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Preface

This is the second volume of the CEMPI subseries, common to Lecture Notes in
Mathematics and Lecture Notes in Physics. CEMPI, acronym for “Centre Européen
pour les Mathématiques, la Physique et leurs Interactions,” is a “Laboratoire
d’Excellence” based on the campus of the Université Lille 1. The material in this
volume is based on lectures given in Lille during the CNRS’s Thematic School
“Metrical and dynamical aspects in complex analysis,” as part of the 2015 Painlevé-
CEMPI Thematic Semester of Analysis.

Complex analysis is by nature at the meeting point of analysis, geometry, and
dynamics. The aim of this volume is to reveal the still underexploited connections
between complex analysis and metric geometry. Metric geometry provides very
powerful tools: some of them have been proving for long their potential in
complex analysis, as the Kobayashi metric, with related questions about Kobayashi
hyperbolicity, or problems in holomorphic dynamics. Others, as the notion of
hyperbolicity in the sense of Gromov, appeared more recently in the understanding
of geometrical or dynamical phenomena. In this context, the reader will explore
how metrical and dynamical aspects interact in complex geometry and holomorphic
dynamics.

The first chapter presents the Kobayashi distance, which will play the leading
role in this volume. This distance, introduced by Kobayashi in 1967 for complex
manifolds, is one of the most useful (biholomorphically) invariant distances. Written
by Marco Abate, professor at the Università di Pisa (Italy), this introductory text
also describes several properties and estimates depending on the geometry of the
domain.

The second chapter, still written by Marco Abate, deals with the dynamics of
holomorphic self-maps of taut manifolds. The proofs rely deeply on the Kobayashi
distance to get information about the boundary behavior, in order to obtain a several
variables version of the Wolff-Denjoy theorem. This subject has attracted much
attention, and the author describes some of his many contributions to the field.

The objective of the third chapter is to introduce the notion of Gromov hyperbol-
icity and to develop some situations in analysis where this notion is of great help
to understand their geometric meaning. Written by Hervé Pajot, professor at the

v



vi Preface

Institut Fourier, Université de Grenoble (France), it bridges some classical results in
complex analysis with a metric phenomenon coming from geometric group theory.

The fourth chapter, entitled “Gromov hyperbolicity of bounded convex
domains”, is written by Andrew Zimmer, a post-doctoral researcher at the University
of Chicago (USA). Very recent results of the author, concerning the Gromov
hyperbolicity of the Kobayashi metric, are described carefully. This chapter is in
continuity with the previous chapters, since the approach mixes a precise local study
of the Kobayashi metric near the boundary with a “large-scale” metric viewpoint. It
also draws a parallel with Hilbert geometry and ends with some open questions in
the field.

The last two chapters present further applications of the fruitful interplay between
analysis and metric geometry. The fifth chapter is an introduction to quasi-conformal
geometry, written by Hervé Pajot. It begins with quasi-conformal mappings on
the complex plane, which will constitute a very useful introduction for young
researchers interested in this area. The second part deals with metric spaces with
controlled geometry.

The sixth and last chapter is written by Marco Abate. It gives a (recent) appli-
cation of the Kobayashi distance to complex functional analysis, more precisely
concerning Carleson measures and Toeplitz operators.

The reader, analyst or geometer, shall thus find here a range of metrical tools
for complex analysis. The volume offers a unique and accessible overview of the
interactions between complex analysis and metric geometry up to the frontiers of
recent research.

Villeneuve d’Ascq, France Léa Blanc-Centi
July 2016
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Chapter 1
Invariant Distances

Marco Abate

In this chapter we shall define the (invariant) distance we are going to use, and
collect some of its main properties we shall need later on. It will not be a
comprehensive treatise on the subject; much more informations can be found in,
e.g., [2, 17, 24].

Before beginning, let us introduce a couple of notations we shall consistently use.

Definition 1.0.1 Let X and Y be two (finite dimensional) complex manifolds. We
shall denote by Hol.X;Y/ the set of all holomorphic maps from X to Y, endowed
with the compact-open topology (which coincides with the topology of uniform
convergence on compact subsets), so that it becomes a metrizable topological space.
Furthermore, we shall denote by Aut.X/ � Hol.X;X/ the set of automorphisms, that
is invertible holomorphic self-maps, of X. More generally, if X and Y are topological
spaces we shall denote by C0.X;Y/ the space of continuous maps from X to Y, again
endowed with the compact-open topology.

Definition 1.0.2 We shall denote by � D f	 2 C j j	j < 1g the unit disc in the
complex plane C, by B

n D fz 2 C
n j kzk < 1g (where k � k is the Euclidean norm)

the unit ball in the n-dimensional space Cn, and by�n � C
n the unit polydisc in C

n.
Furthermore, h� ; �i will denote the canonical Hermitian product on C

n.

M. Abate (�)
Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
e-mail: marco.abate@unipi.it

© Springer International Publishing AG 2017
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2 M. Abate

1.1 The Poincaré Distance

The model for all invariant distances in complex analysis is the Poincaré distance
on the unit disc of the complex plane; we shall then start recalling its definitions and
main properties (see also Appendix 1).

Definition 1.1.1 The Poincaré (or hyperbolic) metric on � is the Hermitian metric
whose associated norm is given by

��.	I v/ D 1

1 � j	j2 jvj

for all 	 2 � and v 2 C ' T	�. It is a complete Hermitian metric with constant
Gaussian curvature �4.

Definition 1.1.2 The Poincaré (or hyperbolic) distance k� on � is the integrated
form of the Poincaré metric. It is a complete distance, whose expression is

k�.	1; 	2/ D 1
2

log
1C

ˇ
ˇ
ˇ
	1�	2
1�	1	2

ˇ
ˇ
ˇ

1�
ˇ
ˇ
ˇ
	1�	2
1�	1	2

ˇ
ˇ
ˇ
:

In particular,

k�.0; 	/ D 1
2

log
1C j	j
1 � j	j :

Remark 1.1.3 It is useful to keep in mind that the function

t 7! 1
2

log
1C t

1� t

is the inverse of the hyperbolic tangent tanh t D .et � e�t/=.et C e�t/.
Besides being a metric with constant negative Gaussian curvature, the Poincaré

metric strongly reflects the properties of the holomorphic self-maps of the unit disc.
For instance, the isometries of the Poincaré metric coincide with the holomorphic
or anti-holomorphic automorphisms of � (see, e.g., [2, Proposition 1.1.8]):

Proposition 1.1.4 The group of smooth isometries of the Poincaré metric consists
of all holomorphic and anti-holomorphic automorphisms of �.

More importantly, the famous Schwarz-Pick lemma says that any holomorphic
self-map of � is nonexpansive for the Poincaré metric and distance (see, e.g., [2,
Theorem 1.1.6]):
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Theorem 1.1.5 (Schwarz-Pick lemma) Let f 2 Hol.�;�/ be a holomorphic self-
map of �. Then:

(i) we have

��
�

f .	/I f 0.	/v
� � ��.	I v/ (1.1)

for all 	 2 � and v 2 C. Furthermore, equality holds for some 	 2 � and
v 2 C

� if and only if equality holds for all 	 2 � and all v 2 C if and only if
f 2 Aut.�/;

(ii) we have

k�
�

f .	1/; f .	2/
� � k�.	1; 	2/ (1.2)

for all 	1, 	2 2 �. Furthermore, equality holds for some 	1 ¤ 	2 if and only if
equality holds for all 	1, 	2 2 � if and only if f 2 Aut.�/.

In other words, holomorphic self-maps of the unit disc are automatically 1-
Lipschitz, and hence equicontinuous, with respect to the Poincaré distance.

As an immediate corollary, we can compute the group of automorphisms of �,
and thus, by Proposition 1.1.4, the group of isometries of the Poincaré metric (see,
e.g., [2, Proposition 1.1.2]):

Corollary 1.1.6 The group Aut.�/ of holomorphic automorphisms of � consists
in all the functions 
 W� ! � of the form


.	/ D ei� 	 � 	0

1 � 	0	
(1.3)

with � 2 R and 	0 2 �. In particular, for every pair 	1, 	2 2 � there exists

 2 Aut.�/ such that 
.	1/ D 0 and 
.	2/ 2 Œ0; 1/.
Remark 1.1.7 More generally, given 	1, 	2 2 � and � 2 Œ0; 1/, it is not difficult to
see that there is 
 2 Aut.�/ such that 
.	1/ D � and 
.	2/ 2 Œ0; 1/ with 
.	2/ � �.

A consequence of (1.3) is that all automorphisms of � extends continuously to
the boundary. It is customary to classify the elements of Aut.�/ according to the
number of fixed points in �:

Definition 1.1.8 An automorphism 
 2 Aut.�/ n fid�g is called elliptic if it has a
unique fixed point in �, parabolic if it has a unique fixed point in @�, hyperbolic if
it has exactly two fixed points in @�. It is easy to check that these cases are mutually
exclusive and exhaustive.

We end this brief introduction to the Poincaré distance by recalling two facts
relating its geometry to the Euclidean geometry of the plane (see, e.g., [2,
Lemma 1.1.5 and (1.1.11)]):
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Proposition 1.1.9 Let 	0 2 � and r > 0. Then the ball B�.	0; r/ � � for the
Poincaré distance of center 	0 and radius r is the Euclidean ball with center

1 � .tanh r/2

1 � .tanh r/2j	0j2 	0

and radius

.1 � j	0j2/ tanh r

1 � .tanh r/2j	0j2 :

Proposition 1.1.10 Let 	0 D rei� 2 �. Then the geodesic for the Poincaré metric
connecting 0 to 	0 is the Euclidean radius  W Œ0; k�.0; 	0/� ! � given by

.t/ D .tanh t/ei� :

In particular, k�
�
0; .tanh t/ei�

� D jtj for all t 2 R and � 2 R.

1.2 The Kobayashi Distance in Complex Manifolds

Our next aim is to build on any complex manifold a (pseudo)distance enjoying the
main properties of the Poincaré distance; in particular, we would like to preserve the
1-Lipschitz property of holomorphic maps, that is to generalize to several variables
Schwarz-Pick lemma. There are several ways for doing this; historically, the first
such generalization has been introduced by Carathéodory [11] in 1926, but the most
well-known and most useful has been proposed in 1967 by Kobayashi [22, 23]. Here
we shall concentrate on the Kobayashi (pseudo)distance; but several other similar
metrics and distances have been introduced (see, e.g., [7, 10, 12, 15, 21, 30, 31, 34];
see also [16] for a general context explaining why in a very precise sense the
Carathéodory distance is the smallest and the Kobayashi distance is the largest
possible invariant distance, and [6] for a different differential geometric approach).
Furthermore, we shall discuss only the Kobayashi distance; it is possible to define
a Kobayashi metric, which is a complex Finsler metric whose integrated form is
exactly the Kobayashi distance, see Sect. 4.1. It is also possible to introduce a
Kobayashi pseudodistance in complex analytic spaces; again, see [2, 17] and [24]
for details and much more.

To define the Kobayashi pseudodistance we first introduce an auxiliary function.

Definition 1.2.1 Let X be a connected complex manifold. The Lempert function
ıXW X � X ! R

C [ fC1g is defined by

ıX.z;w/ D inf
˚
k�.	0; 	1/

ˇ
ˇ 9' 2 Hol.�;X/ W '.	0/ D z; '.	1/ D w

�

for every z, w 2 X.
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Remark 1.2.2 Corollary 1.1.6 yields the following equivalent definition of the
Lempert function:

ıX.z;w/ D inf
˚
k�.0; 	/

ˇ
ˇ 9' 2 Hol.�;X/ W '.0/ D z; '.	/ D w

�
:

The Lempert function in general (but there are exceptions; see Proposition 1.4.7)
does not satisfy the triangular inequality (see, e.g., [28] for an example), and so it is
not a distance. But this is a problem easily solved:

Definition 1.2.3 Let X be a connected complex manifold. The Kobayashi (pseudo)
distance kXW X � X ! R

C is the largest (pseudo)distance bounded above by the
Lempert function, that is

kX.z;w/ D inf

� kX

jD1
ıX.zj�1; zj/

ˇ
ˇ
ˇ
ˇ k 2 N; z0 D z; zk D w; z1; : : : ; zk�1 2 X

�

for all z, w 2 X.
A few remarks are in order. First of all, it is easy to check that since X is

connected then kX is always finite. Furthermore, it is clearly symmetric, it satisfies
the triangle inequality by definition, and kX.z; z/ D 0 for all z 2 X. On the other
hand, it might well happen that kX.z0; z1/ D 0 for two distinct points z0 ¤ z1 of X
(it might even happen that kX � 0; see Proposition 1.2.5); so kX in general is only a
pseudodistance. Anyway, the definition clearly implies the following generalization
of the Schwarz-Pick lemma:

Theorem 1.2.4 Let X, Y be two complex manifolds, and f 2 Hol.X;Y/. Then

kY
�

f .z/; f .w/
� � kX.z;w/

for all z, w 2 X. In particular:

(i) if X is a submanifold of Y then kY jX�X � kX;
(ii) biholomorphisms are isometries with respect to the Kobayashi pseudodistances.

A statement like this is the reason why the Kobayashi (pseudo)distance is said to
be an invariant distance: it is invariant under biholomorphisms.

Using the definition, it is easy to compute the Kobayashi pseudodistance of a few
of interesting manifolds (see, e.g., [2, Proposition 2.3.4, Corollaries 2.3.6, 2.3.7]):

Proposition 1.2.5

(i) The Poincaré distance is the Kobayashi distance of the unit disc �.
(ii) The Kobayashi distances of Cn and of the complex projective space P

n.C/

vanish identically.
(iii) For every z D .z1; : : : ; zn/, w D .w1; : : : ;wn/ 2 �n we have

k�n.z;w/ D max
jD1;:::;nfk�.zj;wj/g :
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(iv) The Kobayashi distance of the unit ball Bn � C
n coincides with the classical

Bergman distance; in particular, if O 2 C
n is the origin and z 2 B

n then

kBn.O; z/ D 1
2

log
1C kzk
1� kzk :

Remark 1.2.6 As often happens with objects introduced via a general definition,
the Kobayashi pseudodistance can seldom be explicitly computed. Besides the
cases listed in Proposition 1.2.5, as far as we know there are formulas only for
some complex ellipsoids [18], bounded symmetric domains [17], the symmetrized
bidisc [5] and a few other scattered examples. On the other hand, it is possible and
important to estimate the Kobayashi distance; see Sect. 1.5.

We shall be interested in manifolds where the Kobayashi pseudodistance is a true
distance, that is in complex manifolds X such that kX.z;w/ > 0 as soon as z ¤ w.

Definition 1.2.7 A connected complex manifold X is (Kobayashi) hyperbolic if kX

is a true distance. In this case, if z0 2 X and r > 0 we shall denote by BX.z0; r/ the
ball for kX of center z0 and radius r; we shall call BX.z0; r/ a Kobayashi ball. More
generally, if A 	 X and r > 0 we shall put BX.A; r/ D S

z2A BX.z; r/.
In hyperbolic manifolds the Kobayashi distance induces the topology of the

manifold. More precisely (see, e.g., [2, Proposition 2.3.10]):

Proposition 1.2.8 (Barth, [8]) A connected complex manifold X is hyperbolic if
and only if kX induces the manifold topology on X.

To give a first idea of how one can work with the Kobayashi distance, we describe
two large classes of examples of hyperbolic manifolds:

Proposition 1.2.9 (Kobayashi, [22, 23])

(i) A submanifold of a hyperbolic manifold is hyperbolic. In particular, bounded
domains in C

n are hyperbolic.
(ii) Let �W QX ! X be a holomorphic covering map. Then X is hyperbolic if and

only if QX is. In particular, a Riemann surface is hyperbolic if and only if it is
Kobayashi hyperbolic.

Proof (i) The first assertion follows immediately from Theorem 1.2.4.(i). For the
second one, we remark that the unit ball Bn is hyperbolic by Proposition 1.2.5.(iv).
Then Theorem 1.2.4.(ii) implies that all balls are hyperbolic; since a bounded
domain is contained in a ball, the assertion follows.

(ii) First of all we claim that

kX.z0;w0/ D inf
˚
kQX.Qz0; Qw/ ˇˇ Qw 2 ��1.w0/

�
; (1.4)

for any z0, w0 2 X, where Qz0 is any element of ��1.z0/. Indeed, first of all
Theorem 1.2.4 immediately implies that

kX.z0;w0/ � inf
˚
kQX.Qz0; Qw/ ˇˇ w 2 ��1.w0/

�
:
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Assume now, by contradiction, that there is " > 0 such that

kX.z0;w0/C " � keX
�Qz0; Qw�

for all Qw 2 ��1.w0/. Choose z1; : : : ; zk 2 X with zk D w0 such that

kX

jD1
ıX.zj�1; zj/ < kX.z0;w0/C "=2 :

By Remark 1.2.2, we can find '1; : : : ; 'k 2 Hol.�;X/ and 	1; : : : ; 	k 2 � such that
'j.0/ D zj�1, 'j.	j/ D zj for all j D 1; : : : ; k and

kX

jD1
k�.0; 	j/ < kX.z0;w0/C " :

Let Q'1; : : : ; Q'k 2 Hol.�; QX/ be the liftings of '1; : : : ; 'k chosen so that Q'1.0/ D Qz0
and Q'jC1.0/ D Q'j.	j/ for j D 1; : : : ; k � 1, and set Qw0 D Q'k.	k/ 2 ��1.w0/. Then

kQX.Qz0; Qw0/ �
kX

jD1
ıQX
� Q'j.0/; Q'j.	j/

� �
kX

jD1
k�.0; 	j/ < kX.z0;w0/C " � kQX.Qz0; Qw0/ ;

contradiction.
Having proved (1.4), let us assume that QX is hyperbolic. If there are z0, w0 2 X

such that kX.z0;w0/ D 0, then for any Qz0 2 ��1.z0/ there is a sequence f Qw�g �
��1.w0/ such that kQX.Qz0; Qw�/ ! 0 as � ! C1. Then Qw� ! Qz0 (Proposition 1.2.8)
and so Qz0 2 ��1.w0/, that is z0 D w0.

Conversely, assume X hyperbolic. Suppose Qz0, Qw0 2 QX are so that kQX.Qz0; Qw0/ D
0; then kX

�
�.Qz0/; �. Qw0/

� D 0 and so �.Qz0/ D �. Qw0/ D z0. Let eU be a
connected neighborhood of Qz0 such that �jeU is a biholomorphism between eU and
the (connected component containing z0 of the) Kobayashi ball BX.z0; "/ of center z0
and radius " > 0 small enough; this can be done because of Proposition 1.2.8. Since
keX.Qz0; Qw0/ D 0, we can find '1; : : : ; 'k 2 Hol.�; QX/ and 	1; : : : ; 	k 2 � with
'1.0/ D Qz0, 'j.	j/ D 'jC1.0/ for j D 1; : : : ; k � 1 and 'k.	k/ D Qw0 such that

kX

jD1
k�.0; 	j/ < " :

Let j be the radial segment in � joining 0 to 	j; by Proposition 1.1.10 the j are
geodesics for the Poincaré metric. The arcs 'j ıj ineX connect to form a continuous
curve  from Qz0 to Qw0. Now the maps � ı 'j 2 Hol.�;X/ are non-expanding;
therefore every point of the curve � ı  should belong to BX.z0; "/. But then  is
contained in eU, and this implies Qz0 D Qw0.
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The final assertion on Riemann surfaces follows immediately because hyperbolic
Riemann surfaces can be characterized as the only Riemann surfaces whose
universal covering is the unit disc. ut

It is also possible to prove the following (see, e.g., [2, Proposition 2.3.13]):

Proposition 1.2.10 Let X1 and X2 be connected complex manifolds. Then X1 � X2
is hyperbolic if and only if both X1 and X2 are hyperbolic.

Remark 1.2.11 The Kobayashi pseudodistance can be useful even when it is
degenerate. For instance, the classical Liouville theorem (a bounded entire function
is constant) is an immediate consequence, thanks to Theorem 1.2.4, of the vanishing
of the Kobayashi pseudodistance of C

n and the fact that bounded domains are
hyperbolic.

A technical fact we shall need later on is the following:

Lemma 1.2.12 Let X be a hyperbolic manifold, and choose z0 2 X and r1, r2 > 0.
Then

BX
�
BX.z0; r1/; r2

� D BX.z0; r1 C r2/ :

Proof The inclusion BD
�
BD.z0; r1/; r2

� 	 BD.z0; r1Cr2/ follows immediately from
the triangular inequality. For the converse, let z 2 BD.z0; r1 C r2/, and set 3" D
r1 C r2 � kX.z0; z/. Then there are '1; : : : ; 'm 2 Hol.�;X/ and 	1; : : : ; 	m 2 � so
that '1.0/ D z0, 'j.	j/ D 'jC1.0/ for j D 1; : : : ;m � 1, 'm.	m/ D z and

mX

jD1
k�.0; 	j/ < r1 C r2 � 2" :

Let � � m be the largest integer such that

��1X

jD1
k�.0; 	j/ < r1 � " :

Let �� be the point on the Euclidean radius in � passing through 	�C1 (which is a
geodesic for the Poincaré distance) such that

��1X

jD1
k�.0; 	j/C k�.0; ��/ D r1 � " :

If we set w D '�.��/, then kX.z0;w/ < r1 and kX.w; z/ < r2, so that

z 2 BD.w; r2/ 	 BD
�
BD.z0; r1/; r2

�
;

and we are done. ut
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A condition slightly stronger than hyperbolicity is the following:

Definition 1.2.13 A hyperbolic complex manifold X is complete hyperbolic if the
Kobayashi distance kX is complete.

Complete hyperbolic manifolds have a topological characterization (see, e.g., [2,
Proposition 2.3.17]):

Proposition 1.2.14 Let X be a hyperbolic manifold. Then X is complete hyperbolic
if and only if every closed Kobayashi ball is compact. In particular, compact
hyperbolic manifolds are automatically complete hyperbolic.

Examples of complete hyperbolic manifolds are contained in the following (see,
e.g., [2, Propositions 2.3.19 and 2.3.20]):

Proposition 1.2.15

(i) A homogeneous hyperbolic manifold is complete hyperbolic. In particular,
both B

n and�n are complete hyperbolic.
(ii) A closed submanifold of a complete hyperbolic manifold is complete hyper-

bolic.
(iii) The product of two hyperbolic manifolds is complete hyperbolic if and only if

both factors are complete hyperbolic.
(iv) If �W QX ! X is a holomorphic covering map, then QX is complete hyperbolic if

and only if X is complete hyperbolic.

We shall see more examples of complete hyperbolic manifolds later on (Propo-
sition 1.4.8 and Corollary 1.5.20). We end this subsection recalling the following
important fact (see, e.g., [24, Theorem 5.4.2]):

Theorem 1.2.16 The automorphism group Aut.X/ of a hyperbolic manifold X has
a natural structure of real Lie group.

1.3 Taut Manifolds

For our dynamical applications we shall need a class of manifolds which is
intermediate between complete hyperbolic and hyperbolic manifolds. To introduce
it, we first show that hyperbolicity can be characterized as a precompactness
assumption on the space Hol.�;X/.

If X is a topological space, we shall denote by X� D X [ f1g its one-point (or
Alexandroff) compactification; see, e.g., [20, p. 150] for details.

Theorem 1.3.1 ([3]) Let X be a connected complex manifold. Then X is hyperbolic
if and only if Hol.�;X/ is relatively compact in the space C0.�;X�/ of continuous
functions from � into the one-point compactification of X. In particular, if X is
compact then it is hyperbolic if and only if Hol.�;X/ is compact. Finally, if X
is hyperbolic then Hol.Y;X/ is relatively compact in C0.Y;X�/ for any complex
manifold Y.
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If X is hyperbolic and not compact, the closure of Hol.�;X/ in C0.�;X�/
might contain continuous maps whose image might both contain 1 and intersect X,
exiting thus from the realm of holomorphic maps. Taut manifolds, introduced by
Wu [33], are a class of (not necessarily compact) hyperbolic manifolds where this
problem does not appear, and (as we shall see) this will be very useful when studying
the dynamics of holomorphic self-maps.

Definition 1.3.2 A complex manifold X is taut if it is hyperbolic and every map
in the closure of Hol.�;X/ in C0.�;X�/ either is in Hol.�;X/ or is the constant
map 1.

This definition can be rephrased in another way not requiring the one-point
compactification.

Definition 1.3.3 Let X and Y be topological spaces. A sequence ff�g � C0.Y;X/ is
compactly divergent if for every pair of compacts H 	 Y and K 	 X there exists
�0 2 N such that f�.H/\K D ; for every � � �0. A family F 	 C0.Y;X/ is normal
if every sequence in F admits a subsequence which is either uniformly converging
on compact subsets or compactly divergent.

By the definition of one-point compactification, a sequence in C0.Y;X/ con-
verges in C0.Y;X�/ to the constant map 1 if and only if it is compactly divergent.
When X and Y are manifolds (more precisely, when they are Hausdorff, locally
compact, connected and second countable topological spaces), a subset in C0.Y;X�/
is compact if and only if it is sequentially compact; therefore we have obtained the
following alternative characterization of taut manifolds:

Corollary 1.3.4 A connected complex manifold X is taut if and only if the family
Hol.�;X/ is normal.

Actually, it is not difficult to prove (see, e.g., [2, Theorem 2.1.2]) that the role of
� in the definition of taut manifolds is not essential:

Proposition 1.3.5 Let X be a taut manifold. Then Hol.Y;X/ is a normal family for
every complex manifold Y.

It is easy to find examples of hyperbolic manifolds which are not taut:

Example 1.3.6 Let D D �2 n f.0; 0/g. Since D is a bounded domain in C
2, it is

hyperbolic. For � � 1 let '� 2 Hol.�;D/ given by '�.	/ D .	; 1=�/. Clearly f'�g
converges as � ! C1 to the map '.	/ D .	; 0/, whose image is not contained
either in D or in @D. In particular, the sequence f'�g does not admit a subsequence
which is compactly divergent or converging to a map with image in D—and thus D
is not taut.

On the other hand, complete hyperbolic manifolds are taut. This is a consequence
of the famous Ascoli-Arzelà theorem (see, e.g., [20, p. 233]):

Theorem 1.3.7 (Ascoli-Arzelà theorem) Let X be a metric space, and Y a locally
compact metric space. Then a family F 	 C0.Y;X/ is relatively compact in
C0.Y;X/ if and only if the following two conditions are satisfied:

(i) F is equicontinuous;
(ii) the set F . y/ D ff . y/ j f 2 F g is relatively compact in X for every y 2 Y.
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Then:

Proposition 1.3.8 Every complete hyperbolic manifold is taut.

Proof Let X be a complete hyperbolic manifold, and f'�g � Hol.�;X/ a sequence
which is not compactly divergent; we must prove that it admits a subsequence
converging in Hol.�;X/.

Up to passing to a subsequence, we can find a pair of compacts H � � and
K 	 X such that '�.H/ \ K ¤ ; for all � 2 N. Fix 	0 2 H and z0 2 K, and set
r D maxfkX.z; z0/ j z 2 Kg. Then for every 	 2 � and � 2 N we have

kX
�
'�.	/; z0

� � kX
�
'�.	/; '�.	0/

�C kX
�
'�.	0/; z0

� � k�.	; 	0/C r :

So f'�.	/g is contained in the closed Kobayashi ball of center z0 and radius
k�.	; 	0/Cr, which is compact since X is complete hyperbolic (Proposition 1.2.14);
as a consequence, f'�.	/g is relatively compact in X. Furthermore, since X is
hyperbolic, the whole family Hol.�;X/ is equicontinuous (it is 1-Lipschitz with
respect to the Kobayashi distances); therefore, by the Ascoli-Arzelà theorem,
the sequence f'�g is relatively compact in C0.�;X/. In particular, it admits a
subsequence converging in C0.�;X/; but since, by Weierstrass theorem, Hol.�;X/
is closed in C0.�;X/, the limit belongs to Hol.�;X/, and we are done. ut

Thus complete hyperbolic manifolds provide examples of taut manifolds. How-
ever, there are taut manifolds which are not complete hyperbolic; an example
has been given by Rosay (see [29]). Finally, we have the following equivalent of
Proposition 1.2.15 (see, e.g., [2, Lemma 2.1.15]):

Proposition 1.3.9

(i) A closed submanifold of a taut manifold is taut.
(ii) The product of two complex manifolds is taut if and only if both factors are taut.

Just to give an idea of the usefulness of the taut condition in studying holo-
morphic self-maps we end this subsection by quoting Wu’s generalization of
the classical Cartan-Carathéodory and Cartan uniqueness theorems (see, e.g., [2,
Theorem 2.1.21 and Corollary 2.1.22]):

Theorem 1.3.10 (Wu, [33]) Let X be a taut manifold, and let f 2 Hol.X;X/ be
with a fixed point z0 2 X. Then:

(i) the spectrum of dfz0 is contained in �;
(ii) j det dfz0 j � 1;

(iii) j det dfz0 j D 1 if and only if f 2 Aut.X/;
(iv) dfz0 D id if and only if f is the identity map;
(v) Tz0X admits a dfz0-invariant splitting Tz0X D LN ˚ LU such that the spectrum

of dfz0 jLN is contained in �, the spectrum of dfz0 jLU is contained in @�, and
dfz0 jLU is diagonalizable.

Corollary 1.3.11 (Wu, [33]) Let X be a taut manifold, and z0 2 X. Then if f , g 2
Aut.X/ are such that f .z0/ D g.z0/ and dfz0 D dgz0 then f � g.

Proof Apply Theorem 1.3.10.(iv) to g�1 ı f . ut
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1.4 Convex Domains

In the following we shall be particularly interested in two classes of bounded
domains in C

n: convex domains and strongly pseudoconvex domains. Consequently,
in this and the next section we shall collect some of the main properties of the
Kobayashi distance respectively in convex and strongly pseudoconvex domains.

We start with convex domains recalling a few definitions.

Definition 1.4.1 Given x, y 2 C
n let

Œx; y� D fsxC.1�s/y 2 C
n j s 2 Œ0; 1�g and .x; y/ D fsxC.1�s/y 2 C

n j s 2 .0; 1/g

denote the closed, respectively open, segment connecting x and y. A set D 	 C
n is

convex if Œx; y� 	 D for all x, y 2 D; and strictly convex if .x; y/ 	 D for all x, y 2 D.
A convex domain not strictly convex will sometimes be called weakly convex.

An easy but useful observation (whose proof is left to the reader) is:

Lemma 1.4.2 Let D � C
n be a convex domain. Then:

(i) .z;w/ � D for all z 2 D and w 2 @D;
(ii) if x, y 2 @D then either .x; y/ � @D or .x; y/ � D.

This suggests the following

Definition 1.4.3 Let D � C
n be a convex domain. Given x 2 @D, we put

ch.x/ D fy 2 @D j Œx; y� � @Dg I

we shall say that x is a strictly convex point if ch.x/ D fxg. More generally, given
F 	 @D we put

ch.F/ D
[

x2F

ch.x/ :

A similar construction having a more holomorphic character is the following:

Definition 1.4.4 Let D � C
n be a convex domain. A complex supporting functional

at x 2 @D is a C-linear map LWCn ! C such that Re L.z/ < Re L.x/ for all z 2 D. A
complex supporting hyperplane at x 2 @D is an affine complex hyperplane H � C

n

of the form H D x C ker L, where L is a complex supporting functional at x (the
existence of complex supporting functionals and hyperplanes is guaranteed by the
Hahn-Banach theorem). Given x 2 @D, we shall denote by Ch.x/ the intersection
of D with of all complex supporting hyperplanes at x. Clearly, Ch.x/ is a closed
convex set containing x; in particular, Ch.x/ 	 ch.x/. If Ch.x/ D fxg we say that x
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is a strictly C-linearly convex point; and we say that D is strictly C-linearly convex
if all points of @D are strictly C-linearly convex. Finally, if F � @D we set

Ch.F/ D
[

x2F

Ch.x/ I

clearly, Ch.F/ 	 ch.F/.

Definition 1.4.5 Let D � C
n be a convex domain, x 2 @D and LWCn ! C a

complex supporting functional at x. The weak peak function associated to L is the
function  2 Hol.D; �/ given by

 .z/ D 1

1� �
L.z/ � L.x/

� :

Then  extends continuously to D with  .D/ 	 �,  .x/ D 1, and j .z/j < 1 for
all z 2 D; moreover y 2 @D is such that j .y/j D 1 if and only if . y/ D  .x/ D 1,
and hence if and only if L.y/ D L.x/.

Remark 1.4.6 If x 2 @D is a strictly convex point of a convex domain D � C
n then

it is possible to find a complex supporting functional L at x so that Re L.z/ < Re L.x/
for all z 2 D n fxg. In particular, the associated weak peak function  WCn ! C is
a true peak function (see Definition 1.5.17) in the sense that j .z/j < 1 for all
z 2 D n fxg.

We shall now present three propositions showing how the Kobayashi distance is
particularly well-behaved in convex domains. The first result, due to Lempert, shows
that in convex domains the definition of Kobayashi distance can be simplified:

Proposition 1.4.7 (Lempert, [28]) Let D � C
n be a convex domain. Then ıD D

kD.

Proof First of all, note that ıD.z;w/ < C1 for all z, w 2 D. Indeed, let

˝ D f� 2 C j .1 � �/z C �w 2 Dg :

Since D is convex, ˝ is a convex domain in C containing 0 and 1. Let �W� ! ˝

be a biholomorphism such that �.0/ D 0; then the map 'W� ! D given by

'.	/ D �
1 � �.	/

�
z C �.	/w

is such that z, w 2 '.�/.
Now, by definition we have ıD.z;w/ � kD.z;w/; to get the reverse inequality it

suffices to show that ıD satisfies the triangular inequality. Take z1, z2, z3 2 D and
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fix " > 0. Then there are '1, '2 2 Hol.�;D/ and 	1, 	2 2 � such that '1.0/ D z1,
'1.	1/ D '2.	1/ D z2, '2.	2/ D z3 and

k�.0; 	1/ < ıD.z1; z2/C " ;

k�.	1; 	2/ < ıD.z2; z3/C " :

Moreover, by Remark 1.1.7 we can assume that 	1 and 	2 are real, and that 	2 >
	1 > 0. Furthermore, up to replacing 'j by a map 'r

j defined by 'r
j .	/ D 'j.r	/ for

r close enough to 1, we can also assume that 'j is defined and continuous on� (and
this for j D 1, 2).

Let �WC n f	1; 	�1
1 g ! C be given by

�.	/ D .	 � 	2/.	 � 	�1
2 /

.	 � 	1/.	 � 	�1
1 /

:

Then � is meromorphic in C, and in a neighborhood of � the only pole is the
simple pole at 	1. Moreover, �.0/ D 1, �.	2/ D 0 and �.@�/ � Œ0; 1�. Then define
�W� ! C

n by

�.	/ D �.	/'1.	/C �
1 � �.	/

�
'2.	/ :

Since '1.	1/ D '2.	1/, it turns out that � is holomorphic on �; moreover, �.0/ D
z1, �.	2/ D z3 and �.@�/ � D. We claim that this implies that �.�/ � D. Indeed,
otherwise there would be 	0 2 � such that �.	0/ D x0 2 @D. Let L be a complex
supporting functional at x0, and  the associated weak peak function. Then we
would have j ı�j � 1 on @� and j ı�.	0/j D 1; thus, by the maximum principle,
j ı �j � 1, i.e., �.�/ � @D, whereas �.0/ 2 D, contradiction.

So � 2 Hol.�;D/. In particular, then,

ıD.z1; z3/ � k�.0; 	2/ D k�.0; 	1/C k�.	1; 	2/ � ıD.z1; z2/C ıD.z2; z3/C 2" ;

and the assertion follows, since " is arbitrary. ut
Bounded convex domains, being bounded, are hyperbolic. But actually more is

true:

Proposition 1.4.8 (Harris, [16]) Let D �� C
n be a bounded convex domain. Then

D is complete hyperbolic.

Proof We can assume O 2 D. By Proposition 1.2.14, it suffices to show that all the
closed Kobayashi balls BD.O; r/ of center O are compact. Let fz�g � BD.O; r/; we
must find a subsequence converging to a point of D. Clearly, we may suppose that
z� ! w0 2 D as � ! C1, for D is bounded.

Assume, by contradiction, that w0 2 @D, and let LWCn ! C be a complex
supporting functional at w0; in particular, L.w0/ ¤ 0 (because O 2 D). Set
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H D f	 2 C j Re L.	w0/ < Re L.w0/g; clearly H is a half-plane of C, and the
linear map �WCn ! C given by �.z/ D L.z/=L.w0/ sends D into H. In particular

r � kD.0; z�/ � kH
�
0; �.z�/

�
:

Since H is complete hyperbolic, by Proposition 1.2.14 the closed Kobayashi balls
in H are compact; therefore, up to a subsequence f�.z�/g tends to a point of H. On
the other hand, �.z�/ ! �.w0/ D 1 2 @H, and this is a contradiction. ut
Remark 1.4.9 There are unbounded convex domains which are not hyperbolic; for
instance, Cn itself. However, unbounded hyperbolic convex domains are automati-
cally complete hyperbolic, because Harris (see [16]) proved that a convex domain
is hyperbolic if and only if it is biholomorphic to a bounded convex domain.
Furthermore, Barth (see [9]) has shown that an unbounded convex domain is
hyperbolic if and only if it does not contain any complex line.

Finally, the convexity is reflected by the shape of Kobayashi balls. To prove this
(and also because they will be useful later) we shall need a couple of estimates:

Proposition 1.4.10 ([19, 26, 28]) Let D � C
n be a convex domain. Then:

(i) if z1, z2, w1, w2 2 D and s 2 Œ0; 1� then

kD
�
sz1 C .1 � s/z2; sw1 C .1 � s/w2

� � maxfkD.z1;w1/; kD.z2;w2/g I
(ii) if z, w 2 D and s, t 2 Œ0; 1� then

kD
�
sz C .1 � s/w; tz C .1 � t/w

� � kD.z;w/ :

Proof Let us start by proving (i). Without loss of generality we can assume that
kD.z2;w2/ � kD.z1;w1/. Fix " > 0; by Proposition 1.4.7, there are '1, '2 2
Hol.�;D/ and 	1, 	2 2 � such that 'j.0/ D zj, 'j.	j/ D wj and k�.0; 	j/ <

kD.zj;wj/ C ", for j D 1, 2; moreover, we may assume 0 � 	2 � 	1 < 1 and
	1 > 0. Define  W� ! D by

 .	/ D '2

�
	2

	1
	

�

;

so that  .0/ D z2 and  .	1/ D w2, and �sW� ! C
n by

�s.	/ D s'1.	/C .1 � s/ .	/ :

Since D is convex, �s maps � into D; furthermore, �s.0/ D sz1 C .1 � s/z2 and
�s.	1/ D sw1 C .1 � s/w2. Hence

kD
�
sz1 C .1 � s/z2; sw1 C .1 � s/w2

� D kD
�
�s.0/; �s.	1/

�

� k�.0; 	1/ < kD.z1;w1/C " ;

and (i) follows because " is arbitrary.
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Given z0 2 D, we obtain a particular case of (i) by setting z1 D z2 D z0:

kD
�
z0; sw1 C .1 � s/w2

� � maxfkD.z0;w1/; kD.z0;w2/g (1.5)

for all z0, w1, w2 2 D and s 2 Œ0; 1�.
To prove (ii), put z0 D sz C .1 � s/w; then two applications of (1.5) yield

kD

�
sz C .1 � s/w; tz C .1 � t/w

� � max
˚
kD

�
sz C .1 � s/w; z

�
; kD

�
sz C .1 � s/w;w

��

� kD.z;w/ ;

and we are done. ut
Corollary 1.4.11 Closed Kobayashi balls in a hyperbolic convex domain are
compact and convex.

Proof The compactness follows from Propositions 1.2.14 and 1.4.8 (and
Remark 1.4.9 for unbounded hyperbolic convex domains); the convexity follows
from (1.5). ut

1.5 Strongly Pseudoconvex Domains

Another important class of domains where the Kobayashi distance has been studied
in detail is given by strongly pseudoconvex domains. In particular, in strongly
pseudoconvex domains it is possible to estimate the Kobayashi distance by means
of the Euclidean distance from the boundary.

To recall the definition of strongly pseudoconvex domains, and to fix notations
useful later, let us first introduce smoothly bounded domains. For simplicity we shall
state the following definitions in R

N , but they can be easily adapted to C
n by using

the standard identification C
n ' R

2n.

Definition 1.5.1 A domain D � R
N has Cr boundary (or is a Cr domain), where

r 2 N [ f1; !g (and C! means real analytic), if there is a Cr function �WRN ! R

such that:

(a) D D fx 2 R
N j �.x/ < 0g;

(b) @D D fx 2 R
N j �.x/ D 0g; and

(c) grad� is never vanishing on @D.

The function � is a defining function for D. The outer unit normal vector nx at x is
the unit vector parallel to �grad �.x/.

Remark 1.5.2 It is not difficult to check that if �1 is another defining function for a
domain D then there is a never vanishing Cr function  WRN ! R

C such that

�1 D  � : (1.6)
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If D � R
N is a Cr domain with defining function �, then @D is a Cr manifold

embedded in R
N . In particular, for every x 2 @D the tangent space of @D at x can

be identified with the kernel of d�x (which by (1.6) is independent of the chosen
defining function). In particular, Tx.@D/ is just the hyperplane orthogonal to nx.

Using a defining function it is possible to check when a C2-domain is convex.

Definition 1.5.3 If �WRN ! R is a C2 function, the Hessian H�;x of � at x 2 R
N is

the symmetric bilinear form given by

H�;x.v;w/ D
NX

h;kD1

@2�

@xh@xk
.x/ vhwk

for every v, w 2 R
N .

The following result is well-known (see, e.g, [25, p. 102]):

Proposition 1.5.4 A C2 domain D � R
N is convex if and only if for every x 2 @D

the Hessian H�;x is positive semidefinite on Tx.@D/, where � is any defining function
for D.

This suggests the following.

Definition 1.5.5 A C2 domain D � R
N is strongly convex at x 2 @D if for some

(and hence any) C2 defining function � for D the Hessian H�;x is positive definite
on Tx.@D/. We say that D is strongly convex if it is so at each point of @D.

Remark 1.5.6 It is easy to check that strongly convex C2 domains are strictly
convex. Furthermore, it is also possible to prove that every strongly convex
domain D has a C2 defining function � such that H�;x is positive definite on the
whole of RN for every x 2 @D (see, e.g., [25, p. 101]).

Remark 1.5.7 If D � C
n is a convex C1 domain and x 2 @D then the unique

(up to a positive multiple) complex supporting functional at x is given by L.z/ D
hz;nxi. In particular, Ch.x/ coincides with the intersection of the associated complex
supporting hyperplane with @D. But non-smooth points can have more than one
complex supporting hyperplanes; this happens for instance in the polydisc.

Let us now move to a more complex setting.

Definition 1.5.8 Let D � C
n be a domain with C2 boundary and defining

function �WCn ! R. The complex tangent space TC

x .@D/ of @D at x 2 @D is the
kernel of @�x, that is

TC

x .@D/ D
�

v 2 C
n

ˇ
ˇ
ˇ
ˇ

nX

jD1

@�

@zj
.x/ vj D 0

�

:
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As usual, TC
x .@D/ does not depend on the particular defining function. The Levi

form L�;x of � at x 2 C
n is the Hermitian form given by

L�;x.v;w/ D
nX

h;kD1

@2�

@zh@Nzk
.x/ vhwk

for every v, w 2 C
n.

Definition 1.5.9 A C2 domain D � C
n is called strongly pseudoconvex (respec-

tively, weakly pseudoconvex) at a point x 2 @D if for some (and hence all)
C2 defining function � for D the Levi form L�;x is positive definite (respectively,
weakly positive definite) on TC

x .@D/. The domain D is strongly pseudoconvex
(respectively, weakly pseudoconvex) if it is so at each point of @D.

Remark 1.5.10 If D is strongly pseudoconvex then there is a defining function �
for D such that the Levi form L�;x is positive definite on C

n for every x 2 @D (see,
e.g., [25, p. 109]).

Roughly speaking, strongly pseudoconvex domains are locally strongly convex.
More precisely, one can prove (see, e.g., [2, Proposition 2.1.13]) the following:

Proposition 1.5.11 A bounded C2 domain D �� C
n is strongly pseudoconvex

if and only if for every x 2 @D there is a neighborhood Ux � C
n and a

biholomorphism ˚xW Ux ! ˚x.Ux/ such that ˚x.Ux \ D/ is strongly convex.
From this one can prove that strongly pseudoconvex domains are taut; but we

shall directly prove that they are complete hyperbolic, as a consequence of the
boundary estimates we are now going to state.

Definition 1.5.12 If M � C
n is any subset of Cn, we shall denote by d.�;M/WCn !

R
C the Euclidean distance from M, defined by

d.z;M/ D inffkz � xk j x 2 Mg :

To give an idea of the kind of estimates we are looking for, we shall prove an
easy lemma:

Lemma 1.5.13 Let Br � C
n be the Euclidean ball of radius r > 0 in C

n centered
at the origin. Then

1
2

log r � 1
2

log d.z; @Br/ � kBr.O; z/ � 1
2

log.2r/� 1
2

log d.z; @Br/

for every z 2 Br.

Proof We have

kBr.O; z/ D 1
2

log
1C kzk=r

1� kzk=r
;
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and d.z; @Br/ D r � kzk. Then, setting t D kzk=r, we get

1
2

log r � 1
2

log d.z; @Br/ D 1
2

log
1

1 � t
� 1

2
log

1C t

1� t
D kBr.O; z/

� 1
2

log
2

1 � t
D 1

2
log.2r/� 1

2
log d.z; @Br/ ;

as claimed. ut
Thus in the ball the Kobayashi distance from a reference point is comparable with

one-half of the logarithm of the Euclidean distance from the boundary. We would
like to prove similar estimates in strongly pseudoconvex domains. To do so we need
one more definition.

Definition 1.5.14 Let M be a compact C2-hypersurface of R
N , and fix an unit

normal vector field n on M. We shall say that M has a tubular neighborhood of
radius " > 0 if the segments fx C tnx j t 2 .�"; "/g are pairwise disjoint, and we set

U" D
[

x2M

fx C tnx j t 2 .�"; "/g :

Note that if M has a tubular neighborhood of radius ", then d.x C tnx;M/ D jtj for
every t 2 .�"; "/ and x 2 M; in particular, U" is the union of the Euclidean balls
B.x; "/ of center x 2 M and radius ".

Remark 1.5.15 A proof of the existence of a tubular neighborhood of radius
sufficiently small for any compact C2-hypersurface of R

N can be found, e.g., in
[27, Theorem 10.19].

And now, we begin proving the estimates. The upper estimate does not even
depend on the strong pseudoconvexity:

Theorem 1.5.16 ([1, 32]) Let D �� C
n be a bounded C2 domain, and z0 2 D.

Then there is a constant c1 2 R depending only on D and z0 such that

kD.z0; z/ � c1 � 1
2

log d.z; @D/ (1.7)

for all z 2 D.

Proof Since D is a bounded C2 domain, @D admits tubular neighborhoods U" of
radius " < 1 small enough. Put

c1 D sup
˚
kD.z0;w/

ˇ
ˇ w 2 D n U"=4

�C max
˚
0; 1

2
log diam.D/

�
;

where diam.D/ is the Euclidean diameter of D.
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There are two cases:

(i) z 2 U"=4\D. Let x 2 @D be such that kx�zk D d.z; @D/. Since U"=2 is a tubular
neighborhood of @D, there exists � 2 R such that w D �.x � z/ 2 @U"=2 \ D
and the Euclidean ball B of center w and radius "=2 is contained in U" \ D and
tangent to @D in x. Therefore Lemma 1.5.13 yields

kD.z0; z/ � kD.z0;w/C kD.w; z/ � kD.z0;w/C kB.w; z/

� kD.z0;w/C 1
2

log " � 1
2

log d.z; @B/

� c1 � 1
2

log d.z; @D/ ;

because w … U"=4 (and " < 1).
(ii) z 2 D n U"=4. Then

kD.z0; z/ � c1 � 1
2

log diam.D/ � c1 � 1
2

log d.z; @D/ ;

because d.z; @D/ � diam.D/, and we are done. ut
To prove the more interesting lower estimate, we need to introduce the last

definition of this subsection.

Definition 1.5.17 Let D � C
n be a domain in C

n, and x 2 @D. A peak function
for D at x is a holomorphic function  2 Hol.D; �/ continuous up to the boundary
of D such that  .x/ D 1 and j .z/j < 1 for all z 2 D n fxg.

If D � C
n is strongly convex and x 2 @D then by Remark 1.4.6 there exists a

peak function for D at x. Since a strongly pseudoconvex domain D is locally strongly
convex, using Proposition 1.5.11 one can easily build peak functions defined in
a neighborhood of a point of the boundary of D. To prove the more interesting
lower estimate on the Kobayashi distance we shall need the non-trivial fact that
in a strongly pseudoconvex domain it is possible to build a family of global peak
functions continuously dependent on the point in the boundary:

Theorem 1.5.18 (Graham, [14]) Let D �� C
n be a strongly pseudoconvex C2

domain. Then there exist a neighborhood D0 of D and a continuous function� W @D�
D0 ! C such that �x0 D �.x0; �/ is holomorphic in D0 and a peak function for D at
x0 for each x0 2 @D.

With this result we can prove

Theorem 1.5.19 ([1, 32]) Let D �� C
n be a bounded strongly pseudoconvex C2

domain, and z0 2 D. Then there is a constant c2 2 R depending only on D and z0
such that

c2 � 1
2

log d.z; @D/ � kD.z0; z/ (1.8)

for all z 2 D.
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Proof Let D0 

 D and � W @D � D0 ! C be given by Theorem 1.5.18, and define
�W @D �� ! C by

�.x; 	/ D 1 � �.x; z0/
1 � �.x; z0/ � 	 � �.x; z0/

1 � �.x; z0/	
: (1.9)

Then the map ˚.x; z/ D ˚x.z/ D �
�
x; �.x; z/

�
is defined on a neighborhood @D �

D0 of @D � D (with D0 �� D0) and satisfies

(a) ˚ is continuous, and ˚x is a holomorphic peak function for D at x for any x 2
@D;

(b) for every x 2 @D we have ˚x.z0/ D 0.

Now set U" D S
x2@D P.x; "/, where P.x; "/ is the polydisc of center x and

polyradius ."; : : : ; "/. The family fU"g is a basis for the neighborhoods of @D;
hence there exists " > 0 such that U" �� D0 and U" is contained in a tubular
neighborhood of @D. Then for any x 2 @D and z 2 P.x; "=2/ the Cauchy estimates
yield

j1 � ˚x.z/j D j˚x.x/ �˚x.z/j �
	
	
	
	
@˚x

@z

	
	
	
	

P.x;"=2/

kz � xk

� 2
p

n

"
k˚k@D�U"kz � xk D Mkz � xk ;

where M is independent of z and x; in these formulas kFkS denotes the supremum
of the Euclidean norm of the map F on the set S.

Put c2 D � 1
2

log M; note that c2 � 1
2

log."=2/, for k˚k@D�U" � 1. Then we again
have two cases:

(i) z 2 D \ U"=2. Choose x 2 @D so that d.z; @D/ D kz � xk. Since ˚x.D/ � �

and ˚x.z0/ D 0, we have

kD.z0; z/ � k�
�
˚x.z0/; ˚x.z/

� � 1
2

log
1

1 � j˚x.z/j :

Now,

1 � j˚x.z/j � j1 �˚x.z/j � Mkz � xk D M d.z; @D/ I

therefore

kD.z0; z/ � � 1
2

log M � 1
2

log d.z; @D/ D c2 � 1
2

log d.z; @D/

as desired.
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(ii) z 2 D n U"=2. Then d.z; @D/ � "=2; hence

kD.z0; z/ � 0 � 1
2

log."=2/� 1
2

log d.z; @D/ � c2 � 1
2

log d.z; @D/ ;

and we are done. ut
A first consequence is the promised:

Corollary 1.5.20 (Graham, [14]) Every bounded strongly pseudoconvex C2

domain D is complete hyperbolic.

Proof Take z0 2 D, r > 0 and let z 2 BD.z0; r/. Then (1.8) yields

d.z; @D/ � exp
�
2.c2 � r/

�
;

where c2 depends only on z0. Then BD.z0; r/ is relatively compact in D, and the
assertion follows from Proposition 1.2.14. ut

For dynamical applications we shall also need estimates on the Kobayashi
distance kD.z1; z2/ when both z1 and z2 are close to the boundary. The needed
estimates were proved by Forstnerič and Rosay (see [13], and [2, Corollary 2.3.55,
Theorem 2.3.56]):

Theorem 1.5.21 ([13]) Let D �� C
n be a bounded strongly pseudoconvex C2

domain, and choose two points x1, x2 2 @D with x1 ¤ x2. Then there exist "0 > 0

and K 2 R such that for any z1, z2 2 D with kzj � xjk < "0 for j D 1, 2 we have

kD.z1; z2/ � � 1
2

log d.z1; @D/ � 1
2

log d.z2; @D/C K : (1.10)

Theorem 1.5.22 ([13]) Let D �� C
n be a bounded C2 domain and x0 2 @D. Then

there exist " > 0 and C 2 R such that for all z1, z2 2 D with kzj � x0k < " for
j D 1, 2 we have

kD.z1; z2/ � 1
2

log

�

1C kz1 � z2k
d.z1; @D/

�

C 1
2

log

�

1C kz1 � z2k
d.z2; @D/

�

C C : (1.11)

We end this section by quoting a theorem, that we shall need in Chap. 6, giving
a different way of comparing the Kobayashi geometry and the Euclidean geometry
of strongly pseudoconvex domains:

Theorem 1.5.23 ([4]) Let D �� C
n be a strongly pseudoconvex C1 domain, and

R > 0. Then there exist CR > 0 depending only on R and D such that

1

CR
d.z0; @D/nC1 � �

�
BD.z0;R/

� � CRd.z0; @D/nC1

for all z0 2 D, where �
�
BD.z0;R/

�
denotes the Lebesgue volume of the Kobayashi

ball BD.z0;R/.
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Chapter 2
Dynamics in Several Complex Variables

Marco Abate

In this chapter we shall describe the dynamics of holomorphic self-maps of taut
manifolds, and in particular the dynamics of holomorphic self-maps of convex and
strongly pseudoconvex domains. A main tool in this exploration will be provided by
the Kobayashi distance.

Definition 2.0.1 Let f W X ! X be a self-map of a set X. Given k 2 N, we define the
k-th iterate f k of f setting by induction f 0 D idX , f 1 D f and f k D f ı f k�1. Given
x 2 X, the orbit of x is the set f f k.x/ j k 2 Ng.

Studying the dynamics of a self-map f means studying the asymptotic behavior
of the sequence f f kg of iterates of f ; in particular, in principle one would like to
know the behavior of all orbits. In general this is too an ambitious task; but as we
shall see it can be achieved for holomorphic self-maps of taut manifolds, because
the normality condition prevents the occurrence of chaotic behavior.

The model theorem for this theory is the famous Wolff-Denjoy theorem (for a
proof see, e.g., [2, Theorem 1.3.9]):

Theorem 2.0.2 (Wolff-Denjoy, [12, 23]) Let f 2 Hol.�;�/ n fid�g be a holo-
morphic self-map of � different from the identity. Assume that f is not an elliptic
automorphism. Then the sequence of iterates of f converges, uniformly on compact
subsets, to a constant map � 2 �.

Definition 2.0.3 Let f 2 Hol.�;�/ n fid�g be a holomorphic self-map of �
different from the identity and not an elliptic automorphism. Then the point � 2 �

whose existence is asserted by Theorem 2.0.2 is the Wolff point of f .
Actually, we can even be slightly more precise, introducing a bit of terminology.

M. Abate (�)
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Definition 2.0.4 Let f W X ! X be a self-map of a set X. A fixed point of f is a
point x0 2 X such that f .x0/ D x0. We shall denote by Fix. f / the set of fixed
points of f . More generally, we shall say that x0 2 X is periodic of period p � 1 if
f p.x0/ D x0 and f j.x0/ ¤ x0 for all j D 1; : : : ; p � 1. We shall say that f is periodic
of period p � 1 if f p D idX , that is if all points are periodic of period (at most) p.

Definition 2.0.5 Let f W X ! X be a continuous self-map of a topological space X.
We shall say that a continuous map gW X ! X is a limit map of f if there is a
subsequence of iterates of f converging to g (uniformly on compact subsets). We
shall denote by � . f / � C0.X;X/ the set of limit maps of f . If idX 2 � . f / we shall
say that f is pseudoperiodic.

Example 2.0.6 Let 
� 2 Aut.�/ be given by 
� .	/ D e2� i� 	. It is easy to check
that 
� is periodic if � 2 Q, and it is pseudoperiodic (but not periodic) if � 2 R nQ.

Definition 2.0.7 Let X and Y be two sets (topological spaces, complex manifolds,
etc.). Two self-maps f W X ! X and gW Y ! Y are conjugate if there exists a bijection
(homeomorphism, biholomorphism, etc.)  W X ! Y such that f D  �1 ı g ı  .

If f and g are conjugate via  , we clearly have f k D  �1 ı gk ı  for all k 2 N;
therefore f and g share the same dynamical properties.

Example 2.0.8 It is easy to check that any elliptic automorphism of � is (biholo-
morphically) conjugated to one of the automorphisms 
� introduced in Exam-
ple 2.0.6. Therefore an elliptic automorphism of � is necessarily periodic or
pseudoperiodic.

We can now better specify the content of Theorem 2.0.2 as follows. Take f 2
Hol.�;�/ different from the identity. We have two cases: either f has a fixed point
� 2 � or Fix. f / D ; (notice that, by the Schwarz-Pick lemma and the structure
of the automorphisms of �, the only holomorphic self-map of � with at least two
distinct fixed points is the identity). Then:

(a) If Fix. f / D f�g, then either f is an elliptic automorphism—and hence it is
periodic or pseudoperiodic—or the whole sequence of iterates converges to the
constant function � ;

(b) if Fix. f / D ; then there exists a unique point � 2 @� such that the whole
sequence of iterates converges to the constant function � .

So there is a natural dichotomy between self-maps with fixed points and self-
maps without fixed points. Our aim is to present a (suitable) generalization of the
Wolff-Denjoy theorem to taut manifolds in any (finite) dimension. Even in several
variables a natural dichotomy will appear; but it will be slightly different.
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2.1 Dynamics in Taut Manifolds

Let X be a taut manifold. Then the whole family Hol.X;X/ is normal; in particular,
if f 2 Hol.X;X/ the sequence of iterates f f kg is normal. This suggests to subdivide
the study of the dynamics of self-maps of X in three tasks:

(a) to study the dynamics of f when the sequence f f kg is not compactly divergent;
(b) to find conditions on f ensuring that the sequence f f kg is not compactly

divergent;
(c) to study the dynamics of f when the sequence f f kg is compactly divergent.

So in several variables the natural dichotomy to consider is between maps having
a compactly divergent sequence of iterates and maps whose sequence of iterates is
not compactly divergent. If f has a fixed point its sequence of iterates cannot be
compactly divergent; so this dichotomy has something to do with the dichotomy
discussed in the introduction to this section but, as we shall see, in general they are
not the same.

In this subsection we shall discuss tasks (a) and (b). To discuss task (c) we shall
need a boundary; we shall limit ourselves to discuss (in the next three subsections)
the case of bounded (convex or strongly pseudoconvex) domains in C

n.
An useful notion for our discussion is the following

Definition 2.1.1 A holomorphic retraction of a complex manifold X is a holomor-
phic self-map � 2 Hol.X;X/ such that �2 D �. In particular, �.X/ D Fix.�/. The
image of a holomorphic retraction is a holomorphic retract.

The dynamics of holomorphic retraction is trivial: the iteration stops at the second
step. On the other hand, it is easy to understand why holomorphic retractions might
be important in holomorphic dynamics. Indeed, assume that the sequence of iterates
f f kg converges to a map �. Then the subsequence f f 2kg should converge to the same
map; but f 2k D f k ı f k, and thus f f 2kg converges to � ı � too—and hence �2 D �,
that is � is a holomorphic retraction.

In dimension one, a holomorphic retraction must be either the identity or a
constant map, because of the open mapping theorem and the identity principle. In
several variables there is instead plenty of non-trivial holomorphic retractions.

Example 2.1.2 Let B2 be the unit Euclidean ball in C
2. The power series

1 � p
1 � t D

1X

kD1
cktk

is converging for jtj < 1 and has ck > 0 for all k � 1. Take gk 2 Hol.B2;C/ such
that jgk.z;w/j � ck for all .z;w/ 2 B

2, and define � 2 Hol.B2;�/ by

�.z;w/ D z C
1X

kD1
gk.z;w/w2k:
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Then �.z;w/ D �
�.z;w/; 0/ always satisfies �2 D �, and it is neither constant nor

the identity.
On the other hand, holomorphic retracts cannot be wild. This has been proven

for the first time by Rossi [22]; here we report a clever proof due to H. Cartan [11]:

Lemma 2.1.3 Let X be a complex manifold, and �W X ! X a holomorphic
retraction of X. Then the image of � is a closed submanifold of X.

Proof Let M D �.X/ be the image of �, and take z0 2 M. Choose an open
neighborhood U of z0 in X contained in a local chart for X at z0. Then V D
��1.U/ \ U is an open neighborhood of z0 contained in a local chart such that
�.V/ 	 V . Therefore without loss of generality we can assume that X is a bounded
domain D in C

n.
Set P D d�z0 WCn ! C

n, and define 'W D ! C
n by

' D idD C .2P � idD/ ı .� � P/ :

Since d'z0 D id, the map ' defines a local chart in a neighborhood of z0. Now
P2 D P and �2 D �; hence

' ı � D �C .2P � idD/ ı �2 � .2P � idD/ ı P ı �
D P ı � D P C P ı .2P � idD/ ı .� � P/ D P ı ' :

Therefore in this local chart � becomes linear, and M is a submanifold near z0. By
the arbitrariness of z0, the assertion follows. ut

Having the notion of holomorphic retraction, we can immediately explain why
holomorphic dynamics is trivial in compact hyperbolic manifolds (for a proof see,
e.g., [2, Theorem 2.4.9]):

Theorem 2.1.4 (Kaup, [17]) Let X be a compact hyperbolic manifold, and f 2
Hol.X;X/. Then there is m 2 N such that f m is a holomorphic retraction.

So from now on we shall concentrate on non-compact taut manifolds. The
basic result describing the dynamics of self-maps whose sequence of iterates is not
compactly divergent is the following:

Theorem 2.1.5 (Bedford, [7]; Abate, [1]) Let X be a taut manifold, and f 2
Hol.X;X/. Assume that the sequence f f kg of iterates of f is not compactly divergent.
Then there exists a unique holomorphic retraction � 2 � . f / onto a submanifold M
of X such that every limit map h 2 � . f / is of the form

h D 
 ı � ; (2.1)

where 
 is an automorphism of M. Furthermore, ' D f jM 2 Aut.M/ and � . f / is
isomorphic to a subgroup of Aut.M/, the closure of f'kg in Aut.M/.
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Proof Since the sequence f f kg of iterates is not compactly divergent, it must contain
a subsequence f f k�g converging to h 2 Hol.X;X/. We can also assume that p� D
k�C1 � k� and q� D p� � k� D k�C1 � 2k� tend to C1 as � ! C1, and that f f p� g
and f f q� g are either converging or compactly divergent. Now we have

lim
�!1 f p�

�
f k� .z/

� D lim
�!1 f k�C1 .z/ D h.z/

for all z 2 X; therefore f f p� g cannot be compactly divergent, and thus converges to
a map � 2 Hol.X;X/ such that

h ı � D � ı h D h : (2.2)

Next, for all z 2 X we have

lim
�!1 f q�

�
f k� .z/

� D lim
�!1 f p� .z/ D �.z/ :

Hence neither f f q� g can be compactly divergent, and thus converges to a map g 2
Hol.X;X/ such that

g ı h D h ı g D � : (2.3)

In particular

�2 D � ı � D g ı h ı � D g ı h D � ;

and � is a holomorphic retraction of X onto a submanifold M. Now (2.2) implies
h.X/ 	 M. Since g ı � D � ı g, we have g.M/ 	 M and (2.3) yields

g ı hjM D h ı gjM D idM I

hence 
 D hjM 2 Aut.M/ and (2.2) becomes (2.1).
Now, let f f k0

� g be another subsequence of f f kg converging to a map h0 2
Hol.X;X/. Arguing as before, we can assume s� D k0

� � k� and t� D k�C1 � k0
� are

converging to C1 as � ! C1, and that f f s�g and f f t� g converge to holomorphic
maps ˛ 2 Hol.X;X/, respectively ˇ 2 Hol.X;X/ such that

˛ ı h D h ı ˛ D h0 and ˇ ı h0 D h0 ı ˇ D h : (2.4)

Then h.X/ D h0.X/, and so M does not depend on the particular converging
subsequence.

We now show that � itself does not depend on the chosen subsequence. Write
h D 
1 ı �1, h0 D 
2 ı �2, ˛ D 
3 ı �3 and ˇ D 
4 ı �4, where �1, �2, �3 and �4
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are holomorphic retractions of X onto M, and 
1, 
2, 
3 and 
4 are automorphisms
of M. Then h ı h0 D h0 ı h and ˛ ı ˇ D ˇ ı ˛ together with (2.4) become


1 ı 
2 ı �2 D 
2 ı 
1 ı �1 ;

3 ı 
1 ı �1 D 
1 ı 
3 ı �3 D 
2 ı �2 ;

4 ı 
2 ı �2 D 
2 ı 
4 ı �4 D 
1 ı �1 ;

3 ı 
4 ı �4 D 
4 ı 
3 ı �3 :

(2.5)

Writing �2 in function of �1 using the first and the second equation in (2.5) we find

3 D 
�1

1 ı 
2. Writing �1 in function of �2 using the first and the third equation,
we get 
4 D 
�1

2 ı 
1. Hence 
3 D 
�1
4 and the fourth equation yields �3 D �4. But

then, using the second and third equation we obtain

�2 D 
�1
3 ı 
�1

1 ı 
2 ı �2 D �3 D �4 D 
�1
4 ı 
�1

2 ı 
1 ı �1 D �1 ;

as claimed.
Next, from f ı � D � ı f it follows immediately that f .M/ 	 M. Put ' D f jM; if

f p� ! � then f p�C1 ! ' ı �, and thus ' 2 Aut.M/.
Finally, for each limit point h D 
 ı � 2 � . f / we have 
�1 ı � 2 � . f /.

Indeed fix a subsequence f f p� g converging to �, and a subsequence f f k� g converging
to h. As usual, we can assume that p� � k� ! C1 and f p��k� ! h1 D 
1 ı �
as � ! C1. Then h ı h1 D � D h1 ı h, that is 
1 D 
�1. Hence the association
h D 
 ı � 7! 
 yields an isomorphism between � . f / and the subgroup of Aut.M/
obtained as closure of f'kg. ut
Definition 2.1.6 Let X be a taut manifold and f 2 Hol.X;X/ such that the sequence
f f kg is not compactly divergent. The manifold M whose existence is asserted in the
previous theorem is the limit manifold of the map f , and its dimension is the limit
multiplicity mf of f ; finally, the holomorphic retraction is the limit retraction of f .

It is also possible to describe precisely the algebraic structure of the group � . f /,
because it is compact. This is a consequence of the following theorem (whose proof
generalizes an argument due to Całka [10]), that, among other things, says that
if a sequence of iterates is not compactly divergent then it does not contain any
compactly divergent subsequence, and thus it is relatively compact in Hol.X;X/:

Theorem 2.1.7 (Abate, [3]) Let X be a taut manifold, and f 2 Hol.X;X/. Then the
following assertions are equivalent:

(i) the sequence of iterates f f kg is not compactly divergent;
(ii) the sequence of iterates f f kg does not contain any compactly divergent

subsequence;
(iii) f f kg is relatively compact in Hol.X;X/;
(iv) the orbit of z 2 X is relatively compact in X for all z 2 X;
(v) there exists z0 2 X whose orbit is relatively compact in X.
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Proof (v)H)(ii). Take H D fz0g and K D f f k.z0/g. Then H and K are compact
and f k.H/ \ K ¤ ; for all k 2 N, and so no subsequence of f f kg can be compactly
divergent.

(ii)H)(iii). Since Hol.X;X/ is a metrizable topological space, if f f kg is not rela-
tively compact then it admits a subsequence f f k� g with no converging subsequences.
But then, being X taut, f f k�g must contain a compactly divergent subsequence,
against (ii).

(iii)H)(iv). The evaluation map Hol.X;X/� X ! X is continuous.
(iv)H)(i). Obvious.
(i)H)(v). Let M be the limit manifold of f , and let ' D f jM . By Theorem 2.1.5

we know that ' 2 Aut.M/ and that idM 2 � .'/.
Take z0 2 M; we would like to prove that C D f'k.z0/g is relatively compact

in M (and hence in X). Choose "0 > 0 so that BM.z0; "0/ is relatively compact in M;
notice that ' 2 Aut.M/ implies that BM

�
'k.z0/; "0/ D 'k

�
BM.z0; "0/

�
is relatively

compact in M for all k 2 N. By Lemma 1.2.12 we have

BM.z0; "0/ 	 BM
�
BM.z0; 7"0=8/; "0=4

� I

hence there are w1; : : : ;wr 2 BM.z0; 7"0=8/ such that

BM.z0; "0/ \ C �
r[

jD1
BM.wj; "0=4/\ C ;

and we can assume that BM.wj; "0=4/\ C ¤ ; for j D 1; : : : ; r.
For each j D 1; : : : ; r choose kj 2 N so that 'kj.z0/ 2 BM.wj; "0=4/; then

BM.z0; "0/\ C �
r[

jD1



BM
�
'kj.z0/; "0=2

�\ C
�

(2.6)

Since idM 2 � .'/, the set I D ˚
k 2 N

ˇ
ˇ kM

�
'k.z0/; z0/ < "0=2

��
is infinite;

therefore we can find k0 2 N such that

k0 � maxf1; k1; : : : ; krg and kM
�
'k0 .z0/; z0

�
< "0=2 : (2.7)

Put

K D
k0[

kD1
BM
�
'k.z0/; "0

� I

since, by construction, K is compact, to end the proof it suffices to show that C � K.
Take h0 2 I; since the set I is infinite, it suffices to show that 'k.z0/ 2 K for all
0 � k � h0.
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Assume, by contradiction, that h0 is the least element of I such that f'k.z0/ j 0 �
k � h0g is not contained in K. Clearly, h0 > k0. Moreover, kM

�
'h0 .z0/; 'k0.z0/

�
< "0

by (2.7); thus

kM
�
'h0�j.z0/; '

k0�j.z0/
� D kM

�
'h0 .z0/; '

k0.z0/
�
< "0

for every 0 � j � k0. In particular,

' j.z0/ 2 K (2.8)

for every j D h0 � k0; : : : ; h0, and 'h0�k0 .z0/ 2 BD.z0; "0/\ C. By (2.6) we can find
1 � l � r such that kM

�
'kl.z0/; 'h0�k0 .z0/

�
< "0=2, and so

kM
�
'h0�k0�j.z0/; '

kl�j.z0/
�
< "0=2 (2.9)

for all 0 � j � minfkl; h0 � k0g. In particular, if kl � h0 � k0 then, by (2.6), (2.8)
and (2.9) we have ' j.z0/ 2 K for all 0 � j � h0, against the choice of h0. So we
must have kl < h0 � k0; set h1 D h0 � k0 � kl. By (2.9) we have h1 2 I; therefore,
being h1 < h0, we have ' j.z0/ 2 K for all 0 � j � h1. But (2.8) and (2.9) imply that
' j.z0/ 2 K for h1 � j � h0, and thus we again have a contradiction. ut
Corollary 2.1.8 (Abate, [3]) Let X be a taut manifold, and f 2 Hol.X;X/ such that
the sequence of iterates is not compactly divergent. Then � . f / is isomorphic to a
compact abelian group Zq � T

r, where Zq is the cyclic group of order q and T
r is

the real torus of dimension r.

Proof Let M be the limit manifold of f , and put ' D f jM . By Theorem 2.1.5,
� . f / is isomorphic to the closed subgroup � of Aut.M/ generated by '. We
known that Aut.M/ is a Lie group, by Theorem 1.2.16, and that � is compact,
by Theorem 2.1.7. Moreover it is abelian, being generated by a single element. It is
well known that the compact abelian Lie groups are all of the form A �T

r, where A
is a finite abelian group; to conclude it suffices to notice that A must be cyclic, again
because � is generated by a single element. ut
Definition 2.1.9 Let X be a taut manifold, and f 2 Hol.X;X/ such that the sequence
of iterates is not compactly divergent. Then the numbers q and r introduced in the
last corollary are respectively the limit period qf and the limit rank rf of f .

When f has a periodic point z0 2 X of period p � 1, it is possible to explicitly
compute the limit dimension, the limit period and the limit rank of f using the
eigenvalues of df p

z0
. To do so we need to introduce two notions.

Let m 2 N and � D .�1; : : : ; �m/ 2 Œ0; 1/m. Up to a permutation, we can assume
that �1; : : : ; ��0 2 Q and ��0C1; : : : ; �m … Q for some 0 � �0 � m (where �0 D 0

means � 2 .R n Q/m and �0 D m means� 2 Q
m).

Let q1 2 N
� be the least positive integer such that q1�1; : : : ; q1��0 2 N; if �0 D 0

we put q1 D 1. For i, j 2 f�0 C 1; : : : ;mg we shall write i � j if and only if
�i � �j 2 Q. Clearly, � is an equivalence relation; furthermore if i � j then there
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is a smallest qij 2 N
� such that qij.�i � �j/ 2 Z. Let q2 2 N

� be the least common
multiple of fqij j i � jg; we put q2 D 1 if �0 D m or i 6� j for all pairs .i; j/.

Definition 2.1.10 Let � D .�1; : : : ; �m/ 2 Œ0; 1/m. Then the period q.�/ 2 N
�

of � is the least common multiple of the numbers q1 and q2 introduced above.
Next, for j D �0 C 1; : : : ;m write � 0

j D q.�/�j � bq.�/�jc, where bsc is the
integer part of s 2 R. Since

� 0
i D � 0

j ” q.�/.�i � �j/ 2 Z ” i � j ;

the set �0 D f� 0
�0C1; : : : ; �

0
mg contains as many elements as the number of �-

equivalence classes. If this number is s, put �0 D f� 00
1 ; : : : ; �

00
s g. Write i � j if

and only if � 00
i =�

00
j 2 Q (notice that 0 … �0); clearly � is an equivalence relation.

Definition 2.1.11 Let � D .�1; : : : ; �m/ 2 Œ0; 1/m. Then the rank r.�/ 2 N is the
number of �-equivalence classes. If �0 D m then r.�/ D 0.

If X is a taut manifold and f 2 Hol.X;X/ has a fixed point z0 2 X, Theorem 1.3.10
says that all the eigenvalues of dfz0 belongs to �. Then we can prove the following:

Theorem 2.1.12 (Abate, [3]) Let X be a taut manifold of dimension n, and f 2
Hol.X;X/ with a periodic point z0 2 X of period p � 1. Let �1; : : : ; �n 2 � be the
eigenvalues of d. f p/z0 , listed accordingly to their multiplicity and so that

j�1j D � � � D j�mj D 1 > j�mC1j � � � � � j�nj

for a suitable 0 � m � n. For j D 1; : : : ;m write �j D e2� i�j with �j 2 Œ0; 1/, and
set � D .�1; : : : ; �m/. Then

mf D m ; qf D p � q.�/ and rf D r.�/ :

Proof Let us first assume that z0 is a fixed point, that is p D 1. Let M be the
limit manifold of f , and � 2 Hol.X;M/ its limit retraction. As already remarked,
by Theorem 1.3.10 the set sp.dfz0/ of eigenvalues of dfz0 is contained in �;
furthermore there is a dfz0-invariant splitting Tz0X D LN ˚ LU satisfying the
following properties:

(a) sp.dfz0 jLN / D sp.dfz0/\� and sp.dfz0 jLU / D sp.dfz0/\ @�;
(b) .dfz0 jLN /

k ! O as k ! C1;
(c) dfz0 jLU is diagonalizable.

Fix a subsequence f f k� g converging to �; in particular, .dfz0/
k� ! d�z0 as � ! C1.

Since the only possible eigenvalues of d�z0 are 0 and 1, properties (b) and (c) imply
that d�z0 jLN � O and d�z0 jLU D id. In particular, it follows that LU D Tz0M and
mf D dim Tz0M D dim LU D m, as claimed.

Set ' D f jM 2 Aut.M/. By Corollary 1.3.11, the map 
 7! d
z0 is an
isomorphism between the group of automorphisms of M fixing z0 and a subgroup
of linear transformations of Tz0M. Therefore, since d'z0 is diagonalizable by (c),
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� .'/, and hence � . f /, is isomorphic to the closed subgroup of Tm generated by
� D .�1; : : : ; �m/. So we have to prove that this latter subgroup is isomorphic to
Zq.�/ � T

r.�/. Since we know beforehand the algebraic structure of this group (it
is the product of a cyclic group with a torus), it will suffice to write it as a disjoint
union of isomorphic tori; the number of tori will be the limit period of f , and the
rank of the tori will be the limit rank of f .

Up to a permutation, we can find integers 0 � �0 < �1 < � � � < �s D m such that
�1; : : : ; ��0 2 Q, and the �-equivalence classes are

f��0C1; : : : ; ��1g; : : : ; f��s�1C1; : : : ; �mg :

Then, using the notations introduced for defining q.�/ and r.�/, we have

�q.�/ D .1; : : : ; 1; e2� i� 00

1 ; : : : ; e2� i� 00

1 ; e2� i� 00

2 ; : : : ; e2� i� 00

2 ; : : : ; e2� i� 00

s ; : : : ; e2� i� 00

s / :

This implies that it suffices to show that the subgroup generated by

�1 D .e2� i� 00

1 ; : : : ; e2� i� 00

s /

in T
s is isomorphic to T

r.�/.
Up to a permutation, we can assume that the �-equivalence classes are

f� 00
1 ; : : : ; �

00
�1

g; : : : ; f� 00
�r�1C1; : : : ; �

00
s g ;

for suitable 1 � �1 < � � � < �r D s, where r D r.�/. Now, by definition of � we
can find natural numbers pj 2 N

� for 1 � j � s such that

e2� ip1� 00

1 D � � � D e2� ip�1�
00

�1 ;

:::

e2� ip�r�1C1�
00

�r�1C1 D � � � D e2� ips�
00

s ;

and no other relations of this kind can be found among � 00
1 ; : : : ; �

00
s . It follows that

f�k
1gk2N is dense in the subgroup of Ts defined by the equations

�
p1
1 D � � � D �p�1 ; : : : ; �

p�t�1C1

�r�1C1 D � � � D �ps
s ;

which is isomorphic to T
r , as claimed.

Now assume that z0 is periodic of period p, and let �f be the limit retraction
of f . Since �f is the unique holomorphic retraction in � . f /, and � . f p/ 	 � . f /,
it follows that �f is the limit retraction of f p too. In particular, the limit manifold
of f coincides with the limit manifold of f p, and hence mf D mf p D m. Finally,
� . f /=� . f p/ � Zp, because f j.z0/ ¤ z0 for 1 � j < p; hence � . f / and � . f p/ have
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the same connected component at the identity (and hence rf D rf p ), and qf D pqf p

follows by counting the number of connected components in both groups. ut
If f 2 Hol.X;X/ has a periodic point then the sequence of iterates is clearly not

compactly divergent. The converse is in general false, as shown by the following
example:

Example 2.1.13 Let D �� C
2 be given by

D D ˚
.z;w/ 2 C

2
ˇ
ˇ jzj2 C jwj2 C jwj�2 < 3� :

The domain D is strongly pseudoconvex domain, thus taut, but not simply con-
nected. Given � 2 R and " D ˙1, define f 2 Hol.D;D/ by

f .z;w/ D .z=2; e2� i�w"/ :

Then the sequence of iterates of f is never compactly divergent, but f has no periodic
points as soon as � … Q. Furthermore, the limit manifold of f is the annulus

M D ˚
.0;w/ 2 C

2
ˇ
ˇ jwj2 C jwj�2 < 3� ;

the limit retraction is �.z;w/ D .0;w/, and suitably choosing " and � we can obtain
as � . f / any compact abelian subgroup of Aut.M/.

It turns out that self-maps without periodic points but whose sequence of iterates
is not compactly divergent can exist only when the topology of the manifold is
complicated enough. Indeed, using deep results on the actions of real tori on
manifolds, it is possible to prove the following

Theorem 2.1.14 (Abate, [3]) Let X be a taut manifold with finite topological type
and such that Hj.X;Q/ D .0/ for all odd j. Take f 2 Hol.X;X/. Then the sequence
of iterates of f is not compactly divergent if and only if f has a periodic point.

When X D � a consequence of the Wolff-Denjoy theorem is that the sequence of
iterates of a self-map f 2 Hol.�;�/ is not compactly divergent if and only if f has
a fixed point, which is an assumption easier to verify than the existence of periodic
points. It turns out that we can generalize this result to convex domains (see also
[19] for a different proof):

Theorem 2.1.15 (Abate, [1]) Let D �� C
n be a bounded convex domain. Take

f 2 Hol.D;D/. Then the sequence of iterates of f is not compactly divergent if and
only if f has a fixed point.

Proof One direction is obvious; conversely, assume that f f kg is not compactly
divergent, and let �W D ! M be the limit retraction. First of all, note that kM D
kDjM�M . In fact

kD.z1; z2/ � kM.z1; z2/ D kM
�
�.z1/; �.z2/

� � kD.z1; z2/
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for every z1, z2 2 M. In particular, a Kobayashi ball in M is nothing but the
intersection of a Kobayashi ball of D with M.

Let ' D f jM , and denote by � the closed subgroup of Aut.M/ generated by ';
we know, by Corollary 2.1.8, that � is compact. Take z0 2 M; then the orbit

� .z0/ D ˚

.z0/

ˇ
ˇ 
 2 � �

is compact and contained in M. Let

C D
n
BD.w; r/

ˇ
ˇ
ˇ w 2 M; r > 0 and BD.w; r/ 
 � .z0/

o
:

Every BD.w; r/ is compact and convex (by Corollary 1.4.11); therefore, C D T
C is

a not empty compact convex subset of D. We claim that f .C/ � C.
Let z 2 C; we have to show that f .z/ 2 BD.w; r/ for every w 2 M and r > 0 such

that BD.w; r/ 
 � .z0/. Now, BD.'�1.w/; r/ 2 C : in fact

BD.'�1.w/; r/ \ M D '�1�BD.w; r/ \ M
� 
 '�1�� .z0/

� D � .z0/ :

Therefore z 2 BD.'�1.w/; r/ and

kD
�
w; f .z/

� D kD

�
f
�
'�1.w/

�
; f .z/


� kD

�
'�1.w/; z

� � r ;

that is f .z/ 2 BD.w; r/, as we want.
In conclusion, f .C/ � C; by Brouwer’s theorem, f must have a fixed point in C.

ut
The topology of convex domains is particularly simple: indeed, convex domains

are topologically contractible, that is they have a point as (continuous) retract of
deformation. Using very deep properties of the Kobayashi distance in strongly
pseudoconvex domains, outside of the scope of these notes, Huang has been able
to generalize Theorem 2.1.15 to topologically contractible strongly pseudoconvex
domains:

Theorem 2.1.16 (Huang, [15]) Let D �� C
n be a bounded topologically con-

tractible strongly pseudoconvex C3 domain. Take f 2 Hol.D;D/. Then the sequence
of iterates of f is not compactly divergent if and only if f has a fixed point.

This might suggest that such a statement might be extended to taut manifolds (or
at least to taut domains) topologically contractible. Surprisingly, this is not true:

Theorem 2.1.17 (Abate-Heinzner, [5]) There exists a bounded domain D ��
C
8 which is taut, homeomorphic to C

8 (and hence topologically contractible),
pseudoconvex, and strongly pseudoconvex at all points of @D but one, where a finite
cyclic group acts without fixed points.

This completes the discussion of tasks (a) and (b). In the next two subsections we
shall describe how it is possible to use the Kobayashi distance to deal with task (c).
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2.2 Horospheres and the Wolff-Denjoy Theorem

When f 2 Hol.�;�/ has a fixed point 	0 2 �, the Wolff-Denjoy theorem is an
easy consequence of the Schwarz-Pick lemma. Indeed if f is an automorphism the
statement is clear; if it is not an automorphism, then f is a strict contraction of
any Kobayashi ball centered at 	0, and thus the orbits must converge to the fixed
point 	0. When f has no fixed points, this argument fails because there are no f -
invariant Kobayashi balls. Wolff had the clever idea of replacing Kobayashi balls by
a sort of balls “centered” at points in the boundary, the horocycles, and he was able
to prove the existence of f -invariant horocycles—and thus to complete the proof of
the Wolff-Denjoy theorem.

This is the approach we shall follow to prove a several variable version of the
Wolff-Denjoy theorem in strongly pseudoconvex domains, using the Kobayashi
distance to define a general notion of multidimensional analogue of the horocycles,
the horospheres. This notion, introduced in [1], is behind practically all known
generalizations of the Wolff-Denjoy theorem; and it has found other applications
as well (see, e.g., the survey paper [4] and other chapters in this book).

Definition 2.2.1 Let D �� C
n be a bounded domain. Then the small horosphere

of center x0 2 @D, radius R > 0 and pole z0 2 D is the set

Ez0 .x0;R/ D ˚
z 2 D

ˇ
ˇ lim sup

w!x0
ŒkD.z;w/ � kD.z0;w/� < 1

2
log R

� I

the large horosphere of center x0 2 @D, radius R > 0 and pole z0 2 D is the set

Fz0 .x0;R/ D ˚
z 2 D

ˇ
ˇ lim inf

w!x0
ŒkD.z;w/ � kD.z0;w/� <

1
2

log R
�
:

The rationale behind this definition is the following. A Kobayashi ball of center
w 2 D and radius r is the set of z 2 D such that kD.z;w/ < r. If we let w go
to a point in the boundary kD.z;w/ goes to infinity (at least when D is complete
hyperbolic), and so we cannot use it to define subsets of D. We then renormalize
kD.z;w/ by subtracting the distance kD.z0;w/ from a reference point z0. By the
triangular inequality the difference kD.z;w/ � kD.z0;w/ is bounded by kD.z0; z/;
thus we can consider the liminf and the limsup as w goes to x0 2 @D (in general, the
limit does not exist; an exception is given by strongly convex C3 domains, see [2,
Corollary 2.6.48]), and the sublevels provide some sort of balls centered at points in
the boundary.

The following lemma contains a few elementary properties of the horospheres,
which are an immediate consequence of the definition (see, e.g., [2, Lemmas 2.4.10
and 2.4.11]):

Lemma 2.2.2 Let D �� C
n be a bounded domain of Cn, and choose z0 2 D and

x 2 @D. Then:

(i) for every R > 0 we have Ez0 .x;R/ � Fz0 .x;R/;
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(ii) for every 0 < R1 < R2 we have Ez0 .x;R1/ � Ez0.x;R2/ and Fz0.x;R1/ �
Fz0.x;R2/;

(iii) for every R > 1 we have BD.z0; 12 log R/ � Ez0.x;R/;
(iv) for every R < 1 we have Fz0 .x;R/\ BD.z0;� 1

2
log R/ D ;;

(v)
S

R>0
Ez0 .x;R/ D S

R>0
Fz0 .x;R/ D D and

T

R>0
Ez0 .x;R/ D T

R>0
Fz0 .x;R/ D ;;

(vi) if ' 2 Aut.D/ \ C0.D;D/, then for every R > 0

'
�
Ez0 .x;R/

� D E'.z0/
�
'.x/;R

�
and '

�
Fz0 .x;R/

� D F'.z0/
�
'.x/;R

� I
(vii) if z1 2 D, set

1
2

log L D lim sup
w!x



kD.z1;w/ � kD.z0;w/

�
:

Then for every R > 0 we have Ez1.x;R/ 	 Ez0.x;LR/ and Fz1 .x;R/ 	
Fz0.x;LR/.

It is also easy to check that the horospheres with pole at the origin in Bn (and thus
in �) coincide with the classical horospheres:

Lemma 2.2.3 If x 2 @Bn and R > 0 then

EO.x;R/ D FO.x; r/ D
�

z 2 B
n

ˇ
ˇ
ˇ
ˇ

j1 � hz; xij2
1 � kzk2 < R

�

:

Proof If z 2 B
n n fOg, let 
zWBn ! C

n be given by


z.w/ D z � Pz.w/ � .1 � kzk2/1=2�w � Pz.w/
�

1 � hw; zi ; (2.10)

where Pz.w/ D hw;zi
hz;zi z is the orthogonal projection on Cz; we shall also put 
O D

idBn . It is easy to check that 
z.z/ D O, that 
z.B
n/ 	 B

n and that 
z ı 
z D idBn ; in
particular, 
z 2 Aut.Bn/. Furthermore,

1 � k
z.w/k2 D .1 � kzk2/.1 � kwk2/
j1 � hw; zij2 :

Therefore for all w 2 B
n we get

kBn.z;w/ � kBn.O;w/ D kBn

�
O; 
z.w/

� � kBn.O;w/

D 1
2

log

�
1C k
z.w/k
1C kwk � 1 � kwk

1 � k
z.w/k
�

D log
1C k
z.w/k
1C kwk C 1

2
log

j1 � hw; zij2
1� kzk2 :

Letting w ! x we get the assertion, because k
z.x/k D 1. ut
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Thus in B
n small and large horospheres coincide. Furthermore, the horospheres

with pole at the origin are ellipsoids tangent to @Bn in x, because an easy
computation yields

EO.x;R/ D
�

z 2 B
n

ˇ
ˇ
ˇ
ˇ

kPx.z/ � .1 � r/xk2
r2

C kz � Px.z/k2
r

< 1

�

;

where r D R=.1C R/. In particular if � 2 @� we have

E0.�;R/ D ˚
	 2 � ˇ

ˇ j	 � .1 � r/� j2 < r2
�
;

and so a horocycle is an Euclidean disk internally tangent to @� in � .
Another domain where we can explicitly compute the horospheres is the

polydisc; in this case large and small horospheres are actually different (see, e.g.,
[2, Proposition 2.4.12]):

Proposition 2.2.4 Let x 2 @�n and R > 0. Then

EO.x;R/ D
(

z 2 �n

ˇ
ˇ
ˇ
ˇ
ˇ
max

j

� jxj � zjj2
1� jzjj2

ˇ
ˇ
ˇ
ˇ
ˇ
jxjj D 1

�

< R

)

I

FO.x;R/ D
(

z 2 �n

ˇ
ˇ
ˇ
ˇ
ˇ
min

j

� jxj � zjj2
1 � jzjj2

ˇ
ˇ
ˇ
ˇ
ˇ
jxjj D 1

�

< R

)

:

The key in the proof of the classical Wolff-Denjoy theorem is the

Theorem 2.2.5 (Wolff’s Lemma, [23]) Let f 2 Hol.�;�/ without fixed points.
Then there exists a unique � 2 @� such that

f
�
E0.�;R/

� 	 E0.�;R/ (2.11)

for all R > 0.

Proof For the uniqueness, assume that (2.11) holds for two distinct points � , �1 2
@�. Then we can construct two horocycles, one centered at � and the other centered
at �1, tangent to each other at a point of �. By (2.11) this point would be a fixed
point of f , contradiction.

For the existence, pick a sequence fr�g � .0; 1/ with r� ! 1, and set f� D r� f .
Then f�.�/ is relatively compact in �; by Brouwer’s theorem each f� has a fixed
point �� 2 �. Up to a subsequence, we can assume �� ! � 2 �. If � were in �,
we would have

f .�/ D lim
�!1 f�.��/ D lim

�!1 �� D � ;

which is impossible; therefore � 2 @�.
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Now, by the Schwarz-Pick lemma we have k�
�

f�.	/; ��
� � k�.	; ��/ for all

	 2 �; recalling the formula for the Poincaré distance we get

1 �
ˇ
ˇ
ˇ
ˇ

f�.	/� ��

1 � �� f�.	/

ˇ
ˇ
ˇ
ˇ

2

� 1 �
ˇ
ˇ
ˇ
ˇ
	 � ��
1 � ��	

ˇ
ˇ
ˇ
ˇ

2

;

or, equivalently,

j1 � �� f�.	/j2
1 � j f�.	/j2 � j1� ��	j2

1 � j	j2 :

Taking the limit as � ! 1 we get

j1� � f .	/j2
1 � j f .	/j2 � j1 � �	j2

1 � j	j2 ;

and the assertion follows. ut
With this result it is easy to conclude the proof of the Wolff-Denjoy theorem.

Indeed, if f 2 Hol.�;�/ has no fixed points we already know that the sequence
of iterates is compactly divergent, which means that the image of any limit h
of a converging subsequence is contained in @�. By the maximum principle, the
map h must be constant; and by Wolff’s lemma this constant must be contained
in E0.�;R/ \ @� D f�g. So every converging subsequence of f f kg must converge
to the constant � ; and this is equivalent to saying that the whole sequence of iterates
converges to the constant map � .

Remark 2.2.6 Let me make more explicit the final argument used here, because
we are going to use it often. Let D �� C

n be a bounded domain; in particular,
it is (hyperbolic and) relatively compact inside an Euclidean ball B, which is
complete hyperbolic and hence taut. Take now f 2 Hol.D;D/. Since Hol.D;D/ �
Hol.D;B/, the sequence of iterates f f kg is normal in Hol.D;B/; but since D is
relatively compact in B, it cannot contain subsequences compactly divergent in B.
Therefore f f kg is relatively compact in Hol.D;B/; and since the latter is a metrizable
topological space, to prove that f f kg converges in Hol.D;B/ it suffices to prove that
all converging subsequences of f f kg converge to the same limit (whose image will
be contained in D, clearly).

The proof of the Wolff-Denjoy theorem we described is based on two ingredients:
the existence of a f -invariant horocycle, and the fact that a horocycle touches the
boundary in exactly one point. To generalize this argument to several variables we
need an analogous of Theorem 2.2.5 for our multidimensional horospheres, and then
we need to know how the horospheres touch the boundary.

There exist several multidimensional versions of Wolff’s lemma; we shall present
three of them (Theorems 2.2.10, 2.4.2 and 2.4.17). To state the first one we need a
definition.

Definition 2.2.7 Let D � C
n be a domain in C

n. We say that D has simple boundary
if every ' 2 Hol.�;Cn/ such that '.�/ 	 D and '.�/\ @D ¤ ; is constant.
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Remark 2.2.8 It is easy to prove (see, e.g., [2, Proposition 2.1.4]) that if D has
simple boundary and Y is any complex manifold then every f 2 Hol.Y;Cn/ such
that f .Y/ 	 D and f .Y/ \ @D ¤ ; is constant.

Remark 2.2.9 By the maximum principle, every domain D � C
n admitting a peak

function at each point of its boundary is simple. For instance, strongly pseudoconvex
domain (Theorem 1.5.18) and (not necessarily smooth) strictly convex domains
(Remark 1.4.6) have simple boundary.

Then we are able to prove the following

Theorem 2.2.10 (Abate, [3]) Let D �� C
n be a complete hyperbolic bounded

domain with simple boundary, and take f 2 Hol.D;D/ with compactly divergent
sequence of iterates. Fix z0 2 D. Then there exists x0 2 @D such that

f p
�
Ez0 .x0;R/

� 	 Fz0.x0;R/

for all p 2 N and R > 0.

Proof Since D is complete hyperbolic and f f kg is compactly divergent, we have
kD
�
z0; f k.z0/

� ! C1 as k ! C1. Given � 2 N, let k� be the largest k such that
kD
�
z0; f k.z0/

� � �. In particular for every p > 0 we have

kD
�
z0; f

k� .z0/
� � � < kD

�
z0; f

k�Cp.z0/
�
: (2.12)

Since D is bounded, up to a subsequence we can assume that f f k� g converges to a
holomorphic h 2 Hol.D;Cn/. But f f kg is compactly divergent; therefore h.D/ � @D
and so h � x0 2 @D, because D has simple boundary (see Remark 2.2.8).

Put w� D f k� .z0/. We have w� ! x0; as a consequence for every p > 0 we have
f p.w�/ D f k�

�
f p.z0/

� ! x0 and

lim sup
�!C1



kD.z0;w�/ � kD

�
z0; f

p.w�/
�� � 0

by (2.12). Take z 2 Ez0.x0;R/; then we have

lim inf
w!x0



kD
�

f p.z/;w
� � kD.z0;w/

� � lim inf
�!C1



kD
�

f p.z/; f p.w�/
� � kD

�
z0; f

p.w�/
��

� lim inf
�!C1



kD.z;w�/ � kD

�
z0; f

p.w�/
��

� lim sup
�!C1



kD.z;w�/ � kD.z0;w�/

�

C lim sup
�!C1



kD.z0;w�/� kD

�
z0; f

p.w�/
��

� lim sup
�!C1



kD.z;w�/ � kD.z0;w�/

�
< 1

2
log R ;

that is f p.z/ 2 Fz0 .x0;R/, and we are done. ut



42 M. Abate

The next step consists in determining how the large horospheres touch the
boundary. The main tools here are the boundary estimates seen in Sect. 1.5:

Theorem 2.2.11 (Abate, [1]) Let D �� C
n be a bounded strongly pseudoconvex

domain. Then

Ez0.x0;R/\ @D D Fz0 .x0;R/\ @D D fx0g
for every z0 2 D, x0 2 @D and R > 0.

Proof We begin by proving that x0 belongs to the closure of Ez0 .x0;R/. Let " > 0 be
given by Theorem 1.5.22; then, recalling Theorem 1.5.19, for every z, w 2 D with
kz � x0k, kw � x0k < " we have

kD.z;w/ � kD.z0;w/ � 1
2

log

�

1C kz � wk
d.z; @D/

�

C 1
2

log


d.w; @D/C kz � wk�C K ;

for a suitable constant K 2 R depending only on x0 and z0. In particular, as soon as
kz � xk < " we get

lim sup
w!x

ŒkD.z;w/�kD.z0;w/� � 1
2

log

�

1C kz � xk
d.z; @D/

�

C 1
2

log kz�xkCK : (2.13)

So if we take a sequence fz�g � D converging to x0 so that fkz� � x0k=d.z�; @D/g
is bounded ( for instance, a sequence converging non-tangentially to x0), then for
every R > 0 we have z� 2 Ez0 .x0;R/ eventually, and thus x0 2 Ez0.x0;R/.

To conclude the proof, we have to show that x0 is the only boundary point
belonging to the closure of Fz0 .x0;R/. Suppose, by contradiction, that there exists
y 2 @D \ Fz0.x0;R/ with y ¤ x0; then we can find a sequence fz�g � Fz0 .x0;R/
with z� ! y.

Theorem 1.5.21 provides us with " > 0 and K 2 R associated to the pair .x0; y/;
we may assume kz� � yk < " for all � 2 N. Since z� 2 Fz0 .x0;R/, we have

lim inf
w!x



kD.z�;w/� kD.z0;w/

�
< 1

2
log R

for every � 2 N; therefore for each � 2 N we can find a sequence fw��g � D such
that lim

�!1 w�� D x0 and

lim
�!1



kD.z�;w��/� kD.z0;w��/

�
< 1

2
log R :

Moreover, we can assume kw�� � xk < " and kD.z�;w��/ � kD.z0;w��/ <
1
2

log R
for all �, � 2 N.

By Theorem 1.5.21 for all �, � 2 N we have

1
2

log R > kD.z�;w��/ � kD.z0;w��/

� � 1
2

log d.z�; @D/ � 1
2

log d.w��; @D/ � kD.z0;w��/� K :
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On the other hand, Theorem 1.5.16 yields c1 > 0 (independent of w��) such that

kD.z0;w��/ � c1 � 1
2

log d.w��; @D/

for every �, � 2 N. Therefore

1
2

log R > � 1
2

log d.z�; @D/ � K � c1

for every � 2 N, and, letting � go to infinity, we get a contradiction. ut
We are then able to prove a Wolff-Denjoy theorem for strongly pseudoconvex

domains:

Theorem 2.2.12 (Abate, [3]) Let D �� C
n be a strongly pseudoconvex C2

domain. Take f 2 Hol.D;D/ with compactly divergent sequence of iterates. Then
f f kg converges to a constant map x0 2 @D.

Proof Fix z0 2 D, and let x0 2 @D be given by Theorem 2.2.10. Since D is bounded,
it suffices to prove that every subsequence of f f kg converging in Hol.D;Cn/ actually
converges to the constant map x0.

Let h 2 Hol.D;Cn/ be the limit of a subsequence of iterates. Since f f kg is
compactly divergent, we must have h.D/ � @D. Hence Theorem 2.2.10 implies
that

h
�
Ez0.x0;R/

� 	 Fz0 .x0;R/\ @D

for any R > 0; since (Theorem 2.2.11) Fz0 .x0;R/ \ @D D fx0g we get h � x0, and
we are done. ut
Remark 2.2.13 The proof of Theorem 2.2.12 shows that we can get such a
statement in any complete hyperbolic domain with simple boundary satisfying
Theorem 2.2.11; and the proof of the latter theorem shows that what is actually
needed are suitable estimates on the boundary behavior of the Kobayashi distance.
Using this remark, it is possible to extend Theorem 2.2.12 to some classes of weakly
pseudoconvex domains; see, e.g., Ren-Zhang [21] and Khanh-Thu [18].

2.3 Strictly Convex Domains

The proof of Theorem 2.2.12 described in the previous subsection depends in an
essential way on the fact that the boundary of the domain D is of class at least C2.
Recently, Budzyńska [8] (see also [9]) found a way to prove Theorem 2.2.12 in
strictly convex domains without any assumption on the smoothness of the boundary;
in this subsection we shall describe a simplified approach due to Abate and Raissy
[6].
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The result which is going to replace Theorem 2.2.11 is the following:

Proposition 2.3.1 Let D � C
n be a hyperbolic convex domain, z0 2 D, R > 0 and

x 2 @D. Then we have Œx; z� � Fz0.x;R/ for all z 2 Fz0.x;R/. Furthermore,

x 2
\

R>0

Fz0.x;R/ 	 ch.x/ : (2.14)

In particular, if x is a strictly convex point then
T

R>0
Fz0.x;R/ D fxg.

Proof Given z 2 Fz0.x;R/, choose a sequence fw�g � D converging to x and such
that the limit of kD.z;w�/� kD.z0;w�/ exists and is less than 1

2
log R. Given 0 < s <

1, let hs
�W D ! D be defined by

hs
�.w/ D sw C .1 � s/w�

for every w 2 D; then hs
�.w�/ D w� . In particular,

lim sup
�!C1



kD
�
hs
�.z/;w�/� kD.z0;w�/

� � lim
�!C1



kD.z;w�/ � kD.z0;w�/

�
< 1

2
log R :

Furthermore we have
ˇ
ˇkD
�
sz C .1 � s/x;w�

� � kD
�
hs
�.z/;w�

�ˇ
ˇ � kD

�
sz C .1 � s/w� ; sz C .1 � s/x

� ! 0

as � ! C1. Therefore

lim inf
w!x



kD
�
sz C .1 � s/x;w

� � kD.z0;w/
�

� lim sup
�!C1



kD
�
sz C .1 � s/x;w�

� � kD.z0;w�/
�

� lim sup
�!C1



kD
�
hs
�.z/;w�

� � kD.z0;w�/
�

C lim
�!C1



kD
�
sz C .1 � s/x;w�

� � kD
�
hs
�.z/;w�

��

< 1
2

log R ;

and thus sz C .1 � s/x 2 Fz0 .x;R/. Letting s ! 0 we also get x 2 Fz0.x;R/, and we
have proved the first assertion for z 2 Fz0 .x;R/. If z 2 @Fz0.x;R/, it suffices to apply
what we have just proved to a sequence in Fz0.x;R/ approaching z.

In particular we have thus shown that x 2 T
R>0 Fz0 .x;R/. Moreover this

intersection is contained in @D, by Lemma 2.2.2. Take y 2 TR>0 Fz0 .x;R/ different
from x. Then the whole segment Œx; y� must be contained in the intersection, and
thus in @D; hence y 2 ch.x/, and we are done. ut

We can now prove a Wolff-Denjoy theorem in strictly convex domains without
any assumption on the regularity of the boundary:
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Theorem 2.3.2 (Budzyńska, [8]; Abate-Raissy, [6]) Let D �� C
n be a bounded

strictly convex domain, and take f 2 Hol.D;D/ without fixed points. Then the
sequence of iterates f f kg converges to a constant map x 2 @D.

Proof Fix z0 2 D, and let x 2 @D be given by Theorem 2.2.10, that can be applied
because strictly convex domains are complete hyperbolic (by Proposition 1.4.8) and
have simple boundary (by Remark 2.2.9). So, since D is bounded, it suffices to prove
that every converging subsequence of f f kg converges to the constant map x.

Assume that f f k� g converges to a holomorphic map h 2 Hol.D;Cn/. Clearly,
h.D/ � D; since the sequence of iterates is compactly divergent (Theorem 2.1.15),
we have h.D/ � @D; since D has simple boundary, it follows that h � y 2 @D. So
we have to prove that y D x.

Take R > 0, and choose z 2 Ez0 .x;R/. Then Theorem 2.2.10 yields y D h.z/ 2
Fz0.x;R/ \ @D. Since this holds for all R > 0 we get y 2 T

R>0 Fz0.x;R/, and
Proposition 2.3.1 yields the assertion. ut

2.4 Weakly Convex Domains

The approach leading to Theorem 2.3.2 actually yields results for weakly convex
domains too, even though we cannot expect in general the convergence to a constant
map.

Example 2.4.1 Let f 2 Hol.�2;�2/ be given by

f .z;w/ D
�

z C 1=2

1C z=2
;w

�

:

Then it is easy to check that the sequence of iterates of f converges to the non-
constant map h.z;w/ D .1;w/.

The first observation is that we have a version of Theorem 2.2.10 valid in all
convex domains, without the requirement of simple boundary:

Theorem 2.4.2 ([1]) Let D �� C
n be a bounded convex domain, and take a map

f 2 Hol.D;D/ without fixed points. Then there exists x 2 @D such that

f k
�
Ez0.x;R/

� � Fz0.x;R/

for every z0 2 D, R > 0 and k 2 N.

Proof Without loss of generality we can assume that O 2 D. For � > 0 let f� 2
Hol.D;D/ be given by

f�.z/ D
�

1 � 1

�

�

f .z/ I
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then f�.D/ is relatively compact in D and f� ! f as � ! C1. By Brouwer’s
theorem, every f� has a fixed point w� 2 D. Up to a subsequence, we may assume
that fw�g converges to a point x 2 D. If x 2 D, then

f .x/ D lim
�!1 f�.w�/ D lim

�!1 w� D x ;

impossible; therefore x 2 @D.
Now fix z 2 Ez0.x;R/ and k 2 N. We have

ˇ
ˇkD
�

f k
� .z/;w�

� � kD
�

f k.z/;w�
�ˇ
ˇ � kD

�
f k
� .z/; f

k.z/
� �! 0

as � ! C1. Since w� is a fixed point of f k
� for every k 2 N, we then get

lim inf
w!x



kD. f k.z/;w/ � kD.z0;w/

� � lim inf
�!C1



kD. f k.z/;w�/� kD.z0;w�/

�

� lim sup
�!C1



kD
�

f k
� .z/;w�

� � kD.z0;w�/
�

C lim
�!C1



kD
�

f k.z/;w�
� � kD

�
f k
� .z/;w�

��

� lim sup
�!C1



kD
�
z;w�

� � kD.z0;w�/
�

� lim sup
w!x



kD
�
z;w

� � kD.z0;w/
�
< 1

2
log R ;

and f k.z/ 2 Fz0 .x;R/. ut
When D has C2 boundary this is enough to get a sensible Wolff-Denjoy theorem,

because of the following result:

Proposition 2.4.3 ([6]) Let D �� C
n be a bounded convex domain with C2

boundary, and x 2 @D. Then for every z0 2 D and R > 0 we have

Fz0.x;R/\ @D 	 Ch.x/ :

In particular, if x is a strictly C-linearly convex point then Fz0 .x;R/\ @D D fxg.
To simplify subsequent statements, let us introduce a definition.

Definition 2.4.4 Let D � C
n be a hyperbolic convex domain, and f 2 Hol.D;D/

without fixed points. The target set of f is defined as

T. f / D
[

h

h.D/ 	 @D ;

where the union is taken with respect to all the holomorphic maps h 2 Hol.D;Cn/

obtained as limit of a subsequence of iterates of f . We have T. f / 	 @D because the
sequence of iterates f f kg is compactly divergent.
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As a consequence of Proposition 2.4.3 we get:

Corollary 2.4.5 ([6]) Let D �� C
n be a C2 bounded convex domain, and f 2

Hol.D;D/ without fixed points. Then there exists x0 2 @D such that

T. f / 	 Ch.x0/ :

In particular, if D is strictly C-linearly convex then the sequence of iterates f f kg
converges to the constant map x0.

Proof Let x0 2 @D be given by Theorem 2.4.2, and fix z0 2 D. Given z 2 D, choose
R > 0 such that z 2 Ez0.x0;R/. If h 2 Hol.D;Cn/ is the limit of a subsequence of
iterates then Theorem 2.4.2 and Proposition 2.4.3 yield

h.z/ 2 Fz0.x;R/\ @D � Ch.x0/ ;

and we are done. ut
Remark 2.4.6 Zimmer [24] has proved Corollary 2.4.5 for bounded convex domains
with C1;˛ boundary. We conjecture that it should hold for strictly C-linearly convex
domains without smoothness assumptions on the boundary.

Let us now drop any smoothness or strict convexity condition on the boundary.
In this general context, an useful result is the following:

Lemma 2.4.7 Let D � C
n be a convex domain. Then for every connected complex

manifold X and every holomorphic map hW X ! C
n such that h.X/ � D and h.X/\

@D ¤ ; we have

h.X/ 	
\

z2X

Ch
�
h.z/

� 	 @D :

Proof Take x0 D h.z0/ 2 h.X/\@D, and let be the weak peak function associated
to a complex supporting functional L at x0. Then  ı h is a holomorphic function
with modulus bounded by 1 and such that  ı h.z0/ D 1; by the maximum principle
we have  ı h � 1, and hence L ı h � L.x0/. In particular, h.X/ 	 @D.

Since this holds for all complex supporting hyperplanes at x0 we have shown that
h.X/ 	 Ch

�
h.z0/

�
; but since we know that h.X/ 	 @D we can repeat the argument

for any z0 2 X, and we are done. ut
We can then prove a weak Wolff-Denjoy theorem:

Proposition 2.4.8 Let D �� C
n be a bounded convex domain, and f 2 Hol.D;D/

without fixed points. Then there exists x 2 @D such that for any z0 2 D we have

T. f / 	
\

R>0

Ch
�
Fz0.x;R/ \ @D

�
: (2.15)
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Proof Let x 2 @D be given by Theorem 2.4.2. Choose z0 2 D and R > 0, and take
z 2 Ez0.x;R/. Let h 2 Hol.D;Cn/ be obtained as limit of a subsequence of iterates
of f . Arguing as usual we know that h.D/ 	 @D; therefore Theorem 2.4.2 yields
h.z/ 2 Fz0.x;R/ \ @D. Then Lemma 2.4.7 yields

h.D/ 	 Ch
�
h.z/

� 	 Ch
�
Fz0.x;R/ \ @D

�
:

Since z0 and R are arbitrary, we get the assertion. ut
Remark 2.4.9 Using Lemma 2.2.2 it is easy to check that the intersection in (2.15)
is independent of the choice of z0 2 D.

Unfortunately, large horospheres can be too large. For instance, take .�1; �2/ 2
@� � @�. Then Proposition 2.2.4 says that the horosphere of center .�1; �2/ in the
bidisk are given by

FO
�
.�1; �2/;R

� D E0.�1;R/ �� [� � E0.�2;R/ ;

where E0.�;R/ is the horocycle of center � 2 @� and radius R > 0 in the unit
disk �, and a not difficult computation shows that

Ch
�
FO
�
.�1; �2/;R

� \ @�2
� D @�2 ;

making the statement of Proposition 2.4.8 irrelevant. So to get an effective statement
we need to replace large horospheres with smaller sets.

Small horospheres might be too small; as shown by Frosini [13], there are
holomorphic self-maps of the polydisk with no invariant small horospheres. We thus
need another kind of horospheres, defined by Kapeluszny, Kuczumow and Reich
[16], and studied in detail by Budzyńska [8]. To introduce them we begin with a
definition:

Definition 2.4.10 Let D �� C
n be a bounded domain, and z0 2 D. A sequence

x D fx�g � D converging to x 2 @D is a horosphere sequence at x if the limit of
kD.z; x�/� kD.z0; x�/ as � ! C1 exists for all z 2 D.

Remark 2.4.11 It is easy to see that the notion of horosphere sequence does not
depend on the point z0.

Horosphere sequences always exist. This follows from a topological lemma:

Lemma 2.4.12 ([20]) Let .X; d/ be a separable metric space, and for each � 2 N

let a� W X ! R be a 1-Lipschitz map, i.e., ja�.x/ � a�.y/j � d.x; y/ for all x, y 2 X.
If for each x 2 X the sequence fa�.x/g is bounded, then there exists a subsequence
fa�jg of fa�g such that limj!1 a�j.x/ exists for each x 2 X.

Proof Take a countable sequence fxjgj2N � X dense in X. Clearly, the sequence
fa�.x0/g � R admits a convergent subsequence fa�;0.x0/g. Analogously, the
sequence fa�;0.x1/g admits a convergent subsequence fa�;1.x1/g. Proceeding in this
way, we get a countable family of subsequences fa�;kg of the sequence fa�g such
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that for each k 2 N the limit lim�!1 a�;k.xj/ exists for j D 0; : : : ; k. We claim that
setting a�j D aj;j the subsequence fa�jg is as desired. Indeed, given x 2 X and " > 0
we can find xh such that d.x; xh/ < "=2, and then we have

0 � lim sup
j!1

a�j.x/ � lim inf
j!1 a�j.x/

D 

lim sup

j!1
�
a�j.x/ � a�j.xh/

�C lim
j!1 a�j.xh/

�

�
 lim inf
j!1

�
a�j.x/ � a�j.xh/

�C lim
j!1 a�j.xh/

�

� 2d.x; xh/ < " :

Since " was arbitrary, it follows that the limit limj!1 a�j.x/ exists, as required. ut
Then:

Proposition 2.4.13 ([9]) Let D �� C
n be a bounded convex domain, and x 2 @D.

Then every sequence fx�g � D converging to x contains a subsequence which is a
horosphere sequence at x.

Proof Let X D D � D be endowed with the distance

d
�
.z1;w1/; .z2;w2/

� D kD.z1; z2/C kD.w1;w2/

for all z1, z2, w1, w2 2 D.
Define a�W X ! R by setting a�.z;w/ D kD.w; x�/ � kD.z; x�/. The triangular

inequality shows that each a� is 1-Lipschitz, and for each .z;w/ 2 X the sequence
fa�.z;w/g is bounded by kD.z;w/. Lemma 2.4.12 then yields a subsequence fx�jg
such that limj!1 a�j.z;w/ exists for all z, w 2 D, and this exactly means that fx�jg
is a horosphere sequence. ut

We can now introduce a new kind of horospheres.

Definition 2.4.14 Let D �� C
n be a bounded convex domain. Given z0 2 D, let

x D fx�g be a horosphere sequence at x 2 @D, and take R > 0. Then the sequence
horosphere Gz0 .x;R; x/ is defined as

Gz0 .x;R; x/ D ˚
z 2 D

ˇ
ˇ lim
�!C1



kD.z; x�/� kD.z0; x�/

�
< 1

2
log R

�
:

The basic properties of sequence horospheres are contained in the following:

Proposition 2.4.15 ([8, 9, 16]) Let D �� C
n be a bounded convex domain. Fix

z0 2 D, and let x D fx�g � D be a horosphere sequence at x 2 @D. Then:

(i) Ez0.x;R/ 	 Gz0 .x;R; x/ 	 Fz0 .x;R/ for all R > 0;
(ii) Gz0 .x;R; x/ is nonempty and convex for all R > 0;

(iii) Gz0 .x;R1; x/ \ D � Gz0 .x;R2; x/ for all 0 < R1 < R2;
(iv) BD.z0; 12 log R/ � Gz0.x;R; x/ for all R > 1;
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(v) BD.z0;� 1
2

log R/\ Gz0 .x;R; x/ D ; for all 0 < R < 1;
(vi)

S

R>0
Gz0 .x;R; x/ D D and

T

R>0
Gz0 .x;R; x/ D ;.

Remark 2.4.16 If x is a horosphere sequence at x 2 @D then it is not difficult to
check that the family fGz.x; 1; x/gz2D and the family fGz0.x;R; x/gR>0 with z0 2 D
given, coincide.

Then we have the following version of Theorem 2.2.5:

Theorem 2.4.17 ([6, 8]) Let D �� C
n be a convex domain, and let f 2 Hol.D;D/

without fixed points. Then there exists x 2 @D and a horosphere sequence x at x
such that

f
�
Gz0.x;R; x/

� 	 Gz0 .x;R; x/

for every z0 2 D and R > 0.

Proof As in the proof of Theorem 2.4.2, for � > 0 put f� D .1�1=�/f 2 Hol.D;D/;
then f� ! f as � ! C1, each f� has a fixed point x� 2 D, and up to a subsequence
we can assume that x� ! x 2 @D. Furthermore, by Proposition 2.4.13 up to a
subsequence we can also assume that x D fx�g is a horosphere sequence at x.

Now, for every z 2 D we have

ˇ
ˇkD
�

f .z/; x�
� � kD

�
f�.z/; x�

�ˇ
ˇ � kD

�
f�.z/; f .z/

� ! 0

as � ! C1. Therefore if z 2 Gz0.x;R; x/ we get

lim
�!C1



kD
�

f .z/; x�
� � kD.z0; x�/

�

� lim
�!C1



kD
�

f�.z/; x�
�� kD.z0; x�/

�

C lim sup
�!C1



kD
�

f .z/; x�
�� kD

�
f�.z/; x�

��

� lim
�!C1



kD.z; x�/ � kD.z0; x�/

�
< 1

2
log R

because f�.x�/ D x� for all � 2 N, and we are done. ut
Putting everything together we can prove the following Wolff-Denjoy theorem

for (not necessarily strictly or smooth) convex domains:

Theorem 2.4.18 ([6]) Let D �� C
n be a bounded convex domain, and f 2

Hol.D;D/ without fixed points. Then there exist x 2 @D and a horosphere sequence
x at x such that for any z0 2 D we have

T. f / 	
\

z2D

Ch
�
Gz.x; 1; x/\ @D

� D
\

R>0

Ch
�
Gz0 .x;R; x/\ @D

�
:
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Proof The equality of the intersections is a consequence of Remark 2.4.16. Then
the assertion follows from Theorem 2.4.17 and Lemma 2.4.7 as in the proof of
Proposition 2.4.8. ut

To show that this statement is actually better than Proposition 2.4.8 let us consider
the case of the polydisc.

Lemma 2.4.19 Let x D fx�g � �n be a horosphere sequence converging to � D
.�1; : : : ; �n/ 2 @�n. Then for every 1 � j � n such that j�jj D 1 the limit

˛j WD lim
�!C1 min

h

�
1 � j.x�/hj2
1 � j.x�/jj2

�

� 1 (2.16)

exists, and we have

GO.�;R; x/ D
�

z 2 �n

ˇ
ˇ
ˇ
ˇ max

j

�

˛j
j�j � zjj2
1 � jzjj2

ˇ
ˇ
ˇ
ˇ j�jj D 1

�

< R

�

D
nY

jD1
Ej ;

where

Ej D
�
� if j�jj < 1;
E0.�j;R=˛j/ if j�jj D 1:

Proof Given z D .z1; : : : ; zn/ 2 �n, let 
z 2 Aut.�n/ be defined by


z.w/ D
�

w1 � z1
1 � z1w1

; : : : ;
wn � zn

1 � znwn

�

;

so that 
z.z/ D O. Then

k�n.z; x�/� k�n.O; x�/ D k�n

�
O; 
z.x�/

� � k�n.O; x�/ :

Now, writing jkzjk D maxjfjzjjg we have

k�n.O; z/ D max
j

fk�.0; zj/g D max
j

�
1
2

log
1C jzjj
1 � jzjj

�

D 1
2

log
1C jkzjk
1� jkzjk ;

and hence

k�n.z; x�/� k�n.O; x�/ D log

�
1C jk
z.x�/jk
1C jkx� jk

�

C 1
2

log

�
1 � jkx� jk2

1 � jk
z.x�/jk2
�

:



52 M. Abate

Since jk
z.�/jk D jk�jk D 1, we just have to study the behavior of the second term,
that we know has a limit as � ! C1 because x is a horosphere sequence. Now

1 � jkx� jk2 D min
h

˚
1 � j.x�/hj2�I

1 � jk
z.x�/jk2 D min
j

�
1 � jzjj2

j1 � zj.x�/jj2 .1 � j.x�/jj2/
�

:

Therefore

1 � jkx� jk2
1 � jk
z.x�/jk2 D max

j
min

h

�
1 � j.x�/hj2
1 � j.x�/jj2 � j1� zj.x�/jj2

1 � jzjj2
�

:

Taking the limit as � ! C1 we get

lim
�!C1

1 � jkx� jk2
1 � jk
z.x�/jk2 D max

j

(
j1� zj�jj2
1 � jzjj2 lim

�!C1 min
h

�
1 � j.x�/hj2
1 � j.x�/jj2

�)

:

(2.17)

In particular, we have shown that the limit in (2.16) exists, and it is bounded by 1 (it
suffices to take h D j). Furthermore, if j�jj < 1 then ˛j D 0; so (2.17) becomes

lim
�!C1

1 � jkx� jk2
1 � jk
z.x�/jk2 D max

(

˛j
j1 � zj�jj2
1 � jzjj2

ˇ
ˇ
ˇ
ˇ j�jj D 1

)

;

and the lemma follows. ut
Now, a not too difficult computation shows that

Ch.�/ D
\

j�jjD1
f� 2 @�n j �j D �jg

for all � 2 @�n. As a consequence,

Ch
�
GO.�;R; x/\ @�n

� D
n[

jD1
� � � � � � Cj.�/ � � � � �� ;

where

Cj.�/ D
� f�jg if j�jj D 1;

@� if j�jj < 1:

Notice that the right-hand sides do not depend either on R or on the horosphere
sequence x, but only on �.
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So Theorem 2.4.18 in the polydisc assumes the following form:

Corollary 2.4.20 Let f 2 Hol.�n; �n/ be without fixed points. Then there exists
� 2 @�n such that

T. f / 	
n[

jD1
� � � � � � Cj.�/ � � � � �� : (2.18)

Roughly speaking, this is the best one can do, in the sense that while it might
be true (for instance in the bidisk; see Theorem 2.4.21 below) that the image of a
limit point of the sequence of iterates of f is always contained in just one of the sets
appearing in the right-hand side of (2.18), it is impossible to determine a priori in
which one it is contained on the basis of the point � only; it is necessary to know
something more about the map f . Indeed, Hervé has proved the following:

Theorem 2.4.21 (Hervé, [14]) Let F D . f ; g/W�2 ! �2 be a holomorphic self-
map of the bidisc, and write fw D f .�;w/ and gz D g.z; �/. Assume that F has no
fixed points in �2. Then one and only one of the following cases occurs:

(i) if g.z;w/ � w (respectively, f .z;w/ � z) then the sequence of iterates of F
converges uniformly on compact sets to h.z;w/ D .;w/, where  is the
common Wolff point of the fw’s (respectively, to h.z;w/ D .z; �/, where � is
the common Wolff point of the gz’s);

(ii) if Fix. fw/ D ; for all w 2 � and Fix.gz/ D fy.z/g � � for all z 2 �

(respectively, if Fix. fw/ D fx.w/g and Fix.gz/ D ;) then T. f / 	 fg � �,
where  2 @� is the common Wolff point of the fw’s (respectively, T. f / 	
� � f�g, where � is the common Wolff point of the gz’s);

(iii) if Fix. fw/ D ; for all w 2 � and Fix.gz/ D ; for all z 2 � then either
T. f / 	 fg �� or T. f / 	 �� f�g, where  2 @� is the common Wolff point
of the fw’s, and � 2 @� is the common Wolff point of the gz;

(iv) if Fix. fw/ D fx.w/g � � for all w 2 � and Fix.gz/ D fy.z/g � � for all
z 2 � then there are  , � 2 @D such that the sequence of iterates converges to
the constant map .; �/.

All four cases can occur: see [14] for the relevant examples.

Acknowledgements Partially supported by the FIRB 2012 grant “Differential Geometry and
Geometric Function Theory”, by the Progetto di Ricerca d’Ateneo 2015 “Sistemi dinamici: logica,
analisi complessa e teoria ergodica”, and by GNSAGA-INdAM.

References

1. Abate, M.: Horospheres and iterates of holomorphic maps. Math. Z. 198, 225–238 (1988)
2. Abate, M.: Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press,

Cosenza (1989) [See also http://www.dm.unipi.it/~abate/libri/libriric/libriric.html]
3. Abate, M.: Iteration theory, compactly divergent sequences and commuting holomorphic maps.

Ann. Scuola Norm. Sup. Pisa 18, 167–191 (1991)

http://www.dm.unipi.it/~{}abate/libri/libriric/libriric.html


54 M. Abate

4. Abate, M.: Angular derivatives in several complex variables. In: Zaitsev, D., Zampieri, G. (eds.)
Real Methods in Complex and CR Geometry. Lecture Notes in Mathematics, vol. 1848, pp. 1–
47. Springer, Berlin (2004)

5. Abate, M., Heinzner, P.: Holomorphic actions on contractible domains without fixed points.
Math. Z. 211, 547–555 (1992)

6. Abate, M., Raissy, J.: Wolff-Denjoy theorems in non-smooth convex domains. Ann. Mat. Pura
Appl. 193, 1503–1518 (2014)

7. Bedford, E.: On the automorphism group of a Stein manifold. Math. Ann. 266, 215–227 (1983)
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Chapter 3
Gromov Hyperbolic Spaces and Applications
to Complex Analysis

Hervé Pajot

The goal of this chapter is to explain some connections between hyperbolicity in
the sense of Gromov and complex analysis/geometry. For this, we first give a short
presentation of the theory of Gromov hyperbolic spaces and their boundaries. Then,
we will see that the Heisenberg group can be seen as the boundary at infinity of
the complex hyperbolic space. This fact will be used in Chap. 5 to give an idea
of the proof of the celebrated Mostow rigidity Theorem in this setting. In the last
section, we will explain why strongly pseudoconvex domains equipped with their
Kobayashi distance are hyperbolic in the sense of Gromov. As an application of the
general theory of Gromov hyperbolic spaces, we get a result about the extension of
biholomorphic maps in this setting. Note that the case of the Gromov hyperbolicity
of more general domains is discussed in Chap. 4.

3.1 Hyperbolicity in the Sense of Gromov

Let .X; d/ be a metric space and fix a basepoint w 2 X. In this case, the triple
.X; d;w/ is called a pointed metric space. The Gromov product is defined by

.xjy/w D 1

2
.d.x;w/C d.y;w/� d.x; y// :

whenever x, y are in X. By the triangle inequality, 0 � .xjy/w � min .d.x;w/ ,
d.y;w//.
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Definition 3.1.1 Let ı � 0. A metric space .X; d/ is ı-hyperbolic, or ı-product-
hyperbolic, if for any x; y; z;w 2 X,

.xjz/w � minf.xjy/w; .yjz/wg � ı :

We say that .X; d/ is Gromov-hyperbolic if .X; d/ is ı-hyperbolic for some ı � 0.
Note that all these definitions of hyperbolicity do not depend on the basepoint
w 2 X.

Remark 3.1.2 The Euclidean space R
2 is not hyperbolic. The case of the Poincaré

disk and of manifolds with negative sectional curvature will be discussed later.
Let .X; d;w/ be a pointed hyperbolic metric space and assume it is proper (that

is, closed balls are compact).

Definition 3.1.3 A sequence .xn/ in X tends to infinity if lim infm;n!1.xmjxn/w D
1. The visual boundary @GX of X is the set of diverging sequences modulo the
equivalence relation .xn/ � .yn/ iff .xnjyn/w tends to infinity (or equivalently the
classes of equivalence for this relation).

Note again that the last definition does not depend on the basepoint w 2 X.
The Gromov product extends to infinity in such a way that the ultrametric

inequality remains true. To see this, set .�j�/w D sup lim infi!C1.xijyi/w whenever
�, � 2 @GX and where the supremum is taken over all divergent sequences .xi/ and
.yi/ representing � and � respectively.

Definition 3.1.4 A visual metric (seen from w) of parameter " > 0 is a distance ı
on @GX such that there exist a constant C > 0 and a basepoint w 2 X so that

C�1e�".�j�/w � ı.�; �/ � Ce�".�j�/w

whenever �, � 2 @GX.
There always exist visual metrics provided " > 0 is small enough. Note that two

visual metrics are Hölder equivalent.
In the Poincaré disc, triangles are thinner than Euclidean triangles (see

Appendix 1). This motivates an alternative definition of hyperbolicity in the case of
geodesic spaces.

Definition 3.1.5 Let .X; d/ be a metric space. If x and y are two points in X, a
geodesic segment, denoted by Œx; y� (even if such segment is not unique in general),
is a curve given by an isometric map 
 W Œa; b� ! X (that is the length of 
 is equal
to d.x; y/) with 
.a/ D x and 
.b/ D y. The metric space .X; d/ is a geodesic space
if for any x, any y in X, there exists a geodesic segment from x to y.

A geodesic triangle is just given by Œx; y�[ Œ y; z�[ Œz; x� where x, y and z are in X.
The geodesic space .X; d/ is ı-hyperbolic iff every geodesic triangle of X is ı-thin,
that is d.w; Œ y; z�[ Œz; x�/ � ı whenever x, y z 2 X and w 2 Œx; y�. The boundary @GX
could be defined as the set of equivalence classes of geodesic rays r W Œ0;1/ ! X
with the relation r � r0 if supfd.r.t/; r0.t//; t 2 Œ0;1/g < 1. In this setting, the
Gromov product has a nice geometric interpretation. If w 2 X and �, � 2 @GX,
.�j�/w is comparable to d.w; .�; �// where .�; �/ is a geodesic curve in X joining �
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and �. Hence, the visual distance ı.�; �/ is small if the geodesics with endpoints �
and � are closed a long time. Theorem 4.4.10 gives a precise statement regarding the
two definitions of Gromov hyperbolicity, in the general setting and in the geodesic
setting.

Example 3.1.6 The Poincaré disc � is ı-hyperbolic with ı D 1
2

log 3. Its boundary
at infinity could be identified with the unit circle S1. The usual distance on the unit
circle is visual in the previous sense: if z, w 2 �,

.zjw/0 D � 1
2

log

0

@
1C

ˇ
ˇ
ˇ z�w
1�zw

ˇ
ˇ
ˇ

.1C jwj/.1C jzj/ :j1 � zwj
1

A

and thus j���j D 2e�.�j�/0 whenever �,� 2 S1 D @G�. More generally, the standard
unit sphere can be seen as the boundary of the real hyperbolic space (if this one is
defined by using the model of the unit ball of Rn).

Example 3.1.7 Any (complete) Riemannian manifold M with negative sectional
curvature is Gromov hyperbolic. Hence, the notion of Gromov hyperbolicity is
related to the sectional curvature (and not to the Ricci curvature). The conformal
structure of the boundary at infinity of M is not well understood.

Example 3.1.8 The Heisenberg group is the boundary at infinity of the hyperbolic
complex space (in the model of the unit ball of Cn). This point will be discussed in
the next section. This example is interesting since the proof of the hyperbolicity of
strongly pesudoconvex domains (see the last section) starts by equip the boundary of
such domains by its Carnot-Carathéodory distance (as in the case of the Heisenberg
group).

Remark 3.1.9 Let .Z; ı/ be a complete bounded metric space. Then, Z can be seen
as the boundary at infinity of a hyperbolic metric space X. To see this, set X D
Z � Œ0; diamZ� and dBS..x; h/; .x0; h0// D 2 log

�
ı.x; x0/C max.h; h0/p

hh0

�

whenever

x, x0 2 X, h, h0 2 Œ0; diamX�. Then, .X; dBS/ is hyperbolic and we can identify
@GX with Z. Moreover, ı is a visual distance. The formula given dBS is inspired by
other definitions of hyperbolic metrics, for instance the Poincaré metric on �. The
proof of the hyperbolicity in the sense of Gromov of strictly pseudoconvex domains
follows from a similar construction (see the last section of this chapter).

The Gromov hyperbolicity is a large scale property of X. To capture this
knowledge, one is led to the notion of quasi-isometry, which was introduced by
G. Margulis.

Definition 3.1.10 Let .X; dX/ and .Y; dY/ be two metric spaces. A map f W X ! Y
is a .C;D/-quasi-isometric embedding if there exist constants C � 1 and D � 0 so
that

C�1dX.x; x
0/ � D � dY. f .x/; f .x0// � CdX.x; x

0/C D
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whenever x, x0 2 X. Note that such a map is not necessary continuous.
If in addition, for any y 2 Y, there exists x 2 X so that dY.y; f .x// � C, then

f is called a .C;D/-quasi-isometry and the spaces X and Y are quasi-isometric.
Moreover, we say that f W X ! Y is a rough isometry if f is a .1;D/-quasi-isometry
for some D � 0. We will use these notions in Chap. 5.

A quasi-geodesic is the image of an interval under a quasi-isometric embedding.
A very important fact is the quasi-isometric invariance of the Gromov hyperbol-

icity.

Theorem 3.1.11 Let X and Y be two geodesic spaces and let f W X ! Y be a
.C;D/-quasi-isometric embedding. If X is ı-hyperbolic, then Y is ı0-hyperbolic with
ı0 depending on ı, C and D.

The proof is based on this fundamental property of Gromov hyperbolic spaces.

Theorem 3.1.12 There exists a constant � D �.C;D; ı/ so that any .C;D/-quasi-
geodesic segment in a ı-hyperbolic space X is at Hausdorff distance less that � from
any geodesic segment joining its endpoints.
A .C;D/-quasi-geodesic segment in X is the image of a .C;D/-quasi-isometry 
 W
Œa; b� � R ! X. Using the previous theorem, we can characterize the Gromov
hyperbolicity by using quasi-geodesics instead of geodesics (that is by replacing
geodesic triangles by quasi-geodesic triangles).

We finish this section by introducing the notion of CAT.�1/-spaces. For this
purpose, we adopt for the Poincaré metric a new convention, by setting

Q��.	I v/ D 2

1 � j	j2 jvj

With this convention, the Poincaré disc has curvature �1 (instead of �4 as in
Appendix 1) and is ı-hyperbolic with ı D log 3.

Let .X; d/ be a geodesic (proper) space. Let Œx; y� [ Œ y; z� [ Œz; x� be a geodesic
triangle in X. A triangle comparison in the Poincaré disc � is then given by three
points x0, y0 and z0 2 � so that d.x; y/ D Qk�.x0; y0/, d.y; z/ D Qk�.y0; z0/ and d.z; x/ D
Qk�.z0; x0/.

Definition 3.1.13 We say that X is a CAT.�1/-space if d.x; Œ y; z�/ � Qk�.x0; Œ y0; z0�/
for any geodesic triangle with vertices x, y and z in X and for any associated
comparison triangle in � with vertices x0, y0 and z0.

It is well known that a CAT.�1/-space is ı-hyperbolic with ı D log 3. The
meaning of this definition is that geodesic triangles in X are thinner than geodesic
triangles in � which is the model space with curvature �1.

We can define the notion of CAT.0/-space by comparing geodesic triangles
in X and triangles in the Euclidean plane (which is the model of space with
zero curvature). More generally, we can define the notion of CAT.K/ for some
K by comparing triangles in X with triangles in the model space of (sectional)
curvature K.
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3.2 The Heisenberg Group as Boundary of the Complex
Hyperbolic Space

We first recall the definition of the Heisenberg group. This one appears in several
domains in mathematics : CR geometry, analysis on Lie groups, control theory, sub-
riemannian geometry, complex analysis, . . . It can be seen also as a model of the
functional structure of the mammalian visual cortex ! Since these notes correspond
to lectures given during a spring school in complex analysis, we will present the
Heisenberg group from the complex analysis viewpoint.

Let B D fw D .w1; : : : ;wnC1/ 2 C
nC1;

PnC1
iD1 jwij2 < 1g in C

nC1 . The starting
point of this section is the study of the group of biholomorphic self-mappings
Aut.B/ of B. For our purpose, it is more convenient to consider Aut.H / where H
is an “upper half-space”. In the one-dimensional case, the unit disc � is biholomor-
phically equivalent to the upper half-plane fz D xCiyI y > 0g. In higher dimensions,
we will consider the upper half-space H D fz 2 C

nC1I Im.znC1/ >
Pn

jD1 jzjj2g
which is biholomorphically equivalent to B D fw 2 C

nC1IPnC1
jD1 jwjj2 < 1g by

considering

wnC1 D i � znC1
i C znC1

and for k D 1; : : : ; n;wk D 2izk

i C znC1

or equivalently

znC1 D i
1 � wnC1
1C wnC1

and for k D 1; : : : ; n; zk D wk

1C wnC1

Note that this equivalence extends also to the boundaries of the domains, that is
@H D fz 2 C

nC1I Im.znC1/ D Pn
jD1 jzjj2g and @B D fz 2 C

nC1IPnC1
jD1 jzjj2 D 1g

(except for the south pole .0; : : : ; 0; 1/ of @B which should be seen as the image of
the “point at infinity” of @H ). If we set r.z/ D Im.znC1/� jz0j2 for z D .z0; znC1/ 2
C

nC1, then H D fz; r.z/ > 0g and @H D fr.z/ D 0g. So, r is the defining function
of H .

There is a natural isomorphism between Aut.B/ and Aut.H / and we will study
the last one. To do this, we recall that Aut.H / has an Iwasawa decomposition:
Aut.H / D K:A:N where K is a compact subgroup, A an abelian subgroup and N a
nilpotent subgroup of Aut.H /. If we use the notation z D .z0; znC1/ 2 C

nC1 (where
z0 2 C

n and znC1 2 C), the abelian part of the decomposition is given by the dilation
ıs.z/ D .sz0; s2znC1/ (the factor 2 in s2 is explained by the definition of H ) and the
compact part is given by rotations u.z/ D .u.z0/; znC1/ where u is an unitary linear
transformation of Cn (that is given by a matrix whose rows and columns form a
Hermitian orthonormal basis of Cn and that has determinant 1). The nilpotent part
is associated to the Heisenberg group:

Definition 3.2.1 The Heisenberg group is as a set Cn �R D fŒ�; t�I � 2 C
n; t 2 Rg.

The law is given by Œ�; t�:Œ�; s� D Œ� C �; t C s C 2Im.�:�/� where �:� D Pn
iD1 �i�i.
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It is easy to check that Cn � R equipped with this law is a nonabelian group whose
identity is Œ0; 0� and where the inverse is given by Œ�; t��1 D Œ��;�t�. We will
denote this group by H

n. To each Œ�; t� 2 H
n, we associate the (holomorphic) affine

transformation :

��;t W .z0; znC1/ ! .z0 C �; znC1 C t C 2iz0:� C ij�j2/: (3.1)

Since jz0C�j�jzj2 D Im.i.z0:�Cj�j2//, this mapping preserves the defining function
r.z/ D Im.znC1/ � jz0j2 and so maps H to H and its boundary @H to itself. In
fact, (3.1) defines an action of H

n on H . Indeed, if we compose the mappings
associated by (3.1) to Œ�; t� and Œ�; s�, we get the mapping associated to the element
Œ�; t�:Œ�; s� of Hn. Thus, we get a realization of Hn as the group of affine holomorphic
bijections of H . Note also that mappings given by (3.1) have a transitive action on
@H (that is for every two points of @H , there is exactly one element of Hn that
maps the first to the second). In particular, the mapping associated to Œ�; t� is the
unique mapping that maps .0; 0/ to .�; t C ij�j2/ and we can identified H

n with @H
via its action on the origin.

We now describe the structure of the Heisenberg group as a (real) Lie group. Set
for any 1 � j � n

�2j�1.s/ D Œ.0; : : : ; s C i0; : : : ; 0/; 0�

�2j.s/ D Œ.0; : : : ; 0C is; : : : ; 0/; 0�

�2nC1.s/ D Œ0; s�:

We now differentiate functions by using these one-group parameters of directions
to get the following vector fields:

Xjf .Œ�; t�/ D d

ds
f .Œ�; t�:�2j�1.s//jsD0 D

�
@f

@xj
C 2yj

@f

@t

�

Œ�; t�

Yjf .Œ�; t�/ D d

ds
f .Œ�; t�:�2j.s//jsD0 D

�
@f

@yj
� 2xj

@f

@t

�

Œ�; t�

Tf .Œ�; t�/ D d

ds
f .Œ�; t�:�2nC1.s//jsD0 D @f

@t
f .Œ�; t�/:

It is not difficult to see that all commutators of these vector fields are trivial unless
ŒXj;Yj� D �4T for any j D 1; : : : ; n. Recall that ŒXj;Yj� D XjYj � YjXj. So the Lie
algebra of Hn is generated by the Xj, Yj and their commutators ŒXj;Yj�. This implies
that for any vector fields A, B and C, we get ŒŒA;B�;C� D 0. Thus the vector fields
of the Heisenberg group form a nilpotent Lie algebra of step one.

Remark 3.2.2 The previous results show that the Heisenberg group could be also
seen as a CR manifold. We will not discuss this point of view in these notes.
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Remark 3.2.3 Consider n D 1 for simplicity. Set X D @x1 � 1

2
x2@x3 , Y D @x2 C

1

2
x1@x3 and T D @x3 . Then, .X;Y;T/ is also a basis of the Heisenberg algebra.

Consider ! D dx3�1=2.x1dx2� x2dx1/. Then, ! ^ d! D �dx1^ dx2^ dx3, so ! is
a contact form. The horizontal distribution is given by the kernel of ! which admits
.X;Y/ as a basis.

A natural measure on H
n is given by the Lebesgue measure on C

n �R. Since the
left translations of Hn on itself are affine when considered as mappings of Cn � R

and their linear parts have determinant 1, the Lebesgue measure on C
n � R is left-

invariant (and for the same reason right-invariant) and so is the Haar measure of the
Lie group H

n. We will denote by jAj the measure of a subset A in H
n.

We now construct a distance on H
n called the Carnot-Carathéodory distance.

First, an absolutely continuous curve 
 W Œ0; 1� ! H
n is said to be horizontal if

for almost every � 2 Œ0; 1�, there exist measurable functions aj, bj so that 
 0.�/ DPn
jD1.ajXj.
.�//CbjYj.
.�///. Given two points Œ�; t� and Œ�; s� in H

n, there always
exists an horizontal curve joining them.

Definition 3.2.4 We set

dCC.Œ�; t�; Œ�; s�/ D inf



l.
/

where the infimum is taken over all horizontal curves between Œ�; t� and Œ�; s� and

where l.
/ D
Z 1

0

0

@
nX

jD1
.aj.�/

2 C bj.�/
2/

1

A

1=2

d� is the length of the curve 
 . We

denote by BCC.Œ�; t�; r/ the (open) ball with center Œ�; t� 2 H and radius r > 0 with
respect to dCC.

We have the following properties of dCC:

– The topology defined by dCC coincides with the Euclidean topology. Thus, the
topological dimension of .Hn; dCC/ is 2n C 1.

– The Carnot-Carathéodory distance is left invariant, that is dCC.TgŒ�; t�;TgŒ�; s�/ D
dCC.Œ�; t�; Œ�; s�/ where Tg is a translation, that is TgŒ�; t� D g:Œ�; t� for a g 2 H

n.
– For any k > 0, dCC.ıkŒ�; t�; ık Œ�; s�/ D k2nC2dCC.Œ�; t�; Œ�; s�/ where ıkŒ�; t� D
Œk�; k2t�. The .ık/ form the natural group of dilations of the Heisenberg group
H

n.

It follows that for any Œ�; t� 2 H
n and any r > 0, we have

jBCC.Œ�; t�; r/j D jBCC.0Hn ; r/j D r2nC2jBCC.0Hn ; 1/j:

This implies that the measure of a ball of radius r is like r2nC2 and that the Hausdorff
dimension of .Hn; dCC/ is 2n C 2.

Remark 3.2.5 The sub-Riemannian structure of H
n is given by the horizontal

distribution, but it is possible to approximate it by Riemannian structures. For
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simplicity, we consider the case n D 1. Let 
 W Œ0; 1� ! H
1 be a smooth curve.

Write 
 0.t/ D a1.t/X1.
.t// C a2.t/Y1.
.t// C a3.t/T.
.t//. For any L > 0,

consider the Riemannian length lL.
/ D
Z 1

0

.a1.t/
2C a2.t/

2C La3.t/
2/1=2dt and the

Riemannian distance associated. When L tends to C1, we penalize the T-direction
and we obtain the Carnot-Carathéodory distance which can be well approximated
by Riemannian metrics by this method (in the sense of the Hausdorff-Gromov
distance).

We now explain why the Heisenberg group can be seen as the boundary at infinity
of the hyperbolic complex space. First, note that another interesting distance on the
Heisenberg group is the Cygan-Korànyi distance which is defined as follows.

Definition 3.2.6 Let the Cygan-Korànyi gauge be jjŒ�; t�jjCK D .jj�jj4Cjtj2/1=4 for
any Œ�; t� 2 H

n. Here, jj�jj is the usual norm in C
n. Then, set dCK.Œ�; t�; Œ�; s�/ D

jjŒ�; s��1:Œ�; t�jjCK .
It is an exercise to show that dCK is a distance on H

n which is (bilipschitz)
equivalent to dCC. We would like to see the Heisenberg group (with its Cygan-
Koranyi distance) as the boundary at infinity of the complex hyperbolic space.

The first step is to see the complex hyperbolic space HnC1
C

as a Gromov
hyperbolic space. For simplicity of the presentation and to avoid some technical
computations, we discuss only the case n D 1.

Consider the Bergman space associated to a domain˝ � C
2:

A2.˝/ D f f holomorphic on ˝I jj f jjL2.˝/ < 1g

and consider the evaluation operator Tz at z 2 ˝ , that is Tz W A2.˝/ ! C given by
Tz. f / D f .z/. By the maximum principle, for any compact set K � ˝ , there exists a
constant CK � 0 so that supK j f j � CK jj f jjL2.˝/. Hence, Tz is bounded and then, by
the Riesz representation theorem, there exists a function K.z; �/ (called the Bergman
kernel or reproducing kernel) so that Tz. f / D f .z/ D R

˝
K.z; �/f .�/d� for any f 2

A2.˝/. The Bergman metric is thus the quadratic form whose coefficients are given
by bi;j.z/ D @zi@zj log.K.z; z//. Then, the Bergman distance is given by dB.z;w/ D
inf lB.� / where the infimum is taken over all (smooth) curves 
 W Œ0; 1� ! ˝ with


.0/ D z, 
.1/ D w and where lB.
/ D
Z 1

0

0

@
X

i;j

bi;j.
.s//

0
i .s/


0
j .s/

1

A

1=2

ds. As

for the Kobayashi metric, a crucial point is that a biholomorphism f W ˝ ! ˝ 0
between two domains equipped with their Bergman metrics is an isometry. In the
special ˝ D B, we can use the symmetries of the unit ball to get

K.z; �/ D 2=�2 .1� < z; � >/�3

bi;j.z/ D 3.1� jzj2/�2..1 � jzj2/ıij C zizj/
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dB.z;w/ D
p
3

2
log

 
j1� < z;w > j Cpjw � zj2 C j < z;w > j2 � jzj2jwj2
j1� < z;w > j �pjw � zj2 C j < z;w > j2 � jzj2jwj2

!

:

Here < z;w >D z1w1 C z2w2 and ıij is the Kronecker symbol. The complex
hyperbolic plane is just the unit ball B of C2 equipped with the Bergman distance.

Remark 3.2.7 As for the real hyperbolic plane, there are several models for the
hyperbolic complex plane H2

C
. For instance, we can consider the unil ball B of C2

equipped with the distance function

dH.z;w/ D arccosh

 
1� < z;w >

p
.1 � jzj2/.1 � jwj2/

!

and we get a Gromov hyperbolic space. It turns out that the Bergman metric and the
hyperbolic metric dH are comparable. More precisely, for any z, w 2 B, dH.z;w/ D
.1=

p
3/dB.z;w/.

We would like to see the Heisenberg group (with its Cygan-Koranyi distance) as
the boundary at infinity of H2

C
. For this, we first estimate the Gromow product for z,

w 2 B (with basepoint the origin 0):

exp.�.zjw/0/ D
 

j1� < z;w > j Cpj1� < z;w > j2 � .1 � jzj2/.1 � jwj2/
.1C jzj/.1C jwj/

!1=2

:

The boundary @GB could be identified with the geometric boundary @B which could
be identified with H

1 by using the stereographic projection (see below). Moreover,
for �, � 2 @GH2

C
, we get

lim
z!�;w!�

exp.�.zjw/0/ D
r

j1� < �; � > j
2

D 1=2
p

jj� � �j2 � 2iIm.< �; � >/j:

It turns out that using a good model for the hyperbolic complex plane and
invariance of the Gromov product by isometries, we can prove that the Cygan-
Korànyi distance is comparable to exp.�.�j�/0/.
Remark 3.2.8 We have seen previously that the unit ball B is conformally equiv-
alent to the upper space H 2 D f.z1; z2/I Im.z2/ � jz1j2 > 0g by considering

C.z1; z2/ D
�

iz1
1C z2

; i
1 � z2
1C z2

�

. Recall also that H
1 could be identified with

@H 2. It is possible to identify explicitly @B and H
1 by considering ˘ ı C where

˘.z1; z2/ D .z1;
1

4
Re.z2// for any .z1; z2/ 2 H 2. The map ˘ ı C could be seen as

a generalisation of the classical stereographic projection.
As we will see in Chap. 5, the fact that the Heisenberg group is the boundary of

the complex hyperbolic spaces is crucial when you like to prove Mostow Rigidity
Theorem by using the theory of quasiconformal mappings.
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3.3 Gromov Hyperbolicity of Strongly Pseudoconvex
Domains

In this section, we assume that the bounded C2 domain ˝ � C
n is strongly

pseudoconvex (see definition 1.5.9). We would like to prove that ˝ equipped with
its Kobayashi metric is hyperbolic in the sense of Gromov.

Remark 3.3.1 The notion of Gromov hyperbolicity is purely metric and is different
from the notion of hyperbolicity in the sense of Kobayashi (as discussed in the first
chapter). However, there exist some formal relationships between these two notions.
For instance, if X is a complex space and if there exists a length function F with
holomorphic sectional curvature KF bounded above by �1 everywhere, then X is
Kobayashi hyperbolic.

We define the Carnot-Carathéodory metric dCC on @˝ as follows (compare with
the construction of the Carnot-Carathéodory distance on the Heisenberg group):
here the horizontal space is the complex tangent subspace, that is Hp.@˝/ WD
TC

p .@˝/.
A (piecewise) C1-curve 
 W Œ0; 1� ! @˝ is said to be horizontal if 
 0.t/ 2

H
.t/@˝ (whenever 
 0.t/ exists). The key point is that the strict pseudoconvexity
implies that @˝ is connected. Moreover, any pair of points x and y 2 @˝ can be
joined by an horizontal curve. Hence, we can define for x, y 2 @˝

dCC.x; y/ D inf �-length.
/

where �-length .
/ D
Z 1

0

L�;
.t/.

0.t//1=2dt and where the infimum is taken over all

horizontal curve 
 W Œ0; 1� ! @˝ joining x and y (that is 
.0/ D x and 
.1/ D y).
The main point is that in this setting the Kobayashi metric is Gromov hyperbolic.

More precisely, we have the

Theorem 3.3.2 Let ˝ 2 C
n (n � 2) be a bounded, strictly pseudoconvex domain

with C2 boundary @˝ . Then, ˝ equipped with the Kobayashi distance k˝ is
hyperbolic in the sense of Gromov. Moreover, @G˝ could be identified with @˝
and the Carnot-Carathéodory distance dCC is in the conformal gauge of .˝; k˝/.

Roughly speaking, this means that dCC is quasiconformally equivalent to a visual
metric. Precise definitions are given in Chap. 5. The strategy of proof is quite natural.

Step 1: Equip @˝ with the Carnot-Carathéodory distance dCC. By analogy of the
case of the hyperbolic complex space, we can expect that dCC is a visual metric on
@˝ . . . if we think that ˝ with the Kobayashi distance is Gromov hyperbolic. As
we mentioned previously, any (compact) metric space could be seen as boundary at
infinity of a Gromov hyperbolic space. Thus, we consider for x, y 2 ˝ ,

dBS.x; y/ D 2 log

 
dCC.�.x/; �.y//C max.h.x/; h.y///

p
h.x/h0y/

!

;
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where ı.x/ D d.x; @˝/; h.x/ D ı.x/1=2 and �.x/ 2 @˝ satisfies jx � �.x/j D ı.x/.
The distance dBS is just a modification of the previous one. Note that since @˝ is
C2, the map x 7! �.x/ is well defined if x is closed enough from @˝ . The ambiguity
of the definition of � is just a technical problem that we forget in the rest of the
discussion.

Step 2. By construction, ˝ with the distance dBS is Gromov-hyperbolic. We can
conclude if we can prove that the metric spaces .˝; k˝/ and .˝; dBS/ are quasi-
isometric by Theorem 3.1.11.

This proof illustrates the fact that “a Gromov hyperbolic space is determined by
its boundary”. Let p 2 @˝ . We can consider the splitting of the tangent space at
p: Cn D Hp@˝ ˚ Np@˝ where Np@˝ is the complex one-dimensional subspace of
C

n orthogonal to Hp@˝ . Thus, any tangent vector Z could be uniquely written as
Z D ZH C ZN where ZH 2 Hp@˝ and ZN 2 Np@˝ . The main step of the proof is to
show there exist " > 0, s > 0, C1 > 0, C2 � 1 so that the infinitesimal Kobayashi
metric �˝ satisfies

.1 � C1ı
s.x//

� jZN j2
4ı2.x/

C C�1
2

L�;�.x/.ZH/

ı.x/

�1=2

� �˝.xI Z/ � .1C C1ıs.x//

� jZN j2
4ı2.x/

C C2
L�;�.x/.ZH/

ı.x/

�1=2

whenever x 2 ˝ is in a neighborhood of @˝ and Z D ZH C ZN 2 C
n where

the splitting is at p D �.x/. To do this, as in the case of the classical Heisenberg
group, the distance could be approximated by a sequence of Riemannian metrics.
The second step of the proof is to show that for any pseudo distance function F that
satisfies the previous estimate, there exists D � 0 so that dBS.x; y/� D � dF.x; y/ �
dBS.x; y/CD for any x, any y 2 ˝ . In particular, in the case of the Kobayashi metric,
this estimates gives a good control of the behaviour of k˝.x; y/ for all the possible x
and y 2 ˝ .

If ˝ � C
n is a strictly pseudoconvex domain (with C2 boundary) equipped with

its Kobayashi metric, then it is Gromov hyperbolic, and any biholomorphism is an
isometry with respect to the Kobayashi pseudo-distance. We thus get a variant of a
theorem of Fefferman about the extension of biholomorphic maps between smooth
strictly pseudoconvex domains:

Theorem 3.3.3 Let ˝1, ˝2 2 C
n (n � 2) be strictly pseudoconvex domains with

C2-boundary and let f W ˝1 ! ˝2 be a biholomorphism. Then f has a continuous
extension f W ˝1 ! ˝2 and the induced boundary map Qf W @˝1 ! @˝2 is bilipschitz
with respect to the Carnot-Carathéodory distances.

The point is that this extension comes for free by the general theory of Gromov
hyperbolic spaces (See Theorem 5.3.4). However, this does not give the optimal
regularity of the induced map.
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3.4 Notes

A complete introduction to spaces with non-negative curvature is [4], see also [8].
Reference [5] provides a good overview of metric geometry, in particular spaces
with curvature bounded below or above. A very nice introduction to the Heisenberg
group is given in [6] where the reader will find a complete proof that the Heisenberg
group could be seen as the boundary at infinity of the hyperbolic complex space.
References [10] (the last two chapters) and [9] explain the use of the Heisenberg
groups in harmonic analysis and complex analysis. A more exhaustive presentation
of the Sub-Riemannian geometry is in [2] (See also in the same book the paper by
M. Gromov which contains a lot of interesting informations about sub-Riemannian
spaces but is hard to read). Proofs of the Gromov hyperbolicity of the metric dBS and
of the Kobayashi metric on strictly pseudoconvex domains of Cn could be found in
the original papers [3] and [1] respectively. The proof of theorem 3.3.3 is given in
[1]. Fefferman’s result is in [7] where the proof is based on the study of geodesics for
the Bergman metric (but not in relation with metric geometry and some curvature
estimates).
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Chapter 4
Gromov Hyperbolicity of Bounded Convex
Domains

Andrew Zimmer

It is well known that the unit ball endowed with the Kobayashi metric is isometric
to complex hyperbolic space and in particular is an example of a negatively curved
Riemannian manifold. One would then suspect that when˝ � C

d is a domain close
to the unit ball, then the Kobayashi metric on ˝ should be negatively curved (in
some sense). Unfortunately, for general domains the Kobayashi metric is no longer
Riemannian and thus will no longer have curvature in a local sense. Instead one
can ask if the Kobayashi metric satisfies a coarse notion of negative curvature from
geometric group theory called Gromov hyperbolicity.

Gromov hyperbolic metric spaces have been intensively studied and have a
number of remarkable properties. Thus it seems natural to determine the domains
for which the Kobayashi metric is Gromov hyperbolic and then to use the theory of
such metric spaces to prove new results in several complex variables.

The first major result in this direction is Theorem 3.3.2 due to Balogh and
Bonk [3]. This theorem was later extended to strongly pseudoconvex domains in
almost complex manifolds [12, 13, 16]. In these arguments, one establishes Gromov
hyperbolicity by using very precise estimates for the Kobayashi infinestimal metric.
In particular, if ˝ � C

d is a strongly pseudoconvex domain and x 2 ˝ is close to
the boundary, then there is a unique point � 2 @˝ closest to x. If �.�/ is the inward
pointing normal line at � and TC

� @˝ is the complex tangent space of @˝ at � then
we have the following estimates for the Kobayashi metric at x:

�˝.xI v/ � kvk
ı˝.x/

if v 2 C ��.�/ and �˝.xI v/ � kvk
ı˝.x/1=2

if v 2 TC

� @˝:
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Here ı˝.x/ is the distance from x to @˝ (which in this case is kx � �k). The fact
that the metric behaves identically in every complex tangential direction seems to
be key for these arguments.

Given Theorem 3.3.2 it is natural to ask about the case of general finite type
domains:

Question 4.0.1 ([3, Section 6]) Is the Kobayashi metric Gromov hyperbolic for a
weakly pseudoconvex domain with finite type in the sense of D’Angelo?

Unfortunately, not much is known about the Kobayashi metric on a general
weakly pseudoconvex domains of finite type so this problem currently seems out
of reach. For instance, it is unknown whether or not the Kobayashi metric is Cauchy
complete for domains of this type. So at this point it seems natural to impose
additional constraints on the domain ˝ such as convex, C-convex, h-extendible,
etc.

Amongst the set of convex domains with smooth boundary we recently charac-
terized the domains which are Gromov hyperbolic:

Theorem 4.0.2 ([60]) Suppose ˝ � C
d is a bounded convex domain with C1

boundary. Then .˝; k˝/ is Gromov hyperbolic if and only if @˝ has finite type.
For convex domains of finite type there are good estimates for the infinitesimal

Kobayashi metric for points near the boundary [2, Proposition 1.6] but the metric
no longer grows identically in every complex tangential direction which makes
the types of arguments used in the strongly pseudoconvex case very difficult to
implement. Instead the main strategy of the proof of Theorem 4.0.2 is to study the
orbit of convex sets under the group Aff.Cd/ of affine automorphisms of Cd.

In particular, let Xd;0 be the set of pairs .˝; x/where˝ � C
d is a convex domain

that does not contain a complex affine line and x 2 ˝ . By studying the closure of
Aff.Cd/-orbits in Xd;0 it is possible to establish necessary and sufficient conditions
for the Gromov hyperbolicity of the Kobayashi metric. This approach is motivated
by Benoist’s recent work on the Hilbert metric [9]. It is also related to the scaling
methods of Pinchuk [52] and Frankel [24–26] (for an overview see [42]).

The main purpose of this chapter is to sketch the proof of Theorem 4.0.2. In par-
ticular Sects. 4.5 and 4.6 are devoted to the describing the proof of Theorem 4.0.2.
We will also provide:

1. detailed proofs of some well known estimates for the Kobayashi metric and
distance on convex domains (Sect. 4.2),

2. a detailed description of a natural topology on the space of convex domains and
work of Frankel (Sect. 4.3),

3. a sketch of an alternative proof of Theorem 3.3.2 (Sect. 4.7),
4. an introduction of the Hilbert metric, its basic properties, its connection to the

Kobayashi metric, and the work of Benoist (Sect. 4.7),
5. some open conjectures and questions (Sect. 4.8).
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4.1 Preliminaries

Given a domain ˝ � C
d the (infinitesimal) Kobayashi metric is the pseudo-Finsler

metric

�˝.xI v/ D inf fj�j W f 2 Hol.�;˝/; f .0/ D x; df0.�/ D vg :

By a result of Royden [54, Proposition 3] the Kobayashi metric is an upper
semicontinuous function on˝ �C

d. In particular if  W Œa; b� ! ˝ is an absolutely
continuous curve (as a map Œa; b� ! C

d), then the function

t 2 Œa; b� ! �˝..t/I  0.t//

is integrable and we can define the length of  to be

`˝./ D
Z b

a
k˝..t/I  0.t//dt:

One can then define the Kobayashi pseudo-distance to be

k˝.x; y/ D inf f`˝./ W  W Œa; b� ! ˝ is absolutely continuous;

with .a/ D x; and .b/ D yg :

This definition is equivalent to the standard Definition 1.2.3 of k˝ via analytic
chains, see [56, Theorem 3.1].

Example 4.1.1 As a consequence of the Schwarz lemma, we obtain as in Defini-
tion 1.1.1

��.xI v/ D jvj
1 � jzj2

and hence

k�.z;w/ D tanh-1
� jz � wj

j1 � zwj
�

Then, if H D fz 2 C W Im.z/ > 0g we see that

�H .zI v/ D jvj
2 Im.z/
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and

kH .z;w/ D 1

2
arcosh

 

1C jz � wj2
2 Im.z/ Im.w/

!

:

Given a domain ˝ � C
d and an interval I � R, a curve  W I ! ˝ is called a

geodesic if

k˝..s/; .t// D jt � sj

for all t; s 2 I. For reasonable domains, geodesics have nice properties:

Proposition 4.1.2 Suppose ˝ � C
d is a domain and .˝; k˝/ is Cauchy complete.

Then for every two points x; y 2 ˝ there exists a geodesic  W Œa; b� ! ˝ so that
.a/ D x and .b/ D y. Moreover, if  W I ! ˝ is a geodesic, then  is absolutely
continuous (as a map I ! C

d) and

�˝..t/I  0.t// D 1

for almost every t 2 I.
A detailed proof of this Proposition can be found in [15, Proposition 4.6].
Given a metric space .X; d/, the length of a continuous curve  W Œa; b� ! X is

defined to be

Ld./ D sup

(
nX

iD1
d..ti�1/; .ti// W a D t0 < t2 < � � � < tn D b

)

:

Then the induced metric dI on X is defined as in Appendix A.1 to be

dI.x; y/ D inf fLd./ W  W Œa; b� ! X is continuous; .a/ D x; and .b/ D yg :

When dI D d, the metric space .X; d/ is called a length metric space. When the
Kobayashi pseudo-distance is actually a distance, then the metric space .˝; k˝/ is a
length metric space (by construction). For such metric spaces we have the following
characterization of Cauchy completeness:

Theorem 4.1.3 (Hopf–Rinow) Suppose .X; d/ is a length metric space. Then the
following are equivalent:

1. .X; d/ is a proper metric space; that is, every bounded set is relatively compact.
2. .X; d/ is Cauchy complete and locally compact.

For a proof see, for instance, Proposition 3.7 and Corollary 3.8 in Chapter I
of [18]. When k˝ is a distance on ˝ � C

d the Kobayashi distance generates the
standard topology on ˝ and so the metric space .˝; k˝/ is locally compact. In
particular we obtain:
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Proposition 4.1.4 Suppose k˝ is a distance on ˝ � C
d. Then the following are

equivalent:

1. .˝; k˝/ is a proper metric space; that is, every bounded set is relatively compact.
2. .˝; k˝/ is Cauchy complete.

Given a function f W C ! R with f .0/ D 0 let �. f / denote the order of vanishing
of f at 0, that is

�. f / D sup

�

n W lim
z!0

jzj1�n j f .z/j D 0

�

:

Definition 4.1.5 Suppose that ˝ D fz 2 C
d W r.z/ < 0g where r is a C1 function

with rr ¤ 0 near @˝ . We say that a point x 2 @˝ has finite line type L if

supf�.r ı `/j` W C ! C
d is a non-trivial affine map and `.0/ D xg D L:

Notice that �.r ı `/ � 2 if and only if `.C/ is tangent to ˝ . McNeal [47] proved
that if ˝ is convex then x 2 @˝ has finite line type if and only if it has finite type
in the sense of D’Angelo (see also [17]). In this paper, we say a convex domain ˝
with C1 boundary has finite line type L if the line type of all x 2 @˝ is at most L
and this bound is realized at some boundary point. Finite line type has the following
geometric consequence:

Proposition 4.1.6 Suppose˝ is a convex domain and @˝ is CL and has finite line
type L near some � 2 @˝ . Then there exists a neighborhood U of � and a C > 0

such that, for all p 2 U \˝ and v 2 C
d nonzero,

ı˝. pI v/ � Cı˝. p/1=L

where ı˝. p/ D inf fkq � pk W q 2 @˝g and

ı˝. pI v/ D inf fkq � pk W q 2 . p C C �v/\ @˝g :

4.2 The Kobayashi Metric and Distance on Convex Domains

In this section we discuss some well known estimates for the Kobayashi metric
and distance on convex domains. One of the most important applications of these
estimates is the following theorem of Barth:

Theorem 4.2.1 ([4]) Suppose˝ � C
d is a convex domain. Then the following are

equivalent:

1. .˝; k˝/ is a Cauchy complete metric space,
2. ˝ does not contain a complex affine line.
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Motivated by Theorem 4.2.1 we make the following definition:

Definition 4.2.2 A convex domain ˝ � C
d is called C-proper if ˝ does not

contain a complex affine line.
Using these estimates we will also establish a basic connection between the

geometry of the boundary and the behavior of the Kobayashi distance:

Proposition 4.2.3 Suppose ˝ � C
d is a convex domain. Assume that xm; yn 2 ˝ ,

xm ! � 2 @˝ , yn ! � 2 @˝ , and

lim inf
m;n!1 k˝.xm; yn/ < 1:

Then either � D � or there exists a complex line L so that � and � are contained in
the interior of @˝ \ L in L.

By considering affine maps of the unit disk into a domain ˝ one immediately
obtains the following upper bound on the infinitesimal Kobayashi metric:

Lemma 4.2.4 Suppose˝ � C
d is a domain. Then

�˝.xI v/ � kvk
ı˝.xI v/

for any x 2 ˝ and v 2 C
d.

For convex domains we can use supporting real hyperplanes to obtain a lower
bound:

Lemma 4.2.5 Suppose˝ � C
d is a convex domain. Then

kvk
2ı˝.xI v/ � �˝.xI v/

for any x 2 ˝ and v 2 C
d.

This result is originally due to Graham [33, Theorem 5] but proofs can also be
found in [6, Theorem 4.1] and [26, Theorem 2.2]).

Proof Let L WD x C C v and � 2 L n˝ \ L such that k� � xk D ı˝.xI v/. Let H be
a real hyperplane through � which does not intersect ˝ . By rotating and translating
we may assume � D 0, x D .x1; 0; : : : ; 0/, H D f.z1; : : : ; zd/ 2 C

d W Im.z1/ D 0g,
and ˝ � f.z1; : : : ; zd/ 2 C

d W Im.z1/ > 0g. With this choice of normalization
v D .v1; 0; : : : ; 0/ for some v1 2 C.

Then if P W Cd ! C is the projection onto the first component we have

�˝.xI v/ � �P.˝/.x1I v1/ � �H .x1I v1/ D jv1j
2 Im.x1/

� jv1j
2 jx1j :

Since jx1j D k� � xk D ı˝.xI v/ and jv1j D kvk this completes the proof.
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Essentially the same argument provides a lower bound on the Kobayashi
distance:

Lemma 4.2.6 Suppose ˝ � C
d is an open convex set and x; y 2 ˝ . If L is the

complex line containing x; y and � 2 L n L \˝ then

1

2
arcosh

 

1C kx � yk2
2 kx � �k ky � �k

!

� k˝.x; y/:

In particular,

1

2

ˇ
ˇ
ˇ
ˇlog

�kx � �k
ky � �k

�ˇ
ˇ
ˇ
ˇ � k˝.x; y/:

Proof The second assertion follows from the first since

arcosh

 

1C kx � yk2
2 kx � �k ky � �k

!

� arcosh

�

1C .kx � �k � ky � �k/2
2 kx � �k ky � �k

�

D arcosh

� kx � �k
2 ky � �k C ky � �k

2 kx � �k
�

D
ˇ
ˇ
ˇ
ˇlog

�kx � �k
ky � �k

�ˇ
ˇ
ˇ
ˇ :

To prove the first assertion, notice that since x; y; � are all co-linear both sides of
the desired inequality are invariant under affine transformations, in particular we can
replace˝ by A˝ for some affine map A. Now let H be a real hyperplane through �
which does not intersect ˝ . Using an affine transformation we may assume � D 0,
x D .x1; 0; : : : ; 0/, y D .y1; 0; : : : ; 0/, H D f.z1; : : : ; zd/ 2 C

d W Im.z1/ D 0g, and
˝ � f.z1; : : : ; zd/ 2 C

d W Im.z1/ > 0g.
Then if P W Cd ! C is the projection onto the first coordinate, we have

k˝.x; y/ � kP.˝/.x1; y1/ � kH .x1; y1/ D 1

2
arcosh

 

1C jx1 � y1j2
2 Im.x1/ Im.y1/

!

� 1

2
arcosh

�

1C .jx1j � jy1j/2
2 jx1j jy1j

�

:

Since kx � yk D jx1 � y1j, kx � �k D jx1j, and ky � �k D jy1j the lemma follows.
For a bounded convex domain, Lemma 4.2.4 can be used to establish the

following upper bound of the Kobayashi distance:

Lemma 4.2.7 If ˝ � C
d is a bounded convex domain and x0 2 ˝ , then there

exists C; ˛ > 0 so that for all x 2 ˝ ,

k˝.x0; x/ � C C ˛ log
1

ı˝.x/
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In some of the arguments below it will be helpful to have the following “uniform”
version of the above Observation:

Lemma 4.2.8 For any R; � > 0 there exists C; ˛ > 0 so that: if˝ � C
d is a convex

domain, x0 2 ˝ , and ı˝.x0/ 2 Œ�; 1=��, then for all x 2 BR.x0/,

k˝.x; x0/ � C C ˛ log

�
1

ı˝.x/

�

Proof Fix x 2 BR.x0/ and define

� D x C ı˝.x/

kx � x0k .x � x0/ 2 ˝:

Then consider the curve .t/ D � C e�t.x0 � �/. Notice that .t�/ D x when

t� D log .kx � x0k C ı˝.x//C log
1

ı˝.x/
:

Since ı˝.x/ � ı˝.x0/C R � 1=� C R we have

t� � log .2R C 1=�/C log
1

ı˝.x/
:

Now, since ˝ contains the convex hull of B�.x0/ and �, we see that

ı˝..t// � �e�t:

Moreover,

	
	 0.t/

	
	 D e�t kx0 � �k � e�t .kx0 � xk C ı˝.x// � e�t .2R C 1=�/ :

So

k˝.x; x0/ �
Z t�

0

�˝..t/I  0.t//dt �
Z t�

0

e�t kx0 � �k
ı˝..t//

dt �
Z t�

0

.2R=� C 1=�2/dt

D .2R=� C 1=�2/t�

� .2R=� C 1=�2/ log .2R C 1=�/C .2R=� C 1=�2/ log
1

ı˝.x/
:

Proof (of Theorem 4.2.1) If˝ contains an entire complex affine line L, then clearly
k˝.x; y/ D 0 when x; y 2 L. So we see that .1/ implies .2/.

Now suppose that ˝ does not contain a complex affine line, we claim that
.˝; k˝/ is a Cauchy complete metric space. Notice that .˝; k˝/ is a metric space
by Lemma 4.2.6. Then by Proposition 4.1.4, it is enough to show that closed metric
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balls are compact. So fix some x0 2 ˝ and R > 0, we claim that the closed
Kobayashi ball

B˝.x0;R/ D fx 2 ˝ W K˝.x; x0/ � Rg

is compact. So suppose that xn 2 B˝.x0;R/. After passing to a subsequence we can
assume that xn converges to � in ˝ [ f1g. If � 2 ˝ then, since the Kobayashi
distance is continuous, � 2 B˝.x0;R/.

So suppose that � 2 @˝ [ f1g. Let Ln be the complex line containing x and xn.
After passing to a subsequence we can assume that the sequence Ln converges to a
complex line L (if � ¤ 1, then passing to a subsequence is unnecessary).

First consider the case when � 2 @˝ . Then, since � is contained in a real
supporting hyperplane, we see that there exists �n 2 @˝ \ Ln so that �n ! �.
But then

R � lim sup
n!1

k˝.x0; xn/ � lim sup
n!1

1

2
log

kx0 � �nk
kxn � �nk D 1

and we have a contradiction.
Next consider the case when � D 1. Then there exists some � 2 L \ @˝ .

Then, since � is contained in a real supporting hyperplane, we see that there exists
�n 2 @˝ \ Ln so that �n ! �. But then

R � lim sup
n!1

k˝.x0; xn/ � lim sup
n!1

1

2
log

kxn � �nk
kx0 � �nk D 1

and we have a contradiction.

Proof (of Proposition 4.2.3) Assume that � ¤ �. By passing to subsequences we
may suppose that there exists M < 1 such that k˝.xn; yn/ < M for all n 2 N. For
each n, let Ln be the complex affine line containing xn and yn. Let

�n D minfk� � xnk W � 2 Ln n˝ \ Lng

and �n 2 Ln n˝ \ Ln be a point closest to xn. Then by Lemma 4.2.6

M � lim sup
n!1

k˝.xn; yn/ � lim sup
n!1

1

4
log

kyn � �nk
kxn � �nk

� lim sup
n!1

1

4
log

kyn � xnk � �n

�n

� lim sup
n!1

1

4
log

k� � �k � �n

�n
:
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Since � ¤ � there exists an � > 0 such that B�.xn/ \ Ln � Ln \ ˝ for all n
sufficiently large. Which implies that � is in the interior of ˝ \ L in L. The same
argument applies to �.

4.3 The Space of Convex Domains

Let Xd be the set of C-proper convex domains in C
d and let Xd;0 be the set of pairs

.˝; x0/ where ˝ � C
d is a C-proper convex open set and x0 2 ˝ .

Given a set A � C
d, let N �.A/ denote the �-neighborhood of A with respect to

the Euclidean distance. The Hausdorff distance between two compact sets A;B is
given by

dH.A;B/ D inf f� > 0 W A � N �.B/ and B � N �.A/g :

Equivalently,

dH.A;B/ D max

�

sup
a2A

inf
b2B

ka � bk ; sup
b2B

inf
a2A

ka � bk
�

:

The Hausdorff distance is a complete metric on the space of compact sets in C
d.

The space of all closed convex sets in C
d can be given a topology from the local

Hausdorff semi-norms. For R > 0 and a set A � C
d let A.R/ WD A \ BR.0/. Then

define the local Hausdorff semi-norms by

d.R/H .A;B/ WD dH.A
.R/;B.R//:

Since an open convex set is completely determined by its closure, we say a sequence
of open convex sets An converges in the local Hausdorff topology to an open convex
set A if there exists some R0 � 0 so that

lim
n!1 d.R/H .An;A/ D 0

for all R � R0.
Finally we introduce a topology on Xd and Xd;0 using the local Hausdorff

topology:

1. A sequence ˝n converges to ˝1 in Xd if ˝n ! ˝1 in the local Hausdorff
topology.

2. A sequence .˝n; xn/ converges to .˝1; x1/ in Xd;0 if ˝n ! ˝1 in the local
Hausdorff topology and xn ! x1.

Unsurprisingly, the Kobayashi distance is continuous with respect to the local
Hausdorff topology.
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Theorem 4.3.1 Suppose˝n converges to ˝ in Xd. Then

k˝.x; y/ D lim
n!1 k˝n.x; y/

for all x; y 2 ˝ uniformly on compact sets of ˝ �˝ .
See [60, Theorem 4.1] for a detailed argument.
The group of affine automorphisms Aff.Cd/ of Cd acts (in the obvious way) on

Xd and Xd;0. Remarkably, this action is co-compact:

Theorem 4.3.2 (Frankel [24]) The group Aff.Cd/ acts co-compactly on Xd;0, that
is there exists a compact set K � Xd;0 so that Aff.Cd/ � K D Xd;0.

We will sketch the proof of Theorem 4.3.2 below, but we will first describe an
application. As an immediate corollary to Theorem 4.3.2 we have:

Corollary 4.3.3 Suppose f W Xd;0 ! R>0 is a function which is continuous in the
topology of Xd;0 and affine invariant, that is

f .A.˝; x// D f .˝; x/

for any A 2 Aff.Cd/ and .˝; x/ 2 Xd;0. Then there exists cd;Cd > 0 so that

cd � f � Cd:

This corollary says that naturally defined objects on convex sets are naturally
comparable. For instance using language from [46, Section 9.2], we call a continu-
ous map F which associates to each .˝; x/ 2 Xd;0 a norm F˝.xI �/ on Tx˝ D C

d a
natural affine metric. Given a natural affine metric, we can define the length of an
absolutely continuous curve  W Œa; b� ! ˝ by

`F
˝./ D

Z b

a
F˝..t/I  0.t//dt

and then a distance by

dF
˝.x; y/ D inf

˚
`F
˝./ W  W Œa; b� ! ˝ is absolutely continuous;

with .a/ D x; and .b/ D yg :

The Kobayashi metric is an example of a natural affine metric and using Frankel’s
co-compactness theorem we immediately have the following:

Corollary 4.3.4 Suppose F is a natural affine metric. Then there exists Cd > 0 so
that

1

Cd
F˝.xI �/ � �˝.xI �/ � CdF˝.xI �/
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for all .˝; x/ 2 Xd;0. In particular,

1

Cd
dF
˝.x; y/ � k˝.x; y/ � CddF

˝.x; y/

for all ˝ 2 Xd and x; y 2 ˝ .
See [24] for more results of this nature and [46, Section 9.2] for similar results

in the real projective setting.
We begin the proof of Theorem 4.3.2 with a simple lemma:

Lemma 4.3.5 Let e1; : : : ; ed be the standard basis of Cd and for 1 � i � d define
the complex .d � i � 1/-plane Pi by

Pi D
8
<

:
ei C

d�iX

jD1
zjeiCj W z1; : : : ; zd�i 2 C

9
=

;
:

Let K � Xd;0 be the set of pairs .˝; 0/ where

1. D ei � ˝ for 1 � i � d,
2. Pi \˝ D ; for 1 � i � d.

Then K is compact in Xd;0.

Proof Suppose .˝n; 0/ is a subsequence in K. By passing to a subsequence we can
assume that ˝nk converges in the local Hausdorff topology to some closed convex
set C � C

d. Then D ei � C for 1 � i � d and so C has non-empty interior. Let
˝ be the interior of C . We claim that ˝ is C-proper and is in K. Assuming, for the
moment, this claim we see that .˝nk ; 0/ converges to .˝; 0/ in Xd;0. Since .˝n; 0/

is an arbitrary subsequence in K we then see that K is compact.
We now prove that ˝ is C-proper and is in K. Now for each n and 1 � i � d

there exists a real hyperplane Hi;n so that Pi � Hi;n and Hi;n \˝n D ;. By passing
to a subsequence, we can suppose that Hi;n converges to some real hyperplane Hi.
Now by construction Pi � Hi and Hi \˝ D ;. Now for each 1 � i � d there exists
vi D .vi;1; : : : ; vi;d/ so that

Hi D fz 2 C
d W Re hvi; zi D 1g:

Since Pi � Hi, we see that vi;j D 0 for j > i and vi;i D 1. Thus v1; : : : ; vd forms a
basis for Cd.

Now suppose that L is a complex line, we claim that L is not contained in ˝ . Fix
a; b 2 C

d so that

L D fb C az W z 2 Cg:
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Then, since v1; : : : ; vd is a basis of Cd, there exists 1 � i � d so that hvi; ai ¤ 0. But
then L \ Hi ¤ ; and so L is not contained in ˝ . Since L was an arbitrary complex
line, we see that ˝ is C-proper.

Proof (Proof of Theorem 4.3.2) Suppose that .˝; x/ 2 Xd;0 and let K be the compact
set defined in Lemma 4.3.5. We will show that there exists A 2 Aff.Cd/ so that
A.˝; x/ 2 K. Let T 2 Aff.Cd/ be the translation T.z/ D z � x. Then T.˝; x/ D
.T˝; 0/.

We next pick points �1; : : : ; �d 2 @T˝ as follows: first let �1 be a point in @T˝
closest to 0. Then assuming �1; : : : ; �k have already been selected, let Vk be the
maximal complex subspace through 0 orthogonal to the lines fR ��i W 1 � i � kg.
Then let �kC1 be a point in Vk \ @T˝ closest to 0.

Once �1; : : : ; �d have been selected let �i D k�ik for 1 � i � d. Next let � 2
GLd.C/ be the linear map

0

B
@

��1
1

: : :

��1
d

1

C
A ;

and let U be the unitary map so that

�U.�i/ D ei:

Notice that if ˝ 0 D .�UT/˝ , then D ei � ˝ 0 for all 1 � i � d.
Now since �i is a point in Vk \ @T˝ closest point to 0, we see that the complex

plane

Pi D
8
<

:
ei C

dX

jDiC1
zjej W ziC1; : : : ; zd 2 C

9
=

;

does not intersect ˝ 0. So .�UT/.˝; x/ 2 K.
We end this section with one more application of Frankel’s compactness theorem.

Theorem 4.3.6 ([25, 41]) Suppose ˝ � C
d is a C-proper convex domain. If there

exists 'n 2 Aut.˝/, x 2 ˝ , and � 2 @˝ so that 'nx ! � and @˝ is C2 at �, then
Aut.˝/ contains a one-parameter group.

Here is a sketch of the proof: fix the compact set K � Xd;0 from the proof of
Theorem 4.3.2 and consider the pairs .˝; 'nx/. Let An 2 Aff.Cd/ be the affine
automorphism constructed in the proof of Theorem 4.3.2 so that An.˝; 'nx/ 2 K.
Now since K � Xd;0 is compact we can pass to a subsequence so that An.˝n; 'nx/
converges to some .˝1; x1/ in Xd;0. Since the map An'n W ˝ ! An˝ is an
isometry with respect to the Kobayashi metric, using Theorem 4.3.1 one can show
that An'n converges locally uniformly to a bi-holomorphic map F W ˝ ! ˝1.
Then, using the fact that � is a C2 point of @˝ , one can show that ˝1 contains the
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real line fte1 W t 2 Rg. Since˝1 is convex we then see that fz C te1 W t 2 Rg � ˝1
if z 2 ˝1. Hence Aut.˝1/ contains the one-parameter group futgt2R given by

ut.z/ D z C te1:

Since ˝ is bi-holomorphic to ˝1 we see that Aut.˝/ contains a one-parameter
group.

Theorem 4.3.6 plays a key role in the proof of the following theorem of Frankel:

Theorem 4.3.7 ([25]) Suppose ˝ � C
d is a bounded convex domain and there

exists � � Aut.˝/ a discrete group which acts properly, freely, and co-compactly
on ˝ . Then˝ is a bounded symmetric domain.

The idea is to first use Theorem 4.3.6 to first show that Aut.˝/ is non-discrete.
Then Frankel argues that Aut0.˝/, the connected component of the identity in
Aut.˝/, is a semi-simple Lie group which acts transitively on ˝ . The argument
is the second step was later generalized in [27, 49] and is related to some rigidity
results in the Riemannian setting, see [21, 22, 55].

4.4 Finite Type is Necessary

In this section we sketch the proof of:

Theorem 4.4.1 Suppose˝ � C
d is a bounded convex domain with C1 boundary.

If .˝; k˝/ is Gromov hyperbolic, then @˝ has finite type.
The proof has three main steps:

Step 1 Show that complex affine discs in the boundary are an obstruction to
Gromov hyperbolicity, more precisely: If ˝ � C

d is a C-proper convex domain
and @˝ contains a non-trivial complex affine disc, then .˝; k˝/ is not Gromov
hyperbolic.

Step 2 Show that ı-hyperbolicity is a closed condition in Xd, more precisely: If
˝n converges to ˝1 in Xd and each .˝n; k˝n/ is ı-hyperbolic, then .˝1; k˝1

/

is Gromov hyperbolic.
Step 3 Show that zooming in on a point of infinite type produces an affine disc

in the boundary, more precisely: If ˝ � C
d is a bounded convex domain with

C1 boundary and x 2 @˝ has infinite type, then there exists a sequence of affine
maps An 2 Aff.Cd/ so that An˝ converges to some˝1 in Xd and @˝1 contains
a non-trivial complex affine disc.

Combining the three steps proves Theorem 4.4.1. We should emphasize that this
approach avoids the need to establish estimates for the Kobayashi distance near a
point of infinite type.
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We begin with the sketch the proof of:

Proposition 4.4.2 If ˝ � C
d is a C-proper convex domain and @˝ contains a

non-trivial complex affine disc, then .˝; k˝/ is not Gromov hyperbolic.

Remark 4.4.3

1. Proposition 4.4.2 was proven when ˝ is bounded and @˝ is C1 in [31], when
@˝ is C1;1 and d D 2 in [50], and in full generality in [60].

2. By [28], if ˝ is a convex set then @˝ contains a non-trivial complex affine disc
if and only if @˝ contains a non-trivial holomorphic disc.

The proof of Proposition 4.4.2 is based on three ideas:

1. In a Gromov hyperbolic geodesic metric space, quasi-geodesics triangles are
thin.

2. When ˝ � C
d is convex, straight lines can be parametrized as quasi-geodesics

in .˝; k˝/.
3. If @˝ contains a non-trivial complex affine disc, then a quasi-geodesic triangle

consisting of straight lines with one side parallel to this disc is fat.

Here are the details of each step:

Definition 4.4.4

1. Suppose .X; d/ is a metric space, I � R is an interval, A � 1, and B � 0. A map
 W I ! X is called a .A;B/-quasi-geodesic if

1

A
jt � sj � B � d..s/; .t// � A jt � sj C B

for all s; t 2 I.
2. A .A;B/-quasi-geodesic triangle in a metric space .X; d/ is a choice of three

points in X and .A;B/-quasi-geodesic segments connecting these points. A
.A;B/-quasi-geodesic triangle is said to be M-thin if any point on any of the
sides of the triangle is within distance M of the other two sides.

Lemma 4.4.5 For any A � 1, B � 0, and ı � 0 there exists M > 0 such that: if
.X; d/ is ı-hyperbolic, then every .A;B/-quasi-geodesic triangle is M-thin.

Proof This follows from the fact that quasi-geodesics are always shadowed by
actual geodesics, see for instance [19, Theorem 1.3.2].

Lemma 4.4.6 Suppose ˝ � C
d is a convex domain. Assume x 2 ˝ and � 2 @˝

are such that ı˝.xI � � x/ � � and kx � �k � R for some �;R > 0. If

.t/ D � C e�2t.x � �/
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then

jt1 � t2j � K˝..t1/; .t2// � .2R=�/ jt1 � t2j

for all t1; t2 � 0. In particular, the line segment Œx; �/ can be parametrized to be an
.2R=�; 0/-quasi-geodesic in .˝; k˝/.

Remark 4.4.7 This lemma not only says that every bounded line segment in ˝ can
be parametrized to be a .A;B/-quasi-geodesic, but also that the parameters A;B can
be chosen to depend on simple geometric quantities.

Proof First notice that Lemma 4.2.6 immediately implies that

jt1 � t2j � k˝..t1/; .t2//

for all t1; t2 � 0.
Now ˝ contains the convex hull of � and B�.x/ \ L where L is the complex line

containing x and �. This implies that

ı˝..t/I .t// � �e�2t

for all t � 0. Then when t2 � t1 � 0, Lemma 4.2.4 implies that

k˝..t1/; .t2// �
Z t2

t1

�˝..t/I  0.t//dt �
Z t2

t1

k 0.t/k
ı˝..t/I .t//dt

�
Z t2

t1

2 kx � �k
�

dt � .2R=�/ jt2 � t1j :

With these two lemmas we can sketch the proof of Proposition 4.4.2 (complete
details can be found in [60, Theorem 3.1]):

Proof (Proof of Proposition 4.4.2) Suppose for a contradiction that .˝; k˝/ is
Gromov hyperbolic.

Fix a point x0 2 ˝ and a complex line L so that L \ @˝ has non-empty interior
U in L. Fix a point � 2 U. Since ˝ is C-proper, @U ¤ ;. So fix a point � 2 @U.
Next consider the curves �; � W R�0 ! ˝ given by �.t/ D � C e�2t.x0 � �/ and
�.t/ D �C e�t.x0 � �/. For T > 0 let `T be the real line

fs�.T/C .1 � s/�.T/ W s 2 Rg:

Since � 2 @U, for T large there exists some zT 2 @˝ \ `T so that we have the
ordering x.T/, y.T/, zT along `T . Notice, that because � 2 @U, we have

lim
T!1 zT D �:
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Finally consider the curve 
T W R�0 ! ˝ given by 
T.t/ D �.T/Ce�t.zT ��.T//.
Using Lemma 4.4.6 there exists A � 1 so that the curves x, y, and 
T are all

.A; 0/-quasi-geodesics. Then there exists M > 0 so that every .A; 0/-quasi-geodesic
triangle in .˝; k˝/ is M-thin.

Now using Proposition 4.2.3 and the fact that � 2 @U, one can find t0 > 0 so that

M < k˝.�.t0/; �/:

Next, using Lemma 4.2.6, we can find T0 > t0 so that

M < k˝.�.t0/; 
T0 /:

But then the .A; 0/-quasi-geodesic triangle with vertices x0, �.T0/, �.T0/ and sides
� , �, and 
T0 (restricted to appropriate intervals) is not M-thin. So we have a
contradiction.

We now show that ı-hyperbolicity is a closed condition in Xd.

Proposition 4.4.8 If ˝n converges to some ˝1 in Xd and each .˝n; k˝n/ is ı-
hyperbolic, then .˝1; k˝1

/ is Gromov hyperbolic.
The proof will use the formulation of Gromov hyperbolicity using the Gromov

product. We recall that, for a metric space .X; d/, the Gromov product of three points
o; y; z 2 X is defined to be:

.xjy/o D 1

2
.d.o; x/C d.o; y/� d.x; y//:

Using the Gromov product it is possible to give the following definition of Gromov
hyperbolicity.

Definition 4.4.9 A metric space .X; d/ is called ı-product-hyperbolic if

.xjy/o � minf.xjz/o; .zjy/og � ı

for all o; x; y; z 2 X.
This notion of hyperbolicity is essentially equivalent to the definition in terms of

thin triangles, in particular the proof of Proposition III.H.1.22 in [18] implies:

Theorem 4.4.10 There exists c1; c2 > 1 so that:

1. If .X; d/ is a proper geodesic ı-hyperbolic metric space then .X; d/ is c1ı-
product-hyperbolic.

2. If .X; d/ is a proper geodesic ı-product-hyperbolic metric space then .X; d/ is
c2ı-hyperbolic.

Remark 4.4.11 One advantage of the product definition of hyperbolicity is that the
definition make sense even if the metric space .X; d/ is not geodesic.
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Proof (Proof of Proposition 4.4.8) Since each .˝n; k˝n/ is c1ı-product-hyperbolic
using Theorem 4.3.1 we see that .˝1; k˝1

/ is c1ı-product-hyperbolic. So
.˝1; k˝1

/ is c1c2ı-hyperbolic and hence Gromov hyperbolic.
The final step in the proof of Theorem 4.4.1 is proving the following:

Proposition 4.4.12 If˝ � C
d is a bounded convex domain with C1 boundary and

x 2 @˝ has infinite type, then there exists a sequence of affine maps An 2 Aff.Cd/

so that An˝ converges to some ˝1 in Xd and @˝1 contains a non-trivial complex
affine disc.

The proof is a fairly straightforward application of Taylor’s theorem applied to a
defining function for @˝ near a point of infinite type, see [60, Proposition 6.1] for
details.

Proof (of Theorem 4.4.1) Suppose ˝ � C
d is a bounded convex domain with C1

boundary. Assume for a contradiction that .˝; k˝/ is Gromov hyperbolic and @˝
contains a point of infinite type. Then by Proposition 4.4.12, there exists a sequence
of affine maps An 2 Aff.Cd/ so that An˝ converges to some ˝1 in Xd and @˝1
contains a non-trivial complex affine disc. Now the map An induces an isometry
.˝; k˝/ to .An˝; kAn˝/. So there exists ı > 0 so that each .An˝; kAn˝/ is ı-
hyperbolic. Then Proposition 4.4.8 implies that .˝1; k˝1

/ is Gromov hyperbolic.
But this contradicts Proposition 4.4.2 since @˝1 contains a non-trivial complex
affine disc.

4.5 Finite Type is Sufficient

In this section we sketch the proof of:

Theorem 4.5.1 Suppose˝ � C
d is a bounded convex domain with C1 boundary.

If @˝ has finite type, then .˝; k˝/ is Gromov hyperbolic.

4.5.1 The Special Case of the Unit Ball

To motivate the proof of Theorem 4.5.4 we begin by proving that the Kobayashi
metric on the unit ball B � C

d is Gromov hyperbolic. There are many ways to do
this, but the proof we will present only relies on the following four basic properties
of the metric space .B; kB/:

1. (Symmetry) For any x 2 B there exists ' 2 Aut.B/ so that '.x/ D 0.
2. (Well behaved geodesics) If  W R ! B is a geodesic, then the limits

lim
t!1 .t/ and lim

t!�1 .t/

both exist in @B and are distinct.
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3. (Limits of geodesics) Suppose that x0 2 B and a sequence yn 2 B converges to a
point � 2 @B. If n W Œ0;Tn� ! B is a geodesic with n.0/ D x0 and n.Tn/ D yn

then n converges locally uniformly to a geodesic  W Œ0;1/ ! B and

lim
t!1 .t/ D �:

4. (Visibility) Suppose that xn; yn 2 B, xn ! � 2 @B, yn ! � 2 @B, and � ¤ �.
If n W Œan; bn� ! B is a geodesic with n.an/ D xn and n.bn/ D yn, then there
exists Tn 2 Œan; bn� so that n.� C Tn/ converges locally uniformly to a geodesic
 W R ! B.

Remark 4.5.2 These are not a minimal set of properties. In particular, Property 4
implies Property 3 and also the existence part of Property 2.

Theorem 4.5.3 .B; kB/ is Gromov hyperbolic.

Proof Suppose for a contradiction that .B; kB/ is not Gromov hyperbolic. Then there
exists points xn; yn; zn 2 B, geodesic segments xnyn ; ynzn ; znxn joining them, and a
point un in the image of xnyn such that

kB.un; ynzn [ znxn/ > n:

Using Property 1 of B we can assume that un D 0.
Next, by passing to a subsequence, we can assume that

xn; yn; zn ! x1; y1; z1 2 B:

Since kB.un; fxn; yn; zng/ � kB.un; ynzn [ znxn/ > n we see that x1; y1; z1 2 @B.
We can parametrize each xnyn so that xnyn.0/ D 0. Then using Property 3, the

geodesics xnyn converge locally uniformly to a geodesic  W R ! B with

lim
t!�1 .t/ D x1 and lim

t!1 .t/ D y1:

By Property 2, we must have x1 ¤ y1. Thus, after possibly relabeling, we may
assume that z1 ¤ x1.

Then using Property 4 we can assume that xnzn converges locally uniformly to a
geodesic 
 W R ! B. But then

kB.0; 
.0// D lim
n!1 kB.0; xnzn.0// � lim

n!1 kB.0; xnzn/ D 1:

So we have a contradiction and thus .B; kB/ must be Gromov hyperbolic.
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4.5.2 The General Case

The fact that Aut.B/ acts transitively on B plays a major role in the proof of
Theorem 4.5.3. Unfortunately, for a general convex domain˝ it is suspected that the
group Aut.˝/ will be quite small (see for instance [35] and the references therein).
However, the proof that .B; kB/ is Gromov hyperbolic can be adapted to general
convex domains if we replace the action of Aut.B/ on B by the action of Aff.Cd/

on Xd;0.
Briefly delaying definitions we will establish the following sufficient condition

for the Kobayashi metric to be Gromov hyperbolic:

Theorem 4.5.4 Suppose˝ is a C-proper convex domain. Assume for any sequence
un 2 ˝ there exists nk ! 1 and affine maps Ak 2 Aff.Cd/ so that

1. Ak.˝; unk/ converges to some .˝1; u1/ in Xd;0,
2. geodesics in .˝1; k˝1

/ are well behaved,
3. Ak˝ is a visibility sequence.

Then .˝; k˝/ is Gromov hyperbolic.
We now define “well behaved geodesics” and “visibility sequence.” Given a

curve  W R ! C
d define the backward and forward accumulation sets as

.1/ WD ˚
z 2 C

d [f1g W there exists tn ! 1 with .tn/ ! z
�

and

.�1/ WD ˚
z 2 C

d [f1g W there exists tn ! �1 with .tn/ ! z
�
:

Definition 4.5.5 Suppose ˝ � C
d is a convex domain. We say geodesics in

.˝; k˝/ are well-behaved if for every geodesic  W R ! ˝ we have

.1/ \ .�1/ D ;:

Definition 4.5.6 Suppose ˝n converges to ˝1 in Xd. We say ˝n is a visibility
sequence if for every sequence n W Œan; bn� ! ˝n of geodesics with n.an/ !
� 2 @˝1 [ f1g, n.bn/ ! � 2 @˝1 [ f1g, and � ¤ � there exists nk ! 1
and Tk 2 Œank ; bnk � so that nk.� C Tk/ converges locally uniformly to a geodesic
 W R ! ˝1.

Remark 4.5.7 Definition 4.5.5 is a weaker version of Property 2 for the unit ball. In
the case of general convex domains, we do not know that that the limit of geodesic
lines exist which leads us to consider the forward and backward accumulation sets.
Also, there exist convex domains where two points are joined by many different
geodesics and hence it is necessary to pass to a subsequence nk in Definition 4.5.6.

Before starting the proof of Theorem 4.5.4 we will show that limits of geodesics
in a visibility sequences satisfy a natural analogue of Property 3 for the unit ball:
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Lemma 4.5.8 Assume that ˝n is a visibility sequence converging to some ˝1 in
Xd. Suppose that x0 2 ˝1 and a sequence yn 2 ˝n converges to a point � 2
@˝1 [ f1g. If n W Œ0;Tn� ! ˝n is a geodesic with n.0/ D x0 and n.Tn/ D yn

then there exists nk ! 1 so that nk converges locally uniformly to a geodesic
 W Œ0;1/ ! ˝1 and

lim
t!1 .t/ D �:

Proof Using Theorem 4.3.1 we can pass to a subsequence so that nk converges
locally uniformly to a geodesic  W Œ0;1/ ! ˝1.

Now suppose for a contradiction that

lim
t!1 .t/ ¤ �:

Then there exists sm ! 1 so that .sm/ ! � and � ¤ �. Since n converges locally
uniformly to  we can pick s0

n so that n.s0
n/ ! �. Since � 2 @˝1 [ f1g we see

that s0
n ! 1.

Now let 
n D njŒs0

n;Tn �. Since ˝n is a visibility sequence in Xd we can pass to
another subsequence and find Sn 2 Œs0

n;Tn� so that the geodesics 
n.�CSn/ converges
locally uniformly to a geodesic 
 W R ! ˝1. But then

k˝1
.
.0/; .0// D lim

n!1 k˝n.
n.Sn/; n.0// D lim
n!1 k˝n.n.Sn/; n.0//

D lim
n!1 Sn D 1:

So we have a contradiction.

Proof (of Theorem 4.5.4) Suppose for a contradiction that .˝; k˝/ is not Gromov
hyperbolic. Then there exists points xn; yn; zn 2 ˝ , geodesic segments xnyn , ynzn ,
znxn joining them, and a point un in the image of xnyn such that

k˝.un; ynzn [ znxn/ > n:

Now, we can pass to a subsequence and find affine maps An 2 Aff.Cd/ so that

1. An.˝; un/ converges to some .˝1; u1/ in Xd,
2. geodesics in .˝1; k˝1

/ are well behaved,
3. An˝ is a visibility sequence.

Next, by passing to a subsequence, we can assume that

Anxn;Anyn;Anzn ! x1; y1; z1 2 ˝1 [ f1g:
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Since

kA˝n.Aun; fAxn;Ayn;Azng/ D k˝n.un; fxn; yn; zng/
� k˝n.un; ynzn [ znxn/ > n

we see that x1; y1; z1 2 @˝1 [ f1g.
Using Theorem 4.3.1 and passing to a subsequence we can assume that Anxnyn

converge locally uniformly to a geodesic  W R ! ˝1. Then using Lemma 4.5.8
we have that

lim
t!�1 .t/ D x1 and lim

t!1 .t/ D y1:

Since geodesics in .˝1; k˝1
/ are well behaved, we must have x1 ¤ y1. Thus,

after possibly relabeling, we may assume that z1 ¤ x1.
Then using the fact that An˝ is a visibility sequence we can assume that Anxnzn

converges locally uniformly to a geodesic 
 W R ! ˝1. But then

k˝1
.u1; 
.0// D lim

n!1 kAn˝.Anun;Anxnzn.0// � lim
n!1 k˝.un; xnzn/ D 1:

So we have a contradiction and thus .˝; k˝/ must be Gromov hyperbolic.

4.5.3 Rescaling Convex Domains of Finite Type

In the context of studying bounded convex domains of finite type with non-compact
automorphism groups, Bedford and Pinchuk [6] and later Gaussier [29] proved
results about the action of Aff.Cd/ on convex domains of finite type. Using their
arguments it is possible to establish the following:

Theorem 4.5.9 Suppose ˝ � C
dC1 is a convex domain such that @˝ is CL and

has finite line type L near some � 2 @˝ . If un 2 ˝ is a sequence converging to �,
then there exists nk ! 1 and affine maps Ak 2 Aff.Cd/ such that

1. Ak˝ converges in the local Hausdorff topology to a C-proper convex domain
˝1 of the form:

˝1 D f.z0; z1 : : : ; zd/ 2 C
d W Re.z0/ > P.z1; z2; : : : ; zd/g

where P is a non-negative non-degenerate convex polynomial with P.0/ D 0,
2. Akunk ! u1 2 ˝1,
3. If xk 2 ˝ and lim infk!1 kxk � �k > 0 then limn!1 Akxk D 1, and
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4. for any R > 0 there exists C D C.R/ > 0 and N D N.R/ > 0 such that

ıAk˝. pI v/ � CıAk˝. p/1=L

for all k > N, p 2 BR.0/\ Ak˝ , and v 2 C
d non-zero.

For a detailed proof see [60, Theorem 10.1].

4.5.4 Visibility Sequences

In this subsection we describe how the estimate

ıAk˝. pI v/ � CıAk˝. p/1=L

in the statement of Theorem 4.5.9 implies that the rescaled domains Ak˝ form a
visibility sequence.

There are a number of visibility type results in the literature for both complex
geodesics and (real) geodesics. Chang, Hu, and Lee proved that complex geodesics
in a bounded strongly convex domain satisfy a visibility condition (see [20,
Section 2]). Shortly after, Mercer [48] extended these results to L-convex domains,
that is convex domains˝ � C

d where there exists C > 0 such that

ı˝. pI v/ � Cı˝. p/1=L (4.1)

for all p 2 ˝ and v 2 C
d non-zero. Every strongly convex set is 2-convex.

Karlsson [38] proved a visibility result for geodesics only assuming @˝ had C1;˛

boundary, the metric space .˝; k˝/was Cauchy complete, and the Kobayashi metric
obeyed the estimate in (4.1). Recently, visibility results for both real and complex
geodesics have been established for domains which do not satisfy the estimate
in (4.1), see [14, 15, 61].

In [60], we adapted Mercer’s argument to prove a visibility result for sequences
of geodesic lines n W R ! ˝n when ˝n is a sequence of convex sets which
converges in Xd and satisfies a uniform L-convex property. The proof in [60] was
quite complicated: first a visibility result for complex geodesics was established and
then this was used to establish a visibility result for geodesics. In this subsection we
provide simpler proof of this result using an argument from [15].

Proposition 4.5.10 Suppose˝n converges to˝ in Xd. Assume for any R > 0 there
exists C D C.R/ > 0, N D N.R/ > 0, and L D L.R/ > 0 such that

ı˝n. pI v/ � Cı˝n. p/1=L

for all n > N, p 2 BR.0/\˝n, and v 2 C
d non-zero.
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If n W Œan; bn� ! ˝n is a sequence of geodesics such that n.an/ ! � 2 @˝1 [
f1g, n.bn/ ! � 2 @˝1 [f1g, and � ¤ � then exists nk ! 1 and Tk 2 Œank ; bnk �

so that nk .� C Tk/ converges locally uniformly to a geodesic  W R ! ˝1.
The following argument is the proof of [15, Theorem 1.4] taken essentially

verbatim.

Proof Since � ¤ � at least one must be finite. So (after possibly relabeling) we can
fix R > 0 so that � 2 @˝\BR.0/ and there exists b0

n 2 Œan; bn� so that n.Œan; b0
n�/ �

BR.0/, n.b0
n/ ! �0 2 ˝, and � ¤ �0. Fix C;N;L > 0 so that

ı˝n. pI v/ � Cı˝n. p/1=L

for all n > N, p 2 BR.0/\˝n, and v 2 C
d non-zero.

By reparametrizing each n we can assume, in addition, that an � 0 � b0
n and

ı˝n.n.0// D maxfı˝n.n.t// W t 2 Œan; b
0
n�g:

Then by passing to a subsequence we can assume an ! a 2 Œ�1; 0� and b0
n ! b 2

Œ0;1�.
Since ˝n is C-proper, .˝; k˝/ is Cauchy complete and so by Proposition 4.1.2

we have:

�˝.n.t/I  0
n.t// D 1

for almost every t 2 Œan; bn�. This implies that

	
	 0

n.t/
	
	 D 1

k˝

�

n.t/I 1

k 0

n.t/k
0
n.t/

� � 2ı˝.n.t/I  0
n// � .2C/ı˝n.n.t//

1=L

for almost every t 2 Œan; bn� and n > N.
Since each ˝n is convex,

kvk
2ı˝n.xI v/ � �˝n.xI v/

for all x 2 ˝n and v 2 C
d nonzero. Since ˝n ! ˝ there exists M > 0 so that

ı˝n.xI v/ � M

for all x 2 BR.0/\˝n and v 2 C
d non-zero. Then

kvk
2M

� k˝n.xI v/
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for all x 2 BR.0/\˝n and v 2 C
d. In particular,

	
	 0

n.t/
	
	 D 1

k˝

�

n.t/I 1

k 0

n.t/k
0.t/
� � 2M

for almost every t 2 Œan; bn�. So each njŒan ;b0

n�
is 2M-Lipschitz (with respect to

the Euclidean distance) and by passing to a subsequence we can assume njŒan ;b0

n�

converges locally uniformly on .a; b/ to a curve  W .a; b/ ! ˝ (we restrict to the
open interval because a could be �1 and b could be 1). Notice that a ¤ b because
each n is 2M-Lipschitz and so

0 <
	
	� � �0		 D lim

n!1
	
	n.an/ � n.b

0
n/
	
	 � 2M jb � aj :

Claim 1  W .a; b/ ! ˝ is a constant map.

Proof By construction

ı˝n.n.t// � ı˝n.n.0//

for t 2 Œan; b0
n� and so ı˝n.n.t// ! 0 uniformly. But then if u � w and u;w 2 .a; b/

k.u/� .w/k D lim
n!1 kn.u/� n.w/k � lim sup

n!1

Z w

u

	
	 0

n.t/
	
	 dt

� lim sup
n!1

Z w

u
Cı˝n.n.t//

1=Ldt D 0:

Thus  is constant. J
We will establish a contradiction by proving the following:

Claim 2  W .a; b/ ! ˝ is not a constant map.

Proof Fix x0 2 ˝ . Then by Lemma 4.2.8 there exists C; ˛ > 0 so that

k˝n.x; x0/ � C C ˛ log
1

ı˝n.x/

for all n sufficiently large and x 2 BR.0/\˝n. Therefore for n sufficiently large and
t 2 Œan; b0

n� we have

jtj � k˝n.n.0/; n.t// � k˝n.n.0/; x0/C k˝.x0; n.t//

� 2C C ˛ log
1

ı˝n.n.0//ı˝n.n.t//
:
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Thus for n sufficiently large and t 2 Œan; b0
n� we have

ı˝n.n.t// � p
ı˝n.n.0//ı˝n.n.t// � Ae�Bjtj

where A D e.2CC�/=.2˛/ and B D 1=.2˛�/.
Thus for almost every t 2 Œan; b0

n� we have

	
	 0

n.t/
	
	 � Cı˝n.n.t//

1=L � C1e
�rjtj

where C1 D CA and r D B=L.
Now fix a0; b0 2 .a; b/ so that

� WD lim
n!1

	
	n.b

0
n/� n.an/

	
	 >

Z a0

a
C1e

�rjtjdt C
Z b

b0

C1e
�rjtjdt:

Then

	
	.b0/� .a0/

	
	 D lim

n!1
	
	n.b

0/� n.a
0/
	
	

� lim
n!1

� 	
	n.b

0
n/� n.an/

	
	� 	

	n.b
0
n/� n.b

0/
	
	� 	

	n.a
0/ � n.an/

	
	
�

� � � lim sup
n!1

Z bn

b0

	
	 0

n.t/
	
	 dt � lim sup

n!1

Z a0

a

	
	 0

n.t/
	
	 dt

� � � lim sup
n!1

Z bn

b0

C1e
�rjtjdt � lim sup

n!1

Z a0

an

C1e
�rjtjdt > 0:

Thus  W .a; b/ ! ˝ is non-constant. J
The above contradicts Claim 1.

4.5.5 Well Behaved Geodesics

Theorem 4.5.11 Suppose˝ � C
d is a C-proper convex domain and every point in

@˝ has finite line type. If  W R ! ˝ is a geodesic, then the limits

lim
t!1.t/ and lim

t!�1 .t/

both exist in @˝ [ f1g. Moreover, if one of the limits is finite, then they are distinct.

Proof By Proposition 4.1.6, for any R > 0 there exists C D C.R/ > 0 and L D
L.R/ > 0 such that

ı˝. pI v/ � Cı˝. p/1=L
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for all p 2 BR.0/\˝ and v 2 C
d non-zero. It then follows from Proposition 4.5.10

that the constant sequence˝n D ˝ is a visibility sequence. So by Lemma 4.5.8 the
limits limt!1 .t/ and limt!�1 .t/ both exist in @˝ [ f1g.

Now suppose for a contradiction that limt!1 .t/ D limt!�1 .t/ D � 2 @˝ .
By hypothesis, @˝ has finite line type at �. Now let �.�/ be the inward pointing
normal line at � and fix a sequence tn & 0. Then we can apply Theorem 4.5.9 to
the sequence .˝; � C tn�.�/.�//. After passing to a subsequence, Theorem 4.5.9
implies the existence of affine maps An so that

1. An˝ converges to some ˝1 in Xd,
2. An˝ is a visibility sequence,
3. An.0/ ! 1.

In addition, since � C tn�.�/.�/ converges to � non-tangentially, the proof of
Theorem 4.5.9 implies that we can assume that An� D 0. Now since limt!1 .t/ D
limt!�1 .t/ D � we can pick bn ! 1 and an ! �1 so that

lim
n!1 An.bn/ D lim

n!1 An.an/ D 0:

Next consider the sequence of geodesics 
n D An jŒ0;bn � and n D AnŒan ;0�

mapping into An˝ . Since An˝ is a visibility sequence there exists sn 2 Œ0; bn� and
tn 2 Œan; 0� so that An.sn/ ! p 2 ˝1 and An.tn/ ! q 2 ˝1. Since An.0/ !
1 we see that sn ! 1 and tn ! �1. Then

k˝1
. p; q/ D lim

n!1 kAn˝.An.sn/;An.tn// D lim
n!1 k˝..sn/; .tn//

D lim
n!1 sn � tn D 1:

So we have a contradiction.
As an immediate corollary we obtain that geodesics are well behaved on bounded

convex domains with finite type:

Corollary 4.5.12 Suppose ˝ � C
d is a bounded convex domain with C1

boundary and @˝ has finite type. If  W R ! ˝ is a geodesic, then the limits
limt!1 .t/ and limt!�1 .t/ both exist in @˝ and are distinct.

We can also use Theorem 4.5.11 to prove that geodesics are well behaved on
polynomial domains:

Corollary 4.5.13 Suppose˝ � C
d is a domain of the form

˝ D f.z0; z1 : : : ; zd/ 2 C
dC1 W Re.z0/ > P.z1; z2; : : : ; zd/g

where P W C
d ! R is a non-negative, non-degenerate, convex polynomial with

P.0/ D 0.
If  W R ! ˝ is a geodesic, then limt!1 .t/ and limt!�1 .t/ both exist in

@˝ [ f1g and are distinct.
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Proof Since every point in @˝ has finite line type, Theorem 4.5.11 implies that
limt!1 .t/ and limt!�1 .t/ both exist in @˝ [ f1g. Moreover, if one of the
limits is finite then they are distinct.

So suppose for a contradiction that limt!1 .t/ D limt!�1 .t/ D 1:

The idea of the proof is to use a version of Theorem 4.5.9 for polynomial domains
where the sequence un is allowed to be unbounded. The key step is defining a multi-
type at 1 for such domains, see [60, Section 12] for details. In particular, by [60,
Proposition 12.1] we can pick a sequence of linear maps An 2 GLdC1.C/ so that

1. An˝ converges to some ˝1 in XdC1,
2. An˝ is a visibility sequence,
3. limn!1 kAnk D 0.

Now part (3) implies that An.0/ ! 0. Since limt!1 .t/ D limt!�1 .t/ D 1
we can pick bn ! 1 and an ! �1 so that

lim
n!1 An.bn/ D lim

n!1 An.an/ D 1:

Next consider the sequence of geodesics 
n D An jŒ0;bn � and n D AnŒan ;0� mapping
into An˝ . Since An˝ is a visibility sequence there exists sn 2 Œ0; bn� and tn 2 Œan; 0�

so that An.sn/ ! p 2 ˝1 and An.tn/ ! q 2 ˝1. Since An.0/ ! 1 we see
that sn ! 1 and tn ! �1. Then

k˝1
. p; q/ D lim

n!1 kAn˝.An.sn/;An.tn// D lim
n!1 k˝..sn/; .tn//

D lim
n!1 sn � tn D 1:

So we have a contradiction.

4.5.6 Finite Type Implies Gromov Hyperbolic

Suppose˝ � C
d is a bounded convex domain with finite type. To show that .˝; k˝/

is Gromov hyperbolic, it is enough to verify the hypothesis of Theorem 4.5.4. So let
un 2 ˝ be a sequence. By passing to a subsequence we can assume that un ! � 2
˝.

If � 2 ˝ then An D Id satisfies the conditions in Theorem 4.5.4:

1. Clearly Id.˝; un/ D .˝; un/ converges to .˝; �/ in Xd;0.
2. By Corollary 4.5.12, geodesics in .˝; k˝/ are well behaved.
3. By Proposition 4.1.6 and Proposition 4.5.10, the constant sequence ˝ is a

visibility sequence.

Next consider the case in which � 2 @˝ . Using Theorem 4.5.9, Proposi-
tion 4.5.10, and Corollary 4.5.13 we can pass to a subsequence and find An 2
Aff.Cd/ so that
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1. An.˝; un/ converges to some .˝1; u1/ in Xd;0,
2. geodesics in .˝1; k˝1

/ are well behaved,
3. An˝ is a visibility sequence.

In either case we can find affine maps An satisfying the hypothesis of Theo-
rem 4.5.4. Hence .˝; k˝/ is Gromov hyperbolic.

4.6 Strongly Pseudoconvex Domains

In this section we show that the proof of Theorem 4.5.1 can be adapted to prove that
the Kobayashi metric on a strongly pseudoconvex domain is Gromov hyperbolic.

Theorem 4.6.1 Suppose ˝ � C
d is a bounded strongly pseudoconvex domain.

Then .˝; k˝/ is Gromov hyperbolic.
It is unclear if the argument we present is simpler than the original argument of

Balogh and Bonk. However, it does adapt to a wider class of domains. In particular,
the argument in this section can also be used to show:

Theorem 4.6.2 Suppose ˝ is locally convexifiable and has finite type in the sense
of D’Angelo. Then .˝; k˝/ is Gromov hyperbolic.

See [60, Section 14] for details.

4.6.1 Estimates

In this subsection we recall some well-known estimates for the Kobayashi metric
and distance on a strongly pseudoconvex domain.

Theorem 4.6.3 Suppose˝ � C
d is a bounded strongly pseudoconvex domain.

1. There exists C > 0 so that

C
kvk

ı˝.x/1=2
� �˝.xI v/

for all x 2 ˝ and v 2 C
d nonzero.

2. For any x0 2 ˝ there exists C > 0 so that

�C C 1

2
log

1

ı˝.x/
� k˝.x; x0/ � C C 1

2
log

1

ı˝.x/

for all x 2 ˝ .
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3. If �; � 2 @˝ are distinct, then there exists neighborhoods V;U of �; � and a
constant C > 0 so that

k˝.x; y/ � �C C 1

2
log

1

ı˝.x/
C 1

2
log

1

ı˝.y/
:

for all x 2 U \˝ and y 2 V \˝ .
4. If � 2 @˝ , then there exists a neighborhood U of � and a constant C > 0 so that

k˝.x; y/ � C C 1

2
log

kx � yk
ı˝.x/

C 1

2
log

kx � yk
ı˝.y/

for all x; y 2 U \˝ .
5. If � 2 @˝ and V2 is a neighborhood of �, then there exists a neighborhood

V1 b V2 of � and a constant c > 0 so that

�˝.x; v/ � �V2\˝.xI v/ � ecı˝.x/�˝.xI v/

for all x 2 V1 \˝ and v 2 C
d.

All these estimates follow from the results in Section 2 of [23].

4.6.2 Behavior of Geodesics

Proposition 4.6.4 Suppose ˝ � C
d is a bounded strongly pseudoconvex domain.

Assume that xn; yn 2 ˝ , xn ! � 2 @˝ , yn ! � 2 @˝ , and � ¤ �. If n W Œan; bn� !
˝ is a geodesic with n.an/ D xn and n.bn/ D yn, then there exists Tn 2 Œan; bn� so
that n.� C Tn/ converges locally uniformly to a geodesic  W R ! ˝ .

This follows immediately from [38, Lemma 36]. Alternatively, one can prove
Proposition 4.6.4 by simply repeating the argument in the proof of Proposi-
tion 4.5.10 and using the estimates in Theorem 4.6.3 when necessary.

Arguing as in Lemma 4.5.8, we can use Proposition 4.6.4 to establish:

Corollary 4.6.5 Suppose ˝ � C
d is a bounded strongly pseudoconvex domain.

Assume that x0 2 ˝ and a sequence yn 2 ˝ converges to a point � 2 @˝ . If
n W Œ0;Tn� ! ˝ is a geodesic with n.0/ D x0 and n.Tn/ D yn, then after passing
to a subsequence n converges locally uniformly to a geodesic  W Œ0;1/ ! ˝ and
limt!1 .t/ D �:

Proposition 4.6.6 Suppose ˝ � C
d is a bounded strongly pseudoconvex domain.

If  W R ! ˝ is a geodesic, then the limits limt!�1 .t/ and limt!1 .t/ both
exist in @˝ and are distinct.

Proof The proof of Theorem 4.5.11 can be adapted to this situation, but we will
provide another argument using the Gromov product. For three points o; x; y 2 ˝
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the Gromov product .xjy/o is

.xjy/o WD 1

2
.k˝.x; o/C k˝.o; y/� k˝.x; y// :

Using the estimates in Theorem 4.6.3:

1. If � 2 @˝ then lim infx;y!�.xjy/o D 1:

2. If �; � 2 @˝ and � ¤ �, then lim supx!�;y!�.xjy/o < 1:

Now if  W R ! ˝ is a geodesic then

lim
s;t!1..s/j.t//.0/ D 1 and lim

t!1;s!�1..s/j.t//.0/ D 0:

So the lemma follows.

4.6.3 Localization

Theorem 4.6.7 Suppose˝ � C
d is a bounded strongly pseudoconvex domain and

� 2 @˝ . Then there exist neighborhoods V1 b V2 b V3 of �, a holomorphic map
˚ W V3 ! C

d, and some � > 1 so that:

1. ˚ is a bi-holomorphism onto its image, C WD ˚.V3\˝/ is convex set, and˚.�/
is a strongly convex point of C , that is @˝ is C2 and had finite line type 2 near �.

2. For all x 2 V2 \˝ and v 2 C
d

�˝.x; v/ � �˝\V3 .xI v/ � ��˝.xI v/:

3. For all x; y 2 V2 \˝

k˝.x; y/ � kV3\˝.x; y/ � k˝.x; y/C �:

4. If x; y 2 V1 \˝ and  W Œa; b� ! ˝ is a geodesic with .a/ D x and .b/ D y
then .Œa; b�/ � V2.

Proof (Sketch of proof) Since ˝ is strongly pseudoconvex, there exist a neighbor-
hood V3 of � and a holomorphic map ˚ W V3 ! C

d which is a bi-holomorphism
onto its image, C WD ˚.V3 \˝/ is convex set, and ˚.�/ is a strongly convex point
of C (see for instance [1, Proposition 2.1.13]).

Now by part (5) of Theorem 4.6.3, there exists c > 0 and a neighborhood U2 of
� so that U2 b V3 and

�V3\˝.xI v/ � ecı˝.x/�˝.xI v/

for all x 2 U2 \˝ .
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We claim that there exists a neighborhood V2 of � so that V2 b U2 and if x; y 2
V2 \ ˝ and  W Œa; b� ! ˝ is a geodesic with .a/ D x and .b/ D y then
.Œa; b�/ � U2. Suppose not, then for any n > 0 there exists xn; yn 2 B1=n.�/, a
geodesic  W Œan; bn� ! ˝ with .an/ D xn and .bn/ D yn, and some tn 2 Œan; bn�

so that .tn/ 2 ˝ n U2. Now, by passing to a subsequence we can suppose that
.tn/ ! � 2 ˝ n U2. If � 2 ˝ , we obtain a contradiction by considering parts (2)
and (4) in Theorem 4.6.3. And if � 2 @˝ , we obtain a contradiction by considering
parts (3) and (4) in Theorem 4.6.3. In either case we have a contradiction and hence
there exists a neighborhood V2 of � so that V2 b U2 and if x; y 2 V2 \ ˝ and
 W Œa; b� ! ˝ is a geodesic with .a/ D x and .b/ D y then .Œa; b�/ � U2.

Repeating the above argument, we can find a neighborhood V1 of � so that V1 b
V2 and if x; y 2 V1 \ ˝ and  W Œa; b� ! ˝ is a geodesic with .a/ D x and
.b/ D y then .Œa; b�/ � V2.

Finally, we sketch the proof of part (3). Suppose that x; y 2 V2 \ ˝ . Let  W
Œa; b� ! ˝ be a geodesic with .a/ D x and .b/ D y. Then by our choices,
.Œa; b�/ � U2. Now by Proposition 4.1.2, we have �˝..t/I  0.t// D 1 for almost
every t 2 Œa; b�. And so

kV3\˝..t/I  0.t// � ecı˝..t//

for almost every t 2 Œa; b�. Then arguing as in the proof of Proposition 4.5.10 there
exists A; r > 0 (which can be chosen to be independent of x; y) so that

ı˝..t// � Ae�rjtj:

Then

kV3\˝.x; y/ �
Z b

a
�V3\˝..t/I  0.t//dt �

Z b

a
ecAe�rjtj

dt �
Z b

a
1C cAeecA

e�rjtjdt

D b � a C
Z b

a
cAeecA

e�rjtjdt

� k˝.x; y/C
Z 1

�1
cAeecA

e�rjtjdt

where we used the fact that ex � 1C eRx for x 2 Œ0;R�. Thus we can pick � > 1 so
that part (2) and part (3) are satisfied.

4.6.4 Visibility of Almost-Geodesics

Theorem 4.6.7 allows us to reduce to the convex setting, but there is a cost: with the
notation of the theorem, if  W Œa; b� ! ˝ is a geodesic with .a/; .b/ 2 V1 then 
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will not be a geodesic in V3 \˝ . This causes us to consider a larger class of almost
length minimizing curves:

Definition 4.6.8 Suppose ˝ � C
d is a domain, I � R is an interval, and � � 1. A

curve  W I ! ˝ is called an �-almost-geodesic if  is absolutely continuous (as a
map I ! C

d), �˝..t/I  0.t// � � for almost every t 2 I, and

jt � sj � � � k˝..s/; .t// � jt � sj C �

for all s; t 2 I.
Repeating the proof of Proposition 4.5.10 almost verbatim implies the following

more general result:

Proposition 4.6.9 Suppose ˝n converges to ˝ in Xd. Assume for any R > 0 there
exists C D C.R/ > 0, N D N.R/ > 0, and L D L.R/ > 0 such that

ı˝n. pI v/ � Cı˝n. p/1=L

for all n > N, p 2 BR.0/\˝n, and v 2 C
d non-zero.

If n W Œan; bn� ! ˝n is a sequence of �-almost-geodesics such that n.an/ !
� 2 @˝1 [ f1g, n.bn/ ! � 2 @˝1 [ f1g, and � ¤ � then exists nk ! 1
and Tk 2 Œank ; bnk � so that nk .� C Tk/ converges locally uniformly to an �-almost-
geodesic  W R ! ˝1.

Arguing as in Lemma 4.5.8, we can use Proposition 4.6.9 to establish:

Lemma 4.6.10 Suppose ˝n converges to ˝ in Xd. Assume for any R > 0 there
exists C D C.R/ > 0, N D N.R/ > 0, and L D L.R/ > 0 such that

ı˝n. pI v/ � Cı˝n. p/1=L

for all n > N, p 2 BR.0/\˝n, and v 2 C
d non-zero.

Suppose that x0 2 ˝1 and a sequence yn 2 ˝n converges to a point � 2 @˝1 [
f1g. If n W Œ0;Tn� ! ˝n is an �-almost-geodesic with n.0/ D x0 and n.Tn/ D yn

then there exists nk ! 1 so that nk converges locally uniformly to an �-almost-
geodesic  W Œ0;1/ ! ˝1 and

lim
t!1 .t/ D �:

Finally arguing as in the proof of Corollary 4.5.13 one can show:

Corollary 4.6.11 Suppose˝ � C
d is a domain of the form

˝ D f.z0; z1 : : : ; zd/ 2 C
dC1 W Re.z0/ > P.z1; z2; : : : ; zd/g

where P W C
d ! R is a non-negative, non-degenerate, convex polynomial with

P.0/ D 0.
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If  W R ! ˝ is a �-almost-geodesic, then limt!1 .t/ and limt!�1 .t/ both
exist in @˝ [ f1g and are distinct.

4.6.5 Proof of Theorem 4.6.1

Suppose for a contradiction that .˝; k˝/ is not Gromov hyperbolic. Then there
exists points xn; yn; zn 2 ˝ , geodesic segments xnyn ; ynzn ; znxn joining them, and a
point un in the image of xnyn such that

k˝.un; ynzn [ znxn/ > n:

After passing to a subsequence we can assume that

un; xn; yn; zn ! u1; x1; y1; z1 2 ˝:

Case 1 Suppose that u1 2 ˝ . Since

k˝.un; fxn; yn; zng/ � k˝.un; ynzn [ znxn/ > n:

we see that x1; y1; z1 2 @˝ . Now we can assume that xnyn.0/ D un and pass to
a subsequence so that xnyn converges locally uniformly to a geodesic  W R ! ˝ .
By Corollary 4.6.5

lim
t!1 .t/ D x1 and lim

t!�1 .t/ D y1:

By Proposition 4.6.6, we must have x1 ¤ y1. Thus, after possibly relabeling,
we may assume that z1 ¤ x1.

Then using Proposition 4.6.4 we can assume that xnzn converges locally uni-
formly to a geodesic 
 W R ! ˝ . But then

k˝.u1; 
.0// D lim
n!1 k˝.un; xnzn.0// � lim

n!1 k˝.un; xnzn/ D 1:

So we have a contradiction.

Case 2 Suppose that u1 2 @˝ . Fix neighborhoods V1 b V2 b V3 of u1, a
holomorphic map ˚ W U ! C

d, and some � > 1 as in Theorem 4.6.7. Let C WD
˚.V3 \˝/ and consider the sequencebun D ˚.un/.
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Nowbun ! � WD ˚.u1/ and @C is strongly convex at � (in particular it is C2

has a finite line type 2 at �). Thus by Theorem 4.5.9 after passing to a subsequence
there exists affine maps An 2 Aff.Cd/ so that:

1. An.C ;bun/ converges to some .C1;bu1/ in Xd;0,
2. C 1 is a polynomial domain,
3. for any R > 0 there exists C D C.R/ > 0 and N D N.R/ > 0 such that

ıAk C .xI v/ � CıAk C .x/
1=2

for all k > N, x 2 BR.0/\ Ak C , and v 2 C
d non-zero.

Remark 4.6.12 In this special case above, � is a strongly convex point and so the
proof of Theorem 4.5.9 is substantially easier. Moreover the limiting domain will
be the hyperboloid model of complex hyperbolic d-space:

H d D
(

.z1; : : : ; zd/ 2 C
d W Im.z1/ >

dX

iD2
jzij2

)

:

Then standard facts about complex hyperbolic space imply that �-almost-geodesics
are well behaved in .H d;KH d/. So in the case of strongly pseudoconvex domains,
much of the technicalities can be avoided.

At this point the rest of the proof closely follows the proof of Theorem 4.5.4,
however there is some extra work to do based on the fact that xn; yn; zn may not be
in V3.

Special Case Assume x1 D y1 D z1 D u1.

Proof By passing to a subsequence we may suppose that xn; yn; zn 2 V1 for all n.

Then passing to another subsequence we can suppose that An˚�.xn/ !bx1 2 C
d,

An˚�.yn/ !by1 2 C
d, and An˚�.zn/ !bz1 2 C

d.
Since xn; yn; zn 2 V1 we see that

xnyn ; ynzn ; znxn � V2

hence

b xnyn WD ˚�.xnyn/; b ynzn WD ˚�.ynzn/; b znxn WD ˚�.znxn/

are all �-almost-geodesics in .C ; kC /.
Now suppose b xnyn W Œan; bn� ! C is parametrized so that b xnyn.0/ D bun. Then

we can pass to a subsequence so that Anb xnyn converges locally uniformly to an
�-almost-geodesicb W R ! C1. By Lemma 4.6.10

lim
t!�1b.t/ D lim

n!1 An˚�.xn/ Dbx1
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and

lim
t!C1b.t/ D lim

n!1 An˚�.yn/ Dby1:

Since geodesics in C1 are well behaved, we see thatbx1 ¤by1. So by relabeling
we can suppose that bx1 ¤ bz1. Then, by Proposition 4.6.9, there exists a
parametrization of Anb xnzn which converges locally uniformly to an �-almost-
geodesicb
 W R ! C 1. But then

kC1
.bu1;b
.0// D lim

n!1 kAn C .Anbun;Anb xnzn.0// D lim
n!1 kC .bun;b xnzn.0//

D lim
n!1 kU\˝.un; xnzn.0// � lim

n!1 k˝.un; xnzn/ D 1

which is a contradiction.
We now prove the general case. Suppose xnyn W Œan; bn� ! ˝ is parametrized so

that xnyn.0/ D un. Let

a0
n D infft 2 Œan; bn� W xnyn.Œt; 0�/ � V2g

and

b0
n D supft 2 Œan; bn� W xnyn.Œ0; t�/ � V2g:

Since un ! u1, by Theorem 4.6.3 we have that a0
n ! �1 and b0

n ! C1. Also

bn WD .An ı ˚� ı xnyn/jŒa0

n;b
0

n �

is an �-almost-geodesic in An C . Hence we may pass to a subsequence such thatbn

converges locally uniformly to �-almost-geodesic b W R ! C1. By passing to a
subsequence we may assume that limn!1bn.a0

n/ Dbx1 and limn!1bn.b0
n/ D

by1 for somebx1;by1 2 C
d.

The points x1; y1 andbx1;by1 have the following relationship:

Lemma 4.6.13 If x1 ¤ u1 thenbx1 D 1. Likewise, if y1 ¤ u1 thenby1 D 1.

Proof If x1 ¤ u1 then

lim inf
n!1

	
	xnyn.a

0
n/ � un

	
	 > 0:

Sobx1 D limn!1 Anxnyn.a
0
n/ D 1 by part (3) of Theorem 4.5.9. The y case is

identical.
Now by Lemma 4.6.10

lim
t!�1b.t/ D lim

n!1bn.a
0
n/ Dbx1
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and

lim
t!C1b.t/ D lim

n!1bn.b
0
n/ Dby1:

Hencebx1 ¤by1 by Corollary 4.6.11. So by relabeling we may assume thatbx1 ¤
1. This implies, by Lemma 4.6.13, that x1 D �. So by passing to subsequence we
can suppose that xn 2 V1 for all n. Then a0

n D an for all n and

lim
n!1 An˚.xn/ D lim

n!1bn.a
0
n/ Dbx1:

Now suppose xnzn W Œ0;Tn� ! ˝ is parametrized so that xnzn.0/ D xn. Let

T 0
n D supft 2 Œ0;Tn� W xnzn.Œ0; t�/ � V2g;

then

b
n WD .An ı ˚ ı xnzn/jŒ0;T0

n�

is an �-almost-geodesic in An C . By passing to a subsequence we may assume that

lim
n!1b
n.T

0
n/ Dbz1

for somebz1 2 C
d.

Ifbz1 ¤bx1 then, by Proposition 4.6.9, there exists some ˛n 2 Œ0;T 0
n� such that

t !b
n.t C ˛n/ converges to a �-almost-geodesicb
 W R ! C1. But then

kC1
.bu1;b
.0// D lim

n!1 kAn C .Anbun;b
n.0// D lim
n!1 k˝\V3.un; xnzn.˛n//

� lim
n!1 k˝.un; xnzn/ D 1

which is a contradiction.
It remains to consider the case wherebz1 D bx1. Then sincebz1 ¤ 1 arguing

as in Lemma 4.6.13 shows that z1 D �. So by passing to a subsequence we can
suppose that zn 2 V1 for all n. Then T 0

n D Tn. So

lim
n!1 An˚.zn/ D lim

n!1b
n.T
0
n/ Dbz1:

Suppose znyn W Œ0; Sn� ! ˝ is parametrized so that znyn.0/ D zn. Let

S0
n D supfs 2 Œ0; Sn� W znyn.Œ0; s�/ � V2g:
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Then

b�n WD .An ı ˚ ı ynzn/jŒ0;S0

n�

is an �-almost-geodesic in An C . By passing to a subsequence we may assume that

lim
n!1b�n.S

0
n/ D bw1 2 C

d

for somebw1 2 C
d.

Ifbz1 D bw1 then bw1 ¤ 1 and hence arguing as in Lemma 4.6.13 shows that
y1 D �. But then we are in the Special Case.

Ifbz1 ¤ bw1 then, by Proposition 4.6.9, there exists some ˇn 2 Œ0; S0
n� such that

t !b�n.t C ˇn/ converges to an �-almost-geodesicb� W R ! C 1. But then

kC .bu1;b�.0// D lim
n!1 kAn C .Anbun;b�n.0// D lim

n!1 k˝\V3.un; ynzn.ˇn//

� lim
n!1 k˝.un; ynzn/ D 1

which is a contradiction.
Thus .˝; k˝/ is Gromov hyperbolic.

4.7 The Hilbert Metric

In this section we describe the Hilbert metric, its connections to the Kobayashi
metric, and some important properties. Connections between the Hilbert and
Kobayashi metric are further discussed in [45] and for a detailed account of recent
developments in the theory of the Hilbert metric we refer the reader to the Handbook
of Hilbert geometry [51].

Definition 4.7.1 An open set C � R
d is called properly convex if it is convex (its

intersection with every real line is connected) and does not contain any real affine
lines.

Suppose C is properly convex. Given two points x; y 2 C let `xy be a real line
containing x and y. Then the Hilbert distance between them is defined to be

HC .x; y/ D log
jy � aj jx � bj
jx � aj jy � bj

where fa; bg D @C \`xy and we have the ordering a; x; y; b along `xy. Remarkably
this formula yields a distance on C :
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Theorem 4.7.2 SupposeC is a properly convex domain. Then .C ;HC / is a Cauchy
complete geodesic metric space.

The Hilbert metric has a number of important properties, including:

1. Essentially by definition, straight lines can always be parameterized as geodesics
in .C ;HC /. However, when C is not strictly convex (that is, when @C contains
line segments) there can exist geodesics which are not straight lines.

2. If B � R
d is the unit ball, then .B;HB/ is the Klein-Beltrami model of real

hyperbolic d-space.

Now given a properly convex domain C � R
d define the real projective

automorphism group Autproj.C / to the group of diffeomorphisms f W C ! C such
that

f .x/ D Ax C b

`.x/

where A is a d-by-d matrix, b 2 R
d, and ` W Rd ! R is an affine map. This group

is called the real projective automorphism group for the following reason: if we
identify R

d with an affine chart of P.RdC1/ then Autproj.C / can be identified with
the group

f' 2 PGLdC1.R/ W '.C / D C g:

Using the fact that real projective maps send straight lines to straight lines one
can show the following:

Theorem 4.7.3 Suppose C � R
d is a properly convex domain. Then Autproj.C /

acts by isometries on .C ;HC /.
Due to the restrictive nature of the maps being considered, one might expect that

the group Autproj.C / will be quite small, but in fact there are many examples of
bounded convex domains C � R

d where C is non-homogeneous but Autproj.C / is
very large. In particular, one has the following result:

Theorem 4.7.4 For any d � 2 there exists a bounded convex domain C � R
d

where @C is C1, Autproj.C / does not act transitively onC , and there exists a discrete
group � � Autproj.C / which acts freely, properly, and co-compactly on C .

Here are two sources of examples:

1. Again let B � R
d be the unit ball. Johnson-Millson [36] proved that certain

co-compact lattices in � � Aut.B/ have non-trivial deformations as subgroups
of PGLdC1.R/. A general result of Koszul [44] about geometric structures then
implies that when � 0 is a deformation sufficiently close to � there exists a convex
set C close to the unit ball B where � 0 act co-compactly (see [8, Section 1.3] for
d > 2 and [32] for d D 2).

2. For any dimension d � 4, Gromov and Thurston [34] have constructed families
of Riemannian manifolds Mn whose sectional curvature converges to �1 but have
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no Riemannian metric of constant negative curvature. Kapovich [37] has shown
that some of the these infinite families can be realized as quotients � nC where
C is a properly convex set and � � Autproj.˝/ is a discrete group which acts
freely, properly, and co-compactly.

These examples lead to the following definition:

Definition 4.7.5 A properly convex domain C � R
d is called a convex divisible

domain if there exists a discrete group � � Autproj.C / which acts freely, properly,
and co-compactly on C .

For more details about these special type of domains see the survey papers by
Benoist [10] and Quint [53].

The existence of non-homogeneous convex divisible domains in the real projec-
tive setting makes Frankel’s rigidity theorem (see Theorem 4.3.7 above) seem even
more remarkable. But, as the examples above indicate, the rigidity coming from the
fact that complex lines have two real dimensions outweighs the flexibility obtained
by considering maps defined by general power series (instead of a special type of
rational maps as in the real projective case).

For domains O � R
d which are not convex, Kobayashi [43] constructed two

metrics using projective maps to and from the unit interval: the Carathéodory and
Kobayashi metric.

For two open sets O1 � R
d1 and O2 � R

d2 let Proj.O1;O2/ be the space of
maps f W O1 ! O2 such that

f .x/ D Ax C b

`.x/

where A is a d2-by-d1 matrix, b 2 R
d2 , and ` W Rd1 ! R is an affine map.

Remark 4.7.6 If we identify each R
di with an affine chart of P.RdiC1/ then

Proj.O1;O2/ is exactly the set of maps f W O1 ! O2 so that f D TjO1 for some
T 2 P.Lin.Rd1C1;Rd2C1// with ker T \ O1 D ;.

Next let I D .�1; 1/ be the unit interval in R and let HI be the Hilbert metric on
I. For a domain O � R

d define the two quantities:

CP

O.x; y/ WD sup fHI. f .x/; f .y// W f 2 Proj.˝; I/g ;

and

LP

O.x; y/ WD inf fHI.u;w/ W f 2 Proj.I;˝/ withf .u/ D x and f .w/ D yg :

The function CP

O always satisfies the triangle inequality, but LP

O may not. So we
introduce:

KP

O .x; y/ WD inf

(
NX

iD0
LO.xi; xiC1/ W N > 0; x D x0; x1; : : : ; xNC1 D y 2 O

)

:
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Kobayashi then proved:

Theorem 4.7.7 ([43]) SupposeO � R
d is a bounded domain. Then CP

O and KP

O are
Autproj.O/-invariant metrics on O . Moreover, if O is convex then CP

O D KP

O D HO .
This shows that the Hilbert metric is a real projective analogue of the Kobayashi

metric.
Now we change our perspective slightly and consider domains in real projective

space P.RdC1/.

Definition 4.7.8 A domain C � P.RdC1/ is called properly convex if for every
real projective line ` � P.RdC1/ the intersection ` \ C is connected or empty and
` \ C ¤ `.

If C � P.RdC1/ is properly convex, then it is contained as a bounded set in some
affine chart and it is convex in any affine chart which contains it.

Now let Yd;0 be the set of pairs .˝; x/ where ˝ � P.RdC1/ is properly convex
and x 2 ˝ . We can endow Yd;0 with a topology where .˝n; xn/ ! .˝; x/ if
˝n ! ˝ in the Hausdorff topology (obtained by fixing some Riemannian metric on
P.RdC1/) and xn ! x. Now the group PGLdC1.R/ acts on Yd;0 and Benzécri [11]
proved the following compactness theorem:

Theorem 4.7.9 (Benzécri) The group PGLdC1.R/ acts co-compactly on Yd;0.
A detailed proof and some applications can also be found in [46]. Benzécri’s

Theorem is a real projective analogue of Frankel’s compactness theorem, see The-
orem 4.3.2. Notice that Frankel’s theorem considers the local Hausdorff topology
and the action of the affine group while Benzécri’s theorem consider the Hausdorff
topology and the action of the entire affine group. The cause of this difference is the
fact that complex projective transformations do not preserve convexity and hence in
the complex case one is forced to only consider affine transformations.

Let us discuss some results concerning the Gromov hyperbolicity of the Hilbert
metric. In particular, we will survey some results of Benoist [9] and discuss their
connections to the arguments presented in the previous sections.

Karlsson and Noskov appear to be the first to study the Gromov hyperbolicity
of the Hilbert metric. Among other things, they established some obstructions to
Gromov hyperbolicity:

Theorem 4.7.10 ([39]) If ˝ � R
d is a bounded convex domain and .˝;H˝/ is

Gromov hyperbolic, then @˝ is a C1 hypersurface and ˝ is strictly convex (that is
@˝ does not contain any line segments).

Remark 4.7.11 Notice that @˝ being C1 is a equivalent to there being a unique
supporting real hyperplane through each boundary point and˝ being strictly convex
is equivalent to each supporting real hyperplane intersecting @˝ at exactly one
point.

Next Benoist presented several necessary and sufficient conditions in terms of
orbit closures in the action of PGLdC1.R/ on Yd.
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Theorem 4.7.12 ([9, Proposition 1.6]) Suppose C � P.RdC1/ is a properly
convex domain. Then the following are equivalent:

1. .C ;HC / is Gromov hyperbolic,
2. Every C1 in PGLdC1.R/ � C \ Yd is strictly convex,
3. Every C1 in PGLdC1.R/ � C \ Yd has C1 boundary.

Benoist’s proof of Theorem 4.7.12 motivates the approach to studying the
Gromov hyperbolicity of the Kobayashi metric taken in [60]. However the geometry
of the Kobayashi metric introduces a number of technicalities not present for the
Hilbert metric. The most fundamental being the behavior of geodesics: for a strictly
convex domain in real projective space every two points are joined by a unique
geodesic and this geodesic is a parameterization of the real projective line joining
them. This fact allows one to easily take limits and understand their behavior. With
the Kobayashi metric geodesics are fairly mysterious and it is rather involved to
establish results like Proposition 4.5.10.

Returning to our discussion of the Hilbert metric, using Theorem 4.7.12 (and
several other results) Benoist completely characterized the convex domains which
have Gromov hyperbolic Hilbert metric in terms of the derivatives of local defining
functions. In particular:

Definition 4.7.13 Suppose U � R
D is an open set and F W U ! R is a C1 function.

Then for x; x C h 2 U define

Dx.h/ WD F.x C h/� F.x/� F0.x/ � h:

Then F is said to be quasi-symmetric convex if there exists H � 1 so that

Dx.h/ � HDx.�h/

whenever x; x C h; x � h 2 U.

Definition 4.7.14 Suppose C � P.RdC1/ is a properly convex domain with C1

boundary. Then C is said to be quasi-symmetric convex if the boundary is locally
the graph of a quasi-symmetric function.

Then:

Theorem 4.7.15 ([9, Theorem 1.4]) Suppose C � P.RdC1/ is a properly convex
domain. Then the following are equivalent:

1. .C ;HC / is Gromov hyperbolic,
2. C is quasi-symmetric convex.

One might hope that a similar characterization will hold for the Kobayashi
metric, but one would be severely disappointed. In particular, since every bounded
convex domain in C will have Gromov hyperbolic Kobayashi metric (it is bi-
holomorphic to the disc), the boundary of convex domains with Gromov hyperbolic
Kobayashi metric need not be C1.
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4.8 Some Problems

We end this chapter with some open problems and questions.

4.8.1 Obstructions to Gromov Hyperbolicity

A fundamental question is if “flatness” of the boundary forms an obstruction to
Gromov hyperbolicity. In particular:

Question 4.8.1 Suppose that ˝ is a bounded weakly pseudoconvex domain with
C1 boundary. If .˝; k˝/ is Gromov hyperbolic, can there exist a non-constant
holomorphic map ' W � ! @˝? More generally: if .˝; k˝/ is Gromov hyperbolic,
can @˝ have a boundary point of infinite type?

Remark 4.8.2 Without any regularity assumption, the answer to the first question
is no: There exist bounded domains ˝ � C

d whose Kobayashi metric is Cauchy
complete and Gromov hyperbolic but whose boundary contains a complex affine
ball of dimension d � 1, see [59].

This question seems out of reach, but there are a number of special cases that
could be tractable. For instance, one could consider the class of domains where
each boundary point has some sort of holomorphic support function. Along these
lines, we recently proved the following:

Theorem 4.8.3 ([59]) Suppose ˝ � C
d is a bounded C-convex open set, @˝ is a

C1 hypersurface, and .˝; k˝/ is Gromov hyperbolic. If� � C is the unit disc, then
every holomorphic map ' W � ! @˝ is constant.

4.8.2 Sufficient Conditions for Gromov Hyperbolicity

The most natural question is:

Question 4.8.4 Suppose that˝ is a bounded weakly pseudoconvex domain of finite
type. Is .˝; k˝/ Gromov hyperbolic?

Not much is known about the Kobayashi metric on weakly pseudoconvex
domains of finite type so this problem seems currently out of reach. Moreover, it
seems necessary to prove the following first:

Problem 4.8.5 Suppose that˝ is a bounded weakly pseudoconvex domain of finite
type. Show that .˝; k˝/ is a Cauchy complete metric space.

However, there is at least one special case that seem tractable:

Problem 4.8.6 Suppose that ˝ � C
2 is a bounded weakly pseudoconvex domain

of finite type. Show that .˝; k˝/ is Gromov hyperbolic.
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Here it is known that the Kobayashi metric is Cauchy complete (see [58]).
Moreover, there has been success in implementing rescaling arguments for non-
convex domains in C

2, see [5, 7].
It also seems natural to try and extend Theorem 4.0.2 to a characterization

amongst the set of all convex domains (and not just the ones with C1 boundary):

Problem 4.8.7 Characterize the convex domains ˝ � C
d where the Kobayashi

metric is Gromov hyperbolic.
This problem also seems out of reach, but a natural fist step would be to try and

reduce to the dimension two case:

Problem 4.8.8 Suppose ˝ � C
d is a convex domain. Then the following are

equivalent:

1. .˝; k˝/ is Gromov hyperbolic,
2. .˝ \ P; k˝\P/ is Gromov hyperbolic for every complex affine 2-plane P.

Another natural subproblem is the following:

Question 4.8.9 Is there a natural complex analogue of Benoist’s definition of quasi-
symmetric convexity so that every bounded “complex quasi-symmetric convex
domain” is Gromov hyperbolic?

4.8.3 Other Notions of Non-positive Curvature

There are several notation of non-positive curvature for metric space, however we
suspect the Kobayhashi metric rarely satisfies these conditions:

Problem 4.8.10 Suppose that ˝ � C
d is a domains where .˝; k˝/ is Cauchy

complete. If .˝; k˝/ is non-positively curved in the sense of Busemann, then ˝
is bi-holomorphic to the unit ball.

This is true for the Hilbert metric [40].

4.8.4 The Automorphism Group of Convex Domains

It is generally believed that the bi-holomorphism group of convex domains is very
small. Probably the most natural generalization of Frankel’s rigidity theorem is the
following:

Question 4.8.11 Suppose ˝ � C
d is a bounded convex domain and there exists

a discrete group � � Aut.˝/ which acts freely and properly so that the quotient
manifold � n˝ has finite volume. Is˝ a bounded symmetric domain?
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Remark 4.8.12 Notice that Corollary 4.3.3 implies that the quotient having finite
volume with respect to one “natural” notion of volume implies it has finite volume
with respect to any “natural” notion of volume.

Another natural question is the following:

Problem 4.8.13 Characterize the bounded convex domains˝ � C
d where @˝ has

C1 boundary and Aut.˝/ is non-compact.
There are many partial answers to the problem, see [61] and the references

therein.
It also seems natural to try and understand the relationship between the bi-

holomorphism group and the isometry group:

Question 4.8.14 If ˝ is a bounded convex domain, does Aut.˝/ have finite index
in Isom.˝; k˝/, the group of isometries of .˝; k˝/?

This is known to be true when˝ is strongly convex and has C3 boundary [30]. It
is also known that when C � R

d is a properly convex domain, then Autproj.C / has
finite index in Isom.C ;HC /, see [57].

If X is a proper CAT.0/ metric space, then one characterize isometries of X as
being elliptic, parabolic, or hyperbolic based on their dynamics. In seems natural to
ask if one can characterize the elements of Aut.˝/ via their action on˝ .

Problem 4.8.15 For a bounded convex domain ˝ � C
d, define what it means for

an element ' 2 Aut.˝/ to be hyperbolic, elliptic, or parabolic via their dynamics
on ˝ .

This was done when ˝ has C1;˛ boundary in [61].
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Chapter 5
Quasi-Conformal Mappings

Hervé Pajot

In this chapter, we first give a brief overview of the classical theory of quasiconfor-
mal mappings in the complex plane and then we explain how to extend it in general
metric spaces (under geometric assumptions). Applications to complex dynamics
and to (complex) hyperbolic geometry are also discussed.

5.1 Introduction to Quasiconformal Geometry
in the Complex Plane

5.1.1 Quasiconformal Mappings

There are different possible definitions of quasiconformality in the complex plane.
The basic idea is that f is quasiconformal if f maps infinitesimal circles to ellipses
whose eccentricity is uniformly bounded (see Appendix A.4). We present here some
of them, starting with the analytic definitions. The reader should have in mind that
we would like to extend all these definitions in abstract spaces (and for some of
them, this is not obvious, see the remarks below).

Let f be an orientation preserving homeomorphism in C.

• (A1) f belongs to the Sobolev space W1;2
loc .C/ and there exists � 2 L1.C/ with

jj�jj1 < 1 so that @zf D �@z f in the sense of distributions (that is f satisfies the
Beltrami equation, see the next section for more details about this). Recall that
the space of distributions is the topological dual of C1 functions with compact
support and that the derivative of a distribution T in direction � is @�T given
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by < @�T; � >D � < T; @�� > whenever � is a C1 function with compact
support. Here, @�� is the classical derivative (in the direction �). The Sobolev
space W1;2

loc .C/ is the space of locally integrable functions with partial derivatives
in L2loc.C/.

• (A2) f is ACL (absolutely continuous on lines) and there exists K � 0 so that

max
j�jD1

jd fz.�/j � KjJf .z/j (5.1)

for almost every z. Here, d fz is the differential of f at z 2 C and Jf .z/ is the
determinant of the Jacobian matrix of f at z 2 C. We recall that f W C ! C is
ACL if f is continuous and if for any rectangle Œa; b� � Œc; d�, for almost every
x 2 Œa; b� (respectively almost any y 2 Œc; d�), the map fx W y 2 Œc; d� ! f .x C iy/
(respectively fy W x 2 Œa; b� ! f .x C iy/) is absolutely continuous in the usual
sense. By a result of Gehring-Lehto, any ACL homeomorphism f W C ! C is
almost everywhere differentiable. Hence, the previous estimate (5.1) makes sense
almost everywhere.

Note that the first challenge to extend these definitions in general spaces is to
give the right definitions of Jacobians, derivatives, Sobolev spaces, and so on in
this setting.

• (G1) There exists K > 0 so that for any family � of rectifiable curves in C, we
have

K�1�.� / � �. f� / � K�.� /:

Here f� is the set of curves f f ı 
; 
 2 � g and �.� / is the extremal length of
the curve family � which is a conformal invariant. We now give the definition
of the extremal length and for this, we say that a Borel function � W C ! R

C is

admissible if A.�/ D
Z Z

R2

�2dxdy ¤ 0;1. For such �, the �-length of 
 2 �

is L�.
/ D
Z




�jdzj if � is measurable along 
 and L�.
/ D C1 otherwise.

Finally, we set L.�/ D inf
2� L�.
/ and �.� / D sup� L.�/2=A.�/ where the
supremum is taken over all admissible functions �.

For instance, if � is the set of curves joining the circle @�.0; r1/ to the circle
@�.0; r2/ (where r1 < r2), then �.� / D .1=2�/ log.r1=r2/ is the extremal
length of an annulus r2=r1.

• (G2) There exists K > 0 so that for any family � of curves in C, we have

K�1mod.� / � mod. f� / � Kmod.� /:

We say that a Borel function � W C ! RC is admissible for � if for any (locally)

rectifiable curve 
 2 � ,
Z




�ds � 1. Then, the conformal modulus is given by
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mod.� / D inf
�

Z

C

�2ds where the infimum is taken over all admissible functions

�. The fact that the conformal modulus is a conformal invariant will be proved
later in the Riemannian setting.

If � is the set of curves joining the circle @�.0; r1/ to the circle @�.0; r2/
(where r1 < r2), then the conformal modulus of an annulus r2=r1 is mod.� / D
2�.log.r1=r2//�1, that is mod.� / D �.� /�1. This last equality is a general fact,
so .G1/ ” .G2/. We will discuss more generally the notion of modulus later
in the general setting of metric spaces (whereas the notion of extremal length
does not make sense in metric spaces).

• (QS1) There exists a continuous increasing function � W R
C ! R

C so that
�.0/ D 0 and if jz � w1j � tjz � w2j for some t � 0 and any z, w1, w2 in
C, then j f .z/ � f .w1/j � �.t/j f .z/ � f .w2/j. This condition is equivalent to the
following weaker condition: There exists a constant K � 1 so that j f .z/� f .y/j �
Kj f .z/ � f .x/j whenever jz � yj � jz � xj.

• (QS2) There exists H � 0 so that for any z 2 C and any r > 0, Lf .x; r/ �
Hlf .x; r/ where Lf .z; r/ D supfj f .z/ � f .w/jI jz � wj � rjg and lf .x; r/ D
inffj f .w/� f .z/jI jz � wj � rg.

• (M1) There exists H � 0 so that for any z 2 C, lim supr!0 Lf .z; r/=lf .z; r/ � H.
Such homeomorphisms with this property are usually said to be quasiconformal.

• (M2) There exists H � 0 so that for any z 2 C, lim infr!0 Lf .z; r/=lf .z; r/ � H.

(A1) and (A2) (respectively (G1) and (G2)) (respectively (QS1) and (QS2))
(respectively (M1) and (M2)) are analytic (respectively geometric) (respectively
quasisymmetric) (respectively metric) definitions of quasiconformality.

Theorem 5.1.1 Let f W C ! C be an orientation preserving homeomorphism.
Then, the conditions (A1), (A2), (G1), (G2), (QS1), (QS2), (M1) and (M2) are
quantitatively equivalent (and in this case, we say that f is quasiconformal).

It is obvious from (G1) or (G2) that f �1 is quasiconformal if f is so. The proof of
these equivalences was a long story. The original proofs use classical tools from
real analysis (Lebesgue differentiation theorem, the Hardy-Littlewood maximal
function, . . . ) but also arguments from complex analysis. A similar statement is also
true in Euclidean spaces in higher dimension but this needs other arguments. A key
point is that the definition of quasiconformality (M1) is local whereas the metric
definition of quasisymmetry (QS2) is global. The implication (QS2) H) (M1) is
obvious, but the proof of the converse was one of the major challenge in the theory.
The ubiquity of quasiconformal mappings explains that they are useful in several
areas of mathematics. We will explain in Sect. 5.1.3 a very famous application
to complex dynamics. Note that the implication .M2/ H) .M1/ was discovered
by Heinonen and Koskela in their study of quasiconformal mappings . . . in the
Heisenberg group. The equivalence of these definitions (except (G1) and (M2)) in
the setting of Carnot groups and in metric spaces with controlled geometry was also
a “tour de force”. We will come later to this point.
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5.1.2 The Beltrami Equation and the Measurable Riemann
Mapping Theorem

Let � be a bounded measurable function on a domain ˝ of the complex plane (or
of the Riemann sphere C1). We assume that jj�jj1 < 1. The Beltrami equation is
the partial differential equation given by

fz D �fz

In the case where � is identically zero, we recover the Cauchy-Riemann equation.
The next result is a generalization of the classical Riemann theorem.

Theorem 5.1.2 For any � 2 L1.C/ with jj�jj1 < 1, there exists a unique
quasiconformal homeomorphism f� that extends to C1 which fixes 0, 1 and 1,
and is solution of the Beltrami equation fz D �fz.

There are several proofs of this result. For most of them, the first step is to
consider the case where � is smooth with compact support for instance and then
to conclude by approximation argument. The proof by Douady is based on Fourier
analysis in the complex plane. The first proof is due to Morrey, whereas the use
of the Calderon-Zygmund theory of singular integral operators for the Beltrami
equation was initiated by Bojarski. Roughly speaking, singular integral operators
are of the form

Tf .z/ D
Z

K.w; z/f .w/dw

where the kernel K has some controlled singularities on the diagonal z D w.
A typical example is the Hilbert operator H on R which is formally given by

Hf .x/ D
Z

R

f .y/

x � y
dy which is a convolution-type operator. Under reasonable

conditions, Calderòn and Zygmund proved that if T extends as a bounded operator
on Lp with 1 < p < 1, the same is true for any 1 < q < 1. The case p D 2 plays
an important role because it could be studied by classical Fourier analysis. The T.1/
theorem of David-Journé and the T.b/-theorem of David-Journé-Semmes provide
useful criterions of L2-boundedness. The operator considered by Ahlfors-Bers in

their proof is given formally by Tf .z/ D 1=�

Z

C

f .w/

.z � w/2
dw. It turns out that in this

case the operator can be well defined as a principal value (for smooth function f ):

Tf .z/ D 1=� lim
"!0

Z

jz�wj�"
f .w/

.z � w/2
dw:

What happens in the case jj�jj1 D 1 ? A solution of the Beltrami equation is
not quasiconformal, but is BMO-quasiconformal. An interesting point is that the
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solution of the Beltrami equation in this case is not in general in the Sobolev space
W1;2. Recall that a function g is in BMO.˝/ where ˝ is a domain in C (BMO
means Bounded Mean Oscillation) if there exists C � 0 so that for any disc D with

D � ˝ , we have ./ 1

�.D/

Z

D
j f � fDjdz � C where �.D/ is the Lebesgue measure

of D and fD is the mean value of f on D: fD D �
Z

D
f .z/dz D 1

�.D/

Z

D
f .z/dz. The

best constant C so that ./ holds is the BMO norm of f , denoted by jj f jjBMO. The
space BMO is bigger than L1 and is in fact the dual of L1. In higher dimensions,
the space BMO.Rn/ can be defined in a similar way and a famous result of C.
Fefferman states that BMO.Rn/ is the dual of the Hardy space H1.Rn/. We say that
the homeomorphism f is BMO-quasiconformal on ˝ if f is ACL on ˝ and if there

exists � W ˝ ! Œ1;C1Œ in BMO so that Kf D 1C j f j
1 � j f j � � almost everywhere.

There is an analog of the measurable Riemann mapping theorem in this setting.

Theorem 5.1.3 Let ˝ be a domain in C and let � 2 L1.˝/ with jj�jj1 D 1.

Assume furthermore that there exists � 2 BMO.˝/ so that
1C j�j
1� j�j � � almost

everywhere in ˝ . Then, there exists a BMO-quasiconformal homeomorphism f on
˝ so that @zf D �@f f . Moreover, if g is another solution of this generalized Beltrami
equation on ˝ , f ı g�1 is holomorphic.

A first version of this result is due to G. David who considered Beltrami
coefficients � which satisfy the so-called logarithmic condition, that is there exist
positive constants C and ˛ such that for " small enough,

�.zI j�.z/j > 1 � "/ � Ce�˛="

where � is the Lebesgue measure. This condition gives a control of the size of
the bad set, that is the set of z so that j�.z/j is closed to 1. The relationship
between the logarithmic condition and the BMO condition comes from the John-
Niremberg inequality that we recall. If f is a function in BMO.Rn/, there exists
positive constants C1, C2 so that

�.fx 2 Q; j f � fQj > �g/ � C1 exp

�

�C2
�

jj f jjBMO

�

�.Q/:

whenever Q is a cube in R
n and fQ denotes the mean value of f on Q, that is fQ D

1

�.Q/

Z

Q
f .x/dx. In fact, the previous estimate characterizes the space BMO.Rn/.

As we will see in the next subsection, the measurable Riemann mapping
theorems (5.1.2 and 5.1.3) have nice applications in complex dynamics.
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5.1.3 An Application to Complex Dynamics: The
Non-Wandering Theorem of Sullivan

Let f W C1 ! C1 be a rational function on the Riemann sphere C1. The orbit of
z0 2 C1 is the collection of points f n.z0/ where for any n 2 N, f n D f ı : : : ı f n
times ( f n is the n-th iteration of f ). A classical problem in complex dynamics is to
study the nature of the orbits. The Fatou set of f denoted by Ff is the set of points z0
such that there exists a neighborhood Uz0 of z0 where the sequence . f n/ is a normal
family (recall that this means that any sequence in . f n/ has a subsequence which
converges uniformly on compact subsets of Uz0). The complement of the Fatou set
is the Julia set Jf D C1 n Ff . The key point is that the orbit of z0 in the Fatou set
is stable under perturbations of z0 whereas the dynamical behaviour of the orbit of
z0 in the Julia set is sensible dependent of the initial data. The Fatou set is an open
totally invariant set, in the sense that f .Ff / D f �1.Ff / D Ff . This implies that the
Julia set is a totally invariant closed set.

Definition 5.1.4 The point z0 is said to be periodic if there exists p 2 N
� so that

f p.z0/ D z0. The set of points fz0; : : : ; zpg is called a cycle. Here, zj D f j.z0/. The
multiplicity � of this cycle is defined by

� D . f p/0.z0/ D f 0.z0/f 0.z1/ : : : f 0.zp�1/:

When j�j > 1, the cycle is said to be repelling. If j�j < 1, the cycle is said to be
attracting (and super-attracting in the special case � D 0).

All the repelling cycles are contained in the Julia set Jf . Attracting cycles
are contained in the Fatou set Ff . To each point zi of an attracting cycle, we can
associate its basin of attraction given by A.zi/ D fw 2 C1I limn!C1 f np.w/ D zig
which is contained in the Fatou set. We denote by A�.zi/ the connected component
of A.zi/ that contains zi. More generally, a Fatou component is a connected
component of the Fatou set. A key point is that the image by f of a Fatou component
˝ is again a Fatou component ˝ 0. Moreover, f W ˝ ! ˝ 0 is proper. This
implies that if ˝1, ˝2 are two Fatou components of f with f .˝1/ \ ˝2 ¤ ; then
f .˝1/ D ˝2.

Consider now a Fatou component ˝ of f and set for any n 2 N, ˝n D f n.˝/.
There are two cases.

– ˝ is a preperiodic component , that is ˝mCp D ˝m for some m � 0 and some
p � 1 (the case m D 0 corresponds to the periodic case).

– ˝ is a wandering component, that is ˝m ¤ ˝p for any m ¤ p.

The classification of preperiodic components is known from the work of Fatou and
Cremer. We can now state the beautiful result of Sullivan which is related to the
existence of wandering components.

Theorem 5.1.5 The Fatou set of a rational function of degree d � 2 does not have
a wandering component.
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We will not give the complete proof of the result which is quite long and
complicated. But we would like to illustrate how quasiconformal mappings are
useful. Let f be rational function on the Riemann sphere C1.

Definition 5.1.6 A quasiconformal deformation of f is a rational function Qf of the
form Qf D h ı f ı h�1 where h is a quasiconformal homeomorphism of C1.

Assume that ˝ is a wandering component of f . To construct quasiconformal
deformations, the idea is to solve the Beltrami equation hz D �hz where � 2
L1.˝/ satisfies jj�jj1 < 1 and should be chosen carefully. It turns out that it is
possible to construct a space of quasiconformal deformations (with degree d) with
arbitrary high dimension. This is impossible since the space of rational functions of
degree d could be identified (locally) to C

2d.

5.2 Quasiconformal Mappings in Metric Spaces

5.2.1 Modulus of a Curve Family

We would like to extend the notion of modulus of a curve family (as considered in
the definition (G2) of quasiconformality in the complex plane) to metric spaces. Let
.X; d/ be a metric space. We assume that .X; d/ is equipped with an outer measure
�. Furthermore, we assume that � is a Borel measure (that is Borel sets are �-
measurable) and that 0 < �.B/ < 1 for any ball B in X. A curve 
 in X is given
by a continuous map 
 W I ! X where I is an interval in R. Most of the time, we
identify the map 
 with its image 
.I/. In the case where I D Œa; b� is a closed
interval, we define the length l.
/ of 
 by

l.
/ D sup
N�1X

jD0
d.
.ti/; 
.tiC1//

where the supremum is taken over all subdivisions t0 D a < t1 : : : : < tN D b of
Œa; b�. If I is unbounded or not closed, we set l.
/ D sup l.
jJ/ where the supremum
is taken over all closed bounded subintervals J of I. We say that 
 is a rectifiable
curve if its length is finite. In a similar way, we say that 
 W I ! X is locally
rectifiable if its restriction to any closed subinterval J of I is rectifiable. If 
 is a
rectifiable curve in X, we can write (in an unique way) 
 D 
s ı s
 where s
 W I !
Œ0; l.
/� is the length function of 
 and 
s W Œ0; l.
/� ! X is a 1-lipschitz function
called the arc length parametrization of 
 . In this case, if f W X ! Œ0;C1� is a
nonnegative Borel function, we set

Z




fds D
Z l.
/

0

f ı 
s.t/dt:
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If the curve 
 is only locally rectifiable, we set

Z




fds D sup
Q


Z

Q

fds

where the supremum is taken over all rectifiable subcurves Q
 of 
 .
We come back to the modulus of curves and we first discuss the Euclidean/

Riemannian case. Let .M; g/ be a Riemannian manifold of dimension n (for
instance, M D R

n equipped with its Euclidean structure). We denote by volg its
Riemannian volume (that is the Lebesgue measure in R

n).

Definition 5.2.1 If � is a curve family in M, the conformal modulus of � is defined
by

mod.� / D inf
Z

M
�ndvolg

where the infimum is taken over all Borel functions � W M ! Œ0;C1� such thatZ




�.s/ds � 1 for any locally rectifiable curve 
 2 � . Such a � is called admissible

for the curve family � .
The key point is that the conformal modulus is conformally invariant.

Theorem 5.2.2 Let M, N be two Riemannian manifolds of dimension n. If f W M !
N is conformal, then mod. f� / D mod.� / for all curve family � in M, where
f� D f f .
/; 
 2 � g.

Proof Let  be an admissible function for f� , and let us set

� D . ı f / � kd f k :

If 
 2 � is (locally) rectifiable, it follows from the change of variables provided by
f that

Z




�ds D
Z




. ı f / � kd f kds

D
Z

f .
/
ds

so that � is admissible as well.
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We note that since f is conformal, kd f kn D jJf j at all points (this can be seen as
the definition of conformality). Therefore,

Z

M
�ndvolg D

Z

M
. ı f /nkd f kndvolg

D
Z

M
. ı f /nJf dvolg

D
Z

N
ndvolg

Hence

mod.� / �
Z

M
�ndvolg D

Z

N
ndvolg

so that mod.� / � mod. f� / and the reverse inequality is obtained by symmetry.

Example 5.2.3 We now give a standard computation of modulus in the Euclidean
case for the ring. Let � be the family of curves in R

n joining the two boundary
components of the annular region B.x0;R/nB.x0; r/ D fxI r < jx�x0j < Rg (where
x0 2 R

n, 0 < r < 2R). Then, if we denote by !n�1 the area of the unit sphere Sn�1
in R

n,

mod.� / D !n�1
�

log

�
R

r

��1�n

:

Proof By conformal invariance of the modulus, we can assume that x0 D 0. We
first check that the function defined by �.x/ D .log .R=r//�1 jxj�1 if r < jxj < R
and �.x/ D 0 elsewhere is admissible for � . To see this, consider 
 W Œa; b� ! X
a rectifiable curve of � and denote by Œ
.a/; 
.b/� the Euclidean (closed) segment
joining 
.a/ and 
.b/. Since � is radial, we get

Z




�.s/ds �
Z

Œ
.a/;
.b/�
�.s/ds

�
Z R

r
.log.R=r//�1

dt

t

D 1:
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This implies (by using a change in polar coordinates) that

mod.� / �
Z

B.0;R/nB.0;r/
�.x/ndx

D .log.R=r//�n
Z

Sn�1

�Z R

r

dt

t

�

dw

D !n�1 .log.R=r//1�n :

To prove the reverse inequality, consider an admissible function � for � . Without
loss of generality, we can assume that �.x/ D 0 if jxj � R or if jxj � r. For any
w 2 Sn�1, we have

1 �
Z R

r
�.tw/dt (since � is admissible)

D
Z R

r
�.tw/t

n�1
n t

1�n
n dt

�
�Z R

r
�.tw/ntn�1dt

�1=n �Z R

r
t�1dt

� n�1
n

(by Hölder inequality)

�
�Z R

r
�.tw/ntn�1dt

�1=n

.log.R=r//
n�1

n :

Hence,

Z R

r
�.tw/ntn�1dt � .log.R=r//1�n :

This implies

Z

B.0;R/nB.0;r/
�n.x/dx D

Z

Sn�1

�Z R

r
�.tw/ntn�1dt

�

dw

� !n�1 .log.R=r//1�n :

So, mod.� / � !n�1 .log.R=r//1�n and the proof is complete.
We now consider the general case.

Definition 5.2.4 Let .X; d; �/ be a metric measure space. Let � be a curve family
in X and let p � 1. We define the p-modulus of � by

modp.� / D inf
Z

X
� pd�
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where the infimum is taken over all Borel functions � W X ! Œ0;C1� such thatZ




�.s/ds � 1 for any locally rectifiable curve 
 2 � . Such a � is called admissible

for the curve family � .

Remark 5.2.5 The p-modulus of the family � of all curves that are not locally
rectifiable is zero, since any function � W X ! Œ0;C1� is admissible for � .

Remark 5.2.6 If � contains a constant curve, then there is no admissible function
for � , and (by convention) modp.� / D C1.

Theorem 5.2.7 Let .X; d; �/ be a metric measure space and let p � 1.

(i) modp.;/ D 0.
(ii) If �1; �2 are two curve families in X with �1 � �2, then modp.�1/ �

modp.�2/.
(iii) If .�i/i2N is a countable collection of curve families in X, then modp .[i�i/ �P

i modp.�i/.
(iv) If � , Q� are two curve families in X such that each curve 
 2 � has a subcurve

Q
 2 Q� , then modp.� / � modp. Q� /.
Note that properties (i), (ii) and (iii) imply that the p-modulus is an outer measure
on the set of all curves in X (but in general there is no nontrivial measurable family
of curves !). In the case of a Riemannian manifold of dimension n (for instance in
R

n), the conformal modulus corresponds to the case p D n. But, in general metric
spaces, it is more convenient to consider a family of moduli.

Proof The proofs of (i) and (ii) are left to the reader as (easy) exercises. The proof
of (iv) follows from the fact that, if � is admissible for Q� , then � is admissible for � .
We now prove (iii). Without loss of generality, we can assume that modp.�i/ < 1
for any i 2 N (otherwise the conclusion is clear). Fix " > 0. For any i 2 N,
choose �i an admissible function for �i so that

R
X �

p
i d� � modp.�i/C "=2i, and set

� D �P
i2N �

p
i

�1=p
. Since � � �i for any i 2 N, � is admissible for [i�i, thus

modp .[i�i/ �
Z

X
� pd�

�
X

i

Z

X
�

p
i d�

�
X

i

modp.�i/C "
X

i

1=2i

D
X

i

modp.�i/C 2":

Since the last inequality is true for any " > 0, we conclude by taking " ! 0.
We now investigate the example of the modulus of a ring, in the general case.

Assume that .X; d; �/ is a metric measure space such that there exist a constant
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C0 � 0 and an exponent Q > 1 with �.B.x;R/ � C0RQ whenever x 2 X, R > 0.
In some sense, Q will play the role of the dimension and we will consider the Q-
modulus.

Lemma 5.2.8 Let � be the family of curves joining B.x0; r/ to X n B.x0=R/ (where
x0 2 X, 0 < r < 2R). Then there exists a constant C � 0 (depending only on C0 and
on Q) so that

modQ.� / � C

�

log

�
R

r

��1�Q

:

In general metric spaces, we can not expect to have a lower bound (as in the
Riemannian case). Spaces for which such a bound exists will be defined later (they
are called Loewner spaces). Note also that this modulus estimate implies that the
Q-modulus of a family of curves passing through a given point is zero.

Proof As previously, set �.x/ D .log.R=r//�1 d.x0; x/�1 for r < d.x0; x/ < R and
�.x/ D 0 elsewhere. Then, � is admissible for � and if we denote by N the least
integer such that 2NC1r � R, we have

modQ.� / �
Z

X
�Qd� � .log.R=r//�Q

NX

jD0

Z

f2jr�d.x0;x/�2jC1rg
d.x0; x/

�Qd�

� .log.R=r//�Q
NX

jD0
.2jr/�Q�.B.x0; 2

jC1r//

� .log.R=r//�Q
NX

jD0
.2jr/�Q.C0.2

jC1r/Q/

� 2QC0.N C 1/ .log.R=r//�Q

� 10 � 2QC0 .log.R=r//1�Q . since 2Nr < R/:

5.2.2 Quasi-Conformal Homeomorphisms

Let .X; dX; �X/ and .Y; dY ; �Y/ be two metric measure spaces and let f W X ! Y be
a homeomorphism. For any x 2 X, any R > 0, set

Lf .x;R/ D supfdY. f .x/; f .y//I dX.x; y/ � Rg;
lf .x;R/ D inffdY. f .x/; f .y//I dX.x; y/ � Rg;

Hf .x;R/ D Lf .x;R/

lf .x;R/
:
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Definition 5.2.9 We say that f is

• quasiconformal (QC) if there exists H � 1 so that lim supR!0 Hf .x;R/ � H for
any x 2 X;

• weakly quasisymmetric (WQS) if there exists H � 1 so that Hf .x;R/ � H for
any x 2 X and any R > 0.

Roughly speaking, QC-homeomorphisms (respectively WQS-homeomorphisms)
distort the shape of infinitesimal balls (respectively every balls) by a uniformly
bounded amount. It is clear that (WQS) ) (QC).

Another way to define quasiconformality is to use the “3 points condition” of
Tukia and Väisälä:

Definition 5.2.10 The homeomorphism f is quasisymmetric (QS) if there exists a
homeomorphism �f D � W Œ0;C1/ ! Œ0;C1/ so that

dX.x; a/ � tdX.x; b/ ) dY. f .x/; f .a// � �.t/dY. f .x/; f .b//

whenever a, b x 2 X and t > 0.

Example 5.2.11 Any bilipschitz homeomorphism (with constant L) is QS (and in
this case �.t/ D L2t). Recall that f W .X; dX/ ! .Y; dY/ is bilipschitz if there exists
L > 0 so that L�1dX.x; x0/ � dY. f .x/; f .x0// � LdX.x; x0/ whenever x, x0 2 X.

Remark 5.2.12 The conditions (QC), (WQS) and (QS) correspond respectively to
the conditions (M1), (QS2) and (QS1) given previously in the complex plane. We
follow here the (almost) usual terminology in the general setting of metric spaces.

It is easy to see that the inverse of a QS-homeomorphism is QS (�f �1 .t/ D
1=��1.t�1/) and that the composition of two QS-homeomorphims is QS (�f ıg D
�f ı �g). Note that these properties are not obvious for QC-homeomorphisms or
WQS-homeomorphisms. The implication (QS) ) (WQS) is always true whereas
the implication (WQS) ) (QS) holds if �X and �Y are doubling. Recall that a
measure � on a metric space .X; d/ is doubling if there exists CDV � 1 so that
�.B.x; 2r// � CDV�.B.x; r// whenever x 2 X and R > 0.

5.2.3 Loewner Spaces

We now introduce spaces with controlled geometry, that are spaces for which we
have an upper bound for the modulus of some curve families. Throughout all this
subsection, we assume that for all x, y 2 X, there exists a rectifiable curve joining
x and y. We start with some notations. Let E and F be two non degenerate continua
in X. Non degenerate means that E and F contain more than one point and we recall
that a continuum in X is a compact connected subset of X. We denote by � .E;F/
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the family of all curves joining E and F in X. We set modp.E;F/ D modp.� .E;F//.
Finally, we denote by �.E;F/ the relative distance between E and F, that is

�.E;F/ D d.E;F/

min.diamE; diamF/
:

Definition 5.2.13 Let Q > 1 (this assumption is important since R is not a Loewner
space). We say that X (or .X; d; �/) satisfies the Loewner property of exponent Q if
there exists a function � W�0;C1Œ!�0;C1Œ so that

modQ.E;F/ � �.�.E;F//

for any disjoint non degenerate continua E and F in X.
Moreover, if � is Q-regular, � could be chosen so that

�.t/ � log .1=t/ when t ! 0;

�.t/ � .log t/1�Q when t ! C1:

Recall that a measure � on X is Q-regular if there exists a constant CAR > 0 so that

C�1
AR RQ � �.B.x;R// � CARRQ

whenever x 2 X, R 2�0; diamXŒ. In particular, an Ahlfors-regular measure �
is doubling (this notion is defined in the previous subsection). The Hausdorff
dimension of a metric space .X; d/ equipped with a Q-Ahlfors measure is Q. In
these notes, a Q-Loewner space is a metric measure space .X; d; �/ so that X satisfies
the Loewner condition of exponent Q and � is Q-regular. This terminology is not
exactly the usual one.

Since Q > 1, modQ.E;F/ is big if �.E;F/ is small, that is if E and F are closed,
or if E and F have a huge diameter. A typical example of a Loewner space is the
n-Euclidean space (n > 1). Other examples include Heisenberg/Carnot groups,
(noncompact, complete) Riemannian manifolds with nonnegative Ricci curvature
and maximal growth. This means that the Riemannian volume volg of the manifold
.M; g/ of dimension n satisfies for all x 2 M and R > 0, volg.B.x;R// � C�1Rn

for some positive constant C. Note that by the classical comparison Theorem
of Bishop-Gromov, we have also volg.B.x;R// � CRn if M has nonnegative
Ricci curvature. Hence, a (noncompact complete) manifold with nonnegative Ricci
curvature is a Loewner space if and only if its Riemannian volume volg is Ahlfors-
regular. Moreover, for any Q > 1, there exist Loewner spaces with dimension Q
(Laakso spaces, Bourdon-Pajot spaces). The case of the Heisenberg groups and of
Riemannian manifolds will be discussed with more details later.

Loewner spaces have the nice following geometric properties.
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Theorem 5.2.14 Let .X; d; �/ be a Q-Loewner space (with Q > 1). Then,

• X is linearly locally connected (LLC). This means that there exists a constant
C > 0 so that for any x 2 X, any r > 0,

1. Every pair of point in B.x; r/ can be joined (by a continuum) in B.x;Cr/;
2. Every pair of point in X n B.x; r/ can be joined (by a continuum) in X n

B.x; r=C/.

• X is quasiconvex, that is there exists a constant C � 0 such that any pair of points
.x; y/ 2 X � X can be joined by a curve 
 in X whose length is less than C Pd.x; y/.
We now give a characterization of Loewner spaces in terms of Poincaré

inequalities. We need first some definitions.

Definition 5.2.15 Let u W X ! R be a continuous function. We say that � W X !
RC is an upper gradient of u if

ju.x/ � u.y/j �
Z




�.s/ds

for all x, y 2 X and any rectifiable curve 
 joining x and y.

Example 5.2.16 If X is the Euclidean space R
n (or a smooth manifold) and if u W

R
n ! R is smooth, then jruj is an upper gradient of u. Moreover, if � is another

upper gradient of u, then jruj � � almost everywhere.

Example 5.2.17 Assume that u W X ! R is a Lipschitz function (with Lip-
schitz constant L) and that X is rectifiably connected (that is every pair of
points can be joined by a rectifiable curve). Then, �.x/ D L and �.x/ D
lim infr!0 supd.x;y/Dr

ju.x/� u.y/j
r

are upper gradients of u.

The first claim is obvious. We now prove the second claim. Recall that we assume
that given x and y in X, there exists a rectifiable curve in X joining these two points.
Let 
 be a (locally) rectifiable curve in X parameterized (locally) by arclength. Then
the restriction u
 of u to 
 (that is u ı 
 ) is also Lipschitz and so is differentiable
almost everywhere. It follows that if 
 is a rectifiable curve joining x to y,

ju.x/� u.y/j �
Z




ju0

.s/jds:

Thus, we have to prove that

ju0

.s/j � lim inf

r!0
sup

d.x;y/Dr

ju.x/� u.y/j
r

whenever u0

 .s/ exists. Fix such a s0 and assume that u0


 .s0/ ¤ 0 (other-
wise, the previous inequality is obvious). Hence, if s is sufficiently closed to s0,
d.
.s/; 
.s0// ¤ 0. Moreover, for all r small enough, there exists a smaller s.r/ so
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that d.
.s.r//; 
.s0// D r � js.r/ � s0j. Note that s.r/ ! 0 when r ! 0. Now we
have

ju
 .s.r// � u
 .s0/j
s.r/ � s0

� sup
d.z;
.s0/Dr

ju.z/� u.
.s0//j
r

:

Since u0

 .s0/ exists, we get

ju0

.s0/j � lim inf

r!0

ju
 .s.r//� u
 .s0/j
s.r/� s0

� lim inf
r!0

sup
d.z;
.s0//Dr

ju.z/� u.
.s0//j
r

and the claim is proved. Note that this implies that the other pointwise Lipschitz con-

stants �.x/ D lim inf
r!0

sup
d.x;y/�r

ju.x/� u.y/j
r

and �.x/ D lim sup
r!0

sup
d.x;y/�r

ju.x/� u.y/j
r

are also upper gradients. This illustrates the fact that in general an upper gradient is
not unique.

Remark 5.2.18 By definition, � D C1 is an upper gradient for any continuous
function u W X ! R. This implies that an upper gradient always exists.

Let p � 1. If B is a ball, we denote by gB D �
Z

B
gd� D 1

�.B/

Z

B
gd� the mean

value of a Borel function g W X ! R on B. We say that the metric measure space
.X; d; �/ supports a weak .1; p/-Poincaré inequality if there exist constant C � 0

and � � 1 so that

Z

B
ju � uBjd� � CdiamB

�

�
Z

�B
� pd�

�1=p

(5.2)

whenever B is a ball in X, u W X ! R is a continuous function and � W X ! R
C is

an upper gradient of u in B. Here, �B denotes the ball with the same center as B but
whose radius is � times the radius of B. If (5.2) is satisfied with � D 1, we say that
.X; d; �/ supports a .1; p/-Poincaré inequality.

Remark 5.2.19 By Hölder inequality, if .X; d; �/ supports a .1; 1/-Poincaré
inequality, then .X; d; �/ supports a .1; p/-Poincaré inequality for any p > 1.
Thus, the .1; 1/-Poincaré inequality is the strongest one.

Remark 5.2.20 In metric spaces which satisfy a chain condition, the weak-.1; p/-
Poincaré inequality implies the .1; p/-Poincaré inequality (See [6] for the definition
and a proof). For instance, the chain condition is satisfied in geodesic metric spaces.
Thus, most of the time, we will omit the term “weak”.

Remark 5.2.21 If X is a proper and quasiconvex metric space equipped with a
doubling measure, then X admits a Poincaré inequality if and only if X admits
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a Poincaré inequality only for bounded Lipschitz functions (and if and only if X
admits a Poincaré inequality for Borel functions).

The connection between the Loewner estimate and the Poincaré inequality is
given in the next result.

Theorem 5.2.22 Let .X; d; �/ be a proper, Q-regular metric measure space. Then,
X is a Q-Loewner space if and only if X supports a (weak) .1;Q/-Poincaré
inequality.

This criterion is very useful to check that a given space is a Loewner space. We
now give two applications.

Theorem 5.2.23 The Heisenberg group equipped with its Carnot-Carathéodory
distance and its left invariant Haar measure is a .2n C 2/-Loewner space.

Proof First, we already mentioned (see chap. 3) that the Haar measure is 2n C 2-
regular. So to conclude, we have to prove the Poincaré inequality. Let u be a smooth
function on the Heisenberg group and let � be a weak gradient of u. For any z 2 H

n,
set jzj D dCC.0; z/ and choose a geodesic path 
z W Œ0; jzj� ! H

n from 0 to z. Note
that s 7! x:
z.s/ is a shortest path that joins x to x:z (if x ¤ 0). Hence, by the
definition of the upper gradient, we have

ju.x/� u.x:z/j �
Z jzj

0

�.x:
z.s//ds:

To simplify the notation, we denote by dx the integration with respect to the Haar
measure and by jAj the Haar measure of A � H

n. Now, we use the left invariance of
the measure to get (with y D x:z)

Z

B
ju.x/� uBjdx � 1

jBj
Z

B

Z

B
ju.x/ � u.y/jdxdy

D 1

jBj
Z

Hn

Z

Hn
�B.x/�B.x:z/ju.x/� u.x:z/jdxdz

� 1

jBj
Z

Hn

Z

Hn

Z jzj

0

�B.x/�B.x:z/�.x:
z.s//dsdxdz:

Here, �A denotes the characteristic function of A. By using the right invariance of
the Haar measure, we get (with � D x:
z.s/)

Z

Hn
�B.x/�B.x:z/�.x:
z.s//dx D

Z

Hn
�B:
z.s/.�/�B:z�1:
z.s/.�/�.�/d�:

Assume that �B:
z.s/.�/�B:z�1:
z.s/.�/ ¤ 0. Then, there exist x and y in B so that
� D x:
z.s/ D y:z�1:
z.s/. Note that z D x�1:y is in 2B since dCC.0; z/ D
dCC.0; x�1:y/ D dCC.x; y/ � 2r where r is the radius of B. Moreover, � D x
x�1:y.s/
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is on a geodesic path from x to y and so dCC.x; �/ C dCC.y; �/ D dCC.x; y/ � 2r.
This implies that dCC.x; �/ � r or dCC.y; �/ � r. Hence, by the triangle inequality,
� 2 2B. It follows that

Z

Hn
�B:
z.s/.�/�B:z�1:
z.s/.�/�.�/d� � �2B.z/

Z

2B
�.�/d�;

and then

Z

B
ju.x/� uBjdx � 1

jBj
Z

Hn

Z jzj

0

�2B.z/
Z

2B
�.�/d�dsdz

� 1

jBj
Z

2B

Z

2B
jzj�.�/d�dz

� Cdiam.B/
Z

2B
�.z/dz:

Another application is

Theorem 5.2.24 Let .M; g/ be a noncompact, complete Riemannian manifold of
dimension n. We assume that M has nonnegative Ricci curvature. Then, M is a
Loewner space if and only if the Riemannian volume volg of M is n-Ahlfors regular.

Proof We have just to prove that a manifold with nonnegative curvature supports a
Poincaré inequality. For simplicity, we denote by � the Riemannian measure on M.
For any pair of points x and y in X, we choose one minimizing geodesic 
x;y joining
x to y. We assume that 
x;y W Œ0; d.x; y/� ! M is the arc length parametrization of
this geodesic. The geodesic joining y to x is then given by 
y;x.t/ D 
x;y.t � d.x; y//
for any t 2 Œ0; d.x; y/�. This means that the choice of the geodesic 
x;y implies the
choice of the geodesic 
y;x.

Now, we fix a ball B in X of radius r. Consider u and � as in the definition of the
Poincaré inequality. If x and y are in B, then by definition of the upper gradient,

ju.x/� u.y/j �
Z


x;y

�.s/ds D
Z d.x;y/

0

�.
x;y.t//dt:

Thus,

Z

B
ju � uBjd� � 1

�.B/

Z

B

Z

B
ju.x/� u.y/jd�.x/d�.y/

� 1

�.B/

Z

B

Z

B

 Z d.x;y/

0

�.
x;y.t//dt

!

d�.x/d�.y/:
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Write now by using the definitions of 
x;y and 
y;x

Z d.x;y/

0

�.
x;y.t//dt D
Z d.x;y/=2

0

�.
x;y.t//dt C
Z d.x;y/

d.x;y/=2
�.
x;y.t//dt

D
Z d.x;y/

d.x;y/=2
�.
y;x.t//dt C

Z d.x;y/

d.x;y/=2
�.
x;y.t//dt:

Hence, by symmetry in x and y, we get

Z

B
ju � uBjd� � 2

�.B/

Z

B

Z

B

 Z d.x;y/

d.x;y/=2
�.
x;y.t//dt

!

d�.x/d�.y/:

Denote now by �x;t.y/ D 
x;y.t/. Let Jx;t.y/ the volume derivative of �x;t.y/, that
is

Jx;t.y/ D lim
r!0

�.�x;t.B.y; r//

�.B.y; r//
:

From the proof of the Bishop-Gromov comparison Theorem, we get that there
exists an absolute constant C > 0 such that Jx;t.y/ � C for any x 2 B, any y 2 B,
any t 2 Œd.x; y/=2; d.x; y/�. In fact, C D 2�nC1 where n is the dimension of the
manifold. Hence, we have

Z

B

Z

B

 Z d.x;y/

d.x;y/=2
�.
x;y.t//dt

!

d�.x/d�.y/ D
Z

B

Z

B

Z d.x;y/

d.x;y/=2
�.�x;t.y//dtd�.x/d�.y/

� C�1

Z

B

Z

B

Z d.x;y/

d.x;y/=2
�.�x;t.y//Jx;t.y/dtd�.x/d�.y/

� C�1

Z

B

Z

B

Z diamB

0

�.�x;t.y//Jx;t.y/dtd�.x/d�.y/

� C�1

Z diamB

0

Z

B
.

Z

B
�.�x;t.y//Jx;t.y/d�.y//d�.x/dt

� C�1

Z diamB

0

Z

B
.

Z

�x;y.B/
�.z/d�.z//d�.x/dt

� C�1

Z diamB

0

Z

B
.

Z

2B
�.z/d�.z//d�.x/dt

� C�1diam.B/�.B/
Z

2B
�.z/d�.z/:
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From this, we can easily conclude that

Z

B
ju � uBjd� � 2C�1r

Z

2B
�.z/d�.z/:

Since � is doubling by the Bishop-Gromov comparison Theorem, we can
conclude and get the Poincaré inequality (with the mean values).

In Loewner spaces, the previous definitions of quasiconformality are equivalent.

Theorem 5.2.25 Let .X; dX; �X/ and .Y; dY ; �Y / be two (bounded) Q-Loewner
spaces (Q > 1) and let f W X ! Y be a homeomorphism. The following assertions
are equivalent:

(i) f is QC;
(ii) f is WQS;

(iii) f is QS;
(iv) There exists a constant C > 0 so that

C�1modQ.� / � modQ. f� / � CmodQ.� /

for all curve family � in X.

Moreover, if these conditions hold, f is absolutely continuous in measure and is
absolutely continuous on Q-almost every curve in X (that is, the Q-modulus of the
family of curves on which f is not absolutely continuous is zero).

The last condition could be seen as a metric analog of the property ACL. The
conditions (i), (ii) and (iii) are metric/quasisymmetric definitions of quasiconfor-
mality in metric spaces whereas (iv) is a geometric one (and corresponds to (G2) in
the complex plane). There is also an analytic definition (which is equivalent to (i),
(ii) (iii) and (iv) in Loewner spaces) in terms of Sobolev spaces between metric
measure spaces. This last definition is not discussed in these notes. Hence, the
previous theorem gives an analog of Theorem 5.1.1 in metric spaces with controlled
geometry. Recall that the complex plane is a Loewner space.

5.2.4 Quasi-Möbius Maps

We now give another definition of quasiconformality which is very useful in
geometric group theory and in hyperbolic geometry. We say that a homeomorphism
f W X ! Y is quasi-Möbius (QM) if there exists a homeomorphism �f D � W
Œ0;C1/ ! Œ0;1/ such that, for any distinct points x1, x2, x3 and x4 in X,

Œ f .x1/; f .x2/; f .x3/; f .x4/� � �.Œx1; x2; x3; x4�/
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holds, here Œx1; x2; x3; x4� denotes the metric crossratio defined by

Œx1; x2; x3; x4� D d.x1; x3/d.x2; x4/

d.x1; x4/d.x2; x3/
:

Theorem 5.2.26 Let X, Y be two metric spaces and f W X ! Y be a homeomor-
phism.

(i) A quasi-Möbius map is uniformly locally quasisymmetric.
(ii) A quasisymmetric map is quasi-Möbius.

(iii) Let f W X ! Y be a quasi-Möbius map. If X and Y are unbounded, then f is
quasisymmetric if and only if f .x/ tends to infinity when x tends to infinity.
If X and Y are bounded, and if for three points z1; z2; z3 2 X, we have
d.zi; zj/ � diam X=� and j f .zi/� f .zj/j � diam Y=� for some � > 0, then f is
�-quasisymmetric, where � only depends� and on the distortion of crossratios.

Before proving this result, we give a geometric interpretation of the crossratio
following Bonk and Kleiner:

Lemma 5.2.27 Let X be a metric space. If x1; x2; x3; x4 are four distinct points in
X, we define

hx1; x2; x3; x4i D minfd.x1; x3/; d.x2; x4/g
minfd.x1; x4/; d.x2; x3/g :

Then

hx1; x2; x3; x4i � �0.Œx1; x2; x3; x4�/ and Œx1; x2; x3; x4� � �1.hx1; x2; x3; x4i/

where

�0.t/ D t C
p

t2 C t and �1.t/ D t.2C t/ :

Proof To simplify the notation, we will set jx � yj D d.x; y/ for x, y 2 X. Let us
assume that jx1 � x2j � jx3 � x4j ; then

8
<

:

jx1 � x3j � jx1 � x2j C jx2 � x4j C jx4 � x3j � 2jx4 � x3j C jx2 � x4j I

jx2 � x4j � jx2 � x1j C jx1 � x3j C jx3 � x4j � 2jx4 � x3j C jx1 � x3j :
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Hence

maxfjx1 � x3j; jx2 � x4jg � 2jx4 � x3j C minfjx1 � x3j; jx2 � x4jg

�
�

2C minfjx1 � x3j; jx2 � x4jg
jx3 � x4j

�

jx3 � x4j

�
�

2C 1

hx1; x2; x3; x4i
�

jx3 � x4j :

Therefore,

Œx1; x2; x3; x4� �
�

2C 1

hx1; x2; x3; x4i
��1 jx1 � x2j

minfjx1 � x3j; jx2 � x4jg

� hx1; x2; x3; x4i
�

2C 1

hx1; x2; x3; x4i
��1

:

By inverting the function of hx1; x2; x3; x4i, we obtain

hx1; x2; x3; x4i � �0.Œx1; x2; x3; x4�/ :

Observe that

�0.t/ � 3maxft;
p

tg :

By permuting points, we have

Œx1; x3; x2; x4� � hx1; x3; x2; x4i
�

2C 1

hx1; x3; x2; x4i
��1

and taking the inverse, it follows that

Œx1; x2; x3; x4� � �1.hx1; x2; x3; x4i/ :

Proof (Theorem 5.2.26)

(i) Let x 2 X and pick x0 ¤ x. By continuity of f , we may find r > 0 such that
r � jx � x0j=4 and diam f .B.x; r// � j f .x/ � f .x0/j=4. Using h�i for points
.x1; x2; x3; x0/ with xj 2 B.x; r/, j D 1; 2; 3, we see at once that a quasi-Möbius
map is uniformly quasisymmetric on B.x; r/.

(ii) Let us prove that if f is �-quasisymmetric, then

h f .x1/; f .x2/; f .x3/; f .x4/i � �.hx1; x2; x3; x4i/ :
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Let us assume that jx1 � x2j � jx3 � x4j. We have

minfj f .x1/� f .x2/j; j f .x3/� f .x4/jg � j f .x1/� f .x2/j:

On the other hand, observe that

minfj f .x1/� f .x3/j; j f .x2/� f .x4/jg D j f .xi/ � f .xj/j

where we can choose i 2 f1; 2g.
Thus,

j f .x1/� f .x2/j
j f .xi/� f .xj/j � �

� jx1 � x2j
jxi � xjj

�

� �

� jx1 � x2j
minfjx1 � x3jjx2 � x4jg

�

� �.hx1; x2; x3; x4i/ :

Lemma 5.2.27 enables us to conclude.
(iii) If X and Y are unbounded, then f can be quasisymmetric only if f .x/ tends to

infinity with x: if x1 and x2 are fixed an �-quasisymmetric map satisfies

j f .x/ � f .x1/j � �

� jx � x1j
jx2 � x1j

�

j f .x2/ � f .x1/j

which implies that f .x/ remains bounded if x is; and similarly, f .x/ has to go
infinity when x does since

j f .x2/ � f .x1/j � �

� jx2 � x1j
jx � x1j

�

j f .x/� f .x1/j :

In this case, we let x4 go infinity and we obtain that f is �-quasisymmetric.
Otherwise, for any x 2 X, there are zi; zj such that jzi � xj � diam X=2�

and jzj � xj � diam X=2�. Similarly, there are zk; zm such that j f .zk/� f .x/j �
diam Y=2� and j f .zm/� f .x/j � diam Y=2�.

Let x1; x2; x3. Choose zi so that jzi � x2j � diam X=2� and j f .zi/� f .x3/j �
diam Y=2�.

Hence,

j f .x1/ � f .x2/j
j f .x1/ � f .x3/j � j f .x2/� f .zi/j

j f .x3/� f .zi/j�.Œx1; x2; x3; zi�/

� 2��

�

2�
jx1 � x2j
jx1 � x3j

�

:
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Remark 5.2.28 If x1, x2, x3 and x4 are four distinct points in X, J. Ferrand’s
crossratio is defined by

Œx1; x2; x3; x4� D inf
E;F

modQ.E;F/

where the infimum is taken over all the (non degenerate disjoint) continua E and
F so that x1, x2 2 E and x3, x4 2 F. Then, any quasiconformal homeomorphism
quasi-preserves J. Ferrand’s crossratio in Q-Loewner spaces.

5.3 Back to Hyperbolic Geometry

Gromov spaces and other related notions are defined in Sect. 3.1.

Definition 5.3.1 Let .X; d/ be a metric space. The conformal gauge C .X; d/ of
.X; d/ is the set of distances ı on X such that the identity map Id W .X; d/ ! .X; ı/ is
QS. The conformal dimension of .X; d/ is then Cdim.X; d/ D inf Hdim.X; ı/ where
the infimum is taken over all distances ı in the conformal gauge of .X; d/ and Hdim
denotes the Hausdorff dimension.

If ı 2 C .x; d/ is so that .X; ı/ equipped with its Hausdorff measure is a Q-
Loewner space, then Cdim.X; d/ D Q.

Example 5.3.2 The conformal dimension of the Euclidean R
n is n and is attained

by the Euclidean metric whereas the conformal dimension of the Heisenberg group
H

n is 2n C 2 and is attained by the Carnot-Carathéodory distance.

Remark 5.3.3 There are examples of metric spaces for which the conformal
dimension is not attained.

In the particular case where X D @GZ with Z a Gromov hyperbolic space,
the conformal gauge of X (or of Z) is the conformal gauge associated to a visual
metric. This definition does not depend on the choice of this visual metric: indeed,
if d1 and d2 are visual distances based at w1 and w2 and of parameter "1 and "2,
then Id W .@Z; d1/ ! .@Z; d2/ is quasisymmetric. The following result relates the
quasiconformal geometry with the Gromov hyperbolicity:

Theorem 5.3.4 Let Z1, Z2 be Gromov hyperbolic spaces and let F W Z1 ! Z2 be
a .C;D/-quasi-isometry. Then, F extends continuously as a homeomorphism f W
@GZ1 ! @GZ2 (equipped with some visual metrics).

Moreover, if d1 and d2 are visual metrics of parameter "X; "Y , then there exists
˛ D ˛.C;D; "X="Y/ > 0 and ˇ D ˇ.C;D; "X="Y/ � 1 such that f is �-quasimöbius,
with �.t/ D ˛ � maxftˇ; t1=ˇg. If "X D "Y, and F is a rough isometry, then the map f
is bilipschitz (and if F is an isometry, then one may choose ˇ D 1).

Hence, the conformal dimension is a quasi-isometric invariant of Gromov
hyperbolic spaces.
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Remark 5.3.5 If the Gromov hyperbolic spaces Z1 and Z2 admit a cocompact group
of isometries, any QS-homeomorphism f W @GZ1 ! @GZ2 is induced by a quasi-
isometry F W Z1 ! Z2.

To study the rigidity of a Gromov hyperbolic space Z, it could be useful to find
a distance ı on @Z so that the conformal dimension of Z is attained for ı. Indeed,
this distance will give a good conformal structure on @Z (for instance, a structure of
Loewner space). As an example, we conclude this chapter with the famous rigidity
theorem of Mostow for the complex hyperbolic space.

Theorem 5.3.6 Let �1, �2 be two lattices in the complex hyperbolic space Hn
C

. If
�1 and �2 are isomorphic, then M�1 D Hn

C
=�1 and M�2 D Hn

C
=�1 are isometric, in

particular are conformally equivalent.
Recall that a lattice � in Hn

C
is a discrete subgroup of the group of isometries of

Hn
C

so that M� D Hn
C
=� is compact.

We now describe the main ideas of the proof. Consider an isomorphism � W �1 !
�2. Then, � induces a quasi-isometry F W Hn

C
! Hn

C
which is equivariant. Recall

that the boundary @GHn
C

could be identified with the Heisenberg group H
n equipped

with the Carnot-Carathéodory distance (for which the conformal dimension is
attained), see Sect. 3.2. Then, F has a quasiconformal extension on the boundary
f W Hn ! H

n. Since Hn is a Loewner space, f is absolutely continuous along almost
every rectifiable curves 
 (and hence is differential along almost every curve 
 ).
By Pansu’s version of the Rademacher theorem, it turns out that f is differentiable
almost everywhere. Moreover, it can be shown by an ergodic argument that f is 1-
quasiconformal. By an analog of the classical Liouville theorem, f is the boundary
value of an isometry of Hn

C
which is equivariant and therefore descends to an

isomety between M�1 and M�2 . To avoid confusion, we recall that the Liouville
theorem we mention states that any conformal map on the Euclidean n-sphere is the
boundary value of an isometry of the real hyperbolic n C 1-space.

5.4 Notes

Classical references on quasiconformal mappings in the complex plane include [1]
or [10], and in higher dimension [14] or [17]. For a discussion of the Beltrami
equation, see [12] or [8]. The presentation we follow is due to P. Haissinsky
(unpublished). A complete proof of the wandering theorem could be found in [2].
The best introduction to analysis in metric spaces (and in particular quasiconformal
mappings) is [6]. The theory of quasiconformal mappings in spaces with controlled
geometry was first developed in [7]. Poincaré inequalities (with examples and
applications) are discussed in [5] and in [15]. In particular, proofs of the Poincaré
inequalities in the Heisenberg group and in manifolds with nonnegative curvature
are taken from this book. More general versions of theorem 5.3.6 are in [11] and in
[13]. A general discussion of rigidity theorems in connection with quasiconformal
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geometry and analysis in metric spaces can be found in [3, 4] and [9]. For more
informations about BMO spaces and singular integral operators, see [16].

References

1. Ahlfors, L.V.: Lectures on Quasiconformal Mappings, 2nd edn. University Lecture series, vol.
38. American Mathematical Society, Providence (2006)

2. Bertheloot, F., Mayer, V.: Rudiments de Dynamique Holomorphe. Cours spécialisiés. Société
Mathématique de France, Marseille (2001)

3. Bourdon, M., Pajot, H.: Quasi-conformal geometry and hyperbolic geometry. In: Rigidity in
Dynamics and Geometry, pp. 1–17. Springer, Berlin/Heidelberg (2002)

4. Haissinsky, P.: Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques
et rigidités (d’après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner, . . . ). Séminaire Bourbaki,
pp. 321–362. Astérique 326 (2009)

5. Hajlasz, P., Koskela, P.: Sobolev met Poincaré. Memoirs of the American Mathematical
Society, vol. 145. American Mathematical Society, Providence (2000)

6. Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001)
7. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry.

Acta Math. 181, 1–61 (1998)
8. Iwaniek, T., Martin, G.: The Beltrami Equation. Memoirs of the American Mathematical

Society, vol. 893. American Mathematical Society, Providence (2008)
9. Kleiner, B.: The asymptotic geometry of negatively curved spaces: uniformization, geometriza-

tion and rigidity. In: Proceedings of the International Conference of Mathematicians (2006)
10. Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane. Springer, Berlin/Heidelberg

(1973)
11. Mostow, G.D.: Strong Rigidity of Locally Symmetric Spaces. Annals of Mathematical Studies,

vol. 78. Princeton University Press, Princeton (1973)
12. Otal, J.-P.: Quasiconformal and BMO-quasiconformal homeomorphisms. In: Handbook of

Teichmüller Theory, Volume III. IRMA Lectures in Mathematics and Theoretical Physics, vol.
17, pp. 37–70. European Mathematical Society, Zürich (2012)

13. Pansu, P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de
rang un. Ann. Math. 129, 1–60 (1989)

14. Rickman, S.: Quasiregular Mappings. Springer, Berlin/Heidelberg (1993)
15. Saloff-Coste, L.: Aspects of Sobolev Type Inequalities. Lecture notes of the London Mathe-

matical Society, vol. 289. Cambridge University Press, Cambridge (1984)
16. Stein, E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory

Integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993)
17. Väisälä, J.: Lecture on n-Dimensional Quasiconformal Mappings. Lecture notes in mathemat-

ics, vol. 229. Springer, Berlin/Heidelberg (1971)



Chapter 6
Carleson Measures and Toeplitz Operators

Marco Abate

In this last chapter we shall describe a completely different application of the
Kobayashi distance to complex analysis. To describe the problem we need a few
definitions.

Definition 6.0.1 We shall denote by � the Lebesgue measure in C
n. If D �� C

n is
a bounded domain and 1 � p � 1, we shall denote by Lp.D/ the usual space of
measurable p-integrable complex-valued functions on D, with the norm

k f kp D
�Z

D
j f .z/jp d�.z/

�1=p

if 1 � p < 1, while k f k1 will be the essential supremum of j f j in D. Given
ˇ 2 R, we shall also consider the weighted Lp-spaces Lp.D; ˇ/, which are the Lp

spaces with respect to the measure ıˇ�, where ıW D ! R
C is the Euclidean distance

from the boundary: ı.z/ D d.z; @D/. The norm in Lp.D; ˇ/ is given by

k f kp;ˇ D
�Z

D
j f .z/jpı.z/ˇ d�.z/

�1=p

for 1 � p < 1, and by k f k1;ˇ D k f ıˇk1 for p D 1.

Definition 6.0.2 Let D �� C
n be a bounded domain in C

n, and 1 � p � 1. The
Bergman space Ap.D/ is the Banach space Ap.D/ D Lp.D/ \ Hol.D;C/ endowed
with the norm k � kp. More generally, given ˇ 2 R the weighted Bergman space
Ap.D; ˇ/ is the Banach space Ap.D; ˇ/ D Lp.D; ˇ/ \ Hol.D;C/ endowed with the
norm k � kp;ˇ .
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The Bergman space A2.D/ is a Hilbert space; this allows us to introduce one of
the most studied objects in complex analysis.

Definition 6.0.3 Let D �� C
n be a bounded domain in C

n. The Bergman
projection is the orthogonal projection PW L2.D/ ! A2.D/.

It is a classical fact (see, e.g., [11, Sect. 1.4] for proofs) that the Bergman
projection is an integral operator: it exists a function KW D � D ! C such that

Pf .z/ D
Z

D
K.z;w/f .w/ d�.w/ (6.1)

for all f 2 L2.D/. It turns out that K is holomorphic in the first argument, K.w; z/ D
K.z;w/ for all z, w 2 D, and it is a reproducing kernel for A2.D/ in the sense that

f .z/ D
Z

D
K.z;w/f .w/ d�.w/

for all f 2 A2.D/.

Definition 6.0.4 Let D �� C
n be a bounded domain in C

n. The function KW D �
D ! C satisfying (6.1) is the Bergman kernel of D.

Remark 6.0.5 It is not difficult to show (see again, e.g., [11, Sect. 1.4]) that
K.�;w/ 2 A2.D/ for all w 2 D, and that

kK.�;w/k22 D K.w;w/ > 0 :

In case D D B the unit ball, the explicit formula is given in Sect. 3.2.
A classical result in complex analysis says that in strongly pseudoconvex

domains the Bergman projection can be extended to all Lp spaces:

Theorem 6.0.6 (Phong and Stein [16]) Let D �� C
n be a strongly pseudoconvex

domain with C1 boundary, and 1 � p � 1. Then the formula (6.1) defines a
continuous operator P from Lp.D/ to Ap.D/. Furthermore, for any r > p there is
f 2 Lp.D/ such that Pf … Ar.D/.

Recently, Čučković and McNeal posed the following question: does there exist
a natural operator, somewhat akin to the Bergman projection, mapping Lp.D/ into
Ar.D/ for some r > p? To answer this question, they considered Toeplitz operators.

Definition 6.0.7 Let D �� C
n be a strongly pseudoconvex domain with C1

boundary. Given a measurable function  W D ! C, the multiplication operator
of symbol  is simply defined by M . f / D  f . Given 1 � p � 1, a symbol
 is p-admissible if M sends Lp.D/ into itself; for instance, a  2 L1.D/ is p-
admissible for all p. If  is p-admissible, the Toeplitz operator T W Lp.D/ ! Ap.D/
of symbol  is defined by T D P ı M , that is

T . f /.z/ D P. f /.z/ D
Z

D
K.z;w/f .w/ .w/ d�.w/ :
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Remark 6.0.8 More generally, if A is a Banach algebra, B � A is a Banach
subspace, PW A ! B is a projection and  2 A, the Toeplitz operator T of
symbol  is defined by T . f / D P. f /. Toeplitz operators are a much studied
topic in functional analysis; see, e.g., [18].

Then Čučković and McNeal were able to prove the following result:

Theorem 6.0.9 (Čučković and McNeal [5]) Let D �� C
n be a strongly pseudo-

convex domain with C1 boundary. If 1 < p < 1 and 0 � ˇ < n C 1 are such
that

n C 1

n C 1 � ˇ
<

p

p � 1 (6.2)

then the Toeplitz operator Tıˇ maps continuously Lp.D/ in ApCG.D/, where

G D p2

nC1
ˇ

� p
:

Čučković and McNeal also asked whether the gain G in integrability is optimal;
they were able to positively answer to this question only for n D 1. The positive
answer in higher dimension has been given by Abate et al. [2], as a corollary of their
study of a larger class of Toeplitz operators on strongly pseudoconvex domains. This
study, putting into play another important notion in complex analysis, the one of
Carleson measure, used as essential tool the Kobayashi distance; in the next couple
of sections we shall describe the gist of their results.

6.1 Definitions and Results

In this subsection and the next D will always be a bounded strongly pseudoconvex
domain with C1 boundary. We believe that the results might be generalized to other
classes of domains with C1 boundary (e.g., finite type domains), and possibly to
domains with less smooth boundary, but we will not pursue this subject here.

Let us introduce the main player in this area.

Definition 6.1.1 Let D �� C
n be a strongly pseudoconvex domain with C1

boundary, and � a finite positive Borel measure on D. Then the Toeplitz operator T�
of symbol � is defined by

T�. f /.z/ D
Z

D
K.z;w/f .w/ d�.w/ ;

where K is the Bergman kernel of D.
For instance, if  is an admissible symbol then the Toeplitz operator T intro-

duced in Definition 6.0.7 is the Toeplitz operator T � according to Definition 6.1.1.
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In Definition 6.1.1 we did not specify domain and/or range of the Toeplitz
operator T� because the main point of the theory we are going to discuss is exactly
to link properties of the measure � with domain and range of T�.

Toeplitz operators associated to measures have been extensively studied on the
unit disc� and on the unit ball Bn (see, e.g., [10, 12, 13, 19] and references therein);
but [2] has been one of the first papers studying them in strongly pseudoconvex
domains.

The kind of measure we shall be interested in is described in the following

Definition 6.1.2 Let D �� C
n be a strongly pseudoconvex domain with C1

boundary, A a Banach space of complex-valued functions on D, and 1 � p � 1.
We shall say that a finite positive Borel measure � on D is a p-Carleson measure
for A if A embeds continuously into Lp.�/, that is if there exists C > 0 such that

Z

D
j f .z/j d�.z/ � Ck f kp

A

for all f 2 A, where k � kA is the norm in A.

Remark 6.1.3 When the inclusion A ,! Lp.�/ is compact, � is called vanishing
Carleson measure. Here we shall discuss vanishing Carleson measures only in the
remarks.

Carleson measures for the Hardy spaces Hp.�/ were introduced by Carleson [3]
to solve the famous corona problem. We shall be interested in Carleson measures
for the weighted Bergman spaces Ap.D; ˇ/; they have been studied by many authors
when D D � or D D B

n (see, e.g., [6, 14, 19] and references therein), but more
rarely when D is a strongly pseudoconvex domain (see, e.g., [4, 8] and [1]).

The main point here is to give a geometric characterization of which measures
are Carleson. To this aim we introduce the following definition, bringing into play
the Kobayashi distance.

Definition 6.1.4 Let D �� C
n be a strongly pseudoconvex domain with C1

boundary, and � > 0. We shall say that a finite positive Borel measure � on D
is �-Carleson if there exists r > 0 and Cr > 0 such that

�
�
BD.z0; r/

� � Cr�
�
BD.z0; r/

��
(6.3)

for all z0 2 D. We shall see that if (6.3) holds for some r > 0 then it holds for all
r > 0.

Remark 6.1.5 There is a parallel vanishing notion: we say that � is vanishing �-
Carleson if there exists r > 0 such that

lim
z0!@D

�
�
BD.z0; r/

�

�
�
BD.z0; r/

�� D 0 :

For later use, we recall two more definitions.
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Definition 6.1.6 Let D �� C
n be a strongly pseudoconvex domain with C1

boundary. Given w 2 D, the normalized Bergman kernel in w is given by

kw.z/ D K.z;w/
p

K.w;w/
:

Remark 6.0.5 shows that kw 2 A2.D/ and kkwk2 D 1 for all w 2 D.

Definition 6.1.7 Let D �� C
n be a strongly pseudoconvex domain with C1

boundary, and � a finite positive Borel measure on D. The Berezin transform of �
is the function B�W D ! R

C defined by

B�.z/ D
Z

D
jkz.w/j2 d�.w/ :

Again, part of the theory will describe when the Berezin transform of a measure
is actually defined.

We can now state the main results obtained in [2]:

Theorem 6.1.8 (Abate et al. [2]) Let D �� C
n be a strongly pseudoconvex

domain with C1 boundary, 1 < p < r < 1 and � a finite positive Borel measure
on D. Then T� maps Ap.D/ into Ar.D/ if and only if � is a p-Carleson measure for
Ap
�
D; .n C 1/. 1p � 1

r /
�
.

Theorem 6.1.9 (Abate et al. [2]) Let D �� C
n be a strongly pseudoconvex

domain with C1 boundary, 1 < p < 1 and � 2 �
1 � 1

nC1 ; 2
�
. Then a finite

positive Borel measure � on D is a p-Carleson measure for Ap
�
D; .n C 1/.� � 1/

�

if and only if � is a �-Carleson measure.

Theorem 6.1.10 (Abate et al. [2]) Let D �� C
n be a strongly pseudoconvex

domain with C1 boundary, and � > 0. Then a finite positive Borel measure �
on D is �-Carleson if and only the Berezin transform B� exists and ı.nC1/.1��/B� 2
L1.D/.

Remark 6.1.11 This is just a small selection of the results contained in [2]. There
one can find statements also for p D 1 or p D 1, for other values of � , and
on the mapping properties of Toeplitz operators on weighted Bergman spaces.
Furthermore, there it is also shown that T� is a compact operator from Ap.D/ into
Ar.D/ if and only if � is a vanishing p-Carleson measure for Ap

�
D; .n C 1/. 1p � 1

r /
�
;

that � is a vanishing p-Carleson measure for Ap
�
D; .n C 1/.� � 1/� if and only if �

is a vanishing �-Carleson measure; and that � is a vanishing �-Carleson measure if
and only if ı.nC1/.1��/.z/B�.z/ ! 0 as z ! @D.

Remark 6.1.12 The condition “p-Carleson” is independent of any radius r > 0,
while the condition “�-Carleson” does not depend on p. Theorem 6.1.9 thus implies
that if � satisfies (6.3) for some r > 0 then it satisfies the same condition (with pos-
sibly different constants) for all r > 0; and that if � is p-Carleson for Ap

�
D; .n C 1/
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.� � 1/� for some 1 < p < 1 then it is p-Carleson for Ap
�
D; .n C 1/.� � 1/� for all

1 < p < 1.
In the next subsection we shall describe the proofs; we end this subsection

showing why these results give a positive answer to the question raised by Čučković
and McNeal.

Assume that Tıˇ maps Lp.D/ (and hence Ap.D/) into ApCG.D/. By Theorem 6.1.8
ıˇ� must be a p-Carleson measure for Ap

�
D; .n C 1/. 1p � 1

pCG /
�
. By Theorem 6.1.9

this can happen if and only if ıˇ� is a �-Carleson measure, where

� D 1C 1

p
� 1

p C G
I (6.4)

notice that 1 � � < 2 because p > 1 and G � 0. So we need to understand when
ıˇ� is �-Carleson. For this we need the following

Lemma 6.1.13 Let D �� C
n be a strongly pseudoconvex domain with C2

boundary, Then there exists C > 0 such that for every z0 2 D and r > 0 one
has

8z 2 BD.z0; r/ Ce2r ı.z0/ � ı.z/ � e�2r

C
ı.z0/ :

Proof Let us fix w0 2 D. Then Theorems 1.5.16 and 1.5.19 yield c0, C0 > 0 such
that

c0 � 1
2

log ı.z/ � kD.w0; z/ � kD.z0; z/C kD.z0;w0/

� r C C0 � 1
2

log ı.z0/ ;

for all z 2 BD.z0; r/, and hence

e2.c0�C0/ı.z0/ � e2rı.z/ :

The left-hand inequality is obtained in the same way reversing the roles of z0 and z.
ut

Corollary 6.1.14 Let D �� C
n be a strongly pseudoconvex domain with C2

boundary, Given ˇ > 0, put �ˇ D ıˇ�. Then �ˇ is �-Carleson if and only if
ˇ � .n C 1/.� � 1/.
Proof Using Lemma 6.1.13 we find that

e�2r

C
ı.z0/

ˇ�
�
BD.z0; r/

� � �ˇ
�
BD.z0; r/

� D
Z

BD.z0;r/
ı.z/ˇ d�.z/

� Ce2rı.z0/
ˇ�
�
BD.z0; r/

�
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for all z0 2 D. Therefore �ˇ is �-Carleson if and only if

ı.z0/
ˇ � C1�

�
BD.z0; r/

���1

for some C1 > 0. Recalling Theorem 1.5.23 we see that this is equivalent to
requiring ˇ � .n C 1/.� � 1/, and we are done. ut

In our case, � is given by (6.4); therefore ˇ � .n C 1/.� � 1/ if and only if

ˇ � .n C 1/

�
1

p
� 1

p C G

�

:

Rewriting this in term of G we get

G � p2

nC1
ˇ

� p
;

proving that the exponent in Theorem 6.0.9 is the best possible, as claimed.
Furthermore, G > 0 if and only if

ˇ

n C 1
<
1

p
, 1 � ˇ

n C 1
> 1 � 1

p
, n C 1

n C 1 � ˇ
<

p

p � 1
;

and we have also recovered condition (6.2) of Theorem 6.0.9.
Corollary 6.1.14 provides examples of �-Carleson measures. A completely

different class of examples is provided by Dirac masses distributed along uniformly
discrete sequences.

Definition 6.1.15 Let .X; d/ be a metric space. A sequence � D fxjg � X is
uniformly discrete if there exists " > 0 such that d.xj; xk/ � " for all j ¤ k.

Then it is possible to prove the following result:

Theorem 6.1.16 ([2]) Let D �� C
n be a bounded strongly pseudoconvex domain

with C1 boundary, considered as a metric space with the Kobayashi distance, and
choose 1 � 1

nC1 < � < 2. Let � D fzjgj2N be a sequence in D. Then � is a finite
union of uniformly discrete sequences if and only if

P
j ı.zj/

.nC1/�ızj is a �-Carleson
measure, where ızj is the Dirac measure in zj.

6.2 Proofs

In this section we shall prove Theorems 6.1.8, 6.1.9 and 6.1.10. To do so we shall
need a few technical facts on the Bergman kernel and on the Kobayashi distance. To
simplify statements and proofs, let us introduce the following notation.
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Definition 6.2.1 Let D � C
n be a domain. Given two non-negative functions

f , gW D ! R
C we shall write f � g or g � f to say that there is C > 0 such

that f .z/ � Cg.z/ for all z 2 D. The constant C is independent of z 2 D, but it might
depend on other parameters (r, � , etc.).

The first technical fact we shall need is an integral estimate on the Bergman
kernel:

Theorem 6.2.2 ([2, 12, 15]) Let D �� C
n be a strongly pseudoconvex domain with

C1 boundary. Take p > 0 and ˇ > �1. Then

Z

D
jK.w; z0/jpı.w/ˇ d�.w/ �

8
ˆ̂
<

ˆ̂
:

ı.z0/ˇ�.nC1/. p�1/ if � 1 < ˇ < .n C 1/. p � 1/;

j log ı.z0/j ifˇ D .n C 1/. p � 1/;
1 ifˇ > .n C 1/. p � 1/;

for all z0 2 D.
In particular, we have the following estimates on the weighted norms of the

Bergman kernel and of the normalized Bergman kernel (see, e.g., [2]):

Corollary 6.2.3 Let D �� C
n be a strongly pseudoconvex domain with C1

boundary. Take p > 1 and �1 < ˇ < .n C 1/. p � 1/. Then

kK.�; z0/kp;ˇ � ı.z0/
ˇ
p � nC1

p0 and kkz0kp;ˇ � ı.z0/
nC1
2 C ˇ

p � nC1
p0

for all z0 2 D, where p0 > 1 is the conjugate exponent of p.
We shall also need a statement relating the Bergman kernel with Kobayashi balls.

Lemma 6.2.4 ([1, 12]) Let D �� C
n be a strongly pseudoconvex domain with C1

boundary. Given r > 0 there is ır > 0 such that if ı.z0/ < ır then

8 z 2 BD.z0; r/ minfjK.z; z0/j; jkz0.z/j2g � ı.z0/
�.nC1/ :

Remark 6.2.5 Notice that Lemma 6.2.4 implies the well-known estimate

K.z0; z0/ � ı.z0/
�.nC1/ ;

which is valid for all z0 2 D.
The next three lemmas involve instead the Kobayashi distance only.

Lemma 6.2.6 ([1]) Let D �� Cn be a strongly pseudoconvex bounded domain
with C2 boundary. Then for every 0 < r < R there exist m 2 N and a sequence
fzkg � D of points such that D D S1

kD0 BD.zk; r/ and no point of D belongs to more
than m of the balls BD.zk;R/.

Proof Let fBjgj2N be a sequence of Kobayashi balls of radius r=3 covering D. We
can extract a subsequence f�k D BD.zk; r=3/gk2N of disjoint balls in the following
way: set �1 D B1. Suppose we have already chosen �1; : : : ; �l. We define �lC1 as
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the first ball in the sequence fBjg which is disjoint from�1 [ � � � [�l. In particular,
by construction every Bj must intersect at least one �k.

We now claim that fBD.zk; r/gk2N is a covering of D. Indeed, let z 2 D. Since
fBjgj2N is a covering of D, there is j0 2 N so that z 2 Bj0 . As remarked above, we
get k0 2 N so that Bj0 \�k0 ¤ ;. Take w 2 Bj0 \�k0 . Then

kD.z; zk0 / � kD.z;w/C kD.w; zk0 / < r ;

and z 2 BD.zk0 ; r/.
To conclude the proof we have to show that there is m D mr 2 N so that each

point z 2 D belongs to at most m of the balls BD.zk;R/. Put R1 D R C r=3. Since
z 2 BD.zk;R/ is equivalent to zk 2 BD.z;R/, we have that z 2 BD.zk;R/ implies
BD.zk; r=3/ 	 BD.z;R1/. Furthermore, Theorem 1.5.23 and Lemma 6.1.13 yield

�
�
BD.zk; r=3/

� � ı.zk/
nC1 � ı.z/nC1

when zk 2 BD.z;R/. Therefore, since the balls BD.zk; r=3/ are pairwise disjoint,
using again Theorem 1.5.23 we get

card fk 2 N j z 2 BD.zk;R/g � �
�
BD.z;R1/

�

�
�
BD.zk; r=3/

� � 1 ;

and we are done. ut
Lemma 6.2.7 ([1]) Let D �� Cn be a strongly pseudoconvex bounded domain
with C2 boundary, and r > 0. Then

�.z0/ � 1

�
�
BD.z0; r/

�

Z

BD.z0;r/
� d�

for all z0 2 D and all non-negative plurisubharmonic functions �W D ! RC.

Proof Let us first prove the statement when D is an Euclidean ball B of radius
R > 0. Without loss of generality we can assume that B is centered at the origin.
Fix z0 2 B, let 
z0=R 2 Aut.Bn/ be given by (2.10), and let ˚z0 WBn ! B be defined
by ˚z0 D R
z0=R; in particular, ˚z0 is a biholomorphism with ˚z0 .O/ D z0, and thus
˚z0

�
BBn.O; Or/� D BB.z0; Or/. Furthermore (see [17, Theorem 2.2.6])

jJacR˚z0 .z/j D R2n

�
R2 � kz0k2

jR � hz; z0ij2
�nC1

� Rn�1

4nC1 d.z0; @B/
nC1 ;
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where JacR˚z0 denotes the (real) Jacobian determinant of ˚z0 . It follows that

Z

BB.z0;r/
� d� D

Z

BBn .O;r/
.� ı ˚z0 /jJacR ˚z0 j d�

� Rn�1

4nC1 d.z0; @B/
nC1

Z

BBn .O;r/
.� ı ˚z0/ d� :

Using [17, 1.4.3 and 1.4.7.(1)] we obtain

Z

BBn .O;r/
.� ı ˚z0 / d� D 2n

Z

@Bn
d.x/

1

2�

Z tanh r

0

Z 2�

0

� ı ˚z0.te
i� x/t2n�1dt d� ;

where  is the area measure on @Bn normalized so that .@Bn/ D 1. Now, 	 7!
� ı ˚z0.	x/ is subharmonic on .tanh r/� D fj	j < tanh rg � C for any x 2 @Bn,
since ˚z0 is holomorphic and � is plurisubharmonic. Therefore [9, Theorem 1.6.3]
yields

1

2�

Z tanh r

0

Z 2�

0
� ı ˚z0 .te

i� x/t2n�1dt d� � �.z0/
Z tanh r

0
t2n�1 dt D 1

2n
.tanh r/2n�.z0/ :

So
Z

BBn .O;r/
.� ı ˚z0 / d� � .tanh r/2n�.z0/ ;

and the assertion follows from Theorem 1.5.23.
Now let D be a generic strongly pseudoconvex domain. Since D has C2 boundary,

there exists a radius " > 0 such that for every x 2 @D the euclidean ball Bx."/ of
radius " internally tangent to @D at x is contained in D.

Let z0 2 D. If ı.z0/ < ", let x 2 @D be such that ı.z0/ D kz0 � xk; in particular,
z0 belongs to the ball Bx."/ � D. If ı.z0/ � ", let B � D be the Euclidean ball of
center z0 and radius ı.z0/. In both cases we have ı.z0/ D d.z0; @B/; moreover, the
decreasing property of the Kobayashi distance yields BD.z0; r/ � BB.z0; r/ for all
r > 0.

Let � be a non-negative plurisubharmonic function. Then Theorem 1.5.23 and
the assertion for a ball imply

Z

BD.z0;r/
� d� �

Z

BB.z0;r/
� d� � �

�
BB.z0; r/

�
�.z0/

� d.z0; @B/
nC1�.z0/ D ı.z0/

nC1�.z0/

� �
�
BD.z0; r/

�
�.z0/ ;

and we are done. ut
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Lemma 6.2.8 ([1]) Let D �� Cn be a strongly pseudoconvex bounded domain
with C2 boundary. Given 0 < r < R we have

8z0 2 D 8z 2 BD.z0; r/ �.z/ � 1

�
�
BD.z0; r/

�

Z

BD.z0;R/
� d�

for every nonnegative plurisubharmonic function �W D ! R
C.

Proof Let r1 D R � r; by the triangle inequality, z 2 BD.z0; r/ yields BD.z; r1/ 	
BD.z0;R/. Lemma 6.2.7 then implies

�.z/ � 1

�.BD.z; r1//

Z

BD.z;r1/
� d�

� 1

�.BD.z; r1//

Z

BD.z0;R/
� d� D �.BD.z0; r//

�.BD.z; r1//
� 1

�.BD.z0; r//

Z

BD.z0;R/
� d�

for all z 2 BD.z0; r/. Now Theorem 1.5.23 and Lemma 6.1.13 yield

�.BD.z0; r//

�.BD.z; r1//
� 1

for all z 2 BD.z0; r/, and so

�.z/ � 1

�
�
BD.z0; r/

�

Z

BD.z0;R/
� d�

as claimed. ut
Finally, the linking between the Berezin transform and Toeplitz operators is given

by the following

Lemma 6.2.9 Let � be a finite positive Borel measure on a bounded domain D ��
C

n. Then

B�.z/ D
Z

D
.T�kz/.w/kz.w/ d�.w/ (6.5)

for all z 2 D.

Proof Indeed using Fubini’s theorem and the reproducing property of the Bergman
kernel we have

B�.z/ D
Z

D

jK.x; z/j2
K.z; z/

d�.x/

D
Z

D

K.x; z/

K.z; z/
K.z; x/ d�.x/
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D
Z

D

K.x; z/

K.z; z/

�Z

D
K.w; x/K.z;w/ d�.w/

�

d�.x/

D
Z

D

 Z

D

K.x; z/
p

K.z; z/
K.w; x/ d�.x/

!
K.w; z/
p

K.z; z/
d�.w/

D
Z

D

�Z

D
K.w; x/kz.x/ d�.x/

�

kz.w/ d�.w/

D
Z

D
.T�kz/.w/kz.w/ d�.w/ ;

as claimed. ut
We can now prove Theorems 6.1.8, 6.1.9 and 6.1.10.

Proof (of Theorem 6.1.9) Assume that � is a p-Carleson measure for Ap
�
D; .n C

1/.� � 1/
�
, and fix r > 0; we need to prove that �

�
BD.z0; r/

� � �
�
BD.z0; r/

��
for

all z0 2 D.
First of all, it suffices to prove the assertion for z0 close to the boundary, because

both � and � are finite measures. So we can assume ı.z0/ < ır, where ır is given
by Lemma 6.2.4. Since, by Corollary 6.2.3, k2z0 2 Ap

�
D; .n C 1/.� � 1/

�
, we have

1

ı.z0/.nC1/p�
�
BD.z0; r/

� �
Z

BD.z0;r/
jkz0 .w/j2p d�.w/ �

Z

D
jkz0.w/j2p d�.w/

�
Z

D
jkz0 .w/j2pı.w/.nC1/.��1/ d�.w/

� ı.z0/
.nC1/p

Z

D
jK.w; z0/j2pı.w/.nC1/.��1/ d�.w/

� ı.z0/
.nC1/.��p/

by Theorem 6.2.2, that we can apply because 1 � 1
nC1 < � < 2. Recalling

Theorem 1.5.23 we see that � is �-Carleson.
Conversely, assume that � is �-Carleson for some r > 0, and let fzkg be the

sequence given by Lemma 6.2.6. Take f 2 Ap
�
D; .n C 1/.� � 1/�. First of all

Z

D
j f .z/jp d�.z/ �

X

k2N

Z

BD.zk;r/
j f .z/jp d�.z/ :

Choose R > r. Since j f jp is plurisubharmonic, by Lemma 6.2.8 we get

Z

BD.zk;r/
j f .z/jp d�.z/ � 1

�
�
BD.zk; r/

�

Z

BD.zk;r/

�Z

BD.zk;R/
j f .w/jp d�.w/

�

d�.z/

� �
�
BD.zk; r/

���1
Z

BD.zk;R/
j f .w/jp d�.w/
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because � is �-Carleson. Recalling Theorem 1.5.23 and Lemma 6.1.13 we get

Z

BD.zk;r/
j f .z/jp d�.z/ � ı.zk/

.nC1/.��1/
Z

BD.zk;R/
j f .w/jp d�.w/

�
Z

BD.zk;R/
j f .w/jpı.w/.nC1/.��1/ d�.w/ :

Since, by Lemma 6.2.6, there is m 2 N such that at most m of the balls BD.zk;R/
intersect, we get

Z

D
j f .z/jp d�.z/ �

Z

D
j f .w/jpı.w/.nC1/.��1/ d�.w/ ;

and so we have proved that � is p-Carleson for Ap
�
D; .n C 1/.� � 1/

�
. ut

We explicitly remark that the proof of the implication “�-Carleson implies p-
Carleson for Ap

�
D; .n C 1/.� � 1/

�
” works for all � > 0, and actually gives the

following

Corollary 6.2.10 Let D �� C
n be a bounded strongly pseudoconvex domain with

C2 boundary, � > 0, and � a �-Carleson measure on D. Then

Z

D
�.z/ d�.z/ �

Z

D
�.w/ı.w/.nC1/.��1/ d�.w/

for all nonnegative plurisubharmonic functions �W D ! R
C such that � 2

Lp
�
D; .n C 1/.� � 1/�.
Now we prove the equivalence between �-Carleson and the condition on the

Berezin transform.

Proof (of Theorem 6.1.10) Let us first assume that � is �-Carleson. By Theo-
rem 6.1.9 we know that � is 2-Carleson for A2

�
D; .n C 1/.� � 1/

�
. Fix z0 2 D.

Then Corollary 6.2.3 yields

B�.z0/ D
Z

D
jkz0 .w/j2 d�.w/ � kkz0k22;.nC1/.��1/ � ı.z0/

.nC1/.��1/ ;

as required.
Conversely, assume that ı.nC1/.1��/B� 2 L1.D/, and fix r > 0. Then

Lemma 6.2.4 yields

ı.z0/
.nC1/.��1/ � B�.z0/ D

Z

D
jkz0.w/j2 d�.w/ �

Z

BD.z0;r/
jkz0.w/j2 d�.w/

� 1

ı.z0/nC1 �
�
BD.z0; r/

�
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as soon as ı.z0/ < ır, where ır > 0 is given by Lemma 6.2.4. Recalling
Theorem 1.5.23 we get

�
�
BD.z0; r/

� � ı.z0/
.nC1/� � �

�
BD.z0; r/

��
;

and the assertion follows when ı.z0/ < ır. When ı.z0/ � ır we have

�
�
BD.z0; r/

� � �.D/ � ı.nC1/�
r � ı.z0/

.nC1/� � �
�
BD.z0; r/

��

because � is a finite measure, and we are done. ut
For the last proof we need a final

Lemma 6.2.11 Let D �� C
n be a bounded strongly pseudoconvex domain with

C2 boundary, and � , � 2 R. Then a finite positive Borel measure � is �-Carleson if
and only if ı�� is .� C �

nC1 /-Carleson.

Proof Assume � is �-Carleson, set �� D ı��, and choose r > 0. Then
Theorem 1.5.23 and Lemma 6.1.13 yield

��
�
BD.z0; r/

� D
Z

BD.z0;r/
ı.w/� d�.w/ � ı.z0/

��
�
BD.z0; r/

�

� ı.z0/
��
�
BD.z0; r/

�� � �
�
BD.z0; r/

��C �
nC1 ;

and so �� is
�
� C �

nC1
�
-Carleson. Since � D .��/��, the converse follows too. ut

And at last we have reached the

Proof (of Theorem 6.1.8) Let us assume that T� maps Ap.D/ continuously into
Ar.D/, and let r0 be the conjugate exponent of r. Since, by Corollary 6.2.3,
kz0 2 Aq.D/ for all q > 1, applying Hölder estimate to (6.5) and using twice
Corollary 6.2.3 we get

B�.z0/ � kT�kz0krkkz0kr0 � kkz0kpkkz0kr0

� ı.z0/
.nC1/.1� 1

p0
� 1

r / D ı.z0/
.nC1/. 1p � 1

r / ;

where p0 is the conjugate exponent of p. By Theorem 6.1.10 it follows that

� is
�
1C 1

p � 1
r


-Carleson, and Theorem 6.1.9 yields that � is p-Carleson for

Ap
�
D; .n C 1/. 1p � 1

r /
�

as claimed.

Conversely, assume that � is p-Carleson for Ap
�
D; .n C 1/. 1p � 1

r /
�
; we must

prove that T� maps continuously Ap.D/ into Ar.D/. Put � D 1 C 1
p � 1

r . Choose
s 2 . p; r/ such that

�

p0 <
1

s0 <
�

p0 C 1

.n C 1/r
; (6.6)
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where s0 be its conjugate exponent of s; this can be done because p0 � s0 � r0 and

�

p0 <
1

r0 :

Take f 2 Ap.D/; since jK.z; �/jp0=s0

is plurisubharmonic and belongs to Lp
�
D; .n C

1/.� � 1/
�

applying the Hölder inequality, Corollary 6.2.10 and Theorem 6.2.2
(recalling that � < p0=s0) we get

jT� f .z/j �
Z

D
jK.z;w/jj f .w/j d�.w/

�
�Z

D
jK.z;w/jp=sj f .w/jp d�.w/

�1=p �Z

D
jK.z;w/jp0=s0

d�.w/

�1=p0

�
�Z

D
jK.z;w/jp=sj f .w/jp d�.w/

�1=p

�
�Z

D
jK.z;w/jp0=s0

ı.w/.nC1/.��1/ d�.w/

�1=p0

�
�Z

D
jK.z;w/jp=sj f .w/jp d�.w/

�1=p

ı.z/.nC1/ 1
p0
.�� p0

s0
/
:

Applying the classical Minkowski integral inequality (see, e.g., [7, 6.19] for a proof)

"Z

D

�Z

D
j F.z;w/jp d�.w/

�r=p

d�.z/

#1=r

�
"Z

D

�Z

D
j F.z;w/jr d�.z/

�p=r

d�.w/

#1=p

we get

kT� f kp
r �

"Z

D

�Z

D
jK.z;w/p=sj f .w/jpı.z/.nC1/ p

p0
.�� p0

s0
/ d�.w/

�r=p

d�.z/

#p=r

�
Z

D
j f .w/jp

�Z

D
jK.z;w/jr=sı.z/.nC1/ r

p0
.�� p0

s0
/ d�.z/

�p=r

d�.w/ :

To estimate the integral between square brackets we need to know that

�1 < .n C 1/
r

p0

�

� � p0

s0

�

< .n C 1/
� r

s
� 1


:
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The left-hand inequality is equivalent to the right-hand inequality in (6.6), and thus
it is satisfied by assumption. The right-hand inequality is equivalent to

�

p0 � 1

s0 <
1

s
� 1

r
” �

p0 < 1 � 1

r
:

Recalling the definition of � we see that this is equivalent to

1

p0

�

1C 1

p
� 1

r

�

< 1 � 1

r
” 1

p0 < 1 � 1

r
;

which is true because p < r. So we can apply Theorem 6.2.2 and we get

kT� f kp
r �

Z

D
j f .w/jpı.w/.nC1/p

h
1
p0
.��1/C 1

r � 1
p

i

d�.w/

D
Z

D
j f .w/jpı.w/�.nC1/.��1/ d�.w/

� k f kp
p ;

where in the last step we applied Theorem 6.1.9 to ı�.nC1/.��1/�, which is 1-
Carleson (Lemma 6.2.11) and hence p-Carleson for Ap.D/, and we are done. ut
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Appendix A
Geometric Analysis in One Complex Variable

Hervé Pajot

A.1 Metrics and Curvature

In this section, we recall basic notions of differential geometry in the particular case
of the complex plane. We first recall that if 
 W Œa; b� ! C is a smooth curve (for

instance, C1 or Lipschitz), its Euclidean length is given by leucl.
/ D
Z b

a
jj
 0.t/jjdt

where jj
 0.t/jj is the Euclidean norm of the tangent vector 
 0.t/.
Let ˝ be a domain in the complex plane C. A metric � on ˝ is a continuous

function so that �.z/ � 0 for any z 2 ˝ and � is twice continuously differentiable
on fz 2 ˝I �.z/ > 0g. Most of the time, we will assume that �.z/ > 0 everywhere.
If z 2 ˝ and � 2 C (� should be seen as a vector, for instance in the tangent space
of z), we set jj�jjz;� D �.z/:jj�jj where jj�jj denotes the Euclidean length of �.

If 
 W Œa; b� ! ˝ is a continuously differentiable path, then the length of 
 with
respect to the metric � is defined by

l�.
/ D
Z b

a
jj
 0.t/jj�;
.t/dt:

The associated distance between z, z0 2 ˝ is given by

d�.z; z
0/ D inf l�.
/

where the infimum is taken over all the continuously differentiable paths 
 W
Œa; b� ! ˝ so that 
.a/ D z and 
.b/ D z.

We now go to the notion of isometry in the sense of differential geometry.
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Institut Fourier, 100 rue des maths, 38610 Gières, France
e-mail: herve.pajot@ujf-grenoble.fr

© Springer International Publishing AG 2017
L. Blanc-Centi (ed.), Metrical and Dynamical Aspects in Complex Analysis,
Lecture Notes in Mathematics 2195, DOI 10.1007/978-3-319-65837-7

159

mailto:herve.pajot@ujf-grenoble.fr


160 H. Pajot

Definition A.1.1 Let ˝1 and˝2 be two domains in the complex plane C equipped
with metrics �1 and �2 respectively. Then, a one-to-one continuously differentiable
map f W ˝1 ! ˝2 is an isometry from .˝1; �1/ to .˝2; �2/ if f ��2.z/ D �1.z/ for
any z 2 ˝1. Here, f ��2.z/ is the pull-back of the metric �2 under f and is defined by

f ��2.z/ D �2. f .z//

ˇ
ˇ
ˇ
ˇ
@f

@z

ˇ
ˇ
ˇ
ˇ.

We leave to the reader to check that f ��2.z/ is a metric on ˝1. The connection
with the classical notion of isometry is given by the next result.

Proposition A.1.2 Let˝1 and˝2 be two domains in the complex planeC equipped
with metrics �1 and �2 respectively. If f W ˝1 ! ˝2 is holomorphic and is an
isometry in the previous sense, then d�1.z; z

0/ D d�2. f .z/; f .z0//whenever z, z0 2 ˝1.

Proof We have to prove that if 
 W Œa; b� ! ˝1 is a C1-curve so is f�
 D f ı 
 and
l�1.
/ D l�2. f 
/. Note that by definition and by the usual chain rule, we have

l�2 . f�
/ D
Z b

a
jj. f�
/0.t/jj�2;f�
.t/dt

D
Z b

a
jj@f

@z
.
.t//:
 0.t/jj�2;f�
.t/dt

D
Z b

a

ˇ
ˇ
ˇ
ˇ
@f

@z
.
.t//

ˇ
ˇ
ˇ
ˇ :jj
 0.t/jj:�2. f .
.t//dt

D
Z b

a
jj
 0.t/jjf ��2;
.t/dt

D
Z b

a
jj
 0.t/jj�1;
.t/dt.since f is an isometry/

D l�1 .
/:

The last notion we need is the curvature of a metric.

Definition A.1.3 If � is a metric on the domain˝ � C then its curvature at z 2 ˝
is defined by

K˝;�.z/ D �� log�.z/

�.z/2
:

Note that the curvature has singularities where �.z/ D 0. The curvature is
conformally invariant in the following sense.

Proposition A.1.4 Let ˝1 and ˝2 be two domains in the complex plane and let
f W ˝1 ! ˝2 be a conformal map. If �2 is a metric on ˝2, then for any z 2 ˝1,
K˝1;f ��2.z/ D K˝2;�2 .z/.
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Proof Direct computations give

K˝1;f ��2 D �� log.�2. f .z//:j f 0.z/j/
.�2. f .z//:. f 0.z///2

D �� log.�2. f .z//�� log.h0.z/j/
.�2. f .z//:. f 0.z///2

D �� log.�2j. f .z//j f 0.z/j2
.�2. f .z//:. f 0.z///2

D �� log�2. f .z//

�2. f .z//2

D K˝2;�2 . f .z//:

Example A.1.5 The more basic example is the case of the Euclidean metric:
�eucl.z/ D 1, so the curvature of this metric is zero everywhere. Thus, the Euclidean
metric is a flat metric (which is what we can expect !).

A.2 The Schwarz-Pick Lemma and the Poincaré Metric

The main goal of this section is to define the Poincaré metric on the unit disc � D
fz 2 CI jzj < 1g of C and to show a conformally invariant version of the Schwarz
lemma which is useful to study isometries and geodesics for this metric.

We first recall the classical version of Schwarz lemma.

Theorem A.2.1 (Schwarz) Let f be an analytic function in �. Assume that
j f .z/j � 1 for any z 2 � and that f .0/ D 0. Then j f .z/j � jzj for any z 2 �.
Furthermore, if equality holds at some z0 2 �, then there exists � 2 C with j�j D 1

so that f .z/ D �z for any z 2 �.
The proof which is based on the maximum principle could be found in any

textbook in complex analysis. If we take z ! 0, we get the

Corollary A.2.2 Let f be an analytic function in�. Assume that j f .z/j � 1 for any
z 2 � and that f .0/ D 0. Then, j f 0.0/j � 1, with equality if and only if f .z/ D �z
with j�j D 1.

A classical application of the Schwarz lemma is the characterization of conformal
self-maps of the unit disc.

Theorem A.2.3 The conformal self-maps of the unit disc � are precisely the
fractional linear transformation of the form (for any z 2 �)


a;� .z/ D ei� z � a

1 � az

where a is a complex number with jaj D 1 and 0 � � � 2� .
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For the convenience of the reader, we give a proof even if the material is quite
standard.

Proof

1) First, note that 
a;� is a conformal self-map of �. So we have to prove that all
conformal self-maps of � have this form.

2) Assume that g W � ! � is conformal with g.0/ D 0. We can apply the Schwarz
lemma to g to get jg.z/j � jzj for any z 2 � and to g�1 to get jzj � jg.z/j for
any z 2 �. Hence, g.z/=z has constant modulus (equal to 1). This implies that
g.z/=z is constant and g is a rotation (that is g is of the form g.z/ D ei�z for some
0 � � � 2�).

3) Let g W � ! R is a conformal map. Set a D g�1.0/ and h.z/ D z � a

1 � az
. Then

g ı h�1 is conformal and .g ı h�1/.0/ D g.a/ D 0. By point 2, this implies that
there exists 0 � � � 2� so that .gıh�1/.w/ D ei�w for any w 2 �. By applying
the previous equality to w D h.z/ for any z 2 �, we get g.z/ D ei�h.z/ and the
proof is complete.

We now give a version of Schwarz lemma which is invariant under conformal
self-maps of �.

Theorem A.2.4 (Schwarz-Pick) If f W � ! � is analytic, then for any z 2 �,

j f 0.z/j � 1 � j f .z/j2
1 � jzj2 : (A.1)

If f is conformal then equality in (A.1) holds everywhere in �. Otherwise, the
inequality is strict for any z 2 �.

Proof Fix z0 2 � and set w0 D f .z0/. We now consider the conformal self-maps g
and h mapping 0 to z0 and w0 to 0 respectively, that is

g.z/ D z C z0
1C z0z

and g.w/ D w � w0
1 � w0w

:

Then, h ı f ı g.0/ D 0 and we can apply the previous corollary to get

j.h ı f ı g/0.0/j D jh0.w0/f 0.z0/g0.0/j � 1: (A.2)

Since g0.0/ D 1 � jz0j2 and h0.w0/ D 1=.1� jw0j2/, we get (A.1).
If f W � ! � is conformal, then h ı f ı g is also conformal and we get equality

in (A.2) and hence in (A.1). Conversely, assume that f W � ! � is an analytic
function such that equality (A.1) holds at some point z0. The previous computations
show that we have also equality in (A.2) and we can easily conclude by using the
corollary above.

We now give a geometric interpretation of the Schwarz-Pick lemma that leads to
the definition of the Poincaré metric. Let w D f .z/ be a conformal self-map of the
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unit disc �. Then, by the Schwarz-Pick lemma, we get

ˇ
ˇ
ˇ
ˇ
dw

dz

ˇ
ˇ
ˇ
ˇ D 1 � jwj2

1 � jzj2 , that is in

differential form
jdwj

1 � jwj2 D jdzj
1 � jzj2 . This means that for any smooth curve 
 , we

have
Z

f ı

jdwj

1 � jwj2 D
Z




jdzj
1 � jzj2 :

Thus, if we set �P.z/ D 1

1 � jzj2 , we get a metric which is invariant under conformal

self-maps of the unit disc �. This metric is usually called the Poincaré metric, and
we denote by k� the associated distance. The Poincaré metric has curvature �4.
Indeed, �� log�P.z/ D � log.1 � jzj2/ D 4.@=@z/.@=@z/ log.1 � jzj2/. By writing
jzj2 D z:z, we easily get �� log �P.z/ D �4=.1 � jzj2/2 D �4.�P.z//2 and thus
K�P.z/ D �4 for any z 2 �.

Let 
 be the path defined by 
.t/ D t for 0 � t � 1 � ". Then,

l�P.
/ D
Z 1�"

0

j
 0.t/j
1C j
.t/j2 dt D

Z 1�"

0

1

1 � t2
dt D 1

2
ln

�
2 � "
"

�

:

In particular, note that lim"!0 l�P.
/ D C1. Let ˛ be another curve joining 0 and
1 � ": ˛.t/ D t C iw.t/ for 0 � t � 1 � " so that ˛.0/ D 0 and ˛.1 � "/ D 1 � ".
Then,

l�P.˛/ D
Z 1�"

0

1

1 � t2 � .w.t//2
.1C .w0.t//2/1=2dt �

Z 1�"

0

1

1 � t2
dt:

This suggest that straightlines should be geodesics for the Poincaré metric. We now
give a precise statement.

Proposition A.2.5 For any distinct points z0, z1 in the unit disc�, there is a unique
shortest path in � from z0 to z1 in the hyperbolic metric, that is the arc of circle
passing through z0 and z1 that is orthogonal to the unit circle. In particular, if z0 D
0, the shortest path is just the segment Œ0; z1/.

In particular, the last statement implies by basic computations that k�.0; z/ D
1
2

log

�
1C jzj
1� jzj

�

. Thus, if jzj ! 1, then k�.0; z/ tends to infinity.

Proof Let f be a conformal self-map of � so that f .z0/ D 0. By multiplying by
a constant with modulus 1, we can also assume that f .z1/ D r > 0. Recall that
conformal mappings preserve the crossratio. Hence, f maps circles orthogonal to
the unit circle onto circles orthogonal to the unit circle. Moreover f preserves the
hyperbolic length as we have seen previously. So it is enough to prove that the
segment Œ0; r� is the unique geodesic for the Poincaré metric from 0 to r. To see this,
consider a C1 path ˛ W Œ0; 1� ! � joining 0 and r. Then, 
.t/ D Re.˛.t// D x.t/ (if
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we set ˛.t/ D x.t/C iy.t/) defines a path in � from 0 to r contained in the real axis
and we have

Z




jdzj
1 � jzj2 D

Z 1

0

jdx.t/j
1 � jx.t/j2 �

Z 1

0

jdx.t/j
1 � j˛.t/j2 �

Z

˛

jdzj
1 � jzj2 :

If y.t/ ¤ 0 for some t, the previous inequality is strict and the path 
 is strictly
shorter (with respect to the Poincaré metric) than the path ˛. To get a geodesic, we
have to assume that 
 is nondecreasing and the proof is complete.

We can now give a geometric interpretation of the fact that the curvature of
the Poincaré metric is negative. A geodesic triangle in � is an area bounded by
three hyperbolic geodesics (arcs of circle that are orthogonal to the unit circle).
It is not difficult to see that the sum of the angles in a geodesic triangle of � is
less that � which is exactly the sum of angles in an Euclidean triangle. Hence,
geodesic triangles in � are thinner that Euclidean triangles. The notion of Gromov
hyperbolicity is based on this observation.

Theorem A.2.6 Every analytic function f W � ! � is a contraction for the
Poincaré distance:

k�. f .z0/; f .z1// � k�.z0; z1/ for any z0; z1 2 �:

Furthermore, the inequality is strict if z0 ¤ z1, unless f is a conformal self-map of
the unit disc �. In this case, f is an isometry for the Poincaré distance, in the sense
that it preserves the Poincaré distance:

k�. f .z0/; f .z1// D k�.z0; z1/ for any z0; z1 2 �:

Proof Take a geodesic curve in � joining z0 and z1 (as given by the previous
proposition). Then f ı˛ is a curve (in general not a geodesic !) from f .z0/ to f .z1/. By
the definition of the Poincaré distance and by the Schwarz-Pick lemma, we easily
get

k�. f .z0/; f .z1// �
Z

f ı

jdwj

1 � jwj2 D
Z




j f 0.z/jjdzj
1 � j f .z/j2 �

Z




jdzj
1 � jzj2 D k�.z0; z1/:

The case of equality is the same as in the Schwarz-Pick lemma.
As an application of the previous theorem, we have the following description of

the Poincaré distance.

Proposition A.2.7 If z0 and z1 are in the unit disc �, then the Poincaré distance
between these points is given by

k�.z0; z1/ D 1
2

log

0

@
1C

ˇ
ˇ
ˇ z0�z1
1�z0z1

ˇ
ˇ
ˇ

1 �
ˇ
ˇ
ˇ z0�z1
1�z0z1

ˇ
ˇ
ˇ

1

A :
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In particular, k�.0; z/ D 1
2

log

�
1C jzj
1 � jzj

�

:

Proof We have already see how to compute k�.0; z/. In the general case, we use

this formula and we consider the Möbius transformation �.z/ D z � z0
1 � z0z

. Then, by

the previous theorem, we get

k�.z0; z1/ D k�.�.z0/; �.z1// D k�.0; �.z1//:

By using the invariance of dP under rotations, we get k�.z0; z1/ D k�.0; j�.z1j/ and
we can easily conclude.

We already mentioned that the limit of k�.0; z/ is infinite when jzj ! 1. Thus,
the distance between the origin 0 of the unit disc � and the unit circle is infinite!
This motivates the notion of boundary at infinity (see Sect. 3.1 for a more precise
definition in the general setting). The boundary at infinity @1� is the set of geodesic
rays starting from the origin 0, that is by the previous proposition, @1� is the set
of “lines” of the form L� D frei� I 0 � r < 1g. Of course, this boundary could be
identified with the unit disc fz 2 CI jzj D 1g.

Remark A.2.8 It is not so difficult to check that the topology induced by the
Poincaré distance is the Euclidean topology and that the unit disc equipped with
the Poincaré distance is a complete metric space.
There are other interesting invariant metrics in the complex plane.

• The Carathéodory metric is given at a point z in a domain˝ by

�˝C .z/ D sup j f 0.z/j

where the supremum is taken over all holomorphic functions f W ˝ ! � with
f .z/ D 0. Note that this definition is related to the optimisation problem in the
classical proof of the Riemann mapping theorem.

• The Kobayashi metric is given at a point z in a domain˝ by

�˝K .z/ D inf j1=f 0.z/j

where the infimum is taken over all holomorphic functions f W ˝ ! � with
f .0/ D z.

In some sense, the Kobayashi metric is obtained from the Carathéodory metric by
duality.

Theorem A.2.9 In the case of the unit disc (that is ˝ D �), the Carathéordory
metric and the Kobayashi metric coincide with the Poincaré metric.

In particular, this implies that the Kobayashi metric has curvature �4. We
conclude this section with a version of Schwarz-Pick lemma in higher dimensions.
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Theorem A.2.10 Let X and Y be two Kähler manifolds with the same dimension.
Denote by gY and gX their Riemannian metrics. Assume furthermore that Y is
compact and that RiccgY � �gY and RiccgX � �gX everywhere on Y and on X.
Then any holomorphic map f W Y ! X satisfies jJacf . y/j � 1 for any y 2 Y (where
Jacf . y/ denotes the Jacobian of f at y). Moreover, if we have equality at some y 2 Y,
then the tangent map dyf is an isometry (that is preserves the metrics).

A.3 Curvature and Complex Analysis in the Complex Plane

We start with Ahlfors’s version of the Schwarz lemma. First, we need a notation.
Let �.0; r/ be the open disc with center 0 and radius 0 < r � 1. For A > 0, we
define the metric �A

r by

�A
r .z/ D 2rp

A.r2 � jzj2/ :

It is not difficult to check that the curvature of this metric is �A.

Theorem A.3.1 Let˝ a domain in the complex plane. We assume that this domain
is equipped with a metric � whose curvature is bounded above by a negative
constant �B. Then, every holomorphic function f W �.0; r/ ! ˝ satisfies for any
z 2 �.0; r/

f ��.z/ �
p

Ap
B
�A

r .z/:

In particular, if we consider the case r D 1 and we assume that the unit disc is
equipped with the Poincaré metric �P, we have f �� � �P.z/ for any z 2 �whenever
f W � ! ˝ is holomorphic and curvature of the metric � on˝ does not exceed �1.
This property is sometimes called the distance decreasing property of the Poincaré
metric.

Proof For any 0 < s < r, we set vs D
p

Bf ��p
A�A

s

. Note first that vs has a maximum

Ms which is attained at some point zs 2 �.0; s/. This follows from the fact that
vs is continuous, nonnegative on �.0; s/ and that limjzj!s vs D 0. If we prove that
Ms � 1, we can easily conclude by taking s ! r. We can assume that f ��.zs/ > 0

(otherwise vs D 0 on D.0; s/) and hence Kf �� is defined at zs. Since log vs has a
maximum at zs, we have by using the bounds on the curvatures,

0 � � log vs.zs/ D � log f ��.zs/ �� log �A
s .zs/

D �Kf ��.zs/. f ��.zs//
2 C K�A

s
.�s.zs//

2

� Bf ��.zs/
2 � A.�A

s .zs//
2
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This gives 0 � B

�

f ��.zs/
2 � A

B
�A

s .zs/
2

�

. Hence Ms � 1 for any 0 < s < r and the

proof is complete.
Let ˝ be a domain in the complex plane C.

Definition A.3.2 We say that ˝ is hyperbolic in the sense of Brody if any entire
function f W C ! ˝ is constant.

This notion is related to the more classical of hyperbolicity in the sense of
Kobayashi. The next result states that domains that can be equipped with a metric
whose curvature is negative are hyperbolic in the sense of Brody.

Theorem A.3.3 Let ˝ be an open set equipped with a metric �. We assume that
there exists a positive constant B such that its curvature K�.z/ � �B < 0 for all
z 2 ˝ . Then, any entire function f W C ! ˝ must be constant.

Proof For r > 0, we consider the Euclidean disc �.0; r/ equipped with the metric
�A

r for some fixed A and the restriction fr of f to this disc �.0; r/. For any fixed z

and any r > jzj, we have by the previous theorem f ��.z/ �
p

Ap
B
�A

r .z/. If we take

r ! 0, we get f �� � 0 and hence f �� D 0. This is possible only if f 0.z/ D 0. Thus,
f is constant (since z is arbitrary).

As an application using the Poincaré metric, we get the classical Liouville
Theorem: if f is a bounded entire function, we can assume that the range of f is
inside the unit disc � which is equipped with the Poincaré metric. The curvature of
this metric is �1, so we conclude by using the previous theorem that f is constant.
Another easy application is Picard’s little theorem:

Theorem A.3.4 (Picard) Let f W C ! ˝ be an entire function taking its values in
a open set ˝ . If C n˝ contains at least two points, then f must be constant.

Proof We have to prove that ˝ could be equipped with a metric � whose curvature
K� satisfies K�.z/ � �B < 0 for some positive constant B and for all z 2 ˝ . Without
loss of generality, we can assume that the omitted points are 0 and 1. Set

�.z/ D
�
.1C jzj1=3/1=2

jzj5=6
��

.1C jz � 1j1=3/1=2
jz � 1j5=6

�

:

Straightforward computations give

K�.z/ D �1=18
� jz � 1j5=3
.1C jzj1=3/3.1C jz � 1j1=3/ C jzj5=3

.1C jzj1=3/.1C jz � 1j1=3/3
�
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Note now that

(i) K�.z/ < 0 for all z ¤ 0; 1;
(ii) limz!0 K�.z/ D �1=36;

(iii) limz!1 K�.z/ D �1=36;
(iv) limz!01 K�.z/ D �1;

These conditions imply easily that K� is bounded above by a negative constant.

A.4 A First Approach of Quasiconformal Mappings

The starting point of the theory of quasiconformal mappings is supposed to be the
problem of Grötzsch which can be formulated as follows. Take a square Q and
a rectangle (not a square) R. There is no conformal mapping from Q to R which
maps vertices on vertices. The question of Grötzsch was to ask for the most nearly
conformal mapping of this kind. For this, we have to define the dilation of a map.

Let ˝1;˝2 be open sets in C, and f W ˝1 ! ˝2 be a C1 mapping. As usual, we
use the following notation:

fz D 1

2

�
@f

@x
� i
@f

@y

�

; fz D 1

2

�
@f

@x
C i

@f

@y

�

The differential of f is an affine transformation that maps circles about the origin
into similar ellipses.

Definition A.4.1 The ratio of the major to the minor axis is given by the dilation of
f at z :

Df D j fzj C j fzj
j fzj � j fzj � 1

and the complex dilation is given by �f D fz
fz

.

The connection with the dilation is given by Df D 1C j�f j
1 � j�f j or similarly j�f j D

Df � 1
Df C 1

. Note that �f < 1, and that if �f D 0 then f satisfies the Cauchy-Riemann

equation fz D 0. The complex dilation is related to the Beltrami equation. Following
Grötzsch, we say that:

Definition A.4.2 f is K-quasiconformal for some K � 1 iff Df � K everywhere.
We now give the solution of the problem of Grötzsch. Assume that R (respec-

tively R0) is a rectangle with sidelength a and b (respectively a0 and b0). We suppose
for instance that .a=b/ � .a0=b0/. Then, the quasiconformal mapping f with the
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least dilatation (which maps a-sides to a0-sides and b-sides to b0-sides) is the affine
transformation:

f .z/ D 1=2

�
a0

a
C b0

b

�

z C 1=2

�
a0

a
� b0

b

�

z

Set m D a=b and m0 D a0=b0. Then, there exists a K-quasiconformal mapping f of
R on R0 so that 1=K � m=m0 � K.

Definition A.4.3 The modulus of the rectangle R with sidelength a and b is the
quotient a=b. A quadrilateral Q is a closed Jordan curve with two disjoint closed
arcs (that are called the b-sides). Its modulus a=b is given by a conformal mappings
on a rectangle of sidelength a=b that preserves the b-sides.

This suggests the following definition, generalizing Definition A.4.2 with no
regularity properties assumptions on f :

Definition A.4.4 A sense-preserving homeomorphism f W ˝1 ! ˝2 is said K-

quasiconformal if for all quadrilaterals Q so that Q � ˝1,
1

K
m.Q/ � m. f .Q// �

Km.Q/.
Note that if f is a 1-quasiconformal mapping, then f is a conformal mapping.

It is not difficult to see that this definition coincides with the previous one in
the special case f 2 C1. Note also that the composite of two quasiconformal
mappings is quasiconformal and the inverse f �1 of a quasiconformal mapping is
also quasiconformal.

We consider now the case ˝1 D ˝2 D H where H is the upper half-plane of
C, that is H D fx C iyI y > 0g. It is well known that H and � are conformally

equivalent (consider  .z/ D i
1 � z

1C z
for z 2 � or �.�/ D � � i

� C i
for any � 2 H). We

equip H with the hyperbolic metric �H.z/ D 1=y where z D x C iy. We will denote
by dH the associated distance. The boundary at infinity of H could be identified
with R. Note also that R acts simply transitively as the group of translations on the
boundary of H. We say that a homeomorphism h W R ! R satisfies a M-condition

if 1=M � h.x C t/ � h.x/

h.x/� h.x � t/
� M for any x, y t 2 R (such a map will also be called

quasisymmetric).

Theorem A.4.5

1) The boundary values of a K-quasiconformal mapping f W H ! H satisfy a
M-condition with M D M.K/.

2) Conversely, every homeomorphism h W R ! R which satisfies a M-condition
could be extended as a K-quasiconformal mapping � W H ! H with K D K.M/.

The construction of the extension � is explicit. It turns out that � is a quasi-
isometry for the hyperbolic metric on H, that is there exist constants C, D � 0 so
that

C�1dH.x; y/� D � dH.�.x/; �. y// � CdH.x; y/C D
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whenever x, y 2 H (In fact, in our case, D D 0). Other versions of these results in
general hyperbolic spaces are very useful to prove rigidity theorems (for instance
Mostow rigidity type theorems).

A.5 Notes

A good introduction to the Schwarz lemma and its connection with hyperbolic
geometry is [2] (Chap. IX). The use of the curvature of metrics in complex analysis
is inspired by [3] where the reader will also find geometric proofs of the Montel
theorem for normal families and the big Picard theorem. The book of Ahlfors [1]
gives the basis of the theory of quasiconformal mappings (in particular, the Grötzsch
problem). A proof of Theorem A.2.10 is provided in [4] where this result is used to
get rigidity results.
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