
Preventing Erosion in Exception
Handling Design Using Static-Architecture

Conformance Checking

Juarez L.M. Filho1, Lincoln Rocha1(B), Rossana Andrade1,
and Ricardo Britto2

1 Group of Computer Networks, Software Engineering, and Systems,
Federal University of Ceará, Fortaleza, CE, Brazil
{juarezmeneses,lincoln,rossana}@great.ufc.br

2 Blekinge Institute of Technology, 37179 Karlskrona, Sweden
ricardo.britto@bth.se

Abstract. Exception handling is a common error recovery technique
employed to improve software robustness. However, studies have reported
that exception handling is commonly neglected by developers and is the
least understood and documented part of a software project. The lack
of documentation and difficulty in understanding the exception handling
design can lead developers to violate important design decisions, trig-
gering an erosion process in the exception handling design. Architectural
conformance checking provides means to control the architectural erosion
by periodically checking if the actual architecture is consistent with the
planned one. Nevertheless, available approaches do not provide a proper
support for exception handling conformance checking. To fulfill this gap,
we propose ArCatch: an architectural conformance checking solution to
deal with the exception handling design erosion. ArCatch provides: (i) a
declarative language for expressing design constraints regarding excep-
tion handling; and (ii) a design rule checker to automatically verify the
exception handling conformance. To evaluate the usefulness and effective-
ness of our approach, we conducted a case study, in which we evaluated
an evolution scenario composed by 10 versions of an existing web-based
Java system. Each version was checked against the same set of exception
handling design rules. Based on the results and the feedback given by the
system’s architect, the ArCatch proved useful and effective in the identi-
fication of existing exception handling erosion problems and locating its
causes in the source code.

Keywords: Exception handling design · Exception handling erosion ·
Architecture conformance checking

1 Introduction

Exception handling is a well-known error recovery approach to improve software
robustness. An exception is an event or abnormal situation detected at runtime
c© Springer International Publishing AG 2017
A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 67–83, 2017.
DOI: 10.1007/978-3-319-65831-5 5

68 J.L.M. Filho et al.

that disrupts the normal control flow of a program [10]. When this happens, the
exception-handling mechanism deviates the normal control flow to the abnormal
(exceptional) control flow to handle the exceptional situation. The exception
handling mechanism structures the exceptional control flow by using proper
constructs to indicate in the source code where exceptions can be raised and
handled. Most of mainstream programming languages (e.g., Java, C++, and
C#) provide built-in facilities to implement exception handling features [4].

Architecture erosion is a phenomenon that occurs when the implemented
(concrete) architecture of a software system diverges from its intended (planned)
architecture [20]. In fact, it is a side effect of a non-controlled software evolution
process in which changes made in the source code lead to architecture design
rules violations [12]. To cope with this problem, architecture conformance check-
ing provides means to control the architectural erosion by automatically moni-
toring the compliance between the implemented architecture and the intended
one [17]. This systematic control aims at guaranteeing that the architect’s design
decisions - and the quality attributes derived from it - are properly reflected
in the system implementation [5]. Additionally, once the architecture confor-
mance checking requires a design specification as input (e.g., architectural ele-
ments declaration, mapping between architectural and implementation elements,
and design constrains), the knowledge about the architectural design decisions
becomes better documented and easier to share.

Despite its importance, studies have reported that exception handling is com-
monly neglected by developers and is the least understood, documented, and
tested part of a software system [6,13,19]. Additionally, to promote software
maintainability, modern programming languages (e.g., C#, Ruby, and Python)
have incorporated new maintenance-driven flexibilities in its built-in exception
handling mechanism [3]. This make changes in the source code more agile by
not forcing developers to follow the exception handling constraints (e.g., declare
in each method interface a list of exceptions that might be signaled and, there-
fore, should be handled by caller methods). Nevertheless, this flexibility allows
developers to postpone the implementation of some parts of exception handling,
taking the risk of forgetting to return and implement the remaining exception
handling features. All these issues may lead developers to violate the software
architect’s intention concerning the exception handling design during the devel-
opment, maintenance and evolution phases. Such kind of violations are danger-
ous because it can lead to: (i) the exception handling mechanism to behave erro-
neously or improperly at runtime; and (ii) exception handling software faults [7].
We call this problem exception handling erosion (EHE).

The state of the art conformance checking solutions [5,8,11,15,22] do not
provide a proper support for architecture conformance checking of exception
handling design. Even a most recent solution [1], devoted to conformance check-
ing of exception handling design, do not provide a full-fledged support to deal
with the EHE problem. Therefore, we address this gap in this paper through
answering the following research questions: RQ1 - How can the EHE problem be
addressed in a systematic way? RQ1.1 - How effective is the proposed approach

Preventing Erosion in Exception Handling Design 69

in the identification of existing EHE problems? and RQ1.2 - How useful is the
proposed approach to identify EHE causes in the source code?

To answer RQ1, we propose ArCatch, an architecture conformance checking
solution that provides: (i) a declarative language (ArCatch.Rules) for expressing
design constraints regarding exception handling; and (ii) a design rule checker
(ArCatch.Checker) to automatically verify the exception handling conformance.
The ArCatch is implemented as a Java internal DSL (Domain-Specific Lan-
guage), easing its incorporation in a continuous integration environment by
adopting the design test concept, a test-like program that automatically checks
whether an implementation conforms to a specific design rule [2]. To answer
RQ1.1 and RQ1.2, we conducted a case study [18].

The main contributions of this paper are: (i) a declarative DSL to specify
and document design decisions about exception handling; (ii) an automatic ver-
ification tool to support the conformance check of exception handling design;
and (iii) an automatic report generation to assist developers to find out which
design rules are violated and locate in the source code the violation causes.

The remainder of this paper is organized as follows. Section 2 provides some
background about exception handling design. The ArCatch solution is presented
in Sect. 3 and the methodology, results and discussion of the case study are
presented in Sect. 4. Finally, Sect. 5 discusses related work and Sect. 6 concludes
the paper.

2 Exception Handling Design

In this section, we describe the exception handling concepts at the architecture
level based on the IFTC (Idealized Fault-Tolerant Component) model (Sect. 2.1)
and how design rules can be derived from it to express the exception handling
design (Sect. 2.2).

2.1 Exceptions at the Architectural Level

At the software architecture level, exceptions and their control flow can be
described using the IFTC model [14] (Fig. 1). It captures the essence behind
the exception handling constructs of the mainstream object-oriented program
languages [10], such as Java and C#. Each software component (callee) can
receive service requests from other components (caller). The callee processes the
request and sends back normal responses or exceptions.

Exceptions can be classified in three categories as depicted in Fig. 1: (i) inter-
face exceptions - signaled when the request does not conform to the callee com-
ponent service interface; (ii) failure exceptions - signaled to indicate that, for
some reason, the callee component could not process the service request; and
(iii) internal exceptions - raised and handled inside the callee component. The
signaled exceptions are named external exceptions.

In the IFTC model, the component activity can be divided into normal and
abnormal (exceptional) activities (Fig. 1). In the normal activity, the compo-
nent processes service requests according to its specification. In the abnormal

70 J.L.M. Filho et al.

Fig. 1. Idealized Fault-Tolerant Component Model (adapted from [14]).

activity, the component performs contingency measures to deal with exceptions.
Thus, a component can handle exceptions raised during its normal activity or
exceptions signaled by low-level components (callees). However, exceptions that
cannot be handled by a component are propagated to high-level components
(callers) and so on. Moreover, before performing the exception propagation, a
component can do either an exception re-raising or remapping. The exception
re-raising occurs when the component captures the exception, performs some
partial handling actions, and then re-raises it, forcing the exception propaga-
tion continuity. The remapping occurs when the component captures the excep-
tion, performs optionally some partial handling actions, and then raises another
exception type, starting a new exception propagation.

At development time, the exception handling mechanism allows developers
to define exceptions and structure the exception handling behavior by means
of exception handlers. The exception handlers are component parts devoted to
handle exceptions (gray parts in Fig. 1). At runtime, when an exception is raised,
the exception handling mechanism deviates the normal control flow to the excep-
tional control flow, starting the search for an exception handler that can handle
this exception. The search begins with the component in which the exception is
raised and proceeds through all components in the service request chain in the
reverse order in which they were called. When an appropriate handler is found,
the exception handling mechanism passes the exception to the handler. After the
exception is handled, the system may get back to its normal activity. Otherwise,
if no handler is found, the system is forced to stop its execution.

2.2 Design Rules for Exception Handling

In the IFTC model, exceptions can be raised, signaled, handled, re-raised, and
remapped by a system module and can flow through a list of several modules
until be handled. These links can be expressed as different types of dependency
relation between exceptions and modules at the architectural level. Based on
such relations, dependency constraints can be derived to describe and to make

Preventing Erosion in Exception Handling Design 71

explicit how exceptions and modules can be combined towards expressing design
rules governing the architectural exception handling design.

A set of design rules for exception handling can be expressed by applying
semantic modifiers (e.g., “must”, “cannot”, “only . . . can”, and “can. . . only”) to
constrain dependency relations types between modules and exception. Design
rules can be used to document and make explicit the architect/designer inten-
tion/decision regarding the exception handling and its control flow. They can
make explicit: (i) which modules can, cannot, or must raise, re-raise signal, or
handle a specific exception type; (ii) which modules can, cannot, or must re-map
a specific exception type to another; and (iii) which exception types can, cannot,
or must flow through a specific list of modules. In this paper, we provide a way
to express this kind of design rules and use it to check the exception handling
design conformance to avoid erosion problems.

3 The Proposed Approach

To address RQ1, we developed ArCatch, which aims at providing a way to doc-
ument architectural design decisions about exception handling and uses it to
check the source code conformance. It is composed by a specification language
(ArCatch.Rules) to express exception handling design rules, and a design rule
checker (ArCatch.Checker) to automatically perform the conformance checking.

The overall flow of the ArCatch is depicted in Fig. 2. First, ArCatch.Checker
receives as input the software source code under evaluation and the exception
handling design rules written in ArCatch.Rules. Next, it performs the confor-
mance checking and outputs a report describing which design rules are violated.

Fig. 2. The ArCatch Overview.

The architecture conformance checking report (at the bottom of Fig. 2) con-
sists of a list of all specified design rules, which indicates the rules that passed

72 J.L.M. Filho et al.

and the ones that did not. Such a report is useful for identifying which parts of
the source code do not conform to the specification. For example, as shown in
Fig. 2, the design rules specified at lines 5, 6, and 8 are valid, while the design
rules specified at lines 7 and 9 are violated. Additionally, for all violated rules,
ArCatch.Checker generates a counter example pointing out which parts of the
source code are breaking the rules (see Sect. 4). Furthermore, both the excep-
tion handling design rules specification and the conformance checking report can
help software architects and developers to better document, refine, implement
and evolve architectural design decisions regarding exception handling.

ArCatch is implemented in Java and its current version provides support
for exception handling conformance checking of Java programs. The ArCatch
source code can be found at GitHub1 and be freely downloaded. We detailed
ArCatch.Rules and ArCatch.Checker next.

3.1 ArCatch.Rules: The Syntax

In our approach, the knowledge of software architects and developers about the
exception handling design is documented as design rules using ArCatch.Rules
(e.g., lines 05–09 in Fig. 2). Knowledge about the source code is very helpful when
mapping the architectural elements (modules and exceptions) to its respective
implementation elements (regular classes and exception classes). This knowledge
is also documented in the module/exception declarations using ArCatch.Rules
(e.g., lines 01–03 in Fig. 2). Hence, the exception handling design rules’ specifi-
cation is a knowledge-sharing artifact which both software architects and devel-
opers can use to fulfill their tasks.

The Grammar 1.1 describes a simplified version of ArCatch.Rules EBNF
(Extended Backus–Naur Form). The exception handling design specification
〈spec〉 is composed by entities 〈entity〉 and rules 〈rule〉 declaration.

The entity declaration supports two types of architectural elements: modules
and exceptions. A module represents a set of implementation classes, which
can be grouped or interact with each other to provide a well-defined system
functionality. An exception represents a set of exception classes (types). The
keywords ‘module’ and ‘exception’ are employed in the module and exception

1 https://github.com/lincolnrocha/ArCatch.

https://github.com/lincolnrocha/ArCatch

Preventing Erosion in Exception Handling Design 73

entities declaration respectively. Both modules and exceptions have an identifier
〈id〉 (a string that must start with a letter) and a regular expression 〈regex〉
(a sequence of characters that define a search pattern) used to map it onto
implementation elements (regular or exception classes).

The rule declaration 〈rule〉 describes how ArCatch.Rules expresses exception
handling design rules as dependency constraints between exceptions and mod-
ules. Such dependencies can be expressed in terms of exception raising, re-raising,
signaling, handling, remapping, and flow. The semantic modifiers only . . . can,
can. . . only, cannot, and must are used to give a proper semantic to each rule.

All derived design rules follow the same syntactic structure, which includes:
(i) a fixed part that comprises . . . 〈id〉 . . . 〈relation〉 . . . 〈id〉; and (ii) an optional
part that can be ‘to’〈id〉 or (‘,′ 〈id〉)+. In both parts, fixed and optional, the
identifier 〈id〉 can refer to an exception or a module identifier. The choice depends
on the type of dependency relation 〈relation〉 being taken into account.

When the keyword ‘raise’, ‘reraise’, ‘signal’, or ‘handle’ is chosen, the
first identifier in the fixed part refers to a module identifier and the second one
refers to an exception identifier. In such cases, there is no optional part.

If the keyword ‘remap’ is chosen, the fixed part derivation is similar to the
one for the other keywords, but the second identifier (the exception identifier)
represents the exception type to be remapped. In the optional part ‘to’〈id〉, the
identifier refers to an exception identifier, which comprises the exception types
that are targeted by the exception remapping process.

Finally, if the keyword ‘flow’ is chosen, the first identifier in the fixed part
must refer to an exception identifier and the second one refers to a module
identifier; the module where the exception type may be raised and signaled. In
the optional part (‘,’〈id〉)+, each derived identifier refers to a module identifier.
These identifiers are the list of modules in which the exception may flow through.

The ArCatch.Rules are implemented as a Java internal DSL, making it easy
to incorporate it in a continuous integration environment by adopting the design
tests concept [2], a programmatic approach to check the software source code
against design rules via automated testing tools, such as JUnit.

3.2 ArCatch.Checker: The Semantics

The ArCatch.Checker is responsible for establishing a link between declared
modules and exceptions to its implementing classes respectively, and checking
the specified design rules against the software source code. Each entity (module
or exception) has a regular expression associated with it. Every class name that
matches the defined regular expression is linked to the corresponding entity.

ArCatch.Checker uses the following conventions about the exception han-
dling dependency relations at the source code level: (i) raise(m,e) means method
m raises exception e; (ii) reraise(m,e) means method m re-raises exception e;
(iii) signal(m,e) means method m signals exception e; (iv) handle(m,e) means
method m handle exception e; (v) remap(m,e,f) means method m remaps excep-
tion e to exception f ; and (vi) flow(e,m1,. . . ,mn) means exception e is signaled
by method m1 and flows through m2,. . . ,mn−1 until be handled by method mn.

74 J.L.M. Filho et al.

In the following, we introduce some basic definitions and the exception han-
dling design rules violation semantics.

Definition 1 (Implementation Class). An implementation class is a 3-tuple
〈n, t,Φ〉, where n is the class name, t is the class type, and Φ is the class methods.

Definition 2 (Access Functions). Let c = 〈n, t,Φ〉 be an implementation
class, (i) getName(c) returns the class name n, (ii) getType(c) returns the class
type t, and (iii) getMethods(c) returns the set Φ of all class methods.

Definition 3 (Architectural Element). An architectural element A =
〈n, t, φ〉 is a 3-tuple where n is the element name, t ∈ {M, E} is the element
type, which can be a module type (M) or an exception type (E), and φ is the
regular expression used to map the implementation classes from source code.

Definition 4 (The match Function). Let φ be a regular expression and C
be a set of implementation classes, the function match(φ,C) = {c | c ∈ C ∧
getName(c) ∈ ω(φ)} returns all classes whose names matches φ. ω(φ) is all
words described/matched by φ.

Definition 5 (The map Function). Let A = 〈n, t, φ〉 be an architectural ele-
ment, C be a set of implementation classes, ξ be the root type of the exception
types hierarchy, and <: be a subtype relation where C, ξ, and <: are defined in
compliance to the rules of the underlying programming language used to build the
system. The function map(A,C) performs the mapping between an architectural
element and its classes is defined as:

map(A,C) =

{
t = M, {c | c ∈ match(φ,C) ∧ getType(c) ≮: ξ}
t = E, {c | c ∈ match(φ,C) ∧ getType(c) <: ξ}

Definition 6 (The methods Function). Let M = 〈n, M, φ〉 be a module and
C be a set of implementation classes, the function methods(M,C) = { m | ∀c
∈ map(M,C), m ∈ getMethods(c)} returns all methods defined in each class of
mapping map(M,C).

Definition 7 (The call Function). Let m and n be methods and C be a set of
implementation classes, the function call(C,m, n) returns true if ∃ (c, d ∈ C ∧
m ∈ getMethods(c) ∧ n ∈ getMethods(d)) s.t. “n calls m” and false otherwise.

Definition 8 (The chains Function). Let M1,. . . ,Mn be modules and C
be a set of implementation classes, the function chains(C,M1,. . . ,Mn) =
{(m1,. . . ,mn) | ∀i ∈ [1, n), mi ∈ methods(Mi,C) ∧ mi+1 ∈ methods(Mi+1,C)
∧ call(C,mi,mi+1)} returns all method call chains of size n starting in M1 and
ending in Mn.

Cannot Semantics: (Case 1) Let E = 〈eid, E, φE〉 be an exception, M =
〈mid, M, φM 〉 be a module, ⊕ be a relation in {raise, reraise, signal, handle},
and S be a set of implementation classes. Rules of type “mid cannot ⊕ eid” are

Preventing Erosion in Exception Handling Design 75

violated if ∃ (m ∈ methods(M ,S) ∧ e ∈ map(E,S)), such that ⊕(m,e). (Case 2)
Let E = 〈eid, E, φE〉 and F = 〈fid, E, φF 〉 be exceptions, M = 〈mid, M, φM 〉 be
a module, and S be a set of implementation classes. Rules of type “mid cannot
remap eid to fid” are violated if ∃ (m ∈ methods(M ,S) ∧ e ∈ map(E,S) ∧ f ∈
map(F ,S)), so that remap(m,e,f). (Case 3) Let E = 〈eid, E, φE〉 be an exception,
M1 = 〈mid1, M, φM1〉,. . . , Mn = 〈midn, M, φMn

〉 be a list of n modules, and S
be a set of implementation classes. Rules of type “eid cannot flow mid1,. . . ,
midn” are violated if ∃ (e ∈ map(E,S) ∧ (m1,. . . ,mn) ∈ chains(S,M1,. . . ,Mn)),
so that flow(e,m1,. . . ,mn).

Must Semantics: (Case 1) Let E = 〈eid, E, φ〉 be an exception, M =
〈mid, M, φ〉 be a module, ⊕ be a relation in {raise, reraise, signal, handle},
and S be a set of implementation classes. Rules of type “mid must ⊕ eid” are
violated if � (m ∈ methods(M ,S) ∧ e ∈ map(E,S)), such that ⊕(m,e). (Case 2)
Let E = 〈eid, E, φ〉 and F = 〈fid, E, φ〉 be exceptions, M = 〈mid, M, φ〉 be a mod-
ule, and S be a set of implementation classes. Rules of type “mid must remap
eid to fid” are violated if � (m ∈ methods(M ,S) ∧ e ∈ map(E,S) ∧ f ∈
map(F ,S)), so that remap(m,e,f). (Case 3) Let E = 〈eid, E, φ〉 be an exception,
M1 = 〈mid1, M, φ〉,. . . ,Mn = 〈midn, M, φ〉 be a list of n modules, and S be a set
of implementation classes. Rules of type “eid must flow mid1,. . . , midn” are
violated if � (e ∈ map(E,S) ∧ (m1,. . . ,mn) ∈ chains(S,M1,. . . ,Mn)), so that
flows(e,m1,. . . ,mn).

Only-Can Semantics: (Case 1) Let E = 〈eid, E, φ〉 be an exception, M =
〈mid, M, φ〉 be a module, ⊕ be a relation in {raise, reraise, signal, handle},
and S be a set of implementation classes. Rules of type “only mid can ⊕ eid”
are violated if ∃ (c ∈ S\map(M ,S) ∧ m ∈ getMethods(c) ∧ e ∈ map(E,S)), such
that ⊕(m,e). (Case 2) Let E = 〈eid, E, φ〉 and F = 〈fid, E, φ〉 be exceptions,
M = 〈mid, M, φ〉 be a module, and S be a set of implementation classes. Rules of
type “only mid can remap eid to fid” are violated if ∃ (c ∈ S\map(M ,S) ∧ m ∈
getMethods(c) ∧ e ∈ map(E,S) ∧ f ∈ map(F ,S)), so that remap(m,e,f). (Case
3) Let E = 〈eid, E, φ〉 be an exception, M1 = 〈mid1, M, φ〉,. . . ,Mn = 〈midn, M, φ〉
be a list of n modules, and S be a set of implementation classes. Rules of type
“only eid can flow mid1,. . . , midn” are violated if ∃ (e ∈ S \ map(E,S) ∧
(m1,. . . ,mn) ∈ chains(S,M1,. . . ,Mn)), so that flows(e,m1,. . . ,mn).

Can-Only Semantics: (Case 1) Let E = 〈eid, E, φ〉 be an exception, M =
〈mid, M, φ〉 be a module, ⊕ be a relation in {raise, reraise, signal, handle},
and S be a set of implementation classes. Rules of type “mid can ⊕ only eid”
are violated if ∃ (m ∈ methods(M ,S) ∧ e ∈ S \ map(E,S)), such that ⊕(m,e).
(Case 2) Let E = 〈eid, E, φ〉 and F = 〈fid, E, φ〉 be exceptions, M = 〈mid, M, φ〉
be a module, and S be a set of implementation classes. Rules of type “mid can
remap only eid to fid” are violated if ∃ (m ∈ methods(M ,S) ∧ ((e ∈ map(E,S)
∧ f ∈ S \map(F ,S)) ∨ (e ∈ S \map(E,S) ∧ f ∈ map(F ,S)) ∨ (e ∈ S \map(E,S)
∧ f ∈ S \map(F ,S))), so that remap(m,e,f). (Case 3) Let E = 〈eid, E, φ〉 be an
exception, M1 = 〈mid1, M, φ〉,. . . ,Mn = 〈midn, M, φ〉 be a list of n modules, and S
be a set of implementation classes. The rules of type “eid can flow oly mid1,. . . ,

76 J.L.M. Filho et al.

midn” are violated if ∃ (e ∈ map(E,S) ∧ (m1,. . . ,mk)
∈ chains(S,M1,. . . ,Mn)),
so that flows(e,m1,. . . ,mk) with k > 1.

In ArCatch.Checker, all source code information relevant for the checking
process is extracted using the Design Wizard2 tool and the Java Compiler Tree
API3. The Design Wizard provides means to extract the program class depen-
dencies, such as class inheritance trees and method call-graphs to feed our design
rules checking algorithm. The Compiler Tree API provides support to inspect
the AST (Abstract Syntax Tree) of Java programs, helping in the identification
whether raising, re-raising, and remapping cases occurs in the source code.

4 Case Study

In this section, we describe the design employed to conduct the case study
(Sect. 4.1), the associated results (Sect. 4.2) and threats to validity (Sect. 4.3).

4.1 Case Study Design

The Case and Unit of Analysis. The case and unit of analysis is an open
source system called Health Watcher (HW), which was developed to improve
the quality of the services provided by health care institutions in Brazil. HW is
a Java web-based system that allows citizens to register complaints regarding
health issues, so that associated health care institutions can promptly investigate
the complaints and take the required actions [21]. The HW system was chosen
because it has a clear exception handling design and has been used in several
empirical studies regarding software modularity and exception handling [9,11,
16] (conveninece sampling). Furthermore, considering the importance of data
triangulation in case studies, it was important to select a system whose software
architect would be available for a follow-up interview, which was the case of HW.

HW follows a multilayered architectural style composed by 4 layers: view
layer (ViL), “the highest layer”, distribution layer (DiL), business layer (BuL),
and data layer (DaL), “the lowest layer”. We analyzed 10 versions of HW. All
evaluated 10 versions are available on the Web4 and it varies from 7070 up to
100054 lines of code, 80 up to 136 classes, and 19 up to 25 packages.

Data Collection. The data used in our analysis was collected through two
methods: repository mining and unstructured interview. We employed reposi-
tory mining to extract the code of HW. We conducted two unstructured inter-
views with the software architect of HW. The goal of the first interview was to
confirm the exception handling strategy employed in HW. In the second inter-
view, we discussed the results of our analysis with the software architect, to
collect additional insights about the results. The interviews were conducted via
Skype in October and December 2016 and took about 20 and 50 min respectively.
2 https://github.com/joaoarthurbm/designwizard.
3 https://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/.
4 http://ptolemy.cs.iastate.edu/design-study/#healthwatcher.

https://github.com/joaoarthurbm/designwizard
https://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/
http://ptolemy.cs.iastate.edu/design-study/#healthwatcher

Preventing Erosion in Exception Handling Design 77

We made notes during the interviews and discussed the notes with the intervie-
wee, to ensure that the notes reflected the content of the interview.

Data Preparation. To be able to evaluate our approach, we have to conduct
some prepation of the mined source code. Each layer of HW architecture was
represented as a module (Listing 1.1, line 1) and mapped to the corresponding
implementation classes at the source code level. Listing 1.1 shows this map-
ping5 performed to the v1 version of HW. The viL module was mapped (List-
ing 1.1, line 2) to all classes of package “healthwatcher.view.servlets”. The
diL module was mapped to all classes of package “lib.distribution.rmi” and
the IFacade, HealthWatcherFacade, and HealthWatcherFacadeInit classes
(Listing 1.1, line 3). The buL module was mapped to all classes of subpackages of
“healthwatcher.business” (Listing 1.1, line 4). Finally, the daL module was
mapped to all classes of packages and subpackages of “healthwatcher.data”
and “lib.persistence” (Listing 1.1, line 5).

Listing 1.1. Health Watcher Layers Mapping.

1 ModuleElement viL , diL , buL , daL;
2 viL = module("ViL").matching("healthwatcher.view.servlets .\\w*").build();
3 diL = module("DiL").matching("(lib.distribution.rmi.\\w*| healthwatcher.

view.IFacade|healthwatcher.business .(HealthWatcherFacade|
HealthWatcherFacadeInit))*").build();

4 buL = module("BuL").matching("healthwatcher.business .(complaint|employee|
healthguide).\\w*").build();

5 daL = module("DaL").matching("(healthwatcher.data|lib.persistence).(\\w*.)
\\w").build();

All exceptions defined in version v1 are in the package lib.exceptions.
Based on the HW documentation and the source code analysis, six groups of
exceptions were defined and mapped, as shown in Listing 1.2. The diLEx excep-
tion represents the user-defined exceptions (i.e., defined by the programmer)
related to the DiL layer, buLEx exceptions are related to the BuL layer, and
daLEx exceptions are related to the DaL layer. The svtEx and sqlEx are platform-
defined exceptions and allEx represents all user-defined exceptions.

Listing 1.2. Exceptions Mapping.

1 ExceptionElement diLEx , buLEx , daLEx , sqlEx , svtEx , allEx;
2 diLEx = exception("DiLE").matching("(java.rmi.RemoteException|lib.

exceptions.CommunicationException)*").build();
3 buLEx = exception("BuLE").matching("lib.exceptions .(ObjectAlready)\\w*").

build();
4 daLEx = exception("DaLE").matching("lib.exceptions .(Persistence|ObjectNot|

Repository|Transaction)\\w*").build();
5 sqlEx = exception("SQLE").matching("java.sql.SQLException").build();
6 svtEx = exception("SVTE").matching("javax.servlet. ServletException").build

();
7 allEx = exception("AllE").matching("lib.exceptions .(\\w*.)*\\w*").build();

Note that once the system evolves, the mappings of classes into layers also
changes. Thus, for each HW version, it was necessary to perform some fine-tunes
in the mapping to capture changes occurred from one version to other.

5 The symbol “\w” represents a word character: [a-zA-Z 0-9].

78 J.L.M. Filho et al.

Another step in the data preparation was to define an exception handling
policy to evaluate the HW exception handling design based on the intention
of HW’s software architect (collected via an unstructured interview) and good
practices recommended by the Oracle’s BluePrints Design Patterns6 for multi-
layered architectures of Java systems. This policy states that an exception can
be raised in or signaled by an arbitrary layer. When a specific layer (callee) sig-
nals an exception, such exception can only propagate to the immediately upper
layer (caller), which is responsible for catching the exception and performing
handling actions (catch-and-handle strategy). This puts the system back in its
normal control flow. If this exception cannot be handled in this scope, the caller
layer must perform an exception type remapping and signal the new exception
type to the next upper layer (catch-and-remap strategy). This process repeats
until the exceptional situation is finally handled at an upper layer. Exceptions
signaled by third-party components to a specific layer must be handled in this
layer or be remapped and propagated to the next upper layer.

Table 1 shows all design rules defined to enforce the established policy. Each
rule enforces a specific aspect of the exception handling policy. For instance, the
rule R01 enforces that exceptions signaled by the under layer diL must be han-
dled by the upper layer viL (catch-and-handle). The rules R06 and R10 have a
similar purpose. The rules R07 and R11 ensure that the catch-and-remap strat-
egy is used. The rules R14 and R15 enforce that sqlEx exceptions signaled by
third-party components must be handled by daL module. The rule R03 enforces
that no user-defined exception can be signaled by viL. Finally, the R16 enforces
that daLEx exceptions cannot flow through modules daL, buL, and diL.

4.2 Results and Discussion

Table 1 summarizes the evaluation results. Each HW version is checked against
the same set of 16 design rules. All versions fully comply with six design rules
(R02, R04, R07, R11, R12 e R14) and do not conform to 7 design rules (R01,
R05, R06, R08, R09, R10, and R16). On one hand, R03 and R13 start to be
violated in versions 10 and 4, respectively. On the other hand, R15 is violated
in version 9 and starts be satisfied in the last version. In short, versions v1–v3
and v4–v10 has a 50% and 44% of conformance degree respectively.

Looking at the ArCatch.Checker conformance report (Listing 1.3), the
R03 is violated in version 10 because the method initFacade() of
class HWServlet starts to signal the exception CommunicationException
after the modularization of exception handling code. The R013 starts
to violate in version 4 because the implementation of Observer pattern,
after that the method notify() of class Subject starts signaling the
exceptions (Listing 1.4) ObjectNotFoundException, RepositoryException,
ObjectNotValidException e TransactionException.

6 http://www.oracle.com/technetwork/java/patterns-139816.html.

http://www.oracle.com/technetwork/java/patterns-139816.html

Preventing Erosion in Exception Handling Design 79

Table 1. Exception handling design rules and checking results.

ID Exception handling design rule Health watcher versions

01 02 03 04 05 06 07 08 09 10

R01 module(viL).mustHandle(diLEx).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R02 only(viL).canSignal(svtEx).build() ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R03 module(viL).cannotSignal(allEx).build() ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

R04 only(diL).canRaise(diLEx).build() ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R05 only(diL).canSignal(diLEx).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R06 module(diL).mustHandle(buLEx).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R07 only(diL).canRemap(buLEx).to(diLEx).build() ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R08 only(buL).canRaise(buLEx).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R09 only(buL).canSignal(buLEx).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R10 module(buL).mustHandle(daLEx).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R11 only(buL).canRemap(daLEx).to(buLEx).build() ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R12 only(daL).canRaise(daLEx).build() ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R13 only(daL).canSignal(daLEx).build() ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R14 only(daL).canHandle(sqlEx).build() ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R15 module(daL).cannotSignal(sqlEx).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

R16 exception(daLEx).cannotFlow(daL, buL, diL).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Listing 1.3. Rule R03 Example Report (HW v10).

1 -Rule Violations
2 -The method [healthwatcher.view.servlets.HWServlet.initFacade ()] is

signaling the exception [lib.exceptions.CommunicationException]

Listing 1.4. Rule R13 Example Report (HW v4).

1 -Rule Violations
2 -The method [lib.patterns.observer.Observer.notify(lib.patterns.observer

.Subject)] is signaling the exception [lib.exceptions.
ObjectNotFoundException]

3 -The method [lib.patterns.observer.Observer.notify(lib.patterns.observer
.Subject)] is signaling the exception [lib.exceptions.
RepositoryException]

4 -The method [lib.patterns.observer.Observer.notify(lib.patterns.observer
.Subject)] is signaling the exception [lib.exceptions.
ObjectNotValidException]

5 -The method [lib.patterns.observer.Observer.notify(lib.patterns.observer
.Subject)] is signaling the exception [lib.exceptions.
TransactionException]

The R15 is violated from versions 1 until version 9, starting to be satis-
fied in version 10. These violations occurred because some classes of daL signal
the exception SQLException. However, after the modularization of exception
handling code in version 10, such violations no long occurred. The full set of
conformance checking reports for all 10 versions of HW can be found on the
paper’s website7.

7 https://github.com/juarezmeneses/ArCatchExperiment.

https://github.com/juarezmeneses/ArCatchExperiment

80 J.L.M. Filho et al.

Listing 1.5. Rule R15 Example Report (HW v1–v9).

1 -Rule Violations
2 -The method [healthwatcher.data.rdb.ComplaintRepositoryRDB.

accessComplaint(java.sql.ResultSet ,healthwatcher.model.complaint.
Complaint)] is signaling the exception [java.sql.SQLException]

To further validate the results, we interviewed the HW’s software architect.
First, we discussed the seven design rules that are violated in all versions. Thus,
after looking at the violation report, he recognized that all violations represented
clear deviations from his intention as software architect, confirming the existence
of exception handling erosion problems in HW.

Second, we discussed the violation of R03 and R13. Regarding R03, the archi-
tect recognized that such violation introduced in version 10 is a mistake made by
a developer and a possible solution could be create a try-catch bock on method
initFacade() to catch the exception CommunicationException and perform
an log operation or a page redirection to proper present the error. Regarding
R13, the architect argued that such violation is not a proper violation itself, but
a side effect caused by implementation of Observer design pattern. However, he
decided that it must be fixed in a future version. Finally, looking at the viola-
tion report of R15, the architect had no doubt that such violation represents a
deviation from his intention, which was fixed in version 10.

No evaluation regarding performance and usability of ArCatch was conducted
in this paper. However, in the evaluation scenario, ArCatch takes about 50 s
(average) to perform the source code analysis and check the conformance of
each design rule in each HW version. After define the exception handling policy,
the specification of all design rules using ArCatch.Rules takes less then 1 h. The
mapping process was the most time consuming part, once we were not familiar
with its source code; we needed to analyze manually the source code of each
version. The first version analysis took more than 5 h, while the sum of all other
versions analysis took about of 5 h, i.e. the entire mapping process took 10 h.

4.3 Threats to Validity

The threats to validity associated with our investigation are discussed using
the classification by Runeson and Höst [18]. Since no causal relationship was
investigated in the case study, we do not discuss internal validity threats.

Reliability validity threats are related to the repeatability of a study, i.e.
how dependent are the research results on the researchers who conducted it [18].
We minimized this threat by involving several researchers in the design and
execution of our investigation. Furthermore, our observations and findings were
verified by HW’s software architect to avoid false interpretations.

Construct validity threats reflect whether the measures used really rep-
resent the intended purpose of the investigation [18]. To mitigate this threat,
we collected data using multiple methods (data triangulation). Moreover, some
information about source code is extracted and represented as a static call-graph.
However, some relations represented in the static call-graph can never occur in
actual program runs. In fact, it is an undecidable problem. The static call-graph

Preventing Erosion in Exception Handling Design 81

provides over-approximative information, which can lead ArCatch to find rule
violations that may never happen at runtime (i.e., false alarms).

External validity threats limit the generalization of the findings of the inves-
tigation [18]. Since we employed the case study method, our findings are strongly
bounded by the context of our study. In addition, the investigated case involved
only one product, which is not used intensively by different users. To mitigate
this threat, we made an attempt to detail the context of our study as much as
possible. However, this is a strong limitation of our study, which we intend to
address by evaluating our approach by conducting other case studies.

5 Related Work

We have reviewed the state of the art on architecture conformance checking solu-
tions focusing on their support to the exception handling conformance checking.

The Semmle .QL [15] is a conformance checking solution where design con-
straints are specified as queries performed in the software source code. The
.QL syntax is inspired in the SQL language. The LogEn [8] solution is based
on dependency relations between implementation elements of different levels of
granularity. LogEn provides a visual DSL as an Eclipse IDE plug-in to specify
the mapping between architectural and implementation elements and express
dependency constraints. Both solutions adopt Datalog, a logical query language,
to perform the conformance checking. Regarding the exception handling confor-
mance checking, LogEn only provides support to deal with raising and handling
relations, while .QL only provides support to handling relation.

The DCL Suite [22], TamDera [11], and Dictō [5] provide a textual external
DSL to describe dependence constraints between system modules and a checker
to verify the compliance between the implemented and intended architectures.
TamDera provides means to deal with architectural degradation in terms of
erosion and drift problems, while DCL Suite and Dictō only provide support to
deal with architectural erosion problems. In contrast to DCL Suite and TamDera,
which provides their own conformance checker implementation, Dictō performs
the conformance checking using existent conformance tools (e.g., JPF and PMD).
Both DCL Suite and TamDera have been developed as a plug-in for Eclipse
IDE. Therefore, programmers can carry out the conformance checking process
as the source code is being written. The Dictō has been developed as an IDE
agnostic solution that can be easily integrated in a static analysis tools such as
SonarQube. Regarding the exception handling conformance checking, TamDera
and Dictō only provide support to signaling and handling relations, while DCL
Suite only provide support for signaling relations.

The EPL [1] is a conformance checking solution devoted to check the con-
formance of exception handling policies in Java programs. In EPL, an exception
handling policy is a set of design decisions governing the exceptions usage in a
software project. EPL provides an external DSL to describe exception handling
policies involving exceptions and compartments, which is a language construc-
tor used to express which classes and methods are taken into account in the

82 J.L.M. Filho et al.

conformance checking process. EPL has been developed as a plug-in for Eclipse
IDE and the conformance checking can be performed as the source code is being
written. EPL provides its own conformance checker based on the Eclipse JDT.
Regarding the exception handling conformance checking, EPL is the most com-
plete of the solutions we analyzed, only without support to express and check
dependency constraints related to the exceptional control flow.

6 Conclusion and Future Work

In this paper, we have presented ArCatch, a conformance checking solution that
tackles the exception handling erosion problem (RQ1). ArCatch aims at enforc-
ing exception handling design decisions in Java projects, by providing: (i) a
declarative language (ArCatch.Rules) for expressing design constraints regarding
exception handling; and (ii) a rule checker (ArCatch.Checker) to automatically
verify the exception handling conformance. Furthermore, ArCatch provides sup-
port for several kinds of dependence relation concerning the exception handling
design, such as raising, re-raising, remapping, signaling, handling, and flow.

To evaluate our approach (RQ1.1 and RQ1.2), we conducted a case study and
identified that: (i) at least 7 design rule violations in each version were detected;
(ii) all versions conform to 6 design rules; and (iii) three violations appear in
three different versions. ArCatch proved useful in the identification of existing
exception handling erosion problems and its causes. This erosion can be avoided
if adopting our approach in the system project since the beginning.

As future work, we plan to perform a user-centric evaluation to analyze
ArCatch in terms of performance, scalability, usability, and learning curve. We
also want to analyze if it is possible to use the ArCatch.Rules specifications
to derive software tests for the exception handling code. Finally, we intend to
conduct other case studies involving companies from different domains.

References

1. Barbosa, E.A., Garcia, A., Robillard, M.P., Jakobus, B.: Enforcing exception han-
dling policies with a domain-specific language. IEEE Trans. Softw. Eng. 42(6),
559–584 (2016)

2. Brunet, J., Guerrero, D., Figueiredo, J.: Design tests: an approach to programmat-
ically check your code against design rules. In: 31st International Conference on
Software Engineering, pp. 255–258, May 2009

3. Cacho, N., Barbosa, E.A., Araujo, J., Pranto, F., Garcia, A., Cesar, T., Soares, E.,
Cassio, A., Filipe, T., Garcia, I.: How does exception handling behavior evolve? an
exploratory study in Java and C# applications. In: ICSME 2014, pp. 31–40. IEEE
(2014)

4. Cacho, N., César, T., Filipe, T., Soares, E., Cassio, A., Souza, R., Garcia, I., Bar-
bosa, E.A., Garcia, A.: Trading robustness for maintainability: an empirical study
of evolving c# programs. In: Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pp. 584–595 (2014)

Preventing Erosion in Exception Handling Design 83

5. Caracciolo, A., Lungu, M., Nierstrasz, O.: A unified approach to architecture con-
formance checking. In: Proceedings of the 12th Working IEEE/IFIP Conference
on Software Architecture (WICSA), pp. 41–50. ACM Press, May 2015

6. Chang, B.M., Choi, K.: A review on exception analysis. Inf. Softw. Technol. 77(C),
1–16 (2016)

7. Ebert, F., Castor, F., Serebrenik, A.: An exploratory study on exception handling
bugs in java programs. J. Syst. Softw. 106(C), 82–101 (2015)

8. Eichberg, M., Kloppenburg, S., Klose, K., Mezini, M.: Defining and continuous
checking of structural program dependencies. In: Proceedings of the 30th Interna-
tional Conference on Software Engineering, ICSE 2008, pp. 391–400. ACM (2008)

9. Ferrari, F., Burrows, R., Lemos, O., Garcia, A., Figueiredo, E., Cacho, N., Lopes,
F., Temudo, N., Silva, L., Soares, S., Rashid, A., Masiero, P., Batista, T., Mal-
donado, J.: An exploratory study of fault-proneness in evolving aspect-oriented
programs. In: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, ICSE 2010, pp. 65–74. ACM, New York (2010)

10. Garcia, A.F., Rubira, C.M., Romanovsky, A., Xu, J.: A comparative study of
exception handling mechanisms for building dependable object-oriented software.
J. Syst. Softw. 59(2), 197–222 (2001)

11. Gurgel, A., Macia, I., Garcia, A., Staa, A., Mezini, M., Eichberg, M., Mitschke, R.:
Blending and reusing rules for architectural degradation prevention. In: Proceed-
ings of the 13th International Conference on Modularity, pp. 61–72. ACM (2014)

12. van Gurp, J., Bosch, J.: Design erosion: problems and causes. J. Syst. Softw. 61(2),
105–119 (2002)

13. Kechagia, M., Spinellis, D.: Undocumented and unchecked: exceptions that spell
trouble. In: Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014, pp. 312–315. ACM, New York (2014)

14. Lee, P.A., Anderson, T.: Fault Tolerance: Principles and Practice. Dependable
Computing and Fault-Tolerant Systems, 2 edn., vol. 3. Springer, Wien (1990)

15. Moor, O.d., Verbaere, M., Hajiyev, E., Avgustinov, P., Ekman, T., Ongkingco, N.,
Sereni, D., Tibble, J.: Keynote address: .ql for source code analysis. In: SCAM
2007, pp. 3–16. IEEE Computer Society, Washington, DC (2007)

16. Oizumi, W.N., Garcia, A.F., Colanzi, T.E., Ferreira, M., Staa, A.V.: On the rela-
tionship of code-anomaly agglomerations and architectural problems. J. Softw.
Eng. Res. Dev. 3(1), 1–22 (2015)

17. Passos, L., Terra, R., Valente, M., Diniz, R., Mendonça, N.C.: Static architecture-
conformance checking: an illustrative overview. IEEE Softw. 27(5), 82–89 (2010)

18. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hoboken (2012)

19. Shah, H., Gorg, C., Harrold, M.J.: Understanding exception handling: viewpoints
of novices and experts. IEEE Trans. Softw. Eng. 36(2), 150–161 (2010)

20. de Silva, L., Balasubramaniam, D.: Controlling software architecture erosion: a
survey. J. Syst. Softw. 85(1), 132–151 (2012)

21. Soares, S., Laureano, E., Borba, P.: Implementing distribution and persistence
aspects with aspectj. In: OOPSLA 2002, pp. 174–190. ACM, New York (2002)

22. Terra, R., Valente, M.T.: A dependency constraint language to manage object-
oriented software architectures. Softw. Pract. Exper. 39(12), 1073–1094 (2009)

	Preventing Erosion in Exception Handling Design Using Static-Architecture Conformance Checking
	1 Introduction
	2 Exception Handling Design
	2.1 Exceptions at the Architectural Level
	2.2 Design Rules for Exception Handling

	3 The Proposed Approach
	3.1 ArCatch.Rules: The Syntax
	3.2 ArCatch.Checker: The Semantics

	4 Case Study
	4.1 Case Study Design
	4.2 Results and Discussion
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

