of the TGV flow at high Reynolds numbers (say, higher than 103)
can be characterized by three distinct phases, see e.g. [16]. During the first phase
dissipation effects can be neglected and vortex lines begin to fold and stretch first
by pressure gradients and then via three-dimensional vortex interactions, but still
through a well-organized (non-chaotic) process. In the second phase transition takes
place, whereby non-linear effects intensify and small-scale energy grows rapidly
through the cascade mechanism leading to a peak in kinetic energy dissipation.
Finally, in the third phase the TGV flow tends to a more homogeneous state of
decaying turbulence, where kinetic energy decays monotonically towards zero.

The overall behaviour described above has been captured quite well by our stable
computations, with minor differences being observed upon DOF refinement. The
base set of test cases addressed used Roe’s original solver [17] and the local Lax-
Friedrichs (LxF) flux [18], but some of the cases have also been computed with the
exact Riemann solver and with the HLL and HLLC fluxes [15]. Table 1 shows the
base set of cases, each column corresponding to the number of polynomial modes
m D p C 1 used, p being the polynomial order, and each row corresponding to
a different number of degrees of freedom Ndof D .nel m/3, in which n3el is the total
number of elements. Equispaced grids have been employed (cubic elements). Values
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Table 1 Summary of test cases—crossed out numbers indicate cases that crashed

Roe LxF

m D pC 1 4 5 6 7 8 4 5 6 7 8

28 23 19 16 14 28 23 ����19 ����16 ����14

nel 39 32 28 23 ����19 39 32 ����28 ����23 ����19

56 45 39 ����32 ����28 56 45 ����39 ����32 ����28

in the Table’s core represent the number of elements per direction, nel. Crossed out
numbers indicate simulations that lacked stability and crashed. All simulations have
been conducted through the spectral/hp element code Nektar++ [19].

The results in Table 1 indicate that Roe is more robust than LxF for the problem
considered. This is counter-intuitive since the former is known to be less dissipative
than the latter, at least for well resolved computations. All unstable cases yielded
reasonable results (with no signs of numerical instability) until the time of crash,
which took place consistently within the transitional phase of the TGV flow. This
lack of robustness, found especially for the higher-order discretizations, has been
carefully verified not to be related to time-step restrictions or polynomial aliasing
errors. Typical CFL numbers employed (based on the acoustic wave speed) are
of the order of 10�1 and an increased number of quadrature points (Q D 2m)
has been used to ensure consistent integration of the cubic non-linearities of the
compressible Euler equations [20], even though the flow is nearly incompressible.
Tests conducted to rule out these factors consistently showed the time of crash to be
practically insensitive to time-step reductions or to a further increase in the number
of integration points. A much more subtle cause of crash is suggested in Sect. 6.

A comparison between energy spectra obtained from test case m D 5, nel D 23 is
given in Fig. 1. Results at two different times are shown, namely at peak dissipation
(t D 9) and within the decay phase (t D 18). Different Riemann fluxes followed one
of two distinct behaviours: Roe, HLLC and the exact solver yielded the expected
spectrum, showing an inertial range with Kolmogorov’s �5=3 slope at t D 9

followed by a (numerically induced) dissipation range; LxF and HLL yielded a
spectrum with less energy at the large/intermediate scales and allowed for the
formation of an ‘energy bump’ at the small scales. This spurious build up of energy
can actually be seen in flow-field visualizations in the form of small-scale noise,
see [8]. QR diagrams discussed in Sect. 6, cf. Fig. 3, confirm that the first behaviour
is physically correct while the second one is somewhat far from it. An explanation
for the energy bump is proposed in the next section, but at this point it is important
to mention that increasing the polynomial order leads to an increase in the energy
bump. For m D 8, even the Roe-based solution yielded one, although considerably
less significant than the bump observed for LxF with m D 5.

The above results seem to indicate that, at least for low Mach number tran-
sitional/turbulent flows, “complete” solvers such as Roe or HLLC can already
handle most of the physics, as the exact solver did not improve solution quality
significantly. Results also discourage the use of more simplistic fluxes such as LxF
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Fig. 1 Energy spectra at t D 9 (dissipation peak) and t D 18 (homogeneous decay) obtained with
Roe, HLLC and the exact solver (left) and with LxF and HLL (right), from case m D 5, nel D 23.
The vertical dashed lines delimit the region where numerical dissipation is expected to begin [8]

and HLL for DG-iLES at very high Reynolds numbers. The quality of Roe-based
solutions did not change much as the polynomial order was varied for a given
number of DOFs, however higher-order discretizations tended to be less stable.
Preliminary low-order tests conducted with m D 3 and m D 2 (not included in
Table 1) provided considerably less accurate results, even though much finer grids
are employed as analysis is made on a fixed DOF basis. The use of moderately
high orders (e.g. m D 4 to 6) is therefore suggested for general practice, unless
additional stabilization techniques are employed, in which case higher orders might
be considered with care (to avoid strong energy bumps).

6 Dissipation Distribution and Energy Bumps

While Eq. (19) gives no obvious clue about how dissipation is distributed in Fourier
space, insights can be obtained from linear dispersion-diffusion analysis [7, 8]. A
simplified explanation for the energy bumps is proposed as follows. While Roe
employs the correct eigenvalues when upwinding, LxF uses instead the spectral
radius alone (juj C c, in 1D). This results in over-upwinding for the momentum
equations owing to the upwind ratio ˇ D .juj C c/=juj D 1 C Mach�1. We
stress that ˇ tends to infinity in the incompressible limit. Figure 2 illustrates DG’s
dissipation eigencurve for three ratios ˇ when m D 5. There is a critical Mach
number Mach? D .ˇ? � 1/�1 below which a sharp dissipation cut-off appears.
Reducing the Mach number from 0:9 to 0:1 caused the eigencurve discontinuity to
increase about twelve times. Further inspection showed that Mach? only increases
with the discretization order (e.g. Mach? 	 2 for m D 9). The Roe flux does not
have this problem as its unit upwind ratio does not change with the Mach number.

Our understanding is that a sharp upwind dissipation induces a stronger bottle-
neck effect [21, 22] thus promoting an energy pile-up before the cut-off wavenumber
(cf. vertical dashed lines in Fig. 2). DNS experiments using hyperviscosity in place
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Fig. 2 Numerical diffusion in wavenumber space (LxF flux for m D 5) as Mach number is
reduced from 0.9 to 0.1 (left to right). The plots show the imaginary part of the modified
wavenumber k� as a function of the actual wavenumber k, both normalized by h=m, with h
being the mesh spacing and m the number of polynomial modes. Curves from linear eigensolution
analysis in 1D, cf. [7]

of regular (second-order) viscosity have already demonstrated that energy bumps
become more pronounced as the hyperviscosity exponent is increased [23, 24].
Another phenomenon discussed in [25] is that over-energetic small-scales can cause
a more intense mixing and increase diffusion through an eddy-viscosity effect,
consistent with the less energetic large/intermediate scales observed for LxF in
Fig. 1.

A complementary explanation for the energy bumps observed with hyperviscos-
ity has also been proposed in [24] and further confirmed in [26]: those emerge
as the solution begins to follow a conservative dynamics, typically observed [25]
when only a finite number of Fourier modes are retained (limit of increasingly
sharp dissipation). In this scenario, a range of small-scale structures are said to
‘thermalize’ [26] and follow an independent dynamics where conservation and
equipartition of energy is favoured [24]. This phenomenon has been partially
confirmed in our TGV solutions through the analysis of QR diagrams [27, 28],
see Fig. 3. These diagrams consist of joint PDFs of the second (Q) and third (R)
invariants of the velocity gradient tensor for a given flow field, see [27], and provide
an interesting statistical representation of turbulent kinematics. The ‘teardrop’
profile shown for the Roe case in Fig. 3 is also observed in several different turbulent
flows and is regarded as one of the universal aspects of turbulent motions [28]. On
the other hand, LxF profiles seemed to favour a more symmetrical distribution of
kinematic states, consistent with the equipartition scenario expected from the bump-
related scales.

Finally, we suggest that the lack of stability observed for higher-order simulations
(especially for LxF) might be related to the sharper dissipative characteristics dis-
cussed above. This is because, the sharper the dissipation, the more the conservative
dynamics will tend to overcome the dissipative one, which is expected from the
Navier-Stokes equations in the limit of infinite Reynolds number (the one LES
schemes should follow). It so happens that the exact (conservative) solution of
the inviscid TGV problem might in fact exhibit singularities during the transitional
phase, although this is still under debate in the literature [29].
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Fig. 3 QR diagrams at t D 9 (dissipation peak) obtained with Roe (left) and LxF (right), from
case m D 5, nel D 23. The dark red colour has been assigned to values above 1=4. The white
curve separates rotational states (above the curve) from those without rotation (under the curve),
cf. [27]

7 Concluding Remarks

The present study proposed a formal LES setting for DG-based implicit LES (iLES).
This framework has been devised by analogy with the LES-PLB methodology
proposed by Pope in [9], where PLB stands for ‘projection onto local basis’.
Through this analogy, the DG-iLES formulation was shown to be equivalent to a
standard Galerkin solution of the compressible Navier-Stokes equations with extra
terms related to DG’s implicit turbulence model. Subsequently, we demonstrated
that, for isotropic turbulence at very high Reynolds, the dissipation of ‘solution
energy’ is primarily determined by the property-jump term of the Riemann flux
employed.

In order to analyse how different fluxes performed in wavenumber space, a
comprehensive set of simulations of the inviscid Taylor-Green vortex problem
was assessed and their energy spectra was compared. Results showed that more
sophisticated solvers (Roe and HLLC) have a better performance in terms of
robustness and solution quality, yielding results very similar to those obtained with
the exact Riemann solver. On the other hand, simpler fluxes (Lax-Friedrichs and
HLL) showed poor accuracy and less robustness, owing to a larger number of
crashes among the test cases. These results are probably also valid for the DG
variants of flux reconstruction methods, given the strong connection between the
two schemes [30, 31].

The main accuracy issue had to do with an ‘energy bump’ observed before
the dissipation range of the spectra. Those have been explained in connection to
sharp dissipative characteristics in wavenumber space as estimated from linear
dispersion-diffusion analysis. For DG, the sharpness of the dissipation increases
with the discretization order m and with the amount of upwinding. Therefore,
discretizations of very high order (say, m > 6) have been discouraged, especially
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for more simplistic fluxes which do not account correctly for all the wave-speeds
of the compressible formulation. For the Lax-Friedrichs solver, we showed how its
flux displayed a significant over-upwind bias for the momentum equations at low
Mach numbers, which resulted in strong energy bumps.

A cause of crash has also been suggested in connection to these sharp dissipation
characteristics: they might be causing the inviscid TGV solution to partially follow
the conservative rather than the dissipative, entropy-consistent behaviour expected
in the limit of infinite Reynolds number. It has long been conjectured (but not
yet proved) that the exact conservative evolution of the Taylor-Green flow might
develop finite-time singularities leading to the actual collapse of the solution. As
the conservative behaviour is followed in a ‘truncated’ Fourier solution with limited
number of modes, it is believed that a very sharp dissipation might induce this
behaviour to manifest at least partially. The crashes observed also highlighted that
standard DG discretisations, even with consistent/over-integration, might in fact
lack robustness for implicit LES at very high Reynolds numbers. This should serve
as a motivation for the development (and adoption) of more robust DG formulations.
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On the Scaling of Entropy Viscosity in High
Order Methods

Adeline Kornelus and Daniel Appelö

Abstract In this work, we outline the entropy viscosity method and discuss how
the choice of scaling influences the size of viscosity for a simple shock problem.
We present examples to illustrate the performance of the entropy viscosity method
under two distinct scalings.

1 Introduction

Hyperbolic partial differential equations (PDE) are used to model various fluid flow
problems. In the special case of 1-dimensional linear constant coefficient scalar
hyperbolic problems, the solutions to these PDE are simply a translation of the
initial data. However, for nonlinear problems the solution may deform, and as a
result, shock waves can form even if the initial data is smooth [12].

In computational fluid dynamics, it is desirable that numerical methods capture
shock waves and maintain a high accuracy for smooth waves. Low order methods
have sufficient numerical dissipation to regularize shock waves but obtaining
accurate solutions in smooth regions can become expensive. On the other hand, high
order methods are capable of achieving high accuracy at a reasonable cost. Their
low numerical dissipation enables such accuracy, but on the downside, it limits their
ability to regularize shock waves.

Various techniques have been implemented to capture shocks while maintaining
high accuracy, at least away from shocks. There are two major classes of shock
capturing techniques: shock detection techniques, where we find slope limiters [12],
Essentially Non-Oscillatory (ENO) and Weighted ENO (WENO) [14], and artificial
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viscosity techniques, where we find filtering [13, 15], the PDE-based viscosity
method [9], the entropy viscosity method [4], among others.

In this work, we focus on the entropy viscosity method. In essence, the entropy
viscosity method provides shock capturing without compromising the high accuracy
away from the shock. An important advantage of this method is that it generalizes
very easily to higher dimensions and unstructured grids.

As a model problem, we consider Burgers’ equation

ut C f .u/x D 0; (1)

where f D u2

2
. Physically correct solutions to (1) can be singled out by requiring

that they satisfy an entropy inequality such as

rEV D Et C Fx �
 

u2

2

!

t

C
 

u3

3

!

x

� 0: (2)

The entropy residual, rEV , is zero wherever u is smooth. If the solution u contains
a shock, then the entropy residual takes the form of a negative Dirac distribution
centered at the location of the shock, xs, i.e. rEV D �C ı.x � xs/. The property
that the entropy residual is unbounded at a shock was first used by Guermond and
Pasquetti in [4], as a way to selectively introduce viscosity. The artificial viscosity,
�, proposed in [4], defined as the minima of two viscosities

� D min.�max; �EV/; (3)

becomes the coefficient of the viscous term in the viscous Burgers’ equation,

ut C f .u/x D .�ux/x: (4)

Here, �max is the Lax-Friedrich viscosity whose size depends on discretization
and the largest eigenvalue, �LF, of the flux Jacobian, Df .u/

Du . The second viscosity
�EV is proportional to the magnitude of the entropy residual (in fact, a discretization
of the entropy residual) and will thus be zero (or small after discretization) away
from discontinuities. In theory, the entropy residual becomes unbounded at a shock,
numerically however, the entropy residual rEV remains bounded with the size of
the residual depending on the discretization size. As we will see below, this subtle
difference has consequences for how to choose the scaling of the viscosity terms in
the entropy viscosity method.

On a grid with step size h, the second viscosity �EV can be expressed as

�EV.x/ D ˛EVhˇjrEV.x/j; (5)

with a parameter ˛EV that requires tuning. In recent papers on entropy viscosity
method, see e.g. [3, 5–7, 16], the parameter ˇ is chosen to be 2, but the original
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paper [2] uses ˇ D 1. It is unclear to us why the later works prefer ˇ D 2. Here,
we will present analysis and computational results that suggest the original scaling
ˇ D 1 is a more natural choice. We note that the entropy residual is typically scaled
by kE � Ek1, with the over-bar indicating a spatial average, but as this quantity is
roughly constant in the problems presented here, we omit it for brevity and reduced
complexity.

The rest of the paper is organized as follows. In Sect. 2, we describe different
discretizations of (4) that we consider here, in Sect. 3, we present an analysis of
how the entropy viscosity � depends on the two viscosities, �EV and �max, under
different scaling for a model problem. In Sect. 4, we then conduct experiments with
the entropy viscosity method whereˇ takes on values 1 or 2 and compare the results.

2 Numerical Methods

We will consider the discretization of (4) by our conservative Hermite method [11],
a standard discontinuous Galerkin (dG) method [8] and a simple finite volume type
discretization [12]. For all the discretizations we let the domain xL � x � xR be
discretized by the regular grid xi D xL C i h; i D 0; : : : ; n; h D .xR � xL/=n.

The degrees of freedom for the finite volume method are cell averages centered at
the grid points. For the Hermite method, the degrees of freedom are the coefficients
of node centered Taylor polynomials of degree m and for the dG method, they are
the (mC 1) coefficients of element-wise (we take an element to be ˝i D Œxi�1; xi�)
expansions in Legendre polynomials. For smooth solutions the spatial accuracy of
the Hermite method is 2mC 1 and mC 1 for the dG method.

All three methods use the classic fourth order Runge-Kutta method to evolve the
semi-discretizations in a method-of-lines fashion.

In the Hermite method, we evaluate the fluxes and their derivatives at the nodes
(element edges) for the four stages in the RK method. Precisely, for the first

stage we compute the slope f h1 D 1
2
TŒ.uh1/

2� � �
h
duh1
dx for the Taylor polynomial

uh1 D uh approximating the solution at the first stage. Here TŒ.uh1/
2� is the

truncated polynomial multiplication of uh1 with itself and duh1
dx is the derivative of

the polynomial. At the next stage, the solution is uh2 D uh C .�t=2/
2

df h1
dx , the slope is

f h2 D 1
2
TŒ.uh2/

2� � �
h
duh2
dx and so on. Once the stage slopes f hs ; s D 1; : : : ; 4 and their

spatial derivatives are known, we perform a Hermite interpolation to the element
centers of the solution and the spatial derivatives of the stage slopes. These are then
used to evolve the element centered Hermite interpolant of uh to t D tn C �t=2.
As the Hermite interpolant is of higher degree than the original Taylor polynomial,
we conclude a half-step by truncating it to the appropriate degree. To advance the
solution a full time step, the half-step process is repeated starting from the element
centers.
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To handle the artificial viscosity in the dG method, we use the approach of Bassi
and Rebay [1] with a Lax-Friedrichs flux for the advective term and alternating
fluxes for the viscous term. The nonlinear terms are constructed explicitly and de-
aliased by over-integration [10].

For the finite volume method, we let ui 	 u.xi/ be a grid function approximating
the solution and fiC 1

2
D fiC 1

2
.ui; uiC1/ be an approximation to the flux at xiC 1

2
. To

compute the time derivatives, we use the spatial approximation

dui
dt
	

fiC 1
2
� fi� 1

2

h
; (6)

where

fiC 1
2
.ui; uiC1/ D 1

2

�

ui C uiC1
2

�2

�
�

�i C �iC1
2

�

uiC1 � ui
h

: (7)

When �i D 0, the above discretization is linearly stable (when paired with a suitable
time-stepping method) but is not non-linearly stable, and we thus add artificial
viscosity to stabilize it.

For all three discretizations, we approximate the time derivative of the entropy
function, Et, by a backward difference. This approach is explicit as we use the
current solution to compute E at the current time before evolving the solution in
time. The residual (and hence the viscosity) is kept on each element / grid-point
over each step.

To approximate the entropy flux derivative Fx using the Hermite method, we
compute the derivative of the truncated polynomial multiplication TŒuhTŒ.uh/2�� at
the node. For the dG method, we evaluate the flux F on a Legendre-Gauss-Lobatto
(LGL) grid and differentiate it to get an approximation for Fx. The residual on an
element is taken to be the maximum of the absolute value of the residual on the LGL
grid. In the finite volume method Fx is approximated by

dFi

dx
D

FiC 1
2
� Fi� 12
h

; where, FiC 1
2
D 1

3

�

ui C uiC1
2

�3

:

We note that more sophisticated discretizations of the entropy residual could be
considered. In particular, a higher order approximation to rEV would result in a
higher rate of convergence for smooth solutions, but as we are mainly concerned
with the scaling ˇ, we did not pursue such discretizations here. In fact, in our
experience, the results concerning the choice of scaling are not affected by the order
of the accuracy of the approximation to rEV . This will be discussed in Sect. 3.

We also define �max to be the classical Lax-Friedrich viscosity, which for
Burgers’ equation takes the form

�max D ˛maxhmax juj; (8)

where the maximum is taken globally.
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Finally, for the purpose of comparison we also present some results computed
using the sub-cell resolution smoothness sensor of Persson and Peraire, [13]. The
smoothness sensor compares the L2 energy content of the highest (Fourier or expan-
sion) mode with the total L2 energy on an element and then maps its ratio (which is
an indicator of the smoothness) into the size of the artificial viscosity. Precisely, if
the approximate dG solution on an element is uh D Pm

kD0 OukPk, with Pk being an
orthogonal basis, we compute the smoothness as s D log10.kOumPmk2=kuhk2/ and
the viscosity as

� D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0 s < s0 � #;
"0h s > s0 C #;
"0h
2

�

1C sin
�

�.s�s0/
2#

�

�

otherwise:

When applied to the Hermite method, we first project the Taylor polynomials
centered at two adjacent grid-points into an orthogonal Legendre expansion on the
element defined by the grid-points and then proceed as above.

3 Impact of the h-Scaling on the Selection Mechanism

To study how the selection mechanism depends on the shock speed and the size
of the jump, consider a solution of the Burgers’ equation consisting of a Heaviside
function H with left state ul and right state ur, given by

u.x; t/ D ul C�u H .x � vst/ : (9)

This corresponds to a shock of size j�uj D jur � ulj moving with speed vs D
0:5.ul C ur/. Solutions of the form (9) always has a negative �u value since Lax
entropy condition for Burgers’ equation dictates ul D f 0.ul/ > vs > f 0.ur/ D ur.

For simplicity, we use the short hand notation H for H .x � vst/. A direct
computation

ut C
 

u2

2

!

x

D
�

�ul C ur
2

.�u/H0
�

C
 

.�u/ulH
0 C .�u/2

2
H0
!

D ��u
�

2ul C�u
2

�

H0 C�u
�

2ul C�u
2

�

H0

D 0;
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shows that (9) is a solution of (1). Further, it can be shown that the entropy
residual (2) for (9) is

rEV D .�u/3

12
H0.x � xs/ D .�u/3

12
ı.x � xs/: (10)

That is, the size of the entropy residual grows with the cube of �u.
Now, by the properties that define the Dirac delta function ı, we have

Z 1

�1
ı.x/dx D 1: (11)

Thus, a consistent discretization of the Dirac delta function ı0; : : : ; ın on a grid
x0; : : : ; xn must obey the condition

n�1
X

jD0
hjıj D 1; (12)

where hj D xjC1 � xj. For any approximation with a finite width stencil, we must
have ıj � h�1j and we thus expect rEV to behave like .�u/3=h on a uniform grid.
We therefore proceed with the analysis using the discrete approximation rEV D
.�u/3=h. Using this expression for rEV , we estimate the viscosity � by the minimum
of

�EV D ˛EVhˇ�1j.�u/3j and �max D ˛maxhmax.julj; jurj/: (13)

The comparison between the size of �EV and �max in various scenarios is
reported in Table 1. If ˇ D 2, then the two viscosities �EV and �max scale as h.
For a problem with multiple shocks, the homogeneity in h-scaling introduces an
additional difficulty in determining ˛EV . Should it be chosen based on the largest or
smallest shock? What if new shocks appear during the course of the computation?
To avoid answering these questions, we instead consider ˇ D 1. Now �EV D O.1/
while �max D O.h/, and the particular choice of ˛EV is thus irrelevant since as
h ! 0, the selection mechanism will eventually select �max at the shocks. We will
provide an example to illustrate the two-shock dilemma in Sect. 4.3.

Table 1 Size of �E and �max

for different size of shock
speed (vs) with respect to the
size of the jump (�u) in the
entropy viscosity method

Case �EV �max

jvsj � j�uj ˛EVhˇ�1j�uj3 ˛maxhjvsj
jvsj � j�uj ˛EVhˇ�1j�uj3 2˛maxhjvsj
jvsj  j�uj ˛EVhˇ�1j�uj3 0:5˛maxhj�uj
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4 Experiments

In this section, we describe the experiments and present a convergence study in L2
norms, and also study the effects of the scaling in the entropy viscosity method
on the convergence under grid refinement. For all the examples we solve Burgers’
equation and vary the initial data. In each problem, we report the L2-errors (the
L1-errors behaves quantitatively similar).

The solutions are obtained using the following methods: H1 and H2 refer to
Hermite-entropy viscosity method for ˇ D 1 and ˇ D 2 respectively, DG1 and
DG2 refer to dG-entropy viscosity method for ˇ D 1 and ˇ D 2 respectively, FV1
and FV2 refer to finite volume-entropy viscosity method with ˇ D 1 and ˇ D 2

respectively, DGP and HP refer to dG and Hermite method with smoothness sensor
respectively.

The size of the time step is chosen close to the stability limit, which in the cases
considered here results in the error being dominated by the spatial discretization.

4.1 A Single Shock

In this example, we compute the solution to (1) on the domain D D Œ�1; 1� with the
initial data imposed as the exact solution

u.x; t/ D
8

<

:

�0:5C vs; x 2 Œ�1; vst/;
0:5C vs; x 2 Œvst; 1�;

(14)

at time t D 0. Here vs is the shock speed which we choose to be either vs D 0

corresponding to a stationary shock or vs D 0:1 corresponding to a moving shock.
We solve until time t D 1 for the two different shock speeds and perform a grid

refinement study using a dG method of order 5, a Hermite method of order 9, and
the Finite Volume method, all using the classical fourth order Runge-Kutta time
stepping. For the Hermite method, we fix .max juj/�t=h D 0:3, for the dG method,
the time step is set as �t=h D 0:0625 and for the Finite Volume method, the time
step is set according to .max juj/�t=h D 0:9.

The L2 norm of errors in the numerical solution uh are plotted against the different
grid sizes for different methods, see Fig. 1. In the stationary shock experiment, FV1
and FV2 use .˛EV ; ˛max/ D .0:7; 0:5/ and .10; 0:5/ respectively, DG1 and DG2 use
.˛EV ; ˛max/ D .1; 0:25/ and .10; 0:25/ respectively, H1 and H2 use .˛EV ; ˛max/ D
.1; 0:4/ and .10; 0:4/ respectively, DGP and HP use .s0; #; �0/ D .�1; 2; 0:5/ and
.log10.1=256/; 1; 0:125/ respectively.

The parameters for moving shock experiment are .˛EV ; ˛max/ D .0:7; 0:5/ and
.10; 0:5/ for FV1 and FV2 respectively, .˛EV ; ˛max/ D .1; 0:25/ and .10; 0:25/ for
DG1 and DG2 respectively, .˛EV ; ˛max/ D .1; 0:4/ and .10; 0:4/ for H1 and H2
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Fig. 1 Convergence of the different methods for stationary (left) and moving (right) shocks

respectively, .s0; #; �0/ D .2 log10.1=256/; 1; 0:5/ and .log10.1=256/; 1; 0:125/ for
DGP and HP respectively.

To the left in Fig. 1, we display convergence results for the stationary shock. In
this case, the results indicate that all methods produce convergent solutions with
roughly the same rates of convergence. The rate of convergence is limited by the
smoothness of the solution but as can be seen in the same figure, the error levels are
lower for the higher order methods. It is interesting to note that the smallest errors
are observed for the computations using the smoothness-based sensor.

The results for the moving shock, displayed to the right in Fig. 1, are quite
different. Now, for the high order methods, we observe convergence only when we
use the entropy viscosity with ˇ D 1. When we use the entropy viscosity with ˇ D 2
or when we use the smoothness based sensor, the errors clearly saturate as the grid
is refined. The errors for the low order Finite Volume method are still reduced with
the grid size, independent of the scaling in the entropy viscosity method.

To understand why the convergence results obtained with ˇ D 1 and ˇ D 2 in
the moving shock example do not agree, we study where the Lax-Friedrich viscosity
�max is activated in the vicinity of the shock. We know that when the viscosity is
chosen to be just the Lax-Friedrich type viscosity, then under a suitable Courant
number, the solution will converge to the correct vanishing viscosity solution of the
conservation law [12].

It seems that the Lax-Friedrich viscosity is necessary in some neighborhood
of the shock, and the size of this neighborhood becomes an important factor in
the convergence of the solution to the moving shock problem. In Fig. 2, we plot
the average (in time) of the number of elements nm which use the Lax-Friedrich
viscosity �max as a function of total number of elements n for the stationary shock
(left) and for the moving shock (right). We see that nm is roughly constant for both
ˇ D 1 and ˇ D 2 in the stationary shock. In the moving shock problem, nm stays
constant for ˇ D 2 as in the stationary shock, but grows slowly for ˇ D 1 (note the
log-scale). While the growth in nm is irrelevant in the convergence in the stationary
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shock example, it seems to play an important role in determining the convergence
in the moving shock example.

4.2 Sinusoidal to N Wave

Next, we consider the smooth 2-periodic initial data

u.x; 0/ D � sin.�x/C 0:5; (15)

which develops into a single N wave.
In Fig. 3, we present the L2 norm of the errors at t D 0:1 before the shock

forms (left) and at t D 1 after the shock forms (right). The spatial and temporal
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discretization of the PDE itself is performed with a high order method, so rate of
convergence that we observe in Fig. 3 is limited by either the discretization of the
artificial viscosity or the smoothness of the solution, whichever is more restrictive.

For this N-wave experiment, FV1 and FV2 use (˛EV ; ˛max/ D .2; 0:5/ and
.20; 0:5/ respectively, DG1 and DG2 use (˛EV ; ˛max/ D .0:1; 0:125/ and .1; 0:125/
respectively, H1 and H2 use (˛EV ; ˛max/ D .0:4; 0:4/ and .5; 0:4/, DGP and HP use
.s0; #; �0/ D .2 log10.1=256/; 2; 0:05/ and .log10.1=256/; 1; 0:125/ respectively.

The discretization of the entropy residual rEV is only first order due to the use
of backward-Euler, so we expect the entropy-based viscosity �EV to be .ˇ C 1/th
accurate, i.e. second order when ˇ D 1 or third order when ˇ D 2. This analysis
agrees with the convergence plot to the left in Fig. 3. To the right, we observe the
same phenomena as in the moving shock example described in Sect. 4.1. We also
note that the shock in this sinusoidal wave is also moving.

4.3 Shocks of Different Size

To complement the analysis in Sect. 3, we next consider a problem with a big shock
and a small shock on the same simulation. According to the analysis, the entropy
viscosity will capture the small shock when ˇ D 1, but not when ˇ D 2. In this
setup, we start with an existing shock of size �u1 D 0:5 and a small sinusoidal
wave that develops into an N-wave of size �u2 D 0:2. Thus, we consider Burgers’
equation on Œ�1; 5� with initial data

u.x; 0/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 x 2 Œ�1;�0:5/;
�0:1 sin.2�x/ x 2 Œ�0:5; 0:5/;
0 x 2 Œ0:5; 4:5/;
�0:5 x 2 Œ4:5; 5�;

(16)

and fixed boundary condition u.�1; t/ D 0 and u.5; t/ D �0:5.
The solution initially consists of a shock and a smooth sine wave, which are

placed far away from each other so they never interact. Over time, the sinusoidal
wave develops into a N-wave. In Fig. 5, we present the numerical solutions at time
t D 2 for different grid resolutions, obtained with a Hermite method of order 9 and
dG method of order 5. In these plots, we can see that the shock is resolved for both
values of ˇ, however, the N-wave comes with some overshoots when ˇ D 2 for all
the finer grid resolutions, see Fig. 5.

For this two-shock experiment, DG1 and DG2 use (˛EV ; ˛max/ D .0:5; 0:25/ and
.10; 0:25/ respectively, H1 and H2 use (˛EV ; ˛max/ D .1; 0:125/ and .50; 0:125/
respectively.
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Fig. 4 Effect of the choice of scaling on a small perturbation near a larger shock. The results in
the left and right column are for ˇ D 1 and ˇ D 2 respectively. The upper figures display the
results for the dG method and the lower figures display the results for the Hermite method. The
black curve is for a simulation using 320 elements and the black uses 2560

Because the magnitude of this N-wave is small, the entropy residual at the N-
wave is relatively small compared to that at the existing shock. On one hand, ˇ D 1
results are free refined, but ˇ D 2 results do have overshoots, see Figs. 4 and 5.

5 Conclusion

In summary, we have performed a convergence study for Burgers’ equation with
various initial data. We demonstrated that the entropy viscosity method with ˇ D 2
does not produce convergent results (fixing the parameters ˛EV and ˛max) in the
cases where the shock is moving or more than one shock is present. Therefore, we
recommend readers to use ˇ D 1; to achieve desired accuracy or better rate of
convergence, use a higher order approximation of the residual.
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Robust Multigrid for Cartesian Interior Penalty
DG Formulations of the Poisson Equation in 3D

Jörg Stiller

Abstract We present a polynomial multigrid method for the nodal interior penalty
formulation of the Poisson equation on three-dimensional Cartesian grids. Its key
ingredient is a weighted overlapping Schwarz smoother operating on element-
centered subdomains. The MG method reaches superior convergence rates cor-
responding to residual reductions of about two orders of magnitude within a
single V(1,1) cycle. It is robust with respect to the mesh size and the ansatz
order, at least up to P D 32. Rigorous exploitation of tensor-product factorization
yields a computational complexity of O.PN/ for N unknowns, whereas numerical
experiments indicate even linear runtime scaling. Moreover, by allowing adjustable
subdomain overlaps and adding Krylov acceleration, the method proved feasible for
anisotropic grids with element aspect ratios up to 48.

1 Introduction

Discontinuous Galerkin (DG) methods combine multiple desirable properties of
finite element and finite volume methods, including geometric flexibility, variable
approximation order, straightforward adaptivity and suitability for conservation
laws [4, 11]. Though traditionally focused on hyperbolic systems, the need for
implicit diffusion schemes and application to other problem classes, such as
incompressible flow and elasticity, led to a growing interest in DG methods and
related solution techniques for elliptic equations [1, 17]. This paper is concerned
with fast elliptic solvers based on the multigrid (MG) method. In the context
of high-order spectral element and DG methods, several approaches have been
proposed: polynomial or p-MG [5, 8–10], geometric or h-MG [7, 13, 14], and
algebraic MG [2, 16]. The most efficient methods reported so far [2, 18] use block
smoothers that can be regarded as overlapping Schwarz methods. This work presents
a hybrid Schwarz/MG method for nodal interior penalty DG formulations of Poisson
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problems on 3D Cartesian grids. It extends the techniques put forward in [18, 19]
and generalizes the approach to variable subdomain overlaps. The remainder of the
paper is organized as follows: Section 2 briefly describes the discretization, Sect. 3
the multigrid technique, including the Schwarz smoother, and Sect. 4 presents the
results of the assessment by means of numerical experiments. Section 5 concludes
the paper.

2 Discontinuous Galerkin Method

We consider the Poisson equation

�r2u D f (1)

in the periodic domain ˝ D Œ0; lx� � Œ0; ly� � Œ0; lz�.1 For discretization, the domain
is decomposed into cuboidal elements f˝eg forming a Cartesian mesh. The discrete
solution uh is sought in the function space

Vh D
n

v 2 L2.˝/ W vj˝e 2 P3
P.˝

e/ 8˝e � ˝
o

; (2)

where P3
P is the 3D tensor product of polynomials of at most degree P. To cope with

discontinuity we introduce the interior surface � D [� f which is composed of the
element interfaces f� f g. Let ˝� and ˝C denote the elements adjacent to � f and,
respectively, n� and nC their exterior normals, and v� and vC the restrictions of
v to the joint face from inside the elements. Then we define the average and jump
operators as

ffvgg D 1

2
.v� C vC/; ŒŒv�� D n�v� C nCvC: (3)

Given these prerequisites, the interior penalty discontinuous Galerkin formulation
can be stated as follows (see, e.g. [1]): Find uh 2 Vh such that for all v 2 Vh

Z

˝

rv � ruhd˝ C
Z

�

�

ŒŒrv�� � ffuhgg C ffvgg � ŒŒruh ��
�

d�

C
Z

�

�ŒŒv�� � ŒŒuh �� D
Z

˝

vfd˝ ; (4)

1Within this paper, the following symbols are used concurrently for representing the Cartesian
coordinates: x D Œxi� D .x1; x2; x3/ D .x; y; z/.
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where � is a piece-wise constant penalty parameter that must be chosen large
enough to ensure stability.

Although, in theory, any suitable basis in Vh can be chosen, we restrict ourselves
to nodal tensor-product bases generated from the Lagrange polynomials to the
Gauss-Legendre (GL) or Gauss-Legendre-Lobatto (GLL) points, respectively. The
discrete solution is expressed in ˝e as

uh.x/j˝e D ue.�e.x// D
P
X

i;j;kD0
ueijk'i.�/'j.	/'k.�/ ; (5)

where 'i denotes the 1D base functions and �e.x/ the transformation from˝e to the
reference element Œ�1; 1�3. Each coefficient ueijk is associated with one local base
function, which is globalized by zero continuation outside ˝e. Inserting these base
functions in (4) for v and applying GL or GLL quadrature, according to the chosen
basis, yields the discrete equations

A u D f (6)

for the solution vector u D Œueijk�. Due to the Cartesian element mesh and the tensor-
product ansatz (5) the system matrix assumes the tensor-product form

A D Mz ˝My ˝ Lx CMz ˝ Ly ˝Mx C Lz ˝My ˝Mx (7)

where M�, L� are the 1D mass and stiffness matrices for  D x; y; z. Without going
into detail we remark that M� is positive diagonal, and L� symmetric positive semi-
definite and block tridiagonal for either basis choice. The rigorous exploitation of
these properties is crucial for the efficiency of the overall method.

3 Multigrid Techniques

The tensor-product structure of (8) allows for a straight-forward extension of the
multigrid techniques developed in [18] for the 2D case. In the following, we examine
polynomial multigrid (MG) and multigrid-preconditioned conjugate gradients (MG-
CG) both using an overlapping Schwarz method for smoothing.

3.1 Schwarz Method

Schwarz methods are iterative domain decomposition techniques which improve the
approximate solution by parallel or sequential subdomain solves, leading to additive
or multiplicative methods, respectively. Here, we consider additive Schwarz with
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Fig. 1 Element-centered subdomain. Every subdomain consists of a core region coinciding with
the embedded element (dark) and an overlap zone (light shaded). The latter represents a strip of
variable width ıO, which is adopted from the surrounding elements. The circles are the GL nodes
for polynomial order P D 4. Filled circles indicate the unknowns that are solved for

overlapping element-centered subdomains as sketched in Fig. 1. The overlap width
ıO can be different on each side of the embedded element, but may not exceed
the width of the adjoining element. Alternatively, the overlap can be specified by
prescribing the number NO of node layers adopted from the latter.

To derive the subdomain problems, we first rewrite (8) into the residual form

A�u D f � A Qu D r ; (8)

where �u D u � Qu is the correction to the current approximate solution Qu. For
each subdomain ˝s we define the restriction operator Rs such that us D Rsu
gives the associated coefficients. Conversely, the transposed restriction operator,
RT
s globalizes the local coefficients by adding zeros for exterior nodes. With these

prerequisites the correction contributed by ˝s is defined as the solution to the
subproblem

Ass�us D rs ; (9)
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where Ass D RsART
s is the restricted system matrix and rs D Rsr the restricted resid-

ual. Due to the cuboidal shape of the subdomain, the restriction operator possesses
the tensor-product factorization Rs D Rs;x ˝ Rs;y ˝ Rs;z and, as a consequence, Ass
inherits the tensor-structure of the full system matrix (7). Moreover it is regular and
can be inverted using the fast diagonalization technique of Lynch et al. [15] to obtain

A�1ss D .Sz ˝ Sy ˝ Sx/.I ˝ I ˝x C I ˝y ˝ I Cz ˝ I ˝ I/�1.ST
z ˝ ST

y ˝ ST
x /;

where S� is the column matrix of eigenvectors and � the diagonal matrix of
eigenvalues to the generalized eigenproblem for the restricted 1D stiffness and mass
matrices and  D x; y; z. Exploiting this structure the solution can be computed in
O.P4/ operations per subdomain.

One additive Schwarz iteration proceeds as follows: First, all subproblems are
solved in parallel, which yields the local corrections �us. Afterwards, the global
correction is computed as the weighted average

�u '
X

s

RT
s .Ws�us/ ; (10)

whereWs D Wz ˝Wy ˝Wx is the diagonal local weighting matrix. The constituent
1D weights are computed from the hat-shaped weight function wH, which is
illustrated in Fig. 2. The complete definition of the weight function and alternative
choices are given in [18].

3.2 Multigrid and Preconditioned Conjugate Gradient Methods

For MG we define a series of polynomial levels fPlg with Pl D 2l increasing from
1 at l D 0 to P at top level L. Correspondingly, let ul denote the global coefficients

Fig. 2 Hat-shaped weight function using a piece-wise quintic transition from 0 at the subdomain
boundary to 1 in the non-overlapped part of the core region. The coordinate �H coincides with �
inside the central element, and � � 2 in the left and right neighbor elements, respectively
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and Al the system matrix on level l. On the top level we have uL D u and AL D A,
whereas on lower levels ul is the defect correction and Al the counterpart of A
obtained with elements of order Pl. For transferring the correction from level l�1 to
level l we use the embedded interpolation operator I l, and for restricting the residual
its transpose. These ingredients allow to build the multigrid V-cycle summarized
in Algorithm 1, where the SMOOTHER represents the weighted additive Schwarz
method. To allow for variable V-cycles [3], the number of pre- and post-smoothing
steps, NS1;l and NS2;l, may change from level to level. Line 11 of Algorithm 1
defines the coarse grid solution formally by means of the pseudoinverse AC0 . In our
implementation the coarse problem is solved using the conjugate gradient method.
To ensure convergence, the right side is projected to the null space of A0, as proposed
in [12].

Algorithm 1 Multigrid V-cycle
1: function MULTIGRIDCYCLE(u, f , NS)
2: uL u
3: f

L
 f

4: for l D L; 1 step �1 do
5: if l < L then
6: ul  0

7: end if
8: ul  SMOOTHER(ul, f l, NS1;l) F Pre-smoothing
9: f

l�1
 IT

l . f l � Alul/ F Residual restriction
10: end for
11: u0 AC

0 f
0

F Coarse grid solution
12: for l D 1; L do
13: ul ul C I lul�1 F Correction prolongation
14: ul SMOOTHER(ul, f l, NS2;l) F Post-smoothing
15: end for
16: return u uL
17: end function

It is well known that the robustness of multigrid method can be enhanced by
Krylov acceleration [20]. Here we use the inexact preconditioned conjugate gradient
method [6], which copes with the asymmetry introduced by the weighted Schwarz
method without imposing significant extra cost in comparison to conventional CG.
A detailed description of the algorithm is given in [18].

4 Results

For assessing robustness and efficiency, the described methods were implemented
in Fortran and applied to the 2�-periodic Poisson problem with the exact solution

u.x/ D cos.x � 3xC 2z/ sin.1C x/ sin.1 � x/ sin.2xC x/ sin.3x � 2yC 2z/:
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To keep the test series manageable, we constrained ourselves to equidistant grids
with an identical number of elements in each direction. Anisotropic meshes were
realized be choosing the domain extensions as multiples of 2� , i.e. l� D 2�s�,
which yields the aspect ratio �x W �y W �z D sx W sy W sz. All tests started from a
random guess confined to Œ�1; 1� and used a penalty parameter of �� D 2�min;�,
where �min;� is the stability threshold, e.g., �min;x D P.P C 1/=�x for the x
direction [18]. The program was compiled using the Intel Fortran compiler 17.0
with optimization �O3 and run on a 3.1 GHz Intel Core i7-5557U CPU.

The primary assessment criterium is the average multigrid convergence rate

� D n

r

rn
r0
;

where rn is the Euclidean norm of the residual vector after the nth cycle. Addition-
ally we consider the number of cycles n10 and the average runtime per unknown

10 that are required to reduce the residual by a factor of 1010. These quantities
follow from the convergence rate by n10 D d�10= lg�e and 
10 D �10 tC= lg �,
respectively, where tC is the time required for one V-cycle.

4.1 Isotropic Meshes

First we consider the isotropic case with sx D sy D sz D 1, such that ˝ D Œ0; 2��3.
For assessing the impact of the subdomain overlap on the convergence rate and
computational cost, we performed a test series for ansatz orders P D 4 to 32 using
a degree-dependent tessellation into NE D .128=P/3 elements. Table 1 presents
the logarithmic convergence rates for 14 test cases featuring different choices for
the basis functions (GLL or GL), the solution method (MG or MG-CG) and the
subdomain overlap. Note that the latter was chosen identical in each direction,
because of mesh isotropy. All cases employed a fixed V-cycle with one pre- and
post-smoothing step. Independent of the basis and the solution method, choosing a
minimal overlap of just one node (NO D 1) yields acceptable convergences rates
for low order (P D 4), but becomes inefficient with increasing order. Using a
geometrically fixed overlap of just 8 percent of the element width (ıO D 0:08�x)
on every mesh level ensures robustness with respect to the ansatz order and even
improves the convergence with growing P. Enlarging the overlap increases the
convergence rate but also the computational cost, as will be detailed in a moment.
Using Krylov acceleration tends to give faster convergence, however, this advantage
melts away when increasing the overlap or the ansatz order. While these properties
are consistently observed with the GLL basis, the GL results follow a less regular
pattern and exhibit mostly lower convergence rates. This behavior can partly be
explained by the fact that, with Gauss points, using a geometrically specified overlap
width may result in zero overlapped node layers. While this phenomenon appears
only at low orders, the latter are always present in the multigrid scheme, even at
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Table 1 Convergence rates obtained with different multigrid methods on isotopic meshes com-
posed of .128=P/3 elements for increasing ansatz order P

Nr D � lg�

# Basis Solver Overlap NO P D 4 P D 8 PD 16 PD 32

1 GLL MG NO D 1 1; 1; 1; 1; 1 1:08 0:89 0:46 0:24

2 GLL MG-CG NO D 1 1; 1; 1; 1; 1 1:34 1:21 0:80 0:52

3 GLL MG ıO D 0:08�x 1; 1; 2; 3; 6 1:08 1:59 2:13 2:82

4 GLL MG-CG ıO D 0:08�x 1; 1; 2; 3; 6 1:34 1:85 2:24 2:81

5 GLL MG ıO D 0:50�x 2; 3; 5; 9; 17 2:26 2:76 3:18 3:66

6 GLL MG-CG ıO D 0:50�x 2; 3; 5; 9; 17 2:29 2:67 3:08 3:75

7 GL MG NO D 1 1; 1; 1; 1; 1 0:73 0:96 0:73 0:40

8 GL MG-CG NO D 1 1; 1; 1; 1; 1 1:49 1:26 1:07 0:78

9 GL MG ıO D 0:08�x 0; 1; 1; 3; 6 0:73 1:15 1:70 2:20

10 GL MG-CG ıO D 0:08�x 0; 1; 1; 3; 6 1:14 1:38 1:84 2:15

11 GL MG ıO D 0:50�x 1; 2; 4; 8; 16 1:83 2:28 1:52 0:94

12 GL MG-CG ıO D 0:50�x 1; 2; 4; 8; 16 1:90 2:34 1:88 1:37

13 GL MG ıO D 0:09�x, NO � 1 1; 1; 2; 3; 6 1:36 1:75 1:87 2:21

14 GL MG-CG ıO D 0:09�x, NO � 1 1; 1; 2; 3; 6 1:49 1:81 2:03 2:22

high ansatz orders. A remedy to this problem is to apply a lower bound of NO;l D 1
for the nodal overlap on every mesh level l. Nevertheless, the GL-based approach
remains slightly less efficient in comparison with the GLL approach. Therefore,
further discussion will be constrained to the latter.

Complementary to the tabulated results, Fig. 3 depicts the number n10 of
multigrid cycles that are required to reduce the Euclidian residual norm by ten
orders of magnitude for selected cases listed in Table 1. In agreement with the
above discussion, the cycle count increases considerably when using GLL MG with
only one node layer overlap. Adding Krylov acceleration (MG-CG) ameliorates
this drawback, especially at higher order. Yet, pure MG with a fixed geometric
overlap of 8 percent is far more efficient and even attains a decreasing n10 with
growing P. As expected, using an overlap of �x=2 yields a further reduction of the
cycle count. This advantage is, however, bought with additional computational cost
related to the larger subdomain operator Ass. Figure 4 confirms that GLL MG with
ıO D 0:08�x outpaces the other choices for all polynomial degrees but 4, where
the Krylov-accelerated method (MG-CG) with one node overlap is slightly faster.
Moreover, Fig. 5 illustrates the robustness of this method with respect to the mesh
size. With ansatz orders up to 16, the convergence rate becomes mesh independent
for NE � 123, whereas it still tends to improve beyond NE D 163 for P D 32. It
is further worth noting that the convergence rates improve with growing order,
reaching an excellent � 	 6:3 � 10�3 with P D 16 and even better � 	 1:6 � 10�3
with P D 32. Moreover, runtimes of about 3:5 %s per degree of freedom allow to
solve problems up to a million unknowns conveniently on a single core.
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Fig. 3 Number of cycles required to reduce the residual by ten orders of magnitude for selected
methods listed in Table 1

Fig. 4 Runtime per unknown required to reduce the residual by ten orders of magnitude for
selected methods listed in Table 1

4.2 Anisotropic Meshes

As a second issue we investigated the suitability of the approach for anisotropic
meshes. For this purpose, we defined a sequence of domains

˝ D .0; 2� AR/ � .0; 2�dAR=2e/� .0; 2�/;

with aspect ratios AR ranging from 1 to 48. Using a uniform tessellation featuring
the same number of elements in each coordinate direction, AR also represents
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Fig. 5 Convergence rates for GLL MG with overlap ıO D 0:08�x for different orders P displayed
as a function of the mesh size

Table 2 Test cases for investigating the robustness against the element aspect ratio

Case Subdomain overlap Smoothing steps

(0.08 rel; 1,1, fix) ıO; xi D 0:08�xi NS;l D .1; 1/

(0.08 rel; 1,1, var) ıO; xi D 0:08�xi NS;l D .1; 1/� 3L�l

(0.08 max; 1,1, var) ıO; xi D minŒmaxj.0:08�xj/; �xi� NS;l D .1; 1/� 3L�l

the maximum element side aspect ratio. Thus, for example, AR D 32 results in
�x D 2�y D 32�z. In earlier 2D studies, Krylov acceleration and variable V-cycles
proved helpful, though yet insufficient, for coping with anisotropy. Based on this
experience, we selected methods with different overlap and smoothing strategies,
which are summarized in Table 2. Methods (0.08 rel; 1,1, fix) and (0.08 rel; 1,1, var)
both use a relative subdomain overlap of 8 percent, which means that the overlap
width varies in each coordinate direction proportionally to the corresponding
element extension. In contrast, (0.08 max; 1,1, var) sets the overlap width to 8
percent of the maximal side length, but not larger than the element width in the
given direction. Additionally, the last two methods apply a variable V-cycle, which
increases the number of smoothing steps by a factor of 3 with each coarser level.
The performance of these methods was studied on a 83 tessellation using elements
of order P D 16. Figure 6 depicts the obtained convergence rates, cycle counts and
runtimes per unknown for aspect ratios up to 48. With method (0.08 rel; 1,1, fix)
convergence starts to degrade at moderate aspect ratios and has already slowed
by two orders of magnitude at AR D 16. Using a variable V-cycle improves the
robustness such that a nearly constant cycle count n10 is maintained until AR D 12.
From here convergence degrades more quickly, but remains superior to the previous
case. Setting the overlap proportional to the largest element extension, as with
method (0.08 max; 1,1, var), yields a further improvement, which becomes even
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Fig. 6 (a) Multigrid convergence rates depending on the aspect ratio for methods listed in Table 2.
(b) Cycle counts depending on the aspect ratio for methods listed in Table 2. (c) Runtime per
unknown depending on the aspect ratio for methods listed in Table 2
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more pronounced in the range AR > 12, where the overlap in the most compressed
direction is already constrained by the element width. Compared to the isotropic
case, the cycle count grew from 4 to 13 at AR D 48, whereas the serial runtime
increased by factor of 5.4 to approximately 19%s per unknown. This seems to be a
good starting point, given the prospect of further acceleration, e.g. by parallelization.

5 Conclusions

We developed a polynomial multigrid method for nodal interior-penalty formu-
lations of the Poisson equation on three-dimensional Cartesian grids. Its key
ingredient is an overlapping weighted Schwarz smoother, which exploits the
underlying tensor-product structure for fast solution of the subdomain problems.
The method achieves excellent convergence rates and proved robust against the
mesh size and ansatz orders up to at least 32. Extending the ideas put forward in [18],
we showed that combining Krylov acceleration, variable smoothing and increasing
the subdomain overlap proportionally to the maximum element width improves the
robustness considerably and renders the approach feasible for aspect ratios up to 50.
Moreover, the method is computationally efficient, allowing to solve problems with
a million unknowns in a few seconds on a single CPU core.

Acknowledgements Funding by German Research Foundation (DFG) in frame of the project
STI 157/4-1 is gratefully acknowledged.
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Using PGD to Solve Nonseparable Fractional
Derivative Elliptic Problems

Shimin Lin, Mejdi Azaiez, and Chuanju Xu

Abstract A family of tensor-based methods called Proper Generalized Decompo-
sition (PGD) methods have been recently introduced for the a priori construction of
the solution of several partial differential equations. This strategy was tested with
success to demonstrate the capability of representing the solution with a significant
reduction of the calculation and storage cost. In this paper, we suggest to test the
efficiency of a such approach in solving general nonseparable fractional derivative
elliptic problem. We will illustrate by several numerical experiments the efficiency
of PGD, especially when the mesh or the coefficients vary with high contrast ratio.
Although the PGD scheme considered in this paper is based on spectral method, it
is extendable to other methods such as finite element method.

1 Introduction

The study of fractional calculus has a very long history and is attracting increasing
attention in recent years. The corresponding fractional differential equations provide
an alternative tool for the description of memory effect and hereditary properties
of various materials and processes. The fractional model has been applied in
numerous diverse fields, including control theory, viscoelastic materials, chaos,
electro-chemical process, etc; see, e.g., [2, 5, 9, 10]. There are three basic fractional
equations: time fractional diffusion equation, space fractional diffusion equation,
and time-space fractional diffusion equation. In this contribution we consider a gen-
eral nonseparable fractional elliptic equation [8]. Among the issues to be addressed,
solving the algebraic system arising from the discretization is an important question.
It is known that finding efficient preconditioners is often a difficult task, especially
when we want the condition number of the preconditioned system is independent of
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both the degree of freedom and the ration between the maximum and minimum of
the coefficient. To skirt this issue we propose in this contribution to take advantage
of the proper generalized decomposition (PGD) technique to approximate the
solution with a reasonable storage and CPU cost.

The paper is arranged as follows. In Sect. 2, we present some notations and
basic properties of fractional calculus; Then the variable coefficient fractional partial
differential equation is introduced in Sect. 3; In Sect. 4 we recall the spectral method
and construct the PGD method. The final section is devoted to carry out some
numerical experiments to verify the efficiency of the proposed method.

2 Preliminaries

In this section, we introduce some notations and present basic results of fractional
calculus, which will be used throughout the paper [1, 4]. Let c be a generic positive
constant independent of any functions and of any discretization parameters. We use
the expression A � B (respectively, A � B) to mean that A � cB (respectively,
A � cB), and use the expression A Š B to mean that A � B � A.

For a function f .x/ defined in Œa; b�.�1 < a < b < 1/, we denote by aIsx f .x/
and xIsb f .x/ the left-sided and right-sided Riemann-Liouville fractional integrals
of order s > 0 respectively. The left-sided and right-sided Riemann-Liouville
fractional derivatives of order s are denoted by aDs

x f and xD s
b f . The notations C

a D
s
x f

and C
x D

s
b f stand for the Caputo fractional derivatives. We refer to [4] for the detailed

definitions of these operators.
For ease of reading, we recall below a number of properties to be used in the

paper. The relation between Riemann-Liouville and Caputo derivatives is given as
follows [4]:

Lemma 1 Let s 2 Œn � 1; n/ with n 2 N
C. Then it holds

aD
s
x f .x/D C

a D
s
x f .x/C

n�1
X

jD0

f . j/.a/.x � a/ j�s

� .1C j � s/
I

xD
s
b f .x/ D C

x D
s
b f .x/C

n�1
X

jD0
.�1/ j f

. j/.b/.b � x/ j�s

� .1C j � s/
:

We now introduce some Sobolev spaces, which will be used in the discussion
that follows, Let ˝ be an open set contained in R

d; d is the space dimension. The
L2.˝/ space is defined as the space of functions which are square measurable. The
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associated inner product and norm are denoted respectively by

.u; v/˝ WD
Z

˝

uv d˝; kukL2.˝/ WD .u; u/
1
2

˝; 8u; v 2 L2.˝/:

For a nonnegative real number s, Hs.˝/ and Hs
0.˝/ denote the usual Sobolev space

with norm k � ks;˝ and semi-norm j � js;˝ .
Given a Sobolev space X with norm k � kX , let

Hs.˝IX/ WD fvI kv.�; x/kX 2 Hs.˝/g;

endowed with the norm:

kvkHs.˝IX/ D
�

�kv.�; x/kX
�

�

s;˝ :

If ˝ D  �; where is a finite interval in R, we also define

Hs;� .˝/ WD Hs.IL2.// \ L2.IH� .//

and the corresponding Hs;�
0 .˝/ that is the closure of C10 .˝/ with respect to the

Hs;� .˝/-norm:

kvkHs;� .˝/ WD
�

kvk2Hs.IL2.// C kvk2L2.IH� .//
� 1
2
:

The C10 .˝/ is the space of infinitely differentiable functions having compact
support.

The following two lemmas are useful in the construction of weak form and the
analysis of well-posedness for the fractional equation considered in this paper.

Lemma 2 ([6]) For 0 < s < 1, if w 2 Hs./; v 2 Hs
0./, then

�

aD
s
xw; v

�


D �w; xDs

bv
�


; if aD

s
xw 2 L2./I

�

xD
s
bw; v

�


D �w; aDs

xv
�


; if xD

s
bw 2 L2./:

Lemma 3 ([6]) Let s > 0; s ¤ n � 1
2
; n 2 N

C. Then for all v 2 Hs
0./, we have

.aD
s
xv; xD

s
bv/ Š cos.�s/kaDs

xvk2L2./ Š cos.�s/kxDs
bvk2L2./ Š cos.�s/kvk2Hs./:

In the following discussion, without loss of generality, we restrict the domain to
be  D Œ�1; 1�, ˝ D  � . To simplify the notation, we write the x direction
left-sided and right-sided R-L derivatives in form @sx� and @sxC respectively, and the
domain symbol may be dropped from the subscript of norm if no confusion would
arise.
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3 Variable Coefficient Fractional Differential Equation

For 1 < ˛; ˇ < 2, we consider the following two dimensional variable coefficient
fractional partial differential equation [8]:

�.x; y/u.x; y/ C @ ˛2xC
h

dxl .x; y/
C@

˛
2
x�u.x; y/

i

C @ ˛2x�
h

dxr .x; y/
C@

˛
2

xCu.x; y/
i

C @
ˇ
2

yC

�

dyl .x; y/
C@

ˇ
2
y�u.x; y/

�

C @
ˇ
2
y�

�

dyr .x; y/
C@

ˇ
2

yCu.x; y/

�

D f .x; y/; .x; y/ 2 ˝; (1)

subject to the Dirichlet boundary condition

uj@˝ D 0; (2)

where �; dxl ; d
y
l ; d

x
r ; d

y
r are positive coefficient functions.

Based on the fractional integration by parts formula given in Lemma 2, we are

led to consider the following weak formulation of (1)–(2): given f 2 H
˛
2 ;
ˇ
2

0 .˝/0, find

u 2 H
˛
2 ;
ˇ
2

0 .˝/, such that

A.u; v/ D h f ; vi˝; 8v 2 H
˛
2 ;
ˇ
2

0 .˝/; (3)

where h�; �i is the duality between H
˛
2 ;
ˇ
2

0 .˝/0 and H
˛
2 ;
ˇ
2

0 .˝/, and the self-adjoint
bilinear form A.�; �/ is defined by

A.u; v/ WD.�.x; y/u; v/C .dxl .x; y/@
˛
2
x�u; @

˛
2
x�v/C .dxr .x; y/@

˛
2

xCu; @
˛
2

xCv/

C.dyl .x; y/@
ˇ
2
y�u; @

ˇ
2
y�v/C .dyr .x; y/@

ˇ
2

yCu; @
ˇ
2

yCv/:

In order to ensure the well-posedness of problem (3), we impose the following
conditions on the coefficient functions: �.x; y/; dij.x; y/ 2 C.˝/; and

0 � L� � �.x; y/ � O�; 0 < Ldij � d j
i .x; y/ � Odij; i D x; y; j D l; r: (4)

With the condition (4), we reach the following conclusion.

Theorem 1 ([8]) Under the assumption (4), Lemmas 1, 2, 3, there exists a unique

solution u 2 H
˛
2 ;
ˇ
2

0 .˝/ to (3). Furthermore, the solution satisfies

kuk
H
˛
2 ;
ˇ
2 .˝/

� k fk
H
˛
2 ;
ˇ
2 .˝/0

: (5)
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4 Numerical Method

In this section we propose a method based on proper generalized decomposition
approach and spectral method for numerical solutions for the underlying prob-
lem (3). The former will be used to reduce the original problem into simpler ones,
which will be solved a spectral method.

We first present a monodomain spectral approximation to (3).

4.1 Spectral-Galerkin Method (SM)

We consider the polynomial spaces:

P
0
N./ WD fv 2 PN./; v.�1/ D v.1/ D 0g; P0L.˝/ D P

0
N./ � P

0
M./;

where the discretization parameter L represents the degree pair .N;M/. The spectral
method we propose uses the standard form of Galerkin’s method as follows: find
uL 2 P

0
L.˝/, such that

A.uL; vL/ D h f ; vLi˝; 8vL 2 P
0
L.˝/: (6)

To compute the inner products involving fractional derivatives in the above schema,
we will make use of Jacobi-Gauss quadratures with suitable weights [6, 7]. If all
the coefficients in (1) are separable, some methods like the matrix decomposi-
tion/diagonalization method can be employed to solve the discrete problem (6). If
not, iterative approach is a choice. More detail can be found in [8].

4.2 Proper Generalized Decomposition Method (PGD)

The PGD method can be regarded as model reduction based on separation of
variable (see [3] and the references therein). In the simplest form of PGD for (3),
we seek an approximation uk.x; y/ to the solution u.x; y/ in ˝ in the separated form
as follows:

u.x; y/ 	 uk.x; y/ D
k
X

iD1
Xi.x/Yi.y/; (7)

where 8i D 1; � � � ; k, Xi.x/ 2 Qx;Yi.y/ 2 Qy, Qx and Qy are two suitable spaces.
First we consider two mappings:

• Syk W Qy ! Qx, which maps function Y.y/ 2 Qy into a function X.x/ 2 Qx,
defined by:

A.uk�1 C XY;X�Y/ D h f ;X�Yi; 8X� 2 QxI (8)
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• Sxk W Qx ! Qy; which maps function X.x/ 2 Qx into a function Y.y/ 2 Qy,
defined by:

A.uk�1 C XY;XY�/ D h f ;XY�i; 8Y� 2 Qy: (9)

At each enrichment step k.k � 1/, we have already computed k � 1 first terms
of approximation (7). Therefore the unknowns at the current enrichment step k are
functions Xk.x/ and Yk.y/. We now wish to compute the kth term Xk.x/Yk.y/ to
obtain the enriched solution

uk.x; y/ D uk�1.x; y/C Xk.x/Yk.y/ D
k�1
X

iD1
Xi.x/Yi.y/C Xk.x/Yk.y/:

The resulting problem is thus coupled and a suitable iterative scheme is required.
We use the index p to denote a particular iteration, and Xp

k .x/;Y
p
k .y/ to denote

approximation of Xk.x/;Yk.y/ obtained at iteration p. The simplest iterative scheme
is an alternating direction strategy that computes first Xp

k .x/ by Syk.Y
p�1
k .y//, and

then Yp
k .y/ by Sxk.X

p
k .x//. An arbitrary initial non-zero Y0k .y/ is specified to start

the iterative process. The non-linear iterations proceed until reaching a fixed point
within a user-specified tolerance �. This lead to Algorithm 1.

Algorithm 1 Progressive of PGD
1: for k D 1; � � � ; kmax do
2: Initialize Y0k .y/
3: for p D 1; � � � ; pmax do
4: Compute Xp

k D Syk.Y
p�1
k /

5: Normalize Xp
k

6: Compute Yp
k D Sxk.X

p
k /

7: Check convergence of Xp
kY

p
k

8: end for
9: Set Xk D Xp

k and Yk D Yp
k

10: Set uk D uk�1 C XkYk and check convergence
11: end for

Remark 1 In general, alternating directional strategy reaches criteria very fast. A
slow convergence may reveal multiple or close eigenvalues. However, also in this
case, a good enough couple .Xk;Yk/ is often reached in a few iterations. In practice
pmax D 5 is enough.

From Algorithm 1, we find that in steps 4, 6, we only need to deal with one-
dimensional problems rather than two-dimension, which is the heart of the PGD.
Totally there are 2kmax pmax one-dimensional problems for computing Xi.x/ and

Yi.y/. A reasonable choice of spaces is Qx D H
˛
2

0 ./;Qy D H
ˇ
2

0 ./, since we
have following lemma.
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Lemma 4 For any measurable functions X.x/ W  ! R and Y.y/ W  ! R such
that X.x/Y.y/ ¤ 0,

X.x/Y.y/ 2 H
˛
2 ;
ˇ
2

0 .˝/() X.x/ 2 H
˛
2

0 ./ and Y.y/ 2 H
ˇ
2

0 ./:

Concerning the stopping criteria, we use

kXp
k .x/Y

p
k .y/ � Xp�1

k .x/Yp�1
k .y/k0

kXp�1
k .x/Yp�1

k .y/k0
< � (10)

to mean convergence of the alternating direction iteration. The enrichment process
itself stops (step 10) when an appropriate measure, ".k/, becomes small enough,
i.e., ".k/ < Q�. Some stopping criteria are available here:

".k/ WD
kXk.x/Yk.y/k

H
˛
2 ;
ˇ
2 .˝/

kX1.x/Y1.y/k
H
˛
2 ;
ˇ
2 .˝/

(11)

or

".k/ WD kAUk � Fk0 (12)

for example. Here we assume AU D F is the linear system of (6).
Finally, the given data f .x; y/; �.x; y/ and dij; i D x; y; j D l; r need to be

expressed as a sum of tensor products. Otherwise, computing high-dimensional
integrals would be necessary. In case the given data are not of tensor product form,
we can use PGD to get an appropriate approximation of them as a sum of tensor
products.

5 Numerical Experiments

We now present some numerical results to assess the efficiency of the PGD/spectral
method when it is used to approximate the solution of the nonseparable fractional
elliptic problem (3). As explained above the cost of the PGD is proportional to
the number of iterations in the fixed point algorithm augmented by the number
of enrichments we need to represent the expected solution. The objective of this
section is twofold. We will numerically verify the convergence of the process for
both regular and singular solutions and for each we will measure the evolution of
the cost when the mesh and/or the ratio between the maximum and minimum of the
data increase.

First we fix the data in (3) as follows: �.x; y/ D 1; dxl .x; y/ D dxr .x; y/ D
sin2.�x/ C sin2.�y/ C 1; dyl .x; y/ D dyr .x; y/ D cos2.�x/ C cos2.�y/ C 1, and
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Fig. 1 Error behavior with respect to (a) the enrichment step k and (b) polynomial degree N

set ˛ D 1:2; ˇ D 1:8. We test the method for the exact analytical solution:

uex.x; y/ D .1 � x2/2x2.1 � y2/2sin.�xy/:

In Fig. 1a we show the relationship between H
˛
2 ;
ˇ
2�error and enrichment step in

semi-log scale for several different polynomial degreeN. It is observed that forN big
enough the error exhibits an almost exponential decay with respect to the enrichment
step number. Then we investigate the convergence behavior of the PGD/spectral

method with respect to the polynomial degree. In Fig. 1b we present the H
˛
2 ;
ˇ
2�

error of solution obtained respectively by the PGD/spectral method and 2D spectral
method (SM) as a function of the polynomial degree N. Clearly the both methods
yield the expected spectral accuracy.

We now consider problem (3) with singular exact solution:

uex.x; y/ D .1 � x2/2xı.1 � y2/2sin.�xy/;

where ı is a positive real number. The same experiments as in the previous regular

case are performed. In Fig. 2a–c we show H
˛
2 ;
ˇ
2 �error decay rates as functions of

the enrichment step number for different ı D 7
3
; 13
3
; 19
3

. Once again the PGD/spectral
method exhibits a quick convergence provided the polynomial degree is large

enough, even the solution is not regular. Figure 2d plots the H
˛
2 ;
ˇ
2 �error versus

polynomial degree N in log-log scale for the same values of ı, in which we
observe that the convergence rates for ı D 7

3
; 13
3

, and 19
3

are respectively closed
to N�3:23;N�5:23, and N�7:23 as expected. This is in a quite good agreement with the
regularity of the exact solution[8].

Now we investigate the impact of the polynomial degree and the coefficient
variation on the performance of the PGD method. We take �.x; y/ D dyl .x; y/ D
dyr .x; y/ D 1; dxl .x; y/ D dxr .x; y/ D a.sin2.�x/ C sin2.�y// C 1. The ratio is then
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Fig. 2 Error decay versus the enrichment step (a, b, c) and polynomial degree (d) for singular
solution. (a) ı D 7=3. (b) ı D 13=3. (c) ı D 19=3

defined as

r WD max dxl .x; y/

min dxl .x; y/
D max dxr .x; y/

min dxr .x; y/
D 2aC 1:

We solve the problem (3) with the above data and the stop criteria ".k/ D 10�7. The
number of iterations of the fixed point algorithm is fixed to 5. We list in Table 1 the
minimum enrichment step number k required to reach the convergence for different
N and r. From this table we observe very weak dependence (less than linearly) of
the required enrichment step on the data contrast and polynomial degree N. This
seems to confirm one of the key features of the PGD method, which remains true
when used to approximate the solution of nonseparable fractional derivative elliptic
problems.

In the last test, we measure the performance of the PGD method and the spectral
method by comparing CPU time. Consider the problem (1)–(2) with ˛ D 1:2,
ˇ D 1:8, �.x; y/ D dyl .x; y/ D dyr .x; y/ D 1; dxl .x; y/ D dxr .x; y/ D sin2.�xy/ C 2,
and f D sin.�x/ C sin.�y/. We set the threshold � D 10�7. The CPU time for
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Table 1 Minimum
enrichment step k to reach the
convergence for different
ratio r and polynomial
degree N

����N
r

10 20 30 40 50 60

12 36 38 42 43 43 42

20 54 62 67 69 73 72

28 60 76 78 84 89 93

36 63 78 82 89 93 97

Table 2 CPU time comparison of spectral method and PGD method

N 10 20 30 40 50 60 70

SM(s) 0:0804 0:3070 0:8019 4:284485 19:0678 27:2764 159:4655

PGD(s) 0:2853 0:8354 1:0382 1:2716 1:9205 2:2717 3:0319

solving (6) by the PGD and SM are listed in Table 2. It is observed from this table
that the PGD is much less expensive than the classical spectral method, especially
when the polynomial degree becomes large. This is due to the fact that the condition
number of the resulting algebra system for the spectral method increases quickly
when the polynomial degree increases. large. It is worth emphasizing that the cost
increase of the PGD is only a linear function of the polynomial degree.

6 Conclusion

In this paper, we constructed and tested a PGD/spectral method to approximate the
solution of a kind of nonseparable fractional elliptic equations. The PGD has been
known as a powerful model reduction technique to construct approximate solutions
to some classical (integer order differential) problems. A main feature of the PGD
is that its computational complexity grows only linearly with the spatial dimension,
which is in contrast with the exponential growth of standard grid-based methods.
The main goal of the current work is to verify the capability of the PGD when
applied to nonseparable fractional elliptic equations. The latter have caused great
difficulty for traditional methods due to their non-locality and low regularity. To
demonstrate the efficiency of the PGD method, we have used it in the framework
of spectral approximation, which has been considered as one of best methods
for fractional differential equations. We provided a detailed description of the
PGD/spectral method, and performed a series of numerical experiments to validate
the proposed method. The numerical tests have been focused on investigating the
accuracy, convergence rates of the enrichment algorithm, as well as the impact of
the polynomial degree and data contrast on the convergence. The obtained numerical
result seems to confirm the efficiency of the PGD method for fractional elliptic
equations. Although only fractional equations of elliptic type have been considered
in this paper, we believe that the PGD/spectral method can be applied to other
type fractional equations such as the time fractional diffusion equation for which
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a suitable variational formulation exists [7]. However, it seems much care needs to
be taken in constructing convergent PGD for non-elliptic type equations.
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High Order Edge Elements for Electromagnetic
Waves: Remarks on Numerical Dispersion

Marcella Bonazzoli, Francesca Rapetti, Pierre-Henri Tournier,
and Chiara Venturini

Abstract We recall one set of possible basis vector fields and two different sets of
possible degrees of freedom, those related to “small-edges” and those defined by
“moments”, for the Nédélec’s first family of high order edge elements. We thus
address a dispersion analysis of the resulting methods, when the time-harmonic
Maxwell’s equation for the electric field is discretized on a simplicial mesh.

1 Introduction

Edge elements (edge-FEs) on simplices [4, 9] are perhaps the most widely used finite
elements to approximate the electric field solution of the time-harmonic Maxwell’s
equations. They offer the simplest construction of polynomial discrete differential
Whitney forms on complexes. Their associated degrees of freedom (dofs) have a
very clear meaning as cochains and, thus, give a recipe for discretizing physical
balance laws such as Maxwell’s equations.

In the simulation of propagation phenomena, such as in seismology or in
high-frequency electromagnetic transmissions, both high order accuracy and com-
putational efficiency are mandatory. Interest thus grew for the use of high order
schemes, such as hp-finite element or spectral element methods (see [6] for a
presentation of these methods). In electromagnetism, high order extensions of
Whitney forms have become an important computational tool [8]. High order
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edge-FEs are appreciated since they allow to reach higher accuracy at a fixed number
of dofs and are compatible with a domain decomposition framework suitable for
parallel computations (see a recent example of application in [2] for wave-guided
transmissions). The popularity of high order finite elements for wave propagation
problems is also due to the fact that they are characterized by low numerical
dispersion and dissipation errors.

In this paper, the numerical dispersion of edge-FEs for a time-harmonic plane
wave propagating through an “infinite” two-dimensional, simplicial mesh is inves-
tigated. Mathematical results confirm that, in the frame of edge-FEs, dispersion
errors are not influenced by the set of basis functions we choose to write the
discrete problem solution. Therefore, no matters which dofs we adopt, moments
or circulations along small edges, dispersion errors will only depend on the mesh
and on the wave direction in the mesh. Numerical results show that the dispersion
relation is approximated to the order 2r accuracy with respect to the mesh size h,
being r the polynomial degree of the edge basis functions.

2 Preliminaries on Model Problem and Dispersion Analysis

We consider the first-order two-dimensional Maxwell’s equations to describe the
behavior of the electric field E D .Ex.x; t/;Ey.x; t//t and magnetic field H D
H.x; t/, where x D .x; y/ 2 R

2 and t > 0. Precisely, the fields satisfy1:

@tE � curlH D 0; @tHC curlE D 0: (1)

In (1), the constitutive parameters � and � have been set to one so that the speed
c D 1=

p
�� is one. Initial and boundary conditions (or conditions at infinity) are

required to specify uniquely a solution of the Maxwell’s system (1). However, in a
dispersion analysis we are interested in the plane wave solutions of the equations:
initial and boundary conditions are then ignored. To analyze the dispersion at a
single frequency, the time-dependent problem (1) is generally reformulated as a
time-harmonic problem, by seeking solutions of the form:

E D <.u.x/ ei! t/; H D <.v.x/ ei! t/; (2)

where i denotes the imaginary unit, and u.x/ (resp. v.x/) is a complex-valued vector
(resp. scalar) function of the position x but not of the time t. The angular frequency
! and the wave vector # D .#x; #y/

t are independent of x and t. Substituting the

1In two spatial dimensions, say x; y, we denote by @x (resp. @y) the first order operator that
associates any differentiable scalar function g with its partial derivative @xg (resp. @yg) w.r.t. the
variable x (resp. y). For any vector field u 2 R

2, with u D .ux; uy/>, we define f D curl u
such as the scalar function f D @xuy � @yux; for any scalar function v 2 IR, we define
w D curl v such as the vector field w D .@yv;�@xv/>. Note that curl v D .grad v/?, where
g D grad v D .@xv; @yv/

>.
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form (2) for E and H in Eq. (1), we obtain the first order time-harmonic formulation
of the Maxwell’s system:

i! u� curl v D 0; i! vC curlu D 0: (3)

We eliminate the field v by solving the second equation in (3) for v and replacing it
into the first equation in (3), to get a second order time-harmonic formulation of the
Maxwell’s system for the electric field

curl curlu � !2 u D 0: (4)

The angular frequency! and the wave vector # are linked by the dispersion relation
! D j#j (here c D 1). From this relation, we can compute the phase speed !=j#j,
that is exactly one for the continuous problem but won’t be one when a numerical
scheme is used to approximate (4). To analyze the dispersion behavior of a finite
element method for (4), we go through the following steps:

1. We suppose that the plane R
2 is tiled by an “infinite” uniform triangulation 
h

and we consider edge-FEs of polynomial degree r � 1 in each triangle of 
h.
2. For the chosen edge-FE method, we compute the equations satisfied by the

degrees of freedom of the method for the given mesh.
3. We seek plane-wave solutions of the discrete equations: we thus have a matrix

eigenvalue problem to solve and we select an approximated value !h for !.
4. We then define the relative error ec D ch=c � 1 in the phase speed, where the

grid speed ch value depends on the computed !h and on the number of points
per wavelength, the latter being related to the polynomial degree r of the finite
element basis functions.

The discrete version of the dispersion relation shows how plane waves will
propagate, namely, if they are delayed (ec < 0) or accelerated (ec > 0). In describing
the edge-FE scheme, we shall make specific choices of the dofs for the electric
variable u. The choice of dofs yields a particular cardinal basis function set for
the finite element space. However, we will prove that the dispersion error does not
depend on the fact of working with cardinal or not cardinal basis functions. Thus,
the choice of the dofs has no influence of the dispersion behavior of the method,
provided that the choice is conforming and unisolvent for the considered finite
element space. In the next sections, we detail steps 1–4.

3 Edge-FEs of Polynomial Degree r � 1

To define high order edge reconstructions of vector fields, one can rely on [9],
precisely on [9, Definition 2] for the basis functions and on [9, Definition. 4] for
the needed dofs, the well-known moments. The high order basis functions for the
Nédélec’s first family of edge-FEs presented in [10, 11] were born instead from the
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Fig. 1 The oriented small edges, in solid line, that support dofs (5) and allow also to list the
edge-FE basis functions of degree r D 2 and r D 3, resp. (two figures on the left). Localization of
boundary (thick lines on edges) and interior (thick rounds in the triangle) dofs (6), (7), for edge-FEs
of degree r D 2 and r D 3, resp. (two figures on the right)

effort of addressing the localization issue, to answer to questions such as “What kind
of cochains such elements should be associated with ?” or “Can the corresponding
dofs be still assigned to edges, as it occurs for low order edge-FEs ?”. This is the
“duality” feature.2

To state the definition of edge-FE basis functions for r > 1, inside each triangle
of the mesh, which will be called big triangle, we consider an increasing number of
small triangles homothetic to the big one, associated with the principal lattice of
the big triangle. To formalize them, let k, boldface, be the array .k1; k2; k3/ of 3
integers ki � 0, and denote by k its weight

P3
iD1 ki. The set of multi-indices k

with three components and of weight k is denoted I.3; k/. Given k 2 I.3; k/,
we set �k D .�1/

k1 .�2/
k2 .�3/

k3 , where �` is the barycentric coordinate w.r.t. n` in
the triangle T D fn1; n2; n3g. To introduce the small edges in T, one first considers
the principal lattice of order r in T as the set

Tr.T/ D
	

x 2 T; �j.x/ 2 f0; 1
r
;
2

r
; : : : ;

.r � 1/
r

; 1g; 1 � j � 3



:

By connecting the points of Tr.T/ by segments parallel to the big edges of T,
one produces a partition of T into triangles (see Fig. 1): in this partition of T, the
small triangles are only those homothetic to T and the small edges are the edges
of these small triangles. We can relate a small edge to a big edge e and a multi-
index k. The small edge fk; eg can be found, given e and k, as the image of e
through the mapping Qk: each mapping Qk is associated with a multi-index k as
the homothety which maps a point x 2 T onto the point of T with barycentric
coordinates Qki.�i.x// D �i.x/Cki

kC1 . Therefore, given a multi-index k, we can build 3
basis functions which are associated with the small edges fk; eg of the same small
triangle; in practice, to find the small edge we can say that fk; eg is parallel to the

2The definition of Whitney forms relies on duality features from algebraic topology. Let we be the
Whitney edge forms, where e belongs to the set of mesh edges E. A field v, represented by the 1-
form

P

e vewe, with ve D R

e v, and a curve � , represented by the 1-chain
P

e ˛e e, with ˛e D R

� w
e,

are in duality via the formula
R

� v D P

e2E ˛e ve. What is meant by in duality is that
R

� v D 0

8� implies v D 0 and the other way around. Duality stems from the property of edge elements,
R

e0

we D ıe0 e. Note that the same forms we are involved in the description of both fields and curves:
this duality is the key to understand why Whitney elements have the expression they have [3].
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big edge e, and that each component of k says how near the small triangle is to each
vertex of the big triangle (higher is ki nearer is the small triangle to the i-th vertex).
The orientation of fk; eg is given by the orientation of e.

Definition 1 ([11], De. 3.3) The space W1
h;r.T/ of the Nédélec’s first family of

edge-FEs on the triangle T, of degree r D k C 1 (k � 0), is spanned by the vectors
�kwe, with k 2 I.3; k/, e 2 E.T/. For the edge e D fni; njg, we set we D �ir�j �
�jr�i.

Definition 1 yields more functions than necessary. So, in the triangle T D
fn1; n2; n3g, to get a basis of W1

h;r.T/, we neglect all functions of the form �kwe

such that the small edge fk; eg is interior to T and parallel to the edge fn1; n3g of T
(the dashed ones in Fig. 1). It is proven in [5] that circulations on small-edges (5)
are W1

h;r.T/-unisolvent dofs, for any r � 1.

Definition 2 ([11], Sec. 3.4) For r � 1 (k � 0), the functional

�m D �fk;eg W u! 1

jtej
Z

fk;eg
u � te .m$ fk; eg/ (5)

for any small edges fk; eg, with k 2 I.3; r�1/, e 2 E.T/ and te the vector of length
jej tangent to e, is a dof for vector functions w 2 W1

h;r.T/. Note that only the small
edges fk; eg associated with linearly independent generators have to be considered.

In Section 1.2 of [9] we have classical W1
h;r.T/-unisolvent dofs, called

“moments”, for any r � 1. By relying on the generators introduced in Definition 1,
the functionals in [9] can be recast in a new more friendly form.

Definition 3 ([1], Def. 6) For r � 1 (k � 0), the functionals

�e W w 7! 1
jej
R

e.w � te/ q 8 q 2Pr�1.e/; 8 e 2 E.T/; (6)

�f W w 7! 1
j f j
R

f .w � tf ;i/ q; 8 q 2Pr�2. f / .here f � T/;

tf ;i two independent sides of f ; i D 1; 2 (7)

where each te, the vector of length jej, is tangent to e, are the dofs for a vector
function w 2 W1

h;r.T/. A convenient choice for the functions q spanning the
polynomial spaces over (sub)simplices e; f is given by suitable products of the
barycentric coordinates associated with the nodes of the considered (sub)simplex.

Here, �e (resp. �f ) denotes one of those dofs which involve the edge e (resp.
the face f � T) in their definition. For r � 1, they are in number equal to
the dimension of the space Pr�1.e/ (resp. twice that of Pr�2.T/, therefore an
additional label, that we have omitted, should be added to distinguish the one from
the other. In Definition 3, only dofs which involve polynomials of non-negative
degree are meaningful (e.g., �f is not defined for r D 1).

When r > 1, fields in Definition 1 are not cardinal functions neither for dofs
in Definition 2 (see Table 2 in [10]) nor for dofs in Definition 3 (see Example 2
in [1]), namely, the matrix V with entries Vij D �i.wj/, i; j D 1; dim.W1

h;r.T//
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after a suitable renumbering of dofs, is not the identity matrix for r > 1. Cardinal
basis functions are generally required to introduce the considered FE in an existing
software. They can be easily computed by considering suitable linear combinations
of the basis functions of Definition 1 with coefficients given by the entries of V�1, as
described in, e.g., [1]. The independence of a dof from the metric of the sub-simplex
of T that supports the dof makes that the entries of V (and thus of V�1) can be
computed once on a generic triangle T and are valid in any other triangle T 0 different
from T, up to a suitable orientation of the edges and choice of independent sides in
T 0. However, working with basis functions, not necessarily cardinal functions, does
not influence the dispersion analysis, as we prove in Sect. 5.

4 The Discrete Problem

The triangulation 
h of R2 we shall use is the “infinite” uniform mesh generated by
the translates, in the x and y directions, of the square cell ˝ D Œ0; h� � Œ0; h�, that
we divide into two right-triangles using the right-bottom to top-left diagonal (see
Fig. 2). The cell ˝ , with sides fq, and neighboring cells ˝q, for q D fR;L;T;Bg,
is composed by two triangles, as a single triangle could not be the generator of a
periodic pattern.

We thus seek the approximate solution of (4) on the cell ˝ that behaves like
a plane wave when translated through a distance of h in the x or y direction. We
are computing a very coarse, just two triangles, approximation to the problem (4)
under the periodic conditions u � tj fR D u � tj fL , u � tj fT D u � tj fB on the boundary
@˝ D fR [ fL [ fT [ fB (here tj fq denotes the unit tangent vector to the curve fq).
We first write the weak formulation of Eq. (4) that is suitable for finite element
discretizations. We take the dot product of (4) with a vector test function v, integrate
over the domain ˝ and use Stokes’s theorem for the term containing the curl of u.

T1

T2

1

2 3 4

3

11

12

5

4

8

1

9

6

13 14

10

2
7

5

Fig. 2 The simplest periodic grid for a triangle-based FEM in R
2 (left, as considered in [7]). In the

two figures, center and right, small dark/dashed arrows indicate the oriented small edges fk; eg in
˝, with k 2 I.3; r � 1/ and e 2 E.T1/ [ E.T2/, for r D 1; 2, respectively. An example of dof
numbering is provided: dofs supported by dashed segments are numbered, for simplicity, at the end
of the dof list as they will be expressed in terms of dofs supported by solid segments
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We thus obtain: find u 2 VP s.t.

Z

˝

.curlu/.curl v/� !2
Z

˝

u � v D 0; 8v 2 V0: (8)

The space VP is the set of vector fields in H.curl;˝/ satisfying the periodic
conditions on @˝ , with H.curl;˝/ D fv 2 L2.˝/2; curl v 2 L2.˝/g and V0 D
fv 2 X; .v � t/j@˝ D 0g. Problem (8) admits a unique solution u 2 H.curl;˝/ [8].
By introducing a finite dimensional space Vh which is a suitable approximation of
VP over˝ , the discrete equivalent of (8) reads: find uh 2 Vh s.t.

Z

˝

.curluh/.curl v/� !2
Z

˝

uh � v D 0; 8v 2 V0;h: (9)

In the present case, we consider Vh D fv 2 H.curl;˝/; vjT 2 W1
h;r.T/; 8T 2


h; v � tj fR D v � tj fL ; v � tj fT D v � tj fBg and V0;h D fv 2 H.curl;˝/; vjT 2
W1

h;r.T/; 8T 2 
h; v � tj@˝ D 0g. Problem (9) has a unique solution in Vh [8].

5 The Eigenvalue Problem

We need to select a basis for Vh to rewrite (9) as an algebraic linear system. We start
by defining in each triangle T 2 
h the vectors  m D wm where fwmg is a set of
basis functions for W1

h;r.T/ as defined in Definition 1. Let Dr be the dimension of the
vector space Vh. We write the trial functions uh 2 Vh as linear combination of basis
functions as follows: u.x/ 	 uh.x/ D PDr

jD1Uj wm. j/, with m. j/ the local index of
the unknown with global number j. Replacing in (9) u by uh and v by the wm.i/ we
obtain a linear system

KU D 	MU; (10)

where 	 D !2 can be seen as an eigenvalue of a generalized eigenvalue problem if
also !, and not only uh, is sought in (9). We have M DPT MT , K DPT KT , being
P

T the assembling procedure on the elemental matrices MT , KT , that are computed
for each T 2 
h as follows:

.MT/ij D
Z

T
wm.i/ � wm. j/; .KT/ij D

Z

T
curlwm.i/ curlwm. j/:

Proposition 1 If MT (resp. KT) is the local mass (resp. stiffness) matrix on a
triangle T for the basis functions wm. j/, then the local mass (resp. stiffness) matrix
QMT (resp. QKT) for the cardinal basis functions Qwm. j/ is QMT D V�tMTV�1 (resp.
QKT D V�tKTV�1).
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Proof Let us denoteC D V�1, whereV is the square matrix of size ndofs with entries
V`j D �`.wj/, being �` the functionals given in either Definition 2 or Definition 3.
For given i; j, since Qwi DPndofs

kD1 Cki wk and Qwj DPndofs
`D1 C`j w`, we have

QMij D
Z

T
Qwi � Qwj D

ndofs
X

kD1

ndofs
X

`D1
CkiC`j

Z

T
wk � w` D

ndofs
X

kD1

ndofs
X

`D1
.Ct/ikMk`C`j D .CtMC/ij:

Proposition 2 Working with either the basis functions wj or the cardinal basis
functions Qwi, for a set of dofs, does not modify the spectrum of problem (10).

Proof As stated in Proposition 1, replacing the basis functions wj by the cardinal
basis functions Qwj yields new matrices QMT D P

T C
tMTC, QKT D P

T C
tKTC (with

C D V�1). Let .	;U/, with U ¤ 0, be a solution of the system QKTU D 	 QMT U.
Then, .	;W/, with W D CU, is a solution of the system (10). Indeed,

	 D . QKTU;U/

. QMTU;U/
D .KTCU;CU/

.MTCU;CU/
D .KTW;W/

.MTW;W/
:

For a standard dispersion analysis of (10), we seek plane-wave solutions moving
in a given direction # in˝ with periodic boundary conditions on the faces fR; fT (cf.
Fig. 2, left). To visualize which dofs are concerned by periodic conditions on the
considered fields, one can look at Fig. 2, right.

The (cardinal or not) basis functions  ˝& with support in ˝& D ˝ [q ˝q where
q 2 fT;B;L;Rg (cf. Fig. 2, left) are trial functions in Vh; the (cardinal or not) basis
functions  ˝ with support in ˝ , prolongated by zero outside ˝ , are test functions
in V0;h. By rewriting Eq. (10), we obtain a rectangular linear system in the unknown
U where

U D ŒU˝;U˝T ;U˝B ;U˝L ;U˝R �:

Clearly the system on U is under-determined because the number of columns,
5Œ2r.r C 2/ � r� � 4r, exceeds the number of rows, Œ2r.r C 2/ � 3r�. To reduce
it into a square linear system we work in ˝ and make use of the following plane
wave periodicity hypothesis. Let us assume that the electric field is a plane wave of
amplitude U0 of modulus 1, i.e., we have U˝ D U0 ei.#�x/, for x 2 ˝ , where
# D .#x cos �; #y sin �/> is the wave vector and � the incidence angle of the wave
w.r.t. the x-direction. The above periodicity assumption, imposed for the unknown
dof Uj supported by the face fq of ˝ , yields

.Ujq/j fq D Qfq; fp.Ujp/j fp ; fq D f fR; fTg; fp D f fL; fBg: (11)

In (11), Qfq;fp D eˇfq Ir where Ir denotes the identity matrix of size equal to the
number r of dofs supported by fq (same for fp) and ˇfq D f�i#xh;�i#yhg. Following
the numbering defined in Fig. 2, for r D 1, conditions (11) read

U4 D QfR;fL U2; with QfR;fL D Ce�i#xh I1;
U5 D QfT ;fB U1; with QfT ;fB D Ce�i#yh I1:
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For r D 2, we have

 

U11
U12

!

D QfR;fL

 

U2
U4

!

; with QfR;fL D
 

e�i#xh 0

0 e�i#xh

!

D Ce�i#xh I2;
 

U13
U14

!

D QfT ;fB

 

U1
U3

!

; with QfT ;fB D
 

e�i#yh 0

0 e�i#yh

!

D Ce�i#yh I2:

When the faces linked by periodic conditions, say fq, fp, have not the same
orientation, a minus sign has to be put in front of the quantity eˇfq when defining
Qfq;fp in (11). Note that looking for u 2 Vh.˝/, with thus periodicity conditions,
corresponds to seeking a solution u 2 Vh.˝/ verifying (11) on fR and fT , for
example. We thus set U D Q Uglo, Kglo D QtKQ and Mglo D QtMQ, with M,
K defined as before. The rectangular matrix Q is composed of the blocks Qfq;˝ , for
those sets of dofs supported on fq (q D R and q D T) which are eliminated from U,
because of the periodic boundary conditions, and of the identity matrix, otherwise.
The square linear system, of size Œ2r.rC 2/� 3r�, to solve for .�;Uglo/, reads

KgloUglo D �MgloUglo: (12)

Matrices Kglo andMglo are symmetric and positive semi-definite, thus all eigenvalues
are real, of the form � D !2h , where !h is the angular frequency at which the wave
travels in the grid. To identify which eigenvalue corresponds to the plane wave, we
calculate the velocities (one for each eigenvalue) and compare them to the known
value !. Let us denote by �c the eigenvalue successful in that comparison (thus the
closest to !2): the angular frequency of the wave in the grid is given by !h D

p

�c.

6 Relative Error on the Wave Speed and Numerical Results

The grid dispersion of the wave can be given by the ratio between the velocity at
which the wave travels in the grid and the physical velocity. The angular frequency
of the wave in the grid is given by !h D

p

�c, therefore, the velocity at which the
wave travels in the grid is given by

ch D h!h

2 � ı
D h

2 � ı

p

�c;

where ı is the sampling ratio (the inverse of the number of points per wavelength
L). In the case of polynomial degree r D 1, then ı D h=L. Indeed, the size h of the
mesh elements can also be interpreted as the distance between two adjacent nodes
thus we have around L=h sampling nodes, that is exactly 1=ı. In the high-order case,
r > 1, we have around r nodes in the length h, therefore the distance between two
adjacent nodes is not h but h=r. We thus have L=.h=r/ D rL=h sampling nodes and
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Fig. 3 Grid dispersion versus the approximation degree r (ı D 0:2, � D �=12, left) and versus
the sampling ratio ı (r D 1; 2; 3; 4; 5, � D �=12, right)

Table 1 Grid dispersion error values w.r.t. r, for � D �
12

and five nodes per wavelength
(ı D 0:2)

r 1 2 3 4 5

max
0���2�

jecj 2.42e�2 1.28e�4 2.52e�7 2.59e�9 2.75e�11

10−1 100

10−3

10−2

10−1

δ

|c
h/c

 −
1|

θ=0
θ=π/12
θ=π/6
θ=π/4

10−1 100

10−10

10−8

10−6

10−4

10−2

δ

|c
h/c

 −
1|

θ=0
θ=π/12
θ=π/6
θ=π/4

Fig. 4 Grid dispersion versus ı for different values of � , with r D 1 (left) and r D 3 (right)

we rather set ı D h=.rL/. It is convenient to measure grid dispersion as the relative
error in the velocities, given by ec D .ch � c/=c D .ch=c/� 1. The sign of the error
indicates if the numerical scheme causes the waves to be delayed or accelerated.
The grid dispersion error depends on the sampling ratio ı, the wave-vector # and
the degree r of the basis functions.

In Fig. 3 (left) we show the grid dispersion errors of Table 1 w.r.t. the approx-
imation degree r of the edge-FE basis functions. The r-convergence is spectral,
i.e. aligned error values in a semi-log plot. The grid dispersion as a function of
the sampling ratio ı is presented in Fig. 3 (right) for the degrees r D 1; 2; 3; 4; 5.
This convergence is algebraic, i.e., jecj D O.hp/ with the order of convergence
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p estimated by the slope of the represented lines. From the results reported in
Fig. 3 (right), the h-convergence appears of order p D O.2r/, as indicated by the
asymptotic lines. Here � D �

12
but similar figures can be drawn for � D 0; �

6
; �
4

.
Indeed, as shown in Fig. 4, the lines that report on the dispersion error, for a fixed
degree r, as a function of ı for different angles � are parallel to each other. Note that
the smaller is � , the higher is jecj, for a fixed value of ı.

In Fig. 5, we show the anisotropy, namely, the dependence of the ratio ch=c on
the angle � , introduced by the numerical scheme when r D 1; 2; 3; 4; 5 and ı D 0:2.
The case r D 1 in Fig. 5 is in agreement with the results presented in the literature
for this mesh (see Figure 4 in [12]). The anisotropy dramatically decreases as the
polynomial degree increases. Note that the direction of higher anisotropy is from
top-left to bottom-right in which the mesh squares have been cut into triangles.

7 Conclusions

In these pages, we have analyzed the numerical dispersion of the high order edge-
FE method applied to the second order time-harmonic Maxwell’s equations on a
two-dimensional simplicial mesh. We have proved that the dispersion error does
not change if the basis functions are not cardinal functions for the selected dofs.
This error is thus independent from the adopted dofs, provided that the choice
is unisolvent and compatible with the considered FE space. The dispersion error
depends both on the type of mesh and on the plane wave vector #; it decreases
algebraically as O.ıp/, with p D O.2r/, w.r.t. the sampling ratio ı, thus the mesh
element size h, and spectrally w.r.t. the approximation degree r.
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AMimetic Spectral Element Method
for Non-Isotropic Diffusion Problems

B. Gervang, K. Olesen, and M. Gerritsma

Abstract We present a mimetic spectral element method for the solution of the
stationary Darcy’s problem. We show that the divergence constraint is satisfied
exactly for both heterogeneous, non-isotropic, and deformed mesh problems.

1 Introduction

The steady, non-isotropic, heterogeneous diffusion problem for single phase flow
through porous media is investigated. We are, in particular, interested in the Darcy
flow problem for reservoir simulations. The governing equation is

�r �Krp D f ; (1)

whereK is a symmetric positive definite tensor representing the permeability field of
the domain, p is the pressure and f is a mass source term. In Darcy flow, K represents
the material’s preferred direction of flow when subject to a pressure gradient rp. We
rewrite (1) as two first order equations

r � q D f ; (2)

and

q D �Krp ; (3)
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where r � q D f represents the mass conservation condition and q D �Krp is
the constitutive relation between the pressure gradient and the velocity field, q. We
seek the solution of (2) and (3) subjected to boundary conditions q D q0 on �q and
p D p0 on �p, @˝ D �q C �p.

The non-isotropic heterogeneous Darcy flow problem was also analyzed in [6],
where the algorithm used a support operator based on a 2nd order finite difference
method. Even for very large variations of the permeability coefficient 2nd order
accuracy was obtained. In [10] the hybrid discontinuous Galerkin method was used
and it was shown that it is locally conservative. A mixed finite element method
was used in [12], where a multiscale mortar method was used. In the present work
we will use a mimetic discretization method, which ensures that the numerical
solution of the discrete divergence-free velocity field, i.e. (2) is satisfied exactly,
when f D 0, independent of the order of the expanding polynomial. It is ensured
that the invariant (mass in the present system) is conserved both locally and globally.
A similar method was used in [2] and [8]. The governing equations will be written
in the notation of differential forms. By doing so we are associating the individual
quantities in (2) and (3) with a geometrical basis, which the quantities are naturally
integrated over. The conservation of mass in (2) is actually an algebraic relation
between the fluxes over the surfaces of an arbitrary volume and the volumetric flux
inside the volume and this relation is an inherent part of using differential forms.
Instead of representing the dependent variables of (2) and (3) as normal differential
equations we will make use of differential geometry to represent variables and
differential equations.

2 Differential Geometry

Differential geometry deals with the geometric aspects of differential equations.
Rewriting the differential equations using differential geometry we can introduce
basic geometric objects as points, curves, surfaces, and volumes into the constitution
of the equations and obtain exact discretization of the grad, curl, and div operators.
Below we have defined a few of the concepts used in differential geometry and in
the present work. However, you may consult other texts as [1, 4, 7, 11] for a much
broader and deeper exposition.

2.1 Differential k-Forms

In contrast to vector calculus where we use vector and scalar fields, we use
differential forms in differential geometry. In R

3 we resort to four different
differential forms. A 0-form, ˛.0/, is given by ˛.0/ D f .x; y; z/ and is a normal scalar
function. A 1-form, ˇ.1/, is given by ˇ.1/ D f1.x; y; z/dxCf2.x; y; z/dyCf3.x; y; z/dz.
A 1-form can be integrated over smooth curves. A 2-form, �.2/, is given by
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�.2/ D g1.x; y; z/dy ^ dz C g2.x; y; z/dz ^ dx C g3.x; y; z/dx ^ dy. A 2-form can
be integrated over two dimensional manifolds or surfaces. And a 3-form ı.3/, is
given by ı.3/ D h.x; y; z/dx ^ dy ^ dz. A 3-form can be integrated over volumes.

2.2 Wedge (or Exterior) Product

The wedge product introduced in the expression of two and three forms is defined as

˛ ^ ˇ D ˛ ˝ ˇ � ˇ ˝ ˛ ;

where ˛ and ˇ are two arbitrary forms. The wedge product between k-forms and
l-forms produces a .kC l/-form. If the space of k-forms is denotedk and the space
of l-forms is given by l then

^ W k �l �! kCl :

2.3 Orientation

In n-dimensional space there are .nC 1/ submanifolds. For n D 3 these submani-
folds are points, curves, surfaces and volumes. There are two types of orientations,
an inner orientation, which is solely connected to the geometrical object and an
outer orientation, which is related to both the geometrical object and the embedding
space. In Fig. 1 both inner and outer oriented k-manifolds in R

3 are sketched.

Fig. 1 Outer and inner oriented k-manifolds in R
3 for k D 0; 1; 2; 3
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2.4 Exterior Derivative

The exterior derivative (or exterior differential), d, is a metric free operator that
generalizes the vector operators grad, curl, and div and is defined as: The exterior
derivative on an n-dimensional manifold M is a mapping d W k.M/ �!
kC1.M/; 0 � k � n � 1. In a local coordinate system .x1; : : : ; xn/ this map is
given by

d˛.k/ D d
X

I

fI.x/dx
i1 ^ : : : ^ dxik

D
X

I

dfI.x/ ^ dxi1 ^ : : : ^ dxik

D
X

I

n
X

jD1

@fI
@xj

dxj ^ dxi1 ^ : : : ^ dxik ;

where I D i1; : : : ; ik with 1 � i1 < � � � < ik � n, fI.x/ is a continuous differentiable
scalar function, fI.x/ 2 C1.M/ and @

@xj
is the partial derivative with respect to xj.

2.5 Pullback Operator

We consider two n-dimensional manifolds M and N and the mapping between them
˚ W M ! N, such that local coordinates � i in M are mapped to local coordinates
xi D ˚ i.�1; � � � ; �n/ in N. Then the pullback of a k-form, ˚� W k.N/ !
k.M/; k � 1, is given by

˚�.˛.k/.v1; � � � ; vk/ WD ˛.k/.˚�.v1/; � � � ; ˚�.vk// ;

where ˚�.v/ is the push forward operator of a vector field v.

2.6 Hodge Star Operator

The Hodge star operator in an n-dimensional manifold M is an operator, ? W
k.M/ ! n�k.M/, induced by the inner product (metric) and wedge product
(orientation),

˛.k/ ^ ?ˇ.k/ WD .˛.k/; ˇ.k//�.n/ ;

where �.k/ is the unit volume form defined in local coordinates as

�.n/ WD pgdx1 ^ � � � ^ dxn;
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where g is the determinant of the metric tensor. Application of the Hodge star
operator to the unit 0-form yields ?1 WD �.n/.

2.7 Using the Building Blocks

We are now in a position to rewrite (2) and (3) using differential forms. In (2) q is the
velocity tensor, which in this case represents a volume flux density over a surface,
and in a 3 dimensional space it is an outer oriented differential 2-form, q.2/, given by

q.2/ D q1 dx
2 ^ dx3 C q2 dx

3 ^ dx1 C q3 dx
1 ^ dx2 ;

where qi are the velocity components and ^ is the wedge product. In (2), f is a
volumetric volume flux density and is an outer oriented differential 3-form, f .3/ ,
and is written as

f .3/ D f dx1 ^ dx2 ^ dx3 :

In the notation of differential forms (2) is written as

dq.2/ D f .3/ ; (4)

where d is the exterior derivative. The pressure in (3) is a potential associated to
points, and is therefore an inner-oriented differential 0-form, Qp.0/ D p, and we may
rewrite (3) as

?K�1q.2/ D �d Qp.0/ ; (5)

where ?K�1 D K
�1? with ? being the Hodge star operator.

Let˚ be a map from a reference cube of size 2�2�2 in the .�1; �2; �3/ coordinate
frame to an arbitrary volume in the physical coordinate frame .x1; x2; x3/, then (4)
is pulled back to the reference frame by use of the pullback operator, ˚�,

dq.2/ D f .3/ ) ˚�dq.2/ D ˚�f .3/

) d˚�q.2/ D f .3/ ) d Oq.2/ D Of .3/ ;
(6)

where the third step is valid since the pullback operator commutes with the exterior
derivative, see [7]. q.2/ is the outer oriented 2-form, which is associated to the
reference basis, i.e.

Oq.2/ D Oq1 d�2 ^ d�3 C Oq2 d�3 ^ d�1 C Oq3 d�1 ^ d�2 ;
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and Of .3/ is the outer-oriented 3-form associated to the reference basis

Of .3/ D Of d�1 ^ d�2 ^ d�3 :

The relation in (6) states that integral values are independent of the frame that they
are represented in. The constitutive relation in (5) is pulled back to the reference
frame by

˚� ?K�1 q.2/ D �˚�d Qp.0/ ) ˚� ?K�1

�

˚�
��1 Oq.2/ D �d OQp.0/ ; (7)

where the right hand side again is a consequence of the commuting property
between the pullback operator and the exterior derivative, see also [2]. The pullback
operator does, however, not commute with the Hodge star operator, and therefore,
Oq.2/ must be mapped to q.2/ by

�

˚�
��1

, where ?K�1 is applied and this term is then
pulled back to the reference frame. The discretizations are based on Eqs. (6) and (7).

3 Discretization of the Equations

As in the mixed SEM, we are pairing our equations with suitable arbitrary k-forms,
such that the product is a 3-form, which is naturally integrated over a volume. The
mass balance in (6) is an outer oriented 3-form, so this is paired with an arbitrary
inner oriented 0-form, %.0/, and (7) is an inner-oriented 1-form on both sides, so this
is paired with an arbitrary outer-oriented 2-form, �.2/, i.e

D OQ%.0/; d Oq.2/
E

Ő D
D OQ%.0/; Of .3/

E

Ő ; 8OQ%
.0/ 2P (8)

D O�.2/; ˚� ?K�1

�

˚�
��1 Oq.2/

E

Ő D�
D O�.2/; d OQp.0/

E

Ő ; 8O�
.2/ 2 Q (9)

where Ő is an arbitrary volume in the reference frame. To acquire the adjoint of
D OQ%.0/; d Oq.2/

E

Ő the term
D O�.2/; d OQp.0/

E

Ő in the constitutive equation is integrated by parts

D O�.2/; d OQp.0/
E

Ő D �
D

d O�.2/; OQp.0/
E

Ő C
D O�.2/; OQp.0/

E

@ Ő ;

where @ Ő is the boundary of Ő . Inserting this into (9) and rearrange we obtain

D

d O�.2/; OQp.0/
E

Ő �
D O�.2/; ˚� ?K�1

�

˚�
��1 Oq.2/

E

Ő D
D O�.2/; OQp.0/

E

@ Ő : (10)

The functionals that we want to solve are (8) and (10). Let @ Ő D �p [ �q then
we are assuming that p.0/ is known on �p, while q.2/ is prescribed on �q, and f .3/

is given on ˝ . These known values can be transformed to the reference domain
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by the pullback operator. Dividing Ő into NE non-overlapping elements Ő s, i.e.
Ő D S

s

Ő s, and define P � L2 and Q � H1
0.div/.˝/ as finite dimensional

subspaces, where H1
0.div/.˝/ denotes the Sobolev space of vector functions with

square-integrable divergence with vanishing trace along�q. We are now formulating

the variational statement as: Find
�OQph; Oqhi

�

2P �Q for i D 1; 2; 3 such that

NE
X

sD1

D OQ%.0/;h; d Oq.2/;h
E

Ő s D
NE
X

sD1

D OQ%.0/;h; Of .3/;h
E

Ő s 8OQ%h 2P (11)

and

NE
X

sD1

D

d O�.2/;h; OQp.0/;h
E

Ő s �
NE
X

sD1

� O�.2/;h; ˚� ?K�1

�

˚�
��1 Oq.2/;h

�

Ő s

D
D O�.2/;h; OQp.0/;h

E

.@ Ő /p
8O�hi 2 Q : (12)

4 Expansion Polynomials

The differential forms are associated to the geometry, that they are naturally
integrated over, and hence it will be natural to expand these based on integral values.
This can be accomplished using a combination of Lagrange polynomials given by

hi.�/ D
QN

jD0;j¤i.� � �j/
QN

jD0;j¤i.�i � �j/
;

and edge polynomials defined in [5] as

ei.�/ D �
i�1
X

kD0

dhk.�/

d�
d� ; i D 1; : : : ;N :

Just like the Lagrange polynomials have the property

hi.�k/ D
(

1 if i D k
0 if i ¤ k

;

the edge polynomials have the property

Z �k

�k�1

ei.�/ D
(

1 if i D k
0 if i ¤ k

;
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The Hodge star operator is represented discretely by expanding our outer and inner
oriented differential forms on two different grids. Let �i, i D 0; : : : ;N be the
Gauss-Lobatto-Legendre (GLL) points of polynomial degree N and Q�i, i D 0;

: : : ;N � 1 the Gauss-Legendre (GL) points. Note that �i < Q�i < �iC1, for
i D 0; : : : ;N � 1. The Lagrange polynomials associated with the GLL points will
be denoted by hi.�/ and the Lagrange polynomials associated with the GL points
will be denoted by Qhi.�/. For more details see [3]. The edge polynomial ei.�/ is a
polynomial of degree N�1 and Qei.�/ is a polynomial of degree N�2 The expansion
of the differential forms in (11) and (12) are expanded by

OQp.0/;h.�1; �2; �3/ D
N�1
X

iD0

N�1
X

jD0

N�1
X

kD0
Qpi;j;k Qhi.�1/Qhj.�2/Qhj.�3/ ; (13)

Oq.2/;h.�1; �2; �3/ D
N
X

iD0

N
X

jD1

N
X

kD1
Q1i;j;khi.�

1/ej.�
2/ek.�

3/

C
N
X

iD1

N
X

jD0

N
X

kD1
Q2i;j;kei.�

1/hj.�
2/ei.�

3/C
N
X

iD1

N
X

jD1

N
X

kD0
Q3i;j;kei.�

1/ej.�
2/hi.�

3/ ;

(14)

and

Of .3/;h.�1; �2; �3/ D
N
X

iD1

N
X

jD1

N
X

kD1
Fi;j;kei.�

1/ej.�
2/ek.�

3/ : (15)

The expansion coefficients are respectively

Qpi;j;k D p. Q�i; Q�j; Q�k/ ;

Q1i;j;k D
�2j
Z

�2j�1

�3k
Z

�3k�1

Oq1.�1i ; �2; �3/ d�2 ^ d�3 ; Q2i;j;k D
�3k
Z

�3k�1

�1i
Z

�1i�1

Oq2.�1; �2j ; �3/ d�3 ^ d�1 ;

Q3i;j;k D
�1i
Z

�1i�1

�2j
Z

�2j�1

Oq3.�1; �2; �3k / d�1 ^ d�2 ; Fi;j;k D
�1i
Z

�1i�1

�2j
Z

�2j�1

�3k
Z

�3k�1

Of .�1; �2; �3/ d�1 ^ d�2 ^ d�3 :

Let �h.�/ D
N
P

iD0
�ihi.�/ be a function in R expanded by Lagrange polynomials then

the derivative is calculated by

d�h

d�
D

N
X

iD1
.�i � �i�1/ei.�/ :
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Using this, d Oq.2/;h in (11) is calculated as

d Oq.2/;h D
N
X

iD1

N
X

jD1

N
X

kD1

�

Q1i;j;k �Q1i�1;j;k C Q2i;j;k � Q2i;j�1;k

CQ3i;j;k �Q3i;j;k�1
�

ei.�
1/ej.�

2/ek.�
3/ : (16)

The pullback operators in (12) are basically just mappings of geometrical bases
of different order. First

�

˚�
��1 Oq.2/;h maps the surface basis of Oq.2/;h from the

reference frame to the physical domain. This is similar to a Piola transformation
known from continuum mechanics, [9], but applied to a first order tensor instead of
a second order tensor

q.2/ D 1

J
FOq.2/ ; (17)

with

F D

2

6

6

4

@x1
@�1

@x1
@�2

@x1
@�3

@x2
@�1

@x2
@�2

@x2
@�3

@x3
@�1

@x3
@�2

@x3
@�3

3

7

7

5

;

J D det.F/ and the differential forms arranged in column vectors. By applying
?K�1 in (12) the surface basis is changed to a line basis, and ˚� maps this from the
physical frame to the reference frame and it is done by

˚� ?K�1 q.2/;h D FT
K
�1q.2/;h ;

where T denotes the transpose operator. The whole term is thereby given by

˚� ?K�1

�

˚�
��1 Oq.2/;h D 1

J
FT

K
�1FOq.2/;h : (18)

Gathering all terms and applying appropriate Gaussian quadratures then (11)
and (12) can be written in a system of equations as

"

0 P3E.3;2/
ET
.3;2/P

T
3 M2

#(

�p

�Q

)

D
(

P3�F

B�bc
p

)

:

Here �p, �Q and �F contain all expansion coefficients of (13), (14) and (15),
respectively, and �bc

p contains all known values of p.0/ in the GL points on .@˝/p.
E.3;2/ is a representation of the expression within the bracket in (16) for the entire
system, and is called an incidence matrix, see [7]. This matrix only contains the
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values 0,-1 and 1 and is completely determined by the connectivity of the grid. The
remaining block matrices contain the wedge of the expansion polynomials of the
individual terms in (11) and (12) weighed with the Gaussian integration weights.
Note that M2 contains the mapping and the inverse permeability field in (18).

5 Numerical Results

5.1 Case 1: Homogeneous, Isotropic, and Cartesian
Coordinate System

The method has been tested on a 2D model problem of which we have an analytic
solution. For a given forcing function, f .x; y/ D 8�2sin.2�x/cos.2�y/, the analytic
solution for the pressure and velocity fields are

pD sin.2�x/cos.2�y/; qxD �2�cos.2�x/cos.2�y/; qyD �2�sin.2�x/sin.2�y/:
The solution domain is, ˝ D Œ�1; 1�2 and for K D 1, four elements, and a
polynomial order of N D 12 the residual of mass conservation is shown to the
left in Fig. 2 and on the right the associated conservation of mass as function of
polynomial order is shown. It is observed that the mass conservation constraint is
satisfied exactly independent of polynomial order.

5.2 Case 2: Heterogeneous, Non-Isotropic, and Cartesian
Coordinate System

A four element, non-isotropic case is now tested using the permeability coefficients

K11 D 4 K12 D 3 K21 D 3 K22 D 20

0 10 20 30
Polynomial order

10-13

10-12

10-11

10-10

 u
 -

 f
   

2

Residual

Fig. 2 Residual of mass conservation; left: N=12. Number of elements is 4
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0 10 20 30
Polynomial order

10-12

10-11

10-10

10-9

 u
 -

 f

Residual

   
2

Fig. 3 Residual of mass conservation; left: N=15. Number of elements is 4

in each element and the pressure field P.x; y/ D sin.2�x/sin.2�y/. This leads to the
following velocity and forcing terms

ux D� 2�K11cos.2�x/cos.2�y/C 2�K12sin.2�x/sin.2�y/;
uy D� 2�K21cos.2�x/cos.2�y/C 2�K22sin.2�x/sin.2�y/;
f D 4�2..K11 C K22/sin.2�x/cos.2�y/C .K12 C K21/cos.2�x/sin.2�y//:

The residual for mass conservation is shown in Fig. 3 and it is again observed
that mass is conserved exactly.

5.3 Case 3: Heterogeneous, Non-Isotropic, and Curvilinear
Coordinate System

The results for a nine element case with a very distorted grid, (see Fig. 4 for an
example of a 25 elements domain), are shown in Fig. 5. It is noticed that even on
a very distorted grid mass is conserved exactly. In our discrete-mass-conservation
plots we observe peaks at part of the boundary and inter-element boundaries. These
peaks are of the size 10�13 in Fig. 5 and therefore close to machine accuracy. We
don’t attribute them any major importance.

5.4 Case 4: The ‘Tenth SPE Comparative Solution Project’

In the last numerical example we have taken the permeability field from the ‘Tenth
SPE Comparative Solution Project’ http://www.spe.org/web/csp/.

http://www.spe.org/web/csp/
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Fig. 4 Distorted grid (for a 25 elements domain) and values for the permeability coefficients for a
9 element case, which is used in the calculations

0 10 20 30
Polynomial order

10-14

10-13

10-12

10-11

10-10

||
 u

 -
 f

Residual

2

Fig. 5 Residual of mass conservation; left: N=15. Number of elements are 9

The original model is a 2-phase (oil and gas) model of which we only simulate
the oil phase. The model has a simple 2D cross-sectional geometry with no dipping
or faults. The dimensions of the model are 762 m long by 15.24 m thick. The fine
scale grid is 100 � 20 with uniform size for each of the grid blocks. The top of the
model is at 0.0 m with initial pressure at this point of 100 psia. The model is fully
saturated with oil.

In Fig. 6 we again see that the mass is conserved to machine accuracy.
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10-13

10-12

 u
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 f

Residual

2

Fig. 6 Residual of mass conservation. Left: N=2. Permability field taken from http://www.spe.org/
web/csp/

Table 1 Condition number
of the algebraic system as
function of the permeability
field

k12 D k21 k11 k22 Cond #

0 1 1 3:77 � 103
0 1 10 3:74 � 103
0 1 100 3:73 � 103
0 1 1000 3:74 � 103
0 1 10000 1:20 � 104
10 10 20 0:85 � 103
10 10 100 2:45 � 103
10 10 1000 9:67 � 103
10 10 10000 2:99 � 104
10 10 100000 9:36 � 104

5.5 Condition Number of the Coefficient Matrix

In Table 1 we analyse the condition number of the algebraic system as the
permeability field changes. The condition number is shown for a 2D domain with 4
elements and a polynomial order of 12. As seen from Table 1, when the off-diagonal
elements of the symmetric positive definite K tensor are zero, the condition number
is constant as the an-isotropy increases until the an-isotropy has reach a very high
value, which give rise to an increased condition number. In contrast to this, it is seen
that when the off-diagonal elements are non-zero, the condition number increases
as the an-isotropy increases.

The code is written in MatLab and all solutions have been obtained using the
built-in direct solvers. Solution of the problem obtained from the ‘Tenth SPE
Comparative Solution Project’ with the polynomial order N D 4 took 5 min on
an PC using the Core processor i7-3615QM running 2.3 GHz.

http://www.spe.org/web/csp/
http://www.spe.org/web/csp/
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6 Conclusion

A mimetic spectral element method for the Darcy’s problem has been developed.
It is shown that mass conservation is satisfied exactly for both isotropic and non-
isotropic permeability coefficients and for regular and very distorted grids.
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High Order DGTD Solver for the Numerical
Modeling of Nanoscale Light/Matter Interaction

Stéphane Lanteri, Claire Scheid, Maciek Klemm, and Jonathan Viquerat

Abstract Nanophotonics is the field of science and technology which aimed at
establishing and using the peculiar properties of light and light/matter interactions
in various nanostructures. The numerical modeling of such interactions requires to
solve the system of time-domain Maxwell equations possibly coupled to appropriate
models of physical dispersion in metals such as the Drude and Drude-Lorentz mod-
els. In this paper, we discuss about the development of a high order discontinuous
Galerkin time-domain solver for nanophotonics applications in the linear regime.
For the numerical treatment of dispersion models in metals, we have adopted an
Auxiliary Differential Equation (ADE) technique leading to solve the time-domain
Maxwell equations coupled to a system of ODEs. We present numerical results that
demonstrate the accuracy of the proposed numerical methodology for nanstructured
settings involving curvilinear geometrical features.

1 Introduction

The numerical modeling of light interaction with nanometer scale structures gener-
ally relies on the solution of the system of time-domain Maxwell equations, possibly
taking into account an appropriate physical dispersion model, such as the Drude
or Drude-Lorentz models, for characterizing the material properties of metallic
nanostructures at optical frequencies [11]. In the computational nanophotonics
literature, a large number of studies are devoted to Finite Difference Time-Domain
(FDTD) type discretization methods based on Yee’s scheme [18]. As a matter of
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fact, the FDTD [15] method is a widely used approach for solving the systems of
partial differential equations modeling nanophotonic applications. In this method,
the whole computational domain is discretized using a structured (cartesian) grid.
However, in spite of its flexibility and second-order accuracy in a homogeneous
medium, the Yee scheme suffers from serious accuracy degradation when used to
model curved objects or when treating material interfaces. During the last 20 years,
numerical methods formulated on unstructured meshes have drawn a lot of attention
in computational electromagnetics with the aim of dealing with irregularly shaped
structures and heterogeneous media. In particular, the Discontinuous-Galerkin
Time-Domain (DGTD) method has met an increased interest because these methods
somehow can be seen as a crossover between Finite Element Time-Domain (FETD)
methods (their accuracy depends of the order of a chosen local polynomial basis
upon which the solution is represented) and Finite Volume Time-Domain (FVTD)
methods (the neighboring cells are connected by numerical fluxes). Thus, DGTD
methods offer a wide range of flexibility in terms of geometry (since the use of
unstructured and non-conforming meshes is naturally permitted) as well as local
approximation order refinement strategies, which are of useful practical interest.

In this paper, we report on our recent efforts aiming at the development of a
family of high order DG-based solvers for the numerical treatment of a wide class
of problems involving the interaction of light with matter at the nanoscale. Although
we concentrate here on a presentation of the basic ingredients and characteristics
of a DG method for time-domain nanophotonics/plasmonics applications in the
linear regime assuming local dispersion effects for metallic nanostructures, we note
that the present work falls within a global approach which aims at considering
more general physical settings as outlined in the conclusion of the paper. The
basic ingredient of a DG-based solver is a discretization method which relies on
a compact stencil high order interpolation of the electromagnetic field components
within each cell of an unstructured tetrahedral mesh. This piecewise polynomial
numerical approximation is allowed to be discontinuous from one mesh cell to
another, and the consistency of the global approximation is obtained thanks to the
definition of appropriate numerical traces of the fields on a face shared by two
neighboring cells. Time integration is achieved using an explicit scheme and no
global mass matrix inversion is required to advance the solution at each time step.
Moreover, the resulting time-domain solver is particularly well adapted to parallel
computing. For the numerical treatment of dispersion models in metals, we have
adopted an Auxiliary Differential Equation (ADE) technique that has already proven
its effectiveness in the FDTD framework. From the mathematical point of view,
this amounts to solve the time-domain Maxwell equations coupled to a system of
ordinary differential equations. The resulting ADE-based DGTD method is detailed
in [16].
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2 Mathematical Modeling

Towards the general aim of being able to consider concrete physical situations
relevant to nanophotonics, one of the most important features to take into account
in the numerical treatment is physical dispersion. In the presence of an exterior
electric field, the electrons of a given medium do not reach their equilibrium position
instantaneously, giving rise to an electric polarization that itself influences the
electric displacement. In the case of a linear homogeneous isotropic non-dispersive
medium, there is a linear relation between the applied electric field and the
polarization. However, for some range of frequencies (depending on the considered
material), the dispersion phenomenon cannot be neglected, and the relation between
the polarization and the applied electric field becomes complex. In practice, this is
modeled by a frequency-dependent complex permittivity. Several such models for
the characterization of the permittivity exist; they are established by considering the
equation of motion of the electrons in the medium and making some simplifications.
There are mainly two ways of handling the frequency dependent permittivity in
the framework of time-domain simulations, both starting from models defined in
the frequency domain. A first approach is to introduce the polarization vector
as an unknown field through an auxiliary differential equation which is derived
from the original model in the frequency domain by means of an inverse Fourier
transform. This is called the Direct Method or Auxiliary Differential Equation
(ADE) formulation. Let us note that while the new equations can be easily added to
any time-domain Maxwell solver, the resulting set of differential equations is tied
to the particular choice of dispersive model and will never act as a black box able
to deal with other models. In the second approach, the electric field displacement
is computed from the electric field through a time convolution integral and a given
expression of the permittivity which formulation can be changed independently of
the rest of the solver. This is called the Recursive Convolution Method (RCM).

In [16], an ADE formulation has been adopted. We first considered the case of
Drude and Drude-Lorentz models, and further extended the proposed ADE-based
DGTD method to be able to deal with a generalized dispersion model in which
we make use of a Padé approximant to fit an experimental permittivity function.
The numerical treatment of such a generalized dispersion model is also presented
in [16]. We outline below the main characteristics of the proposed DGTD approach
in the case of the Drude model. The latter is associated to a particularly simple
theory that successfully accounts for the optical and thermal properties of some
metals. In this model, the metal is considered as a static lattice of positive ions
immersed in a free electrons gas. In the case of the Drude model, the frequency

dependent permittivity is given by "r.!/ D "1 � !2d
!2Ci!�d

, where "1 represents
the core electrons contribution to the relative permittivity "r, �d is a coefficient
linked to the electron/ion collisions representing the friction experienced by the

electrons, and !d D
q

nee2

me"0
(me is the electron mass, e the electronic charge and

ne the electronic density) is the plasma frequency of the electrons. Considering a
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constant permeability and a linear homogeneous and isotropic medium, one can
write the Maxwell equations as

r �H D @D
@t
; r � E D �@B

@t
; (1)

along with the constitutive relations D D "0"1EC P and B D �0H, which can be
combined to yield

r � E D ��0 @H
@t
; r �H D "0"1 @E

@t
C @P
@t
: (2)

with "0 and �0 the electric permittivity and magnetic permeability of vacuum. In the
frequential domain, we have that OD D "0"r.!/ OE, meaning that the polarization P is

linked to the electric field through the relation OP D � "0!
2
d

!2Ci�d!
OE, where O� denotes the

Fourier transform of the time-domain field. An inverse Fourier transform gives

@2P
@t2
C �d @P

@t
D "0!2dE: (3)

By defining the dipolar current vector Jp D @P
@t

, (2)–(3) can be rewritten as

�0
@H
@t
D �r � E ; "0"1

@E
@t
D r �H � Jp ;

@Jp
@t
C �dJp D "0!2dE: (4)

Recalling the definitions of the impedance and light velocity in vacuum, Z0 D
p

�0="0 and c0 D 1=
p
"0�0, and introducing the following substitutions, eH D

Z0H;eE D E;eJp D Z0Jp;et D c0t; e�d D �d=c0 and e! 2
d D !2d=c

2
0, it can be shown

that system (4) can be normalized to yield

@eH
@t
D �r �eE ; "1

@eE
@t
D r � eH �eJp ; @eJp

@t
C �deJp D e! 2

d
eE; (5)

knowing that�0c0=Z0 D 1 and "0c0Z0 D 1. From now on, we omit theeX notation
for the normalized variables.

3 DGTD Method

The DGTD method can be considered as a finite element method where the
continuity constraint at an element interface is released. While it keeps almost all the
advantages of the finite element method (large spectrum of applications, complex
geometries, etc.), the DGTD method has other nice properties:
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- It is naturally adapted to a high order approximation of the unknown field.
Moreover, one may increase the degree of the approximation in the whole mesh
as easily as for spectral methods but, with a DGTD method, this can also be done
locally i.e. at the mesh cell level.

- When the discretization in space is coupled to an explicit time integration method,
the DG method leads to a block diagonal mass matrix independently of the form
of the local approximation (e.g the type of polynomial interpolation). This is a
striking difference with classical, continuous FETD formulations.

- It easily handles complex meshes. The grid may be a classical conforming finite
element mesh, a non-conforming one or even a hybrid mesh made of various
elements (tetrahedra, prisms, hexahedra, etc.). The DGTD method has been
proven to work well with highly locally refined meshes. This property makes
the DGTD method more suitable to the design of a hp-adaptive solution strategy
(i.e. where the characteristic mesh size h and the interpolation degree p changes
locally wherever it is needed).

- It is flexible with regards to the choice of the time stepping scheme. One may
combine the discontinuous Galerkin spatial discretization with any global or local
explicit time integration scheme, or even implicit, provided the resulting scheme
is stable.

- It is naturally adapted to parallel computing. As long as an explicit time
integration scheme is used, the DGTD method is easily parallelized. Moreover,
the compact nature of method is in favor of high computation to communication
ratio especially when the interpolation order is increased.

As in a classical finite element framework, a discontinuous Galerkin formulation
relies on a weak form of the continuous problem at hand. However, due to
the discontinuity of the global approximation, this variational formulation has to
be defined at the element level. Then, a degree of freedom in the design of a
discontinuous Galerkin scheme stems from the approximation of the boundary
integral term resulting from the application of an integration by parts to the element-
wise variational form. In the spirit of finite volume methods, the approximation of
this boundary integral term calls for a numerical flux function which can be based
on either a centered scheme or an upwind scheme, or a blend of these two schemes.

The DGTD method has been considered rather recently as an alternative to
the widely used FDTD method for simulating nanoscale light/matter interaction
problems [1, 12–14]. The main features of the DGTD method studied in [16] for
the numerical solution of system (5) are the following:

- It is formulated on an unstructured tetrahedral mesh;
- It can deal with linear or curvilinear elements through a classical isoparametric

mapping adapted to the DG framework [17];
- It relies on a high order nodal (Lagrange) interpolation of the components of E,

H and Jp within a tetrahedron;



248 S. Lanteri et al.

- It offers the possibility of using a fully centered [5] or a fully upwind [6]
scheme, as well as blend of the two schemes, for the evaluation of the numerical
traces (also referred as numerical fluxes) of the E and H fields at inter-element
boundaries;

- It can be coupled to either a second-order or fourth-order leap-frog (LF) time
integration scheme [4], or to a low-storage fourth-order Runge-Kutta (LSRK)
time integration scheme [2];

- It can rely on a Silver-Muller absorbing boundary condition or a CFS-PML
technique for the artificial truncation of the computational domain.

Starting from the continuous Maxwell-Drude equations (5), the system of semi-
discrete DG equations associated to an element 
i of the tetrahedral mesh writes

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Mi
dHi

dt
D �Ki � Ei C

X

k2Vi

Sik

�

E? � nik
�

;

M
"

1

i

dEi

dt
D Ki �Hi �

X

k2Vi

Sik

�

H? � nik
�

�MiJi;

dJi
dt
D !2dEi � �dJi:

(6)

In the above system of ODEs, Ei is the vector of all the degrees of freedom of
E in 
i with size 3npi (with similar definitions for Hi and Ji), Mi and M

"
1

i are
local mass matrices of size 3npi � 3npi , Ki is a local pseudo-stiffness matrix of size
3npi�3npi , and Sik is a local interface matrix of size 3npi�3npk . Here, npi denotes the
number of basis functions for a polynomial interpolation Pp of the components of a
field of degree p in 
i. Moreover, E? and H? are numerical traces computed using
an appropriate centered or upwind scheme. The various steps leading to the semi-
discrete system (6) from the Maxwell-Drude continuous system (5) are detailed
in [16].

4 Numerical Results

4.1 Scattering by a Nanosphere

Many nano-optics devices rely on the coupled plasmon resonances of metallic
nanospheres, such as nano-arrays for Raman scattering [9], Fano resonators [10],
or nanosphere-based biosensors [3]. We illustrate here the accuracy improvement
obtained thanks to the use of high order elements (curvilinear tetrahedra) when
considering the problem of the scattering of a plane wave by a gold nanosphere.
The analytical solution of this problem can be computed via the Mie scattering
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theory [8]. We consider a sphere of radius r D 50 nm with Drude parameters
"1 D 3:7362, !d D 1:387107GHz, �d D 4:515104 GHz, and we are interested
in its behavior in the Œ600; 1200� THz range. The incident field is a plane wave, with
a sine-module Gaussian time profile, in order to provide a wide enough spectrum
for the calculation. A so-called total/field (TF/SF) technique is adopted for imposing
the plane wave incident field. The scatterer is enclosed by a total-field/scattered-field
interface, on which the incident field is imposed. A CFS-PML layer surrounds the
scattered-field region, and is terminated by an ABC condition.

We compare the results from DGTD simulations with the Mie solution of the
problem. To conduct this study, we build three meshes, referred as M1, M2 and M3,
corresponding to a discretization of the geometry of the sphere with an increased
accuracy (the mesh characteristics and a visual representation are respectively given
in Table 1 and Fig. 1). Curved elements are exploited only with the coarsest mesh
(mesh M1), whereas linear elements are used for the three meshes. Results are
presented in Fig. 2. One immediately notices the convergence of the results obtained
on the linear meshes toward the reference solution. The P1-based solution on the
mesh M3 almost perfectly fits the Mie prediction, at the cost of a high refinement
level of the sphere surface. On the other hand, the solutions obtained with the

Table 1 Scattering by a
nanosphere: characteristics of
the tetrahedral meshes

M1 M2 M3

ns 962 1 677 10 736

nt 4 706 8 767 61 718

hsphere 2510�9 10�9 3:510�9

nc 764 0 0

nr 3 942 8 767 61 718

ns is the number of vertices, nt
the number of tetrahedra and hsphere

the size of the largest tetrahedron
used to discretize the scatterer. For
the curvilinear versions, nc represents
the number of curved tetrahedrons,
whereas nr is the number of rectilin-
ear tetrahedrons

Fig. 1 Scattering by a
nanosphere: mesh M1 for the
cross-section calculation. The
scatterer in (red) is enclosed
by the total field region in
(blue), delimited by the
TF/SF interface on which the
incident field is imposed. The
scattered field region in
(purple) is surrounded by
PMLs in (gray)
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Fig. 2 Scattering by a nanosphere: scattering cross-section of a metallic sphere obtained with P2

and P3 approximations for linear and curvilinear meshes. (a) Csca calculations with linear elements.
(b) Csca calculations with curvilinear elements

curvilinear M1 mesh are already in very good agreement with the reference solution:
the P2 result is close, but the amplitude of the second resonance peak is still a bit
undervalued. The numerical solution is improved by exploiting P3 approximation,
yielding a relative error to the exact solution of less than 1%. Although this case
corresponds to a basic but realistic nanophotonics configuration, the gains obtained
in terms of CPU time and memory consumption when using curvilinear elements are
very encouraging. The solution obtained with the DGTD-P3 method run on mesh
M1 with curvilinear elements required 92 MB of memory and 884 s of CPU time.1

In comparison, the solution obtained with the DGTD-P2 method run on mesh M3
with linear elements, which is of similar accuracy, required 312 MB and 6800 s.
Hence, it makes the curvilinear simulation more than 3 times cheaper in terms of
memory, and more than 7 times faster.

4.2 Optical Reflecting Arrays

In the past few years, important efforts have been deployed to find alternatives
to on-chip, low-performance metal interconnects between devices. Because of
the ever-increasing density of integrated components, intra- and inter-chip data
communications have become a major bottleneck in the improvement of information
processing. Given the compactness and the simple implantation of the devices,
communications via free-space optics between nanoantenna-based arrays have
recently drawn more attention [7]. Here, we focus on a specific low-loss design of
dielectric reflectarray (DRA), whose geometry is based on a periodic repartition of
dielectric cylinders on a metallic plate [20]. A sketch of the unit cell is presented on

1All the simulations are run in parallel on 16 CPUs.



DGTD for Nanophotonics 251

Fig. 3. When illuminated in normal incidence, specific patterns of such resonators
provide a constant phase gradient along the dielectric/metal interface, thus altering
the phase of the incident wavefront. The gradient of phase shift generates an
effective wavevector along the interface, which is able to deflect light from specular
reflection. However, as can be seen on Fig. 4, the flaws of the lithographic production
process can lead to discrepancies between the ideal device and the actual resonator
array.

Here, we propose to exploit our DGTD solver to study the impact of the
lithographic flaws on the performance of a 1D reflectarray. Efficient computations
are obtained by combining high-order polynomial approximation with curvilinear
meshing of the resonators, yielding accurate results on very coarse meshes.In our
simulations, the silver slab is described by a simple Drude model of parameters
"1 D 4:0, �d D 2:73104 GHz and !d D 1:38107 GHz. The resonators are
made of a diagonally anisotropic material with relative permittivity parameters
given by

�

"xr D 8:29; "yr D 8:29; "zr D 6:71
�

. The slab thickness h, as well as the
height d are respectively fixed to 200 and 50 nm. The defect parameter is denoted
ı, and describes the impact of the lithography flaws on the cylindrical shape of

hεs(ω)

dr

¯̄ε r

δ

Fig. 3 Unit cell of a realistic monodimensional dielectric reflectarray composed of dielectric
cylinders on a silver plate. The defect parameter ı is equal to zero for an ideal resonator. The
view is a lateral cut of the cell

Fig. 4 6-element dielectric reflectarray produced by lithography
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the resonator. The last geometric parameter is the basis radius of the resonator,
denoted by r. In all computations, the devices are terminated with periodic boundary
conditions in both planar directions. The incident field is a monochromatic plane
wave, impinging from above in normal incidence.

The physical quantities of interest in this work are: (i) the reflection coefficient
R, (ii) the reflected phase � for single resonators, and (iii) the radar cross-section
�RCS for the resonator arrays. Details about the definition and calculation of these
quantities are given in [16].

We propose here to study the effects of the flaws induced by the lithography
production of the dielectric resonators on its scattering regime. A single resonator
with doubly periodic boundary conditions is considered. The lateral size of the
periodic cell is 350 nm, the radius is fixed to r D 85 nm, and ı varies from 0
to 15 nm. The frequency of the incident plane wave is fixed to f D 473:6THz
(� D 633 nm). The reflection coefficient and the reflected phase are computed, and
plotted on Fig. 5. As can be seen, the reflected amplitude and phases are significantly
blueshifted when ı is increased, which will have a major impact on the 1D dielectric
array, as will be shown below. Here, we consider the 1D dielectric reflectarray
presented in [19]. This array is designed to deflect normally-incident light with an
angle of 19.9ı, according to reflectarray theory. As before, the frequency of the
incident plane wave is f D 473:6 THz (� D 633 nm). The array is declined in
two versions: the first one is made of ideal resonators, while the second one is
composed of realistic resonators, with representative lithography flaws (see Fig. 6
for a close-up view of the array). The RCS of both arrays is computed with P4

polynomial approximation and quadratic tetrahedra, and plotted on Fig. 7. The ideal
array provides a very good directivity toward 18.0ı, with a very small parasitic
lobe around 50.0ı. This is confirmed by the field map of Fig. 8, where one can
clearly see nearly-plane waves propagating away from the array. In this case, nearly
60% of the incident power is deflected with a non-cartesian angle. On the other
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θ(
ω
)
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Fig. 5 Reflection coefficient and reflected phase of a single dielectric resonator with lithography
defect. (a) Reflection coefficient. (b) Reflected phase
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(a)

(b)

Fig. 6 Ideal and realistic 1D dielectric reflectarray meshes. The red tetrahedra correspond to
silver, while the green ones are made of an anisotropic dielectric material. The device is surrounded
by air and terminated by a PML above and below, and by periodic boundary conditions on the
lateral sides. (a) Ideal reflectarray. (b) Realistic reflectarray, ı D 20 nm
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−30
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90
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Fig. 7 Radar cross-section of ideal and realistic 1D dielectric reflectarrays at frequency f . The
directivity peak in the ideal case is observed around 18.0ı, while it is obtained at 14.5ı for the
realistic array

hand, the realistic array presents more imperfections in its directivity patterns, with
numerous parasitic lobes, and a lower efficiency (around 50%). Additionally, the
deflection angle is very different from what was predicted by the reflectarray theory.
This results in a much less satisfying field map, where the plane wave is severely
distorted. This may enlight the need to compensate these flaws at the conception
level by adjusting the physical parameters of the reflectors.
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(a) (b)

−1 0 1

Fig. 8 Time-domain snapshot of Ey component for ideal and realistic 1D dielectric reflectarrays.
Solution is obtained in established regime at t D 0:1 ps. Fields are scaled to Œ�1; 1�. (a) Ideal
reflectarray. (b) Realistic reflectarray, ı D 20 nm

5 Conclusion

The work described here is part of a larger initiative aiming at the development
of a software suite dedicated to nanophotonics/nanoplasmonics that will ultimately
include DG-based solvers for both time-domain and frequency-domain problems, as
well as the capabilities to numerically consider various material models in the linear
and non-linear regimes, considering local and non-local (i.e. spatial) dispersion
effects.
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High-Order Embedded WENO Schemes

Bart S. van Lith, Jan H.M. ten Thije Boonkkamp, and Wilbert L. IJzerman

Abstract Embedded WENO schemes are a new family of weighted essentially
nonoscillatory schemes that always utilise all adjacent smooth substencils. This
results in increased control over the convex combination of lower-order interpo-
lations. We show that more conventional WENO schemes, such as WENO-JS and
WENO-Z (Borges et al., J. Comput. Phys., 2008; Jiang and Shu, J. Comput. Phys.,
1996), do not exhibit this feature and as such do not always provide a desirable
linear combination of smooth substencils. In a previous work, we have already
developed the theory and machinery needed to construct embedded WENO methods
and shown some five-point schemes (van Lith et al., J. Comput. Phys., 2016). Here,
we construct a seven-point scheme and show that it too performs well using some
numerical examples from the one-dimensional Euler equations.

1 Recap of WENO

Weighted essentially non-oscillatory (WENO) schemes are a class of high-order
reconstruction methods commonly used in the numerical approximation of hyper-
bolic PDEs[6]. They are able to combine oscillation suppressing properties with a
high order of convergence. As such they are particularly useful when faced with
discontinuous solutions, e.g., shocks or contact discontinuities.

Consider the one-dimensional hyperbolic PDE
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where f is the flux function. Given some computational domain, we apply a
grid fxjgNjD1. With each grid point xj we associate a cell, Œxj� 1

2
; xjC 1

2
� of size �x.

Averaging (1) over a cell, we obtain

dNuj
dt
C 1

�x

�

f
�

u.xjC 1
2
; t/
� � f

�

u.xj� 12 ; t/
�

�

D 0; (2)

where Nuj is the average of u over the cell associated with xj. Note that (2) is still
exact. As per usual, we replace the fluxes at the cell boundaries by numerical fluxes
Fj˙ 1

2
and the exact average by its numerical approximation uj, yielding

duj
dt
C 1

�x

�

FjC 1
2
� Fj� 12

�

D 0: (3)

In the following, we suppress the time-dependency. The numerical flux typically
depends on the left and right limits of the function value at the cell boundary,
i.e., FjC 1

2
D F.u.xC

jC 1
2

/; u.x�
jC 1

2

//, where the superscripts plus and minus denote

a right and left limit, respectively. As such, the numerical method is completed by
specifying an approximation for finding the solution value at cell boundaries.

A WENO scheme attempts to reconstruct the sought values from a stencil S of
several cells. The most popular variants use a five-point stencil centred on xj, see
Fig. 1. The five-point stencil is divided into three smaller substencils, each of three
points. On each of the three-point substencils, we can find a parabolic reconstruction
of the solution, based on the averages over each cell. The key insight of a WENO
scheme is that a suitable linear combination of the three parabolic approximations
produces the fifth-order reconstruction.

If we organise the values of the large stencil into an auxiliary vector, v D
.uj�2; uj�1; uj; ujC1; ujC2/T , we can find a vector composed of the three lower-order
approximations as Cv, where C is a 3�5matrix. Furthermore, a linear combination

Fig. 1 Large five-point
stencil and substencils that
are used in the WENO
reconstruction technique
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S

j − 1 j j + 1 j + 2
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of these three values gives a fifth-order approximation for smooth solutions, so that
we have

u.UW5/

jC 1
2

D 	TCv; (4)

where 	 is the vector of linear weights. The basic scheme can then be captured in a
tableau, inspired by Butcher tableaux[2], given by

C 	 : (5)

Organised in this way, the tableau contains all the coefficients involved in a WENO
scheme, thus giving a concise overview of the underlying linear method. The tableau
for the five-point WENO scheme looks as follows,

2
6
� 7
6
11
6

1
10

� 1
6

5
6

2
6

6
10

2
6

5
6
� 1
6

3
10
;

(6)

where the zeros have been left out for clarity. These coefficients are related through
Taylor expansions of the solution around xjC 1

2
.

A WENO scheme attempts to suppress oscillations by replacing the linear
weights, 	 , by a set of nonlinear weights that lowers the contribution of substencils
containing a discontinuity. To facilitate this, smoothness indicators are introduced,
the most commonly used are given by Jiang and Shu[5] as

ˇk WD
x
jC 1

2
Z

x
j� 1

2

�

p00k .x/
�2
�x3 C �p0k.x/

�2
�xdx; k D 0; 1; 2; (7)

where pk is the polynomial reconstruction on substencil Sk, i.e., pk has average value
uj in cell j for each j 2 Sk. A tedious but straightforward calculus exercise shows
that

ˇ0 D 13

12
.uj�2 � 2uj�1 C uj/

2 C 1

4
.uj�2 � 4uj�1 C 3uj/2; (8a)

ˇ1 D 13

12
.uj�1 � 2uj C ujC1/2 C 1

4
.uj�1 � ujC1/2; (8b)

ˇ2 D 13

12
.uj � 2ujC1 C ujC2/2 C 1

4
.3uj � 4ujC1 C ujC2/2: (8c)

A Taylor expansion around the point xj shows that ˇk D O.�x2/ when the
solution is smooth and @xu.xj/ D O.1/, meaning the gradient of the interpolation
is independent of the grid size. However, around discontinuities we have @xu.xj/ D
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O. 1
�x /, resulting in ˇk D O.1/, so that the smoothness indicators allow us to find a

set of nonlinear weights that pick the smoothest substencils. The WENO scheme of
Jiang and Shu[5] then uses nonlinear weights !k (k D 0; 1; 2) defined by

Q!JS
k D

�k

.ˇk C "/p ; (9)

where " is a small number to avoid division by 0 and p > 0. Typical values are
" D 10�6 to 10�12 and p D 2. In any WENO scheme, the nonlinear weights are
normalised to obtain a consistent method, i.e.

!k D Q!k
P2

lD0 Q!l

: (10)

The JS weights satisfy !JS
k D �k CO.�x2/ when ˇk D O.�x2/. Note that together

with the set of coefficients (6), smoothness indicators and unnormalised nonlinear
weights, the WENO scheme is completely specified. Furthermore, if we denote by
! the column vector of nonlinear weights, then

u.WENO/

jC 1
2

D !TCv (11)

is the WENO approximation.
Borges et al.[1] showed that in order to achieve fifth-order accuracy, a sufficient

condition is

!k D �k CO.�x3/; (12)

in smooth regions of the solution. However, the WENO-JS scheme does not satisfy
this condition, even though it does indeed provide fifth-order accuracy in smooth
regions. To satisfy the sufficient condition (12), Borges et al. constructed the
WENO-Z scheme, introducing a global smoothness indicator 
 given by


 D jˇ2 � ˇ0j: (13)

The global smoothness indicator is constructed to use information from the entire
stencil S. Furthermore, one can show that 
 D O.�x5/ when the solution is smooth
on the large stencil S. The WENO-Z weights are defined by

Q!Z
k D �k

 

1C
�




ˇk C "
�p
!

; (14)

so that the WENO-Z scheme satisfies the sufficient condition (12) for any p � 1.
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1.1 A Flaw

Let us examine what WENO-JS and WENO-Z do when a discontinuity is present in
substencils S0 or S2. Thus, there is a single nonsmooth substencil while there are two
smooth substencils. In principle, it is therefore be possible to make some suitable
linear combination of the smooth substencils. For instance, we might want to form
a fourth-order combination or a combination that minimises dissipation.

Before we discuss these possibilities, let us investigate the ratio of the nonlinear
weights of WENO-JS and WENO-Z, starting with the JS weights,

!JS
k

!JS
l

D Q!
JS
k

Q!JS
l

D �k

�l

�

ˇl C "
ˇk C "

�p

; (15)

where we will assume for the remainder that " 
 ˇk for all smooth Sk. For the
five-point WENO scheme, we have

ˇl

ˇk
D
8

<

:

1CO.�x3/ if k D 0; l D 2 or k D 2; l D 0;
1CO.�x2/ otherwise;

(16)

which follows from the Taylor expansions of the smoothness indicators (8). For
more general WENO schemes with r substencils, one can show that ˇl

ˇk
D 1 C

O.�xs/, where s � 2. The WENO-JS weights therefore satisfy

!JS
k

!JS
l

D �k

�l

�

1CO
�

�xs
�

�

; (17)

with s � 2. Note however, that this relation only depends on the local smoothness
of Sk and Sl.

For WENO-Z, we have a similar result, since

!Z
k

!Z
l

D
�k

�

1C . 

ˇk
/p
�

�l

�

1C . 

ˇl
/p
� D

�k

�

ˇ
p
l C 
p. ˇlˇk /p

�

�l
�

ˇ
p
l C 
p

� : (18)

Again using (16), we find that now independent of the value of 
 ,

!Z
k

!Z
l

D �k

�l

�

1CO
�

�xs
�

�

; (19)

with s � 2 provided there are no critical points. Note that the lower bound on s can
be increased when the solution is smooth on the entire stencil.

Now consider the situation where substencils S0 and S1 are smooth with no
critical points but S2 contains a discontinuity. Both the JS and Z schemes will lead
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to !0
!1
D �0

�1
CO.�x2/. This leads to !0 	 1

7
and !1 	 6

7
for both JS and Z schemes,

from which the WENO approximation becomes

u.WENO/

jC 1
2

� u.xjC 1
2
/ D 1

28
u.3/j �x

3 CO.�x4/; (20)

by a Taylor expansion of the third-order approximations. However, if we could
achieve in this situation !0 	 1

4
and !1 	 3

4
, we could obtain a fourth-order

approximation for the cell boundary value.
The flaw of WENO-JS and WENO-Z addressed in this work is the following:

when encountering a discontinuity, both schemes revert directly to their lower-
order modes, even when there are multiple adjacent smooth substencils. When
multiple adjacent smooth substencils are available, control over the weights leads
to direct control over the truncation error. This obviously has some advantages, for
instance by increasing the local order of approximation. We have already developed
a complete theory in an earlier work, where we constructed some five-point schemes
[10]. Here, we will also develop and demonstrate seven-point embedded WENO
schemes.

2 Embedded WENO

We propose a new class of WENO schemes, which we call embedded WENO,
that allows control over the nonlinear weights for all possible locations of a
discontinuity. For instance, in five-point WENO schemes there are two possible
locations such that two substencils are smooth, see Fig. 2.

j − 2

S

j − 1 j j + 1 j + 2

S0

S1

S2

S0,1

S1,2

outer

inner

xj+ 1
2

Fig. 2 Embedded WENO stencils and substencils. The four-point stencils are composed by
controlling the linear combination of the two smooth substencils
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Being able to control the linear combination in more situations results in more
control over the numerical solution. We may, for instance, wish to have the highest
possible order of convergence in all cases. Alternatively, we may wish to minimise
the numerical dissipation of the scheme. We therefore need to construct nonlinear
weights that converge to weights of our own choosing in these cases.

The desired weights when either S0 or S2 is not smooth are designated the inner
weights of the scheme and are denoted ˛.K/k , where K is the set of indices for the
substencils that are not smooth. To reiterate, the inner weights are chosen by the user
to achieve some desirable effect on the numerical solution. For instance, the inner
weights optimised for order of convergence are given by ˛.2/0 D 1

4
, ˛.2/1 D 3

4
, where

S2 would contain the discontinuity. Likewise, when S0 contains the discontinuity, the
inner weights maximising order of convergence would be ˛.0/1 D 1

2
and ˛.0/2 D 1

2
.

To escape from (17) and (19), the nonlinear weights will have to be redefined.
We propose the following general form,

Q!k D �k
0

@1C
 

jPr�1
lD0 aklˇlj
ˇk C "

!p
1

A ; (21)

where r is then number of substencils, r D 3 for five-point WENO schemes. The
coefficients akl are called the embedding coefficients. This form of the unnormalised
weights can be considered as a generalisation of the WENO-Z scheme of Borges et
al. [1]. Indeed, we can choose the embedding coefficients so that (21) results in the
WENO-Z scheme, i.e., ak0 D 1, ak1 D 0 and ak2 D �1 for k D 0; 1; 2.

Using the Taylor expansions of the smoothness indicators, we can find conditions
under which

Pr�1
lD0 aklˇl D O.�xrC2/ in smooth regions. For five-point WENO

schemes, we have

ak0 C ak1 C ak2 D 0; (22a)

�2ak0 C ak1 � 2ak2 D 0; (22b)

for k D 0; 1; 2. The following theorem states the conditions under which the
nonlinear weights converge to the inner weights.

Theorem 1 Let Q!k be the unnormalised nonlinear weights of a WENO scheme
given by (21). Let K be the set of indices of discontinuous substencils, assume
" 
 ˇk for all k 62 K, and let ˛.K/k be the desired inner weights. Let k; l 62 K, if
the embedding coefficients then satisfy

 

�k

˛
.K/
k

! 1
p
X

m2K
akm D ˙

 

�l

˛
.K/
l

! 1
p
X

n2K
aln; (23)

the nonlinear weights will converge to the inner weights.
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Proof Let k and l be indices of smooth substencils, then the ratio of their nonlinear
weights is given by

!k

!l
D Q!k

Q!l
D �k

ˇ

ˇ

P

m2K akm
ˇ

ˇ

p C
�x2
CO.1/

�l
ˇ

ˇ

P

n2K aln
ˇ

ˇ

p C
�x2
CO.1/

;

where C is a constant related to the jump in the numerical solution. Simplifying, we
find

!k

!l
D �k

ˇ

ˇ

P

m2K akm
ˇ

ˇ

p

�l
ˇ

ˇ

P

n2K aln
ˇ

ˇ

p CO.�x2/:

Taking the limit of �x! 0, the O.�x2/ term drops out. To complete the theorem,

we equate this expression with ˛
.K/
k

˛
.K/
l

and separate terms.

ut
Remark 1 The absolute signs in (21) result in a sign freedom in the embedding
coefficients. Writing the coefficients as a matrix, each row can be freely multiplied
by �1. We choose the positive sign in (23) from here on out.

Remark 2 Theorem 1 only gives ratios between the embedding coefficients. As a
consequence, there will always be at least one degree of freedom in the choice of
the embedding coefficients. WENO-Z scheme also exhibits this degree of freedom,
as one can change the weights to

Q!Z
k D �k

 

CC
�




ˇk C "
�p
!

;

for any C > 0 with impunity due to the normalisation. Some schemes have even
used C D 1000, see for instance [4]. In our formulation, this is equivalent to
multiplying all embedding coefficients with 1

C . The larger C, the closer the weights
will be to the optimal weights compared to C D 1. Currently, there are no guidelines
on how to choose it.

For five-point WENO schemes, the theorem provides us with one equation for
each four-point substencil. To give a concise overview of all the coefficients, we
extend our tableaux notation to include the matrix A with elements akl, i.e.,

C 	 A (24)
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For example, choosing p D 2 and optimising for order of convergence, we find the
scheme

2
6
� 7
6
11
6

1
10

p
2
2
0 �

p
2
2

� 1
6

5
6

2
6

6
10

1
2
0 � 1

2
2
6

5
6
� 1
6

3
10

p
2
2
0 �

p
2
2
;

(25)

where we have chosen a00 D
p
2
2

to fix the coefficients.

2.1 Seven-Point Stencils

Our approach is generally valid and can also be applied to any high-order WENO
scheme. As a demonstration, we present a seven-point WENO scheme, where we
have taken into account all five possibilities for K: f0g, f0; 1g, f2; 3g, f3g and f0; 3g,
where the last case represents two discontinuities on opposite sides of the large
stencil S. Choosing p D 2, the tableau for the embedded seven-point WENO scheme
is given by

�3
12

13
12
� 23
12

25
12

1
35

p
2�1
4

� 1
4

1
2
� 3

4
p
2

1

4
p
2

1
12
� 5
12

13
12

3
12

12
35

p
2

8
p
3

p
2�4
8
p
3

1�p2
4
p
3

1

4
p
3

� 1
12

7
12

7
12
� 1
12

18
35

1

4
p
3

1�p2
4
p
3

p
2�4
8
p
3

p
2

8
p
3

3
12

13
12
� 5
12

1
12

4
35

1

4
p
2

1
2
� 3

4
p
2
� 1
4

p
2�1
4

(26)

Note that the matrix A satisfies

akl D a3�k;3�l; (27)

which means the embedding matrix for the left cell edge is the same as for the
right cell edge. In this case too we employ the Jiang and Shu smoothness indicators

together with the general form (21). We have chosen a00 D
p
2�1
4

to fix the
coefficients. This choice was motivated by being reasonably close to unity while
giving, in the authors’ opinions, the most aesthetically pleasing tableau.

3 Results

To demonstrate the improvements of the embedded scheme over its standard
counterpart, WENO-Z7[3], we use several numerical examples. All our examples
consists of solving the Euler equations in one dimension. We solve the Euler



266 B.S. van Lith et al.

Fig. 3 Numerical solution of Sod’s test. Z7 refers to the WENO-Z7 scheme while E7 to the
embedded WENO7 scheme. Both numerical solutions were computed with 200 grid points and
a CFL number of 0:45

equations in conjunction with an ideal gas equation of state and ratio of specific
heats of 1:4.

The scheme uses a characteristic decomposition combined with global Lax-
Friedrichs flux splitting and the SSPRK(5,4) integrator of Spiteri and Ruuth[8]. We
use the L1-norm at the final integration time to define a global error, the sum of
absolute differences over all components and grid points.

Sod’s test, see [9], is used to verify that the embedded WENO scheme performs
well in relatively easy problems, see Fig. 3. Indeed, for Sod’s test, the performance
of the WENO-Z7 and embedded WENO7 is very similar. We define the global
error as

e D
3
X

iD1

N
X

jD1
jUij �Ui.T/j�x; (28)

where U is a conserved variable, T is the integration time and i is the component
index. The relative decrease in the global error compared to WENO-Z7 is 0:26%,
which is to say the performance of the schemes is almost equal in this test problem.
However, it is interesting to note that the contact discontinuity is captured with a
slightly steeper gradient.

For the Mach-3 shock entropy-wave interaction, see [7], the embedded
scheme really shows its merits, see Fig. 4. Especially in the high-frequency
region, the numerical solution approximates much more closely the reference
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Fig. 4 Numerical solution of the Mach-3 shock entropy-wave interaction problem. Z7 refers to
the WENO-Z7 scheme while E7 to the embedded WENO7 scheme. Both numerical solutions
were computed with 200 grid points and a CFL number of 0:45

solution, resulting in a whopping 24:7% decrease in global error. We
believe this radically better result comes from the embedded scheme having
reduced numerical dissipation in the medium-to-high range of wave numbers
compared to the standard one. However, we have not investigated this matter
fully.

4 Conclusions

We have shown that conventional WENO schemes such as WENO-JS and WENO-
Z, have a fixed ratio of the nonlinear weights dictated by the linear weights.
As such, the convex combination will not always be optimal in the presence of
discontinuities. We have constructed a framework that allows WENO schemes to
utilise all adjacent smooth substencils.

The general form we proposed may be considered a generalisation of the
WENO-Z scheme, which can be recovered by a special choice of embedding
coefficients. Using the proposed form, we have presented order-optimised schemes
for five and seven-point stencils. For the seven-point scheme we also consider two
discontinuities on either side of the large stencil.
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Two numerical examples from the one-dimensional incompressible Euler equa-
tions were presented for the seven-point scheme. We have demonstrated similar
performance for Sod’s test of the embedded scheme versus its standard counterpart,
WENO-Z7. However, for a harder problem we have demonstrated vast improvement
in the performance. The numerical solution exhibits both less spurious oscillations
and less dissipation in high-frequency regions.
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Finite Element Heterogeneous Multiscale
Method for Time-Dependent Maxwell’s
Equations

Marlis Hochbruck and Christian Stohrer

Abstract We propose a Finite Element Heterogeneous Multiscale Method (FE-
HMM) for time dependent Maxwell’s equations in second-order formulation in
locally periodic materials. This method can approximate the effective behavior of
an electromagnetic wave traveling through a highly oscillatory material without the
need to resolve the microscopic details of the material. To prove an a-priori error
bound for the semi-discrete FE-HMM scheme, we need a new generalization of
a Strang-type lemma for second-order hyperbolic equations. Finally, we present a
numerical example that is in accordance with the theoretical results.

1 Introduction

We want to simulate electromagnetic wave propagation in a highly oscillatory
material. FE-HMMs have proven to be efficient and reliable methods for many
multiscale problems, see e.g. [1, 3]. Their most important advantage is that the
influence of the microscopic details of the material are taken into account, whilst
only a macroscopic discretization of the whole computational domain is needed.
These methods were first proposed for elliptic and parabolic equations. In [2] it
was proven, that the same ideas can be applied to the acoustic wave equation. This
equation can be seen as an easily manageable special case of Maxwell’s equations.
Therefore, it is reasonable that FE-HMM can also be generalized to second-order
time-dependent Maxwell’s equation.

Recently, FE-HMMs for time-harmonic Maxwell’s equations in rapidly oscilla-
tory materials were presented, see [12] and [9]. There, two types of micro problems
were used to approximate the effective (or upscaled or homogenized) solution.
These micro problems are solved on small sampling domains such that the overall
computational cost does not become infeasibly large. Here, we apply the FE-HMM
scheme from [9] to second-order time-dependent Maxwell’s equation. To the best
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of our knowledge, this is the first FE-HMM scheme for this equation, while other
multiscale schemes have already been proposed, see e.g. the recent article [6] and
the references therein.

We consider a multiscale material with permittivity "	 and permeability �	,
where 	 denotes the characteristic microscopic length of the material. We assume
that 	 is much smaller than the diameter of the computational domain ˝ . In this
article we restrict ourselves to locally periodic materials, see Definition 1 below,
for simplicity. We are convinced that the Finite Element Heterogeneous Multiscale
Methods (FE-HMM) presented here can be adapted to more general situations, but a
rigorous justification thereof is ongoing research and beyond the scope of the current
article. For a locally periodic material, 	 denotes the length of the microscopic
oscillations in it.

The multiscale second order time-dependent Maxwell’s equation is given by

@tt"
	.x/E	.tI x/Cr � ��	.x/.r � E	.tI x/� D f .tI x/ in .0;T/ �˝; (1)

where E	 is the unknown multiscale electric field and

�	 D .�	/�1

is the inverse of the magnetic permeability. To derive this equation from the standard
first-order Maxwell’s equations we assumed that the electric field is generated by a
density free current and that the conductivity is zero (lossless material). The precise
functional analytic setting, the initial and boundary conditions are given in Sect. 2,
where we also recall a homogenization result derived from [18, Theorem 3.2]. In
a nutshell, it states that E	 converges to the solution Eeff of an effective Maxwell’s
equation as the characteristic length 	 tends to zero. In Sect. 3 we describe how
the idea of [9] can be used to build a FE-HMM for (1) to approximate Eeff. All the
advantages of FE-HMM schemes mentioned above carry over to the time-dependent
case. We give an a-priori estimate of the difference between the FE-HMM and
the effective solution in Sect. 4. This estimate is based on a improved version of
the Strang-type Lemma given in [2]. To conclude this article we give a numerical
example that corroborates our theoretical findings.

Notation Let ˝ � R
d be a Lipschitz domain, with d D 2; 3. We denote by

H`.˝/ the standard Sobolev spaces and set L2.˝/ D H0.˝/ as usual. Vector valued
function spaces are denoted in bold face, e.g. we set H`.˝/ WD H`.˝/d. We denote
the corresponding scalar product and norm by .�; �/`;˝ , and k�k`;˝ respectively. The
space H.curlI˝/ consists of all L2.˝/ functions with a bounded curl. This space
is a Hilbert space with respect to the scalar product

.v;w/curl;˝ D .v;w/0;˝ C .curl v; curl w/0;˝ :

We denote by H0.curlI˝/ the closure of C10 .˝/ in H.curlI˝/. This is the
subspace of H.curlI˝/ of functions with vanishing tangential components on the
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boundary @˝ . Details about these spaces can e.g. be found in [17]. We denote
likewise periodic boundary condition. For example for the centered unit cube
Y D .�1=2; 1=2/d, we denote by Hper.curlIY/ the closure of C1per.Y/.

2 Analytic Setting

As already mentioned in the introduction, we assume that the permittivity "	 and the
inverse permeability �	 are locally periodic.

Definition 1 A tensor �	 W ˝ ! R
d�d is locally periodic if there is a tensor � W

˝ � R
d ! R

d�d, which is Y-periodic (Y D .�1=2; 1=2/d) in its second argument,
such that �	.x/ D �.x; x=	/ for almost every x 2 ˝ . We call such a function �
blueprint of �	.
In addition to the local periodicity we make from now on the following regularity
assumptions on the tensors "	 and �	:

The blueprints of "	 and �	 are symmetric and in
�

C.˝IL1per.Y/
�d�d

: (A1)

The tensors "	 and �	 are uniformly bounded and positive definite. (A2)

Assumption (A2) means that there are 0 < ˛ � ˇ such that for � 2 f"	; �	g and
almost every x 2 ˝

˛jzj2 � �.x/z � z and �.x/z � Qz � ˇjzjjQzj for all z; Qz 2 R
d: (A02)

We consider the variational formulation of (1).

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Find E	 W .0;T/! H0.curlI˝/; such that for all v 2 H0.curlI˝/
�

@tt"
	E	.t/; v

�

0;˝
C ��	 curl E	.t/; curl v�

0;˝
D �f.t/; v�

0;˝
;

E	.0/ D E0; and @tE	.0/ D E00:

(2)

This problem has a unique solution if, see e.g. [14, Chap. 3, Theorem 8.1],

E0 2 H0.curlI˝/; E00 2 L2.˝/; and f 2 L2.0;TIL2.˝//:

Note that by the choice of the space H0.curlI˝/ we use boundary conditions of a
perfect electric conductor. This means that the tangential component of E	 vanishes
at the boundary.

Homogenization Theory In [18] homogenization results for time-dependent first
order Maxwell’s equations have been proven, that answer the question how E	

behaves as 	! 0. In the case of lossless materials with no charge density, it is easy
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to rewrite this result in a second-order formulation. Similar results can be found in
[5, 13], and [15]. Let us first introduce the involved micro problems.

Definition 2 Let Y	.x/ D xC 	Y be the scaled and shifted unit cell. The first micro
problem at x 2 ˝ constrained with a given v 2 H.curlI˝/ is defined as follows.

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

Find 'v.x; �/ 2 'v
lin.x; �/C H1

per.Y	.x//, such that
Z

Y	.x/
'v.x; y/ dy D 0 and

�

"
�

x;
�
	

�

r y '
v.x; �/;r �

�

0;Y	.x/

D 0; for all � 2 H1
per.Y	.x//;

(3)

where 'v
lin.x; y/ D v.x/ � .y � x/.

Definition 3 The second micro problem at x 2 ˝ constrained with a given v 2
H.curlI˝/ is defined as follows.

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Find
�

uv.x; �/; p� 2 �uvlin CHper.curlI Y	.x//
� � H1

per.Y	.x//;

such that
R

Y	.x/
uv.x; y/ dy D 0,

R

Y	.x/
p.y/ dy D 0, and

�

�
�

x; �

	

�

curly uv.x; �/; curl z
�

0;Y	.x/

C �uv.x; �/;r q
�

0;Y	.x/
C �z;r p

�

0;Y	.x/
D 0;

for all .z; q/ 2 Hper.curlI Y	.x// � H1
per.Y	.x//;

(4)

where uv
lin.x; y/ D v.x/C 1

2
curl v.x/ � .y � x/.

Note that the first micro problem is the well-known elliptic cell problem of classical
homogenization theory posed over the shifted sampling domain Y	.x/ instead of the
unit square Y if one chooses v to be a (constant) unit vector of Rd. The second micro
problem is used less frequently and related to the first one through “dual formulas”,
see [5, Chap. 1, Remark 5.9]. We recall the following homogenization result.

Theorem 1 (cf. [18, Theorem 3.2]) Let "	 and �	 be locally periodic with
blueprints ", respectively �, which fulfill the assumptions (A1) and (A2). For 	 > 0

let E	 be the solution of the multiscale Maxwell’s equation (2). Then, as 	 ! 0,
E	 converges weakly- in L1.0;TIL2.˝// to Eeff, where Eeff is the solution of the
following effective Maxwell’s equation.

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Find Eeff W .0;T/! H0.curlI˝/; such that for all v 2 H0.curlI˝/
Seff.@ttEeff.t/; v/C Beff.Eeff.t/; v/ D .f.t/; v/0;˝ ;
Eeff.0/ D E0; and @tEeff.0/ D E00:

(5)
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The effective scalar product Seff is given by

Seff.v;w/ D
Z

˝

1
ˇ

ˇY	.x/
ˇ

ˇ

�

"
�

x;
�
	

�

r y '
v.x; �/;r y '

w.x; �/
�

0;Y	.x/

dx;

for all v;w 2 H.curlI˝/, where 'v and 'w are the solutions of the first micro
problem at x constrained with v, respectively w, see Definition 2. The effective
bilinear form Beff is given by

Beff.v;w/ D
Z

˝

1
ˇ

ˇY	.x/
ˇ

ˇ

�

�
�

x;
�
	

�

curly uv.x; �/; curly uw.x; �/
�

0;Y	.x/

dx

for all v;w 2 H.curlI˝/, where uv and uw are the solutions of the second micro
problem at x constrained with v, respectively w, see Definition 3.
We choose to give the effective scalar product and the effective bilinear form in
a non-standard version, since it reveals well the connection with our multiscale
scheme defined below.

Nevertheless, we would like to mention that Seff and Beff could also be given with
the help of an effective permittivity "eff and an effective inverse permeability �eff as

Seff.v;w/ D ."effv;w/0;˝ and Beff.v;w/ D .�eff curl v; curl w/0;˝: (6)

Explicit formulas for the effective tensors "eff and �eff in terms of the solutions of
the micro problems can e.g. be found in [5, Remark 5.8]. This rewriting process has
been shown in [9] for discretized versions of Seff and Beff, but one can follow the
lines of the given proof also in the continuous case. We mention here the involved
ideas. With the help of the “dual formulas” one can rewrite the effective equation
as effective first order Maxwell’s equations with effective electric permittivity and
effective magnetic permeability. These effective equations are simplified versions
of the ones given in [18]. The simplification originates by considering only lossless
materials. In [18] the notion of two-scale convergence [4] was applied to Maxwell’s
equation to derive the convergence result.

Note, that it is well known that "eff and �eff only vary on a macroscopic
length scale and that they are again uniformly bounded and positive definite. More
precisely, we have that (A02) holds for � 2 f"eff; �effg with the same constants ˛ and
ˇ. For the bilinear forms Seff and Beff this means, that there are 0 < �S � S and
0 < �B � B, such that

�Skvk20;˝ � Seff.v; v/; Seff.v;w/ � Skvk0;˝kwk0;˝ ;
�Bkcurl vk20;˝ � Beff.v; v/; Beff.v;w/ � Bkcurl vk0;˝kcurl wk0;˝ :

(7)



274 Marlis Hochbruck and Christian Stohrer

3 Multiscale Algorithm

As usual for FE-HMM schemes our algorithm consists of a macro and a micro
solver. For the macro solver we discretize the effective equation (5) with edge
elements from Nédélec’s first family. Let TH be a shape regular triangulation of
the computational domain ˝ into simplicial elements K. We let H be the largest
diameter of all elements K in TH . Note that H can be much larger than the
characteristic length 	 of the material. By VH � H0.curlI˝/ we denote the
corresponding finite element space, for instance consisting of edge elements. The
finite element discretization of (5) reads as follows.

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Find Eeff
H W .0;T/! VH ; such that for all vH 2 VH

Seff.@ttEeff
H .t/; vH/C Beff.Eeff

H .t/; vH/ D .f.t/; vH/;
Eeff
H .0/ D ˘HE0; and @tEeff

H .0/ D ˘HE00;

(8)

where˘H is a suitable L2-projection onto VH. Yet, this formulation can not be used
directly, since the evaluation of Seff and Beff would require the exact solution of
micro problems at every point x 2 ˝ , i.e. of infinitely many micro problems.

To overcome these issues we replace Seff and Beff by their discretized counter-
parts. In this process, two discretization steps are involved. Firstly, the outer integral
over the computational domain ˝ is replaced by a quadrature formula: In every
element K 2 TH we choose J quadrature nodes xKj and corresponding quadrature
weights !K

j , j D 1; : : : ; J. Then we approximate

Z

˝

g.x/ dx 	
X

K2TH

J
X

jD1
!K
j g.x

K
j / DW

X

K;j

!K
j g.x

K
j /:

Secondly, the micro problems are not solved analytically, but the solutions are
approximated using finite elements. Therefore, we consider microscopic triangu-
lations Th.x/ of the sampling domains Y	.x/ into simplicial elements with maximal
diameter h. Let 'v

h be the FE solution of the first micro problem (3). This means,
that 'v

h is the solution of (3), where the space H1
per.Y	.x// has been replaced with

the space Wh;per of Lagrange finite elements with periodic boundary conditions
defined over Th.x/ of a given order. Similarly, let uv

h be the FE solution of the
second micro problem (4). Here we replace additionally the space Hper.curlIY	.x//
with an edge element space Vh;per with periodic boundary conditions defined again
over Th.x/. With these notations, we can define the HMM scalar product and
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bilinear form by

SHMM
H .vH ;wH/ D

X

K;j

!K
j

jY	j
�

"
�

xKj ;
�
	

�

r y '
vH
h .x

K
j ; �/;r y '

wH
h .xKj ; �/

�

0;Y	.x
K
j /

;

BHMM
H .vH ;wH/ D

X

K;j

!K
j

jY	j
�

�
�

xKj ;
�
	

�

curly u
vH
h .x

K
j ; �/; curly uwH

h .xKj ; �/
�

0;Y	.x
K
j /

:

Remark 1 From the definition, it is obvious, that SHMM and BHMM are symmetric.
Furthermore, it can be shown, that (7) holds as well for SHMM and BHMM, if "	,
�	 are sufficiently smooth and if the quadrature formula is accurate enough, with
respect to the chosen macroscopic FE space VH . This is well known for FE-HMM,
see [1, 3] and the references therein. For the specific case of Maxwell’s equation a
detailed discussion on the regularity assumptions can be found in [9]. Regarding the
quadrature formula, we also refer to [7, Chap. 4].

Finally the FE-HMM scheme for second-order time-dependent Maxwell’s equa-
tion can be written as follows.

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Find EHMM
H W .0;T/! VH ; such that for all vH 2 VH

SHMM
H .@ttEHMM

H .t/; vH/C BHMM
H .EHMM

H .t/; vH/ D .f.t/; vH/;
EHMM
H .0/ D ˘HE0; and @tEHMM

H .0/ D ˘HE00:

(9)

Note that this FE-HMM scheme leads to a system of second-order ordinary
differential equations.

For the full discretization, an appropriate time integration method has to be
applied, e.g. the leap-frog or the Crank-Nicolson scheme. We refer to [8] for an
error analysis for second-order Maxwell’s equation for these two methods.

4 Error Analysis

FE-HMM schemes can be seen as non-conforming FE methods, since the true
effective and the HMM bilinear form differ from each other. In [9] the FE-HMM for
time harmonic Maxwell’s equation was analyzed using the notion of T-coercivity.
Since we now consider a hyperbolic time-dependent PDE we can no longer use this
theory. However, the present situation is closely related to the one in [2], where
a FE-HMM scheme for the scalar valued acoustic wave equation was introduced.
There, a Strang-type lemma for wave equations was proven, where only the bilinear
forms, but not the involved scalar products may differ from each other. Here we
generalize it, such that it is applicable to our FE-HMM scheme.
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Let V � H � H0 � V 0 be a Gelfand triple of Hilbert spaces and W � V be a
closed subset. We consider the following problem.

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Find u W .0;T/! W; such that for all w 2 W

S
�

@ttu.t/;w
�C B

�

u.t/;w
� D ˝ f .t/;w˛;

u.0/ D u0; and @tu.0/ D u00;

(10)

where S;B W W �W ! R are symmetric bilinear forms. S and B are assumed to be
H-coercive and V-coercive, respectively, i.e., there are constants 0 < � �  with

S.v; v/ � �kvk2H ; S.v;w/ � kvkHkwkH ; (11a)

B.v; v/ � �kvk2V ; B.v;w/ � kvkVkwkV ; (11b)

for all v;w 2 W. We denote the norms of bilinear forms by

kBkV WD sup
v;w2Wnf0g

jB.v;w/j
kvkVkwkV ; kSkH WD sup

v;w2Wnf0g
jS.v;w/j
kvkHkwkH :

In the following, we will drop the explicit indication of the time dependence
whenever possible, for better readability. Additionally, for the energy norm we use
the abbreviation

kvkE.H;V/ D k@tvkL1.0;TIH/ C kvkL1.0;TIV/ for v 2 V:

Theorem 2 (Strang-Type Lemma for Second-Order Hyperbolic Equations)
Let S; QS;B; QB W W � W ! R be symmetric bilinear forms satisfying (11a) and
(11b), respectively. For given f W Œ0;T� ! V 0 and u0; u00 2 W, let u be the solution
of (10). Furthermore, let Qu be the solution of (10) with S and B being replaced by QS
and QB, respectively. If @rt u; @rt Qu 2 C.0;TIV/ for r 2 f0; 1; 2g, then there is a constant
C (depending on T and @rt u for r 2 f0; 1; 2g) such that

ku � QukE.H;V/ � C
�kS � QSkH C kB � QBkV

�

:

Proof The proof consists of three steps. The key idea is to consider the projection
Ou.t/ 2 W of u.t/ given by

QB�Ou.t/;w� D B
�

u.t/;w
�

for all w 2 W (12)

and splitting the error into

e WD u � Qu D OeC Qe; where Oe WD u� Ou and Qe WD Ou � Qu: (13)



FE-HMM for Time-Dependent Maxwell’s Equations 277

(a) Due to the continuous embedding of H1.0;TIV/ into the Bochner space
C.Œ0;T�IV/, see e.g. [10, Sect. 5.9.2], we have for v 2 H1.0;TIV/

kvkL1.0;TIV/ � C
�kvkL2.0;TIV/ C k@tvkL2.0;TIV/

�

: (14)

Using (14) for v D Oe and v D @t Oe, respectively, we obtain

kekE.H;V/ � C
�kOekL2.0;TIV/ C k@t OekL2.0;TIV/ C k@2t OekL2.0;TIV/

�C kQekE.H;V/:

It remains to bound Oe and Qe defined in (13).
(b) To bound Oe one can follow the lines of the first paragraph of the proof of [2,

Lemma 4.4]

k@rt OekL2.0;TIV/ � CkB � QBkVk@rt ukL2.0;TIV/; r D 0; 1; 2:

(c) Bounding Qe is motivated by the second part of the proof of [2, Lemma 4.4].
However, here we have to deal with the different scalar products S and QS. From
the definitions of the projection Ou in (12) and Qe in (13) we obtain

QS.@2t Qe;w/C QB.Qe;w/ D QS.@2t Ou;w/ � S.@2t u;w/ for all w 2 W:

Setting w D @t Qe yields

1

2

d

dt

�QS.@t Qe; @t Qe/C QB.Qe; Qe/
�

D .QS � S/.@2t u; @t Qe/� QS.@2t Oe; @t Qe/:

By (11), we conclude

�

2

d

dt

�k@t Qek2H C kQek2V
� � �kS � QSkHk@2t ukH Ck@2t OekH

�k@t QekH :

Using the abbreviations

� D k@t Qek2H C kQek2V and � D kS � QSkHk@2t ukH Ck@2t OekH ;

we find by applying Young’s inequality

�

2

d

dt
�.t/ � �.t/k@t Qe.t/kH � 1

2

�

�2.t/C �.t/�:

Gronwall’s lemma yields for 0 � t � T

�.t/ � eT=�
�

�.0/C
Z t

0

�2.s/ ds
�

: (15)
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The initial conditions of (10) imply Qe.0/ D �Oe.0/ and @t Qe.0/ D �@t Oe.0/. Using
again that H1.0;TIV/ is continuously embedded in C.Œ0;T�IV/ we have

�.0/ � Ck@t Oek2L1.0;TIV/ C kOek2L1.0;TIV/:

Inserting the definition of �, taking square roots of the inequality (15), consid-
ering the supremum over t 2 Œ0;T�, and using the bound (14) for v D Oe and
v D @t Oe, proves the desired bound. ut

Our next goal is to apply Theorem 2 to FE-HMM. To get more insight in the
following a-priori error bound, we will split it into macro and HMM error. To this
end we approximate the effective scalar product and the effective bilinear form,
c.f. (6), using numerical integration. For vH;wH 2 VH we set

Seff
H .vH ;wH/ D

X

K;j

!K
j "

eff.xKj /vH.x
K
j / � wH.x

K
j /;

Beff
H .vH ;wH/ D

X

K;j

!K
j �

eff.xKj / curl vH.x
K
j / � curl wH.x

K
j /;

and define

�Smac D kSeff � Seff
H kL2.˝/; �Bmac D kBeff � Beff

H kH.curlI˝/;
�SHMM D kSeff

H � SHMM
H kL2.˝/; �BHMM D kBeff

H � BHMM
H kH.curlI˝/:

Corollary 1 As above, let Eeff, Eeff
H , and EHMM

H be the solution of (5), (8), and (9),
respectively. Suppose that @rtE

eff
H ; @

r
tE

HMM
H 2 C.0;TIH0.curlI˝// for r 2 f0; 1; 2g.

If "	, �	 are sufficiently smooth and if the quadrature formulas are accurate enough,
then

�

�Eeff � EHMM
H

�

�

E.L2.˝/;H.curlI˝// �
�

�Eeff � Eeff
H

�

�

E.L2.˝/;H.curlI˝// (16)

C C.�Smac C�Bmac C�SHMM C�BHMM/:

Proof We only have to bound kEeff
H � EHMM

H kE.L2.˝/;H.curlI˝// due to the triangle

inequality. For this we can apply Theorem 2 with H D L2.˝/, V D H0.curlI˝/,
andW D VH . Since the bilinear formsBeff and BHMM

H are notW-elliptic, we consider
the following modified bilinear forms

B.�; �/ D Beff.�; �/C �S
2
.�; �/0;˝; QB.�; �/ D BHMM

H .�; �/C �S
2
.�; �/0;˝;

S.�; �/ D Seff.�; �/ � �S
2
.�; �/0;˝ ; QS.�; �/ D SHMM

H .�; �/� �S
2
.�; �/0;˝ :
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The coercivity of B, S, QB and QS follows from (7) and Remark 1. Moreover,
assumption (11) holds with � D minf�B; �S=2g and  D �S=2 C maxfB; Sg.
With these choices we get from Theorem 2

�

�Eeff
H � EHMM

H

�

�

E.L2.˝/;H.curlI˝// � C
�kS � QSkL2.˝/ C kB � QBkH.curlI˝/

�

D C
�kSeff � Seff

H kL2.˝/ C kBeff � Beff
H kH.curlI˝/

�

� C
�

�Smac C�Bmac C�SHMM C�BHMM
�

:

ut
The first term on the right hand side of (16) can be bounded by standard FE theory.
E.g. for VH being chosen as lowest order H.curlI˝/-conforming edge element
from Nédélec’s first family, we have under appropriate regularity conditions, see
[16, Theorem 3.1],

�

�Eeff � Eeff
H

�

�

E.L2.˝/;H.curlI˝// � C
��

�E00 �˘HE00/
�

�

0;˝
C ��E0 �˘HE0

�

�

curl;˝ C H
�

:

(17)

Convergence rates for the differences in the scalar products and bilinear forms in
terms of H and h can be found in [9].

5 Numerical Example

We present a first simple numerical example corroborating our analytical results.
More involved examples will presented in a forthcoming publication. Let TH be
a triangulation of the computational domain ˝ D Œ0; 1�2 into uniform meshes of
different mesh sizes H. Furthermore, define the function g	 by

g	.x/ D p2C sin
�

2�
x

	

�

and let the electric permittivity and the inverse magnetic permeability be given by

"	.x1; x2/ D g	.x1/g	.x2/p
2

; �	.x1; x2/ D 2

g	.x1/g	.x2/
;

with 	 D 2�8 	 0:004. For this particular case the effective parameters can be
computed analytically and one finds "eff D �eff D 1. We choose the source term

f .tI x1; x2/ D
 

��2 sin.��t/ cos.�x1/ sin.�x2/
�2 sin.�t/ sin.�x1/ cos.�x2/

!

;
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Fig. 1 Maximal difference between the effective and the FE-HMM solution, computed with first
order elements. As expected we retrieve first order convergence. The experiment was conducted
with FreeFem++ [11]

such that the solution of the effective Maxwell’s equation (5) is given by

Eeff.tI x1; x2/ D
 

� sin.�t/ cos.�x1/ sin.�x2/
sin.��t/ sin.�x1/ cos.�x2/

!

:

We discretize using lowest order H.curlI˝/-conforming edge element from
Nédélec’s first family for the macro solver. For the micro solver we use Lagrange
and edge elements of order one. For this particular choice it is shown in [9, Sect. 5]
that we have

�Smac D �Bmac D 0 and �SHMM; �BHMM � C
�h

	

�2

;

where C is independent of h and 	.
In Fig. 1 we show the maximal H.curlI˝/-error between Eeff and EHMM

H for
various values of H. If r D H1=H2 denotes the refinement factor between two
macro meshes TH1 and TH2 , then we use

p
r as the refinement factor between the

corresponding micro meshes. This simultaneous refinement strategy accounts for
the different convergence orders (1 for the macro and 2 for the micro solver). As
expected from the theoretical consideration above, we see that the proposed FE-
HMM scheme (9) converges linearly for the above choices of the finite element
spaces.
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Computational Aspects of a Time Evolution
Scheme for Incompressible Boussinesq
Navier-Stokes in a Cylinder

Damián Castaño, María Cruz Navarro, and Henar Herrero

Abstract In this work we show some computational aspects of the implementation
of a three dimensional spectral time evolution scheme for incompressible Boussi-
nesq Navier-Stokes including rotation effects in a cylinder with a primitive variable
formulation. The scheme is a second-order time-splitting method combined with
pseudo-spectral Fourier Chebyshev in space. To deal with the singularity at the
origin a radial expansion is considered in the diameter of the cylinder. The order
expansion in the radial coordinate gets doubled. We develop a matrix processing that
combines the use of the parity of the fields and the discretization functions to cancel
half of the terms in the matrix reducing the radial dimension to the original one.

1 Introduction

Incompressible Boussinesq Navier-Stokes partial differential equations are of great
interest to model fluid dynamics problems related with phenomena in nature or
industrial processes [1, 7, 8, 20, 21]. The inclusion of the Coriolis force is relevant
for most of the atmospheric events [9, 15].

The usual approach to solve these problems is numerical. Depending on the
interest of the particular problem some numerical methods for solving partial
differential equations are more adequate. Spectral methods have been proved to be
very efficient for this task [3, 16, 18]. The method considered in this paper includes
several ingredients from different works. The time splitting second order in time
method was proposed by Hugues and Randriamampianina [14] and constitutes an

D. Castaño (�)
Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Universidad de
Castilla-La Mancha, 13071 Ciudad Real, Spain

IMACI, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
e-mail: Damian.Castano@uclm.es

M. Cruz Navarro • H. Herrero
IMACI, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
e-mail: MariaCruz.Navarro@uclm.es; Henar.Herrero@uclm.es

© Springer International Publishing AG 2017
M.L. Bittencourt et al. (eds.), Spectral and High Order Methods for Partial
Differential Equations ICOSAHOM 2016, Lecture Notes in Computational
Science and Engineering 119, DOI 10.1007/978-3-319-65870-4_19

283

mailto:Damian.Castano@uclm.es
mailto:MariaCruz.Navarro@uclm.es
mailto:Henar.Herrero@uclm.es


284 D. Castaño et al.

improvement on the projection scheme proposed by Goda [11] and implemented
by Gresho [12] in finite element approximations. The fractional steps consist of a
predictor for the pressure, derived from the Navier-Stokes equations, a predictor
for an intermediate velocity field obtained from the momentum equation by
using the predicted pressure and a final projection step with a explicit evaluation
of the divergence-free velocity field [16]. This scheme has been used by the
authors to describe the generation of time dependent vertical vortices in cylindrical
domains [4–6].

In order to avoid the singularity and the clustering at the origin a radial expansion
in the diameter of the cylinder that doubles the dimension is considered, as proposed
in [10, 18, 22]. We develop a matrix processing that combines the use of the parity
of the fields and the discretization functions to cancel half of the terms in the matrix
reducing the radial dimension to the original one.

The paper is organized as follows. Section 2 presents the mathematical formu-
lation of the problem in a dimensionless form. Section 3 describes the numerical
implementation including computational aspects and validation. Finally, in Sect. 4,
conclusions are presented.

2 Formulation of the Problem

The physical setup consists of a horizontal fluid layer in a cylindrical container
of radius � (r coordinate) and height 1 (z coordinate) in a rotating frame with a
constant rotation rate ˝ . At z D 0 the imposed temperature has a Gaussian profile
which takes the value Tmax at r D 0 and the value Tmin at the outer part (r D � ).
The upper surface is at temperature T D T0. We define 4Tv D Tmax � T0, 4Th D
Tmax � Tmin and ı D 4Th=4Tv.

In the governing equations, u D .ur; u�; uz/ is the velocity field, T is the
temperature, p is the pressure, r is the radial coordinate, and t is the time. They
are expressed in dimensionless form. The domain in .r; �; z/ coordinates is D D
Œ0; � � � Œ0; 1� � Œ0; 2��.

The non-dimensional equations for Boussinesq convection with rotation are,

r � u D 0; (1)

@tT C u � rT D r2T; (2)

@tuC .u � r/ u D Pr

�

�rpCr2uC RTez � 2
E
ez � u

�

; (3)

where the operators and fields are expressed in cylindrical coordinates. Here ez is
the unit vector in the z direction. The following dimensionless numbers have been
introduced: the Prandtl number Pr which describes the ratio of the viscous terms
to the thermal diffusivity, the Ekman number E which compares the viscous terms
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to the Coriolis term, and the Rayleigh number R, that characterizes the buoyancy
forcing.

At r D � , a rigid insulating wall is considered,

ur D u� D uz D @rT D 0; on r D �: (4)

On the top surface slip boundary conditions are considered, and the temperature is
T D T0, that after rescaling become,

@zur D @zu� D uz D T D 0; on z D 1; (5)

and at the bottom slip boundary conditions are also considered

@zur D @zu� D uz D 0; on z D 0: (6)

For temperature at the bottom, a Gaussian profile is imposed as in [17, 19],

T D 1 � ı.e. 1ˇ /2 � e.
1
ˇ�. r

� /
2 1
ˇ /
2

/=.e.
1
ˇ /
2 � 1/ on z D 0: (7)

3 Numerical Method

The code presented here is inspired by the work of Mercader in [18], which is
based on a time-stepping method. It considers for the temporal discretization, a
second-order semi-implicit scheme, and a pseudospectral approximation for the
space variables. The primitive variable formulation described in [13] is used in this
code. The boundary conditions are compatible with the restriction in [18].

3.1 Temporal Discretization and Projection Scheme

The temporal scheme consists of the second order combination of Adams-Bashforth
and backward differentiation formula (AB/BDF) stiffly stable scheme for time
evolution used by Karniadakis in [16]. Equations are as follows

r � unC1 D 0; (8)

3unC1 � 4un C un�1
2�t

D �2NL.un/C NL.un�1/C Pr.�rpnC1 Cr2unC1 C R�nC1ez/;

(9)

3�nC1 � 4�n C�n�1
2�t

D �2NL.un; �n/C NL.un�1; �n�1/Cr2�nC1; (10)
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where the superindex indicates the time step and NL are the nonlinear terms,

NL.u; �/ D ur@r� C 1

r
u�@�� C uz@z�; (11)

NL.u/ D ur@ruC 1

r
u�@�uC uz@zu; (12)

The fractional steps consist of a predictor for the pressure, which is obtained
directly from the Navier-Stokes equations with the Neumann boundary conditions;
a predictor for an intermediate velocity field obtained from the momentum equation,
which takes into account the predictor for the pressure obtained from the previous
time, and a projection step with an explicit evaluation of the final divergence-free
velocity field [16, 18].

3.2 Spatial Discretization

The velocity, temperature and pressure fields are written in cylindrical coordinates
.r; �; z/. The dependence of the azimuthal component of the velocity is solved using
Fourier expansions

u.r; �; z/ D
n�=2�1
X

kD�n�=2
Fk.r; z/e

ik� : (13)

If the coefficients Fk.r; z/ come from a field which is real, they satisfy the following
conditions

F0.r; z/ D f0.r; z/ 2 R; (14)

F�n�=2.r; z/ D f�n�=2.r; z/ 2 R; (15)

F�k.r; z/ D NFk.r; z/; (16)

where the overbar means complex conjugate and the lowercase letter refers to real
field. These conditions allow to know the entire field only with half of the Fourier
coefficients and the F�n�=2 coefficient. In our calculations, as the field is real, we
compute the coefficients k D 0; 1; : : : ; n�=2�1;�n�=2, and we obtain the complete
field by using the condition (16),

Each Fourier coefficient is expanded by a Chebyshev collocation method, using
Chebyshev polynomials and evaluating them in the Gauss-Lobatto collocation
points

Fk.r; z/ D
2nrC1
X

lD0

nz
X

nD0
flnTl.r/Tn.z/; (17)
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The radial expansions are considered in the diameter of the cylinder, i.e., r 2
Œ��; � �. A transformation from the domain Œ��; � � � Œ0; 1� � Œ0; 2�� to Œ�1; 1� �
Œ�1; 1� � Œ0; 2�� is required due to the Chebyshev collocation implementation. We
assume a radial Chebyshev expansion in 2nr C 2 polynomials. We introduce the
expansion into equations and evaluate them in .0; � � at nrC1Chebyshev collocation
points (rj D � cos.�j=.2nrC1// for j D 0; : : : ; nrC1) at each fixed angle. We take
half of the points due to the symmetry properties of the Chebyshev polynomials
as will be proven next. With this radial expansion, the singularity at the origin
is avoided by ensuring that r D 0 is not a collocation point and preventing also
the excessive clustering of points near the center [10]. This technique is known as
unshifted Chebyshev polynomials of appropriate parity [2] and it has already been
used in [18].

3.3 Computational Aspects

The fields uz, p and � are even, i.e., u.r; �; z/ D u.�r; � C �; z/, and ur and u�
are odd fields, i.e., u.r; �; z/ D �u.�r; � C �; z/. For even fields, the parity follows
the Fourier mode (k D 0 is even, k D 1 is odd, etc.) and for odd fields, the parity
changes (k D 0 is odd, k D 1 is even, etc.). Each field expands as follows:

u.r; �; z/ D
n�=2�1
X

kD�n�=2
Fk.r; z/e

ik�; where Fk.r; z/ D
nz
X

jD0

2nrC1
X

iD0
akijTi.r/Tj.z/:

The radial derivatives are treated in a special way, being calculated by using
a matrix multiplication method. Instead of using a single .2nr C 2/ � .2nr C 2/

Chebyshev differentiation matrix, two different matrices of dimension .nr C 1/ �
.nr C 1/ are built, one for functions of odd parity (even Fourier coefficients of ur
and u� , and odd Fourier coefficients of uz, p and T), and another one for functions of
even parity (odd Fourier coefficients of ur and u� , and even Fourier coefficients of
uz, p and T). In order to apply properly this method, we must take into account that
the radial derivative of an even field is an odd field and vice versa, and therefore we
must apply the appropriate derivation matrix depending on whether the field which
is going to be derived is an even field or an odd field. This is proven in the following
theorem.

Theorem 1 Consider a field u in the discrete Fourier and Chebyshev space Cn� �
C
2nrC2 � C

nzC1. For even k, and an even field u the even columns of the inverse
Chebyshev transformation matrix are null; if the field u is odd the odd columns of
the inverse Chebyshev transformation matrix are null. For odd k, and an even field
u the odd columns of the inverse Chebyshev transformation matrix are null; if the
field u is odd the even columns of the inverse Chebyshev transformation matrix are
null.
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Proof For a fixed .ri; zj/ and even k, Fk.ri; zj/ can be written as follows in matrix
notation,

Fk.ri; zj/ D
�

T0.zj/ : : : Tnz.zj/
�

0

B

B

B

B

@

ak0;0 ak1;0 : : : a
k
2nrC1;0

ak0;1 ak1;1 : : : a
k
2nrC1;1

:::
:::
: : :

:::

ak0;nz a
k
1;nz

: : : ak2nrC1;nz

1

C

C

C

C

A

0

B

B

B

B

@

T0.ri/
T1.ri/
:::

T2nrC1.ri/

1

C

C

C

C

A

If we name Ak the previous central matrix that is the inverse Chebyshev
transformation, then we can write in matrix form all the values Fk.ri; zj/, i D
0; 1; ::; 2nr C 1, j D 0; : : : ; nz,

Tz � Ak � Trc D

0

B

B

@

Fk.r0; z0/ Fk.r1; z0/ : : : Fk.r2nrC1; z0/
:::

:::
: : :

:::

Fk.r0; znz/ Fk.r1; znz/ : : : Fk.r2nrC1; znz/

1

C

C

A

where Tz and Trc are the following matrices

Tz D

0

B

B

@

T0.z0/ : : : Tnz.z0/
:::

: : :
:::

T0.znz/ : : : Tnz.znz/

1

C

C

A

; Trc D

0

B

B

@

T0.r0/ : : : T0.r2nrC1/
:::

: : :
:::

T2nrC1.r0/ : : : T2nrC1.r2nrC1/

1

C

C

A

:

We are only interested in r 2 .0; 1�, and by symmetry, rj and r2nrC1�j ( j D
0; 1; : : : ; nr) are symmetrical points relative to the axis. If we name

Tr D

0

B

B

@

T0.rnrC1/ : : : T0.r2nrC1/
:::

: : :
:::

T2nrC1.rnrC1/ : : : T2nrC1.r2nrC1/

1

C

C

A

; TNr D

0

B

B

@

T0.rnr/ : : : T0.r0/
:::

: : :
:::

T2nrC1.rnr/ : : : T2nrC1.r0/

1

C

C

A

;

we obtain

Tz � Ak � Tr D

0

B

B

@

Fk.rnrC1; z0/ : : : Fk.r2nrC1; z0/
:::

: : :
:::

Fk.rnrC1; znz/ : : : Fk.r2nrC1; znz/

1

C

C

A

and

Tz � Ak � Tr D

0

B

B

@

Fk.rnr ; z0/ : : : Fk.r0; z0/
:::

: : :
:::

Fk.rnr ; znz/ : : : Fk.r0; znz/

1

C

C

A

:



Computational Aspects of a Spectral Time Evolution Scheme 289

Taking into account the symmetry of the fields and the fact that Chebyshev
polynomials with even subscript are even (Tk.r/ D Tk.�r/, if k is even), and with
odd subscript are odd (Tk.r/ D �Tk.�r/, if k is odd), we conclude

• For even fields, Tz �Ak �Tr D Tz �Ak �TNr. As Tz is a regular matrix. By multiplying
by T�1z to the left at both sides of the equality we get Ak � Tr D Ak � TNr. Therefore
Ak � .Tr � TNr/ D 0.

• For odd fields, Tz � Ak � Tr D �Tz � Ak � TNr . By multiplying by T�1z to the left at
both sides of the equality we get Ak � Tr D �Ak � TNr. Therefore Ak � .TrCTNr/ D 0.

For an even field, if we separate the product by columns we obtain A.vi�wi/ D 0
for i D 1; : : : nrC1, where vi is the i-column of Tr and wi is the i-column of TNr, and
vi�wi ¤ 0. Let’s name Or the corresponding symmetrical value of r in [-1,0). Taking
into account the parity of the Chebyshev polynomials as explained before, we obtain

Ak �

0

B

B

B

B

@

T0.ri/ � T0. Ori/
T1.ri/ � T1. Ori/

:::

T2nrC1.ri/ � T2nrC1. Ori/

1

C

C

C

C

A

D Ak �

0

B

B

B

B

@

0

2T1.ri/
:::

2T2nrC1.ri/

1

C

C

C

C

A

D 0:

Therefore, ak1; jT1.ri/ C ak3; jT3.ri/ C : : : C ak2nrC1; jT.ri/ D 0 for j D 0; ::; nz and
ri 2 .0; 1�; i D 0; ::; nr, The matrices of these homogeneous systems are regular,
consequently the solution is zero, i.e. aki; j D 0, i D 1; 3 : : : ; 2nr C 1, j D 0; : : : ; nz.
This means that for an even field, the matrix Ak will have the form,

Ae0
k D

0

B

B

B

B

@

ak0;0 0 ak2;0 0 : : : 0 ak2nr ;0 0
ak0;1 0 ak2;1 0 : : : 0 ak2nr ;1 0
:::
:::

:::
:::
: : :

:::
:::

:::

ak0;nz 0 a
k
2;nz

0 : : : 0 ak2nr ;nz 0

1

C

C

C

C

A

In a similar way, if the field is odd, the matrix Ak will be

Ao0
k D

0

B

B

B

B

@

0 ak1;0 0 : : : 0 ak2nrC1;0
0 ak1;1 0 : : : 0 ak2nrC1;1
:::

:::
:::
: : :

:::
:::

0 ak1;nz 0 : : : 0 ak2nrC1;nz

1

C

C

C

C

A

The proof is analogous for odd k, with the roles of the matrices interchanged, for
even fields the matrix is Ao0

k and for odd fields the matrix is Ae0
k . ut

Corollary 1 In the Fourier Chebyshev transformations of theorem 1, given the
matrix Te

r with the even Chebyshev polynomials evaluated in ri 2 .0; 1�, i D
0; : : : ; nr by rows, i.e., the even rows of Tr, and Ae

k the matrix Ae0
k eliminating the
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null columns, the transformation Tz � Ae
k � Te

r should be used for an even field in the
case of an even k and for an odd field in the case of an odd k. Given the matrix To

r
with the odd Chebyshev polynomials evaluated in ri 2 .0; 1�, i D 0; : : : ; nr by rows,
that is, the odd rows of Tr, and Ao

k the matrix A
o0
k eliminating the null columns, the

transformation Tz � Ao
k � To

r should be used for an even field in the case of odd k and
for an odd field in the case of an even k.

Proof For even k and taking into account the null columns in matrices Ae0
k and Ao0

k ,
it is straightforward that Tz � Ae0

k � Tr D Tz � Ae
k � Te

r , in the case of an even field, and
Tz � Ao0

k � Tr D Tz � Ao
k � To

r , in the case of an odd field.
For odd k and taking into account the null columns in matrices Ae0

k and Ao0
k , it

is straightforward that Tz � Ao0
k � Tr D Tz � Ao

k � To
r , in the case of an even field, and

Tz � Ae0
k � Tr D Tz � Ae

k � Te
r , in the case of an odd field. ut

Corollary 2 In the Fourier Chebyshev transformations of theorem 1 and corollary
1, given dzTz the matrix that results from derivating each term of Tz with respect to
z, the derivative with respect to z of a field is built with the product dzTz � Ae

k � Te
r in

the case of an even k for an even field and in the case of an odd k for an odd field,
or with the product Tz � Ao

k � To
r in the case of an odd k for an even field and in the

case of an even k for an odd field.

Proof For even k even and taking into account the null columns in matrices Ae0
k and

Ao0
k , it is straightforward that dzTz � Ae0

k � Tr D dzTz � Ae
k � Te

r , in the case of an even
field, and dzTz � Ao0

k � Tr D dzTz � Ao
k � To

r , in the case of an odd field.
For odd k and taking into account the null columns in matrices Ae0

k and Ao0
k , it is

straightforward that dzTz � Ao0
k � Tr D dzTz � Ao

k � To
r , in the case of an even field, and

dzTz � Ae0
k � Tr D dzTz � Ae

k � Te
r , in the case of an odd field. ut

Corollary 3 In the Fourier Chebyshev transformations of theorem 1 and corollar-
ies 1 and 2, given drTr, drTo

r and drTe
r the matrices that result from derivating each

term of Tr, To
r and Te

r with respect to r, the derivative with respect to r of a field is
built with the product Tz � Ae

k � drTe
r in the case of an even k for an even field and in

the case of an odd k for an odd field or with the product Tz � Ao
k � drTo

r in the case of
an odd k for an even field and in the case of an even k for an odd field.

Proof For even k and taking into account the null columns in matrices Ae0
k and Ao0

k ,
it is straightforward that Tz � Ae0

k � drTr D Tz � Ae
k � drTe

r , in the case of an even field,
and Tz � Ao0

k � drTr D Tz � Ao
k � drTo

r , in the case of an odd field.
For odd k and taking into account the null columns in matrices Ae0

k and Ao0
k , it is

straightforward that Tz � Ao0
k � drTr D Tz � Ao

k � drTo
r , in the case of an even field, and

Tz � Ae0
k � drTr D Tz � Ae

k � drTe
r , in the case of an odd field. ut

Remark 1 The elimination of half of the columns in the inverse Chebyshev
transformation matrix leads to the original dimension of the radial expansion.

Remark 2 Note that when a field is differentiated once with respect to r the parity
changes, therefore the previous theorem and corollaries should be applied properly
in the case of successive derivatives.
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4 Conclusions

In this paper we have shown some computational aspects of the implementation of
a three dimensional spectral time evolution scheme for incompressible Boussinesq
Navier-Stokes including rotation effects in a cylinder with a primitive variable
formulation. The scheme is a second-order time-splitting method combined with
pseudo-spectral Fourier Chebyshev in space. To deal with the singularity at the
origin a radial expansion has been considered in the diameter of the cylinder. The
order expansion in the radial coordinate gets doubled. We have developed a matrix
processing that combines the use of the parity of the fields and the discretization
functions to cancel half of the terms in the matrix reducing the radial dimension to
the original one.

Acknowledgements This work was partially supported by the Research Grant GI20163529
(UCLM) and MTM2015-68818-R MINECO (Spanish Government), which includes RDEF funds.

References

1. C.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge,
1967)

2. J. Boyd, Chebyshev and Fourier Spectral Methods (Dover, New York, 2001)
3. C. Canuto, M.Y. Hussain, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics

(Springer, Berlin, 1988)
4. D. Castaño, M.C. Navarro, H. Herrero, Secondary whirls in thermoconvective vortices

developed in a cylindrical annulus locally heated from below. Commun. Nonlinear Sci. Numer.
Simul. 28(1–3), 201–209 (2015)

5. D. Castaño, M.C. Navarro, H. Herrero, Evolution of secondary whirls in thermoconvective
vortices: strengthening, weakening and disappearance in the route to chaos. Phys. Rev. E
(2016). doi:10.1103/PhysRevE.93.013117

6. D. Castaño, M.C. Navarro, H. Herrero, Double vortices and single-eyed vortices in a rotating
cylinder non-homogeneously heated. Comp. and Math. with Appl. 73, 2238–2257 (2017)

7. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover Publications,
New York, 1981)

8. R. Chokri, B. Brahim, Three-dimensional natural convection of molten Lithium in a differen-
tially heated rotating cubic cavity about a vertical ridge. Powder Technol. 291, 97–109 (2006)

9. K.A. Emanuel, Divine Wind (Oxford University Press, Oxford, 2005)
10. B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge University Press,

Cambridge, 1998)
11. K. Goda, A multistep technique with implicit difference schemes for calculating two- and

three-dimensional cavity flows. J. Comput. Phys. 30, 76–95 (1979)
12. P. Gresho, On the theory of semi-implicit projection methods for viscous incompressible flow

and its implementation via finite element method that also introduces a nearly consistent mass
matrix. Int. J. Numer. Meths. Fluids 11, 587–620 (1990)

13. H. Herrero, A.M. Mancho, On pressure boundary conditions for thermoconvective problems.
Int. J. Numer. Methods Fluids 39, 391–402 (2002)

14. S. Hugues, A. Randriamampianina, An improved projection scheme applied to pseudospectral
methods for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 28,
501–521 (1998)



292 D. Castaño et al.

15. C.L. Jordan, Marked changes in the characteristics of the eye of intense typhoons between the
deeping and filling stages. J. Meteorol. 18, 779–789 (1961)

16. G.E. Karniadakis, M. Israeli, S.A. Orsaq, High order splitting methods for the incompressible
Navier-Stokes equations. J. Comput. Phys. 97, 414–443 (1991)

17. A.M. Mancho, H. Herrero, J. Burguete, Primary instabilities in convective cells due to
nouniform heating. Phys. Rev. E 56, 2916–2923 (1997)

18. I. Mercader, O. Batiste, A. Alonso, An efficient spectral code for incompressible flows in
cylindrical geometries. Comput. Fluids 39, 215–224 (2010)

19. M.C. Navarro, A.M. Mancho, H. Herrero, Instabilities in Buoyant flows under localized
heating. Chaos Interdisciplinary J. Nonlinear Sci. 17, 023105-1-12 (2007)

20. Lord Rayleigh, on convective currents in a horizontal layer of fluid when the temperature is on
the under side. Phil. Mag. 32, 529–46 (1916)

21. P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30, 1599–1619 (1973)
22. L.N. Trefethen, Spectral Methods in Matlab (SIAM, Philadelfia, 2000)



High Order Compact Mimetic Differences
and Discrete Energy Decay in 2D Wave Motions

Jose E. Castillo and Guillermo Miranda

Abstract Mimetic difference operators Div, Grad and Curl, have been constructed
to provide a high order of accuracy in numerical schemes that mimic the properties
of their corresponding continuum operators; hence they would be faithful to the
physics. However, this faithfulness of the discrete basic operators might not be
sufficient if the numerical difference scheme introduces some numerical energy
increase, which would obviously result in a potentially unstable performance. We
present a high order compact mimetic scheme for 2D wave motions and show that
the energy of the system is also conserved in the discrete sense.

1 Introduction

A numerical model must incorporate proper physics in order to deliver acceptable
numerical results. However, the numerical scheme that is used to solve the
Partial Differential Equations (PDEs) also has a major impact on the quality of
the results [8, 10]. Difference schemes have different requirements and both the
accuracy and the performance of a model will vary based on the discretization
scheme used. The majority of equations describing physical phenomena are written
using the first order invariant operators: Gradient, divergence, and curl. Mimetic
discrete operators are derived by constructing discrete analogs of these continuum
differential operators. These discrete operators are used to build a discrete analogue
of the equation modeling the physical problem. Because the discrete operators
mimic the continuum ones by satisfying the same properties, in the discrete sense,
numerical schemes based on these operators are more faithful to the physics of the
problem under investigation. Castillo and Grone [4] have developed a methodology
to construct mimetic operators, known as (CGM) operators that have the same
order of approximation in the interior of the domain as at the boundary. CGM
operators have been used in many applications, such as wave propagation, seismic
studies, electrodynamics, and image processing, [2, 4, 6, 11, 12], with a very high
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rate of success, making the schemes based on these operators competitive with the
established ones.

High-order methods are becoming more important for many applications where
greater accuracy is needed than provided by conventional second-order methods.
Compact finite differences allows the implementation of high-order finite differ-
ences using the shortest stencil [9]. Carpenter [3] has worked on stability for
compact finite differences including boundary conditions. In [1], Abouali and
Castillo presented an approach to implement high-order mimetic finite differences in
a compact way so the stencils are kept at a minimum length. Cordova et al. [7] have
implemented compact mimetic schemes for the acoustic wave equation comparing
them to the compact finite difference schemes. We present a high order compact
mimetic scheme for 2D wave motions and show that the energy of the system is
also conserved in the discrete sense. The present scheme deviates from the standard
derivation sequence, namely, discrete - continuous - discrete, since while keeping
the original media discrete decomposition, for the time behavior, it is combined
with the discrete analog of the continuous term div grad u used to account for the
variation in space of the internal forces under consideration. Here, we look at the
energy conservation of the mimetic methods for a model problem.

This paper is organized as follows: First, we give a brief description of mimetic
finite difference operators and present their matrix representation in 1D as well as
the formulas for extension to 2D using Kronecker products [4, 5]. It is followed
by the compact form of the operators for a fourth order divergence and gradient
mimetic operators. In Sect. 3, we present a model problem where the energy is
conserved. In Sect. 4, we show that the energy is also conserved in the discrete sense
when we used the CGM operators.

2 Compact Finite Difference Schemes

2.1 Mimetic Difference Operators

Mimetic discretization operators are discrete analogs of gradient G and divergence
D, plus an auxiliary boundary operator B, which satisfies a discrete version of the
Green–Stokes–Gauss theorem:

hDv; uiQ C hv;GuiP D hBv; uiI : (2.1)

Weighted inner products on above expression (2.1) are defined in the standard form,

hx; yiA D ytAx: (2.2)

As it is known, in the one-dimensional case, the discrete divergence will act on the
v-values defined at .nC 1/ nodes, xi D i�x; i D 0; 1; � � � ; n; so that the discrete v
will be regarded as an .nC 1/ � 1 matrix or an .nC 1/�tuple.

By the same token, the discrete gradient will act on the u-values defined at both
the n 1D cell centers xiC 1

2
D i�x; i D 0; 1; � � � ; .n � 1/; and the two boundary
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nodes x0 and xn, so that the discrete u will be regarded as an .nC 2/ � 1 matrix or
an .nC 2/ - tuple, and such u might be aptly symbolized as ucb, since it considers
both cell centers and boundary nodes, but it is to be distinguished from a discrete u
evaluated only at cell centers, naturally symbolized then by uc.

Besides G being an .n C 1/ � .n C 2/ matrix, the resulting Gu or Gucb is an
.nC 1/ � 1 matrix.

While the matrix D is an n�.nC1/matrix, in the one dimensional case, it should
be augmented with two rows-first and last-of zeroes, so that the matrix augmented
D will be an .n C 2/ � .n C 1/. The reason for this augmentation is because the
divergence is zero at the boundary and also the need to take a weighted inner product
of Dv with u D ucb, but ucb is an .nC 2/ � 1 matrix, and thus it will not conform
to Dv, being an n � 1 matrix prior to augmentation.

Here, we present the one-dimensional second-order mimetic gradient operator,

G D 1

�x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�8
3

3 �1
3

�1 1
: : :

: : :

�1 1
1
3
�3 8

3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.nC1/�.nC2/

and; (2.3)

the one-dimensional second-order mimetic divergence operator,

D D 1

�x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 0 � � � 0
�1 1

: : :
: : :

�1 1
0 0 � � � 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.nC2/�.nC1/

: (2.4)

2.2 2D Mimetic Operators

While working with 2D rectangular domains, Œ0; a� � Œ0; b�; the corresponding

grid will be made of m by n cells with mn cell centers
�

xiC 1
2
; yjC 1

2

�

; with i D
0; 1; � � � ; .n � 1/; x0 D 0; xn D a; and j D 0; 1; � � � ; .m � 1/; y0 D 0; ym D b.

The 2D mimetic operators can be constructed from the 1D operators using
Kronecker products. Here, es stands for an s-tuple filled with an appropriate number
s of 1 entries and k is the order of approximation.

MGk
xy D

"

Gx.k/
Gy.k/

#

Gx.k/ D
hOITn ˝ MGk

x

i

Gy.k/ D
h MGk

y ˝ OITm
i

; (2.5)

MDk
xy D ŒDx.k/ Dy.k/�; (2.6)
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with Dx.k/ D ŒOIn ˝ MDk
x� Dy.k/ D Œ MDk

y ˝ OIm�; (2.7)

with OIsn D
"

0

In
0

#

D es ˝ In: (2.8)

2.3 Compact Scheme: Explicit Approach

We use an explicit approach to construct the compact mimetic finite difference
schemes.

Let
du

dx
D Mku, where Mk is a mimetic difference operator of order k. In this

explicit approach, the high-order-accurate derivative is calculated as follows:

�

@u

@x

�

D RkD2u; (2.9)

This approach eliminates the need for solving a system of linear equations. Here,
Mk D RkD2, where D2 is the second-order derivative. Here are the corresponding
R matrices for the Castillo–Grone’s Mimetic (CGM) gradient and divergence
operators of order 4 respectively.

RG
4 D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

17958
14245

�8776
14245

154787
341880

�3415
34188

25
9768

�2
35

941
840

�29
420

1
168

�1
24

13
12

�1
24

�1
24

13
12

�1
24

:::

�1
24

13
12

�1
24

1
168

�29
420

941
840

�2
35

25
9768

�3415
34188

154787
341880

�8776
14245

17958
14245

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(2.10)
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RD
4 D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1045
1142

492
2291

�418
2371

328
6821

�25
15576

�1
24

13
12

�1
24

�1
24

13
12

�1
24

:::

�1
24

13
12

�1
24

�25
15576

328
6821

�418
2371

492
2291

1045
1142

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

: (2.11)

3 Energy Conservation

In order to exemplify our proposed scheme, which deviates from the standard
sequence described as “discretize the continuous media - derive a continuous
PDE - discretize this PDE,” we shall start reconstructing the preliminary discrete
decomposition of an elastic membrane’s surface into “surface elements dS,” later to
be considered as equivalent material particles subjected to Newton’s Laws.

In this way, the approximations needed before the linear PDE appears in the
form of the standard wave equation can be clearly seen. This PDE is not an “exact
modeling” of the continuous elastic media vibrations anyway.

These considerations motivate an alternative approach, not passing to the limit of
shrinking surface elements, but remaining in the context of a many body mechanical
problem. A natural approximation for the variation in space of the internal tensional
forces under consideration will be the discrete mimetic analog of the Laplacian of
the vertical membrane displacement.

We also recall the continuous version for the time derivative of the total elastic
membrane energy, so that it can be compared with our discrete version, which is
derived step by step in Sect. 4.

In order to better illustrate the proposed scheme, consider the model problem
provided by the mechanical vibrations of an elastic membrane on a rectangular
domain. Our techniques apply to any 2D spatial domain with a closed rectifiable
boundary, but we use a rectangular shape for simplicity of drawing and explanation
(Fig. 1).
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Fig. 1 Model problem: Find an elastic membrane vertical displacement u.x; y; t/

The membrane vector tensions EF, EG are assumed normal to the lines of
interaction and tangent to the membrane surface.

EFC Dk EFC k sin˛ .xC dx; y�C; t/OkCk EFC kcos ˛ .xCdx; y�C; t/OiI tan ˛ .x; y; t/D@u
@x
.x; y; t/

(3.1)

EGC Dk EGC ksin ˇ .x�C; yCdy; t/OkCk EGC kcos ˇ .x�C; yC dy; t/OjI tan ˇ .x; y; t/D@u
@y
.x; y; t/

(3.2)

Approximations: k EFC k per unit lengthDk EGC k per unit lengthD constantD To.
Now approximating

sin ˛ .x; y; t/ 	 tan ˛ .x; y; t/ D @u

@x
.x; y; t/; (3.3)

and

sin ˇ .x; y; t/ 	 tan ˇ .x; y; t/ D @u

@y
.x; y; t/; (3.4)

since

dsx D
s

1C
�

@u

@x

�2

dx; and dsy D
s

1C
�

@u

@y

�2

dy; (3.5)
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we get,

dS D dx dy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

1 0 @u
@x

0 1 @u
@y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D
�

�@u
@x

i � @u

@y
jC k

�

dxdy; (3.6)

surface element area dS D
r

1C
�

@u
@x

�2 C
�

@u
@y

�2

dxdy:

The mass element is dm D �.x; y; t/dS
D �.x; y; 0/dxdy; at t D 0; (3.7)

D �0.x; y/dxdy (By mass conservation):

The vector tension FC acting along the edge with length dsy, is located at some
intermediate point, which is projected down to .x C dx; y�C/ in the XY Plane, and
similar intermediate points are considered for the vector tensions F�;GC and G�.

Resulting upwards force upon dm:

To
	

h

sin˛.xC dx; y�C; t/ � sin˛.x; y��; t/
i

dsyC
h

sinˇ.x�C; yC dy; t/ � sinˇ.x��; y; t/
i

dsx




(3.8)

Approximating y�C 	 y�� 	 y and x�C 	 x�� 	 x; get with dsy ' dy and dsx 	 dxI
(3.9)

To

8

<

:

"

@2u

@x2
.x; y; t/dx

#

dyC
"

@2u

@y2
.x; y; t/dy

#

dx

9

=

;

D (3.10)

�0.x; y; /dxdy
@2u

@t2
.x; y; t/: (3.11)

The standard treatment ([13]) of the momentum equation in the presence of elastic
forces is used to derive the time derivative of the kinetic energy, when applied
to the vibrating membrane linearized PDE 3.11,

�

To div gradu D �0
@2u
@t2

�

and leads
to d

dt E .t/ D 0 C H

@�
To @u

@t .gradu:On/ .Qx; Qy; t/ ds; with .Qx; Qy/ belonging to @ �.

Here, n is the outward unit normal to the boundary, E.t/ D K.t/ C V.t/, where,
as usual for continuous media, the Kinetic Energy K and the Potential Elastic



300 J.E. Castillo and G. Miranda

Membrane Energy are given by: K.t/ D R xDa
xD0

R yDb
yD0 �0 .x; y/ � 12

�

@u
@t

�2

.x; y; t/ dxdy

and V.t/ D To
2

’

�

�
u:

�
u .x; y; t/ dxdy.

This formula for dE
dt , even though written for a rectangular boundary, is immedi-

ately seen to be valid for any domain shape with a rectifiable boundary, since the
hypotheses needed to use the extended Gauss’s 2D Divergence Theorem, in order to
obtain the boundary integral term, remain valid for such general domains under the
assumed smoothness up to the boundary of the vertical displacement gradient.

Besides, in the case of homogeneous boundary conditions, i.e., when @u
@n .grad u �

n/ D 0, we get the known conservation of energy in the form d
dtE.t/ D 0 in the

continuous elastic media model, a standard result that will be shown in the next
section to hold for the time derivative of the total discrete energy.

4 Discrete Energy Conservation

In a semi-discrete approach, we consider the vertical displacement uij.t/ of the mn
cell centers .xiC 1

2
; yjC 1

2
/, and define the discrete analogs of the continuous kinetic

and potential energy, using the mimetic discretisation for double integrals over a
rectangular domain, and considering the weights wij D �.xiC 1

2
; yjC 1

2
/ hikj to be the

ijth mass element undergoing mechanical vibrations, where hi D xi � xi�1 with
i D 0; 1; � � � ; .n � 1/ and kj D yj � yj�1 with j D 0; 1; � � � ; .m � 1/.

For simplicity, we shall assume that � is constant, and that spatial grids are
uniform, i.e., hi D h and kj D k;wij D �hk.

Kdiscrete.t/ D
�

1

2

�

hk �
XX

Pu2ij (4.1)

Vdiscrete.t/ D
�

1

2

�

hk .T0/
XX

˝

GRAD uij;GRADuij
˛

:

Instead of starting from the continuous wave equation, as is usually done to obtain
some discrete scheme to be numerically solved, we consider the equation of motion
for the mass element labeled ij in the form:

�hk Ruij.t/ D T0 hk DIV GRAD uij.t/: (4.2)

Multiplying by Puij .t/ both sides of this equation: � Puij Ruij .t/ D
T0 Puij .t/ DIV GRAD uij .t/ Substitute t by 
 and integrating from 
 D 0 to 
 D
t; we get W

�

�

1

2

�

h

Puij.t/2 � Puij.0/2
i

D
Z 
Dt


D0
T0 Puij .
/ DIV GRAD uij.
/ d
: (4.3)
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Next, carry out hk
PP

on both sides of the previous equation, to get:

Kdiscrete.t/ � K discrete.0/ D hk
XX

Z 
Dt


D0
T0 Puij .
/DIV GRAD uij .
/ d
:

(4.4)

Now, interchanging the 
 integration with the finite double sum operation we get,

K discrete.t/ � K discrete .0/ D hk
Z 
Dt


D0

n
XX

T0 Puij .
/ DIV GRAD uij.
/
o

d
:

(4.5)

Now recall that

DIV
˚Puij .
/ GRAD uij .
/

� D Puij .
/DIV GRADuijC
˝

GRADPuij .
/; GRAD uij .
/
˛

:

(4.6)

Next apply hk
PP

to both sides, using the discrete mimetic analog of Gauss’s
Divergence Theorem, as worked by Castillo, et al. [4–6].

Boundary
X

Puij .
/
˝

GRAD uij .
/; nij
˛

dsij D (4.7)

hk
XX

Puij .
/ DIV GRAD .
/C hk
XX

˝

GRAD Puij .
/;GRAD uij .
/
˛

:

Where, in the Boundary sum, the index pair .i; j/ refers only to those mass ele-
ments that have some membrane edge projected on the boundary of the rectangular
domain, uij .
/ would be the vertical displacement corresponding to the middle
point of such edge element at time 
 I dsij would be plus or minus h or k, depending
upon the orientation of the edge as the boundary is circulated counterclockwise, and
nij would then be the outward unit normal to that element’s projected edge.

Since,

Puij .
/DIV GRAD uij .
/DDIV
˝Puij .
/GRAD uij .
/

˛ � ˝GRAD Puij .
/; GRAD uij .
/
˛

;

(4.8)

then omitting the “discrete” labeling for K and V , we first obtain:

K.t/ � K.0/ D T0

Z 
Dt


D0
H.
/ d
 � T0 hk

Z 
Dt


D0
F.
/d
; (4.9)
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where

H.
/ D Boundary
X

Puij .
/
˝

GRADuij .
/; nij
˛

dsij (4.10)

and

F .
/ D
XX

˝

GRAD Puij .
/; GRAD uij.
/
˛

;

where in terms H and F under integration with respect to 
 , dot means d
d
 .

Using d
d


�

�

1
2

�

f 2


D f df
d
 , the above inner product can be put in the form:

d

d


(

�

1

2

�

ŒGxuij .
/�
2 C

�

1

2

�

ŒGyuij.
/�
2

)

: (4.11)

Next, interchange the 
 integration and
PP

to get:

K.t/�K.0/DT0
Z 
Dt


D0
H.
/d
�T0

XX

Z 
Dt


D0
d

d


(

�

1

2

�

�

ŒGxuij.
/�
2CŒGyuij.
/�

2
�

)

d
;

(4.12)

thus getting:

K.t/ � K.0/ D T0

Z 
Dt


D0
H.
/ d
 � ŒV.t/ � V.0/�;where (4.13)

V.t/ D
�

T0
2

�

hk
XX

˝

GRAD uij .t/; GRAD uij .t/
˛

: (4.14)

Finally, for the total discrete energy E.t/ we obtain:

E.t/ D Kdiscrete .t/C Vdiscrete .t/ D Kdiscrete .0/C Vdiscrete .0/ C T0

Z 
Dt


D0
H.
/ d
:

Now, differentiating with respect to t, we get the desired result for our scheme:

d

dt
E.t/ D T0H.t/ D T0 Boundary

X

Puij .t/
˝

GRAD uij .t/; nij
˛

dsij: (4.15)

In the case of the rectangular boundary taken as a model problem, and using
upper case letters W;E; S and N to label the boundary edges located at x D 0; x D
a; y D 0 and y D b respectively, and by means of the discrete operators BGx and
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BGy, the Boundary sum can be given the following concrete expression in d
dt E.t/:

dE

dt .discrete/
D � h To

D

PuS; .BGyu/
S
E

C k To
D

PuE; .BGxu/
E
E

� h To
D

PuN ; .BGyu/
N
E

C k To
D

PuW ; .BGxu/
W
E

:

We are “integrating” (that is, summing with inner products) counter clockwise
starting at .0; 0/ so we have used South (S), East (E), North (N) and West (W)
in that order, recalling that the unit outward normals to the boundary edges would
then be .0;�1/; .1; 0/; .0; 1/ and .�1; 0/ respectively, and each numerical integral
is expressed by a corresponding mimetic inner product <;>, taken along straight
boundary edges.

Hence, the discrete total energy will be conserved under homogeneous boundary
conditions for the vertical displacement.

5 Conclusions

In this work, we have presented the time derivative of the total discrete Energy by
employing Castillo-Grone mimetic difference Operators for the two-dimensional
case in the semi-discrete version. Having shown that under homogeneous boundary
conditions the discrete total Energy formulated by means of the Castillo-Grone 2D
Operator G is conserved in a 2D spatial domain, we have exhibited an additional
faithfulness of the High Order Castillo-Grone Mimetic Finite Differences to the
underlying physics, and done so in a more complex environment. This technique
can be applied to any 2D spatial domain with a closed rectifiable boundary as the
consideration of a rectangular shape was used only for simplicity of drawings and
explanations.

The relatively simple explicit formula derived for the ordinary time derivative of
the total Energy in this bounded 2D spatial domain, could eventually lead to some
stability characteristics simpler than those provided by Carpenter et al. [3]. We can
consider that after Von Neumann’s initial stability findings, many criteria rely upon
bounding energy or amplitude related discrete expressions, sometimes exhibiting a
complex dependence upon the wavelengths involved.

With our proposed scheme, which assures boundedness of
˝

GRAD uij;GRADuij
˛

and of the discrete kinetic energy, this would amount to a global boundedness of
the vertical displacement uij .t/, considering the discrete analog for the continuous
relation between u .x; y/ and GRAD u .x; y/.
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A Spectral Mimetic Least-Squares Method
for Generalized Convection-Diffusion Problems

Rasmus O. Hjort and Bo Gervang

Abstract We present a spectral mimetic least-squares method for a model
convection-diffusion problem, which preserves conservation properties. The
problem is solved using differential geometry where the topological part and
the constitutive part have been separated. It is shown that the topological part is
solved exactly independent of the order of the spectral expansion. The mimetic
method incorporates the Lie derivative for the convective term, by means of Cartans
homotopy formula, see for example Abraham et al. (1988) (Manifolds, Tensor
Analysis, and Applications, Springer, New York). The spectral mimetic least-
squares method is compared to a more classic spectral least-squares method. It is
shown that both schemes lead to spectral convergence.

1 Introduction

We consider a general convection-diffusion problem in 2D:

r � .u�/C�� D f in˝; (1)

where � is the potential, f the source term, u a known divergence free vector field
and a homogeneous Dirichlet boundary condition:

� D 0 on @˝: (2)

The method presented is based on a combination of mimetic methods, presented in
[3, 6] and [10] and least-squares spectral element methods, [2] and [12]. Recent
work combining the two methods can be found in [8]. The method is derived
using basic components from differential geometry, which leads to conservation of
invariants both locally and globally of the system. Using the least-squares principles
lead to a symmetric positive definite matrix when the problem is discretized. This
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is in contrast to a normal Galerkin method, which only leads to a symmetric matrix
for the diffusion parts. The least-squares methods also give rise to a symmetric
matrix for the convective term. The paper is structured as follows: Section 2 is an
introduction to differential geometry, while Sect. 3 establishes the mimetic least-
squares formulation and Sect. 4 presents the mimetic discretization of the governing
equations. Finally Sect. 5 shows the numerical results.

2 Differential Geometry

In this section a short presentation of differential geometry is given. Additional
information can be found in [1] and [11].

In differential geometry the unknowns are presented by forms instead of vector
and scalar fields as addressed in vector calculus. Variables associated with points,
such as the temperature, are represented by a 0-form while variables associated
with a volume are represented by 3-forms, e.g. the density. 1-forms and 2-forms
can likewise represent variables associated with lines and surfaces. Furthermore
forms have geometric orientation, which makes it possible to further distinguish
different variables. Outer orientated 2-forms represent variables working through
surfaces, e.g. heat flux, while inner orientated 2-forms represent variables working
on a surface e.g. describing vorticity.

Generalising the definitions of 0-forms, 1-forms, 2-forms and 3-forms, the
general k-form is denoted !.k/ 2 k.˝n/ on the n-dimensional domain ˝n, for
0 � k � n. k.˝n/ is the space of k-forms on ˝n, i.e. the collection of all k-linear,
antisymmetric mappings of vectors belonging to the n-dimensional tangent vector
space V:

!.k/ W V � : : : � V
„ ƒ‚ …

k�times

! R: (3)

Differential geometry also introduces the wedge product between k-forms and m-
forms, which produces a (k+m)-form: ^ W k.˝n/ � m.˝n/ ! kCm.˝n/. The
wedge product is skew-symmetric such that: ˛.k/ ^ ˇ.m/ D .�1/kmˇ.m/ ^ ˛.k/.

Instead of using three different operators to represent curl, divergence and
gradient, differential forms are equipped with an operator representing all three
operators; the exterior derivative, d. The exterior derivative operates on k-forms and
maps them into (k+1)-forms: d W k.˝n/! kC1.˝n/. The exterior derivative can
be defined by means of the Stokes theorem [4]:

Z

˝kC1

d!.k/ D
Z

@˝kC1

!.k/: (4)

Since the exterior derivative is constructed using the boundary operator, the discrete
version of the exterior derivative can be performed exactly.
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The interior product is the inverse operation of the exterior derivative and is the
mapping: )Y W k.˝n/ ! k�1.˝n/ for some vector field Y 2 ˝n and 0 � k � n,
defined as:

)Y˛
.k/.X2; � � � ;Xk/ WD ˛.k/.Y;X2; � � � ;Xk/ 8Xi;Y 2 V (5)

The Lie-derivative represents how forms change when they are altered by some
vector field v 2 ˝n and is the mapping: Lv W k.˝n/! k.˝n/, see [11] and [13].
The Lie-derivative can be seen as the convection operator for differential geometry
and is defined by applying Cartan’s formula:

Lv˛
.k/ D )vd˛.k/ C d)v˛

.k/: (6)

The Hodge-star operator is a map between inner and outer oriented forms such that
? W k.˝n/ ! Qn�k.˝n/, where � denotes the space of opposite oriented forms.
In this paper, the Hodge-star operator is used to construct the constitutive relations
such that the approximation takes place here.

3 Mimetic Least-Squares Formulation

3.1 Mimetic Method

The mimetic formulation uses differential geometry as its cornerstone. The variable
� in (1), is represented by the inner oriented 0-form Q�.0/. The Laplace operator
working on a 0-form is constructed using the exterior derivative and Hodge star
operator � ! d ? d, which results in a 2-form. Since the diffusion term is
represented by a 2-form, it is natural to also represent the source term with a 2-form,
f .2/. The termr � .u�/ represents convection �, which is naturally constructed using
the Lie-derivative. One way of implementing this is to consider the 2-form?�.0/ for
the convective term resulting in the following equation:

Lu ? Q�.0/ C d ? d Q�.0/ D f .2/: (7)

Using Cartans homotopy formula, (6), reduces the convective term to only one term,
since d ı d � 0. This leads to the following equation:

d)u ? Q�.0/ C d ? d Q�.0/ D f .2/: (8)

This allows us to define the outer oriented 1-form q.1/ in relation to the potential:

q.1/ D )u ? Q�.0/ C ?d Q�.0/; (9)
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which can be interpreted as the total flux of the potential, i.e. the sum of diffusive and
convective fluxes. A solution to the problem in (1), can then be obtained by solving
a conservation equation and a constitutive relation. The conservation equation can
be solved exactly while the approximation is introduced in the constitutive equation:

r � .u�/C�� D f ,
8

<

:

dq.1/ D f .2/

q.1/ D )u ? Q�.0/ C ?d Q�.0/:
(10)

3.2 Mimetic Least-Squares Method

To establish the least-squares method we construct the functional J , which squares
the residual of (10):

J . Q�.0/; q.1/I f .2// WD 1

2

�

ˇ

ˇ

ˇ

ˇdq.1/ � f .2/
ˇ

ˇ

ˇ

ˇ

2

0
C ˇˇˇˇq.1/ � )u ? Q�.0/ � ?d Q�.0/

ˇ

ˇ

ˇ

ˇ

2

0

�

: (11)

The least-squares method is a minimisation problem where the functional J is
minimised by setting the derivative of J to zero. If we define QG.0/0 as the space
of all inner oriented 0-forms, satisfying the boundary conditions in (2), and V.1/ as
the space of all outer oriented 1-forms, then the variational formulation is obtained
as: Find Q�.0/ 2 QG.0/0 and q.1/ 2 V.1/ such that:

.dp.1/; dq.1/ � f .2// D 0

. p.1/ � )u ? Q&.0/ � ?dQ&.0/; q.1/ � )u ? Q�.0/ � ?d Q�.0// D 0
8Q&.0/ 2 QG.0/; p.1/ 2 V.1/:

(12)

4 Mimetic Spectral Discretization

In this section the discretization of the system is presented. The unknowns will be
expanded using Lagrange polynomials [9] and edge polynomials [7]. The discrete
representation of forms is obtained by mapping them onto discrete function spaces.

4.1 Discrete Representation of Forms

Consider the one dimensional domain˝1 WD Œ�1; 1� on whichNC1Gauss-Lobatto-
Legendre (GLL) nodes are defined: �1 D x0 < � � � < xN D 1. On this grid we
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approximate the outer oriented forms, so that the outer oriented 0-form a.0/ can then
be represented by the approximate function ah.x/ defined as:

ah.x/ D
N
X

iD0
aihi.x/; (13)

where hi.x/ are the Lagrange polynomials of order N, defined as hi.xj/ D ıij. The
expansion coefficients are then equal to the 0-form evaluated in the nodes: ai D
a.0/.xi/. Now we consider the 1-form b.1/.x/ on ˝1, which can be represented by
the function:

bh.x/ D
N�1
X

iD0
biei.x/; (14)

where ei.x/ are the edge functions mentioned earlier, which have the property
R xiC1

xi
ej.x/dx D ıij. The expansion coefficients in (14) represent the integral values

of the form, bi D
R xiC1

xi
b.1/.

The derivative of a function can also be taken by using the edge function, since
the edge functions are defined in terms of derivative of the nodal expansion [7]:

d

dx
ah.x/ D

N
X

iD0
aih
0
i.x/ D

N�1
X

iD0
.aiC1 � ai/ei.x/: (15)

Knowing the discrete representation of forms defined in 1D, we can to proceed
to 2D by using the tensor product rule. On Fig. 1 the domain Œ�1; 1�2 has been
discretized using two grids, one using GLL nodes and one using GL nodes. We use
the red grid where the nodes are denoted with squares to represent the outer oriented
forms. The dual grid is used to represent the inner oriented forms. On the dual grid

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Gauss-Lobatto-Legendre (Primary grid)
Gauss-Legendre (Dual grid)

Fig. 1 Double grid configuration showing the 2D domain Œ�1; 1�2 discretized with N D 3. The
red nodes and lines denotes grid with GLL nodes whereas the black denotes the GL nodes
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the expansion functions are denoted Qh.x/ and Qe.x/, which are derived using the GL
nodes. The primary grid consists of .N+1/2 grid points, .xi; yj/ for i; j D 0 W N. The
dual grid is constructed using .N/2 grid points denoted .Qxi; Qyj/ for i; j D 0 W N-1.

The inner oriented 0-form Q�.0/ is then be expanded using the dual grid:

�h.x; y/ D
N�1
X

iD0

N�1
X

jD0
�ij Qhi.x/Qhj. y/; (16)

The nodal expansion has the property that �h.Qxi; Qyj/ D �ij D Q�.0/.Qxi; Qyj/. We now
introduce the discrete function space Gh, which is spanned by the basis of �h.x; y/,
i.e. �h.x; y/ 2 Gh.

The outer oriented 1-form q.1/ can be described as the flux of the potential across
a line segment on the primary grid, which we represent in the finite setting as:

qh.x; y/ D
8

<

:

qxh.x; y/

qyh.x; y/
D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

N
X

iD0

N�1
X

jD0
qxi; jhi.x/ej. y/

N�1
X

iD0

N
X

jD0
qyi; jei.x/hj. y/:

(17)

In this situation the finite discretization of the form results in a vector field with a
component in each direction and the basis of qh is used to define the space Vh. As
in the one dimensional case the expansion coefficients represent the integral values
of the form:

qxi; j D
Z

xi

Z yjC1

yj

q.1/ qyi; j D
Z xiC1

xi

Z

yj

q.1/: (18)

In this case the expansion coefficients can then be interpreted as the flux over the
line it is associated with. The same grid is also used to discretize outer oriented
2-forms so the 2-form �.2/ can be approximated by �h.x; y/ 2 Sh, which we define
as:

�h.x; y/ D
N�1
X

iD0

N�1
X

jD0
�ijei.x/ej. y/: (19)

Again the basis used here to define �h.x; y/ span the space Sh. Since �h represents
a 2-form, the expansion coefficients relate to the integrated values of the form, over
the associated area:

�i; j D
Z xiC1

xi

Z xjC1

xj

�.2/: (20)
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This could be described as the expansion coefficient representing the mass, the
form then expresses the mass density. The expression in (19) can also be written
by introducing a matrix A�:

N�GL D A� N�; (21)

where N�GL contains the function �h.x; y/ evaluated in the GL nodes and N� is the
expansion coefficients of �h: N� D Œ�0;0; � � � ; �N�1;N�1�

T . Applying the discrete
Hodge star operator on �h leads to an inner oriented 0-from, i.e. the map Sh ! Gh.
This is constructed by setting the values in the vector N�GL equal to the expansion
coefficients for a 0-form on the dual grid. The matrix A� can then be seen as the
map from Sh! Gh. The reverse map, Gh ! Sh, is then described by A

�1
� .

4.2 Discrete Operators

First we consider the exterior derivative, which represents either the gradient,
divergence or curl operator from vector calculus. The exterior derivative working
on a 0-form results in a 1-form, so if we consider the 0-form from (16) and apply
the same principles as used in (15) we get:

d�h.x; y/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

d�h.x; y/

dx
D

N�2
X

iD0

N�1
X

jD0

�

�iC1; j � �i; j
� Qei.x/Qhj. y/

d�h.x; y/

dy
D

N�1
X

iD0

N�2
X

jD0

�

�i; jC1 � �i; j
� Qhi.x/Qej. y/:

(22)

In the least-squares minimisation problem in (12) we also apply the exterior
derivative on an outer orientated 1-form q.1/. In this case the discrete exterior
derivative represents d W Vh ! Sh. The exterior derivative is applied to qh using
the same approach as in (15):

dqh.x; y/ D
N�1
X

iD0

N�1
X

jD0

�

qxiC1; j � qxi; j C qyi; jC1 � qyi; j

�

ei.x/ej. y/: (23)

It is here seen that the basis of dqh is the same as the one used in (19), which is a
natural result since both dqh and �h is in Sh. Since the basis is the same, dqh D �h

can be expressed independently of the basis so we get an exact operation that can
be represented by use of an incidence matrix:

N� D E
2;1 Nq; (24)
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where Nq D Œqx0;0; � � � ; qxN�1;N ; qy0;0 � � � ; qyN;N�1�T . The incidence matrix contains only
1, -1 and 0 and is non-square. For N D 2 the corresponding incidence matrix would
be defined as:

E
2;1 D

0

B

B

B

@

� 1 1 0 0 0 � 1 0 1 0 0 0

0 � 1 1 0 0 0 � 1 0 1 0 0

0 0 � 1 1 0 0 0 � 1 0 1 0

0 0 0 � 1 1 0 0 0 � 1 0 1

1

C

C

C

A

: (25)

In order to compute the inner products used to establish the least-squares
functional in (12), we need to construct the discrete version of this operation. The
inner product on the finite space Gh can be defined by considering �h and 'h 2 Gh:

.�h; 'h/ D
Z 1

�1

Z 1

�1
'h.x; y/�h.x; y/dxdy: (26)

Integration is performed by applying Gauss-Lobatto integration so the integration is
exact for polynomials of up to degree 2N � 1, see [5]. By evaluating the expansion
polynomials in the points described by the Gauss-Lobatto quadrature and using the
weights from the quadrature, it is possible to construct a matrix MG such that the
inner product can be defined as:

.�h; 'h/ D N�T
MG N'; (27)

where N� and N' are column vectors containing the expansion coefficients of. The
inner product on Vh can be constructed in a similar manner using the matrix MV .
On Sh we denote the resulting matrix MS. For �h 2 Gh and �h 2 Sh we define the
inner product:

.�h; �h/ D
Z 1

�1

Z 1

�1
�h.x; y/�h.x; y/dxdy D N�T

MGS N�: (28)

We now construct the adjoint gradient of ph 2 Gh, which enables us to invoke
the boundary condition in a weak sense. This operator is a map ?d W Gh ! Vh, and
is constructed using integration by parts:

.?dph; vh/ D �. ph; dvh/C
Z

@˝

ph.vh � n/d˝ 8vh 2 Vh: (29)

Consider the space Gh
0 � Gh, which contains all functions within Gh that satisfies

the boundary condition given in (2), then for �h 2 Gh
0 the last term in (29) vanishes
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such that:

.� ? d�h; vh/ D .�h; dvh/ D N�T
MGSE

2;1 Nv
D N�T

MGS E
2;1

M
�1
V MV Nv

D .M�1V E
2;1T

M
T
GS
N�

„ ƒ‚ …

�?d�h
/TMV Nv;

(30)

with Nv containing the expansion coefficients of vh.
Now consider the convective flux represented by �.1/ 2 Vh, which is expanded

in the same way as the 1-form in (16). This flux is defined by applying the interior
derivative on a 2-form, which leads to a 1-form. If u D ux @@x C uy @@y , then applying

the interior product on �h leads to:

)u�
h D

N�1
X

iD0

N�1
X

jD0
�ij.ux"i.x/ej. y/ � uyei.x/"j. y//; (31)

since ux @@x ei.x/ D ux
@
@x"i.x/dx D ux"i.x/ and ux

@
@x ej. y/ D 0.

Instead of calculating the expansion coefficients by integrating �.1/ as it was done
in (18), we now integrate )u�.2/:

� xi; j D
Z

xi

Z yjC1

yj

)u�
.2/ �

y
i; j D

Z xiC1

xi

Z

yj

)u�
.2/: (32)

The integrals above are calculated using the property of the edge functions, which
means that

R xiC1

xi
ej.x/ D ıij. Using this property the following relations are

obtained:

� x
ij D ux.xi; yj/

N�1
X

kD0
�kj"k.xi/ �

y
ij D uy.xi; yj/

N�1
X

lD0
�il"l. yj/: (33)

If we then construct matrices Ax and Ay such that the following relations can
be established: N� x D Ax N� and N� y D Ay N�, where N� x, N� y and N� are column
vectors containing the expansion coefficients. Then we can construct the matrix EA

such that:

N� D
"

Ax

Ay

#

N� D EA N�; (34)

which describes the finite representation of the mapping Sh ! Vh.
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4.3 Coefficient Matrix

Now we establish the matrix vector system, which can be solved in order to obtained
a solution to (1):

ANx D Nb; (35)

where Nx is a column vector containing all the degrees of freedom in the system
defined as Nx D Œ N�; Nq�T . In order to construct the coefficient matrix A we use the
coefficient matrices introduced above to construct the terms from (12):

.)u ? &
h; )u ? �

h/) A1 D .A�1� /TET
AMVEAA

�1
�

.)u ? &
h;?d�h/) A2 D �.A�1� /TET

AMVM
�1
V E

2;1T
M

T
GS

.)u ? &
h; qh/) A3 D .A�1� /TET

AMV

.?d&h;?d�h/) A4 DMGS E
2;1
M
�1
V MVM

�1
V E

2;1T
M

T
GS

. ph; qh/) A5 DMV

.?d&h; qh/) A6 D �MGS E
2;1
M
�1
V MV D �MGS E

2;1

.dph; dqh/) A7 D E
2;1T

MSE
2;1:

for 8&h 2 Gh
0 and ph 2 Vh. These terms are collected in A in the following way:

A D
 

A1 �A2 �A
T
2 CA4 � A3 C A6

�AT
3 C A

T
6 A5 C A7

!

; Nb D
 

0

E
2;1T

MS Nf

!

:

Here Nf is a column vector containing the source function values integrated over each
area on the primary grid, corresponding to the expansion coefficients in (20).

5 Numerical Results

The method has been tested on model problems in order to observe convergence
and conservation properties. The spectral mimetic least-squares (MLS) method is
compared to a traditional spectral least-sqaures (LS) method. The model problem
solved here has the analytical solution of (1) defined as:

�exact.x; y/ D .�1C x2/.�1C y2/ sin.
1

2
�x/: (36)

The velocity field is defined as u D Œ1; 1�, and the source term is found by taking
f .x; y/ D r � .u�exact/C��exact.
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Fig. 2 Convergence comparison between MLS and LS for the model problem
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Fig. 3 Left: Condition number of the coefficient matrix used to solve the system. Right: Conser-
vation equation error for the two methods

In Fig. 2 the error of the numerical solution compared to the analytical solution is
shown. It is seen that both methods give rise to exponential convergence. The MLS
method achieves the same convergence rate as the standard LS method. At around a
polynomial order of 15 the LS method has converged and at N D 16 the MLS also
has converged.

In Fig. 3 the right plot shows the residual of the conservation part of (10). It
is seen that for the LS method the error decreases exponentially for increasing
polynomial order which is expected. For the MLS method the error is independent
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of the polynomial order and is satisfied to around machine precision for even the
coarsest grid. The small increase in residual is due to increase in condition number.

The left plot in Fig. 3 shows how the condition number varies as a function of
the polynomial order. Here, it is seen that the MLS method has a smaller condition
number for all polynomial orders.

6 Conclusion

In this paper we present a spectral mimetic least-squares method. We show that
by encapsulating the underlying geometric properties in the problem, we are able
to discretize the convection-diffusion problem such that the invariant is conserved
both globally and locally. The topological part of the problem can be satisfied
to machine precision. By using a least-squares approach the method results in
a positive definite symmetric coefficient matrix which can be solved using well
established iterative solvers.
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Krylov Subspace Spectral Methods
with Coarse-Grid Residual Correction
for Solving Time-Dependent,
Variable-Coefficient PDEs

Haley Dozier and James V. Lambers

Abstract Krylov Supspace Spectral (KSS) methods provide an efficient approach
to the solution of time-dependent, variable-coefficient partial differential equations
by using an interpolating polynomial with frequency-dependent interpolation points
to approximate a solution operator for each Fourier coefficient. KSS methods are
high-order accurate time-stepping methods that also scale effectively to higher
spatial resolution. In this paper, we will demonstrate the effectiveness of using
coarse-grid residual correction, generalized to the time-dependent case, to improve
the accuracy and efficiency of KSS methods. Numerical experiments demonstrate
the effectiveness of this correction.

1 Introduction

Consider a time-dependent, variable-coefficient PDE, such as

ut C Lu D 0; 0 < x < 2�; t > 0 (1)

u.x; 0/ D f .x/; 0 < x < 2�; (2)

where L is a second order, self-adjoint, positive definite differential operator, such
as a Sturm-Liouville operator. This type of problem often poses difficulties for both
implicit and explicit time-stepping methods due to the lack of scalability of these
methods caused by stiffness. That is, unless the chosen time-step is sufficiently
small, the computed solutions might exhibit nonphysical behavior with large input
sizes [7].

Krylov Subspace Spectral (KSS) methods [9] are designed specifically for
solving time-dependent, variable-coefficient problems. The main idea behind KSS
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methods is to use an interpolating polynomial with frequency-dependent interpola-
tion points to approximate the solution operator for each Fourier coefficient. As a
result, KSS methods exhibit a high order of accuracy and stability. The dilemma is
that this approach is only practical when applied to the high frequency components
of the solution, and so a less efficient approach, such as standard Krylov projection,
must be used on the low frequency components.

We have found that with the addition of coarse-grid residual correction, we can
eliminate low frequency components of the error by restricting the problem to a
coarser grid, and then using KSS methods on that coarser grid. In this paper, an
overview of KSS methods in its current form will be given, as well as a description
of how the addition of coarse-grid residual correction can be added to improve the
accuracy of KSS. Numerical results will demonstrate this improvement.

The outline of this paper is as follows, Sect. 2 reviews KSS methods. Section 3
will discuss the addition of coarse-grid residual correction to KSS. Numerical results
will be presented in Sect. 4, and conclusions will be given in Sect. 5.

2 Krylov Subspace Spectral Methods

We start by examining the parabolic PDE ut C Lu D 0 on .0; 2�/ with periodic
boundary conditions u.0; t/ D u.2�; t/. The solution of this PDE can be represented
by the Fourier series

u.x; t/ D 1p
2�

1
X

!D�1
ei!x Ou.!; t/: (3)

To find the Fourier coefficients of the solution of the solution at time tnC1, we can
represent them using the standard inner product on .0; 2�/;

Ou.!; tnC1/ D
*

1p
2�

ei!x; e�L4tu.x; tn/

+

; (4)

where e�L4t is the exact solution operator.
The main idea behind KSS methods, as first described in [11], is to independently

approximate all Fourier coefficients of the solution using an approximation of the
exact solution operator that is tailored to each Fourier coefficient. To approximate
the exact solution operator, spatially discretizing the right hand side of (4) leads to

Ou.!; tnC1/ 	
 

�xp
2�

ei!x
!H

�

e�LN�tu.x; tn/
�

(5)



KSS Methods with Coarse-Grid Correction for Time-Dependent PDEs 319

where LN is a N � N symmetric positive definite matrix obtained from spatial
discretization of L using finite differences, and x is a vector of equally spaced points
in Œ0; 2�/ with spacing �x D 2�=N. If we let u D �xp

2�
ei!x, v D u.x; tn/, and

�.LN/ D e�LN�t, then we can represent the right side of (5) by the bilinear form

uH�.LN/v: (6)

The matrix LN is symmetric positive definite, and therefore has positive, real
eigenvalues b D �1 � �2 � : : : � �N D a, and orthonormal eigenvectors q j

where j D 1; : : : ;N. Then the spectral decomposition of (6) is

uH�.LN/v D
N
X

jD1
�.�j/uHq jqHj v: (7)

From here, we define the measure ˛.�/ by

˛.�/ D

8

ˆ

<

ˆ

:

0 if � < a
PN

jDi u
Hq jqHj v if �i � � � �i�1

PN
jD1 uHq jqHj v if b � �:

(8)

Now, as shown in [5], the bilinear form in (6) can be expressed as a Riemann-
Stieltjes integral

uH�.LN/v D
Z b

a
�.�/ d˛.�/: (9)

To approximate this integral, Gaussian quadrature is used because it has a high
degree of accuracy, and the weights are guaranteed to be positive if the measure
˛.�/ is positive and increasing [5]. After applying Gaussian quadrature to (9) the
following approximation can be obtained

Z b

a
�.�/ d˛.�/ D

K
X

jD1
�.�j/wj C error (10)

where the nodes are �j and weights are wj, for j D 1; : : : ;K. This quadrature rule is
exact for polynomials of degree up to 2K � 1 [5].

In the case where u D v, the nodes and weights for Gaussian quadrature can
be obtained using the symmetric Lanczos algorithm applied to LN using initial
vector u. In the case where u ¤ v, the weights for Gaussian quadrature, wj, are
not always guaranteed to be positive real numbers. This occurrence can destabilize
the quadrature rule as shown in [1]. In this case, we consider a block approach:

Œu v�H�.LN/Œu v�: (11)
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We can represent this matrix as the Riemann-Stieltjes integral

Z b

a
�.�/ d�.�/ D

"

uH�.LN/u uH�.LN/v
vH�.LN/u vH�.LN/v

#

; (12)

where �.�/ is a 2 � 2 matrix with entries of the form ˛.�/ from (8) [5]. Then a
quadrature rule approximates the integral (12) as follows:

Z b

a
�.�/ d�.�/ 	

2K
X

jD1
�.�j/vjvHj C error: (13)

where each �j is a scalar and each vj is a 2-vector.
The block Lanczos algorithm applied to LN using initial block Œu v� yields the

nodes and weights for block Gaussian quadrature [6]. Specifically, block Lanczos
produces the block tridiagonal matrix with 2 � 2 blocks

TK D

2

6

6

6

6

4

M1 BT
1

B1 M2 BT
2

: : :
: : :

: : :

BK�1 MK

3

7

7

7

7

5

; (14)

where each Bj is upper triangular. The eigenvalues of TK are used as the nodes �j
in (13), and vjvHj are the matrix-valued “weights”, where vj consists of the first two
components of the normalized eigenvector corresponding to �j.

A time step of block KSS, as seen in [11], proceeds as follows. First, we define

R0.!/ D ŒOe! un� (15)

where Oe! is a discretization of �xp
2�
ei!x on a uniform N-point grid, and un is the

computed solution at time tn (these are u and v in (11) above). The QR factorization
of (15) leads to

R0.!/ D X1.!/B0.!/ (16)

with

X1.!/ D
h

Oe! un!
jjun! jj2

i

; B0.!/ D
"

1 OeH!un

0 jjun! jj2
#

;

where

un
! D un � Oe! OeHun D un � Oe! Ou.!; tn/: (17)
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Block Lanczos is then applied to the discretized operator, LN , with initial block
X1.!/. From block Lanczos, we obtain our Mj and Bj so that we can produce the
matrix TK.!/ with the same form as (14), the entries of which depend on !. Then,
each Fourier coefficient of the solution at time tnC1 can be approximated by

Œ OunC1�! D ŒBH
0 .!/E

H
12e
�TK .!/4tE12B0.!/�12; E12 D Œ e1 e2 � (18)

By applying an inverse Fast Fourier Transform (FFT) to the vector of Fourier
coefficients, we obtain the vector unC1, which approximates the solution u.x; tnC1/.
In [11] it was shown that this algorithm has local temporal accuracy of O.4t2K�1/
for the parabolic problem and in [10] it was shown to have local temporal accuracy
O.4t4K�2/ for the second-order wave equation.

To improve the efficiency of block KSS methods, asymptotic analysis of block
Lanczos iteration was performed in [3, 14]. It was shown that at high frequencies,
the eigenvalue problem for TK.!/ approximately decouples, so that the Gaussian
quadrature nodes could instead be estimated by performing “non-block” Lanczos on
LN with initial vectors Oe! and un, which yields frequency-dependent and frequency-
independent nodes, respectively.

This improves efficiency for two reasons. First, the frequency-independent nodes
need only be computed once per time step, and shared by all quadrature rules of
the form (13) for each !. Second, the entries of the Jacobi matrix obtained by
applying Lanczos with to LN initial vector Oe! can easily be estimated in terms of
the coefficients of the underlying differential operator L.

With these enhancements taken into account, the following algorithm from [3]
describes a time step of KSS on Œtn; tnC1� to solve utCLu D 0, on anN-point uniform
grid, with periodic boundary conditions, and O.�t2K�1/ accuracy in time.

1. Perform K iterations of Lanczos on LN with initial vector un to obtain Jacobi
matrix TK . The eigenvalues �1; : : : ; �K of TK are the frequency-independent
nodes.

2. For each ! D �N=2 C 1; : : : ;N=2, compute the frequency-dependent nodes
�1;!; : : : ; �K;! from analytically computed estimates of the entries of TK.!/,
obtained through K iterations of Lanczos on LN with initial vector Oe! [3, 14].

3. For each ! D �N=2C 1; : : : ;N=2, compute the polynomial interpolant

p2K�1;!.�/ D
2K�1
X

jD0
cj;!�

j

of �.�/ D e���t, with interpolation points �1; : : : ; �K ; �1;!; : : : ; �K;! .
4. Each Fourier coefficient of the solution at time tnC1 is then computed as follows:

ŒunC1�! D
2K�1
X

jD0
cj;! OeH!Ljun: (19)
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FFTs are used to compute Fourier coefficients of Ljun, but by performing Newton
interpolation in step 3 with the frequency-independent nodes listed first, the
number of FFTs can be reduced from 2K in (19) to K [3].

5. Perform an inverse FFT to obtain the solution at time tnC1.

3 KSS with Coarse-Grid Residual Correction

The “smoothing” property [2] is a phenomenon that many iterative methods possess.
This property describes a method in which the rapid decrease in error in earlier
iterations is due to the elimination of higher frequency error. Methods with the
smoothing property are often not as effective at eliminating low frequency error.

Similarly, due to the work of Cibotarica, Lambers, and Palchak in [3, 14], KSS
methods are already highly effective at computing the high frequency components
of the solution, but since the asymptotic analysis in these works applied only to
high-frequency components, they are not as effective at eliminating low frequency
error.

Solving a PDE on a coarse grid is an effective way to eliminate low-frequency
error in linear systems that arise from the spatial discretization of elliptic partial dif-
ferential equations. To apply this multigrid-inspired technique to a time-dependent
problem of the form utCLu D 0, we first define the residual as R D utCLu, and then
solve a non-homogeneous version of the PDE to estimate the error for correction.

We therefore need three functions to implement coarse grid residual correction
generalized to the time-dependent PDE:

• a function to restrict the problem to a coarser grid
• a function to discretize the spatial differential operator on the coarse grid, and
• a function to interpolate back to the fine grid

The Krylov Subspace Spectral method with Coarse-Grid Residual Correction (KSS-
CG) proceeds as follows, during each time step:

1. use KSS as described in Sect. 2 to compute an initial solution and residual,
2. use a FFT to restrict the residual to a coarse grid,
3. compute a correction on the coarse grid by solving the same PDE, but with the

residual as a source term,
4. use a FFT to transfer the correction to the fine grid, and
5. add the correction to the initial solution from step 1.

It should be noted that since the test cases we use have homogeneous Neumann
boundary conditions instead of periodic, we will be using a discrete cosine transform
that employs FFTs.

In [4] it is shown why multigrid methods are ineffective for nonelliptic problems
such as the Helmholtz equation, as any choice of a relaxation parameter results in an
amplification of some modes. In [12], KSS methods were applied to the Helmholtz
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equation, and difficulties arose due to a singularity in the integrand �.�/ D 1=�

in (9) resulting from the indefiniteness of the underlying matrix.
In both cases, the PDE is being solved on the entire (spatial) domain through the

solution of a single system of linear equations; by contrast, KSS-CG is not solving
a nonelliptic PDE on the entire (space-time) domain simultaneously. As described
above, the algorithm is essentially a time-stepping method, with residual correction
performed after each time step on a coarser spatial grid.

3.1 Using KSS-CG to Solve a Parabolic PDE

Consider the parabolic PDE

ut C Lu D 0; .0; 2�/ � .0;1/; (20)

u.x; 0/ D f .x/; 0 < x < 2�; (21)

with either periodic or homogeneous boundary conditions. In this section, we
restrict ourselves to one space dimension for concreteness; a 2-D problem is
considered in the results section.

As previously stated, multigrid can be used to improve the accuracy of iterative
methods that have the smoothing property. After KSS is applied during a single
time step as described in Sect. 2, we are left with a relatively smooth error. To
perform residual correction, first the solution computed from KSS is used to find
the residual, R.x; t/ D ut.x; t/ C Lu.x; t/. This entails using the time derivative of
the solution operator, in this case S.t/ D e�Lt, to compute ut. That is, the same
Gaussian quadrature rules are used as with computing the solution itself, but with
the integrand f .�/ D ��e��t.

To restrict the residual to a coarse grid, the low-frequency components of its
discrete Fourier transform are extracted. Once the residual is restricted to the coarse
grid, the differential operator L must also be restricted to the coarse grid. Then, the
non-homogeneous equation

et C Le D R.x; t/ (22)

must be solved where e is the error, and the initial condition is e.x; 0/ D e0 D 0. It
follows that

e.x; t/ D
Z t

0

e�L.t�s/R.x; s/ ds: (23)
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If we use Gaussian quadrature to approximate the integral in (23), we obtain the
error estimate

e.x; �t/ D
Z �t

0

e�L.�t�s/R.x; s/ds 	
m
X

kD1
wke
�L.�t�sk/R.x; sk/ (24)

where the sk are the Gauss-Legendre points, transformed to the interval Œ0;�t�, and
the wk are the weights transformed to the same interval. To correct the solution, the
newly obtained error estimate can be interpolated back to the fine grid by padding
its discrete Fourier transform with zeros.

A straightforward modification of the above algorithm to perform multiple
coarse-grid corrections would have the drawback that with each correction, the
total number of quadrature nodes in time would increase substantially, because the
residual of each term in each correction would have to be evaluated at m times,
where m is the number of nodes used in the quadrature rule in (24). To avoid the
resulting increase in computational expense, future work will focus on coarsening
in both space and time to make multiple corrections practical.

3.2 Using KSS-CG to Solve a Hyperbolic Problem

Consider the hyperbolic PDE

utt D Lu; .0; 2�/ � .0;1/; (25)

u.x; 0/ D f .x/; ut.x; 0/ D g.x/; 0 < x < 2�: (26)

The solution operator for this problem can be expressed as a matrix of functions of
the operator L:

"

u.x; tC�t/
ut.x; tC�t/

#

D
"

cos.
p�L4t/ 1p�L sin.

p�L4t/
�p�L sin.

p�L4t/ cos.
p�L4t/

#"

u.x; t/
ut.x; t/

#

:

(27)

The entries of the propagator matrix in (27) indicate which functions are the
integrands in the Riemann-Stieltjes integrals that are used to compute the Fourier
coefficients of the solution [13].

The residual, R, computed at each time step is

R D utt � Lu;

where the second time derivative of the solution operator from Sect. 2 is used to
compute utt. That is, the second derivatives of the matrix functions in (27) with
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respect to �t are used as integrands in the required Riemann-Stieltjes integrals.
Then, the error used to update the solution is obtained by solving

ett D LeC R.x; t/

which yields

e.x; tnC1/ D
Z �t

0

1p�L sin.
p�L.4t � s//R.x; s/ ds: (28)

This error estimate and its time derivative are then interpolated back to the fine grid
by padding their discrete Fourier transforms with zeros, as in the parabolic case.

4 Numerical Results

In this section, the effectiveness of KSS with coarse grid residual correction (KSS-
CG) will be demonstrated. The following approaches will be compared:

• KSS method as described in Sect. 2.
• KSS method with coarse grid residual correction, as described in Sect. 3, using 2

Gaussian quadrature nodes (KSS-CG2). This will only be done in the parabolic
case.

• KSS method with coarse grid residual correction, as described in Sect. 3, using 4
Gaussian quadrature nodes (KSS-CG5). This will only be done in the hyperbolic
case.

• KSS method with coarse grid residual correction using 3 Gaussian quadrature
nodes (KSS-CG3)

• Krylov projection as described in [8] (KP)
• KSS-EPI method as described in [3].

The errors reported are relative errors with respect to an “exact solution”
using the MATLAB ODE solver ode15s, computed using the smallest allowable
time step. For each test problem we use grid sizes of N D 50; 150 grid points
per dimension to demonstrate how increased spatial resolution will affect the
performance of each method. For KSS-CG, a grid with N D 25 grid points per
dimension is used for residual correction.

4.1 Parabolic Problem

We first compare all five methods when solving the 2-D parabolic problem

ut D ˛4uC .1 � 3u20/u; (29)
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Fig. 1 Time of each timestep for each method vs error with grid sizes N D 50 points per
dimension. The blue dashed curve represents KSS-CG using 2 Gaussian quadrature nodes, the
red solid and star curve represents KSS-CG using 3 Gaussian quadrature nodes, the yellow dash-
dot curve represents KSS-EPI, the purple dot-star curve represents the KSS method with filtering
(but without correction), and the green dash-circle curve represent standard Krylov Projection

Fig. 2 Time of each timestep for each method vs error with grid sizes N D 150 points per
dimension. The blue dashed curve represents KSS-CG using 2 Gaussian quadrature nodes, the
red solid and star curve represents KSS-CG using 3 Gaussian quadrature nodes, the yellow dash-
dot curve represents KSS-EPI, the purple dot-star curve represents the KSS method with filtering
(but without correction), and the green dash-circle curve represent standard Krylov Projection

on the rectangle Œ0; 1�2 and for 0 < t < 0:2, with initial condition

u.x; y; 0/ D u0.x; y/ D 0:4C 0:1 cos.2�x/ cos.5�y/ (30)

and homogeneous Neumann boundary conditions.
Figures 1 and 2 show the error vs. time performance and error vs. time step

performance for each approach used, with grid sizes N D 50 and 150 points per
dimension, respectively. From these plots we can see that the errors for both the
KSS-CG methods are smaller that the errors for any other method. On the larger
grid size, seen in Fig. 2, the difference in efficiency between each method is more
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pronounced. KSS-CG3 had the smallest relative error for each time-step, followed
closely by KSS-CG2. Standard KSS and KSS-EPI methods demonstrated less
computational time per time-step although comparatively the percentage increase in
computational time between grid sizes for KSS is much larger than the percentage
increase for both KSS-CG methods. This implies that for even larger grid sizes,
KSS-CG may be more efficient than the other tested methods, as also observed in
[3], though further numerical experiments would have to be performed to validate
this theory. It is also important to note that although all KSS methods used are third-
order accurate, KSS-CG achieved fourth-order accuracy.

4.2 Hyperbolic Problem

We now compare the performance of these methods when solving the hyperbolic
problem

utt D ˛4uC .1 � 3u20/u; (31)

on the rectangle Œ0; 1�2 and for 0 < t < 2, with initial conditions

u.x; y; 0/ D u0.x; y/; ut.x; y; 0/ D 1;

where u0.x; y/ is as defined in (30). For this problem, all KSS methods used
are sixth-order accurate, and therefore we use KSS-CG with 3 and 4 Gaussian
quadrature nodes for the correction.

We can see from the graph of the smaller grid size in Fig. 3 that all methods
yield similar computational time in the last time-step, yet KSS-CG3 and KSS-CG4

Fig. 3 Time of each timestep for each method vs error with grid size N D 50 points per
dimension. The blue dashed curve represents KSS-CG using 3 Gaussian quadrature nodes, the
red solid and star curve represents KSS-CG using 5 Gaussian quadrature nodes, the yellow dash-
dot curve represents KSS-EPI, the purple dot-star curve represents the KSS method with filtering
(but without correction), and the green dash-circle curve represent standard Krylov Projection
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Fig. 4 Time of each timestep for each method vs error with grid size N D 150 points per
dimension. The blue dashed curve represents KSS-CG using 3 Gaussian quadrature nodes, the
red solid and star curve represents KSS-CG using 5 Gaussian quadrature nodes, the yellow dash-
dot curve represents KSS-EPI, the purple dot-star curve represents the KSS method with filtering
(but without correction), and the green dash-circle curve represent standard Krylov Projection

yield substantially higher accuracy. As the grid size increases from N D 50 grid
points per dimension to N D 150, the accuracy of Krylov projection and KSS-EPI
decreased while the accuracy of KSS and both KSS-CG methods increased, as can
be seen in Fig. 4. Most significantly, the KSS-CG methods are far more efficient and
scalable than Krylov Projection or KSS-EPI. As in the parabolic case, both KSS-
CG methods exhibited higher-order accuracy: eighth-order instead of sixth over the
smaller time steps.

5 Conclusion

It has been demonstrated that with coarse-grid residual correction, KSS methods
become more accurate when solving time-dependent variable-coefficient PDEs, and
also achieve a higher order of temporal accuracy. This represents a significant step
forward in the evolution of KSS methods, as previous versions used the less efficient
approaches of explicitly performing block Lanczos [14] or Krylov projection [3]
to compute low-frequency components. Further optimization of KSS-CG will be
needed to obtain faster computation time with sustained accuracy.

Future work on the combination of coarse-grid residual correction and KSS is
needed to fully explore the effectiveness of this method. Topics for further research
include generalizing KSS-CG to solve a wider variety of problems, including
nonlinear PDEs in combination with EPI methods as in [3]. Future work must also
focus on further grid coarsening, as in this paper only the next coarsest grid was
used. An efficient way to use any number of corrections must be developed to fully
realize the potential of KSS-CG; this would involve coarsening in time as well as
space.
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Extension of the Velocity-Correction Scheme
to General Coordinate Systems

Douglas Serson, Julio R. Meneghini, and Spencer J. Sherwin

Abstract The velocity-correction scheme is a time-integration method for the
incompressible Navier-Stokes equations, and is a common choice in the context
of spectral/hp methods. Although the spectral/hp discretization allows the represen-
tation of complex geometries, in some cases the use of a coordinate transformation
is desirable, since it may lead to symmetries which allow a more efficient solution
of the equations. One example of this occurs when the transformed geometry has
a homogeneous direction, in which case a Fourier expansion can be applied in this
direction, reducing the computational cost. In this paper, we revisit two recently
proposed forms of extending the velocity-correction scheme to general coordinate
systems, the first treating the mapping terms explicitly and the second treating
them semi-implicitly. We then present some numerical examples illustrating the
properties and applicability of these methods, including new tests focusing on the
time-accuracy of these schemes.

1 Introduction

The velocity-correction scheme [5, 8] is a widely used time-integration method
for the unsteady incompressible Navier-Stokes equations, having being applied
in conjunction with finite volume [12], finite element [5], spectral-Legendre [12]
and spectral/hp [8] discretizations. In particular, this method is commonly used in
conjunction with spectral/hp discretizations, for example in the Nektar++ package
[2]. This method has the advantage of allowing the pressure and the velocity to be
solved separately, leading to an efficient solution.
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(a) (b)

Fig. 1 Example of how a complex geometry in the physical Cartesian coordinate system can
be mapped into a simpler geometry in a different coordinate system. (a) Cartesian system. (b)
Transformed system

Although the spectral/hp discretization allows us to consider arbitrary geome-
tries, in some problems it is desirable to solve the equations in a coordinate
system other than the typical Cartesian frame of reference. For example, if the
transformation creates a homogeneous direction, we can employ what is called
the Fourier-spectral/hp element method [6]. In this approach, the homogeneous
direction is discretized by a Fourier expansion, leading to a more efficient solution
that can compensate for the extra computational costs of solving the Navier-Stokes
equations in the general coordinates. This idea is illustrated in Fig. 1, which shows
how we can obtain a simpler representation of a complex geometry by changing
the coordinate system. Another situation where using a coordinate transformation
can be advantageous occurs when we have a moving geometry. In this case, the
coordinate transformation removes the need to deform the computational mesh,
which is usually an expensive operation in spectral/hp methods.

Although being able to employ the velocity-correction scheme in general
coordinates would be desirable, until recently this method had not been extended to
account to general coordinate transformations. As far as the authors are aware, only
specialised situations had been considered, like constant-Jacobian time-dependent
transformation [11], and constant-Jacobian time-independent mappings [4]. Consid-
ering other approximations of the Navier-Stokes equations, a method for accounting
for general coordinate transformations in the context of pseudo-spectral methods
was proposed [3], using iterative procedures to solve for the pressure and velocity
fields.

In a recent paper [13], we proposed two methods for including coordinate
transformations in the velocity-correction scheme. The first one is a generalization
of the approach of [4, 11], with the mapping being treated explicitly. On the other
hand, the second method is a modified version of the iterative procedure employed
by Carlson et al. [3], with the pressure and viscous terms of the mapping being
treated implicitly. Neither of these new methods are restricted to constant-Jacobian
transformation, and both of them can be used with time-dependent transformations.

In this paper, we revisit the methods proposed in [13], presenting also numerical
tests focused on demonstrating the spatial and time-accuracy of these schemes. The
paper is organized as follows. Section 2 describes the numerical methods. Then,
Sect. 3 presents results from simulations employing them. Finally, Sect. 4 contains
the conclusions of the paper.
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2 Numerical Formulation

In this section the numerical methods that allow the velocity-correction scheme to
be applied to general coordinate systems are briefly described. A more detailed
presentation of the formulation can be found in [13]. We start by considering the
velocity-correction scheme in a Cartesian coordinate frame, and then proceed to
extending it to a general coordinate system.

In the original velocity-correction scheme [5, 8], we are interested in solving
the incompressible Naiver-Stokes equations, which assuming a unity density can be
written as

@u
@t
D N.u/�G. p/C �L.u/;

r � u D 0;
(1)

where u is the velocity, p is the pressure and � is the kinematic viscosity. In this
equation, N.u/ D �.u � r/u are the non-linear convective terms, G. p/ D rp is the
pressure gradient and �L.u/ D �r2u are the linear viscous terms.

We begin by approximating N.u/ by an explicit polynomial extrapolation

N.u.tnC1// 	 N� D
Je�1
X

qD0
ˇqN.un�q/ (2)

and the time derivative by a backward differentiation formula (BDF)

@u
@t
.tnC1/ 	 �0unC1 � uC

�t
D �0unC1 �PJi�1

qD0 ˛qun�q

�t
: (3)

We note that the extrapolation from Eq. (2) can also be applied to other operators.
Then, the time-integration is performed in two steps. In the first step, we solve for

the pressure assuming an intermediate velocity field which satisfies the continuity
equation, while the second step corresponds to a viscous correction. The first step
consists of the system

8

ˆ

<

ˆ

:

�0 NunC1�uC

�t CrpnC1 C �Q� �N� D 0 in˝;
r � NunC1 D 0 in˝;
NunC1 � n D uD � n on �D;

(4)

where NunC1 is the intermediate divergence-free velocity, which does not need to be
calculated during the solution, and Q D r � r � u is a valid form of the viscous
terms. The reason for using Q instead of L in this equation is that the latter leads to
spurious boundary conditions [5, 8].
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Equation (4) can be solved by dotting it with r� and integrating to obtain the
weak form. After applying some identities, the resulting equation for the pressure is

Z

˝

rpnC1 � r� d˝ D
Z

˝

�r �
 

� Ou
�t

!

d˝ C
Z

�

�

"

Ou � �0 NunC1
�t

� �Q�
#

� n dS;
(5)

with Ou D uC C�tN�. This is a Poisson equation, with the second term in the right
hand side representing the high order pressure boundary conditions.

Having obtained the pressure, the second step of the scheme consists in solving
for the velocity using the Helmholtz equation

�0unC1 � OOu
�t

D �L.unC1/ (6)

with the velocity boundary conditions from the specific problem applied to unC1,
and where OOu D Ou� rpnC1�t.

We now consider the problem in a general coordinate system. We will denote
the usual Cartesian system by .Nx; Ny; Nz/ and the transformed system by .x; y; z/. In
the transformed system, we can obtain the appropriate form of the incompressible
Navier-Stokes equations using tensor calculus [10], where the resulting equations
can be represented by

@u
@t
D NN.u/� NG. p/C � NL.u/;

D.u/ D 0;
(7)

where:

NN.u/ D �u jui;j C Vjui;j � u jVi
;j;

NG. p/ D gijp;j;

� NL.u/ D �g jkui;jk;

D.u/ D 1

J
r � .Jui/;

(8)

with gij representing the inverse of the metric tensor, ui the components of the vector
u, J the Jacobian of the transformation to the Cartesian system, and a subscript
after a comma denotes the covariant derivative. The term Vj D � @xj

@t represents the
velocity of the coordinate system, and therefore is only relevant for time-dependent
transformations. For the fundamentals of tensor calculus leading to the derivation of
equation (7), the reader is referred to [1]. To simplify the notation, the r operator
will be assumed to correspond to the usual Cartesian operation representing the
partial derivatives.

In the following, we will present two approaches to solving Eq. (7). In the first
all extra terms arising from the transformation are treated explicitly, while in the
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second the convective terms are treated explicitly and the pressure and viscous terms
implicitly.

2.1 Explicit Formulation

This section describes an approach to solve Eq. (7) treating all the mapping terms
explicitly, which can be seen as a generalization of a method previously presented
in the literature for constant Jacobian transformations [4, 11]. For this explicit
formulation, we rewrite Eq. (7) as

@u
@t
D N.u/ � rp

J
C �L.u/CA.u; p/;

D.u/ D 0;
(9)

where N.u/ and L.u/ are the usual convective and viscous operators, and

A.u; p/ D
h NN.u/ �N.u/

i

C
�

� NG. p/C rp
J

�

C �
h NL.u/� L.u/

i

(10)

is a forcing term that imposes the coordinate transformation and can clearly be
interpreted as the difference between the Cartesian and transformed expressions.

Since the incompressibility condition is now different, we also need to modify
the decomposition of the viscous terms which lead to the operator Q. Following a
similar idea from that leading to Q, we propose replacing Q by NQe D r. uJ � rJ/Cr � r � u. The resulting equation for the pressure is then

Z

˝
rpnC1 � r� d˝ D

Z

˝
�r �

2

4� J Ou
�t
C �

 

r
�

u
J
� rJ

�

!�3
5C��rJ � .r � r � u/� d˝

C
Z

�
�J

"

Ou � �0 NunC1
�t

� � NQ�e
#

� n dS

(11)

where this time Ou D uC C �t.N� C A�/ and the terms of the form .:/� are
calculated according to the extrapolation procedure from Eq. (2). This is still a
Poisson equation, with modified forcing terms and boundary conditions.

In the second step of the solution, the only modification required is in the

definition of OOu, which is now OOu D Ou� rpnC1

J �t. Therefore, only slight modifications
are required to the original velocity-correction scheme in order to implement
this explicit formulation. This characteristic is one of the advantages of the
method, since an existing solver can be easily adapted to include the coordinate
transformation.
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2.2 Semi-Implicit Formulation

This section describes an approach to solve the equations where the mapping terms
arising from the convective part of the equation are treated explicitly, while the
pressure and viscous terms are treated implicitly, maintaining the characteristics
of the original splitting scheme. This is a modified version of the method used by
Carlson et al.[3], with the difference being that our approach allows us to readily
obtain the appropriate pressure boundary conditions.

The main idea of this method is to follow the original velocity-correction
scheme, replacing the operators N, G and L by their analogous counterparts NN,
NG and NL. However, instead of directly solving the implicit equations involving the
generalized operators, they are solved iteratively. This is done because inverting
those operators would lead to strong couplings (e.g. coupling between different
velocity components and between Fourier modes) which would make the method
very expensive computationally. Another change required is in the NQ operator,
which should be replaced by NQi D "imn"ljkgnlgkpu

p
;jm, where gij is the metric tensor

and "ijk D g�1=2�ijk, with �ijk being the permutation symbol, is a generalization of
the permutation symbol.

The first step is solved using the following iteration:

rpnC1sC1 D rpnC1s C J

"

uC � �0 NunC1
�t

� � NQ�i C NN� � NG. pnC1s /

#

; (12)

where s is the iteration counter.
Dotting equation (12) with r� and integrating to obtain the weak form, and after

using the identities r � .J NunC1/ D 0 and D.Q/ D 0, the equation becomes

Z

˝

rpnC1
sC1
� r� d˝ D

Z

˝

�

2

4JD

 

�Ou
�t

!

C JD. NG. pnC1
s // � r2pnC1

s

3

5 d˝

C
Z

�

�

2

4J

 

Ou � �0 NunC1

�t

!

� �J NQ�

i � J NG. pnC1
s /CrpnC1

s

3

5 � n dS;

(13)

where Ou D uC C�t NN�. This Poisson equation needs to be solved at each iteration;
however, most of the terms in the right-hand-side are not modified during the
iterative procedure, and therefore only need to be computed once per time-step.

Similarly, the velocity system of the second step can be solved using the
following iterative procedure:

�0unC1sC1
�t

� �L.unC1sC1 / D
Ou
�t
� NG. pnC1/C � NL.unC1s /� �L.unC1s /; (14)
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where each iteration consists of solving a Helmholtz equation for each velocity
component. Also, we note that the iterative procedures of equations (12) and (14)
can be modified to include a relaxation parameter, making them more robust.

3 Test Cases

This section presents results of tests employing the previous methods for three
different flows, the first two considering flows with analytic solutions in order to
demonstrate the accuracy of the schemes, and the last one illustrating a possible
practical application. The first case considers the two-dimensional Taylor-Green
vortex, which represents a decaying vortex in a periodic square. This is an unsteady
flow, allowing us to assert the time accuracy of our methods, but due to the periodic
boundary conditions the high order pressure boundary conditions are not tested. The
second case is the Kovasznay flow, which is a steady solution of the two-dimensional
Navier-Stokes equations. The last simulation presented is the two-dimensional flow
around two circular cylinders in tandem, with the upstream cylinder subject to
forced oscillations, while the downstream cylinder is held fixed. We also tested the
case of a uniform flow with a time-dependent transformation. In this case the flow
remained uniform, demonstrating that our treatment of time-dependent mappings
does not introduce spurious structures.

All simulations employ the spatial discretization of the spectral/hp method [7]
implemented in Nektar++ [2]. However, we note that the methods proposed here do
not depend on this particular choice of discretization.

3.1 Two-Dimensional Taylor-Green Vortex

The two-dimensional Taylor-Green vortex is a decaying vortex in a periodic domain,
with analytic solution

u D cos.x/sin.y/e�2�t;

v D �sin.x/cos.y/e�2�t;

p D 1

4

 

sin

�

2x � �
2

�

C sin

�

2y � �
2

�

!

e�4�t:

(15)

We solved this problem in a computational domain extending from 0 to 2� in
both x and y, using a uniform mesh consisting of 16 quadrilateral elements. Periodic
boundary conditions were used, with the initial conditions obtained from (15) with
t D 0. The kinematic viscosity was � D 1

100
and the final time of the simulations

was t D 1.
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Fig. 2 Convergence with the polynomial order of simulations for the two-dimensional Taylor-
Green vortex. (a) Fixed transformation. (b) Time-dependent transformation

We considered transformations of the form

Nx D x � h

2
cos.

2�y

�
/cos.

2�x

�
/ � A

2
cos.2�t!/; (16)

using � D � and ! D 1:0. Three configurations were studied: no mapping (h D 0

and A D 0), fixed mapping (h D 0:15 and A D 0:0) and time-dependent mapping
(h D 0:15 and A D 0:1). For the simulations with a transformation, both the explicit
and semi-implicit formulations were considered.

Figure 2 shows the convergence with the polynomial order for simulations using
a second-order time integration with �t D 10�5. We notice that the coordinate
transformation may increase the level of error, what is likely caused by the
exact solution in this case being more difficult to represent using polynomials
in the transformed domain. However, it is reasonable to expect that in practical
applications this preferential representation in the Cartesian system will not occur
in general. Therefore, the most important characteristic of these results is that the
exponential convergence of the method is preserved.

Figure 3 presents the temporal convergence of the method, for a polynomial order
P D 11. Once again, the error levels are higher, but the order of the schemes is
maintained.

3.2 Kovasznay Flow

The Kovasznay flow [9] consists in a steady analytical solution for the two-
dimensional Navier-Stokes equations with a periodic direction, which can be viewed
as a representation of the flow behind a two-dimensional grid. The exact solution is

u D 1 � ekx cos.2�y/; v D k

2�
ekx sin.2�y/; p D 1

2

�

1 � e2kx
�

; (17)
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Fig. 3 Convergence with the time step of simulations for the two-dimensional Taylor-Green
vortex. (a) Fixed transformation. (b) Time-dependent transformation

where the constant k is defined as

k D 1

2�
�
r

1

4�2
C 4�2: (18)

We solved this problem in a computational domain extending from �0:5 to 1 in
x and from �0:5 to 1:5 in y, using a uniform mesh consisting of 12 quadrilateral
elements. A uniform flow was used as initial condition, and the time integration was
performed until t D 20. Dirichlet conditions were used in all boundaries, except
for the inflow where the high order conditions were used for the pressure. Also, all
simulations employed � D 1

40
.

We considered a transformation of the form

Nx D x � .1 � x/
h

2
cos.

2�y

�
/; Ny D yC A

2
cos.2�t!/; (19)

using � D 1:0 and ! D 2:0. Once again, three configurations were studied: no
mapping (h D 0 and A D 0), fixed mapping (h D 0:05 and A D 0:0) and time-
dependent mapping (h D 0:05 and A D 0:2), with both the explicit and semi-
implicit formulations considered.

Figure 4 shows the convergence with the polynomial order for simulations
using a second-order time integration with �t D 10�5. Both methods maintain
the exponential convergence with respect to P. Also, we notice that for the time-
dependent transformation, the error saturates at a higher level. This happens because
in this case the solution in the computational domain is not steady, and therefore
there are also time integration errors. The convergence with �t for this case is
presented in Fig. 5 (with P D 11), demonstrating that the temporal convergence
is consistent with the original scheme.
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Fig. 4 Convergence with the polynomial order of simulations for the Kovasznay flow. (a) Fixed
transformation. (b) Time-dependent transformation

Fig. 5 Convergence with the time step of simulations for the Kovasznay flow with a time-
dependent transformation. The dashed black lines are reference slopes

3.3 Flow Around Moving Cylinders

To demonstrate the possibility of using the techniques presented in this paper to
problems involving moving bodies, a simulation of the two-dimensional flow around
a pair of moving circular cylinders was performed, with Reynolds number Re D
100. The centre-to-centre distance is 3 diameters, the downstream cylinder is held
fixed, and a forced oscillation in the y direction with non-dimensional frequency 0:3
and amplitude of 0:75 diameter was imposed on the upstream cylinder. Instead of
using a moving mesh to solve this problem, a fixed mesh where the displacement
of the cylinders is zero was used, with a mapping accounting for the movement of
the upstream cylinder. Before each time-step, the displacements on the boundaries
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were used as boundary conditions to solve a Laplace equation, leading to a global
representation of the mapping which was used to solve the equations with the semi-
implicit method. Figure 6 shows instantaneous contours of vorticity for this case,
exhibiting a behaviour that is compatible with what is expected for this flow. The
effect of the transformation is illustrated in Fig. 7, showing the computational mesh
in the region close to the cylinders, along with the corresponding representations in
the physical domain at two different time instants.

Fig. 6 Instantaneous contours of vorticity for flow around two circular cylinder in tandem with
Re D 100. The downstream cylinder is fixed, while the upstream cylinder oscillates with frequency
0:3 and amplitude 0:75

Fig. 7 Detail of computational mesh used in the simulation of the flow around two circular
cylinders, and the same mesh after applying the coordinate transformation at two different time
instants
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4 Conclusions

In this paper, we revisited two methods recently proposed to introduce coordinate
transformations in the velocity-correction scheme. Using numerical tests, we show
that these methods maintain the exponential convergence of the underlying spatial
discretization, and also the order of accuracy of the time integration scheme being
employed. These methods are useful when they lead to a simplification of the
geometry, allowing for efficient numerical techniques such as a Fourier expansion to
be employed. Also, by using time-dependent transformations it is possible to solve
fluid-structure interaction problems without resorting to moving meshes.
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A Parallel High-Order CENO Finite-Volume
Scheme with AMR for Three-Dimensional Ideal
MHD Flows

Lucie Freret, Clinton P.T. Groth, and Hans De Sterck

Abstract A highly-scalable and efficient parallel high-order finite-volume method
with local solution-dependent adaptive mesh refinement (AMR) is described for
the solution of steady plasma flows governed by the equations of ideal magne-
tohydrodyamics (MHD) on three-dimensional multi-block body-fitted hexahedral
meshes, including cubed-sphere grids based on cubic-gnomonic projections. The
approach combines a family of robust and accurate high-order central essen-
tially non-oscillatory (CENO) spatial discretization schemes with a block-based
anisotropic AMR scheme. The CENO scheme is a hybrid approach that avoids
some of the complexities associated with essentially non-oscillatory (ENO) and
weighted ENO schemes and is therefore well suited for application to meshes having
irregular and unstructured topologies. The anisotropic AMR method uses a binary
tree and hierarchical data structure to permit local refinement of the grid in preferred
directions as directed by appropriately selected refinement criteria. Applications will
be discussed for several steady MHD problems and the computational performance
of the proposed high-order method for the efficient and accurate simulation of a
range of plasma flows is demonstrated.

1 Introduction and Motivation

Physics-based space weather modeling [6, 7, 14] is a challenging problem that
requires accurate numerical modeling for both disparate spatial and temporal scales.
Accurate solutions can be achieved by using either high-order schemes or an
adaptive mesh refinement (AMR) technique. A combination of both approaches
would appear to be particularly desirable [15].
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The high-order central essentially non-oscillatory (CENO) finite-volume scheme
from Ivan et al. [16, 18] uses a hybrid reconstruction approach based on a fixed
central stencil. An unlimited high-order k-exact reconstruction is performed in
the cells where the solution is well resolved while the scheme reverts to a low-
order limited linear approach for cells with under-resolved/discontinuous solution
content. Switching in the hybrid procedure is determined by a smoothness indicator.
The CENO high-order scheme has been successfully applied to a broad range of
flows on multi-block body-fitted meshes including non-viscous flows [18], viscous
flows [16], large-eddy simulation (LES) of turbulent premixed flames [24] and
magnetohydrodyamics (MHD) problems [18, 23]. The efficiency of the CENO
scheme has also been assessed on cubed-sphere meshes [18] and extended to
unstructured meshes for laminar viscous flows [5] and turbulent reactive flows [4].

Block-based AMR approaches [2, 3, 14, 21] are very attractive since they are
naturally suitable for parallel implementation and lead to highly scalable methods
while requiring an overall light data structure to compute the block connectivity. The
multi-block AMR scheme considered here is based on the previous work by Gao and
Groth [11] for reacting flows with isotropic refinement. This numerical scheme has
also been applied to the solution of complex flow problems such as non-premixed
laminar and turbulent flames [10, 12, 20] as well as turbulent multi-phase rocket
core flows [22], MHD simulations [17, 18, 23], and micron-scale flows [13, 19]. The
isotropic AMR scheme was originally extended to allow for anisotropic refinement
by Williamschen and Groth [26] for non-viscous flows. More recently, Freret and
Groth [9] reformulated the anisotropic AMR scheme using a non-uniform treatment
of the cells (both interior and ghost or halo cells) within a given block. It directly
makes use of the neighboring cells as the ghost cells, even those at different levels
of refinement as found at grid resolution changes. The resulting anisotropic AMR
multi-block scheme is better suited for high-order finite-volume schemes.

The focus of this study is the extension of the enhanced anisotropic AMR
algorithm of Freret and Groth [9] for use in conjunction with the fourth-order
CENO finite-volume scheme (the former permits the use of efficient high-order
solution transfer operators) and the subsequent application of the combined method
to the prediction of steady-state solutions of the ideal MHD equations. For this
application, the solenoidal constraint on the magnetic field is controlled using the
generalized Lagrange multiplier (GLM) proposed by Dedner et al. [8, 18, 23].
The ideal MHD equations and the GLM formulation are described in Sect. 2. In
Sect. 3, a brief outline of the high-order CENO scheme is provided. The proposed
anisotropic AMR block-based method is reviewed in Sect. 4 with the necessary
extension for use with the high-order spatial discretization scheme. Finally, three-
dimensional (3D) numerical results are presented in Sect. 5, including an accuracy
demonstration of the high-order CENO reconstruction procedure for a known
function and numerical results for two steady-state flow problems on cubed-sphere
grids. Numerical results for both non-magnetized and magnetized flows are used
to evaluate the grid convergence of the proposed fourth-order CENO scheme
for uniformly and anisotropically refined meshes and compare the convergence
behavior to that of the second-order limited method described by Ivan et al. [17].
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The latter was originally developed for use with the isotropic AMR of Gao and
Groth [11] and has been extended for the purpose of this study to non-uniform
block-based anisotropic AMR.

2 Ideal Magnetohydrodynamics Equations

Solution of the hyperbolic system of ideal MHD equations is considered here using
a high-order Godunov-type finite-volume scheme with a GLM formulation [8]
which couples the divergence constraint, r � B D 0, with the induction equation
through the introduction of the potential,  . The system of conservation laws
for which numerical solutions are sought may be expressed in weak conservation
form as

@U
@t
C r � F D SCQ ; (1)

where U is the vector of conserved variables, F is the solution flux dyad, and S and
Q are volumetric source terms. The solution vector, U, has the form

U D Œ �; �V; B; �e;  �T ; (2)

where � is the plasma density, V the velocity field, B the magnetic field, �e is
the total energy and  is the so-called generalized Lagrange multiplier variable
associated with the GLM r � B treatment. The flux dyad, F, is given by

F D

2

6

6

6

6

6

6

6

6

4

�V

�VVC . pC B � B
2
/I� BB

VB � BVC  I
.�eC pC B � B

2
/V � .V � B/B

c2hB

3

7

7

7

7

7

7

7

7

5

: (3)

The specific total plasma energy is e D p=.�.� � 1// C V2=2 C B2=.2�/, where
p is the molecular pressure, V is the magnitude of the fluid velocity, and B is the
magnitude of the magnetic field. The numerical source term, S, is due to the GLM-
MHD formulation and has the form

S D Œ0; 0; 0; 0;�c
2
h

c2p
 �T ; (4)

in which the coefficients cp and ch control the relative rates of dissipation and
transport of  , as well as the corresponding advection speed of the r � B cleaning
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mechanism, respectively. The ideal gas equation of state, p D �RT, is assumed,
where T is the gas temperature and R D 1=� is the gas constant. For a polytropic
gas (thermally and calorically perfect), the ratio of plasma specific heats, � , is a
constant, and the specific heats are given by Cv D 1=.� � 1/ and Cp D �=.� � 1/.
The source vector, Q, appearing in Eq. (1) generally represents different volumetric
sources arising from the physical modelling of various space plasma flows, such as
gravitational forces.

2.1 Semi-Discrete Finite-Volume Formulation

The semi-discrete form of the preceding upwind finite-volume scheme applied to
Eq. (1) for hexahedral computational cell .i; j; k/ of a three-dimensional grid is

dUijk

dt
D � 1

Vijk

6
X

fD1

Ng
X

mD1
. Q!F � n/i;j;k;f ;m C .S/ijk C .Q/ijk D .R/ijk.U/ ; (5)

where Ng is the number of Gauss quadrature points and n is the local normal of
the face f at each of the Ng Gauss quadrature points. The hexahedral cells are
contained within logically Cartesian blocks that form a multi-block body-fitted
mesh with general unstructured connectivity between blocks. The total number of
Gauss integration points, Ng, at which the numerical flux is evaluated is chosen
as the minimum required to preserve the targeted rate of convergence for solution
accuracy. In this work, standard tensor-product quadrature consisting of four Gauss
quadrature points are used for the cell faces, providing a fourth-order accurate
spatial discretization. The latter is the target accuracy for the high-order scheme
considered here.

The numerical fluxes, F � n, at each Gauss quadrature point on each face of a cell
.i; j; k/ are determined from the solution of a Riemann problem. Given the left and
right interface solution values, Ul and Ur, an upwind numerical flux is evaluated
by solving a Riemann problem in the direction defined by the normal to the face.
The values of Ul and Ur are determined by performing the CENO reconstruction as
detailed in the next section. The contributions of the volumetric sources Sijk; Qijk are
evaluated to fourth-order accuracy by again using a standard tensor-product Gauss
quadrature with twenty-seven points for the volumetric integration. In the present
computational studies, the Lax-Friedrichs approximate Riemann solver and fourth-
order accurate Runge-Kutta explicit time-marching scheme have been used. Steady-
state solutions are obtained using the latter by integrating the solution forward in
time until a steady result is achieved.
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3 High-Order CENO Finite-Volume Scheme

The hybrid CENO finite-volume method for conservation laws originally proposed
by Ivan and Groth [16] is used to discretize the governing equations on a hexahe-
dral computational grid. The hybrid CENO procedure uses the multidimensional
unlimited k-exact reconstruction of Barth [1] in smooth regions and reverts to a
limited piecewise-linear reconstruction algorithm in regions deemed as non-smooth
or under-resolved by a solution smoothness indicator, thus providing monotone
solutions near discontinuities.

In the present study, only smooth flows are considered reducing the CENO
procedure to an unlimited fourth-order reconstruction. The Kth-order Taylor series
polynomial expansion of the spatial distribution of a scalar solution quantity, Uijk,
within a cell with index ijk about the cell-centroid .xijk; yijk:zijk/ can be expressed as:

Uijk.x; y; z/ D
K
X

p1D0

K
X

p2D0

K
X

p3D0
. p1Cp2Cp3�K/

.x � xijk/
p1 .y � yijk/

p2 .z � zijk/
p3Dp1p2p3 : (6)

The coefficients, Dp1p2p3 , of the Taylor polynomials are referred to as the unknown
derivatives and their number is equal to 20 for the target fourth-order accurate
(K D 3 piecewise cubic) reconstruction. They are obtained by solving a constrained
least-squares problem as detailed in Ivan et al. [16]. In order to obtain an exactly
determined or overdetermined set of linear equations, a stencil including the two
nearest rings of neighbours is used whatever is the mesh discretization size in the
neighbouring cells. In particular, 5 � 5 � 5 cells are used in a region with uniform
resolution, and for regions with resolution changes or where the grid connectivity is
irregular (such as at cubed-sphere sector edges), more or less numbers of cells may
be used.

Both Householder QR factorization and singular value orthogonal decomposition
(SVD) can be used to solve the weighted least-squares problem associated with the
CENO reconstruction [16]. The latter is exploited here. The SVD approach permits
the computation of a pseudo-inverse matrix after which the solution of the least-
squares problem is then given by a simple matrix-vector product. The use of a single
fixed stencil, the same for all dependent variables, allows the pseudo-inverse matrix
to be stored and re-used in the reconstruction of all variables, thereby avoiding the
repeated evaluation of the pseudo inverse. This was found to reduce significantly
the computational costs of performing the CENO reconstruction without requiring
substantial additional storage [16]. Additionally, there are conventionally issues
with k-exact reconstruction related to conditioning and/or invertibility that generally
increase with the order of the scheme as well as can be very dependent on
mesh features, such as cell size, aspect ratio, and topology. However, a rather
simple column-scaling procedure is applied here to the least-squares problem which
significantly improves the conditioning, makes it virtually independent of the mesh,
and affords robust and reliable solutions to the least-squares problem [16].
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4 Parallel Anisotropic Block-Based AMR

A flexible block-based hierarchical binary tree data structure is used in conjunction
with the spatial discretization procedure described in Sect. 2 to facilitate automatic
solution-directed anisotropic mesh adaptation on body-fitted multi-block mesh.
Figure 1 shows the resulting binary tree after several refinements of an initial mesh
consisting of a single block. A binary tree is used rather than the usual octree
used in isotropic methods, as the refinement decisions are made separately for each
coordinate direction in the anisotropic AMR approach applied herein [9, 26].

The anisotropic AMR framework of Freret and Groth [9], based on extensions
to the previous work by Williamschen and Groth [26], is well suited and readily
allows the use of high-order spatial discretization by adopting a non-uniform
representation of the cells within each block. An example of a non-uniform block
obtained from a multi-block structure is shown in Fig. 2. In this treatment, the
neighboring cells are used directly as the ghost cells, even those at different levels of
refinement as found at grid resolution changes. This non-uniform treatment presents
many advantages as outlined by Freret and Groth [9]. In particular, high-order

Fig. 1 3D binary tree and the corresponding blocks after several anisotropic refinements

Fig. 2 Example of a non-uniform structured mesh block (right) obtained from a block-based
anisotropic AMR grid mesh (left). This block is called non-uniform because its ghost cells may
have different resolution from the interior cells
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restriction and prolongation operators are not required to evaluate the solution
within ghost cells.

Mesh adaptation is accomplished by refining and coarsening grid blocks. Each
refinement produces new blocks called “children” from a “parent” block and the
children can be refined further. This refinement process can be reversed in regions
that are deemed over-resolved and two, four or eight children can coarsen or merge
into a single parent block. In the present work we use a refinement criteria based on
the gradient of a given quantity. This quantity can be a test function as in Sect. 5.1
or the fluid density as used in Sects. 5.2 and 5.3. The refinement criteria is a three-
component vector such that the mesh can be refined in an anisotropic way.

A high-order accurate solution transfer from the coarse cell to the fine cells is
required to distribute the average solution quantity among offspring with high-order
accuracy. The high-order reconstruction polynomials of all solution variables on
the coarse cell are readily integrated over the domain of each new fine cell having
a volume, Vfine, and the resulting integrated average values of a solution quantity
within the fine cells, Nufine, is given by

Nufine D 1

Vfine

ZZZ

Vfine

ucoarse.X/dV D 1

Vfine

Ng
X

mD1
!m ucoarse.Xm/ ; (7)

where the volume integral is computed exactly for the reconstruction polynomial
with an appropriate-order tensor-product Gauss quadrature volumetric integration
technique (Ng D 27 quadrature points are used for fourth-order spatial accu-
racy [16]). Here, !m and Xm are the fine-cell Gauss weights and quadrature points.

5 Numerical Results

To validate the proposed fourth-order CENO finite-volume method for use in combi-
nation with the anisotropic AMR strategy outlined in Sect. 4, 3D numerical results
are now considered, including a demonstration of the accuracy of the high-order
CENO scheme for reconstruction of a known function and numerical predictions
for steady-state flow problems on cubed-sphere grids. For the latter, numerical
results for both non-magnetized and magnetized flows are used to evaluate the grid
convergence of the CENO method when anisotropic AMR is applied. Additionally,
the computational efficiency of the fourth-order CENO method is also compared to
that of the second-order method described previously by Ivan et al. [17] and also
extended herein for use in conjunction with the anisotropic AMR scheme.

5.1 Function Reconstruction on a Cubed-Sphere Grid

To demonstrate the accuracy of the CENO reconstruction applied in conjunction
with anisotropic AMR, numerical results for the reconstruction of a smooth
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Fig. 3 (left) Contours of the test function f , (right) L1, L2, L1

error norms for the fourth-order
CENO scheme with anisotropic AMR (dashed lines) compared to the error norms with fourth-order
scheme with uniform refinements (solid lines)

continuous function are examined. This initial numerical test proceeds by first
computing accurate cell averages for the function to be reconstructed and then
using these cell averages to compute high-order polynomial reconstructions in
the cells and finally computing the error between the original function and the
polynomial reconstruction by high-accuracy numerical integration over each cell.
The order of convergence of this error measures the order of accuracy of the CENO
reconstruction. For the particularly case of interest, reconstruction of the function

f .x; y; z/ D .1 � RC R2/exCyCz ; (8)

is considered on the spherical computational domain defined by two concentric
spheres with inner and outer radius Ri D 1 and Ro D 3, where R denotes the
radius. As depicted in Fig. 3-left, this function exhibits a large smooth variation
spanning several orders of magnitude that is oriented along the line connecting
two diametrically-opposed cubed-sphere corners, where the function maximum and
minimum occur. The computational meshes used in this grid convergence study
range in size from 786,432 to 50,331,648 cells using from 96 to 6144 solution
blocks. As shown in Fig. 3-right, the L1, L2, and L1 error norms obtained for
the reconstruction procedure show that the CENO scheme achieves the theoretical
fourth-order convergence accuracy when uniform refinements are applied (solid
lines). The improved accuracy exhibited by the use of the anisotropic AMR
translates into significant savings in terms of computational cell number for a
targeted solution error. For example, to achieve L1 D 10�3 solution error, the
fourth-order CENO method requires about 5,832,000 cells which is more than 5
times the mesh requirements when anisotropic AMR is applied. Moreover it is
worth mentioning that the refinement criteria is based on the gradient of f defined
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in Eq. (8) and user-defined thresholds for refinement and coarsening. Refinement
strategies based on estimated solution error [25] are not applied here and therefore
the mesh refinement does not guarantee a specific target solution accuracy. For this
reason, the slopes of the error norms with AMR vary between 13 and 30, as shown
in Fig. 3-right.

5.2 Steady Supersonic Outflow of Non-Magnetized Plasma

To assess the accuracy of the finite-volume scheme on cubed-sphere grids, numer-
ical convergence studies for a spherically symmetric expanding supersonic non-
magnetized plasma flow have been performed and are considered next. The accuracy
of the fourth-order CENO scheme for a series of uniform and anisotropic refined
AMR meshes was determined and is compared here to similar results obtained
using the corresponding second-order scheme [17]. The computational domain of
the steady supersonic outflow of interest is defined by inner and outer spheres of
radius Ri D 1 and Ro D 4 respectively. For boundary data, the exact solution is
imposed on the inner sphere: �i D 10, Vr;i D 4:5, Vjj;iD0 and pi D 26. An outflow
supersonic boundary condition is imposed at Ro. As described by Ivan et al. [17],
the analytical solution of this flow problem can be obtained in spherical coordinates
as the solution of the equation

C3 � 1

r2Vr

h

.C2 � V2R/
1

��1

i D 0 ; (9)

where C2 and C3 are constants depending on the inflow conditions.
The L1, L2 and L1 norms of the error in the predicted solution density obtained

on a series of grids are given in Fig. 4. These convergence results show that
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with anisotropic AMR (dashed lines) compared to successive uniform refinements (solid lines)
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the expected second-order (Fig. 4-left) and fourth-order (Fig. 4-right) theoretical
accuracies are achieved in all error norms as the mesh is uniformly refined (solid
lines). For anisotropic refinement of the mesh via the AMR strategy, the effective
convergence rate approaches 6.5 for the second-order scheme and 19 for the CENO
fourth-order scheme. As noted previously [9, 26], the solution varies only along the
radial direction and the anisotropic AMR exploits this feature by refining only in the
radial direction, thus avoiding the introduction of an unnecessary large number of
computational cells. When the CENO scheme is used (Fig. 4-right), for an error
target of L1 D 10�4, the memory requirement of the anisotropic AMR is only
12% of the memory requirement of the uniform refinements. For the second-order
scheme (Fig. 4-left), for an error target L1 D 3 � 10�3, the mesh saving of the
anisotropic AMR strategy is around 73% compared to the uniform refinements.
Finally, the mesh saving between second-order and fourth-order schemes with
uniform refinements is about 90% for a target error of L1 D 10�3.

5.3 Steady Supersonic Outflow of Magnetized Plasma

As a final example, steady supersonic outflow of a magnetized plasma on a spherical
domain is considered. The exact solution for this case is given by

U.x; y; z/ D
"

r�
5
2 ;

xp
r
;
yp
r
;

zp
r
C #r 52 ; x

r3
;
y

r3
;
z

r3
C #; r� 52

#T

; (10)

where # D 0:017 is a perturbation parameter chosen such that the solution has
significant latitudinal variation [17]. In Eq. (1), the source term Q can be written as

Q D

2

6

6

6

6

6

6

6
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4

0
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xr� 52 .r�1 � 5r�2 � #z/
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zr� 5
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2
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:

The computational domain used for the outflowing plasma flow problem is defined
by inner and outer spheres of radius Ri D 2 and Ro D 3:5. The inflow boundary
conditions are specified at Ri based on the exact solution and outflow boundary
conditions are applied at Ro.

The L1, L2 and L1 norms of the error in the predicted solution density at cells
centroids were obtained on a series of grids and are given in Fig. 5. As the mesh is
uniformly refined, the theoretical fourth-order accuracy is achieved for the CENO
scheme. When anisotropic AMR is applied the slopes of the L1, L2 and L1 norms
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error norms of the solution density for the fourth-order CENO scheme with
anisotropic AMR (dashed lines) compared to successive uniform refinements (solid lines)

are close to the value of 11. In terms of mesh size reduction, to achieve the error
norm L1 D 10�6, the anisotropic AMR scheme uses only 9.2% of the number of
cells of the uniform CENO scheme.

6 Conclusions

A fourth-order CENO finite-volume scheme has been extended for use with an
efficient anisotropic block-based AMR method. High-order solutions on adapted
anisotropic AMR grids have been obtained for three test problems on 3D cubed-
sphere grids. The predicted results have been compared to those obtained using
the high-order solution with uniform refinement as well as those of the associated
second-order scheme, in order to assess the efficiency of the proposed approach. It is
shown that high accurate solutions have been obtained with a reduced computational
effort and significant reductions in mesh size. A natural future extension will be
to consider the application to 3D unsteady MHD flows with both smooth solution
content and shocks.
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GPU Acceleration of Hermite Methods
for the Simulation of Wave Propagation

Arturo Vargas, Jesse Chan, Thomas Hagstrom, and Timothy Warburton

Abstract The Hermite methods of Goodrich, Hagstrom, and Lorenz (2006) use
Hermite interpolation to construct high order numerical methods for hyperbolic
initial value problems. The structure of the method has several favorable features
for parallel computing. In this work, we propose algorithms that take advantage of
the many-core architecture of Graphics Processing Units. The algorithm exploits the
compact stencil of Hermite methods and uses data structures that allow for efficient
data load and stores. Additionally the highly localized evolution operator of Hermite
methods allows us to combine multi-stage time-stepping methods within the new
algorithms incurring minimal accesses of global memory. Using a scalar linear wave
equation, we study the algorithm by considering Hermite interpolation and evolution
as individual kernels and alternatively combined them into a monolithic kernel. For
both approaches we demonstrate strategies to increase performance. Our numerical
experiments show that although a two kernel approach allows for better performance
on the hardware, a monolithic kernel can offer a comparable time to solution with
less global memory usage.

1 Introduction

Wave simulation is essential to many fields of study. For example, in geophysics
the numerical solution to the acoustic wave equation is central to various imaging
algorithms such as Reverse Time Migration [2] and Full Waveform Inversion [16].

A. Vargas (�) • J. Chan
Rice University, Houston, TX, USA
e-mail: arturo.vargas@rice.edu; jesse.chan@caam.rice.edu

T. Hagstrom
Southern Methodist University, Dallas, TX, USA

T. Warburton
Virginia Tech, Blacksburg, VA, USA

© Springer International Publishing AG 2017
M.L. Bittencourt et al. (eds.), Spectral and High Order Methods for Partial
Differential Equations ICOSAHOM 2016, Lecture Notes in Computational
Science and Engineering 119, DOI 10.1007/978-3-319-65870-4_25

357

mailto:arturo.vargas@rice.edu
mailto:jesse.chan@caam.rice.edu


358 A. Vargas et al.

In the context of electromagnetism, numerical simulations of Maxwell’s equations
are employed in the design of new products such as radars and antennae [14].
The need to resolve high frequency waves over long periods of time makes these
simulations challenging. High order numerical methods can be more efficient than
lower order methods for such simulations as they minimize dispersion and offer
high convergence rates for smooth solutions [8].

The Hermite methods introduced by Goodrich et al. [5], are a class of cell
based numerical methods which reconstruct a polynomial-based solution at each
cell through Hermite interpolation. The methods can be constructed to achieve high
order accuracy making them well suited for high frequency wave simulations. An
advantageous feature of these methods is their high computation to communication
ratio, making them ideal for parallel computing [3]. High performance implemen-
tations of Hermite methods have been carried out in [1, 6] for aero-acoustics and
compressible flows in which numerical experiments demonstrated favorable results
in terms of scalability on CPU-based clusters.

Recent trends in processor design has resulted in multi-core processors with
wide single instruction multiple data (SIMD) vector units. Each SIMD group has
access to a relatively small shared memory cache and each SIMD lane has a small
number of fast registers. Typical GPUs are further equipped with large bandwidth,
high latency, global shared memory storage. To achieve high performance on GPUs
fine-grained parallelism must be exposed with minimal communication between
computing units. Examples of numerical algorithms that have demonstrated utility
of the GPU can be found in [9–12]

Hermite methods were first implemented on a GPU by Dye in [4], wherein
strategies for two-dimensional equations were presented. Building on the work of
Dye, we introduce strategies for three-dimensional linear equations. In Sect. 2 we
provide a brief overview of Hermite methods. Section 3 introduces our strategies
for tailoring Hermite methods onto the GPU and lastly Sect. 4 studies performance
with respect to the GPU hardware.

2 Overview of Hermite Methods

To highlight key concepts of Hermite methods, we consider the three-dimensional
advection equation

@u

@t
D � @u

@x1
� @u

@x2
� @u

@x3
: (1)

Hermite methods represent the solution of an initial value boundary problem on
a grid constructed through tensor products of one-dimensional grids. We denote the
mth node for the kth dimension as xk;mk and for simplicity consider periodic grids.
The degrees of freedom of the method, at time step tn D t0 C n�t, are represented
over each node in the form of the tensor product of the function value and first N
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(scaled) derivatives in each dimension

pim1;m2;m3 .tn/ 	
hjij

iŠ
Diu

�

x1;m1 ; x2;m2 ; x3;m3 ; tn
�

: (2)

Here h denotes the spacing between the nodes, D denotes the derivative operator,
and i D .i1; i2; i3/ denotes the multi-index with ij ranging from 0 to N.

To represent the solution on each cell of the grid a staggered (dual) grid is
introduced. The cell midpoints of the primary grid make up the dual grid. The dual
grid facilitates the construction of tensor polynomials (Hermite interpolants)

Rpm1C 1
2 ;:::;m3C 1

2
D

2NC1
X

j1D0
� � �

2NC1
X

j3D0
bj1;:::;j3

 

x1 � x1;m1C 1
2

hx1

!j1

: : :

 

x3 � x3;m3C 1
2

hx3

!j3

;

(3)

which interpolate the function value and derivatives at each cell’s vertices. The
coefficients of the tensor product polynomial are the approximation of the function
value and the derivatives at the midpoint of the cell.

Evolution from tn to tnC 1
2

is carried out independently on each cell by the use
of a q-order temporal Taylor series expansion centered at tn of the tensor product
polynomial

TRp D
2NC1
X

j1D0
: : :

2NC1
X

j3D0

q
X

sD0
bj1;:::;j3;s

 

x1 � x1;m1C 1
2

hx1

!j1

: : :

 

x3 � x3;m3C 1
2

hx3

!j3 �
t � tn
�t

�s

:

(4)

The scalar �t denotes the size of a full time step. For s D 0 the coefficients of
equation 4 are simply the coefficients from the Hermite interpolant (Eq. 3). The
time-stepping scheme of Hermite methods, Hermite-Taylor, expresses the values
of unknown coefficients in terms of known coefficients by applying the Cauchy-
Kowalweski recursion to the PDE. For brevity, we omit the derivation and provide
the resulting recursion for the three-dimensional advection equation

bj1;j2;j3;sC1 D �
j1 C 1
sC 1

�t

hx1
bj1C1;j2;j3;s �

j2 C 1
sC 1

�t

hx2
bj1;j2C1;j3;s �

j3 C 1
sC 1

�t

hx3
bj1;j2;j3C1;s:

(5)

With the determined coefficients, the function value and derivatives for the midpoint
are computed by evaluating the series at tnC1=2. To complete a full time step the
process is repeated on the dual grid to approximate the solution on the primary grid.

Hermite methods converge at a rate of O.h2NC1/ for smooth solutions, and are
stable as long as the waves do not propagate from the cell boundaries to the cell
center in a half step. A significant feature of the method’s stability is that the result
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is independent of order. We refer the reader to [5, 7, 15] for further details on the
methods.

By exploiting the compact stencil (the vertices of a cell) and local evolution of the
method, we expose opportunities for parallelism. At a coarse level the polynomial
reconstruction and evolution can be performed independently for each cell. At a
finer level many of the operations can be carried out as one-dimensional matrix-
vector multiplications. Because of the two levels of parallelism we demonstrate how
the method can be mapped on to the many-core architecture of the GPU.

3 Implementing Hermite Methods on Graphics Processing
Units

To simplify the performance analysis, we first implement the interpolation and
evolution procedure as separate kernels. The drawback of this approach is the
additional temporary memory required to store the reconstructed polynomial and
additional memory transfers. In an effort to minimize global memory usage we
implement a monolithic kernel performing both the interpolation and evolution.

Computation on the GPU is performed on a predefined grid of compute units.
Following NVIDIA’s nomenclature each unit of the grid is referred to as a thread.
Threads are grouped to form thread blocks. The hardware provides a similar
hierarchy for memory. Threads are provided with a small amount of exclusive
memory, threads in a thread block share block exclusive memory (shared memory),
and lastly the entire compute grid shares global memory. Moving data between
the CPU and GPU is accomplished through the use of global memory which
acts as a general buffer. We refer the reader to [13] for a detailed overview on
GPU computing. All numerical experiments in this work are written in the Open
Concurrent Compute Abstraction (OCCA) API [10] allowing for portability across
hardware. Numerical experiments are carried out using an NVIDIA GTX 980 GPU
in single precision using OCCA generated Compute Unified Device Architecture
(CUDA) code. The hardware has theoretical peak bandwidth of 224 GB/sec and
floating point performance of 4612 GFLOP/sec.

3.1 Hermite Interpolation on the GPU

The fundamental data structure used throughout our implementation is the tensor.
For example the tensor

uŒm3�Œm2�Œm1�Œn3�Œn2�Œn1�;
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Algorithm 1 Polynomial reconstruction in the x1 dimension
1: procedure RECONSTRUCTIONINx1(Hx1 ,uloc, Ru)
2: for tz=0:2N+1 do
3: for ty=0:2N+1 do
4: for tx=0:2N+1 do
5: c=0
6: for k=0:2N+1 do
7: c += Hx1 [tx][k] uloc[tz][ty][k]
8: end for
9: Ru[tz][ty][tx]=c;

10: end for
11: end for
12: end for
13: end procedure

Algorithm 2 Polynomial reconstruction
1: procedure POLYNOMIALRECONSTRUCTION(Hx1,Hx2 ,Hx3 ,uloc, Ru)
2: Ru D Hx1 uloc
3: uloc D Hx2 Ru
4: Ru D Hx3 uloc
5: end procedure

is used to store the function value and derivatives at each node of a three-
dimensional grid. The three innermost indices correspond to a grid point on the
grid and the outermost indices catalog the corresponding tensor product of function
value and derivatives.

In three dimensions, polynomial reconstruction at a node on the dual grid, is
accomplished by interpolating the function value and derivatives from vertices of
the encapsulating cell. This requires reading .NC1/3 degrees of freedom per vertex,
for a total of eight vertices in three dimensions.

To facilitate the interpolation procedure a one-dimensional Hermite interpola-
tion operator, H (see [15] for details on construction), is pre-computed enabling
dimension-by-dimension reconstruction of the polynomial. In this kind of recon-
struction, the degrees of freedom of the encapsulating cell are stored in a local
rank 3 tensor, uloc. The one-dimensional operator, H, is then applied to the degrees
of freedom of nodes parallel to the x1 dimension as a series of matrix-vector
multiplications. Next, the operator is applied to the degrees of freedom of nodes
parallel to the x2 dimension, and lastly to the degrees of freedom of nodes parallel
to the x3 dimension. For clarity we define Hx1 , Hx2 , and Hx3 as operators to be
applied in the x1, x2, and x3 dimensions respectively. Algorithm 1 presents the
application of the interpolation operator to nodes parallel to the x1 dimension using
nested for loops. Applying the operator in the x2, and x3 dimensions is performed
analogously. The complete reconstruction procedure for a single polynomial is listed
as Algorithm 2.

Our GPU implementation exposes two levels of parallelism: coarse parallelism,
in which threads in a block collectively reconstructs polynomials, and fine-grain
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Fig. 1 Performance of the interpolation kernel. The optimized kernel assigned the construction of
16, 10, and 4 interpolants to each block threads for N D 1; 2; 3, reconstructing order 3, 5, and 7
polynomials respectively

parallelism in which threads apply the interpolation operator as a series of matrix-
vector multiplications. The reconstruction is carried out locally by moving the
necessary degrees of freedom to shared memory.

To minimize and reuse global memory reads we apply a similar register rolling
technique as used in Finite Difference Time Domain methods [11]. Hermite methods
can mimic this technique by having a block of threads reuse a subset of shared
memory. This is accomplished by setting up a two-dimensional grid of thread
blocks. A single block of threads moves the bottom four vertices of a cell to shared
memory. The block of threads then applies the interpolation operators Hx1 and Hx2 .
As it progresses along the x3-dimension it stores the next four vertices of the cell
in shared memory and applies Hx1 and Hx2 to the newly added degrees of freedom.
As there are now degrees of freedom for eight vertices, the Hx3 operator is then
applied to the degrees of freedom parallel to the x3 dimension and the result is
stored in a rank 6 tensor similar to the initial degrees of freedom. The block of
threads then shifts forward to the next set of four nodes and repeats the polynomial
reconstruction.

We add a tunable parameter: the number of polynomials reconstructed along
the x1-dimension per block of threads. This can further reduce the total amount of
global memory reads as neighboring cells share nodes on the interface. Figure 1
reports the performance for the polynomial reconstruction kernel under a naive
implementation, with no reuse of existing memory reads, and the optimized kernel
with reuse of global memory reads. Figure 2 visualizes the relationship between
global throughput and bandwidth. As we increased data reuse we observed higher
bandwidth. Additionally for the reconstruction of order 3, and 5 polynomials,
N D 1; 2 respectively, there was a reduction in throughput in the optimized kernel
suggesting caches are being exploited.
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Fig. 2 Plotting bandwidth
against throughput shows that
assigning more cells per
block reduces global
throughput for orders
N D 1; 2, which reconstruct
polynomials of orders 3, and
5, while increasing global
bandwidth

3.2 Hermite-Taylor Methods on the GPU

With the polynomial reconstruction procedure described in the previous section
completed we may now advance the solution using the Hermite-Taylor method. For
each reconstructed polynomial, the procedure can be performed locally using a rank
3 tensor to store the coefficients

.Ru/Œn3�Œn2�Œn1�;

where n3; n2; n1 range from 0; � � � ; 2N C 1, corresponding to the order of spatial
derivative in each spatial dimension. Differentiating the reconstructed polynomial
with respect to a spatial dimension is achieved by applying the following derivative
matrix

Dij D
8

<

:

iC1
h ; j D iC 1
0 ; otherwise

0 � i; j � 2N C 2;

to the reconstructed polynomial. For convenience Dx1 will represent an operator to
be applied to the reconstructed polynomial with respect to the x1 dimension. In a
similar manner the operators Dx2 , and Dx3 will represent an operator to be applied to
the reconstructed polynomial with respect to the x2, and x3 dimensions. For example
application of the derivative matrix along the x1 dimension to the reconstructed
polynomial is illustrated in Algorithm 3 using nested for loops. Differentiating the
reconstructed polynomial in the remaining dimensions is accomplished analogously.
With the compact notation the Hermite-Taylor algorithm can be reduced to a q-
stage loop as listed in Algorithm 4. Carrying out q D d.2N C 1/ stages, in d
dimensions, allows for the largest possible time step. Taking q < d.2N C 1/

corresponds to a lower order temporal approximation and may require a smaller
time-step in order to maintain expected order of convergence and stability. Similar
to the polynomial reconstruction kernel, we consider two levels of parallelism: a
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Algorithm 3 Differentiation in the x1-dimension
1: procedure DIFFERENTIATIONINx1(Dx1 ,Ru,Rux)
2: for tzD 0; 2N C 1 do
3: for tyD 0; 2N C 1 do
4: for tx D 0; 2N C 1 do
5: if tx < 2N C 1 then
6: px1 D .txC1/

hx
RuŒtz�Œty�ŒtxC 1�

7: else
8: px1 D 0

9: end if
10: RuxŒtz�Œty�Œtx�D px1
11: end for
12: end for
13: end for
14: end procedure

Algorithm 4 Hermite-Taylor evolution
1: procedure HERMITE-TAYLOREVOLUTION(Dx1,Dx2 ,Dx3 ,Ru)
2: OwD Ru
3: for k D q; q� 1; : : : ; 1 do
4: OwD Ru� �t

k .Dx1 OwCDx2 OwCDx3 Ow/
5: end for
6: Ru D Ow
7: end procedure

coarse level in which each block of threads carries out the Hermite-Taylor scheme
for a number of cells and a fine-grained level in which threads to carry out the
computation. Numerical experiments demonstrated that increasing the number of
stages, q, in the scheme increases computational intensity. Peak performances were
observed when assigning a block of threads to evolve the solution at 16, 10, and
2 cells for orders N=1, 2, and 3 respectively. Performance results are reported in
Fig. 3.

3.3 A Monolithic Kernel

A two kernel approach allows for fine tuning of each individual procedure at the
cost of storing the coefficients for the reconstructed polynomial. In the interest of
minimizing global storage we combine the polynomial reconstruction and evolution
procedures to a single monolithic kernel. We repeat previous experiments carried
out in Sect. 3.2 and observe the relationship between number of stages in the
Hermite-Taylor scheme and performance. Figure 4 reports the performance for the
monolithic kernels.
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Fig. 3 Performance of the Hermite-Taylor kernel, the kernel assigns the evolution at 16, 10, and
2 cells per block of threads. An Nth degree method reconstructs local order 2N C 1 polynomials.
As the order of the temporal expansion increases the kernel becomes more compute intensive. The
solid line on the bandwidth plot denotes the peak theoretical bandwidth of the device

4 Roofline Analysis and Time to Solution

The Roofline model relates flops, bandwidth, and hardware [17]. It provides an
upper bound on the rate of floating point operations based on the arithmetic intensity
of a given kernel. Arithmetic intensity is defined as

arithmetic intensity D FLOPs performed

bytes loaded
:

Pairing the arithmetic intensity and the physical capabilities of the hardware
allows the roofline model to present a theoretical ceiling on performance for a given
kernel. Theoretical achievable performance is defined as

min.arithmetic intensity � peak bandwidth; peak GFLOP=s/:

Figure 5 profiles the Hermite kernels in this work with respect to the Roofline
model and reports the computational efficiency. The Hermite-Taylor and monolithic
kernels are profiled using a q D d.2NC 1/ stage loop. Typically there are two types
of computational bottle necks, bandwidth or compute. Kernels which are bandwidth
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1,

Fig. 4 Performance of the monolithic kernel. An Nth degree method reconstructs local order 2NC
1 polynomials. As the order of the temporal expansion increases the kernel becomes more compute
intensive. Peak performances were found when assigning 12, 10, 2 cells per block of threads for
orders N D 1; 2; 3 respectively

Fig. 5 Roofline performance analysis for the various Hermite method kernels

limited are constrained by a device’s ability to read and write to global memory.
Compute bound kernels are limited by the device’s ability to perform floating point
operations. The Roofline model places kernels limited by bandwidth on the bottom
left while compute bound kernels are found on the top right. We observe that our
kernels have a higher compute intensity and are closer to being compute bound.
This is largely due to the high number of stages in the Hermite-Taylor scheme.
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Table 1 Comparison of time
to solution

N D 1 N D 2 N D 3

Advection: monolithic kernel 2.09 s 13.77 s 36.17 s

Advection: two kernels 2.42 s 13.77 s 37.23 s

The initial condition is propagated for 200 time-steps on a
fixed grid of 150 grid points in each dimension. A degree N
Hermite method converges at a rate of O.h2NC1/

Reducing the number of stages reduces the floating point intensity. Noticeably the
interpolation and evolution kernels achieve a higher hardware efficiency.

Although separate kernels for the interpolation and evolution lead to better hard-
ware efficiency, computational experiments have demonstrated that both approaches
lead to comparable times to solution. The monolithic kernel has the advantage
of requiring less reads/writes to global memory in comparison to the two kernel
approach. Table 1 reports a comparison of time to solution for the advection equation
on a fixed grid with 150 grid points in each dimension propagated for 200 time-
steps. The caveat is that the local variables must be able to fit in shared memory
when using a monolithic kernel. We carried out similar experiments for the acoustic
wave equations and have found that peak performances were found by reducing the
number of cells per block relative to the advection equation. The additional variables
increases the use of hardware resources.

5 Conclusion

This work examines the use of a GPU as a kernel accelerator for Hermite
methods. Hermite methods consist of two main components, the reconstruction
of a polynomial of order 2N C 1 and evolution via a space-time expansion. We
presented two strategies in which to exploit the many-core architecture of the
GPU. The first considered separate kernels for the polynomial reconstruction and
evolution while the second considered a monolithic kernel. We demonstrated that
separate kernels for the polynomial reconstruction and evolution make better use
of the hardware capabilities but the fewer global memory read/writes of a single
monolithic kernel enables for a comparable time to solution with less global memory
usage. Future work will examine optimization strategies in the case of spatially
varying coefficients and the employment of multiple GPUs.
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Helically Reduced Wave Equations and Binary
Neutron Stars

Stephen R. Lau and Richard H. Price

Abstract We describe ongoing work towards construction—via multidomain,
modal, spectral methods—of helically symmetric spacetimes representing binary
neutron stars. In particular, we focus on the influence of both the helically reduced
wave operator and boundary conditions on the self-consistent field method, a widely
used iterative scheme for the construction of stellar models.

1 Introduction and Preliminaries

This section both gives an overview of our research program and describes the
particular problem analyzed in this article. The next section describes the spectral
methods that we adopt to solve it, while the final section presents numerical results.

1.1 Overview

Studies of binary stars in Newtonian theory have a long history; see, for example,
[1]. Equilibrium configurations were first studied numerically in the 1980s, in
particular via Hachisu’s generalization [2] of the self-consistent field (SCF) method.
The SCF method was developed for and applied to single stars by Ostriker and Mark
[3] in the late 1960s. It is essentially a fixed-point procedure in which the material
and gravitational fields are updated in succession.
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Our long-term goal is the numerical construction—via multidomain, modal,
spectral methods—of helically symmetric spacetimes representing binary neutron
stars. To maintain helical symmetry, such spacetimes must contain equal amounts
of outgoing and incoming gravitational radiation, and therefore correspond to
standing-wave equilibrium configurations. Such configurations are admittedly
unphysical. Indeed, as energy is lost through gravitational radiation, an isolated
binary configuration undergoes inspiral and eventual merger. Nonetheless, standing-
wave spacetimes might serve as useful approximations, perhaps yielding excellent
trial data for solving the initial value constraints of general relativity (GR).

Our task of numerically constructing helically symmetric solutions to the
matter/gravity field equations of GR is daunting, and our progress is step-by-step.
In the steps taken so far, we have developed new spectral-tau methods, with a
focus on sparsity and preconditioning for problems beyond one dimension. We have
investigated random-matrix based preconditioning for multidomain methods [4].
Furthermore, we have developed a strategy [5, 6] for treating the a priori unknown
location of a stellar surface; this method should have applications beyond binary
neutron stars.

Two intermediate steps are the Newtonian [6] and linearized-gravity binary-star
problems. A third [7] is based on perturbative expansion of the Einstein equations,
with spacetime geometry viewed as a small deviation of flat (no curvature)
spacetime. For scenarios beyond the Newtonian problem, we are often interested
in outgoing radiation conditions, despite their ultimate unsuitability for the full
GR standing-wave problem. Indeed, these conditions are physical, and their use
precludes the need for the two solutions (one with incoming conditions, one with
outgoing conditions) per SCF iteration required for standing-wave configurations.

In this paper we consider a generalization of the Newtonian problem, with the
Poisson equation for the gravitational potential replaced by the helically reduced
wave equation (HRWE). The partial differential operator [8, 9] in this equation is
mixed-type (its symbol is elliptic near the rotation axis and hyperbolic far from it)
and it plays a key role in the helical reduction of the Einstein equations formulated
in [10]. Our focus here is on the formulation of the SCF method in the presence
of the helically reduced wave operator and outgoing radiation conditions. We also
investigate formulation of the method in the construction of standing-wave models.
Our immediate objective is to understand whether adoption of outgoing conditions
in our theoretical framework [7] leads to a viable SCF scheme.

1.2 HRWE and Binary Neutron Stars: The Continuum
Problem

Following the presentation in [6], this section describes our continuum PDE
problem: construction of a comoving neutron star binary. Ref. [6] considers the
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Newtonian problem, with the gravitational potential determined by the Poisson
equation. Here we replace the Poisson equation with the HRWE, and consider
outgoing radiation boundary conditions. Moreover, the solutions we construct here
have reflection symmetry only across the orbital plane, whereas solutions to the
Newtonian problem are reflection symmetric across two coordinate planes. We
believe we are the first to contend with the ramifications of this symmetry loss for
the SCF algorithm.

We label one star I and the other II. The stellar extents are determined by a density
�.x/ which is non-vanishing on the interior U D fx W �.x/ > 0g of a compact set
closure.U/. The set U D UI[UII is itself the union of two disjoint sets, one for each
star. The boundaries @UI and @UII are the stellar surfaces and are a priori unknown.
The strength of gravity G and constants KI;II appearing in the stellar equation of
state for star I; II remain fixed throughout. Moreover, this work only considers a
polytropic equation of state with index n D 1 (admittedly the simplest case; see [6]).

1.2.1 Problem Statement

A binary pair (stars I and II with known equations of state) is determined by three
fixations: the masses MI;II of the stars and the separation d. (Rather than d, we might
fix the angular velocity ˝; for point particles d and ˝ are related by Kepler’s law.)
In addition to these physical choices, three gauge fixations are required to locate the
binary within the orbital plane, our y D 0 plane. Since we view the orbital plane
as coordinatized by Cartesian coordinates which co-rotate with the binary, the two
stars (more precisely, their centers of mass) should remain fixed.

Fixation of d along with the three gauge choices is equivalent to fixation of the
four center-of-mass coordinates: Cx;I , Cz;I , Cx;II , Cz;II . (The conditions Cy;I D 0 D
Cy;II are automatically enforced in our problem by reflection symmetry across the
orbital y D 0 plane.) However, we are only able to enforce three fixations among
these quantities. Indeed, as seen below, for our SCF scheme each such fixation
corresponds to an auxiliary variable, and we have only five auxiliary variables at our
disposal, with two reserved for fixation of the masses. In any case, these fixations
amount to integral conditions, and thus are different from pointwise conditions
(see the MEUDON and HACHISU conditions in [6]) developed in the literature for
Newtonian binaries.

Our domain is D � fx W jxj � routg, and we consider the following unknowns:
(i) the stellar enthalpy h.x/ � 2KI;II�.x/ and the scalars (ii,iii,iv,v,iv) #I;II ;˝2; `x; `z.
The stellar surfaces are described by envelope functions rI;II.
 I;II/ for @UI;II . Here

 I;II are direction cosines relative to star I; II. The stellar surfaces are zero sets of the
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enthalpy: h.rI;II.
 I;II/
 I;II/ D 0. The unknowns obey the following equations:

L� D 4�G�.x/; B.�/ D 0 (1a)

#I;II D h.R�1ˇ x/C �.x/� 1
2
˝2$2.x/ for x 2 UI ;UII (1b)

MI;II D �I;II ;

q

.Cx;II � Cx;I/2 C .Cz;II � Cz;I/2 D d

�ICx;I C �IICx;II

�I C �II
D xcenter;

�ICz;I C �IICz;II

�I C �II
D zcenter; (1c)

with �I;II ; d; xcenter; zcenter chosen constants. Respectively, .`x; `z/ and .xcenter; zcenter/

are the rotation center and mass center; these points need not coincide numerically.
Relative to the mass center, Rˇ is a rotation of the orbital plane by an angle ˇ; its
presence ensures that the stars remain on the z-axis. L D r2�˝2

0.x@z � z@x/2 is the
helical reduction of the wave operator; it features the Laplacian r2 and a squared
angular momentum term proportional to a fiducial rotation rate ˝0. Moreover,
B.�/ D 0 refers to either nonlocal outgoing or incoming boundary conditions,
$2.x/ WD .x�`x/2C.z�`z/2 is the squared distance of a point from the rotation axis,
and ˝ is the binary rotation rate. Constancy of #I;II reflects a balance of chemical,
gravitational, and rotational potential.

For the Newtonian problem ˝0, ˇ, and `x all vanish. Moreover, in this case
both the outgoing/incoming boundary conditions collapse to the same nonlocal
conditions associated with the Laplacian. “Standing-wave conditions” correspond
to averaging 1

2
.�out C �inc/ of the outgoing and incoming solutions. With such

averaging, the enthalpy satisfies the same symmetries as for the Newtonian problem,
in particular reflection symmetry across the x D 0 plane. This symmetry ensures
Cx;I D 0 D Cx;II . When constructing standing-wave configurations, we therefore
drop `x as a variable, drop the equation in (1c) involving xcenter, and enforce ˇ D 0.

A crucial point is that the conditions in (1c) correspond to integral expressions
stemming from the constraint in (1b) with ˇ D 0. For example, to fix the mass
MI D

R

VI
�.x/dx, where VI is the volume of star I determined by rI.
 I/, we enforce

�I D 1

2KI

Z

VI

�

#I C 1
2
˝2.`2x C `2z /� �.x/C 1

2
˝2.x2 C z2/ �˝2`xx �˝2`zz

�

dx:

(2)

In practice, the integration is distributed over the quantities 1; �; x2; z2; x; z in order
to achieve a constraint of the form

�I D
�

#I C 1
2
˝2.`2x C `2z /

�

a1 C a� C˝2.ax2 C az2 C `xax C `zaz/; (3)
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where a1; a� ; ax2 ; az2 ; ax; az are precomputed integrals. This constraint is then
viewed as one equation on the unknowns #I (and #II),˝2, `x, and `z. When imposing
the conditions involving center-of-mass components, we use, for example,

Cx;I D 1

2KI�I

Z

VI

x
�

#IC 1
2
˝2.`2xC`2z /��.x/C 1

2
˝2.x2 C z2/�˝2`xx�˝2`zz

�

dx:

(4)

The integration is distributed over the quantities x; x�; x3; xz2; x2; xz, thereby giving

Cx;I D
�

#I C 1
2
˝2.`2x C `2z /

�

bx C bx� C˝2.bx3 C bxz2 C `xbx2 C `zbxz/; (5)

where bx; bx� ; bx3 ; bxz2 ; bx2 ; bxz are precomputed integrals. Similar expressions cor-
respond to �II , Cx;II , and Cz;I;II . With all of these, we view (1c) as a system of five
nonlinear equations for the “constants” #I;II ;˝2; `x; `z. The precise form of these
five nonlinear equations are determined by the gravitational potential � and the
envelope functions rI;II.
 I;II/ (which in turn define the integration regions VI;II ).

1.2.2 Self-Consistent Field Method

Algorithm 1 summarizes our procedure for constructing comoving binaries. Essen-
tially, we use the SCF method [3] of Ostriker and Mark with stabilization, through
the auxiliary equations (1c), of a type first considered by Hachisu [2, 11, 12]. The
method is a fixed-point iteration, and the Broyden method [13] may be used to
accelerate its convergence. We will report on such acceleration elsewhere.

Step 5, 6, and 7 in the algorithm merit further comment. Update of the enthalpy
h0 via the generalized potential equation (1b) must occur in a region surrounding,
indeed larger, than each star. As a result, on this region the enthalpy takes both
positive and negative values. Relative to a chosen coordinate center of star I; II,

Algorithm 1 BINARY SCF ITERATION Inputs are the enthalpy h and the scalars
#I;II ,˝2, `x, `z. Outputs are updates of the same objects
1: Enforce symmetry (or symmetries) on h. This step is only necessary in the numerical

implementation.
2: Find the zero sets (stellar surfaces) rI;II.
 I;II/ of the enthalpy h, thereby determining from h the

non-negative density �.
3: Solve the problem L� D 4�G�.x/, B.˚/ D 0.
4: With rI;II.
 I;II/ and the new � , get updated scalars #I;II , ˝2,`x,`z through solution of the

auxiliary equations (1c).
5: Obtain a provisional enthalpy h0 D #I;II �� C 1

2
˝2$2 via (1b). As described in the text, this

step involves negative values of the enthalpy.
6: Find the stellar surfaces rI;II.
 I;II/ of h0, and use these to compute the individual stellar centers-

of-mass of the provisional density �0. These define the angle ˇ.
7: Rotate the enthalpy configuration via h.R�1

ˇ x/ D h0.x/.
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the provisional surfaces rI;II.
 I;II/ are then determined by h0
�

rI;II.
 I;II/
 I;II
� D 0.

Numerically, each stellar surface corresponds to a discretization 
 jk (where j; k
respectively range over longitudinal and latitudinal points) of the unit sphere
with corresponding radial values rjk D r.
 jk/. The values rjk are found via one-
dimensional root-finding.

Computation of ˇ is straightforward:

tanˇI;II D
h

Z

V0I;II

�0.x/xdx� �I;II xcenter

i.h

Z

V0I;II

�0.x/zdx� �I;II zcenter

i

; (6)

where V0I;II is the star I; II region where the provisional density �0 is nonnegative.
Consistency of our algorithm demands that ˇI D ˇII (up to numerical error) and
that this angle converges to a fixed value with increased resolution. The final step
of rotating the provisional enthalpy is actually technically involved, due the way [5]
we represent stellar surfaces via our modal tau approach. Indeed, a stellar surface
“lives” in the overlap between two spherical shells, and on the overlap of these
shells our numerical solution is double valued (with the unique point-space physical
solution drawn from the inner/outer shell depending on whether a physical point
lies inside/outside of the star). Although the details will be presented elsewhere, the
rotation described in step 7 involves extrapolation of Chebyshev series outside of the
standard interval. The distance from an evaluation point (at which an extrapolation
takes place) to the standard interval is always many orders of magnitude smaller than
2 (the standard-interval length), and such extrapolation does not cause troubles.

Algorithm 1 is simpler for construction of standing-wave configurations. As
mentioned, in this case `x is not solved for in step 4. Moreover, h0 is h in step 5,
so that steps 6 and 7 are omitted. However, for standing waves step 3 refers to two
solves (one with outgoing conditions, one with incoming conditions) and averaging.

2 Sparse Modal Tau Methods

This section (i) surveys key features of our 3d sparse modal-tau method for solving
the continuum problem (1) and (ii) presents a toy 2d model meant to further
elucidate some of the ideas behind our 3d method. We consider a “2-center domain”
D that is decomposed, as depicted in Fig. 1, into an arrangement of Cartesian
blocks, cylindrical shells, and spherical shells. Respectively, on these subdomains
we choose the following classical basis functions: triple products of Chebyshev
polynomials, products of trigonometric functions (sines and cosines) with double
products of Chebyshev polynomials, and products of spherical harmonics with
Chebyshev polynomials. However, the actual variables in our problem are the
expansion coefficients associated with series in these basis functions.
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Fig. 1 2-center domain decomposition. The figure depicts all subdomains in the decomposition,
although for the sake of visualization the outer radius of the outer shell is smaller than usual

2.1 Survey of Key Features for 3D

The domain D is split into a collection of (overlapping and conforming) subdo-
mains; again see Fig. 1. For binary problems such domain decompositions were
pioneered by Pfeiffer et al. [14]. The minimal configuration involves 15 subdomains:
blocks B1;2;3;4;5; cylindrical shells C1;2;3;4;5; inner spherical shells S1;2I around star
I; inner spherical shells S1;2II around star II; and an outer spherical shell S1out. In
particular, the stellar surface @UI 2 S1I \ S2I , and the block B2 fills in the central
“hole” of S1I . The subdomains S1II , S

2
II , B

4 play the same role for star II. The blocks
B1;B3;B5 cover the remaining portion of the z-axis joining the stars; and this axis
is wrapped by the five cylinders. Finally, this whole configuration is surrounded
by S1out.
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The SCF procedure described in the last section involves the following details.

• Sparse modal representation of the HRWE. Reference [9] describes modal
approximation of (1a) on blocks, cylinders, and shells.

• “Gluing” of conforming and overlapping subdomains. Reference [9] examines
how the gluing of subdomains is reflected in the overall linear system correspond-
ing to representation of (1a) on all of D.

• Preconditioning of the global solve over D. The details are found in [9].
• Low-rank treatment of stellar surfaces through tau-conditions. References [5, 6]

describe this relatively new feature of our modal approach.

The toy 2d model below conveys a sense of these details for the first three bullets.

2.2 Toy Model: 2D HRWE

Much of the following comes from [4]. Our 2d domain is a disk D D fx 2 R
2 W

0 � jxj < rmaxg. Figure 2 shows decomposition of D into a central square and two
annuli. The square S fills the disk center, thereby avoiding troublesome coordinate
issues. Compare this situation with the region around one of the stars in Fig. 1.

2.2.1 Modal Representation of the 2D HRWE

The angle on D is ' D ��˝0t, where t; r; � are the time-spherical polar coordinates
associated with an inertial frame. Therefore, our Cartesian coordinates x D r cos',
y D r sin ' are not fixed in an inertial frame, rather in a frame that rotates at angular
velocity˝0 with respect to an inertial frame. Moreover, as is appropriate for a “two-
center problem”, we will assume that the rotation center x; y D �a;�b is not the
coordinate center x; y D 0; 0 of D; see Fig. 2. In Cartesian coordinates the wave

S

1

2(a)
y

x

a

b

(b)

Fig. 2 Domain D. The dashed smallest circle is the inner boundary of annulus 1. (a) Domain
decomposition. (b) Rotational center for HRWE
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operator, L D r2 � @2t , subject to helical reduction, takes the form

L � @2x C @2y �˝2
0 Œ.xC a/@y � .yC b/@x�

2: (7)

The problem to solve is therefore

L� D g; x 2 DI � D h; x 2 @D; (8)

where and g and h are prescribed sources.
We approximate (8) via modal methods with “integration preconditioning” [8,

9, 15], also referred to as integration sparsification. The first step is to express the
HRWE on the square S and on a generic annulus in analytical forms that facilitate
the integration sparsification technique [8, 9, 15]. First, on S we write

L D @2x Œ1 �˝2
0.yC b/2�C @2y Œ1 �˝2

0.xC a/2�

�˝2
0Œ@x.xC a/C @y.yC b/� 2@x@y.xC a/.yC b/�;

(9)

of course here viewing, for example, @xx D 1Cx@x. On each annulus we consider (7)
as r2L� D r2g. Then, in terms of the angular functions F.'/ D a sin' � b cos',
G.'/ D a cos' C b sin', we have [8]

r2L D @2r r2.1 �˝2
0F

2/C @rrŒ�3C˝2
0.2F

2 C G2 C rG/�C @2'Œ1 �˝2
0.rC G/2�

C˝2
0@'rF � 2˝2

0@'@rrF.rC G/C 1 �˝2
0.G

2 C rG/:
(10)

In Eqs. (9,10) all derivatives have been pulled to the left; therefore each equation
has a form ready for integration sparsification. For example, starting with the
form (10), we replace all physical space operators by their matrix counterparts in
the space of modal coefficients (e.g., @r ! Dr, r ! Ar, F.'/ ! F). All derivative
matrices then appear at the left. Therefore, these differentiations can be “undone”
via the left action of (banded) integration matrices [15]. This action is achieved
with the “sparsifier” B D B2' ˝ B2rŒ2�, where B2' (Fourier) and B2rŒ2� (Chebyshev) are
modal-basis matrices representing double integration. The subscript Œ2� indicates
that the first two rows of B2rŒ2� are zeroed out. The result is a sparse matrix; see (62)
of [8].

2.2.2 Block Jacobi Preconditioner

We now describe the block Jacobi preconditioner used when iteratively solving the
above equations with GMRES. On S we let AL denote L and on each annulus we let
AL denote r2L. With B representing integration sparsification on all subdomains,
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the linear system approximating the problem (8) has the form

Me� D BAeg; (11)

where M DBAL and e� is the concatenation .e� S; e� 1;e� 2/T of modal coefficients
from each subdomain. In (11) rows in both M and BAeg that would have otherwise
been empty (due to empty rows in B) have been filled with the tau conditions
responsible for both the Dirichlet boundary conditions and the “gluing” of S to 1
and 1 to 2. The gluing conditions involve use of Dirichlet and Neumann vectors; see
[8].

The sparse matrix M and preconditioner G we use have the structure

M D

0

B

@

MSS MS1

M1S M11 M12

M21 M22

1

C

A ; G D

0

B

@

GSS

G11
G22

1

C

A ; (12)

where GSS � M�1SS is stored as a precomputed PLU factorization. However, G11 ¤
M�111 and G22 ¤M�122 , but G11 and G22 are themselves block diagonal. On an annulus
the operator (10) is not diagonal in Fourier space as it mixes Fourier modes.

To explain the construction of G11, we let ˛; ˇ; � � � denote the global indices
associated with the overall set of concatenated equations (11), so that e� has
components e� .˛/. The unknowns for the central square are modal coefficients for a
double Chebyshev expansion. For the square let Nx C 1 be the number of x modes,
and Ny C 1 the number of y modes. Then the integer �1 � .Nx C 1/.Ny C 1/ is
the “shift” for annulus 1. The components e� .˛/ which belong to S correspond to
0 � ˛ � �1� 1, since the indexing of ˛ starts at 0. The block matrix MSS operating
on these modal coefficients has elements MSS.I; J/ with 0 � I; J � �1 � 1.

Let N1r and N1' specify the number of radial and angular modes on annulus 1. The

components e� .˛/ for annulus 1 then have �1 � ˛ � �1 C .N1r C 1/.N1' C 1/ � 1.
Moreover, the block M11 has componentsM11.I; J/ DM.�1C I; �1CJ/, with 0 �
I; J � .N1rC1/.N1'C1/�1. The direct product representation on annulus 1 is chosen

such that the two-index modal coefficients are [8] e�1
qj D e� .�1 C .N1r C 1/qC j/,

with q the mode index dual to ' and j the mode index dual to r. Therefore, we may
likewise write I D .N1r C 1/qC j and J D .N1r C 1/pC k, with 0 � q; p � N1' and
0 � j; k � N1r . Therefore, M11.I; J/ DM11

�

q.N1r C 1/C j; p.N1r C 1/C k
�

.
We fix NM11 ' M11 by NM11.I; J/ D M11.I; J/ for .I; J/ pairs with p D q

(the Fourier block diagonal), and NM11.I; J/ D 0 for pairs with p ¤ q. We then

set G11 � NM�111 , with application of G11 performed via PLU factorizations of the
Fourier blocks comprising NM11. G22 is defined similarly. Analogous block Jacobi
preconditioning drastically reduces iteration counts for 3d subdomain GMRES
solves [9].
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We comment on the scalability of our preconditioner. Our comments also pertain
to the neutron star problem. For the number of annuli fixed at two our preconditioner
scales with increased modal resolution; the GMRES iteration count appears nearly
independent of the subdomain resolutions [4]. Of course, our preconditioner would
not scale with increased number of annuli. However, this is a limit we do not take
in practice. Indeed, for the neutron star problem we have worked with the fixed
15 subdomain configuration, although our software does allow for increasing the
number of spherical shells and cylinders. For the binary configuration we have also
employed the simple additive Schwarz method to address the subdomain coupling.

3 Numerical Results

This section considers construction of comoving binaries, presenting convergence
studies for the following: (i) the problem (1) with B.�/ D 0 specifying outgoing
radiation conditions and (ii) the same problem, but now with MEUDON pointwise
conditions (described in [6]) and B.�/ D 0 specifying “standing wave conditions”.
For (i) we enforce reflection symmetry only across the y D 0 plane, whereas for (ii)
we enforce symmetry across both the x D 0 and y D 0 planes. The MEUDON

conditions fix maximum enthalpy values at prescribed points .0; 0; zI;II/ on the z-
axis joining the stars. With these conditions, ˇ D 0 and we do not use (1c).

We consider the equal-mass case for simplicity; Ref. [6] documents our approach
applied to the unequal-mass Newtonian case. We adopt nearly the same domain and
truncation sequence used in [6]. Since that reference gives details, here we only
summarize and point out differences. The 2-center domain D has rout D 10, and our
seed configuration for the coarsest resolution is the superposition of two spherically
symmetric Lane-Emden stars with central densities �c;I;II D 1:0 and radii RI;II D
0:4375. These choices change the inner shells listed in Table 1 of [6]; here 0:01 �
S1I;II � 0:48 and 0:39 � S2I;II � 1. We fix ˝0 and the initial ˝ by Kepler’s law.

We pick five resolution levels, the fifth for error computations. For levels 1–5
we have respectively chosen 30,25,20,15,15 SCF iterations. These “hand” choices
yield Table 1, but automatic stopping criteria are possible. Each solution is the initial
guess for the next level. To compute errors, we interpolate the numerical solution
onto reference grids: one covering the shell S1out and another the block B4. We also
interpolate the surface rI.
 I/ onto a reference grid. Table 1 lists relative L2 errors
computed thusly for cases (i) and (ii). Tables 2 and 3 are for case (i). For each SCF
iteration we compute each star’s drift angle ˇ with (6). Table 2 lists the last ˇ for
each level; these suggest convergence. Table 3 indicates that .`x; `z/ convergences to
.xcenter; zcenter/ D .0; 0/. The rotation and mass centers coincide to numerical error.
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Table 2 Angle offset ˇ

ˇ from star I ˇ from star II

Level 1 �1.205652769721e-05 �1.205652769354e-05
Level 2 �1.209687570418e-05 �1.209687570300e-05
Level 3 �1.209687347907e-05 �1.209687347671e-05
Level 4 �1.209687342227e-05 �1.209687342098e-05
Level 5 �1.209687342235e-05 �1.209687342129e-05

This table corresponds to case (i)

Table 3 Convergence of the rotation center

`x `z

Level 1 8.785744527481e-05 1.911555336618e-05

Level 2 7.840454591376e-09 �3.001365628128e-08
Level 3 �3.260309822213e-12 4.365263771623e-10

Level 4 8.850781768913e-12 �6.603800320517e-13
Level 5 �5.606252946658e-13 6.642903812566e-12

This table corresponds to case (i)

4 Conclusions

We have considered construction of comoving binary stars, with the Poisson
equation of Newtonian theory replaced by the inhomogeneous HRWE. The HRWE
features a mixed-type operator L which also appears in the helically reduced
matter/field equations of GR (and in post-Minkowski approximations thereof [7]).
Replacement of the Poisson equation by the HRWE in the binary model gives rise
to the numerical challenges confronted here.

As part of the binary problem (1) the HRWE wave equation is associated with
radiation conditions, and for either outgoing or incoming conditions it gives rise to
solutions with less symmetry than those encountered for the Newtonian problem.
This symmetry loss leads to wrinkles in applying the SCF iteration for binary
construction. With the reflection symmetry across the x D 0 plane relaxed, each
star may wander off the z-axis. When solving the Newtonian problem without
enforcement of symmetry across x D 0 (the solution has reflection symmetry across
this plane), this wander arises only from numerical error. However, with the HRWE
it appears fundamental, necessitating introduction of the rotation matrix Rˇ in (1b).
An important next step is to explain the drift ˇ in terms of radiation reaction.

We have also compared the construction of binaries (with the Poisson/HRWE
replacement) subject to outgoing radiation conditions (and less symmetry) to
standing-wave configurations (with the same symmetries as Newtonian binaries).
While the standing-wave conditions are less physical, this scenario does not require
introduction of the angular drift ˇ. Although construction of a standing-wave binary
requires twice as many solves of the HRWE as construction of an outgoing-wave
binary (two per SCF iteration rather than one), our current code computes the
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standing-wave configuration faster than the outgoing one. The reason is that for the
standing-wave scenario the auxiliary system of equations for the parameters relies
on pointwise conditions (MEUDON conditions), whereas the integral conditions
described in this article are expensive to evaluate. Our current evaluation of such
integrals relies on poorly organized interpolation; we could surely speed up these
computations.
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Detecting Discontinuities Over Triangular
Meshes Using Multiwavelets

Mathea J. Vuik and Jennifer K. Ryan

Abstract It is well known that solutions to nonlinear hyperbolic PDEs develop
discontinuities in time. The generation of spurious oscillations in such regions
can be prevented by applying a limiter in the troubled zones. In earlier work,
we constructed a multiwavelet troubled-cell indicator for one and (tensor-product)
two dimensions (SIAM J. Sci. Comput. 38(1):A84–A104, 2016). In this paper, we
investigate multiwavelet troubled-cell indicators on structured triangular meshes.
One indicator uses a problem-dependent parameter; the other indicator is combined
with outlier detection.

1 Introduction

It is well known that solutions to nonlinear hyperbolic PDEs develop discontinuities
in time. The generation of spurious oscillations in such regions can be prevented
by applying a limiter in the troubled zones. In [18–20], two different multiwavelet
troubled-cell indicators were introduced, one based on a parameter, the other
combined with outlier detection. In these papers, we focused on one-dimensional
and tensor-product two-dimensional meshes. Here, the use of multiwavelets on
triangular meshes is investigated [17, 21]. We again consider two approaches to
troubled-cell indication: one based on a parameter, the other combined with outlier
detection. We demonstrate the performance of the indicators on a test problem based
on the two-dimensional linear advection equation, using the vertex-based limiter in
the identified troubled cells [10].

The outline of this paper is as follows: in Sect. 2, the triangular mesh is defined,
and information about barycentric coordinates is given. The multiresolution analysis
is described in Sect. 3. The multiwavelet troubled-cell indicators are defined in
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Sect. 4. Preliminary results are shown in Sect. 5, and some concluding remarks are
given in Sect. 6.

2 Structured Triangular Mesh and Barycentric Coordinates

In this section, the definition of a structured triangular mesh on a rectangular domain
˝ 2 R

2 is given, following the notation in [5, 17]. To compute the multiwavelet
decomposition at a later time, the relation between the mesh on the finest level
n and level n � 1 is explained. Furthermore, several properties of the barycentric
coordinate system are given.

Definition 1 Let i and j be space indices in the x- and y-direction, respectively, and
let M account for the orientation of the triangle:M D 1 corresponds to triangles with
the right angle located in the bottom-left corner,M D 2 belongs to the triangles with
right angles in the upper-right corner. The uniform triangulation of a rectangular
domain˝ 2 R

2 on level n consists of 22nC1 elements, and is expressed as

Tn D fTn
.i;j;M/gMD1;2i;jD0;:::;2n�1 D fTn

�g�;

with � D .i; j;M/, i; j D 0; : : : ; 2n � 1, M D 1; 2.
The triangulation on level n � 1 is obtained by uniting four triangles on level n:

Tn�1
.i;j;1/ D Tn

.2i;2j;2/ [ Tn
.2i;2j;1/ [ Tn

.2iC1;2j;1/;[Tn
.2i;2jC1;1/;

Tn�1
.i;j;2/ D Tn

.2iC1;2jC1;1/ [ Tn
.2iC1;2jC1;2/ [ Tn

.2i;2jC1;2/ [ Tn
.2iC1;2j;2/;

i; j D 0; : : : ; 2n�1 � 1, see Fig. 1.

Fig. 1 Triangulation Tn of a
rectangular domain ˝ 2 R

2.
Solid lines correspond to the
elements Tn�1

.i;j;1/ and Tn�1
.i;j;2/ on

level n� 1
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Points inside a triangle are efficiently expressed using barycentric coordinates.

Definition 2 Let triangle T be defined by its vertices Pi D .xi; yi/>; i D 1; 2; 3.
Every point P D .x; y/> can be expressed in terms of the barycentric coordinates
� D .
1; 
2; 
3/> with respect to triangle T as follows: P D .P1P2P3/�.
The barycentric coordinates are uniquely given by requiring j�j D 
1C
2C
3 D 1.
If P is located inside T, then 
i � 0; i D 1; 2; 3.

Integrals on a triangle can be transformed to barycentric coordinates as follows:

“

T

f .x; y/dxdy D 2jTj
Z 1

0

Z 1�
1

0

f .x.
1; 
2/; y.
1; 
2//d
2d
1; (1)

where jTj is the area of T [17, 21].
The transformation from original coordinates to barycentric coordinates equals

0

B

@


1

2

3

1

C

A D

0

B

@

x1 x2 x3
y1 y2 y3
1 1 1

1

C

A

�10

B

@

x
y
1

1

C

A :

With this expression, it is possible to relate the barycentric coordinates on different
triangles which will be necessary when discussing multiwavelets. If P has barycen-
tric coordinates � relative to triangle T (defined by f.xi; yi/; i D 1; 2; 3g), then the
barycentric coordinates � 0 with respect to T 0 (defined by f.x0i; y0i/; i D 1; 2; 3g) can
be calculated using �0 D MT!T0�, where

MT!T0 D

0

B

@

x01 x02 x03
y01 y02 y03
1 1 1

1

C

A

�10

B

@

x1 x2 x3
y1 y2 y3
1 1 1

1

C

A : (2)

The right matrix transforms � to P, and the left matrix computes �0 from P [17, 21].
Finally, the midpoint subdivision of a triangle Tn�1

� D Tn
�0
[ Tn

�1
[ Tn

�2
[ Tn

�3
can

easily be described in barycentric coordinates, see Fig. 2 [17, 21].

Fig. 2 Midpoint subdivision
of triangle Tn�1

� . Coordinates
are in barycentric form
.
1; 
2; 
3/
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3 Multiresolution Analysis

In this section, the multiresolution analysis for a triangular mesh is presented,
together with the formulae for multiwavelet decomposition [17]. For the recon-
struction procedure, we refer to [17]. The scaling functions and multiwavelets are
constructed for the so-called base triangle, TB, which has vertices P1 D .0; 0/,
P2 D .1; 0/, and P3 D .0; 1/, and subdivision TB D T0 [ T1 [ T2 [ T3 (numbering
similar to Fig. 2). The extension to general triangles is given as well.

3.1 Scaling-Function Space

In this section, the orthonormal scaling-function basis is constructed for the base
triangle, using barycentric coordinates [21]. The scaling-function space on TB
is defined as VkC1.TB/ D P

k.TB/, which means that the space is spanned by
polynomials of total degree less than or equal to k on TB. The standard monomial
basis for VkC1.TB/ consists of Nk functions f1; x; y; x2; xy; y2; : : :g. For the base
triangle, the coordinates .x; y/ transform to

x D 
1x1 C 
2x2 C 
3x3 D 
2;
y D 
1y1 C 
2y2 C 
3y3 D 
3 D 1 � 
1 � 
2

in barycentric coordinates. This means that the monomial basis is equivalent to the
set f1; 
2; 1 � 
1 � 
2; 
22 ; .1 � 
1 � 
2/
2; .1 � 
1 � 
2/2; : : :g in the barycentric
coordinate system. Orthonormality of this basis is achieved by the application of
the Gram-Schmidt procedure with respect to the inner product

h f ; gi D
Z 1

0

Z 1�
1

0

f .
1; 
2/g.
1; 
2/d
2d
1;

together with normalization. This results in the orthonormal scaling functions �`;TB ,
` D 1; : : : ;Nk. The first six functions (corresponding to k � 2) are given in [17, 21].

The scaling-function space on level n is defined as the space of piecewise
polynomials of total degree less than or equal to k on every triangle Tn

� 2 Tn:

VkC1
n D f f W f 2 P

k.Tn
�/; 8Tn

� 2 Tng: (3)

The orthonormal basis for VkC1
n can be found by substituting the correct barycentric

coordinates (translation) and scaling the functions �`;TB [21]. Let � be the barycen-
tric coordinates with respect to TB, and let �0 be the corresponding barycentric
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coordinates with respect to Tn
� 2 Tn. The space VkC1

n is spanned by 22nC1 � Nk

functions that are obtained from �`;TB using

�n
`�.


0
1; 

0
2; 

0
3/ D

s

1

2jTn
�j
�`;TB .
1; 
2; 
3/: (4)

The orthogonal projection of an arbitrary function f 2 L2.˝/ onto VkC1
n is

given by

PkC1
n f .x/ D

X

Tn
�2Tn

Nk
X

`D1
sn`��

n
`�.�/;

which is the single-scale decomposition of f on level n. The scaling-function
coefficients are given by sn`� D h f ; �n

`�i. Note that if f 2 VkC1
n , then PkC1

n f D f .

3.2 Nodal DG Approximation and Scaling-Function
Expansion

Although it is possible to use modal DG based on a PKD-polynomial basis on
triangular meshes [12], it is more convenient to use the nodal form of the DG method
for this mesh type [2, 3, 8].

The DG approximation space, Vh, is equal to the scaling-function space on level
n (Eq. (3)). This means that it is possible to express the nodal DG approximation as
a scaling-function approximation in level n. Since uh 2 Vh D VkC1

n , we know that
uh D PkC1

n uh. Therefore, we can write the global nodal DG approximation as

uh.x/ D
X

Tn
�2Tn

Nk
X

iD1
uh.xi/`i.x/ D

X

Tn
�2Tn

Nk
X

`D1
sn`��

n
`�.�/:

Knowing the values uh.xi/, we can efficiently compute the scaling-function coeffi-
cients by a matrix-vector multiplication. Define the vectors sn� D .sn1�; : : : ; s

n
Nk�
/>,

uh D .uh.x1/; : : : ; uh.xNk//>, and a Vandermonde matrix by Vmi D �n
i�.�.x

m//,
then Vsn� D uh and V�1uh D sn�.

This procedure is very similar to the transformation from nodal to modal DG.
This is because the scaling-function basis for VkC1

n is closely related to the modal
DG basis, which is given by the so-called PKD polynomials [4, 9]. The difference
between both bases is the reference triangle that is used [8].

3.3 Multiwavelets

In addition to the scaling-function space, the multiwavelet space should be defined.
This is done by computing the orthogonal complement: VkC1

n�1 ˚ WkC1
n�1 D VkC1

n ,
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such that WkC1
n�1 ? VkC1

n�1 , WkC1
n�1 � VkC1

n . In Algorithm 6.1 in [17], the procedure to
compute the multiwavelets for the base triangle is given, in a manner very similar
to Alpert’s construction in one dimension [1, 21]. The execution of this algorithm
leads to the multiwavelets as provided in [15].

Similar to Eq. (4), the multiwavelets on triangle Tn
� 2 Tn are equal to

 
m;n
`� .


0
1; 

0
2; 

0
3/ D

s

1

2jTn
�j
 m
` .
1; 
2; 
3/; m D 1; 2; 3; ` D 1; : : : ;Nk:

In [7], a similar multiwavelet basis is constructed, but normalization is done in
the L1-norm instead of the L2-norm.

3.4 Multiwavelet Decomposition

In Sect. 3.2, the relation between the DG approximation and the scaling-function
coefficients on level n was given. In this section, the scaling-function expansion on
level n is decomposed to a multiwavelet expansion on level n � 1 [21], using the
same notation as in [17]. The full decomposition is derived in [7, 14, 15].

In the following, the scaling-function basis of Pk.Tn�1
� / is written in terms of a

vector �n�1
� D .�n�1

1� ; : : : ; �n�1
Nk�
/>. Because VkC1

n�1 � VkC1
n , we can express �n�1

� in
terms of �n

�i
, i D 0; 1; 2; 3, using the local numbering Tn�1

� D Tn
�0
[Tn

�1
[Tn

�2
[Tn

�3
(Fig. 2). This means that

�n�1
� D H0�

n
�0
C H1�

n
�1
C H2�

n
�2
C H3�

n
�3
: (5a)

The Nk �Nk matrices Hi are similar to the QMF coefficients in the one-dimensional
case [16, 17], and are defined as (i D 0; 1; 2; 3; p; q D 1; : : : ;Nk)

.Hi/p;q D h�n�1
p� ; �n

q�i
i D

“

Tn
�i

�n�1
p� .x; y/�n

q�i
.x; y/dxdy;

using that �n
q�i

is only nonzero in Tn
�i

. We transform to barycentric coordinates �
based on the vertices of Tn

�i
. Using Eqs. (1), (2) and (4), this yields

.Hi/p;q D 2jTn
�i
j
s

1

2jTn�1
� j

s

1

2jTn
�i
j
Z 1

0

Z 1�
1

0

�p.MTn
�i
!Tn�1

�
�/�q.�/d
2d
1

D
s

jTn
�i
j

jTn�1
� j

Z 1

0

Z 1�
1

0

�p.MTn
�i
!Tn�1

�
�/�q.�/d
2d
1

D 1

2

Z 1

0

Z 1�
1

0

�p.MTn
�i
!Tn�1

�
�/�q.�/d
2d
1;
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since jTn
�i
j D jTn�1

� j=4. For a structured triangular mesh, the matrices Hi do not
depend on the mesh size [15].

Similarly, the multiwavelet basis is written as  m;n�1
� D . m;n�1

1� ; : : : ;  
m;n�1
Nk�

/>,

m D 1; 2; 3. Because WkC1
n�1 � VkC1

n , the vectors of multiwavelets can be written as

 
m;n�1
� D Gm;0�

n
�0
C Gm;1�

n
�1
C Gm;2�

n
�2
C Gm;3�

n
�3
; for m D 1; 2; 3; (5b)

with .Gm;i/p;q D h m;n�1
p� ; �n

q�i
i, i D 0; 1; 2; 3; p; q D 1; : : : ;Nk. The matrices Gm;i

are computed similarly to the matrices Hi.
From Eq. (5) and the fact that sn�1� D h f ;�n�1

� i, dm;n�1� D h f ; m;n�1
� i, it follows

that we can decompose the scaling-function coefficients on level n to scaling-
function and multiwavelet coefficients on level n� 1 as follows:

sn�1� D H0sn�0 C H1sn�1 C H2sn�2 C H3sn�3 ; (6a)

d1;n�1� D G1;0sn�0 C G1;1sn�1 C G1;2sn�2 C G1;3sn�3 ; (6b)

d2;n�1� D G2;0sn�0 CG2;1sn�1 C G2;2sn�2 C G2;3sn�3 ; (6c)

d3;n�1� D G3;0sn�0 C G3;1sn�1 C G3;2sn�2 C G3;3sn�3 ; (6d)

which is called the multiwavelet decomposition from level n to level n � 1.

4 Multiwavelet Troubled-Cell Indicator

In this section, multiwavelet troubled-cell indicators are defined for triangular
meshes [17]. Here, the number of multiwavelet coefficients is increased by a
renumbering technique [17, 19]. This leads to the multiwavelet coefficients Qdm;n�1`� ,
where ` D 1; : : : ;Nk; m D 1; 2; 3, and � belongs to the triangles in level n (instead
of level n � 1).

4.1 Parameter-Based Indicator

The parameter-based multiwavelet troubled-cell indicator is defined similarly to
the indicator for the one-dimensional and tensor-product two-dimensional case
[17, 19]. The major difference lies in the number of coefficients that is needed for
accurate detection. In the one-dimensional or tensor-product two-dimensional case,
knowledge of the jump relation at element boundaries made it possible to use one
coefficient per element for detection. In the triangular case, however, such a relation
has not yet been proven, neither theoretically, nor numerically. Therefore, we will
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use all multiwavelet coefficients for detection: triangle Tn
� is detected as troubled if

for any m D 1; 2; 3, ` D 1; : : : ;Nk:

ˇ

ˇ

ˇ

Qdm;n�1`�

ˇ

ˇ

ˇ > C � max
Tn
�2Tn

	
ˇ

ˇ

ˇ

Qdm;n�1`�

ˇ

ˇ

ˇ




;

where C 2 Œ0; 1� is a parameter that defines the strictness of the indicator. The
parameter C is problem-dependent: it depends on the strength of different shocks in
the domain. This limits the applicability of this troubled-cell indicator. Therefore,
an outlier-detection approach is also considered.

4.2 Outlier-Detection Approach

In this section, a troubled-cell indication technique for the multiwavelet coefficients
on a structured triangular mesh is proposed that is based on outlier detection. In this
way, a problem-dependent parameter is not needed.

A triangle is detected as troubled if it is detected in either the x- or the y-direction,
using the one-dimensional approach [20]. Regions with triangles in the x-direction
are split into local regions of size 16, as is visualized in Fig. 3, and a similar approach
is followed for regions in the y-direction. The resulting outlier-detection approach
is given in Algorithm 1. Note that this approach is closely related to the outlier-
detection algorithm for a rectangular tensor-product mesh [20].

Fig. 3 Split of a 32-triangle region in the x-direction into two local regions of size 16

Algorithm 1 Outlier-detection algorithm for multiwavelet coefficients on triangular
meshes, using local vectors
for all `D 1; : : : ;Nk do

for all mD 1; 2; 3 do
for all i D 0; : : : ; 2n � 1 do

Form troubled-cell indication vector Dm;n�1
`i consisting of multiwavelet coefficients

Qdm;n�1
`� , where � D .i; j;M/, with j D 0; : : : ; 2n � 1;M D 1; 2 (definition 1).

Apply Algorithm 2 in [20].
end for
for all j D 0; : : : ; 2n � 1 do

Form troubled-cell indication vector Dm;n�1
`j consisting of multiwavelet coefficients

Qdm;n�1
`� , where � D .i; j;M/, with i D 0; : : : ; 2n � 1;M D 1; 2 (definition 1).

Apply Algorithm 2 in [20].
end for

end for
end for
Label an element as troubled if it is detected in any application of Algorithm 2 in [20].
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5 Numerical Results

In this section, preliminary numerical results are shown for which the multiwavelet
troubled-cell indicator has been tested [17]. The test is done for an example based
on the linear advection equation on Œ0; 1�� Œ0; 1�, given by ut Cr � .vu/ D 0. Here,
v D .v1; v2/> is the velocity vector, and u D u.x; y; t/ is the unknown quantity to be
resolved. We use a diagonally-directed velocity: v D p2=2 � .1; 1/>. The following
discontinuous initial condition is used:

u0.x; y/ D
(

1; if .x � 0:5/2 C .y � 0:5/2 � 0:1;
0; else,

together with periodic boundary conditions. The exact solution of this boundary-
value problem is equal to u.x; y; t/ D u0.x� v1t; y� v2t/. This means that the initial
function should be recovered at the final time T D p2 [11].

The multiwavelet troubled-cell indicator is applied both using the parameter C
and with the outlier-detection approach. For the tests, the Matlab code of Hesthaven
and Warburton is used [8], which is extended to the advection equation together
with the vertex-based limiter by Raees et al. [13].

This section only shows the results for one specific initial condition. For more
different test problems, we refer to [17].

5.1 Multiwavelet Coefficients of Initial Condition

In order to investigate the information gleaned from multiwavelets on structured
triangular meshes, in this section we first study multiwavelet coefficients of the
initial condition in a DG basis (Fig. 4). Clearly, the multiwavelet coefficients can
be used to distinguish between smooth and nonsmooth regions. However, a clear
meaning of the coefficients (as is the case in one and two dimensions) is difficult to
establish.

5.2 Detection at Final Time

In this section, the approximations and detected troubled-cells are shown at the final
time T D p2. Note that the exact solution equals the initial condition at this time.

The multiwavelet troubled-cell indicator is applied using either the parameter-
based method or the outlier-detection approach (for which a problem-dependent
parameter is not necessary). For the parameter-based method, the vertex-based
limiter is applied only in the detected elements [10]. The outlier-detection scheme,
however, turned out to only be stable if the limiter is also applied to all boundary
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Fig. 4 Multiwavelet coefficients of initial condition, structured triangular mesh based on 32� 32
rectangles, k D 1. (a) d1;n�1

1� , (b) d1;n�1
2� , (c) d1;n�1

3� , (d) d2;n�1
1� , (e) d2;n�1

2� , (f) d2;n�1
3� , (g) d3;n�1

1� , (h)
d3;n�1
2� , (i) d3;n�1

3�

elements. These elements are not always detected by the outlier scheme and are
therefore not marked as such in the figures. Similar boundary problems were also
observed in [6], where it was proposed to either use an adaptive mesh with more
triangles near the boundary or ignore the boundary triangles for certain resolution
levels.

The results are shown in Fig. 5. The parameter-based method detects the discon-
tinuities accurately if a suitable value for the parameter C is chosen. The outlier-
detection method detects more elements near the circle wave but is not as sharp as
we expect compared to results for the quadrilateral mesh case [20]. Inspection of
the multiwavelet coefficients at the final time reveals that the discontinuous region
is spread out wide, and therefore, the local region of size 16 is too small to contain
both continuous and discontinuous regions. At certain locations, all coefficients in
a local vector belong to a discontinuous region, and therefore, the fences are wide
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Fig. 5 Final-time approximations and corresponding detected troubled cells, using the parameter-
based multiwavelet troubled-cell indicator or outlier detection on the multiwavelet coefficients,
T Dp2, structured triangular mesh based on 32� 32 rectangles, k D 1. (a) C D 0:9, (b) Outlier,
(c) C D 0:9, (d) Outlier

enough such that no elements are detected. Further research is needed to understand
which outlier-detection strategy should be used.

6 Conclusion

In this paper, the use of multiwavelets for troubled-cell indication on structured
triangular meshes has been investigated. Inspection of the multiwavelet coefficients
reveals that they are very useful to detect nonsmooth regions in the underlying
function. Two different troubled-cell indicators were introduced: one indicator that
uses a problem-depending parameter, and another indicator that applies outlier



394 M.J. Vuik and J.K. Ryan

detection to the multiwavelet coefficients. By using outlier detection, a problem-
dependent parameter is no longer needed.

Preliminary results have been shown for a test based on the two-dimensional
linear advection equation. The parameter-based troubled-cell indicator detects the
correct features if a suitable choice for the parameter is made. For the outlier-
detection method, it seems as if the optimal size of the local vectors is no longer
equal to 16.

More research should be done to recognize which multiwavelet coefficient mea-
sures which feature of the underlying function. Also, an improvement of the outlier-
detection strategy is needed to detect the correct regions after time integration.
Furthermore, tests for nonlinear PDEs such as the two-dimensional Euler equations,
and comparisons with the KXRCF shock detector and the minmod-based TVB
indicator should be performed to thoroughly test the applicability of multiwavelets
and outlier detection for troubled-cell indication on triangular meshes.
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Solution of Wave Equation in Rods Using
the Wavelet-Galerkin Method for Space
Discretization

Rodrigo B. Burgos, Marco A. Cetale Santos, and Raul R. e Silva

Abstract The use of multiresolution techniques and wavelets has become increas-
ingly popular in the development of numerical schemes for the solution of partial
differential equations (PDEs) in the last three decades. Therefore, the use of
wavelets scale functions as a basis in computational analysis holds some promise
due to their compact support, orthogonality, localization and multiresolution prop-
erties. The present work discusses an alternative to the usual finite difference (FDM)
approach to the acoustic wave equation modeling by using a space discretization
scheme based on the Galerkin Method. The combination of this method with
wavelet analysis using scale functions results in the Wavelet Galerkin Method
(WGM) which has been adapted for the direct solution of the wave differential
equation in a meshless formulation. This paper presents an extension of previous
works which dealt with linear elasticity problems. This work also introduces
Deslauriers-Dubuc scaling functions (also known as Interpolets) as interpolating
functions in a Galerkin approach considering wave propagation problems. Examples
in 1-D were formulated using a central difference (second order) scheme for time
differentiation. Encouraging results were obtained when compared with the FDM
using the same time steps. The main improvement in the presented formulation was
the recognition of a different dispersion pattern when comparing FDM and WGM
results using the same space and time grid.
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1 Introduction

Among the various techniques available for the solution of the partial differential
equation (PDE) that describes wave propagation (wave equation), the Finite Differ-
ence Method (FDM) [1] is by far the most employed one, being used frequently as
a standard for the validation of new methods. As a disadvantage, the FDM is known
for requiring excessive refining in terms of space and time discretization.

The use of wavelet-based numerical methods has become popular in the last
three decades, especially for problems with local high gradients and singularities.
Wavelets have many properties that are quite useful for representing solutions of
PDEs, such as orthogonality, compact support and a certain number of vanishing
moments (exact representation of polynomials). These characteristics allow the
efficient and stable calculation of functions with high gradients or singularities at
different levels of resolution [2].

A complete basis of wavelets can be generated through dilation and translation
of a mother scaling function. Although many applications use only the wavelet filter
coefficients of the multiresolution analysis, there are some which explicitly require
the values of the basis functions and their derivatives, such as the Wavelet Finite
Element Method (WFEM) [3].

Compactly supported wavelets have a finite number of derivatives which can
be highly oscillatory, which makes numerical evaluation of integrals of their inner
products difficult and unstable. Those integrals are known as connection coefficients
and they are employed in the calculation of stiffness and mass matrices in the
Wavelet-Galerkin Method (WGM). Due to some properties of wavelet functions,
these coefficients can be obtained by solving an eigenvalue problem using filter
coefficients.

Working with dyadically refined grids, Deslauriers and Dubuc [4] obtained a
new family of scaling functions and wavelets with interpolating properties, later
called Interpolets. Their filter coefficients are obtained from the autocorrelation
of the Daubechies’ coefficients [5]. As a consequence, interpolets are symmetric,
which is especially useful in numerical analysis. The use of interpolets instead of
Daubechies’ wavelets considerably improves the method’s accuracy [6, 7].

In this work, the Wavelet-Galerkin Method has been adapted for the direct
solution of the acoustic wave equation in a meshless formulation. Accuracy can
be improved by increasing either the level of resolution or the order of the wavelet
used. Normally, the former works better than the latter, since increasing the order of
the functions involved can lead to ill conditioned systems.

As a preliminary study, the formulation of an interpolet-based Galerkin scheme
was demonstrated for a one-dimensional wave propagation problem. Some exam-
ples were formulated and results compared with the standard Finite Differences
Method (FDM).
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2 Wavelet Theory and Interpolets

Multiresolution analysis using orthogonal, compactly supported wavelets has
become increasingly popular in numerical simulation. Wavelets are localized in
both frequency and space, which allows the analysis of local variations of the
problem at various levels of resolution.

The following expression, known as the two-scale relation, is a recursive relation
and is essential to defining wavelets on spaces of functions. In Eq. (1), N is the order
and ak are the filter coefficients of the wavelet scaling function. The limits for the
index k depend on the wavelet family.

'.x/ D
N�1
X

kD1�N
ak' .2x � k/ D

N�1
X

kD1�N
ak'k.2x/ (1)

The basic characteristics of interpolating wavelets require that the mother scaling
function satisfies the following condition [8]:

'.k/ D ı0;k D
(

1; k D 0
0; k ¤ 0 k 2 Z (2)

Working with dyadically refined grids, Deslauriers and Dubuc [4] obtained a
new family of scaling functions and wavelets with interpolating properties. The
Deslauriers-Dubuc interpolating function of order N is given by an autocorrelation
of the Daubechies’ scaling filter coefficients (hm) of the same order (with N/2
vanishing moments). Its support is given by [1 � N; N � 1], it has even symmetry
and is capable of representing polynomials of order up to N � 1 (i.e. N vanishing
moments).

ak D
N�1
X

mD0
hmhm�k (3)

Interpolets satisfy the same requirements as other wavelets, especially the two-
scale relation, which is fundamental for their use as interpolating functions in
numerical methods. Figure 1 shows the interpolet IN6 (autocorrelation of DB6). Its
symmetry and interpolating properties are evident. Its support is given by [�5; 5]
and there is only one integer abscissa which evaluates to a non-zero value.

The numerical solution of differential equations is one of the possible applica-
tions of the wavelet theory. The Wavelet-Galerkin Method (WGM) results from the
use of wavelet scaling functions as the interpolating basis in a traditional Galerkin
scheme. In the following sections, the WGM will be applied to solve the typical DE
for acoustic wave propagation.
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Fig. 1 Interpolet IN6 scaling
function
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3 Wave Propagation Using the Wavelet-Galerkin Method

The partial differential equation (PDE) which rules the one dimensional wave
propagation is:

˛2
@2u .x; t/

@x2
D @2u .x; t/

@t2
(4)

In Eq. (4), u is the horizontal displacement and ˛ is the medium velocity.
The problem at hand will be solved in an acoustic homogeneous domain using
Dirichlet boundary conditions. Assuming that the displacement u is approximated
at the lowest level of discretization (level 0) by a series of interpolating scale
functions using a normalized (non dimensional) coordinate �, the following may
be written:

u
�

�
� D
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X

kD2�N
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�

� � k
�

(5)

Coordinate � D x/L is used in order to allow the domain to be considered as a unit
length rod ([0 1]). The Galerkin method consists in substituting the expression above
in the differential equation and forcing the approximation error to be orthogonal to
a test result which is formulated using the same interpolating functions [9].
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In Eq. (6), ˆ is a vector consisting of translations of wavelet scaling functions
and d is a vector of coefficients for interpolating the displacement function. Using
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this approach, the PDE can be rewritten at a specific time t as a system of linear
equations, which in matrix form is:

m Rdt C kdt D 0 (7)

In this expression, m represents the mass matrix and k is the stiffness matrix of the
model, which in normalized coordinates (�) within the interval [0; 1] are given by:

ki;j D �˛2
R 1

0'i
�

�
�

' 00j
�

�
�

d� D �˛2ƒ0;2
i;j

mi;j D
R 1

0'i
�

�
�

'j
�

�
�

d� D ƒ0;0
i;j

(8)

The so-called connection coefficients  appear in the expressions above. Wavelet
dilation and translation properties allow the calculation of connection coefficients
to be summarized by the solution of an eigenvalue problem based only on filter
coefficients [10].

�
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(9)

Since the expression above leads to an infinite number of solutions, there is
the need for a normalization rule that provides a unique eigenvector. This unique
solution comes with the inclusion of the so-called moment equation, derived from
the wavelet scaling functions property of exact polynomial representation [11].
For the two-dimensional modeling, a Kronecker product appears when using 2-D
functions, resulting in:

m D ƒ0;0 ˝ƒ0;0

k D �˛2
�

ƒ0;2 ˝ƒ0;0 Cƒ0;0 ˝ƒ0;2
� (10)

As in the FDM, it becomes necessary to solve the system of equations at discrete
time intervals. There are several effective direct integration methods, among which
the most intuitive one is the Central Difference Method:

Rdt Š dtC�t � 2 dt C dt��t

.�t/2
(11)

Substituting the expression of the acceleration obtained by the Central Difference
Method and solving for the next time step at t C �t:

m dtC1 D m .2dt � dt�1/� .�t/2kdt (12)
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Stability of the Central Difference Method is conditioned to the choice of the time
step, whose upper bound is obtained from a generalized eigenvalue problem.

�

k � !2m�d D 0! �

X � !2 I� d D 0

�tmax D
p
2

!max

(13)

Matrix m might not be invertible. In this case, boundary conditions shall be imposed
by using Lagrange multipliers. This procedure is used commonly in meshless
methods [12] and leads to a square matrix which can be useful for some system
solvers.
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In the expression above, the matrix g is associated with boundary conditions
and œ is a vector of Lagrange multipliers which is not used in the solution. The
main difference in relation to the FDM is that the unknowns in vector d are the
interpolating coefficients of the basis functions instead of nodal displacements. In
fact, there is no need to establish nodal coordinates.

When dealing with one-dimensional problems, most wavelets (including
Daubechies and Interpolets) present a mass matrix whose rank is one unit less
than its size. This means that only one boundary condition needs to be imposed for
the system to have a solution.

4 Numerical Results

To validate the formulation, a one dimensional example was implemented, consist-
ing in applying a ricker source at the midpoint of a pinned, unit length rod. The
propagation was modeled by the FDM using 265 points and �t D 0.3 ms, with
fourth and second order discretization in space and time, respectively. This time
step was obtained using the upper bound described in the previous section. For
this example, the lowest central frequency of the source that produces a numerical
dispersion is ! D 80 Hz. The same source central frequency, spatial discretization
and time step were used in the WGM example, with no visible dispersion in the
results. The spatial discretization in the WGM was adjusted in terms of function
order and level of resolution in order to give the same number of degrees of freedom.
In this example, this was achieved using IN4 and level j D 8. Figure 2 shows the
response at time t D 0.45 s for both methods using a source central frequency of
! D 40 Hz. There is no visible numerical dispersion in either case.

Figure 3 shows the response using a source central frequency of ! D 80 Hz,
which produces numerical dispersion only in the FDM model.
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Fig. 2 FDM and WGM
results for ! D 40 Hz
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Fig. 3 FDM and WGM
results for ! D 80 Hz

0.7 0.75 0.8 0.85 0.9 0.95 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Normalized length

N
or

m
al

iz
ed

 a
m

pl
itu

de

FDM

WGM

As a second example, the rod is made by two different materials and the
dispersion in the case of the FDM is even greater, as shown in Fig. 4. As expected,
the change in velocity introduces additional errors in the FDM model. These errors
are not present in the WGM model. Figure 5 shows the time record of a point at a
normalized length of 0.4. It’s clear that numerical dispersion becomes visible after
the reflection.

Only for the purpose of testing the ability of the method for two-dimensional
applications, a simple two-material model with the same velocity profile in depth as
the 1-D model was tested and a snapshot taken at time tD 0.52 s is shown in Fig. 6.

The time step used of �t D 2.3 ms was obtained employing the same approach
given in (13). A smaller time step, �t D 2.0 ms, was used in the FDM model and
led to numerical instability, as indicated in Fig. 7. This finding shows that the FDM
requires smaller time steps than the WGM.
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Fig. 4 (a) velocity profile; (b) snapshot for comparison at time tD 0.45 s
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Fig. 5 Records of normalized displacement at point 0.4
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Fig. 6 Propagation snapshot at time tD 0.52 s for the 2-D model
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Fig. 7 Snapshot of FDM model at time tD 0.52 s showing numerical instability

5 Conclusions

This work presented the formulation and validation of the Wavelet-Galerkin Method
(WGM) using Deslauriers-Dubuc Interpolets. These preliminary results are promis-
ing, but the simplicity of the studied models has to be taken into account. The
main improvement in the presented formulation was the recognition of a different
dispersion pattern when comparing FDM and WGM results using the same space
and time grid. Both methods used second order time discretization and the FDM
used fourth order space discretization, which shows that comparisons were made
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against a robust numerical scheme. The different dispersion pattern is probably due
to the convergent nature of Galerkin type methods, which generally have dispersion
errors of twice their truncation errors, while FD methods have dispersion errors on
the order of their truncation errors.

All matrices involved can be stored and operated in a sparse form, since most
of their components are null, thus saving computer resources. Due to the compact
support of wavelets, the sparseness of matrices increases along with the level of
resolution.

In future works, models with greater complexity will be analyzed and different
families of wavelets will be explored. The extension of the method to irregular
geometries in two-dimensional problems is still a challenge, but one potential advan-
tage is the possibility of implementing absorbing boundary conditions analytically
with the use of Lagrange Multipliers.
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financial support.

References

1. K.R. Kelly, R.W. Ward, S. Treitel, R.M. Alford, Synthetic seismograms: a finite-difference
approach. Geophysics 41, 2–27 (1976)

2. S. Qian, J. Weiss, Wavelets and the numerical solution of partial differential equations. J.
Comput. Phys. 106, 155–175 (1992)

3. X. Chen, S. Yang, J. Ma, Z. He, The construction of wavelet finite element and its application.
Finite Elem. Anal. Des. 40, 541–554 (2004)

4. G. Deslauriers, S. Dubuc, Symmetric iterative interpolation processes. Constr. Approx. 5, 49–
68 (1989)

5. I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math
41, 909–996 (1988)

6. R.B. Burgos, M.A. Cetale Santos, R.R. Silva, Analysis of beams and thin plates using the
Wavelet-Galerkin method. Int J Eng Technol 7, 261–266 (2015)

7. A.J.M. Ferreira, L.M. Castro, S. Bertoluzza, Analysis of plates on Winkler foundation by
wavelet collocation. Meccanica 46(4), 865–873 (2011)

8. Z. Shi, D.J. Kouri, G.W. Wei, D.K. Hoffman, Generalized symmetric interpolating wavelets.
Comput. Phys. Commun. 119, 194–218 (1999)

9. X. Du, J.C. Bancroft, in Proceedings of the SEG Int’l Exposition and 74th Annual Meeting,
2-D Wave Equation Modeling and Migration By a New Finite Difference Scheme Based on
the Galerkin Method, (Denver, USA, 2004)

10. X. Zhou, W. Zhang, The evaluation of connection coefficients on an interval. Commun
Nonlinear Sci Numer Simul 3, 252–255 (1998)

11. R.B. Burgos, M.A. Cetale Santos, R.R. Silva, Deslauriers-Dubuc interpolating wavelet beam
finite element. Finite Elem. Anal. Des. 75, 71–77 (2013)

12. V.P. Nguyen, T. Rabczuk, S. Bordas, M. Duflot, Meshless methods: a review and computer
implementation aspects. Math. Comput. Simul. 79, 763–813 (2008)



On High Order Entropy Conservative
Numerical Flux for Multiscale Gas Dynamics
and MHD Simulations
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Abstract The Sjögreen and Yee (On skew-symmetric splitting and entropy conser-
vation schemes for the Euler equations, in Proceedings of ENUMATH09, June 29-
July 2, Uppsala University, Sweden, 2009) high order entropy conservative numer-
ical method for compressible gas dynamics is extended to include discontinuities
and also extended to the ideal magnetohydrodynamics (MHD). The basic idea is
based on Tadmor’s (Acta Numer 12:451–512, 2003) original work for the Euler gas
dynamics. For the MHD four formulations of the MHD formulations are considered:
(a) the conservative MHD, (b) the Godunov/Powell non-conservative form, (c)
the Janhunen MHD with magnetic field source terms (Janhunen, J Comput Phys
160:649–661, 2000), and (d) a MHD with source terms by Brackbill and Barnes (J
Comput Phys 35:426–430, 1980). Three forms of the high order entropy numerical
fluxes in the finite difference framework are constructed. They are based on the
extension of the low order form by Chandrashekar and Klingenberg (SIAM J Numer
Anal 54:1313–1340, 2016), and two forms with modifications of the Winters and
Gassner (J Comput Phys 304:72–108, 2016) numerical fluxes. For flows containing
discontinuities and multiscale turbulence fluctuations the Yee and Sjogreen (High
order filter methods for wide range of compressible flow speeds, in Proceedings
of the ICOSAHOM09, Trondheim, Norway, June 22–26, 2009) and Kotov et al.
(Commun Comput Phys 19:273–300, 2016; J Comput Phys 307:189–202, 2016)
high order nonlinear filter approach are extended to include the high order entropy
conservative numerical fluxes as the base scheme.
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1 Introduction

Stability and accuracy in high order numerical method development for multiscale
turbulent flows consist of conflicting requirements. On one hand, stable methods for
the subject flow require an appropriate amount of numerical dissipation to achieve
stability. On the other hand, numerical accuracy requirement in direct numerical
simulations (DNS) and large eddy simulations (LES) cannot tolerate numerical
dissipation and high dispersive error. Moreover, due to the CPU intensive com-
putations of such flows, practical efficient methods require low dispersive and low
dissipative error with coarse grid computation which are at the same time applicable
for non-periodic boundaries in generalized geometries. A prime candidate for an
efficient high order spatial discretization with non-dissipative and low dispersion
error is the high order central schemes and their low dispersion counterparts of
Linders and Nordström [10] to be used as the primary spatial discretizations at
almost everywhere in the computed flow field. After the completion of every full
time step of the non-dissipative (and low dispersion) spatial scheme, to suppress
spurious oscillations at discontinuities and high frequency oscillations of long time
integrations of highly coupled nonlinear governing equation sets, the computed
solution is nonlinearly filtered by the dissipative portion of a high order shock-
capturing scheme accompanied by a smart flow sensor developed by Yee and
Sjögreen [20] and Kotov et al. [8, 9]. The smart flow sensor provides the locations
and the estimated strength of the necessary numerical dissipation needed at these
locations and leaves the rest of the flow field free of shock-capturing dissipations.
In this paper, we only concentrate on the high order central schemes.

The aforementioned nonlinear filter scheme with adaptive numerical dissipation
control in high order shock-capturing schemes and their hybrid cousins have shown
excellent performance for certain turbulent test cases. For more practical 3D test
cases of DNS and LES of compressible shock-free turbulence, low speed turbulence
with shocklets, and supersonic turbulence for non-periodic boundaries in curvilinear
geometries, some improvement in numerical stability is needed without resorting
to added numerical dissipation that can interfere with the accuracy of numerical
simulations. The skew-symmetric splitting of the inviscid flux derivatives for central
schemes can help with numerical stability. See Arakawa [1], Blaisdell et al. [2], Yee
et al. [21], Ducros et al. [5], Yee and Sjögreen [19, 20], Sjögreen and Yee [12],
Kotov et al.[8, 9] for some discussions and performance of the combined approach
for DNS and LES applications. For their skew-symmetric splitting extension
to the ideal MHD, see Sjögreen and Yee [13]. Entropy conservative schemes
[4, 15, 17] is another class of methods that might have better stability properties than
straightforward centered discretizations. Here, entropy conservative schemes refer
to conservative schemes satisfying a discrete entropy equation. This is the subject
of our current study.

Objective and Outline In this paper we will develop and test entropy conservative
schemes for the equations of gas dynamics and equations of the ideal MHD
for compressible flows. Their stability for problems with smooth solutions and
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problems with discontinuities will be investigated. An additional aspect is that
there are several slightly different, but equivalent, ways to formulate the equations
of MHD. We show in [14] that the formulation of the MHD equations have a
strong effect on the stability of non-dissipative approximations. Specifically, four
formulations of the MHD are considered: (a) the conservative MHD, (b) the
Godunov/Powell non-conservative form, (c) the Janhunen MHD with magnetic field
source terms [7], and (d) the MHD source term of [3]. Three formulations of the high
order entropy numerical fluxes in the finite difference framework are constructed.
They are based on the extension of the low order form of Chandrashekar and
Klingenberg [4], and two forms with modifications of the Winters and Gassner [17]
numerical fluxes. For flows containing discontinuities and multiscale turbulence
fluctuations the Yee and Sjogreen [20] and Kotov et al. [8, 9] high order nonlinear
filter approach is extended to include the high order entropy conservative numerical
fluxes as the base scheme. Due to page limitations, many details of the development
and extensive numerical testing with more representative test cases among the
different formulations and the different governing equation sets will be reported
in [14] for journal publication.

2 High Order Entropy Conservative Schemes for Gas
Dynamics

Entropy conservative schemes were introduced in the 1980s. See, e.g., [15]. These
schemes are in conservation form, and admit a discrete conservation law for the
entropy. We consider a conservation law in one space dimension

ut C f.u/x D 0: (1)

An entropy, E.u/, and an entropy flux, F.u/, are two functions satisfying ET
uA.u/ D

FT
u , where Eu denotes the gradient of E with respect to u, and A.u/ denotes the

matrix fu. Furthermore, E.u/ is assumed to be a convex function. The entropy
variables are defined by v D Eu.u/. Multiplying (1) by vT gives the entropy equation

vTut C vTAux D E.u/t C FT
uux D E.u/t C F.u/x D 0:

The entropy flux potential, defined by

 D vT f � F

has the property that f D  v.
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The following construction, proved in [12], defines a high order entropy conser-
vation scheme.

Theorem 1 Let the coefficients ˛. p/k be determined such that

Dpuj D
p
X

kD�p
˛
. p/
k

ujCk � uj�k
2k�x

(2)

is the standard 2pth order accurate centered difference operator approximating the
first derivative. The semi-discrete approximation of a system of conservation laws
given by

�x
d

dt
uj C

p
X

kD1

˛
. p/
k

k
.g.k/jCk=2 � g.k/j�k=2/ D 0; (3)

where g.k/jCk=2 satisfies

.vjCk � vj/Tg
.k/
jCk=2 D  jCk �  j (4)

and where the kth flux differences approximate the flux derivative to second order
with a truncation error of even powers of k�x,

g.k/jCk=2 � g.k/j�k=2 D k�xfx C k3�x3�1 C k5�x5�2 C : : : ; (5)

is 2pth order accurate, and admits a discrete entropy equation

�x
d

dt
Ej C

p
X

kD1

˛
. p/
k

k
.H.k/

jCk=2 � H.k/
j�k=2/ D 0; (6)

where H.k/
jCk=2 D 1

2
Œ.vjCk C vj/Tg

.k/
jCk=2 � . jCk C  j/�. Both (3) and (6) can be cast

in conservation form, because

ajCk=2 � aj�k=2 D �C.
k�1
X

mD0
aj�k=2Cm/

for any arbitrary grid function ajCk=2 that satisfies ajCk=2�k D aj�k=2.
For a scalar conservation law the simple choice g.k/jCk=2 D . jCk �  j/=.vjCk � vj/
satisfies both (4) and (5). For the one dimensional Euler system [16] defined entropy
conserving fluxes based on integration in phase space. An alternative approach,
which was used in [12], is to write  as a function of the entropy variables and
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determine functions 'i consistent with the gradient of  and satisfying

. jCk �  j/ D '1Œ.v1/jCk � .v1/j�C : : :C '3Œ.v3/jCk � .v3/j�:

The definition g.k/jCk=2 D .'1; '2; '3/ determines an entropy conservative method.

3 MHD Formulations

The equations of magnetohydrodynamics(MHD) is the system of conservation laws

ut C fx C gy C hz C e divB D 0; (7)

where the unknown field vector is

u D .�; u; v; w; e; B.x/; B.y/; B.z//

where � is density, .u; v; w/ is the velocity vector, e the total energy and
.B.x/; B.y/; B.z// the magnetic field components. The pressure is

p D .� � 1/.e� 1
2
�jwj2 � 1

2
jBj2/;

where w D .u; v; w/ and B D .B.x/; B.y/; B.z//. The x-direction flux is given by

f D

0

B

B

B

B

B

B

B

B

B

B

B

B

@

�u
�u2 C pC 1

2
jBj2 � B.x/B.x/

�uv � B.x/B.y/

�uw� B.x/B.z/

u.eC pC 1
2
jBj2/� B.x/uTB
0

uB.y/ � vB.x/
uB.z/ � wB.x/

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

and similar expressions hold for g and h. In the last term on the left hand side of (7)

e D eG D .0; B.x/; B.y/; B.z/; wTB; u; v; w/T (8)

multiplies divB. This term could be removed, because divB D 0 from a physical
standpoint. If we keep the divB term, the non-conservative system (7) has an
entropy, as first shown by Godnov [6]. Some variants of (7) are to replace e by
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either

eJ D .0; 0; 0; 0; 0; u; v; w/

as suggested in [7] or by

eB D .0; B.x/; B.y/; B.z/; 0; 0; 0; 0/

as suggested in [3]. The conservative form of (7) is obtained by setting e D 0.

4 High Order Entropy Conservative Numerical Fluxes
for MHD

Consider (7) in one space dimension, for simplicity,

ut C fx C eB.x/x D 0 (9)

and define the entropy

E D � �s

� � 1 s D ln p��� (10)

and the entropy flux F D uE. The entropy variables are defined by v D ruE.
Written out explicitly for (9),

v D
 

� � s

� � 1 �
�jwj2
2p

;
�u

p
;
�v

p

�w

p
;��

p
;
�B.x/

p
;
�B.y/

p
;
�B.z/

p

!

:

Multiplying the entropy variables by the Jacobian of the flux function gives after
some lengthy algebra,

vT
@f
@u
D ruF � .vTeG/.0 0 0 0 0 1 0 0/T : (11)

Note that eG is defined in (8). The entropy conservation law Et C Fx D 0 follows if
we multiply (9) by the entropy variables,

vTut C vT fx C vTeB.x/x D 0

and use (11) on the term vTfx D vT @f
@uux. Note that only the value of vTe matters

for entropy conservation. Either choice eG, eJ , or eB for e in (9) would work equally
well since vTeG D vTeJ D vTeB.
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Denote  D vT f � F and note that

 x C vTeB.x/x D vTx f; (12)

since by using (11),

 x D vTx fC vTfx � Fx D vTx fC vTfuux � Fx D vTx fC Fx � vTeGB.x/x � Fx:

It was proved in [4], for the case e D eG, that entropy conservation holds for the
semi-discrete second order accurate scheme,

d

dt
uj C 1

�x
.hjC1=2 � hj�1=2/C 1

2
ej.B

.x/
jC1 � B.x/j�1/ D 0; (13)

if the numerical flux hjC1=2 D h.ujC1;uj/ satisfies the discrete counterpart of (12),

.vjC1 � vj/ThjC1=2 D  jC1 �  j C 1

2
.vTjC1ejC1 C vTj ej/.B

.x/
jC1 � B.x/j /: (14)

Furthermore, when the numerical flux of scheme (13) satisfies (14), the computed
solution satisfies the semi-discrete entropy conservation law

d

dt
Ej C 1

�x
.HjC1=2 �Hj�1=2/ D 0;

where

HjC1=2 D 1

2
.vjC1 C vj/ThjC1=2 � 1

2
.vTjC1fjC1 C vTj fj/C

1

2
.FjC1 C Fj/�

1

4
..vTe/jC1 � .vTe/j/.B.x/jC1 � B.x/j /: (15)

Note that since vTe only appears in (14) evaluated at the grid points, the choices eG,
eJ, or eB for e can be used interchangeably. The scheme was formulated somewhat
differently in [4], but is consistent with our description.

We can generalize this to any order by using the construction in Theorem 1.

Theorem 2 The semi-discrete scheme

d

dt
uj C 1

�x

p
X

kD1

˛
. p/
k

k
.h.k/jCk=2 � h.k/j�k=2/C

1

2
ejDpB

.x/
j D 0; (16)

where the functions h.k/jCk=2 satisfy

.vjCk � vj/Th
.k/
jCk=2 D  jCk �  j C 1

2
.vTjCkejCk C vTj ej/.B

.x/
jCk � B.x/j / (17)
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and where the flux difference h.k/jCk=2 � h.k/j�k=2 satisfies (5), is 2pth order accurate,
and admits a discrete entropy equation,

�x
d

dt
Ej C

p
X

kD1

˛
. p/
k

k
.H.k/

jCk=2 � H.k/
j�k=2/ D 0; (18)

with numerical entropy flux

H.k/
jCk=2 D

1

2
.vjCk C vj/Th

.k/
jCk=2 �

1

2
.vTjCkfjCk C vTj fj/C

1

2
.FjCk C Fj/�

1

4
..vTe/jCk � .vTe/j/.B.x/jCk � B.x/j /: (19)

The standard centered 2pth operator Dp is defined in (2).
Construction of entropy conserving numerical fluxes is done by enforcing (14),

which is one single constraint on the eight components of h.k/jC1=2. In principle, this
could be done by expanding the right hand side of (14) in the elements of the vector
vjC1�vj. In practice it is easier to expand both sides of (14) in a parameter vector, z.
Different choices of parameter vectors are possible, and lead to different numerical
fluxes. Two different entropy conserving MHD schemes were recently developed.
The scheme developed in Winters and Gassner [17] uses

z1 D .
r

�

p
;

r

�

p
u;
r

�

p
v;

r

�

p
w;
p
p�; B.x/; B.y/; B.z// (20)

while

z2 D .�
p
; u; v; w; �; B.x/; B.y/; B.z// (21)

is used in Chandrashekar and Klingenberg [4].
The scheme in Winters and Gassner [17] uses the slightly different form

d

dt
uj C 1

�x
.hjC1=2 � hj�1=2/C 1

2
ejC1=2.B.x/jC1 � B.x/j /C

1

2
ej�1=2.B.x/j � B.x/j�1/ D 0;

(22)

for the numerical scheme. The intermediate ejC1=2 has to be determined along with
the numerical flux function. Here the scheme for the ideal MHD system we will
work with is (13) (and (16) for higher order extension), since it works without
modification for any choice for e. Numerical experiment indicated that these two
choices are more accurate and stable than the Winters & Gassner forms.
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The procedure to define the numerical flux is a lengthy, but straightforward,
expansion of both sides of (14) in the components of zjC1 � zj. Equating the coef-
ficients in front of the z-difference components gives equations for the components
of the numerical flux function; see [17] for details.

For example, the numerical flux satisfying (14), derived by use of (21), is the
following

hjC1=2 D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�lnfug
�lnfug2 C f�g

f�=pg C 1
2
f.B.x//2 C .B.y//2 C .B.z//2g � fB.x/g2

�lnfugfvg � fB.x/gfB.y/g
�lnfugfwg � fB.x/gfB.z/g

h5
0

1
f�=pg .f�u=pgfB.y/g � f�v=pgfB.x/g/
1
f�=pg .f�u=pgfB.z/g � f�w=pgfB.x/g/

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

where h5 is the longer expression

h5 D 1

� � 1
�ln

.�=p/ln
fug C Op1fug � 1

2
�lnfug.fu2g C fv2g C fw2g/

C �lnfug.fug2C fvg2 C fwg2/C
Ou2.fB.x/g2 C fB.y/g2 C fB.z/g2/ � fB.x/g.Ou2fB.x/g C Ov2fB.y/g C Ow2fB.z/g/ (23)

where the arithmetic average is denoted f�g D .�jC1 C �j/=2, and where

Op1 D f�g
f�=pg �ln D log �jC1 � log �j

�jC1 � �j
and

Ou2 D fu�=pgf�=pg Ov2 D fv�=pgf�=pg Ow2 D fw�=pgf�=pg :

5 Numerical Results

This section shows numerical results for one test case for the gas dynamics
containing shock waves, and one test case for the ideal MHD containing shock
waves to illustrate the performance of the proposed methods for problems with
shocks. The aforementioned nonlinear filter approach of Yee & Sjögreen is utilized.
The nonlinear filter postprocesses the solution after each time step, applying the



416 B. Sjögreen and H.C.Yee

dissipative part of a high order shock capturing scheme. The filter is on conservative
form, and consistent to high formal order of accuracy. For all test cases we use
the classical fourth-order Runge-Kutta time discretization. Here, for illustration
purposes, only one smart flow sensor (among the many variants indicated in [20]
and Kotov et al. [8, 9]) is chosen for the numerical experiment for the nonlinear
filter approach. It is the third-order B-spline wavelet flow sensor developed in
Sjögreen and Yee [11]. No grid refinement results are indicated as the grid shown
of these well-known test cases are the commonly used grid size for scheme
comparison. Many details of the development and extensive numerical testing with
more representative test cases among the different formulations and the different
governing equation will be reported in Sjögreen and Yee [14]. In this expanded
version, 2D and 3D test cases for smooth flows, problems with shock waves, shock-
free turbulence and turbulence with weak and strong shocks will be included. Our
studies show the gain in stability by the high order entropy conservative numerical
fluxes over the purely high order central base scheme.

5.1 Gas Dynamics Test Case with Shocks: Shu-Osher Problem

The Shu-Osher problem is a one-dimensional Mach 3 shock moving into an
oscillatory density. A highly oscillatory flow field (1D turbulent flow) develops
behind the shock wave. The problem is defined for the one dimensional Euler
equations with � D 1:4 and initial data

.�; u; p/ D
8

<

:

.3:857143; 2:629369; 10:33333/; x < �4

.1C 0:2 sin 5x; 0; 1/; x � 4 (24)

on the domain �5 � x � 5. For this gas dynamics computation, the MHD
equation solver is used with magnetic fields set to zero. The Yee & Sjögreen
nonlinear filter scheme using the high order entropy conservative numerical flux
as the base scheme is employed for the numerical experiment. The coarse grid
has 201 points, corresponding to discretization size �x D 0:05. The exact left
and right hand solutions are imposed at the boundaries at a number of ghost
points that is sufficiently large that no boundary modification of the scheme is
needed. The base scheme is used to advance the solution one full time step by a
Runge-Kutta time discretization. After each full time step the computed solution
is nonlinearly filtered by the nonlinear dissipation part of a WENO scheme. The
nonlinear numerical dissipation is multiplied with sensors designed to activate it
only in the neighborhood of shocks. In the computations shown here, a wavelet
sensor was used with two wavelet levels and a cut-off smoothness exponent 0:5.
Figure 1 compares the density at time 1.8 computed by the Jiang & Shu seventh-
order WENO (WENO7) scheme (to the left) and computed by the eighth-order
entropy conservative scheme as the base scheme and then the computed solution
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Fig. 1 1D Osher-Shu test case: Density at time 1.8 for WENO7 (left) and C08ECCK+WENO7fi
(right)

Fig. 2 1D Osher-Shu test case: Close up of the oscillations in density at time 1.8 for WENO7
(left) and C08ECCK+WENO7fi (right)

is nonlinearly filtered by the dissipative portion of WENO7 using the wavelet flow
sensor to control the numerical dissipation (C08ECCK+WENO7fi) (to the right).
See [18–20] for a description of the nonlinear filter scheme. Only result by the CK
form of the entropy numerical flux is shown. For this test case, other forms of the
entropy numerical flux behaves similarly.

Figure 2 shows a close up of the oscillatory regions of the plots in Fig. 1.
The oscillations are visibly better resolved by the filter scheme. See Yee and
Sjögreen[20], Sjögreen and Yee [12], Kotov et al. [8, 9] for some discussions
and performance of the combined approach for DNS and LES gas dynamics
applications. For extension of skew-symmetric splitting to the equations of ideal
MHD, see Sjögreen and Yee [13].
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5.2 MHD Test Case with Shocks: Orzag-Tang Vortex

The entropy conservative scheme with numerical flux function satisfying (14) was
applied to (7). All three variants with e equal to eG, eJ, and eB were implemented.
Both choices of parameter vector (20) and (21) were implemented, leading to six
different schemes. The schemes were implemented with sixth-order of accuracy.
The results are compared with the conservative formulation e0 (e D 0). This
is a problem where shock waves appear. Computed solutions exhibit oscillatory
solutions without a shock-capturing dissipation at the discontinuities. In addition,
centered base schemes in conjunction with skew-symmetric splitting, entropy
conservative numerical fluxes for the base scheme, all give unphysical oscillations
around the shock waves.

We will here use the entropy conservative numerical flux as a base scheme in the
nonlinear filter scheme described in [18–20].

The Orzag-Tang vortex starts from initial data

� D 25=9 .u; v;w/ D .� sin y; sin x; 0/ p D 5=3; (25)

.B.x/;B.y/;B.z// D .� sin y; sin 2x; 0/ (26)

and is solved in two space dimensions on a domain of size 2� � 2� with
periodic boundary conditions. Results will be displayed as contour levels of density
of the solution at the time 3.14 together with contours of divB at the same
time. Furthermore, a logscale plot of the norm of divB will also be given. The
computational domain used 100 � 100 grid points.

Figure 3 shows the result obtained by sixth order base scheme (16) using (20)
and post processed with dissipation from the fifth order WENO scheme
(C06ECSY+WENO5fi), which had the smallest divB error of the six variants
of entropy conserving base schemes. The remaining cases are not shown, since their
plotted results do not differ significantly from Fig. 3.

Figures 4, 5, and 6 show the standard sixth-order centered base scheme with the
source term choices e D 0, e D eG, and e D eJ, respectively. The centered base

Fig. 3 2D Orzag-Tang vortex test case: C06ECSY+WENO5fi+e_G, density contours (left), divB
contours (middle), norm of divB vs. time (right)
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Fig. 4 C06+WENO5fi+e_0, density contours (left), divB contours (middle), norm of divB
vs. time (right)

Fig. 5 C06+WENO5fi+e_G, density contours (left), divB contours (middle), norm of divB
vs. time (right)

Fig. 6 C06+WENO5fi+e_J, density contours (left), divB contours (middle), norm of divB
vs. time (right)

scheme preserves the discretized divB perfectly, and the nonlinear filter was not
applied to the three magnetic field components of the equations, leading to an error-
free discrete divB for the overall computation. The entropy conserving schemes
do not have the perfect divB preservation property. In addition, the nonlinear filter
dissipation will introduce errors in divB if it is applied to all components of the
equations.

The above computations with order of accuracy eight instead of six are reported
in [14], where more details and illustrations are given.
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6 Conclusions

Entropy conserving schemes for the equations of MHD were implemented and some
new variants of these were developed.

For problems where shock waves are present, the entropy conserving schemes
exhibit oscillations. The nonlinear filter method by Yee and Sjögreen was demon-
strated to maintain stability and give highly accurate computed solutions when using
an entropy conservative scheme as base scheme.
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A Fast Direct Solver for the Advection-Diffusion
Equation Using Low-Rank Approximation
of the Green’s Function

Jonathan R. Bull

Abstract We describe a new direct solution method for the advection-diffusion
equation at high Reynolds number on simple bounded two-dimensional domains.
The key step is to treat advection explicitly, leading to a new class of time integration
schemes based on Green’s functions. As a proof of concept a first-order Euler
scheme is presented. We compare the accuracy and computational cost of the new
scheme to existing solution techniques. Low-rank approximation of the Green’s
function is found to reduce cost without loss of accuracy. Stabilisation via numerical
dissipation is required for high Reynolds number problems on coarse grids. Linear
scaling of computational cost is achieved in 1D and 2D. This work is a building
block for constructing fast direct solvers and preconditioners for the Navier-Stokes
equations.

1 Introduction

Today’s most powerful supercomputers make use of large numbers of parallel pro-
cessors and threads. However, some of the core solution algorithms in computational
physics codes are not well suited to massively parallel execution and linear scaling
is generally lost. For example, Newton-Krylov (NK) solvers require a global inner
product calculation every iteration, causing a performance bottleneck [1]. In this
context, hierarchical algorithms such as the Fast Multipole Method (FMM) [2] and
H2 matrices [3] have considerable potential. They are increasingly being employed
as fast tunable solvers and preconditioners for elliptic and parabolic PDEs and BIEs
[4–8]. In particular, when solving the discrete problem Ax D b with N degrees of
freedom, hierarchical low-rank approximation (HLRA) methods compute a highly
compressed approximation to the inverse matrix A�1. HLRA solves the problem to
a chosen accuracy in O.N logN/ or O.N/ operations. Furthermore, this method is
competitive with multigrid in terms of parallel scaling [6, 9].
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HLRA compression is effective when the Green’s function of the PDE/BIE
decays with increasing distance between two points in space. In fluid flows where
advection dominates diffusion this is not the case. However, in Bull et al. [10] it
was shown that the linear advection-diffusion equation could also be solved by
low-rank approximation of the inverse operator. By discretising in time such that
the advective term was explicit and the diffusion term implicit, it was transformed
into a forced heat equation with a rapidly decaying Green’s function. We describe
and analyse the direct solution method in greater detail and present simple and
effective low-rank approximations. High-order time accuracy may be achieved by
using a high-order integral approximation. This is left as a topic for future work.
The paper is organised as follows. In Sect. 2 numerical methods for the solution
of the advection-diffusion equation are presented. A simple method for imposing
Dirichlet boundary conditions is described. The cost and accuracy of low-rank
approximation schemes is analysed. In Sect. 3 the 1D and 2D numerical tests
are presented. Comparisons are made with Matlab’s backslash operator and the
exponential integrator method. Finally in Sect. 4 conclusions are drawn and future
work proposed.

2 Numerical Methods

We consider the linear advection-diffusion equation in 1, 2 or 3 dimensions:

@u=@tC a � ru � �r2u D 0 in ˝;

u.x; 0/ D u0 in ˝;

u.x; t/ D uD on d˝; (1)

where u is a smooth scalar field, a is the constant advection velocity and � is the
diffusion coefficient (constant). For simplicity of analysis a is chosen to be constant.
We are interested in advection-dominated (stiff) problems for which jaj >> �. The
advection term is placed on the right-hand side (RHS), making it in effect a forcing
term:

@u=@t � �r2u D �a � ru: (2)

2.1 IMEX Schemes

A standard way to solve (2) is with a first-order implicit-explicit (IMEX) scheme:

unC1 � un

�t
� �r2unC1 D �jaj � run; (3)
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Applying some suitable spatial discretisation, we would obtain a linear system of
the form

.I ��tA/unC1 D .I ��tB/un; (4)

where B and A are the advective and diffusive operators (including boundary
conditions) respectively. An overview of IMEX schemes is given in [11]. We solve
the linear system using Matlab’s backslash operator, which defaults to a Cholesky
decomposition or LDL factorisation since the matrix is Hermitian.

2.2 Exponential Integrator Method

For an equation containing a constant-in-time linear operator A and a nonlinear
operator B, exponential integration obtains the exact solution as:

u.x; t/ D e�tAu.x; 0/C
Z t

0

e�.t�t0/AB.u.x; t0/; t0/dt0: (5)

In the current context, A is diffusion and B is the negative advection term plus any
initial and boundary terms. An explicit Euler approximation of the time integral over
a timestep �t leads to the first-order solver

u.x; tnC1/ D e��tAu.x; tn/C�t�1.��tA/B.u.x; tn/; tn//; (6)

where �1 is the first � function defined by �1.z/ D .ez � 1/=z. By approximating �1
at tn we have a simpler form with only one exponential matrix:

u.x; tnC1/ D e��tA.u.x; tn/C�tB.u.x; tn/; tn//: (7)

2.3 Space-Time Integration with Green’s Function

Alternatively, (2) can be solved exactly by integrating initial, boundary and forcing
terms over the domain˝ and time interval t:

u.x; t/ D R t
0

R

˝
G.x; x0; t; t0/ f .x0; t0; u.x0; t0//dx0dt0

C R
˝
G.x; x0; t; 0/u.x0; 0/dx0 � R t

0

R

d˝ rG.x; x0; t; t0/ � n uD.x0; t0/dx0dt0; (8)

where f .x; t/ D �a � r.u.x; t//, G is the Green’s function of the left-hand side
(LHS) operator in (2) and uD are Dirichlet boundary conditions. Specific cases of
G are given below. The time integral of G is evaluated numerically in this paper. It
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can also be integrated analytically in the 2D and 3D cases, which, combined with
a high-order quadrature rule or Runge-Kutta scheme for the RHS terms, leads to a
high-order accurate time integration scheme. The integral equation (8) is solved over
a single timestep from tn to tnC1 D tn C�t. The first-order explicit Euler scheme is
written:

unC1 D
Z

˝

G.�t/Œun C�tf .un/�dx0 C boundary terms: (9)

Consider the solution of (8) on a finite periodic 1D domain ˝ W x 2 Œ0;L�.
The boundary integral in (8) is left out and the Green’s function is the fundamental
solution of the forced heat equation:

G.x; x0; t; t0/ D H.t � t0/.4��.t � t0//�d=2 exp

 

� .x � x0/2

4�.t � t0/

!

; (10)

where H.t � t0/ is the Heaviside step function. G is defined to be a Dirac delta
function at t D t0 and also in the infinite-Reynolds number limit as � ! 0. It is
necessary that G is sufficiently compact with respect to L, i.e. G.x; x ˙ L/ 	 0,
so that the tails do not overlap. For advection-dominated problems this is easily
satisfied.

We now partition the domain into N intervals of uniform size �x D L=N. Using
a piecewise-constant midpoint approximation of the integral with first-order upwind
differencing for the advection term:

unC1i D Mij.unj C�tf nj /; i D 1; : : : ;N;
DPN

jD1 #�xp
�

exp.�.j j� ij#�x/2/Œ.1 � cA/unj C cAunj�1�; (11)

where M is the Green’s matrix, the advective CFL number cA D a�t=�x and the
effective wavenumber # D .4��t/�1=2. Periodicity is imposed by defining j such
that if j � i > N=2 then j D j � N and if j � i < N=2 then j D jC N, thus making
M circulant.

The method extends easily to 2D structured grids on the rectangular domain V D
x 2 Œ0;L� � y 2 Œ0;L�. In the periodic setting the exact solution is given by a triple
integration over the two space and one time dimensions:

u.x; y; t/ D R t
0

R

V G.x; x
0; y; y0; t; t0/f .x0; y0; t0/dx0dy0dt0

C RV G.x; x0; y; y0; t; 0/u.x0; y0; 0/dx0dy0; (12)

G.x; x0; y; y0; t; t0/ D H.t � t0/4��.t � t0/ exp
�

� r2

4�.t�t0/
�

; (13)
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where r D .x�x0/2C .y�y0/2. On a uniform N�N grid with explicit Euler in time:

unC1ij D Mijkl.unkl C�tfkl/; i; j D 1; : : : ;N; (14)

DPiCN=2
kDi�N=2

PjCN=2
lDj�N=2

#2�x�y
�

exp
��#2..jk � ij�x/2 C .jl� jj�y/2/

�

.unkl C�tf nkl/: (15)

Although quadruple indexing has been used here, the solver is implemented as a
matrix-vector product of dimensions ŒN2;N2� � .N2/ so uij is referred to as a vector
and Mijkl as a matrix.

There are three stability criteria for this method. Firstly, the timestep �t has to
satisfy any stability criteria set by the forcing terms; in this case cA � 1 due to
the upwind scheme. This can be shown by von Neumann analysis but space does
not permit its inclusion. Secondly, the maximum resolvable numerical wavenumber
is the Nyquist wavenumber N. We cap the wavenumber #, resulting in a modified
matrix M:

# D min..4��t/�1=2; #max/; #max D N: (16)

It can be considered as stabilisation via a modified viscosity �eff D .4N2�t/�1.
Thirdly, on a periodic domain the method is A-stable if (in 1D)

PN
jD1Mij � 1 8 i

(and similarly in 2D). This is satisfied by using the midpoint rule of integration and
using wavenumber limiting.

2.4 Dirichlet Boundary Conditions

On a non-periodic domain, Dirichlet boundary conditions can be imposed by the
method of images. There is now no restriction on the compactness of the kernel.
The method of images removes the boundary integral but the volume integrals are
allowed to extend outside the boundaries. In 1D, the domain˝ D Œ0 W L� is extended
by L to the left and right and the Dirichlet boundary data are defined as constant
fields in these ‘ghost’ regions. Homogeneous Neumann conditions are imposed by
defining a new Dirichlet condition uD at each timestep equal to the solution at the
boundary. Now the solution is given by:

unC1i D Mij.u
n
j C�tf nj /C BL

i uD C BR
i uD: (17)

The two ‘boundary influence vectors’ BL and BR are simply summations of the
part of M centred on a point i that lies outside the respective boundary. In effect,
the domain of integration of the ith point is extended from Œ0;L� to Œmin.0; xi �
L=2/;max.L; xiC L=2/�. To save effort BL and BR can be computed beforehand and
stored, as with the matrix M. Because M is circulant, BL and BR can be calculated
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Fig. 1 Method of integration
on 2D non-periodic domain

from the first row: BL
i D

PN=2
jDiC1M1; j; i D 1; : : : ;N;BR

i D BL
N�iC1: Boundary

conditions are imposed on the advection term separately via the finite difference
stencil.

The method of images in 2D involves integration over an area outside the domain
as shown in Fig. 1. Let there be homogeneous Dirichlet conditions uD on the left and
top boundaries. At a point .xi; yj/ in the square domain of size L � L, the solution
is given by a double integral over the area Œmin.0; xi � L=2/;max.L; xi C L=2/� �
Œmin.0; yj � L=2/;max.L; yj C L=2/�. The portions of this area lying outside the
domain (shaded grey and labelled B, C and D in Fig. 1) contribute to the boundary
influence vectors. On the outflow boundaries (right and bottom) a zero Neumann
condition is imposed. The solution is given by

unC1ij D Mijkl.unkl C�tfkl/C BL
ijuD C BT

ijuD C EklBL
klg

R
ij C EklBT

klg
B
ij; (18a)

BL
ij DPN

kD1
PN

lD2j Mijkl C 1
2

PN
kD2i

PN
lD2j Mijkl; (18b)

BT
ij DPN

kD2i
PN

lD1Mijkl C 1
2

PN
kD2i

PN
lD2j Mijkl; (18c)

where E is the reversal matrix of size N2 and gR and gB are vectors containing
the outflow boundary conditions (method described below). The first term in (18b)
corresponds to the area labelled B in Fig. 1. The first term in (18c) corresponds to
C. The second terms in (18b) and (18c) together represent D as an average of the
contributions from the left and top boundaries.

On the right outflow boundary a zero Neumann condition is imposed as an
inhomogeneous Dirichlet condition by extending the solution on the line x D L
horizontally to the right. Likewise the solution on the bottom boundary is extended
vertically downwards. The outflow boundary value vectors gRij and gBij are defined
such that at a point .i; j/ in the domain and time tnC1, gRij D unN; j and gBij D uni;N .
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2.5 Low-Rank Approximation

The Green’s function or integral kernel G decays quickly and to save on storage,
very small entries in the full-rank matrix M are neglected without loss of accuracy:

mij D
8

<

:

G.xi; xj/; G.xi; xj/ � �;
0; otherwise;

(19)

where � is machine epsilon. When solving the advection-diffusion equation the
timestep scales with O.N�1/ due to the CFL condition. The kernel’s exponent
.�r2=4��t/ therefore scales at O..N�2/=.N�1// D O.N�1/ and the kernel’s
variance, � D p2��t, scales with O.N�1=2/. By thresholding M at � (or indeed
any constant value), the bandwidth is restricted to a multiple of �N D O.N1=2/.
Therefore the storage scales with N1:5, as does the computational cost of a matrix-
vector product. When solving over a fixed time period (O.N/ timesteps) the total
cost scales as O.N2:5/. If the modified-wavenumber stabilisation (16) is applied,
� D O.N�1/ and we achieve ideal scaling of O.N/ for a matrix-vector product.
However, this comes at the expense of reduced accuracy.

The rank of M can be reduced further albeit at the expense of accuracy. For
preconditioning applications in particular, the required precision is not high and
considerable savings might be found. We define a thresholded low-rank matrix MT :

mT
ij D

8

<

:

mij; mij � t;

0; otherwise:
(20)

A threshold value of t D 1� 10�5, used in the numerical tests below, selects entries
within about 2� of the diagonal. We expect the computational cost and storage also
to scale with N1:5 but with a lower constant than for M.

One can also specify a bandwidth to define a low-rank matrix. Let P < N=2 be
the low-rank matrix bandwidth. The entries of the low-rank matrix MB are given by

mB
ij D

8

<

:

mij; i� P � j � iC P;

0; otherwise:
(21)

Choosing P as a multiple of the variance � is equivalent to choosing t D constant.
To obtain ideal scaling of O.N/, P must be independent of N. We use P D
round.#2=N/ D round.1=2N�2/ D O.��1/ to define the matrix MB used in the
numerical tests. When P > N=2, MB is identical to M, otherwise it is a low-rank
approximation.
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As with M, if the modified numerical wavenumber stabilisation (16) is applied
to MT and MB, a cost scaling of O.N/ is achieved. On non-periodic domains the
boundary influence vectors are also low-rank to preserve the scaling.

In 2D the thresholded low-rank matrix MT2 is constructed according to

mT2
ijkl D

8

<

:

mijkl; mijkl > 1:e � 5;
0; otherwise;

(22)

and the specified-bandwidth low-rank matrix MB2 is given by

mB2
ijkl D

8

<

:

mijkl; .k � i/2 C .l� j/2 � P2; P D round.1=2N�2/;

0; otherwise:
(23)

2.6 Accuracy of Low-Rank Approximation

We analyse the accuracy of the 1D periodic low-rank Green’s solver relative to the
full-rank solver. Low-rank approximation is by the specified-bandwidth method and
no modified-wavenumber stabilisation is applied. Since it is possible to define the
same matrix by careful choice of a threshold or a bandwidth this analysis applies
to both low-rank approximation methods above. The Green’s matrix M for the
1D periodic equation is circulant and can be treated as a wide finite difference
stencil. Defining a vector Z W fz0 D Mjj; z�1 D Mj; j�1; z1 D Mj; jC1; : : : ; z�N=2 D
Mj; j�N=2; zN=2 D Mj; jCN=2g for any j, and using the symmetry of M, the nth
eigenvalue of M is given by Leveque [12]:

�Mn D z0 C z�1e�2� in�x C z1e2� in�x C : : :C z�N=2e�N� in�x C zN=2eN� in�x

D z0 CPN=2
kD1 zk cos.2k�n�x/: (24)

The scheme is stable since j�Mn j � 1. The eigenvalues of the specified-bandwidth
low-rank matrix MB are given by

�M
B

n D z0 C
P
X

kD1
zk cos.2k�n�x/; P < N=2: (25)

We see that the eigenvalues of the low-rank approximation are a truncated Fourier
expansion of Z. Furthermore, stability of the low-rank scheme is guaranteed by
stability of the full-rank scheme. Let us assume that N is large enough that zN=2 	
0 to machine precision, i.e. the full eigenspectrum of M is resolved. The kernel
is relatively compact so this is easily satisfied for moderate N. Using Parseval’s
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identity the truncation error 	 incurred by low-rank approximation is [13]:

	 D k�Mn � �M
B

n k2L2 D 2�
N=2
X

k>P

jzkj2: (26)

The truncation error is bounded because the sum converges since zk � 1; k D
0; : : : ;N=2. Consider now a series of low-rank matrices: MBk ; k D 1; : : : ;N=2. The
error between successive entries in the series is

	k D k�MBkC1

n � �MBk

n k2L2 D 2�jzkC1j2: (27)

This demonstrates that, for fixed �x and �t, the low-rank approximation MB

converges spectrally to the full-rank matrix M in the L2 norm as P is increased. For
a suitably smooth initial condition, this implies spectral convergence of the solution
given by the low-rank scheme to that of the full-rank scheme (11). Numerical tests
(not shown) verify this result and also show that for low ratio a=� the kernel is
wide and the cost savings by low-rank approximation could be significant. As a=�
increases the kernel becomes closer to a Dirac function and low-rank approximation
becomes less important.

3 Results

The full-rank and low-rank Green’s solvers were implemented in Matlab. For
comparison two other solvers were tested: the Matlab backslash operator for the
solution of the sparse linear system (4), and a first-order exponential integrator (7).
Exponential integration was implemented by using the Matlab expm operator on
the matrix ��tA. This function uses a scaling and squaring algorithm [14].

We present the results of numerical tests in 1D and 2D at high Reynolds numbers.
The conditions were such that modified-wavenumber stabilisation was employed
in all cases. Low-Reynolds number tests (no stabilisation) were also conducted,
confirming the scaling analyses in Sect. 2.5, but there is insufficient space in this
paper to present them. All tests were run in serial on a 2015 MacBook Pro with a
3.1 GHz Intel Core i7.

3.1 1D Solvers

A Gaussian initial condition was specified that decayed to zero well within the
domain: u D exp.�.x�0:5/2=�/with � D 1:e�6. The mesh resolutions were N D
100; 200; : : : ; 6400. The initial condition was under-resolved and approximated the
Dirac function. In the non-periodic case, a zero Dirichlet boundary condition was
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specified on the left (inflow) and a zero Neumann condition on the right (outflow).
The domain length was L D 1, the advective constant was a D 1:0 and simulations
were run for 10 timesteps. The advective CFL number cA D 0:5 for the exponential
integrator (it was found to be unstable at cA D 1) and cA D 1 for the others. In the
current tests # > N so the modified-wavenumber stabilisation (16) is switched on.

The L2 norms of the solution errors with respect to the exact solution are
plotted in Fig. 2a, b. The Green’s solvers obtain larger errors than the reference
solvers due to the modification of #. The Green’s and exponential integrator solvers
converge linearly at low N, trending towards quadratic convergence at large N.
The backslash solver converges quadratically and obtains the smallest the error
magnitude. Figure 2c, d shows the solver CPU times for 10 timesteps excluding
matrix assembly. The backslash solver is much faster in the non-periodic case than
the periodic case due to a faster method being chosen by the backslash algorithm
for the circulant LHS matrix. All other solvers obtain linear scaling and the Green’s
solvers are marginally the fastest.
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Fig. 2 Error convergence and CPU times of 1D first-order solvers. (a) Periodic error, (b) Non-
periodic error, (c) Periodic time, (d) Non-periodic time. M = full-rank Green’s solver, A =
backslash solver, E = exponential integrator, Mt, Mb = low-rank Green’s solvers
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3.2 2D Solvers

In the 2D tests, the domain was x; y D Œ0 W 1�; Œ0 W 1� and the initial condition was a
Gaussian distribution u0.x; y/ D �0:5Cexp...x�0:5/2C .y�0:5/2/=�/. The exact
solution is u.x; y; t/ D �0:5C 1

4tC1 exp...x � 0:5/2 C .y � 0:5/2/=�.4tC 1//. The

advection vector was a D .p2p2/T and the diffusion coefficient was � D 1:e � 4.
Five resolutions were used: N D f25; 50; 75; 100; 125g. The simulations proceeded
for 10 timesteps with advective CFL number cA D 1 for the direct solvers and
cA D 0:5 for the others (they were found to be unstable at cA D 1). In the non-
periodic cases the Dirichlet boundary condition u D �0:5 is imposed on the left and
top, and zero Neumann boundaries on the right and bottom. Figure 3a, b plots the L2
norm of the 2D solution errors with respect to the analytical solution. All schemes
obtain linear convergence and identical error magnitudes. Figure 3c, d shows the
2D solver CPU times, excluding matrix assembly. All solvers demonstrate roughly
linear scaling except the backslash operator, which tends towards O.N1:5/ and is
also slowest. The fastest solver is the low-rank Green’s solver MT2.
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Fig. 3 Error convergence and CPU times of 2D solvers. (a) Periodic error, (b) Non-periodic error,
(c) Periodic time, (d) Non-periodic time. M = full-rank Green’s solver, A = backslash solver, E =
exponential integrator, Mt, Mb = low-rank Green’s solvers
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4 Conclusions

A direct solution method for the advection-diffusion based on a new class of time
integration schemes has been presented. The method is similar to the exponential
integrator method but makes use of the Green’s function G instead of the matrix
exponential to propagate initial and boundary values through time and space. As
with IMEX schemes and exponential integrators, the timestep is not limited by the
linear term, which may reduce stiffness in some problems. Furthermore, existing
low-rank approximation techniques can be applied to the discrete Green’s matrix
including hierarchical (HLRA) techniques. These are a promising route to achieving
good parallel scaling on modern HPC systems.

By applying the new scheme to the linear advection-diffusion equation it became
a forced heat equation for which G is a Gaussian kernel. Dirichlet boundary condi-
tions were imposed by the method of images which is suitable for simple domains.
In more complex domains it will be necessary to use a boundary integral method
instead. When discretised in space G is amenable to low-rank approximation. Low-
rank matrices were defined by setting a constant threshold value (matrix MT ) or by
restricting the bandwidth to be a function only of �.

Stabilisation was required when the resolution was too low to resolve G
(Reynolds number too high). In that case, G was modified by restricting the
numerical wavenumber #. This led to cost scaling of O.N/ for the full- and low-
rank solvers, but reduced accuracy and order of convergence. The overall cost of
the stabilised method for a fixed time interval was N2 due to the timestep scaling
with N�1.

In 1D tests, the Green’s solvers and exponential integrator attained first-order
accuracy, tending towards second-order at large N. The backslash solver attained
second-order accuracy but was also the most costly. The exponential integrator was
competitive with the Green’s solvers in terms of cost and accuracy in the range of N
considered. In the 2D tests, all solvers obtained first-order accuracy and cost scaled
linearly. The fastest computation times were obtained by the threshold-value low-
rank matrix and Matlab’s backslash operator was the slowest by up to an order of
magnitude. The exponential integrator was competitive with the Green’s solvers.

These preliminary results indicate that the new time integration scheme coupled
with threshold-value low-rank approximation is competitive with, if not faster
than, the reference solvers without sacrificing on accuracy. Limitations of the new
method are that it is low-order accurate and requires modification to ensure stability
when the Green’s function is under-resolved. The next planned steps are (a) to
investigate improved high-Reynolds-number stabilisation methods; (b) to extend
the time integration scheme to higher-order accuracy via analytic integration of
G coupled with a Runge-Kutta scheme for forcing and boundary terms; (c) to
develop schemes for nonlinear advection; (d) to develop a boundary integral method
for imposing boundary conditions on general domains; (e) to use HLRA on the
Green’s matrix. The Green’s solver is intended to be used as a fast tunable-accuracy
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preconditioner/solver for large-scale CFD simulations. It is also suitable for other
stiff time-dependent PDEs with a constant-in-time linear term.

The author wishes to thank his colleagues Per Lötstedt and Sverker Holmgren
for useful discussions.
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High Order in Space and Time Schemes
Through an Approximate Lax-Wendroff
Procedure

A. Baeza, P. Mulet, and D. Zorío

Abstract This paper deals with the scheme proposed by the authors in Zorío, Baeza
and Mulet (J Sci Comput 71(1):246–273, 2017). This scheme is an alternative
to the techniques proposed in Qiu and Shu (SIAM J Sci Comput 24(6):2185–
2198, 2003) to obtain high-order accurate schemes using Weighted Essentially
Non Oscillatory finite differences and approximating the flux derivatives required
by the Cauchy-Kovalevskaya procedure by simple centered finite differences. We
analyse how errors in first-order terms near discontinuities propagate through both
versions of the Cauchy-Kovalevskaya procedure. We propose a fluctuation control,
for which the approximation of the first-order derivative to be used in the Cauchy-
Kovalevskaya procedure is obtained from a Weighted Essentially Non Oscillatory
(WENO) interpolation of flux derivatives, instead of the usual finite difference
of WENO flux reconstructions. The numerical results that we obtain confirm the
benefits of this fluctuation control.

1 Introduction

This paper takes as starting point the scheme proposed in [8] as an alternative
version of the Cauchy-Kovalevskaya procedure proposed by Qiu and Shu in
[6]. This procedure consists in the replacement of the exact flux derivatives by
accurate enough approximations. This replacement makes the implementation much
simpler and the computational cost is reduced with respect to the original scheme,
maintaining the global order of the method. The novelty in this work is the
development of a fluctuation control method which avoids the propagation of large
terms at the discretization of the high order derivatives. The method is applied to a
Shu-Osher finite-difference spatial discretization [7].
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The paper is organized as follows: in Sect. 2 we review the numerical scheme
originally proposed by Qiu and Shu in [6]; in Sect. 3, we present the approximate
Lax-Wendroff approach, based on using central difference approximations for
the time derivatives of the flux; Sect. 4 stands for the fluctuation control, a novel
technique to avoid the excessive propagation of diffusion around a discontinuity;
in Sect. 5 some numerical experiments are presented; finally, some conclusions are
drawn in Sect. 6.

2 Numerical Scheme

For completeness sake we include here the description and basic results of the
scheme proposed in [8].

We consider a system of m hyperbolic conservation laws in d dimensions

ut C
d
X

iD1
f i.u/xi D 0:

For the sake of simplicity, we start with the one-dimensional scalar case (d D
m D 1). For the solution u.x; t/ of ut C f .u/x D 0 on a fixed spatial grid (xi)
with spacing h D xiC1 � xi and some time tn from a temporal grid with spacing
ı D �t D tnC1 � tn > 0, proportional to h, ı D 
h, where 
 is dictated by stability
restrictions (CFL condition) we use the following notation for time derivatives of u
and f .u/:

u .`/i;n D
@`u.xi; tn/

@t`
;

f .`/i;n D
@`f .u/.xi; tn/

@t`
:

Our goal is to obtain an R-th order accurate numerical scheme, i.e., a scheme with a
local truncation error of order RC 1, based on the Taylor expansion of the solution
u from time tn to time tnC1:

unC1
i D

R
X

lD0

�t`

`Š
u .`/i;n C O.�t RC1/:

To achieve this we aim to define, by recursion on `, corresponding approximations

eu .`/i;n D u .`/i;n C O.hRC1�`/;

ef .`/i;n D f .`/i;n C O.hR�`/;

assuming (for a local truncation error analysis) thateu 0i;n D u .0/i;n D u.xi; tn/.
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The fact that u solves the system of conservation laws implies that the time
derivatives u .`/i;n , 1 � ` � R, can be written in terms of the first spatial derivative

of some function of u. j/i;n , j < l, by using the chain rule on f , which can be written as

f .`�1/i;n D Fl�1.un
i ; u

.`/
i;n ; : : : ; u

.`�1/
i;n / (1)

for some function Fl�1, and following the Cauchy-Kowalewski (or Lax-Wendroff
for second order) procedure:

@`u

@t`
D @`�1

@t`�1
�

ut
� D � @

`�1

@t`�1
�

f .u/x
� D �

"

@`�1f .u/
@t`�1

#

x

; (2)

Specifically, to approximate the first time derivative, ut D �f .u/x, we use the
Shu-Osher finite difference scheme [7] with upwinded Weighted Essentially Non-
Oscillatory (WENO) spatial reconstructions [4] of order 2r� 1 in the flux function,
with r D dRC1

2
e:

u .1/i;n D ut.xi; tn/ D �Œ f .u/�x.xi; tn/ D �
Of n
iC 1

2

� Of n
i� 12

h
C O.h2r�1/: (3)

Much cheaper centered differences are used instead for the next derivatives. We
expound the general procedure for a third order accurate scheme (R D 3) for a
scalar one-dimensional conservation law. Assume we have numerical data, feun

i gM�1iD0 ,
which approximates u.�; tn/ and want to compute an approximation for u.�; tnC1/ at
the same nodes, namely, feunC1

i gM�1iD0 .
First, we compute an approximation of ut by the procedure stated above:

eu .1/i;n D �
Of n
iC 1

2

� Of n
i� 12

h
; (4)

with

Of n
iC 1

2

D Of .eun
i�rC1; : : : ;eun

iCr/

being the numerical fluxes, which are obtained through upwind WENO spatial
reconstructions of order 2r � 1.

Once the corresponding nodal data is obtained for the approximated values of ut,
we compute

utt D Œut�t D Œ�f .u/x�t D �Œ f .u/t�x D �Œ f 0.u/ut�x;
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where f 0.u/ut is now an approximately known expression for the required nodes. We
use then a second order centered difference in order to obtain the approximation:

eu .2/i;n D �
ef .1/iC1;n �ef .1/i�1;n

2h
; (5)

where

ef .1/i;n D F1.eu
.0/
i;n ;eu

.1/
i;n / D f 0.eu .0/i;n /eu

.1/
i;n ;

Finally, we approximate the third derivative:

uttt D Œut�tt D Œ�f .u/x�tt D �Œ f .u/tt�x D �
�

f 00.u/u2t C f 0.u/utt
�

x
; (6)

where again the function f 00.u/u2t Cf 0.u/utt is approximately known at the nodes and
therefore uttt can be computed by second order accurate centered differences (note
that in case of Eq. (6) it would be required only a first order accurate approximation;
however, the order of centered approximations is always even):

eu .3/i;n D �
ef .2/iC1;n �ef .2/i�1;n

2h
; (7)

where

ef .2/i;n D F2.eu
.0/
i;n ;eu

.1/
i;n ;eu

.2/
i;n / D f 00.eu .0/i;n / � .eu .1/i;n /

2 C f 0.eu .0/i;n / � .eu .2/i;n /
2:

Once all the needed data is obtained, we advance in time by replacing the terms of
the third order Taylor expansion in time of u.�; tnC1/ by their corresponding nodal
approximations, namely, replace the exact derivatives u .`/i;n ; 1 � ` � 3, by the

numerical approximationseu .`/i;n ; 1 � ` � 3, obtained in (4), (5) and (7), respectively:

eunC1
i Deun

i C�teu .1/i;n C
�t2

2
eu .2/i;n C

�t3

6
eu .3/i;n :

As we shall see, the above example can be extended to arbitrarily high order time
schemes through the computation of the suitable high order central differences of
the nodal values

ef .`/i;n D Fl.eu
.0/
i;n ;eu

.1/
i;n ; : : : ;eu

.`/
i;n / D f .`/i;n C O.hR�`C1/:
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The generalization to multiple dimensions is straightforward, since now the Cauchy-
Kowalewski procedure, being based on the fact that ut D �r � f .u/, yields

@`u

@t`
D �r �

�@`�1f .u/
@t`�1

�

D �
d
X

iD1

@

@xi

 

@`�1f i.u/
@t`�1

!

and that the spatial reconstruction procedures are done separately for each dimen-
sion. For the case of the systems of equations, the time derivatives are now computed
through tensor products of the corresponding derivatives of the Jacobian of the
fluxes. The general procedure for systems and multiple dimensions is thus easily
generalizable and further details about the procedure can be found in [6, 8]. Closed
formulas to explicitly compute the above expressions can be found in the literature,
such as the Faà di Bruno formula [3].

3 The Approximate Lax-Wendroff Procedure

As reported by the authors of [6], the computation of the exact nodal values of
f .k/ can be very expensive as k increases, since the number of required operations
may increase exponentially. Moreover, implementing it is costly and requires large
symbolic computations for each equation. We now present an alternative, which is
much less expensive for large k and less dependent on the equation, in the sense
that its only requirement is the knowledge of the flux function. This procedure also
works in the multidimensional case and in the case of systems as well (by working
componentwise). This technique is based on the observation that approximations
ef .l�1/ 	 f .l�1/ can be easily obtained by finite differences, rather than using the
exact expression Fl�1 in (1).

Let us introduce some notation for a one-dimensional system, that we assume for
the sake of simplicity. For a function u W R ! R

m, we denote the discretization of
the function on the grid defined by a base point a and grid space h by

Ga;h.u/ W Z! R
m; Ga;h.u/i D u.aC ih/:

The symbol �p;q
h denotes the centered finite differences operator that approximates

p-th order derivatives to order 2q on grids with spacing h. For any u sufficiently
differentiable, it satisfies:

�
p;q
h Ga;h.u/ D u. p/.a/C ˛p;qu. pC2q/.a/h2q C O.h2qC2/: (8)
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We aim to define approximationseu .k/i;n 	 u .k/i;n , k D 0; : : : ;R, recursively. We start
the recursion with

eu .0/i;n D uni ;

eu .1/i;n D �
Of n
iC 1

2

� Of n
i� 12

h
;

(9)

where Of n
iC 1

2

are computed from the known data .uni / by applying upwind WENO

reconstructions (see [2, 4, 7] for further details).
Associated to fixed h; i; n, once obtained eu .l/i;n , l D 0; : : : ; k, in the recursive

process we define the k-th degree approximated Taylor polynomial TkŒh; i; n� by

TkŒh; i; n�.�/ D
k
X

lD0

eu .l/i;n

lŠ
�l:

By recursion, for k D 1; : : : ;R � 1, we define

ef .k/i;n D �
k;d R�k

2 e
ı

�

G0;ı
�

f .TkŒh; i; n�/
�

�

;

eu .kC1/i;n D ��1;d R�k
2 e

h
ef .k/iC�;n;

(10)

where we denote byef .k/iC�;n the vector given by the elements .ef .k/iC�;n/j D ef .k/iCj;n and
ı D �t. With all these ingredients, the proposed scheme is:

unC1
i D uni C

R
X

lD1

�tl

lŠ
eu .l/i;n : (11)

It can be proven that the method resulting from this construction is R � th order
accurate and can be written in conservation form, see [8]

4 Fluctuation Control

Now we focus on the computation of the approximate nodal values of the first
order time derivative. Typically, one would simply take the approximations obtained
through the upwinded reconstruction procedure in the Shu-Osher’s finite difference
approach, that is,

eu .1/j;n D �
Of jC 1

2 ;n
� Of j� 12 ;n
h

: (12)
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However, taking directly these values as the first derivative used to compute the
next derivatives through (11) can produce wrong results if the data is not smooth,
as routinely happens in hyperbolic systems. In fact, it will include O.h�1/ terms
wherever there is a discontinuity, which we will call from now on fluctuations.
These terms will appear provided Of j� 1

2 ;n
and Of jC 1

2 ;n
come from different sides of

a discontinuity (or some of them has mixed information of both sides due to a
previous flux splitting procedure to reconstruct the interface values), since in that
case Of jC 1

2 ;n
� Of j� 12 ;n D O.1/.

In practice, this implies that the k-th derivative, 1 � k � R, will have terms of
magnitude O.h�k/, therefore, the term which appears on the Taylor expansion term,
which is multiplied by �tk

kŠ , a term of magnitude O.hk/, will be ultimately O.1/.
This may result in undesired diffusion, oscillations or even a complete failure of the
scheme in some cases.

Our proposal is to compute an alternative approximation ofeu .1/j;n as described in
Sect. 4.1 and replace (12) by this new approximation for the recursive computation
in (10) only, maintaining (12) for its use in (11), thus ensuring the proper upwinding.

4.1 Central WENO Reconstructions

Let us assume that our spatial scheme is .2r � 1/-th order accurate WENO. After
having performed all the operations for the reconstruction of the numerical fluxes at
the interfaces, the stencil of points that is used in order to approximate the derivative
at the node xi is the following set of 2rC 1 points:

fxi�r; : : : ; xi; : : : ; xiCrg; (13)

whose corresponding flux values, fj D f .uj/, are

f fi�r; : : : ; fi; : : : ; fiCrg:

The procedure that we next expound only uses information from the stencil

S2r�1
iCr�1 WD fi� rC 1; : : : ; i; : : : ; iC r � 1g; (14)

thus ignoring the flux values fi�r; fiCr at the edges of the stencil in (13).
For fixed i, let qrk be the interpolating polynomial of degree � r � 1 such that

qrk.xj/ D fj; j 2 Sr
iCk WD fi C k � r C 1; : : : ; i C k; g, 0 � k � r � 1. After the

previous discussion, our goal is to obtain an approximation of the flux derivative
f .u/x.xi/ from the stencil S2r�1

iCr�1 which is .2r � 1/-th order accurate if the nodes in
the stencil lie within a smoothness region for u or is O.1/ otherwise. We use WENO
techniques to achieve this purpose.

The following lemma is easily established.
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Lemma 1 There exists a set of constants fcrkgrkD1 satisfying 0 < crk < 1, for 0 �
k � r � 1,Pr�1

kD0 crk D 1, such that
r�1
X

kD0
crk.q

r
k/
0.xi/ D .q2r�1r�1 /0.xi/:

If fj D f .u.xj; tn//, for smooth enough u and fixed tn, then

.qrk/
0.xi/ D f .u/x.xi; tn/C drk.xi/h

r�1 C O.hr/; k D 0; : : : ; r � 1; (15)

.q2r�1r�1 /0.xi/ D f .u/x.xi; tn/C d2r�1r�1 .xi/h2r�2 CO.h2r�1/: (16)

for continuously differentiable drk; d
2r�1
r�1 . The goal is to obtain the accuracy in (16)

by a suitable nonlinear convex combination of (15),

r�1
X

kD0
wr
k.q

r
k/
0.xi/ D f .u/x.xi; t/Ced2r�1r�1 .xi/h2r�2 C O.h2r�1/; (17)

where wr
k D crk.1 C O.hr�1// if the whole stencil xi�rC1; : : : ; xiCr�1 lies within a

smoothness region for u and wr
k D O.hr�1/ if the k-th stencil crosses a discontinuity

and there is at least another stencil which does not. To this aim we follow the WENO
idea [4, 5]. From now on we drop the superscript r in qrk.

Furthermore, we need the approximation in (17) to be in conservation form. To
achieve this we use the polynomial pk of degree r � 1 satisfying

1

h

Z x
jC 1

2

x
j� 1

2

pk.x/dx D fj; i � rC 1C k � j � iC k; 0 � k � r � 1;

andepk.x/ a primitive of it. It can be seen that the polynomial

eqk.x/ D epk.xC
h
2
/�epk.x � h

2
/

h
;

has degree � r � 1 and thateqk.xj/ D fj, j D i � rC 1C k; : : : ; iC k, and therefore
eqk.x/ must coincide with qk. Thus

q0k.xj/ D
.epk/0.xjC 1

2
/� .epk/0.xj� 1

2
/

h
D

pk.xjC 1
2
/� pk.xj� 1

2
/

h
:
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Now, let us define the following Jiang-Shu smoothness indicators using the
definition of pk:

Ik D
r�1
X

`D1

Z x
iC 1

2

x
i� 1

2

h2`�1p .`/k .x/2dx; 0 � k � r � 1 (18)

so that we can define the weights as follows:

!k D ˛k
Pr

lD1 ˛l
; ˛k D ck

.Ik C "/m ; (19)

with " > 0 a small positive quantity, possibly depending on h. Following the
techniques in [1], since p .`/k � p .`/j D O.hr�`/ at regions of smoothness, whereas
R
x
iC 1

2
x
i� 1

2

. p0k/2dx D O.h�2/ if the corresponding stencil Sr
k crosses a discontinuity, the

smoothness indicators satisfy Ik�Ij D O.hrC1/ at regions of smoothness and Ik 6! 0

if the k-th stencil crosses a discontinuity. Therefore, the definition (19) satisfies the
requirements mentioned above in order to achieve maximal order even at smooth
extrema, provided that the parameter " > 0, besides avoiding divisions by zero, is
chosen as " D �h2; with � � f .u/x, and that the exponent m in (19) makes the
weight !k D O.hr�1/ wherever there is a discontinuity at that stencil. Since one
wants to attain the maximal possible order in such case, which corresponds to the
value interpolated from a smooth substencil, which is O.hr/, then it suffices to set

m D d r
2
e. Finally, we defineeeu

.1/

i;n , the smoothened approximation of ut.xi; tn/ that

replaceseu .1/i;n in (10) as the result of the following convex combination:

e
eu
.1/

i;n D �
r
X

kD1
!kq
0
k.xi/:

5 Numerical Experiments

In this section we present some 2D experiments with Euler equations involving
comparisons of the fifth order both in space (r D 3) and time (R D 2r � 1 D 5)
exact and approximate Lax-Wendroff schemes, together with the results obtained
using the third order TVD Runge-Kutta time discretization. From now on we will
refer as WENO[]-LW[] to the exact Lax-Wendroff procedure, WENO[]-LWA[] to
the approximate Lax-Wendroff procedure, WENO[]-LWF[] if a fluctuation control
is used in the exact procedure, WENO[]-LWAF[] if the fluctuation control comes
together with the approximate procedure and WENO[]-RK[] when a Runge-Kutta
method is used. In each case, the first bracket stands for the value of the spatial
accuracy order and the second one for the time accuracy order.
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5.1 Smooth Solution

In order to test the accuracy of our scheme in the general scenario of a multidimen-
sional system of conservation laws, we perform a test using the 2D Euler equations
with smooth initial conditions, given by

u0.x; y/ D .�.x; y/; vx.x; y/; vy.x; y/;E.x; y//

D
�

3

4
C 1

2
cos.�.xC y//;

1

4
C 1

2
cos.�.xC y//;

1

4
C 1

2
sin.�.xC y//;

3

4
C 1

2
sin.�.xC y//

�

;

where x 2 � D Œ�1; 1� � Œ�1; 1�, with periodic boundary conditions.
Numerical solutions for resolutions n�n, for n D 10�2k; 1 � k � 5 are compared

with a reference solution computed using a WENO5 spatial scheme and the third
order Runge-Kutta TVD method in a finer mesh, with n D 2560 and �t D h

5
3 ,

obtaining the results shown in Tables 1, 2, 3 at the time t D 0:025 for CFL D 0:5.
We can thus see that our scheme achieves the desired accuracy, being the results
obtained through the approximate Lax-Wendroff procedure almost the same as those
obtained using the exact version. The version with fluctuation control also yields the
desired accuracy.

Table 1 Error table for 2D Euler equation, t D 0:025. WENO5-LW5

n Error k � k1 Order k � k1 Error k � k
1

Order k � k
1

40 1.80E�5 � 2.74E�4 �
80 1.09E�6 4:05 1.80E�5 3:93

160 3.89E�8 4:80 7.36E�7 4:61

320 1.29E�9 4:92 2.49E�8 4:88

640 4.11E�11 4:97 8.07E�10 4:95

1280 1.23E�12 5:06 2.43E�11 5:06

Table 2 Error table for 2D Euler equation, t D 0:025. WENO5-LWA5

n Error k � k1 Order k � k1 Error k � k
1

Order k � k
1

40 1.80E�5 � 2.74E�4 �
80 1.09E�6 4:05 1.80E�5 3:93

160 3.89E�8 4:80 7.36E�7 4:61

320 1.29E�9 4:92 2.49E�8 4:88

640 4.11E�11 4:97 8.07E�10 4:95

1280 1.23E�12 5:06 2.43E�11 5:06
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Table 3 Error table for 2D Euler equation, t D 0:025. WENO5-LWAF5

n Error k � k1 Order k � k1 Error k � k
1

Order k � k
1

40 2.63E�5 � 2.97E�4 �
80 1.58E�6 4:06 2.01E�5 3:89

160 6.66E�8 4:57 1.06E�6 4:24

320 2.33E�9 4:84 4.08E�8 4:70

640 7.60E�11 4:94 1.34E�9 4:93

1280 2.35E�12 5:02 4.06E�11 5:04

5.2 Double Mach Reflection

This experiment uses the Euler equations to model a vertical right-going Mach 10
shock colliding with an equilateral triangle. By symmetry, this is equivalent to a
collision with a ramp with a slope of 30 degrees with respect to the horizontal line.

For the sake of simplicity, we consider the equivalent problem of an oblique
shock whose vertical angle is �

6
rad in the rectangle � D Œ0; 4� � Œ0; 1�: The initial

conditions of the problem are

u0.x; y/ D
8

<

:

C1 y � 1
4
C tan.�

6
/x;

C2 y > 1
4
C tan.�

6
/x;

where

C1 D .�1; vx1; vy1;E1/T D .8; 8:25 cos.
�

6
/;�8:25 sin.

�

6
/; 563:5/T ;

C2 D .�2; vx2; vy2;E2/T D .1:4; 0; 0; 2:5/T :

We impose inflow boundary conditions, with value C1, at the left side, f0g � Œ0; 1�,
outflow boundary conditions both at Œ0; 1

4
��f0g and f4g� Œ0; 1�, reflecting boundary

conditions at � 1
4
; 4� � f0g and inflow boundary conditions at the upper side, Œ0; 4� �

f1g, which mimics the shock at its actual traveling speed:

u.x; 1; t/ D
8

<

:

C1 x � 1
4
C 1C20tp

3
;

C2 x > 1
4
C 1C20tp

3
:

We run different simulations until t D 0:2 at a resolution of 2048 � 512 points for
CFL D 0:4 and a different combination of techniques, involving WENO5-RK3,
WENO5-LW5 and WENO5-LWA5. The results are presented in Fig. 1 as Schlieren
plots of the turbulence zone. It can be concluded that the results obtained through
the exact and approximate Lax-Wendroff techniques are quite similar, and that the
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)b()a(

)d()c(

Fig. 1 Double Mach reflection results. Density field. (a) WENO5-RK3. (b) WENO5-LW5. (c)
WENO5-LWA5. (d) WENO5-LWAF5

Table 4 Performance table Method Efficiency

WENO5-LW5 1:44

WENO5-LWA5 1:54

WENO5-LWF5 1:33

WENO5-LWAF5 1:44

results obtained through the technique with fluctuation control provides a slightly
sharper profile.

Finally, in order to illustrate that the LW techniques are more efficient than the
RK time discretization, we show a performance test involving the computational
time required by each technique by running the Double Mach Reflection problem
for the resolution 200 � 50. The results are shown in Table 4, where the field

“Efficiency” stands for
tRK3

tLW�
. It can be seen that the fifth order Lax-Wendroff

technique outperforms the third order accurate Runge-Kutta scheme.
On the other hand, we see that the version with approximate fluxes has a better

performance than the main formulation, since less computations are required for
high order derivatives. On the other hand, if the fluctuation control is used then
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the performance is lower, however, the combination of the approximate fluxes with
the fluctuation control yields a fifth order accurate with approximately the same
efficiency than the original formulation, but providing better results.

6 Conclusions

In this paper we have used an arbitrarily high order Lax-Wendroff-type time scheme
through an approximate formulation of the scheme proposed by Qiu and Shu, which
was developed in [8] and does not require symbolic computations to implement it,
unlike those proposed by the aforementioned authors in [6]. The novelty of this
work is the development of a fluctuation control in order to avoid the propagation of
first-order errors around the discontinuities inherent to these schemes.

The results obtained in the numerical experiments are satisfactory, and show
that the approximate procedure yields essentially the same results than the exact
version with a much lower implementation cost and being less computationally
expensive. On the other hand, the version with fluctuation control, albeit increasing
the computational cost, produces numerical solutions with better resolution.

Acknowledgements This research was partially supported by Spanish MINECO project
MTM2014-54388.
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On Thin Plate Spline Interpolation

M. Löhndorf and J.M. Melenk

Abstract We present a simple, PDE-based proof of the result (Math Comput
70(234):719–737, 2001) by Johnson that the error estimates of Duchon (RAIRO
Anal Numér 12(4):325–334, 1978) for thin plate spline interpolation can be
improved by h1=2. We illustrate that H-matrix techniques can successfully be
employed to solve very large thin plate spline interpolation problems.

1 Introduction and Main Results

Interpolation with so-called thin plate splines (also known as surface splines, Dm-
splines, or polyharmonic splines) is a classical topic in spline theory. It is concerned
with the following interpolation problem (1): Given a (sufficiently smooth) function
f and points xi 2 R

d, i D 1; : : : ;N, find the minimizer If of the problem

minimize jvjHm.Rd/ under the constraint v.xi/ D f .xi/; i D 1; : : : ;N:
(1)

Here, the seminorm jvjHm.Rd/ is induced by the bilinear form

hv;wim WD
X

j˛jDm

mŠ

˛Š

Z

Rd
D˛vD˛wdx: (2)

For m > d=2 and under very mild conditions on the point distribution, a unique
minimizer If exists. The name “thin plate splines” originates from the fact that in
the simplest case m D d D 2, If can be represented in terms of translates of the
fundamental solution of the biharmonic equation. For general m the interpolant If
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can be expressed in terms fundamental solutions of�m: There are constants ci 2 R,
i D 1; : : : ;N, and a polynomial � 2 Pm�1 of degree m � 1 such that (with the
Euclidean norm k � k2 on R

d)

If .x/ D
N
X

iD1
ci�m.kx � xik2/C �m�1.x/;

N
X

iD1
ciq.xi/ D 0 8q 2 Pm�1; (3)

where �m is given explicitly by

�m.r/ D
8

<

:

r2m�d log r d even

r2m�d d odd.
(4)

The representation (3) allows one to reformulate (1) as the problem of finding
the coefficients ci and the polynomial �m�1 so that the (constrained) interpolation
problem (3) is solved. The classical error analysis for (1) is formulated in terms fill-
distance: For a bounded domain˝ � R

d and points XN D fxi j i D 1; : : : ;Ng � ˝ ,
the fill distance h.XN/ is given by

h.XN/ WD sup
x2˝

inf
iD1;:::;N kx � xik2: (5)

Starting with the seminal papers by Duchon [11, 12] the error f � If on ˝ is
controlled in terms of h and the regularity properties of f (on˝):

Proposition 1 ([11, Prop. 3]) Let ˝ � R
d be a bounded Lipschitz domain. Let

m > d=2, k 2 N, p 2 Œ2;1� be such that Hm.˝/ � Wk;p.˝/. Then, there are
constants h0, C1, C2 > 0 depending only on ˝ , m, d such that for any collection
XN D fx1; : : : ; xNg � ˝ with fill distance h WD h.XN/ � h0

X

j˛jDk

kD˛. f � If /kLp.˝/ � C1h
m�k�d=2Cd=pjE˝ f � If jHm.Rd/ � C2h

m�k�d=2Cd=pj f jHm.˝/I

here, E˝ f denotes the minimum norm extension of f defined in (8).
In Proposition 1 and throughout the present note, we will use the standard notation
for Sobolev spaces Ws;p and Besov spaces Bs

2;q; we refer to [26] for their definition.
Interpolation space will always be understood by the so-called “real method” (also
known as “K-method”) as described, e.g., in [26, 27]. We will use extensively that
the scales of Sobolev and Besov spaces are interpolation spaces. We will also use
the notation jr jf j2 DPj˛jDj

jŠ
˛Š
jD˛f j2.

It is worth noting that the interpolation operator I is a projection so that I. f �
If / D 0. Proposition 1 applied to the function f � If therefore yields

Corollary 1 Under the assumptions of Proposition 1 there holds

X

j˛jDk

kD˛. f � If /kLp.˝/ � C2h
m�k�d=2Cd=pj f � If jHm.˝/:
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A natural question in connection with Proposition 1 is whether the convergence
rate can be improved by requiring additional regularity of f . It turns out that
boundary effects limits this. We mention that a doubling of the convergence rate
is possible by imposing certain homogeneous boundary conditions on high order
derivatives as shown in [22] and, more abstractly, in [24]. If this highly fortuitous
setting is not given, then only a small further gain is possible as shown by Johnson,
[16, 18]. For example, he showed that a gain of h1=2 is possible if f 2 BmC1=2

2;1 .˝/

and @˝ is sufficiently smooth. The purpose the present note is to give a short and
simple proof of this result using different tools, namely, those from elliptic PDE
theory. The techniques also open the door to reducing the smoothness assumptions
on @˝ in [16, 18] to Lipschitz continuity as discussed in more detail in Remark 2.
Our main result therefore is a simpler proof of:

Proposition 2 ([16]) Let˝ � R
d be a bounded Lipschitz domain with sufficiently

smooth boundary. Then there are constants h0, C1, Cı > 0 that depend solely on
˝ , m, d, and ı such that for any collection X D fx1; : : : ; xNg � ˝ with fill distance
h WD h.XN/ � h0 there holds

jE˝ f � If jHm.Rd/ � C1h
1=2kfk

B
mC1=2
2;1 .˝/

; (6)

jE˝ f � If jHm.Rd/ � Cıh
ık fkHmCı .˝/; 0 � ı < 1=2: (7)

In particular, therefore, the estimates of [11, Prop. 3] (i.e., Proposition 1) can be
improved by h1=2 for f 2 BmC1=2

2;1 .˝/ and by hı for f 2 HmCı.˝/.

Remark 1 A common route to error estimates for f � If is via the so-called “power
function” P.x/. Indeed, classical pointwise estimates take the form j f .x/� If .x/j �
P.x/jE˝ f � If jHm.Rd/ (cf., e.g., [8, Prop. 5.3], [29, Thm. 11.4]) and P is subsequently
estimated in terms of the fill distance h. Thus, Proposition 2 allows for improving
estimates in this setting. �
We close this section by referring the reader to the monographs [8, 29] as well as
[17] for further details on the approximation properties of radial basis functions, in
particular, thin plate splines.

2 Proof of Proposition 2

2.1 Tools

The precise formulation of the minimization problem (1) is based on the classical
Beppo-Levi space BLm.Rd/, which is defined as

BLm.Rd/ WD fu 2 D0 j rmu 2 L2.Rd/g:
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We refer to [10] and [29, Sec. 10.5] for more properties of the space BLm.Rd/;
in particular, C10 .Rd/ is dense in BLm.Rd/ (see [29, Thm. 10.40] for the precise
notion). We also need the minimum norm extension E˝ W Hm.˝/ ! BLm.Rd/

given by

E˝U D arg minfjujHm.Rd/ j u 2 BLm.Rd/; uj˝ D Ug: (8)

The minimization property in (8) implies the orthogonality

hE˝U; vim D 0 8v 2 fv 2 BLm.Rd/ j vj˝ D 0g: (9)

The connection with elliptic PDE theory arises from the fact that E˝U satisfies an
elliptic PDE in ˝c WD R

d n˝:

�mE˝U D 0 in˝c: (10)

It will be convenient to decompose B.u; v/ WD hu; vim D P

j˛jDm
mŠ
˛Š

R

Rd D˛uD˛v
as B.u; v/ D B˝.u; v/C B˝c.u; v/, where

B˝.u; v/ WD
X

j˛jDm

mŠ

˛Š

Z

˝

D˛uD˛v; B˝c.u; v/ WD
X

j˛jDm

mŠ

˛Š

Z

˝c
D˛uD˛v:

The trace mapping is continuous H1=2C".˝/! H".@˝/ for " 2 .0; 1=2�; however,
the limiting case " D 0 is not true; it is true if the Sobolev space H1=2.˝/ is replaced
with the slightly smaller Besov space B1=22;1 .˝/:

Lemma 1 (Trace Theorem) Let ˝ � R
d be a Lipschitz domain, k 2 N0.

Then there exists C > 0 such that the multiplicative estimate kuk2
L2.@˝/

�
CkukL2.˝/kukH1.˝/ holds as well as

kukL2.@˝/ � Ckuk
B
1=2
2;1 .˝/

; krkukL2.@˝/ � Ckuk
B
kC1=2
2;1 .˝/

: (11)

Proof The case k � 1 in (11) follows immediately from the case k D 0. The
case k D 0 is discussed in [27, Thm. 2.9.3] for the case of a half-space. The
generalization to Lipschitz domains can be found, for example, in [1, Lemma 1.10].

ut

2.2 An Interpolation Argument

The following technical result, which is of independent interest, will be used to
reduce regularity assumptions to BmC1=2

2;1 .˝/.
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Lemma 2 Let X1 � X0 be two Banach spaces with continuous embedding. Let
q 2 Œ1;1�, � 2 .0; 1/. Define (by the real method of interpolation) X� WD .X0;X1/�;q
for � 2 .0; 1/. Let 0 < �1 < �2 < � � � < �n < 1 be fixed and assume that ` 2 X00
satisfies for some C0, C1, " > 0

j`. f /j � C0k fkX0 8f 2 X0;

j`. f /j � C1

2

4

n
X

iD1
"�ik fkX�i C "k fkX1

3

5 8f 2 X1:

Then there exists a constant C > 0 that is independent of " such that

j`. f /j � C"�1k fkX�1 8f 2 X�1 :

Proof We start with the special case n D 1 and abbreviate � D �1. Let f 2 X� . By
definition of the K-functional we may chooseef 2 X1 with

k f �ef kX0 C "kefkX1 � 2K."; f /: (12)

Using the linearity of `, we can bound

j`. f /j D j`. f �ef /C `.ef /j � C0k f �efkX0 C C1
h

"�kef kX� C "kefkX1
i

(12)� CK."; f /C "�kefkX� � CK."; f /C "�k f �efkX� C "�k fkX� :

We now use the bound k f �ef kX� � 3K."; f / from [7, eqn. (2.8)] and then K."; f / �
C"�k fkX� (see, e.g., [27, Thm. 1.3.3]) to conclude

j`. f /j � C"�k fkX� :

We now consider the general case n > 1. We chooseef as in (12) and proceed as
above to get

j`. f /j D j`. f �ef /C l.ef /j

� C0k f �efkX0 C C1

2

4"�1kef kX�1 C
n
X

iD2
"�ikefkX�i C "kefkX1

3

5 : (13)
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In order to treat the terms involving kefkX�i for i � 2, we use the reiteration theorem
to infer X�i D .X�1 ;X1/si;q, where si 2 .0; 1/ is given by

�i D �1.1 � si/C si:

Next, the interpolation inequality kef kX�i � Ckefk1�siX�1
kefksiX1 together with the

elementary bound ab � ap=pC bq=q (for a, b > 0, p, q > 1 with 1=pC 1=q D 1)
gives

"�ikef kX�i � C"�i�sikefk1�siX�1
"sikef ksiX1 � C

h

".�i�si/=.1�si/kefkX�1 C "kefkX1
i

D C
h

"�1kefkX�1 C "kefkX1
i

:

Inserting this result in (13), we get together with (12)

j`. f /j � C
h

K."; f /C "�1kef kX�1
i

:

Reasoning as in the case n D 1 now allows us to conclude the argument. ut

2.3 Elliptic Regularity

Lemma 3 Let ˝ � R
d be a bounded Lipschitz domain with a smooth boundary.

Let m 2 N and k 2 N0. Then there is C˝;m;k depending only on ˝ , m, k such that
the following is true: If g 2 H�mCk.˝/ and u is the (variational) solution of the
Dirichlet problem

�mu D g in˝; u D @nu D � � � @m�1n u D 0 on@˝;

then u 2 HmCk.˝/ with the a priori bound

kukHmCk.˝/ � C˝;m;kkgkH�mCk.˝/:

Proof This regularity result is a special case of a more general result for the
regularity of solutions of elliptic systems, [2, 3]. Self-contained proofs of this result
can also be found, for example, in [30, Sec. 20] and in [19, Chap. 2, Thm. 8.2]. ut
The minimum norm extension E˝ W Hm.˝/! BLm.Rd/ satisfies

jE˝ f jHm.Rd/ � C˝k fkHm.˝/: (14)
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However, for smooth @˝ , it has additional mapping properties:

Corollary 2 Let ˝ be a bounded Lipschitz domain with a smooth boundary and
let ˝ be contained in the (open) ball BR.0/ of radius R centered at 0. For each
j 2 f0; : : : ;mg there is a constant Cj;˝ > 0 depending only on j,˝ , and R such that
the following is true for the minimum norm extension E˝ W Hm.˝/! BLm.Rd/: It
is also a bounded linear map HmCj.˝/! HmCj.BR.0/ n˝/ and, with � c0 denoting
the trace operator for BR.0/ n˝,

k� c0.rmCjE˝ f /kL2.@˝/ � Cj;˝k fkBmCjC1=2
2;1 .˝/

: (15)

Proof We write e˝ WD BR.0/ n ˝ . The operator E˝ is clearly a bounded linear
map E˝ W Hm.˝/ ! Hm.e˝/. From Lemma 3, we also see that E˝ maps H2m.˝/

boundedly into H2m.e˝/: We denote by E the universal extension operator of [25,
Chap. VI, 3], which we may choose such that suppEf � BR.0/. Next, we write E˝ f
in the form E˝ f D Ef C u, where Ef 2 H2m.e˝/ (since f 2 H2m.˝/) and u solves
the differential equation

�mu D ��mEf 2 L2.e˝/ ine˝; u D @nu D � � � D @m�1n u D 0 on@e˝:

Lemma 3 then gives u 2 H2m.e˝/ with the a priori estimate kukH2m.e˝/ �
Ck�mEfkL2.e˝/ � CkEfkH2m.e˝/ � Ck fkH2m.˝/. We have thus obtained

kE˝ fkHm.e˝/ � Ck fkHm.˝/; kE˝ fkH2m.e˝/ � Ck fkH2m.˝/: (16)

An interpolation argument then gives us

kE˝ fk
B
mC1=2Cj
2;1 .e˝/

� Ck fk
B
mCjC1=2
2;1 .˝/

; j D 0; : : : ;m � 1:

By the trace theorem (Lemma 1), we arrive at k� c0r jCmE˝ fkL2.@˝/ �
Ck fk

B
mCjC1=2
2;1 .˝/

for j D 0; : : : ;m � 1. ut

2.4 PDE-Based Proof of Proposition 2

Lemma 4 Let ˝ be a Lipschitz domain. Then

jE˝ f � If jm � C˝ j f � If jHm.˝/: (17)
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Proof We exploit that �m.E˝ f � If / D 0 in ˝c. To that end, let again E be the
universal extension of operator of [25, Chap. VI, 3]. We write E˝ f � If D E. f �
If /C ı for some ı 2 BLm.Rd/ with ıj˝ D 0. We get

jE˝ f � If j2m D B˝. f � If ; f � If /C B˝c.E˝ f � If ;E. f � If /C ı/ (18)

D j f � If j2Hm.˝/ C B˝c.E˝ f � If ;E. f � If //; (19)

where, in the step from (18) to (19) we used integration by parts, the property
�m.E˝ f � If / D 0 on ˝c, and ıj˝ � 0; the integration by parts does not produce
any terms “at infinity” since C10 .Rd/ is dense in BLm.Rd/ (in the sense described
in [29, Thm. 10.40]) and thus ı can be approximated by such compactly supported
functions. From (19) and the continuity of E we infer

jE˝ f � If jm � C˝k f � IfkHm.˝/: (20)

In the estimate (20), the full norm on the right-hand side can be reduced to
a seminorm with the aid of the Deny-Lions Lemma and fact that I reproduces
polynomials of degree m � 1. Thus, (17) is proved. ut
The solution If of the minimization problem (1) satisfies the orthogonality condition

hE˝ f � If ; If im D 0 (21)

since E˝ f � If 2 BLm.Rd/ and .E˝ f � If /.xi/ D f .xi/ � If .xi/ D 0, i D 1; : : : ;N.
Therefore,

hE˝ f � If ;E˝ f � If im D hE˝ f � If ;E˝ f im
D B˝. f � If ; f /C B˝c.E˝ f � If ;E˝ f /: (22)

These last two terms are treated separately in Lemmas 5, 6. Inserting (23), (25)
in (22) we get

jE˝ f � If j2Hm.Rd/
� Ch1=2k fk

B
mC1=2
2;1 .˝/

j f � If jHm.˝/;

which readily implies (6) of Proposition 2. The bound (7) follows from (6) and an
interpolation argument since the reiteration theorem asserts for 0 < ı < 1=2 that
HmCı.˝/ D .Hm.˝/;BmC1=2

2;1 .˝//2ı;2 and jE˝ f � If jHm.Rd/ � Ck fkHm.˝/, which
follows from combining (21) and (14).

Lemma 5 Let ˝ be a Lipschitz domain. Then:

jB˝. f � If ; f /j � C˝h
1=2j f � If jHm.˝/k fkBmC1=2

2;1 .˝/
: (23)
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Proof Letef 2 HmC1.˝/. Integration by parts once gives

ˇ

ˇ

ˇB˝. f � If ;ef /
ˇ

ˇ

ˇ � (24)

krm�1. f � If /kL2.@˝/krm
efkL2.@˝/ C krm�1. f � If /kL2.˝/krmC1

ef kL2.˝/:

The multiplicative trace inequality kzk2
L2.@˝/

� kzkL2.˝/kzkH1.˝/, Corollary 1 with
k D m � 1, and the trace estimate krmzkL2.@˝/ � kzkBmC1=2

2;1 .˝/
yield

ˇ

ˇ

ˇB˝. f � If ;ef /
ˇ

ˇ

ˇ �
h

krm�1. f � If /k1=2
L2.˝/

k f � If k1=2Hm.˝/

i

krm
ef kL2.@˝/ C krm�1. f�If /kL2.˝/krmC1

ef kL2.˝/

�
h

h1=2j f � If jHm.˝/krm
ef kL2.@˝/ C hj f � If jHm.˝/krmC1

efkL2.˝/
i

�
�

h1=2kef k
B
mC1=2
2;1 .˝/

C hkefkHmC1.˝/

�

j f � If jHm.˝/:

We conclude that the linear functionalef 7! B˝. f � If ;ef / satisfies

jB˝. f � If ;ef /j � Cj f � If jHm.˝/kefkHm.˝/;

jB˝. f � If ;ef /j � Cj f � If jHm.˝/

�

h1=2kefk
B
mC1=2
2;1 .˝/

C hkefkHmC1.˝/

�

I

since BmC1=2
2;1 .˝/ D .Hm.˝/;HmC1.˝//1=2;1 Lemma 2 implies the estimate (23).

ut
We now turn to the second part of (24). The key step is to observe that the minimum
norm extension E˝ f satisfies the homogeneous differential equation �mE˝ f D 0

in ˝c.

Lemma 6 Let ˝ be a bounded Lipschitz domain with a sufficiently smooth
boundary. Then:

ˇ

ˇ

ˇB˝c.E˝ f � If ;E˝ f /
ˇ

ˇ

ˇ � C˝h
1=2j f � If jHm.˝/k fkBmC1=2

2;1 .˝/
: (25)

Proof Letef 2 H2m.˝/. By Corollary 2, we have E˝ef 2 H2m.BR.0/\˝c/ for every
R > 0 sufficiently large. Furthermore,�mE˝ef D 0 in ˝c. Next, m-fold integration
by parts yields

ˇ

ˇ

ˇB˝c.E˝ f � If ;E˝ef /
ˇ

ˇ

ˇ �
m
X

jD1
krm�j.E˝ f � If /kL2.@˝/k� c0rmCj�1E˝efkL2.@˝/:

(26)
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The integration by parts does not produce any terms “at infinity” since C10 .Rd/ is
dense in BLm.Rd/ (in the sense described in [29, Thm. 10.40]) and thus E˝ f � If 2
BLm.Rd/ can be approximated by such compactly supported functions.

Since r jE˝ f D r jf on @˝ for j D 0; : : : ;m� 1, we use again the multiplicative
trace inequality and Corollary 1 to get

ˇ

ˇ

ˇB˝c.E˝ f � If ;E˝ef /
ˇ

ˇ

ˇ � Cj f � If jHm.˝/

m
X

jD1
h�1=2Cjk� c0rmCj�1E˝efkL2.@˝/

(15)� Cj f � If jHm.˝/

m
X

jD1
h�1=2Cjkefk

B
mCj�1=2
2;1 .˝/

: (27)

We reduce the regularity requirement onef by applying Lemma 2 toef 7! B˝c.E˝ f �
If ;E˝ef /: We observe that the reiteration theorem of interpolation allows us to
identify

BmCj�1=2
2;1 .˝/ D .Hm.˝/;B2m�1=22;1 .˝//�j;1; �j D j� 1=2

m � 1=2 I

hence, we get (25) from an application of Lemma 2 with X0 D Hm.˝/, X1 D
B2m�1=22;1 .˝/ and " D hm�1=2 since we have additionally the stability bound
jB˝c.E˝ f � If ;E˝ef /j � Cj f � If jHm.˝/kef kHm.˝/ by Lemma 4 and (16). ut
Remark 2 (Generalization to Lipschitz Domains) The proof Proposition 2 relies
on three ingredients: (a) integration by parts arguments to treat B˝ , (b) the
approximation properties given in [11] of the thin plate spline interpolation operator
I, and (c) regularity properties of u WD E˝ f . Ingredients a) and b) are already
formulated for Lipschitz domains. However, the regularity properties of u D E˝ f
are delicate in their generalization to the case of Lipschitz domains. We note that u
solves in ˝c the Dirichlet problem

�mu D 0 in˝c; @ j�1
n uj@˝ D @ j�1

n f j@˝; j D 1; : : : ;m � 1:

For such problems, a shift theorem by 1=2 is shown in [23, Thm. 2] (see also [9,
28]) in the sense that for smooth f (in fact, f 2 BmC1=2.˝/ is sufficient), one can
control kr jukL2.@˝/ for j D 0; : : : ;m. This together with careful integration by parts
arguments as in [23] for the treatment of B˝c allow for an extension of the proof of
Proposition 2 to Lipschitz domain and will be given in [20]. �
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3 Numerical Example

We illustrate Proposition 2 for the case m D d D 2, i.e., the classical thin plate
splines. We employ uniformly distributed nodes on two geometries, the unit square
˝1 D .0; 1/2 and the L-shaped domain ˝2 D .�1=2; 1=2/2 n Œ0; 1=2�2. As usual,
we denote r W x 7! kxk2. We interpolate 4 functions with different characters:
the functions r1:05 and r2:76, which are, for any " > 0, in H2:05�" and H3:76�",
respectively, and the smooth functions exp.xy/ and F.x; y/, where the so-called
Franke function F is given by

F.x; y/ D0:75 exp.�0:25..9x � 2/2 C .9y � 2/2/
C 0:75 exp.�.9xC 1/2=49� 0:1.9yC 1/2/C
0:5 exp.�0:25..9x � 7/2 C .9y � 3/2/� 0:2 exp.�.9x � 4/2 � .9y � 7/2/:

The results are presented in Fig. 1 and corroborate the assertions of Proposition 2,
which read, for m D 2, k f � IfkL1.˝/ � Ch1Cık fkH2Cı .˝/ with ı 2 Œ0; 1=2/ and
k f � IfkL1.˝/ � Ch3=2k fk

B
5=2
2;1 .˝/

. These numerical results were first presented at

the conference [21].

3.1 H-Matrix Techniques for Solving the TPS Interpolation
Problem

The numerical solution of the thin plate interpolation problem is numerically chal-
lenging since the system matrix is fully populated. Nevertheless, several approaches
for fast solution techniques exist. For example, the matrix-vector multiplication
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Fig. 1 Convergence of TPS interpolation. Left: square ˝1. Right: L-shaped domain ˝2
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can be realized in log-linear complexity using techniques from fast multipole
methods. This leads to efficient solution strategies based on Krylov subspace
methods provided suitable preconditioners are available. We refer to [29, Sec. 15],
[8, Sec. 7.3] as starting points for a literature discussion. For our calculations, we
employed related techniques based on the concept of H-matrices, [14, 15]. H-
matrices come with an (approximate) factorization that can either be used as a solver
(if the approximation is sufficiently accurate) or as a preconditioner in an iterative
environment. The latter use has been advocated, in a different context, for example,
in [4, 13].

For the case m D 2 D d, the interpolation problem (3) results in a linear system
of equations of the form

 

P> 0
G P

! 

c
�

!

D
 

0

f

!

; Gij D �2.kxi � xjk2/; i; j D 1; : : : ;N: (28)

The matrix PN�3 is obtained by selecting a basis fb1; b2; b3g of P1 (e.g., f1; x; yg)
and setting Pi;j D bj.xi/. The vector f 2 R

N collects the values f .xi/, the vector
c 2 R

N the sought coefficients ci, and the vector � 2 R
3 is the Lagrange multiplier

for the constrained problem (3). The function �2.z/ D z2 log z is smooth for z > 0.
Lemma 7 below shows that the function .x; y/ 7! �2.kx�yk2/ can be approximated
by a polynomial, which is in particular a separable function, i.e. a short sum of
products of functions of x and y, only. This in turn implies that the fully populated
matrix G can in fact be approximated as a blockwise low-rank matrix, in particular
in the form of an H-matrix, [14, 15].

By forming a Schur complement, the linear system of (28) can be transformed to
SPD form. To that end, we select three points and rearrange the problem (28) as

0

B

@

P>1 0 P>2
G11 P1 G12
G21 P2 G22

1

C

A

0

B

@

c1
�

c2

1

C

A D

0

B

@

0

f1
f2

1

C

A G11 2 R
3�3; G22 2 R

.N�3/�.N�3/;

where the vectors c1, f1 2 R
3 and c2, f2 2 R

N�3 result from the permutations. The
Schur complement

S WD G22 �
�

G21 P2
�

 

P>1 0

G11 P1

!�1  
P>2
G12

!

is SPD. We computed an (approximate) Cholesky factorization of S using the library
HLib [5]. This factorization can be employed as a preconditioner for a CG iteration.
The H-matrix structure of S was ensured by so-called geometric clustering of the
interpolation points. Specifically, we used this hierarchical structure to set up G22 by
approximating its entries with the Chebyshev interpolant as described in Lemma 7.
In the interest of efficiency, the thus obtained H-matrix approximation of G22 was
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further modified by using SVD-based compression of blocks as well as coarsing
of the block structure (these tools are provided by HLib). The matrix S is a rank-3
update of the matrix G22, which can also be realized in HLib.

Lemma 7 Let 	 > 0 be given. For any (closed) axiparallel boxes � , 
 � R
2 and

a polynomial degree p 2 N0 denote by IChebp W C.� � 
/ ! Qp the tensor product
Chebyshev interpolation operator associated with ��
 . Then there are constants C,
b > 0 depending only on 	 such that under the condition maxfdiam.�/; diam.
/g �
	 dist.�; 
/ there holds

sup
.x;y/2��


j�2.kx�yk2/�IChebp �2.kx�yk/j � Cj dist.�; 
/j2 �1C j log dist.�; 
/j� e�bp:

Proof The proof follows with the tool developed in [6]. Consider Q WD
Qn

iD1Œai; bi� � R
n and a function f 2 C.QIC/. Denote byƒp the Lebesgue constant

for univariate Chebyshev interpolation (note that ƒp D O.log p/). Introduce, for
each x 2 Q and each i 2 f1; : : : ; ng, the univariate function fx;i W Œ�1; 1� ! C by
fx;i.t/ WD f .x1; : : : ; xi�1; .ai C bi/=2 C t.bi � ai/=2; xiC1; : : : ; xn/. Then, standard
tensor product arguments [6, Lemma 3.3] show that the tensor product Chebyshev
interpolation error is bounded by

k f � IChebp fkL1.Q/ � .1Cƒp/ƒ
n�1
p

n
X

iD1
sup
x2Q

inf
�2Pp

k fx;i � �kL1.�1;1/:

The best approximation problems inf�2Pp k fx;i � �kL1.�1;1/ in turn lead to expo-
nentially small (in p) errors, provided the holomorphic extensions of the functions
fx;i can be controlled. We show this for the case f .x1; x2; x3; x4/ D �2.k.x1; x2/ �
.x3; x4/k2/ under consideration here. Note that fx;1.t/ D �2.kd � tpk2/, where
d D ..a1 C b1/=2 � x3; x2 � x4/> and p D ..a1 � b1/=2; 0/>. Note kdk2 �
.1 C 	/ dist.�; 
/ and kpk2 � 1=2maxfdiam.�/; diam.
/g � 	=2 dist.�; 
/. As
shown in [6, Lemma 3.6, proof of Thm. 3.13], the holomorphic extension of the
function n W t 7! kd � tpk2 is holomorphic on Ur WD [t2Œ�1;1�Br.t/ with r D
dist.�; 
/=kpk2 � 2=	 and maps into the left half plane CC D fz 2 C j Re z > 0g.
We note that supz2Ur

jn.z/j � kdk2 C rkpk2 � .2 C 	/ dist.�; 
/. In view of
�2.z/ D z2 log z, we conclude supz2Ur

j fx;i.z/j � C.dist.�; 
//2.1C j log dist.�; 
/j/
for a constant C > 0 that depends solely on 	. We finish the proof by observing
that there is � > 1 (depending only on r and thus on 	) such that Ur contains the
Bernstein ellipse E� (see [6, Lemma 3.12]). A classical polynomial approximation
result (see, e.g., [6, Lemma 3.11]) concludes the proof. ut
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3.2 Edge Effects and Concentrating Points at the Boundary

The convergence behavior of thin plate splines is limited by edge effects. Above, we
mentioned that imposing certain boundary conditions on f mitigates this effect. An
alternative is to suitably concentrate points near @˝ . Without proof, we announce
the following result:

Proposition 3 Assume that the points xi, i D 1; : : : ;N, satisfy for a ı > 0

sufficiently small

8x 2 ˝ W inf
iD1;:::;N dist.x; xi/ � ımin fhmin C dist.x; @˝/; hg : (29)

Then, for f 2 HmC1.˝/ there holds j f � If jHm.˝/ � C
�

h1=2min C h
�

j f jHmC1.˝/.

Inserting the result of Proposition 3 in the estimates of Proposition 1 shows that
a factor h1=2min C h can be gained in the convergence estimates. Figure 2 presents
numerical examples for the square˝1 and the functions given in Sect. 3. We selected
hmin D h2 and distributed the points so as ensure the condition

8i W min
j W j¤i
kxi � xjk2 � min fhmin C dist.x; @˝/; hg :

For the present case d D 2, it can then be shown that the number of points N is
O.h�2/, which is also illustrated in Fig. 2.
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Efficient Equilibrated Flux Reconstruction
in High Order Raviart-Thomas Space
for Discontinuous Galerkin Methods

Igor Mozolevski and Edson Luiz Valmorbida

Abstract We develop an efficient and computationally cheap method of equi-
librated fluxes reconstruction for high-order dG solutions to elliptic problems
using a specific computational basis in high order Raviart-Thomas space. The
computational basis is designed in such a way that coordinates of equilibrated fluxes
with respect to this basis can be easy calculated from the moments of the numerical
fluxes of dG method. Some applications of this method in implementation of a
posteriori error estimators for elliptic boundary value problems are considered.

1 Introduction

Equilibrated fluxes reconstruction in Raviart-Thomas space is used in finite element
methods for development of fully computable (not involving unknown constants),
efficient and reliable a posteriori error estimates for elliptic, convection-diffusion
and parabolic problems, see e.g. [5, 7, 8, 12–14, 19, 22]. As an another important
application the equilibrated velocity recuperation from a discontinuous Galerkin
solution to the Darcy equation in the multiphase flow in heterogeneous porous media
should be mentioned, see [11, 15]. One of the attractive properties of a posteriori
error estimates, based on the equilibrated fluxes technique, is the robustness with
respect to the order of polynomial approximation (cf. [5, 13]), whereas the efficiency
of residual type estimates can decrease with the degree (cf. [4, 20]).

Owing to the local conservation properties, the discontinuous Galerkin (dG)
finite element methods allow easy flux reconstruction in Raviart-Thomas space
by locally prescribing the numerical flux moments as the degrees of freedom,
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cf. [9]. Such an approach offers cheap and efficient computational algorithm for
implementation of flux reconstruction in lowest order Raviart-Thomas space.

Nevertheless, reconstruction of equilibrated fluxes from the prescribed moments
of discrete numerical fluxes in higher order Raviart-Thomas space can be compu-
tationally involved procedure. In this article we introduce a specific modal basis
in high order Raviart-Thomas space such that calculation of reconstructed flux
coefficients from the prescribed moments is extremely easy owing to orthogonal
properties of edge elements of the basis. Using this tool we develop an efficient
and computationally cheap method of equilibrated fluxes reconstruction from high-
order dG solutions to elliptic problems. To demonstrate the potential of the method
we consider an application to adaptive mesh refinement, where the method is used
for equilibrated fluxes calculation needed for the a posteriori error estimator.

2 Modal Basis in High Order Raviart-Thomas Space

Let ˝ be a polygonal domain in R
2. Let us denote by Hk.˝/ the Sobolev space of

order k 2 N0. The space of vector functions u 2 ŒL2.˝/�2 with weak divergence
r �u in L2.˝/ is denoted by H.div;˝/ . The reader is referred to [1] and [3] among
others, where standard properties of the Sobolev and H.div/ spaces are exposed.

For discrete approximation of H.div / spaces let us define in ˝ a shape regular
family Th of triangular meshes (see e.g. [6]), where h D max

T
2

Th

h.T/ denotes the mesh

size and h.T/ is the diameter of the mesh element T. We denote the set of all mesh
edges as E and decompose it in the set Ei of all interior edges (interfaces between
adjacent mesh elements) and the set of all boundary faces E@. Next we define vector
field nE W E ! R

2 of edge normals, where nE.E/ D nE is the fixed unit vector
orthogonal to E which coincides with the external normal to @˝ on the boundary
edges. We also denote as nT the external normal to @T for any mesh element T. For
E 2 E we denote by TE D fT 2 Th W E � @Tg the set of all mesh elements sharing
the edge E.

For any triangle T 2 Th the local Raviart-Thomas space is defined by

RT
k.T/ D ŒPk.T/�

2 C
 

x
y

!

Pk.T/; (1)

where Pk.T/ denotes the space of polynomials in T of degree less than or equal to
k 2 N0. For u 2 RT

k.T/ the degrees of freedom are given by

R

@T

.u � nT/p; 8p 2 Pk.@T/I (2)

R

T
u � q; 8q 2 ŒPk�1.T/�2 if k � 1: (3)
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Associated with the triangulation Th the global Raviart-Thomas finite element
space is defined as

RT
k.Th/ D fuh 2 H.div;˝/ j uhjT 2 RT

k.T/; 8T 2 Thg: (4)

The computational implementation ofRT0 elements is typically included in finite
element software packages and was carefully discussed in [2]. Here we aim at
introducing a computational basis in high order Raviart-Thomas space RT

k.Th/

such that the coordinates of an element in this basis can be easily calculated from
its degrees of freedom (2)–(3). We start with the definition of the basis in the master
element and then extend the definition to any T 2 Th using Piola transformation.

Let us consider the reference triangle OT with vertexes

Ov1 D .�1;�1/0; Ov2 D .1;�1/0; Ov3 D .�1; 1/0I
OT D fOv1; Ov2; Ov3g D f.r; s/0 j r; s � �1I rC s � 0g:

For any T 2 Th; T D fv1; v2; v3g; v1 D .x1; y1/0; v2 D .x2; y2/0; v3 D .x3; y3/0
we fix the canonical affine application �T W OT ! T as:

�T .r; s/ D � rC s

2
v1 C rC 1

2
v2 C sC 1

2
v3 D .x.r; s/; y.r; s//0: (5)

The Piola transformation corresponding to �T is defined for Ou 2 ŒL2. OT/�2 by

PT Ou.x; y/ D 1

j det JT jJT Ou.�T .r; s//; (6)

where JT denotes the Jacobian matrix of �T .

Lemma 1 (Properties of Piola Transformation, See e.g. [3]) For any u 2
H.div;T/ and v 2 H1.T/ we have

Z

T

.r � u/v D
Z

OT
. Or � Ou/ OvI

Z

T

u � rv D
Z

OT
Ou � Or OvI

Z

@T

u � nTv D
Z

@ OT
Ou � On OT Ov;

where Ou D P�1T u and Ov D ��1T v.
Now we are ready to formulate the theorem that provides a construction of the basis.

Theorem 1 In the local Raviart-Thomas space RT
k.T/; k 2 N0; T 2 Th; T D

fv1; v2; v3g there exists a basis f˚@T
i;l ; �

T
mg; i D 1; 2; 3; l D 1; : : : ; k C 1; m D

1; : : : ; 2M, M D k.kC1/
2

such that

(B1) ˚@T
i;l � nTi0 jEi0

D ıi;i0L
i
l; i; i0 2 f1; 2; 3g; l 2 f1; : : : ; k C 1g, where Ei

denotes the triangle’s edge opposite to the vertex vi, nTi is the unit normal to
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the edge Ei external to T and fLi
lgklD0 is the orthonormal system of Legendre

polynomials in L2.Ei/ .
(B2) � T

m ; m D 1; : : : ; 2M form basis in L2.ŒPk�1. OT/�2/ and
� T
m � nijEi D 0; i 2 f1; 2; 3g; m 2 f1; : : : ; 2MgI

Proof Following [16] let us consider in the master element OT vector functions

e1.r; s/ D 1

2

 

rC 1
sC 1

!

; e2.r; s/ D 1

2

 

r � 1
sC 1

!

; e3.r; s/ D 1

2

 

rC 1
s � 1

!

;

(7)

t1.r; s/ D sC 1
2

 

rC 1
s � 1

!

; t2.r; s/ D rC 1
2

 

r � 1
sC 1

!

: (8)

We define

Ô i;l.r; s/ D Ll�1.s/ei.r; s/; i D 1; 2; Ô
3l.r; s/ D Ll�1.r/e3.r; s/; l 2 f1; : : : ; kC 1g;

where fLngknD0 are (normalized) Legendre polynomials that form an orthonormal
system in L2.Œ�1; 1�/ . Since Ô i;l satisfies the property

e1 � njj OEj
D
p
2

2
ı1j; ei � njj OEj

D ıij; i 2 f2; 3g; j 2 f1; 2; 3g

we obtain

Ô @ OT
i;l0 � n OTi0 j OEi0

D ıi;i0Li
l:

Note that
Z

OEi

. Ô @ OTi;l0 � Oni/. Ô @ OTi;l � Oni/ D ıll0 ; l; l0 2 f1; : : : ; kC 1g; i 2 f1; 2; 3g: (9)

Next we define O‰m D Opm.r; s/t1.r; s/, m D 1; : : : ;M and O‰m D
Opm�M.r; s/t2.r; s/, m D MC1; : : : ; 2M, where polynomials Opm form the orthonormal
Dubiner basis in Pk�1. OT/, cf. [10]. Since

tj.r; s/ � nij OEi
D 0; j 2 f1; 2g; i 2 f1; 2; 3g;

we have O‰m � nij OEi
D 0. Using the Piola transformation the respective basis in

RT
k.T/;T 2 Th is defined as

ˆ@T
i;l D P ıˆil ı ��1T ; ‰T

m D P ı O‰m ı ��1T

and the required properties (B1)–(B2) follow directly from Lemma 1. ut
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It should be noted that the nodal computational basis with Lagrangian property
on the mesh edges was introduced in [16]. Nevertheless, such basis functions do
not have the orthogonal property necessary for efficient recuperation of the basis
coefficients from prescribed degrees of freedom of a finite element in RT space.

Next we will demonstrate how to recuperate the coefficients with respect to this
basis from the degrees of freedom of a finite element in RT

k space.
Let us consider in ŒPk�1.T/�2 a basis

˚

PT
m

�2M

mD1,

PT
m D

 

pm
0

!

; m D 1; : : : ;MI PT
m D

 

0

pM�m

!

j D M C 1; : : : ; 2MI

where polynomials pm form the Dubiner basis in Pk�1.T/.

Lemma 2 Assume that for uh 2 RT
k.Th/

uT D uhjT D
X

i0;l0

c@Ti0;l0˚
@T
i0;l0 C

X

m0

cTm0

� T
m0

(10)

be local representation with respect to the basis f˚@T
i;l ; �

T
mg in RTk.T/.

Let

�@Ti;l .uT / D
R

Ei
.uT � ni/Li

l; i 2 f1; 2; 3g; l 2 1; : : : ; kC 1I (11)

�T
m.uT/ D

R

T uT � Pm; m 2 f1; : : : ; 2Mg; (12)

be the degrees of freedom of uT . Then

c@Ti;l D �@Ti;l .uT/; i 2 f1; 2; 3g; l 2 1; : : : ; kC 1 and cT D G�1T FT ; (13)

where cT D .cT1 ; : : : ; cT2M/0,

GT D
�Z

T
� T
i � PT

j

�

2M�2M
; FT D

2

4�T
m.u/ �

X

i;l

�@Ti;l

Z

T
˚@T

i;l � PT
m

3

5

2M�1
:

Proof From the edge moments (11) of (10) we have:

�@Ti;l .uT/ D
P

i0;l0
c@Ti0 ;l0

R

Ei
.ˆ@Ti0;l0 � ni/Li

l C
P

m0

cTm0

R

Ei
.‰T

m0

� ni/Li
l

DP
l0
c@Ti;l0

R

Ei
L
i
l0L

i
l D c@Ti;l
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owing to (B1), (B2) and orthogonality of the Legendre polynomials (9). Similarly
from the element’s moments (12) we obtain:

�T
m.uT/ D

X

i0;l0

c@Ti0;l0

Z

T
ˆ@Ti0;l0 � PT

m C
X

m0

cTm0

Z

T
‰T

m0

� PT
m;

that is GTcT D FT . ut
Note 1 Let us note that Lemma 2 provides extremely cheap method for the flux
recuperation from the moments: in each element of the mesh we only need to solve
a small linear system.

Note 2 Since
R

T ‰
T
m0

� ‰T
m D jJT j

R

OT PT‰
T
m0

� PT‰
T
m D

R

OT.JTJ
0
T/=jJT j O‰m0 � O‰T

m, we
immediately obtain cTm D �T

m.uT/ �
P

i;l �
@T
i;l .uT/

R

T ˆ
@T
i;l � ‰T

m; m 2 1; : : : ; 2M
for triangles where .JTJ0T/=jJT j D Id. This situation occurs for rectangular
equilateral elements for example, so for such structured triangular meshes the flux
reconstruction can be obtained directly from the moments and does not require a
solution of the local systems.

3 Equilibrated Flux Reconstruction for Discontinuous
Galerkin Method

Let us present an application of the computational basis introduced in previous
section to equilibrated fluxes reconstruction from discrete gradient of discontinuous
Galerkin approximation to a solution of elliptic boundary value problem.

We consider in ˝ the model problem:

� r � .Dru/ D f in ˝; (14)

u D g on @˝:

Here the diffusion coefficient D > 0 is supposed to be constant in ˝ , f 2 L2.˝/
and g 2 H3=2.@˝/.

For a shape regular family Th of triangular meshes in ˝ we introduce the
(discontinuous) finite element spaces Vk

h as:

Vk
h WD fvh 2 L2.˝/ W vhjT 2 Pk.T/; 8T 2 Thg:

Symmetric version of the interior penalty dG method is formulated as:
find uh 2 Vk

h such that

Bh.uh; vh/ D F.vh/; 8vh 2 Vk
h; (15)
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where

Bh.uh; vh/ D
Z

Th

Drhuh � rhvh �
Z

E

ffnE � DrhuhggŒŒvh��

C
Z

E

��ffnE � Drhvhgg C �EŒŒvh��
�

ŒŒuh��;

F.vh/ D
Z

˝

fvh C
Z

E@

��ffn � Drhvhgg C �EŒŒvh��
�

g:

Here we are using standard definition (see e.g. [9]) for discrete gradient, mean value
and jump at the edges; the penalty parameter �EjE D 2:5D.kC1/2h�1E is considered
to be reasonable [17] for the stabilization. The number of unknowns (degrees of
freedom) of linear system (15) is equal to

NDOF D dimVh D N.Th/ � dimPk D N.Th/
.kC 1/.kC 2/

2
;

where N.Th/ denotes the number of elements of Th.
For v 2 H1.Th/ C Vk

h we define the energy norm associated with the dG
method by

jjjvhjjjdG D

0

B

@kD 1
2rhvhk2L2.˝/ C

Z

E

�EŒŒvh��
2

1

C

A

1
2

: (16)

For the energy norm of the error in dG approximation the following a priori estimate
holds true, see e.g. [18].

Theorem 2 Let u 2 HkC1.˝/ be a weak solution to (14) and uh 2 Vk
h be the dG

finite element approximation of u. Then the estimate

jjju� uhjjjdG � ChkkukHkC1.˝/ (17)

holds with a constant C > 0 independent of h.
We call the weak solution u 2 H1.˝/ the potential and the vector-valued function
�.u/ D �Dru 2 H.div ;˝/ the flux. Similarly, we call the dG solution uh 2 Vk

h
the discrete potential and define the discrete flux as �h.u/ D �Drhuh.

Definition 1 A vector field sh 2 H.div ;˝/ is called equilibrated up to order l 2 N0

if r � sh � � l
h. f / D 0; where � l

h W L2.˝/ ! Vl
h denotes the orthogonal projection

operator.
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Following [14], let us consider the flux tk�1h .uh/ 2 RT
k�1.Th/ with the degrees

of freedom of (11) and (12) locally prescribed by :

k � 1 W �@Ti;l .tk�1h .uh// D
Z

Ei

� � ffn � Drhuhgg C �EŒŒuh��g
�

L
i
l;

Ei 2 @T; i 2 f1; 2; 3g; l 2 1; : : : ; kI (18)

k � 2 W �T
m.t

k�1
h .uh// D �

Z

T
Drhuh � Pm (19)

C
X

i

Z

Ei

�e.Ei/D.Pm � ni/ŒŒuh��g;

m D 1; : : : ; 2M;

where

ŒŒuh��g D
(

ŒŒuh��jE; for E 2 Ei;

uhjE � g; for E 2 ED:

Note that this definition is correct since the numerical fluxes of dG method are
uniquely defined at the edges of the mesh. Moreover, we will refer to the following
lemma.

Lemma 3 Let u be a weak solution to (14) and uh 2 Vk
h be the dG finite element

approximation of u. The flux tk�1h .uh/, defined by (18)–(19), is equilibrated up to
order k � 1 and there exists a constant C > 0, independent of h, such that

kD 1
2ru � D�

1
2 tk�1h .uh/kL2.˝/ � Cjjju� uhjjjdG: (20)

See [14] for the proof and more details.
For computational reconstruction of tk�1h .uh/ from the prescribed moments (18)

and (19) we use the algorithm presented in Lemma 2.

4 Numerical Examples

To demonstrate a potential of the suggested algorithm we consider an application to
adaptive mesh refinement in dG approximation of elliptic boundary value problems,
where the equilibrated fluxes are used in a posteriori error estimator in the energy
norm (16).

We consider the error estimator introduced in [13]

	2.uh/ D
X

T2Th

	2.T/ D
X

T2Th

..	O.T/C 	r.T//2 C 	2H.T//
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where 	O.T/ D k f � r � th.uh/kL2.T/ is the oscillations term, 	r.T/ D
kD� 12 .�h.uh/� th.uh//kL2.T/ measures the deviation of the discrete flux �h.uh/ from

H.div;˝/ and 	H.T/ D kD 1
2 .rh.uh/�rh.uOh //kL2.T/ measures the deviation of uh

from H1.˝/. Here uOh 2 H1.˝/ is Oswald interpolator of uh and the equilibrated
flux tk�1h .uh/ is reconstructed by prescription from (18)–(19) in the computational
basis fˆ@Ti;l ; ‰T

mg in RT
k.T/. This type of estimator has proven to be reliable,

efficient and robust with respect to polynomial order of approximation space, see
[5, 13]. The quality of the error estimator 	 is assessed in terms of the effectivity
index I	 D 	.uh/

kD 1
2 .ru�rhuh/kL2.˝/

evaluated on sequences of uniformly and adaptively

refined meshes.

4.1 Test Case 1: Uniform Mesh Refinement

Firstly we confirm the order of approximation of the exact flux by the reconstructed
flux for a smooth solution to elliptic problem. So let us consider the model
problem (14) in ˝ D .0; 1/2 with D D 1, the right-hand side and the homoge-
neous Dirichlet boundary condition corresponding to the exact solution u.x; y/ D
sin.�x/ sin.�y/. The model problem was solved numerically using the dG method
of order k D 1; 2; 3; 4 on a sequence of meshes obtained by successive uniform
bisection from the initial unstructured mesh of 48 elements. We have used five mesh
refinement levels Nr D 1; 2; 3; 4; 5 with 192; 768; 3072; 12;288; 49;152 elements.
Let us denote by e.uh/ D kD� 1

2 .�.u/��h.uh//kL2.˝/ the error in dG approximation

of the exact flux by the discrete flux, let e.th/ D kD� 1
2 .�.u/� th.uh//kL2.˝ denotes

the error in approximation of the exact flux by the reconstructed Raviart-Thomas
flux and let e.r � th/ D k f � r � th.uh/kL2.˝/ be the error in equilibration of the
reconstructed flux. In Table 1 we show the errors and the convergence rates of the
dG method and of the equilibrated flux, reconstructed from the discrete solution
using the suggested computational basis. We observe that the dG method accurately
approximate the exact solution to the problem and exhibits the optimal order of
convergence k predicted in the Theorem 2. The error in approximation of the exact
flux by reconstructed equilibrated flux is also of order k, which is the optimal order
of approximation of the exact flux by dG method and the optimal order of the
projection of the exact flux on the Raviart-Thomas space RT

k�1. Finally, the order
of convergence ofr�th ! f is kC1, that is the flux th is equilibrated up to order k�1.

4.2 Test Case 2: Adaptive Mesh Refinement

Inspired by propagation of saturation front in a two-phase flow in porous media,
we consider here the model problem (14) in ˝ D .0; 1/2 with the solution

u.x; y/ D x.x�1/y. y�1/ arctan
�

60
p

.x � 5=4/2 C . yC 1=4/2/� 1
�

; that exhibits
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Table 1 The errors e.uh/; e.th/; th.uh/ and convergence rates o.e.uh/; o.e.th//; o.th.uh// for
the approximation orders k D 1; 2; 3; 4 calculated on the refined meshes for refinement levels
Nr D 1; 2; 3; 4; 5

k Nr e.uh/ o.e.uh// e.th/ o.e.th// e.r � th/ o.e.r � th//

1

1 2:779 � 10�1 2:951 3:664 � 10�1 2:605 6:013 � 10�2 5:544

2 1:394 � 10�1 0:995 1:879 � 10�1 0:964 1:521 � 10�2 1:983

3 6:984 � 10�2 0:997 9:425 � 10�2 0:995 3:813 � 10�3 1:996

4 3:495 � 10�2 0:999 4:711 � 10�2 1:000 9:540 � 10�4 1:999

5 1:749 � 10�2 0:999 2:354 � 10�2 1:001 2:385 � 10�4 2:000

2

1 2:480 � 10�2 5:058 3:184 � 10�2 4:275 3:725 � 10�3 8:005

2 6:227 � 10�3 1:994 7:819 � 10�3 2:026 4:685 � 10�4 2:991

3 1:561 � 10�3 1:996 1:944 � 10�3 2:008 5:864 � 10�5 2:998

4 3:910 � 10�4 1:998 4:852 � 10�4 2:003 7:332 � 10�6 3:000

5 9:783 � 10�5 1:999 1:212 � 10�4 2:001 9:165 � 10�7 3:000

3

1 1:011 � 10�3 7:457 1:294 � 10�3 6:806 2:743 � 10�4 9:262

2 1:294 � 10�4 2:965 1:648 � 10�4 2:973 1:697 � 10�5 4:015

3 1:623 � 10�5 2:995 2:050 � 10�5 3:007 1:059 � 10�6 4:003

4 2:029 � 10�6 3:000 2:547 � 10�6 3:008 6:613 � 10�8 4:001

5 2:536 � 10�7 3:001 3:172 � 10�7 3:005 4:133 � 10�9 4:000

4

1 6:619 � 10�5 8:177 8:910 � 10�5 7:072 8:448 � 10�6 11:581

2 4:042 � 10�6 4:033 5:414 � 10�6 4:041 2:801 � 10�7 4:915

3 2:514 � 10�7 4:007 3:371 � 10�7 4:005 8:856 � 10�9 4:983

4 1:570 � 10�8 4:001 2:109 � 10�8 3:999 2:775 � 10�10 4:996

5 9:812 � 10�10 4:000 1:319 � 10�9 3:999 1:161 � 10�11 4:579

a steep front in the interior of the domain. This example is commonly used for
testing adaptive refinement algorithms for elliptic equations, c.f. [21]. Here we also
consider D D 1, and the right-hand side and the homogeneous Dirichlet boundary
condition corresponding to the exact solution.

Meshes are adapted from the same initial mesh, using a refinement strategy
based on the method proposed by Dörfler, whereby the elements in a minimal set
M � Th, such that

P

T2M
	.T/ � �

P

T2Th

	.T/; are refined. Elements are refined

using the longest edge bisection technique and additional refinements of the mesh
are considered in order to eliminate hanging nodes.

Figure 1 displays in the first column the energy norm of the error and the
convergence order calculated for uniform and adaptive mesh refinements with
� D 0:25, � D 0:5 and � D 0:75 in the Dörfler marking as a function of DOF
(degrees of freedom of dG method), on a logarithmic scale for approximation order
k D 1 to k D 4. The second column shows the respective effectivity indices and
the third column presents the adaptively refined meshes corresponding to the error
	 0:01 for � D 0:25. We can see that for given order of dG method the energy norm
of the errors are very close for all values of the parameter in the Dörfler marking
and asymptotically exhibit the optimal convergence rates. The effectivity indices
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Fig. 1 The energy norm of error, the convergence order (left column) and the effectivity index
(middle column) as a function of the degrees of freedom (DOF) on a logarithmic scale for various
� in the Dörfler marking and for various orders of dG method. Right column: adaptively refined
meshes, corresponding to the error� 0:01 in the energy norm, with DOF number NDOF D 104991

for k D 1, NDOF D 7692 for k D 2, NDOF D 4270 for k D 3 and NDOF D 3930 for k D 4
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remain above 1 and are asymptotically close to 1 even the order of approximation
increases. We observe also that the number of DOF necessary to achieve the same
global approximation error decreases with increasing polynomial degree k.

5 Conclusions

A specific modal computational basis, in which the coordinates of the equilibrated
fluxes can be easily calculated from the numerical fluxes of dG method, is designed
for high order Raviart-Thomas space. Optimal convergence of equilibrated fluxes
and the robustness of the reconstruction method with respect to the order of
dG method are confirmed numerically. Adaptive mesh refinement, guided by the
equilibrated error estimator calculated in this basis, exhibits robust effectivity index
and provides final meshes with less DOF for the same error tolerance for higher
orders of the dG method.
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477935/2013-3.
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Numerical Experiments on a Nonlinear Wave
Equation with Singular Solutions

Thomas Hagstrom

Abstract We use a Fourier pseudospectral method to compute solutions to the
Cauchy problem for a nonlinear variational wave equation originally proposed as
a model for the dynamics of nematic liquid crystals. The solution is known to
form singularities in finite time; in particular space and time derivatives become
unbounded. Beyond the singularity time, both conservative and dissipative Hölder
continuous weak solutions exist. We present results with energy-conserving dis-
cretizations as well as with a vanishing viscosity sequence, noting marked differ-
ences between the computed solutions after the solution loses regularity.

1 Introduction

We consider the second order nonlinear wave equation

@2u

@t2
D c.u/

@

@x

�

c.u/
@u

@x

�

; (1)

supplemented by initial data u.x; 0/, @u
@t .x; 0/. Our experiments below deal with the

specific case

c2.u/ D ˛ cos2 uC ˇ sin2 u; (2)

which has been proposed as a simplified model for liquid crystals [15]; in this case
ex cos u C ey sin u represents the so-called director field, with ex the unit vector in
the direction of wave propagation and ey the unit vector in an orthogonal direction,
the orientations assumed to be confined to a plane. For smooth solutions we have
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that the energy:

E.t/ D 1

2

Z

"

�

@u

@t

�2

C c2.u/

�

@u

@x

�2
#

dx (3)

is conserved.
In recent years an interesting mathematical literature has developed devoted to

the analysis of solutions to (1). Pertinent facts include:

1. Solutions of the Cauchy problem with smooth data can develop singularities in
finite time [8]. Typical isolated singularities involve propagating solutions with
cusps, u / .x � xs/2=3; .t � ts/2=3, with .xs; ts/ space-time coordinates of a point
where the solution is not smooth, but slightly stronger singularities are possible
[4] and in general one can only prove that weak solutions are Hölder continuous
with exponent 1=2.

2. Unique conservative global weak solutions exist (e.g. [3, 12]). However, dissipa-
tive weak solutions can also be constructed (e.g. [2]), but global existence results
for dissipative solutions are only available under assumptions which do not hold
in our case [18].

There have also been a few publications proposing numerical methods. In [1, 13]
the authors develop approximations to a first order reformulation of the system
in Riemann-like variables, which is also the backbone of much of the analytical
work. In particular in [1] both conservative and dissipative discontinuous Galerkin
discretizations are developed, with the dissipation provided by a smoothness
indicator and a numerical flux. On the other hand the second order system is directly
discretized using a discontinuous Galerkin method in [17]. Again they propose
both a conservative scheme and a scheme with artificial dissipation. A convergence
theory is only given in [13], and then under assumptions which do not hold in our
case.

Our goals in this work are to study the convergence of conservative pseudospec-
tral discretizations of (1) and also to examine the convergence in the limit of
vanishing viscosity of resolved approximations to a related viscous equation.

2 Energy-Conserving Pseudospectral Discretizations

In an attempt to compute the unique conservative weak solution we considered
2�-periodic Cauchy data and experimented with two energy-conserving Fourier
pseudospectral discretizations. Note that the regularity properties of the solution
itself are sufficient to guarantee the uniform convergence of its Fourier series, so it is
not unreasonable to hope that the implicit regularization associated with truncating
the series would be sufficient to produce a convergent numerical scheme.
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Suppose S is any skew-symmetric discrete derivative operator. Given a discrete
solution vector, Uh, with

Uh
j .t/ 	 u.xj; t/

consider the semidiscretized system:

d2Uh
j

dt2
D Sjkc

2.Uh
k /SklU

h
l � c.Uh

j /c
0.Uh

j /
�

SjkU
h
k

�2

; (4)

where summations over k and l are implied. We first note that the semidiscretization
is consistent with strong solutions to (1) since one can rewrite

c.u/
@

@x

�

c.u/
@u

@x

�

D @

@x

�

c2.u/
@u

@x

�

� c.u/c0.u/
�

@u

@x

�2

:

Second, introducing the discrete energy

Eh.t/ D 1

2

X

j

 

dUh
j

dt

!2

C c2.Uh
j /
�

SjkU
h
k

�2

; (5)

we calculate using the skew-symmetry of S

dEh

dt
D
X

j

dUh
j

dt

d2Uh
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dt2
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dt
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�
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h
l

�
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�

SjkU
h
k
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D
X

j

dUh
j
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�

Sjkc
2.Uh

j /SklU
h
l � c.Uh

j /c
0.Uh

j /
�

SjkU
h
k

�2
�

�dU
h
j

dt

�

Sjkc
2.Uh

j /SklU
h
l � c.Uh

j /c
0.Uh

j /
�

SjkU
h
k

�2
�

D 0:

Thus the discrete energy is conserved:

Eh.t/ D Eh.0/: (6)

Here we try two different Fourier pseudospectral approximations, S. Assuming a
uniform grid

xj D 2�j

N
; j D 0; : : : ;N � 1;
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we denote by Fh the discrete Fourier transform and by Fh;� its inverse. Set

SU D Fh;�diag .ik/Fh:

Assuming N even we have k D �N=2; : : : ;N=2 � 1. We will refer to SU as
the unfiltered derivative operator. We also consider a filtered derivative operator
employing a spectral vanishing viscosity filter (e.g. [11, Ch. 9])

SF D Fh;�diag
�

ike�˛.
2k
N /

m�

Fh:

(In our experiments we set ˛ D m D 36 as suggested in [14].) It is easy to check
that both SF and SU are skew-symmetric.

In time we employ an energy-conserving discretization method for the semidis-
crete system. Precisely we use a symmetric eighth order multistep method taken
from [10, Ch. XIV], using the implementation gni_lmm2.f made available by
Hairer [9]:

Uh.tC�t/ D Uh.t/CUh.t � 6�t/� Uh.t � 7�t/

C �t2

8640

�

13207.G.t/CG.t�6�t//�8934.G.t��t/CG.t�5�t//
C42873.G.t� 2�t/CG.t � 4�t//� 33812G.t� 3�t/� :

Here G denotes the right-hand side of (4). For energy computations we use the finite
difference approximation to the time derivative provided in the code.

Remark 1 The formulation above applies to any skew-symmetric derivative approx-
imation, so, for example, S could be chosen to be any central difference operator.
Note that the spectral vanishing viscosity filter does not lead to a dissipative method
as it is only applied to the derivative computation.

In our experiments we choose ˛ D 1
2
, ˇ D 3

2
, matching the cases considered

in [1, 13, 17]. Our initial condition, also similar to those considered in the cited
references except for the assumption of periodicity, is:

u.x; 0/ D �

4
C e�5.1�cos x/;

@u

@t
.x; 0/ D �c.u.x; 0//@u

@x
.x; 0/: (7)

As in their simulations, we expect a singularity to form and continue the simulation
to t D 6� . We consider a sequence of grids with �x D 2�

N , N D 16;384,
N D 32;768 and N D 65;536, and �t D �x

20
. Experiments with different time

steps indicate that the error due to the spatial discretization is significantly larger
than the error due to the temporal discretization.
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2.1 Results

We first plot in Fig. 1 solutions and their energy spectrum,

S.k/ D jOu.k/j2 C jOu.�k/j2 (8)

with the finest discretization, N D 65;536, at t D � . This is before the development
of any singularities. Here the graphs are indistinguishable and a glance at the
spectrum shows they are very well-resolved.

Next consider the solutions with N D 65;536 at t D 3� , some time after the
singularity has occurred. (The time of its formation is roughly t D 4.) We see in
Fig. 2 that they are now diverging from one another. Moreover, the decay of the
energy spectrum is far less steep. A linear fit using modes with k � 103 yields slopes
of �3:5 for the unfiltered solution and �3:6 for the filtered solution. Assuming
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Fig. 1 Conservative solutions and energy spectrum at t D �
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Fig. 2 Conservative solutions and energy spectrum at t D 3�
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u 2 C2=3, consistent with the propagating singularities discussed in [4], we only
have the bound

S.k/ � Ck�4=3; (9)

so the observed decay is faster than expected.
To further assess the accuracy of these solutions we compare them in Fig. 3 at

different resolutions: N D 16;384, N D 32;768 and N D 65;536. We see that both
the unfiltered and filtered solutions appear to converge with grid refinement. Given
the differences between the two solutions we are left with the question of which, if
any, represent the unique conservative weak solution described mathematically in
[3, 12].

Finally consider the solutions with N D 65;536 at t D 6� . We see in Fig. 4 that
now they are completely different. A linear fit of the energy spectrum using modes
with k � 103 at this time again yields slopes of �3:5 for the unfiltered solution and
�3:6 for the filtered solution.
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Fig. 3 Grid convergence of conservative solutions at t D 3�
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Again, as proven in [3], there is a unique conservative weak solution, therefore
at most one of these numerical solutions can be an accurate approximation to a
conservative weak solution. We consider the question of whether either appears
converged at these discretization levels. To that end we plot in Fig. 5 the solutions
for each discretization of the derivative operator with N D 16;384, N D 32;768

and N D 65;536. For solutions computed with the unfiltered derivative we see
large differences for the three choices of N. With the filtered derivative, on the
other hand, solutions for different values of N match better, though the solution
with the finest grid exhibits larger deviations from those at the coarser grid levels.
At earlier times, such as t D 5� , there is apparent grid convergence in the filtered
case while the unfiltered solutions are still quite different. However, as observed
at t D 3� , it is possible for both conservative solutions to appear converged but
to differ from one another. Thus we see that the filtering operation does enable
grid convergence at these discretization levels over longer time intervals. As such
it produces a potentially accurate conservative solution well beyond the formation
of a singularity. However, further hard analysis is required to see if any of our
conservative solutions converge to the conservative weak solution at later times.

3 Vanishing Viscosity Models

As is well-known, admissible weak solutions for first order systems of conservation
laws can be obtained by adding generic viscosity terms and taking the limit as the
viscosity parameter approaches zero (e.g. [6]). Here we experiment with the addition
of a small viscous perturbation to (1):

@2u

@t2
D c.u/

@

@x

�

c.u/
@u

@x

�

C � @
3u

@x2@t
: (10)
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Now the energy equality reads

E.t/ D E.0/� �
Z t

0

Z

 

@2u

@x@t

!2

dxdt: (11)

For singular solutions of the type described in [4, 8] the integral term in (11)
quantifying the energy dissipation would be unbounded for any � > 0. Thus it
is possible that in the limit � ! 0 this integral will not vanish, distinguishing a
dissipative weak solution of the original problem. We note that our approach differs
from those in [1, 17] as they introduce numerical dissipation which depends on the
discretization parameters and on the solution.

Here we semidiscretize the system in a first order form in time, using the second
order Fourier differentiation operator

S2 D Fh;�diag
�

�k2
�

Fh;

dVh
j

dt
D SU;jkc

2.Uh
k /SU;klU

h
l � c.Uh

j /c
0.Uh

j /
�

SU;jkU
h
k

�2 C �S2;jkVh
k ;

dUh
j

dt
D Vh

j :

To march in time we then use the standard fourth order Runge-Kutta method. Note
that we expect these simulations to be reasonably well-resolved and so decided not
to employ the filtered first derivative operator, SF. We consider coarser meshes:
N D 4096, N D 8192 and N D 16;384 for � D 10�4 and � D 10�5, and N D 8192,
N D 16;384 and N D 32;768 for � D 10�6. Studies of grid convergence indicate
that these resolutions are sufficient. As our time stepping scheme is lower order
we choose smaller time steps than in the conservative case, �t D �x

100
. Experiments

with different time steps suggest that as in the previous case the spatial discretization
errors are dominant.

3.1 Results

We begin by comparing the energy evolution for the conservative discretizations
and the viscous simulations at the finest resolutions available. The results, shown
in Fig. 6, indicate a sharp energy loss occurring just prior to t D 4, which we
believe coincides with the development of a singularity in the inviscid solution.
Most important, in our view, is the fact that the total energy dissipation in this epoch
is fairly insensitive to the value of the viscosity parameter. This is suggestive of a
vanishing viscosity limit which involves energy dissipation.
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Fig. 7 Viscous solutions and energy spectrum at t D �

Beginning at t D � , we see in Fig. 7 that the viscous solutions are nearly identical
at early times and are very well-resolved. Moreover, as shown in Fig. 8, they are
nearly identical to the conservative solutions. (Note that throughout this section we
will compare viscous solutions to conservative solutions obtained using the spectral
vanishing viscosity filter based on the remarks above.)

Moving on to t D 3� , we again see in Fig. 9 excellent agreement between the
solutions obtained with various values of the viscosity parameter, and the energy
spectrum indicates that these are well-resolved. On the other hand we already
observe a large deviation between viscous and conservative solutions; see Fig. 10.

Finally at t D 6� we again see evidence of convergence as � ! 0 of the viscous
solutions, which appear to be sufficiently well-resolved. They also differ by a large
amount from the conservative solution (Figs. 11 and 12).

In Fig. 13 we consider the grid convergence of the viscous solutions with � D
10�5 and � D 10�6. Again this indicates that the chosen resolutions are adequate.



490 T. Hagstrom

0 1 2 3 4 5 6 7

x

0.2

0.4

0.6

0.8

1

1.2

1.4
u

=10 -6

SVV filtered

100 101 102 103 104 105

k

10-40

10-30

10-20

10-10

100

S

=10 -6

SVV filtered

Fig. 8 Comparison of conservative and viscous solutions at t D �

0 1 2 3 4 5 6 7

x

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

u

=10 -4

=10 -5

=10 -6

100 101 102 103 104

k

10-40

10-30

10-20

10-10

100

S

=10 -4

=10 -5

=10 -6

Fig. 9 Viscous solutions and energy spectrum at t D 3�

x

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

u

=10 -6

SVV filtered

100 101 102 103 104 105

k

10-40

10-30

10-20

10-10

100

S

=10 -6

SVV filtered

0 1 2 3 4 5 6 7

Fig. 10 Comparison of conservative and viscous solutions at t D 3�



Numerical Experiments on a Nonlinear Wave Equation with Singular Solutions 491

x

-6

-5.8

-5.6

-5.4

-5.2

-5

-4.8
u

=10 -4

=10 -5

=10 -6

100 101 102 103 104

k

10-40

10-30

10-20

10-10

100

S

=10 -4

=10 -5

=10 -6

0 1 2 3 4 5 6 7

Fig. 11 Viscous solutions and energy spectrum at t D 6�

0 1 2 3 4 5 6 7

x

-6

-5

-4

-3

-2

-1

0

1

2

u =10 -6

SVV filtered

100 101 102 103 104 105

k

10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

S

=10 -6

SVV filtered

Fig. 12 Comparison of conservative and viscous solutions at t D 6�

x

-6.2

-6

-5.8

-5.6

-5.4

-5.2

-5

-4.8

u

n=4096
n=8192
n=16384

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

x

-6

-5.8

-5.6

-5.4

-5.2

-5

-4.8

u

n=8192
n=16384
n=32768

Fig. 13 Grid convergence of viscous solutions at t D 6�



492 T. Hagstrom

4 Conclusions and Future Work

In conclusion, we have constructed and implemented conservative Fourier pseu-
dospectral discretizations of the nonlinear variational wave equation introduced by
Hunter and Saxton [15] to model the dynamics of director fields. Depending on our
construction of the discrete derivative operator—more precisely depending on the
use of a spectral vanishing viscosity filter—apparent grid convergence is observed
at some times beyond the time where a singularity develops. The filtered solution
displays grid convergence at later times than the unfiltered one. However, earlier on
both solutions are apparently converged but disagree with one another. Thus an open
question is what additional criteria, beyond energy conservation, must a numerical
scheme satisfy to guarantee convergence to the unique conservative weak solution.

In addition we pursue numerically a vanishing viscosity limit. Considering the
nonlinear wave equation (1) perturbed by a generic viscous term (10) we observe,
using well-resolved Fourier pseudospectral discretizations, apparent convergence to
a nonconservative solution as the viscosity parameter � is decreased. This leads to
the mathematical question of whether the vanishing viscosity limit distinguishes a
unique dissipative weak solution and if this solution is to be preferred as a model of
the physics.
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Numerical Solution of the Viscous Flow Past
a Cylinder with a Non-global Yet Spectrally
Convergent Meshless Collocation Method

Francisco Bernal, Alfa R.H. Heryudono, and Elisabeth Larsson

Abstract The flow of a viscous fluid past a cylinder is a classical problem in
fluid-structure interaction and a benchmark for numerical methods in computational
fluid dynamics. We solve it with the recently introduced radial basis function-based
partition of unity method (RBF-PUM), which is a spectrally convergent collocation
meshless scheme well suited to this kind of problem. The resulting discrete system
of nonlinear equations is tackled with a trust-region algorithm, whose performance
is much enhanced by the analytic Jacobian which is provided alongside. Preliminary
results up to Re D 60 with just 1292 nodes are shown.

1 Introduction

The steady flow of a viscous fluid past a fixed, perpendicular cylinder is one of the
simplest nontrivial problems in fluid dynamics. Moreover, it furnishes a relevant
model for fluid-structure interaction (for instance, bridge pillars or the drillpipe of
an oil platform, see Fig. 1). The problem was already tackled by Stokes [1], who
was unable to find an analytical solution; a situation which—to the best of our
knowledge—persists today. Consequently, it has been mostly studied numerically,
with a special interest in the structure of the wake (the recirculating region
immediately downstream the cylinder, shown in Fig. 1) and the drag coefficient,
as the Reynolds number (Re) grows.
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Fig. 1 (Left) Highly symmetric flow past a cylinder. (Right) An oil rig. Credit: VaderSS from
Wikipedia

The physical problem becomes unstable from Re 	 40 onwards, when small
perturbations in the symmetry of the incoming flow lead to an asymmetric vortex
structure in the wake (the well-known Von Karman vortex street). In highly
controlled laboratory conditions, it is possible to delay the onset of the physical
instability until a higher value of Re, resulting in the symmetric, but unstable, pattern
shown on Fig. 1 (left).

From a numerical point of view, it is certainly possible to enforce symmetric
conditions to arbitrary Re (unlike with the physical problem). However, as Re
grows, the discretized equations become more and more ill-conditioned and it is
challenging to keep the numerical simulation stable. (The roundoff errors appearing
during the iterations of the nonlinear mathematical problem act in a similar way as
flow perturbations and are prone to pick up the physical instability.) Another source
of difficulty is derived from the fact that the computational domain must be very
large compared with the area of interest (the wake), in order to enforce the far field
boundary conditions (BCs) at a finite distance. These and other aspects are discussed
in detail by Fornberg, who solved the flow problem up to Re D 600 [2] (with Re
based on the cylinder diameter).

In this paper, we present a novel approach based on three ingredients. First,
instead of the streamfunction/vorticity formulation, we follow [3] in using the nat-
ural variables and apply a transformation of the unbounded domain into a finite
rectangle (Sect. 2). Second, we discretize the resulting equations according to the
recently introduced Radial Basis Functions-based Partition of Unity method (RBF-
PUM) [4]. RBF-PUM has all the advantages of RBF collocation—such as spectral
accuracy for smooth functions and flexibility in the choice of discretization—
while being able to tackle much larger problems (Sect. 3). Third, in Sect. 4 the
analytical Jacobian of the nonlinear algebraic system is derived, which is critical
for convergence. This idea was introduced in [5], allowing highly nonlinear elliptic
problems to be solved with RBF meshless methods. Preliminary results up to
Re D 60 are presented and briefly discussed in Sect. 5, and Sect. 6 concludes the
paper with pointers to future work.
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2 Transformed Navier-Stokes Equations

A fixed, infinite circular cylinder of radius a > 0 is immersed in a fluid of kinematic
viscosity � > 0, which flows steadily perpendicularly to the cylinder with far-
field velocity U > 0 and far-field pressure P0. The Reynolds number (based on
the diameter) is Re D 2aU=�. By symmetry, the problem is two-dimensional, with
the obstacle being the circular section. Let .x; y/ be a Cartesian dimensionless frame
(with a D 1) centred at the axis; .r; '/ polar coordinates (where ' D 0 marks the
direction of advance of the flow); u D .u; v/ the dimensionless velocity field (with
U D 1); P the pressure and p D P � P0. The steady Navier-Stokes equations are
then given by

Re

2
.u � r/u D r2u � rp; r � u D 0:

They are supplemented with five boundary conditions:

u.r D1; '/ D 1; v.r D 1; '/ D 0; (unperturbed flow)

u.r D 1; '/ D 0; v.r D 1; '/ D 0; (non-slip condition)

p.r D 1; '/ D 0: (unperturbed pressure)

Instead of taking a large finite domain and enforcing the BCs far away from the
cylinder, the infinite domain is compressed into the rectangle Œ0; 1�� Œ0; 2�� via the
following transformation [3]:

� D 1 � 1=r . such that �.r D 1/ D 0 and �.r D1/ D 1/:

Moreover, @=@r D .1 � �/2@=@�, so that the unit vectors point in the same
direction: ir D i� . Denoting as P� and P' the components of the fluid velocity in
the new coordinates, the velocity field is transformed as

u D P�ir C .1 � �/ P'i':

(Note that the dot notation is intuitive for velocities and useful so as not to overload
the notation, but recall that the problem is steady and involves no time derivatives.)
We also introduce the following notation: @2�' P' D @2 P'=@�@', @'p D @p=@', etc.
The Navier-Stokes equations in the variables .�; '/ are

W1 DW2 DW3 D 0; (1)
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Fig. 2 Transformed BCs. The infinite angular section (1 � r <1; 0 � ' � �) sketched above
has been compressed into the rectangle Œ0; 1� � Œ0; ��

where:

W1

�

�; P�; P'; @� P�; @' P�; @' P'; @�p; @2�� P�; @2'' P�
� D Re

2

h

.1 � �/ P�@� P� C P'@' P� � P'2
i

C

.1 � �/@�p � .1 � �/3@2�� P� � .1 � �/@2'' P� C .1 � �/2@� P� C 2.1 � �/@' P' C .1 � �/ P�;

W2

�

�; P�; P'; @' P�; @' P'; @� P'; @'p; @2�� P'; @2'' P'
� D Re

2

h

.1 � �/ P�@� P' C P'@' P' C P� P'
i

C

@'p � .1 � �/3@2�� P' � .1 � �/@2'' P' C .1 � �/2@� P' � 2.1 � �/@' P� C .1 � �/ P';
W3

�

�; P�; @� P�; @' P'
� D .1 � �/@� P� C @' P' C P�:

(2)

Remark The last two terms in [3, formula .7/] are seemingly wrong.
Moreover, since the problem is symmetric along the x axis, only 0 � ' � �

needs to be considered. (The boundary conditions along the x axis are now of reflect-
ing type to enforce the symmetry.) The transformed BCs are sketched in Fig. 2.

3 Meshless Discretization Using the RBF-PUM

In this section we briefly review the formulation described in detail in [4].

Kansa’s Method Let q D .�; '/ D2 ˝ � R
2, where ˝ D Œ0; 1� � Œ0; ��,

and let the pointset fq1; : : : ;qNg be a discretization of ˝ and its boundary @˝
into N scattered, distinct points (called nodes). A Radial Basis Function (RBF)
approximation to the pressure is the RBF interpolant

p.�; '/ D p.q/ D
N
X

iD1
�i�i.jjq� qijj/: (3)

Remark For notational convenience, we use the symbols P�; P', and p both for the
exact solution of equation (1) and for their RBF interpolants.
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Above, jj � jj is the Euclidean norm, and �i.q/ is the chosen RBF, which also
contains a shape parameter ε > 0. For instance, the Gaussian RBF

�i.q/ D exp
� � .εjjq� qijj/2

�

:

The RBF coefficients �1; : : : ; �N can be found by collocation. Requesting that
p.q/ in (3) interpolates the nodal pressures p.q1/; : : : ; p.qN/ leads to

0

B

B

@

p1
:::

pN

1

C

C

A

D

0

B

B

@

�1.q1/ : : : �N.q1/
:::

: : :
:::

�1.qN/ : : : �N.qN/

1

C

C

A

0

B

B

@

�1
:::

�N

1

C

C

A

) � D Œ���1p;

where we have introduced the notation of nodal vectors and matrices. Moreover,
given fi W ˝ 7! R; 1 � i � N, then f.q/ 2 R

N D Œ f1.q/; : : : ; fN.qN/�. Note that
(with a fixed ε) Œ�� is symmetric since Œ��ij D �j.jjqi � qjjj/ D �i.jjqj � qijj/ D
Œ��ji. This allows to express the RBF interpolant in terms of the (unknown) nodal
pressures rather than RBF coefficients,

p.q/ D �T.q/� D �T.q/Œ���1p D  T.q/p; (4)

where

 .q/ D Œ���1�.q/)  i.qj/ D ıij (Kronecker’s delta):

The functions  i.q/ are the cardinal basis functions of the RBF � and the
pointset.

Linear boundary value problems (BVPs) can readily be solved as follows. Let the
PDE be defined by the interior operator LPDEp D f and the BCs by the boundary
operator LBCp D g. For notational convenience, let the entire BVP be described by
L D h, where h.q/ and Lq are

L D
(

LPDE; if q 2 ˝=@˝;
LBC; if q 2 @˝; h.q/ D

(

f .q/; if q 2 ˝=@˝;
g.q/; if q 2 @˝:

Applying L on the RBF interpolant of p yields the square linear system

Lp.q/ D �L�1.q/; : : : ;L�N.q/
�T
Œ���1p D h; (5)

whose solution is p, and p.q/ can be reconstructed on˝ [ @˝ by (4).
The just described algorithm is easy to code, meshfree, geometrically flexible

and spectrally convergent for smooth problems (see [5]). A drawback is that the last
property comes at the expense of a fully populated matrix in (5). For this reason, it is
often thought that Kansa’s method loses many of its advantages after a few thousand
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Fig. 3 PURBF discretization in the numerical example in Sect. 5. (Left) Nodes in real space.
(Right) Nodes in the .�; '/ frame, with a cover overlaid

nodes. The RBF-PUM pushes N beyond that without loss of performance. It does
so by “embedding” Kansa’s method into a higher level of discretization, in order to
attain a sparse matrix.

RBF-PUM Let f˝jgMjD1 such that ˝ � [N
jD1˝j be an open cover of˝ satisfying a

pointwise overlap condition and

8q 2 ˝; ,.q/ D f j j q 2 ˝jg and #,.q/ � K;

where # is the cardinal of the set, and K a constant independent of M. Further, let
fwj.q/gMjD1 be a partition of unity on ˝ (i.e. 8q 2 ˝;PM

jD1 wj.q/ D 1) subordinate

to the cover. (Fig. 3 shows an illustrative pointset and cover.) For wj being C2, this
can be attained with Shepard’s method, using circular patches ˝j and Wendland’s
compactly supported RBF, �W.q/:

wj.q/ D �W.q/
P

k2,.q/
�W.q/

where �W.q/ D
(

.1 � jjqjj/4.4jjqjj C 1/ if 0 � jjqjj � 1;
0 if jjqjj > 1:

(6)

The solutions of p.q/ on each patch of the cover—i.e. pj.q/ D p.q 2 ˝j/—can
be “glued together” by means of the partition of unity:

p.q/ D
X

j2,.q/
wj.q/pj.q/: (7)
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pj.q/ can be expressed in terms of the nodal values on patch j, and by linearity,

Lp.q/ D
X

j2,.q/

X

k2˝j

L
�

wj.q/ k.q/
�

pk:

Specifically, partial derivatives can be computed according to the formula

@j˛j
@q˛

p.q/ D
X

j2,.q/

X

k2˝j

@j˛j
@q˛

�

wj.q/ k.q/
�

pk D
X

j2,.q/

X

k2˝j

"

X

ˇ�˛

 

˛

ˇ

!

@j˛�ˇjwj

@q˛�ˇ
@jˇj k

@qˇ

#

pk;

where @j˛j=@˛ is the usual multi-index notation [4]. For instance, the angular
derivative at a node with � D � 0 and ' D ' 0 is

@'p.�
0; ' 0/ D

X

j2,.q0/

X

k2˝j

�@wj

@qy
.q0/ k.q0/C wj.q0/

@ k

@qy
.q0/

�

pk ) @'p D @'p.p/:

Above, we stress the fact that partial derivatives of an RBF interpolant can
be expressed as a linear combination of its nodal values, with the coefficients
depending only on the discretization (i.e. pointset, cover, partition of unity and
RBFs), but independent of the function being differentiated. Therefore, one can
explicitly compute the matrices for the nodal vectors of the required derivatives
at start, and reuse them as needed. For instance, in the previous example, calling
�

.@'p/1; : : : ; .@'p/N
�T DW @'p W Œ@'�p, with

Œ@'�mn D
8

<

:

P

j2,.qn/
� @wj

@'
.qm/ n.qm/C wj.qm/

@ n
@'
.qm/

�

if ,.qm/\,.qm/ ¤ ;;
0 otherwise:

(8)

Note that matrices such as Œ@'� are very sparse because only entries with indices
associated to nodes in overlapping patches are nonzero. Analogously, let us define
the RBF interpolants of P�.�; '/ and P'.�; '/ as

P�.q/ D
X

j2,.q/

X

k2˝j

�

wj.q/ k.q/
� P�k; P'.q/ D

X

j2,.q/

X

k2˝j

�

wj.q/ k.q/
�

P'k:

Since there are three PDEs in (1), the RBF collocation system has 3N equations
with 3N unknowns ( P�; P';p). Let us define the system nodal vector as

X D . P�1; : : : ; P�N ; P'1; : : : ; P'N ; p1; : : : ; pN/T : (9)

We shall now tackle the collocation of the complete Navier-Stokes equations. Let
us start with the BCs, which are linear. We shall assume, without loss of generality,
that there are NB < N nodes discretizing @˝ and that they are ordered first: qi 2 @˝
iff i � NB. Moreover, the BC nodes are in turn ordered as follows: first, the set FAR
of far-field nodes (with � D 1); then, the set AXIS of nodes on the x�axis (with
either ' D 0 or ' D �); and finally, the set CYL of nodes on the cylinder (with
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� D 0). For an N �N matrix ŒL� such as Œ@' � in (8), let ŒL�SET�N represent the block
with all the N columns and the #SET rows in the set SET. Then, collocation of the
BCs in Fig. 2 yields the following contiguous matrix block B of size #BCs � 3N,
where #BCs D 3.#FARC #AXIS/C 2#CYL and I is the N � N identity matrix:

0

B

B

B

B

B

B

B

B

B

B

B

B

@

IFAR�N 0 0

0 IFAR�N 0

0 0 IFAR�N
Œ@' �AXIS�N 0 0

0 Œ@'�AXIS�N 0

0 0 Œ@'�AXIS�N
ICYL�N 0 0

0 ICYL�N 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

X DW BX D

0

B

B

B

B

B

B

B

@

�

cos'1; : : : ; cos'#.FAR/
�T

� � sin '1; : : : ;� sin '#.FAR/
�T

0
:::

0

1

C

C

C

C

C

C

C

A

:

(10)
The collocations of the nonlinear operatorsW1;W2, andW3 on the interior nodes

follow. They are 3N � #BCs nonlinear algebraic equations in X. (For instance, a
product like P�@� P� depends quadratically on X.) We write W.q0;X/ to denote the
collocation of a nonlinear operator W acting on the RBF interpolants at node q0.
In sum, the discretized system of collocation equations reads (note that W3 is also
enforced on the nodes in CYL)

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

BX
W1.qNBC1;X/

:::

W1.qN ;X/
W2.qNBC1;X/

:::

W2.qN ;X/
W3.qNB�#CYLC1;X/

:::

W3.qN ;X/

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

D

0

B

B

B

B

@

g
0
:::

0

1

C

C

C

C

A

; or

 

BX
W123.X/

!

D

0

B

B

B

B

B

B

B

B

B

@

cos'1
:::

� sin'#FAR

0
:::

0

1

C

C

C

C

C

C

C

C

C

A

:

(11)

Elimination of the BCs The blockB in (10) and (11) contains only linear equations
because the BCs are linear. It is advantageous to eliminate them before solving the
nonlinear equations, also shrinking the size of the system to be solved. An optimally
stable way of doing so is described in [5], which involves the QR decomposition
of B:

BT˘ D �Q1Q2
�

"

R
0

#

;
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where ˘ is a permutation matrix, R is upper triangular, and Q1 2 R
3N�#BCs and

Q2 2 R
3N�.3N�#BCs/ are made up of orthogonal columns. Then, the solution vector

X can be expressed in terms of a fixed vector and a smaller vector Y (which remains
to be found) as

X D Q1R
�T˘TgC Q2Y: (12)

After solving for Y, the nodal values of pressure and velocity (i.e. the vector
X in (9)) can be found according to (12), and with them the pressure and velocity
anywhere in the infinite domain can be reconstructed by virtue of (6) and (7). The
nonlinear system of equations to be solved is thus

W123

�

Q1R
�T˘TgC Q2Y

� D 0: (13)

(#PDEs WD 3N � #BCs nonlinear equations in #PDEs unknowns Y).

4 Analytic Jacobian of the RBF-PUM System

In order to solve (13), we apply the trust region algorithm, which transforms
a rootfinding problem (the root being the vector solution of the system) into a
minimization problem for the sum-of-squares residual in R

#PDEs. The method in the
context of RBF approximations is discussed in detail in [5]. Because the residual
landscape is highly nonconvex, it is critical both for convergence and for speed that
the analytic Jacobian (i.e. the matrix J such that Jij D @.W123/i

@Yj
) be available. It is

given by (see [5])

J D
X

kD1

0

B

B

B

B

B

B

B

B

@

diag
h

@W1

@

�

Lk P�
�

ih

Lk

i

diag
h

@W1

@

�

Lk P'
�

ih

Lk

i

diag
h

@W1

@

�

Lkp

�

ih

Lk

i

diag
h

@W2

@

�

Lk P�
�

ih

Lk

i

diag
h

@W2

@

�

Lk P'
�

ih

Lk

i

diag
h

@W2

@

�

Lkp

�

ih

Lk

i

diag
h

@W3

@

�

Lk P�
�

ih

Lk

i

diag
h

@W3

@

�

Lk P'
�

ih

Lk

i

diag
h

@W3

@

�

Lkp

�

ih

Lk

i

1

C

C

C

C

C

C

C

C

A

Q2: (14)

The diagonal matrices diagŒF� in (14) have diagonal entries F.q#BCsC1/; : : : ;
F.qN/ (i.e. are collocated of the interior nodes of the pointset, where the PDEs
apply). Formally, the sum includes all the derivatives up to second order, but note
that many of them are zero. As an example, we list the nonzero Fréchet derivatives
of W3 (check (2) for the rest):

@W3

@.@� P�/
D 1 � �; @W3

@.@' P'/ D �1;
@W3

@. P�/ D �1;
@W3

@.�/
D �@� P�: (15)
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Fig. 4 Sparsity pattern of the
Jacobian for the discretization
in Fig. 3
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After collecting all of the surviving Fréchet derivatives, it turns out that the nodal
matrices involved are I (the N � N identity), Œ@2�� �, Œ@

2
''�, Œ@� � and Œ@'�. The sparsity

pattern of J for the illustrative RBF-PUM discretization shown in Fig. 3 is sketched
in Fig. 4.

The analytical Jacobian does not ensure convergence, and for highly nonlinear
PDEs the Hessian is required [5]. In this paper, however, we shall not consider it.
The dogleg method for solving the trust-region subproblem is chosen due to its
better conditioning and because it is already implemented as an option in Matlab’s
fsolve. Since global convergence is missing, we use the flow solved at a smaller
Re as an initial guess for the iterations. The attainable Re is ultimately limited by
the quality of the interpolant, the condition number of J, and by the resolution of
the wake region provided by the meshless discretization.

5 Preliminary Results up to Re D 60

We illustrate the numerical method discussed in this paper with an example. It is
preliminary because the discretization is small enough that the flow problem can be
solved on a laptop, and because no effort has yet been made to optimize the location
of the collocation points, which is one of the most interesting features of meshless
formulations, and a well known strategy to improve performance. Thus, there are
N D 1292 nodes forming a grid in Œ0; 1� � Œ0; ��, corresponding to the locations in
physical space shown on the left side of Fig. 3 (the physical nodes for � D 1 lie at
the infinity and are obviously not shown).

Figure 4 shows the sparsity pattern of the RBF-PUM Jacobian. We report the
wake structure for growing Re between Re D 0:1 and Re D 60. As reported in [2],
recirculation starts at about Re D 40—see Fig. 5. After Re D 60, the discretization
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of the wake is inadequate and trust-region algorithm ceases to converge to a root,
which is revealed by the fact that iterations stall at a value X1 for which J.X1/
is numerically singular (see [5] for details). In order to proceed further, a denser
pointset with nodes more concentrated in the wake region is necessary, which in turn
calls for a more powerful computer than a laptop; it is thus left as future work. It is,
however, remarkable that Re D 60 can be attained with fewer than 1300 collocation
nodes.

6 Conclusions and Future Work

RBF-PUM is a promising spectral, meshless method that combines the flexibility
and simplicity of RBF collocation, with the possibility of tackling much larger
problems than before (in terms of the discretization size), thanks to the resulting
sparse structure. RBF-PUM is currently being investigated along several directions.
Tailored preconditioners [6] and parallel implementations [7] have also been already
proposed. In this paper, we have tested RBF-PUM on a benchmark problem in fluid
dynamics. This is a challenging test due to the far-field BCs, as well as the numerical
instability and nonlinearity compounding fast with growing Re. We have presented
some numerical results from a preliminary, straightforward laptop implementation.
By refining the discretization to the limit of the computational resources, we were
able to solve the flow up to Re 	 60, when the first eddies appear—qualitatively
matching the expected flow pattern.

In order to proceed further, we plan to implement the method presented here
on a parallel computer. We expect that by refining the discretization—adaptively if
necessary—it will be possible to resolve the finer eddies appearing at higher Re. We
also plan to enhance the convergence of the trust-region algorithm for the nonlinear
system by incorporating Hessian information—a strategy which was deemed critical
for highly nonlinear problems in [5]. With adequate computational resources, the
related problem—albeit three-dimensional—of viscous flow past a sphere could
be tackled with a very similar approach. Finally, by calculating and comparing the
numerical drag coefficient with the experimental values over a wider range of Re, it
will be possible to assess the convergence rate of the method for this problem.

Acknowledgements F. Bernal acknowledges support from FCT grant SFRH/BPD/79986/2011
and INESC-ID. A. Heryudono is partially supported by NSF Grant DMS 1552238.
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On Multiple Modes of Propagation
of High-Order Finite Element Methods
for the Acoustic Wave Equation

S.P. Oliveira

Abstract Earlier analyses of numerical dispersion of high-order finite element
methods (HO-FEM) for acoustic and elastic wave propagation pointed out the
presence of multiple modes of propagation. The number of modes increases with
the polynomial degree of the finite element space, and since they were regarded as
numerical artifacts, the use of HO-FEM was discouraged on wave propagation prob-
lems. Later on, alternative techniques showed that numerical dispersion decreases
with the polynomial degree, and were supported by the success of spectral element
methods on seismic wave propagation. This work concerns the interpretation of
multiple propagation modes, which are solutions of an eigenvalue problem arising
from the HO-FEM discretization of the wave equation as approximations to an
eigenvalue problem associated with the continuous wave equation. By considering
a continuous version of the standard periodic plane wave whose amplitude depends
on the element grid, there are multiple combinations of the amplitude coefficients
that yield exact solutions to the acoustic wave equation. Hence, modes regarded as
non-physical can be associated with feasible propagation modes. Under this point of
view, one can separately analyze each propagation mode or focus on the acoustical
(constant amplitude) mode.

1 Introduction

Independent efforts from several fields of study such as acoustics, electromag-
netism, mechanics, and seismic wave propagation have contributed to build a solid
background in the numerical simulation of wave propagation. One of the concerns
that most of these fields share is about how many grid points per wavelength are
sufficient to guarantee that the wave will travel at the correct speed. To retrieve this
information means to study the numerical dispersion of the solution scheme.
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Finite element methods (FEM) have long been popular in time-harmonic acous-
tics [22] and have also been successful on computational seismology in a high order
version known as the spectral element method [13, 21]. The standard methodology
of assessing numerical dispersion of FEM is to plug a discrete plane wave into
the finite element stencil assuming an infinite, periodic mesh [4, 14]. When finite
elements have interior nodes, one can separate them into sets which share the same
degrees of freedom and are located at the same cyclically repeating location in
the mesh pattern [11]. The numerical dispersion relation is then expressed by an
eigenvalue problem. In the particular case of 1D quadratic elements, the eigenvalues
have been referred as acoustical and optical branches, in analogy with the theory of
wave propagation into crystal structures [4, 5]. However, one should exercise caution
in attaching any physical significance to the terms “acoustical” and “optical” in the
finite-element context [1].

Except for the quadratic case [1, 4, 6, 8, 10, 12], multiple modes of propagation
implied by the standard analysis of high-order FEM are not fully understood. The
classical interpretation is that only one eigenvalue is physically meaningful (in the
case of the acoustic wave equation), while the others are regarded as computational
modes [6, 14]. Since the dimension of the eigenvalue problem (and thus the number
of “spurious” modes) increases with polynomial degree, FEM wave simulation
should deteriorate if a high order is employed.

Alternative analyses have been proposed later on. Thompson and Pinsky [23]
uses static condensation of the internal degrees of freedom, so that the eigen-
value system involves only element end nodes (see also [18]). Departing from a
decomposition of the finite/spectral element space, Ainsworth and Wajid [2, 3]
also formulate the discrete dispersion relation without internal degrees of freedom.
Mulder [16] applies the discrete Fourier transform (DFT) sampled in the mesh nodes
to the spatial operator and matches its eigenpairs with the transformed plane waves
and their (normalized) wavenumbers. Under this setting, spurious modes provide
reasonable approximations of particular eigenvectors of the exact operator. The
eigenvalues of the spatial operator must be properly ordered to assure eigenpair
matching, and it this ordering remains an open problem.

A similar identification problem is finding the acoustical branch, i.e., the
eigenvalue mode that approximates the dispersion relation of the continuous wave
equation. Cohen et al [7] identify the acoustical mode by a Taylor series expansion.
Abboud and Pinsky [1] writes the amplitude-variable discrete plane wave as a linear
combination of discrete plane waves and classify the modes with the dominating
coefficient of the combination. Seriani and Oliveira [19] identify acoustical modes
by a Rayleigh quotient approximation of the constant-amplitude mode. A similar
analysis was done for the elastic wave equation [17, 20].

The above mentioned references provide clear evidence that the spectral element
method is able to handle numerical dispersion, but do not sufficiently address the
contribution and/or the interpretation of all propagation modes. Moura et al. [15]
have recently presented a detailed description of the contribution of these modes
and pointed out that the secondary modes not only have a smaller amplitude than
the primary (acoustical) mode, but also improve the numerical approximation.
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The present work revisits Abboud and Pinsky’s approach of recasting the discrete
plane wave as a combination of constant-amplitude modes. However, a linear
combination of continuous plane waves is employed, as suggested by Durran [10].
Each continuous plane wave is a solution of the acoustic wave equation (given
that their parameters satisfy the exact dispersion relation), thus we have multiple
solutions that can be matched with the multiple modes of the discrete problem.

The paper is organized as follows: Section 2 reviews the classical dispersion
analysis of high-order FEM with emphasis on 1D quadratic elements, for which
analytical expressions for the eigenvalues and eigenvectors are available. Section 3
provides the linear combination of continuous plane waves associated with the
discrete solutions from quadratic andN-th degree elements. Discrete and continuous
modes are numerically compared.

2 Classical Dispersion Analysis of Quadratic Elements

By plugging a plane wave u.x; t/ D exp.�i .!t � #x// into the one-dimensional
acoustic wave equation with constant velocity c,

@2u

@t2
.x; t/ D c2

@2u

@x2
.x; t/; (1)

we find the dispersion relation ! D ˙c#.
Let us consider the finite-element spatial discretization of (1),

M
@2u
@t2

.t/C c2Ku.t/ D 0; (2)

with piecewise quadratic shape functions. In the classical analysis of numerical
dispersion, we consider an infinite mesh with nodes xk D kh=2, where h is the
element length, and take the approximate solution uj.t/ 	 u.xj; t/ as a discrete
plane wave with periodic amplitude, i.e.,

uj.t/ WD Aje
�i .!ht�#xj/; Aj D

(

A0; j is even;
A1; j is odd:

(3)

As pointed out in [1, 5], uj.t/ can also be written as the combination of two
discrete plane waves traveling with different velocities:

uj.t/ D a0e
�i .!ht�#xj/ C a1e

�i .!ht�.#�2�=h/xj/; (4)

a0 D A0 C A1
2

; a1 D A0 � A1
2

: (5)
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By substituting (3) into (2), we find the eigenvalue problem Cv D �v, where
v D ŒA0;A1�T , � D .h!h=c/2,

C D 4

3 � cos
�

4�
G

�

2

6

4

16C 4 cos
�

4�
G

�

�20 cos
�

2�
G

�

cos
�

2�
G

�

�

3 cos
�

2�
G

�2 � 13
�

10

3

7

5 ; (6)

and G D �=�x D 4�=.#h/ is the number of grid points per wavelength, noting that
the spacing between nodes is �x D h=2. The solutions to Cv D �v are

�˙ D 4
13C 2 cos

�

4�
G

�

˙
r

124� 11 cos
�

4�
G

�2 C 112 cos
�

4�
G

�

3 � cos
�

4�
G

� (7)

v˙ D

2

6

6

4

3C 2 cos
�

4�
G

�

˙
r

124� 11 cos
�

4�
G

�2 C 112 cos
�

4�
G

�

13 cos
�

2�
G

�

� 3 cos
�

2�
G

�3

3

7

7

5

: (8)

Figure 1 shows the normalized angular frequencies !ḣ �x=.2�c/, as well as the
amplitude ratios A1̇ =A0̇ . The solution closer to the continuous dispersion relation
! D ˙c# is known as the acoustical branch, while the other is known as the optical
branch [4].
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Fig. 1 Propagation modes of the quadratic finite element method: (a) Normalized angular
frequency (the thin, solid line corresponds to ! D c#); (b) amplitude ratio
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3 Continuous Modes Related to Variable Amplitudes

Durran [10] argues that the discrete plane wave with non-constant amplitude can
be seen as grid values of a function in the form g.x/ exp.�i .!ht � #x//, where
g.x/ accounts for the extra spatial dependence implied by the amplitude degrees of
freedom. Indeed, it follows from (4) that uj.t/ D Qu.xj; t/, where

Qu.x; t/ D a0e
�i .!ht�#x/ C a1e

�i .!ht�.#�2�=h/x/ D g.x/e�i .!ht�#x/;

g.x/ D a0 C a1e
i .2�=h/x: (9)

Can the function Qu.x; t/ in (9) be a solution to the wave equation? This question
may be recast as the following problem: find ˛0, ˛1, and ! such that

u.x; t/ D ˛0e�i .!t�#x/ C ˛1e�i .!t�.#�2�=h/x/ (10)

satisfies (1). By substituting (10) into (1), we find the following solutions (leaving
out the trivial case ˛0 D ˛1 D 0):

˛0 D 1; ˛1 D 0; ! D ˙c#I (11)

˛0 D 0; ˛1 D 1; ! D ˙c.# � 2�=h/: (12)

Note that uj.t/ in (3) approximates u.xj; t/ in (10) if

!h 	 !; A0 	 ˛0 C ˛1
2

; A1 	 ˛0 � ˛1
2

: (13)

Each solution (7)–(8) of the eigenvalue problem Cv D �v approximates the
exact solution u.x; t/ defined by one of the solutions (11)–(12) of the corresponding
continuous problem (Fig. 2). Under this interpretation, neither eigenvalue mode is
spurious.

The same argument applies to finite elements of degree N. In general, grid nodes
are xj D xN kCl D khC �lh;where �l is the l-th collocation point .0 � l � N/. Let us
consider equally spaced collocation points �l D l=N, so that xN kCl D .N kC l/h=N.
At an infinite, periodic grid, system (2) has N distinct equations. Substituting into
these equations a discrete solution in the form

uN kCl.t/ D AN kCle
�i .!ht�#xN kCl/; AN kCl D Al .0 � l < N/; (14)

we find an N � N eigenvalue system Cv D �v where, as in the quadratic case,
� D .h!h=c/2 and v D ŒA0; : : : ;AN�1�T . As in (9), uj.t/ can be seen as grid values
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Fig. 2 Propagation modes of the quadratic finite element method: (a) Normalized angular
frequency !h�x=.2�c/ with !h � ˙c# (solid) and !h � ˙c.# � 2�=h/ (dashed); (b)
amplitude ratio A1=A0 with A0;A1 approximated as in (13) and f˛0; ˛1g D f1; 0g (solid) and
f˛0; ˛1g D f1; 0g (dashed). Thinner solid and dashed lines correspond to exact solutions

of the continuous function

Qu.x; t/ D
N�1
X

lD0
ale
�i .!ht�.#� 2�

h l/x/: (15)

It follows from (14) and (15) that coefficients al and Al are related as follows:

Al D
N�1
X

jD0
aje
�i 2�N jl; i.e., ŒA0; : : : ;AN�1� D N DFTŒa0; : : : ; aN�1�; (16)

where DFT denotes the discrete Fourier transform. The function corresponding to
u.x; t/ in (10) with general N is given as

u.x; t/ D
N�1
X

lD0
˛le
�i .!t�.#� 2�

h l/x/: (17)

There exist N possible coefficients fŒ˛0; : : : ; ˛N�1�; !g such that function u.x; t/
in (17) is a solution of the acoustic wave equation (1), namely

˛
. j/
l D ılj .0 � l � N � 1/; !. j/ D ˙c

�

# � 2�
h
j

�

; 0 � j � N � 1: (18)

Remark 1 One can find alternative sets of solutions (with identical grid values) by
replacing # � 2�l=h with # � 2�.lC qN/=h in (17), where q is an arbitrary integer.
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Fig. 3 Numerical dispersion the fourth-degree finite element method: (a) Normalized angular
frequency !h�x=.2�c/, �x D h=4. Dashed lines are ! D ˙.# � 2� l=h/, l 2 Z; and the thicker
solid line corresponds to the acoustical mode; (b) Relative phase velocity error for the acoustical
mode

We match each discrete solution in the form (14) with one of the continuous
solutions defined by (18). Note that uNkCl.t/ 	 u.xNkCl; t/ if !h 	 ! and

Œa0; : : : ; aN�1� 	 Œ˛0; : : : ; ˛N�1�; Œa0; : : : ; aN�1� D 1

N
IDFTŒA0; : : : ;AN�1�:

(19)

Dashed and solid lines in Fig. 3a illustrate the matching between exact and
approximate angular frequencies when the polynomial degree is N D 4 (additional
exact solutions pointed out in Remark 1 were also considered). Unlike the quadratic
case, not all numerical frequencies are equivalent to each other. Nevertheless, each
mode can be seen as the approximation of a feasible solution. The relative phase
velocity error of the acoustical mode !h 	 c# is shown in Fig. 3b.

To locate the acoustical mode, one can find, for each #, the numerical angular
frequencies !.1/h ; : : : ; !

.N/
h from the eigenvalue system Cv D �v and then find the

index that minimizes fj!.i/h � !acoj; 1 � i � Ng, where !aco D c#.
This procedure becomes more efficient if, rather than solving Cv D �v for all �,

we solve for the eigenvalue that is closer to �aco D .h!aco=c/2. For this purpose, we
use the inverse iteration algorithm [24] to compute the eigenvalue �� of C � �acoI
with smallest magnitude and find !�h such that �� C �aco D .h!�h =c/2.
Remark 2 Is it not necessary to explicitly build the eigenvalue system Cv D �v,
which involves matrix inversion. For computational purposes it is more convenient
to build a generalized eigenvalue system QKv D � QMv (see, e.g., [9] for details).
Accordingly, we may find the acoustical mode by applying the inverse iteration
algorithm to the generalized eigenvalue problem . QK � �aco QM/v D � QMv.
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Fig. 4 Relative phase velocity error of finite elements of degree N D 2; 4; 8: (a) Gauss-Lobatto-
Legendre (GLL) points; (b) Equally-spaced points

Remark 3 When the collocation points �l are not evenly spaced, as usual on spectral
element methods, the amplitude coefficients A0; : : : ;AN�1 are no longer related to
the exact amplitudes ˛0; : : : ; ˛N�1 through the discrete Fourier transform. On the
other hand, the numerical angular frequencies are handled exactly as in the case
�l D l=N. Figure 4 shows the relative phase velocity errors for degrees N D 2; 4; 8

for Gauss-Lobatto-Legendre collocation points, considering that mass and stiffness
matrices are computed with the quadrature defined by these points. Phase errors
for consistent elements with equally-spaced collocation points are presented as
well. Note that, when G � 5 (five grid points per wavelength or more), numerical
dispersion consistently decreases with the polynomial degree (see also [3]).

4 Conclusions

Numerical dispersion of high-order finite elements has been widely studied, and
several researchers agree that these methods are reliable despite the multiple modes
of propagation resulting from variable-amplitude discrete plane waves.

In this work, all discrete modes of propagation have been interpreted as
approximations to feasible solutions to the acoustic wave equation. Under this
interpretation, secondary modes are not merely numerical artifacts, but numerical
approximations on their own.

Such an interpretation relies on the fact that solutions in the form (14) are not
grid values of a plane wave, but of a linear combination of plane waves, as it is long
known in the literature. The novelty herein is to view the problem of determining the
weights in the linear combination as a continuous version of the discrete eigenvalue
system. In other words, multiple discrete modes approximate multiple continuous
modes.
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It is interesting to note that the amplitudes of the numerical plane wave and
the weights of the linear combination are related by the discrete Fourier transform
(DFT), when equally-spaced collocation points are employed. This establishes a
connection between analyses based on linear combination of plane waves [1, 10]
with those carried out in DFT space [16, 17, 19].
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Viscous Stabilizations for High Order
Approximations of Saint-Venant and Boussinesq
Flows

Richard Pasquetti

Abstract Two viscous stabilization methods, namely the spectral vanishing vis-
cosity (SVV) technique and the entropy viscosity method (EVM), are applied to
flows of interest in geophysics. First, following a study restricted to one space
dimension, the spectral element approximation of the shallow water equations is
stabilized using the EVM. Our recent advances are here carefully described. Second,
the SVV technique is used for the large-eddy simulation of the spatial and temporal
development of the turbulent wake of a sphere in a stratified fluid. We conclude with
a parallel between these two stabilization techniques.

1 Introduction

Simulations of flows that can develop stiff gradients generally suffer from numerical
instabilities if nothing is done to stabilize the computation. Here we address shallow
water flows and the turbulent wake of a sphere in a thermally stratified fluid. Shallow
water flows are approximately governed by the Saint-Venant equations, i.e. by a non
linear hyperbolic system that can yield shocks depending on the initial conditions.
Moreover, one generally expects the numerical scheme to be well balanced and
that it can support the presence of dry zones. A large literature is devoted to this
questions, see e.g. [1, 24] and references herein. Our simulation of the stratified
turbulent wake of a sphere relies on the incompressible Navier-Stokes equations
coupled, within the Boussinesq approximation, to an advection-diffusion equation
for the temperature. No shocks are in this case expected, but because the smallest
scales of the flow cannot be captured by the mesh, here also a stabilization is
required. Such a problem is generally addressed using the large-eddy simulation
(LES) methodology, see e.g. [20]. In both cases, in the frame of high order methods,
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typically spectrally accurate methods, standard approaches are generally not useful,
because implying an unacceptable loss of accuracy.

This paper describes two stabilization techniques that allow, at least formally,
to preserve the accuracy of high order methods by introducing relevant viscous
terms: The entropy viscosity method (EVM) and the spectral vanishing viscosity
(SVV) technique. In Sect. 2 we develop a spectral element method (SEM) for
the Saint-Venant system and we stabilize it using the EVM. In Sect. 3 we use
the SVV technique to carry out a Fourier-Chebyshev large-eddy simulation of the
turbulent stratified wake of a sphere, on the basis of stabilized Boussinesq equations.
To conclude, we provide in Sect. 4 a parallel between these two stabilization
techniques.

2 Entropy Viscosity Stabilized Approximation
of the Saint-Venant System

This part follows a previous paper [19] where the one-dimensional (1D) Saint-
Venant system was considered and where we especially focused on problems
involving dry-wet transitions. Here this work is extended to the 2D case. Moreover,
the treatment of dry zones is improved and the well balanced feature of the scheme
is focused on. Comparisons are done with an analytical solution involving dry-wet
transitions and the result of a problem combining shocks with dry zones is presented.

The Saint-Venant system results from an approximation of the incompressible
Euler equations which assumes that the pressure is hydrostatic and that the
perturbations of the free surface are small compared to the water height. Then, from
the mass and momentum conservation laws and with� � R

2 for the computational
domain, one obtains equations that describe the evolution of the height h W �! R

C
and of the horizontal velocity u W �! R

2: For .x; t/ 2 � � R
C :

@thCr � .hu/ D 0 (1)

@t.hu/Cr � .huuC gh2I=2/C ghrz D 0 (2)

with I, identity tensor, uu � u˝u, g, gravity acceleration, and where z.x/ describes
the topography, assumed such thatrz
 1. Let us recall the following properties:

• The system is nonlinear and hyperbolic, which means that discontinuities may
develop;

• Assuming that the inlet flow-rate equals the outlet flow-rate, the total mass is
preserved;

• The height h is non-negative;
• Rest solutions are stable;
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• There exists a convex entropy (actually the energy E) such that

@tECr � ..EC gh2=2/u/ � 0; E D hu2=2C gh2=2C ghz: (3)

Set q D hu and let hN.t/ (resp. qN.t/) to be the piecewise polynomial continuous
approximation of degree N of h.t/ (resp. q.t/). The proposed stabilized SEM relies
on the Galerkin approximation of the Saint-Venant system completed with mass
and momentum viscous terms. For any wN ;wN (scalar and vector valued functions,
respectively) spanning the same approximation spaces, in semi-discrete form:

.@thN Cr � qN ;wN/N D �.�hrhN ;rwN/N (4)

.@tqN Cr � IN.qNqN=hN/C ghNr.hN C zN/;wN/N D �.�qrqN ;rwN/N (5)

where �h / �q D �, with � : entropy viscosity (in the rest of the paper we simply
use �h D �q). The usual SEM approach is used here: IN is the piecewise polynomial
interpolation operator, based for each element on the tensorial product of Gauss-
Lobatto-Legendre (GLL) points, and .:; :/N stands for the SEM approximation of
the L2.�/ inner product, using for each element the GLL quadrature formula which
is exact for polynomials of degree less than 2N � 1 in each variable. The following
remarks may be expressed:

• Mass conservation is ensured by the present SEM approximation: Set wN D 1 in
Eq. (4); If

R

�
qN � d D 0, where � is the boundary of�, then the equalities

Z

�

.@thN Cr � qN/ d� D
Z

�

@thN d�C 0 D dt

Z

�

hN d� D 0

still hold after the SEM discretization. Note however that it is assumed that the
Jacobian determinants of the mappings from the reference element .�1; 1/2 to
the mesh elements are piecewise polynomials of degree less than N.

• On the contrary, the expected conservation of energy for smooth problems is
approximate; This results from the presence of nonlinear terms in (3).

• A stabilization term appears in the mass equation (4). This is required when a
high order approximation is involved, i.e. when the scheme numerical diffusion
becomes negligible.

• In the momentum equation (5) we do not use the viscous term r � .h�ru/, which
turned out to be less efficient. Indeed, for stabilization purposes the physically
relevant stabilization may not be the best suited, see e.g. [8] for the Euler
equations.

• Thanks to using r � IN.gh2NI=2/ 	 ghNrhN (while h2N is generally piecewise
polynomial of degree greater than N), and thus grouping in (5) the pressure and
topography terms, a well balanced scheme is obtained by construction: If qN � 0
and hN ¤ 0, then hN C zN D Constant.



522 R. Pasquetti

• Another difficulty comes from the positivity of hN . This point is addressed at the
end of the present Section.

It remains to define the entropy viscosity �. To this end we make use of an entropy
that does not depend on z but on rz, which is of interest, at the discrete level,
to get free of the choice of the coordinate system. Taking into account the mass
conservation equation (into the entropy equation) one obtains:

@t QECr � .. QEC gh2=2/u/C ghu � rz � 0 ; QE D hu2=2C gh2=2 : (6)

At each time-step, we then compute the entropy viscosity �.x/ at the GLL grid
points, using the following three steps procedure:

• Assuming all variables given at time tn, compute the entropy residual, using a
backward difference formula, e.g. the BDF2 scheme, to approximate @t QEN

rE D @t QEN Cr � IN.. QEN C gh2N=2/qN=hN/C gqN � rzN
where QEN D q2N=.2hN/C gh2N=2. Then set up a viscosity �E such that:

�E D ˇjrEjıx2=�E ;

where �E is a reference entropy, ˇ a user defined control parameter and ıx the
local GLL grid-size, defined such that ıx2 equals the surface of the quadrilateral
cell (of the dual GLL mesh) surrounding the GLL point, and using symmetry
assumptions for the points at the edges and vertices of the element.

• Define a viscosity upper bound based on the wave speeds : �˙ D u˙pgh :

�max D ˛max
�
.jqN=hNj C

p

ghN/ıx

where ˛ is a O.1/ user defined parameter (recall that for the advection equation
˛ D 1=2 is well suited).

• Compute the entropy viscosity:

� D min.�max; �E/

and smooth: (1) locally (in each element), e.g. in 1D: .�i�1 C 2�i C �iC1/=4 !
�i; (2) globally, by projection onto the space of the C0 piecewise polynomials
of degree N. Note that operation (2) is cheap because the SEM mass matrix is
diagonal.

The positivity of h is difficult to enforce as soon as N > 1, so that for problems
involving dry-wet transitions the present EVM methodology must be completed.
The algorithm that we propose is the following: In dry zones, i.e. for any element



Viscous Stabilizations 523

Qdry such that at one GLL point min hN < hthresh, where hthresh is a user defined
threshold value (typically a thousandth of the reference height):

• Modify the entropy viscosity technique, by using in Qdry the upper bound first
order viscosity:

� D �max in Qdry

• In the momentum equation assume that:

hNgr.hN C zN/ � 0 in Qdry

• Moreover, notice that the upper bound viscosity �max is not local but global, and
that the entropy scaling�E used in the definition of �E is time independent. This
has improved the robustness of the general approach described in [9].

The numerical results presented hereafter have been obtained using the standard
SEM for the discretization in space (GLL nodes for interpolations and quadratures)
and the usual forth order Runge-Kutta (RK4) scheme for the discretization in time.

To outline the efficiency of the present EVM for stabilization of Saint-Venant
flows involving dry-wet transitions, we first consider a problem for which an
analytical solution is available: The planar fluid surface oscillations in a paraboloid
[23]. The topography is defined by z.x/ D D0x2=L2 and the exact solution writes,
with .x1; x2/ for the Cartesian components of x:

h D max.0; 2	
D0
L
.
x1
L

cos.!t/ � x2
L

sin.!t/ � 	

2L
/C D0 � z/

u D �	!.sin.!t/ ; cos.!t//

where 	 determines the amplitude of the motion and with ! D p2gD0=L. Hereafter
we use L D 1m, D0 D 0:1m and 	 D 0:5m. The dry-wet transition being at the
intersection of the paraboloid and of the planar surface of the fluid, in the .x1; x2/
plane the rotating motion of a circle is obtained. Moreover, since u does not depend
on x, all fluid particles have similar circular trajectories.

The computational domain is a circle centered at the origin and of diameter 4. The
discretization parameters are the following, number of elements: 2352, polynomial
approximation degree: N D 5, resulting number of grid-points: 59;081, time-
step: 2:96 � 10�4 , EVM control parameters: ˛ D 1; ˇ=�E D 10. Moreover,
hthresh D max� h0=500, with h0 � h.t D 0/, and at the initial time one sets
hN D IN.max.h0; hthresh=2//. Since here the exact solution is only C0 continuous,
the computation cannot be spectrally accurate and so the convergence rate would
be disappointing. This is why, in order to outline the interest of using a high order
method like the present stabilized SEM, we prefer to compare the EVM results to
results obtained with a first order viscosity. One looks in Fig. 1 at the error jhN�hj.x/
at time t 	 6�=!, i.e. after three loops of the fluid surface inside the paraboloid.
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Fig. 1 Planar oscillations in a paraboloid: error on the height and at the final time for the first
order viscosity (left) and EVM (right) solutions (color-scale bar: 0–0.01, from blue to red)

Figure 1 (left) gives this error field when using the first order viscosity, that is with
�h D �q D �max, whereas Fig. 1 (right) shows the result obtained when using the
EVM. Clearly, the naive approach that would consist of simply using a first order
viscosity for stabilization yields a result by far worse than the one obtained with the
EVM. Animations of these error fields clearly confirm such a conclusion. Another
test case provided in [23] has also been investigated, namely the axisymmetric
oscillations in a paraboloid, and the conclusion is quite similar.

To conclude this Section we give the results of a simulation that shows
axisymmetric oscillations in a paraboloid and that involves both dry-wet transitions
and shocks. The initial condition is the following:

h D max.1� x2; 0/ ; u D .0; 0/ ;

and at the boundary an impermeability condition together with an homogeneous
Neumann condition for h are imposed. The geometry and the space discretization
are those used in the first example. Calculations have been made till time t D 5 with
time-step 10�4, and the EVM control parameters are: ˛ D 1; ˇ=�E D 20. As pre-
viously, hthresh D max� h0=500 and at the initial time hN D IN.max.h0; hthresh=2//.
Such a flow is alternatively expanding and then retracting towards the paraboloid
axis. Figure 2 shows the flow at three different times, during the first retraction-
expansion phase: At t 	 1:4 the velocity field is inwards, at t 	 1:65 it is close
to reversal and at t 	 1:9 it is outwards. The height hN (at left) and the entropy
viscosity � (at right) are visualized. As desired, the entropy viscosity saturates in
dry zones and also focuses at the shock.
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3 Spectral Vanishing Viscosity for Large-Eddy Simulation
of the Stratified Wake of a Sphere

To demonstrate the interest of using the SVV technique for the computation of
turbulent flows, we consider the turbulent wake of a sphere in a thermally stratified
fluid. Here we just focus on the main characteristics of the SVV technique and
illustrate its capabilities for this particular geophysical flow. Details concerning the
physical study may be found in [16].

The SVV technique was initially developed to solve with spectral methods
(Fourier/Legendre expansions) hyperbolic problems (non-linear, scalar, 1D, typ-
ically the Burgers equation), while (1) preserving the spectral accuracy and (2)
providing a stable scheme [13, 22]. Later on, say in the 2000s, the SVV technique
turned out to be of interest for stabilization of the Navier-Stokes equations and so
for the large-eddy simulation (LES) of turbulent flows, see e.g. [10–12, 15, 17, 25]
and references herein.

The basic idea of the SVV stabilization technique is to add some artificial
viscosity on the highest frequencies, i.e., to complete the conservation law of some
given quantity u, assumed to be scalar for the sake of simplicity, with the SVV term:

VN � �Nr � .QN.ruN//

where N is again the polynomial degree, uN the numerical approximation of u, �N
a O.1=N/ coefficient and QN the so-called spectral viscosity operator, defined to
select the highest frequencies: If QN is omitted in the definition of VN , then one
recovers the regular diffusion operator.

In spectral space (Fourier, Chebyshev, Legendre, or any other hierarchical basis)
the operator QN is defined by a set of coefficients bQk, 0 � k � N. Thus, in the 1D
periodic case and if Fourier expansions are concerned (trigonometric polynomials
are involved in this case):

.bVN/k D ��NbQkk
2.buN/k ; .bVN/�k D .bVN/k

with .b: /k for the k-Fourier component, .:/ for complex conjugate, and where the
coefficients bQk are such that bQk D 0 for k � mN , with mN a threshold value, and
0 < bQk � 1 , bQk being monotonically increasing, for k > mN . In the seminal paper
[22], bQk was simply chosen as a step function, i.e. with bQk D 1 if k > mN , but
it quickly appeared of interest to rather use a smooth approximation. In Fig. 3 two
SVV kernels are shown, using the smooth approximation proposed in [13] and with
mN D N=2 and mN D N=4.

One may remark that if defining differently the bQk coefficients, one recovers
alternative approaches. Thus, the hyperviscosity stabilization, i.e. such that VN /
��2uN , so that .bVN/k / k4.buN/k, can be recasted in the SVV frame by stating that
bQk D .k=N/2. In this case, the interpolating curve bQk.k/ is simply a parabola, see
Fig. 3. Also, if choosing �N / N�4=3 and with the curve bQk.k/ shown in Fig. 3,
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Fig. 3 bQk for two SVV
kernels, and if using an
hyperviscosity (HV) or the
Chollet-Lesieur (C-L) subgrid
scale model
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one recovers the Chollet-Lesieur spectral viscosity [3], developed for LES in the
early 80s and based on the Eddy Damped Quasi-Normal Markovian (EDQNM)
theory. This latter approach strongly differs from SVV, since bQk ¤ 0 even for
k D 0, but both approaches also differ from SVV because the associated kernels
no-longer constitute an approximation of a step function. As a result, it is no longer
a Laplacean which is acting in the high frequency range. Indeed, if the SVV kernel
is simply a step function, then the stabilization term also writes VN D �N�uHN , where
uHN is the high frequency part of uN . In this perspective, looking at the SVV kernels
recently proposed in [14] is also of interest.

Results obtained with a multi-domain spectral Chebyshev-Fourier solver with
SVV stabilization are presented hereafter, see [16] for details. The turbulent wake
is generated by a sphere moving horizontally and at constant velocity in a stably
stratified fluid, with constant temperature gradient. The flow is assumed governed by
the Boussinesq equations and the control parameters are Pr D 7;Re D 10000;F D
25, for the Prandtl, Reynolds and internal Froude number, respectively. The study
is carried out in two steps: First we make a space development study, that is
the Galilean frame is associated to the moving sphere; Second, we make a time
development study, with a Galilean frame at rest. Such an approach is required
to compute the far wake without needing a very elongated computational domain.
With respect to anterior works, see e.g. [4, 5], the originality of the present study is
to make use of the result of the space development study for setting up the initial
condition of the temporal development study, thus avoiding the use of a synthetic
initial condition.

For the space development study, the computational domain is .�4:5; 30:5/ �
.�4; 4/ � .�4; 4/. At the initial time, the fluid is stably stratified: T0 D y, for the
dimensionless initial temperature field. The sphere, of unit diameter and centered at
.0; 0/, is modeled by using a volume penalization technique [18]. For the boundary
conditions one has: Dirichlet conditions at the inlet, advection at the mean velocity
at the outlet, free-slip/adiabaticity conditions on the upper and lower boundaries.
The mesh makes use of 12:4 � 106 grid-points. For the velocity components, the
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SVV parameters are: mN D N=2; �N D 1=N, where N is here associated to each of
the three axis, whereas for the temperature, mN D

p
N ; �N D 1=N. The temperature

field obtained at the end of the space development study is shown in Fig. 4.
For the temporal development study the computational domain is .�18; 18/ �

.�4; 4/ � .�12; 12/. Note it has been enlarged, since we expect, from the confine-
ment effect due to the stratification, a strong expansion of the wake in the horizontal
plane. The initial conditions are set up from the spatial development study, by
extraction of the fields obtained at the final time in .6:5; 24:5/�.�4; 4/�.�4; 4/, see
[16] for details. The boundary conditions are: periodicity in streamwise direction,
free-slip and adiabaticity elsewhere. The mesh makes use of 27:7� 106 grid-points.
The SVV parameters have not been changed. The flow, at the beginning and at the
end of the temporal study, is visualized in Fig. 5.

We conclude with some more quantitative results: In Fig. 6-left one has the
evolution of the wake amplitude, both in the vertical and horizontal planes,

Fig. 4 Temperature field in the median vertical plane at the end of the space development study
(color scale: �4 to 4, from blue to red) [16]

Fig. 5 Temperature and vorticity fields at the beginning (left panel) and at the end (right panel) of
the temporal development study. Up: temperature in the median vertical plane; Middle: transverse
component of the vorticity in the same plane; Bottom: vertical component in the median horizontal
plane. The vorticity being much weaker at the final time, the vorticity color scales differ [16]
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Fig. 7 Critical times NtI and NtII that correspond to the 3D-NEQ and NEQ-Q2D transitions,
respectively, and rates of variation of the velocity defect in each of the three phases

which clearly points out the confinement effect of the stratification (here Nt is a
dimensionless time, with N for the Brunt-Väisälä buoyancy angular frequency of
the fluid at rest); Fig. 6-right shows the evolution of the velocity defect. This latter
curve is in reasonable agreement with the “universal curve” of [21], where three
phases in the development of sphere stratified wakes are described: First the 3D
phase, then the non equilibrium (NEQ) phase and finally the quasi two 2D (Q2D)
phase. Figure 7 compares the experimental results to the present numerical ones, in
terms of characteristic quantities of the velocity defect evolution.

4 Concluding Parallel Between the EVM and SVV
Stabilizations

Two viscous stabilizations, namely the entropy viscosity method (EVM) and the
spectral vanishing viscosity (SVV) technique, have been successfully implemented
in high order approximations of geophysical flows: With EVM shallow water flows
involving dry-wet transitions have been addressed and with SVV the turbulent wake
of a sphere in a thermally stratified fluid has been investigated. We conclude with a
parallel between these two approaches:

• Both SVV and EVM are viscosity methods first developed for hyperbolic
problems, see [7, 22].

• EVM is non-linear while SVV is linear. SVV is thus not costly, since its
implementation is done in preprocessing step. Moreover, because of this linear
feature it is very robust and so well adapted to the LES of turbulent flows.
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• Both EVM and SVV preserve the accuracy of the numerical approximation. This
is of course essential when high order methods are concerned.

• SVV is not Total Variation Diminishing (TVD) and EVM is not fully TVD, since
this depends on the values of the EVM control parameters (˛ and ˇ). For SVV, a
post processing stage for removing spurious oscillations has been suggested [13].

• A theory exists for SVV [22], whereas no complete theory is available for EVM.
Some theoretical results, restricted to some specific time schemes and space
approximations, are however available [2].

• EVM may be used with various numerical methods, since based on a physical
argument, including the standard finite element method (FEM), finite volume
methods etc.. SVV is restricted to spectral type methods, e.g. high order FEMs
like the SEM.

• SVV has proved to be of interest for LES (SVV-LES). Preliminary numerical
experiments are now available for EVM [6], but additional tests and comparisons
remain needed to check if EVM is not too diffusive and robust enough when
turbulent flows are concerned.

Acknowledgements Part of this work was made at the Dpt of Mathematics of National Taiwan
University in the frame of the Inria project AMOSS.
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An Adaptive Variable Order Quadrature
Strategy

Paul Houston and Thomas P. Wihler

Abstract We propose a new adaptive numerical quadrature procedure which
includes both local subdivision of the integration domain, as well as local variation
of the number of quadrature points employed on each subinterval. In this way we
aim to account for local smoothness properties of the integrand as effectively as
possible, and thereby achieve highly accurate results in a very efficient manner.
Indeed, this idea originates from so-called hp-version finite element methods which
are known to deliver high-order convergence rates, even for nonsmooth functions.

1 Introduction

Numerical integration methods have witnessed a tremendous development over the
last few decades; see, e.g., [2, 3, 14]. In particular, adaptive quadrature rules have
nowadays become an integral part of many scientific computing codes. Here, one
of the first yet very successful approaches is the application of adaptive Simpson
integration or the more accurate Gauss-Kronrod procedures (see, e.g., [7]). The key
points in the design of these methods are, first of all, to keep the number of function
evaluations low, and, secondly, to divide the domain of integration in such a way that
the features of the integrand function are appropriately and effectively accounted for.

The aim of the current article is to propose a complementary adaptive quadrature
approach that is quite different from previous numerical integration schemes. In fact,
our work is based on exploiting ideas from hp-type adaptive finite element methods
(FEM); cf. [4, 6, 11, 12, 20]. These schemes accommodate and combine both
traditional low-order adaptive FEM and high-order (so-called spectral) methods
within a single unified framework. Specifically, their goal is to generate discrete
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approximation spaces which allow for both adaptively refined subdomains, as well
as locally varying approximation orders. In this way, the hp-FEM methodology is
able to resolve features of an underlying unknown analytical solution in a highly
efficient manner. In fact, this approach has proved to be enormously successful in
the context of numerically approximating solutions of differential equations, and has
been shown to exhibit high-order algebraic or exponential convergence rates even
in the presence of local singularities; cf. [8, 16, 18].

With this in mind, we adopt the hp-adaptive FEM strategy for the purpose of
introducing a variable order adaptive quadrature framework. More precisely, we
propose a procedure whereby the integration domain will be subdivided adaptively
in combination with a local tuning of the number of quadrature points employed
on each subinterval. To drive this refinement process, we employ a smoothness
estimation technique from [6, 21] (see also [11] for a related strategy), which was
originally introduced in the context of hp-adaptive FEMs. Specifically, the smooth-
ness test makes it possible to gain local information concerning the regularity of the
integrand function, and thereby, to suitably subdivide the integration domain and
select an appropriate number of quadrature points for each subinterval. By means
of a series of numerical experiments we demonstrate that the proposed adaptive
quadrature strategy is capable of generating highly accurate approximations at a
very low computational cost. The main ideas on this new approach together with a
view on practical aspects will be discussed in the subsequent section.

2 An hp-Type Quadrature Approach

Typical quadrature rules for the approximation of an integral I WD R 1

�1 f .x/ dx of a

continuous function f W Œ�1; 1�! R, take the form I 	 bQp. f / WDPp
kD1 wp;kf .bxp;k/;

where p � 1 is a (typically prescribed) integer number, and fbxp;kgpkD1 � Œ�1; 1�
and fwp;kgpkD1 � .0; 2� are appropriate quadrature points and weights, respectively.
When dealing with a variable number p of quadrature points and weights, we can
consider one-parameter families of quadrature rules (such as, for example, Gauss-
type quadrature methods); here, for each p 2 N, with p � pmin, where pmin

is a minimal number of points, there are (possibly non-hierarchical) families of
quadrature pointsbxp D fbxp;kgpkD1, and weights wp D fwp;kgpkD1.

On an arbitrary bounded interval Œa; b�, a < b, a corresponding integration
formula can be obtained, for instance, by means of a simple affine scaling �Œa;b� W
Œ�1; 1� ! Œa; b�;bx 7! x D �Œa;b�.bx/ D 1

2
hbx C 1

2
.a C b/; with h D b � a > 0.

Indeed, in this case
R b
a f .x/ dx 	 QŒa;b�;p. f / WD h=2

Pp
kD1 wp;k. f ı �Œa;b�/.bxp;k/;

where f W Œa; b� ! R is again continuous. As before, for any specific family
of quadrature rules, the corresponding quadrature point families xp are obtained
in a straightforward way by letting xp D �Œa;b�.bxp/ (noting that �Œa;b� is extended
componentwise to vectors).
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Furthermore, the above construction allows us to define composite quadrature
rules, whereby the integral of f is approximated on a collection of n � 1

disjoint (open) subintervals fKigniD1 of Œa; b� with Œa; b� D Sn
iD1 Ki, i.e., I 	

Pn
iD1QKi;p. f jKi/:

2.1 The Basic Idea: hp-Adaptivity

Adaptive quadrature rules usually generate a sequence of repeatedly bisected and
possibly non-uniform subintervals fKigniD1, n � 1, of the integration domain Œa; b�
(i.e., each subinterval Ki may have a different length hi), with a prescribed and
uniform number p of quadrature points on each subinterval. With the aim of
providing highly accurate approximations with as little computational effort as
possible, the novelty of the approach presented in this article is to design an adaptive
quadrature procedure, which, in addition to subdividing the original interval Œa; b�
into appropriate subintervals, is able to adjust the number of quadrature points pi
individually within each subinterval Ki in an effective way. We note that this idea
originates from approximation theory [5, 15] (see also [8]), and has been applied
with huge success in the context of FEMs for the numerical approximation of
differential equations. Indeed, under certain conditions, the judicious combination
of subinterval refinements (h-refinement) and selection of local approximation
orders (p-refinement), which results in the class of so-called hp-FEMs, is able to
achieve high-order algebraic or exponential rates of convergence, even for solutions
with local singularities; see, e.g. [18]. In an effort to automate the combined h-
and p-refinement process, a number of hp-adaptive FEM approaches have been
proposed in the literature; see, e.g., [13] and the references cited therein. In the
current article, we pursue the smoothness estimation approach developed in [6, 21]
(cf. also [11]), and translate the idea into the context of adaptive variable order
numerical quadrature.

Given a subinterval Ki with pi quadrature points, we are given a current
approximation QKi;pi. f jKi/ of the subintegral

R

Ki
f .x/ dx 	 QKi;pi . f jKi/: Then, with

the aim of improving the approximate value QKi;pi . f jKi/, in the sense of an hp-
adaptive FEM methodology in one-dimension, we propose two possible refinements
of Ki:

(i) h-refinement: The subinterval Ki of length hi is bisected into two subinter-
vals K1i and K2i of equal size hi=2, and the number pi of quadrature points is
either inherited to both subintervals or, in order to allow for derefinement with
respect to the number of local quadrature points, reduced to pi�1 points. In the
latter case, we obtain the potentially improved approximation:

Qh
Ki
. f / D QK1i ;max.1;pi�1/. f /C QK2i ;max.1;pi�1/. f /: (1)
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(ii) p-refinement: The subinterval Ki is retained, and the number pi of quadrature
points pi is increased by 1, i.e., pi  pi C 1. This yields an approximation

Qp
Ki
. f / D QKi;piC1. f /: (2)

In case that pi D pmax, where pmax is a prescribed maximal number of
quadrature points on each subinterval, we define

Qp
Ki
. f / D QK1i ;pi

. f /C QK2i ;pi
. f /; (3)

where K1i and K2i result from subdividing Ki as in (i).

In order to determine which of the above refinements is more appropriate for a
given subinterval Ki, we apply a smoothness estimation idea outlined below. Once
a decision between h- and p-refinement for Ki has been made, the procedure is
repeated iteratively for any subintervals Ki for which QKi;pi . f jKi/ and its refined
value (resulting from the chosen refinement) differ by at least a prescribed toler-
ance tol > 0.

2.2 Smoothness Estimation

The basic idea presented in the articles [6, 11, 21] is to estimate the regularity of
a function to be approximated locally. Then, following along the lines of the hp-
approximation approach, if the function is found to be smooth, according to the
underlying regularity estimation test, then a p-refinement is performed, otherwise an
h-refinement is employed. In [6], the following smoothness indicator, for a (weakly)
differentiable function f on an interval Kj, has been introduced (cf. [6, Eq. (3)]):

FKj Œ f � WD

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

k fkL1.Kj/

h�1=2j k fkL2.Kj/
C 1p

2
h
1=2
j k f 0kL2.Kj/

if f jKj 6� 0;

1 if f jKj � 0:
(F)

The motivation behind this definition is the well-known continuous Sobolev embed-
ding W1;2.Kj/ ,! L1.Kj/, which implies that FKj Œ f � � 1 in (F); see [6,
Proposition 1]. We classify f as being smooth on Kj if FKj Œ f � � 
 , for a prescribed
smoothness testing parameter 0 < 
 < 1, and nonsmooth otherwise.

To begin, we first consider the special case when f is a polynomial of degree
pj � 1. Then, the derivative f . pj�1/ of order pj � 1 of f is a linear polynomial,

and the evaluation of the smoothness indicator FKj

h

f . pj�1/
i

from (F) is simple to
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obtain. In fact, let us write f jKj in terms of a (finite) Legendre series, that is,

f jKj D
pj
X

lD0
al.bLl ı ��1Kj

/; (4)

for coefficients a0; : : : ; apj 2 R. Here, bLl, l � 0, are the Legendre polynomials

on Œ�1; 1� (scaled such thatbLl.1/ D 1 for all l � 0), and �Kj is the affine scaling
of Œ�1; 1� to Kj. For f as in (4) it can be shown that

FKj

h

f . pj�1/
i

D 1C �pj
q

1C 1
3
�2pj C

p
2�pj

; (5)

where �pj D .2pj � 1/
ˇ

ˇ

ˇ

apj=apj�1

ˇ

ˇ

ˇ (provided that apj�1 ¤ 0); see [6, Proposition 3]. In

particular, this implies that, cf. [6, §2.2],

1

2
	

p
3p

6C 1 � FKj

h

f . pj�1/
i

� 1: (6)

In the context of the numerical integration rule, the above methodology can be
adopted as follows: suppose we are given pj � 2 quadrature points and weights,
fbxpj;kgpjkD1 and fwpj;kgpjkD1, respectively. Then,

Z

Kj

f .x/ dx 	 QKj;pj. f jKj/ D
hj
2

pj
X

kD1
wpj ;k. f ı �Kj/.bxpj;k/: (7)

We denote the uniquely defined interpolating polynomial of f of degree pj� 1 at the

given quadrature points by˘Kj;pj�1 f D
Ppj�1

lD0 bl.bLl ı��1Kj
/: Due to orthogonality of

the Legendre polynomials, we note that

bl D 2lC 1
hj

Z

Kj

˘Kj;pj�1 f .x/.bLl ı ��1Kj
/.x/ dx; l D 0; : : : ; pj � 1:

We further assume that the quadrature rule under consideration is exact for all
polynomials of degree up to 2pj � 2. Thereby,

bl D 2lC 1
2

pj
X

kD1
wpj;k.˘Kj;pj�1 f / ı �Kj.bxpj;k/bLl.bxpj;k/

D 2lC 1
2

pj
X

kD1
wpj;k. f ı �Kj/.bxpj;k/bLl.bxpj;k/:
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Consequently, we infer that

�Kj;pj�1 W D .2pj � 3/
ˇ

ˇ

ˇ

ˇ

ˇ

bpj�1
bpj�2

ˇ

ˇ

ˇ

ˇ

ˇ

D .2pj � 1/
Ppj

kD1 wpj ;k. f ı �Kj/.bxpj;k/bLpj�1.bxpj;k/
Ppj

kD1 wpj ;k. f ı �Kj/.bxpj;k/bLpj�2.bxpj;k/
;

(8)

and thus, in view of (5), we use the quantity

FKj;pj. f / WD
1C �Kj;pj�1

q

1C 1
3
�2Kj;pj�1 C

p
2�Kj;pj�1

2
 p

3p
6C 1; 1

!

; (9)

cf. (6), to estimate the smoothness of f jKj . We note that the computation of �Kj;pj�1
does not require any additional function evaluations of f since the values . f ı
�Kj/.bxpj;k/, k D 1; : : : ; pj, have already been determined in the application of (7).

2.3 Adaptive Variable Order Procedure

Based on the above derivations, we propose an hp-type adaptive quadrature method.
To this end, we start by choosing a tolerance tol > 0, a smoothness parameter 
 2
�p

3=.
p
6C1/; 1

�

, and a maximal number pmax � 2 of possible quadrature points

on each subinterval. Furthermore, we define the interval K1 D Œa; b�, and a small
number p1, 2 � p1 � pmax, of quadrature points on K1. Moreover, we initialise the
set of subintervals subs, the order vector p containing the number of quadrature
points on each subinterval, and the unknown value Q of the integral as follows:
subs D fK1g , p D f p1g,Q D 0. Then, the basic adaptive procedure is given by:

1: while subs ¤ ; do
2: ŒQ1;subs;p� D hprefine. f ;subs;p; pmax; 
/;
3: Q D QC Q1;
4: end while
5: Output Q.

Here, hprefine is a function, whose purpose is to identify those subintervals
in subs, which need to be refined further for a sufficiently accurate approximation
of the unknown integral. In addition, it outputs a set of subintervals (again denoted
by subs), as well as an associated order vector (again denoted by p) which result
from applying the most appropriate refinement, i.e., either h- or p-refinement as out-
lined in (i) and (ii) in Sect. 2.1 above, for each subinterval. Furthermore,hprefine
returns the sum Q1 of all quadrature values corresponding to subintervals in the
input set subs for which no further refinement is deemed necessary. The essential
steps are summarised in Algorithm 1; here, pmin denotes the minimal number of
quadrature points to be employed on any given subinterval.
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Algorithm 1 Function ŒQ;subsnew;pnew�Dhprefine. f ;subs;p;pmin;pmax; 
/

1: Define subsnew D subs, and pnew D p. Set QD 0.
2: for each subinterval Kj 2 subs do
3: Evaluate the smoothness indicator FKj ;pj . f / from (9).
4: if FKj ;pj. f / < 
 then
5: Apply h-refinement to Kj, i.e., bisect Kj into two subintervals of equal size and reduce

the number of quadrature points to max. pj � 1; pmin/ on both of them;
6: Compute an improved approximation, denoted by eQKj , of QKj ;pj . f jKj / using (1) on Kj.
7: else if FKj ;pj . f / � 
 and pj C 1 � pmax then
8: Apply p-refinement to Kj, i.e., increase the number of quadrature points to pjC 1 on Kj;
9: Compute an improved approximation, denoted by eQKj , of QKj ;pj . f jKj / using (2) on Kj.

10: else if FKj ;pj . f / � 
 and pj C 1 > pmax then
11: Bisect Kj into two subintervals of equal size and retain the number of quadrature points pj

on both of them;
12: Compute an improved approximation, denoted by eQKj , of QKj ;pj. f jKj / using (3) on Kj.
13: end if
14: if jeQKj � QKj ;pj. f jKj /j is sufficiently small then
15: Update Q D QCeQKj ;
16: Eliminate Kj from subsnew and the corresponding entry pj from pnew.
17: else
18: Replace Kj and pj in subsnew and pnew, respectively, by the corresponding h- or p-

refined subintervals as determined above.
19: end if
20: end for

2.4 Practical Aspects

In this section we discuss the practical issues involved in the implementation of the
procedure described in Sect. 2.3 within a given computing environment.

2.4.1 Gauss-Quadrature Rules

In principle, the adaptive procedure presented in Sect. 2.3 allows for any variable
order family of quadrature rules to be exploited. For simplicity, in our numerical
experiments presented in Sect. 2.5 below, we propose the use of (families of)
Gauss-type quadrature schemes. We emphasise, however, that more traditional
schemes, including, for example, (fixed-order) Gauss-Kronrod or Clenshaw-Curtis
rules, which are naturally hierarchical, may be employed as well (where the
degree of exactness 2p � 2 is desirable with regards to an accurate computation
of the smoothness estimation, cf. Sect. 2.2). Incidentally, our numerical results
indicate that, although non-hierarchical rules do not support the repeated use of
all previously computed function evaluations, their potentially superior degree
of accuracy, compared to their embedded counterparts, can be exploited very
favourably within the hp–setting. Indeed, it is a well-known feature of hp-methods
that they are particularly effective on a variable high-order level, cf., e.g., [17, 18].
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In the current article we employ Gauss-Legendre quadrature points and weights
(with at least pmin D 2 points and weights); these quantities can be precomputed
up to any given order pmax (in practice pmax D 15 is usually more than sufficient)
or even be generated on the spot in an efficient way (see, e.g., [1]) if an upper
bound pmax cannot be fixed. In addition, we note that the Gauss-Legendre rule based
on p points has a degree of exactness of 2p � 1, i.e., the smoothness indicators
derived in Sect. 2.2 can be computed by means of the formula given in (8). For
a given maximum number pmax, we store the points and weights of the Gauss-
Legendre rules (on the reference interval Œ�1; 1�) with up to pmax points in two
pmax � . pmax � 1/-matrices X and W, respectively; here, for parameters p D
2; : : : ; pmax, the p-th columns of X and W are built from the points and weights
of the corresponding p-point Gauss-Legendre quadrature rule, respectively (and
complementing the remaining entries in all but the last column by zeros):

X D

0

B

B

B

B

B

B

B

B

@

bx2;1bx3;1 � � � bxpmax;1

bx2;2
:::

bx3;3
:::

0
: : :

bxpmax;pmax

1

C

C

C

C

C

C

C

C

A

; W D

0

B

B

B

B

B

B

B

B

@

w2;1 w3;1 � � � wpmax;1

w2;2
:::

w3;3
:::

0
: : :

wpmax;pmax

1

C

C

C

C

C

C

C

C

A

: (10)

We note that, for other quadrature rules, the number of rows in the above matrices
may be different.

2.4.2 Vectorised Quadrature

Following the ideas of [19] we use a vectorised quadrature implementation.
This means that, instead of computing the integrals on the subintervals subs
in Algorithm 1 one at a time, they are all computed at once. This can be
accomplished by using fast vector- and matrix-operations, and by carrying out all
necessary function evaluations in a single operation by computing the function to
be integrated for a vector of input values. Specifically, we write the composite
rule I 	 P

Ki2subsQKi;pi. f jKi/ D
P

Ki2subs hi=2
Ppi

kD1 wpi;k. f ı �Ki/.bxpi;k/ as a
dot product of a weight vector w and a function vector f .x/; here, the former
vector contains all (scaled) weights f 1

2
hiwpi;kgi;k, and the latter vector represents the

evaluation of the integrand function f on the vector x of all corresponding quadrature
points f�Ki.bxpi;k/gi;k appearing in the sum above. Evidently, these vectors can be
built efficiently by extracting (and affinely mapping and scaling) the corresponding
rows from the matrices X and W in (10). We emphasise that applying vectorised
quadrature crucially improves the performance of the overall adaptive procedure
(provided that such a technology is available in a given computing environment).
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2.4.3 Smoothness Estimators

As already noted, computing the smoothness indicators from (8) does not need any
additional function evaluations of the function f ; they only require the values of the
Legendre polynomialsbLp�1 andbLp�2 at the points fbxp;kgpkD1, for p D 2; : : : ; pmax.
These quantities are again precomputable, and can be stored in two matrices

L1 D

0

B

B

B

B

B

B

B

B

@

L1.bx2;1/ L2.bx3;1/ � � � Lpmax�1.bxpmax;1/

L1.bx2;2/
:::

L2.bx3;3/
:::

0
: : :

Lpmax�1.bxpmax;pmax/

1

C

C

C

C

C

C

C

C

A

; (11)

and

L2 D

0

B

B

B

B

B

B

B

B

@

L0.bx2;1/ L1.bx3;1/ � � � Lpmax�2.bxpmax;1/

L0.bx2;2/
:::

L1.bx3;3/
:::

0
: : :

Lpmax�2.bxpmax;pmax/

1

C

C

C

C

C

C

C

C

A

: (12)

Then, the sums in (8) are vectorised similarly as described above. In particular,
the computation of the smoothness estimators can be undertaken with an almost
negligible computational cost.

2.4.4 Stopping Criterion

In order to implement the stopping-type criterion in line 14 of Algorithm 1, we
exploit an idea that was proposed in the context of adaptive Simpson quadrature
in [7]. More precisely, given a possibly rough approximation iguess 	 R b

a f .x/ dx
of the unknown integral I (e.g., obtained from a Monte-Carlo calculation such that
both the approximation and the exact value are of the same magnitude; cf. [7]),
and a tolerance tol > 0, we redefine iguess D iguess  tol=epsI here,
eps represents the smallest (positive) machine number in a given computing
environment. Then, using the comparison operator DD, we accept the difference
jeQKj � QKj;pj. f jKj/j to be sufficiently small with respect to the given tolerance tol

if the logical call iguessCjeQKj�QKj;pj. f jKj/j DD iguessI yields a true value.
In this way tol represents a reasonable approximation of the relative error.
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2.5 Numerical Examples

In order to test our approach, we consider a number of benchmark problems on the
interval Œ0; 1�. Specifically, the following functions will be studied:

f1.x/ D exp.x/;

f2.x/ D jx � 1=3j1=2;
f3.x/ D sech.10.x � 1=5//2 C sech.100.x� 2=5//4

C sech.1000.x� 3=5//6 C sech.1000.x� 4=5//8;

f4.x/ D cos.1000x2/;

f5.x/ D
8

<

:

0 if x < 1=3;

1 if x � 1=3:

Whilst the first function, f1, is analytic, f2 is smooth except at 1=3 (see Fig. 1).
Furthermore, f3 was proposed in [9] in the context of the CHEBFUN package [10];
this is a smooth function that exhibits several very thin spikes (see Fig. 2). Moreover,
f4 is highly oscillating towards the right end point 1, and f5 is an example of a
discontinuous function.

We perform our computations in MATLAB, and set the tolerance to tol D 0:3�
10�15 (which is close to machine precision in MATLAB), the smoothness estimation
parameter is prescribed as 
 D 0:6, pmin D 2, and pmax D 15. Within this setting,
our adaptive procedure generates results that are accurate to machine precision,
for all of the considered examples. In Table 1, for each of the functions f1; : : : ; f5
above, we present the number of function evaluations (counting an evaluation of
the given function fi for a vector-valued argument x D .x1; : : : ; xn/, i.e., fi.x/ D
. fi.x1/; : : : ; fi.xn//, as n) for the proposed hp-adaptive quadrature procedure, as well
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Fig. 1 Function f2: Graph (left) and hp-mesh (right)
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Fig. 2 Function f3: Graph (left) and hp-mesh (right)

Table 1 Number of function
evaluations for hp-type
adaptive quadrature and
adaptive Simpson quadrature

hp-adaptive quadrature Adaptive Simpson quadrature

f1 52 4096

f2 1718 25;488

f3 2427 72;528

f4 21,005 1;213;680

f5 1493 784

as the corresponding number for a classical adaptive Simpson method from [7]
(which is based on employing the two end points, as well as the midpoint on each
subinterval, and reuses the former two points without recomputing), with the same
tolerance value tol D 0:3 � 10�15. Except for the last function, f5, where a low-
order quadrature rule is more effective, the remarkable efficiency of the proposed
hp-type quadrature becomes clearly visible.

In order to illustrate how the hp-adaptive procedure performs, we depict the final
hp-mesh for f2 and f3 in Figs. 1 and 2, respectively. Here, along the horizontal axis
we present the subintervals obtained as a result of the adaptive process, and on
the vertical axis the number of quadrature points introduced on each subinterval
is displayed. In both examples, we see that smooth regions in the underlying
integrand are resolved by employing larger subintervals featuring a higher number
of quadrature points, whereas close to singularities, the number of quadrature
points is kept low on very small integration subdomains. It is noteworthy that this
behaviour is well-known from hp-FEMs for differential equations, where high-order
algebraic or even exponential convergence rates can be obtained by applying this
type of hp-refinement procedure; see [18] for details.



544 P. Houston and T.P. Wihler

3 Conclusions

In this article we proposed a new adaptive quadrature strategy, which features both
local subdivision of the integration domain, as well as local variation of the number
of quadrature points employed on each subinterval. Our approach is inspired by
the hp-adaptive FEM methodology based on hp-adaptive smoothness testing. In
combination with a vectorised quadrature implementation, the proposed adaptive
quadrature algorithm is able to deliver highly accurate results in a very efficient
manner. Since our approach is closely related to the hp-FEM technique, it can
be extended to multiple dimensions, including, in particular, the application of
anisotropic refinements of the underlying domain of integration, together with the
exploitation of different numbers of quadrature points in each coordinate direction
on each subinterval (based, for example, on anisotropic Sobolev embeddings as
outlined in [6, §3.1]).

Acknowledgements Thomas P. Wihler acknowledges the financial support by the Swiss National
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Recent Results on the Improved WENO-Z+
Scheme

Rafael Brandão de Rezende Borges

Abstract The WENO-Z scheme is known to achieve less dissipative results than
the classical WENO scheme, especially in problems involving both shocks and
smooth structures. In Acker et al. (J Comput Phys 313:726–753, 2016), the cause of
the improved results of WENO-Z was shown to be its comparatively higher weights
on less-smooth substencils. This knowledge was exploited to develop the fifth-order
WENO-Z+ scheme, which generalizes WENO-Z by including an extra term for
increasing the weights of less-smooth substencils even further. The new scheme
WENO-Z+ was shown to achieve even better results than WENO-Z, while keeping
the same numerical robustness. In this study, the third- and seventh-order versions
of the WENO-Z+ scheme are presented and discussed. The preliminary numerical
results make evident that the approach used by WENO-Z+ is also sound for orders
other than 5.

1 Introduction

Weighted essentially nonoscillatory (WENO) schemes are a popular class of
numerical schemes for solving hyperbolic conservation laws and, more generally,
PDE whose (weak) solutions may develop discontinuities. These schemes are able
to capture shocks in a sharp, essentially nonoscillatory way, and can be designed
to achieve arbitrarily high orders in smooth solutions. It has been shown that, in
problems containing both discontinuities and fine, complex structures in the smooth
regions (such as the interaction between a shock wave and a turbulent flow), it is
usually more computationally efficient to use a high-order scheme (such as WENO)
than first- or second-order ones [11, 12].

WENO schemes, like the essentially nonoscillatory (ENO) schemes that pre-
ceded them [7], achieve their nonoscillatory results by avoiding interpolations across
domains that contain discontinuities of the solution. The rth-order ENO scheme
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Fig. 1 The global stencil S5

and its substencils S0, S1 , and
S2, used in the third-order
ENO / fifth-order WENO
approximation procedures

xi xi+1 xi+2xi-1xi-2 xi+1/2

S2

S0

S1

S5 τ5

β0

β2

β1

does so by restricting the interpolation of the solution to the r-points substencil
(out of a global stencil with R D 2r � 1 points) where the solution is smoothest
(in some sense), see Fig. 1 for an illustration of the r D 3 case. WENO, on the
other hand, maximizes the interpolation region by assigning a nonlinear weight !k

to each r-points substencils Sk. The final interpolation is the weighted sum of the
interpolations at each substencil Sk. The weights are designed in such a way that
!k 	 0 if the substencil Sk contains a discontinuity, therefore avoiding oscillations;
and, if the solution is smooth, the scheme uses all R points in the interpolation,
achieving Rth order as a result (almost double the order of the ENO scheme with
same R-points global stencil).

Currently, there are two main families of WENO schemes, each based on
a different weight formula: the classical WENO-JS scheme [2, 9, 10] and its
modifications, such as the WENO-M scheme [8] and many others; and the WENO-
Z scheme [3–5] and schemes based on the WENO-Z formula, such as the ESWENO
scheme [15], the WENO-NS scheme [6], the WENO-MZ scheme [16], and several
others. It has been shown that, at least for fifth-order, the WENO-Z scheme has a
higher resolution and is computationally more cost-effective than WENO-JS [3, 16].
This is particularly more pronounced near smooth extrema—see Figs. 2 and 3 for
examples. In the literature, two main arguments have been used to explain this:
first, WENO-Z has better accuracy than WENO-JS near critical points; second,
WENO-Z assigns a higher weight to less-smooth substencils than WENO-JS does.
This issue was recently investigated in [1], where the second reason was found to be
the most relevant one. This is due the fact that the solution does a sharper transition
in substencils containing critical points than otherwise. As such, a substencil
containing a smooth extrema is inappropriately detected as less smooth than the
other substencils. By assigning a larger weight to the less-smooth substencils,
WENO-Z is able to achieve better results near critical points than WENO-JS.

Using this knowledge, a new WENO scheme—called WENO-Z+—was pro-
posed in [1]. This scheme adds an extra term to the WENO-Z formula with the
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Fig. 2 Numerical solution of the shock-entropy wave problem of Shu–Osher at t D 1:8; density.
A coarse grid with N D 201 points was used. Zoom in the relevant region
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Fig. 3 Numerical solution of the shock-entropy wave problem of Titarev–Toro at t D 5; density.
A coarse grid with N D 1001 points was used. Zoom in the relevant region
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sole purpose of increasing the weights of less-smooth substencils even further. The
results in [1], which are restricted to the fifth-order version of WENO-Z+, show that
the new scheme has an even higher resolution than WENO-Z, see Figs. 2 and 3.

In the present notes, the third- and seventh-order WENO-Z+ schemes are
introduced and analyzed. The general background on WENO schemes is briefly
discussed in Sect. 2. Preliminary results for the third- and seventh-order WENO-Z+
schemes are shown in Sect. 3. Concluding remarks are given in Sect. 4.

2 WENO Schemes

This section briefly describes the basic concepts related to WENO schemes. Since
the only difference between any of the WENO schemes presented here lies in
their weight formulas, the discussion will be focused on these and not on the
other building blocks of WENO schemes, such as time integration, flux splitting,
numerical fluxes, characteristics decomposition, etc. More complete descriptions
of WENO schemes, also covering the mentioned topics, can be found in, e.g.,
[1, 3, 5, 8, 9, 13, 14].

2.1 WENO Approximation

As an illustration for the WENO approximation procedure, consider the fifth-
order case. Suppose we want to compute the interpolation of a given smooth
by parts function f .x/ at the point xiC 1

2
using the uniformly-spaced stencil

S5 D fxi�2; xi�1; xi; xiC1; xiC2g with spacing �x. This stencil is divided in
three three-point substencils, S0 D fxi�2; xi�1; xig, S1 D fxi�1; xi; xiC1g, and
S2 D fxi; xiC1; xiC2g, as seen in Fig. 1. Define Of k.x/ as the second-degree
interpolating polynomial at the substencil Sk, k D 0; 1; 2, so that Of k.xiC 1

2
/ is a

third-order approximation to f .xiC 1
2
/. That is,

Of k.xiC 1
2
/ D f .xiC 1

2
/C O.�x3/ D f .xiC 1

2
/C Ak;3�x3 C Ak;4�x4 C O.�x5/

if f .x/ is smooth in Sk, where Ak;3 and Ak;4 are coefficients of the series expansion
of Of k. Using simple linear algebra, it is possible to find coefficients �k such that the
combination of Of k.xiC 1

2
/,

�0 Of 0.xiC 1
2
/C �1 Of 1.xiC 1

2
/C �2 Of 2.xiC 1

2
/ D f .xiC 1

2
/CO.�x5/;

is fifth-order accurate if f .x/ is smooth in the whole stencil S5. These coefficients �k
are called ideal weights. Notice that the sum of all �k must be necessarily 1.
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The fifth-order WENO approximation is defined as

Of .xiC 1
2
/ D !0 Of 0.xiC 1

2
/C !1 Of 1.xiC 1

2
/C !2 Of 2.xiC 1

2
/;

where the weights !k vary with the smoothness of f .x/ inside Sk. Ideally, if a
substencil Sd contains a discontinuity (in short, we also say that the substencil Sd
is discontinuous), but there is another substencil Sc where f .x/ is smooth (we also
say that Sc is smooth, or continuous), it is desirable that !d 	 0 in order to avoid
computing the approximation in a domain where f .x/ is discontinuous. This is called
the ENO property. However, if f .x/ is smooth in the whole stencil S5, we require that
!k 	 �k for all k, so that the WENO approximation is fifth-order accurate.

For the Rth-order WENO approximation (where R is an odd number greater than
one), a global R-points stencil is divided into r substencils with r points each, where
r D .RC 1/=2. The general case is completely analogous to the fifth-order case.

2.1.1 Using the WENO Approximation for Solving PDE

In the context of numerical methods for solving PDE, the WENO approximation is
generally used for computing the spatial derivative of a function (e.g., the derivative
of the flux of hyperbolic conservation laws). Suppose we want to approximate the
derivative of a given a function f .x/ at the point xi. First, we implicitly define a
special function h.x/ whose finite difference is exactly f 0.xi/:

f .x/ D 1

�x

Z xC�x
2

x��x
2

h.�/ d� ∴ f 0.xi/ D
h.xiC 1

2
/ � h.xi� 12 /
�x

:

Next, WENO is used to approximate h.xi˙ 1
2
/ through the point values of f .x/,

resulting in the Rth-order approximations Of .xi� 12 / and Of .xiC 1
2
/. It is shown [5] that

Of .xiC 1
2
/ � Of .xi� 12 /
�x

D f 0.xi/C O.�xR/

if f .x/ is smooth.

Remark 1 In what follows, the standard asymptotic symbols O.�/, �.�/ and ‚.�/
will be used with their proper meanings:

• g.�x/ D O.�xn/ denotes an upper bound to g.�x/, that is, jg.�x/j � C�xn for
some C > 0 as�x! 0.

• g.�x/ D �.�xn/ denotes a lower bound to g.�x/, that is, jg.�x/j � C�xn for
some C > 0 as�x! 0.

• g.�x/ D ‚.�xn/ denotes the exact order of g.�x/, that is, g.�x/ D O.�xn/
and g.�x/ D �.�xn/ as �x! 0.
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2.2 The WENO-JS and Related Schemes

The WENO-JS [9] and related schemes use the basic weight formula

˛JS
k D

�k

.ˇk C "/p ; !JS
k D

˛JS
k

Pr�1
jD0 ˛JS

j

; k D 0; : : : ; r � 1:

Here, ˇk is a (local) smoothness indicator, that is,

ˇk D
8

<

:

O.�xq/; for some q > 0; if f .x/ is smooth in Sk .typically; q D 2/;
‚.1/; if f .x/ is discontinuous in Sk:

The power parameter p � 1 is used to enhance the relative ratio between the
smoothness indicators ˇk; the larger the p, the smaller the weights of less-smooth
substencils and, as a consequence, the more dissipative is the scheme. Typically,
p D 2 for the fifth-order WENO-JS. The sensitivity parameter " > 0 is used to
avoid divisions by zero in the weights formulation, but may also interfere with the
smoothness detection if it is too large.

The Mapped WENO weights (WENO-M) [8] are obtained by applying the
mapping function

gk.!/ D .�k C �2k � 3�k! C !2/!
�2k � 2�k! C !

; ! 2 Œ0; 1�;

in the WENO-JS weights. This mapping function both improves the accuracy of
WENO-JS near critical points and increases the weights of less-smooth substencils,
making WENO-M considerably less dissipative than WENO-JS. The mapping
function is computationally expensive, however.

2.3 The WENO-Z and Related Schemes

The WENO-Z [3] and related schemes use a different basic weight formula

˛Z
k D �k

"

1C
�




ˇk C "
�p
#

; !Z
k D

˛Z
k

Pr�1
jD0 ˛Z

j

; k D 0; : : : ; r � 1: (1)

The terms ˇk, ", and p are totally analogous to their WENO-JS counterparts. The
novelty here is the inclusion of a global smoothness indicator 
 in the formula,
which measures the smoothness in the whole R-points stencil and has a higher order
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than ˇk, that is,


 D
8

<

:

O.�xq2 / < ‚.ˇk/ for some q2 > 0; if f .x/ is smooth in SR;

‚.1/; if f .x/ is discontinuous somewhere inside SR:

WENO-Z behaves better near critical points than WENO-JS [5]. It also assigns a
larger weight to less-smooth substencils. To see this, consider Sd a substencil where
the solution is “less smooth” than in substencil Sc, meaning that ˇd > ˇc. If the
same parameters " and p and the same smoothness indicator ˇk are used in both
schemes, we have

!Z
d

!Z
c

D ˛Z
d

˛Z
c

D �d

�c

.ˇc C "/p

.ˇd C "/p
.ˇd C "/p C 
p
.ˇc C "/p C 
p >

�d

�c

.ˇc C "/p

.ˇd C "/p D
˛JS
d

˛JS
c

D !JS
d

!JS
c

:

The other WENO-Z-type schemes mentioned in the introduction [6, 15] use the
same weight formula as Eq. (1), but with different smoothness indicators than the
original.

2.4 The WENO-Z+ Scheme

The WENO-Z+ weights [1] are defined by

˛ZP
k D �k

"

1C
�


 C "
ˇk C "

�p

C �
�

ˇk C "

 C "

�

#

;

!ZP
k D

˛ZP
k

Pr�1
jD0 ˛ZP

j

; k D 0; : : : ; r � 1:

This is similar to the WENO-Z weight formula, with the addition of the term
�.

ˇkC"

C" /, which has the following properties:

• It is directly proportional to ˇk; therefore, the less smooth the function is in Sk,
the larger it gets.

• It is divided by the global smoothness indicator 
 ; as such, this term is small
when there is an actual discontinuity somewhere inside the global stencil.

The parameter � is used for controlling the size of this term. In [1], � D �x2=3

was chosen for order 5 based on empiric evidence. Values much larger than that led
to instabilities, and values much smaller made WENO-Z+ have almost no gain in
resolution compared to WENO-Z.

Figures 2 and 3 respectively show the numerical solution of the shock-entropy
wave tests of Shu–Osher and Titarev–Toro. It can be seen that WENO-Z+ has
noticeably more resolution near critical points than the other WENO schemes, and
even than the linear fifth-order upstream central scheme (Central5) in the Titarev–
Toro test.
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3 Numerical Results

Preliminary results for third- and seventh-order WENO-Z+ schemes are shown in
this section. For third-order, p D 1 for all schemes and � D 16 for WENO-Z+.
For seventh-order, p D 3 for all schemes and � D 25�x for WENO-Z+. In all
tests, " D 10�40 and CFL = 0:5. The SSP-ERK(3,3) method was used for time
integration, and is was used characteristics decomposition with Lax-Friedrichs flux
splitting done in each characteristic variable separately.

The tests shown in this section are standard linear and Euler 1D tests generally
used for testing WENO schemes. A complete explanation of the numerical tests can
be found in the literature (e.g., [1]). For brevity, they will not be described here.

3.1 Order 3

For order 3, WENO-Z+ has shown a noticeably improved resolution compared to
the other WENO schemes. Its resolution is very similar to the third-order linear
upstream central scheme (Central3), as seen in Figs. 4 and 5, even surpassing it in the
Gaussian-square-triangle-ellipse linear test (Fig. 6). Contrary to Central3, however,
WENO-Z+ converges in the interacting blast waves problem (Fig. 7) and do not
present relevant spurious oscillations near discontinuities (Figs. 6 and 8).
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Fig. 4 Numerical solution of the shock-entropy wave problem of Shu–Osher with N D 401 points
at t D 1:8; density. Zoom in the relevant region
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Fig. 5 Numerical solution of the shock-entropy wave problem of Titarev–Toro with N D 2001

points at t D 5; density. Zoom in the relevant region

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 6 Numerical solution of the Gaussian-square-triangle-ellipse linear test with N D 200 points
at t D 2
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Fig. 7 Numerical solution of the interacting blast waves problem with N D 401 points at t D
0:13; density
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Fig. 8 Numerical solution of the Riemann problem of Lax with N D 401 points at t D 0:13;
density. Zoom in the relevant region
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Fig. 9 Numerical solution of the shock-entropy wave problem of Shu–Osher with N D 201 points
at t D 1:8; density. Zoom in the relevant region

3.2 Order 7

For order 7, the results of all WENO schemes are more close. The exceptions are
the two shock-entropy wave interaction tests (Figs. 9 and 10), which have numerous
smooth extrema. In these tests, WENO-Z+ performs better than the other WENO,
even surpassing Central7 in the Titarev–Toro test. As in the orders 3 and 5, WENO-
Z+ was stable and essentially oscillation-free near discontinuities with this choice
of �, as Fig. 11 illustrates.

4 Conclusions

The WENO-Z+ scheme has shown significantly better results than the other WENO
schemes tested here for third and seventh orders, showing that the approach is also
sound for orders other than five. While this is very promising, the scheme deserves
more investigation. The ninth- and higher orders still need to be implemented.
Also, 2D and 3D tests need to be run. We plan to do both things in the near
future.

Regarding the parameter �, the choices shown here were guesses corroborated by
empirical tests, and they may be far from optimal. We plan to use a more systematic
approach to find the optimal �. Another issue involving � is that it appears to
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Fig. 10 Numerical solution of the shock-entropy wave problem of Titarev–Toro with N D 1001

points at t D 5; density. Zoom in the relevant region
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Fig. 11 Numerical solution of the Riemann problem of Lax with N D 201 points at t D 0:13;
density. Zoom in the relevant region

depend on the grid size �x, at least for fifth and seventh orders. It would be better
to find a way of removing this dependence, so as to emulate the self-similarity of
conservation laws.
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Compact High Order Complete Flux Schemes

J.H.M. ten Thije Boonkkamp and M.J.H. Anthonissen

Abstract In this paper we outline the complete flux scheme for an advection-
diffusion-reaction model problem. The scheme is based on the integral represen-
tation of the flux, which we derive from a local boundary value problem for
the entire equation, including the source term. Consequently, the flux consists of
a homogeneous part, corresponding to the advection-diffusion operator, and an
inhomogeneous part, taking into account the effect of the source term. We apply
(weighted) Gauss quadrature rules to derive the standard complete flux scheme,
as well as a compact high order variant. We demonstrate the performance of both
schemes.

1 Introduction

Conservation laws are ubiquitous in continuum physics, they occur in disciplines
like fluid dynamics, combustion theory, plasma physics, semiconductor theory etc.
These conservation laws are often of advection-diffusion-reaction type, describing
the interplay between different processes such as advection or drift, diffusion or
conduction and (chemical) reaction or recombination/generation.

In this paper we address (high order) space discretisation methods for these
equations. We consider the model problem

d

dx

�

u' � "d'

dx

�

D s; (1)

where u is the advection velocity, " � "min > 0 a diffusion/conduction coefficient
and s a source term. The unknown ' could be for example the mass fraction of a
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species in a reacting flow. Associated with (1) we introduce the flux f defined by

f D u' � "d'

dx
; (2)

thus the conservation law can be concisely written as df=dx D s.
For space discretisation we apply the finite volume method (FVM), thus we cover

the domain with a finite set of control volumes (cells) Ij of size h D �x. We adopt
the vertex-centred approach [6], i.e., we choose Ij D Œxj�1=2; xjC1=2� where xj˙1=2 D
1
2

�

xj C xj˙1
�

and xj are the grid points where ' has to be approximated. Integrating
(1) over the control volume Ij, we obtain the integral conservation law

f .xjC1=2/� f .xj�1=2/ D
Z xjC1=2

xj�1=2

s.x/ dx: (3)

To derive the discrete conservation law, we have to approximate the flux f .xjC1=2/
by a numerical flux FjC1=2 and we have to approximate the integral in the right hand
side. Thus, a generic form of the discrete conservation law reads

FjC1=2 � Fj�1=2 D QŒsI xj�1=2; xjC1=2�; (4)

where FjC1=2 is the numerical flux at the cell interface x D xjC1=2 and where
Q
�

sI xj�1=2; xjC1=2
�

denotes a (high order) quadrature rule approximation for the
integral in the right hand side of (3). A possible choice for the numerical flux is
the standard complete flux scheme, which can be written in the form

FjC1=2 D ˛jC1=2'j � ˇjC1=2'jC1 C h
�

�jC1=2sj C ıjC1=2sjC1
�

; (5)

for some coefficients ˛jC1=2 etc., and where 'j 	 '.xj/ denotes the numerical
solution at grid point xj and sj D s.xj/. The standard complete flux approximation
results in a compact three-point scheme and is uniformly second order accurate [4].
The purpose of this paper is to derive a compact, high order variant of the complete
flux scheme. The numerical flux may only depend on the two neighbouring grid
point values of ' and s, and necessarily some values of s at intermediate points.
This way we avoid cumbersome (W)ENO reconstruction of interface values for '.
Combined with a high order quadrature rule for s, this gives rise to a compact high
order scheme. Consequently, the resulting algebraic system is straightforward to
solve and the numerical solution much more accurate than the standard complete
flux numerical solution.

We have organised our paper as follows. In Sect. 2 we present the integral
representation of the flux, from which we derive the standard complete flux scheme.
We combine the standard scheme with the midpoint rule for the source s. Next,
in Sect. 3 we present a high order variant of the complete flux scheme. For the
corresponding quadrature rule for s we choose the two-point Gauss-Legendre
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quadrature rule. We demonstrate the performance of both schemes in Sect. 4 and
we end with a summary and conclusions in Sect. 5.

2 Standard Complete Flux Scheme

In this section we outline the standard complete flux scheme for Eq. (1), which is
based on the integral representation of the flux; for a detailed derivation see [4].

The integral representation of the flux f .xjC1=2/ at the cell interface x D xjC1=2 is
based on the following model boundary value problem (BVP) for ':

df

dx
D d

dx

�

u' � "d'

dx

�

D s; xj < x < xjC1; (6a)

'.xj/ D 'j; '.xjC1/ D 'jC1: (6b)

We like to emphasize that f .xjC1=2/ corresponds to the solution of the entire
equation, implying that f .xjC1=2/ not only depends on u and ", but also on the source
term s. We define the following variables:

a D u

"
; A.x/ D

Z x

xjC1=2

a.�/ d�; S.x/ D
Z x

xjC1=2

s.�/ d�: (7)

Integrating Eq. (6a) from xjC1=2 to x 2 Œxj; xjC1� we obtain the relation

f .x/� f .xjC1=2/ D S.x/: (8)

Next, using the definition of A in (7), we rewrite the expression for the flux in its
integrating factor formulation, i.e.,

f D �" d

dx

�

' e�A
�

eA: (9)

Finally, substituting (9) in (8), integrating the resulting equation from xj to xjC1 and
applying the boundary conditions (6b), we obtain the following expressions for the
flux

f .xjC1=2/ D f h.xjC1=2/C f i.xjC1=2/; (10a)

f h.xjC1=2/ D
�

e�A.xj/'j � e�A.xjC1/'jC1
�

=

Z xjC1

xj

"�1e�A dx; (10b)

f i.xjC1=2/ D �
Z xjC1

xj

"�1e�AS dx=
Z xjC1

xj

"�1e�A dx; (10c)
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where f h.xjC1=2/ and f i.xjC1=2/ are the homogeneous and inhomogeneous part of
the flux, corresponding to the advection-diffusion operator and the source term,
respectively.

For the inhomogeneous flux, we can derive an alternative expression. Indeed,
substituting the expression for S in (7) in (10c) and changing the order of integration
we obtain the relation

f i.xjC1=2/ D h
Z 1

0

G.�/s.xj C h�/ d�; (11)

where � D .x � xj/=h is the normalised coordinate on Œxj; xjC1� and where the
function G is defined by

G.�/ D

8

ˆ

<

ˆ

:

h
R �

0
"�1e�A d	=

R xjC1

xj
"�1e�A dx for 0 � � � 1

2
;

�h R 1� "�1e�A d	=
R xjC1

xj
"�1e�A dx for 1

2
< � � 1:

(12)

Note that G relates the flux to the source term, and therefore we refer to it as the
Green’s function for the flux, similar to the Green’s function which relates the
solution of (6) to the source. Summarizing, the flux is completely determined by
the expressions (10a), (10b), (11) and (12).

Next, let us consider the special case of constant u and ", the source term s is
assumed to be an arbitrary function of x. We introduce the (grid) Péclet number
P D uh=". In this case, the expression for the homogeneous flux reduces to

f h.xjC1=2/ D "

h

�

B.�P/'j � B.P/'jC1
�

: (13)

In (13) we have used the Bernoulli function B.z/ WD z=
�

ez � 1�. We can evaluate all
integrals involved in the expressions for G and find

G.� IP/ D

8

ˆ

<

ˆ

:

1�e�P�

1�e�P for 0 � � � 1
2
;

� 1�eP.1��/

1�eP for 1
2
< � � 1I

(14)

see Fig. 1. Note that G explicitly depends on P as a parameter. Moreover, G is
discontinuous at � D 1

2
and satisfies the symmetry condition G.� IP/ D �G.1 �

� I �P/. The flux is in this case completely determined by the expressions (10a),
(13), (11) and (14).

To derive expressions for the numerical flux FjC1=2, we have to apply quadrature
rules to all integrals involved. For the general case of variable u and " expressions
for the standard complete flux scheme have been derived in [4], whereas a higher
order complete flux scheme based on the 2-point Gauss-Legendre quadrature rule is
presented in [1].



Compact High Order Complete Flux Schemes 565

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
P = 0.01
P = 1
P = 5
P = 10

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P = −0.01
P = −1
P = −5
P = −10

Fig. 1 Green’s function for the flux for P > 0 (left) and P < 0 (right)

In the remainder of this paper we restrict ourselves to constant u and ". It is our
purpose to derive a new high order flux approximation based on weighted Gauss
quadrature rules. As weight function we will use the function G.� IP/ given in (14).

We start with the standard complete flux scheme. For the homogeneous numer-
ical flux Fh

jC1=2 we simply take the homogeneous part of the flux, i.e., Fh
jC1=2 D

f h
�

xjC1=2
�

, which is exact; see (13). This approximation corresponds to the well-
known exponentially fitted scheme; see for example [3] and the many references
therein. To evaluate the expression (11) for the inhomogeneous flux, we need
to approximate the source term on Œxj; xjC1�. An obvious choice is the piecewise
constant representation, corresponding to the midpoint rule in (4), given by

s.xj C h�/ D
8

<

:

sj if 0 � � � 1
2
;

sjC1 if 1
2
< � � 1: (15)

Inserting this expression in (11) and evaluating the resulting integrals, we obtain

Fi
jC1=2 D h

�

C2.�P/sj � C2.P/sjC1
�

; (16)

where C2.z/ WD
�

ez=2 � 1 � z=2
�

=
�

z
�

ez � 1��. The total numerical flux FjC1=2 is
obviously given by FjC1=2 D Fh

jC1=2CFi
jC1=2 and is referred to as the complete flux

scheme (CFS).
Substituting the numerical flux in the discrete conservation law (4) and applying

the midpoint rule M
�

sI xj�1=2; xjC1=2
� D hsj, we obtain

Fh
jC1=2 � Fh

j�1=2 D h
�

C�2 sj�1 C
�

1 � C�2 � CC2
�

sj C CC2 sjC1
�

; (17)

where we introduced the short hand notation C2̇ D C2.˙P/. The left hand side of
this equation is the discretised advection-diffusion operator, which can be written
as a weighted average of the central difference and upwind discretisations, whereas
the right hand side contains a weighted average of the source term values.
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3 High Order Complete Flux Scheme: The Constant
Coefficient Case

In this section we derive a high order approximation for the numerical flux.
Consequently, we also need a high order quadrature rule QŒsI xj�1=2; xjC1=2� in (4).

Note that the homogeneous numerical flux Fh
jC1=2 is exact for constant u and

", thus we only have to consider the inhomogeneous numerical flux Fi
jC1=2. Since

G.� IP/ is discontinuous at � D 1
2
, corresponding to the interface position x D

xjC1=2, we have to split the integral in (10c) in two parts as follows

f i.xjC1=2/ D h .I1 C I2/; (18a)

I1 D
Z 1=2

0

G.� IP/Qs.�/ d�; I2 D
Z 1

1=2

G.� IP/Qs.�/ d�; (18b)

where Qs.�/ D s.xj C h�/. We propose the weighted Gauss (WG) quadrature rule

I1 	WG
�QsI 0; 1

2

� D w1G.�1IP/Qs.�1/; I2 	 WG
�QsI 1

2
; 1
� D w2G.�2IP/Qs.�2/;

(19)

with weights w1;w2 > 0 and nodes �1 2
�

0; 1
2

�

and �2 2
�

1
2
; 1
�

. We require that
I1 D WG

�QsI 0; 1
2

�

and I2 D WG
�QsI 1

2
; 1
�

for Qs.�/ D 1 and Qs.�/ D � . For the first
integral this gives rise to the equations

C2.�P/ D w1G.�1IP/; 1
2
C2.�P/ � C3.P/ D w1G.�1IP/�1; (20)

where C3.z/ WD
�

C2.z/ � 1
8
B.z/

�

=z. From the equations in (20) we find the
quadrature rule

I1 	 WG
�QsI 0; 1

2

� D !1Qs.�1/; !1 D C2.�P/; �1 D 1
2
� C3.�P/

C2.�P/ : (21a)

In a similar fashion we find

I2 	 WG
�QsI 1

2
; 1
� D !2Qs.�2/; !2 D �C2.P/; �2 D 1

2
C C3.P/

C2.P/
: (21b)

Alternatively, using the symmetry property of G, we can show that

I2 D �
Z 1=2

0

G.� I �P/Qs.1 � �/ d�:

If we now apply the quadrature rule (21a) to this integral and replace P by �P,
we recover (21b). The modified weights !1 D w1G.�1IP/, !2 D w2G.�2IP/ and
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Fig. 3 Coefficient in the error term in (23) as a function of P

the corresponding nodes �1, �2 as functions of P are shown in Fig. 2. Note that
0 < �1 <

1
2

and 1
2
< �2 < 1, as anticipated.

To investigate the error of the quadrature rules (21), we have to substitute Qs.�/ D
�2, since this is the lowest order monomial for which the quadrature rules are no
longer exact. We restrict ourselves to (21a), thus we have

I1 D !1Qs.�1/C E1; (22)

where the error E1 is of the form E1 D CQs00.	/ for some 	 2 .0; 1
2
/, with the prime

.0/ denoting differentiation with respect to � . Substituting Qs.�/ D �2 we obtain
E1 D 2C4.�P/ � C23.�P/=C2.�P/, where C4.z/ D .C3.z/ � 1

48
B.z//=z. Therefore,

for arbitrary Qs.�/, we have the error term

E1 D h2
h

C4.�P/ � C23.�P/
2C2.�P/

id2s

dx2
.�/; � 2 .xj; xjC1=2/; (23)

implying the approximation is second order accurate. The error coefficient in
brackets as a function of P is shown in Fig. 3. From this figure, it is obvious that
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the error is negligible for P < 0, and small for P > 0. A similar result holds for the
quadrature rule (21b).

Applying the quadrature rules in (21), we find the following expression for the
inhomogeneous numerical flux

Fi
jC1=2 D h

�

C2.�P/s.xj C h�1/ � C2.P/s.xj C h�2/
�

; (24)

which is (at least) third order accurate in view of the error term in (23). Note that this
approximation is similar to (16), except for the nodes where s has to be evaluated.
It is instructive to consider some limiting cases. First, for P D 0, i.e. no advection,
the expression in (24) reduces to

Fi
jC1=2 D 1

8
h
�

s.xj C 1
3
h/� s.xj C 2

3
h/
�

; (25a)

corresponding to the piecewise linear limit function G.�/ D � for 0 � � � 1
2

and
G.�/ D � � 1 for 1

2
< � � 1. Alternatively, for P ! C1, i.e. u > 0 and no

diffusion, we obtain

Fi
jC1=2 D 1

2
hs.xj C 1

4
h/; (25b)

which is the midpoint approximation of the integral in (11) for the piecewise
constant limit function G.�/ D 1 for 0 < � < 1

2
and G.�/ D 0 for 1

2
< � < 1. A

similar expression holds when P! �1.
To complete the discretisation, we apply the two-point Gauss-Legendre quadra-

ture rule GL2
�

sI xj�1=2; xjC1=2
�

to the integral of s in (3) to obtain

Fh
jC1=2 � Fh

j�1=2 D h
�

C�2 s.xj�1 C h�1/� CC2 s.xj�1 C h�2/�
C�2 s.xj C h�1/C CC2 s.xj C h�2/

�C GL2
�

sI xj�1=2; xjC1=2
�I

(26)

cf. (17).

4 Numerical Example

In this section we apply the standard and high order CF schemes to a model problem
to assess their (order of) accuracy.

Consider Eq. (1) defined for 0 < x < 1. Boundary conditions and source term
are chosen, such that the exact solution is given by

'.x/ D �1 � 1
5

sin.�!/
�eu.x�1/=" � e�u="

1 � e�u="
C 1

5
sin.�!x/: (27)
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Fig. 4 1-norm of the error for "D 10�2 (left) and " D 10�3 (right)

We take the following parameter values: ! D 1, u D 1, " D 10�2 or " D 10�3.
In both cases the solution has a boundary layer at the outflow. To determine the
accuracy of a numerical solution, we compute eh D hjj' � '�jj1, with ' the
numerical solution vector and '� the exact solution restricted to the grid, as a
function of the grid size h, see Fig. 4. From this figure we conclude that the standard
CF-scheme is second order convergent, uniformly in the Péclet number, whereas the
high order CF-scheme exhibits fourth order convergence for " D 10�2 and roughly
third order for " D 10�3. In both cases the high order scheme has a significant
smaller error eh than the standard scheme.

5 Concluding Remarks and Discussion

We have derived the integral representation of the flux for a model advection-
diffusion-reaction equation. Applying quadrature rules to this representation, we
could derive two flux approximation schemes, i.e., the standard complete flux
scheme and a high order variant. The first scheme is second order accurate and the
latter even fourth order, uniformly in the Péclet number. Moreover, both schemes
only have a three-point coupling, albeit at the cost of a few source term evaluations at
intermediate points. The compact stencil makes the discrete schemes easy to solve.
A drawback is that quadrature rules for the inhomogeneous flux involving more than
two weights and nodes are hard to derive.

Modifications to more complicated problems is not straightforward. This paper is
a first attempt in designing high order complete flux schemes, and more research is
certainly needed. A few possible modifications are the following. First, for nonlinear
conservation laws the weighted Gauss quadrature rule is not feasible, and we first
have to formulate a linearized BVP, analogous to (6), to derive a high order flux
approximation scheme. However, this linearization is tricky and should use (the
structure of) the solution of the corresponding nonlinear BVP. In [2] we have
used this idea to derive a nonlinear (low order) flux approximation scheme for the
Burgers’ equation. Second, also for two-dimensional equations the scheme doesn’t
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hold. A possible remedy is to formulate the conservation law in local flow adapted
coordinates. This way we have to compute an advection-diffusion flux component
aligned with the flow, for which we can use the high order scheme, and a diffusion
flux component perpendicular to the flow, for which we can use a compact scheme.
In [5] we have carried out this procedure for the standard complete flux scheme.
Finally, extension to time-dependent problems is probably the most troublesome.
We need a high order approximation for integral of the time derivative and we have
to include the time derivative in the inhomogeneous flux; see [4] for details. In
both cases we introduce the time derivative at intermediate points, which need to be
eliminated. Moreover, we need a high order time integration method.

References

1. M.J.H. Anthonissen, J.H.M. ten Thije Boonkkamp, A compact high order finite volume scheme
for advection-diffusion-reaction equations, in Numerical Analysis and Applied Mathematics:
International Conference on Numerical Analysis and Applied Mathematics 2009, AIP Confer-
ence Proceedings, vol. 1168 (2009), pp. 410–414

2. N. Kumar, J.H.M. ten Thije Boonkkamp, B. Koren, A. Linke, A nonlinear flux approximation
scheme for the viscous Burgers’ equation, in Finite Volumes for Complex Applications VIII -
Hyperbolic, Elliptic and Parabolic Problems, ed. by C. Cancès et al. Springer Proceedings in
Mathematics & Statistics, vol. 200 (2017), pp. 457–465

3. K.W. Morton, Numerical Solution of Convection-Diffusion Problems. Applied Mathematics and
Mathematical Computation, vol. 12 (Chapman & Hall, London, 1996)

4. J.H.M. ten Thije Boonkkamp, M.J.H. Anthonissen, The finite volume-complete flux scheme for
advection-diffusion-reaction equations. J. Sci. Comput. 46, 47–70 (2011)

5. J.H.M. ten Thije Boonkkamp, M.J.H. Anthonissen, R.J. Kwant, A two-dimensional complete
flux scheme in local flow adapted coordinates, in Finite Volumes for Complex Applications VIII -
Hyperbolic, Elliptic and Parabolic Problems, ed. by C. Cancès et al. Springer Proceedings in
Mathematics & Statistics, vol. 200 (2017), pp. 437–445

6. P. Wesseling, Principles of Computational Fluid Dynamics (Springer, Berlin, 2001)



Pointwise Force Equilibrium Preserving
Spectral Element Method for Structural
Problems

K. Olesen, B. Gervang, J.N. Reddy, and M. Gerritsma

Abstract In structural mechanics the geometry is a crucial factor in the derivation
of the governing force equilibrium equations, which describe the balance of forces
in a discrete setting. In conventional discretization techniques the quantities are
approximated through nodal expansions, which lead to global force equilibrium,
but not local. This paper shows that by considering the geometry of the problem the
equilibrium of forces can be satisfied globally as well as locally.

1 Introduction

The finite element method (FEM) is a key tool to solve structural problems in
industry. The nodal FEM formulation approximates the displacement field based
on Lagrange polynomials, which base their expansions on discrete nodal values, see
[15]. The constitutive equations link the stress components to the strain components
meaning that the discrete stress field is expanded based on the first derivative of
the Lagrange polynomials for the displacement field. The discrete displacement
field is typically only C0 continuous across element boundaries which implies that
the discrete stress field is discontinuous. The force equilibrium equations contain
the derivatives of the stress components and the discretization of these therefore
involve the second derivative of the Lagrange polynomials. The discrete force
equilibrium equations are thereby satisfied globally but not locally.
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Fig. 1 The forces on a cube in R
3. The left picture illustrates the components of the surface forces,

Tij, on the surfaces. The right picture shows the body force components, Fj, acting on the volume
of the element

Using the ideas of Tonti, [18, 19], where integral values are treated as the
Degrees of Freedom (DOFs), we will show in this paper that the discrete force
equilibrium equations can be satisfied pointwise throughout the domain. Local
considerations of the force equilibrium were considered by Fraeijs De Veubeke
in [5–7] in the 1960s through dual analysis, where two simultaneous analyses
are performed, a kinematic and a static or dynamic admissible model, which are
coupled through complementary energy principles, [6, §2.2]. The static admissible
model considers the tractions on the element boundaries and connections to the
stresses are established. Since the stress field is coupled to the displacement field the
compatibility equations are in general not satisfied, and spurious kinematic modes
may be present. Such spurious modes can be eliminated by applying, for instance,
a stress potential or by direct approximations of the stress field in the elements.
These elements were revisited in the 1990s by Almeida and Freitas and a family
of hybrid finite element schemes were developed, [12, 13]. Recently, Almeida has
extended this work in [17], where the deformation of the elements is taken into
account through Piola-Kirchhoff projections. In this paper we will use forces – not
stresses – as our DOFs. The surface forces will be assigned to surfaces in the mesh,
while the body forces will be assigned to the volumes in the mesh, see Fig. 1. For
such particular choice of DOFs, force equilibrium reduces to a simple algebraic
equation. By selecting basis functions which interpolate quantities over surfaces
and volumes, discrete force equilibrium is satisfied pointwise. See [8, 10, 11] for
the derivation and use of these basis functions.

2 Equilibrium of Forces

Most textbooks on continuum mechanics derive equilibrium of forces as for instance
in [16]. Considering the cube in R

3 depicted in Fig. 1 under the action of surface
forces and a body force all decomposed into components, then the equilibrium of
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forces is written as1

T1j;C � T1j;� C T2j;C � T2j;� C T3j;C � T3j;� C Fj D 0 ; (1)

for j D 1; 2; 3. Here Tij;C and Tij;� denotes the surface force component with an
outward unit vector in the positive and negative basis direction, respectively. In (1)
the surface force components are given by

Tij D
Z

.@˝/i;˙

�ijni dS ; (2)

where @˝ is the boundary of the volume in Fig. 1 with @˝ D
3
P

iD1
.@˝/i;C C

.@˝/i;� and �ij are the Cauchy stress components. The body force components are
given by

Fj D
Z

˝

fj d˝ ; (3)

where˝ is any volume and fj is the body force density component.
Inserting (2) and (3) in (1) produces

Z

@˝

�ij ni dSC
Z

˝

fj d˝ D 0 :

Applying Gauss’ divergence theorem on the surface integral and recognizing that
the volume is arbitrary leads to the differential equation

@

@xi
�ij C fj D 0 : (4)

The relation (4) is deprived of all geometrical relations, i.e. from this PDE it is no
longer apparent that the �ij are connected to surfaces and fj to volumes. Furthermore,
notice that (1) is just a sum of finite values and is exact in a discrete space. Consider
a traditional FEM grid then the nodes will span small volumes. Numbering these
volumes and their bounding surfaces as in the example shown in Fig. 2 then (1) and
hence (4) can be represented as

D�T D �F : (5)

1In continuum mechanics one considers the limit for the volume V going to zero and introduce the
stresses – force per unit area – and body force density – force per unit volume or per unit mass – in
this limiting case. On a finite mesh, volumes will not be zero nor do they tend to zero and therefore
the physical variables ‘surface force’ and ‘body force’ are more appropriate to work with than the
mathematically defined fields commonly found in books on continuum mechanics See also [18]
for similar ideas.
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Fig. 2 Example of the numbering of the elements and their bounding surfaces. The numbering
is increasing first in the x1- then in x2- and lastly in the x3-direction. The illustrations show
the numbering of: top left: The elements, top right: Bounding surfaces normal to x1, lower left:
Bounding surfaces normal to x2, and lower right: Bounding surfaces normal to x3

Here D is the divergence operator given by

D D

2

6

4

E.3;2/ 0 0

0 E.3;2/ 0

0 0 E.3;2/

3

7

5 ;

where E.3;2/ is an incidence matrix, see [1, 4, 10, 11]. The incidence matrix for the
example in Fig. 2 is given below the illustrations. Notice that E.3;2/ and hence D
only consist of the numbers 0, �1 and 1. In (5)�T is a column vector containing all
the discrete surface force components in the following order

�T D
n

T11 T21 T31 T12 T22 T32 T13 T23 T33
oT

;

with Tij as row vectors containing the individual components. F in (5) is a column
vector containing all body force components in the following order

F D
n

F1 F2 F3
oT

;

where Fj are row vectors with the individual components.
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Fig. 3 The forces on a deformed element, ˝s, in R
3, and the mapping from a reference

element, Ő s

The relation in (5) is valid on any domain as it is a relation between integral
values. The deformed domain,˝s, shown in Fig. 3, which represent a finite element,
is geometrically described through a mapping from the reference element, Ő s. Let
�Oıj represent the stress components, which geometrically are associated to Ő s, but
have directions with respect to the physical basis, xj, then the force components are
given by

TOıj D
Z

.@ Ő s/
Oı;˙

�OıjnOı d OS : (6)

Here @ Ő s is the boundary of Ő s and .@ Ő s/Oı;˙ is the part of boundary having
an outward unit vector in the �i-direction, where �i are the coordinates in the
reference domain (parent element), see Fig. 3. Note that �Oıj is similar to the first
Piola-Kirchhoff stress, [16], but the Piola-Kirchhoff stress links to the undeformed
configuration, while we link to a reference element. Likewise the body force
components are given by

Fj D
Z

Ő s

Ofj d Ő ;
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where Ofj is the body force density in Ő s having directions in the physical basis
directions, xj. The surface forces acting on the boundaries and the body force acting
on the volume are invariant of the representing frame and the equilibrium of forces
remains unchanged and is given by

TO1j;C � TO1j;� C TO2j;C � TO2j;� C TO3j;C � TO3j;� C Fj D 0 :

The equilibrium of forces on the finite element mesh in (5) is now given by

D� OT D �F ; (7)

where

� OT D
n

T O11 TO21 T O31 T O12 T O22 T O32 T O13 T O23 TO33
oT

;

with TOij as row vectors containing all the surface force components in the xj-
direction acting on the surface with the outward unit vector in the �i-direction.
The divergence operator is the same and is purely determined by the connectivity
between volumes and surfaces in the mesh.

If the surface force components, TOıj;C, and the body force components, Fj, are
discrete values in the system then the equilibrium of forces are satisfied exactly
by (7).

3 The Constitutive Equations

As seen in the previous section the equilibrium of forces can be represented exactly
in a discrete setting by considering the surface force components and body force
components on each element boundary and volume, respectively.

The quantities in the constitutive equations are, however, not connected to a com-
mon geometrical object since the relations typically are between stress components
and strain components, i.e surface force densities and relative deformation along a
line. It is therefore not possible to set up a simple sum of integral relations as in the
equilibrium of forces. Instead the differential versions of the relations are used, and
is often denoted by

C� D " ; (8)

where � and " are column vectors containing the stress and strain components,
respectively, and C is a matrix containing the compliance components. In the FEM
� and " only contain six components each exploiting the symmetry of the stress
and strain tensors. The DOFs in this paper are force components and not stress
components. Given the surface forces we use the basis functions, to be introduced
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in Sect. 4, to approximate the stress components. Therefore all the stress and strain
components are listed in � and ", and C is a 9 � 9 matrix.

The constitutive relation in (8) is defined as a relation between the Cauchy stress
components and the strain components, which for small displacements are given by

"ij D 1

2

 

@ui
@xj
C @uj
@xi

!

: (9)

However, in (6) stress components similar to the first Piola-Kirchhoff stress compo-
nents are used to calculate the surface force components. The relation between the
first Piola-Kirchhoff stress tensor, O� , and the Cauchy stress tensor, � is according to
[16] given by

� D 1

J

2

6

4

F 0 0

0 F 0

0 0 F

3

7

5 O� D 1

J

�!
F O� ; (10)

with

F D

2

6

6

4

@x1
@�1

@x1
@�2

@x1
@�3

@x2
@�1

@x2
@�2

@x2
@�3

@x3
@�1

@x3
@�2

@x3
@�3

3

7

7

5

;

being the deformation gradient, J D det.F/ and

� D
n

�11 �21 �31 �21 �22 �23 �31 �32 �33

oT
;

O� D
n

�O11 �O21 �O31 �O21 �O22 �O23 �O31 �O32 �O33
oT

:

The components of the deformation gradient in (9) are transformed by

@ui
@xj
D @ui
@�k

@�k

@xj
;

which in engineering notation is written as

Du D
��!
F�1

�T

D0u ; (11)
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where

u D
n

u1 u2 u3
oT

;

D0 D

2

6

6

4

@
@�1

@
@�2

@
@�3

0 0 0 0 0 0

0 0 0 @
@�1

@
@�2

@
@�3

0 0 0

0 0 0 0 0 0 @
@�1

@
@�2

@
@�3

3

7

7

5

T

;

and
�!
F in (10). This is a common approach in FEMs, see for instance [3]. The strain

is given by

" D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Du D M"Du ; (12)

with

" D
n

"11 2"21 2"31 2"12 "22 2"32 2"13 2"23 "33

oT
: (13)

Note that row two and four as well as row six and eight in M" are the same, and
in e.g. [3] these are left out. However, in the present paper all stress components
are considered and hence also all strain components. By doing so, symmetry of the
stress tensor is weakly enforced by symmetry of the strain tensor.

To formulate a discretized version of the constitutive equations, a variational
statement will be used. This can also be thought of as multiplying with an arbitrary
stress field

& D
n

&11 &21 &31 &21 &22 &23 &31 &32 &33

oT
;

which produces a functional, and this is integrated over the domain, i.e.

Z

˝

&TC� d˝ D
Z

˝

&T" d˝ :



Discrete Force Equilibrium in Structural Problems 579

Inserting (10) and (12) gives

Z

˝

1

J2
O&T�!FTC

�!
F O� d˝ D

Z

˝

1

J
O&T�!FTM"Du d˝ :

Applying (11) and integrating with respect to Ő yields

Z

Ő

1

J
O&T�!FTC

�!
F O� d Ő D

Z

Ő
O&T�!FTM"

��!
F�1

�T

D0u d Ő ;

where the strain part can be rewritten as

Z

Ő
O&T�!FTM"

��!
F�1

�T

D0u d Ő D

Z

Ő
O&TD0u d Ő C

Z

Ő
O&T�!FT .M" � I/

��!
F�1

�T

D0u d Ő ;

with I being a 9�9 identity matrix. Performing integration by parts on the first term
yields

Z

Ő
O&TD0u d Ő D �

Z

Ő

�

D0 O&
�T

u d Ő C
Z

@ Ő
O&Tu dOS ;

and gathering all terms gives the weak formulation

Z

Ő

1

J
O&T�!FTC

�!
F O� d Ő D �

Z

Ő

�

D0 O&
�T

u d Ő C
Z

.@ Ő /u

O&Tu dOSC
Z

.@ Ő /T

O&Tu dOS

C
Z

Ő
O&T�!FT .M" � I/

��!
F�1

�T

D0u d Ő ;

where .@ Ő /u is the part of the boundary, where the displacements are prescribed,
and .@ Ő /T is the part of the boundary, where the tractions are given.

Let V � �

H1.˝/
�3

and T � �

H0.div/.˝/
�3

be finite dimensional subspaces,

where
�

H1.˝/
�3

denotes the Sobolov space of vector functions with square-

integrable gradients, and
�

H0.div/.˝/
�3

denotes the Sobolov space of vector
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functions with square-integrable divergence with vanishing trace along .@ Ő /T . The

variational statement reads: Find
�

uh; O� h
�

2 V � T such that 8 O&h 2 T:

Z

Ő

1

J

�

O&h
�T �!

FTC
�!
F O� h d Ő C

Z

Ő

�

D0 O&h
�T

uh d Ő

�
Z

Ő

�

O&h
�T �!

FT .M" � I/
��!
F�1

�T

D0uh d Ő D
Z

.@ Ő /u

�

O&h
�T

ubc d
�

@ Ő
�

;

(14)

where ubc is the known displacements on the .@ Ő /u boundary.

4 Expansion Polynomials

This section will describe the expansions of the stress and displacement fields.
In Sect. 2 the DOFs of the force equilibrium equations are the surface force
components and the body force components of the individual elements. Assuming
that the body force components are known, e.g. a gravity load, then the unknown
values are the surface force components. In Sect. 3 the constitutive relation contains
the discrete stress field, so this stress field should be connected to the discrete surface
force components. This can be accomplished through the use of edge polynomials
derived in [8]. Edge polynomials are defined as

ei.�/ D �
i�1
X

kD0

dhk.�/

d�
; i D 1; : : : ;N ;

where

hi.�/ D
QN

jD0;j¤i.� � �j/
QN

jD0;j¤i.�i � �j/
;

are the Lagrange polynomials. Just as the Lagrange polynomials have the property

hi.�k/ D
(

1 if i D k
0 if i ¤ k

;

the edge polynomials have the property

Z �k

�k�1

ei.�/ D
(

1 if i D k
0 if i ¤ k

: (15)
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The stress field is now expanded as

�h
O1m.�1; �2; �3/ D

N
X

iD0

N
X

jD1

N
X

kD1

�

TO1m
�

i;j;k
hi.�1/ej.�2/ek.�3/ ;

�h
O2m.�1; �2; �3/ D

N
X

iD1

N
X

jD0

N
X

kD1

�

TO2m
�

i;j;k
ei.�1/hj.�2/ek.�3/ ;

�h
O3m.�1; �2; �3/ D

N
X

iD1

N
X

jD1

N
X

kD0

�

TO3m
�

i;j;k
ei.�1/ej.�2/hk.�3/ ;

(16)

where .TOnm/i;j;k is the discrete surface force components of the individual elements.
Note that for instance

�

TO1m
�

i;j;k D
.�2/j
Z

.�2/j�1

.�3/k
Z

.�3/k�1

�O1md�2d�3 ;

where we have used (15) twice. This is the same as (6), however, in (6) the stress
components are used to obtain the surface force components, but in (16) the surface
force components are used to reconstruct the stress field.

The stress field is expanded on the mesh, which is spanned by the Gauss Lobatto
Legendre (GLL) points, �i, i D 0; : : : ;N. The displacement field is expanded using
Lagrange polynomials with discrete points located in the Gauss Legendre (GL)
points, Q�i, i D 0; : : : ;N � 1, see [2]. The GL points then satisfy �i < Q�i < �iC1
for i D 0; : : : ;N � 1, which means that there exists one discrete displacement

component per force equilibrium equation. Let �h.�/ D
N
P

iD0
�ihi.�/ be a function

in R expanded by Lagrange polynomials then the derivative is calculated by

d�h

d�
D

N
X

iD1
.�i � �i�1/ei.�/ :

By applying this in each direction D0uh in (14) is calculated, and the integrals
are evaluated using appropriate Gaussian quadratures. A global equation system
is assembled using (7) and (14). For more details refer to [14].
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5 Results

A numerical test is performed on a 2D domain with the plane stress case of Hooke’s
generalized law as the constitutive relation. This is given by

C D 1

E

2

6

6

6

4

1 0 0 ��
0 2.1C �/ 0 0

0 0 2.1C �/ 0
�� 0 0 1

3

7

7

7

5

;

where E D 1 is Young’s modulus, � D 0:3 is Poisson’s ratio and the number 2 in
the second and third row is from (13). By choosing the displacement field

u1.x1; x2/ D sin.2�x1/ cos.2�x2/ and u2.x1; x2/ D cos.2�x1/ sin.2�x2/ ;

the stress components are calculated from (8) and (9), while the body force density
components are calculated from (4) from which the body force components are
calculated. These values are used as input to the numerical test, and the error of the
displacement field and the residual of the force equilibrium equations are calculated.
The calculation is performed on the domain˝ 2 Œ�1; 1�2 with the mapping

x1.�1; �2/ D�1 C c sin.��1/ sin.��2/ ;

x2.�1; �2/ D�2 C c sin.��1/ sin.��2/ ;

which are plotted in Fig. 4 for c D f0; 0:15; 0:3g. The results are shown in Fig. 5,
where the pointwise error of the displacement field and the pointwise residual of
force equilibrium equations are evaluated in 100 � 100 points in each element. A
problem with a smooth solution with polynomial degree P is expected to have a
convergence rate of O.hPC1el / according to [9], where hel is the element size. This
is observed for the displacement field as this has polynomials degree of P D N.
A more interesting observation is that the residual of the discrete force equilibrium

Fig. 4 Deformed grids for 5� 5 elements with N D 5 and c D f0; 0:15; 0:3g
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Fig. 5 Top: Convergence for ui with respect to the undeformed element size hel for c D
f0; 0:15; 0:3g from left to right. Open square: N D 2, open circle: N D 5, down triangle: N D 10.
Bottom: The residual of the discrete force equilibrium equations with respect to the undeformed
element size hel for c D f0; 0:15; 0:3g

equations are around 10�12 to 10�10, which indicates that we have pointwise force
equilibrium. For details on how the force equilibrium equations are evaluated refer
to [14].

6 Conclusion

In this paper we have shown that through geometrical considerations the discrete
force equilibrium equations are described by the sum of surface force components
on the individual elements and thereby no approximation is involved. This means
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that force equilibrium is satisfied to machine precision, and this should be the case
independently of the constitutive relation chosen. This property could be interesting
to investigate in future work.
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A Staggered Discontinuous Galerkin Method
for a Class of Nonlinear Elliptic Equations

Eric T. Chung, Ming Fai Lam, and Chi Yeung Lam

Abstract In this paper, we present a staggered discontinuous Galerkin (SDG)
method for a class of nonlinear elliptic equations in two dimensions. The SDG
methods have some distinctive advantages, including local and global conservations,
and optimal convergence. So the SDG methods have been successfully applied to a
wide range of problems including Maxwell equations, acoustic wave equation, elas-
todynamics and incompressible Navier-Stokes equations. Among many advantages
of the SDG methods, one can apply a local post-processing technique to the solution,
and obtain superconvergence. We will analyze the stability of the method and derive
a priori error estimates. We solve the resulting nonlinear system using the Newton’s
method, and the numerical results confirm the theoretical rates of convergence and
superconvergence.

1 Introduction

Our aim of this paper is to extend the staggered discontinuous Galerkin (SDG)
method to a class of nonlinear elliptic problems arising in, for example, hyperpolar-
ization effects in electrostatic analysis [14], nonlinear magnetic field problems [13],
subsonic flow problems [12], and heat conduction.

A detailed introduction to the SDG method is given by Chung and Engquist [4, 5].
This class of methods has been successfully applied to a wide range of problems
including the Maxwell equation [6, 7], acoustic wave equation [5], elastic equations
[9, 15], and incompressible Navier-Stokes equations [3]. In these applications, the
approximate solutions obtain some nice properties such as energy conservation, low
dispersion error and mass conservation. Recently, a connection between the SDG
method and the hybridizable discontinuous Galerkin (HDG) method is obtained [8,
10]. From this perspective, the SDG method acquires some new properties, such as
postprocessing and superconvergence properties, from the HDG method [11]. We
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remark that numerical methods based on staggered meshes are important in many
applications, see [17, 18].

To begin with, we let ˝ � R2 be a bounded and simply connected domain with
polygonal boundary � . Also, we let the coefficient % W R2 ! R be a L1 function
satisfying certain conditions (will be specified). Then, for a given f 2 L2.˝/ we
seek u 2 H1

0.˝/ such that

� div
�

%.ru.x//ru.x/� D f .x/ in ˝; and u.x/ D 0 on �; (1)

where div is the usual divergence operator.
This paper is organized as follows. In Sect. 2, we will construct the SDG method.

In Sect. 3, we will discuss the implementation of the scheme. In Sect. 4, we will
prove stability estimates and an a priori error estimate of our scheme. Finally,
in Sect. 5, we will numerically show the rate of convergence of our method.
Throughout this paper, we use C to denote a generic positive constant, which is
independent of the mesh size.

2 The SDG Formulation

We introduce new variables, the gradient G WD ru and the flux U WD �.G/G. Then
the problem (1) can be recasted as the following problem in ˝: Find .U;G; u/ such
that,

G D ru; U D �.G/G; �divU D f in ˝;

u D 0 on �:

Next we describe the staggered mesh. Following [4, 5],we first define the
triangulation. Assume ˝ is triangulated by a family of triangles with no hanging
nodes, namely, the initial triangulation Tu. The triangles in Tu are called the first-
type macro element. We denote the set of all edges and all interior edges of Tu by Fu

and F0
u, respectively. Then we choose an interior point A in each first-type macro

element. We denote the first-type macro element corresponding to A by S.A/.
By connecting each of these interior points to the three vertices of the triangle,
we subdivide each triangle into three subtriangles. We denote the triangulation
containing all these subtriangles by T and assume it is shape-regular. We denote
the set of all new edges in this subdivision process by Fp. Also, we denote the set
of all edges and the set of all interior edges by F WD Fu[Fp and F0 WD F0

u[Fp,
respectively. For each interior edge eu 2 F0

u, there are two triangles 
1; 
2 2 T such
that eu D 
1 \ 
2. We denote the union 
1 [ 
2 by R.eu/. Also, for each boundary
edge eb, we denote the only triangle having eb as an edge by R.eb/. These elements
R.eu/ and R.eb/ are called the second-type macro element. In Fig. 1, we illustrate
two first-type macro elements and a second-type macro element, which is shaded in
grey, obtained from the subdividing process on two neighboring initial triangles.
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Fig. 1 An illustration of the
triangulation T, where the
solid edges belong to Fu and
the dashed edges belong to
Fp

For a boundary edge eb, we define ne to be the unit normal vector pointing outside
˝ . Otherwise, ne is one of the two possible unit normal vectors of e 2 F0. When it
is clear which edge is being considered, we will simply use n instead of ne.

Next, we describe the finite element spaces we use in our formulation. Let
k � 0 be a non-negative integer. For each triangle 
 2 T, we denote the space
of polynomials on 
 with degree at most k by Pk.
/. Then we define the locally
H1.˝/-conforming finite element as

Uh WD fv W vj
 2 Pk.
/;8
 2 TI v is continuous across eu 2 F0
u I vj@˝ D 0g;

and the locally H.divI˝/-conforming finite element space as

Wh WD fV W Vj
 2 Pk.
/2;8
 2 TI the normal component V � ne
across ep 2 Fp is continuousg:

We consider the discrete problem in the following formulation: find
.Uh;Gh; uh/ 2 Wh �Wh �Uh such that,

Z

S.A/
Gh � Vh dxC

Z

S.A/
uh divhVh dx �

Z

@S.A/
Gh .Vh � n/ d� D 0;

Z

S.A/
Uh �Wh dx �

Z

S.A/
�.Gh/Gh �Wh dx D 0;

Z

R.e/
Uh � rhvh dx �

Z

@R.e/
.Uh � n/vh d� D

Z

R.e/
fvh dx;

(2)

for any first-type element S.A/ and second-type element R.e/, any test functions
.Vh;Wh; vh/ 2 Wh � Wh � Uh. In the above formulation, rh and divh are the
elementwise gradient and divergence operators, respectively. Besides, n denotes
outward normals on S.A/ or R.e/ depending on the context.

We emphasize here that Uh is defined via the second equation of (2), which is a
new feature of our SDG method and needs special treatment (will be discussed in
the next section) due to its nonlinear nature.
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We define the jump operator Œ�� as follows. For ep 2 Fp, if 
1; 
2 2 T such that
ep D 
1 \ 
2 and ne is pointing from 
1 to 
2, then

Œv� WD vj
1 � vj
2 :
For eu 2 F0

u, if 
1; 
2 2 T such that eu D 
1 \ 
2 and ne is pointing from 
1 to 
2,
then

ŒV � ne� WD Vj
1 � ne � Vj
2 � ne:
We also introduce two bilinear forms,

bh.Vh; vh/ WD
Z

˝

Vh � rhvh dx �
X

ep2Fp

Z

ep

Vh � nŒvh� d�;

b�h .vh;Vh/ WD �
Z

˝

vhrh � Vh dxC
X

eu2F0
u

Z

eu

vhŒVh � n� d�;

for vh 2 Uh;Vh 2 Wh: According to Lemma 2.4 of [5], we have

bh.Vh; vh/ D b�h .vh;Vh/; 8.vh;Vh/ 2 Uh �Wh; (3)

which means that the bilinear forms bh and b�h are adjoint to each other.
Summing the equations in (2) on S.A/ and R.e/, respectively, we can recast (2)

into: find .Uh;Gh; uh/ 2 Wh �Wh �Uh such that,
Z

˝

Gh � Vh dx � b�h .uh;Vh/ D 0; (4a)

Z

˝

Uh �Wh dx �
Z

˝

�.Gh/Gh �Wh dx D 0; (4b)

bh.Uh; vh/ D
Z

˝

fvh dx; (4c)

for any .Vh;Wh; vh/ 2 Wh � Wh � Uh. This completes the definition of our SDG
method.

3 Implementation

In this section we will discuss the implementation detail of our SDG method. First
of all we fix a basis f�igNu

iD1 for Uh and f igNw
iD1 for Wh, and write uh D P

i.buh/i�i,
Gh DPi.

bGh/i i and Uh DPi.
bUh/i i, wherebuh, bGh andbUh are Nu�1, Nw�1 and

Nw � 1 vectors, respectively. Next, we define the mass matrix Mh and the matrix Bh

by .Mh/ij WD
R

˝
 j � i dx; and.Bh/ij WD bh. j; �i/; respectively. Since bh. j; �i/ D

b�h .�i;  j/, so the matrix BT
h can represent the bilinear form b�h . Then we rewrite
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(4a)–(4c) as the following system:

MhbGh � BT
hbuh D 0; (5a)

MhbUh D F.bGh/; (5b)

Bh
bUh D fh; (5c)

where fh is a Nu � 1 vector given by . fh/i WD
R

fvi dx, and F.bGh/ is a Nw � 1 vector

given by F.bGh/i WD
�

�.Gh/Gh;  i
�

L2.˝/. Eliminating bUh from (5a)–(5c), we obtain

MhbGh � BT
hbuh D 0;

BhM
�1
h F.bGh/ D fh:

(6)

Here F is not a linear function in general. Hence we use Newton’s method to

solve this system. Write bxh WD .bGh;buh/T and H.bxh/ WD
�

MhbGh � BT
hbuh;BhM�1h

F.bGh/ � fh
�T

. The Jacobian matrix of H is given by

J.bxh/ WD
 

Mh �BT
h

BhM�1h F0.bGh/ 0

!

;

where F0.bGh/ is the derivative with respect to bGh, and is given by

F0.bGh/ij D
�

�.Gh/ j;  i
�C �.r�.Gh/ �  j/Gh;  i

�

:

Given an initial guessbx0h, we repeatedly updatebxnh by

bxnC1h Dbxnh � ŒJ.bxnh/��1H.bxnh/;

until the successive error
�

�

�unC1h � unh

�

�

�

L2.˝/
is less than a given tolerance ı.

4 Stability and Convergence of the SDG Method

We begin with some results from the SDG method studied in [5]. We define the
discrete L2-norm k � kX and the discrete H1-norm k � kZ for any v 2 Uh by

kvk2X WD
Z

˝

v2 dxC
X

eu2F0
u

heu

Z

eu

v2 d� and

kvk2Z WD
Z

˝

jrhvj2 dxC
X

ep2Fp

h�1ep

Z

ep

Œv�2 d�;
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respectively. We also define the discrete L2-norm k � kX0 and the discrete H1-norm
k � kZ0 for any V 2 Wh by

kVk2X0

D
Z

˝

jVj2 dxC
X

ep2Fp

hep

Z

ep

.V � n/2 d�;

kVk2Z0

D
Z

˝

.r � V/2 dxC
X

eu2F0
u

h�1eu

Z

eu

ŒV � n�2 d�:

Then we recall the following inf-sup conditions for the bilinear forms bh and b�h .

Lemma 1 There is a positive constant C independent of the mesh size h such that

inf
V2Wh

sup
v2Uh

b�h .v;V/
kvkXkVkZ0

� C;

inf
v2Uh

sup
V2Wh

bh.V; v/
kvkZkVkX0

� C:

Besides the inf-sup conditions of bh and b�h , we can observe that from the definition
of k�kX0

, it is clear that for any V 2 Wh,

kVkL2.˝/2 � kVkX0

: (7)

Moreover, the proof in [1] shows the following discrete Poincaré–Friedrichs
inequality for piecewise H1 functions.

Lemma 2 For any piecewise H1 function v, there is a positive constant C indepen-
dent of the mesh size h such that

kvkL2.˝/ � CkvkZ :

Next, we impose some restrictions on the coefficient �. We assume � is bounded
below by a positive number �0. Moreover, we follow Bustinza and Gatica [2] to
require �.W/W to be strongly monotone. In order words, there is a positive constant
C independent of V;W 2 L2.˝/2 such that

Z

˝

Œ�.W/W� �.V/V� � .W �V/ dx � C kW �Vk2L2.˝/2 : (8)

We also require �.W/W to be Lipschitz continuous. In order words, there is a
positive constant C independent of V;W 2 L2.˝/2 such that

k�.W/W� �.V/Vk2L2.˝/2 � C kW� Vk2L2.˝/2 : (9)
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These two additional assumptions on � are essential to ensure the unique solvability
of (6) (see [16]).

We will also consider the interpolants I W H1.˝/! Uh and J W H.divI˝/!
Wh discussed in [5], which are characterized by

b�h .Iu � u;V/ D 0; 8u 2 H1.˝/;V 2 Wh; (10)

bh.JU �U; v/ D 0; 8U 2 H.divI˝/; v 2 Uh:

It is shown that for any v 2 HkC1.˝/ and V 2 HkC1.˝/2, we have

kv �IvkL2.˝/ � ChkC1kvkHkC1.˝/; (11)

kV �JVkL2.˝/2 � ChkC1kVkHkC1.˝/2 : (12)

Theorem 1 Let .u;G;U/ 2 HkC1.˝/ � HkC1.˝/2 � HkC1.˝/2 be the solution of
the original problem and .uh;Gh;Uh/ be the solution of the SDG scheme (4a)–(4c).
Then we have the stability estimate

kuhkL2.˝/ C kUhkL2.˝/2 C kGhkL2.˝/2 � Ck fkL2.˝/; (13)

and the convergence estimate

ku � uhkL2.˝/ C kU � UhkL2.˝/2 C kG �GhkL2.˝/2
� ChkC1

�

kukHkC1.˝/ C kGkHkC1.˝/2

�

:
(14)

Proof We start by showing the stability estimate. Taking Wh D Gh, Vh D Uh,
vh D uh in (4a)–(4c), summing the three equations and applying (3), we have

Z

˝

�.Gh/Gh �Ghdx D
Z

˝

fuh dx:

Applying the Cauchy-Schwarz inequality and (8),

kGhk2L2.˝/2 � C�1k fkL2.˝/kuhkL2.˝/: (15)

Note, by Lemma 1 and Lemma 2,

kuhkL2.˝/ � C sup
V2Wh

bh.V; uh/
kVkX0

: (16)

Besides, using Eqs. (3) and (4a), we have for any V 2 Wh

bh.V; uh/ D
Z

˝

Gh � V dx � kGhkL2.˝/2 kVkL2.˝/2 : (17)
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With the help of (7), (16) and (17) imply

kuhkL2.˝/ � CkGhkL2.˝/2:

Combining this with (15),

kGhkL2.˝/2 � Ck fkL2.˝/;

and the stability estimate (13) follows from the Lipschitz continuity (9).
Next, we show the convergence of Gh. Note that (4a) and (4c) still holds if we

replace Gh by G, Uh by U and uh by u. Therefore,

Z

˝

.G �Gh/ � V dx � b�h .u � uh;V/ D 0; (18)

bh.U � Uh; v/ D 0;

for any .V; v/ 2 Wh �Uh. Using the properties of I and J,

Z

˝

.G �Gh/ � V dx � b�h .Iu � uh;V/ D 0;

bh.JU � Uh; v/ D 0;

for any .V; v/ 2 Wh�Uh. In particular for v D Iu�uh and V DJU�Uh; adding
these two equations gives

Z

˝

.G �Gh/ � .JU �Uh/ dx D 0: (19)

On the other hand, from the strong monotonicity (8) and using (19),

�

�JG �Gh

�

�

2

L2.˝/2
� C

Z

˝

.JG �Gh/ � .JU �Uh/ dx

� C
Z

˝

.JG �G/ � .JU �Uh/ dx

� C
�

�JG �G
�

�

L2.˝/2

�

�JU � Uh

�

�

L2.˝/2 :

Applying the Lipschitz continuity (9),

�

�JG �Gh

�

�

L2.˝/2
� C

�

�JG �G
�

�

L2.˝/2
:
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Hence, with the help of equation (12), we have

kG �GhkL2.˝/2 �
�

�G �JG
�

�

L2.˝/2 C
�

�JG �Gh

�

�

L2.˝/2

� ChkC1 kGkHkC1.˝/2 :

Then we show the convergence of uh. Using equation (11),

ku � uhkL2.˝/ � ku �IukL2.˝/ C kIu � uhkL2.˝/
� ChkC1kukHkC1.˝/ C kIu � uhkL2.˝/:

Using the inf-sup condition in Lemma 1, equation (3), (10), (18) and (7),

kIu � uhkL2.˝/ � C sup
V2Wh

bh.V;Iu � uh/

kVkX0

D C sup
V2Wh

b�h .Iu � uh;V/
kVkX0

D C sup
V2Wh

b�h .u � uh;V/
kVkX0

D C sup
V2Wh

R

˝
.G �Gh/ � V dx

kVkX0

� C kG �GhkL2.˝/2 ;

which shows the convergence of uh. The convergence of Uh follows from the
Lipschitz continuity (9). This completes the proof of (14).

5 Numerical Examples

In this section, we present some numerical examples and verify the convergence rate
of our SDG method. Moreover, we will obtain a postprocessed solution u�h which
converges with higher order than uh. We define the postprocessed solution u�h as
follows. For each 
 2 T, we take u�h 2 PkC1.
/ determined by

Z




ru�h � rwdx D
Z




Gh � rwdx; 8w 2 PkC1.
/0

Z




u�h dx D
Z




uh dx;

where PkC1.
/0 WD ˚w 2 PkC1.
/ W R


wdx D 0�. See [11].

For all of our numerical examples, we consider square domain ˝ D Œ0; 1�2. We
divide this domain into N �N squares and divide each square into two triangles. We
use this as our initial triangulation Tu and further subdivide each triangle taking the
interior points as the centroids of the triangles following the discussion in Sect. 2.
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Fig. 2 Triangulation on
˝ D Œ0; 1�2 with mesh size
1/4

We take the mesh size h WD 1=N. We illustrate the mesh with h D 1=4 in Fig. 2. We
consider the following solutions of equation (1).

u1.x; y/ D sin.�x/ sin.�y/;

u2.x; y/ D 10xy2.1 � x/.1 � y/� ex�1 sin.�x/ sin.�y/

2
:

All these solutions have zero value on the boundary of ˝ . We also consider the
following six nonlinear coefficients to test the order of convergence.

�1.ru/ WD 2C 1

1C jruj �2.ru/ WD 1C exp.�jruj/

�3.ru/ WD 1C exp.�jruj2/ �4.ru/ WD 1
p

1C jruj
�5.ru/ WD jruj �6.ru/ WD jruj2

For each uj and �`, we choose f in (1) and solve for the approximate solution in
the spaces of piecewise linear polynomial (i.e. k D 1) , using Newton’s iteration
with initial condition being the solution of (1) with � � 1. We terminate the
Newton’s iteration when the successive error is less than ı D 10�10. Let uj;h be the
approximate solution obtained from this Newton’s iteration, and u�j;h be the solution
obtained from applying the above postprocessing procedure to uj;h. Under different
choices of nonlinear coefficients �`, we compute the L2 error for uj;h and u�j;h, given
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by kuj�uj;hkL2.˝/ and kuj�u�j;hkL2.˝/, respectively. The results are listed in Tables 1
and 2. From these results, we see clearly that the scheme gives optimal rate of
convergence for the numerical solution and superconvergence for the postprocessed
solution.

Table 1 The L2 error for u1;h and u�

1;h under different choices of coefficients

Number

Coefficient Mesh size jju1 � u1;hjjL2.˝/ Order jju1 � u�

1;hjjL2.˝/ Order of iterations
�1 1=4 3.54e-2 – 2.86e-3 – 4

1=8 9.24e-3 1:94 3.71e-4 2:95 4

1=16 2.34e-3 1:98 4.70e-5 2:98 4

1=32 5.86e-4 2:00 5.91e-6 2:99 4

1=64 1.46e-4 2:00 7.40e-7 3:00 4

�2 1=4 3.50e-2 – 3.00e-3 – 4

1=8 9.23e-3 1:92 3.95e-4 2:82 4

1=16 2.34e-3 1:98 5.07e-5 2:96 4

1=32 5.86e-4 2:00 6.45e-6 2:98 4

1=64 1.46e-4 2:00 8.13e-7 2:99 4

�3 1=4 3.78e-2 – 4.31e-3 – 5

1=8 9.41e-3 2:01 5.46e-4 2:98 5

1=16 2.34e-3 2:01 5.81e-5 3:23 5

1=32 5.86e-4 2:00 7.67e-6 2:92 5

1=64 1.46e-4 2:00 9.84e-7 2:96 5

�4 1=4 3.50e-2 – 3.13e-3 – 4

1=8 9.21e-3 1:93 4.12e-4 2:93 5

1=16 2.34e-3 1:98 5.30e-5 2:96 5

1=32 5.86e-4 2:00 6.74e-6 2:98 5

1=64 1.46e-4 2:00 8.49e-7 2:99 5

�5 1=4 3.60e-2 – 3.32e-3 – 6

1=8 9.29e-3 1:95 5.42e-4 2:62 6

1=16 2.34e-3 1:99 8.34e-5 2:70 7

1=32 5.86e-4 2:00 1.20e-5 2:79 8

1=64 1.47e-4 2:00 1.67e-6 2:85 8

�6 1=4 3.56e-2 – 5.98e-3 – 10

1=8 9.29e-3 1:94 1.50e-3 2:00 10

1=16 2.34e-3 1:99 2.28e-4 2:72 14

1=32 5.86e-4 2:00 3.18e-5 2:84 20

1=64 1.47e-4 2:00 4.29e-6 2:89 27
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Table 2 The L2 error for u2;h and u�

2;h under different choices of coefficients

Number

Coefficient Mesh size jju2 � u2;hjjL2.˝/ Order jju2 � u�

2;hjjL2.˝/ Order of iterations
�1 1=4 1.46e-2 – 1.78e-3 – 5

1=8 3.91e-3 1:90 2.40e-4 2:88 5

1=16 9.92e-4 1:98 3.11e-5 2:95 5

1=32 2.49e-4 1:99 3.94e-6 2:98 5

1=64 6.24e-5 2:00 5.00e-7 2:98 5

�2 1=4 1.45e-2 – 1.72e-3 – 5

1=8 3.90e-3 1:90 2.32e-4 2:89 5

1=16 9.91e-4 1:98 3.04e-5 2:93 5

1=32 2.45e-4 1:99 3.82e-6 2:99 5

1=64 6.24e-5 2:00 4.94e-7 2:95 5

�3 1=4 1.40e-2 – 1.90e-3 – 6

1=8 3.94e-3 1:83 2.58e-4 2:88 6

1=16 9.94e-4 1:99 3.22e-5 3:00 6

1=32 2.49e-4 1:99 4.19e-6 2:94 6

1=64 6.24e-5 2:00 5.33e-7 2:97 6

�4 1=4 1.45e-2 – 1.71e-3 – 4

1=8 3.90e-3 1:89 2.31e-4 2:89 4

1=16 9.91e-4 1:98 3.03e-5 2:93 4

1=32 2.49e-4 1:99 3.79e-6 3:00 4

1=64 6.24e-5 2:00 4.89e-7 2:95 4

�5 1=4 1.49e-2 – 3.97e-3 – 7

1=8 3.94e-3 1:92 6.05e-4 2:71 8

1=16 9.99e-4 1:98 9.24e-5 2:71 8

1=32 2.50e-4 2:00 1.32e-5 2:81 10

1=64 6.25e-5 2:00 1.79e-6 2:88 10

�6 1=4 1.54e-2 – 6.54e-3 – 13

1=8 3.91e-3 1:98 1.17e-3 2:49 15

1=16 9.94e-4 1:98 1.96e-4 2:58 18

1=32 2.50e-4 1:99 2.92e-5 2:74 21

1=64 6.24e-5 2:00 3.91e-6 2:90 23
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Optimized High Order Explicit
Runge-Kutta-Nyström Schemes

Marc Duruflé and Mamadou N’diaye

Abstract Runge-Kutta-Nyström (RKN) schemes have been developed to solve a
non-linear ordinary differential equation (ODE) of the type y00 D f .t; y/. In Chawla
and Sharma (Computing, 26:247–256, 1981), the stability condition (the Courant-
Friedrichs-Lewy or CFL) associated with these schemes have been studied for order
3, 4 and 5. In this paper, we extend this study for higher orders and we propose a new
algorithm to compute numerically the CFL. By using this algorithm, we compute
optimal coefficients for RKN schemes of orders 6, 7, 8 and 10 which maximize
the CFL. Herein, the obtained schemes are used to solve non-linear Maxwell’s
equations in 1-D.

1 Introduction

We consider the following ordinary differential equation (ODE)

8

ˆ

<

ˆ

:

y00.t/ D f .t; y.t//; 8t > 0;
y.0/ D y0;
y0.0/ D y00:

The unknown y is vectorial, its size is equal to the number of the degrees of freedom
of the system. The functional f is known and describes the dynamics of the system.
This kind of ODE appears naturally in mechanical systems when the damping terms
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are neglected, and also in non-linear wave equation. In order to solve this ODE,
high-order Runge-Kutta-Nyström (RKN) schemes have been proposed (see [5]).
They are attractive because they are explicit, one-step methods and can be applied
to a non-linear operator f . A RKN scheme computes a discrete sequence yn and y0n,
which are approximations of y and y0 at time tn D n�t. The time step�t is assumed
to be constant in this paper. A step of the RKN scheme is performed as follows:

8

ˆ

ˆ

<

ˆ

ˆ

:

ki D f
�

tn C ci�t; yn C ci�t y0n C�t2
P

j Nai; j kj
�

;

ynC1 D yn C�t y0n C�t2
P

j
Nbj kj;

y0nC1 D y0n C�t
P

j bj kj;

ki are intermediate vectors used to compute ynC1 and y0nC1. The coefficients
Nai; j; ci; bi; Nbi must satisfy the so-called order conditions such that the scheme is
of order r (see [5] for a detailed description of order conditions). When it is not
mentioned, the subscripts i and j vary between 0 and s� 1 where s is the number of
stages of the scheme. In this paper, only explicit schemes will be studied, the matrix
NA (associated with coefficients Nai; j) is lower triangular, that is to say:

Nai; j D 0; if j � i:

The coefficients Nai; j; ci; bi; Nbi can be obtained from the coefficients of a classical
Runge-Kutta scheme of order r. But this procedure leads to RKN schemes that are
less efficient (see [5]). In this paper, we are concerned to find optimal coefficients
Nai; j; ci; bi; Nbi that maximize the CFL number subject to the order conditions. Such
an optimization has been done for RKN schemes of order 3, 4 and 5 in [1] and
[2]. In this work, we achieved to find the best coefficients for order 6, 7, 8 and 10.
We propose a new algorithm to compute numerically the CFL number (stability
condition) with respect to the coefficients Nai; j; ci; bi; Nbi.

The remainder of this paper is organized as follows: First, we recall the stability
condition as initially proposed in [1]. Next, we describe the numerical algorithm
we used to compute the CFL number. Then, we propose the optimal coefficients
obtained for the different schemes. Finally, we present some numerical results to
show the practical interest of these schemes.

2 Stability Condition

The stability analysis is conducted for a linear functional f , which is then replaced
by a matrix A:

f .t; y/ D Ay:
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By replacing A by its symbol OA (which will be equal to an eigenvalue of A), a step
of RKN scheme can be written as:

"

ynC1
wnC1

#

D D.�t2 OA/
"

yn
wn

#

where D.�t2 OA/ is a 2�2 matrix depending on coefficients Nai; j; bi; ci; Nbi. Let us note:

z D �t2 OA:

The vector wn is equal to:

wn D y0n
�t OA :

The RKN scheme is equal to:

8

ˆ

<

ˆ

:

�t2ki D z yn C ci z2 wn C z
P

j Nai; j�t2kj;
ynC1 D yn C z wn CPi

Nbi�t2ki;
wnC1 D wn C 1

z

P

i bi�t
2ki:

From these relations, it can be remarked that the entries of the 2� 2 matrix D.z/ are
polynomials in z. The amplification factor G.z/ is defined as:

G.z/ D Spectral radius of D.z/:

The stability condition is computed numerically by searching the first z such that

G.z/ > 1:

The square root of this first z is defined as the CFL number:

CFL number D min
z�0 f
p�z such that G.z/ > 1g:

3 Numerical Method to Compute the CFL

The eigenvalues of the 2 � 2 matrix D.z/ are directly computed as:

�.D.z// D trace.D.z//˙ptrace.D.z//2 � 4 det.D.z//

2
:
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Algorithm 1 Algorithm used to compute the CFL number of RKN schemes
if G.z0/ > 1C " then

return 0
end if
z D z0
while G.z/ <D 1C " do

Adapt �zk such that any intersection of roots is not missed
if G.z/ > max.G.z��zk/;G.zC�zk�1// then

Compute the local maximum zm in the interval Œz��zk; zC�zk�1�

if G.zm/ > 1 then
z D zm
Terminate the main while loop

end if
end if
z D z��zk

end while
Compute z such that G.z/ D 1C " in the interval Œz��z; z� by bisection method
Return z

The amplification factor G.z/ is the maximal modulus of these two eigenvalues.
From the computation of this amplification factor, the method used to compute the
CFL is detailed in Algorithm 1. The computation of local maxima zm and of the final
z such that G.z/ D 1C " is performed by using a bisection method. The first float
z0 is chosen small (we have chosen z0 D �10�5), this first verification is needed
because it happens that the amplification factor is decreasing at the origin, ie:

G0.0/ < 0:

Hence for very small negative values of z, this amplification factor will be greater
than one, leading to an unstable scheme. In this case, the time scheme will be
unconditionally unstable.

The step �zk is chosen in an interval (we have selected 10�5 � �zk � 1) such
that the intersection of the two complex conjugate eigenvalues is not missed. This
intersection occurs when the two eigenvalues get close to the real axis or when they
already lie in the real axis. In Fig. 1, the amplification factor is displayed for a 6th
order RKN method. In this case, the CFL is equal to 2.858 because of the presence of
a local maxima above 1. It has been observed that usually the first local maximum
(if present) occurs around

p�z 	 � , the second maximum would occur around
2� , etc. In Fig. 2, we have displayed the trajectory of the two eigenvalues of D.z/
for
p�z 2 Œ0; 4�. These two eigenvalues start from the point .1; 0/ they describe an

approximate circle to reach a point close to .�1; 0/. Then they move away from each
other in the real axis, one reaches the local maximum, and the two eigenvalues get
back until reaching another intersection in the real axis. Finally, they are describing a
kind of hyperbole in the complex plane. With a variable�zk, we are able to compute
the CFL with a reasonable number of evaluations of the amplification factor. Finally,
" is taken equal to 2 � 10�13 for a double precision computation.
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Fig. 1 Amplification factor G.z/ versus
p�z for a 6-th order RKN scheme, with the two free

parameters equal to 0:0816464646464646 and 0:968757575757576

Fig. 2 Trajectory of the two eigenvalues of D.z/ for
p�z 2 Œ0; 4� for a 6-th order RKN scheme,

with the two free parameters equal to 0:0816464646464646 and 0:968757575757576
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4 Optimization with a Minimal Number of Stages

In this section, coefficients of RKN schemes are optimized to maximize the CFL
number. We consider here only schemes with a minimal number of stages (s).

4.1 Order 2 (s D 1)

For example, to obtain a second-order scheme, it is sufficient to satisfy

X

i

bi D 1;
X

i

bici D 1

2
;

X

i

Nbi D 1

2
:

Therefore, a one-stage scheme can be obtained:

NA D .0/ ; c D
�

1

2

�

; b D .1/ ; Nb D
�

1

2

�

;

this scheme can be written as:
8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

k0 D f

�

tn C �t

2
; yn C �t

2
y0n
�

;

ynC1 D yn C�t y0n C
�t2

2
k0;

y0nC1 D y0n C�t k0:

This scheme requires only one evaluation of f (i.e. a matrix-vector product if f is
linear) at each time step, which is equivalent to the cost of the classical second-order
scheme (recalled below). When f is linear (replaced by a matrix A), the stability
condition of this RKN scheme is:

�t � 2
pjjAjj2

:

This is exactly the same CFL as the classical second-order scheme:

ynC1 � 2yn � yn�1
�t2

D f .tn; yn/:

Therefore, the second-order Runge-Kutta-Nyström (RKN) scheme is optimal.
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4.2 Orders 3, 4 and 5

For orders 3, 4, 5, we have found the same optimal coefficients for RKN schemes
as in [1]. These coefficients are recalled below.

Order 3 (s D 2): A third-order RKN scheme with 2 stages is given as:

c0 D ˛; c1 D 2 � 3˛
3 � 6˛ ; b0 D

c1
2
� 1
3

c0.c1 � c0/
; b1 D 1 � b0;

Nb0 D
c1
2
� 1
6

c1 � c0
; Nb1 D 1

2
� Nb0; Na1;0 D 1

6b1
;

˛ is a free parameter, a maximal CFL of 2:498 is obtained for ˛ D 3�p3
6
:

Order 4 (s D 3): A fourth-order RKN scheme with 3 stages is given as:

c0 D ˛; c1 D 1

2
; c2 D 1 � ˛;

b0 D 1

6.1� 2˛/2 ; b1 D 1 � 2b0; b2 D b0;

Nb0 D b0.1 � c0/; Nb1 D b1.1 � c1/; Nb2 D b2.1� c2/;

Na1;0 D .1 � 4˛/.1 � 2˛/
8.6˛.˛ � 1/C 1/ ; Na2;0 D 2˛.1 � 2˛/; Na2;1 D .1 � 2˛/.1 � 4˛/

2
;

˛ is a free parameter a maximal CFL of 3:939 is obtained for

˛ D 1

4
�

1C cos.�
9
/
� :

Order 5 (s D 4): A family of RKN schemes of order 5 with two parameters is
given in [3]. A maximal CFL of 2:908 is obtained for

˛ D 4

11C
p

16
p
10� 39

;

ˇ D
165˛2 � 195˛C 50�

q

5
�

45˛4 C 90˛3 � 105˛2 C 36˛ � 4�

225˛2 � 240˛C 60 :
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The ci are given as

c0 D 0; c1 D ˛; c3 D ˇ; c2 D 12 � 15.˛C ˇ/C 20˛ˇ
15 � 20.˛C ˇ/C 30˛ˇ :

From order 6 to 10, the optimal coefficients for RKN schemes are new. They
have been computed numerically, only, in the following subsections.

4.3 Order 6 (s D 5)

A family with one parameter is given in [3]. Using Algorithm 1, we have obtained
a maximal CFL of 3:089 for

˛ 	 0:22918326
The ci are given as

c0 D 0; c1 D ˛; c2 D 1

2
; c3 D 1 � ˛; c4 D 1:

Another family with two parameters can also be constructed. The maximal CFL is
also equal to 3:089 for this family.

4.4 Order 7 (s D 7)

A family of RKN schemes of order 7 with four free parameters is given in [3].
After optimization, we have obtained a maximal CFL of 7:0875 with the following
parameters:

˛0 D 0:110451398065702; ˛1 D 0:173816271367107
˛2 D 0:459433163929695; ˛3 D 0:652002232653235

The coefficients ci are given by

c0 D 0; c1 D ˛0; c2 D ˛1; c3 D ˛2; c4 D ˛3; c5 D
� 17 C

�c1
6 �

�c2
5 C

�c3
4 �

�c4
3

� 16 C
�c1
5 �

�c2
4 C

�c3
3 �

�c4
2

; c6 D 1:
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4.5 Order 8 (s D 8)

A family of RKN schemes of order 8 with four free parameters is given in [3]. A
maximal CFL of 7:8525 is obtained with the following parameters

˛0 D 0:135294127286225; ˛1 D 0:24015308384744
˛2 D 0:453046953126355; ˛3 D 0:695039606659698

The coefficients ci are given by

c0 D 0; c1 D ˛0

2
; c2 D ˛0; c3 D ˛1; c4 D ˛2; c5 D ˛3

c6 D
� 1
8
C �c1

7
� �c2

6
C �c3

5
� �c4

4
C �c5

3

� 1
7
C �c1

6
� �c2

5
C �c3

4
� �c4

3
C �c5

2

; c7 D 1:

4.6 Order 10 (s D 11)

In [4], the author presents a family of RKN schemes of order 10 with four free
parameters .b0; b2; b3; r5/. r5 is an additional free parameter that we have recognized
during the construction of the family, it is defined as

r5 D
s�1
X

iD0
bic

3
i

i�1
X

jD0
Naij c5j :

Following the work in [4] we denote the Gauss-Lobatto nodes �1; �2; �3; �4:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�1 D 1

2

0

B

@1 �
s

7C 2p7
21

1

C

A ; �4 D 1 � �1;

�2 D 1

2

0

B

@1 �
s

7 � 2p7
21

1

C

A ; �3 D 1 � �2:

Among the 24 permutations choice possible for .c3; c4; c5; c6/, the CFL is maximal
for the following permutation

.c3; c4; c5; c6/ D
�

�4; �3; �1; �2
�

:
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The other ci are given by

c0 D 0; c2 D c4 .3c4 � 5c3/
5c4 � 10c3 ; c1 D c2

2
; c7 D c3; c8 D c2; c9 D 0; c10 D 1:

For this permutation, we have obtained a maximal CFL of 4.7527 with the following
parameter

r5 D 0:0021632268153138

The CFL is maximal for this permutation only, it is strictly lower for other permu-
tations. For other parameters, we can choose the values proposed by Hairer in [4]:

b0 D 0; b2 D �0:1; b3 D 0;
since the CFL does not depend on these three parameters.

5 Efficiency and Numerical Results

5.1 Efficiency

Let s be the number of stages of the RKN scheme. The efficiency is given as:

Efficiency D CFL number

2s
:

An optimal scheme is a scheme such that the efficiency is maximal. Since s is
constant, the efficiency is maximal for a maximal CFL number. In Table 1, we have
written the efficiency of the different RKN schemes.

We observe that the orders 7 and 8 are attractive since they have a correct
efficiency (about 50%). It is important to have optimal schemes when the ODE to
be solved is stiff, i.e. when the obtained accuracy is satisfactory when the maximal
time step is chosen. However, for low orders (such as 2, 3), the accuracy is usually
poor such that the time step must be chosen much smaller than the maximal time
step to obtain a good solution.

Table 1 Efficiency of optimized Runge-Kutta-Nyström schemes of different orders

Order 2 3 4 5 6 7 8 10

Efficiency(%) 100 62.5 65.7 36.4 30.9 50.6 49.1 21.6
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5.2 Numerical Results

Using the higher order-finite element code Montjoie, we applied the RKN schemes
to solve the non-linear Maxwell’s equations in 1-D, namely:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

"1
c2
@2E

@t2
C 1

c2
@2

@t2

0

@

X

k

Pk

1

A � @
2E

@z2
C �

c2
@2

@t2

�

jEj2E
�

D 0

1

!2k

@2Pk

@t2
C Pk D �k E

E.z; t D 0/ D @E

@t
.z; t D 0/ D 0

E.z D 0; t/ D Given impulsion

Here the electric field is searched as a complex field:

E D Ex C iEy;

where Ex and Ey are x and y-components of the electric field. Pk is the polarization,
"1; c; �; �k; !k are physical constants. We take the constants corresponding to silica:

"1 D 1; c D 299792458; �0 D 0:6961663; �1 D 0:4079426; �2 D 0:8974794

!0 D 2�c

0:0684043 � 10�6 ; !1 D
2�c

0:1162414 � 10�6 ; !2 D
2�c

9:896161 � 10�6 ; � D 10
�33:

The impulsion is centered at �0 D 1:053�m with a Gaussian envelope and a circular
polarization:

Given impulsion D E0 e
�1
2

�

t � Tmax



�2

ei!Lt

where

!L D 2�c

1:053 � 10�6 ; Tmax D 6 � 10�14; 
 D 2

2
p
2 log 2

� 10�14; E0 D 109:

The computational domain is the 1-D interval ˝ D Œ0; 1:5 � 10�4�, a Neumann
boundary condition is set on the right extremity. 1-D finite elements are used to
discretize these equations:

E 2 Vh D
n

u 2 H1.˝/ such that ujŒzi;ziC1� 2 Q10

o

where .zi/0�i�250 are a regular subdivision of the computational domain ˝ . The
mesh contains 250 elements (i.e. 2501 degrees of freedom), the numerical error
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Fig. 3 Electric field Ex for t D 10�12 and t D 5 � 10�11

due to the space discretization is around 10�6 (the domain contains more than 200
wavelengths). After space discretization, the system can be written in the form

y00 D f .t; y/

by using the displacement as unknown

D D "1E C
0

@

X

k

Pk

1

AC �jEj2E:

The electric field E is recovered from D by solving the non-linear equation written
above for each degree of freedom. This equation is solved with a Newton’s method,
two or three iterations are sufficient to get machine precision accuracy. Gauss-
Lobatto points are used both for interpolation (for the discretization of Vh) and
quadrature, leading to a diagonal mass matrix. As a result the computation of f .t; y/
is explicit, it does not involve any solution of a linear system. The electric field is
propagated from t D 0 until t D 5 � 10�11, in Fig. 3, the solution is plotted at two
different times. The solution at the final time t D 5 � 10�11 is compared with a
reference solution computed with a small time step (with tenth order RKN scheme).
We try to reach an error of 0.01% for each scheme in order to compare the efficiency.
In Table 2, the computational time needed to obtain this accuracy is given for each
optimized RKN scheme. The simulations are performed in parallel on 20 cores on an
Intel-Xeon (2 Dodeca-core Haswell E5-2680, 2.5 Ghz). From order 5, we are using
the maximal time step allowed (because of the restrictive CFL), that’s why the error
is below 0.01% for these orders. For orders 2, 3 and 4, the time step required to
obtain an error of 0:01% is much smaller than the maximal time step, that’s why
they are less efficient. In this case, we observe that low order schemes (2, 3, 4) are
limited by the accuracy whereas high-order schemes are limited by the CFL. We see
that RKN schemes of order 7 or 8 are the most efficient for this problem while order
10 is not very efficient because of its small CFL.
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6 Conclusion

In this work we have proposed an algorithm to compute the CFL number of a RKN
scheme. By using this algorithm, we have computed optimal coefficients for RKN
schemes of order 6, 7, 8 and 10 that maximize the CFL number. The numerical
results we presented show the practical interest of these schemes, in paticular order
7 and 8. In fact, we have observed that lower order schemes are limited by the
accuracy while the scheme of order 10 is less efficient due to its small CFL. We
think that the efficiency can be further increased by adding more stages [6, 7].
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Artificial Viscosity Discontinuous Galerkin
Spectral Element Method for the Baer-Nunziato
Equations

C. Redondo, F. Fraysse, G. Rubio, and E. Valero

Abstract This paper is devoted to the numerical discretization of the hyper-
bolic two-phase flow model of Baer and Nunziato. Special attention is paid to
the discretization of interface flux functions in the framework of Discontinuous
Galerkin approach, where care has to be taken to efficiently approximate the non-
conservative products inherent to the model equations. A discretization scheme is
proposed in a Discontinuous Galerkin framework following the criterion of Abgrall.
A stabilization technique based on artificial viscosity is applied to the high-order
Discontinuous Galerkin method and tested on a bench of discontinuous test cases.

1 Introduction

In this work a high order discretization method for the hyperbolic two-
phase flow model of Baer and Nunziato [3] is introduced. The model is
composed of seven equations in one-dimension: continuity, momentum and
energy balance for each phase and a convection equation for the volume
fraction. It does not make any assumption on mechanical, thermal or chemical
equilibrium, thus, two pressures, velocities and temperatures are present.
The main challenge of this set of equations is that it cannot be cast in
conservative (or divergence) form because of the presence of non-conservative
products. As a consequence, classical Rankine-Hugoniot conditions cannot be
used to define the jumps across the contact discontinuities and shocks. This
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issue has remained challenging for a long time but recently some authors
published different methods in order to treat these additional terms [24, 29, 30,
32].

On the one hand, most works in the literature use a finite volume (FV)
methodology, often limited to second-order of accuracy, to discretize the Baer-
Nunziato equations, see [11] for a review. Attempts to reconstruct Finite Volume
methodology to higher order usually suffer from a lack of compactness, which is
a bottleneck for massive parallel implementation. On the other hand, discontinuous
Galerkin (DG) methods take the advantages of FV approach (conservation, interface
jumps, compactness) but naturally allow the solution to be represented by a
high-order polynomial. DG methods, firstly introduced in [27], have emerged in
recent years as an efficient and flexible method to solve convection dominated
problems [8]. A nodal variant of the DG technique that uses a quad/hexa mesh
topology and tensor product expansions for the polynomial spaces is known as
Discontinuous Galerkin Spectral Element Method (DGSEM), as detailed in Kopriva
[22]. The DGSEM has been successfully used in a wide range of applications, in
particular to model one phase compressible flows [5, 20, 21, 26]. Recently some
DGSEM formulations able to solve the Baer-Nunziato equations in the presence
of discontinuities have been introduced by the authors [11]. One of the important
aspects of this development is the special treatment to avoid oscillations in the
vicinity of shocks and contact discontinuities. The method builds on work by
Persson et al. [25] and uses a simple artificial viscosity technique [4, 16, 17, 34]
to stabilize the solution. In this work the most successful of the formulations
proposed in [11] is introduced and analyzed in detail in a one-dimensional frame-
work.

The paper is organized as follows: in Sect. 2 the discretization of the Baer-
Nunziato equations is presented. The DG method is detailed as well as the
upwind fluxes, the treatment of the non-conservative products and the stabilization
method. In Sect. 3, the developed numerical scheme is tested using a bench of one-
dimensional test cases.

2 Discretization of the Two-Phase Two-Pressure Model
of Baer and Nunziato

The one-dimensional set of Baer-Nunziato equations reads:

@U
@t
C @F.U/

@x
CH.U/

@˛l

@x
D 0; (1)
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This system of equations is closed with an equation of state for each phase
m D g; l (gas and liquid) relating the internal energy em D Em�0:5u2m to the density
�m and pressure pm, the saturation condition ˛l C ˛g D 1 (liquid and gas volume
fractions) and finally appropriate interfacial pressure and velocity. In this work,
stiffened gas equation is considered for the liquid phase, pm D �mem.�m � 1/C �m,
and perfect gas law for the gas phase (�g D 0). The interfacial quantities are set
according to the choice of Baer and Nunziato: uint D ul; pint D pg.

2.1 Discontinuous Galerkin Spectral Element Method

Discontinuous Galerkin methods and, in particular the nodal variant DGSEM, were
originally developed to solve conservation laws. Unfortunately, it is not possible to
cast the Baer-Nunziato equations in conservative form due to the presence of non-
conservative products of the form H.U/ @˛l

@x . The difficulty of integrating this term
over a control volume arises in the presence of a discontinuity in the volume fraction.
As a result, some modifications from the original DGSEM are required. It should be
noticed that the scope of this work is limited to one-dimensional approximations.

Let us rewrite the Baer-Nunziato equations,

Ut C Fx CH.˛l/x D 0; x 2 ˝; (2)

where U is the solution and Ut denotes its temporal derivative. The flux function is
F, while Fx denotes its spatial derivative and the non conservative flux is denoted by
H.˛l/x (notice that ˛l D U.1/). In the following and to simplify the notation ˛l will
be shortened to ˛.

Discontinuous Galerkin methods tessellate the physical domain ˝ into non
overlapping subdomains˝k. The residual is forced to be orthogonal to the approxi-
mation space locally within each element,

Z

˝k

.Ut C Fx CH˛x/  dx D 0; (3)
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where  is an arbitrary locally smooth function. The physical domain ˝k, of size
�xk, is mapped into the computational domain, which in 1D is Œ�1; 1�,

�xk
2

Z 1

�1
Ut d� C

Z 1

�1
F� d� C

Z 1

�1
H˛� d� D 0: (4)

The solution and the fluxes are approximated by polynomials of degree N. A
characteristic of the DGSEM is that it approximates both the solution and the fluxes
with the same polynomial degree, e.g.,

U.�; t/ 	 UN.�; t/ D
N
X

iD0
UN.�i; t/`i.�/: (5)

This approximation results in a computationally efficient method with higher
aliasing error. The approximation is nodal, therefore `i are Lagrange polynomials
while �i are chosen to be Legendre-Gauss nodes. As a result, UN.�i; t/ is the solution
at the Legendre-Gauss nodes. The nodal values of the fluxes FN.�i; t/ and HN.�i; t/
are computed evaluating the solution at the nodes. As the method is Galerkin, the test
function can also be written as a polynomial  DPN

iD0  i`i.�/. Now, substituting
the polynomial expressions in Eq. (4) and taking into account that the coefficients
 i are linearly independent we get,

�xk
2

Z 1

�1
UN

t `j.�/d� C
Z 1

�1
FN
� `j.�/d�

C
Z 1

�1
HN˛N� `j.�/d� D 0; j D 0; 1; : : : ;N:

(6)

Equation (6) is integrated by parts to separate volume from surface contributions,

�xk
2

Z 1

�1
UN

t `j.�/d� C
�

FN CHN˛N
�

`.�/

ˇ

ˇ

ˇ

ˇ

1

�1
�
Z 1

�1
FN`0j.�/d�

�
Z 1

�1
HN
� ˛

N`j.�/d� �
Z 1

�1
HN˛N`0j.�/d� D 0; j D 0; 1; : : : ;N:

(7)

It should be noticed that the computation of the volume fraction derivative, ˛� ,
inside the control volume is not required after the integration by parts. In order
to obtain a completely discrete equation, the integrals are approximated using
Gaussian quadrature. In the DSGEM the interpolation nodes are used as quadrature
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nodes,
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X
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(8)

Finally, the elements are coupled through the definition of a numerical interface
flux,

�xk
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j wj C
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j `
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i.�j/wj �

N
X

iD0
HN

i ˛
N
i `
0
j.�i/wi D 0; j D 0; 1; : : : ;N:

(9)

The numerical flux FN� and ˛N� is a function of the element and its immediate
neighbor (or a physical boundary). To calculate its value, a Riemann problem should
be solved [33]. The Riemann solver calculates a value for the fluxes, taking into
account the values at each side of the discontinuity and the directions of transfer of
information in the equation. More information about the numerical flux computation
will be given in the next section. Having obtained a suitable discrete expression for
each elemental contribution, it suffices to sum over all elements in the mesh and
apply the boundary conditions weakly to finalize the DGSEM method, see details
in Kopriva [22].

2.2 Interface Flux Approximation. Criterion of Abgrall

In this section we present the approximate Riemann solver employed to compute
the intercell fluxes FN� and ˛N� of the 7-equation Baer-Nunziato two-phase flow
model.

For the conservative flux FN�, the Rusanov flux is chosen. The Rusanov flux [23,
28] only uses one wave speed Smax which is the maximum absolute eigenvalue of left
and right states of the Jacobian matrix. The main advantage of the Rusanov flux is
its simplicity and low dependence on the eigenstructure of the flux Jacobian. Thus,
it is particularly easy to implement when the flux Jacobian is difficult to formulate,
for example when a complex equation of state is used. Its main disadvantage is its
high diffusion of discontinuities, in particular the contact discontinuities. This effect
is diminished if a high order approximation is used.
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The volume fraction interface flux approximation ˛N� will be computed fol-
lowing the so-called Abgrall criterion. The criterion of Abgrall [1] states that a
two-phase flow uniform in velocity and pressure should remain uniform in these
variables with time evolution. In order to satisfy the criterion of Abgrall for the
Rusanov flux, some choices are to be made for the flux FN� and the liquid volume
fraction at the interface ˛N�. The classical flux holds the conservative part of the
system and is here augmented to hold a contribution from the liquid volume fraction
equation, denoted by F�1b . The scheme is chosen such that:

8

ˆ

<

ˆ

:

F�1b D �
Smax
2
.˛R � ˛L/

˛N� D ˛R C ˛L
2

Rusanov flux with Abgrall criterion (10)

It should be noticed that an interpolation from the interior Gauss points to the
interface points ˙1 is required to obtain left and right states (e.g. ˛L,˛R) for the
intercell flux computation.

2.3 Stabilization Using an Artificial Viscosity Method

The upwind scheme presented earlier may yield high oscillations in the vicinity
of discontinuities due to Gibbs phenomena [14]. The objective here is to search
for a method that detects the occurrence of the Gibbs phenomena and attenuates
it. Several methods can be found in the literature to stabilize the solution in the
presence of discontinuities. Classical limiters work well in order to avoid the local
creation of extrema, however they severely degrade the accuracy, often reduced to
one in the entire cell. Artificial viscosity methods, firstly introduced in the scope of
finite differences in the fifties by von Neumann and Richtmyer [34], add a controlled
amount of viscosity to the governing equations in the vicinity of strong gradients,
such as shock waves or contact discontinuities. In this way the discontinuity may
be resolved in the space of interpolating polynomials. Other variants of artificial
viscosity methods exist as well. A particularly important one is the method of
Spectrally Vanishing Viscosity (SVV) [18, 31], which is similar in spirit, but the
smoothing is limited to the high frequency components of the solution.

In this work, we construct an stabilization method for the multiphase flow based
on the single phase work of Persson et al. [25], where the mitigation is attained
through an artificial viscosity technique. The new set of equations, with the artificial
viscosity term included, reads:

@U
@t
C @F
@x
CH

@˛l

@x
D @

@x

�

�
@U
@x

�

(11)
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Then the discontinuity should spread over a layer of thickness �. The definition
of the parameter �, that controls the amount of viscosity introduced, as well as the
definition of a sensor to capture the regions where the stabilizing viscosity should
be added, are key aspects in the development of the artificial viscosity method.

The discontinuity sensor is built following [25]. Spectral methods represent the
solution of the problem as a sum of basis functions multiplied by some coefficients.
In particular the DGSEM uses the Legendre orthogonal polynomials as a basis and
therefore a one dimensional solution of order N, can be represented in each element
as a sum of local modes,

UN.x/ D
N
X

iD0
QUN
i Li.x/; (12)

where QUN
i is the projection of the solution onto the Legendre orthogonal polynomial

Li.x/. It should be noticed that the DGSEM is a nodal method, and therefore the
coefficients, UN

i , obtained in Eq. (9) are the values of the solution at the collocation
nodes and not the modal coefficients QUN

i . However, they can be computed from the
nodal values as:

V QUN D UN ; (13)

where matrix V is a generalized Vandermonde matrix [15]. A particularity of
spectral methods is that for smooth solutions the coefficients QUi decay very
quickly (exponential convergence), while the convergence rate is poor (algebraic
convergence) for non smooth solutions [6, 13].

A truncated expansion of order N � 1 of the solution, UN.x/, is also constructed
as:

OUN�1.x/ D
N�1
X

iD0
QUN
i Li.x/: (14)

The difference between the truncated expansion of the solution, OUN�1, and the
solution itself, UN , is small for smooth solutions and big for discontinuous solutions
due to spectral convergence. In order to measure the difference between the two
functions the following indicator is computed within each element:

s D log10 max

 

.UN � OUN�1;UN � OUN�1/
.UN ;UN/

!

; (15)

where .u; v/ D R 1

�1 uvdx represents the usual L2 inner product and can be
approximated using Legendre-Gauss quadrature. It should be noticed that the
maximum value among all the equations is taken, which is justified as the objective
of the indicator is to capture discontinuities in any of the equations.
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Finally, �, the amount of viscosity imposed in each element, is computed as:

� D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0 if s < s0 � #
�0

2

�

1C sin
�.s� s0/

2#

�

if s0 � # � s � s0 C #
�0 if s > s0 C #

(16)

In this work, the values of �0 D h
.NC1/ (being h the size of the elements), s0 D

log10
1

.NC1/4 and # D 5 were chosen empirically and demonstrated very satisfactory
results. As it is explained in [25], the selection of these values for the parameters
introduces viscosity only when the solution is not continuous and the profiles of
the discontinuities are sharp but smooth. The effectiveness of these parameters to
correctly capture the discontinuities and stabilize the solution in the multiphase
framework will be shown in Sect. 3.

The artificial viscosity method produces an a posteriori stabilization, i.e. the
solution is not stabilized until the oscillation is generated. In general there is no
problem with this, however if the amplitude of the oscillation is too high it can
transiently produce unphysical values of the variables, e.g. negative densities or
volume fractions outside the interval Œ0; 1�. This is inadmissible as the computation
of some quantities, e.g. the speed of sound, would result in invalid operations.
The development of a robust artificial viscosity method requires the introduction of
relaxation iterations. If any of the aforementioned variables acquire an unphysical
value as a result of an oscillation, a relaxation iteration is performed instead of
the regular iteration. In a regular iteration, the time derivative of the solution is
computed with Eq. (11), while in a relaxation iteration only the diffusive terms,

@U
@t
D @

@x

�

�
@U
@x

�

; (17)

are computed. It should be noticed that relaxation iterations do not produce an
advance in physical time but only a filtering of the solution.

A comment should be made about the major drawback of the artificial viscosity
approach: the reduction in the stable time step for explicit time stepping schemes
[7, 19]. The scaling of the explicit time step is given by:

�t �
�

SmaxN
2=hC jj�jjL1N4=h2

��1
; (18)

where Smax is the absolute value of the largest characteristic velocity, � is the
magnitude of the viscosity, h is the size of the element and N is the approximation’s
polynomial degree [15]. Therefore if the maximum value of the artificial viscosity
is used (see Eq. (16)), the time step is given by:

�t �
�

N2=h.Smax C N/
��1

; (19)
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therefore Smax is increased by N because of the artificial viscosity method. To
overcome this limitation, several approaches are available. The cost of explicit time
stepping methods can be reduced, for example, by using local time stepping [36]
or adaptive time stepping [9] techniques. A different approach is to circumvent
the time stability limit by using implicit methods [35]. Finally, a similar effect to
artificial viscosity can be obtained by filtering the solution, thus not affecting the
time stability limit [12, 15].

The derivation of the DGSEM performed in Sect. 2.1 does not include second
order derivatives. However, the stabilization using artificial viscosity requires them.
Several methods are available in the literature to perform the discretization of
elliptic problems, see [2] for a thorough review. In this work the Symmetric Interior
Penalty Discontinuous Galerkin [10] has been chosen to discretize the second order
derivatives.

3 Numerical Experiments

In this section, our aim is to test the developed method. Several shock tube
problems are used to test the capturing properties of the scheme in the presence
of discontinuities. We consider seven test problems which are classical benchmark,
see for instance [32]. The initial data consists of two constant states separated by a
discontinuity located at x D x0 , all the parameters are listed in Table 1. Transmissive
boundary conditions are imposed at x D 0 and x D 1.

In test 1 the liquid phase wave pattern consists of a left rarefaction, a right shock
wave and a right traveling liquid contact, while the gas phase consists of a left
rarefaction, a contact and a right shock wave. The equations of state for both phases
are assumed ideal, with �g D �l D 1:4. Test 2 is more demanding than test 1 as
it includes large variations of initial data and non-ideal equation of state. In test
3 the solution, for both phases, consists of a right shock wave, a right traveling
contact discontinuity and a left sonic rarefaction wave. The correct resolution of the
sonic point is very important in assessing the entropy satisfaction property of the
numerical scheme. In test 4 both solid and gas phases consist of a two symmetric
rarefaction waves and a trivial stationary contact wave. The region between the
rarefaction waves is close to vacuum, therefore this test case is useful to assess the
pressure positivity in different numerical methods. Test 5 was designed to assess the
ability of numerical methods to resolve the stationary isolated contact waves. The
exact solution allows the existence of the stationary contact waves in the solid and
gaseous phases when the volume fraction and solid pressure gradients are present
across the solid contact. The solution of this test problem contains isolated contacts
in both solid and gas phases.

A comparison is made between a first order discretization (which corresponds
to a classical Finite Volume approach) and a sixth order discretization, both with
100 elements. A solution obtained with a first order full non linear Riemann solver
[30] on a mesh consisting of 2000 elements is shown for comparison. Results are
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Table 1 One-dimensional shock tubes. EOS parameters, initial discontinuity position and initial
data for liquid and gas phases

(a) EOS parameters and initial discontinuity position

Test 1 Test 2 Test 3 Test 4 Test 5

�l 1:4 3:0 1:4 1:4 3:0

�g 1:4 1:35 1:4 1:4 1:4

�l 0:0 3400:0 0:0 0:0 10:0

�g 0:0 0:0 0:0 0:0 0:0

x0 0:5 0:5 0:5 0:5 0:5

(b) Liquid phase

Test ˛Ll �Ll uLl pLl ˛Rl �Rl uRl pRl
1 0:8 1:0 0:0 1:0 0:3 1:0 0:0 1:0

2 0:2 1900:0 0:0 10:0 0:9 1950:0 0:0 1000:0

3 0:8 1:0 0:75 1:0 0:3 0:125 0:0 0:1

4 0:8 1:0 �2:0 0:4 0:5 1:0 2:0 0:4

5 0:6 1:4 0:0 2:0 0:3 1:0 0:0 3:0

(c) Gas phase

Test ˛Lg �Lg uLg pLg ˛Rg �Rg uRg pRg
1 0.2 0.2 0.0 0.3 0.7 1.0 0.0 1.0

2 0.8 2.0 0.0 3.0 0.1 1.0 0.0 1.0

3 0.2 1.0 0.75 1.0 0.7 0.125 0.0 0.1

4 0.2 1.0 �2.0 0.4 0.5 1.0 2.0 0.4

5 0.4 1.4 0.0 1.0 0.7 1.0 0.0 1.0

shown in Fig. 1 where the mixture density is displayed (�m D ˛l�l C ˛g�g). Final
time has been set to t D 0:15 for tests 1 to 5. When the spatial discretization uses a
first order representation of the solution, the Rusanov flux, although robust, does not
give satisfactory results in the sense that it dissipates too much discontinuities. On
the contrary, when the polynomial degree N D 5 is used, the solution is almost
indistinguishable from the reference solution. It is remarkable how the artificial
viscosity approach, detailed in Sect. 2.3, achieves to impose a very controlled
amount of viscosity, keeping very sharp fronts and almost no oscillations.

4 Conclusions

In this work a discontinuous Galerkin discretization of the Baer-Nunziato equations
that takes the DGSEM as a basis was introduced. The condition of Abgrall was
used to extend the Rusanov flux to high order and to treat the non-conservative
products. A stabilization technique based on local artificial viscosity was adapted
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Fig. 1 Shock tube problems. Comparison between first order Rusanov with 100 elements, sixth
order Rusanov with 100 elements and full non linear Riemann solver with 2000 elements. Density
mixture

to the Baer-Nunziato equations to deal with the inherent oscillations caused by
high-order discretizations in the vicinity of discontinuities. This approach allowed
to smooth the discontinuities in a very thin region and thus resolve them in the space
of polynomials. The numerical experiments showed that the proposed discretization
allows very high-order solutions in the presence of discontinuities. It was also shown
that the accuracy of these solutions is comparable to the ones obtained with a full
non linear Riemann solver with more than three times the number of degrees of
freedom of the high-order counterpart.
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Summation-by-Parts and Correction Procedure
via Reconstruction

Hendrik Ranocha, Philipp Öffner, and Thomas Sonar

Abstract The correction procedure via reconstruction (CPR, also known as flux
reconstruction), is a framework of high order methods for conservation laws, unify-
ing some discontinuous Galerkin, spectral difference and spectral volume methods.
These methods are embedded in the framework of summation-by-parts (SBP)
operators with simultaneous approximation terms (SATs), recovering the linearly
stable methods of Vincent et al. (J Comput Phys 230(22): 8134–8154, 2011; J Sci
Comput 47(1):50–72, 2011; Comput Methods Appl Mech Eng 296:248–272, 2015).
The introduction of new correction terms enables stability for Burgers’ equation
using nodal bases not including boundary nodes, i.e. Gauss nodes. Extended notions
of SBP operators and split-forms are used to obtain stability.

1 Introduction

The correction procedure via reconstruction (CPR), also known as flux reconstruc-
tion (FR), has been introduced by Huynh [9] as a framework of high order methods
for conservation laws, unifying some discontinuous Galerkin (DG), spectral differ-
ence, and spectral volume methods with appropriate choice of parameters. It is a
polynomial collocation framework and resembles strong form DG methods. There
are several results about linear stability in a semidiscrete setting [10, 23–25] and the
framework has been implemented in the high performance industry targeting open
source framework PyFR [27]. However, there are far less results about nonlinear
stability [11].

Summation-by-parts operators originate in the framework of finite difference
(FD) operators, as described inter alia in the review articles [4, 13, 20], and have
been used to obtain rigorous results about linear stability in bounded domains,
mimicking analytical proofs in the continuous PDE setting using integration by parts
to obtain energy (L2) stability. This framework has recently been applied to nodal
DG methods [6] and general nodal bases with appropriate quadrature strength [3].
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Here, the concept of SBP operators is applied to CPR methods, resulting in a
reformulation enabling stability results in a semidiscrete setting with norms adapted
to the discrete inner product by quadrature. The family of energy stable CPR
methods [24, 25] can be recovered and nonlinear stability for Burgers’ equation
can be obtained by a skew-symmetric form [18]. Additionally, the concept of SBP
operators is generalised to nodal bases not including boundary nodes and modal
bases [19]. Finally, artificial dissipation and modal filtering are formulated in this
framework, enhancing stability of these methods, yielding fully discrete stability
for Euler’s method [7, 17].

2 Correction Procedure via Reconstruction

The correction procedure via reconstruction (CPR) is a polynomial collocation
method. For a scalar conservation law

@tuC @x f .u/ D 0 (1)

in one space dimension, equipped with periodic boundary conditions or compactly
supported initial data, the method can be formulated as follows.

The domain˝ is partitioned into non-overlapping intervals˝i, with
S

i˝i D ˝ .
On each element ˝i, the solution ui is approximated by a polynomial of degree
� p 2 N0 in a nodal basis, i.e. the values uij at certain points xi0; : : : ; x

i
p 2 ˝i are used.

In this collocation framework, the flux f .ui/ is computed pointwise at the nodes xij
and interpreted as a polynomial of degree � p, too, yielding f i

j
D f .uij/ D f .ui.xij//.

The divergence of the flux can thus be calculated as the discrete derivative Du
of a polynomial, where D is the discrete derivative matrix and u D .u0; : : : ; up/

t

the representation in the nodal basis. However, to incorporate the coupling with the
neighbouring elements, the flux f D . f

0
; : : : ; f

p
/t is interpolated to the left and right

boundary, yielding the values fL; fR. At each boundary, the two adjacent cells give
boundary values u�; uC of the solutions by interpolation, and a common numerical
flux f num.u�; uC/ is computed. To enforce this corrected flux at the boundaries, left
and right correction functions gL; gR are used, approximating zero in each element
gL vanishes at the right boundary and has the value 1 at the left boundary, and
gR is obtained as reflection of gL at the cell centre. These correction functions are
polynomials of degree� pC1, i.e. of one degree higher than the numerical solution
u. Finally, the semidiscrete approximation of (1) in each element is obtained as

@tuC D f C . f num
L � fL/g

0
L
C . f num

R � fR/g
0
R
D 0; (2)

where g0L=R is the derivative of the correction function gL=R and g0
L=R

the correspond-
ing representation in the nodal basis. In order to simplify the implementation, each
cell is mapped to a standard / reference element Œ�1; 1� � R and the computation is
performed there.
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3 Generalised Summation-by-Parts Operators

A general analytical setting of summation-by-parts (SBP) operators is given by the
following ingredients, as described in [19].

Functions on the volume (interval) ˝ are approximated by vectors in a finite-
dimensional (real) Hilbert space XV with basis BV . The mass matrixM is symmetric
positive definite and induces the scalar product on XV , approximating the L2 scalar
product

uTM v D ˝u; v˛M 	
Z

˝

u v D hu; viL2 : (3)

The derivative is represented in the basis BV by the matrix D.
Additionally, there is a finite-dimensional (real) Hilbert space XB with basis

BB, representing functions on boundary @˝ . In one space dimension, this Hilbert
space is two-dimensional and a basis is given by the values at both boundary nodes
f�1; 1g in the standard element. On this Hilbert space, there is a bilinear form,
approximating integration with respect to the outer normal as in the divergence
theorem, i.e. in one space dimension

uTBB f
B
D B.uB; fB/ D uB fB

ˇ

ˇ

ˇ

1

�1 ; B D diag .�1; 1/ : (4)

These Hilbert spaces are coupled via a restriction operator R, performing
interpolation of functions on the volume to the boundary. In this setting, the SBP
property reads

MDCDTM D RTBR; (5)

mimicking integration by parts on a discrete level

Z

˝

u .@xv/C
Z

˝

.@xu/ v D u v
ˇ

ˇ

ˇ

@˝
: (6)

For polynomials u; v of degree � p, the product uv is in general a polynomial
of degree � 2p. Thus, the discrete linear operator describing multiplication with
a function u on the volume is denoted by uC and maps in general to a bigger

Hilbert space XCv � XV . Therefore, some projection has to be used to get a
multiplication operator u mapping XV to XV . For a nodal basis, this projection
is given by pointwise evaluation, i.e. collocation, whereas for a modal Legendre
basis, this projection will be the exact L2 projection. Thus, the operator u on XV

performing multiplication with u in the collocation approach for a nodal basis is

given by u D diag
�

u0; : : : ; up

�

.
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This framework can also be extended to multiple dimensions, not relying on, but
including tensor product formulations [15], similarly to the numerical setting of [8].

4 Correction Procedure via Reconstruction Using
Summation-by-Parts Operators

The semidiscretisation (2) can be reformulated as

@tuC D f C C
�

f num � R f
�

D 0; (7)

where the correction matrix C D
�

g0L; g0R
�

contains the derivatives of the correction

functions as columns, and f num D
�

f num
L ; f num

R

�T
, R f D

�

fL; fR
�T

. Then, due to the

SBP property (5), one gets

Lemma 1 (Lemma 1 in [18]) If 1TM C D 1TRTB, then the semidiscretisation (7)
is conservative across elements.

Proof Denoting the constant function x 7! 1 by 1, in each element

d
dt

Z

u D1TM @tu D �1TM D f � 1TRTC
�

f num � R f
�

D� 1TRTB R f C 1TDTM f � 1TRTB
�

f num � R f
�

D �1TRTB f num;

(8)

where the SBP property (5), the assumption, and exact differentiation of constant
function D 1 D 0 have been used. Thus, summing the contributions of all elements
and using periodic boundary conditions, the terms sum up to zero and the method is
conservative.

5 Linear Stability

Since linear problems with constant coefficients

@tuC @xu D 0 (9)

are usually investigated regarding stability in L2, it is natural to look for semidiscrete
stability in the discrete norm induced by the mass matrix M. Using the SBP
property (5), proofs can be transferred from the continuous level of PDE analysis to
the semidiscrete level.
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As proposed by Jameson [10] in the context of a spectral difference method,
stability can also be obtained in some other norm, since all norms in finite
dimensional spaces are equivalent. Using this idea, Vincent et al. discovered a family
of linearly stable CPR methods [24, 25]. Their results have been transferred to the
new formulation of CPR methods in the SBP framework

Lemma 2 (Lemma 2 of [18], see also Theorem 1 of [25]) If the semidiscretisation

@tuC DuC C
�

f num � R u
�

D 0 (10)

of (9) is used with C D
�

M C K
��1

RTB, where MCK is positive definite and M K

is antisymmetric, then the SBP CPR method is linearly stably in the discrete norm
k�kMCK induced by M C K, if an adequate numerical flux f num is chosen.

In [18], the authors provided a translation of the one-parameter family of Vincent
et al. [24] to a corresponding one-parameter family in the new setting using discrete
norms. Additionally, the multi-parameter family of Vincent et al. [25] can be
translated similarly.

The discrete norm k�kMCK can be interpreted as some kind of Sobolev norm.
However, this equivalence of norms has to be used very carefully. Looking at
convergence results or stability under mesh refinement, the dimension and therefore
the constants involved in the equivalence of norms may blow up. Additionally, in
the spirit of SBP operators, stability results of numerical methods should mimic
corresponding well-posedness results in the continuous setting. For a linear scalar
conservation law with constant coefficients (9) and periodic boundary conditions,
the initial data is simply transported as it is. Therefore, both the L2 norm and Sobolev
norms of u remain constant. However, this is not valid for nonlinear conservation
laws anymore. Thus, it is recommended to use the discrete norms approximating the
continuous norms used to obtain well-posedness of the PDE.

Numerical calculations of the linear advection equation (9) using N D 4 uniform
elements with polynomials of degree � p D 7 to evolve the initial condition
u0.x/ D exp.�20x2/ in the domain Œ�1; 1� have been conducted using the classical
fourth order Runge-Kutta method with 5; 000 time steps in the interval Œ0; 20�. As
numerical flux, a central flux f num.u�; uC/ D u

�

Cu
C

2
has been chosen, yielding

d
dt kuk2 D 0 in the semidiscrete setting on a periodic domain.

The numerical solutions at t D 20 using Gauss and Lobatto nodes with associated
canonical correction matrices C D M�1RTB, corresponding to the parameters c D
c0 D 0 (Gauss) and c D cHu (Lobatto) in [24], are plotted in Fig. 1.

Very interesting regarding the stability result above is the plot of the energy kuk2
of the solution in Fig. 2, computed via Gauss and Lobatto quadrature using the same
number of nodes p D 7. The energy computed via Gauss nodes remains constant for
the solution computed with the canonical correction matrix corresponding to Gauss
nodes, whereas the energy computed via Lobatto nodes remains constant (due to
equivalence of norms) but oscillatory, and vice versa. This can be explained by
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(a) (b)

Fig. 1 The numerical solutions of constant velocity linear advection at t D 20. (a) c D c0, Gauss
nodes. (b) c D cHu, Lobatto nodes

(a) (b)

(c) (d)

Fig. 2 Energies of the numerical solutions of constant velocity linear advection. The Fig. (c) and
(d) provide zoomed in views of the Figs. (a) and (b), respectively. (a) c D c0, Gauss nodes. (b)
c D cHu, Lobatto nodes. (c) c D c0, Gauss nodes. (d) c D cHu, Lobatto nodes

Lemma 2, since the strong stability statement d
dt kuk2MCK � 0 for the solution using

periodic boundary conditions does only hold for the norm induced by M C K. For

c D c0, this corresponds to the correct L2 norm computed via Gauss quadrature,
whereas c D cHu corresponds to Lobatto quadrature.
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6 Nonlinear Stability for Burgers’ Equation

Skew-symmetric forms have been known for a long time to yield (entropy) stability
results for conservation laws [14, 21]. Additionally, Fisher et al. [5] provided the
justification to use these skew-symmetric forms in combination with diagonal norm
SBP operators with respect to the Lax-Wendroff theorem.

The nonlinear flux of Burgers’ equation

@tuC @x u
2

2
D 0 (11)

does not allow the simple cancellation of terms used to prove L2 stability for the
advection equation with constant coefficients (9). However, using the split form

@tuC 1

3
@xu

2 C 1

3
u@xu D 0; (12)

integration by parts can be used to obtain L2 stability d
dt kuk2 � 0 for appropriately

chosen boundary conditions. Similarly, using SBP operators on a nodal basis
including boundary nodes, the splitting

@tuC 1

3
Du2 C 1

3
uD uCM�1RTB

�

f num � 1
2
R u2

�

(13)

yields a conservative (across elements) and stable (in the discrete norm k�kM)
method, if an adequate numerical flux f num and appropriate boundary conditions
are chosen, see inter alia [5, 6, 18].

This kind of split form has been seen often as some kind of correction of the
product rule @x.uv/ D .@xu/vC u.@xv/, that is invalid for weak solutions and in the
discrete setting. However, it should be emphasised that it is multiplication which is
invalid in the discrete setting, not only the product rule. Using this idea, the authors
[19] extended the split form also to boundary terms, and to a more general correction
of the volume terms, resulting in

Theorem 1 (Theorem 2 of [19]) For a general SBP basis, the semidiscretisation

@tuC 1

3
Du2 C 1

3
u�DuCM�1RTB

�

f num � 1
3
R u u � 1

6

�

R u
�2
�

D 0 (14)

is conservative. Moreover, it is stable in the discrete norm k�kM induced by M, if an
appropriate numerical flux fulfilling the entropy stability condition of Tadmor [22]

.uC � u�/f num.u�; uC/ � 1
6

�

u3C � u3�
�

� 0 (15)

is chosen, e.g. an entropy conservative flux, a local Lax-Friedrichs flux, or Osher’s
flux.
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Here, the M-adjoint u� of u is given by u� D M�1uTM, and the correction for
the volume term can be justified by the fact, that the multiplication operator u,
representing multiplication with a real function u, should be self-adjoint, at least
if an appropriate domain is chosen, which is trivial in the finite dimensional case.

These reformulations allow many nodal basis without diagonal norm, e.g.
Chebyshev bases, as well as modal bases. For a diagonal norm nodal basis, the
multiplication operators are self-adjoint, since M; u are diagonal and commute.
Additionally, the multiplication operators in a modal Legendre basis using exact
L2 projection for the multiplication are self-adjoint, since the Legendre polynomials
are orthogonal, i.e. for three polynomials u; v;w of degree � p,

Z

proj.uv/w D
Z

.uv/w D
Z

v.uw/ D
Z

v proj.uw/: (16)

As another argument not to rely on the equivalence of norms in finite dimensional
spaces and the use of another correction matrix than C D M�1RTB as described in
Sect. 5, the authors have not been able to get nonlinear stability results for Burgers’
equation using norms different from k�kM .

7 Enhancing Stability

Artificial viscosity has long been known as a means to enhance the stability of
numerical methods [26], inspired by corresponding results in the continuous setting
of PDE analysis.

Inspired by the framework of spectral viscosity, the conservation law (1) is
enhanced by a right hand side

@tu.t; x/C @x f
�

u.t; x/
� D .�1/sC1�.@xa.x/@x/su.t; x/; (17)

where s is the order, � the strength, a a suitable function, and .@xa.x/@x/s the s-th
power of the linear operator mapping u 7! @x .a@xu/.

Similarly to results in the context of FD methods [12], it is very important how
the discretisation of the right hand side in (17) is performed. If a basis not including
boundary values is used, conservation across elements and stability might be lost, if
a naive discretisation is used.

Lemma 3 (Lemma 1 of [17]) Augmenting a conservative and stable SBP semidis-
cretisation of the scalar conservation law (1) with the right hand side

��
�

M�1DTM aD
�s

u (18)
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where a � 0 is a polynomial on the element˝ fulfilling a
ˇ

ˇ

@˝
D 0, results in a stable

and conservative semidiscretisation, if a nodal basis with diagonal mass matrix or
a modal basis with exact L2 norm and projection for multiplication is used.

The eigenvalues of the discrete operator on the right hand side (18) depend on
the quadrature strength of the associated mass matrix M and mimic the ones of the
continuous operator in the Sturm-Liouville problem

@x

�

.1 � x2/@x�n.x/
�

D �n.nC 1/�n.x/; (19)

where a.x/ D 1� x2 has been chosen in the reference element Œ�1; 1�, and �n is the
n-th Legendre polynomial [17].

In a fully discrete setting, using a forward Euler method, the new value after one
time step�t is uC D uC�t @tu. Thus, the fully discrete stability estimate becomes

kuCk2M D kuk2M C 2�t
˝

u; @tu
˛C .�t/2k@tuk2M; (20)

where the second term on the right hand side has been estimated for a stable
semidiscretisation, but the last term is non negative and might destroy the desired
stability. Thus, the authors of [17] proposed a simple estimate of the artificial
dissipation strength �, needed to dissipate this undesired influence of the time
discretisation, see Lemma 3 in [17].

Similarly, the same authors used a classical operator splitting approach to convert
the artificial dissipation to modal filtering [7]. A similar estimate for fully discrete
stability using Euler’s method has been obtained, see Lemmas 2 and 3 of [7].

Additionally, they compared several possibilities of modal filtering:

1. Use modal filtering in an operator splitting approach, i.e. compute uC D F QuC,

where QuC has been obtained by the Euler method applied to a stable and
conservative semidiscretisation.

2. Filter the time derivative @tu in Euler’s method.
3. Filter the solution u used to compute the time derivative in Euler’s method.

The first possibility is similar to the artificial dissipation approach as described
above, conservative, stable, and recommended. The second approach corresponds
to the use of another norm used to prove stability in the CPR framework, similarly
to results in [1, 2]. However, as described in Sect. 5, this equivalence of norms in
finite dimensional spaces may not be adequate for all problems. Finally, the third
possibility can be seen as a combination of the other two, followed by an application
of an inverse filter F�1 (if existing), and is thus not recommended.
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8 Summary and Outlook

The formulation of CPR schemes in the framework of SBP operators and SATs
has been presented following [18]. The linearly stable schemes of [24, 25] can be
recovered in this formulation and nonlinear stability for Burgers’ equation can be
obtained using split-forms of the equation. Due to the introduction of new correction
terms, this nonlinear stability can be extended to generalised SBP bases, both nodal
bases not including boundary nodes and modal bases [19]. Moreover, the stability
of the schemes can be enhanced by artificial dissipation and modal filtering, if the
correct formulation is chosen for the general SBP bases [7, 17].

An extension of these results to systems of hyperbolic equations is possible
in some cases [16]. However, these schemes become increasingly complicated.
Therefore, it may be questionable, whether improvements in accuracy and stability
can justify the complexity of schemes not using Lobatto nodes as basis.
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Three-Dimensional Flow Stability Analysis
Based on the Matrix-Forming Approach Made
Affordable

Daniel Rodríguez and Elmer M. Gennaro

Abstract Theoretical developments for hydrodynamic instability analysis are often
based on eigenvalue problems, the size of which depends on the dimensionality of
the reference state (or base flow) and the number of coupled equations governing
the fluid motion. The straightforward numerical approach consisting on spatial
discretization of the linear operators, and numerical solution of the resulting matrix
eigenvalue problem, can be applied today without restrictions to one-dimensional
base flows. The most efficient implementations for one-dimensional problems
feature spectral collocation discretizations which produce dense matrices. However,
this combination of theoretical approach and numerics becomes computationally
prohibitive when two-dimensional and three-dimensional flows are considered. This
paper proposes a new methodology based on an optimized combination of high-
order finite differences and sparse algebra, that leads to a substantial reduction of
the computational cost. As a result, three-dimensional eigenvalue problems can be
solved in a local workstation, while other related theoretical methods based on
the WKB expansion, like global-oscillator instability or the Parabolized Stability
Equations, can be extended to three-dimensional base flows and solved using a
personal computer.

1 Introduction

Matrix-forming approaches for the solution of the multidimensional eigenvalue
problems (EVPs) appearing in the study of the instability of complex flows have
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traditionally been based on spectral collocation discretizations, on account of their
convergence properties and the computer memory limitations. The discretization of
2D (biglobal) EVP [17] using spectral methods and dense storage may easily require
of O(Terabytes) for the discretization of problems with moderate resolutions. A
limit in this direction was reached in [12], in which parallelization on 2048 cores of
a Blue Gene/P enabled the computation of eigenmodes dependent on two spatial
directions and periodic on the third. The combination of spectral methods with
sparse storage for this class of problems does not result in significant cost reductions,
but combinations of spectral and high-order finite differences increase the sparsity
of the discretized operators so that remarkable improvements in the numerical
efficiency are obtained: 2D EVPs that required using a supercomputer 6 years
ago can be solved today on a personal computer [5]. In the present contribution
we go a step further, optimizing the combination of the sparse storage and the
discretization scheme in the formation of the matrices in order to study flow stability
problems in which the velocity field is fully 3D. This includes EVPs in which
the eigenmodes are fully dependent on the three spatial directions (triglobal EVP
[17]), and extensions of weakly non-parallel (WKB) approach and the parabolized
stability equations to flows with a strong dependence on the cross-stream directions
and a mild dependence on the streamwise one.

2 Theory

Hydrodynamic instability studies the behavior of small disturbances introduced or
superimposed upon a well-defined reference state, referred to as base flow. Let the
flow field be characterized by the vector q D .v; p;T; : : : /T , containing the three
velocity components v, the pressure p, temperature T, and any other field variable
required to define the flow state. In the most general case, q is a function of the
three spatial coordinates (x D .x; y; z/T ) and time t. The flow is then decomposed
into a time-invariant or time-averaged solution of the governing equations, the
aforementioned base flow Nq plus time-dependent fluctuations or perturbations q0:

q.x; t/ D Nq.x/C q0.x; t/: (1)

Temporal stability analysis considers the evolution in time of perturbations
introduced at a given initial instant. In this context, upon substitution of the flow
decomposition into the Navier-Stokes equations and subtraction of the terms involv-
ing exclusively the base flow—as they verify the governing equations themselves—
we arrive at the system of equations governing the fluctuations. These equations can
be written in matrix form as:

R@q0=@t D Lq0 C F.q0;q0/; (2)



Three-Dimensional Flow Stability Analysis Based on Matrix-Forming Made Affordable 641

where R;L are linear operators depending on the base flow and its spatial
derivatives, physical parameters defining the flow at hand like Reynolds number
or Mach number, and comprising first and second order spatial derivatives. Finally,
F.q0;q0/ comprises the quadratic nonlinearities between the perturbations. Provided
that the instability behavior of the flow is determined by the evolution of infinites-
imally small disturbances, the nonlinear term can be neglected leading to a linear,
homogeneous problem.

While considering the long-time evolution of the disturbances, it is natural to
assume an exponential dependence of them with time,

q0.x; t/ D Oq.x/ exp.�i!t/C c:c:; (3)

where ! D !r C i!i. The real part, !r, is a circular frequency oscillation while the
imaginary part !i corresponds to a temporal growth rate. c:c: denotes the complex
conjugate, that has to be added so that q0 is a real quantity. Substituting the modal
form in the linearized Navier-Stokes equations, we arrive at a generalized matrix
eigenvalue problem (EVP) of the form

�i!R Oq D L Oq: (4)

The solution of the EVP recovers a set of eigenmodes, formed by eigenvalues !
and their corresponding eigenfunctions Oq. If all eigenmodes present have !i < 0,
then any linearly small perturbation decays for long times, and the base flow is said
to be linearly stable. On the contrary, if at least one eigenmode has !i > 0, a random
initial condition will be amplified, recovering for long times the exponentially-
growing modal behavior; in this case, the base flow is linearly unstable, and
disturbances will grow until nonlinear interactions set in.

Due to the nonmodal nature of the linearized Navier-Stokes equations, the modal
scenario does not suffice to predict the evolution of the disturbances for finite times:
the eigenfunctions are in general non-orthogonal, and linear combinations of even
damped eigenmodes can result in transient disturbance amplifications of several
orders of magnitude. Though linearly stable, some flows can sustain transient linear
amplifications large enough to reach nonlinear amplitudes, producing a sub-critical
transition to a different state. A theoretical approach for the determination of the
maximum amplification and the so-called optimal initial condition for transient
growth is based on the computation of a large number of eigenmodes by first solving
the EVP (4) [15].

In the most general case in which the base flow is dependent on the three spatial
directions, the linear operators describing the EVP (4) contains coefficients with the
same dimensionality. The linear operators R and L represent fully-coupled three-
dimensional partial differential equations, and an appropriate spatial discretization
and numerical solution are required. Considering a structured spatial discretization
with Nx � Ny � Nz discretization points and a system of Ne equations, the EVP has
Nx �Ny �Nz �Ne degrees of freedom. This numbers being prohibitively large even
for moderate resolutions, simplifications of the problem are sought for that allow
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for the reduction of the problem dimension. If the base flow is homogeneous along
the z-spatial direction, the operators R and L are consequently homogeneous on
the same direction and a Fourier transformation is allowed for. A three-dimensional
perturbation takes then the form

q0.x; t/ D Oq.x; y/ expŒi.ˇz � !t/�C c:c:; (5)

where ˇ is a wavenumber in the homogeneous z�direction. The resulting EVP is
then two-dimensional, with both linear operators and eigenfunctions discretized in
a two-dimensional domain. The leading dimension of the problem is then reduced
to Nx � Ny � Ne.

A further degree of simplification is introduced if the base flow is parallel or
nearly-parallel, as is the case for boundary layers developing on flat plates or
laminar mixing layers at high Reynolds numbers. In this case, the base flow can
be assumed to be one-dimensional, depending on the transversal direction y alone.
A second Fourier transform is introduced then for the streamwise direction, and
modal perturbations take the form

q0.x; t/ D Oq.y/ expŒi.˛xC ˇz � !t/�C c:c:; (6)

where ˛ is the streamwise wavenumber. In this case, the EVP is one-dimensional
and the leading dimension of the problem is Ny � Ne.

These problems are sometimes referred to in the literature as triglobal (for Nq
depending on three dimensions), biglobal ( Nq depending on two dimensions) and
local for base flows depending only upon the cross-stream direction[17]. However
this definition of local as 1D problems is not precise, as cross-stream perturbations
can result in 2D problems if the flow is inhomogeneous along the two cross-stream
directions in a quasi-parallel approximation.

3 Numerical Methods for the Matrix-Forming Approach

One-dimensional EVPs for hydrodynamic instability were the first to be addressed,
on account of their relative simplicity. First solutions were obtained by means
of analytical expansions for few canonical base flows. With the introduction of
computers, shooting methods were applied, that allow for the determination of
eigenvalues and eigenfunctions of any kind of one-dimensional flow. It was not
until 1971 that Orszag [9] presented the first Matrix-forming solution of the one-
dimensional EVP. The matrix-forming approach consists on spatially discretizing
the linear operators describing the EVP, and computing its eigenvalues and eigen-
functions using numerical linear algebra techniques. While its extension to two-
and three-dimensional EVPs is straightforward, the resulting matrices are, even for
moderate resolutions, remarkably large. First solutions for two-dimensional eigen-
mode problems appeared in the 1980s [10, 18], but it was not until more a decade
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later that they became a common tool for fluid-dynamicists [17]. The extension
to three-dimensional problems of the matrix-forming approach by straightforward
modification of the same numerical techniques is impractical: the computational
requirements widely exceed the computational power of today’s computers.

3.1 Previous Experiences

Most of the matrix-forming solutions of one-dimensional EVPs even to date, and
of the first two-dimensional problems, considered a spatial discretization using
spectral collocation methods, specially Chebyshev-Gauss-Lobatto points. Spectral
collocation provides the higher accuracy for a given number of discretization points,
thus reducing the memory requirements. The resulting matrices were stored as
dense, and the eigensolutions were computed using variants of the QR algorithm [9].
First experiences with two-dimensional EVPs considered the same combination of
spectral collocation and direct method for the eigenspectrum computation. While
the memory requirements increased substantially, it was the computational time
associated with the QR/QZ algorithms that became the limiting factor. Subspace
iteration methods like the Arnoldi algorithm [2] were then introduced, drastically
reducing the CPU time to, at leading order, the cost of performing a LU factorization
of the discretized matrix L matrix.

The combination of dense matrices and shift-and-invert Arnoldi algorithm was
found to be very limited for the solution of two-dimensional EVPs, and imprac-
tical for three-dimensional ones. Table 1 shows memory and FLOPs estimations
corresponding to few representative problems. It was concluded that, for large two-
dimensional and three-dimensional problems to be solved, a different numerical
methodology was required.

Rodríguez and Theofilis [12] presented a massively parallel solution of the
stability EVP, implementing the spectral collocation discretization, dense matrices
and Arnoldi algorithm, but with distributed-memory storage and operation using
MPI communications and the ScaLAPACK linear algebra package. Consequently,
the maximum problem dimension becomes a function of the number of processors
available, and the CPU-time was scaled accordingly. This implementation was
shown to scale correctly using up to 4096 cores in a Blue Gene/P (JUGENE,

Table 1 Memory and FLOP estimations for the solution of representative stability EVPs (Ne D
4), using dense matrix storage and Arnoldi algorithm

Coupled dimensions Spatial resolution Memory Floating-point operations (FLOPs)

1 250 15 MB 109

2 250 � 250 1 TB 1016

3 240 � 50� 25 22 TB 1018
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Forschunzentrum Juelich, Germany), and enabled the solution of EVP problems
with matrices as large as 1 TB.

A different direction was pursued by Gennaro et al. [5], in which serial
sparse solutions were studied. Considering two-dimensional stability problems, it
was found that a discretization considering pseudo-spectral methods (Chebyshev
polynomials) results into matrices too dense for the sparse treatment to be efficient.
However, considering high-order finite differences or combinations of Chebyshev
polynomials on one direction and high-order finite differences on the other, order-
of-magnitude reductions were achieved both in memory and CPU-time.

3.2 The Method Proposed

Based on our previous experiences [5, 12], a new code was developed for the
solution of one-, two- and three-dimensional EVPs, using combinations of high-
order finite differences and pseudo-spectral discretizations, sparse storage and
operation, and an in-house implementation of the shift-and-invert Arnoldi algorithm
[2, 6]. The multifrontal sparse linear algebra MUMPS [1] is used for the LU
factorization of the sparse matrices and for performing the required substitutions.
Matrix-lines reordering is previously applied using the library METIS.

Variable-stencil finite differences are implemented and used as default discretiza-
tion method. The stencil varies from a maximum of seven or nine points in the inner
points to forward or backward differences with four or five points at boundaries.
This discretization has the benefits of producing very sparse and banded matrix-
blocks, optimizing the sparse algebra efficiency, while presenting a convergence
much faster than low order discretization methods. Our earlier experiences have
shown that sixth order finite differences deliver the optimum balance between the
sparse efficiency (better for the lowest order) and resolution power (better for higher
order). A Fourier collocation discretization is also implemented, to be used for
periodic directions only. Coordinate transformations are introduced to concentrate
the computational mesh in the spatial regions were field gradients are stronger and
at solid domain boundaries.

The treatment of the domain boundaries deserves special attention. One known
problem of spectral methods is the appearance of point-wise oscillations of the
solution when the resolution is insufficient. This is especially problematic in flow
stability problems considering outflow sections, as very thin artificial boundary
layers appear [13]. On the other hand, the outflow region seldom affects the con-
verged structure of the eigenfunctions, and devoting a large number of discretization
points to prevent the point-wise oscillation is not practical. Using a relative low-
order discretization at open boundaries prevents the numerical oscillations from
contaminating the rest of the computational domain.
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4 Three-Dimensional EVPs

The proposed methodology enabled the solution of three-dimensional EVPs using
a local workstation machine, featuring 256 GB of shared memory and 16 dual core
processors. Validations were done by performing comparisons with results delivered
by two-dimensional EVPs. A spanwise-homogeneous base flow, corresponding to
a two-dimensional laminar separation bubble on a flat plate boundary layer, was
considered. It is known [14] that this flow is modally stable for two-dimensional
disturbances and becomes unstable for spanwise-periodic perturbations, with a
preferred periodicity wavenumber ˇc 	 0:16. Figure 1a compares the eigenspectra
corresponding to two-dimensional problems for ˇ D 0, and ˇc, with the one
computed for the same base flow considering a three-dimensional EVP with
spanwise domain length of Lz D 2�=ˇc. Accurate convergence of the eigenvalues
is attained for a small number of collocation points (Nz D 15) on the spanwise

Fig. 1 (a) Stability eigenspectra for a two-dimensional laminar separation bubble base flow. Blue
and Red circles: solution of the 2D EVP for plane (ˇ D 0) and spanwise-periodic (ˇ D ˇc)
perturbations, respectively. Black dots: solution of the 3D EVP with spanwise domain z 2
Œ0; 2�=ˇc�. (b) Stability eigenspectra for a three-dimensional laminar separation bubble resulting
from the amplification of the primary instability. Blue square denotes the most unstable eigenmode,
corresponding to a secondary instability. Dashed horizontal line separates unstable and stable
regions
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Table 2 Convergence history of the leading eigenmode in Fig. 1b

Spatial resolution Memory (GB) CPU-time (mins) ! Relative difference

131� 41� 15 44 123 0.08529 + i 0.005572 0:188

151� 51� 17 81 179 0.09178 + i 0.006532 0:126

181� 51� 19 106 878 0.09918 + i 0.007221 0:055

221� 51� 25 224 1426 0.10500 + i 0.007518 –
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Fig. 2 Streamwise perturbations corresponding to a secondary instability of a three-dimensional
separation bubble. (a) Obtained by WKB method on cross-planes, (b) Obtained as a three-
dimensional eigenmode (blue square in Fig. 1b). The slice shown in the left panel corresponds
to the projection on the real space of the wavemaker plane, Xs

direction. The maximum resolution used in the computations was Nx � Ny � Nz D
221 � 51 � 25.

Rodríguez and Gennaro (2015) [11] showed that the primary instability of
separation bubbles leads to a supercritical pitchfork bifurcation resulting into
fully three-dimensional steady flows. The present three-dimensional EVP solver
is pertinent for the analysis of modal secondary instabilities associated with this
flow. Figure 1b shows the eigenspectrum corresponding to such a fully three-
dimensional separated flow. The leading eigenmode found corresponds to ! D
0:105 C i0:0075. Table 2 shows the convergence of the leading eigenmode with
respect to spatial resolution and the respective computational cost. Figure 2b depicts
the corresponding eigenfunctions.

5 Other 3D Stability Analysis Made Affordable

The remarkable improvement in the computational efficiency attained with the
proposed combination of variable-stencil high-order finite differences and sparse
storage and operation allows, in addition to the solution of three-dimensional EVPs
on a workstation, the solution of two-dimensional problems with an associated
expenditure of few seconds and O(Megabytes) per problem. This makes possible
the consideration of two additional approaches for the instability analysis of
three-dimensional base flows, that can deliver useful results on today’s personal
computers.
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Many flows exist in which the variation of the mean flow properties along the
dominant streamwise direction take place along distances long compared with those
of the disturbances. Consequently, we can investigate the local instability properties
at each X-section (capital letter is used to denote a large scale, X D "x with "
 1),
and then stitch them together using the multiple-scales or WKB approximation. This
methodology can be applied to base flows with strong variations in one or the two
cross-stream directions. Two particular methods of this class are relevant here.

5.1 Global Oscillator Based on WKB Based on Cross-Stream
Planes

This approach studies the existence of self-excited global oscillations, synchronized
along the X direction, based on the existence of local regions of absolute instability
[8]. From the solution of the EVP for varying X cross-stream sections ( Nq.y; zIX/),
the dispersion relation D.˛; !IX/ D 0 is obtained. First, the absolute frequency
!0.X/ is obtained at each X as the saddle point, where @!=@˛j!0 D 0. Then, the
wavemaker location Xs is determined from the saddle-point condition @!0=@X D
0. The global oscillation frequency is !g D !0.Xs/. At leading order, the spatial
structure of the oscillator is obtained as:

q0.x; y; z; t/ � A.X/ Oq˙.X; y; z/ exp

�Z

x0

i˛˙.x0/dx0 � i!gt

�

C c:c: (7)

The computation of a three-dimensional global oscillator requires the solution of
a large number of local two-dimensional, cross-sectional EVPs. Spatial resolutions
comparable to those used in the three-dimensional EVP for the secondary instability
of the separation bubble (Ny � Nz D 51 � 16) deliver converged results, requiring
of O.400MB/ and 4 s for the solution of each EVP serially on a laptop computer.
Consequently, this approach can be used as an inexpensive alternative to the solution
of three-dimensional EVPs for the calculation of the secondary instability of the
separation bubble: Figure 2a shows the global oscillator obtained for the same base
flow, corresponding to a global frequency !g D 0:1039 C i0:0078, agreeing with
the three-dimensional eigenmode (! D 0:105C i0:0075, Fig. 2b).

5.2 3D Parabolized Stability Equations

The second method based on the multiple-scales approach considered here studies
the spatial evolution of time-periodic convective instabilities, introduced at a
given X-section, as they propagate downstream. The classic Parabolized Stability
Equations (PSE) [7] recast the Navier-Stokes equations in disturbance form as a
parabolic marching problem along the slow, streamwise coordinate X. The solution
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is computed at each cross-section by an iterative solution procedure that involves the
solution of a number of one-dimensional linear problems, described by operators
akin to the one-dimensional stability EVP. The classic PSE approach is extended
here to three-dimensional base flows that depend strongly on two spatial directions
and only mildly on the streamwise one: disturbances of the form

q0.x; y; z; t/ D Oq.X; y; z/ exp

�

i.
Z

x0

˛.X0/dx0 � !t/
�

C c:c: (8)

are considered, where Oq.X; y; z/ is the shape function and ˛.X0/ is a streamwise
wavenumber which depends on the slow variable X. Introduction of this decompo-
sition into the Navier Stokes equations in disturbance form, one obtains the matrix
problem

R
@ Oq
@X
D L OqC F. Oq; Oq/: (9)

PSE can take into account non-linear interactions between the different frequency
Fourier modes, through the coupling term F. The marching algorithm in PSE
requires of a normalization condition to isolate the slow variations of the shape
function Oq from the fast-scale oscillations and spatial growth. Here, the following
normalization condition [7] is used

Z

y

Z

z
Oq� @ Oq
@X

dydz; (10)

which provides a condition for the iterative calculation of ˛. The superscript 
denotes complex conjugation. This approach, being an straight-forward extension
of the classic PSE, was not successfully implemented until Broadhurst and Sherwin
(2008) [3] due to its computational cost. The numerical methodology presented
herein enables the routinary use of the 3D PSE equations for stability analyses.

The amplification of externally generated Tollmien-Schlichting waves by the
same three-dimensional steady bubble considered in the previous examples is
considered here to illustrate the 3D PSE methodology. The cross-plane resolution
Ny � Nz D 51 � 16 also delivered converged spatial amplification curves. The
iterative marching procedure requires a relatively large number of matrix inversions,
each one requiring of about 3.6 s. The complete calculation for a single frequency
requires about 20 min on a laptop computer.

Figure 3a shows the spatial amplification curves in terms of the N-factor (N D
log.A.x/=A.x0//) for a range of dimensionless frequencies from ! D 0:05 up
to 0.15. Maximum amplitude is attained for ! D 0:12, and the corresponding
disturbance streamwise velocity field is shown in Fig. 3b.
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Fig. 3 Amplification and distortion of incoming plane Tollmien-Schlichting waves by the steady
three-dimensional laminar separation bubble: N-factor curves for frequencies ! D :05.0:01/0:15.
Red curve corresponds to ! D 0:12 (a). The vertical dashed lines show the spanwise-averaged
separation and reattachment lines; streamwise velocity perturbation field for ! D 0:12 (a)

6 Concluding Remarks

Matrix-forming approaches for the study of linear hydrodynamic instability are the
most straightforward application of the theoretical developments, but unfortunately
are also invariably affected by the “curse of dimensionality” that renders their
computational cost prohibitive when the reference state or base flow is two- or
three-dimensional. The classic solution approach, devised for the one-dimensional
Orr-Sommerfeld equation, considered a pseudo-spectral discretization and resulted
into dense matrices. However, for two- and three-dimensional problems the matrices
naturally present some degree of sparsity. Combining spectral discretizations with
sparse algebra improves only slightly the algorithm efficiency. A new code was
developed that combines high-order finite differences with sparse storage and
operation, resulting in substantial reductions both in memory and CPU-time. This
new approach enables the solution of fully three-dimensional EVPs in a local size
workstation with up to 256 GB and in times of few hours, thus being competitive
with respect to Matrix-free techniques [4, 16], which deliver stability results based
on a time-stepping code. Whether one methodology should be preferred over the
other remains an open question, and a fair comparison would depend on the kind of
problem and results (e.g. number of eigenmodes) under consideration.

In addition to 2D and 3D EVPs, other pre-existing approaches (Global oscillator
based on local regions of absolute instability and Parabolized Stability Equations),
based on the solution of a large number of cross-stream one-dimensional problems,
can be extended to three-dimensional base flows using the present methodology; as a
result, the instability analysis of fully three-dimensional base flows can be achieved
on a personal computer.
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Fast Spectral Methods
for Temporally-Distributed Fractional PDEs

Mehdi Samiee, Ehsan Kharazmi, and Mohsen Zayernouri

Abstract Temporally-distributed fractional partial differential equations appear as
rigorous mathematical models that solve the probability density function of non-
Markovian processes coding multi-physics diffusion-to-wave and multi-rate ultra
slow-to-super diffusion dynamics (Chechkin et al, Phys Rev E 66(4):046129, 2002).
We develop a Petrov-Galerkin spectral method for high dimensional temporally-
distributed fractional partial differential equations with two-sided derivatives in a
space-time hypercube. We employ Jacobi poly-fractonomials given in (Zayernouri
and Karniadakis, J Comput Phys 252:495–517, 2013) and Legendre polynomials as
the temporal and spatial basis/test functions, respectively. Moreover, we formulate a
fast linear solver for the corresponding Lyapunov system. Furthermore, we perform
the corresponding discrete stability and error analysis of the numerical scheme.
Finally, we carry out several numerical test cases to examine the efficiency and
accuracy of the method.

1 Introduction

Anomalous transport, which manifests in power-law distribution, non-local behav-
ior and memory effects, have been studied in many applications such as turbulence
[10, 23], fluid flows in porous media [3, 4], and bioengineering [18, 24, 25].
Fractional PDEs appear as rigorous models that naturally incorporate such non-local
features. Moreover, distributed FPDEs provide a powerful modeling tool to describe
complex multi-physics multi-rate processes. For instance, temporally-distributed
fractional diffusion equations rigorously solve the probability density function of
the multi-fractal random processes, subordinated to Wiener process (retarding sub-
diffusion) [6].
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Discretization of FPDEs is challenging due to the history dependence and
non-local feature of such fractional models. In addition to finite difference and
finite volume methods [5, 7, 12, 17, 31], other numerical methods such as finite
element [13, 21] and spectral/spectral element methods [8, 9, 14, 20, 28–30, 32–
34] have been extensively studied. In addition to the aforementioned challenges in
solving FPDEs, the distributed order FPDEs usually add at least one extra order of
magnitude to the complexity of numerical methods; see [2, 19, 27]. In addition to
the computational challenges, the analysis of distributed order operators requires
a proper mathematical framework (characterizing the underlying function spaces,
norms, etc.) that allows incorporating real data for predictive simulations.

In this study, we introduce distributed Sobolev space with the equivalent
associated norms. We construct Petrov-Galerkin spectral methods with a unified
fast solver for a class of temporally-distributed FPDEs with constant coefficients
subject to Dirichlet boundary/initial conditions. We develop the fast linear solver
based on the eigensolutions of the corresponding temporal/spatial mass and stiffness
matrices. We carry out the discrete stability and error analysis of the PG method for
the two-dimensional case. Eventually, we illustrate the spectral convergence and the
efficiency of the method by performing several numerical simulations.

This study is organized as follows: in Sect. 2, we introduce the preliminaries
on fractional calculus and define the distributed fractional Sobolev spaces. We
define the problem and the corresponding variational form in Sect. 3. In Sect. 4, we
construct the PG methods and formulate the fast solver. The discrete stability and
error analysis are discussed in Sect. 5. In Sect. 6, we provide some numerical tests.
We end the paper with a summary and conclusion.

2 Preliminaries

Following [22, 32], we denote the left- and right-sided Reimann-Liouville fractional
derivatives by RL

aD�
x f .x/ and RL

xD�
bg.x/, respectively, in which g.x/ 2 CnŒa; b�. We

recall from [1] that RL
aD�

x g.x/ D C
aD�

x g.x/ D aD�
x g.x/, � 2 .0; 1/, when homoge-

neous Dirichlet initial and boundary conditions are enforced. Following [14], we
analytically obtain the fractional derivatives of the Jacobi poly-fractonomials [29],
which are later used in developing the numerical scheme, as

RL�1D�
�

n

.1C �/�P��;�n�1 .�/
o

D �.nC �/
�.nC � � �/ .1C �/

���P��C�;���n�1 .�/ (1)

RL
�D�

1

n

.1 � �/�P�;��n�1 .�/
o

D �.nC �/
�.nC � � �/.1 � �/

���P���;��C�n�1 .�/ (2)
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in which �; � > 0 and P�;��n�1 .�/ is the standard Jacobi polynomial of order
n � 1. Similarly, the �-th order fractional derivatives of the Legendre polynomials
are given as

�1D�
x Pn.x/ D �.nC 1/

�.n � �C 1/P
�;��
n .x/ .1C x/��;

xD
�
1 Pn.x/ D �.nC 1/

�.n � �C 1/P
��;�
n .x/ .1 � x/��;

in which Pn.x/ represents the Legendre polynomial of order n.

2.1 Distributed Fractional Sobolev Spaces

According to [16], the usual Sobolev space associated with the real index �1 on
bounded interval ƒ1 D .a1; b1/, is denoted by H�1.ƒ1/. Due to Lemma 2.6 in

[16], k � kH�1 .ƒ1/ � k � kcH�1 .ƒ1/, where k � kcH�1 .ƒ1/ D
�

k x1D�1
b1
.�/k2

L2.ƒ1/
C

k a1D�1
x1 .�/k2L2.ƒ1/ C k � k2L2.ƒ1/

� 1
2
: Let ƒi D .ai; bi/ � ƒi�1 for i D 2; � � � ; d, and

X1 D H�1
0 .ƒ1/, which is associated with the norm k � kcH�1 .ƒ1/. Therefore, Xd is

constructed such that Xd D H�d
0

�

.ad; bd/IL2.ƒd�1/
�

\L2.IIXd�1/, associated with

norm k � kXd D
	

k � k2
L2.ƒd/

CPd
iD1

�

k xiD�i
bi
.�/k2

L2.ƒd/
Ck aiD�i

xi .�/k2L2.ƒd/

�


 1
2

, where

Xd�1 D H�d�1

0

�

.ad�1; bd�1/IL2.ƒd�2/
�

\ L2.IIXd�2/;

:::

X2 D H�2
0

�

.a2; b2/IL2.ƒ1/
�

\ L2.IIX1/: (3)

Following [14], we denote by H'.R/ the distributed fractional Sobolev
space on R , which is endowed with the following norm k � kH' .R/ D
�

R ˛2
˛1
'.˛/ k .1C j!j2/ ˛2F.�/.!/k2

L2.R/
d˛
� 1
2
; where ' 2 L1. Œ˛1; ˛2� /, 0 � ˛1 <

˛2. Subsequently, we denote by H'.I/ the distributed fractional Sobolev space on
the finite closed interval I D .0;T/, which is defined as H'.I/ D fv 2 L2.I/j 9 Qv 2
H'.R/ s:t: QvjI D vg; with the equivalent norms k � klH' .I/ and k � krH'.I/ in [14],
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where

k � klH'.I/ D
 

k � k2L2.I/ C
Z ˛2

˛1

'.˛/ k RL
0D˛

t .�/k2L2.I/ d˛
! 1

2

;

k � krH'.I/ D
 

k � k2L2.I/ C
Z ˛2

˛1

'.˛/ k RL
tD˛

T .�/k2L2.I/ d˛
! 1

2

: (4)

Let � D I �ƒd. We define

l
0H

'
�

IIL2.ƒd/
�

WD
n

u j ku.t; �/kL2 .ƒd/ 2 H'.I/; ujtD0 D ujxDai D ujxDbi D 0; i D 1; � � � ; d
o

;

which is equipped with the norm

kuklH
 .IIL2.ƒd//
D
�

�

� ku.t; �/kL2.ƒd/

�

�

�

lH' .I/
D
 

kuk2L2.�/ C
Z ˛2

˛1

'.˛/ k RL
0D˛

t .u/k2L2.�/ d˛
! 1

2

:

Similarly,

r
0H

'
�

IIL2.ƒd/
�

WD
n

v j kv.t; �/kL2.ƒd/ 2 H'.I/; vjtDT D vjxDai D vjxDbi D 0; i D 1; � � � ; d
o

;

which is equipped with the norm

kvkrH'.IIL2.ƒd// D
�

�

� kv.t; �/kL2.ƒd/

�

�

�

rH'.I/

D
 

kvk2L2.�/ C
Z ˛2

˛1

'.˛/ k RL
tD˛

T .v/k2L2.�/ d˛
! 1

2

:

We define the solution spaceB';�1;��� ;�d.�/ WD l
0H



�

IIL2.ƒd/
�

\L2.IIXd/; endowed

with the norm kukB';�1;��� ;�d D
n

kuk2lH'.IIL2.ƒd//
C kuk2

L2.IIXd/

o 1
2
: Therefore,

kukB';�1 ;��� ;�d

D
n

kuk2L2.�/C
Z ˛2

˛1

'.˛/k RL0D˛
t .u/k2L2.�/ d˛C

d
X

iD1

�k xiD�i
bi
.u/k2L2.�/Ck aiD�i

xi .u/k2L2.�/
�

o 1
2
:

(5)

Likewise, we define the test space B';�1;��� ;�d.�/ WD rH'
�

IIL2.ƒd/
�

\ L2.IIXd/;

endowed with the norm kvkB
;�1 ;��� ;�d D
n

kvk2rH
 .IIL2.ƒd//
Ckvk2

L2 .IIXd/

o 1
2
: Therefore,
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kvkB';�1 ;��� ;�d

D
n

kvk2L2.�/C
Z ˛2

˛1

'.˛/k RLtD˛
T .v/k2L2.�/ d˛C

d
X

iD1

�k xiD�i
bi
.v/k2L2.�/Ck aiD�i

xi .v/k2L2.�/
�

o 1
2

:

(6)

We note that in general, ' can be defined in any possible subset of the interval
Œ˛1; ˛2� and thus arbitrarily confines the domain of integration, where the theoretical
framework of the problem remains invariant while requiring the solution to have less
regularity. The following lemma is useful in construction of the proposed numerical
scheme.

Lemma 2.1 ([15]) For all 0 < ˛ � 1, if u 2 H1.Œa; b�/ such that u.a/ D 0,
and w 2 H˛=2.Œa; b�/, then .aD ˛

s u;w/� D . aD
˛=2
s u ; sD

˛=2
b w /�, where .�; �/�

represents the standard inner product in � D Œa; b�.

3 Problem Definition

Let ˛ 7! '.˛/ be a continuous mapping in Œ˛1; ˛2�. Then, we define the distributed
order fractional derivative as

DD'u.t; x/ D
Z ˛2

˛1

'.˛/ �aD˛
t u.t; x/ d˛; t > a; (7)

where �aD˛
t denotes the Riemann-Liouville fractional derivative of order ˛. Next, Let

u 2 B';�1;��� ;�d.�/ for some positive integer d and � D Œ0;T� � Œa1; b1� � Œa2; b2� �
� � � � Œad; bd�, where

DD'uC
d
X

jD1

�

clj ajD
2�j
xj uC crj xjD

2�j

bj
u
� �

d
X

jD1

�

#lj ajD
2�j
xj uC #rj xjD

2�j
bj
u
�C � u D f ;

(8)

in which all the coefficients �; clj ; crj ; #lj ; and #rj are constant, 2�j 2 .0; 1/, 2�j 2
.1; 2/ for j D 1; 2; � � � ; d, and 0 < ˛1 < ˛2 � 1. Problem (8) is subject to the
Dirichlet initial and boundary conditions, i.e. ujtD0 D 0 and ujxjDaj D ujxjDbj D 0

for j D 1; 2; � � � ; d. According to (5), the norm associated with B';�1;��� ;�d .�/ can be
reduced to

kukB';�1;��� ;�d .�/

D
n

Z ˛2

˛1

'.˛/ k 0D˛
t .u/k2L2.�/

„ ƒ‚ …

U
'
I

d˛C
d
X

jD1

h

k ajD
�j
xj .u/k2L2.�/

„ ƒ‚ …

U
j
II

Ck xjD
�j
bj
.u/k2L2.�/

„ ƒ‚ …

U
j
III

io1=2

;
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and similarly, the norm, associated with B';�1;��� ;�d .�/, in (6) is equivalent to

kvkB';�1;��� ;�d .�/

D
n

Z ˛2

˛1

'.˛/ k tD˛
T .v/k2L2.�/

„ ƒ‚ …

V
'
I

d˛C
d
X

jD1

h

k xjD
�j
bj
.v/k2L2.�/

„ ƒ‚ …

V
j
II

Ck ajD
�j
xj .v/k2L2.�/

„ ƒ‚ …

V
j
III

io1=2

:

In order to obtain the variational form of problem, we multiply (8) by a proper
test function v and integrate over the computational domain. The corresponding
continuous bilinear form a W B';�1;��� ;�d .�/ �B';�1;��� ;�d.�/! R takes the form

a'.u; v/ D
Z ˛2

˛1

'.˛/ .0D
˛=2
t u; tD

˛=2
T v/� d˛

C
d
X

jD1

�

clj.ajD
�j
xj u; xjD

�j

bj
v/� C crj.xjD

�j
aj u; ajD

�j
xj v/�

�

�
d
X

jD1

�

#lj.ajD
�j
xj u; xj

D�j
bj
v/� C #rj.xjD

�j
bj
u; ajD

�j
xj v/�

�C �.u; v/�; (9)

where .�; �/� represents the usual L2-product. Thus, the problem reads as: find u 2
B';�1;��� ;�d.�/ such that

a'.u; v/ D . f ; v/�; 8v 2 B';�1;��� ;�d.�/: (10)

Next, we choose proper finite-dimensional subspaces of UN � B';�1;��� ;�d .�/ and
VN � B';�1;��� ;�d.�/; thus, the discrete problem reads as: find uN 2 UN such that

a'.uN ; vN/ D . f ; vN/�; 8vN 2 VN : (11)

4 Petrov Galerkin Mathematical Formulation

We construct a Petrov-Galerkin spectral method for the discrete problem uN 2 UN ,
satisfying the weak form (11). We first define the proper finite-dimensional basis/test
spaces and then implement the numerical scheme.

4.1 Space of Basis (UN) and Test (VN) Functions

We employ the Legendre polynomials as the spatial basis, given in the standard
domain � 2 Œ�1; 1� as �m.�/ D �m

�

PmC1.�/ � Pm�1.�/
�

; m D 1; 2; � � � . We also
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employ the poly-fractonomial of first kind [29, 33] as the temporal basis function,
given in the standard domain 	 2 Œ�1; 1� as  
n .	/ D �n.1 C 	/
P�
;
n�1 .	/; n D
1; 2; � � � . The coefficients �m are defined as �m D 2C.�1/m. Therefore, we construct
the trial space as

UN D span
n�

 

n ı 	

�

.t/
d
Y

jD1

�

�mj
ı �j
�

.xj/ W n D 1; 2; � � � ;N ; mj D 1; 2; � � � ;Mj

o

;

where 	.t/ D 2t=T � 1 and �j.s/ D 2
s�aj
bj�aj � 1. The temporal and spatial

basis functions naturally satisfy the initial and boundary conditions, respectively.
Moreover, we define the temporal and spatial test functions in the standard domain
as ‰


r .	/ D e�r.1 � 	/
 P
;�
r�1 .	/; r D 1; 2; � � � (poly-fractonomial of second kind)
andˆ�k .�/ De�k

�

PkC1.�/�Pk�1.�/
�

; k D 1; 2; � � � , respectively. The coefficientse�k
are defined ase�k D 2 .�1/kC1. Hence, we construct the corresponding test space as

VN D span
n�

‰

r ı 	

�

.t/
d
Y

jD1

�

ˆkj ı �j
�

.xj/ W r D 1; 2; � � � ;N ; kj D 1; 2; � � � ;Mj

o

:

4.2 Implementation of PG Spectral Method

We represent the solution of (11) as a linear combination of elements of the solution
space UN . Therefore,

uN.x; t/ D
N
X

nD1

M1
X

m1D1
� � �

Md
X

mdD1
Oun;m1;��� ;md

h

 
n .t/
d
Y

jD1
�mj
.xj/

i

(12)

in �. By substituting the expansion (12) into (11) and choosing vN D
‰


r .t/
Qd

jD1 ˆkj
.xj/, r D 1; 2; : : : ;N , kj D 1; 2; : : : ;Mj, we obtain the following

Lyapunov system

�

S'
 ˝M1 ˝M2 � � � ˝Md C
d
X

jD1
ŒM
 ˝M1 ˝ � � � ˝Mj�1 ˝ STotj ˝MjC1 � � � ˝Md�

C �M
 ˝M1 ˝M2 � � � ˝Md

�

U D F; (13)

in which˝ represents the Kronecker product, F denotes the multi-dimensional load
matrix whose entries are given as

Fr;k1;��� ;kd D
Z

�

f .t; x1; � � � ; xd/
�

‰

r ı 	

�

.t/
d
Y

jD1

�

ˆkj ı �j
�

.xj/ d�; (14)
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and STot
j D clj�S�j;lCcrj�S�j;r�#lj�S�j�#rj�S�j;r. The matrices S'
 and M
 denote

the temporal stiffness and mass matrices, respectively; S�j , S�j and Mj denote the
spatial stiffness and mass matrices, respectively. The entries of spatial mass matrix
Mj are computed analytically, while we employ proper quadrature rules to accurately
compute the entries of spatial stiffness S�j , S�j and temporal mass matrices M
 . We
note that due to the choices of basis/test functions, the obtained mass and stiffness
matrices are symmetric. Moreover, we accurately compute the entries of temporal
stiffness matrix, S'
 , using theorem (3.1) in [14].

4.3 Unified Fast FPDE Solver

We develop a unified fast solver in terms of the generalized eigensolutions in order
to formulate a closed-form solution to the Lyapunov system (13).

Theorem 4.1 Let fEejmj
; �jmj
gMj

mjD1 be the set of general eigen-solutions of the spatial
stiffness matrix STotj with respect to the mass matrix Mj. Moreover, let fEe 
n ; �
n gNnD1
be the set of general eigen-solutions of the temporal mass matrix M
 with respect
to the stiffness matrix S'
 . Then the matrix of unknown coefficients U is explicitly
obtained as

U D
N
X

nD1

M1
X

m1D1
� � �

Md
X

mdD1
#n;m1;��� ;md Ee 
n ˝ Ee1m1 ˝ � � � ˝ Eedmd

; (15)

where #n;m1;��� ;md is given by

#n;m1;��� ;md D
. Ee 
n Ee1m1 � � � Eedmd

/F
h

.Ee 
Tn S'
 Ee 
n /
Qd

jD1.Eej
T

mjMjEejmj/
i

ƒn;m1;��� ;md

; (16)

in which the numerator represents the standard multi-dimensional inner product,
and ƒn;m1;��� ;md is obtained in terms of the eigenvalues of all mass matrices as

ƒn;m1;��� ;md D
h

.1C � �
n/C �
n
Pd

jD1.�jmj
/
i

:

Proof Consider the following generalised eigenvalue problems as

STot
j Eejmj

D �jmj
Mj Eejmj

; mj D 1; 2; � � � ;Mj; j D 1; 2; � � � ; d; (17)

M
 Ee 
n D �
n S'
 Ee 
n ; n D 1; 2; � � � ;N : (18)

Having the spatial and temporal eigenvectors determined in Eqs. (18) and (17),
we can represent the unknown coefficient matrix U in (12) in terms of the
aforementioned eigenvectors as U D PN

nD1
PM1

m1D1 � � �
PMd

mdD1 #n;m1;��� ;md Ee 
n ˝
Ee1m1 ˝ � � � ˝ Eedmd

; where #n;m1;��� ;md is obtained as follows. Following [26], we
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substitute U in the corresponding Lyapunov equation and then, take the inner
product of both sides of equation by Ee 
q Ee1p1 � � � Eedpd . Therefore, by rearranging the
terms, we obtain

#n;m1;��� ;md D
. Ee 
n Ee1m1 � � � Eedmd

/F
h

.Ee 
Tn S'
 Ee 
n /
Qd

jD1.Eej
T

mjMjEejmj/
i

�
h

.1C � �
n/C �
n
Pd

jD1.�
j
mj/
i :

Since the spatial Mass Mj and temporal stiffness matrices S'
 are diagonal, we have
.Ee 
Tq S'
 Ee 
n / D 0 if q ¤ n, and also .EejTpjMjEejmj

/ D 0 if pj ¤ mj, which completes the
proof. ut

5 Stability Analysis

The following theorem provides the discrete stability analysis of the scheme for
(1C1)-dimensional temporally-distributed fractional diffusion problem. Such a
stability analysis can be extended to the problem of (1Cd)-dimensional with both-
sided derivatives, which we will be carried out in our future work.

Theorem 5.1 The Petrov-Gelerkin spectral method for (1C1)-D temporally-
distributed and space-fractional diffusion problem a'.u; v/ D l.v/ is stable, i.e.,
the discrete inf-sup condition

inf
uN2UN
uN¤0

sup
vN2VN
vN¤0

ja.uN; vN/j
kvNkB';�1;��� ;�d .�/kuNkB';�1;��� ;�d .�/ � ˇ > 0; (19)

holds with ˇ > 0 and independent of N.

Proof Let  
n .	/ D .1 C 	/
P�
;
n .	/, ‰

n.	/ D .1 � 	/
P
;�
n .	/, and uN D

PN
nD1

PMC1
mD0 Nun;m  
n .t/Pm.x/, where uN 2 UN . Hence,

U'
I D

Z C1

�1

Z T

0

N
X

nD1

MC1
X

mD0

N
X

kD1

MC1
X

rD0
Nuk;r Nun;m 0D

˛=2
t  
n .t/ 0D

˛=2
t  
k .t/Pm.x/Pr.x/dtdx

D
N
X

nD1

MC1
X

mD0

N
X

kD1

MC1
X

rD0
Nuk;r Nun;m

Z C1

�1
Pm.x/Pr.x/dx

„ ƒ‚ …

C0;0m ım;r

.
T

2
/1�2
1�
1;�
1n�1 �


1;�
1
k�1 �

Z C1

�1
.1C 	/
1P�
1;
1n�1 .	/.1C 	/
1P�
1;
1k�1 .	/d	; (20)
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where �
1;�
1n�1 D �
�
1;
1
n�1 D �.nC
1/

�.n/ and 
1 D 
 � ˛
2

. Take P�
1;
1n .	/ D Pn
qD0

a
1; nq P0;2
1q .	/ then,

U'
I D

N
X

nD1

N
X

kD1

MC1
X

mD0

n
X

q3D1

r
X

q4D1
Nuk;m Nun;m C0;0m .

T

2
/1�2
1�
1;�
1n�1 �


1;�
1
k�1 a
1; nq3 a
1; rq4

�
Z C1

�1
.1C 	/2
1P0;2
1q3

.	/P0;2
1q4
.	/d	

„ ƒ‚ …

C
0;2
1
q3 ıq3;q4

D
MC1
X

mD0

N
X

q3D1

.1/ Lu2q3;mC0;2
1q3 C0; 0m .
T

2
/1�2
1 D

MC1
X

mD0

N
X

nD1

.1/ Lu2n;m.
T

2
/1�2
1 C0;2
1n C0; 0m ;

in which .1/ Lun;m DPMC1�q
qD0 Nuq;m a
1; qn �


1;�
1
q�1 . Besides,

U1
II D

Z C1

�1

Z T

0

N
X

nD1

MC1
X

mD0

N
X

kD1

MC1
X

rD0
Nuk;r Nun;m 
n .t/ 
k .t/ �1D�

x Pm.x/ �1D�
x Pr.x/dtdx

D
N
X

nD1

MC1
X

mD0

N
X

kD1

MC1
X

rD0
Nuk;r Nun;m.T

2
/

Z C1

�1
.1C 	/2
P�
;
n�1 .	/P

�
;

k�1 .	/d	�

Z C1

�1
.1C x/�2���m��r P�;��m .x/P�;��r .x/dx; (21)

where ��m D mC1
m��C1 . By substituting P�;��i .x/ D Pi

qD0 b2�;iq P�2�;0q .x/ and
P�
;
n .	/ DPn

qD0 a
; nq P0;2
q .	/ into (21) and reorganizing, we obtain

U1
II D

N
X

nD1

N
X

kD1

MC1
X

mD0

n
X

q3D1

k
X

q4D1
.2/ Lun;m .2/ Luk;mC�2�;0m .

T

2
/a
;nq3 a


;k
q4

�
Z C1

�1
.1C 	/2
P0;2
q3 .	/P

0;2

q4 .	/d	

„ ƒ‚ …

C0;2
q3 ıq3;q4

D
MC1
X

mD0

N
X

q3D1

.L/ Lu2q3;mC0;2
q3 C�2�;0m .
T

2
/ D

MC1
X

mD0

N
X

nD1

.L/ Lu2n;m.
T

2
/C0;2
n C�2�;0m ; (22)

where .2/ Lun;m DPMC1�q
qD0 Nuq b2�;qm ��q and .L/ Lun;m DPN�n

qD1
.2/ Luq;ma
; qn .
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Let vN D PN
kD1

PMC1
nD0 Nuk;r.�1/kCr‰


k .t/Pr.x/. Following the same steps as in
U'

I , for the norm of the test function we have

V'I D
Z C1

�1

Z T

0

N
X

nD1

MC1
X

mD0

N
X

kD1

MC1
X

rD0
Nuk;r Nun;m .�1/nCk

tD
˛=2
T ‰


n.t/ tD
˛=2
T ‰


k .t/Pm.x/

� Pr.x/.�1/rCm dt dx

D
MC1
X

mD0

N
X

nD1

.1/ Lv2n;m.
T

2
/1�2
1C0;2
1n C0; 0m ; (23)

in which we employ P
1;�
1n .	/ DPn
qD0 a�
1; nq P2
1;0q .	/ and .1/ Lvn;m DPMC1�q

qD0 Nun;q
a�
1; qn �
1;�
1q . Besides,

V1II D
Z C1

�1

Z T

0

N
X

nD1

MC1
X

mD0

N
X

kD1

MC1
X

rD0
Nuk;r Nun;m .�1/nCk‰


n.t/‰


k .t/ .�1/rCm �1D�

x

� Pm.x/ �1D�
x Pr.x/ dt dx

D
N
X

nD1

MC1
X

mD0

N
X

kD1

MC1
X

rD0
Nuk;r Nun;m .T

2
/.�1/nCk

Z C1

�1
.1 � 	/2
P
;�
n�1 .	/P


;�

k�1 .	/d	�

.�1/mCr
Z C1

�1
.1C x/�2� ��m��r P�;��m .x/P�;��r .x/dx;

D
N
X

nD1

N
X

kD1

MC1
X

mD0

n
X

q3D1

r
X

q4D1
.2/ Lvn;m .2/ Lvk;mC�2�; 0m .

T

2
/a�
; nq3 a�
; rq4 .�1/nCk

�
Z C1

�1
.1 � 	/2
P2
;0q3

.	/P2
;0q4
.	/d	

„ ƒ‚ …

C2
;0q3 ıq3;q4DC0;2
q3 ıq3;q4

D
MC1
X

mD0

N
X

q3D1

.L/ Lv2q3;mC0;2
q3 C�2�; 0m .
T

2
/ D

N
X

nD1

MC1
X

mD0

.L/ Lv2n;m.
T

2
/C0;2
n C�2�; 0m ; (24)

where .2/ Lvn;m D PMC1�m
qD0 .�1/q Nun;q b2�; qm ��q , .L/ Lvn;m D PN�n

iD1
.2/ Lvi;ma�
; in .�1/i,

and P
;�
n .	/ D Pn
qD0 a�
; nq P2
;0q .	/. Let A'I D .0D

˛=2
t uN; tD

˛=2
T vN/� and

AII D #l.�1D�
x uN ; xD�

1 uN/�: By employing P
1;�
1n�1 .x/ D Pn�1
qD0 a2
1; nq P
1;
1q .x/ and
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P�
1;
1k�1 .x/ DPk�1
qD0.�1/qCka2
1; kq P
1;
1q .x/, we obtain

A'I D
Z T

0

Z

C1

�1

N
X

nD1

N
X

kD1

MC1
X

mD0

MC1
X

rD0

Nun;m Nuk;r .�1/k 0D˛=2
t  


n .t/ tD˛=2
T ‰


k .t/.�1/r

� Pm.x/Pr.x/ dxdt

D
N
X

nD1

N
X

kD1

MC1
X

mD0

MC1
X

rD0

Nun;m Nuk;r .�1/r
Z

C1

�1

Pm.x/Pr.x/dx
„ ƒ‚ …

C0;0m ım;r

.�1/k.T
2
/1�2
1�


1;�
1
n�1 �


1;�
1
k�1 �

Z 1

�1

.1 � 	2/
1P�
1;
1
n�1 .	/P
1;�
1

k�1 .	/d	 D
N
X

nD1

MC1
X

mD0

.3/ Lu2n;m .�1/mCk.
T

2
/1�2
1 C0;0m C
1;
1n ;

(25)

where .3/ Lun;m DPN
qD1 a2
1;qn �


1;�
1
q�1 Nuq;m. Moreover, based on P
;�
n�1 .	/ D

Pn�1
qD0 a2
; nq

P
;
q .	/, P
�
;

k�1 .	/ D

Pk�1
qD0.�1/qCka2
; kq P
;
q .	/, P

�;��
i .x/ D Pi

qD0 b2�;iq P�2�;0q .x/,

and P��;�i .x/ DPi
qD0.�1/iCqb2�;iq P�2�;0q .x/, we get

AII D
Z T

0

Z

C1

�1

N
X

nD1

N
X

kD1

MC1
X

mD0

MC1
X

rD0

Nun;m Nuk;r  

n .t/‰



k .t/.�1/rCk

�1D�
x Pm.x/ xD�

1Pr.x/ dxdt

D
N
X

nD1

N
X

kD1

MC1
X

mD0

n
X

q3D1

r
X

q4D1

.1/ Qun;m .1/ Quk;m.�1/mC�2�; 0
m .

T

2
/a2
; nq3 a2
; kq4 .�1/q4

�
Z

C1

�1

.1C 	/2
P0;2
q3 .	/P
0;2

q4 .	/d	

„ ƒ‚ …

C0;2
q3 ıq3;q4

;

which can be simplified to AII D PMC1
mD0

PN
nD1

.L/ Qu2n;m.�1/nCm. T
2
/C0;2
n C�2�; 0m ,

where .L/ Qun;m D PN�n
q3D1

.1/ Quq3;ma
; q3n and .1/ Qun;m D PMC1
iD0 Nun;ib2�;q. On the other

hand, we have ja.uN ; vN/j � Nc
� R ˛2

˛1
'.˛/jA'I j C #ljAIIj

�

: To compare ja.uN; vN/j
with kuNkB';�1;��� ;�d .�/kvNkB';�1;��� ;�d .�/,

jA'I j D j
N
X

nD1

MC1
X

mD0
.�1/mCk

.3/ Lu2n;m .�
1;�
1n�1 /2 C0;0m C
1;
1n
.1/ Lu2n;mC0;2
1n C0; 0m

„ ƒ‚ …

.1/ Q̌n;m

.
T

2
/1�2
1 .1/ Lu2n;mC0;2
1n C0; 0m j

� ˛1 .1/ Q̌ U'
I
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and

jAII j D j
MC1
X

mD0

N
X

nD1

.�1/nCm

.L/ Qu2n;m. T2 /C
;
n C��;��
m

.L/ Lu2n;m. T2 /C0;2
n C�2�; 0
m

„ ƒ‚ …

.2/
Qˇn;m

.L/ Lu2n;m.
T

2
/C0;2
n C�2�; 0

m j � ˛2 .2/ Q̌ UII ;

where
.2/ Q̌ D minf .2/ Q̌n;mg. Besides, we can have

.˛/VID
MC1
X

mD0

.1/ Lv2m

.1/ Lu2m
.1/ Lu2m C�2�; 0

m .
T

2
/C0;2
1n D

MC1
X

mD0

.1/ Ľ
m
.1/ Lu2m C�2�; 0

m .
T

2
/C0;2
1n � .1/ Ľ U'

I ;

VII D
MC1
X

mD0

.R/ Lv2n;m

.R/ Lu2n;m
.R/ Lu2n;m.

T

2
/C0;2
n C�2�; 0

m D
MC1
X

mD0

.2/ Ľ
n;m

.R/ Lu2n;m C�2�; 0
m .

T

2
/C0;2
n �

.2/ ĽUII ;

where
.1/ Ľ D maxf.1/ Ľmg and

.2/ Ľ D maxf.2/ Ľn;mg. This results in

kvNk2B';�1;��� ;�d .�/ � maxf.2/ Ľ; .1/ Ľg
„ ƒ‚ …

Q̌2
kuNk2B';�1;��� ;�d .�/:

u 2 U, A'I , and AII has finite values, therefore

ja.uN; vN/j � ˛
�jA'I j C #ljAIIjj

� � ˛
�

˛1
.1/ Q̌ U'

I C ˛2
.2/ Q̌#l UII

�

� ˛minf˛1 .1/ Q̌; ˛2 .2/ Q̌#lg
„ ƒ‚ …

Q̨
kuNk2B';�1;��� ;�d .�/

� Q̨ Q̌kuNkB';�1;��� ;�d .�/ kvNkB';�1;��� ;�d .�/; (26)

which shows that discrete inf-sup condition holds for the time-dependent fractional
diffusion problem. ut

6 Error Analysis

Kharazmi et al. [14] performed the error analysis of the distributed order differential
equations, where they employed Jacobi polyfractonomials of first kind as the basis
function. Following similar steps, we can show that the projection error in time and
space takes the same form. Let D.r/u D @ru

@tr0 @x1r1 ��� @xdrd , where r DPd
iD0 ri. Thus, if

D.r/u 2 U for some integer r � 1, that is,
R ˛2
˛1
'.˛/k 0D

˛
2
t .D.r/u/kL2d˛ < 1, and
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uN denotes the projection of the exact solution u, then

ku � uNkU � ˇM�r
n

kD.r/uk2L2.�/ C
Z ˛2

˛1

'.˛/ k RL
0D˛

t .D.r/u/k2L2.�/ d˛

C
d
X

iD1

�k xiD�i
bi
.D.r/u/k2L2.�/ C k aiD�i

xi .D
.r/u/k2L2.�/

�

o 1
2

(27)

Since the inf-sup condition holds in theorem 5.1, by the Banach-Nečas-Babuška
theorem in [11], the error in the numerical scheme is less than or equal to a constant
times the projection error.

7 Numerical Simulations

We provide numerical examples of the spectral scheme we have proposed. We
consider the exact solution of the form uext D ut

Qd
jD1 u�j with finite regularity,

where ut D tp1C
 , t 2 Œ0;T�, and u�j D .1 C �j/p2Cˇ.1 � �j/p3Cˇ , �j 2 Œ�1; 1�.
We obtain the force function by substituting uext into (8), where the advection and
diffusion coefficients are considered to be unity in all dimensions.

Figure 1 shows the convergence of error via spatial and temporal p-refinement
for (1C2)-D problem. In the left sub-figure, uext D t3C1=2

Q2
jD1.1 C �j/4C1=2.1 �

�j/
4C1=2, for which we choose N D 4 to control the error in time and perform

p-refinement in space for different values of fractional orders f2�; 2�g D f0:5; 1:1g
and f2�; 2�g D f0:5; 1:9g. The results show the expected spectral convergence. In
the right sub-figure, we perform p-refinement in time for uext D t3C


Q2
jD1.1 C

�j/
4.1 � �j/4, where 
 D 0:1; 0:9 and we choose M1 D M2 D 8 to control the

error in space. The choice of ploy-fractonomials as the temporal basis enable the
scheme to accurately capture the singularity in time. The obtained results show the
convergence of error to machine precision with N D 4. Moreover, in Table 1, we

Fig. 1 PG spectral method, temporal and spatial p-refinement for (1C2)-D problem
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Table 1 PG spectral method, CPU time (in min) and L2-norm error for multi-dimensional
problems

(1C1)-D (1C2)-D (1C3)-D

N DM1 D
M2 DM3 L2-norm error CPU time L2-norm error CPU time L2-norm error CPU time

2 6:2067 � 10�1 0.6 5:9428 � 10�1 1 5:1307 � 10�1 1.7

6 2:7852 � 10�2 1 2:9233 � 10�2 1.5 2:6720 � 10�2 4

10 6:7506 � 10�5 3.13 7:089 � 10�5 4.5 6:4714 � 10�5 27.9

14 1:7541 � 10�6 20.3 1:8463 � 10�6 27.5 1:6876 � 10�6 149

show the CPU time (which includes the construction of the linear system and load
vector) as well as the computed L2-norm error for the problems of (1C1)- to (1C3)-
dimensions, where p1 D 3; 
 D 0:5; p2 D p3 D 4; ˇ D 0:5; 2� D 0:5; 2� D 1:5.

8 Summary

We developed a Petrov-Galerkin spectral method for high dimensional temporally-
distributed fractional partial differential equations with two-sided derivatives in
a space-time hypercube. We employed Jacobi poly-fractonomials and Legendre
polynomials as the temporal and spatial basis/test functions, respectively. To solve
the corresponding Lyapunov linear system, we further formulated a fast linear solver
and performed the corresponding discrete stability and error analysis. At last, we
carried out several numerical simulations to examine the performance of the method.
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Abstract We focus on the construction of 2- and 3D mimetic gradient, divergence,
curl, and Laplacian operators. We base this work on the method by Castillo and
Grone, which constructs mimetic gradient and divergence operators via a discrete
instance of Gauss’ divergence theorem. This method can not construct tenth-order
gradient nor eighth-order divergence operators (nor higher) because the computed
weights discretizing the corresponding weighted inner products are not all positive
for these cases. Thus, we define the tenth order and the eighth order thresholds as
critical orders of accuracy for the gradient and divergence operators, respectively.
In previous works, we introduced the Castillo–Blomgren–Sanchez algorithm. This
algorithm constructs supercritical-order mimetic operators. The contribution of
this work is the extension to higher dimensions of the operators constructed by
this algorithm. This includes detailing the mathematics of this extension. We also
detail the construction of a mimetic curl operator via a linear combination of the
divergence of auxiliary Gaussian fluxes. This avoids any interpolation from classic
discretization approaches based on Stokes’ theorem. We validate our operators by
solving higher-dimensional elliptic problems.
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1 Introduction

Differential equations derived from conservation laws model many physical phe-
nomena. Thus, we seek numerical solutions to these equations that preserve
conservation and symmetry properties. In particular, mimetic finite difference
operators satisfy a discrete instance of Gauss’ divergence theorem [1]. Thus, they
provide discrete models that preserve conservation and symmetry properties [1, 2].

Research on methods to construct mimetic operators is extensive, and we do not
intend to present an exhaustive review. In previous works [3] we have studied both
the Castillo–Grone method and the Castillo–Runyan method. We showed that these
methods are not able to construct tenth-order gradient nor eighth-order divergence
operators (nor higher).

This is because the computed weights discretizing the corresponding weighted
inner products are not all positive. Therefore, we define these thresholds as critical
orders of accuracy for each operator, respectively.

To overcome the aforementioned restrictions and to achieve supercritical-order
accuracy, in [3, 4] we restated the problem of constructing supercritical-order
mimetic operators as a constrained linear optimization problem. This produced a
new algorithm, hereby referred to as the Castillo–Blomgren–Sanchez algorithm.

The contribution of this work is the extension to higher dimensions of the
operators constructed by the Castillo–Blomgren–Sanchez algorithm. This includes
detailing the mathematics of this extension. This also includes detailing the mathe-
matics behind the construction of a mimetic curl operator via a linear combination of
the divergence of auxiliary Gaussian fluxes, thus avoiding the need for interpolation
from classic discretization approaches based on Stokes’ theorem. Finally, we present
preliminary examples to validate the correct functioning of the produced operators.

2 Supercritical-Accuracy Operators in One Dimension

In this work, mimetic operators are written using matrix notation. We will denote a
k-th order (k even and positive) mimetic gradient, divergence, curl, and Laplacian
operator evaluated on 2D and 3D domains as MGk

fxy;xyzg, MDk
fxy;xyzg, MCk

fxy;xyzg, and
MLk
fxy;xyzg, respectively. Also, let ni denote the number of cells discretizing in the i

direction, i 2 fx; y; zg.
The Castillo–Blomgren–Sanchez algorithm uses a constrained linear optimiza-

tion method to compute positive weights, thus enforcing this constraint, in order to
construct supercritical-order mimetic operators. Given the linearity of this problem,
the Castillo–Blomgren–Sanchez algorithm uses the Simplex method [5] to solve
the optimization problem that is constructed from a modified form of the system of
equations used to compute the quadrature coefficient matrices P and Q needed to
evaluate the following instance of Gauss’ divergence theorem [1, 4]: �xh MGQf ; QviP C
�xh Qf ; MDQviQ D h Qf ; MBQvi, where the boundary operator MB accounts for effect of the
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discretization near and at the boundaries arising from the selection of the discrete
step-size, �x.

The Castillo–Blomgren–Sanchez algorithm computes the quadrature coefficients
as the solution of the following constrained optimization problem [4]:

Find LQq such that .minimize/ rTi LQq D min
Qq2Rk

rTi Qq (1)

subject to ˆi
LQq � ƒi;with LQq > 0; (2)

where ri, LQq 2 R
k�1, ˆi 2 R

k�k, ƒi 2 R
k�1, and i 2 Œ1; k C 1�. This optimization

problem introduces a surplus quantity �. In this context, � is a parameter, or mimetic
threshold, controlling the effect of P and Q on the conservative feature of the
operators, while preserving a uniform order of numerical accuracy.

Note that the accuracy requirements for mimetic gradient and divergence opera-
tors are [6]:

. MDk
xx

j/iC1=2 � j..iC 1=2/h/j�1 D 0; 0 � i � N � 1; (3)

. MGk
xx

j/i � j.ih/j�1 D 0; 0 � i � N; (4)

for 0 � j � k and N 2 Z
C. 1D mimetic operators built via the Castillo–Blomgren–

Sanchez algorithm do achieve the required order of accuracy, as shown in Tables 1
and 2. In these tables, the relative error of the differences (3) and (4) is produced,
for each order of accuracy, for different values of the � parameter.

Table 1 Results measuring
the accuracy of the
constructed divergence
operators

Relative error

k � D 1� 10�3 � D 1� 10�6 � D 1� 10�9

2 5.10756e�14 5.10756e�14 5.10756e�14

4 7.55433e�14 7.55433e�14 7.55433e�14

6 6.23919e�14 6.23919e�14 6.23919e�14

8 1.55481e�13 1.57592e�13 1.52383e�13

10 2.79119e�12 2.80687e�10 4.43036e�07

12 7.27814e�11 7.2776e�11 7.27843e�11

14 8.11899e�10 8.11943e�10 8.11913e�10

Table 2 Results measuring
the accuracy of the
constructed gradient
operators

Relative error

k � D 1� 10�3 � D 1� 10�6 � D 1� 10�9

2 5.8315e�14 5.8315e�14 5.8315e�14

4 7.85105e�14 7.85105e�14 7.85105e�14

6 6.27153e�14 6.27153e�14 6.27153e�14

8 7.00361e�13 7.00361e�13 7.00361e�13

10 5.67544e�12 5.67483e�12 5.67361e�12

12 8.11966e�11 1.08737e�09 4.31647e�07

14 1.55235e�09 7.54992e�09 1.98015e�05
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3 Supercritical-Accuracy Operators in Higher Dimensions

Assuming a 2D domain discretized via a uniform staggered grid, and assuming
the existence of supercritical-accuracy 1D operators MGk

i 2 R
.niC1/�.niC2/ and MDk

x 2
R
.niC2/�.niC1/ have been built [3], then:

MGk
xy D

h

.OI>y ˝ MGk
x/ .
MGk
y ˝ OI>x /

i>
; MDk

xy D
h

.OIy ˝ MDk
x/ .
MDk
y ˝ OIx/

i

; (5)

where OIi 2 R
.niC2/�.niC2/ is a zero-padded identity matrix, built according to the

discretization in the i direction. Simple algebra will show that:

MGk
xy 2 R

Œ.nyC2/.nxC1/C.nyC1/.nxC2/��.nyC2/.nxC2/; (6)

MDk
xy 2 R

.nyC2/.nxC2/�Œ.nyC2/.nxC1/C.nyC1/.nxC2/�: (7)

Assuming a 3D domain discretized via a uniform staggered grid, then:

MGk
xyz D

h

.OI>z ˝ OI>y ˝ MGk
x/ .
OI>z ˝ MGk

y ˝ OI>x / . MGk
z ˝ OI>y ˝ OI>x /

i>
; (8)

MDk
xyz D

h

.OIz ˝ OIy ˝ MDk
x/ .
OIz ˝ MDk

y ˝ OIl/ . MDk
z ˝ OIy ˝ OIx/

i

: (9)

Simple algebra will also show that:

MGk
xy 2 R

Œnynz.nxC1/Cnxnz.nyC1/Cnxny.nzC1/��Œ.nxC2/C.nyC2/C.nzC2/�; (10)

MDk
xy 2 R

Œ.nxC2/C.nyC2/C.nzC2/��Œnynz.nxC1/Cnxnz.nyC1/Cnxny.nzC1/�: (11)

The domain of the mimetic gradient operator is the set of points on the staggered
grid onto which the scalar fields are bound, and its range is the set of points on the
staggered grid onto which the vector fields are bound. Conversely, the domain of the
mimetic divergence operator is the set of points on the staggered grid onto which
the vector fields are bound, and its range is the set of points on the staggered grid
onto which the scalar fields are bound.

For both 2D and 3D domains, and following the works [1, 3], the mimetic
Laplacian is built as the matrix product:

MLk
fxy;xyzg D MDk

fxy;xyzg MGk
fxy;xyzg: (12)

From (6) and (7) we note that MLk
xy 2 R

.nxC2/.nyC2/�.nxC2/.nyC2/. Analogously, from

(10) and (11) we note that MLk
xyz 2 R

.nxC2/.nyC2/.nzC2/�.nxC2/.nyC2/.nzC2/. Note that by
leveraging the supercritical-accuracy of the gradient and divergence operators, we
do not need any additional projection mechanisms, such as the use of the Hodge
start operator, for example.
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3.1 Poisson’s Equation on a 2D Staggered Grid

We solve:

r2u.x; y/ D F.x; y/; (13)

for .x; y/ 2 .0; 1/2, with

F.x; y/ D xy exp

�

�1
2
x2 � 1

2
y2
�

.x2 C y2 � 6/: (14)

Boundary conditions for a domain˝ D Œ0 W �x W xm� � Œ0 W �y W yn�:
u.x; 0/ D u.0; y/ D 0; (15)

ru.x; yn/ D �yn exp

�

�1
2
x2 � 1

2
y2n

�

.x2 � 1/; (16)

ru.xm; y/ D �xm exp

�

�1
2
x2m �

1

2
y2
�

.y2 � 1/; (17)

where (for our example) xm D yn D 1. Convergence of relative error between
computed and analytic solutions are showed in Fig. 1. This shows that the attained

Fig. 1 Convergence plot for second-order accuracy exhibited by the mimetic discretization of
equation (13). We show a reference line for ideal second-order accuracy, as well as the convergence
of the relative error between the analytic and the computed solutions to the problem



674 E.J. Sanchez et al.

accuracy for the mimetic Laplacian is indeed second order, which is consistent
with the results in Tables 1 and 2. These results were computed using the Mimetic
Methods Toolkit (MTK)—a C++11 library for mimetic numerical methods [7, 8].

4 Supercritical-Accuracy Curl Operator

Let v.x/ D p.x/i C q.x/j C r.x/k be some smooth 3D vector field. Classically,
the curl operator is defined as follows: Let S be a surface with a normal n, whose
boundary C is a closed path. If A.S/ denotes the area of S, then, by Stokes’ theorem
(Fig. 2):

curl v.x/ � n D lim
A.S/ 7�!0

1

A.S/

I

C

v � dC: (18)

If S is a 2D rectangle (for example) then C is a set of four rectilinear edges, and
the evaluation of the circulation of v along C needs an estimation for the tangential
components of v. This implies the introduction of dual spaces in the context of the
general Stokes’ theorem on manifolds. Furthermore, common discretizations for
the curl operator, such as the one proposed in [9], are based on (18). However, this
proposed discretization requires the interpolation of the argument vector field.

In this work, we first propose an alternative definition for the curl operator, so that
the introduction of dual spaces becomes unnecessary. We then use this alternative
definition to construct a mimetic curl operator in two and three dimensions
that profits from the uniform supercritical-order accuracy exhibited by mimetic
divergence operators, without requiring any interpolation.

Fig. 2 A small rotating disk S, bounded by C, with an orienting normal n. A limiting process then
takes place by collapsing A.S/ to 0, thus allowing for a definition for the curl operator via “Stokian
circulations”
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4.1 Redefining the Curl Operator Via “Gaussian Fluxes”

In order to consider an alternative definition for the curl operator, we first consider
the more practical statement:

r � v.x/ D
�

@r

@y
� @q
@z

�

iC
�

@p

@z
� @r
@x

�

jC
�

@q

@x
� @p
@y

�

k: (19)

Mathematically, a closed circuit such as C is a 1D object, and can be thought
of as modeling a 3D thin wire having a cross-section with an infinitely small
diameter, thus collapsing its three dimensions to only one dimension. But there is
an alternative way for collapsing a 3D object down to a 2D object having a 1D
boundary C.

Instead of a 2D plane surface S with oriented normal n, think of a thin 3D
cylindrical plate, with cylindrical axis along n, and having S as its uniform cross-
section (Fig. 3). If this 3D cylindrical plate becomes infinitely thin, then it becomes
a 2D surface with 1D boundary C, but now C can be regarded as an object which is
a limiting form for a 2D band or cylindrical mantle M, through which some vector
field v can flow, and some flux can be computed. This mantle M, together with two
surfaces parallel to S: Su above S and Sd below S, with Su and Sd having the same
area A.S/ and being very close to one another, constitute the total surface boundary
of a 3D thin plate P.

Naturally, if we consider some 3D vector field which is normal to n, and
therefore, also parallel to Sd and Su, then its Gaussian flux through the boundary
of P would reduce to the flux through the mantle M. Since M is a 2D band, with a
width w equal to the distance between the parallel surfaces Sd and Su, it follows that

Fig. 3 A limiting process for an infinitesimally thin disk S with boundary C and orienting normal
n created upon collapsing surfaces Su and Sd , aligned through a mantle M of width w, which is
then considered to tend to 0. Also, a Gaussian-like flux v flows through the infinitely thin disk S
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when w tends to zero, Sd and Su collapse to S, so the 2D band M collapses to the 1D
closed circuit C.

This visualization of geometric dimensional collapse will allow us, in the next
subsection, to numerically estimate the scalar components of a 3D curl vector
field from some adequate 2D fluxes, rather than from 1D circulations. This will
be possible by means of some auxiliary 2D vector fields. In turn, these 2D fluxes
will be related to supercritical-order 2D mimetic divergence operators.

4.2 Auxiliary 2D Vector Fields

The basic definitions are described in [1, 4]. Furthermore, in [1, 4], the type of 2D
staggering needed in order to compute the 2D curl is worked out in detail, but the
combination of simultaneous discretizations in the x, y and z directions needed in the
3D case is only hinted at graphically (see Fig. 4.10 in [1]). In this work, we present a
more detailed explanation and we make explicit their relation to supercritical-order
mimetic operators.

Considering (19), we define the following auxiliary vector fields: v�xy D iq�jp D
iP�xy C jQ�xy, v�yz D jr � kq D jQ�yz C kR�yz, and v�zx D kp � ir D kR�zx C iP�zx. It
follows immediately that:

r � v.x/ D .r � v�yz.x//iC .r � v�zx.x//jC .r � v�xy.x//k: (20)

Therefore, the 3D vector expression for curlv.x/ depends upon three scalar 2D
divergences evaluated at x. These 2D divergences, simultaneously needed for the
3D curl of v, all arise from 2D fluxes of vector fields v�xy, v�yz, and v�zx. These vector
fields lie in planes orthogonal to the coordinate axis, passing through x. This fact
yields the following definitions for 2D vector fields: .r � v.x// � i D r � v�yz.x/,
.r � v.x// � j D r � v�zx.x/, and .r � v.x// � k D r � v�xy.x/. Therefore, the mimetic
counterparts of the 2D and 3D curl operators are:

MCk
xyz Qv.x/ D MDk

yz Qv�yz.x/iC MDk
zx Qv�zx.x/jC MDk

zy Qv�zy.x/k; (21)

MCk
zy Qv.x/; D MDk

xy Qv�xy.x/: (22)

4.3 Compatibility with Stokes’ Theorem

In this subsection, we go back to the relation between the Stokes-based and the
Gaussian-based definitions for curl v, while considering the component along z.

From Stokes’ theorem:

“

S

.r � v.x// � kdxdy D
I

C

. p.x; y; z/dxC q.x; y; z/dy/: (23)
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When idxC jdy is a tangent vector of length ds along a counterclockwise oriented
circuit C in the x�y plane, then idy�jdx is a normal field nds, outwardly directed to
C. Therefore, the previous Stokes’ formula can be now read “Gauss-like” as follows:

“

S

.r � v�xy.x; y; z//dxdy D
I

C

.P�xy.x; y; z/dy � Q�xy.x; y; z/dx/ (24)

D
I

C

< iP�xy C jQ�xy; idy � jdx > (25)

D
I

C

< v�xy.x; y; z/;n.x; y; z/ > ds: (26)

Since these expressions also equal the mean value of < k; curlv.x; y; z/ > times the
area of the surface surrounded by C, then we obtain the following mean value:

I

< v�xy.x; y; z/;n.x; y; z/ > ds: (27)

The mean value in (27) equals the outward flux of v�xy through C, divided by the
above surface area. Therefore, we conclude that this approach preserves the original
behavior inherent to the functioning of Stokes’ theorem. Furthermore, this approach
is simple, in the sense that, in its foundation, it is just a change of variables.

4.4 A Simplified Model of a Vortex

Let v.x; y; z/ D �iyCjx. This vector field is plotted in Fig. 4a. Since v D k�.ixCjy/,
we have p.x; y; z/ D �y, q.x; y; z/ D x, and r.x; y; z/ D 0. In this case, we know that

(a) (b)
A 2D vector field Known curl of the 2D vector field
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Fig. 4 Reference solution. (a) Vector field: v.x/ D �yiC xj. (b) Known curl: r � v D 2k
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Fig. 5 Computed mimetic curl via the proposed Gaussian approach. (a) Auxiliary vector field:
v�

xy. (b) MDk
xyQv�

xy D MCk
xyQv

Fig. 6 Convergence plot for second-order accuracy exhibited by the mimetic discretization of the
curl operator. We show a reference line for ideal second-order accuracy, as well as the convergence
of the relative error between the analytic and the computed solutions to the problem

v � k D i � x C jy D v�xy.x; y; z/. Thus, divv�xy D 1 C 1 D 2, which is grid-wise
constant. The known curl is rendered in Fig. 4b. The suggested vector field, was then
discretized, on a staggered grid, and the auxiliary vector field was also discretized.
Figure 5a plots the auxiliary field. Figure 5b shows the computed mimetic curl,
through the Gaussian approach. This plot has to be compared with that of Fig. 4b.
Figure 6 shows the second-order convergence achieved via successive mesh grid
refinement.
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5 Concluding Remarks

We have detailed the construction of mimetic operators with supercritical accu-
racy in higher dimensions, based on their 1D counterparts resulting from the
Castillo–Blomgren–Sanchez algorithm. Results of the 1D operators show that
the 1D operators yield the required accuracy. Kronecker products with these 1D
supercritical-order operators are used as the main tool to formulate the construction
of the higher-dimensional supercritical-order operators.

Two test cases include an elliptic problem and the direct computation of a curl
vector field. The results were successful, although further testing is required in order
to truly render the benefit of supercritical accuracy in higher-dimensional contexts.
We intend to expand this article with additional numerical experiments to fully study
the impact of higher-orders of numerical accuracy; however, in this work, the theory
behind this extension has been detailed and supported with preliminary results.

Immediate future work will focus on adapting the operators, constructed via
the Castillo–Blomgren–Sanchez algorithm to non-uniform rectangular grids. This
will prompt the study of the application of these operators in frequency-domain
problems, for which very high orders of numerical accuracy are desired.

The authors would like to extend their gratitude to Dr. Josep de la Puente, and
Dr. Otilio Rojas, for many fruitful discussions about this topic.
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An hp Finite Element Method for Fourth Order
Singularly Perturbed Problems

Christos Xenophontos, Philippos Constantinou, and Charalambia Varnava

Abstract We present an hp Finite Element Method (FEM) for the approximation
to the solution of singularly perturbed fourth order problems in one-dimension. In
(Panaseti et al, Appl Numer Math 104:81–97, 2016) it was shown that the hp version
of the FEM, on the so-called Spectral Boundary Layer Mesh (Melenk et al, IMA J
Numer Anal 33(2):609–628, 2013) yields robust exponential convergence when the
error is measured in the energy norm. This result is sharpened by showing that the
same method gives robust exponential convergence in a stronger, more balanced
norm. As a corollary, we also get exponential convergence in the maximum norm.
A numerical example illustrating the theory is also presented.

1 Introduction

The numerical solution of singularly perturbed problems has been studied exten-
sively over the last few decades (see, e.g., the books [8, 15] and the references
therein). A main difficulty in these problems is the presence of boundary layers
in the solution and the numerical method should be tailored for their effective
approximation, in order to be considered robust (meaning it converges indepen-
dently of the singular perturbation parameter). The solution of such problems is
usually decomposed into a smooth part and a boundary layer part and the numerical
method aims at approximating both components equally well. Classical methods
are able to approximate smooth (enough) solutions, but they fail in approximating
the boundary layer. In the context of the Finite Element Method (FEM) and
Finite Difference Methods (FDM), the robust approximation of boundary layers
requires the use of layer adapted, parameter-dependent meshes (cf. [1] and [19] for
FDM and [5, 17] for hp-FEM, both methods applied to second order problems).
In the aforementioned references, the error estimates obtained are given in the
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(natural) energy norm associated with the boundary value problem. However, the
energy norm for some problems is rather weak in that it does not “see” the
boundary layers. By that we mean that the energy norm of the layer vanishes
as the singular perturbation parameter " ! 0, whereas the energy norm of the
smooth part of the solution does not. Recently, for second order problems, the
convergence of h-FEM methods has been analyzed in norms stronger than the
energy norm [4, 12, 13]. The analysis was performed in an "-weighted H1-norm
which is balanced in the sense that both the smooth part and the layer part
are bounded away from zero uniformly in ". The weight in this "-weighted H1-
norm is "1=2 as opposed to " as in the energy norm. Robust convergence in this
balanced norm is shown in [4, 12, 13], if Shishkin meshes are used. In [6] the
same ideas were used for an hp–FEM on the Spectral Boundary Layer Mesh (see
Definition 1 ahead) and robust exponential convergence in this balanced norm was
established.

When one considers fourth order singularly perturbed problems, the
available results are not as plentiful (notable exceptions are the works
[9, 11, 14, 18, 20]). Recently, it was shown in [10] that the hp version of the
FEM on the Spectral Boundary Layer Mesh applied to fourth order singularly
perturbed problems yields robust exponential convergence when the error
is measured in the energy norm. Following [6], the analysis of [10] was
extended in [3] where it was shown that the hp version of the FEM on the
Spectral Boundary Layer Mesh applied to fourth order singularly perturbed
problems, yields robust exponential convergence in this balanced norm as
well.

The rest of the article is organized as follows: In Sect. 2 we describe the model
problem, its variational formulation and its discretization by an hp–FEM on the
Spectral Boundary Layer Mesh. In Sect. 3 we present the analysis of the method
in the balanced norm, obtaining in addition robust exponential convergence in the
maximum norm. Finally, Sect. 4 contains the results of a numerical experiment to
illustrate the theory.

We will utilize the usual Sobolev space notation Hk .I/ to denote the
space of functions on the interval I with 0; 1; 2; : : : ; k generalized derivatives
in L2 .I/, equipped with the norm k�kk;I and seminorm j�jk;I . We will also

use the space Hk
0 .I/ D

	

u 2 Hk .I/ W u.i/
ˇ

ˇ

ˇ

@I
D 0; i D 0; : : : ; k � 1




; where

@I denotes the boundary of I. The norm of the space L1.I/ of essentially
bounded functions is denoted by k � k1;I . The letters C; c will be used
to denote generic positive constants, independent of any discretization or
singular perturbation parameters and possibly having different values in each
occurrence.
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2 The Model Problem and Its Discretization

2.1 Variational Formulation and Regularity

We consider the following model problem: Find u such that

L"u.x/ WD "2u.4/.x/ �
�

a.x/u0.x/
�0 C b.x/u.x/ D f .x/; x 2 I D .0; 1/; (1)

along with the boundary conditions

u.0/ D u0.0/ D u0.1/ D u.1/ D 0: (2)

The parameter 0 < " � 1 is given, as are the functions a; b > 0 and f ; which
are assumed to be analytic on I D Œ0; 1�. In particular, we assume that there exist
constants Cf ; �f ;Ca; �a;Cb; �b > 0; independent of ", such that

�

�

� f .n/
�

�

�1;I � Cf �
n
f nŠ;

�

�

�a.n/
�

�

�1;I � Ca�
n
a nŠ;

�

�

�b.n/
�

�

�1;I � Cb�
n
b nŠ 8 n D 0; 1; 2; : : : :

(3)

The variational formulation of (1)–(2) reads: Find u 2 H2
0 .I/ such that

B" .u; v/ D F .v/ 8 v 2 H2
0 .I/ ; (4)

where, with h�; �iI the usual L2.I/ inner product,

B" .u; v/ D "2
˝

u00; v00
˛

I
C ˝au0; v0˛

I
C hbu; viI ; F .v/ D hf ; viI : (5)

It follows that the bilinear form B" .�; �/ given by (5) is coercive with respect to the
energy norm

kuk2E;I WDB" .u; u/ ;

i.e., B" .u; u/ � kuk2E;I 8 u 2 H2
0 .I/. The solution u is analytic in I and its

derivative features boundary layers at the endpoints. The following result from [10]
describes the regularity of u (see also [2]).

Theorem 1 Assume (3) and let u 2 H2
0.I/ be the solution of (5). Then

(i) there exist constants C;K > 0 depending only on the data such that

�

�

�u.n/
�

�

�1;I � CKn maxfnn; "1�ng 8 n D 0; 1; 2; : : :
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(ii) u can be decomposed as u D w C uBL C r, where for some constants Cw,�w,
CBL, �BL, Cr, �r, ˇ > 0 independent of ", there holds

�

�

�w.n/
�

�

�1;I � Cw�
n
wn

n 8 n D 0; 1; 2; : : :
ˇ

ˇ

ˇu
.n/
BL.x/

ˇ

ˇ

ˇ � CBL�
n
BL"

1�ne�ˇdist.x;@I/=" 8 n D 1; 2; : : :

krk1;@I C kr0k1;@I C krkE;I � Cre
��r=":

2.2 Discretization by a C1 hp-FEM

The discrete version of (4) reads: find uFEM 2 S � H2
0 .I/ such that

B" .uFEM; v/ D F .v/ 8 v 2 S � H2
0 .I/ ;

with the finite dimensional subspace S defined as follows: partition the interval I D
.0; 1/ using an arbitrary mesh � D f0 D x0 < x1 < : : : < xM D 1g and set Ij D
�

xj�1; xj
�

; hj D xj � xj�1; j D 1; : : : ;M: Also, define the reference (or standard)
element IST D .�1; 1/, and note that it can be mapped onto the jth element Ij by the
linear mapping x D Qj.t/ D 1

2
.1 � t/ xj�1 C 1

2
.1C t/ xj: With ˘p .IST/ the space

of polynomials of degree less than or equal to p � 3 on IST (and with ı denoting
composition of functions), we define the finite dimensional subspaces

Sp.�/ D
n

v 2 H2.I/\ H1
0.I/ W v ı Q�1j 2 ˘pj.IST/; j D 1; : : : ;M

o

;

Sp0.�/ D Sp.�/\ H2
0.I/;

and take S D Sp0.�/. For simplicity, we assume constant polynomial degree p for
all elements, i.e., pj D p, j D 1; : : : ;M. The above discretization was introduced in
[10], where appropriate hierarchical basis functions were constructed for the space
Sp0 .�/ and whose approximation properties were studied (see Lemma 7 in [10] for
details).

The following definition describes the mesh that will be used for the resolution
of the layers (cf. [7]).

Definition 1 (Spectral Boundary Layer Mesh) For # > 0, p 2 N and 0 < " � 1,
define the Spectral Boundary Layer mesh �BL.#; p/ as

�BL.#; p/ D
(

f0; #p"; 1� #p"; 1g if #p" < 1=4
f0; 1g if #p" � 1=4
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The spaces S.#; p/ and S0.#; p/ of piecewise polynomials of degree p � 3 are given
by

S.#; p/ WD Sp.�BL.#; p//;

S0.#; p/ WD Sp0.�BL.#; p// D S.#; p/\H2
0.I/:

In [10] the following was established.

Theorem 2 Assume (3) holds. Let u be the solution to (4) and uFEM 2 S0.#; p/ its
finite element approximation based on the Spectral Boundary Layer Mesh. Then,
there exists positive constants C; � , independent of "; u and p such that

kuFEM � ukE;I 	 kuFEM � uk1;I C "
�

�.uFEM � u/00
�

�

0;I
� Ce��p:

Our next goal is to obtain the following estimate:

kuFEM � uk1;I C "1=2
�

�.uFEM � u/00
�

�

0;I
� Ce��p; (6)

for some constants C; � > 0 independent of ". Comparing (6) with the result of
Theorem 2, we see that

kuBLk1;I C "ku00BLk0;I D O."1=2/;

while

kuBLk1;I C "1=2ku00BLk0;I D O.1/:

This shows that the layer contribution goes to 0 as " ! 0, if the energy norm
is used (hence the phrase ‘the energy norm does not see the layer’). The ‘balanced
norm’ estimate (6) sharpens the result of Theorem 2.

In oder the achieve our goal, we need a more refined approximation result. In [3]
the following was established.

Lemma 1 Assume that (3) holds and let u be the solution to (4). Then there are
constants C; #0, ˇ > 0 (depending only on the data) such that for every # 2 .0; #0�
there exists an approximationIpu 2 S0.#; p/ that satisfies

ku �Ipuk1;I C k
�

u �Ipu
�0 k1;I � Ce�ˇ#p; (7)

ku �Ipuk1;I Cp#p"k
�

u �Ipu
�00 k0;I � Ce�ˇ#p: (8)
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3 Error Estimates in the Balanced Norm

We begin by defining the bilinear form B0 W H1
0.I/ � H1

0.I/! R by

B0 .u; v/ D
˝

au0; v0
˛

I
C hbu; viI ; (9)

corresponding to the reduced/limit problem. We also introduce the operator P0 W
H1
0.I/! S0.#; p/ by the orthogonality condition

B0 .u �P0u; v/ D 0 8 v 2 S0.#; p/: (10)

Then, by Galerkin orthogonality, satisfied by u � uFEM with respect to the bilinear
form B" and by (10), we have

kuFEM �P0uk2E;I D B" .uFEM �P0u; uFEM �P0u/ DB" .u �P0u; uFEM �P0u/

D "2
˝

.u �P0u/
00 ; .uFEM �P0u/

00˛
I

� "2k .u �P0u/
00 k0;Ik .uFEM �P0u/

00 k0;I ;
� "k .u �P0u/

00 k0;IkuFEM �P0ukE;I ;

hence

"
�

�.uFEM �P0u/
00�
�

0;I � kuFEM �P0ukE;I � "
�

�.u�P0u/
00�
�

0;I :

The triangle inequality will then allow us to infer exponential convergence in the
balanced norm, provided we can show that

�

�.u�P0u/
00�
�

0;I
� C"�1=2e��p;

for some positive constants C; � independent of "; u and p.
We begin by noting the following stability estimate

kP0zk1;I � kzk1;I 8z 2 H1
0.I/; (11)

which follows by taking v D P0u in (10). Next, we assume that #p" < 1=4 and
define the layer region

I" WD Œ0; #p"�[ Œ1 � #p"; 1�:
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Now, with z 2 H1
0.I/, we note that P0z 2 S0.#; p/ satisfies

jP0z.#p"/j � C
Z #p"

0

j.P0z/
0.x/jdx � C#p"k.P0z/

0k1;I" � C#p"k.P0z/
0k1;I :

Using an inverse estimate [16, Theorem 3.92]

k�k1;I � Cp k�k0;I 8 � 2 ˘p.I/; (12)

we get

jP0z.#p"/j � C#p"pkP0zk1;I ; (13)

and similarly for jP0z.1 � #p"/j. The following lemma describes a decomposition
of P0z (see [3] for details) and it is needed for the proof of Lemma 3.

Lemma 2 There exists a constant c > 0 such that under the assumption

p
p
#p" � c; (14)

the following is true: For each z 2 H1
0.I/, the decomposition of P0z D z1 C z" into

the components z1; z" 2 ˘p.I/ \H1
0.I/ satisfies

kz01k0;I � Ckz0k0;I (15)

kz0"k0;I � Ckz0k0;I" C p
p
#p"kz0k0;I : (16)

We are now in the position to prove the following

Lemma 3 Assume that (14) holds and that # is sufficiently small (depending only
on the data). Then

k.u �P0u/
00k0;I � C"�1=2e��p; (17)

where the constants C; � > 0 depend on # but are independent of " and p.

Proof By Lemma 1, we can find an approximation Ipu 2 S.#; p/ with .u �
Ipu/.k/.0/ D .u �Ipu/.k/.1/ D 0; k D 0; 1 such that

ku �Ipuk1;I Cp#p"k.u �Ipu/
00k0;I � Ce��p: (18)
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Since P0 is a projection on S0.#; p/, we can write u�P0u D u�Ipu�P0.u�Ipu/
and

k .u �P0u/
00 k0;I � k

�

u �Ipu
�00 k0;I C k

�

P0.u �Ipu/
�00 k0;I :

The first term is already treated in (18). For the second term P0.u�Ipu/ 2 S0.#; p/,
we utilize the decomposition P0.u �Ipu/ D z1 C z" and use Lemma 2, to get

kz001k0;I � Cp2kz01k0;I � Cp2k.u �Ipu/
0k0;I � Ce��p

kz00" k0;I � C
p2

#p"
kz0"k0;I � C

p2

#p"

˚k.u �Ipu/
0k0;I" C p

p
#p"k.u �Ipu/

0k0;I
�

:

Since .u �Ipu/0.0/ D .u �Ipu/0.1/ D 0 we use z0.x/ D R x
0 z
00.t/ dt and obtain

k �u �Ipu
�0 k0;I" � C#p"k.u �Ipu/

00k0;I" :

Hence,

kz00" k0;I � Cp2
n

k.u �Ipu/
00k0;I" C p.#p"/�1=2k �u �Ipu

�0 k0;I
o

� C"�1=2e��p:

Combining the above gives the result.
We are now in a position present our main result.

Theorem 3 There is a #0 > 0 depending only on the data a; b and f such that for
every # 2 .0; #0�, the hp-FEM space S0.#; p/ on the Spectral Boundary Layer mesh
leads to an approximation uFEM 2 S0.#; p/ to the solution u of (4), such that

ku � uFEMkE;I C
p
"k.u � uFEM/

00k0;I � Ce��p;

where the constants C; � > 0 depend on the choice of # but are independent of "
and p.

Proof Since the energy norm bound ku� uFEMkE;I � Ce��p was shown in [10], we
focus on the control of

p
"k.u � uFEM/00k0;I . If (14) holds then Lemma 3 yields the

result. If not, i.e. p
p
#p" � c for the constant c appearing in (14), we have

p
"k.u � uFEM/

00k0;I � "�1=2ku � uFEMkE;I � c�1p3=2#1=2ku � uFEMkE;I � Ce��p:

As a corollary, we get exponential convergenence in the maximum norm for u
and u0.
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Corollary 1 Let u be the solution of (4) and let uFEM 2 S0.#; p/ be its finite element
approximation on the Spectral Boundary Layer mesh. Then

�

�

�u.k/ � u.k/FEM

�

�

�1;I � Cp1=2e��p; k 2 f0; 1g; (19)

where the constants C; � > 0 are independent of " and p.

Proof Let k 2 f0; 1g. Then

ˇ

ˇ

ˇu.k/.x/� u.k/FEM.x/
ˇ

ˇ

ˇ D
ˇ

ˇ

ˇ

ˇ

Z x

0

�

u.k/.t/ � u.k/FEM.t/
�0
dt

ˇ

ˇ

ˇ

ˇ

:

Assume first that x 2 .0; #p"�: Then by the Cauchy-Schwarz inequality

ˇ

ˇ

ˇu.k/ � u.k/FEM.x/
ˇ

ˇ

ˇ � p#p"
�

�

�

�

�

u.k/ � u.k/FEM

�0��
�

�

0;I

� C

( p
#p"e��p ; k D 0p
#pe��p ; k D 1 :

The same technique works if x 2 Œ1 � #p"; 1�. To complete the proof it remains to
consider x 2 Œ#p"; 1 � #p"� DW J. We note that

�

�

�.u � uFEM/
.k/
�

�

�1;J �
�

�

�.u �Ipu/
.k/
�

�

�1;J C
�

�

�.Ipu � uFEM/
.k/
�

�

�1;J ;

with Ip the operator defined in Lemma 1. By (18) and Sobolev’s embeding theorem,
the first term on the right hand side above satisfies

�

�

�.u �Ipu/
.k/
�

�

�1;J � Ce��1p; C; �1 2 RC:

For the second term, the inverse estimate (12) gives

�

�

�.Ipu � uFEM/
.k/
�

�

�1;J � Cp2
�

�

�.Ipu � uFEM/
.k/
�

�

�

0;J
� C ku � uFEMkE;I � Ce��p:

Combining the above completes the proof.

4 Numerical Experiments

In this section we illustrate our theoretical findings by considering one example; we
refer to [3] for additional numerical computations. We use the Spectral Boundary
Layer Mesh with # D 1, i.e.� D f0; p"; 1�p"; 1g and polynomials of degree p � 3
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Fig. 1 Balanced norm convergence

which we increase to improve accuracy. The number of degrees of freedom, i.e. the
dimension of the finite dimensional subspace, is then given by DOF D 3p � 5.
We will measure the error .u � uFEM/ in the balanced norm as well as the error
.u � uFEM/.k/; k D 0; 1 in the maximum norm. We choose " D 10�j; j D
3; : : : ; 8 for the computations, in order to show the robustness of the proposed
method.

The data is selected as a.x/ D b.x/ D 1; f .x/ D .x C 1=2/�1. We
note that this choice for f allows us to see how the (lack of) smoothness
of the right hand side may affect the computational results. Since no exact
solution is available, we use a reference solution for the computations, obtained
with polynomials of degree 2p. We show, in Fig. 1, the estimated error in
the balanced norm, versus the number of degrees of freedom, in a semi-
log scale. We see that the method converges robustly at an exponential rate,
as predicted by Theorem 3. In the case of a fixed order h–version FEM,
the optimal convergence rate would be affected by the (lack of) smoothness
of the data, something that does not occur for the hp–version considered
here.

In Figs. 2 and 3 we show the error in u and in u0, respectively, using the estimated
maximum norm. The results are in accordance with our theoretical findings as stated
in Corollary 1.
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Fig. 2 Maximum norm convergence in u
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