
Antónia Lopes
Rogério de Lemos (Eds.)

 123

LN
CS

 1
04

75

11th European Conference, ECSA 2017
Canterbury, UK, September 11–15, 2017
Proceedings

Software
Architecture

Lecture Notes in Computer Science 10475

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Antónia Lopes • Rogério de Lemos (Eds.)

Software
Architecture
11th European Conference, ECSA 2017
Canterbury, UK, September 11–15, 2017
Proceedings

123

Editors
Antónia Lopes
Universidade de Lisboa
Lisbon
Portugal

Rogério de Lemos
University of Kent
Canterbury
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-65830-8 ISBN 978-3-319-65831-5 (eBook)
DOI 10.1007/978-3-319-65831-5

Library of Congress Control Number: 2017948645

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the proceedings of the 11th European Conference on Software
Architecture (ECSA 2017), held during September 11–15, 2017, at the University of
Kent at Canterbury, UK.

The goal of the European Conference on Software Architecture is to provide
researchers, practitioners, and educators with a platform to present and discuss the most
recent, innovative, and significant findings and experiences in the field of software
architecture research and practice. ECSA 2017 has continued the tradition of attracting
a varied type of submissions ranging from fundamental research to applied work in
industrial context, focused on different types of systems and challenges raised by new
developments.

The technical program included a main research track of accepted papers, keynote
talks, a doctoral symposium track, a poster track, and a tool demonstration track. In
addition, we also offered several workshops on diverse topics related to the software
architecture discipline.

These proceedings contain nine regular and six short papers. They were selected by
the Program Committee (PC) among 54 submissions. Each submission was assigned to
at least three PC members for reviewing and was discussed afterwards during a 10-day
electronic meeting. We sincerely thank the PC members and the 25 external reviewers
for their work in preparing the 164 reviews and the effort taking in discussing the
submissions.

The selected papers constitute a very interesting program and address topics
including software architecture analysis and verification, software architecture evolu-
tion, architectural decisions, and software architecture practice. In addition to the
selected papers, we were quite fortunate to have two excellent invited talks: Paola
Inverardi of the University of Aquila, Italy on “Software Architectures: How Com-
ponents Can Go Politely Social,” and Peter Eeles from IBM on “How to Architect
Anything.”

We are grateful to the University of Kent for hosting ECSA 2017, the Organizing
Committee for their excellent job, and the ECSA Steering Committee for their guid-
ance. We thank also the providers of EasyChair Conference Management System that
was a great help in organizing the submission and reviewing process and in the
preparation of the proceedings. We would also like to acknowledge the prompt and
professional support from Springer, who published these proceedings in printed and
electronic volumes as part of the Lecture Notes in Computer Science series.

Finally, we would like to thank the authors of all the ECSA 2017 submissions and
the attendees of the conference for their participation and we look forward to seeing
you in Madrid for ECSA 2018.

September 2017 Antónia Lopes
Rogério de Lemos

Organization

General Chair

Rogério de Lemos University of Kent, UK

Program Committee

Muhammad Ali Babar University of Adelaide, Australia
Jesper Andersson Linnaeus University, Sweden
Paris Avgeriou University of Groningen, The Netherlands
Rami Bahsoon University of Birmingham, UK
Luciano Baresi Politecnico di Milano, Italy
Thais Batista Federal University of Rio Grande do Norte, Brazil
Stefan Biffl TU Wien, Austria
Jan Bosch Chalmers University of Technology, Sweden
Tomas Bures Charles University, Czech Republic
Rafael Capilla Universidad Rey Juan Carlos, Madrid, Spain
Michel Chaudron Chalmers, Gothenborg University, Sweden
Vittorio Cortellessa Università dell’Aquila, Italy
Ivica Crnkovic Chalmers University of Technology, Sweden
Carlos E. Cuesta Universidad Rey Juan Carlos, Madrid, Spain
Elisabetta Di Nitto Politecnico di Milano, Italy
Khalil Drira LAAS-CNRS, France
Laurence Duchien University of Lille, France
Matthias Galster University of Canterbury, New Zealand
David Garlan Carnegie Mellon University, USA
Ian Gorton Northeastern University, Seattle, USA
Volker Gruhn Universität Duisburg-Essen, Germany
Rich Hilliard IEEE Computer Society, USA
Paola Inverardi Università dell’Aquila, Italy
Pooyan Jamshidi Carnegie Mellon University, USA
Anton Jansen Philips Innovation Services, The Netherlands
Patricia Lago Vrije Universiteit Amsterdam, The Netherlands
Antónia Lopes (Chair) Universidade de Lisboa, Portugal
Sam Malek University of California, Irvine, USA
Raffaela Mirandola Politecnico di Milano, Italy
Henry Muccini Università dell’Aquila, Italy
Tomi Männistö University of Helsinki, Finland
Elisa Nakagawa University of Sao Paulo, Brazil
Elena Navarro University of Castilla-La Mancha, Spain
Flavio Oquendo Université Bretagne-Sud, France
Claus Pahl Dublin City University, Ireland

Cesare Pautasso University of Lugano, Switzerland
Jennifer Perez Technical University of Madrid, Spain
Ralf Reussner Karlsruhe Institute of Technology, Germany
Riccardo Scandariato Chalmers, University of Gothenburg, Sweden
Clemens Szyperski Microsoft Research, USA
Bedir Tekinerdogan Wageningen University, The Netherlands
Rainer Weinreich Johannes Kepler University Linz, Austria
Danny Weyns Linnaeus University, Sweden
Eoin Woods Artechra, USA
Uwe Zdun University of Vienna, Austria
Liming Zhu Data61, CSIRO, Australia
Olaf Zimmermann HSR FHO, Switzerland

Additional Reviewers

Fahimeh A. Moghaddam
Ana Paula Allian
Hugo Andrade
Lucas B. Oliveira
Sofia Charalampidou
Daniel Feitosa
Joshua Garcia
Federico Giaimo
Iris Groher

Milena Guessi
Mahmoud Hammad
Robert Heinrich
Sebastian D. Krach
Max E. Kramer
Ivano Malavolta
Christian Manteuffel
Jürgen Musil
Brauner Oliveira

Reinhold Plösch
Clément Quinton
Paul Rimba
Daniel Romero
Misha Strittmatter
Smrithi Rekha
Hang Yin

VIII Organization

Software Architectures:
How Components Can Go Politely Social

(Invited Talk)

Paola Inverardi

Università dell’Aquila, L’Aquila, Italy

Software architectures (SA) serve many purposes. One of the most interesting char-
acteristics of SA is their glue/connectivity nature that allows subsystems/
components to interact, correctly. I will discuss this behavioral facet of SA in a his-
torical perspective by also crossing the software engineering boundaries. Recent
approaches in which SAs are instrumental to synthesize correct systems in an open
world setting characterized by partial knowledge of the final system components
provide a fresher interpretation of their role in the design of future software systems.

Contents

Software Architecture Analysis and Verification

Synthesis and Quantitative Verification of Tradeoff Spaces for Families
of Software Systems . 3

Javier Cámara, David Garlan, and Bradley Schmerl

PARAD Repository: On the Capitalization of the Performance
Analysis Process for AADL Designs . 22

Thanh Dat Nguyen, Yassine Ouhammou, and Emmanuel Grolleau

Continuous Rearchitecting of QoS Models: Collaborative Analysis
for Uncertainty Reduction . 40

Catia Trubiani and Raffaela Mirandola

Software Architecture Evolution

The Evolution of Technical Debt in the Apache Ecosystem 51
Georgios Digkas, Mircea Lungu, Alexander Chatzigeorgiou,
and Paris Avgeriou

Preventing Erosion in Exception Handling Design Using Static-
Architecture Conformance Checking . 67

Juarez L.M. Filho, Lincoln Rocha, Rossana Andrade, and Ricardo Britto

Considerations About Continuous Experimentation
for Resource-Constrained Platforms in Self-driving Vehicles. 84

Federico Giaimo, Christian Berger, and Crispin Kirchner

Automatic Generation

An Architecture Framework for Modelling and Simulation
of Situational-Aware Cyber-Physical Systems . 95

Mohammad Sharaf, Moamin Abughazala, Henry Muccini,
and Mai Abusair

Control of Self-adaptation Under Partial Observation: A Modular Approach . . . 112
Narges Khakpour

Architectural Decisions

On Cognitive Biases in Architecture Decision Making 123
Andrzej Zalewski, Klara Borowa, and Andrzej Ratkowski

http://dx.doi.org/10.1007/978-3-319-65831-5_1
http://dx.doi.org/10.1007/978-3-319-65831-5_1
http://dx.doi.org/10.1007/978-3-319-65831-5_2
http://dx.doi.org/10.1007/978-3-319-65831-5_2
http://dx.doi.org/10.1007/978-3-319-65831-5_3
http://dx.doi.org/10.1007/978-3-319-65831-5_3
http://dx.doi.org/10.1007/978-3-319-65831-5_4
http://dx.doi.org/10.1007/978-3-319-65831-5_5
http://dx.doi.org/10.1007/978-3-319-65831-5_5
http://dx.doi.org/10.1007/978-3-319-65831-5_6
http://dx.doi.org/10.1007/978-3-319-65831-5_6
http://dx.doi.org/10.1007/978-3-319-65831-5_7
http://dx.doi.org/10.1007/978-3-319-65831-5_7
http://dx.doi.org/10.1007/978-3-319-65831-5_8
http://dx.doi.org/10.1007/978-3-319-65831-5_9

Automatic Extraction of Design Decisions from Issue Management
Systems: A Machine Learning Based Approach . 138

Manoj Bhat, Klym Shumaiev, Andreas Biesdorf, Uwe Hohenstein,
and Florian Matthes

Decision Models for Microservices: Design Areas, Stakeholders,
Use Cases, and Requirements . 155

Stefan Haselböck, Rainer Weinreich, and Georg Buchgeher

Software Architecture Risk Containers . 171
Andrew Leigh, Michel Wermelinger, and Andrea Zisman

Software Architecture Practice

A Model for Prioritization of Software Architecture Effort 183
Eoin Woods and Rabih Bashroush

Architectural Assumptions and Their Management in Industry – An
Exploratory Study . 191

Chen Yang, Peng Liang, Paris Avgeriou, Ulf Eliasson, Rogardt Heldal,
and Patrizio Pelliccione

Microservices in a Small Development Organization: An Industrial
Experience Report . 208

Georg Buchgeher, Mario Winterer, Rainer Weinreich, Johannes Luger,
Roland Wingelhofer, and Mario Aistleitner

Author Index . 217

XII Contents

http://dx.doi.org/10.1007/978-3-319-65831-5_10
http://dx.doi.org/10.1007/978-3-319-65831-5_10
http://dx.doi.org/10.1007/978-3-319-65831-5_11
http://dx.doi.org/10.1007/978-3-319-65831-5_11
http://dx.doi.org/10.1007/978-3-319-65831-5_12
http://dx.doi.org/10.1007/978-3-319-65831-5_13
http://dx.doi.org/10.1007/978-3-319-65831-5_14
http://dx.doi.org/10.1007/978-3-319-65831-5_14
http://dx.doi.org/10.1007/978-3-319-65831-5_15
http://dx.doi.org/10.1007/978-3-319-65831-5_15

Software Architecture Analysis and
Verification

Synthesis and Quantitative Verification
of Tradeoff Spaces for Families

of Software Systems

Javier Cámara(B), David Garlan, and Bradley Schmerl

Carnegie Mellon University, Pittsburgh, PA 15213, USA
{jcmoreno,garlan,schmerl}@cs.cmu.edu

Abstract. Designing software subject to uncertainty in a way that pro-
vides guarantees about its run-time behavior while achieving an accept-
able balance between multiple extra-functional properties is still an
open problem. Tools and techniques to inform engineers about poorly-
understood design spaces in the presence of uncertainty are needed. To
tackle this problem, we propose an approach that combines synthesis of
spaces of system design alternatives from formal specifications of archi-
tectural styles with probabilistic formal verification. The main contribu-
tion of this paper is a formal framework for specification-driven synthesis
and analysis of design spaces that provides formal guarantees about the
correctness of system behaviors and satisfies quantitative properties (e.g.,
defined over system qualities) subject to uncertainty, which is factored
as a first-class entity.

Keywords: Tradeoff analysis · Uncertainty · Architectural style ·
Architecture synthesis · Formal guarantees · Quantitative verification ·
Probabilistic model checking

1 Introduction

Engineering modern software-intensive systems requires engineers to explore
design spaces that are often poorly understood due to their complexity and dif-
ferent kinds of uncertainty about the behavior of their constituent components [8]
(e.g., faults, network delays). Achieving a good design with behavioral guaran-
tees and a balance between extra-functional concerns is challenging – especially
when the context that the system will run in contains unknown attributes that
are hard to predict. Designing for this context is as often a matter of luck as it
is principled engineering.

Design decisions frequently involve the selection and composition of loosely-
coupled, pre-existing components or services with different levels of quality (e.g.,
of reliability, performance) that may be offered by independent providers. For
instance, modern robotic software systems consist of a set of processes running
in components, potentially on a number of different hosts, connected at run time
in a peer-to-peer topology [22]. Different implementations of these components
c© Springer International Publishing AG 2017
A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 3–21, 2017.
DOI: 10.1007/978-3-319-65831-5 1

4 J. Cámara et al.

(e.g., for navigation, planning) offer different levels of energy consumption, relia-
bility, or accuracy. Similarly, service-based systems are built by composing third-
party services with different levels of availability, performance, and cost [18].
Quality attributes of constituent components in such systems are often subject
to uncertainties introduced by nondeterministic behaviors of individual compo-
nents (e.g., derived from the lack of control over system components in the cloud,
humans-in-the-loop, or physical interactions in cyber-physical systems) that can
be captured in the form of probability distributions (e.g., over the response time
of a Web service, fault occurrence). For a designer, it is difficult to envisage how
these uncertainties will affect overall system behavior and qualities, despite the
fact that they can sometimes have a remarkable impact on them.

Often, design spaces are also constrained by the need to design systems within
certain patterns or constraints that comprise an architectural style. Architectural
styles [23] characterize the design space of families of software systems in terms
of patterns of structural organization, defining a vocabulary of component and
connector types, as well as a set of constraints on how they can be combined.
Styles help designers constrain design space exploration to within a set of legal
structures that the system must conform to. However, while the structure of
a system may be constrained by some style, there is still considerable design
flexibility left for exploring the tradeoffs on many of the qualities that a system
must achieve.

Formal characterization of architectural styles combined with formal methods
like Alloy [11] have proved to be a valuable tool to aid designers in exploring
rich solution spaces, by synthesizing possible system configurations that satisfy
the constraints imposed by a given architectural style [3,7,19]. However, these
solutions tend to focus on structural properties, and when available, analysis of
system behaviors and qualities are performed separately. So, these approaches
are limited in their ability to consider interactions between behavioral properties
and qualities (e.g., impact of failure in serving a request and a subsequent retry
on overall system performance). Moreover, the approaches that explore non-
structural properties tend to be based either on dynamic analysis or simulations.
Such approaches cannot exhaustively explore the state space of design alternatives
or provide formal guarantees that encompass both their behavior and qualities
(both in general, and in particular, in the presence of uncertainties).

Architects need tools and techniques that can help them explore this com-
plex design space and guide them to good designs. Providing such tool support
demands investigating questions such as: (i) how to integrate formal descriptions
of structural, behavioral, and quality aspects of design alternatives to enable inte-
grated reasoning about all these aspects, and (ii) how to effectively streamline
the exploration of the solution space while providing formal guarantees about
solutions in the presence of uncertainty (e.g., with respect to correctness of
behaviors, or quantitative and structural constraints).

This paper explores these questions by introducing a formal framework that
enables the: (i) exhaustive exploration of a rich space of design alternatives
by automatically synthesizing architecture configurations that satisfy the con-
straints imposed by an architectural style, and (ii) provision of formal guarantees

Synthesis and Quantitative Verification of Tradeoff Spaces 5

with respect to the functional behaviors and qualities (i.e., extra-functional prop-
erties) of configurations by analyzing exhaustively the state space of each con-
figuration’s behavior. Our framework explicitly considers interactions between
functional behaviors and extra-functional properties while factoring in uncer-
tainty as a first-class entity.

The framework is grounded on two related formalisms: (i) predicate logic
and sets capture the structural aspects of system configurations, and (ii) proba-
bilistic automata and formal quantitative verification (e.g., probabilistic model
checking [15]) capture behavior and qualities.

The key novelty of our approach is that it is the first, to the best of our
knowledge, that combines automatic synthesis of design alternatives with quanti-
tative formal verification that factors in uncertainty as a first-class entity. This
combination is enabled by the seamless integration of different types of models
by means of common abstractions that enable reasoning about different types of
properties in a combined manner. More specifically: (i) interaction points (e.g.,
ports) on the component-and-connector view of configurations correspond to
synchronization points of component and connector behaviors, (ii) uncertainties
are captured as probabilities in the behavior models of components and con-
nectors, and (iii) reward structures built on behaviors enable reasoning about
quantitative aspects of system behaviors (e.g., qualities). We implemented our
approach in a prototype tool that uses a back-end based on Alloy and the PRISM
probabilistic model checker [16]. We illustrate the approach on a Tele Assistance
System (TAS) [25] for the validation of service compositions.

The rest of this paper is organized as follows: Sect. 2 provides an overview
of our approach. Section 3 describes the TAS exemplar. Next, Sect. 4 describes
the formalization of models employed by our approach. Section 5 details our
approach, Sect. 6 presents results, and Sect. 7 overviews related work. Finally,
Sect. 8 presents some conclusions and future work.

2 Overview of the Approach

Fig. 1. Overview of the approach.

Finding system configura-
tions in an architectural style
that satisfy a set of formal
guarantees with respect to
their behavior and qualities
requires appropriate models
and mechanisms to: (i) sys-
tematically generate config-
urations in the style, and
(ii) formally verify their
behavior and qualities. To
achieve this goal, we pro-
pose a formalization of archi-
tectural style extended with

6 J. Cámara et al.

behavioral types that specify the abstract behavior of components and connec-
tors, as well as quantitative aspects via reward structures built on their behav-
ioral descriptions (described in Sect. 4).

Based on our formalization, our approach for design space exploration con-
sists of three stages (Fig. 1):

Configuration generation (Sect. 5.1), during which a set of configurations
that satisfy a set of structural constraints is generated. This process takes as
input the description of an architectural style formalized as a set of constraints in
predicate logic defined over abstract types (e.g., those imposed by the style, such
as a component of type X can only be connected to a component of type Y) and
a set of concrete architectural element definitions (i.e., the different instances
of candidate components and connectors that can be employed to realize the
architecture). The output is the collection of system configurations that satisfy
the style constraints.

Configuration behavior model generation (Sect. 5.2), during which a set
of behavioral models that refine the configurations obtained in (1) is generated.
This process takes as input: (i) the set of concrete architecture element defi-
nitions, (ii) the configurations generated in (1), and (iii) the set of behavioral
types1 that capture the behavior of each abstract type in the architectural style.
For every configuration, the behavior of each concrete component and connec-
tor is instantiated using the behavioral types of their corresponding abstract
types. To realize the binding among components and connectors in the behav-
ioral model (via synchronization actions), we employ the topological information
of the graph from the system configuration. Note that, while the behavioral type
is shared among all component (or connector) instances of the same type, their
actual behavior can differ due to the specific attributes of the instance that
parameterize its behavior (e.g., response time for a service, or number of retries
after a failed service invocation). The behavioral model of a configuration is con-
structed as the parallel composition of the behavior of all the instances in the
configuration.

Quantification, filtering and ranking (Sect. 5.3), during which behavioral
and quantitative properties are checked on the configuration behavioral mod-
els. This step filters out configurations that do not meet a set of properties
and constraints imposed by designers, which may include: (i) behavioral prop-
erties (e.g., safety, liveness), and (ii) quantitative constraints (e.g., on quality
attributes). This stage also allows factoring probabilistic aspects into the analy-
sis of behavioral and quantitative properties, as well as solution selection that
optimizes quantitative properties.

1 Although the notion of behavioral type is more general [21], we employ the term
to refer to an abstract state machine specification capturing the behavior of an
architectural abstract type.

Synthesis and Quantitative Verification of Tradeoff Spaces 7

3 Motivating Scenario

We illustrate our approach the TAS exemplar system [25], whose goal is tracking
a patient’s vital parameters to adapt drug type or dose when needed, and taking
actions in case of emergency. The system combines three service types in a
workflow (Fig. 2).

Fig. 2. Tele assistance service workflow, service provider properties, and quality
requirements.

When TAS receives a request that includes the vital parameters of a patient,
its Medical Service analyzes the data and replies with instructions to: (i) change
the patient’s drug type, (ii) change the drug dose, or (iii) trigger an alarm for
first responders in case of emergency. When changing the drug type or dose,
TAS notifies a local pharmacy using a Drug Service, whereas first responders
are notified via an Alarm Service.

The functionality of each service type can be implemented by a number of
providers that offer the service with different levels of performance, reliability,
and cost (Fig. 2a). The metrics employed for the different quality attributes in
TAS are the percentage of service failures for reliability, and service response
time for performance.

In this context, finding an adequate design for the system entails understand-
ing the tradeoff space by finding the set of system configurations that satisfy:
(i) structural constraints imposed by the style (e.g., the Drug Service should not
be connected to an Alarm Service), (ii) behavioral correctness properties (e.g.,
the system is eventually going to provide a response – either by dispatching an

8 J. Cámara et al.

ambulance or notifying the pharmacy about a change), and (iii) quality require-
ments, which can be formulated as a combination of quantitative constraints and
optimizations (Fig. 2b).

Generalizing from this scenario, the problem to solve is: “Given an architec-
tural style A, a set of concrete architecture elements E, a specification of correct
behaviors B, and a set of quality requirements Q, find the set of system config-
urations combining elements of E that: (i) conform to style A (i.e., satisfy its
structural constraints), (ii) satisfy the specification of correct behaviors B (i.e.,
safety and liveness properties), and (iii) maintain the desired level and/or opti-
mize a set of quality goals specified by Q.”

Exploring the design space to find the best possible configurations that con-
form to the style goes beyond the mere instantiation of architectural types, and
entails flexibility when envisaging design alternatives that may not always be
obvious to a human designer. An example in the context of TAS is allowing
invocation of multiple alarm services concurrently. This may of course increase
the cost of operating the system, but can also potentially reduce the response
time and increase the reliability of the system (the combined probability of mul-
tiple alarm services failing is much smaller than the probability of failure of each
individual alarm service).

In the next section we describe our formal model, and then detail our app-
roach for design space exploration in Sect. 5.

4 Formalizing Structure, Behavior, and Qualities

4.1 Architectural Style, Configurations, and States

We characterize the possible structures of a family of systems that are related by
shared structural and semantic properties employing an architectural style [23].

Definition 1 (Architectural Style). Formally, we characterize an architec-
tural style as a tuple (Σ, CS), where:

– Σ = (CompT,ConnT,Π,Λ) is an architectural signature, such that:
• CompT and ConnT are disjoint sets of component and connector types.
• Π : (CompT ∪ConnT) → 2D is a function that assigns sets of symbols typed

by datatypes in a fixed set D to architectural types κ ∈ CompT ∪ ConnT .
Π(κ) represents the properties associated with type κ. To refer to a property
p ∈ Π(κ), we simply write κ.p. To denote its datatype, we write dtype(κ.p).

• Λ : CompT ∪ ConnT → 2P ∪ 2R is a function that assigns a set of sym-
bols typed by a fixed set P to components κ ∈ CompT . This function also
assigns a set of symbols in a fixed set R to connectors κ ∈ ConnT . Λ(κ) rep-
resents the ports of a component (conversely, the roles if κ is a connector),
which define logical points of interaction with κ’s environment. To denote a
port/role q ∈ Λ(κ), we write κ :: q.

Synthesis and Quantitative Verification of Tradeoff Spaces 9

– CS is a set of structural constraints expressed in a constraint language based
on first-order predicate logic in the style of Acme [9] or OCL [24] constraints
(e.g., ∀ t:AssistanceServiceT •∃ a:AlarmServiceT • connected(t,a) – “every tele
assistance service must be connected at least to one alarm service”).

For the remainder of this section, we assume a fixed universe AΣ of architectural
elements, i.e., a finite set of components and connectors for Σ typed by ConnT ∪
CompT . For a given architectural element c ∈ AΣ , we denote its type as type(c).

A configuration is a graph that captures the topology of a feasible structure
of the system in the style.

Definition 2 (Configuration). A configuration in an architectural style
(Σ, CS), given a fixed universe of architectural elements AΣ, is a graph G =
(N , E) satisfying the constraints imposed by CS, where: N is a set of nodes, such
that N ⊆ AΣ, and E is a set of pairs typed by P ×R that represent attachments
between ports and roles.

A system state is the combination of a system configuration, along with an
assignment of values for the properties of the nodes in the configuration graph.

Definition 3 (Σ-system State). A Σ-system state s is a pair (G, λ), where G
is a system configuration, and λ is a function that assigns a value [[c.p]]s in the
domain of dtype(κ.p) to every pair c.p, such that c is a node of G, κ = type(c),
and p ∈ Π(κ). The set of all Σ-system states is denoted by SΣ.

Example 1. We can characterize the family of TAS systems by a style with the
following architectural signature:

CompT = {MedicalServiceT, DrugServiceT, AlarmServiceT, AssistanceServiceT}
ConnT = {HttpConnT}
Π = {(MedicalServiceT, {FailRate, RespTime, Cost}), . . .}
Λ = { (MedicalServiceT, {analyzeDataPS}), (HttpConnT, {CallerR, CalleeR}),
(AssistanceServiceT, {changeDrugPTS, changeDosePTS, sendAlarmPTS, analyzeDataPTS}),
(DrugServiceT, {changeDrugPD, changeDosePD}), (AlarmServiceT, {sendAlarmPAS}) }

Employing the elements of that signature, we can specify a set of structural
constraints that the style imposes on valid configurations (c.f. Listing 1.1).

Figure 3 depicts a sample TAS configuration with service instances TAS1, S1,
D1, and AS2 (c.f. Fig. 2a). The connectors are instances of the http connector
type (HttpConnT) for each of the operations that are invoked by the assistance
service TAS1 to change drug type or dose in D1, invoke an alarm in AS2, and ana-
lyze patient data on S1, connecting the corresponding ports on the component
instances.

10 J. Cámara et al.

4.2 Behavior

Fig. 3. Sample TAS configuration.

To extend our formalization of
architectural style with behav-
iors, we introduce the notion
of behavioral type, characterized
as a state machine that cap-
tures the abstract behavior of
an architectural type in a given
style.

Our instantiation of behav-
ioral type is inspired by discrete-
time Markov chains (DTMC),
although it can be easily adapted
to other formalisms like Markov
decision processes (MDP) or
probabilistic timed automata
(PTA) to capture aspects such
as fully nondeterministic choices
or continuous time.

Definition 4 (Behavioral Type). The behavioral type of an architectural type
κ ∈ CompT ∪ConnT is a tuple (Sκ, si, PΛ), where Sκ is κ’s state space, charac-
terized by the set of all possible value assignments for properties Π(κ), si ∈ Sκ

is an initial state, and PΛ : Sκ × Sκ → [0, 1] × (Λ(κ) ∪ {⊥}) is a transition
probability matrix extended with ports (if κ is a component) or roles (when κ is
a connector).

In the definition above, each element PΛ(s, s′) yields: (i) the probability of mak-
ing a transition from state s to state s′, and (ii) the port/role (if any) on which
the architectural element typed by κ interacts with its environment when the
transition between s and s′ occurs. From a behavioral standpoint, ports and roles
define potential synchronization points for the interaction of different architec-
tural elements in a configuration. We denote the behavioral type of an architec-
ture element c ∈ AΣ as btype(c).

Fig. 4. AssistanceServiceT and MedicalServiceT behavioral types.

Synthesis and Quantitative Verification of Tradeoff Spaces 11

Example 2. Figure 4 depicts the abstract behavior specification of the Assistance-
ServiceT and MedicalServiceT architectural types. Transition labels represent
internal actions, which can be internal to the component (e.g., pickTask after
the initial state in the assistance service), whereas transition labels between
brackets denote potential interactions with the environment. Branching transi-
tions (denoted by a circle) indicate a probabilistic choice, where each branch
is labeled by a probability (e.g., the medical service captures the probability
of the service invocation failing with a branching transition parameterized by
the value of property MedicalServiceT.FailRate and its complementary). Unla-
beled branching transitions implicitly specify a uniform probability distribution.
Non-branching transitions indicate probability 1.

The behavior model of a configuration is obtained by instantiating the behavioral
type all architecture elements in the configuration (c.f. Sect. 5.2), and performing
the parallel composition (with synchronization on shared actions) of the resulting
processes.

Definition 5 (Configuration Behavior Model). Given an architecture con-
figuration G = (N = {n1, . . . , nn}, E), we define its behavior model as the parallel
composition (bn1|| . . . ||bnn), where bni∈{1..|N |} is an instance of the behavioral
type btype(ni).

4.3 Qualities

In addition to structure and behavior, we also need to capture quantitative
aspects of systems to enable the analysis of their qualities. To achieve this goal,
we employ reward structures to quantify information that emerges from the
combined behavior of the different elements in the system and is not explicitly
captured by properties in architectural elements. Two examples are the overall
number of lost requests, and average end-to-end response time of a system, which
could be employed to analyze run-time quality attributes such as reliability and
performance, respectively.

Definition 6 (Reward Structure). A reward structure for a system with
architectural signature Σ is a pair (ρ, ι), where ρ : SΣ → R≥0 is a function
that assigns rewards to system state, and ι : SΣ × SΣ → R≥0 is a function
assigning rewards to transitions.

State reward ρ(s) is acquired in state s ∈ SΣ per time step, i.e., each time that
the system spends one time step in s, the reward accrues ρ(s). In contrast, ι(s, s′)
is the reward acquired every time that a transition between s and s′ occurs. Our
approach is agnostic with respect to the way in which reward structures are
defined. However, in this paper we assume that rewards over states are defined

12 J. Cámara et al.

as sets of pairs (pd, r), where pd is a predicate over states SΣ , and r ∈ R≥0 is
the accrued reward when s ∈ SΣ |= pd. We consider transition rewards as sets
of pairs (p, r), in which p ∈ P is a port type, and reward r ∈ R≥0 is accrued
when an interaction over a port of type p occurs.

Example 3. To compute the cost of operating a TAS configuration, we define a
reward structure that accrues the cost of invoking each of the services in a config-
uration as: (ρ, ι)=(∅, {(̄DrugServiceT :: changeDrugPD, DrugServiceT.Cost), (DrugSer-

viceT :: change-DosePD, DrugServiceT.Cost), (AlarmServiceT :: sendAlarmPAS, AlarmSer-

viceT.Cost), (MedicalServiceT :: analyzeDataPS, MedicalServiceT.Cost)}).

5 Exploring the Design Space

5.1 Configuration Generation

Generating structurally correct configurations entails: (i) formalizing a set of
structural style constraints that all configurations must respect, (ii) instantiating
the constraints for a specific set of architecture entities into a concrete relational
model, and (iii) synthesizing the configurations that satisfy the constraints in
the relational model.

Formalizing Structural Constraints. This is a manual process that can be
carried out by producing a specification in an ADL like Acme, and then trans-
lated automatically to an Alloy specification [14], or directly producing a spec-
ification in the latter. Listing 1.1 shows an excerpt of the encoding of the TAS
architectural style in Alloy. Lines 1–4 encode the definitions of abstract archi-
tectural elements that belong to the architectural signature like components or
connectors, whereas lines 6–8 show a part of the encoding of general constraints
of the architecture (e.g., a component cannot be connected to itself). The ser-
vice types in TAS are encoded as signatures that extend the base signature
Component defined in line 1. For instance, the AssistanceServiceT component
type definition (lines 16–20) includes constraints indicating that it must contain
at least one port for invoking every possible operation type on other services
(lines 17–18), and that those invocation port types can only belong to that type
of component (lines 19–20).

Instantiating Constraints. Once the set of structural constraints of the style
is formalized, we can instantiate a full relational model that will enable us to
apply these constraints to a set of concrete instances that realize concrete con-
figurations. Listing 1.2 presents an excerpt of concrete components in TAS that
correspond to alternative implementations of services available from various
providers. This specification includes the name of the concrete service imple-
mentation, along with its type, which matches one of the abstract types in the
specification of structural constraints in Listing 1.1, and information related to
its quality attributes (Fig. 2a).

Synthesis and Quantitative Verification of Tradeoff Spaces 13

1 abstract sig Component {ports: set Port} // Component and Connector abstract definition
2 abstract sig Connector {roles: set Role}
3 sig Port {component: Component}
4 sig Role {connector: Connector, attachment: one Port}
5 // General constraints of the architecture
6 fact { all p:Port | one r:Role | p in r.attachment } // A port is connected to only one role
7 pred conn[c: Component, c’:Component] { some r,r’:Role | r!=r’ and r.attachment.component=c and

r’.attachment.component=c’ and r.connector=r’.connector } // Two components are connected
8 fact { all c,c’:Component | c=c’ => not conn[c,c’] } // A component must not be connected to itself
9 ... // TAS−specific definitions

10 pred invokes[p:Port, p’:Port] { one r:Caller,r’:Callee | r.attachment=p and r’.attachment=p’ and
r.connector=r’.connector } // A port (p) carries out invocations on another one (p’)

11 pred invokesOnly[p:Port, p’:Port] { invokes[p,p’] and all p’’:Port−p’ | not invokes[p,p’’] } // A port
carries out invocations ∗only∗ on another specific port

12 abstract sig HttpConnT extends Connector {} // ∗∗∗ HTTP Connector ∗∗∗
13 abstract sig Caller, Callee extends Role{} // An http connector has a caller and a callee role
14 fact { all c:HttpConnT | one r:Caller, r’:Callee | r in c.roles and r’ in c.roles }
15 fact { all c:HttpConnT | #c.roles=2 } // Every http connector has ∗exactly∗ two roles
16 one abstract sig AssistanceServiceT extends Component{} // ∗∗∗ Tele Assistance Service ∗∗∗
17 { changeDrugPTS & ports != none and changeDosePTS & ports != none and sendAlarmPTS & ports

!= none and analyzeDataPTS & ports != none} // A TAS has one port for every possible
operation

18 abstract sig changeDrugPTS, changeDosePTS, sendAlarmPTS, analyzeDataPTS extends Port{}
19 fact { all p:changeDrugPTS+changeDosePTS+sendAlarmPTS+analyzeDataPTS | p.component in

AssistanceServiceT }
20 fact { all c:AssistanceServiceT | c.ports in

changeDrugPTS+changeDosePTS+sendAlarmPTS+analyzeDataPTS }
21 abstract sig DrugServiceT extends Component{ } // ∗∗∗ Drug Service ∗∗∗
22 { changeDrugPD & ports != none and changeDosePD & ports != none and #ports=2 }
23 abstract sig changeDrugPD, changeDosePD extends Port{}
24 fact { all p:changeDrugPD+changeDosePD | p.component in DrugServiceT }
25 fact { all c:DrugServiceT | c.ports in changeDrugPD+changeDosePD }
26 ... // General structure (allowed invocations among ports in different components)
27 fact { all pt:analyzeDataPTS | one ps:analyzeDataPS | invokesOnly[pt,ps] }
28 fact { all pt:changeDrugPTS | one pd:changeDrugPD | invokesOnly[pt,pd] }
29 ...
30 fact { all t:AssistanceServiceT | one d:DrugServiceT | conn[t,d] } // A TAS connects to ∗only one∗ DS

Listing 1.1. TAS architecture style constraint specification in Alloy (excerpt).

Entity definitions are employed to automatically extend the constraints into
a full relational model that includes concrete instances of the different entities in
the system. Listing 1.3 shows the Alloy code generated to complement the spec-
ification in Listing 1.1. Every instance is encoded into a signature that extends
its corresponding abstract type. The definition of every signature is preceded by
a lone quantifier, indicating that the presence of a specific instance in a valid
system configuration is optional. Quality attribute information is not used to
analyze structural aspects of the system, and hence is abstracted in the Alloy
specification. These are used later for behavioral configuration model generation
(Sect. 5.2).

S1 [type: MedicalServiceT, failureRate: 0.06, responseTime: 22, cost: 9.8];
AS1 [type: AlarmServiceT, failureRate: 0.3, responseTime: 11, cost: 4.1];

Listing 1.2. Concrete service implementation definitions for TAS (excerpt).

lone sig D1 extends DrugServiceT{}
lone sig S1, S2, S3, S4, S5 extends MedicalServiceT{}
lone sig AS1, AS2, AS3 extends AlarmServiceT{}
lone sig TAS1 extends AssistanceServiceT{}

Listing 1.3. Concrete service implementation definitions for TAS in Alloy.

14 J. Cámara et al.

Configuration Synthesis. Once a model instantiating the style constraints is
available, we use the Alloy analyzer to find all relational models that describe
configurations satisfying the constraints imposed by the style and employ a set
of concrete architecture elements (e.g., TAS service implementations).

To do that, we invoke the run command and impose a constraint on the
cardinality of the different sets of entities (determined by the maximum available
number of components of each type) using an additional predicate (Listing 1.4).
As an example, we run the predicate TAS for a maximum number of 10 instances
of each signature in the model, and impose a restriction of one implementation
per type of service, except for AlarmServiceT, for which we impose a maximum
of 2 instances.

pred TAS {#DrugServiceT=1 and #AlarmServiceT=2 and #MedicalServiceT=1}
run TAS for 10

Listing 1.4. Synthesizing TAS configurations in Alloy.

Figure 5 shows two TAS configurations, generated from the Alloy model
described in this section. The structure on the left is analogous to the one
depicted in Fig. 3, in which TAS is able to invoke a service of each type. How-
ever, the structure on the right describes a configuration in which TAS can invoke
alarm services AS2 and AS3, potentially increasing reliability and performance
when an alarm is raised, but probably at the expense of a higher cost. This
second configuration results from the flexibility in the cardinality constraints
imposed by Listing 1.4, line 1, which allows more than one alarm service to be
employed in a configuration.

Fig. 5. Graphical representation for two TAS configurations synthesized using Alloy.

At this point, we can generate alternative configurations for a system in
a given style, employing a set of concrete elements as building blocks for the
configuration. However, if we want to be able to determine which configurations
satisfy some criteria defined over the behavior or the qualities of the solution, we

Synthesis and Quantitative Verification of Tradeoff Spaces 15

need to include additional specifications that go beyond structure. In the next
section, we describe how to expand structures into behavioral models that are
amenable to analysis that takes into consideration behavioral and quantitative
aspects of system configurations.

5.2 Configuration Behavior Model Generation

The behavior model of a configuration can be obtained by instantiating the
behavioral type of each of the architecture elements in the configuration, and
performing the parallel composition of the resulting processes. Algorithm 5.2
receives as input the configuration of the system G = (N , E) and the set of
behavioral types for the different architecture elements β, and returns the con-
figuration behavior model for G.

Algorithm 1 . Configuration behavior model gen-
eration
1: B := ∅
2: for all n ∈ N do
3: Pν := ∅
4: P ∗

Λ := {t ∈ PΛ | btype(n) = (Sκ, si, PΛ) ∧ ip(t) 	= ⊥}
5: for all t ∈ P ∗

Λ do
6: At := {(p, r) ∈ E | (parent(p) = n ∨ parent(r) =

n) ∧ iptype(p) = ip(t)}
7: for all at ∈ At do
8: Pν := Pν ∪ {states(t) → (prob(t)/|At|, label(at))}
9: end for
10: end for
11: B := B ∪ {(Sκ, si, (PΛ\P ∗

Λ) ∪ Pν)}
12: end for
13: return (b1|| . . . ||bn) • bi∈{1..|N|} ∈ B

The algorithm starts
with an empty set of
behaviors B (line 1), and
incrementally adds the
behavior of each node in
the configuration graph,
which is instanced by:
(1) Determining the set
of transitions P ∗

Λ of the
behavioral type that
interact with the environ-
ment (line 4). Function
ip returns the interaction
point (port or role type) associated with every element of PΛ in the behavioral
type. btype returns the behavioral type of an architecture element. (2) For each
transition identified in (1), creating an instance of the transition for every other
node to which the current one is attached in the configuration (lines 6–9). In
line 6, the set of attachments in the configuration graph for the current node
is identified. Here, interaction point type function iptype identifies the type of
a port or role, whereas parent returns the node that a port or role belongs to.
Line 8 adds new transition instances, adjusting the probability contribution of
the transition according to the number of instances created for a given transition
in P ∗

Λ.2 Function states return the pair of source and target state for a transi-
tion, whereas prob returns its associated probability. Function label generates a
unique label for an attachment, defined as a pair port-role. (3) Creating a new
behavior instance incorporating the original elements of btype(n) (line 11). This

2 The semantics of behavioral types are inspired by discrete-time Markov chains, so
the original probability of the transition prob(t) is divided equally among transition
instances.

16 J. Cámara et al.

process describes the behavior of graph node n, in which transitions identified
in (1) are substituted by the new set of transition instances Pν identified in (2).
The algorithm finishes returning the parallel composition of the processes in B.

5.3 Quantification, Filtering and Ranking

After obtaining the behavioral models for the possible configurations of the sys-
tem, we can assess behavioral, as well as quantitative constraints and properties
on them. This analysis might also include probabilistic aspects in the behavioral
and quantitative properties (e.g., reliability of services on which TAS relies), so
we propose to employ probabilistic temporal logics to capture them. We illustrate
formalization using PCTL [15], although these specifications can be adapted to
other types of probabilistic temporal logic for behavioral descriptions inspired
by other formalisms (e.g., continuous-time Markov chains, probabilistic timed
automata).

This step identifies configurations that do not meet a set of properties and
constraints imposed by designers, which may include: (i) behavioral proper-
ties (e.g., safety, liveness), and (ii) quantitative constraints (e.g., on quality
attributes).

Example 4. We want to assess the overall response time, reliability, and
cost of configurations in TAS. We define serviceOK � changeDoseOK∨
changeDrugOK ∨ sendAlarmOK as a predicate indicating that TAS provided some
of the possible service types correctly. Moreover, we assume the predicate timeout
captures failed service invocation.

Based on these predicates, we define properties Rrt=?[F (serviceOK ∨ timeout)]
and Rcost=?[F (serviceOK ∨ timeout)] that employ the reward quantifier of PCTL
to quantify the expected response time and cost of a configuration by accru-
ing the response time and cost rewards rt and cost, respectively. Property
1 − P=?[F serviceOK] quantifies the overall reliability of a configuration (i.e., that
the system will fail to provide correct service) by employing the probabilistic
quantifier of PCTL.

6 Results

We present in this section our experimental results. To test our proposal, we
ran a prototype implementation of our approach that employed Alloy 4.2 for
synthesizing configurations and PRISM 4.3.1 for behavioral and quantitative
analysis. The experiment was run on an Intel Core i7 2.8 GHz with 16 GB RAM.
We ran our analysis to compute the set of feasible solutions for TAS that meet
the set of structural constraints described in Listing 1.1, using the set of service
implementations described in Fig. 2a.

Synthesis and Quantitative Verification of Tradeoff Spaces 17

18202224

0

0.1

0

50

Cost (usd)

Failure rate (%
)

R
es
po
ns
e
tim

e
(m

s.
)

Performance vs cost-reliability

18202224

60

0

0.1

0.2

Cost (usd)

Response time (ms.)

Fa
ilu

re
ra
te
(%

)

Reliability vs cost-performance

506070

0.1

20

30

Response time (ms.)

Failure rate (%
)

C
os
t(
us
d)

Cost vs performance-reliability

Fig. 6. TAS configurations constrained by: (a) cost and reliability (left), (b) cost and
performance (center), and (c) performance and reliability (right). (Color figure online)

Table 1. Problem instance size and com-
putation time.

Configurations 90
Configuration
behavioral models

270

Configuration
behavior model
generation time

1.361 s (15.1 %)

Configuration
behavioral model
checking time
(PRISM)

7.66 s (84.9 %)

Total computation
time

9.021 s

Space size and computation time.
Table 1 shows that the overall com-
putation time for generating and ana-
lyzing the solution space was approx-
imately 9 seconds, out of which 15%
was used to generate 90 configura-
tions (Alloy) and 270 behavioral con-
figuration models (90× 3 possible val-
ues for the parameter that specifies
number of retries after a failed service
invocation). Checking deadlock free-
ness and the three quantitative proper-
ties defined in Example 4 took approx-
imately 85% of the time.

Analysis results. The plot on the left
of Fig. 6 shows the best response time
that can be achieved in a system con-
figuration when the cost and failure rate are constrained to the thresholds on
the horizontal axes. As expected, we observe that lower response times and
failure rates incur higher cost. This is consistent with the properties of service
providers (better response times and reliability are more expensive), and the
fact that having the flexibity to add redundant services (e.g., alarm service)
to increase reliability and reduce response time increases cost. Our technique
enables us to identify the thresholds in cost and failure rate for which there are
no system configurations satisfying style constraints (in the range ≤19 usd – the
red squares on the bottom plane).

The plot in the center shows how failure rate of configurations increases
noticeably with lower costs, whereas with high cost, it is fairly stable and does
not vary much with overall response time, except for very low values.

Finally, the plot on the right shows the overall cost of configurations for
different levels of response time and reliability. As expected, we can observe how
higher response times and failure rates correspond to lower costs, whereas peaks
in cost are reached with lowest failure rates and response times.

18 J. Cámara et al.

An architect can take these results and make informed design decisions based,
for instance, on the available budget for the project and legal constraints on the
level of reliability and timeliness demanded of systems for first-aid response.

7 Related Work

Work related to our proposal can be categorized into: (i) formalization
of architectural styles, and (ii) architecture-based quantitative analysis and
optimization.

(1) Formalization of architectural styles: Formalization of styles has been
explored to define formal semantics of modeling languages. Kim and Garlan [14]
propose an automatic translation from Acme into Alloy relational models on
which they verify properties implied by the style. Wong et al. [26] also employ
Alloy to check the consistency of rules among multiple styles that might be com-
bined in complex systems. In addition to property verification, other approaches
also explore constraint solving for synthesizing architectures [3,19]. Bagheri and
Sullivan [3] employ architecture synthesis for generating architectural models
from architecture-independent application models, emphasizing the separation
of style choices from application description. In contrast, Maoz et al. [19] propose
an approach that employs synthesis to merge different partial component-and-
connector views. All the aforementioned approaches focus on structural proper-
ties and differ from ours in that they do not consider behavioral, quantitative, or
probabilistic aspects of system descriptions, being unable to systematically ana-
lyze nondeterministic system behaviors and their effects on quality attributes.

(2) Architecture-based quantitative analysis and optimization: Other approaches
focus on analyzing and optimizing quantitative aspects of architectures using
mechanisms that include stochastic search and/or Pareto analysis [1,5,20]. Per-
Opteryx [20] takes as input an architectural model described using the Palla-
dio component model and tries to automatically improve it by searching for
pareto-optimal solutions employing a genetic algorithm. ArcheOpterix [1] uses
an evolutionary algorithm for optimizing the architecture of embedded systems.
DeepCompass [5] is a framework that analyzes different architectural alternatives
along the dimensions of performance and cost to find pareto-optimal solutions.
While these and other approaches in systems engineering (e.g., [17]) can give
estimates and optimize quantitative aspects of designs, they do not support syn-
thesis of configurations (which have to be manually specified), and do not provide
any formal guarantees concerning the behavior or quantitative properties of the
variants.

Other approaches [4,7] have recently combined architecture synthesis with
simulation and dynamic analysis to provide estimates of quantitative properties
of system variants. TradeMaker [4] synthesizes design spaces for object-relational
database mappings, in which individual designs are subject to static and dynamic
analysis to extract performance metrics. Dwivedi et al. [7] propose using archi-
tectural models coupled with automated design space generation for making

Synthesis and Quantitative Verification of Tradeoff Spaces 19

fidelity and timeliness tradeoffs. These approaches share with ours the idea of
synthesizing a solution space from a set of constraints and analyzing individual
solutions independently. However, they do not explore exhaustively the state
space of individual solutions and hence are unable to provide guarantees about
solution behaviors or their interaction with system qualities.

8 Conclusions and Future Work

We have presented an approach to help architects explore the design space of
families of software systems, giving them a tool to make informed design deci-
sions by providing insight into the formal guarantees of solutions and trade-
offs among their qualities. Our approach enables the analysis of behavioral
(i.e., safety, liveness) and quality properties (e.g., quantitative constraints, opti-
mality) of solutions, considering interactions among them, as well as uncertain-
ties captured via probabilities in models.

Concerning generality, the current embodiment of the approach is inspired
by a specific model of formal architectural description (Acme) and behavioral
formalism (DTMC). However, most constructs employed to formalize the archi-
tectural style are fairly standard and the approach for synthesis of configurations
is adaptable to other languages and underlying models. In terms of behavior
descriptions, DTMCs constrain the analysis to a discrete time model and aver-
age case of probabilities/rewards, although straightforward adaptations can be
carried out to adapt behavioral analysis to other probabilistic behavior descrip-
tions such as MDPs (for worst-case scenario analysis) or PTAs for finer-grained
time analysis. We will explore these areas in future work.

Moreover, although in this paper we have focused on spaces in which design
decisions are dominated by the selection and composition of pre-existing compo-
nents, design spaces in which a non-trivial part of the system components have
to be built from scratch have been left out of scope. We plan on extending our
approach for such systems by exploring probabilistic parametric model checking
techniques [10] to automatically find the ranges for quality attribute values that
components to be implemented would have to provide to satisfy global system
constraints on qualities.

A third direction for future work concerns scalability. The degree of for-
mal assurance on configurations provided by the approach is computationally
expensive, and entails risks on the computation cost of configuration synthesis
(derived from the cost of finding instances of configurations in a rich configura-
tion space) and configuration behavior analysis (derived from exploring poten-
tially large state spaces of individual configuration behavior). These risks can be
mitigated by exploiting the hierarchical structure and relations that are naturally
present in complex architectures in which components interact in a structured
way. Hence, synthesis of different subsystems with local constraints can be done
independently and then composed, reducing the cost of configuration synthesis.
This approach has been successfully used in other works that exploit mappings
between specifications defined at different levels of abstraction [13], or incre-
mental analysis techniques [2]. This mitigation also allows exploiting parallelism

20 J. Cámara et al.

in the analysis, during which the behavior of configurations of subsystems can
be independently analyzed using assume-guarantee compositional quantitative
verification [12]. In this case, the computation time for the analysis would be
dominated by the largest subsystem that can be independently analyzed (prior
experience with PRISM suggest times under 10 s for configurations of 250+ com-
ponents, including probabilistic behavior [6]).

Acknowledgments. This material is based on research sponsored by AFRL and
DARPA under agreement number FA8750-16-2-0042. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the AFRL, DARPA or the
U.S. Government.

References

1. Aleti, A., Bjornander, S., Grunske, L., Meedeniya, I.: Archeopterix: an extend-
able tool for architecture optimization of AADL models. In: ICSE Workshop on
Model-Based Methodologies for Pervasive and Embedded Software, MOMPES
2009 (2009)

2. Bagheri, H., Malek, S.: Titanium: efficient analysis of evolving alloy specifications.
In: Proceedings of the 24th Symposium on Foundations of Software Engineering,
FSE 2016 (2016)

3. Bagheri, H., Sullivan, K.J.: Model-driven synthesis of formally precise, stylized
software architectures. Formal Asp. Comput. 28(3), 441–467 (2016)

4. Bagheri, H., Tang, C., Sullivan, K.J.: Trademaker: automated dynamic analysis of
synthesized tradespaces. In: 36th International Conference on Software Engineer-
ing. ACM (2014)

5. Bondarev, E., Chaudron, M.R.V., de Kock, E.A.: Exploring performance trade-offs
of a jpeg decoder using the deepcompass framework. In: 6th WS on Software and
Performance, WOSP. ACM (2007)

6. Cámara, J., Garlan, D., Schmerl, B., Pandey, A.: Optimal planning for
architecture-based self-adaptation via model checking of stochastic games. In: 30th
ACM Symposium on Applied Computing (SAC) (2015)

7. Dwivedi, V., Garlan, D., Pfeffer, J., Schmerl, B.: Model-based assistance for making
time/fidelity trade-offs in component compositions. In: 11th International Confer-
ence on Information Technology: New Generations, ITNG 2014. IEEE CS (2014)

8. Garlan, D.: Software engineering in an uncertain world. In: Proceedings of the
Workshop on Future of Software Engineering Research, FoSER (2010)

9. Garlan, D., Monroe, R.T., Wile, D.: Acme: an architecture description interchange
language. In: Proceedings of the 1997 Conference of the Centre for Advanced Stud-
ies on Collaborative Research, Toronto, Ontario, Canada, 10–13 November 1997.
IBM (1997)

10. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker
for parametric markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14295-6 56

http://dx.doi.org/10.1007/978-3-642-14295-6_56
http://dx.doi.org/10.1007/978-3-642-14295-6_56

Synthesis and Quantitative Verification of Tradeoff Spaces 21

11. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

12. Johnson, K., Calinescu, R., Kikuchi, S.: An incremental verification framework
for component-based software systems. In: Proceedings of the 16th International
ACM SIGSOFT Symposium on Component-based Software Engineering, CBSE
2013. ACM (2013)

13. Kang, E., Milicevic, A., Jackson, D.: Multi-representational security analysis. In:
Proceedings of the 24th Symposium on Foundations of Software Engineering, FSE
(2016)

14. Kim, J., Garlan, D.: Analyzing architectural styles. J. Syst. Softw. 83(7), 1216–
1235 (2010)

15. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-72522-0 6

16. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

17. MacCalman, A.D., Beery, P.T., Paulo, E.P.: A systems design exploration app-
roach that illuminates tradespaces using statistical experimental designs. Syst.
Eng. 19(5), 409–421 (2016)

18. Mahdavi-Hezavehi, S., Galster, M., Avgeriou, P.: Variability in quality attributes of
service-based software systems: a systematic literature review. Inf. Softw. Technol.
55(2), 320–343 (2013)

19. Maoz, S., Ringert, J.O., Rumpe, B.: Synthesis of component and connector models
from crosscutting structural views. In: European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2013.
ACM (2013)

20. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve
software architecture models for performance, reliability, and cost using evolu-
tionary algorithms. In: International Conference on Performance Engineering,
WOSP/SIPEW. ACM (2010)

21. Maydl, W., Grunske, L.: Behavioral types for embedded software – a survey. In:
Atkinson, C., Bunse, C., Gross, H.-G., Peper, C. (eds.) Component-Based Soft-
ware Development for Embedded Systems. LNCS, vol. 3778, pp. 82–106. Springer,
Heidelberg (2005). doi:10.1007/11591962 5

22. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA WS on Open
Source Software (2009)

23. Shaw, M., Garlan, D.: Software Architecture - Perspectives on an Emerging Disci-
pline. Prentice Hall, Upper Saddle River (1996)

24. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. Addison-Wesley, Reading (2003)

25. Weyns, D., Calinescu, R.: Tele assistance: a self-adaptive service-based system
exemplar. In: 10th IEEE/ACM International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2015. IEEE Computer Society
(2015)

26. Wong, S., Sun, J., Warren, I., Sun, J.: A scalable approach to multi-style architec-
tural modeling and verification. In: 13th IEEE International Conference on Engi-
neering of Complex Computer Systems (ICECCS 2008) (2008)

http://dx.doi.org/10.1007/978-3-540-72522-0_6
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/11591962_5

PARAD Repository: On the Capitalization
of the Performance Analysis Process

for AADL Designs

Thanh Dat Nguyen, Yassine Ouhammou(B), and Emmanuel Grolleau

LIAS Laboratory, ISAE-ENSMA and University of Poitiers, Futuroscope, France
{thanh-dat.nguyen,yassine.ouhammou,grolleau}@ensma.fr

https://www.lias-lab.fr

Abstract. In this paper, we focus on RTES (real-time embedded sys-
tems) designs expressed in AADL (Architecture and Analysis Design
Language) and we propose a model-based approach to improve the way
that designers check and analyze the performance of their system designs
by capitalizing the analysis process. Our approach is based on proposing
customized repositories of models using formal AADL-compliant query
and constraint languages in order to orient designers to choose the most
suitable analysis models and tests. Furthermore, this work is also dedi-
cated to research teams to share their researches and prototypes, in order
to enhance the (re-)usability of the real-time performance analysis tests.

1 Introduction

Critical real-time embedded systems (RTES) are used in many domains (such as
avionics, nuclear and automotive) where the development life-cycle takes months
up to several years. Hence, RTES designs need to be analyzed at an early phase
of the life-cycle in order to check if all the requirements are met, including tem-
poral requirements (e.g. deadlines, end-to-end delays, etc.). For that, numerous
analysis tests have been proposed, based on the scheduling theory, dedicated to
different system behaviours and architectures. However, one of the main diffi-
culties that system designers face is to choose the suitable analysis test helping
to validate and/or to dimension their designs properly. Also, improving reuse
in complex systems like real-time systems is increasingly recognized as primor-
dial as it contributes to paring down costs for the engineering and shortening
the development time. In order to analyze the temporal behavior of a criti-
cal RTES and to ensure its correctness, a set of quantitative performance tests
(e.g., schedulability tests) has to be applied to analysis models by using algebraic
methods.

1.1 Context

RTES are composed of a set of interacting tasks sharing communication
resources, generating several messages, executing on a set of hardware com-
ponents and are arbitrated by scheduling algorithms and network protocols.
c© Springer International Publishing AG 2017
A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 22–39, 2017.
DOI: 10.1007/978-3-319-65831-5 2

PARAD: Performance Analysis Repository for AADL designs 23

To study the temporal correctness of a system, a schedulability test takes
into account all of these elements. Architectures of RTES have been sharply
impacted by the technology evolution in terms of hardware and software com-
ponents (mutli-core processors, cache memories, avionics networks, hierarchical
processes, mixed criticality, etc.) [11,22,25,28]. The performance analysis com-
munity follows actively this evolution by proposing numerous tests that match
the variety of RTES architectures due to the critical aspect of RTES. The result
of a performance analysis test can never be reliable unless the system’s architec-
ture fits accurately with the analysis model of the applied test. That is, choosing
a non-suitable test may conduct to a wrong optimistic result (e.g. the calculated
response-time of a task can be less than the time required for its execution in
practical cases), or it can lead to a very pessimistic result generating a system
over-sizing (usage of non-required processors and wires).

Once upon a time, the design (modeling and performance analysis) of
RTES was several come-and-go flows between designers and analysts. Nowadays,
Model-Driven Engineering (MDE) [24] gains in terms of popularity and becomes
used during the design process of RTES. Thanks to MDE settings (modeling,
transformation, code generation) the design of RTES becomes a model-based
process tool-chain integrating both modeling and performance analysis phases
and shortening the time-to-market. Indeed, a set of design languages have been
proposed like UML-MARTE [16] and AADL [4] to help designers to get a pivot
centric-model that can support several kinds of functional and non-functional
analyses (energy, time, safety, etc.). The timing performance analysis commu-
nity has also taken benefits from the MDE facilities. Hence, numerous imple-
mentations of analysis tests and models have been produced as commercial and
academic analysis tools (such as Rt-Druid [23], MAST [17]). Each tool supports
one or several kinds of RTES architectures, and provides a set of analysis tests
in order to help designers to conclude about the schedulability of the system
under design.

1.2 Problem Statement

Nowadays, we witness a gap between the real-time scheduling research theory
and its utilization in the industry [20]. Performing analysis tests, as it is currently
used, is still driven by the real-time designers experience. Therefore, determin-
ing what type of analysis tests to use for a given architecture may be difficult.
This is due to several reasons. (i) By analyzing the literature1, we realized the
presence of a “jungle” of analysis tests whose analysis models are sometimes
well defined in the scientific papers, but sometimes they are drowned in paper
discussions, or even left implicit. For example, the survey presented in [28] enu-
merates a dozen of analysis models, which are only dedicated to simple systems
with independent tasks, uni-processor architecture and fixed priority scheduling
algorithms. Therefore, to know if a performance analysis test of a specific system

1 We have analyzed papers published in the main real-time system conferences like:
RTSS (rtss.org), ECRTS (ecrts.eit.uni-kl.de) and RTAS (rtas.org).

http://www.rtss.org/
http://ecrts.eit.uni-kl.de/
http://www.rtas.org/

24 T.D. Nguyen et al.

architecture exists is time-consuming. (ii) Moreover, the existing analysis tools
are more dedicated to automatize the test calculation than orienting designers
to the right tests that match their needs, and the analysis models of the com-
puted tests are often explicit and need a deep knowledge of both modeling and
scheduling theory, which is uncommon.

In the light of these mentioned problems, the current situation is penalizing
in terms of reusing and finding easily appropriate analysis tests. It also deepens
the gap between the tests presented by the researches community and their
utilization in the industry.

1.3 Paper Contribution

In this research, we are interested on RTES designs based on AADL standard
design language. We propose a collaborative framework called PARAD (Perfor-
mance Analysis Repository for AADL Designs)2. This framework is dedicated
to construct performance analysis repositories playing the role of “decision sup-
ports”. Thanks to our proposition, designers can be helped during the analysis
phase in order (i) to detect the analysis situation corresponding to the system
design and (ii) to choose the most suitable analysis tests. Our proposition also
aims at enhancing the applicability of the real-time performance analysis theory.
Indeed, this work can be used as showcase and teaching-aid allowing the research
teams to show their results (e.g. analysis models, tests, prototypes) and to share
them with other teams among the RTES community.

1.4 Paper Outline

The remainder of the paper is organized as follows. Section 2 introduces real-time
advances in terms of tests, tools and design languages, and presents a running
example which will be used to motivate our contribution and to highlight its rele-
vance. Section 3 is devoted to present formally the concepts of PARAD. Section 4
shows the proof of concept through a case study. Finally, Sect. 5 summarizes and
concludes this article.

2 Background and Work Positioning

The development life-cycle of RTES can span over years. Indeed, any wrong
choice during the design phase can impact sharply the time-to-market. Therefore,
the analysis should be carried out at an early-stage of the design phase. In
practice, a RTES design has to satisfy many constraints, including the temporal
ones. That means, threads have to respect their deadlines, the execution order,
end-to-end delays, etc. To ensure the satisfaction of these constraints in a system
design, we use temporal performance tests.

2 https://forge.lias-lab.fr/projects/parad.

https://forge.lias-lab.fr/projects/parad

PARAD: Performance Analysis Repository for AADL designs 25

2.1 Real-Time Concerns

The RTES analysis research community is very active and has been offering
various analysis tests since the 1970’s (like worst-case response time analysis,
time demand analysis, simulation, etc.) [8,25,28]. The provided analyses are not
only schedulability tests (which allow to conclude if the system is schedulable or
not) but they also address other aspects such as the dimensioning, the sensitivity
analysis and the quality of service, etc. The inputs of each test represent an
analysis model (a.k.a. workload model) which is an abstract representation of
the system being under design. Moreover, each test is characterized as a sufficient
test, a necessary test, or both of them (i.e., exact test). A test is defined to be
sufficient if all of the task-sets that are deemed schedulable according to the test
are in fact schedulable. A test can also be referred to as necessary if failure of
the test will indeed lead to a deadline miss at some points during the execution
of the system. Schedulability test that is both sufficient and necessary is labeled
as exact, then it is in some sense optimal. The result provided by each test can
help to conclude about the temporal satisfaction of the RTES.

Actually, during the progress from the modeling phase to the analysis phase,
designers should choose between two main pathways to analyze their designs. (i)
The first one is related to the use of analysis tools that are already integrated to
a model-based tool chain. In other words, a “push-button” action can be enough
to analyze the design. However, the designer cannot know if the chosen test per-
fectly matches the design characteristics. That is, since a “push-button” action is
enough to analyze the design, the analysis result may be optimistic (which means
wrong because of the criticality of RTES) or oversized (thus, it can be costly in
terms of equipments and wiring). Moreover, in case of analysis failures, designers
may not be informed about the failure reasons. Hence, designers could not know
if the problem is due to a wrong choice of the analysis techniques or due to the
analysis tool itself which may not support the architecture and the specificities
of the system under design. (ii) The second pathway is to ask an expert. This
pathway is safer but also more expensive. During the development process, an
expert has to repetitively examine architectures provided by designers till find-
ing out the configuration that meets the temporal requirements. Unfortunately,
this work-flow is not capitalized, hence the idea behind this paper.

2.2 Motivating and Running Example

In this section, we present a toy example for initiating the discussion. We consider
a software architecture of a RTES consisting of four periodic independent tasks.
Each task is characterized by a set of temporal properties (See Table 1): the
worst-case execution time (WCET), the deadline, the period, the release-time
and the priority.

The four tasks are preemptive and scheduled referring to their priorities.
They are executed on a uni-processor hardware architecture. Task1’s priority
is higher than Task2’s priority, which is higher than Task3’s priority, which is
higher than Task4’s priority. After launching the analysis process through two

26 T.D. Nguyen et al.

Table 1. Example of the task-set configuration of a RTES

Task WCET Deadline Period Release time Priority

Task1 3ms 15ms 20ms 2 ms 4

Task2 4ms 8ms 23ms 0 ms 3

Task3 5ms 13ms 23ms 5 ms 2

Task4 9ms 23ms 23ms 7 ms 1

Table 2. Worst-case response times (WCRT) provided by the tools

Task WCRT (SimSo) WCRT (Rt-Druid)

Task1 3ms 3 ms

Task2 7ms 7 ms

Task3 8ms 12 ms

Task4 14ms 33 ms

different analysis tools (Rt-Druid [23] and Simso [27]), we have obtained two
different results for the same input architecture as shown in Table 2.

Discussion: The difference is not related to a wrong implementation of the analy-
sis methods, but to the choice of the analysis models. The result in the second
column of Table 2 is carried out as a simulation by Simso [27] so that the tasks
release-times are taken into consideration. Whereas, the analysis model chosen
via Rt-Druid (whose result is presented in the third column) ignores the release-
times and considers that all tasks are released at the same time [14]. Figure 1
presents differences of behaviors related to the analysis models considered by
Simso and RT-Druid. Indeed, the result provided by Rt-Druid are not wrong,

Fig. 1. Analysis models of SimSo and RT-Druid

PARAD: Performance Analysis Repository for AADL designs 27

but the analysis model used via the Rt-Druid tool represents the worst-case
behavior that can never be produced by the system under-analysis. Conse-
quently, the test that corresponds to this analysis model leads to pessimistic
results that are not close to the practical case of the system under analysis.

2.3 AADL in a Nutshell

Although the approach that we propose in this paper can be generalized to be
used with any prescriptive design language, in this paper, we focus on AADL
designs. Then, we propose a brief presentation of the language to have a self-
content paper. AADL (Architecture Analysis and Design Language) [4] is a
domain specific language dedicated to design software and hardware architec-
tures of real-time embedded systems. AADL provides components helping to
define hardware (such as processors and buses) and software concerns (such
as threads and data). Interactions between components are expressed through
their interfaces (i.e., ports, bus access, etc.). In addition, AADL provides a set of
properties which can be easily extended. These properties make AADL designs
become pivot model-centric since they enable to apply different analyses and
settings (e.g., formal methods, schedulability analysis, energy consumption).

Modeling the example with AADL. Figure 2 represents the AADL design that
corresponds to the running example (presented previously in Sect. 2.2). To ease

Fig. 2. Running example expressed in AADL language

28 T.D. Nguyen et al.

the understanding and to give sufficient details we have mixed graphical and
textual syntaxes. While Parts (1) give an overview of the architecture thanks to
the graphical syntax, Parts (2) give more temporal details thanks to the AADL
textual syntax.

2.4 Related Work

Recently, several works have coped with the problem of helping designers to
analyze the temporal performance of their AADL architectures. Peres et al. [21]
have proposed the usage of techniques based on model checking. This approach
requires the transformation of AADL designs to another formalism (e.g., petri-
nets or timed automata). Moreover, the utilization of this technique seems to be
complex since it suffers from the problem of the combination explosion. Gaudel
et al. [12] implemented through Cheddar tool [2] an extraction of information
from AADL models. That requires a set of ad-hoc information as design pat-
terns that must be mentioned to support the analysis of AADL models and
which is recognized only by the Cheddar tool. In addition, the recognition of
the design patterns is based only on the architectural model, so it does not con-
sider the behavior of the modeled system. Ouhammou et al. [19] suggested an
example of model transformation from AADL to MoSaRT Language dedicated
to the schedulability analysis. However, this approach requires to be familiar
with MoSaRT language. Moreover, the transformation is not always equivalent.
There are some concepts in one language which cannot be described in oth-
ers languages or there are some concepts which can be transformed to different
concepts in other languages depending on the context of the transformation.
Brau et al. [9] proposed to construct an analysis repository to deduce all feasi-
ble pathways (a sequence of successive analyses) for achieving a predefined goal.
However, authors do not focus on how pertinent and accurate the application of
an analysis to a system, while it is an important factor.

Generally, we can classify all these works into two categories. Those which
use the design patterns (piece of design-solution for conventional problem in
design) and those that are based on the model transformation. However both
categories contains hard-coded solutions. Also the information that helps design-
ers to understand and to justify the choice of a test instead of others still implicit.

In this article, we adapt the solution proposed in [19] to support the sys-
tems designed in AADL. We have implemented this approach into a framework
named Performance Analysis Repository for AADL Designs (PARAD). We pro-
pose two usages of our framework. The first usage consists in helping the AADL
designers to choose appropriate tests for their systems. The choice is accompa-
nied by sufficient explanation about the system under design and how it matches
characteristics of the proposed test (if it exists). The second usage consists in
helping analysts and researchers to share their knowledge by proposing reposito-
ries with relevant information making the repository users (especially designers)
sufficiently autonomous during the analysis phase.

PARAD: Performance Analysis Repository for AADL designs 29

3 PARAD Approach and Its Fundamentals

This section is devoted to present our model-based contribution. The PARAD
framework is mainly based on a description language allowing to instantiate
repositories with contents based on analysis models, analysis tests and their
characteristics. First, we present an overview of PARAD framework approach
by highlighting briefly different capabilities. Secondly, we present the relevant
foundation elements of PARAD and their roles. Our contribution is based on
the facilities of model-driven engineering settings.

Fig. 3. Overview of Parad’s utilization

3.1 PARAD Overview

Figure 3 shows an overview of the PARAD framework. PARAD offers two mech-
anisms. (i) The first one consists in creating analysis repositories, it is dedicated
to analysts and researchers (process (1) in Fig. 3). An analysis repository can be
made by one or many analysts. It represents the knowledge and expertise that
analysts would like to share with other collaborators. (ii) The second mechanism
is the identification process, dedicated to designers (process (3) in Fig. 3). Indeed,
designers can apply their systems architectures, expressed in AADL (process (2)
in Fig. 3), to a chosen analysis repository (provided by an expert analyst) in
order to be assisted during the analysis phase. In the sequel, we will detail those
two mechanisms.

3.2 Core Concepts of PARAD

The approach behind PARAD is based on a set of concepts related to the perfor-
mance analysis theory. Figure 4 shows the principal excerpt of PARAD’s meta-
model. In the following we present the relevant concepts of PARAD.

30 T.D. Nguyen et al.

Fig. 4. Excerpt of PARAD metamodel

Fig. 5. Excerpt of PARAD metamodel: Test, Context and their relationship

– The IdentificationRule is the cornerstone notion of PARAD. An Identifica-
tionRule represents an assumption on the system (e.g., ‘System has only
periodic tasks’, ‘System has mono-processor architecture’, etc.). The value of
each IdentificationRule is not always true or false but depends on the studied
system. Due to evaluated values of these IdentificationRules on a system, we
can determine the analysis situation of this system.

– ContextModel (or Context in short) represents the analysis situation of sys-
tem, that let us know about the analysis model simulating the system and
what analyses can be applied. In fact, a ContextModel is a set of hypothe-
ses on the system. For example, Liu&Layland context [15] is based on these
following hypotheses: ‘System has mono-processor architecture’, ‘All tasks
are independent’, ‘All tasks are characterised by worst-case execution time
and period’, etc. The hypotheses that constitute ContextModel are modelled
by IdentificationRule with an expected value on the system: trueValueRule,
falseValueRule and indifferentValueRule. trueValueRule represents the Iden-
tificationRule that the system have to satisfy, falseValueRule represents the
IdentificationRule that the system must not satisfy. It sometimes happens
that a ContextModel can match a system whether the system satisfies an

PARAD: Performance Analysis Repository for AADL designs 31

Fig. 6. Excerpt of PARAD metamodel: TestImplementation and Transformation

IdentificationRule or not, for example: Liu&Layland context [15] does not
care whether system’s tasks are concrete or not. We qualify this type of Iden-
tificationRule as indifferentValueRule.

– Test represents the analysis technique which allows to conclude about the
schedulability of systems. Since ContextModel represents the analysis situ-
ation of systems, in it, a number of Tests is applicable. To a specific Con-
textModel, a Test may be exact or sufficient or necessary (as we have already
explained in Sect. 2.1). Tests are also characterised by the sustainability
aspect [6]. In fact, analysis tests often consider the worst-case values (e.g.
worst-case execution time, minimal period, maximal release jitter). During
the execution of the system, the task parameters are always better than
those considered in analysis, so the validity of analysis should retain. It is
an important quality of an analysis. An analysis test with respect to a sys-
tem is called sustainable, if the system, deemed valid by the test, remains
valid even after changing tasks parameters: (Fig. 5) decreasing execution
time (ExecutionTime Sustainability), increasing period or inter-arrival times
(Period Sustainability), decreasing jitter (Jitter Sustainability) and increas-
ing relative deadline (Deadline Sustainability).

– TestImplementation (Fig. 6) represents implementation of an analysis tech-
nique in a tool allowing to perform this test. Transformation represents a
technique of assimilating concepts between the studied model and the input
formalism of the associated tool. Each instance of Transformation enables
to define the location of a program (executable files, call of web services,...)
which can be used to automatize the transformation process.

Since we aim at examining AADL designs to detect the corresponding analy-
sis contexts by evaluating IdentificationRules, they have to be based on a for-
malism. Therefore, we have opted for OCL and LUTE as languages to express
these rules. Users can choose the language that they are more familiar with.

32 T.D. Nguyen et al.

Fig. 7. Identification rule: “All tasks must have the Offset property” in OCL’s syntax

– OCL (Object Constraint Language [18]) is Ecore-compliant. While the
AADL metamodel conforms to Ecore [1], the content of IdentificationRules
can be written in OCL’s syntax. Thanks to OCL’s checker, these rules can
be evaluated. Figure 7 presents an identification rule expressed in OCL.

– LUTE is a constraint language that allows to query AADL models and there-
fore helps designers to check model structures and system requirements. It is
composed of different functions to query the components hierarchy as well as
their features (ports, connections, etc.) and properties [3]. The following list-
ing shows an example of LUTE query which represents the same identification
rule as the one of Fig. 7.

1 theorem Of f s e t De f i n ed
2 fo r each t in Thread Set do
3 check Proper ty Ex i s t s (t , ” D i spa tch Of f s e t ”) ;
4 end ;

Listing 1.1. An identification rule expressed in LUTE’s syntax

3.3 PARAD Identification Process

The Identification Process is the way PARAD repositories seek the context of a
system. It is composed of 2 steps: The first one is to evaluate all Identification
rules (of the chosen repository) on the system and the second one compares
results obtained in step 1 with the expected values of contexts of the repository
to find out the appropriate contexts. Figure 8 presents an example sketching
the identification process. We notice that the context model that corresponds
to the system is the one which is defined by the same way as the evaluation
result (obtained in step 1). In other words, the corresponding context is the one
whose trueValueRules must be all evaluated as true on the system and whose
falseValueRules must be evaluated as false on the system. Note that, a system
can match more than one context. Moreover, the identification process can be
called several times throughout an iterative design process.

PARAD: Performance Analysis Repository for AADL designs 33

Fig. 8. Steps of Identification process

4 Proof of Concept

We introduce a simple case study to highlight the utilization of PARAD for
choosing appropriate analyses for RTES and to demonstrate the possibility of
combining several tests. We prepared a sample analysis repository, which is ful-
filled with a list of conventional analysis tests. Thanks to the analysis repository,
we can find the appropriate tests for a given system. Also, the results produced
by an analysis test for a system make possible to apply other tests for the system.
That enables to combine a number of test into a an incremental analysis-chain.
The detail is presented hereafter.

4.1 PARAD Repository

We propose an Analysis Repository - instance of PARAD with the following
schedulability analysis tests: Response Time Analysis - RTA [14], Holistic Analy-
sis [29], Request Bound Function - RBF [7,13], Rate Monotonic schedulability
test [26], Audsley Priorities Assignment - OPA [5]. These tests are already imple-
mented in many academic and industrial third-party tools.

We also defined 4 contexts for tests: (Ctx1) Liu&Layland for tasks with pre-
assigned priority - constrained deadline - fixed priority scheduler, (Ctx2) Periodic
tasks model with arbitrary deadline in distributed system, (Ctx3) Liu&Layland
for tasks with constrained deadline - EDF (Earliest Deadline First) scheduler,
(Ctx4) Liu&Layland for tasks with offset - arbitrary deadline - fixed prior-
ity scheduler. The Response Time Analysis is sufficient, sustainable in Ctx1.
Although the Holistic Analysis is a generic test, it can be applied in both Ctx1
and Ctx2. The application of Holistic Analysis in Ctx1 is identical to Response

34 T.D. Nguyen et al.

Time Analysis, so we only added it to Ctx2 to deal with distributed system
architecture. Holistic Analysis is sufficient and sustainable in Ctx2. The Request
Bound Function is exact and non-sustainable in Ctx3. Rate Monotonic schedula-
bility test is sufficient test in Ctx1 and Ctx4. And last Audsley Priorities Assign-
ment is exact, non-sustainable in both Ctx1 and Ctx4. We introduce several
IdentificationRules to identify these contexts. The content of each rule and its
expected evaluation result in each context are presented in Table 3. To simplify
the comprehension, we only choose 20 relevant rules for each context.

Table 3. Description of ContextModel in term of IdentificationRule

Contexts Ctx1 Ctx2 Ctx3 Ctx4

IR1: All tasks must have predefined offset U U U �
IR2: All tasks must have predefined execution time � � � �
IR3: All tasks must have predefined deadline � � � �
IR4: All tasks must have predefined period � � � �
IR5: All tasks must have predefined priority � � U U

IR6: All tasks must have predefined scheduling protocol � � � �
IR7: Mono-processor architecture � ✗ � �
IR8: Earliest deadline first policy ✗ ✗ � ✗

IR9: Deadline monotonic policy U � ✗ ✗

IR10: Rate monotonic policy U � ✗ ✗

IR11: No predefined scheduling policy U U U U

IR12: All tasks must be concrete U U U �
IR13: Tasks must be non-concrete U U U ✗

IR14: All tasks must be periodic � � � �
IR15: All tasks must be synchronously activated U U U U

IR16: All tasks must be asynchronously activated U U U U

IR17: All tasks must be independent � U � �
IR18: Deadline of all tasks must be implicit U U U U

IR19: Deadline of all tasks must be constrained � U � U

IR20: Deadline of all tasks must be arbitrary ✗ � ✗ U

– �: rule whose evaluated value should be true in the context.
– ✗: rule whose evaluated value should be false in the context.
– U: regarding to the context, evaluation value of this rule is not important so it can
be true or false.

4.2 Analysis Process Using PARAD as a Decision Support

System’s description: we consider the same system presented in the motivating
example (Sect. 2.2), but without any preassigned priority.

PARAD: Performance Analysis Repository for AADL designs 35

Fig. 9. Appropriate found contexts

We applied the constructed PARAD repository to the system expressed in
AADL to find out the appropriate tests. The result is presented in Fig. 9. We
notice that two contexts match the studied system, hence we have two tests
are available at this stage: Audsley’s Priorities Assignment (OPA) and the Rate
Monotonic schedulability test (RM1). RM1 is sufficient in this context and OPA
is exact in this context, so we choose OPA for the first analysis. The result of
OPA is not only schedulability of system but also priority of tasks under which
the system is schedulable (if the test is succeed). Part (1) in Fig. 11 sketches
the obtained result of OPA. The system is schedulable by the calculated task’s
priority configuration. We assign the calculated priorities to tasks in the system
and retry detection process. Due to priorities assigned, Response Time Analysis
(RTA1) is also available (Fig. 10). Once again we apply RTA1 and get the result
displayed in part (2) of Fig. 11. The provided result shows the worst-case response
time of each task of the studied system. All tasks respect their deadlines except
the last one. Note that RTA is a sufficient test in this context so the system
remains schedulable under the priorities calculated by OPA.

4.3 Learned Lessons and Discussion

The case study has stressed usefulness of our approach to find appropriate
analyses for a system model. Our approach has been used in two industrial
projects with avionics partners [10,30]. Therefore, we have realized some points
to improve:

36 T.D. Nguyen et al.

Fig. 10. Detection result

Fig. 11. Result of case study

PARAD: Performance Analysis Repository for AADL designs 37

1. The more IdentificationRules are defined, the more accurate is the context
detection. Then, in practice, we provide a dozen of IdentificationRules to
constitute analysis repositories.

2. Often, IdentificationRules are not independent. Their semantics are implic-
itly related. For example, the rule ‘All tasks must be concrete’ implies that
‘All tasks must have Offset property’. So, we plan to explicit and model the
relations between IdentificationRules.

3. In case of an existing repository with a huge number of IdentificationRules,
the extension can be difficult since it can lead to some duplicates or semantic
conflicts. We plan a verification process of the repository content by using
formal methods.

4. Basically, all rules are inspired from the scheduling theory and are expressed
in natural language. We interpret them using query languages (like OCL or
LUTE), but the interpretation process is not easy and not reversible, we
cannot retrieve easily the rule semantic from its interpretation in OCL or
LUTE. Therefore, we plan to create a domain specific language which is close
to natural language (humain-readable) and understandable by the machine
to express the IdentificationRules.

5 Conclusion

The main difficulty that faces a RTES designer is the lack of an advisor during
the performance analysis phase. The PARAD framework represents a solution
for this problem by defining a way allowing a collaboration between analysts and
designers thanks to the analysis repositories. Moreover, PARAD can be used to
launch a set of detection processes to find out the most suitable performance
tests for a system design. PARAD is not a hard-coded solution which eases its
usage and extension. Through PARAD, we can automatize as much as possible
the analysis. We are working on the relationships between analysis contexts to
facilitate their instantiation in a repository, based on existing ones. We are also
working on the relationships between identification rules to detect contradictory
rules and complementary ones.

Acknowledgements. This work is co-funded through the Waruna project by the
French Ministry of the Economy, Finances and Industry, and by the PIA CORAC
Panda project.

References

1. Eclipse modeling framework. https://www.eclipse.org/modeling/emf/. Accessed
20 Feb 2017

2. The cheddar project: a GPL real-time scheduling analyzer (2015). http://beru.
univ-brest.fr/∼singhoff/cheddar/. Accessed 11 Feb 2015

3. Constraint language for AADL: LUTE (2016). http://www.aadl.info/aadl/osate/
osate-doc/osate-plugins/lute.html

https://www.eclipse.org/modeling/emf/
http://beru.univ-brest.fr/~singhoff/cheddar/
http://beru.univ-brest.fr/~singhoff/cheddar/
http://www.aadl.info/aadl/osate/osate-doc/osate-plugins/lute.html
http://www.aadl.info/aadl/osate/osate-doc/osate-plugins/lute.html

38 T.D. Nguyen et al.

4. AADL. Architecture analysis and design language. http://www.aadl.info/
5. Audsley, N.C.: Optimal Priority Assignment and Feasibility of Static Priority Tasks

with Arbitrary Start Times. Citeseer (1991)
6. Baruah, S., Burns, A.: Sustainable scheduling analysis. In: 27th IEEE International

Real-Time Systems Symposium, RTSS 2006, pp. 159–168. IEEE (2006)
7. Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and complexity concerning

the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time
Syst. 2(4), 301–324 (1990)

8. Bini, E., Di Natale, M., Buttazzo, G.: Sensitivity analysis for fixed-priority real-
time systems. Real-Time Syst. 39(1–3), 5–30 (2008)

9. Brau, G., Hugues, J., Navet, N.: A contract-based approach to support goal-driven
analysis. In: ISORC, pp. 236–243. IEEE (2015)

10. CORAC.Le conseil pour la recherche aéronautique civile. http://
aerorecherchecorac.com/

11. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv. (CSUR) 43(4), 35 (2011)

12. Gaudel, V., Singhoff, F., Plantec, A., Rubini, S., Dissaux, P., Legrand, J.: An ada
design pattern recognition tool for AADL performance analysis. In: SIGAda, pp.
61–68 (2011)

13. Jeffay, K., Stone, D.: Accounting for interrupt handling costs in dynamic priority
task systems. In: 1993 Proceedings of the Real-Time Systems Symposium, pp.
212–221. IEEE (1993)

14. Joseph, M., Pandya, P.: Finding response times in a real-time system. Comput. J.
29(5), 390–395 (1986)

15. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM (JACM) 20(1), 46–61 (1973)

16. MARTE. Modeling and analysis of real-time and embedded systems. http://www.
omg.org/omgmarte/. Accessed 20 Feb 2017

17. MAST. Modeling and analysis suite for real-time applications. http://mast.unican.
es/. Accessed 20 Feb 2017

18. Object constraint language proposed by object menagement group (omg). http://
www.omg.org/spec/OCL/. Accessed 20 Feb 2017

19. Ouhammou, Y., Grolleau, E., Richard, M., Richard, P.: Towards a model-based
approach guiding the scheduling analysis of real-time systems design. In: WATERS
(2014)

20. Ouhammou, Y., Grolleau, E., Richard, P., Richard, M.: Reducing the gap between
design and scheduling. In: 20th RTNS, pp. 21–30 (2012)

21. Peres, F., Hladik, P.-E., Vernadat, F.: Specification and verification of real-time
systems using pola. Int. J. Crit. Comput.-Based Syst. 2(3–4), 332–351 (2011)

22. Rouhifar, M., Ravanmehr, R.: A survey on scheduling approaches for hard real-time
systems. Int. J. Comput. Appl. 131(17), 41–48 (2015)

23. RT-Druid. http://www.evidence.eu.com/products/rt-druid.html
24. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. IEEE Com-

put. 39(2), 25–31 (2006)
25. Sha, L., Abdelzaher, T., Årzén, K.-E., Cervin, A., Baker, T., Burns, A., Buttazzo,

G., Caccamo, M., Lehoczky, J., Mok, A.K.: Real time scheduling theory: a historical
perspective. Real-Time Syst. 28(2–3), 101–155 (2004)

26. Sha, L., Klein, M.H., Goodenough, J.B.: Rate monotonic analysis for real-time sys-
tems. In: van Tilborg, A.M., Koob, G.M. (eds.) Foundations of Real-Time Com-
puting: Scheduling and Resource Management, pp. 129–155. Springer, New York
(1991)

http://www.aadl.info/
http://aerorecherchecorac.com/
http://aerorecherchecorac.com/
http://www.omg.org/omgmarte/
http://www.omg.org/omgmarte/
http://mast.unican.es/
http://mast.unican.es/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/
http://www.evidence.eu.com/products/rt-druid.html

PARAD: Performance Analysis Repository for AADL designs 39

27. Simso.Simulation of multiprocessor scheduling with overheads. http://projects.
laas.fr/simso/. Accessed 20 Feb 2017

28. Stigge, M., Yi, W.: Graph-based models for real-time workload: a survey. Real-
Time Syst. 51(5), 602–636 (2015)

29. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time
systems. Microprocess. Microprogram. 40(2–3), 117–134 (1994)

30. Waruna. Atelier de modélisation et de vérification de propriétés temporelles.
http://www.waruna-projet.fr/

http://projects.laas.fr/simso/
http://projects.laas.fr/simso/
http://www.waruna-projet.fr/

Continuous Rearchitecting of QoS Models:
Collaborative Analysis

for Uncertainty Reduction

Catia Trubiani1(B) and Raffaela Mirandola2

1 Gran Sasso Science Institute, L’Aquila, Italy
catia.trubiani@gssi.it

2 Politecnico di Milano, Milano, Italy
raffaela.mirandola@polimi.it

Abstract. Architecting high quality software systems is not trivial, in
fact to know whether a certain quality attribute has been achieved,
it has to be continuously analysed. Reasoning about multiple quality
attributes (e.g., performance, availability) of software systems is even
more difficult since it is necessary to jointly analyze multiple and het-
erogeneous Quality-of-Service (QoS) models. The goal of this paper is
to investigate the combined use of different QoS models and continu-
ously re-architecting them since the acquired knowledge of a specific
QoS model may affect another model, thus to put in place a collaborative
analysis process that reduces the overall uncertainty. Starting from an
example of interaction among two different QoS models, i.e., a Bayesian
Network for availability and a Queueing Network for performance, we
demonstrate that the collaborative analysis brings benefits to the overall
process since the initial uncertainty is reduced. We identify the join/fork
points within the analysis process to bring upfront the quality charac-
teristics of software systems, thus to enable the rearchitecting of systems
in case of quality flaws. In this way, the QoS analysis becomes an inte-
grated activity in the whole software development life-cycle and quality
characteristics are continuously exposed to system architects.

Keywords: Continuous rearchitecting · Collaborative QoS analysis ·
Uncertainty reduction · Bayesian Networks · Queueing Networks

1 Introduction

Early validation of Quality-of-Service (QoS) requirements has been assessed as
fundamental in the software development process, in fact in [19] it has been
demonstrated that the costs of fixing errors escalate in an exponential fashion as
the project matures during the various phases of its life cycle. Interestingly, if the
cost of fixing an error discovered during the requirements phase is defined to be
1 unit, the cost to fix that error if found during the design phase increases to 3–8
units; at the manufacturing/build phase, the cost to fix the error is 7–16 units;

c© Springer International Publishing AG 2017
A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 40–48, 2017.
DOI: 10.1007/978-3-319-65831-5 3

Continuous Rearchitecting of QoS Models 41

at the integration and test phase, the cost to fix the error becomes 21–78 units,
and at the operations phase, the cost to fix the requirements error ranged from
29 to more than 1500 units. This highly motivates the activities of evaluating
software architectures that are the result of early design decisions [2].

In literature several methodologies emerged to perform the evaluation of soft-
ware architectures [5], however the problem of integrating multiple formalisms
[3] and supporting their heterogeneity [15] is indeed not trivial. The QoS eval-
uation of software architectures is even more difficult since it is necessary to
jointly analyze multiple and heterogeneous QoS models, possibly pointing out
different quality attributes (e.g., performance, availability). Some approaches
recently emerged for multi-objective architecture optimization [1,11], however
the problem of identifying the interactions between QoS models is still very
critical.

In this paper we investigate the problem of bridging multiple and heteroge-
neous QoS models to support their collaborative analysis. The main difficulty
in this context is to understand how to continuously rearchitect them due to
the acquired knowledge of a specific QoS model that may affect another model.
Consider for example a situation in which the availability of a certain software
service may be conditioned by given threshold values of external factors (e.g.,
illumination, wind). Multiple copies of these services then could exist whose acti-
vation depends on these threshold values. The activation of these services will
strongly affect the overall system performance in terms of latency and synchroni-
sation overhead. In these situations, the uncertainty of the external factors, such
as environmental conditions, affects the software system behavior and different
models should be jointly analysed to derive its QoS characteristics.

We show through an illustrative case study, i.e., a wind generator system
based on [18], this need of interaction among heterogeneous QoS models and
how their collaborative analysis brings benefits to the overall process since the
initial uncertainty is reduced. In particular, we focus on Bayesian Network (BN)
to model the availability of services and Queueing Network (QN) models for
system performance evaluation. The BN results are used to parametrize the QN
models and possibly to change its structure adding or modifying some queueing
centers to take into account the avalaibility/unavailability of certain software
services. The QN models are then jointly analysed to derive QoS characteristics,
such as the system response time. Besides, if QoS analysis results show flaws,
then it is necessary to put in place further architectural modifications that aim
to improve the results without affecting the system functionalities. The goal of
the collaborative analysis is to identify the join/fork points within the analysis
process to bring upfront the quality characteristics of software architectures,
thus to reduce the overall uncertainty and overcome the QoS flaws. To this end,
during the development of our illustrative example, we have identified three
main challenges that need further investigations: (i) continuous rearchitecting,
(ii) collaborative analysis, and (iii) uncertainty reduction.

The remaining of the paper is organised as follows. Section 2 presents related
work; Sect. 3 motivates our investigation through an illustrative case study;

42 C. Trubiani and R. Mirandola

Sect. 4 discusses the main research challenges raised by the presented example
and concludes the paper by outlining future research directions.

2 Related Work

In the following we group the related works while exposing the main contribu-
tions in the three research directions we are interested:

Continuous rearchitecting. The problem of continuous architecting has been
recently discussed in [8] and its definition remains twofold: (i) continuous
improvement due to new experiences gained by developers and architects; (ii)
elimination of bottlenecks and bad practices to optimise the quality character-
istics of architectures. We are interested to both definitions, the former goes in
the direction of reducing the uncertainty, whereas the latter supports QoS-based
reconfigurations. In [17] the practitioners’ perspectives is reported, but the con-
tinuous deployment in practice is perceived as a struggling activity due to mono-
lithic architectures. In [20] the removal of bad practices supports the fulfilment of
performance requirements, but the continuous generation of architectural alter-
natives inevitably affects the efficiency of the evaluation process. These open
issues need to be addressed by integrating stakeholders’ knowledge with efficient
optimisation techniques to achieve an agile continuous rearchitecting.

Collaborative analysis. Several works aim to optimise the QoS properties of soft-
ware systems while considering multiple sources of information, e.g., in [13] QoS-
optimised software architectures are reconfigured due to runtime variabilities,
such as service binding and deploying coordination logic. Such variabilities can
be explicitly expressed as features, however the development of feature-based
configurable systems is usually infeasible due to features combinatorics [16], and
it is still an open problem to determine an ideal set of samples that balances
prediction accuracy and measurement effort. In [4] a framework for QoS man-
agement of self-adaptive service-based systems is proposed, however QoS models
are analysed in isolation. These open issues need to be addressed by understand-
ing the impact of variabilities across the heterogeneous QoS models to achieve
a smart collaborative analysis.

Uncertainty reduction. In [6] the authors outline that existing architecture
decision-making approaches do not provide a quantitative method for comparing
different architectural alternatives that deal with uncertainty. Quantification for
model-based performance and reliability evaluation of software architectures in
presence of uncertainties is provided in [7,12], however no reduction of uncer-
tainty is tackled. In [14] a methodology for managing uncertainties in software
models is proposed, and software engineers are guided in the process of recog-
nising the existence of uncertainty, but also this method does not support the
reduction of uncertainty. These open issues need to be addressed by quantifying
the impact of reducing the uncertainty across the heterogeneous QoS models to
achieve an efficient model-based analysis.

Continuous Rearchitecting of QoS Models 43

Summarising, the novelty of our work with respect to the current state-of-
the-art is that we aim to jointly consider these three aspects: the collaborative
analysis between heterogeneous QoS models becomes of key relevance to smooth
the continuous rearchitecting effort while targeting uncertainty reduction.

3 Wind Generator System

In this section we describe our idea of continuous rearchitecting through an
illustrative example, i.e., a wind generator system (WGS), whose architecture is
shown through a feature model in Fig. 1. The system consists of a wind turbine
(WT) associated to a set of software services that are activated conditioned to
the speed of the wind, i.e., light (L), moderate (M), or strong (S).

Fig. 1. Feature model for WGS.

If the wind is light, then two services are activated: (i) increasePrice (IP), i.e.,
the production of energy is reduced and it is necessary to increase the price to
which the new users buy the energy under production; and monitorSpeed (MS),
i.e., the speed of turbines needs to be monitored with a certain frequency. If the
wind is moderate, then the monitorSpeed (MS) service keeps to be activated
but the frequency associated to the monitoring is increased, and one further
service is triggered: (ii) promoteEnergy (PE), i.e., the production of energy is
augmented and it is necessary to promote it thus to attract new users with lower
prices. If the wind is strong, then the promoteEnergy (PE) service keeps to be
activated, and two further services are triggered: (i) regulateSpeed (RS), i.e., the
turbines require to be regulated; (ii) activateDiscount (AD), i.e., the production
of energy is largely increased, hence it is better to activate discounts to current
users thus to incentive the consumption of energy.

3.1 WGS Modelling

Background. Hereafter, before showing the obtained system models, we pro-
vide some background information on the adopted QoS models, i.e., Bayesian
Networks and Queuing Networks.

Bayesian Networks. These models have been recently applied to model beliefs in
computational biology, bioinformatics, and also in financial and marketing infor-
matics [9]. A BN model is a statistical model that represents a set of random
variables and their conditional dependencies via a directed acyclic graph (DAG),

44 C. Trubiani and R. Mirandola

where nodes represent random variables (i.e., they may be observable quanti-
ties, latent variables, unknown parameters or hypotheses) and edges represent
conditional dependencies. Each node is associated with a probability function
that takes, as input, a particular set of values for the node’s parent variables,
and gives (as output) the probability (or probability distribution, if applicable)
of the variable represented by the node. Nodes that are not connected repre-
sent variables that are conditionally independent of each other. There are three
main inference tasks for BNs, and efficient algorithms exist to perform such
tasks. First, inferring unobserved variables performs the probabilistic inference
by deriving the posterior distribution of all variables given the evidence of some
of them. Second, parameter learning implies to specify for each node the prob-
ability distribution for that node conditional upon its parents. Third, structure
learning implies to learn the network structure and the parameters of the local
distributions from data by means of machine learning techniques.

Queuing Networks. These models have been widely applied to represent and
analyze resource sharing systems [10]. A QN model is a collection of interacting
service centers representing system resources and a set of jobs representing the
users sharing the resources. Service centers model system resources that process
customer request. Each service center is composed of a Server and a Queue.
Queues can be characterized by a finite or an infinite length. Service centers are
connected through links that form the network topology. Each server, contained
in every service center, picks the next job from its queue (if not empty), processes
it, and selects one link that routes the processed request to the queue of another
service center. The time spent in every server by each request is modeled by
exponential distributions. Jobs are generated by source nodes connected with
links to the rest of the QN. Delay centers are nodes of the QN connected with
links to the rest of the network exactly as service centers, but they do not
have an associated queue. Delay centers are described only by a service time,
with a continuous distribution, without an associated queue. In other words,
QN representation is a direct graph whose nodes are service centers and their
connections are represented by the graph edges. Jobs go through the graph’s
edge set on the basis of the behavior of customers’ service requests.

QoS Models. Figure 2 illustrates the QoS models we have obtained for the
WGS depicted in Fig. 1. In the left side we show the BN model, where the WT
node is connected with the three nodes indicating the speed of the wind, i.e.,
light, moderate, and strong. In this model we make use of the inferring unob-
served variables algorithm, in fact we introduce probabilistic inference rules to
model the speed of the wind, and we derive the corresponding availability of the
connected software services. In the right side we show the QN built to model the
corresponding scenario, in particular a delay center node includes all the requests
circulating in the system. Such requests are routed by means of probabilities
related to the speed of the wind, and depending on these probabilities, then the
corresponding connected services are activated, and we derive the system
response time as indicator of its efficiency.

Continuous Rearchitecting of QoS Models 45

Fig. 2. Wind generator system modelled with BNs and QNs.

3.2 WGS Analysis

Table 1. BN results.

L M S
IP 0.89 0.18 0.18
MS 0.7 0.75 0.2
PE 0.2 0.8 0.55
RS 0.22 0.22 0.73
AD 0.31 0.31 0.86

The QoS collaborative analysis of these two models is
executed as follows. From the BN we are able to derive
the software services activation probabilities since the
initial uncertainty is reduced by means of inference rules
that regulate the variations of the wind speed. Table 1
reports the BN analysis results of our illustrative case
study while varying such inference rules; for example,
when the wind is light (L), then the probability of invok-
ing the increasePrice (IP) service is 0.89. In our experi-
mentation whenever we get a service whose probability
of being invoked is larger than 0.8 (see shaded entries of Table 1), then a copy
of the corresponding service is added, i.e., the system is rearchitected, and it
implies changes in the QN model.

Table 2. QN results.

RT (ms)
Initial 10.61

add
IP 10.54
PE 9.14
AD 10.29

delete MS 9.91
RS 10.27

Table 2 reports the QN analysis results that have
been obtained by considering a workload of 100
requests/ms and the system response time (RT) is
required to be not larger than 10 ms. In the first row
of the table we can notice that the initial QN model
shows a RT equal to 10.61 ms, i.e., larger than the
requirement. Then, we considered to add additional
copies for each of the services that has been identi-
fied in Table 1 and we solved the corresponding QN
models. We can notice that the additional instances
of IP and AD slightly improves the response time

46 C. Trubiani and R. Mirandola

(i.e., 10.54 and 10.29, respectively). On the contrary, the addition of a PE
instance allows to get a RT of 9.14 ms that is lower than 10 ms. We also exper-
imented the deletion of the optional software services, as shown in Fig. 1. In
particular we found that if MS is not activated, then we get a RT of 9.91 ms
that is lower than the 10 ms threshold, whereas by deactivating RS we get a
response time of 10.27 ms that is not fulfilling the requirement. This illustrative
experimentation supports the idea that the reduction of the initial uncertainty
leads the system to put a collaborative analysis that triggers continuos rearchi-
tecting.

4 Research Challenges and Conclusions

In this paper we presented an illustrative example that allows the identification
of three main research challenges requiring further investigations:

– continuous rearchitecting : the continuous models’ changes implies the need
of designing a controller module that detects modifications in the analysis
results of QoS models and highlights which refactorings lead to quality flaws;

– collaborative analysis: the presence of heterogeneous QoS models calls for
the introduction of an orchestrator module that specifies in a principled
manner how analysis results of QoS models are mutually affected;

– uncertainty reduction: the influence of non controllable external factors
requires the design of a tuner module that extracts the ranges of these factors
and transfers such knowledge to the involved QoS models.

The design of these three modules enables the possibility to conduct a collabora-
tive analysis between heterogeneous QoS models and to smooth the continuous
rearchitecting effort while targeting uncertainty reduction. We plan to support
these activities by introducing an architectural description language aimed to
bridge the heterogeneous QoS models and their analysis results through the
identification of the join/fork points within the QoS analysis process. In par-
ticular, the tuner module includes the specification of uncertain parameters,
their range of values, and the QoS model elements that are involved in such
uncertainties. After the setup of parameters is completed, the orchestrator
module comprises the specification of the relationships between the heteroge-
neous QoS models and their analysis results. Both the models and the results
are then exploited by the controller module that is in charge of identifying
quality flaws and rearchitecting the heterogeneous QoS models accordingly. The
goal is to put in place a minimal set of architectural refactoring changes leading
to the fulfilment of QoS requirements. The benefit of our architectural descrip-
tion language is that it jointly coordinates the heterogeneous QoS models and
keeps under control the QoS analysis results.

These needs are further exacerbated when we consider software architec-
tures that are embedded in dynamic contexts where requirements, environment
assumptions, and usage profiles frequently change. Since these changes in the

Continuous Rearchitecting of QoS Models 47

context happen in a way that is hard to predict when software systems are ini-
tially built, the outcome of the QoS models results to change quite frequently
so to imply the need of (possibly) frequent changes in all the involved models.
Besides this, the outcome of the model analysis may be subject to wider uncer-
tainties because assumptions upon which they rely on are not verified. Recog-
nising the presence of these uncertainties and managing them would minimise
their influence and increase the level of trust in a given software architecture.

As future work, we plan to move along the research lines we have listed
above thus to bring upfront the quality characteristics of software architectures
and their rearchitecting in case of quality flaws. In this way, the QoS analysis
becomes an integrated activity in the whole software development life-cycle and
quality characteristics are continuously exposed to system architects.

References

1. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software archi-
tecture optimization methods: A systematic literature review. IEEE Trans. Softw.
Eng. 39(5), 658–683 (2013)

2. Bass, L.: Software Architecture in Practice, 3rd edn. Addison-Wesley Professional,
Boston (2012)

3. Broman, D., Lee, E.A., Tripakis, S., Törngren, M.: Viewpoints, formalisms, lan-
guages, and tools for cyber-physical systems. In: Proceedings of the International
Workshop on Multi-Paradigm Modeling, MPM@MoDELS, pp. 49–54 (2012)

4. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.:
Dynamic qos management and optimization in service-based systems. IEEE Trans.
Softw. Eng. 37(3), 387–409 (2011)

5. Dobrica, L., Niemela, E.: A survey on software architecture analysis methods. IEEE
Trans. Softw. Eng. 28(7), 638–653 (2002)

6. Esfahani, N., Malek, S., Razavi, K.: Guidearch: guiding the exploration of architec-
tural solution space under uncertainty. In: Proceedings of International Conference
on Software Engineering, ICSE, pp. 43–52 (2013)

7. Etxeberria, L., Trubiani, C., Cortellessa, V., Sagardui, G.: Performance-based
selection of software and hardware features under parameter uncertainty. In: Inter-
national Conference on Quality of Software Architectures, QoSA, pp. 23–32 (2014)

8. Holmes, B., Nicolaescu, A.: Continuous architecting: Just another buzzword? Full-
scale Software Engineering/The Art of Software Testing, p. 1 (2017)

9. Jensen, F.V.: An Introduction to Bayesian Networks. UCL press, London (1996)
10. Kleinrock, L.: Queueing Systems: Theory. Wiley, New York (1975)
11. Koziolek, A., Koziolek, H., Reussner, R.H.: Peropteryx: automated application

of tactics in multi-objective software architecture optimization. In: International
Conference on the Quality of Software Architectures, QoSA, pp. 33–42 (2011)

12. Meedeniya, I., Aleti, A., Grunske, L.: Architecture-driven reliability optimization
with uncertain model parameters. JSS 85(10), 2340–2355 (2012)

13. Menascé, D.A., Gomaa, H., Malek, S., Sousa, J.P.: SASSY: A framework for self-
architecting service-oriented systems. IEEE Softw. 28(6), 78–85 (2011)

14. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive
systems: a taxonomy and an example of availability evaluation. In: International
Conference on Performance Engineering, ICPE, pp. 3–14 (2014)

48 C. Trubiani and R. Mirandola

15. Rajhans, A., Bhave, A., Ruchkin, I., Krogh, B.H., Garlan, D., Platzer, A., Schmerl,
B.R.: Supporting heterogeneity in cyber-physical systems architectures. IEEE
Trans. Automat. Contr. 59(12), 3178–3193 (2014)

16. Sarkar, A., Guo, J., Siegmund, N., Apel, S., Czarnecki, K.: Cost-efficient sampling
for performance prediction of configurable systems. In: International Conference
on Automated Software Engineering, ASE (2015)

17. Shahin, M., Babar, M.A., Zhu, L.: The intersection of continuous deployment
and architecting process: practitioners’ perspectives. In: ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (2016)

18. Slootweg, J., De Haan, S., Polinder, H., Kling, W.: General model for representing
variable speed wind turbines in power system dynamics simulations. IEEE Trans.
Power Syst. 18(1), 144–151 (2003)

19. Stecklein, J.M., Dabney, J., Dick, B., Haskins, B., Lovell, R., Moroney, G.: Error
cost escalation through the project life cycle. NASA Technical report (2004)

20. Trubiani, C., Koziolek, A., Cortellessa, V., Reussner, R.H.: Guilt-based handling of
software performance antipatterns in palladio architectural models. J. Syst. Softw.
95, 141–165 (2014)

Software Architecture Evolution

The Evolution of Technical Debt
in the Apache Ecosystem

Georgios Digkas1(B), Mircea Lungu1, Alexander Chatzigeorgiou2,
and Paris Avgeriou1

1 Johann Bernoulli Institute for Mathematics and Computer Science,
University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands

{g.digkas,m.f.lungu}@rug.nl, paris@cs.rug.nl
2 Department of Applied Informatics, University of Macedonia,

Egnatia 156, 546 36 Thessaloniki, Greece
achat@uom.gr

Abstract. Software systems must evolve over time or become increas-
ingly irrelevant says one of Lehman’s laws of software evolution. Many
studies have been presented in the literature that investigate the evolu-
tion of software systems but few have focused on the evolution of tech-
nical debt. In this paper we study sixty-six Java open-source software
projects from the Apache ecosystem focusing on the evolution of tech-
nical debt. We analyze the evolution of these systems over the past five
years at the temporal granularity level of weekly snapshots. We calculate
the trends of the technical debt time series but we also investigate the
lower-level constituent components of this technical debt. We aggregate
some of the information to the ecosystem level.

Our findings show that the technical debt together with source code
metrics increase for the majority of the systems. However, technical debt
normalized to the size of the system actually decreases over time in the
majority of the systems under investigation. Furthermore, we discover
that some of the most frequent and time-consuming types of technical
debt are related to improper exception handling and code duplication.

Keywords: Software evolution · Time series data mining · Technical
debt · Mining software repositories · Empirical study

1 Introduction

The Technical Debt (TD) metaphor was coined by Ward Cunningham in 1992 as:
“Shipping first time code is like going into debt. A little debt speeds develop-

ment so long as it is paid back promptly with a rewrite. Objects make the cost of
this transaction tolerable. The danger occurs when the debt is not repaid. Every
minute spent on not-quite-right code counts as interest on that debt. Entire engi-
neering organizations can be brought to a stand-still under the debt load of an
unconsolidated implementation, object-oriented or otherwise”.

c© Springer International Publishing AG 2017
A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 51–66, 2017.
DOI: 10.1007/978-3-319-65831-5 4

52 G. Digkas et al.

Technical debt is present in both industrial software as well as in open-source
projects. In industrial settings the tight deadlines are pushing the software engi-
neers and the developers to compromise the quality of the system and take
shortcuts in order to release a product as soon as possible. In open-source set-
tings, the self-imposed deadlines of the developers working towards delivering
their contributions to the community or the lack of processes regarding quality
assurance might lead them to take similar shortcuts.

Taking all these shortcuts increases the change- and fault- proneness of the
systems and aggravates long-term understandability, re-usability, reliability, effi-
ciency, security, and maintainability. While it has been empirically proven that
these shortcuts affect negatively the project’s quality, completely eliminating
technical debt from a system is undesirable as the investment to reduce TD
would be extremely inefficient.

Although there has been extensive research with respect to technical debt
[1] and there exists even a dedicated international forum for research on the
topic (the MTD workshop) there is a lack of empirical evidence regarding the
occurrence and evolution of technical debt in the open-source systems.

Moreover, technical debt has also not been studied before in software ecosys-
tems. Software ecosystems are groups of software projects that are developed
and co-evolve in the same environment [2,3]. Such projects can share code, they
might depend on one another, and are often built on similar technologies and
with similar processes.

In this paper we conduct an empirical study of sixty-six open-source soft-
ware projects of the Apache ecosystem. We chose to analyze OSS projects of
the Apache Software Foundation because it is one of the biggest communities
which provide software products for the public good and its projects are highly
appreciated and used.

Structure of the paper. The rest of the paper is organized as follows: Sect. 2
motivates our study through an analysis of an Apache project. Section 3 presents
the methodology and the design of the study. Section 4 presents the results of
our empirical study and Sect. 5 discusses the threats to its validity. Section 6
presents the related work and Sect. 7 concludes the paper.

2 A Motivating Example

Apache Sling1, one of the most popular projects in the Apache ecosystem, is an
open-source Web framework for the Java platform designed to create content-
centric applications on top of a JSR-170-compliant content repository such as
Apache Jackrabbit. The project represents a significant community effort: at
the moment of writing this article, the system has more than a dozen contrib-
utors who have commit rights to the main repository; these committers have
contributed more than twenty thousand commits over the years.

Imagine we are the developers of the Apache Sling. We decide to analyze it to
learn about the evolution of its technical debt. To measure the technical debt and

1 https://sling.apache.org/.

https://sling.apache.org/

The Evolution of Technical Debt in the Apache Ecosystem 53

extract other metrics we decide to use an industrial strength tool. SonarQube
[4] is an open-source tool for continuous inspection which features dashboards,
rule-based defect analysis, and build integration. It supports various languages,
including Java, C, C++, C#, PHP, and JavaScript.

SonarQube employs the SQALE 2 method for estimating the time required to
fix the technical debt [5]. Technical debt evolution estimation using SonarQube
is time consuming since when recomputing it for a new version of the system, no
matter how small the difference between the two versions (even a single commit),
the tool can not analyze only the differences, but instead, has to do the entire
computation for the entire system again3. This means that the time necessary
to analyze the history of a system is proportional to the number of versions of
the system that are to be analyzed.

Fig. 1. The evolution of lines of code (blue, top), non commented lines of code (green,
middle), and technical debt (red, bottom) in Apache Sling over the last 5 years. Tech-
nical debt represents effort to fix problems and is estimated in minutes. (Color figure
online)

To drive this evolutionary analysis we do not use the graphical UI of the
tool but rather we develop a program that interfaces with the API of the tool
in order to compute the entire battery of analyses that SonarQube supports on
that version, including technical debt related analysis.

2 Software Quality Assessment based on Lifecycle Expectations.
3 This problem is not exclusive to SonarQube. We are not aware of any analysis tools

that perform complex, system-level analysis without re-analyzing the entire system
when presented with a new version.

54 G. Digkas et al.

However, since analyzing all commits of the Sling project (which are more
than twenty thousands) is not feasible as we explained earlier, we analyze snap-
shots of the system at one week intervals. More precisely we find the last commit
in a given week, and we run the analysis on that version.

Figure 1 presents the evolution of the Apache Sling project over the last five
years in terms of two metrics:

1. Lines of code (blue, topmost series) and non-comment lines of code (green,
middle series)

2. SQALE Index which is the tool estimated technical debt (red, bottom series)
in minutes

The most salient observation in the Fig. 1 is that the amount of measured
technical debt as measured by the SQALE index grows in parallel to the mag-
nitude of the system as measured in lines of code. This is indeed not surprising
as it is well known that as systems age their architecture erodes [6]. Moreover,
it is reasonable to assume that the absolute number of identified inefficiencies
increases with the amount of functionality delivered by the system.

Fig. 2. The evolution of normalized technical debt in Apache Sling over the last 5 years
shows a clear decreasing trend

To exclude the possibility that the growth of technical debt is correlated
with the growth of the system, we compute the evolution of the size-normalized
technical debt – that is, the technical debt normalized to the number of lines of
code in the system. Figure 2 shows that the normalized technical debt is actually
decreasing.

The Evolution of Technical Debt in the Apache Ecosystem 55

Open Questions. How this project compares with other similar ones? Is the
growth of technical debt that our system exposes normal? Is the fact that the
normalized technical debt decreases over time exceptional?

Table 1. The most frequently occurring types of issues in Apache Sling. The number
in parenthesis is the percentage of the total violations detected

Issue Count

1 The diamond operator (“<>”) should be used 2,888 (10.75%)

2 String literals should not be duplicated 2,875 (10.70%)

3 Generic exceptions should never be thrown 1,856 (6.90%)

4 Control flow statements should not be nested too deeply 1,345 (5.00%)

5 Exception handlers should preserve the original exceptions 1,215 (4.50%)

The Components of Technical Debt. The technical debt estimation is based
on what SonarQube calls “rule violations” or issues. The tool detects the vio-
lations of a large variety of rules for software quality. These issues are classified
by the tool into three categories: bugs, violations, and code smells. The version
6.2 of the tool that we used distinguishes among 397 Java rules. It divides them
in the following 3 types namely: Bug (150 rules), Vulnerability (31 rules), and
Code Smell (216). Table 1 shows the top 5 most frequent issues that are being
violated in the case-study system.

Table 2. The most costly to fix types of issues in Apache Sling. The starred issues did
not appear in the previous table

Issue Time (minutes)

1 String literals should not be duplicated 39,234 (13.8%)

2 Generic exceptions should never be thrown 37,120 (13.0%)

3 *Source files should not have any duplicated blocks 30,440 (10.7%)

4 *Cognitive complexity of methods should not be too high 16,061 (5.6%)

5 Control flow statements should not be nested too deeply 13,450 (4.7%)

Besides listing issues, SonarQube also estimates the time required to fix them.
Table 2 shows the top 5 most time consuming issues as estimated by the tool.

The two tables show that the most frequent violations are not necessarily the
most time consuming to fix: issue 1 in Table 2 was ranked lower in Table 1, and
issues 3 and 4 did not even appear in that table. It is also interesting to see that
some of the detected problems are quite low-level (e.g. string literal duplication)
while others are relevant for the higher level architecture of the system (e.g. a
seemingly absent exception policy, large scale code duplication).

56 G. Digkas et al.

Open Questions. Are the relative frequency and effort required to fix these issues
are characteristic to the Apache Sling project or they are more generally charac-
teristic to Java systems? Is this uneven distribution of effort towards some issues
specific or generic?

3 Study Design

Inspired by the open questions presented in the previous section, the goal of our
study is then, to analyze the evolution of OSS projects in the Apache ecosys-
tem for the purpose of understanding and investigating the accumulation of TD
and the evolution of source code metrics. More specifically, our study aims at
addressing the following four research questions (RQs):

RQ1: How does the technical debt of the open-source systems in the Apache
ecosystem evolve over time?
The motivation for this question is to investigate the evolution of TD as it
is generated by a widely acknowledged tool for a large set of OSS projects
belonging to the same ecosystem.

RQ2: How does the normalized technical debt of the open-source systems in the
Apache ecosystem evolve over time?
Because the amount of TD might be related to the size of the code base this
research question aims at investigating the evolution of TD when normalized
over the size of each system.

RQ3: What are the most frequent types of technical debt in the studied
ecosystem?
The motivation for this question is to validate whether developers incur spe-
cific types of debt or not

RQ4: What are the most costly to fix types of technical debt in the studied
ecosystem?
Since the effort required to repay TD varies among violations the goal of
this question to obtain an insight into the actual effort to eliminate the most
frequent sources of TD.

It is for brevity, that in the research questions and the rest of the paper
we talk about technical debt but we clearly mean technical debt as estimated by
SQALE method implemented in the SonarQube tool. The evolutionary study of
technical debt as measured and estimated with other tools falls outside of our
intended scope for this study.

3.1 Project Selection

The context of the study is the evolution of the Java open-source software
projects developed by the Apache Software Foundation. Since the analysis we
perform is computationally intensive we limit our study to a sample of sixty-six

The Evolution of Technical Debt in the Apache Ecosystem 57

Table 3. The list of projects included in the study

Project NCLOC Classes Project NCLOC Classes

sling 425, 831 6,058 opennlp 62, 141 998

zookeeper 74, 898 948 chukwa 42, 734 577

tomcat60 180, 766 1,676 tapestry-5 157, 911 3,266

jspwiki 57, 967 555 manifoldcf 209, 190 1,824

directory-shared 197, 377 1,611 crunch 52, 564 1,025

cayenne 232, 876 3,818 jena 444, 414 5,970

commons-collections 61, 637 741 oodt 128, 875 1,810

openjpa 431, 915 5,358 sis 205, 367 2,204

mina 23, 633 442 commons-csv 5, 197 35

poi 367, 828 3,907 commons-vfs 33, 315 427

nutch 51, 738 639 falcon 122, 277 1,015

commons-lang 74, 849 569 aurora 68, 894 1,156

commons-io 29, 267 271 jclouds 340, 647 6,950

httpclient 61, 657 685 helix 81, 729 1,060

wicket 211, 627 4,175 struts 152, 296 2,341

batik 191, 790 2,590 cxf 635, 020 8,295

roller 53, 540 603 knox 72, 188 1,177

maven 80, 161 1,061 stratos 119, 243 1,506

commons-cli 6, 859 54 phoenix 273, 435 2,134

wss4j 109, 259 782 commons-math 186, 584 1,685

pdfbox 136, 997 1,337 tomcat80 317, 555 3,425

aries 181, 779 2,710 nifi 354, 044 3,954

jmeter 124, 358 1,408 vxquery 45, 369 751

maven-surefire 58, 107 1248 zeppelin 81, 218 982

commons-validator 15, 930 159 polygene-java 159, 748 4,500

stanbol 160, 713 1,875 groovy 168, 705 2,099

sqoop 76, 273 837 apex-core 73, 029 1,086

flume 84, 882 1,000 apex-malhar 166, 972 2,682

rampart 24, 729 278 brooklyn-library 40, 387 629

kafka 120, 995 1,644 beam 199, 476 3,631

giraph 97, 952 1,870 tomcat85 306, 473 3,397

oozie 159, 043 1,325 incubator-hivemall 51, 984 666

tomcat 303, 901 3,428 qpid-proton-j 38, 055 613

58 G. Digkas et al.

randomly selected Java projects from the ecosystem4. These represent more than
a quarter of the Java projects in Apache. Table 3 presents the analyzed systems
together with statistics about their magnitude.

We used the Apache Software Foundation Index5 in order to randomly select
the projects that we analyzed. We used three inclusion criteria in order to decide
whether we should analyze a project or not. We chose projects in which the main
programming language is Java, have at least two years of evolution and are still
active at the beginning of 2017. All the analyzed projects use git as version
control system and they are hosted on GitHub, whence we cloned them.

The range in terms of weeks of evolution spans from 127 weeks to 767 weeks.
We chose to analyze the last 5 years (260 weeks) of the evolution of the projects.
The range of the number of classes for the first analyzed commit is from 0 to
7,040 and for the last analyzed commit from 35 - 8,295. At the same time the
NCLOC for the first commit ranges from 0 to 450,186 and for the last commit
from 5,197 to 635,020.

4 Results and Discussion

This section reports the analysis of the results achieved in our study and aims
at answering the four research questions formulated in Sect. 3. A replication kit
is available online at https://github.com/digeo/evolution-of-td-in-apache.

RQ1: How does the technical debt of the open-source systems in the
Apache ecosystem evolve over time? To answer RQ1, for each project in the
analyzed ones we created a weekly time series with the accumulation of technical
debt. For each series we performed the Mann-Kendall test. The purpose of the
Mann-Kendall (MK) test is to statistically assess if there is a monotonic upward
or downward trend of the variable of interest over time. A monotonic upward
(downward) trend means that the variable consistently increases (decreases)
through time, but the trend may or may not be linear.

The null hypothesis (H0) is that there is no monotonic trend and the alter-
native hypothesis (Ha) is that a monotonic trend is present. The value of the
significance level (alpha error rate) is 0.01 (a = 0.01).

We run MK test for each one of the analyzed systems. Figure 3 visually
summarizes the results by presenting the Z values for the analyzed systems.
If the Z value is above (below) the horizontal grey line, it indicates that an
increasing (decreasing) trend is present.

The Fig. 3 shows that in most of the projects, there is a monotonic upward
trend of the technical debt over time.

RQ2: How does the normalized technical debt of the open-source sys-
tems in the Apache ecosystem evolve over time? To address RQ2 we

4 The ecosystem contains projects written in more than 20 languages, but the majority
of the projects is written in Java.

5 https://projects.apache.org/projects.html?language#Java.

https://github.com/digeo/evolution-of-td-in-apache
https://projects.apache.org/projects.html?language#Java

The Evolution of Technical Debt in the Apache Ecosystem 59

Fig. 3. Trend results for technical debt

extracted two series for each project. The first one contains data for the accu-
mulation of technical debt and the second the number of the lines of code. Then,
we divided the two series, namely: the technical debt series with the lines of code
series to obtain what we call the normalized technical debt time series.

Finally, for each normalized technical debt series we performed again the
Mann-Kendall test. Figure 4 presents the Z values for the analyzed systems using
the same conventions as before. It shows that:

1. For seven systems (approx. 10%), there is no clear trend (values between the
two grey lines)

2. For eleven systems (approx. 20%), the normalized technical debt increases
with time (values above the top grey line)

3. for the majority of the systems, the normalized technical debt decreases over
time (values below the low grey line)

We find the third result from above encouraging. Indeed, one possible expla-
nation is that the developers of these systems are concerned with paying back
the technical debt. This is plausible considering that the systems under analysis
are some of the most successful open-source systems and are regarded as high
quality projects by the open-source community.

However, another possible explanation could be related to the different phases
through which a system evolves; as the system moves towards the maintenance
phase, the changes to the system will tend to be smaller such as patches and
bug fixes, and thus, less likely to introduce technical debt.

Based on the answer to this research question, we realize that Apache Sling,
the system we discussed earlier, was not special in the fact that its normalized

60 G. Digkas et al.

Fig. 4. Trend results for normalized technical debt

technical debt was decreasing. But this is not surprising now, since we see that
this is the case with the majority of the systems in the ecosystem, and we have
picked Sling at random.

RQ3: What are the most frequent types of technical debt in the stud-
ied ecosystem? To answer this question we summed up all open issues from
all the analyzed systems. We only look at the issues that are still open in the
last analyzed commit.

To gather insight into the distribution of the various types of issues across the
different systems, we use the Gini coefficient. The Gini coefficient is a statistical
measure of the degree of variation or inequality represented in a set of values,
used especially in analyzing income inequality. Its value is between 0 and 1. A
low coefficient is indicative for a uniform distribution in the analyzed values,
while a high coefficient is indicative of a very skewed distribution.

Since there are more than a hundred types of issues we do not to present all
of them but we limit the presentation to the top ten most frequent ones. The
replication kit available online contains the full table of issues in the ecosystem.

Table 4 shows the ten most frequent types of issues encountered in the
projects that we analyzed. By analyzing the information in the table, we
observe that:

– The top 10 most frequent rule violations account for more than 40% of the
issues in the systems. This hints at the fact that, if automated tool support
would be developed for these issues, that would make a big difference.

– The most frequent issue is also the most easily remedied, since all the mod-
ern IDEs provide an Extract Constant/Variable refactoring. In fact, a recent

The Evolution of Technical Debt in the Apache Ecosystem 61

study showed that Extract Constant/Variable is one of the most popular
refactoring developers actually in practice [7]. This hints at the possibility
that developers are not aware of the literal duplication and that future IDEs
could auto-detect and suggest the removal of the problem.

– If we add up the two rules in the list that refer to exception handling, they
are more frequent than the most frequent issue. This is a sign that exception
handling in Java is still not being approached with sufficient discipline. Also
this is a much higher-level abstraction than some of the other frequent issues.

– Code duplication, is another type of high-level, potentially architectural prob-
lem. It is not very frequent (2.4% of the issues pertain to it) but it has a very
low Gini index, which means, it is very equally distributed among the ana-
lyzed systems.

Table 4. The ten most frequent types of technical debt in the Apache ecosystem

Issue Count Gini

1 String literals should not be duplicated 48,474 (7.0%) .31

2 The members of an interface declaration or class should
appear in a pre-defined order

38,756 (5.6%) .43

3 Exception handlers should preserve the original
exceptions

33,467 (4.8%) .38

4 The diamond operator (“<>”) should be used 30,659 (4.4%) .55

5 Generic exceptions should never be thrown 29,393 (4.2%) .47

6 Statements should be on separate lines 25,674 (3.7%) .73

7 Control flow statements “if”, “for”, “while”,
“switch” and “try” should not be nested too deeply

24,513 (3.5%) .34

8 Sections of code should not be “commented out” 22,039 (3.2%) .52

9 Source files should not have any duplicated blocks 16,456 (2.4%) .22

10 “@Override” should be used on overriding and
implementing methods

16,291 (2.4%) .64

RQ4: What are the most costly to fix types of technical debt in the
studied ecosystem? To answer this question we summed up all the open issues
from all the analyzed systems but this time, we looked at the effort instead of
the frequency. We are still only looking at the issues that are still open in the
last analyzed commit.

Table 5 shows the ten most expensive in terms of effort types of issues in the
analyzed projects. By analyzing the information in the table, we observe that:

– Code duplication, is the most expensive to fix in terms of the estimated
required time. The function for estimating the time required to remove dupli-
cation estimates the effort linearly with the cardinality of the clone.

62 G. Digkas et al.

– Just as with the frequency, exception handling is again the most time-
consuming problem to fix. The two types of issues regarding exceptions,
account together for more than 13% of the estimated time for paying back
the technical debt.

– Rule 3, is responsible in the ecosystem for 8.4% of the effort. Compared with
the Apache Sling system presented in the Motivating Example section which
had 13% this is much lower. This would probably be useful information for
the developers of Sling.

Table 5. The ten most costly to fix types of technical debt in the Apache ecosystem

Issue Effort in minutes Gini

1 Source files should not have any duplicated blocks 967,490 (13.8%) .33

2 String literals should not be duplicated 642,122 (9.2%) .36

3 Generic exceptions should never be thrown 587,860 (8.4%) .47

4 Cognitive Complexity of methods should not be too
high

353,527 (5.0%) .37

5 Exception handlers should preserve the original
exceptions

334,670 (4.8%) .39

6 Methods should not be too complex 257,213 (3.7%) .34

7 Control flow statements “if”, “for”, “while”,
“switch” and “try” should not be nested too deeply

245,130 (3.5%) .34

8 The members of an interface declaration or class
should appear in a pre-defined order

193,780 (2.8%) .43

9 Dead stores should be removed 165,990 (2.4%) .42

10 Standard outputs should not be used directly to log
anything

154,390 (2.2%) .52

Since we cannot present all the 232 issues uniquely detected by the tool, we
summarize their magnitude by computing again the Gini coefficient for the esti-
mated effort per issue. Summing up the percentage of all the issues in Table 5
shows that 55.8% of all the estimated effort is due to these ten issues. We con-
jecture that if progress was made towards eradicating some of top problematic
issues, the community would make considerable progress in avoiding much tech-
nical debt.

5 Threats to Validity

In this section, we present and discuss possible threats to the validity of our
study.

Construct validity reflects how far the studied phenomenon is connected to
the intended studied objectives. The main threats related to construct validity

The Evolution of Technical Debt in the Apache Ecosystem 63

are due to possible inaccuracy in the identification of technical debt. Since we
relied on the default SonarQube rules and the default threshold for each rule in
order to detect the violations leading to technical debt, the results are subject
to the SQALE model assumptions. This threat is partially mitigated by the fact
that the analysis of technical debt evolution implies a relative rather than an
absolute assessment of technical debt for the examined systems.

Since the Research Questions have been investigated through a case study,
threats to the reliability should be examined. Reliability is linked to whether the
experiment is conducted and presented in such a way that others can replicate it
with the same results. We believe that the documentation of the adopted research
process along with the online replication kit will facilitate any researcher who is
interested in replicating this study.

Finally, as in any case study, external validity threats apply, limiting the
ability to generalize the findings derived from sample to the entire population.
However, the sixty-six systems that we analyzed have been randomly selected
from the Apache ecosystem, and represent above a quarter and below a third of
all contained Java projects. Moreover, we do not claim that the results on TD
evolution or the types of TD hold for other Java systems or different ecosystems.

6 Related Work

This section reports the studies that are related to our work. Specifically, we
report report empirical studies that study the Apache ecosystem, studies that
deal with the introduction, evolution, and the survivability of the code smells
on OSS projects and finally, studies that study the impact of code smells on the
OSS projects.

Evolving code smells and software metrics. The evolution of code smells has been
studied extensively. One of the first studies is by Olbrich et al. [8], who investi-
gated the evolution of two code smells, namely God Class and Shotgun Surgery.
They analyzed historical data of two large OSS projects from the Apache foun-
dation: Apache Lucene and Apache Xerces 2 J, the results of their study report
(i) that during the evolution of the projects there are phases that the number of
these code smells decreases and phases that this number increases and (ii) the
size of the system does not affect these changes.

Zazworka et al. [9] conducted a case study on the design debt. They analyzed
two sample applications by a software development company and they investi-
gated how God Classes affect the maintainability and the correctness of the
projects. The results of their study show that God Classes have higher change-
proneness when they are compared to the non-God Classes. Furthermore, they
suggest that God Classes be seen as instances of technical debt and also they
point that if the developers split the God Classes into multiple smaller classes
that could lead to the generation of more problematic classes and that would
have as result an increment to the number of the files that has to be edited.

Peters and Zaidman [10] also conducted a case study on the lifespan of the
following code smells: God Class, Feature Envy, Data Class, Message Chain

64 G. Digkas et al.

Class, and Long Parameter List Class. They mined open-source projects and
their main finding reports that the engineers are aware of the existence of the
code smells in their systems but they do not worry for their impact and that has
as result to perform very few refactoring activities. The main deference between
our study and their that they analyzed only a small number of Java projects
(only seven) and they focused their study only on five code smells. Furthermore,
they did not measure how much effort is required in order to remove them.

Chatzigeorgiou and Manakos conducted a study on the evolution of code
smells and they report that as the projects evolve over time the number of code
smells increases [11]. Furthermore, the developers of the projects perform very
few actions in order to remove the code smells from the projects.

All the previous studies focused on a limited number of types of smells and
small number of systems. In contrast, Curtis et al. [12] performed a large-scale
study on many business applications. They used more than 1200 rules of good
architectural and coding practice and they reported the TD of 745 business
applications. The main difference between their study and ours is the focus: we
focused only on Java OSS projects by the Apache Foundation, they analyzed a
big number of business applications that have been developed on many languages
as diverse as COBOL, C++, .NET, ABAP, and Java. The similarity between
their study and ours is that we also used a set of good architectural and coding
practices.

Software Ecosystems. Software ecosystems have been studied in many contexts:
their evolving size and developer activity [13,14], their evolving dependencies
[15,16], their API evolution [17]. The very ecosystem that we study in this paper,
Apache, has been studied from the perspective of sentiment analysis on the
mailing lists [18] and the evolution of dependencies between the projects in an
ecosystem [15].

One study on open-source systems that comes close to ours in its focus is the
one of Tufano et al. [19] who contacted an empirical study on 200 OSS projects.
They analyzed projects from three ecosystems namely Apache, Android, and
Eclipse and they investigated questions about code smell life cycle. They found
that the most code smells are introduced with the creation of the class or file
when the developers implement new features or enhance already exist ones. They
also report that the majority of the smells are not removed during the project’s
evolution and few are removed as a direct consequence of refactoring operations.
Our study differs from their work in that we focus on the trends at the system
level, and we also consider the estimated time that is required in order to resolve
the issues of a project.

7 Conclusions and Future Work

In this paper we have studied sixty-six Java systems from the Apache ecosys-
tem. We analyzed cumulatively more than 16,000 weekly commits and we mined
695,731 project issues as reported by SonarQube. From this data we have learned

The Evolution of Technical Debt in the Apache Ecosystem 65

that in the majority of the systems that we studied, there is a significant increase
trend on the size, number of issues, and on the complexity metrics of the project.
On the other hand, the normalized technical debt decreases as the project
evolves.

Some of the most frequently occurring issues regard low-level coding prob-
lems some of which could probably be decreased with good IDE support (e.g.
duplicated strings). On the other hand, the most expensive types of technical
debt that must be paid back in the ecosystem are actually higher-level problems:
duplicated code and ad-hoc exception handling. Exception mis-handling is more
unevenly distributed in the ecosystem than code duplication.

One of the reasons for which this study did not analyze the entire Apache
ecosystem but rather a sample of it is the slowness of the analysis using Sonar-
Qube for which the computation time required is linear with the number of
versions. In order to allow the analysis of more systems and also a finer tempo-
ral granularity level than a week, in the future we will investigate approaches
that would provide better scalability.

In the paper we also observed that a very small minority of problem types
is responsible for the vast majority of estimated technical debt. We conjectured
that if progress was possible towards preventing some of the top problematic
issues the community could avoid incurring a large percentage of the technical
debt in the first place. Even if for other communities the problem ranking would
be different, we believe that the approach of aggregating the information from
system level to the entire ecosystem will always provide valuable insights. Indeed
we consider this to be one of the take-away messages of this study.

Finally, although larger than many earlier studies on the evolution of tech-
nical debt in open-source systems, our study is still limited to a random sample
from one ecosystem. It would be valuable if these results would be replicated
by other researchers in other open-source ecosystems, and maybe also in other
languages.

References

1. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on techni-
cal debt and its management. J. Syst. Softw. 101(C), 193–220 (2015).
http://dx.doi.org/10.1016/j.jss.2014.12.027

2. Manikas, K.: Revisiting software ecosystems research. J. Syst. Softw. 117(C), 84–
103 (2016). http://dx.doi.org/10.1016/j.jss.2016.02.003

3. Lungu, M.: Reverse engineering software ecosystems. Ph.D. dissertation, University
of Lugano, November 2009. http://scg.unibe.ch/archive/papers/Lung09b.pdf

4. Campbell, G.A., Papapetrou, P.P.: SonarQube in Action, 1st edn. Manning Pub-
lications Co., Greenwich (2013)

5. Ilkiewicz, M., Letouzey, J.-L.: Managing technical debt with the sqale method.
IEEE Softw. 29, 44–51 (2012)

6. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-
SOFT Softw. Eng. Notes 17(4), 40–52 (1992)

http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1016/j.jss.2016.02.003
http://scg.unibe.ch/archive/papers/Lung09b.pdf

66 G. Digkas et al.

7. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it. In:
Proceedings of the 31st International Conference on Software Engineering, ICSE
2009, pp. 287–297. IEEE Computer Society, Washington, DC (2009). http://dx.
doi.org/10.1109/ICSE.2009.5070529

8. Olbrich, S., Cruzes, D.S., Basili, V., Zazworka, N.: The evolution and impact of
code smells: a case study of two open source systems. In: 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, pp. 390–400,
October 2009

9. Zazworka, N., Shaw, M.A., Shull, F., Seaman, C.: Investigating the impact of
design debt on software quality. In: Proceedings of the 2nd Workshop on Managing
Technical Debt, MTD 2011, pp. 17–23. ACM, New York (2011). http://doi.acm.
org/10.1145/1985362.1985366

10. Peters, R., Zaidman, A.: Evaluating the lifespan of code smells using software
repository mining. In: 2012 16th European Conference on Software Maintenance
and Reengineering, pp. 411–416, March 2012

11. Chatzigeorgiou, A., Manakos, A.: Investigating the evolution of code smells
in object-oriented systems. Innov. Syst. Softw. Eng. 10(1), 3–18 (2014).
http://dx.doi.org/10.1007/s11334-013-0205-z

12. Curtis, B., Sappidi, J., Szynkarski, A.: Estimating the size, cost, and types of
technical debt. In: Proceedings of the Third International Workshop on Managing
Technical Debt, MTD 2012, pp. 49–53. IEEE Press, Piscataway (2012). http://dl.
acm.org/citation.cfm?id=2666036.2666045

13. Vasilescu, B., Serebrenik, A., Goeminne, M., Mens, T.: On the variation and spe-
cialisation of workload - a case study of the gnome ecosystem community. Empirical
Softw. Eng. 19(4), 955–1008 (2013)

14. Lungu, M., Malnati, J., Lanza, M.: Visualizing gnome with the small project
observatory. In: Godfrey, M.W., Whitehead, J. (eds.) MSR, pp. 103–106. IEEE
Computer Society (2009). http://dblp.uni-trier.de/db/conf/msr/msr2009.html#
LunguML09

15. Bavota, G., Canfora, G., Penta, M.D., Oliveto, R., Panichella, S.: The evolution of
project inter-dependencies in a software ecosystem: the case of apache. In: Proceed-
ings of the 2013 IEEE International Conference on Software Maintenance, ICSM
2013, pp. 280–289. IEEE Computer Society, Washington, DC (2013). http://dx.
doi.org/10.1109/ICSM.2013.39

16. Decan, A., Mens, T., Claes, M., Grosjean, P.: When github meets cran: an analysis
of inter-repository package dependency problems. In: 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), vol. 1,
pp. 493–504, March 2016

17. Robbes, R., Lungu, M., Roethlisberger, D.: How do developers react to API dep-
recation? the case of a Smalltalk ecosystem. In: Proceedings of the 20th Interna-
tional Symposium on the Foundations of Software Engineering (FSE 2012), pp.
56:1–56:11 (2012)

18. Tourani, P., Jiang, Y., Adams, B.: Monitoring sentiment in open source mailing
lists: exploratory study on the apache ecosystem. In: Proceedings of 24th Annual
International Conference on Computer Science and Software Engineering, CAS-
CON 2014, pp. 34–44 (2014)

19. Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A.,
Poshyvanyk, D.: When and why your code starts to smell bad. In: Proceedings
of the 37th International Conference on Software Engineering, ICSE 2015, vol.
1, pp. 403–414. IEEE Press, Piscataway (2015). http://dl.acm.org/citation.cfm?
id=2818754.2818805

http://dx.doi.org/10.1109/ICSE.2009.5070529
http://dx.doi.org/10.1109/ICSE.2009.5070529
http://doi.acm.org/10.1145/1985362.1985366
http://doi.acm.org/10.1145/1985362.1985366
http://dx.doi.org/10.1007/s11334-013-0205-z
http://dl.acm.org/citation.cfm?id=2666036.2666045
http://dl.acm.org/citation.cfm?id=2666036.2666045
http://dblp.uni-trier.de/db/conf/msr/msr2009.html#LunguML09
http://dblp.uni-trier.de/db/conf/msr/msr2009.html#LunguML09
http://dx.doi.org/10.1109/ICSM.2013.39
http://dx.doi.org/10.1109/ICSM.2013.39
http://dl.acm.org/citation.cfm?id=2818754.2818805
http://dl.acm.org/citation.cfm?id=2818754.2818805

Preventing Erosion in Exception
Handling Design Using Static-Architecture

Conformance Checking

Juarez L.M. Filho1, Lincoln Rocha1(B), Rossana Andrade1,
and Ricardo Britto2

1 Group of Computer Networks, Software Engineering, and Systems,
Federal University of Ceará, Fortaleza, CE, Brazil
{juarezmeneses,lincoln,rossana}@great.ufc.br

2 Blekinge Institute of Technology, 37179 Karlskrona, Sweden
ricardo.britto@bth.se

Abstract. Exception handling is a common error recovery technique
employed to improve software robustness. However, studies have reported
that exception handling is commonly neglected by developers and is the
least understood and documented part of a software project. The lack
of documentation and difficulty in understanding the exception handling
design can lead developers to violate important design decisions, trig-
gering an erosion process in the exception handling design. Architectural
conformance checking provides means to control the architectural erosion
by periodically checking if the actual architecture is consistent with the
planned one. Nevertheless, available approaches do not provide a proper
support for exception handling conformance checking. To fulfill this gap,
we propose ArCatch: an architectural conformance checking solution to
deal with the exception handling design erosion. ArCatch provides: (i) a
declarative language for expressing design constraints regarding excep-
tion handling; and (ii) a design rule checker to automatically verify the
exception handling conformance. To evaluate the usefulness and effective-
ness of our approach, we conducted a case study, in which we evaluated
an evolution scenario composed by 10 versions of an existing web-based
Java system. Each version was checked against the same set of exception
handling design rules. Based on the results and the feedback given by the
system’s architect, the ArCatch proved useful and effective in the identi-
fication of existing exception handling erosion problems and locating its
causes in the source code.

Keywords: Exception handling design · Exception handling erosion ·
Architecture conformance checking

1 Introduction

Exception handling is a well-known error recovery approach to improve software
robustness. An exception is an event or abnormal situation detected at runtime
c© Springer International Publishing AG 2017
A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 67–83, 2017.
DOI: 10.1007/978-3-319-65831-5 5

68 J.L.M. Filho et al.

that disrupts the normal control flow of a program [10]. When this happens, the
exception-handling mechanism deviates the normal control flow to the abnormal
(exceptional) control flow to handle the exceptional situation. The exception
handling mechanism structures the exceptional control flow by using proper
constructs to indicate in the source code where exceptions can be raised and
handled. Most of mainstream programming languages (e.g., Java, C++, and
C#) provide built-in facilities to implement exception handling features [4].

Architecture erosion is a phenomenon that occurs when the implemented
(concrete) architecture of a software system diverges from its intended (planned)
architecture [20]. In fact, it is a side effect of a non-controlled software evolution
process in which changes made in the source code lead to architecture design
rules violations [12]. To cope with this problem, architecture conformance check-
ing provides means to control the architectural erosion by automatically moni-
toring the compliance between the implemented architecture and the intended
one [17]. This systematic control aims at guaranteeing that the architect’s design
decisions - and the quality attributes derived from it - are properly reflected
in the system implementation [5]. Additionally, once the architecture confor-
mance checking requires a design specification as input (e.g., architectural ele-
ments declaration, mapping between architectural and implementation elements,
and design constrains), the knowledge about the architectural design decisions
becomes better documented and easier to share.

Despite its importance, studies have reported that exception handling is com-
monly neglected by developers and is the least understood, documented, and
tested part of a software system [6,13,19]. Additionally, to promote software
maintainability, modern programming languages (e.g., C#, Ruby, and Python)
have incorporated new maintenance-driven flexibilities in its built-in exception
handling mechanism [3]. This make changes in the source code more agile by
not forcing developers to follow the exception handling constraints (e.g., declare
in each method interface a list of exceptions that might be signaled and, there-
fore, should be handled by caller methods). Nevertheless, this flexibility allows
developers to postpone the implementation of some parts of exception handling,
taking the risk of forgetting to return and implement the remaining exception
handling features. All these issues may lead developers to violate the software
architect’s intention concerning the exception handling design during the devel-
opment, maintenance and evolution phases. Such kind of violations are danger-
ous because it can lead to: (i) the exception handling mechanism to behave erro-
neously or improperly at runtime; and (ii) exception handling software faults [7].
We call this problem exception handling erosion (EHE).

The state of the art conformance checking solutions [5,8,11,15,22] do not
provide a proper support for architecture conformance checking of exception
handling design. Even a most recent solution [1], devoted to conformance check-
ing of exception handling design, do not provide a full-fledged support to deal
with the EHE problem. Therefore, we address this gap in this paper through
answering the following research questions: RQ1 - How can the EHE problem be
addressed in a systematic way? RQ1.1 - How effective is the proposed approach

Preventing Erosion in Exception Handling Design 69

in the identification of existing EHE problems? and RQ1.2 - How useful is the
proposed approach to identify EHE causes in the source code?

To answer RQ1, we propose ArCatch, an architecture conformance checking
solution that provides: (i) a declarative language (ArCatch.Rules) for expressing
design constraints regarding exception handling; and (ii) a design rule checker
(ArCatch.Checker) to automatically verify the exception handling conformance.
The ArCatch is implemented as a Java internal DSL (Domain-Specific Lan-
guage), easing its incorporation in a continuous integration environment by
adopting the design test concept, a test-like program that automatically checks
whether an implementation conforms to a specific design rule [2]. To answer
RQ1.1 and RQ1.2, we conducted a case study [18].

The main contributions of this paper are: (i) a declarative DSL to specify
and document design decisions about exception handling; (ii) an automatic ver-
ification tool to support the conformance check of exception handling design;
and (iii) an automatic report generation to assist developers to find out which
design rules are violated and locate in the source code the violation causes.

The remainder of this paper is organized as follows. Section 2 provides some
background about exception handling design. The ArCatch solution is presented
in Sect. 3 and the methodology, results and discussion of the case study are
presented in Sect. 4. Finally, Sect. 5 discusses related work and Sect. 6 concludes
the paper.

2 Exception Handling Design

In this section, we describe the exception handling concepts at the architecture
level based on the IFTC (Idealized Fault-Tolerant Component) model (Sect. 2.1)
and how design rules can be derived from it to express the exception handling
design (Sect. 2.2).

2.1 Exceptions at the Architectural Level

At the software architecture level, exceptions and their control flow can be
described using the IFTC model [14] (Fig. 1). It captures the essence behind
the exception handling constructs of the mainstream object-oriented program
languages [10], such as Java and C#. Each software component (callee) can
receive service requests from other components (caller). The callee processes the
request and sends back normal responses or exceptions.

Exceptions can be classified in three categories as depicted in Fig. 1: (i) inter-
face exceptions - signaled when the request does not conform to the callee com-
ponent service interface; (ii) failure exceptions - signaled to indicate that, for
some reason, the callee component could not process the service request; and
(iii) internal exceptions - raised and handled inside the callee component. The
signaled exceptions are named external exceptions.

In the IFTC model, the component activity can be divided into normal and
abnormal (exceptional) activities (Fig. 1). In the normal activity, the compo-
nent processes service requests according to its specification. In the abnormal

70 J.L.M. Filho et al.

Fig. 1. Idealized Fault-Tolerant Component Model (adapted from [14]).

activity, the component performs contingency measures to deal with exceptions.
Thus, a component can handle exceptions raised during its normal activity or
exceptions signaled by low-level components (callees). However, exceptions that
cannot be handled by a component are propagated to high-level components
(callers) and so on. Moreover, before performing the exception propagation, a
component can do either an exception re-raising or remapping. The exception
re-raising occurs when the component captures the exception, performs some
partial handling actions, and then re-raises it, forcing the exception propaga-
tion continuity. The remapping occurs when the component captures the excep-
tion, performs optionally some partial handling actions, and then raises another
exception type, starting a new exception propagation.

At development time, the exception handling mechanism allows developers
to define exceptions and structure the exception handling behavior by means
of exception handlers. The exception handlers are component parts devoted to
handle exceptions (gray parts in Fig. 1). At runtime, when an exception is raised,
the exception handling mechanism deviates the normal control flow to the excep-
tional control flow, starting the search for an exception handler that can handle
this exception. The search begins with the component in which the exception is
raised and proceeds through all components in the service request chain in the
reverse order in which they were called. When an appropriate handler is found,
the exception handling mechanism passes the exception to the handler. After the
exception is handled, the system may get back to its normal activity. Otherwise,
if no handler is found, the system is forced to stop its execution.

2.2 Design Rules for Exception Handling

In the IFTC model, exceptions can be raised, signaled, handled, re-raised, and
remapped by a system module and can flow through a list of several modules
until be handled. These links can be expressed as different types of dependency
relation between exceptions and modules at the architectural level. Based on
such relations, dependency constraints can be derived to describe and to make

Preventing Erosion in Exception Handling Design 71

explicit how exceptions and modules can be combined towards expressing design
rules governing the architectural exception handling design.

A set of design rules for exception handling can be expressed by applying
semantic modifiers (e.g., “must”, “cannot”, “only . . . can”, and “can. . . only”) to
constrain dependency relations types between modules and exception. Design
rules can be used to document and make explicit the architect/designer inten-
tion/decision regarding the exception handling and its control flow. They can
make explicit: (i) which modules can, cannot, or must raise, re-raise signal, or
handle a specific exception type; (ii) which modules can, cannot, or must re-map
a specific exception type to another; and (iii) which exception types can, cannot,
or must flow through a specific list of modules. In this paper, we provide a way
to express this kind of design rules and use it to check the exception handling
design conformance to avoid erosion problems.

3 The Proposed Approach

To address RQ1, we developed ArCatch, which aims at providing a way to doc-
ument architectural design decisions about exception handling and uses it to
check the source code conformance. It is composed by a specification language
(ArCatch.Rules) to express exception handling design rules, and a design rule
checker (ArCatch.Checker) to automatically perform the conformance checking.

The overall flow of the ArCatch is depicted in Fig. 2. First, ArCatch.Checker
receives as input the software source code under evaluation and the exception
handling design rules written in ArCatch.Rules. Next, it performs the confor-
mance checking and outputs a report describing which design rules are violated.

Fig. 2. The ArCatch Overview.

The architecture conformance checking report (at the bottom of Fig. 2) con-
sists of a list of all specified design rules, which indicates the rules that passed

72 J.L.M. Filho et al.

and the ones that did not. Such a report is useful for identifying which parts of
the source code do not conform to the specification. For example, as shown in
Fig. 2, the design rules specified at lines 5, 6, and 8 are valid, while the design
rules specified at lines 7 and 9 are violated. Additionally, for all violated rules,
ArCatch.Checker generates a counter example pointing out which parts of the
source code are breaking the rules (see Sect. 4). Furthermore, both the excep-
tion handling design rules specification and the conformance checking report can
help software architects and developers to better document, refine, implement
and evolve architectural design decisions regarding exception handling.

ArCatch is implemented in Java and its current version provides support
for exception handling conformance checking of Java programs. The ArCatch
source code can be found at GitHub1 and be freely downloaded. We detailed
ArCatch.Rules and ArCatch.Checker next.

3.1 ArCatch.Rules: The Syntax

In our approach, the knowledge of software architects and developers about the
exception handling design is documented as design rules using ArCatch.Rules
(e.g., lines 05–09 in Fig. 2). Knowledge about the source code is very helpful when
mapping the architectural elements (modules and exceptions) to its respective
implementation elements (regular classes and exception classes). This knowledge
is also documented in the module/exception declarations using ArCatch.Rules
(e.g., lines 01–03 in Fig. 2). Hence, the exception handling design rules’ specifi-
cation is a knowledge-sharing artifact which both software architects and devel-
opers can use to fulfill their tasks.

The Grammar 1.1 describes a simplified version of ArCatch.Rules EBNF
(Extended Backus–Naur Form). The exception handling design specification
〈spec〉 is composed by entities 〈entity〉 and rules 〈rule〉 declaration.

The entity declaration supports two types of architectural elements: modules
and exceptions. A module represents a set of implementation classes, which
can be grouped or interact with each other to provide a well-defined system
functionality. An exception represents a set of exception classes (types). The
keywords ‘module’ and ‘exception’ are employed in the module and exception

1 https://github.com/lincolnrocha/ArCatch.

https://github.com/lincolnrocha/ArCatch

Preventing Erosion in Exception Handling Design 73

entities declaration respectively. Both modules and exceptions have an identifier
〈id〉 (a string that must start with a letter) and a regular expression 〈regex〉
(a sequence of characters that define a search pattern) used to map it onto
implementation elements (regular or exception classes).

The rule declaration 〈rule〉 describes how ArCatch.Rules expresses exception
handling design rules as dependency constraints between exceptions and mod-
ules. Such dependencies can be expressed in terms of exception raising, re-raising,
signaling, handling, remapping, and flow. The semantic modifiers only . . . can,
can. . . only, cannot, and must are used to give a proper semantic to each rule.

All derived design rules follow the same syntactic structure, which includes:
(i) a fixed part that comprises . . . 〈id〉 . . . 〈relation〉 . . . 〈id〉; and (ii) an optional
part that can be ‘to’〈id〉 or (‘,′ 〈id〉)+. In both parts, fixed and optional, the
identifier 〈id〉 can refer to an exception or a module identifier. The choice depends
on the type of dependency relation 〈relation〉 being taken into account.

When the keyword ‘raise’, ‘reraise’, ‘signal’, or ‘handle’ is chosen, the
first identifier in the fixed part refers to a module identifier and the second one
refers to an exception identifier. In such cases, there is no optional part.

If the keyword ‘remap’ is chosen, the fixed part derivation is similar to the
one for the other keywords, but the second identifier (the exception identifier)
represents the exception type to be remapped. In the optional part ‘to’〈id〉, the
identifier refers to an exception identifier, which comprises the exception types
that are targeted by the exception remapping process.

Finally, if the keyword ‘flow’ is chosen, the first identifier in the fixed part
must refer to an exception identifier and the second one refers to a module
identifier; the module where the exception type may be raised and signaled. In
the optional part (‘,’〈id〉)+, each derived identifier refers to a module identifier.
These identifiers are the list of modules in which the exception may flow through.

The ArCatch.Rules are implemented as a Java internal DSL, making it easy
to incorporate it in a continuous integration environment by adopting the design
tests concept [2], a programmatic approach to check the software source code
against design rules via automated testing tools, such as JUnit.

3.2 ArCatch.Checker: The Semantics

The ArCatch.Checker is responsible for establishing a link between declared
modules and exceptions to its implementing classes respectively, and checking
the specified design rules against the software source code. Each entity (module
or exception) has a regular expression associated with it. Every class name that
matches the defined regular expression is linked to the corresponding entity.

ArCatch.Checker uses the following conventions about the exception han-
dling dependency relations at the source code level: (i) raise(m,e) means method
m raises exception e; (ii) reraise(m,e) means method m re-raises exception e;
(iii) signal(m,e) means method m signals exception e; (iv) handle(m,e) means
method m handle exception e; (v) remap(m,e,f) means method m remaps excep-
tion e to exception f ; and (vi) flow(e,m1,. . . ,mn) means exception e is signaled
by method m1 and flows through m2,. . . ,mn−1 until be handled by method mn.

74 J.L.M. Filho et al.

In the following, we introduce some basic definitions and the exception han-
dling design rules violation semantics.

Definition 1 (Implementation Class). An implementation class is a 3-tuple
〈n, t,Φ〉, where n is the class name, t is the class type, and Φ is the class methods.

Definition 2 (Access Functions). Let c = 〈n, t,Φ〉 be an implementation
class, (i) getName(c) returns the class name n, (ii) getType(c) returns the class
type t, and (iii) getMethods(c) returns the set Φ of all class methods.

Definition 3 (Architectural Element). An architectural element A =
〈n, t, φ〉 is a 3-tuple where n is the element name, t ∈ {M, E} is the element
type, which can be a module type (M) or an exception type (E), and φ is the
regular expression used to map the implementation classes from source code.

Definition 4 (The match Function). Let φ be a regular expression and C
be a set of implementation classes, the function match(φ,C) = {c | c ∈ C ∧
getName(c) ∈ ω(φ)} returns all classes whose names matches φ. ω(φ) is all
words described/matched by φ.

Definition 5 (The map Function). Let A = 〈n, t, φ〉 be an architectural ele-
ment, C be a set of implementation classes, ξ be the root type of the exception
types hierarchy, and <: be a subtype relation where C, ξ, and <: are defined in
compliance to the rules of the underlying programming language used to build the
system. The function map(A,C) performs the mapping between an architectural
element and its classes is defined as:

map(A,C) =

{
t = M, {c | c ∈ match(φ,C) ∧ getType(c) ≮: ξ}
t = E, {c | c ∈ match(φ,C) ∧ getType(c) <: ξ}

Definition 6 (The methods Function). Let M = 〈n, M, φ〉 be a module and
C be a set of implementation classes, the function methods(M,C) = { m | ∀c
∈ map(M,C), m ∈ getMethods(c)} returns all methods defined in each class of
mapping map(M,C).

Definition 7 (The call Function). Let m and n be methods and C be a set of
implementation classes, the function call(C,m, n) returns true if ∃ (c, d ∈ C ∧
m ∈ getMethods(c) ∧ n ∈ getMethods(d)) s.t. “n calls m” and false otherwise.

Definition 8 (The chains Function). Let M1,. . . ,Mn be modules and C
be a set of implementation classes, the function chains(C,M1,. . . ,Mn) =
{(m1,. . . ,mn) | ∀i ∈ [1, n), mi ∈ methods(Mi,C) ∧ mi+1 ∈ methods(Mi+1,C)
∧ call(C,mi,mi+1)} returns all method call chains of size n starting in M1 and
ending in Mn.

Cannot Semantics: (Case 1) Let E = 〈eid, E, φE〉 be an exception, M =
〈mid, M, φM 〉 be a module, ⊕ be a relation in {raise, reraise, signal, handle},
and S be a set of implementation classes. Rules of type “mid cannot ⊕ eid” are

Preventing Erosion in Exception Handling Design 75

violated if ∃ (m ∈ methods(M ,S) ∧ e ∈ map(E,S)), such that ⊕(m,e). (Case 2)
Let E = 〈eid, E, φE〉 and F = 〈fid, E, φF 〉 be exceptions, M = 〈mid, M, φM 〉 be
a module, and S be a set of implementation classes. Rules of type “mid cannot
remap eid to fid” are violated if ∃ (m ∈ methods(M ,S) ∧ e ∈ map(E,S) ∧ f ∈
map(F ,S)), so that remap(m,e,f). (Case 3) Let E = 〈eid, E, φE〉 be an exception,
M1 = 〈mid1, M, φM1〉,. . . , Mn = 〈midn, M, φMn

〉 be a list of n modules, and S
be a set of implementation classes. Rules of type “eid cannot flow mid1,. . . ,
midn” are violated if ∃ (e ∈ map(E,S) ∧ (m1,. . . ,mn) ∈ chains(S,M1,. . . ,Mn)),
so that flow(e,m1,. . . ,mn).

Must Semantics: (Case 1) Let E = 〈eid, E, φ〉 be an exception, M =
〈mid, M, φ〉 be a module, ⊕ be a relation in {raise, reraise, signal, handle},
and S be a set of implementation classes. Rules of type “mid must ⊕ eid” are
violated if � (m ∈ methods(M ,S) ∧ e ∈ map(E,S)), such that ⊕(m,e). (Case 2)
Let E = 〈eid, E, φ〉 and F = 〈fid, E, φ〉 be exceptions, M = 〈mid, M, φ〉 be a mod-
ule, and S be a set of implementation classes. Rules of type “mid must remap
eid to fid” are violated if � (m ∈ methods(M ,S) ∧ e ∈ map(E,S) ∧ f ∈
map(F ,S)), so that remap(m,e,f). (Case 3) Let E = 〈eid, E, φ〉 be an exception,
M1 = 〈mid1, M, φ〉,. . . ,Mn = 〈midn, M, φ〉 be a list of n modules, and S be a set
of implementation classes. Rules of type “eid must flow mid1,. . . , midn” are
violated if � (e ∈ map(E,S) ∧ (m1,. . . ,mn) ∈ chains(S,M1,. . . ,Mn)), so that
flows(e,m1,. . . ,mn).

Only-Can Semantics: (Case 1) Let E = 〈eid, E, φ〉 be an exception, M =
〈mid, M, φ〉 be a module, ⊕ be a relation in {raise, reraise, signal, handle},
and S be a set of implementation classes. Rules of type “only mid can ⊕ eid”
are violated if ∃ (c ∈ S\map(M ,S) ∧ m ∈ getMethods(c) ∧ e ∈ map(E,S)), such
that ⊕(m,e). (Case 2) Let E = 〈eid, E, φ〉 and F = 〈fid, E, φ〉 be exceptions,
M = 〈mid, M, φ〉 be a module, and S be a set of implementation classes. Rules of
type “only mid can remap eid to fid” are violated if ∃ (c ∈ S\map(M ,S) ∧ m ∈
getMethods(c) ∧ e ∈ map(E,S) ∧ f ∈ map(F ,S)), so that remap(m,e,f). (Case
3) Let E = 〈eid, E, φ〉 be an exception, M1 = 〈mid1, M, φ〉,. . . ,Mn = 〈midn, M, φ〉
be a list of n modules, and S be a set of implementation classes. Rules of type
“only eid can flow mid1,. . . , midn” are violated if ∃ (e ∈ S \ map(E,S) ∧
(m1,. . . ,mn) ∈ chains(S,M1,. . . ,Mn)), so that flows(e,m1,. . . ,mn).

Can-Only Semantics: (Case 1) Let E = 〈eid, E, φ〉 be an exception, M =
〈mid, M, φ〉 be a module, ⊕ be a relation in {raise, reraise, signal, handle},
and S be a set of implementation classes. Rules of type “mid can ⊕ only eid”
are violated if ∃ (m ∈ methods(M ,S) ∧ e ∈ S \ map(E,S)), such that ⊕(m,e).
(Case 2) Let E = 〈eid, E, φ〉 and F = 〈fid, E, φ〉 be exceptions, M = 〈mid, M, φ〉
be a module, and S be a set of implementation classes. Rules of type “mid can
remap only eid to fid” are violated if ∃ (m ∈ methods(M ,S) ∧ ((e ∈ map(E,S)
∧ f ∈ S \map(F ,S)) ∨ (e ∈ S \map(E,S) ∧ f ∈ map(F ,S)) ∨ (e ∈ S \map(E,S)
∧ f ∈ S \map(F ,S))), so that remap(m,e,f). (Case 3) Let E = 〈eid, E, φ〉 be an
exception, M1 = 〈mid1, M, φ〉,. . . ,Mn = 〈midn, M, φ〉 be a list of n modules, and S
be a set of implementation classes. The rules of type “eid can flow oly mid1,. . . ,

76 J.L.M. Filho et al.

midn” are violated if ∃ (e ∈ map(E,S) ∧ (m1,. . . ,mk)
∈ chains(S,M1,. . . ,Mn)),
so that flows(e,m1,. . . ,mk) with k > 1.

In ArCatch.Checker, all source code information relevant for the checking
process is extracted using the Design Wizard2 tool and the Java Compiler Tree
API3. The Design Wizard provides means to extract the program class depen-
dencies, such as class inheritance trees and method call-graphs to feed our design
rules checking algorithm. The Compiler Tree API provides support to inspect
the AST (Abstract Syntax Tree) of Java programs, helping in the identification
whether raising, re-raising, and remapping cases occurs in the source code.

4 Case Study

In this section, we describe the design employed to conduct the case study
(Sect. 4.1), the associated results (Sect. 4.2) and threats to validity (Sect. 4.3).

4.1 Case Study Design

The Case and Unit of Analysis. The case and unit of analysis is an open
source system called Health Watcher (HW), which was developed to improve
the quality of the services provided by health care institutions in Brazil. HW is
a Java web-based system that allows citizens to register complaints regarding
health issues, so that associated health care institutions can promptly investigate
the complaints and take the required actions [21]. The HW system was chosen
because it has a clear exception handling design and has been used in several
empirical studies regarding software modularity and exception handling [9,11,
16] (conveninece sampling). Furthermore, considering the importance of data
triangulation in case studies, it was important to select a system whose software
architect would be available for a follow-up interview, which was the case of HW.

HW follows a multilayered architectural style composed by 4 layers: view
layer (ViL), “the highest layer”, distribution layer (DiL), business layer (BuL),
and data layer (DaL), “the lowest layer”. We analyzed 10 versions of HW. All
evaluated 10 versions are available on the Web4 and it varies from 7070 up to
100054 lines of code, 80 up to 136 classes, and 19 up to 25 packages.

Data Collection. The data used in our analysis was collected through two
methods: repository mining and unstructured interview. We employed reposi-
tory mining to extract the code of HW. We conducted two unstructured inter-
views with the software architect of HW. The goal of the first interview was to
confirm the exception handling strategy employed in HW. In the second inter-
view, we discussed the results of our analysis with the software architect, to
collect additional insights about the results. The interviews were conducted via
Skype in October and December 2016 and took about 20 and 50 min respectively.
2 https://github.com/joaoarthurbm/designwizard.
3 https://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/.
4 http://ptolemy.cs.iastate.edu/design-study/#healthwatcher.

https://github.com/joaoarthurbm/designwizard
https://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/
http://ptolemy.cs.iastate.edu/design-study/#healthwatcher

Preventing Erosion in Exception Handling Design 77

We made notes during the interviews and discussed the notes with the intervie-
wee, to ensure that the notes reflected the content of the interview.

Data Preparation. To be able to evaluate our approach, we have to conduct
some prepation of the mined source code. Each layer of HW architecture was
represented as a module (Listing 1.1, line 1) and mapped to the corresponding
implementation classes at the source code level. Listing 1.1 shows this map-
ping5 performed to the v1 version of HW. The viL module was mapped (List-
ing 1.1, line 2) to all classes of package “healthwatcher.view.servlets”. The
diL module was mapped to all classes of package “lib.distribution.rmi” and
the IFacade, HealthWatcherFacade, and HealthWatcherFacadeInit classes
(Listing 1.1, line 3). The buL module was mapped to all classes of subpackages of
“healthwatcher.business” (Listing 1.1, line 4). Finally, the daL module was
mapped to all classes of packages and subpackages of “healthwatcher.data”
and “lib.persistence” (Listing 1.1, line 5).

Listing 1.1. Health Watcher Layers Mapping.

1 ModuleElement viL , diL , buL , daL;
2 viL = module("ViL").matching("healthwatcher.view.servlets .\\w*").build();
3 diL = module("DiL").matching("(lib.distribution.rmi.\\w*| healthwatcher.

view.IFacade|healthwatcher.business .(HealthWatcherFacade|
HealthWatcherFacadeInit))*").build();

4 buL = module("BuL").matching("healthwatcher.business .(complaint|employee|
healthguide).\\w*").build();

5 daL = module("DaL").matching("(healthwatcher.data|lib.persistence).(\\w*.)
\\w").build();

All exceptions defined in version v1 are in the package lib.exceptions.
Based on the HW documentation and the source code analysis, six groups of
exceptions were defined and mapped, as shown in Listing 1.2. The diLEx excep-
tion represents the user-defined exceptions (i.e., defined by the programmer)
related to the DiL layer, buLEx exceptions are related to the BuL layer, and
daLEx exceptions are related to the DaL layer. The svtEx and sqlEx are platform-
defined exceptions and allEx represents all user-defined exceptions.

Listing 1.2. Exceptions Mapping.

1 ExceptionElement diLEx , buLEx , daLEx , sqlEx , svtEx , allEx;
2 diLEx = exception("DiLE").matching("(java.rmi.RemoteException|lib.

exceptions.CommunicationException)*").build();
3 buLEx = exception("BuLE").matching("lib.exceptions .(ObjectAlready)\\w*").

build();
4 daLEx = exception("DaLE").matching("lib.exceptions .(Persistence|ObjectNot|

Repository|Transaction)\\w*").build();
5 sqlEx = exception("SQLE").matching("java.sql.SQLException").build();
6 svtEx = exception("SVTE").matching("javax.servlet. ServletException").build

();
7 allEx = exception("AllE").matching("lib.exceptions .(\\w*.)*\\w*").build();

Note that once the system evolves, the mappings of classes into layers also
changes. Thus, for each HW version, it was necessary to perform some fine-tunes
in the mapping to capture changes occurred from one version to other.

5 The symbol “\w” represents a word character: [a-zA-Z 0-9].

78 J.L.M. Filho et al.

Another step in the data preparation was to define an exception handling
policy to evaluate the HW exception handling design based on the intention
of HW’s software architect (collected via an unstructured interview) and good
practices recommended by the Oracle’s BluePrints Design Patterns6 for multi-
layered architectures of Java systems. This policy states that an exception can
be raised in or signaled by an arbitrary layer. When a specific layer (callee) sig-
nals an exception, such exception can only propagate to the immediately upper
layer (caller), which is responsible for catching the exception and performing
handling actions (catch-and-handle strategy). This puts the system back in its
normal control flow. If this exception cannot be handled in this scope, the caller
layer must perform an exception type remapping and signal the new exception
type to the next upper layer (catch-and-remap strategy). This process repeats
until the exceptional situation is finally handled at an upper layer. Exceptions
signaled by third-party components to a specific layer must be handled in this
layer or be remapped and propagated to the next upper layer.

Table 1 shows all design rules defined to enforce the established policy. Each
rule enforces a specific aspect of the exception handling policy. For instance, the
rule R01 enforces that exceptions signaled by the under layer diL must be han-
dled by the upper layer viL (catch-and-handle). The rules R06 and R10 have a
similar purpose. The rules R07 and R11 ensure that the catch-and-remap strat-
egy is used. The rules R14 and R15 enforce that sqlEx exceptions signaled by
third-party components must be handled by daL module. The rule R03 enforces
that no user-defined exception can be signaled by viL. Finally, the R16 enforces
that daLEx exceptions cannot flow through modules daL, buL, and diL.

4.2 Results and Discussion

Table 1 summarizes the evaluation results. Each HW version is checked against
the same set of 16 design rules. All versions fully comply with six design rules
(R02, R04, R07, R11, R12 e R14) and do not conform to 7 design rules (R01,
R05, R06, R08, R09, R10, and R16). On one hand, R03 and R13 start to be
violated in versions 10 and 4, respectively. On the other hand, R15 is violated
in version 9 and starts be satisfied in the last version. In short, versions v1–v3
and v4–v10 has a 50% and 44% of conformance degree respectively.

Looking at the ArCatch.Checker conformance report (Listing 1.3), the
R03 is violated in version 10 because the method initFacade() of
class HWServlet starts to signal the exception CommunicationException
after the modularization of exception handling code. The R013 starts
to violate in version 4 because the implementation of Observer pattern,
after that the method notify() of class Subject starts signaling the
exceptions (Listing 1.4) ObjectNotFoundException, RepositoryException,
ObjectNotValidException e TransactionException.

6 http://www.oracle.com/technetwork/java/patterns-139816.html.

http://www.oracle.com/technetwork/java/patterns-139816.html

Preventing Erosion in Exception Handling Design 79

Table 1. Exception handling design rules and checking results.

ID Exception handling design rule Health watcher versions

01 02 03 04 05 06 07 08 09 10

R01 module(viL).mustHandle(diLEx).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R02 only(viL).canSignal(svtEx).build() ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R03 module(viL).cannotSignal(allEx).build() ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

R04 only(diL).canRaise(diLEx).build() ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R05 only(diL).canSignal(diLEx).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R06 module(diL).mustHandle(buLEx).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R07 only(diL).canRemap(buLEx).to(diLEx).build() ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R08 only(buL).canRaise(buLEx).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R09 only(buL).canSignal(buLEx).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R10 module(buL).mustHandle(daLEx).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R11 only(buL).canRemap(daLEx).to(buLEx).build() ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R12 only(daL).canRaise(daLEx).build() ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R13 only(daL).canSignal(daLEx).build() ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R14 only(daL).canHandle(sqlEx).build() ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R15 module(daL).cannotSignal(sqlEx).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

R16 exception(daLEx).cannotFlow(daL, buL, diL).build() ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Listing 1.3. Rule R03 Example Report (HW v10).

1 -Rule Violations
2 -The method [healthwatcher.view.servlets.HWServlet.initFacade ()] is

signaling the exception [lib.exceptions.CommunicationException]

Listing 1.4. Rule R13 Example Report (HW v4).

1 -Rule Violations
2 -The method [lib.patterns.observer.Observer.notify(lib.patterns.observer

.Subject)] is signaling the exception [lib.exceptions.
ObjectNotFoundException]

3 -The method [lib.patterns.observer.Observer.notify(lib.patterns.observer
.Subject)] is signaling the exception [lib.exceptions.
RepositoryException]

4 -The method [lib.patterns.observer.Observer.notify(lib.patterns.observer
.Subject)] is signaling the exception [lib.exceptions.
ObjectNotValidException]

5 -The method [lib.patterns.observer.Observer.notify(lib.patterns.observer
.Subject)] is signaling the exception [lib.exceptions.
TransactionException]

The R15 is violated from versions 1 until version 9, starting to be satis-
fied in version 10. These violations occurred because some classes of daL signal
the exception SQLException. However, after the modularization of exception
handling code in version 10, such violations no long occurred. The full set of
conformance checking reports for all 10 versions of HW can be found on the
paper’s website7.

7 https://github.com/juarezmeneses/ArCatchExperiment.

https://github.com/juarezmeneses/ArCatchExperiment

80 J.L.M. Filho et al.

Listing 1.5. Rule R15 Example Report (HW v1–v9).

1 -Rule Violations
2 -The method [healthwatcher.data.rdb.ComplaintRepositoryRDB.

accessComplaint(java.sql.ResultSet ,healthwatcher.model.complaint.
Complaint)] is signaling the exception [java.sql.SQLException]

To further validate the results, we interviewed the HW’s software architect.
First, we discussed the seven design rules that are violated in all versions. Thus,
after looking at the violation report, he recognized that all violations represented
clear deviations from his intention as software architect, confirming the existence
of exception handling erosion problems in HW.

Second, we discussed the violation of R03 and R13. Regarding R03, the archi-
tect recognized that such violation introduced in version 10 is a mistake made by
a developer and a possible solution could be create a try-catch bock on method
initFacade() to catch the exception CommunicationException and perform
an log operation or a page redirection to proper present the error. Regarding
R13, the architect argued that such violation is not a proper violation itself, but
a side effect caused by implementation of Observer design pattern. However, he
decided that it must be fixed in a future version. Finally, looking at the viola-
tion report of R15, the architect had no doubt that such violation represents a
deviation from his intention, which was fixed in version 10.

No evaluation regarding performance and usability of ArCatch was conducted
in this paper. However, in the evaluation scenario, ArCatch takes about 50 s
(average) to perform the source code analysis and check the conformance of
each design rule in each HW version. After define the exception handling policy,
the specification of all design rules using ArCatch.Rules takes less then 1 h. The
mapping process was the most time consuming part, once we were not familiar
with its source code; we needed to analyze manually the source code of each
version. The first version analysis took more than 5 h, while the sum of all other
versions analysis took about of 5 h, i.e. the entire mapping process took 10 h.

4.3 Threats to Validity

The threats to validity associated with our investigation are discussed using
the classification by Runeson and Höst [18]. Since no causal relationship was
investigated in the case study, we do not discuss internal validity threats.

Reliability validity threats are related to the repeatability of a study, i.e.
how dependent are the research results on the researchers who conducted it [18].
We minimized this threat by involving several researchers in the design and
execution of our investigation. Furthermore, our observations and findings were
verified by HW’s software architect to avoid false interpretations.

Construct validity threats reflect whether the measures used really rep-
resent the intended purpose of the investigation [18]. To mitigate this threat,
we collected data using multiple methods (data triangulation). Moreover, some
information about source code is extracted and represented as a static call-graph.
However, some relations represented in the static call-graph can never occur in
actual program runs. In fact, it is an undecidable problem. The static call-graph

Preventing Erosion in Exception Handling Design 81

provides over-approximative information, which can lead ArCatch to find rule
violations that may never happen at runtime (i.e., false alarms).

External validity threats limit the generalization of the findings of the inves-
tigation [18]. Since we employed the case study method, our findings are strongly
bounded by the context of our study. In addition, the investigated case involved
only one product, which is not used intensively by different users. To mitigate
this threat, we made an attempt to detail the context of our study as much as
possible. However, this is a strong limitation of our study, which we intend to
address by evaluating our approach by conducting other case studies.

5 Related Work

We have reviewed the state of the art on architecture conformance checking solu-
tions focusing on their support to the exception handling conformance checking.

The Semmle .QL [15] is a conformance checking solution where design con-
straints are specified as queries performed in the software source code. The
.QL syntax is inspired in the SQL language. The LogEn [8] solution is based
on dependency relations between implementation elements of different levels of
granularity. LogEn provides a visual DSL as an Eclipse IDE plug-in to specify
the mapping between architectural and implementation elements and express
dependency constraints. Both solutions adopt Datalog, a logical query language,
to perform the conformance checking. Regarding the exception handling confor-
mance checking, LogEn only provides support to deal with raising and handling
relations, while .QL only provides support to handling relation.

The DCL Suite [22], TamDera [11], and Dictō [5] provide a textual external
DSL to describe dependence constraints between system modules and a checker
to verify the compliance between the implemented and intended architectures.
TamDera provides means to deal with architectural degradation in terms of
erosion and drift problems, while DCL Suite and Dictō only provide support to
deal with architectural erosion problems. In contrast to DCL Suite and TamDera,
which provides their own conformance checker implementation, Dictō performs
the conformance checking using existent conformance tools (e.g., JPF and PMD).
Both DCL Suite and TamDera have been developed as a plug-in for Eclipse
IDE. Therefore, programmers can carry out the conformance checking process
as the source code is being written. The Dictō has been developed as an IDE
agnostic solution that can be easily integrated in a static analysis tools such as
SonarQube. Regarding the exception handling conformance checking, TamDera
and Dictō only provide support to signaling and handling relations, while DCL
Suite only provide support for signaling relations.

The EPL [1] is a conformance checking solution devoted to check the con-
formance of exception handling policies in Java programs. In EPL, an exception
handling policy is a set of design decisions governing the exceptions usage in a
software project. EPL provides an external DSL to describe exception handling
policies involving exceptions and compartments, which is a language construc-
tor used to express which classes and methods are taken into account in the

82 J.L.M. Filho et al.

conformance checking process. EPL has been developed as a plug-in for Eclipse
IDE and the conformance checking can be performed as the source code is being
written. EPL provides its own conformance checker based on the Eclipse JDT.
Regarding the exception handling conformance checking, EPL is the most com-
plete of the solutions we analyzed, only without support to express and check
dependency constraints related to the exceptional control flow.

6 Conclusion and Future Work

In this paper, we have presented ArCatch, a conformance checking solution that
tackles the exception handling erosion problem (RQ1). ArCatch aims at enforc-
ing exception handling design decisions in Java projects, by providing: (i) a
declarative language (ArCatch.Rules) for expressing design constraints regarding
exception handling; and (ii) a rule checker (ArCatch.Checker) to automatically
verify the exception handling conformance. Furthermore, ArCatch provides sup-
port for several kinds of dependence relation concerning the exception handling
design, such as raising, re-raising, remapping, signaling, handling, and flow.

To evaluate our approach (RQ1.1 and RQ1.2), we conducted a case study and
identified that: (i) at least 7 design rule violations in each version were detected;
(ii) all versions conform to 6 design rules; and (iii) three violations appear in
three different versions. ArCatch proved useful in the identification of existing
exception handling erosion problems and its causes. This erosion can be avoided
if adopting our approach in the system project since the beginning.

As future work, we plan to perform a user-centric evaluation to analyze
ArCatch in terms of performance, scalability, usability, and learning curve. We
also want to analyze if it is possible to use the ArCatch.Rules specifications
to derive software tests for the exception handling code. Finally, we intend to
conduct other case studies involving companies from different domains.

References

1. Barbosa, E.A., Garcia, A., Robillard, M.P., Jakobus, B.: Enforcing exception han-
dling policies with a domain-specific language. IEEE Trans. Softw. Eng. 42(6),
559–584 (2016)

2. Brunet, J., Guerrero, D., Figueiredo, J.: Design tests: an approach to programmat-
ically check your code against design rules. In: 31st International Conference on
Software Engineering, pp. 255–258, May 2009

3. Cacho, N., Barbosa, E.A., Araujo, J., Pranto, F., Garcia, A., Cesar, T., Soares, E.,
Cassio, A., Filipe, T., Garcia, I.: How does exception handling behavior evolve? an
exploratory study in Java and C# applications. In: ICSME 2014, pp. 31–40. IEEE
(2014)

4. Cacho, N., César, T., Filipe, T., Soares, E., Cassio, A., Souza, R., Garcia, I., Bar-
bosa, E.A., Garcia, A.: Trading robustness for maintainability: an empirical study
of evolving c# programs. In: Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pp. 584–595 (2014)

Preventing Erosion in Exception Handling Design 83

5. Caracciolo, A., Lungu, M., Nierstrasz, O.: A unified approach to architecture con-
formance checking. In: Proceedings of the 12th Working IEEE/IFIP Conference
on Software Architecture (WICSA), pp. 41–50. ACM Press, May 2015

6. Chang, B.M., Choi, K.: A review on exception analysis. Inf. Softw. Technol. 77(C),
1–16 (2016)

7. Ebert, F., Castor, F., Serebrenik, A.: An exploratory study on exception handling
bugs in java programs. J. Syst. Softw. 106(C), 82–101 (2015)

8. Eichberg, M., Kloppenburg, S., Klose, K., Mezini, M.: Defining and continuous
checking of structural program dependencies. In: Proceedings of the 30th Interna-
tional Conference on Software Engineering, ICSE 2008, pp. 391–400. ACM (2008)

9. Ferrari, F., Burrows, R., Lemos, O., Garcia, A., Figueiredo, E., Cacho, N., Lopes,
F., Temudo, N., Silva, L., Soares, S., Rashid, A., Masiero, P., Batista, T., Mal-
donado, J.: An exploratory study of fault-proneness in evolving aspect-oriented
programs. In: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, ICSE 2010, pp. 65–74. ACM, New York (2010)

10. Garcia, A.F., Rubira, C.M., Romanovsky, A., Xu, J.: A comparative study of
exception handling mechanisms for building dependable object-oriented software.
J. Syst. Softw. 59(2), 197–222 (2001)

11. Gurgel, A., Macia, I., Garcia, A., Staa, A., Mezini, M., Eichberg, M., Mitschke, R.:
Blending and reusing rules for architectural degradation prevention. In: Proceed-
ings of the 13th International Conference on Modularity, pp. 61–72. ACM (2014)

12. van Gurp, J., Bosch, J.: Design erosion: problems and causes. J. Syst. Softw. 61(2),
105–119 (2002)

13. Kechagia, M., Spinellis, D.: Undocumented and unchecked: exceptions that spell
trouble. In: Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014, pp. 312–315. ACM, New York (2014)

14. Lee, P.A., Anderson, T.: Fault Tolerance: Principles and Practice. Dependable
Computing and Fault-Tolerant Systems, 2 edn., vol. 3. Springer, Wien (1990)

15. Moor, O.d., Verbaere, M., Hajiyev, E., Avgustinov, P., Ekman, T., Ongkingco, N.,
Sereni, D., Tibble, J.: Keynote address: .ql for source code analysis. In: SCAM
2007, pp. 3–16. IEEE Computer Society, Washington, DC (2007)

16. Oizumi, W.N., Garcia, A.F., Colanzi, T.E., Ferreira, M., Staa, A.V.: On the rela-
tionship of code-anomaly agglomerations and architectural problems. J. Softw.
Eng. Res. Dev. 3(1), 1–22 (2015)

17. Passos, L., Terra, R., Valente, M., Diniz, R., Mendonça, N.C.: Static architecture-
conformance checking: an illustrative overview. IEEE Softw. 27(5), 82–89 (2010)

18. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hoboken (2012)

19. Shah, H., Gorg, C., Harrold, M.J.: Understanding exception handling: viewpoints
of novices and experts. IEEE Trans. Softw. Eng. 36(2), 150–161 (2010)

20. de Silva, L., Balasubramaniam, D.: Controlling software architecture erosion: a
survey. J. Syst. Softw. 85(1), 132–151 (2012)

21. Soares, S., Laureano, E., Borba, P.: Implementing distribution and persistence
aspects with aspectj. In: OOPSLA 2002, pp. 174–190. ACM, New York (2002)

22. Terra, R., Valente, M.T.: A dependency constraint language to manage object-
oriented software architectures. Softw. Pract. Exper. 39(12), 1073–1094 (2009)

Considerations About Continuous
Experimentation for Resource-Constrained

Platforms in Self-driving Vehicles

Federico Giaimo1(B), Christian Berger2, and Crispin Kirchner3

1 Chalmers University of Technology, Göteborg, Sweden
giaimo@chalmers.se

2 University of Göteborg, Göteborg, Sweden
christian.berger@gu.se

3 RWTH Aachen University, Aachen, Germany
crispin.kirchner@rwth-aachen.de

Abstract. Autonomous vehicles are slowly becoming reality thanks to
the efforts of many academic and industrial organizations. Due to the
complexity of the software powering these systems and the dynamicity
of the development processes, an architectural solution capable of sup-
porting long-term evolution and maintenance is required.

Continuous Experimentation (CE) is an already increasingly adopted
practice in software-intensive web-based software systems to steadily
improve them over time. CE allows organizations to steer the devel-
opment efforts by basing decisions on data collected about the system
in its field of application. Despite the advantages of Continuous Experi-
mentation, this practice is only rarely adopted in cyber-physical systems
and in the automotive domain. Reasons for this include the strict safety
constraints and the computational capabilities needed from the target
systems.

In this work, a concept for using Continuous Experimentation for
resource-constrained platforms like a self-driving vehicle is outlined.

Keywords: Software architecture for cyber-physical systems · Contin-
uous Experimentation · Software evolution · Middleware

1 Introduction

Constant efforts in technology and software development by various research and
commercial institutions are making autonomous cars gradually a reality. While
this final objective is still out of reach in the nearest future, many features that
can replace the human driver in ordinary driving tasks are already available.

Due to its safety constraints the software in vehicles needs to be very high
in quality. This will prove even more true for autonomous vehicles, which will
have the responsibility to assess the real world around them to decide a course
of action while always meeting the safety requirements. For this reason it is
c© Springer International Publishing AG 2017
A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 84–91, 2017.
DOI: 10.1007/978-3-319-65831-5 6

Considerations About Continuous Experimentation 85

imperative to find and enable a process that allows continuous software quality
improvements, possibly even after the vehicle is sold to the customers.

Continuous Experimentation (CE) is an Extreme Programming practice that
could satisfy these needs by running so-called “experiments” to collect meaning-
ful data. These experiments are usually either variants of the deployed software
or additional software features. The goal is to collect and use the resulting real-
world data in order to decide in an objective way which of the possible variants
or features is the most successful one. A CE setup begins with the target-base
divided in sets, one of which is the control set, running unmodified software,
and one or more experimental sets, which will run an experiment each. The soft-
ware in all sets then collects relevant usage and performance data that will be
relayed back to the developers. The best-performing set will decide which soft-
ware variant or feature will be further developed and deployed to all the other
targets.

CE is increasingly adopted in the context of software-intensive web-based
applications, and the current state-of-practice is outlined in Sect. 2. With a focus
on autonomous vehicles, we outlined in our previous work the design criteria for
the software architecture to enable experimentation on Cyber-Physical Systems
(CPS) as well [1]. However, challenges related to safety considerations are still
unresolved and pose a significant obstacle for the adoption of software experi-
mentation on vehicles. Scarcity of resources plays also an important role in this
sense since the hardware in the car is carefully dimensioned in terms of per-
formances to provide “just enough”. Further challenges like scalability issues in
case of several systems conducting experiments have also been identified in our
previous study [2].

The Research Goal of this work is to assess the challenges related to the
scarcity of resources that prevent the widespread adoption of CE in the auto-
motive context, and to propose strategies to overcome them.

This goal is further elaborated into the following Research Questions:

RQ1 : What impact does the lack of resources in cyber-physical systems impose
on the design and application of continuous experimentation?

RQ2 : What design criteria should the software architecture satisfy in order to
enable continuous experimentation for a resource-constrained cyber-physical
system?

2 Related Work

Several works are present in literature focusing on Continuous Experimentation.
One of these is Fagerholm et al. [3], which describes a CE model that takes
into account the roles, tasks, infrastructure and information artifacts involved
by this practice. In this paper, the authors developed and extended their model,
validating it against the results of two empirical case studies conducted in startup
companies.

Another article of interest is Olsson and Bosch [4], which describes the steps
that should be taken to move a traditional software development process to a

86 F. Giaimo et al.

“continuous” one. These steps involve the gradual introduction of Agile practices
and the modification of the organization and their strategies in order to align
them to the ones that better support continuous product evolution and delivery.

Several articles related to CE report the advancements and characteristics
of the experimentation processes and platforms in industrial settings. An exam-
ple of these works is Tang et al. [5] that described the experimental setting at
Google Inc. where, in order to improve the experimentation process and exe-
cution, experiments that involve independent factors are overlapped. Further
examples are Kohavi et al. [6], that described Microsoft Bing’s own solution
to run “over 200 experiments concurrently”, and Amatriain [7], that outlined
Netflix’s approach to experimentation.

At the best of the authors’ knowledge, and perhaps hinting at the novelty of
the field, some of the major academic databases, i.e. IEEE Xplore, ACM Digital
Library, Scopus, Web of Science, were searched for articles regarding Continuous
Experimentation in the context of CPS, but unrelated or no results at all were
found at the time of writing.

3 Assessing the Scarcity of Resources

Running experimental software alongside production software requires additional
computational resources. In contrast to web-based applications running in server
farms, where additional virtual servers can be spawned if needed, acquiring addi-
tional computational power in CPS is not trivial, as their hardware cannot be
changed after delivery to the customers.

To assess these limitations, different execution strategies for acquiring unused
computational power are proposed, taking into consideration different initial
conditions that we have explored in the context of one of our research projects [8].
These strategies are explained in the following paragraphs and depicted in Fig. 1.
The automotive software in the proposed execution scenarios is assumed to be
structured in modules, which are recurrently executed in time slots, either data-
or time-triggered [9]. This means respectively that a module is either executed
whenever new information arrives, or at a fixed frequency even if new data has
not been gathered or if new data was queued waiting to be processed. The ideal
way to test an experimental version of a production software module would be
to run it in parallel to the production version in order to provide the same input
to both modules. However, due to safety reasons and lack of computational
resources the experimental module may be forced to run on a less frequent
schedule than the production module and its communications capabilities may
be reduced (for example its output could be logged instead of forwarded to the
intended recipients). In order to make the experimental software “believe” that
it is being run without such handicaps it is required to encapsulate the time and
the communication resources that the software modules can access.

Due to the necessary level of control needed over the software modules in the
authors’ understanding it is not enough to simply delegate the experiment’s exe-
cution schedule to the operating system’s Process Scheduler. Firstly because the

Considerations About Continuous Experimentation 87

choice of whether to run an experimental module and what execution schedule to
adopt depends on several factors that are only known at high levels of abstrac-
tion. Secondly and more importantly, executing an experiment can imply the
execution of a software module at the potential “expenses” of another selected
one when computational resources are scarce, and to unfairly favor a software
module over another is against the Process Scheduler’s goal to serve resources
in a fair way among all processes.

In the following the identified execution strategies will be described.

Parallel Execution. In the simplest case, even though either time or com-
putational resources are scarce on a particular core or processor alongside
the production module, a third software module can be paused or stopped in
order to reuse its resources to run the experiment. In this case it is possible to
assume that an unused processor is available, and the experimental module
can be executed in parallel to the production module. As both modules run
on independent computing units, they are not necessarily coupled in terms of
execution frequency. This case has been described for completeness but it is
unlikely to be applicable.
Serial Execution. In the typical case that there is no additional computing
unit available to independently execute an experimental module, the com-
puting time needed by the experiment could come from the unused time of a
production module. In this case the experimental module could be executed
serially, i.e. always after the production module has finished its computation
and until the production module is executed again in its next time slot.
When production and experimental modules are functionally related and are
supposed to operate as synchronously as possible, two different cases with dif-
ferent implications can be identified: whether the experimental module can
or cannot conclude its calculations in the unused time left in the production
module’s time slot. In the simplest case, the experimental module can finish
its tasks inside the time window left over by the production module, in the
second case, the time left unused by the production module is not enough
for the experimental module to complete its operations, which results in an
interruption of the experimental module. It is worth noting that whenever
the execution of the experimental module needs to be stretched over two
non-contiguous time slots due to the lack of unused time in the current slot,
the result is that the experimental module will be executed less frequently
than the production module, potentially resulting in time synchronization
issues and affecting the comparability of metrics in the case of A/B testing.
Downsampled Execution. The third execution strategy, called downsam-
pling, is applicable if there is no additional computing node available and
no computation time is left in the time slice of a module. As computational
power on cars is limited, it can be expected to also be the most likely applica-
ble strategy. This approach is based on the assumption that conditions exist
under which the execution of a production module can periodically be skipped
(analog to suspending the production module from time to time), freeing
computational resources to be used for experimentation purposes. Skipping

88 F. Giaimo et al.

execution cycles of a production module may result in compromising safety-
critical aspects of the vehicle, hence great care must be taken to ensure that
the planned downsampling is safe. A possible way to ensure its safety could
be to run preliminary tests before applying this strategy, to verify in advance
that it is viable in practice and at which rate the production module can
skip computation cycles before dependent modules downstream in the data-
processing chain are affected. Furthermore, the conditions under which the
downsampling rate has been tested need to be fixed and the execution of the
experiment must only be carried out when the vehicle operates under those
conditions. As with this strategy the time slots available to the experimen-
tal module are non-contiguous, the considerations about time synchronization
and logic coherence that were expressed for the serial execution strategy apply
to this case as well.

Down-
sampling

CPU0
P
0

P
1

E
2

P
3

P
4

E
5

P
6

. . .

P
0

CPU0
Serial E

0
P
1

E
1

P
2

E
2

P
3

E
3

. . .

E
0

P
0

CPU0

CPU1

Parallel P
1

E
1

P
2

E
2

P
3

E
3

P
4

E
4

P
5

E
5

P
6

E
6

. . .

t

t

t

Fig. 1. Execution strategies. “P” and “E” stand for Production and Experimental
software module. Picture based on Kirchner [8].

The proposed strategies may also be composed and adjusted at runtime. For
example, it could happen that an experiment might initially require the analysis
of relatively small amounts of data, thus making the serial execution strategy
feasible. If however more intensive calculations would later be required and the
conditions would allow it, the strategy could be changed to downsampling in
order to allocate more time to each experimental iteration at the cost of a less
frequent execution schedule.

4 Software Architecture

Section 3 has identified three potential strategies to execute an experimental
software module next to a product module. Furthermore, we have pointed out

Considerations About Continuous Experimentation 89

that the production and experimental modules need to be decoupled from the
real system time and from their respective potential communication vector with
downstream modules. The reason is that the production and experimental mod-
ule should believe that they are triggered at the very same point in time by
the same input data; while the execution strategy in effect must be entirely
transparent for the modules. Also, the communication of data into and from
the production and experimental modules must be controlled entirely. While
the ingoing communication may not be critical, a strict control of any outgoing
communication is needed to avoid unwanted interference with the dependent
downstream software modules. Furthermore, any time stamping related to send-
ing data from the production and experimental modules to other modules must
be potentially adjusted to make the rest of the system believe that these mod-
ules have not been executed with different execution strategies. The possibility
of rewriting time stamp information for communication is another indicator why
the regular Process Scheduler provided by the operating system does not meet
the requirements for conducting experiments on a resource-constrained compu-
tational environment.

Chalmers University of Technology hosts a vehicle laboratory called Revere,
“Resource for Vehicle Research” [10], with the goal of conducting and devel-
oping research for self-driving vehicles and active safety. The Revere labo-
ratory uses our middleware OpenDaVINCI1, which allows the realization of
distributed microservices communicating via Protobuf-encoded messages. The
activation of software modules realized with OpenDaVINCI complies to the
time-triggered or data-triggered principle described in Sect. 3. OpenDaVINCI
by default encapsulates the system time via an object called TimeStamp that
either invokes the POSIX time API returning the “real” time or transparently
replaces the real system clock with a virtual one. The communication facil-
ities available to the software modules are also encapsulated. OpenDaVINCI
uses by default UDP multicast as communication principle. In OpenDaVINCI
a so-called ContainerConference is provided as the data to be exchanged is
wrapped into Container containing the actual data to be exchanged and some
meta-information like time stamps for sending, receiving, and sample time point.

To enable CE using these building blocks, both the production and experi-
mental modules will be handled by an Experimenter software module that will
manage them to realize the aforementioned execution strategies by forwarding
input data to both modules, activating and suspending them according to the
respective execution strategy, and receiving data containers to be distributed for
both delivery or logging purposes.

5 Discussion

For the current state-of-practice of CE in web-based systems, which usually
involves validation of user feedback, small scale approaches are not viable since
less generalizable. However, in the automotive domain the experiments would
1 http://code.opendavinci.org.

http://code.opendavinci.org

90 F. Giaimo et al.

focus on algorithmic problems and their verification in realistic scenarios, making
the results easier to generalize even if collected by a small number of vehicles.

This work proposes a new element to consider in order to apply CE on cyber-
physical systems, which is the execution strategy. This element is introduced
to account for the possible lack of computational resources, and can critically
impact the amount of collected results or the overall viability of the experiments.
For this reason we propose an addition to the CE model proposed by Fagerholm
et al. [3] when it involves experiments on CPS: the domain expert, a person
or team with deep knowledge of the system and its capabilities. The domain
expert’s main role is to advise the experimenter and data scientist while devis-
ing and planning the experiment to be run. The insights this figure could provide
would not be limited only to the choice of the execution strategy but could range
for example from deciding if an experiment could be run “live” on customers’
vehicles, or if preliminary measurements would be needed to ensure its viability,
and so on. As a direct application of the “web-based” continuous experimenta-
tion would prove difficult or even impossible in the context of CPS due to the
several key differences between the two fields, we claim that the presence of an
intermediary figure can smoothen or in some cases enable the experimentation
process thanks to its knowledge of both the system and the proposed techniques
to obtain the additional computational time needed to run experiments.

We report about threats to the validity of this study according to Runeson
and Höst [11]. Our current work in the lab concerns the validation of the proposed
strategies using our self-driving vehicles to increase the external validity of the
suggested architectural design considerations. It is also impossible to completely
eliminate the threat to reliability, i.e. whether different researchers would come
out with the same solution if they were to assess the same problem. To mitigate
this threat, we carefully described our reasoning to motivate our suggested design
decisions.

6 Conclusions and Future Work

The present work aims at contextualizing the Continuous Experimentation
process into the Cyber-Physical System field, assessing the lack of surplus
resources that would be needed for the system to run the additional experi-
mental code. In order to assess this deficit, three different execution strategies
have been proposed that would allow to run an experimental software module
alongside a production module. The different characteristics of the strategies
enable the adaptation of the solution for different application scenarios.

In order for a software architecture to enable and make use of the proposed
strategies it must be possible to strictly control two crucial types of information
that are accessible to both the production and experimental software module,
which are the time and the communication resource. Controlling the modules’
access to these resources acts as enabling criteria ensuring the transparency of
the execution strategy to the software modules themselves.

Future efforts will focus on evaluating the contributions in a setting closer to
the specific challenges encountered in industry, by continuing the research in the

Considerations About Continuous Experimentation 91

COPPLAR project, which is Chalmers University of Technology’s contribution
to the DriveMe context2. The DriveMe project is an autonomous driving pilot
project by Volvo Cars that aims at releasing 100 cars capable of self-driving
capabilities on selected public roads in 2017.

Acknowledgment. This work has been supported by the COPPLAR Project – Cam-
pusShuttle cooperative perception and planning platform [12], funded by Vinnova FFI,
Diarienr: 2015-04849.

References

1. Giaimo, F., Berger, C.: Design criteria to architect continuous experimentation for
self-driving vehicles. In: Proceedings of the International Conference on Software
Architecture, ICSA 2017. IEEE, New York (2017)

2. Giaimo, F., Yin, H., Berger, C., Crnkovic, I.: Continuous experimentation on cyber-
physical systems: challenges and opportunities. In: Proceedings of the Scientific
Workshop Proceedings of XP2016, p. 14. ACM (2016)

3. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: The right model for contin-
uous experimentation. J. Syst. Softw. 123, 292–305 (2017)

4. Olsson, H.H., Bosch, J.: Climbing the stairway to heaven: evolving from agile devel-
opment to continuous deployment of software. In: Bosch, J. (ed.) Continuous Soft-
ware Engineering, pp. 15–27. Springer, Heidelberg (2014)

5. Tang, D., Agarwal, A., O’Brien, D., Meyer, M.: Overlapping experiment infrastruc-
ture: more, better, faster experimentation. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
17–26. ACM (2010)

6. Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., Pohlmann, N.: Online con-
trolled experiments at large scale. In: Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2013,
pp. 1168–1176. ACM, New York (2013)

7. Amatriain, X.: Beyond data: from user information to business value through per-
sonalized recommendations and consumer science. In: Proceedings of the 22nd
ACM International Conference on Information & Knowledge Management, pp.
2201–2208. ACM (2013)

8. Kirchner, C.: Assessing safety aspects for continuous experimentation on the exam-
ple of automated driving. Master’s thesis, RWTH Aachen, February 2017

9. Navet, N., Simonot-Lion, F.: Automotive Embedded Systems Handbook. CRC
Press, Boca Raton (2008)

10. ReVeRe - Research Vehicle Resource at Chalmers. https://www.chalmers.se/
safer/EN/projects/pre-crash-safety/projects/revere-research-vehicle. Accessed 14
Jan 2017

11. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131 (2009)

12. COPPLAR Project - CampusShuttle cooperative perception and planning
platform. https://www.chalmers.se/safer/EN/projects/pre-crash-safety/projects/
copplar-campusshuttle. Accessed 14 Jan 2017

2 http://www.chalmers.se/en/areas-of-advance/Transport/news/Pages/Chalmers-
joins-the-Drive-Me-project.aspx.

https://www.chalmers.se/safer/EN/projects/pre-crash-safety/projects/revere-research-vehicle
https://www.chalmers.se/safer/EN/projects/pre-crash-safety/projects/revere-research-vehicle
https://www.chalmers.se/safer/EN/projects/pre-crash-safety/projects/copplar-campusshuttle
https://www.chalmers.se/safer/EN/projects/pre-crash-safety/projects/copplar-campusshuttle
http://www.chalmers.se/en/areas-of-advance/Transport/news/Pages/Chalmers-joins-the-Drive-Me-project.aspx
http://www.chalmers.se/en/areas-of-advance/Transport/news/Pages/Chalmers-joins-the-Drive-Me-project.aspx

Automatic Generation

An Architecture Framework for Modelling
and Simulation of Situational-Aware

Cyber-Physical Systems

Mohammad Sharaf1(B), Moamin Abughazala2, Henry Muccini1,
and Mai Abusair1

1 DISIM Department, University of L’Aquila, L’aquila, Italy
massharaf@yahoo.com, henry.muccini@univaq.it, mai.abusair@gmail.com

2 Computer Science Department, An-Najah National Univesity, Nablus, Palestine
m.abughazaleh@najah.edu

Abstract. Situational Aware (SiA) Cyber-physical systems (CPS) har-
moniously integrate computational and physical components to being
aware of what is happening in the surroundings and using this informa-
tion to decide and act. Architecture description of SiA-CPS can be a
valuable tool to reason about the selected solutions, and to enable code
generation and simulation. This paper presents an architecture frame-
work that automatically generates from a SiA-CPS architecture descrip-
tion, an executable code used to simulate the architecture model and
evaluate it in terms of data traffic load, battery level and energy con-
sumptions. The framework makes use of a model transformation app-
roach where, three SiA-CPS domain-specific modeling views are auto-
matically transformed into the input language of CupCarbon, an open
source tool supporting the simulation of sensor network architectures.

1 Introduction

An architecture description is the practice of recording software, system, and
enterprise architectures so that architectures can be understood, documented,
analyzed and realized [1]. Accordingly, a number of architecture frameworks,
architecture description languages, and different views and viewpoints have been
proposed in the years [2–5], each one focussing on a specific application domain,
set of views and viewpoints, or concerns. As clearly remarked since more than
two decades, an architecture description is essential to the analysis of the high-
level properties of a complex system [6]. It can expose various kinds of problems
that would otherwise go undetected [7].

This paper proposes a means to simulate situational-aware cyber-physical
systems, based on a multi-view architecture description.

Situational-aware cyber-physical systems (SiA-CPS) are cyber-physical sys-
tems that, by transforming sensed data into actionable intelligence, has the abil-
ity to observe the (user’s) surroundings and make detailed assessments about his
environment. SiA-CPS involves being aware of what is happening in the vicinity

c© Springer International Publishing AG 2017
A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 95–111, 2017.
DOI: 10.1007/978-3-319-65831-5 7

96 M. Sharaf et al.

to understand how information, events, and one’s own actions will impact goals
and objectives, both immediately and in the near future [8].

Architecting SiA-CPS requires the description of novel architectural views,
were the physical environment, as well as its cyber dimension, plays a key role [9].
Software components, implemented on top of SiA-specific hardware IoT devices
(e.g., sensors and actuators, CCTV cameras, beacons), are required to interact
in a prescribed open or closed physical space (e.g., a parking lot, a classroom, a
hallway) under observation [10]. In previous work [11], some of the co-authors
presented an architecture description for SiA-CPS. Designed according to the
IEEE/ISO/IEC 42010 standard [1], the CAPS architecture description supports
an architecture-driven development of SiA-CPSs, and comprises three (plus two)
modeling views, and namely: the software architecture structural and behav-
ioral view (SAML), the hardware view (HWML), and the physical space view
(SPML). The latter implements an architecture description for what typically
referred as cyber physical space [12–14]. In order to create a combined software,
hardware, and space view of SiA-CPS, the three proposed modelling views are
linked together via two auxiliary views, denoted as Mapping Modelling Language
(MAPML) and Deployment Modelling Language (DEPML).

This work builds on top of [11] by proposing a code generation framework
that, by transforming CAPS models into the CupCarbon [15] simulator input,
will support the CAPS architecture simulation in terms of data traffic and load
and battery consumptions. The framework, through a group of code genera-
tors, transforms SAML model (and then, HWML and SPML) into a completely
functional code. This paper will focus on the CupCarbon simulator language
named Senscript. The CAPS modeling and simulation framework is realized
by exploiting advanced Model-Driven Engineering (MDE) techniques, such as
metamodelling, model weaving and model transformation.

The main contributions of this paper can be summarized as follows:

• A technical process, comprising four main processes (parsing, analyzing, gen-
erating script, and generating project) to manipulate CAPS models;

• A set of model to text transformations, that transforms SAML, HWML, and
SPML models into CupCarbon files;

• The initial application to the UnivAq Street Science situational awareness
application.

The rest of the paper is organized as follow: Sect. 2 provides background infor-
mation on the CAPS modeling framework, the CupCarbon Simulator, and the
UnivaAq Street Science application scenario. Section 3 details the code genera-
tion framework: its process and the transformational approach. Section 4 applies
the CAPS simulation approach to the NdR system, while simulation results are
presented in Sect. 5. Section 6 concludes the paper.

An Architecture Framework for Modelling and Simulation 97

2 Background

2.1 The CAPS Modeling Framework

The CAPS modeling framework supports the engineer of SiA-CPS. It is based on
a multi-view architectural approach designed according to the IEEE/ISO/IEC
42010 standard [1]. The aim of this framework is to support the architecture
description, reasoning, and design decision process.

The CAPS is designed and implemented taking into account three architec-
tural views: the software architecture structural and behavioral view (SAML),
the hardware view (HWML), and the physical space view (SPML). We decided
to have all things related to Software in one view (as well for HW and SPML) in
order to provide a cohesive modeling environment. In addition, the CAPS has
two auxiliary views, denoted as Mapping Modeling Language (MAPML) and
Deployment Modeling Language (DEPML), are used to link together the three
views. While details are provided in [11], we here summarize the main modeling
elements.

The software architecture view supports architects in the definition of the
software architecture of the SiA-CPS application through the SAML model-
ing language. This view looks exclusively to software elements, with a specific
focus on the architecture structure and its behavior [16]. Briefly, the SAML
view describes how components and connections exchange messages through
message ports. Each component in SAML model can declare a set of modes,
and each mode can contain a list of events, conditions, and actions, that
all together represent the behavior of the component (an example is provided in
Sect. 4). Moreover, application data manipulated by actions are defined inside
the component.

The hardware view describes the hardware characteristics of each hardware
element to be used within a SiA-CPS. A model in the hardware modeling lan-
guage (HWML) encompasses specific low-level, node-specific information, like its
memory, energy source, processor, installed sensing units and actuating
units. A description of the HWML metamodel is reported in [11].

The physical space view describes the physical site, in the real world, where
the SiA-CPS equipment will be deployed. The space modeling language (SPML)
provides support for developing 3D model editors. The CAPS modeling frame-
work enables engineers to specify 3D syntaxes for SPML in a declarative way
which will reduce the amount of effort and need for low-level expertise. It aims
to support the standardization of a language for declarative specification of 3D
concrete syntaxes for SiA-CPS. This view is especially useful for developers and
system engineers when they have to consider the network topology, the presence
of possible physical obstacles (e.g., walls, trees) within the network deployment
area, and so on. More details are available in [11].

2.2 CupCarbon Simulator

CupCarbon [15] is an open source simulator dedicated for wireless sensor net-
work. It is used for scientific and educational purposes. It assists scientists in

98 M. Sharaf et al.

testing their wireless topologies and protocols, while it assists trainers in clar-
ifying how wireless sensors work. Moreover, in CupCarbon, a network can be
designed and sensors can be deployed directly onto the map by using Open-
StreetMap that is provided through its interface. For more specific sensor nodes
configurations, CupCarbon provides a scripting language called SenScript that
can be used for this purpose. Moreover, its environment allows users to design
mobility scenarios through which they generate different events. After deploying
sensor nodes, one can use CupCarbon to simulate the energy consumption.

In this paper, the CupCarbon simulator will receive the input files generated
by the CAPS code generator. Those files, encoding information coming from
CAPS in the SenScript language, will be used to simulate energy consumption,
battery level and data traffic of model nodes associated with the CAPS archi-
tectural model.

2.3 UnivAq Street Science System

The UnivAq Street Science is the European Researchers’ Night (NdR) event
organized by the University of L’Aquila. In this event, the research community
and public are brought together from the afternoon until late at night to share a
combination of entertainment and information. As an exemplification scenario we
will take the NdR held in L’Aquila city center, in which performances, lectures,
demonstrations, workshops take place in its squares, main streets, and buildings.
From our experience in organizing this event in L’Aquila, we captured some
source of evidence. First, about 20,000 visitors are coming to the NdR every
year. Second, late hours usually have more crowded than early hours. Third, the
weather changes the visitor’s preferences in what to see and where to stay more.
Forth, visitors are unable to easily locate activities and though they miss some
of them.

Our research group has been invited to provide new services to improve
the quality of the visiting experience. For this purpose, we developed (and we
are refining for the 2017 edition) a SiA-CPS with a mobile application as the
first step towards a better NdR experience. Through the environmental physical
sensors that we are deploying in the NdR area, and the mobile application used
by visitors on their smartphones, we are providing the following services: (i)
access control to rooms, laboratories, and parking lots, (ii) open and closed
spaces monitoring, (iii) balance people crowd among different events and spaces,
by using the mobile app to inform visitors about the degree of crowd in a place,
(iv) make a planner that creates a tour while minimizing the waiting time and
crowd in an area, (v) urban security, specifically in the case of earthquakes, fires
and over crowd.

In this paper we focus on two situational-aware services that are planned for
the NdR. These services are related to rooms access control and safe airflow.
A SAML model will be presented in Sect. 4. We will also describe the related
HWML and SPML models. By using the CAPS code generator, the models will
be transformed into CupCarbon Scripts. After all, the model generated code

An Architecture Framework for Modelling and Simulation 99

will be sent to the CupCarbon simulator in order to evaluate the architecture’s
energy consumption, battery level, and data traffic.

3 CAPS Code Generation

CAPS code generation framework is a framework in which CAPS models pass
through different interpretations in order to build a code project that is able
to be inserted in CupCarbon simulator. By running this code project on Cup-
Carbon, we will be able to evaluate CAPS architecture in terms of data traffic
load, battery level and energy consumptions of its nodes. This framework starts
from interpreting SAML model and its components into Senscript files. Then,
HW specifications and the deployment locations of nodes will be extracted from
HWML and SPML models, respectively, and used to set up configuration files.
All files result from CAPS models will be used in building CupCarbon project.

As depicted in Fig. 1, the framework has four activities: parsing, analyzing,
script generation and project generation. These activities are detailed in the
following sections.

3.1 Parsing

In this activity we use as input the SAML model that is typically stored in
XMI file. This file encompasses a lot of information that are not needed for code
generation. Thus, this information needs to be filtered out in order to acquire
a relevant subset of SAML model values that conforms to SAML meta model.
These values are used to instantiate templates. Templates and filtering pattern is
one of several patterns that are usually followed in implementing code generators,
as described in [17].

The parser is in charge of parsing the SAML XMI file to get all the infor-
mation needed based on templates definitions. Templates are defined based on
SAML meta model, and there are different templates defined for different SAML
sub models. For example, there are templates for Software Architecture elements
(SAML components and connectors), ports, modes and data. This parser, will
create an object of software architecture, that in turn carries the SAML model
description in java.

Fig. 1. CAPS automatic code generation framework

100 M. Sharaf et al.

Accordingly, the resulting software architecture object contains the struc-
tural and behavioral part of the model. For the structural part, it contains the
declarations of components, their data, their ports (as defined in the SAML
meta model). Moreover, according to the definition, each port can be an IN
message port or an OUT message port. The IN port defines APIs for messages
to be received from other components. The OUT port defines a set of APIs for
messages to be sent for other components [18].

For the behavioral part, each component has a group of modes, or states. The
mode is represented as a method that carries the name of the mode. The mode
method can contain if statements that perform logical tests. If a test evaluates
to true, the mode method performs an action. The action can change variables
values defined in the component scope and/or can call another mode method.
Exit and entry modes are represented by calling methods of different types.
Furthermore, this behavioral part of the code generator provides helpers to nav-
igate through the diverse SAML metaclasses that are responsible for modeling
the behavior.

The assumption we have in this work, that, each component in CAPS must be
built to have at most one sensing unit (humidity sensor, or temperature sensor,
or etc.). The reason of this assumption is, in the current state, CupCarbon
is able to manage one sensing unit inside its sensor node. Hence, CupCarbon
sensor node can contain many radio modules, a battery and a sensing unit. As
it will be shown later, the component in CAPS will be represented as a sensor
node in CupCarbon. More complex representation for several sensors in CAPS
component will be handled in the future.

3.2 Analyzing

This activity takes as an input the software architecture object and the SAML
model description in java, that result from the previous parsing activity. The
input must be transformed into CupCarbon compatible information, in order to
build CupCarbon Senscript files.

Fig. 2. Part of CupCarbon template and analyzer

An Architecture Framework for Modelling and Simulation 101

The Analyzer (ModelAnalyzer) depicted in Fig. 2(b), represents the core
section in code generation. The method analyzeModel takes the Software Archi-
tecture object as a parameter and analyzes each element to create the corre-
sponding objects that will be used later for generating CupCarbon sensors and
scripts. The CupCarbon template depicted in Fig. 2(a) represents the structure
of CupCarbon element that will be used in this conversion.

The Analyzer is composed of two main parts:

(1) Element Analyzer: this part of the code (line 10 in Fig. 2(b)), takes an
SAElement object as a parameter (that retrieves the parsed SAML software
architecture elements) and then checks each element type and creates new
objects that will represent the element in CupCarbon. For example if the
element is a component, it will create an object from the Component class.
If the element is a connection, it will create an object from the Connection
class. Another important task of this part, is the mode analyzer. It is respon-
sible for analyzing each mode in a component.

Modes (that were represented as methods) and mode transitions (repre-
sented as calling methods), will be interpreted as a group of while and if
statements (a Senscript code, that result from a component of two modes,
is described in Sect. 4, Fig. 5). The behavioral elements (event-condition-
action) contained in the mode will be interpreted into other objects (com-
posite objects) for a component. Thus, the result from this step, is a list of
CupCarbon components, each CupCarbon component (CupCarbon element)
has a sensing unit, radio module parameters and instructions that will be
used in the creation of SenScript file for this CupCarbon component.

(2) Connection Analyzer: this part of the code (line 13 in Fig. 2(b)), is used
to check the connection between components that already have been gen-
erated, in the previous part, and deciding their target and source compo-
nents (connected components). Moreover, it denotes connections that occur
between two components on the same platform or separated by a network,
and it can decide how messages are controlled when they are moving between
two components on different communication channels. The communication
over these connections can be synchronous and asynchronous [19]. Asynchro-
nous communication is acquired through using buffers (declaring communi-
cation array), while synchronous communication is acquired through using
the buffer and setting its size to 0. For the sake of simplicity, the communi-
cation on the connection is made unidirectional and one communication is
used for each different exchanged message. The buffer size is set into 1 in
asynchronous communication, but during the code generation, the user can
change this size of the buffer depending on the requirements of the applica-
tion to be analyzed.

Finally, the result of analyzing activity is a list of CupCarbon components
defined with their connections. The object that carries this information is shown
in Line 3 on Fig. 2(b). These objects represent CupCarbon elements description
in java, and will be an entry to the script generation activity.

102 M. Sharaf et al.

3.3 Generating Script

This activity takes as an input the list of CupCarbon components objects pro-
duced from the analyzing phase. This activity is in charge of preparing the
Senscripts code. A Senscript file for each component will be produced.

Part of the code responsible of Senscript generation is shown in Fig. 3.
Figure 3(a), Lines 5, 6, 7, and 8, show how each component in the list of Cub-
CarbonElement is sent to SenscriptGenerator. Figure 3(b), Line 10, shows the
generateSenscript method that receives the component. This method uses several
helpers and command instructions to translate the content of component object
into Senscript code. In Fig. 3(c) an example of helper methods that translate
read and write variables statements are shown.

Fig. 3. Part of generating senscripts code

The script controller in Fig. 3(a), is responsible for putting all the translated
statements for each component in a distinct Senscript file.

For each component, the script controller depicted in Fig. 3(a), is in charge
of storing all the code translated for a component into a senscript file (.csc). The
name of the file is distinguished by the device id (component id).

Thus, the result of this activity is a group of SenScripts files that represent
all the components in the CupCarbon simulator (the CupCarbon component is
represented as a CubCarbon node in the CupCarbon simulator).

3.4 Generating Project

This activity is responsible for creating files readable by the CupCarbon sim-
ulator. These files include configuration parameters and radio modules needed

An Architecture Framework for Modelling and Simulation 103

to run a CupCarbon project. Examples of device parameters are: device type,
device id, device longitude, device latitude, and device elevation. Examples of
device radio modules are: radio standard, radio radius, and radio data rate [15].

The location parameters for each device (device longitude, device latitude,
device elevation) will be automatically extracted from the SPML model (XMI
file). Other parameters and radio modules will be extracted from the HWML
model (XMI file). Then, an automatic generation of parameters and radio mod-
ules files are created. Each device has parameters file and a radio module file.
An example of parameters and radio modules extracted from these models into
CupCarbon files are shown in Figs. 6 and 7 in Sect. 4.

Parameters and radio modules files, along with the generated Senscript files,
will form the final project to be loaded in the CupCarbon simulator workspace.

Finally, after loading the project and before running the simulation process on
CupCarbon, few more configurations are needed to be done through its interface.
First, set some device (node) parameters through its interface (like, setting up
the energy max value that represents the initial energy of the battery). Second,
create natural events for each sensing unit. This in turn will create a natural
event file for each sensing unit and store it in the natevent folder in the project
workspace.

4 Application of CAPS Models, Code Generation
and Simulation to the NdR Case Study

In this section, we will simply represent a partial example of NdR case study
introduced in Sect. 2. A simple scenario describes the monitoring of people count
and oxygen level in a NdR room will be introduced. We will show its SAML
model that plays a major role in SenScript code generation. We will show the
needed part of its related HWML and SPML models that will be transfered to
CupCarbon configuration files.

Figure 4 shows the SAML model of the CAPS. It is important to note that
this figure is actually a screen-shot of our CAPS tool [20]. From a structural
point of view, the shown SiA-CPS model is composed of five main components;
OxygenSensor, RoomPeopleCounter, RoomController, EntranceLockActuator,
WindowsLockActuator, and Server.

The OxygenSensor component is responsible for monitoring the Oxygen
breathing percentage in a room. It includes two modes: (1) Normal mode: in
this mode the oxygen sensor reads Oxygen breathing percentage (O2) in a room
every 100 s. A timer is set in this mode to schedule the reading from the oxygen
sensor. A message carrying the O2 value is sent from the output message port of
the OxygenSensor component to the in port of the RoomController component.
Moreover, if the reading of O2 is less than 0.19 that means the state of the room
will enter the critical mode. (2) Critical mode: in this mode the oxygen sensor
reads Oxygen breathing percentage (O2) in a room every 1 s, since this mode
indicates the unsafe level of oxygen. Also in this mode, a timer is set to schedule
the reading from the oxygen sensor. A message carrying the O2 value is sent

104 M. Sharaf et al.

Fig. 4. The Software architecture of simple scenario in NdR case study

from the output message port of the OxygenSensor component to the in port
of the RoomController component. Moreover, if the reading of O2 is more than
0.23 that means the state of the room will go back to the normal mode.

The RoomPeopleCounter component is responsible for counting the people in
a room. This counter work all the time to count people in a room. But, it updates
this information to the RoomController only every 5 s. When a timer is fired,
it sends a message containing the people count in a room (count) from the out
port of the RoomPeopleCounter component to the in port of the RoomController
component.

The RoomController component is responsible for receiving sensors data in
a room and take decisions based on its values. The decisions in this example
are related to send a control messages to the actuators to open and/or close,
windows and doors. The description shown in RoomController component is a
simplified version of its supposed work. In this example, RoomController com-
ponent receives two types of messages from its out ports:

(1) Message contains Oxygen breathing percentage: if the received value is less
than 0.19, this component sends through its out port a message to the in port
of the WindowsLockActuator component. This message contains a Boolean
variable (open), the value of this variable is set to true. Otherwise, if the

An Architecture Framework for Modelling and Simulation 105

Fig. 5. SenScript generated by CAPS code generator for OxygenSensor component

received value is more than 0.23, this component sends through its out port
a message to the in port of the WindowsLockActuator component. This
message contains a Boolean variable (close), the value of this variable is set
to false.

(2) Message contains people count: if the received value is less than room capac-
ity (rCapacity = 35), this component sends through its out port a message to
the in port of the EntranceLockActuator component. This message contains
a Boolean variable (open), the value of this variable is true. Otherwise, if
the received value is more than rCapacity, this component sends through its
out port a message to the in port of the EntranceLockActuator component.
This message contains a Boolean variable (close), the value of this variable
is false.

The RoomController component is in charge of sending a message con-
tains the values of the Oxygen (oxy), people counter (pCounter), and ID of
a room (roomID) to the Server, in port, from the out port of the RoomCon-
troller.

WindowsLockActuator component is the one responsible for performing
the correct action of opening or closing the windows. If it receives from its
in port a message containing a true value coming from the out port of the
RoomController component, it enables the actuator and thus it opens the
windows. Otherwise, if the value received from the out port of the Room-
Controller component, to its in port, containing a false value, the actuator
closes the windows.

EntranceLockActuator component is liable for performing the correct
action of opening or closing the doors. If it receives from its in port a mes-
sage containing o true value coming from the out port of the RoomController

106 M. Sharaf et al.

component, it enables the actuator and thus it opens the doors. Otherwise,
if the value received from the out port of the RoomController component,
to its in port, containing a false value, the actuator closes the doors.

Finally, Server component is liable of processing the different data received
through its in ports from other components. In this example, we restrict the
Server component responsibility in sending updates to the users running NdR
mobile application. This update indicates the rooms state if they are full or
not, depending on the roomID and pCount received from out port of RoomCon-
trollers.

For the sake of space, we show in figure 5 the code generated by CAPS gener-
ator for OxygenSensor component. Line 3 and Line 20 represent the normal and
critical mode respectively. Line 14 and Line 27 represent the timers in the normal
and critical modes, respectively. Line 4, 10 and 23 represent the instructions of
reading the current oxygen value from the oxygen sensor.

Fig. 6. An Example of HWML model and its representation in CupCarbon

According to the HWML model, we take the OxygenSensor component as an
example to show the configuration information needed for it in CupCarbon sim-
ulator. Figure 6(b), shows part of HWML model that represents hardware speci-
fications for OxygenSensor component in CAPS. This OxygenSensor is equipped
with O2 sensor for sensing the percentage of oxygen in a room. It uses Texas
Instruments ChipCon 2420 RF transceiver and it uses batteries of two AA with
up to 19159 Joules. The sensor radio standard is 802.15.4 and radio radius is 20.
Figure 6(a), shows a screenshot for an Oxygen Sensor radio modules configura-
tion file.

Referring to SPML model. The example, depicted in Fig. 7, represents part
of the physical environment of our NdR scenario. Figure 7(b), shows part of the

An Architecture Framework for Modelling and Simulation 107

SPML model that describes the deployment physical position of OxygenSensor
device. Figure 7(a), shows CupCarbon parameters needed from the OxygenSen-
sor SPML model, these parameters are: device longitude (x), device latitude (y)
and device elevation (Elevation).

Fig. 7. An Example of SPML model and its representation in CupCarbon

In addition to the described models, there are two auxiliary models: (i)
MAPML is Mapping Modeling Language used to link SAML and HWML, (ii)
DEPML is Deployment Modeling Language (DEPML) used to link SAML and
SPML. For the sake of simplicity, they are not described here. For better details
about these auxiliary models, please see [11].

5 Results

In this section we will describe the results of running our project in CupCarbon
simulator. We applied three different behaviors for the NdR case study exam-
ple. These behaviors are, first, the OxygenSensor runs with normal mode only.
Second, the OxygenSensor runs with critical mode only. Third, the OxygenSen-
sor runs in normal and critical modes, that is originally described in Sect. 4.
These three different behaviors are applied in our CAPS modeling framework
tool. Then, we used our CAPS automatic code generation framework tool to
produce three CupCarbon projects. After all, we ran the simulator under the
three behaviors and compare data traffic, energy consumption and battery level
of it nodes.

For all simulation experimentations, we fixed simulation time to 6000 s,
and energy max for all nodes to 19159 J. For OxygenSensor natural events,
we selected random generation between 0.10–0.35. For people counter natural
events, we selected random generation between 15–45. The Fig. 8, shows a screen
shot of running the NdR project (applying third behavior) on CupCarbon sim-
ulator.

108 M. Sharaf et al.

Fig. 8. Running NdR project on CupCarbon simulator

Table 1. Messages exchanged in components during simulation

In all the behaviors applied, the OxygenSensor and RoomPeopleCounter
components are always sending messages and they don’t receive any. While, Win-
dowsLockActuator, EntranceLockActuator and server components are always
receiving messages and they don’t send any. But, In RoomController, the traf-
fic is in both direction, it sends and receives messages. This explains some zero
values appear in the table depicted in Table 1, this table shows the exchanged
messages through the IN and OUT ports of the components during running the
three behaviors in CupCarbon, it also shows the data traffic in Kilo Bytes that
occur at each component.

Further, from Table 1, we conclude that the data traffic of OxygenSensor,
RoomController, and server node receive the highest traffic when we run the
critical mode behavior. This is due to the high messages they exchange during
this mode. The normal mode receives a low amount of traffic but it could be not
safe enough for detecting Oxygen level in a room. Thus, we can notice that using

An Architecture Framework for Modelling and Simulation 109

the critical and normal modes give also a low range of data traffic compared to
using only critical mode. Moreover, using critical and normal modes together is
still a safe behavior. Thus, this proves how small changes in the architecture can
affect on the efficiency concern.

According to the battery levels and power consumption. The Figs. 9(a), (b)
and (c), show the battery level when running the simulator under the three
behaviors. The Figs. 9(e), (d) and (f), show the energy consumption when run-
ning the simulator under the three behaviors. From these figures, if we want to
consider for example the two nodes, OxygenSensor (S1 in blue) and RoomCon-
troller (S3 in red), we notice that S3 received the highest battery level drain when
running the three modes. That is expected since the controller receives the high-
est data traffic among them. A minor improvement is noticed on RoomController
when running the two modes together. While, for OxygenSensor we can notice
how it experience the lowest battery level drain when it runs only the normal
mode, the highest drain is when it runs critical mode, but we can also notice
that running the two modes together gain better battery level improvements
than critical mode. If we notice also the same nodes in the energy consumption
charts, we can see how running critical and normal modes together shows a good
improvements comparing to running only critical mode. Moreover, we notice how
the energy consumption in normal mode is close to energy consumption in nor-
mal and critical modes together.

Therefore, to recognize the tradeoff between safety, energy and data traffic
concerns. We notice that using only normal mode achieves energy efficiency by

Fig. 9. CupCarbon results for battery level and power consumption in different modes
(Color figure online)

110 M. Sharaf et al.

having the least data traffic. The energy efficiency is inversely proportional to
the data traffic size (number of messages exchanged). However, in normal mode,
the safety concern will be less than it in critical mode. Therefore, using normal
mode with critical mode provide a better compromise between those concerns.

Our simulation results show that by using CAPS modeling framework, CAPS
code generation framework, and CupCarbon simulation for SiA-CPS, we can get
the early evaluation for energy and data traffic savings while developing SiA-
CPS. This vision of testing the architecture in the early stage will improve the
process of architecting such systems.

According to the real experimentation, it is a work that we are planning to
do. It requires a long process of deploying sensors and actuators. We will use the
arduino code, that result from cubcarbon, to be installed in real sensors. The
Ndr event runs in L’Aquila every year in September, so our first experimentation
is supposed to be in September 2017.

6 Conclusions and Future Work

In this paper we proposed a modelling platform supported by a code gener-
ation framework, and integrated with CupCarbon simulation for engineering
situational-aware cyber-physical systems.

This frameworks allows engineers to run a trade-off analysis between energy
consumption and performance indices like sensor nodes throughput, reliability
and network latency. The modeling framework, automatic code generation, and
simulations represent only the starting point of a series of goals we are willing
to achieve in the mid-term.

The code generation framework functioning and simulation has been tested
by applying an energy and data traffic-related simulation of the NdR SiA-CPS.

In future work, we plan to make these frameworks used by practitioners
involved in the development of SiA-CPS. We wish to record and analyze their
usage patterns and collect their feedback for further improvements. We are also
working to realize an analysis that, while getting in input a series of environ-
mental configurations options, can tell us which configuration can increase the
network life-time.

Moreover, we will expand in the near future the Ndr case study to real exper-
imentation that includes different architectures of massive size and real events.
Thus, the real evaluation will be compared to the result from the simulator and
this will clearly state the efficiency of our work.

References

1. ISO/IEC/IEEE: ISO/IEC/IEEE 42010:2011 Systems and software engineering -
Architecture description (2011)

2. Kruchten, P.B.: The 4+1 view model of architecture. IEEE Software 12(6), 42–50
(1995)

An Architecture Framework for Modelling and Simulation 111

3. Rozanski, N., Woods, E.: Software Systems Architecture: Working With Stake-
holders Using Viewpoints and Perspectives. Addison-Wesley Professional, Boston
(2005)

4. Kruchten, P., Capilla, R., Dueñas, J.C.: The decision view’s role in software archi-
tecture practice. IEEE Softw. 26(2), 36–42 (2009)

5. Emery, D., Hilliard, R.: Every architecture description needs a framework: express-
ing architecture frameworks using ISO/IEC 42010. In: WICSA/ECSA 2009 (2009)

6. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall, Upper Saddle River (1996)

7. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-
SOFT Softw. Eng. Notes 17(4), 40–52 (1992)

8. Jajodia, S., Liu, P., Swarup, V., Wang, C.: Cyber Situational Awareness, vol. 14.
Springer, Heidelberg (2010)

9. Malavolta, I., Muccini, H., Sharaf, M.: A preliminary study on architecting cyber-
physical systems. In: Proceedings of the 2015 European Conference on Software
Architecture Workshops, vol. 20. ACM (2015)

10. Muccini, H., Sharaf, M., Weyns, D.: Self-adaptation for cyber-physical systems: a
systematic literature review. In: Proceedings of the 11th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pp. 75–81. ACM
(2016)

11. Muccini, H., Sharaf, M.: Caps: architecture description of situational aware cyber
physical systems. In: 2017 IEEE International Conference on Software Architecture
(ICSA), pp. 211–220. IEEE (2017)

12. Menon, V., Jayaraman, B., Govindaraju, V.: The three rs of cyberphysical spaces.
Computer 44(9), 73–79 (2011)

13. Malavolta, I., Muccini, H.: A survey on the specification of the physical envi-
ronment of wireless sensor networks. In: 2014 40th EUROMICRO Conference on
Software Engineering and Advanced Applications, pp. 245–253 (2014)

14. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Architecting dynamic cyber-physical spaces.
Computing 98(10), 1011–1040 (2016)

15. Bounceur, A.: Cupcarbon: a new platform for designing and simulating smart-city
and IOT wireless sensor networks (SCI-WSN). In: Proceedings of the International
Conference on Internet of things and Cloud Computing, p. 1. ACM (2016)

16. Crnkovic, I., Malavolta, I., Muccini, H., Sharaf, M.: On the use of component-
based principles and practices for architecting cyber-physical systems. In: 2016
19th International ACM SIGSOFT Symposium on Component-Based Software
Engineering (CBSE), pp. 23–32 (2016)

17. Voelter, M.: A catalog of patterns for program generation. In: EuroPLoP, pp. 285–
320 (2003)

18. Bucchiarone, A., Di Ruscio, D., Muccini, H., Pelliccione, P.: From requirements
to code: an architecture-centric approach for producing quality systems. arXiv
preprint arXiv:0910.0493 (2009)

19. Pelliccione, P., Inverardi, P., Muccini, H.: Charmy: a framework for designing
and verifying architectural specifications. IEEE Trans. Softw. Eng. 35(3), 325–346
(2009)

20. Muccini, H., Sharaf, M.: Caps: a tool for architecting situational-aware cyber-
physical systems. In: 2017 IEEE International Conference on Software Architecture
(ICSA). IEEE (2017)

http://arxiv.org/abs/0910.0493

Control of Self-adaptation Under Partial
Observation: A Modular Approach

Narges Khakpour(B)

Linnaeus University, Växjö, Sweden
narges.khakpour@lnu.se

To realize correct adaptive and reconfigurable systems, we need techniques to
assure that the behavior of an adaptive system during dynamic adaptation is
correct. In this paper, we propose a modular approach to synthesize a symbolic
reconfiguration controller that guides the behavior of a system during adaptation
under partial observations. The reconfiguration controller observes the system
behavior partially during an adaptation and controls it by allowing/disallowing
actions in a way to ensure that a given property is satisfied and a deadlock is
avoided.

1 Introduction

Partial observability arises often in self-adaptive systems, because not all parts
of a system are under the control of the adaptation logic, or the observation
cost of some certain parts can be high (e.g. for security or performance reasons)
[6], or there is uncertainty in the observed behavior (e.g. imprecision in the
data sensed by sensors). Hence, an adaptive system with partial observations
should be designed in a way that can make a reasonable decision based on its
observations to control the adaptation behavior.

In order to have a safe structural adaptation in component-based systems, we
must address some challenges [12]. A structural adaptation may involve simul-
taneous changes in several independent components that do not occur instan-
taneously. The system is likely to move through several invalid configurations
before reaching a final valid configuration and some safety properties can become
violated in transient states. Therefore, correct design of a system such that the
system satisfies some specific properties during adaptation is crucial. Further-
more, it is often assumed that a newly added component starts its execution in
a predefined initial state, while it is required for the new state to be consistent
with the system state before the reconfiguration, e.g. the state of a replaced
component should be transferred to the new component properly. In addition,
there must not be a deadlock in the adaptation phase.

To address the above mentioned shortcomings, in this paper, we propose a
modular symbolic approach to control the behavior of a system under partial
observations during a reconfiguration phase, i.e., while the system is in a tran-
sient state, undergoing a structural reconfiguration, which may involve sequences
of actions that affect different components of the system, as the unaffected parts
of the system continue to run concurrently [12]. The full version of this paper is
published in [10].
c© Springer International Publishing AG 2017
A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 112–119, 2017.
DOI: 10.1007/978-3-319-65831-5 8

Control of Self-adaptation Under Partial Observation: A Modular Approach 113

The behavior of the system during a reconfiguration is defined as a set of
configurations where one of the configurations is active at a time and the system
switches among them. We specify the system behavior in each configuration
using a symbolic state transition system. Afterwards, the undesirable states or
bad states that must be avoided during a reconfiguration are described using
a predicate on the system state variables, e.g. no message should be lost. We
also define the observation of the system in each configuration, and propose an
algorithm that computes the bad states of each configuration and synthesizes a
local controller for each configuration using the supervisory controller synthesis
method proposed in [9]. The result is then a reconfiguration controller used
to control the behavior of the system during an adaptation, i.e. the controller
runs in parallel with the system, monitors the system, and allows/disallows the
controllable events to avoid the bad states. An event is uncontrollable if it cannot
be prevented from occurring in a system, e.g. the event of a component crash is
uncontrollable, as we cannot prevent it from happening.

Our contributions in this paper are two-folded:

– We propose the first method to synthesize a controller to support adaptations
in self-adaptive systems under partial observations where some information
is invisible, uncertain or imprecise.

– Compositional analysis and symbolic methods are the two common ways to
handle the scalability issues. To enhance the scalability, we propose a modular
symbolic method to synthesize a (non-blocking) controller to enforce safety
properties that can be used to control infinite systems.

Structure of the Paper. This paper is organized as follows. We present a
brief review of the symbolic supervisory controller synthesis method in Sect. 2.
Section 3 discusses specification of a system during the adaptation phase. We
introduce our synthesis approach in Sect. 4. Section 5 discusses related work,
and finally in Sect. 6, we conclude and discuss our plans for future work.

2 Symbolic Controller Synthesis

In this section, we briefly review the symbolic supervisory controller synthesis
with partial observation approach [9]. In this method, the system behavior is
represented by a symbolic transition system.

Definition 1 (Symbolic Transition System). A symbolic transition system
(STS) is a tuple T = 〈V,Θ,Σ,→〉 where V = 〈v1, . . . , vn〉 is a tuple of variables,
Θ ⊆ DV is a predicate on V defining the initial condition on the variables,
Σ is a finite alphabet of actions, and → is a finite set of symbolic transitions
δ = 〈σδ, Gδ, Aδ〉 where σδ ∈ Σ is the action of δ, Gδ ⊆ DV is a predicate on V ,
which guards δ, Aδ : DV �→ DV is the update function of δ, defines as a set of
assignments, and DV represents all possible (infinite) valuation of the variables
in V .

114 N. Khakpour

A partial observation of the system means that the current state is unclear,
and it’s defined in term of a mask function M : DV → Y , that maps the system
states to the states of the observation space Y . The actions Σ = Σc ·∪Σuc are
partitioned into the set of controllable actions Σc , and the set of uncontrollable
ones Σuc . In [9], a symbolic method is used to compute a controller C = 〈S, Θ0〉
where the function S : Y → 2Σc defines a set S(y) of controllable actions to forbid
in any state ν such that y = M(ν), for an observation y ∈ Y , and Θ0 ⊆ DV is
the set of forbidden initial states. This controller avoids the system T to reach
the bad states B and guarantees that for all reachable states of the controlled
system, there is a transition δ from that state (i.e. the system is non-blocking).
To this end, a set I(B) is computed using fix-point computations that contains
the states that lead to B enabling only uncontrollable actions, or it would lead
to the blocking states in the controlled system (see Fig. 1). Then a controller
is designed to disable all the controllable actions that may lead to a state in
I(B), for each observation y ∈ Y , by restricting the transitions’ guards in the
controlled system.

3 Moldeing a Reconfiguring System

A system is composed of a set of components in addition to a global recon-
figurator. The reconfigurator is a component that describes different strategies
(sequences of guarded actions) to reconfigure a system structure toward a target
structure. A reconfigurator contains two types of actions: structural actions to
modify the system structure and behavioral actions used to interact with the
system components.

A reconfigurator can partially observe the components’ variables, and influ-
ence their values by synchronizing on the common actions. A structural reconfig-
uration is performed by synchronization of the reconfigurator and the involving
component on the structural actions. We build an abstract model of the global
reconfigurator, called abstract reconfigurator K, that describes the system from
a pure structural perspective [10]. Figure 2(ii) represents the abstract reconfig-
urator of Fig. 2(i). A state gi of K is a graph that shows the system structure
in the configuration gi, and a transition 〈gi, l, gi〉 models a structural change, if
gi 	= gj .

We define the system behavior during a reconfiguration as a set of configu-
rations where one of them is active at a time. The system is formally defined
as a tuple 〈K,T, Ψ〉, where K is the abstract reconfigurator that shows how the
system should be reconfigured, T is a set of STSs specifying the configurations
behavior, and Ψ(gi) maps a configuration gi to its corresponding STS in T. A
configuration with the system structure gi is modeled as a symbolic state tran-
sition system. The behavior of a system in a specific configuration is obtained
by composing the behavior of the involving components in addition to its the
behavior of the global reconfigurator in that configuration [10].

Example 1. We use a consumer-producer example as our running example that
consists of one producer, one buffer and one consumer. The producer produces

Control of Self-adaptation Under Partial Observation: A Modular Approach 115

Fig. 1. The method overview

Fig. 2. The reconfigurator

data and puts them in the buffer where the consumer fetches data. Figure 2 (i)
shows a global reconfigurator that replaces the buffer b1 with a larger buffer
b2. In this figure, the action add(c) adds a new component c, del(c) removes
the component c and con(c, c′) connects c to c′. Figure 3 partially shows the
behavior of our example in the configuration pa (see Fig. 2(ii)) where a state
identifier shows the concatenation of the first two characters of the components’
states followed by the configuration ID. A transition label is of the form 〈σ, φ, a〉
where σ is the action, φ is the transition guard and a is the set of updates.

4 Modular Synthesis of a Controller

We call a reconfiguring system 〈K,T, Ψ〉 structurally progressive if and only if,
its abstract reconfigurator K contains no cycle, i.e. there is no path from a
state to itself. This type of systems progress their structure toward the final
configurations. Given a structurally progressive reconfiguring system 〈K,T, Ψ〉,
and a function B(g) that defines the bad states in the configuration g, we present
an algorithm to synthesize a (non-blocking) controller that avoids the bad states
of the system.

116 N. Khakpour

seididwapa0

seidwawapa0

<genData,true, ID>

ididididpa0

<get,nb1>0,nb1=nb1-1;nc1=nc1+1>
[nb1>0 and c-1>=0]

[nb1>0 and c+4>=0 and nb1+4>=0]
[nb1>0 and X]

[nb1>0]

ididwaidpa0

<get,nb1>0 ,nb1=nb1-1;nc1=nc1+1>
[nb1>0 and c-1>=0]

[nb1>0 and c+4>=0 and nb1+4>=0]
[nb1>0 and X]

[nb1>0]

<askData,true , ID>

<genData,true, ID>

<askData,true , ID>

reidididpa0

<put,true ,np1=np1+1>
[c>=0]

[c+nb2+5>=0]
[c+nb2+15>=0]

[true]

<store,nb1<bs1,nb1=nb1+1>

reidwaidpa0

<genData,true, ID>

reidididpb1

<add(buf2),true,ID>
[c-1>=0]
[c+4>=0]

[c+14>=0]
[true]

<store,nb1<bs1,nb1=nb1+1>

 < tau, true, ID >

Fig. 3. The system behavior and synthesis results in the configuration pa0

To synthesize a global controller, we first synthesize a local controller for each
configuration using the basic controller synthesis method introduced in Sect. 2,
and then construct a global controller to guide an adaptation. The forbidden
states (I(B)) is constructed by propagating the bad states backwardly along
the incoming uncontrollable transitions. The forbidden states of a configuration
will not be propagated to the states of its children configuration, because the
abstract reconfigurator of a structurally-progressive system has no cycle and
there is no transition from a configuration children to its states, e.g. there is
no transition from the configuration 3 to 1 in Fig. 1. This enables us to start
computing the forbidden states of the system from its final configurations that
have no outgoing transitions in the abstract reconfigurator, then compute the
forbidden states of its parent configurations in a recursive way until we reach the
initial configurations. Algorithm 1 shows our algorithm to synthesize the local
controllers modularly that allows us to construct some of the local controllers
concurrently. The bad states of a configuration (g) are determined by the bad
states of that configuration defined in B(g) in addition to the forbidden boundary
states of its next configurations. A boundary state is a common state between
two configurations connected in K (See Fig. 1) (See [10] for more details).

Let 〈C, Ψ ′〉 be a tuple where C is the set of controllers synthesized for the
configurations and Ψ ′ be a function that determines the corresponding controller
of each configuration. We design the global controller as a multi-controller system
where one of the local controllers is active at a time. As soon as the system
switches to a new configuration, the current controller is deactivated and that
of the new configuration becomes activated.

Control of Self-adaptation Under Partial Observation: A Modular Approach 117

Algorithm 1. Modular Controller Synthesis
Input: A structurally progressive reconfiguring system 〈K,T, Ψ〉.
Output: A pair 〈C, Ψ ′〉 where C is a set of controllers and the function Φ′

returns the controller of a configuration
K′ = K;
repeat

// Synthesize controllers for the leaves concurrently

for each g ∈ leaves(K′) do
B = compute(K, g, Ψ ′, B(g)) // Obtain the bad states of g
C = synthesize(Ψ(g), B);
Ψ ′(g) = C;
C = C ∪ C;

end
K′ = remove leaves(K′);

until K′ �= ∅ ;

Example 2. Let no-data-loss be a property that should be enforced. We define
a bad state predicate as Σi∈P npi − Σi∈Cnci > Σi∈Bnbi which states that the
number of produced data by the producers minus the number of the consumed
data is greater than the number of data stored in the buffers, i.e. there is a
data loss. The synthesized controller to ensure this property depends on its
observations and the controllablity of events. If the controller does not have
proper observations or control over actions, it can become very preventive and
may forbid any event. For example, if the controller in the illustrating example
has full observations and can only control the structural actions, the controller
forbids all events. Similarly, if the controller cannot observe np1 (or any other
variable of the bad state predicate), the synthesized controller becomes empty.

If we consider interaction actions and structural actions as controllable, then
the controller becomes more permissive. In the configuration pa0 of our example,
the structural action is add(buf2) and the interaction actions are get and put. A
guard is generated for each of the controllable actions that are shown in Fig. 3
where c = np1 − nc1 − nb1 − nb2 and X = −19nb1 − 34nc1 + 34np1 − 49.
For each controllable transition, five labels are shown in this figure where the
first is the original transition label, the second shows the synthesized guard to
forbid the transition in case of full observations, the third is for the case that the
imprecision of nb1 is about 5 unites, the fourth denotes the synthesized guard
when the value of nb1 is unknown in the range [20, 35], and the last represents
the results for the case that np1 and the buffer sizes are hidden.

5 Related Work

In [11,12], we adapted the Ramadge-Wonham (RW) framework [14], a classical
automaton-based framework, to synthesize a non-blocking adaptor to control
the behavior of a system during a reconfiguration phase. This method does not
support partial observations and is not scalable enough to be applied to complex

118 N. Khakpour

systems where the state space is very large. The aim of reconfiguration control
synthesis in [1,2,15] is to coordinate the interaction behavior of the components
in order to avoid undesirable behavior such as deadlocks. The interaction behav-
ior of the system and the desirable behavior are modeled using labeled transi-
tions systems. Then, some algorithms are proposed to synthesize (distributed)
adaptors to coordinate the components’ interactions. Furthermore, supervisory
control theory is used to synthesize behavioral adaptors to adjust the commu-
nication between services such that a certain behavioral property holds in the
composed system [8]. The main difference between our approach and the above
approaches is that they are mainly concerned with synthesizing the behavioral
adaptors to coordinate the interactions of components/services, while we are
interested in correct-by-construction design of controllers to guarantee the safe
structural adaptations. Compared to [1,2] we can synthesize a centralized adap-
tor and we do not deal with real-time properties such as latency, performance,
etc., as done in [15].

The authors of [3,13] proposed an approach based on the concept of proof
lattice to verify if a system is in a correct state during and after adaptation in
terms of satisfying the transitional-invariants. In this approach, the behavior of
a system during adaptation is specified using an adaptation lattice in which a
node is an automaton denoting the behavior of a possible intermediate program.
Although verification identifies undesirable behavior, one has to fix errors man-
ually while using synthesis techniques, we can generate a controller to control
the adaptation phase. In this work, the properties to be verified are only about
the behavior of the system while we consider both structural and behavioral
properties.

Discrete Control Theory has recently been applied to computing systems.
We presented the works done in the area of dynamic adaptation and component-
based system in [12]. In an approach related to reactive systems and synchronous
programming, discrete controller synthesis, as defined and implemented in the
tool Sigali, is integrated in a programming language compiler BZR [7], used in
component-based software [4]. Furthermore, interface synthesis [5] is also related
to Discrete Controller Synthesis, and consists of generating interfacing wrappers
for components, in order to adapt them for the composition into given component
assemblies, with respect to the communication protocols between them.

6 Conclusions

We proposed a modular approach for synthesizing a symbolic controller to con-
trol dynamic reconfigurations in adaptive systems under partial observations. As
a future work, we will extend the method to synthesize a controller that guides
the system to successfully finish the adaptation by converging to its final states.

Control of Self-adaptation Under Partial Observation: A Modular Approach 119

References

1. Autili, M., Flammini, M., Inverardi, P., Navarra, A., Tivoli, M.: Synthesis of con-
current and distributed adaptors for component-based systems. In: Gruhn, V.,
Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 17–32. Springer, Heidelberg
(2006). doi:10.1007/11966104 3

2. Autili, M., Mostarda, L., Navarra, A., Tivoli, M.: Synthesis of decentralized and
concurrent adaptors for correctly assembling distributed component-based systems.
J. Syst. Softw. 81(12), 2210–2236 (2008)

3. Biyani, K.N., Kulkarni, S.S.: Assurance of dynamic adaptation in distributed sys-
tems. J. Parallel Distrib. Comput. 68(8), 1097–1112 (2008)

4. Bouhadiba, T., Sabah, Q., Delaval, G., Rutten, E.: Synchronous control of recon-
figuration in fractal component-based systems - a case study. In: Proceeding of
ACM Conference on Embedded Software, EMSOFT, Taiwan (2011)

5. Chakrabarti, A., Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Synchronous and
bidirectional component interfaces. In: Brinksma, E., Larsen, K.G. (eds.) CAV
2002. LNCS, vol. 2404, pp. 414–427. Springer, Heidelberg (2002). doi:10.1007/
3-540-45657-0 34

6. Cmara, J., Lopes, A., Garlan, D., Schmerl, B.: Adaptation impact and environment
models for architecture-based self-adaptive systems. Sci. Comput. Programm. 127,
50–75 (2016). Special issue of the 11th International Symposium on Formal Aspects
of Component Software

7. Delaval, G., Rutten, E., Marchand, H.: Integrating discrete controller synthesis
into a reactive programming language compiler. Discret. Event Dyn. Syst. 23(4),
385–418 (2013)

8. Gierds, C., Mooij, A.J., Wolf, K.: Reducing adapter synthesis to controller synthe-
sis. IEEE Trans. Serv. Comput. 5(1), 72–85 (2012)

9. Kalyon, G., Le Gall, T., Marchand, H., Massart, T.: Control of infinite symbolic
transition systems under partial observation. In: 2009 European Control Confer-
ence (ECC), pp. 1456–1462 (2009)

10. Khakpour, N.: Control of self-adaptation under partial observation: A modular
approach. Technical report, Linnaeus University (2017)

11. Khakpour, N., Arbab, F., Rutten, E.: Supervisory controller synthesis for safe
software adaptation. In: Proceedings of the 12th IFAC Workshop on Disceret Event
Systems (2014)

12. Khakpour, N., Arbab, F., Rutten, É.: Synthesizing structural and behavioral con-
trol for reconfigurations in component-based systems. Formal Asp. Comput. 28(1),
21–43 (2016)

13. Kulkarni, S.S., Biyani, K.N.: Correctness of component-based adaptation. In:
Crnkovic, I., Stafford, J.A., Schmidt, H.W., Wallnau, K. (eds.) CBSE 2004. LNCS,
vol. 3054, pp. 48–58. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24774-6 6

14. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

15. Tivoli, M., Fradet, P., Girault, A., Goessler, G.: Adaptor synthesis for real-time
components. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 185–200. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71209-1 16

http://dx.doi.org/10.1007/11966104_3
http://dx.doi.org/10.1007/3-540-45657-0_34
http://dx.doi.org/10.1007/3-540-45657-0_34
http://dx.doi.org/10.1007/978-3-540-24774-6_6
http://dx.doi.org/10.1007/978-3-540-71209-1_16

Architectural Decisions

On Cognitive Biases in Architecture
Decision Making

Andrzej Zalewski(&), Klara Borowa, and Andrzej Ratkowski

Institute of Control and Computation Engineering,
Warsaw University of Technology, Warsaw, Poland

a.zalewski@ia.pw.edu.pl

Abstract. The research carried out to date shows that architectural
decision-making is far from being a rational process. Architects tend to adopt a
satisfying approach, rather than looking for the optimal architecture, which is a
result of many human and social factors. The results of a workshop, carried out
with 14 software engineering practitioners show that cognitive biases are
commonly present in architecture decision-making. A systematic approach to
analysing the influence of biases on decision making has been introduced.
Twelve cognitive biases identified during the workshop were analysed with
regard to the elements of the decision-making context that affected the aspects of
architectural decision making. Finally, we analyse the interactions between
cognitive biases and the conditions of real-world software development.

Keywords: Cognitive biases � Architectural decisions � Architectural
decision-making

1 Introduction

The concept of architectural decisions enables the design rationale and architectural
knowledge to be captured, but equally important is the focus it places on the act of
deciding on software design [20]. This has shaped anew our perception of software
development as a decision-making process, and triggered research into its nature.

The research on how architectural decisions are made revealed that, despite the
intrinsic complexity of architecting, architects as decision makers remain normal
human beings: their judgement is more often bounded rational than fully rational,
which is a result of the inherent properties of the human mind.

As normal human beings, architects are subject to cognitive biases [4, 7–18]. This
exploratory paper, which has been motivated by the outcomes of a workshop carried
out with 14 software engineering practitioners, investigates how cognitive biases
influence architectural decision-making. Our research focuses on answering the fol-
lowing research questions:

• RQ.1. Are biases in architecture decision making commonly observed by software
engineering practitioners?

• RQ.2. What are the most significant cognitive biases that influence architecture
decision making?

© Springer International Publishing AG 2017
B.A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 123–137, 2017.
DOI: 10.1007/978-3-319-65831-5_9

• RQ.3. Which of these biases result from cognitive biases inherent to the conditions
of the human mind?

• RQ.4. Which elements of the decision-making context can bias architects’
decisions?

• RQ.5. Which aspects of architectural decision making are influenced by the biases
that have been identified?

• RQ.6. How do practical conditions influence the extent of the influence of the biases
on architectural decision making?

The research presented in this paper shows that biases are commonly observed by
software practitioners (Sect. 3.1). In order to capture how cognitive biases influence
architectural decision making, we propose a model comprising contextual factors that
are transformed by the biases into influence on the identified aspects of the architectural
decision-making process (Sect. 3.2). The identified cognitive biases are presented and
discussed according to this model (Sect. 3.2). The ways in which the practical con-
ditions of architecture decision making affect the ‘mechanics’ of biases’ influence is
presented in Sect. 4. The discussion of the findings (Sect. 5) is presented in Sect. 6, the
summary of the paper and the research outlook in Sect. 7.

2 Related Work

The social and human factors in software engineering have been studied since the advent
of software engineering as a scientific discipline – compare reports from NATO con-
ferences from 1968 and 1969 [1, 2]. Probably the earliest observation of the influence of
social factors on software architecture is the now famous Conway’s law [2].

The research on cognitive biases was pioneered by Tversky and Kahneman (e.g. [4,
7, 11]), and the latter was awarded a Noble Prize. Their research has been later
extended by many researchers, e.g. [7–18]. Kahneman and Renshon [19] define cog-
nitive biases as “predictable errors in the ways that individuals interpret information
and make decisions”.

The dual process theory, as stated by Kahneman [4], is one widely known and
accepted in psychology and helps to explain the mechanisms of the human mind.
According to the theory, our thoughts are controlled by two parallel systems: System 1
and System 2.

System 1 controls the part of our mind that is fast, runs effortlessly, and completely
out of our control. It is very useful, letting us, for example, instantly react to danger and
save our lives in a dire situation. Sadly, its associative nature may make our line of
thought illogical, often creating associations where there are none. System 1 is unable
to process rule-based logic, and thus does not always perform well.

System 2 is the complete opposite of System 1. It is slow, requires a great amount
of conscious effort to use, and is very logical. Since the use of System 1 is something
unavoidable, System 2 serves the purpose of correcting the premature conclusions of
System 1, but only if we put effort into it. It is when this correction does not happen, or
is not strong enough, that cognitive biases occur.

124 A. Zalewski et al.

The process of architectural decision making has been thoroughly investigated by
Zannier et al. [3] in 2007. Their research shows that architects use naturalistic (looking
for a satisfactory solution) or rational decision making (looking for an optimal solu-
tion). The naturalistic approach is common for poorly-structured problems, while the
rational one for well-structured problems.

In 2015, Tang and van Vliet observed [5] that most architects need only a few
reasons before concluding a decision, which is a result of satisficing behaviour of
naturalistic decision making.

The research record on the role of biases in software engineering in general, and in
software architecture, is rather small. Tang and van Vliet, in 2016 [6], indicate only a
couple of papers that can be related to the role of biases in design processes. They show
some examples of anchoring, framing and confirmation biases in software engineering,
and conclude that “biases do play a role; and we probably cannot fully prevent them
from occurring; they are simply too human.”

The research presented in this paper aims to expand upon these observations, and to
systematise the way we analyse how cognitive biases influence architectural decision
making.

3 Investigating Biases in Architectural Decision Making

3.1 Workshop on Biases in Architecture Decision-Making

Fourteen software engineering practitioners with a wide variety of professional expe-
rience (8 novices – 1–2 years of experience and 6 experts with at least 10 years of
experience) were gathered on a workshop. The purpose was to gather data about biases
that may have an influence over the process of software development and sort out those
that affect architecture-decision making. A few days before the workshop, participants
were provided with a list of 105 cognitive biases with their definitions and examples
that purposefully weren’t connected to software architecture. They were supposed to
get acquainted with them as a form of preparation. The workshop agenda was as
follows:

1. Short presentation on cognitive biases – the notion of ‘cognitive bias’ was explained
and most important biases, such as Anchoring [11], the Bandwagon Effect [18], the
Dunning-Kruger Effect [21] and the Law of the Instrument [14], were discussed;

2. Poll of the participants – they were asked to write down any examples of biases that
they could have observed from their previous projects;

3. Survey and an open discussion on biases indicated by the participants, aimed at
improving the understanding of people’s statements;

4. Rating of the biases - each participant was asked to rate the frequency of cases when
they experienced the effect of every cognitive bias listed (on a scale from 0 to 3,
where 0 means something that was never observed, and 3 means an often experi-
enced phenomenon);

5. Identifying related cognitive biases;
6. Wrap-up and conclusion.

On Cognitive Biases in Architecture Decision Making 125

The results of the workshop are summarised in Table 1.

Table 1. Biases relevant to architecture decision making indicated by the workshop participants

Reported bias Related
cognitive bias

Average
frequency
assessment

Judging the quality of a system by the form of its
presentation by marketing specialists

Framing effect 2.58

Estimating the time needed to complete a task wrongly,
because of the expectations placed on the development
team by the client, rather than the true complexity of the
problem

Confirmation
bias

2.33

Excessive overvaluation of a solution that we created
ourselves

IKEA effect 2.33

Spending long hours on meetings discussing trivial
problems (like whether we should use spaces or tabs in
our code) instead of truly important ones

Parkinson’s
Law of triviality

2.25

Insisting on continuing using certain COTS despite the
long record of errors

Anchoring 2.25

Errors created by miscommunication between the
technical staff and a client, because of them having a
completely different background

Curse of
knowledge

2.16

Focusing mainly on a set of standards, believing that if
they are met, then the quality of the product will be
good

Anchoring 2.16

Belief that “new is better”. Quick abandonment of old
tools and technologies while they are still properly
working

Pro-innovation
bias

2.08

Dismissing serious issues as trivial, without any further
thought

Parkinson’s
Law of triviality

2.08

Evasion of solutions that were not used previously in
our industry

IKEA effect 2.00

Underestimating a problem by assuming that it could be
solved by “writing some code”, even with no detailed
plan of the implementation

Planning fallacy 1.91

Wrongly assuming that a solution found on the web is
correct and appropriate for our problem, especially if it
is popular

Bandwagon
effect

1.83

Avoidance of redoing work on a system that was
already done – even if it was done poorly

Irrational
escalation

1.75

Being unable to admit that there is an error. Logic
similar to “it’s not a bug, it’s a feature”

Anchoring 1.75

Applying the design patterns that we know everywhere
- even if it’s not the best solution

Law of the
instrument

1.66

Underestimating the possible load put on a system.
Guessing without any evidence to support our claims

Optimism bias 1.66

Focusing only on hardware when solving optimisation
problems

Anchoring 1.36

126 A. Zalewski et al.

3.2 Influence of Cognitive Biases on Architecture Decision-Making

Expanding on the workshop results, we discussed and analysed the identified biases in
order to identify how they influence the decision-making process. As a result we
developed the model presented in Fig. 1.

Figure 1 shows that cognitive biases subconsciously influence the decision-making
process by associating some contextual factors with a given architectural problem.
These factors usually have no connection, or just a limited connection, with the
analysed issue itself. The biases include these factors into the decision-making process
and alter the critical aspects of the decision-making process. Analysing the biases on
the basis of our experience we identified sets of:

• contextual factors affecting architecture decision making, for example: form of
presentation, architect’s beliefs, “topics of the year”, time spent on a given design,
order, etc. – for a complete list see Table 2, Column (3).

• aspects of architecture decision-making process affected by the biases, for example
such architect’s preferences (expressed by a decision’s rationale), scope of con-
sidered architectural issues, etc. – for a complete list see Table 2, Column (4).

Below we describe and study in a greater detail the cognitive biases indicated in
Table 1.

Framing Effect
The example that achieved the highest average rating in the experiment was repre-
sentative of the framing effect. The bias itself happens when information is judged

Fig. 1. How biases influence architecture decision making

On Cognitive Biases in Architecture Decision Making 127

Table 2. Influence of cognitive biases on architecture decision making

Bias (1) Description (2) Main contextual
factors that influence
architect’s judgment
(3)

Influenced aspects
of architecture
decision making (4)

Framing effect Drawing different
conclusions from the
same information
depending on the form
of presentation [7]

Form of presentation Architect’s
preferences, scope
of considered
architectural issues
and alternatives

Confirmation
bias

Focus on searching for
facts that confirms
one’s beliefs, while
ignoring opposing
information [8]

The architect’s beliefs All the aspects

IKEA effect Overvaluing items that
were created or
assembled by us
personally [9]

Who was the author of
a given design; time
spent on a given
design

Scope of
considered
alternatives,
preferences

Parkinson’s
Law of
triviality

Focusing time and
effort on trivial matters
while often omitting
the truly important
ones [10]

None All the aspects

Anchoring Relying on one piece
of information more
heavily than any other,
usually on the first one
that we were exposed
to [11]

Order of obtaining
information

Scope and
perception of
importance of
considered
requirements;
preferences

Curse of
knowledge

When individuals, due
to having a different
level of knowledge,
interpret facts
differently [12]

The knowledge,
experience and
background of the
stakeholders

All the aspects

Pro-innovation
bias

An overly optimistic
approach in adopting
innovative solutions
[15]

The architect’s state of
mind with respect to
innovative solutions

Preferences, scope
of considered
alternatives

Planning
fallacy

Underestimation of the
time it will take to
complete a task [16]

Problem complexity Preferences

Bandwagon
effect

The phenomenon of
people more likely
adapting ideas/buying
products that have
already been widely
accepted [18]

Existing widely
accepted solutions

Preferences

(continued)

128 A. Zalewski et al.

differently on the basis of how it was presented. This effect was examined thoroughly
by Tversky and Kahneman [7]. In the course of their research, they discovered that
slight differences in the formulation of the choice problem may significantly impact
decision making.

The exact scenario that the workshop participants pointed at was that software
products are often purchased not on the basis of their quality, but of the way they are
advertised, for example: properly advertised products (like COTS) are more likely to be
chosen, even if they are less suited to the needs of the project. The framing bias affects
mainly architect’s preferences, scope of considered architectural issues and alternatives.

Confirmation Bias
Another widely appearing case is an example of conformation bias. Confirmation bias
itself, as stated by Nickerson [8], is a natural tendency to look for evidence supporting
our claims, because we believe that this is an effective way of showing what is right, if
it really is right.

The subjects linked the wrong estimation of the time needed to complete a project
with their superiors’ (or clients’) expectations. Concerning architectural decision
making, it is easy to observe a tendency to look for arguments confirming our beliefs
that certain solutions are better than others. Believers of microservices would always
find evidence to confirm it is a best choice. In order to confirm their beliefs, architects
may narrow the scope of considered architectural issues, requirements and alternatives.
Such an architect would prefer to choose the options, which comply with his beliefs.

Table 2. (continued)

Bias (1) Description (2) Main contextual
factors that influence
architect’s judgment
(3)

Influenced aspects
of architecture
decision making (4)

Irrational
escalation

Continuing an
action/investment,
because of a similar
prior one, even if the
previous one turned out
to be a wrong decision
[17]

Existence of an initial
solution, course of
action contradicting
the use of an initial
solution

Preferences

Law of the
instrument

Using a tool/skill that
you possess
everywhere, even in
contexts where it is not
appropriate [14]

Architectural solutions
focal for an architect

Scope of
considered
alternatives,
preferences

Optimism bias Overestimating the
probability of
favourable outcomes of
our decisions [13]

The architect’s state of
mind

All the aspects

On Cognitive Biases in Architecture Decision Making 129

IKEA Effect
Easily associated with the phenomenon of the globally-known producer of ready-to-
assemble furniture – the IKEA effect is one that makes us biased when it comes to
items we have created or assembled ourselves [9]. What makes the furniture bought in
IKEA so special, is that when you assemble it yourself, the false belief that it’s worth
more than you paid for it is created. All because you had to put your own time and
effort into it. A similar effect can be observed in almost every domain, not only the
furniture business. When comparing to the products of our competitors, even if they are
renowned professionals in their field, we are easy to prey for the unstoppable gut
feeling that our creation is the best.

The participants also pointed to the reverse form of this effect – that we tend to
avoid solutions that have not been yet used in our industry, thus boxing ourselves in a
small pool of alternative choices. It is a popular phenomenon that authors of a given
system (application etc.) are rather reluctant to replace it even if a definitely better one
is currently available. This will certainly narrow the set of considered alternatives and
obviously affect architect’s preferences.

Parkinson’s Law of Triviality
According to Parkinson’s Law: ‘work expands to fill the time available’. This unavoidable
effect rules over most workplaces, although most managers would prefer to overlook it.
Parkinson’s Law of triviality is a narrower version of Parkinson’s Law stating that we
spend an enormous amount of time debating over trivial unimportant issues [10].

Most of our subjects had the unfortunate displeasure of taking part in meetings that
seemed to be endless and led to nothing. Although wasting time does not have to lead to
wrong decisions by itself, it does shorten the time available to resolve more complex
issues. This may result in ‘system 1’ being used to resolve the crucial problems instead
of ‘system 2’. This may indirectly affect all the aspects of architectural decision making.

Anchoring
The effect of anchoring is created by the way in which the human brain estimates
probabilities. Naturally, we tend to cling to the first fact that comes to our mind when
contemplating an issue. This means that the first piece of information we obtained, or
one that we have a particularly fond memory of, heavily influences decision making
[11]. When ‘anchored’ to an idea, it becomes hard to notice different solutions, and
even if we do, it is very unlikely that we will choose them.

Although examples of the anchoring effect were rated very differently by the
participants, it is worth noting that this was the bias for which they found the greatest
amount of examples. Anchoring seems to have an influence over almost every kind of
decision: hardware, technologies, design and even implementation. It influences mainly
architect’s preferences but also possibly the scope and perception of importance of
requirements.

Curse of Knowledge
We may be put in a situation when we have to communicate with someone of a
completely different background, or with a different level of experience, or even simply

130 A. Zalewski et al.

someone younger than us. We fall prey of the curse of knowledge, if at some point we
falsely assume that the other side possesses the same knowledge that we have about
any kind of issue. This may be more apparent in contacts between children and adults,
when the young ones find it hard to grasp concepts that are new to them, but adult
relations are not free from this effect [12].

The curse may cause misunderstandings at any level of human interaction, which is
especially crucial when understanding the requirements of our client and choosing
appropriate solutions for their problems. Team members with different experience
levels can also be influenced when an issue is not explained properly, they can
misunderstand the way in which their tasks should be handled. Therefore, the curse of
knowledge bias influences the scope of requirements and the architect’s perception of
their priorities, as well as scope of considered architectural issues and alternatives, and
as a result this may also alter architect’s preferences.

Pro-innovation Bias
The false belief that innovation should always be adopted is what we call the
pro-innovation bias [15]. Humans naturally have a positive attitude associated with
innovation. However, it does not mean that innovation should always be pursued.

The pursuit of a novel solution is not always necessary; sometimes it may even be
harmful. What needs to be taken into account is the high risk of every innovative
project. If a stable and reliable system is to be created in a reasonable timeframe,
usually innovation should be avoided. As one of the subjects pointed out, it is not
always the case that potentially high rewards await those that successfully bring new
ideas to life. Relating these observations into architectural decision making, we observe
that pro-innovation bias means that innovative design alternatives are considered and
preferred.

Planning Fallacy
The planning fallacy is the tendency to underestimate the time required to complete a
task. Interestingly, it seems to affect the individuals who are supposed to complete the
tasks more than observers – of course, if they have information about the individuals’
past performance [16].

This cognitive bias has a great influence over the planning phase of any project.
The amount of information needed to avoid it is so big that it is almost impossible to
process it, especially if a problem is complex. Although various methodologies have
their ways of soothing this problem (e.g. Planning Poker in Scrum), there are almost
none that can prevent it on the early decision-making level. Let us also observe that the
planning fallacy may affect the preferences of an architect who may choose solutions
which are more difficult to implement than he thought when making a decision.

Bandwagon Effect
The bandwagon effect is a universal phenomenon that appears in almost any domain
where human beings are given a choice. People naturally want to wear, buy, do,
consume and behave like their fellows, thus becoming part of a group [18]. This results
in popular choices and popular decisions becoming even more popular.

The danger this bias poses should not be downplayed – it puts our mind in a small
box, limiting our possibilities and potentially forces bad decisions on us. Especially in

On Cognitive Biases in Architecture Decision Making 131

cases of pressure from higher-ups to solve a problem in the way they wish us to. In
some cases even, due to the organisation culture in a company, it may even be
impossible to have any influence on this kind of decisions, which could result in
choosing solutions being very far from perfect. Therefore the bandwagon makes an
architect to prefer the same solutions that have already been widely accepted by a
similar organisations, by an industry branch or our community.

Irrational Escalation
Irrational escalation takes place when one continues to commit to an initial course of
action, even if it is obviously no longer the most beneficial choice [17].

As the participants noticed, this may affect performance when old technologies,
code or components that are unfit for the task, are forced on us. Often these old
products should have been abandoned long ago due to their doubtful quality, but since
at some point they were invested in, there is a stubborn reluctance to let go of them.
Irrational escalation means that architect gets fixed on an existing solution.

Optimism Bias
We do not usually assume failure before trying something. Most healthy people’s
brains are hardwired that way [13]. When writing his example, one of our participants
told us a story where a client he worked for judged how many messages his system
would have to handle daily. Unfortunately, in reality, the estimated value turned out to
be a hundred times too low, which triggered later multiple serious issues. As this
example shows, being overly optimistic can hurt badly not only planning, but the
architected system’s quality as well. Architect’s optimism can potentially influence all
the aspects of architectural decision-making.

Law of the Instrument
Known in software architecture as the Golden Hammer anti-pattern [14] - when a
single technology or design pattern is used in every possible place. This obviously
results in the creation of numerous inefficient and mismatched solutions. The bias
experienced here may simply be a symptom of the lack of necessary skill or knowledge
that forces us to use well-known solutions. Such cases were pointed out by the par-
ticipants of the workshop. Furthermore, there is one more scenario that requires further
consideration – does spending money on a technology in the past force us to use it?
This seems to be the case in many big companies, where decisions to invest in
expensive technologies are often made independently of the technical context of
specific projects.

The above findings have been summarised in Table 2. Note that in Column (3),
only the most important factors influencing the decision making have been listed.
Naturally, there are numerous other factors that may modulate (magnify or diminish)
the influence posed by a give cognitive bias, for example the architect’s
knowledge/experience, organisation’s culture.

132 A. Zalewski et al.

4 Cognitive Biases in the Practical Conditions
of Architectural Decision Making

Having established that cognitive biases are a common phenomenon in architecture
decision making, we explore real-world factors that can influence their manifestation or
affect the magnitude of their influence on architecture decision making.

Biases and Time
Cognitive biases are an integral element of human nature. They have been shaped by
the evolution of the human mind, and as such are a result of the adaptation to the
conditions of the environment. Although they possibly distract architects from crafting
a fully rational, thoroughly deliberated design, they potentially enable the qualities
desirable by today’s hectic software industry: rapid architecting and quick response to
changes or emergencies.

As the “need for speed” concerns more and more software engineers, the role of
System 1 will certainly be increasing at the cost of diminishing the role of System 2. It
means that even more decisions will be made intuitively without a thorough deliber-
ation. This may substantially hinder the quality of a software architecture. At the same
time, architecting efficiently under the pressure of time is something very desirable in
the frenetic software industry, as well as in emergency cases.

It seems that there are two basic ways of addressing this challenge:

1. Applying debiasing techniques – this seems to be generally difficult, as the main
factor limiting rational judgement is the lack of time and other external pressures. In
order to ensure rational decision making, we have to give architects more time to
conclude a decision and to restrain the external pressures. This is in many cases
impossible, as we have limited or no control over the conditions that are external to
architectural decision making;

2. Accepting “the rules of the game” (biases) and trying to exploit them to our
advantage – this requires the development of techniques that lead to reasonable
architectures under pressure of time. Hypothesising further, they could take the
form of a specific training for architects, probably similar to those used by students
preparing for programming competitions: this training supposedly makes system 1
closer to system 2 with regard to algorithms and computer programming, as trained
students decide at a glance which algorithms should be used in order to solve their
exercise.

Biases and Teams
Applying group architecture decision making techniques has the potential to limit the
influence of biases, as decisions are made by people with different mindsets. This
justifies assessing an architecture by a group of stakeholders, such as in ATAM. At the
same time, group decision making brings with it the risk posed by the ‘law of triviality’
bias.

Biases and Cultural Factors
Cultural factors may magnify or diminish the influence of cognitive biases. For
example, in many cultures it is difficult for people to admit they cannot understand

On Cognitive Biases in Architecture Decision Making 133

something or accomplish a certain design. This will certainly strengthen the curse of
knowledge bias.

Biases and Tools and Methodologies
It is also important to recognise that cognitive biases introduce a feedback between
what we create and how it is created, i.e. what we create, what we know influences how
it is created by us. This is exactly what most of the biases do – consider, for example,
anchoring bias, irrational escalation and the law of instrument biases. Therefore, it is
worth investigating how different software development methodologies, architecture
decision-making techniques, software development tools etc. interact with cognitive
biases and vice versa.

5 Results

RQ.1 Are biases in architecture decision making commonly observed by software
engineering practitioners?

It turned out that the participants commonly observe biases in deciding on software
design. Both novices (less than 2 years of experience) and experts (more than 10 years
of experience) in software engineering noticed biases. Novices indicated on average 1
bias each, experts about 4 biases each. Experts have a much broader experience than
novices, which explains the observed difference.

RQ.2. What are the most significant biases in architecture decision-making?
As a result of our research, we identified 12 cognitive biases that influence archi-

tecture decision making. The list of these can be found in Tables 1 and 2.

RQ.3. Which of these biases result from cognitive biases inherent to the conditions of
the human mind?

All these biases, concerning architectural decision making, indicated by the
workshop participants and listed in Table 1, can be related to well-known cognitive
biases.

RQ.4. Which elements of the decision-making context can bias architects’ decisions?
These identified elements of the decision-making context that bias architects’

decisions are: form of presentation, the architect’s beliefs, who was the author of a
given design, the time spent on a given design, the order of obtaining information, the
knowledge, experience and background of the stakeholders, the architect’s state of
mind, the problem complexity, the existing widely-accepted solutions, the course of
action contradicting the use of an initial solution, and architectural solutions focal for
an architect.

RQ.5. Which aspects of architectural decision making are influenced by the biases that
have been identified?

The above aspects of architectural decision making are: the architect’s preferences
(finally expressed by the rationale for a decision), the scope of the considered archi-
tectural issues, alternatives and requirements, and the perception of the importance of
requirements (compare Sect. 3.2 and Table 2).

134 A. Zalewski et al.

RQ.6. How do practical conditions influence the extent of the biases’ influence on
architectural decision making?

Time, teams, cultural factors as well as tools and methodologies used for software
development can affect the extent of the biases’ influence on architecture decision
making.

6 Discussion, Limitations

The volume of research on cognitive biases in software engineering is rather small
(compare Sect. 2). Let us observe that our research confirms the findings of Tang and
van Vliet [6], namely, that anchoring, framing and confirmation biases are among the
most often observed by software engineering practitioners as influencing architectural
decision making.

The contribution of this paper comprises:

• the proposition of a model of how biases influence architectural decision making,
which enables a systematic, uniform analysis of various biases;

• the identification of 12 cognitive biases that influence architectural decision making;
• an analysis of how each bias affects decision making, by identifying the elements of

the model mentioned above (elements of the context affecting decision making and
aspects of the decision-making process influenced by each bias);

• an analysis and identification of real-world factors that can potentially influence the
extent of the influence of biases on architecture decision making.

The obvious limitation of the presented results are:

• the number of workshop participants may influence the representativeness of the
results;

• although the claims of Sect. 4 seem to be logically sound, the analysis of real-world
factors is only exploratory, hence it requires empirical substantiation to strengthen
the claims of Sect. 4.

To provide an environment that would, as much as possible, neutralize the effects
of additional biases and mistakes from the participants, all of them were informed
thoroughly about the topic of cognitive biases both before and during the workshop
which is described in more detail in Sect. 3.1.

7 Summary and Research Outlook

Cognitive biases are commonly present in architecture decision making. By asking
practitioners, we identified 12 cognitive biases that can be observed most frequently. In
order to analyse their influence on architectural decision making in a uniform way, we
have developed a model of how biases ‘work’.

The common presents of cognitive biases is both virtue and vice. On one side, they
enable rapid architecting by an intuitive resolution of the architectural issues, on the
other, they may lead to suboptimal solutions and in extreme cases to a design disaster.

On Cognitive Biases in Architecture Decision Making 135

We can either try to accept and exploit them, or fight them. Probably, we need a kind of
a decision-making approach that balances ‘system 1’ and ‘system 2’ decision making.

The further research outlook includes:

• obtaining a more statistically significant confirmation of the above results by
interviews with a larger group of practitioners or by a broader industrial survey;

• investigating the interactions that may exist between the biases;
• developing techniques of using the knowledge about biases and their influence on

decision-making process, in order to align the architecting process with the stake-
holders’ expectations;

• carrying out an in-depth analysis of each of the identified biases.

References

1. Naur, P., Randell, B.: Software engineering techniques. In: Report on a Conference
Sponsored by the Nato Science Committee, Garmisch, Germany, 7th to 11th October 1968

2. Buxton, J.N., Randell, B.: Software engineering techniques. In: Report on a conference
sponsored by the Nato Science Committee, Rome, Italy, 27–31 October 1969

3. Zannier, C., Chiasson, M., Maurer, F.: A model of design decision making based on
empirical results of interviews with software designers. Inf. Softw. Technol. 49(6), 637–653
(2007)

4. Kahneman, D.: Thinking, Fast and Slow. Penguin, London (2011)
5. Tang, A., Vliet, H.: Software designers satisfice. In: Weyns, D., Mirandola, R., Crnkovic, I.

(eds.) ECSA 2015. LNCS, vol. 9278, pp. 105–120. Springer, Cham (2015). doi:10.1007/
978-3-319-23727-5_9

6. Van Vliet, H., Tang, A.: Decision making in software architecture. J. Softw. Syst. 117,
638–644 (2016)

7. Tversky, A., Kahneman, D.: Rational choice and the framing of decisions. J. Bus. 59,
S251–S278 (1986)

8. Nickerson, R.S.: Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen.
Psychol. 2, 175 (1998)

9. Norton, M.I., Mochon, D., Ariely, D.: The IKEA effect: when labor leads to love.
J. Consum. Psychol. 22(3), 453–460 (2012)

10. Parkinson, C.N.: Parkinson’s Law, or the Pursuit of Progress. Penguin, London (1958)
11. Tversky, A., Kahneman, D.: Judgment under uncertainty: heuristics and biases. In: Wendt,

D., Vlek, C. (eds.) Utility, Probability, and Human Decision Making, vol. 11, pp. 141–162.
Springer, Netherlands (1975)

12. Birch, S.A.J., Bloom, P.: The curse of knowledge in reasoning about false beliefs. Psychol.
Sci. 18(5), 382–386 (2007)

13. Sharot, T.: Neural mechanisms mediating optimism bias. Nature 450(7166), 102–105 (2007)
14. Brown, W.H., et al.: AntiPatterns: Refactoring Software, Architectures, and Projects in

Crisis. Wiley Inc., Hoboken (1998)
15. Rogers, E.M.: Diffusion of Innovations. Simon and Schuster, New York City (2010)
16. Buehler, R., Griffin, D., Ross, M.: Exploring the planning fallacy: Why people underestimate

their task completion times. J. Pers. Soc. Psychol. 67(3), 366 (1994)
17. Bazerman, M.H., Neale, M.A.: Negotiating Rationally. Simon and Schuster, New York City

(1993)

136 A. Zalewski et al.

http://dx.doi.org/10.1007/978-3-319-23727-5_9
http://dx.doi.org/10.1007/978-3-319-23727-5_9

18. Leibenstein, H.: Bandwagon, snob, and Veblen effects in the theory of consumers’ demand.
Q. J. Econ. 64(2), 183–207 (1950)

19. Kahneman, D., Renshon, J.: Hawkish biases. In: American Foreign Policy and the Politics of
Fear: Threat Inflation Since 9/11, pp. 79–96. Routledge, London (2009)

20. Bosch, J., Jansen, A.: Software architecture as a set of architectural design decisions. In: 5th
Working IEEE/IFIP Conference on Software Architecture (WICSA 2005), pp. 109–120
(2005)

21. Kruger, J., Dunning, D.: Unskilled and unaware of it: how difficulties in recognizing one’s
own incompetence lead to inflated self-assessments. J. Pers. Soc. Psychol. 77(6), 1121
(1999)

On Cognitive Biases in Architecture Decision Making 137

Automatic Extraction of Design Decisions
from Issue Management Systems:

A Machine Learning Based Approach

Manoj Bhat1(B), Klym Shumaiev1, Andreas Biesdorf2, Uwe Hohenstein2,
and Florian Matthes1

1 Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
{manoj.mahabaleshwar,klym.shumaiev,matthes}@tum.de

2 Siemens AG - Corporate Technology, Otto-Hahn-Ring 6, 81739 München, Germany
{andreas.biesdorf,uwe.hohenstein}@siemens.com

Abstract. The need to explicitly document design decisions has been
emphasized both in research and in industry. To address design con-
cerns, software architects and developers implicitly capture design deci-
sions in tools such as issue management systems. These design decisions
are not explicitly labeled and are not integrated with the architecture
knowledge management tools. Automatically extracting design decisions
will aid architectural knowledge management tools to learn from the
past decisions and to guide architects while making decisions in similar
context. In this paper, we propose a two-phase supervised machine learn-
ing based approach to first, automatically detect design decisions from
issues and second, to automatically classify the identified design deci-
sions into different decision categories. We have manually analyzed and
labeled more than 1,500 issues from two large open source repositories
and have used this dataset for generating the machine learning models.
We have made the dataset publicly available that will serve as a start-
ing point for researchers to further reference and investigate the design
decision detection and classification problem. Our evaluation shows that
by using linear support vector machines, we can detect design decisions
with 91.29% accuracy and classify them with an accuracy of 82.79%. This
provides a quantitative basis for learning from past design decisions to
support stakeholders in making better and informed design decisions.

Keywords: Software architecture · Design decisions · Machine learning

1 Introduction

Over the last decade, there has been a paradigm shift in how we view soft-
ware architectures. Since the representation of Architectural Design Decisions
(ADDs) as first-class entities [5,17,32], software architecture is considered as a
set of architectural design and ADDs [15,18]. The architectural knowledge man-
agement (AKM) tools [3,4,21,23] support the documentation of ADDs and its

c© Springer International Publishing AG 2017
A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 138–154, 2017.
DOI: 10.1007/978-3-319-65831-5 10

Automatic Extraction of Design Decisions 139

associated concepts including architectural concerns, alternative architectural
solutions, and rationales for ADDs. Moreover, industry standard software archi-
tecture templates (for example, arch421) provide placeholders to capture ADDs.
Documenting ADDs supports stakeholders to understand and reason about the
software architecture during both the development and maintenance phases [6].
However, the manual effort [8,19], time, and cost [31] involved in the documen-
tation process are a concern for practitioners and its immediate benefit is not
visible [20]. Hence, industry has often not recognized the value of ADDs, for
example, by taking benefit from reoccurring design concerns in similar context.

Furthermore, with the rapid adoption of agile methodologies for software
development, ADDs both in large open-source software (OSS) and in indus-
trial projects are scarcely documented [1]. However, stakeholders involved in
projects, that follow this agile movement, tend to use agile project management
tools such as issue trackers and version control systems [29,30]. In such projects,
even though design decisions are not explicitly documented, they are implicitly
captured in different systems including project management, issue management,
source code version management, and meeting recording systems [25].

The use of issue management systems (for example, JIRA and GitHub issue
tracker) for managing issues is becoming popular both in industrial settings as
well as in OSS projects [2,12]. An issue is either a task, new feature, user story,
or bug. These systems provide a common interface for stakeholders to track,
communicate, and visualize the progress of tasks within a project. For instance,
a software architect can create a new task (which might implicitly represent
a design decision) such as “Remove dependency on Twitter4J repository2” and
assign it to a developer to complete the task. Furthermore, as a good practice, the
developer community maintains a link between the task in the issue management
system and the source code commits or pull-requests in version control systems
using the task identifier or vice versa. In sum, issue management systems are
an excellent source that implicitly captures decisions made by architects and
developers [25] and acts as a bridge between stakeholders’ requirements and the
source code of the corresponding software system. Furthermore, the attributes
such as reporter, assignee, and creation date of the issue are also maintained in
such systems and can be used to enrich the meta-information of design decisions
in AKM tools, for example, to refer to originators and experts.

In this paper, we address the extraction and classification of design decisions
that are not systematically documented in AKM tools but implicitly captured
in issue management systems. The contribution of this paper is twofold. First,
we propose a two-phase machine learning (ML) based approach (cf. Fig. 1). In
the first phase, design decisions are automatically detected from issues that are
extracted from an issue management system. In the second phase, the identified
design decisions are further classified into different decision categories. Second,
we make the manually labeled dataset, which was created for training the ML

1 http://arc42.org/.
2 https://issues.apache.org/jira/browse/SPARK-710.

http://arc42.org/
https://issues.apache.org/jira/browse/SPARK-710

140 M. Bhat et al.

Fig. 1. A two-phase ML-based approach for decision detection and classification

models publicly available3. Since, no such labeled dataset exists, this contribution
will serve as a starting point and reference for researchers to apply and compare
supervised ML algorithms for extracting and classifying design decisions.

As discussed by Kazman et al. [16], architecture needs to be made explicit to
avoid knowledge vaporization and to favor the knowledge acquisition process for
newcomers and adopters of the project. The extraction of design decisions from
issues will support the process of capturing AK in the AKM tools, which will in
turn enable various use cases including reasoning, recommendations, traceability,
and report generation for stakeholders. In addition, automatically classifying the
extracted decisions into different categories such as Structural, Behavioral, and
Ban decisions (cf. Sect. 3) will label those decisions to aid the search and the
recommendation use cases. In particular, it will allow the creation of a knowledge
base that can be used, for instance, to learn from the decisions made in similar
past projects. Software architects will be able to rely on decisions made in the
past to address design concerns in their current projects. As van der Ven and
Bosch [34] put it, “Wouldn’t it be great if software architects could get access
to the decisions made by other architects, that would allow them to determine
what selections were made from a set of alternatives and with what frequency?”

This paper is organized as follows. Section 2 describes the related work. In
Sect. 3, we revisit the ADD categories proposed by Kruchten. Section 4 presents
the dataset preparation process. Section 5 describes the setup of the ML pipeline
used for decision detection and classification. The results of applying different
multi-class classification algorithms are discussed in Sect. 6. Finally, we conclude
with a short summary and an outlook on the future research.

2 Related Work

The need to systematically capture design decisions to enable reasoning and
decision support in AKM tools has been extensively discussed in the past. For
instance, Babar and Gorton [3] propose an AKM tool named PAKME for man-
aging architectural knowledge and rationale. The repository within PAKME con-
sists of generic design options and architectural patterns that can be assessed by
architects before making architectural decisions. Similarly, tools such as Deci-
sion Architect [23] and ADvISE [21] allow architects to capture and analyze

3 https://server.sociocortex.com/typeDefinitions/1vk4hqzziw3jp/Task.

https://server.sociocortex.com/typeDefinitions/1vk4hqzziw3jp/Task

Automatic Extraction of Design Decisions 141

architectural decisions. Capilla et al. [7] in their literature study analyze these
tools and their functionalities and indicate that there is a need for substantial
improvement in the ability to (semi-) automate use cases for AKM.

The aforementioned tools follow a top-down approach to AKM, that is, they
require stakeholders to manually capture data in respective tools which then
enables traceability and reasoning based on their meta-models. However, archi-
tectural documentation is sparse and stakeholders tend to rather use agile tools
such as issue trackers, e-mail clients, PowerPoint, and meeting recording sys-
tems to capture their day-to-day decisions [25]. As compared to the top-down
approach, we envision a bottom-up approach that focuses on analyzing existing
data to automatically extract design decisions and structure them thereafter.

The research in the area of automatic design decision detection and classifi-
cation is still in its infancy. The approach taken by van der Ven and Bosch [34] is
closely related to our work. They propose an approach for analyzing design deci-
sions maintained in the source code commits of OSS repositories. In their work,
six subject matter experts manually analyzed 100 different commit messages and
indicated that 67% of those commit messages reflected design decisions. Simi-
larly, based on surveys, Dagenais and Robillard [10] identified decisions from
developer documentation. In our work, however, we study the issues maintained
in issue management systems and apply a ML-based approach to automatically
extract and classify design decisions.

Furthermore, in [11,13], authors have successfully applied speech analysis
techniques to automatically detect decision-related conversations. We believe
that such efforts to automatically detect and extract decisions from systems
that are extensively used by architects and developers will aid the adoption of
AKM tools to provide significant decision support. Hence, in this paper, we focus
on extracting and classifying design decisions from one of the frequently used
systems in software development, that is, issue management systems.

3 ADD Categories

Design decision

Existence Property Executive

Structural Behavioral Ban

Fig. 2. ADD categories (source: [17])

In his seminal work [17], Kruchten
introduced an ontology of ADDs in
software-intensive systems. He clas-
sified ADDs into three main cat-
egories – existence decisions, prop-
erty decisions, and executive deci-
sions. Figure 2 shows the taxonomy of
the ADD categories with the empha-
sis on existence decisions, which is the
focus of our proposed approach.

Existence decisions: Decisions that reflect the existence of an artifact in a
system’s design or implementation. These decisions are further classified into
structural , behavioral , and ban or non-existence decisions. Those decisions
that indicate the creation or update of artifacts in a system are referred to as

142 M. Bhat et al.

structural decisions. Whereas, those decisions that capture, for instance how
components interact with each other or discuss the functionality of the system
are referred to as behavioral decisions. For example, “Add jets3t dependency
to Spark Build4” corresponds to a structural decision and the task “Add job
cancellation to PySpark5” is a behavioral decision. Finally, those decisions that
result in the removal of an artifact or interaction between artifacts are referred
to as ban or non-existence decisions. For example, the task “remove numpy from
RDDSampler of PySpark6” is a ban decision. As discussed in [17,25], identifying
and then documenting ban decisions is important since these decisions are not
traceable to any existing system artifacts.

Property decisions influence the general quality of a system. Design rules,
guidelines, and design constraints are considered as property decisions.

Executive decisions are driven by the business environment, management
processes, and organizational structures.

Miesbauer and Weinreich [25] demonstrated in their expert survey that the
majority of design decisions are existence decisions. In total, they collected 120
examples of design decisions during the interviews. After mapping the examples
to the decision categories, they noted that 65% of decisions were existence deci-
sions, 27% were executive decisions (most of them technology decisions), and
the remaining 8% belonged to the property decision category. With this as a
basis, as well as due to the high manual effort involved in the labeling process
for generating the dataset, we start our analysis by considering existence deci-
sions along with its three sub-categories. However, by creating labeled data for
the remaining categories and then by training the supervised classifiers, the pro-
posed approach can be extended.

Apart from the aforementioned categories, it should also be noted that
design decisions could also be classified according to different abstraction levels.
Jansen [14] proposes a funnel of decision-making model to classify decisions at
different abstraction levels such as software architecture, detailed design, and
implementation. Van der Ven and Bosch [34] relate to these abstraction levels as
high-level, medium-level, and realization-level decisions. The decisions at different
abstraction levels are related to each other and form a tree structure. Moreover,
the decisions at a higher level of abstraction constraint or influence the deci-
sions at lower levels. We observed during the manual analysis that the decisions
extracted from issues belong to either medium-level or realization-level decisions.
Software architects and developers make these decisions during the implementa-
tion and maintenance phase of a project. Moreover, since these decisions are the
hardest to make [33,34], extracting and recommending them to software archi-
tects will support the decision-making process in similar projects. In order to
achieve this, we first need to identify, extract, and classify design decisions from
the existing projects. Hence, we formulate the following two hypothesis:

4 https://issues.apache.org/jira/browse/SPARK-898.
5 https://issues.apache.org/jira/browse/SPARK-986.
6 https://issues.apache.org/jira/browse/SPARK-4477.

https://issues.apache.org/jira/browse/SPARK-898
https://issues.apache.org/jira/browse/SPARK-986
https://issues.apache.org/jira/browse/SPARK-4477

Automatic Extraction of Design Decisions 143

1. Design decisions can be automatically identified and extracted from issues.
2. Design decisions can be automatically classified into ADD categories, namely

structural, behavioral, and ban decisions.

To validate the aforementioned hypothesis, we used issues maintained in
two large OSS projects. We first extracted the issues from an issue manage-
ment system into an AKM tool. Then, we applied a ML-based approach to (a)
automatically extract design decisions from the already extracted issues and
(b) automatically classify the extracted design decisions into three specific cate-
gories. The dataset preparation process and the ML pipeline setup for generating
the ML models are elaborated in the subsequent sections.

4 Dataset

In this Section, we present the data extraction, curation, and manual labeling
processes for generating the dataset for decision detection and classification.

4.1 Data Extraction

We considered two large OSS projects, namely Apache Spark and Apache Hadoop
Common for this study. Apache Spark is a large-scale data processing engine.
Since early 2014, contributors of this project have captured more than 19,000
publicly accessible issues in JIRA from version 0.9.0 to 2.1.07. Apache Hadoop,
on the other hand, is a distributed computing software and the Hadoop Common
component is the core that provides utilities to the other Hadoop components
such as YARN and MapReduce. Hadoop Common maintains more than 10,000
issues from version 0.2.0 to 3.0.0-apha1, since early 20138. Both these projects
are related to each other, as Apache Spark runs in Hadoop clusters. We selected
these two projects for the following reasons:

– Interest to analyze design decisions for building a data analytics platform
– Experts responsible for generating the training dataset for ML had used either

one of the systems and were involved in data analytics projects
– Both are long-running projects and have maintained more than 10,000 issues
– Both these projects are extensively used in data management solutions9

During the extraction process, we extracted the issues related to these two
projects from JIRA while filtering for the following relevant settings. The list of
prerequisites for issues to qualify for our study helped us to narrow down the
large number of issues to those issues that potentially reflect design decisions.
For instance, a critical task that has been resolved by implementation indicates
that there is a potential change in the detailed design of a software system.

7 https://issues.apache.org/jira/browse/SPARK – last accessed on 25.01.2017.
8 https://issues.apache.org/jira/browse/HADOOP – last accessed on 25.01.2017.
9 https://www.gartner.com/doc/3371732/critical-capabilities-data-warehouse-data.

https://issues.apache.org/jira/browse/SPARK
https://issues.apache.org/jira/browse/HADOOP
https://www.gartner.com/doc/3371732/critical-capabilities-data-warehouse-data

144 M. Bhat et al.

– Issue Type = Task, New Feature, Improvement, or Epic
– Priority = Blocker, Critical, or Major
– Status = Resolved
– Resolution = Fixed, Implemented, Done, or Resolved

To extract issues from JIRA, we used an OSS component within our AKM
tool [4] named SyncPipes10. SyncPipes allows end users to map the properties of
the source system (JIRA) to the target system (AKM tool). Subsequently, based
on the properties mapping, a pipeline is established to enable data integration
and synchronization. In total, we extracted 2,259 issues from Apache Spark and
420 issues from Hadoop Common projects.

4.2 Data Curation

We consider the summary and description attributes of an issue since they
elaborately describe an issue’s purpose. It should be noted that comments within
issues could also be analyzed in this context. However, we restrict our data
analysis to the text captured in summary and description attributes and consider
the inclusion of comments as part of our future work.

As a first step, the summary and description of all the extracted issues were
cleaned by removing the following:

– Code snippets within the text, as well as code inside {{ }} and {code} blocks
– Comments inside {noformat} blocks
– URLs inside the text

We introduced the above restriction so as to ensure that the intent of the issue
can be justified only on the basis of textual description without the need for
code snippets for explanation.

4.3 Manual Labeling

Two software architects with more than five years of experience individually
analyzed the extracted issues in two steps. In the first step, these architects
manually classified a set of issues into two classes, namely Design Decision and
Not A Design Decision. In the second step, the decisions identified in the first
phase were manually classified into three decision classes, namely Structural
decision, Behavioral decision, and Ban decision (cf. Sect. 3). These steps were
not necessarily carried out sequentially, but as per the convenience of the experts.

Before starting the labeling process, to ensure a common understanding
between the two architects, we set up the rules presented in Table 1 for the man-
ual classification. The classification of design decisions is purely based on the
definition of decision categories as discussed in Sect. 3. To the best of authors’
knowledge, there does not exist any design decisions dataset that can be used for
reference. Hence, we put forth the rules shown in Table 1, for the two architects
to support the manual labeling process.
10 https://www.matthes.in.tum.de/pages/2gh0u9d1afap/SyncPipes.

https://www.matthes.in.tum.de/pages/2gh0u9d1afap/SyncPipes

Automatic Extraction of Design Decisions 145

Table 1. Rules for manual classification

Structural decision:

+ Adding or updating plugins, libraries, or third-party systems
+ Adding or updating classes, modules, or files (a class, in this context, refers

to a Java class)
+ Changing access specifier of a class
+ Merging or splitting classes or modules
+ Moving parts of the code or the entire files from one location to another

(code refactoring to address maintainability issues)
+ Updating names of classes, methods, or modules

Behavioral decision:

+ Adding or updating functionality (methods/functions) and process flows
+ Providing configuration options for managing the behavior of the system
+ Adding or updating application programming interfaces (APIs)
+ Adding or updating dependencies between methods
+ Deprecating or disabling specific functionality
+ Changing the access specifiers of methods

Ban decision:

+ Removing existing plugins, libraries, or third-party systems
+ Discarding classes, modules, code snippets, or files
+ Deleting methods, APIs, process flows, or dependencies between methods
+ Removing deprecated methods

Design decision:

+ An issue that belongs to any one of the above categories

Not a design decision:

+ An issue that does not belong to any of the above categories

Based on the aforementioned rules, both the architects manually analyzed
the text in the summary and description attributes of all the extracted issues.
Those issues with a missing description and whose intent was not explanatory
using the textual description were marked as deleted. The issues that belonged
to a specific decision category were labeled respectively, as well as, marked as
a Design Decision. However, the issues that did not belong to any of the deci-
sion categories were marked as Not A Design Decision. During this process, we
observed that some of the issues were abstract, in the sense that, they were broad
issues that could be classified into more than one category. For example, the issue
titled “Implement columnar in-memory representation11” aims to improve the

11 https://issues.apache.org/jira/browse/SPARK-12785.

https://issues.apache.org/jira/browse/SPARK-12785

146 M. Bhat et al.

memory efficiency of the system and represents a design decision. This issue
affects the behavior of the system by introducing a new functionality and affects
the structural aspects by introducing new Java classes for its implementation.
In this study, we do not apply multi-label classification and focus only on multi-
class classification12 and hence, we restrict the labeling of issues to only one
label. Moreover, the majority of issues could be classified into one category since
issues are typically concise so that developers can easily understand and imple-
ment the tasks. To sum up, architects were requested to mark issues belonging
to more than one category as deleted since we argued that applying multi-class
classification for detection and classification of design decisions is sufficient to
validate the hypothesis set for this study.

Once the architects labeled all the issues individually, the training dataset
was consolidated with two focus points in a shared meeting.

– All those issues that were marked as deleted by both the architects were
removed from the knowledge base.

– All those issues that had inconsistent decision categories were also removed.
Since inconsistent dataset results in unreliable classification results, this step
ensured that the issues in the dataset were labeled correctly.

The labeling process resulted in a dataset with 2,139 issues with 781 issues
labeled as Design Decisions and 1,358 issues labeled as Not A Design Decision.
To avoid skewed results towards Not A Design Decision label (due to a higher
number of issues labeled as Not a Design Decision), we randomly selected 790
issues labeled as Not A Design Decision for generating the design decision detec-
tion ML model. Furthermore, out of 781 design decisions, 226 were labeled as
Structural, 389 were labeled as Behavioral, and the remaining 166 as Ban design
decision. To ensure a balanced input for generating the ML model for design
decision classification, we randomly selected 160 issues from each category.

5 Machine Learning Pipeline

We used the pipeline shown in Fig. 3 to generate the ML model for decision detec-
tion and decision classification. The pipeline itself was divided into two parts. In
the first part – “process documents”, the labeled dataset was the input and the
pipeline generated the term frequency representation of issues. The output of
the first part was then consumed by the second part – “Generate model” to pro-
duce the classification model and the result of applying the model on the testing
dataset. Each issue in the labeled dataset was first tokenized to retrieve words.
All the words were then transformed to lower cases. Stop words such as articles,
conjunctions, and prepositions were removed. The remaining words were then
stemmed to their root words using the Porter stemming algorithm [26]. Subse-
quently, a list of generated n-grams was appended to the word list. Generating
12 Given that there are multiple labels, in multi-class classification, a document can be

assigned to one and only one label. Whereas, in multi-label classification, a document
can be assigned to any number of labels.

Automatic Extraction of Design Decisions 147

Part 1: Process documents

Part 2: Generate model
(10-fold validation)

TokenizeLabeled
dataset

Transform
cases

Filter stop
words

Stem
words

Generate n-
Grams (n=1..5)

Create TF-IDF
representation

Training

Multi-class classifiers

Testing – Apply model

Classification
model

S
hu

ffl
ed

 s
pl

it

Results

model
Training data

Testing data

Preprocessing
issues

Fig. 3. The machine learning pipeline for design decision detection and classification;
Classifiers: SVM, Naive Bayes, Decision tree, Logistic regression, One-vs-rest; n-grams:
one to five; Split strategies: 90%, 80%, 70%, 60%, 50%;

n-grams helps to maintain the context of the usage of specific terms by consider-
ing its surrounding terms. For the evaluation, we tried different values of n (from
1 to 5) and documented the results as presented in the next section. Finally, the
list of words was converted into a term frequency representation. For decision
detection with a labeled dataset of 1,571 issues (781 and 790 issues labeled
as design decision and not a design decision respectively), we used the term
frequency-inverse document frequency (tf-idf) for vector representation. The tf-
idf representation evaluates the number of times a word appears in an issue
but is offset by the frequency of the word in the corpus. However, for decision
classification, we only used term frequency since the dataset was comparatively
smaller with 480 design decisions (160 issues in each decision category).

The term frequency representation of issues is provided as input to the second
part of the pipeline for generating the classification model. We used different
shuffled split strategies (90%, 80%, 70%, 60%, and 50%) and observed the results.
That is, the documents were split into training dataset and testing dataset with
different split percentages during multiple runs. Furthermore, we used k-fold
cross-validation in the model generation process for estimating the accuracy. In
our test runs, we used 10-fold cross-validation (k = 10) which is common in data
mining and machine-learning as it produces less biased accuracy estimations for
datasets with small sample sizes [27]. We used different multi-class classifiers on
the dataset with the parameters shown in Table 2. The classification model was
then applied on the testing dataset to generate the classification results.

Table 2. Classifier parameters

Support vector machines – Kernel: linear; SVM type: C-SVC; Library: LibSVM [9]

Decision tree – Criterion: gain ratio; Depth: 20; Confidence: .25; Minimal gain: .1

Logistic regression – Kernel: dot; ElasticNet: .8; Regularization: .001; Iterations:10

One-vs-rest – Base classifier: Logistic regression

Naive Bayes – Additive smoothing: 1

148 M. Bhat et al.

We implemented the pipeline shown in Fig. 3 using Spark’s scalable machine
learning library (MLlib) [24]. The MLlib component provides interfaces to create
and execute the pipe and filter based pipelines. The pipeline with its configura-
tions and the generated model was eventually persisted as a Spark model instance
in the AKM tool for subsequent decision classification. That is, for automatic
detection and classification of newly created issues, this Spark model instance is
executed and the classification label is persisted in the AKM tool.

The end-to-end workflow of the automatic design decision detection and clas-
sification is shown in Fig. 1. Since the output of the first phase (decision detec-
tion) is the input to the second phase (decision classification), high accuracy
of the results from the first phase is critical. The decision detection component
loads the issues, uses the ML model generated for decision detection, and classi-
fies each issue as either a decision or not a decision class. Next, the classification
component takes the identified design decisions and classifies them into different
categories using the decision classification ML model.

6 Evaluation

In this section, we present the results of applying different classifiers under differ-
ent configurations for both decision detection and classification using the labeled
dataset. In our scenario, the precision (fraction of automatically retrieved doc-
uments that are relevant) is as important as the recall (the fraction of relevant
documents that were successfully retrieved). For instance, in case of decision
detection, it is necessary that all issues that reflect design decisions are retrieved
(high recall) and those issues which are not design decisions should not be auto-
matically labeled as design decisions (high precision). Hence, we measure the
accuracy as the F-score [28], which is the harmonic mean of precision and recall.

We evaluated multi-class classifiers namely SVM, Naive Bayes, Decision tree,
Logistic regression, and One-vs-rest. Since the logistic regression functionality
provided by the Spark APIs cannot handle polynomial labels, it was not used for
decision classification but only for decision detection (binary). Split strategies
from 90% to 50% and n-grams from one to five were analyzed. First, by varying
the n-grams from one to five, we expect that the accuracy will proportionally
increase. That is, the use of patterns of words, which preserves the context of
those words, should positively influence the accuracy of classification. Second, by
decreasing the split percentage from 90% to 50%, the accuracy should decrease
substantially since lesser number of documents would be used for training the
classifiers. In total, 25 individual runs (5 split strategies and 5 n-grams) were
executed for each classifier and the corresponding precision, recall, and F-score
were calculated. Finally, the average accuracy (average F-score) based on the
arithmetic mean of the 25 individual runs for each of the classifiers was analyzed.

Even though the variation of the configuration parameters, namely n-grams
and split strategy need not be considered for validating our hypothesis (cf.
Sect. 3), we believe that the impact of these parameters on the F-score is inter-
esting for researchers and will help practitioners to reproduce the results.

Automatic Extraction of Design Decisions 149

6.1 Results - Automatic Design Decision Detection

The SVM classifier (average accuracy: 91.29%) outperformed Logistic regres-
sion (83.43%), One-vs-rest (79.45%), Decision tree (79.18%), and Naive Bayes
(76.04%) classifiers. Since, the tf-idf representation of issues has a high dimen-
sional feature space, sparse vectors, and few irrelevant features due to the data
curation process, the SVM outperformed the rest of the classifiers. The maximum
accuracy of 94.91% for the SVM classifier was achieved for a larger training set
(90% split) with 3, 4, and 5 grams representation and the minimum accuracy of
87.4% with a smaller training set (50% split) and 1-gram settings. The confusion
matrix for one specific execution run with 70% split and 3-gram configuration
is shown in Table 3. This matrix depicts true and false positives as well as true
and false negatives. The true positives (correct classifications) are highlighted
on the diagonal of the confusion matrix. The precision for classifying an issue as
a design decision is 92.17% and the recall is 90.60%. In addition, the precision
for labeling an issue as Not A Design Decision is 90.87% and its recall is 92.41%.

Table 3. Decision detection: the confusion matrix for SVM

True decision True not a decision Class precision

Decision 212 18 92.17%

Not a decision 22 219 90.87%

Class recall 90.60% 92.41%

Also, as shown in Fig. 4(a), by reducing the size of the training dataset (from
90% to 50%) the F-score decreases as expected but does not diverge more than
4% points from the average F-score of 91.29%. This indicates that the labeled
dataset with 1,571 issues is sufficiently large enough to achieve a consistent

(a) (b)

Fig. 4. Influence of n-grams and split strategy on the F-score of SVM: (a) automatic
decision detection, (b) automatic decision classification

150 M. Bhat et al.

Table 4. Decision classification: the confusion matrix for SVM

True ban True structural True behavioral Class precision

Ban 45 3 0 93.75%

Structural 4 41 13 70.69%

Behavioral 0 6 39 86.67%

Class recall 91.84% 82% 75%

F-score. Furthermore, it can be observed that the variation of n in n-gram gen-
eration does not drastically affect the F-score. As expected, the F-score is com-
paratively lower when we do not consider the combination of words (n = 1) but
the F-score slightly improves in the case of 2-grams and 3-grams. However, there
does not seem to be any noticeable variations when n is greater than three.

To sum, by using the linear SVM classifier along with n-gram (n >= 2) rep-
resentation of words, we can automatically extract design decisions from issues
(cf. hypothesis 1 in Sect. 3). To the best of authors’ knowledge, since no sim-
ilar study exists with benchmarking results, we consider 91.29% accuracy for
automatic design decision detection to be encouraging.

6.2 Results - Automatic Design Decision Classification

Even for the automatic design decision classification, we observed that linear
SVM (average accuracy: 82.79%) performed better as compared to classifiers
including Naive Bayes (59.09%), Decision tree (60.33%), and One-vs-rest (30%)
classifiers. The confusion matrix for linear SVM with 70% training dataset and
30% testing dataset with trigrams is shown in Table 4.

Identifying ban decisions is critical, as they are typically not present in soft-
ware artifacts (cf. Sect. 3). As shown in Table 4, the precision (93.75%) and
recall (91.80%) for automatically classifying design decisions into ban decisions
category are above 90%. On the other hand, the precision for structural and
behavioral decisions are 70.69% and 86.67% and their recall values are 82% and
75% respectively. We believe that the lower precision and recall for structural
and behavioral decisions is due to the existence of similar features (due to the
classification rules presented in Table 1) in their corresponding training dataset.

As shown in Fig. 4(b), reducing the size of the training dataset (from 90% to
50%) decreases the F-score as expected (from 89.9% to 76.2%). This variation
is justified since the labeled dataset for decision categories is significantly small
(160 design decisions in each category). On the contrary, the variation of n-
grams does not have any notable affect on the F-score. This indicates that the
individual words within issues (or bag of words in the textual representation of
issues) play a significant role in the classification as compared to the usage of
specific patterns of words and the context of the words.

To conclude, with the linear SVM classifier we can automatically classify
design decisions into structural, behavioral, and ban decision categories with an

Automatic Extraction of Design Decisions 151

accuracy of 82.79% (cf. hypothesis 2 in Sect. 3). However, we perceive that since
the dataset for classifying decisions is relatively small, increasing the sample size
will improve the generalization capabilities of the classifiers.

7 Threats to Validity

The results presented in the previous section are based on 1,571 labeled issues for
design decision detection and 480 labeled design decisions for classification. The
labeled dataset for classification is not as comprehensive as the dataset used for
decision detection. Even though, we speculate that the generalization capabilities
of design decision classification can be further improved by increasing the sample
size of the dataset, providing relevant quantitative evidence is beyond the scope
of this paper. However, it should be noted that typically in ML-based approaches
for text classification, increasing the sample size of the dataset substantially
improves the classification performance [22].

The 1,571 labeled issues are extracted from two large OSS projects, wherein
contributors have systematically maintained issues for more than three years.
The hypothesis validated using the dataset might not be generalizable for
projects where issues are reported scarcely. Hence, understanding what charac-
teristics of the projects could influence the precision and recall of our approach
are considered as part of our future work.

In the previous section, we have presented the results of automatic decision
detection and classification independently of each other. However, if we consider
the workflow described in Fig. 1, the accuracy of the decision detection affects
the subsequent decision classification phase. In this work, we do not compute the
accuracy for the end-to-end workflow. We plan to perform this evaluation after
integrating of the workflow within our AKM tool as part of our future work.

Finally, as explained in the data curation process, analysts did not consider
issues that could belong to more than one ADD category. Considering such issues
would require further investigation into appropriate classification algorithms for
multi-label classification and the study of the corresponding results.

8 Conclusion

In this paper, we presented a two-phase ML-based approach to automatically
detect design decisions from issues and to subsequently classify them into three
ADD categories, namely Structural, Behavioral and Ban decisions. Furthermore,
we made the manually labeled dataset used for supervised learning publicly
available. This will act as a starting point for researchers to create their own ML
models and to compare the accuracy of the automatic design decision detection
and classification process. The results presented in Sect. 6 indicate that we can
automatically extract design decisions from issues with an accuracy of 91.29%
and classify the extracted decisions into three categories with an accuracy of
82.79% by using the linear SVM classifier. Even though the accuracy can be

152 M. Bhat et al.

further improved, we believe that the result is significant enough to demonstrate
the feasibility of our approach.

We are currently in the process of integrating our ML pipeline within our
AKM tool named AMELIE [4]. This integration will allow us to conduct an
extensive evaluation of the ML models in industrial settings. Furthermore, by
automatically extracting and structuring design decisions from past projects, we
aim to provide recommendations related to semantically similar design decisions
in greenfield projects. The process of automatically extracting and classifying
design decisions from issues is envisioned to be realized using the end-to-end
workflow presented in Fig. 1.

To conclude, since design decisions are not explicitly documented but are
rather implicitly captured in systems such as issue management systems, auto-
matically detecting, extracting, and systematically structuring them in an AKM
tool will help software architects and developers to refer back to already made
design decisions in large-scale software projects as well as in greenfield projects
with similar context. Furthermore, classifying them into categories such as Ban
decisions will allow stakeholders to reason about those artifacts which no longer
exist within the system. Finally, since issues capture both unstructured, as well as
structured information, analyzing them, will support the development of deci-
sion support systems to address concerns such as “Who took the decision?”,
“When was the decision taken?”, and “Why was the decision made?”.

References

1. Ambler, S.: Agile Modeling: Effective Practices for Extreme Programming and the
Unified Process. Wiley, New York (2002)

2. Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., Guéhéneuc, Y.G.: Is it a bug or
an enhancement?: a text-based approach to classify change requests. In: Proceed-
ings of the 2008 Conference of the Center for Advanced Studies on Collaborative
Research: Meeting of Minds, p. 23. ACM (2008)

3. Babar, M.A., Gorton, I.: A tool for managing software architecture knowledge. In:
Second Workshop on Sharing and Reusing Architectural Knowledge-Architecture,
Rationale, and Design Intent, SHARK/ADI 2007: ICSE Workshops 2007, p. 11.
IEEE (2007)

4. Bhat, M., Shumaiev, K., Biesdorf, A., Hohenstein, U., Hassel, M., Matthes, F.:
Meta-model based framework for architectural knowledge management. In: Proc-
cedings of the 10th ECSA Workshops, p. 12. ACM (2016)

5. Bosch, J.: Software architecture: the next step. In: Oquendo, F., Warboys,
B.C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24769-2 14

6. Buchgeher, G., Weinreich, R.: Automatic tracing of decisions to architecture and
implementation. In: 2011 9th Working IEEE/IFIP Conference on Software Archi-
tecture (WICSA), pp. 46–55. IEEE (2011)

7. Capilla, R., Jansen, A., Tang, A., Avgeriou, P., Babar, M.A.: 10 years of software
architecture knowledge management: practice and future. J. Syst. Softw. 116, 191–
205 (2016)

http://dx.doi.org/10.1007/978-3-540-24769-2_14

Automatic Extraction of Design Decisions 153

8. Capilla, R., Nava, F., Carrillo, C.: Effort estimation in capturing architectural
knowledge. In: Proceedings of 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 208–217. IEEE Computer Society (2008)

9. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

10. Dagenais, B., Robillard, M.P.: Creating and evolving developer documentation:
understanding the decisions of open source contributors. In: Proceedings of 18th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 127–136. ACM (2010)

11. Fernández, R., Frampton, M., Ehlen, P., Purver, M., Peters, S.: Modelling and
detecting decisions in multi-party dialogue. In: Proceedings of 9th SIGdial Work-
shop on Discourse and Dialogue, pp. 156–163. Association for Computational Lin-
guistics (2008)

12. Goth, G.: Agile tool market growing with the philosophy. IEEE Softw. 26(2), 88–91
(2009)

13. Hsueh, P.-Y., Moore, J.D.: Automatic decision detection in meeting speech. In:
Popescu-Belis, A., Renals, S., Bourlard, H. (eds.) MLMI 2007. LNCS, vol. 4892,
pp. 168–179. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78155-4 15

14. Jansen, A.: Architectural design decisions. Ph.D. thesis, August 2008
15. Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-

sions. In: 5th Working IEEE/IFIP Conference on Software Architecture, WICSA
2005, pp. 109–120. IEEE (2005)

16. Kazman, R., Goldenson, D., Monarch, I., Nichols, W., Valetto, G.: Evaluating the
effects of architectural documentation: a case study of a large scale open source
project. IEEE Trans. Softw. Eng. 42(3), 220–260 (2016)

17. Kruchten, P.: An ontology of architectural design decisions in software intensive
systems. In: 2nd Groningen Workshop on Software Variability, pp. 54–61. Citeseer
(2004)

18. Kruchten, P., Capilla, R., Dueñas, J.C.: The decision view’s role in software archi-
tecture practice. IEEE Softw. 26(2), 36–42 (2009)

19. Lee, J.: Design rationale systems: understanding the issues. IEEE Expert 12(3),
78–85 (1997)

20. Lee, L., Kruchten, P.: Capturing software architectural design decisions. In: Cana-
dian Conference on Electrical and Computer Engineering, CCECE 2007, pp. 686–
689. IEEE (2007)

21. Lytra, I., Tran, H., Zdun, U.: Supporting consistency between architectural design
decisions and component models through reusable architectural knowledge trans-
formations. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 224–239. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39031-9 20

22. Manning, C.D., Schütze, H., et al.: Foundations of Statistical Natural Language
Processing, vol. 999. MIT Press, Cambridge (1999)

23. Manteuffel, C., Tofan, D., Koziolek, H., Goldschmidt, T., Avgeriou, P.: Industrial
implementation of a documentation framework for architectural decisions. In: 2014
IEEE/IFIP Conference on Software Architecture (WICSA), pp. 225–234. IEEE
(2014)

24. Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman,
J., Tsai, D., Amde, M., Owen, S., et al.: MLlib: machine learning in apache spark.
J. Mach. Learn. Res. 17(34), 1–7 (2016)

25. Miesbauer, C., Weinreich, R.: Classification of design decisions – an expert survey
in practice. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 130–145. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39031-9 12

http://dx.doi.org/10.1007/978-3-540-78155-4_15
http://dx.doi.org/10.1007/978-3-642-39031-9_20
http://dx.doi.org/10.1007/978-3-642-39031-9_12

154 M. Bhat et al.

26. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
27. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Liu, L., Özsu, T. (eds.)

Encyclopedia of Database Systems, pp. 532–538. Springer, Heidelberg (2009).
doi:10.1007/978-0-387-39940-9 565

28. Rijsbergen, C.J.V.: Information Retrieval, 2nd edn. Butterworth-Heinemann,
Newton (1979)

29. Stettina, C.J., Heijstek, W.: Necessary and neglected?: an empirical study of inter-
nal documentation in agile software development teams. In: Proceedings of 29th
ACM International Conference on Design of Communication, pp. 159–166. ACM
(2011)

30. Sutherland, J., Viktorov, A., Blount, J., Puntikov, N.: Distributed scrum: agile
project management with outsourced development teams. In: 40th Annual Hawaii
International Conference on System Sciences, HICSS 2007, p. 274a. IEEE (2007)

31. Tang, A., Babar, M.A., Gorton, I., Han, J.: A survey of architecture design ratio-
nale. J. Syst. Softw. 79(12), 1792–1804 (2006)

32. Tyree, J., Akerman, A.: Architecture decisions: demystifying architecture. IEEE
Softw. 22(2), 19–27 (2005)

33. van der Ven, J.S., Bosch, J.: Architecture decisions: who, how and when. In: Babar,
M.A., Brown, A., Mistrik, I. (eds.) Agile Software Architecture, pp. 113–136.
Morgan Kaufmann, Boston (2013)

34. van der Ven, J.S., Bosch, J.: Making the right decision: supporting architects with
design decision data. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 176–183.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39031-9 15

http://dx.doi.org/10.1007/978-0-387-39940-9_565
http://dx.doi.org/10.1007/978-3-642-39031-9_15

Decision Models for Microservices:
Design Areas, Stakeholders, Use Cases,

and Requirements

Stefan Haselböck1(B), Rainer Weinreich1, and Georg Buchgeher2

1 Johannes Kepler University Linz, Linz, Austria
{stefan.haselboeck,rainer.weinreich}@jku.at

2 Software Competence Center Hagenberg GmbH, Hagenberg im Mühlkreis, Austria
georg.buchgeher@scch.at

Abstract. Introducing a microservice architecture is a complex task,
requiring many design decisions regarding system architecture, organi-
zational structure, and system infrastructure. Decision models have been
successfully used in other domains for design space exploration, decision
making and decision documentation. In this paper, we investigate the use
of decision models for microservice architecture. As a first step, we iden-
tified areas of microservice design and created decision models for some
of the identified areas. We then used the created models as part of a tech-
nical action research (TAR) process with partner companies to identify
important stakeholders and use cases for decision models in this context,
as well as to identify requirements on decision model elements and pre-
sentation. Results indicate that practitioners perceive decision models
for microservices to be useful. Challenges include the large number of
interlinked knowledge areas, the need for context-specific adaptations,
and the need for processes to manage the decision space over time.

Keywords: Decision models · Microservices · Technical action research
(TAR)

1 Introduction

Microservice architecture (aka Microservices) is an architectural style that
focuses on modularizing service-oriented software systems in such a way that
services and service development teams are as independent from each other as
possible [27]. While modularization has always been a means to enable inde-
pendent development, microservices are also built for independent deployment,
scalability, and evolution.

Shifting to a microservice architecture promises faster time-to-market of
individual services, less coordination and thus less complexity through devel-
opment teams that act independently, and more efficient utilization of resources
by enabling the possibility to scale individual services independently from each
other.
c© Springer International Publishing AG 2017
A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 155–170, 2017.
DOI: 10.1007/978-3-319-65831-5 11

156 S. Haselböck et al.

However, introducing a microservice architecture is no easy task. A company
undertaking such an endeavor needs to make a variety of decisions touching a
wide array of development practices, technologies, and infrastructure to han-
dle the additional challenges and complexity that accompany this architectural
style. Examples of such changes are the introduction of an automatic deployment
pipeline to deal with the continuous deployment of individual services, the use of
a runtime infrastructure that provides isolation and scalability, the introduction
of a monitoring infrastructure, and changes to the release process and testing
practices, along with organizational and procedural changes (e.g., DevOps [3]).
All in all, changing to a microservice architecture may touch nearly every aspect
of service development, including design, infrastructure, development practice,
and team organization.

To handle this complexity, we investigate the use of decision models to sup-
port the establishment of a microservice architecture. Decision models are a
well-known approach for exploring the design space, making decisions, docu-
mentation, and reuse in software architecture [5,24]. Early work on design space
exploration and semi-formal models for representing the design space in human
computer interaction (HCI) was performed by MacLean et al. [15,16]. Later,
models for representing and utilizing architectural decisions were developed as
part of research on rational management [6] and knowledge management [1] in
software architecture. In [24], we identified more than 50 approaches to software
architecture knowledge management, many of them based on semi-formal deci-
sion models. Recent work in this area has also investigated decision models for
guiding decision making in different domains, like service-oriented systems [30],
cloud computing [29], and cyber-foraging systems [12].

In this paper, we first identify potential areas for microservice decision mak-
ing. After creating initial decision models for some of the identified areas, we
used those models in a technical action research (TAR) process with partner
companies to identify important stakeholders and use cases for decision models
in the context of microservice architecture. Finally, we identify requirements for
the decision models themselves, such as required elements to address the iden-
tified use cases, along with specifying requirements concerning the presentation
of the decision models to the identified stakeholders.

The remainder of the paper is structured as follows. Section 2 contains back-
ground information and outlines related work on decision models. We describe
the research design and research questions in Sect. 3. The identified areas of
microservice design, stakeholders, use cases, and requirements on microservice
decision model elements and presentation are presented in Sect. 4. Section 5 sum-
marizes the main results. Threats to validity are discussed in Sect. 6, and Sect. 7
concludes.

2 Background and Related Work

Bosch and Jansen [4,11] defined software architecture as the result of a set of
architectural decisions in one of the first decision-oriented views of software archi-
tecture. Since then, design decisions have become important elements of software

Decision Models for Microservices 157

architecture research, and several models, methods, and tools have been devel-
oped to represent, capture, and manage decisions and their rationales in software
architecture [5,23,24]. Decisions are also a central concept in the ISO/IEC/IEEE
42010 standard on software architecture documentation [10].

Early work on decision models in human computer interaction (HCI) was
conducted by MacLean et al. [15,16], who introduced QOC (Questions, Options,
and Criteria) as a semiformal notation to represent the design space around
an artifact. QOC focused on representing the basic concepts of design space
analysis: questions, options, and criteria. The QOC notation was later adopted
in research on architectural knowledge management [1] and used as a basis for
decision models in software architecture [14,28].

Zdun [28] proposed decision models based on QOC for analyzing the software
design space. The models are meant to be reusable for multiple design decisions.
The work on QOC-based decision models for software architecture was further
refined and supported by tools in the ADvISE approach [14].

Zimmermann and Miksovic [30] presented decision models for service-
oriented architecture, including the possibility to reuse one or more guidance
models in their SOAD meta-model; they described guidance models as reusable
assets. In [29], they extended their previous work on decision models, introducing
the concepts of problem-space and solution-space modelling.

Lewis et al. [12] presented decision models for cyber-foraging systems with the
goal of providing guidance for the architecture and evolution of such systems.
In contrast to Zimmermann et al. [29], they did not include a mechanism for
capturing decisions made. Their models are comparable to the guidance models
proposed by Zimmermann and Miksovic in [30].

Here, we develop decision models for a microservice architecture, specifically
using as a basis a metamodel similar to that of Lewis and Zimmermann. Our
metamodel includes concerns which relate to questions in the QOC notation
and to requirements in other decision models, design options, and implications,
which can also be used as criteria to evaluate design options. Implications relate
to tradeoffs in the decision model by Lewis et al. [12], but they may not only be
related to system qualities but also to organizational structures, economic impli-
cations, and infrastructure. We use this metamodel as a basis for developing
and refining decision models for various important microservice topics, such as
service discovery, service registration, versioning, load balancing, caching, fault
tolerance, and so on (see, e.g., [9] on decision models for monitoring microser-
vices). As part of this process, we also identified important areas of microservice
design, important stakeholders for these models, potential use cases, and specific
requirements for decision models in this domain.

3 Research Design

The goal of this study is to identify areas of microservice design where decision
models might be used, stakeholders and use cases for decision models in this
context, and requirements for elements of decision models and their presentation.
We defined the following research questions to address this goal:

158 S. Haselböck et al.

– RQ1: What are the main areas of design for a microservice-based system,
and how can they be categorized?

– RQ2: Which are the important stakeholders of decision models for microser-
vice architectures?

– RQ3: What are the intended use cases for decision models for microservice
architectures?

– RQ4: What elements of a microservice decision model and their presentation
are required to support stakeholders in their intended used cases?

3.1 Literature Review

To identify areas of design for microservice architectures and to categorize the
identified areas, we reviewed the literature in the digital libraries of IEEE, ACM,
and Springer. We first performed an automatic search using the following search
terms: microservice*, micro-service*, and “micro service*”. We searched for these
terms in the titles, abstracts, and keywords of articles published in journals,
conferences, and workshops.

After the automatic search, we manually analyzed the results, removing arti-
cles not relevant for this study. We then analyzed the remaining articles with
main topics regarding different areas of microservice decision-making. Finally,
we included several existing mapping studies on microservices [2,7,19] in our
analysis.

In addition to the above literature review, we also manually reviewed two
well-known books [18,27] and two blogs [13,21] on microservices to validate and
refine the list of identified areas of microservice design.

3.2 TAR Study

To identify stakeholders, use cases, and requirements of decision models
for microservices, we performed a technical action research (TAR) study as
described by Wieringa [26]. The concept of TAR is to design artifacts and vali-
date them under real-world conditions.

The basic structure of the TAR process is shown in Fig. 1, comprising three
different cycles. In each cycle, the researcher plays a different role. In the design
cycle, the researcher designs an artifact to solve problems in a research context.
In the empirical cycle, the researcher validates the designed artifact and tries
to answer the defined research questions. The client engineering cycle has two
different aims. The client wants to solve a problem with the designed artifact,
and the researcher wants to validate his or her artifact. Thus, the researcher
helps the client solve their problem by applying the designed artifact. At the
same time, he or she collects information to answer the research questions.

We performed the TAR study with two different companies that are currently
establishing microservice architectures. The companies operate in two different
domains, banking and process automation. The artifacts under study were use
cases and stakeholders of decision models for microservices, as well as required
elements for decision models and presentation of microservices. To collect data

Decision Models for Microservices 159

Fig. 1. The three-level structure of TAR (from [26])

for these points, we performed four client engineering cycles with the two com-
panies. In each cycle, we participated in a design workshop with the clients, each
addressing a particular area of microservice design. The workshops were part of
regular design sessions at the companies that took place every two weeks as part
of Scrum cycles. While we initiated participation in the workshops, we did not
initiate the workshops themselves. In preparation for the workshops, we created
decision models for the defined areas based on the microservice literature (the
helper’s role). During the workshop, the participants used the created models to
discuss potential design decisions regarding the issues in a particular design area
in their company’s context, while we (as researchers) acted as pure observers
and data collectors. At the end of each workshop, we additionally interviewed
workshop participants about potential stakeholders, intended use cases, and the
provided models to obtain feedback about the elements and presentation. Inter-
views were performed either by client staff or by the researchers. The following
briefly describes the four different client engineering cycles.

– In the first client engineering cycle, we participated in a design workshop on
service discovery at a company in the banking domain. During this cycle,
the client aimed to get an overview of the topic of service discovery, define
requirements for service discovery, and discuss potential design options. We
provided initial models for service discovery, service registration, and load
balancing, which the workshop participants could use in their discussion, but
we did not interfere otherwise.

– The second engineering cycle was performed with the same client as was the
first cycle. The aim of this cycle was to reflect design decisions already made
for service discovery. We used the revised metamodel created during the first
client engineering cycle.

– In the third client engineering cycle, we participated in a workshop on
resilience with the same company. In this cycle, the client had the same aim as
in the first engineering cycle. We used a decision model for resilience, which

160 S. Haselböck et al.

was based on the refined metamodel from the previous client engineering
cycles.

– The fourth client engineering cycle was done with a company in the process
automation domain. We participated in a meeting with the client on microser-
vice monitoring. The client aimed to get an overview of the topic of monitoring
and of available design options, to define requirements for microservice mon-
itoring in the company’s context, and to get some information about existing
monitoring technologies. We used a set of decision models for microservice
monitoring [9] in this workshop.

The main means of data collection were observation and unstructured inter-
views [22]. We took field notes during the workshops, which we extended with
information collected in interviews. For analysis of the collected data, we used
the constant comparison method [22] to collect and refine the data in each client
engineering cycle. We performed data analysis in two steps. First, we coded the
field notes using a provisional “start list” [17] with predefined categories and
several subcategories. We then analyzed the coded field notes, finally creating
a field memo [22] including the identified stakeholders, use cases, and necessary
changes to the elements or presentation. Furthermore, based on the field memo,
we redesigned the decision metamodel and the presentation of the model (i.e.,
the notation of the model) for the next client engineering cycle.

4 Results

In the following section, we present the results that address the research questions
presented in Sect. 3, starting with the identified design areas, stakeholders, and
use cases (RQ1–RQ3). Section 4.4 presents the requirements for decision models
and their elements (RQ4) that emerged during the client engineering cycles in
the TAR process.

4.1 RQ1: Design Areas

Figure 2 overviews the design areas that were identified in the literature review.
We briefly describe each main design area.

Integration: Microservice architectures comprise potentially thousands of inde-
pendently developed and operated services, which need to be integrated with
each other. Integration of services can occur at different levels, such as the user
interface level, the service level, or the data level.

Modularization: Microservice architecture is often primarily seen as a specific,
modular approach that aims to design microservices as independently from each
other as possible. This may lead to services that provide their own user inter-
faces and data management facilities. Concepts like domain-driven design can
decouple services based on their functionalities. Furthermore, service granularity
and size must be considered.

Decision Models for Microservices 161

Fig. 2. Areas of microservice design

Discovery: Since microservices are typically spread across different hosts, mech-
anisms for service registration and discovery are needed to ensure that services
can find each other. This also includes mechanisms to find specific versions of
services.

Fault Tolerance: To ensure that a local failure of a microservice does not
propagate through the whole system and eventually lead to system breakdown,
services must be designed to be tolerant against failures at runtime. Furthermore,
the infrastructure must provide mechanisms to deal with failing service instances.
If required, new service instances should be started automatically.

Security and Privacy: Since microservices provide public interfaces and
use remote communication spanning network boundaries, security and privacy
must be considered, including subareas like authentication, authorization, and
encryption.

Scalability: Scalability is often a central reason for companies to migrate
towards a microservice architecture, because it enables independent and selec-
tive scaling of single services. Scalability can be achieved on different levels, for
instance by replicating services, splitting the functionality for which a service is

162 S. Haselböck et al.

responsible, or splitting the data for which a service is responsible. To cope with
independently scaling services, load balancing and caching mechanisms must also
be considered.

Team organization: Design also goes hand-in-hand with team organization.
In a microservice architecture, teams operate as independently from each other
as possible. Instead of functional teams organized around technical boundaries,
teams are mostly cross-functional and organized around business capabilities.
A team may develop several microservices, but the development of any single
microservice is always the responsibility of a single team. Teams responsible
for a microservice may also independently decide the programming language,
technology stack, and development process to use.

Deployment: Independent deployment is a central motivation for using a
microservice architecture. Independent deployment of a potentially large num-
ber of services requires a strategy to bring the services into production with
reasonable effort, e.g., by automating the deployment pipeline with continuous
deployment. In cases where complete releases require deployment at once, per-
haps because of legal restrictions, release management strategies are needed.

Testing: As with deployment, testing a potentially large number of indepen-
dently developed microservices with frequent releases requires automation. Ser-
vices should be tested as part of a continuous delivery pipeline. Integration tests
should be performed at the end of a continuous deployment pipeline for each
service individually, which requires the establishment of test zones.

Monitoring and Logging: Monitoring microservice-based systems is challeng-
ing, because of the high number of independent services, which may be located on
different hosts. This requires support for the automatic collection, distribution,
and combination of the monitoring data from the different services. Monitoring
should include application performance, business processes, tracing, and logging.

Operations: A dedicated runtime infrastructure is needed to operate microser-
vice instances, handle the independent scaling of services, support fault toler-
ance, and support continuous deployment. This may include the use of virtual-
ization and cloud infrastructures.

Some of the above areas are related to each other, such as service discovery
and service registration, so making decisions in one design area might require
decisions in another design area. In addition, any design area might be related
to multiple, other design areas. For example, service versioning may be related
to service discovery, because service discovery must handle different versions
of a microservice. Also, versioning may be related to service deployment, since
different versions of a service must be deployed.

The identified design areas can be further mapped to three main areas
of microservice system design, organizational structures and processes, and
microservice infrastructure (again see Fig. 2). This highlights that, when estab-
lishing a microservice architecture, decisions must be made not only at the
level of system design, but also concerning team organization and system
infrastructure.

Decision Models for Microservices 163

4.2 RQ2: Stakeholders

The second research question aims to identify important stakeholders of decision
models for microservices. To answer this research question, we analyzed the
roles of the workshop participants in the client engineering cycles and also asked
about their roles in interviews after the engineering cycles. We identified six
main stakeholders for decision models.

Software Architect: At least one software architect participated in each client
engineering cycle. Software architects were responsible either for the architecture
of the entire microservice-based software system (i.e., the macro-architecture) or
for the architecture of single microservices as part of development teams (i.e., the
micro-architecture). Software architects’ main interests are to use decision mod-
els to explore new design areas, provide decision guidance for other stakeholders,
efficiently document design decisions, and review design decisions already made.

Developer: Developers only participated in the fourth client engineering cycle.
Typically, developers are involved only in selected areas as part of a cross-
functional team. Their main interest is in using decision models to make, docu-
ment, and review decisions as part of the team.

Application Engineer: This stakeholder was identified during the fourth client
engineering cycle. Application engineers are typically responsible for realizing
customer projects based on a software platform or product line of an industrial
solutions provider. As such, their main interest lies in understanding important
platform decisions, along with integrating client solutions with the client’s hard-
ware and software infrastructure.

Operations Engineer: This stakeholder was present in three different client
engineering cycles, which is no surprise since development and operations usu-
ally work together in the context of microservices. They were interested mostly
in the design spaces provided for deployment, infrastructural issues like the run-
time infrastructure used for load distribution and monitoring, and the available
technology options.

Quality Assurer: Stakeholders for quality assurance were present in all client
engineering cycles. They were usually part of service development and cross-
functional teams and mainly interested in changes to test processes and fault
handling.

Manager: This stakeholder was identified during the first and second client
engineering cycles. Some workshop participants mentioned that they have to
provide support for decision-making that is the responsibility of people at higher
management levels. Currently, this is done with the time-consuming method of
PowerPoint presentations. They expect to use the structured way of presenting
design options and implications together with their rationales to streamline this
process.

While the different stakeholders were partly interested in different decision
models, typically related to their areas of responsibility and interest, it also

164 S. Haselböck et al.

became obvious that decision models would typically be used in a team set-
ting, where stakeholders with expertise or interest in a particular topic were
present. In addition, other people required for discussion (e.g., experts on spe-
cific infrastructure) were integrated on-demand through conference calls.

4.3 RQ3: Use Cases

RQ3 concerns the identification of intended use cases of decision models for
microservices. To answer this question, we identified how the decision models
were used in the client engineering cycles. In the interviews after the workshops,
we also asked study participants to identify additional potential use cases of the
presented models. As a result, we identified the following main use cases.

Design Space Exploration: In the first use case, decision models are used to
explore a potential design space and to discuss potential design options. Work-
shop participants used the provided decision models to overview available design
options, rationales for selecting particular options, and implications of each
option for system qualities and organizational structures and processes. Stake-
holders participating in these discussions included software architects, develop-
ers, application engineers, quality assurance managers, and operations people.
For this kind of discussion, global decision models are typically used. In our case,
most of the performed client engineering cycles fell into this category.

Decision Guidance and Documentation: In this use case, decision models
are used as a framework to make decisions and efficiently document decisions.
The team responsible for a decision uses the models to choose one or several
design options. The models provide addressed concerns with, implications of,
and the components needed for each possible decision. Potential stakeholders
for this use case are cross-functional teams comprising developers, architects,
quality assurance, and operations. The participants in our client engineering
cycles outlined two use cases in this area: (1) the creation and continuous adap-
tation of decision models to the local design context of the company, what we
termed local or company-specific decision models, which might be used to cap-
ture cross-project knowledge in the company and guide the design process as
outlined above; and (2) stakeholders at the companies also argued that decision
models might be suitable for discussing important decisions with upper manage-
ment, since it enables a presentation of the rationale for each element and the
implications of selecting a particular option in a structured and compact way.

Design Review: In this use case, decision models are used to reflect decisions
that have already been made. Therefore, existing decision models created by the
decision maker, other teams, or external experts are used. In the client engi-
neering cycles in this case, participants mentioned two intended purposes: (1)
to reflect a decision made by the same team, whether architectural or cross-
functional; and (2) to reflect decisions made by another team. A concrete exam-
ple mentioned was the architectural team reflecting decisions made by cross-
functional teams. The second client engineering cycle, described in Sect. 3.2, was

Decision Models for Microservices 165

performed on the basis of this use case. The client’s architectural team reflected
their decisions about service discovery in the context of a particular infrastruc-
ture for service discovery. The researchers created the decision model used.

Requirements Elicitation: This use case was identified in the fourth client
engineering cycle of the TAR process. The workshop participants used the
provided decision models to determine the requirements of their monitoring
infrastructure when discussing different monitoring options.

Evaluation of Technology Options: As expressed in the third and fourth
client engineering cycles, decision models may be used to select and evaluate
existing technology options for a specific area of design. This requires informa-
tion about the implemented functionality and the product and runtime costs of
different technology options.

4.4 RQ4: Decision Model Elements and Presentation

The following requirements concerning model elements and presentation emerged
when using and refining the provided decision models in the TAR process out-
lined in Sect. 3.2.

Scope: In workshops that aimed at exploring a specific design space, partici-
pants added several additional elements to the model, such as concerns, impli-
cations, or design options. Some of the added elements were company-specific,
but others were also valid in other contexts. Thus, different decision models are
needed for different application scopes. So, we introduced the concept of context-
dependent (local) and context-independent (global) decision models. Since some
of the added elements were also valid in other domains, we further added a feed-
back loop to continuously incorporate changes to local models into more general,
global models, analogous to the feedback loop from application engineering to
domain engineering in software product lines described in [20].

Components: Workshop participants were often interested in the system com-
ponents needed to implement a design option. As a result, we identified a need
to include system components as first-level elements in decision models, which
can then be linked to concerns and design options.

Technology Options: In two client engineering cycles, one important aim of the
client was to identify and evaluate different technology options for implementing
a specific design option. Therefore, in the decision models, we need additional
elements to model technology options and link them with specific design options.

Reading Direction: To increase the models’ comprehensibility, some workshop
participants mentioned the need for a clear reading direction. They expressed
the need to start at two different points when discussing the design space: either
starting with a design option to determine which concerns were addressed or
starting with concerns to determine the design options best addressing those
concerns. The model’s presentation must support both scenarios.

166 S. Haselböck et al.

Structuring and Connecting Design Areas: Since areas of microservice
design are often related, the model must provide a mechanism to define such
relations between different areas. Furthermore, there are many different design
areas, requiring a mechanism to structure the whole design space, for example
by defining namespaces for decision models and by refining decision models into
submodels.

Focusing on Important Elements: In the workshops, we noticed that the
presentation of the decision models must be as simple as possible while still
providing the full level of detail when needed. Otherwise, a model’s users eas-
ily become overwhelmed by its complexity. Also, some elements of a particular
type turned out to have different levels of importance than others. This became
especially evident when showing implications, which we included in the model to
show the results of selecting a particular design option. One strategy might be to
classify elements according to their levels of importance, showing less important
elements only when requested.

5 Discussion

Identified stakeholders were not only the software architects that would be
expected in a microservice context, although software architects were often the
driving force in discussions in the performed client engineering cycles and were
involved in all design areas that discussed in the workshops. Other stakehold-
ers, like developers, operation engineers, and quality assurance, were typically
involved only in selected areas, according to their specific roles and interests.
However, all stakeholders considered the decision models to be useful, in part
because they provided a common ground of understanding and terminology and
a means for structuring discussion on a topic.

The most relevant use cases in our client engineering cycles were design space
exploration and reviews of already made design decisions. Also, the teams were
heavily driven in part by existing microservice technology stacks. Therefore,
the decision models were also used to evaluate existing technology options and
how they implemented specific design options. In the fourth client engineering
cycle, in particular, the company used the decision models to determine require-
ments for their monitoring infrastructure. The decision models not only enabled
a higher level of completeness but also served as a means for weighing the impor-
tance of requirements in light of how they addressed design options. Additional
use cases like decision guidance, documenting decisions and their rationales, and
refining models were identified as equally important in the long term. Finally,
participants identified the aspect of sharing as important, including adaptations
of local decision models in concrete usage scenarios and the continuous refine-
ment of shared global models based on these context-specific changes.

The decision models we created for the client engineering workshops (e.g., the
microservice monitoring models presented in [9]) include the main elements of
QOC models (see Sect. 2). In addition, our models included further elements,
such as components and technology options, to support the evaluation and

Decision Models for Microservices 167

selection of technology options and to obtain an impression of what would be
required to implement a design option.

The presentation of a single model should mainly provide an overview of the
design space, with details shown as needed. Additionally, decision models for a
large number of identified design areas must be structured with, for example,
namespaces and submodels. We plan further investigation of different forms of
model presentation to stakeholders in our ongoing TAR study with both current
and new business partners.

6 Threats to Validity

The presented results of the literature review and TAR study may be influenced
by several factors.

In our literature review, we did not intend to obtain a complete list of areas
of design for microservices. Instead, we wanted an overview of important areas of
design that must be considered when introducing microservice architectures and
that we could potentially support with decision models. We tried to mitigate
threats related to the representativeness of the list of identified design areas
by performing an automatic search of the main digital libraries for software
engineering using a quite general search string (see Sect. 3.1), followed by manual
selection of relevant studies from the results of the automated search. Afterwards,
we extended and refined the resulting list of studies with results of mapping
studies, augmented with important books and blog posts on this topic.

In our TAR study, we used the data collection methods of observation and
unstructured interviews. Seaman [22] mentioned a number of threats to consider
for both means of data collection.

For observations, the participants should not feel observed, and the observer
should not interrupt in any way. To address these issues, we explained our app-
roach and aims to participants before each session, making it clear that we would
not interfere with the workshop in any way. During the workshops, we acted as
pure observers and data collectors. We only answered questions regarding the
meaning of the elements in the discussed decision models.

A potential threat regarding interviews is that interviewees may answer ques-
tions in a socially desirable way [25]. To mitigate this threat, interviews should
not be performed by the researchers, if possible. In our case, the interviews were
partly performed by client staff and partly by the researchers. In cases where
we performed the interviews, we made clear that there were no right or wrong
answers, as suggested in [22].

For analysis of collected data during the observations and interviews, we used
the constant comparison method [22]. Gasson [8] mentioned threats that must be
addressed when using this method, namely confirmability, dependability, internal
consistency, and transferability. To ensure confirmability, each researcher inde-
pendently coded the field notes and discussed the findings. To address depend-
ability, we followed the TAR study process, with observations and interviews
used as data collection methods and the constant comparison method used for

168 S. Haselböck et al.

data analysis. To ensure internal consistency, we derived the data from the field
memos, which were created based on the independent coding of the field notes.
Transferability was addressed by using the artifact under study in several client
engineering cycles. In each cycle, the context of design space, use case, partici-
pants, or client changed.

Still, our study faces some limitations that may affect the external validity
of the findings, most importantly the limited number of clients and client engi-
neering cycles. We tried to mitigate this threat by working with different clients
from different domains, as well as by working with different teams at one of the
clients. Furthermore, in the client engineering cycles we used decision models for
different areas of design.

7 Conclusion

In this work, we identified potential areas of microservice design through a lit-
erature review, created decision models based on existing work, decision models
in other domains, and microservice literature, and then used the created mod-
els in a technical action research process with industrial partners to identify
stakeholders, use cases, and requirements for decision models for microservices.

Our results showed that there is a wide range of potential stakeholders in
this domain, from software architects and operations personnel to management.
Stakeholders outlined a set of use cases, including requirements elicitation, design
space exploration, decision guidance, technology evaluation, decision documenta-
tion, and decision presentation. Quite interestingly, the provided decision models
worked well during workshops undertaken as part of the TAR client engineering
cycles, with the models seen not as necessary evils but rather being naturally
integrated as useful elements for structuring discussions and supporting the out-
lined use cases.

Using the models in a real-world context also helped identify specific require-
ments for the models themselves and their presentation to stakeholders, including
the necessity of adapting decision models to a local context, the need for a feed-
back loop to refactor changes made to local models to models with more global
scope, the need to structure a large design space, and the need to model rela-
tionships among many design models. The basic elements of the decision models
remained broadly similar to what was proposed in QOC; we needed only to add
elements like technology options and components to address specific use cases.
Finally, we need to give more thought to the presentation of models to support
specific use cases, with emphasis placed on presenting only the least amount of
information necessary for a potential use case in order to disturb the process at
hand as little as possible.

In future work, we plan to perform further workshops as part of our ongoing
TAR study. Through these workshops, we aim to refine and validate decision
models for the identified areas of microservice design with our partner companies,
scientific partners, and possibly with other companies. We are currently working
on a tool to support this process of continuous communication and refinement.

Decision Models for Microservices 169

Acknowledgement. The research reported in this paper has been supported by the
Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry of
Science, Research and Economy, and the Province of Upper Austria in the frame of
the COMET center SCCH.

References

1. Ali Babar, M., Dingsøyr, T., Lago, P., Van Vliet, H. (eds.): Software Architecture
Knowledge Management: Theory and Practice. Springer, Heidelberg (2009)

2. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microser-
vice architecture. In: 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA), pp. 44–51, November 2016

3. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Boston (2015)

4. Bosch, J.: Software architecture: the next step. In: Oquendo, F., Warboys, B.C.,
Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidel-
berg (2004). doi:10.1007/978-3-540-24769-2 14

5. Capilla, R., Jansen, A., Tang, A., Avgeriou, P., Babar, M.A.: 10 years of software
architecture knowledge management: practice and future. J. Syst. Softw. 116, 191–
205 (2015)

6. Dutoit, A.H., McCall, R., Mistŕık, I., Paech, B. (eds.): Rationale Man-
agement in Software Engineering. Springer, Heidelberg (2006). doi:10.1007/
978-3-540-30998-7. http://link.springer.com/10.1007/978-3-540-30998-7

7. Francesco, P.D., Malavolta, I., Lago, P.: Research on architecting microservices:
trends, focus, and potential for industrial adoption. In: Proceedings of the 14th
International Conference on Software Architecture (ICSA), Gothenburg, Sweden,
April 2017

8. Gasson, S.: Rigor in grounded theory research: an interpretive perspective on gener-
ating theory from qualitative field studies. In: Whitman, M.E., Woszczynski, A.B.
(eds.) The Handbook of Information Systems Research, pp. 79–102. Idea Group,
Hershey (2004)

9. Haselböck, S., Weinreich, R.: Decision guidance models for microservice monitor-
ing. In: IEEE International Workshop on Architecting with MicroServices (AMS),
International Conference on Software Architecture Workshops (ICSAW 2017),
Gothenburg, Sweden, April 2017

10. ISO/IEC/IEEE 42010–2011(E): Systems and software engineering - Architecture
description. IEEE (2011). doi:10.1109/IEEESTD.2011.6129467

11. Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-
sions. In: 5th Working IEEE/IFIP Conference on Software Architecture (WICSA
2005), pp. 109–120 (2005)

12. Lewis, G.A., Lago, P., Avgeriou, P.: A decision model for cyber-foraging systems.
In: 13th Working IEEE/IFIP Conference on Software Architecture (WICSA), pp.
51–60, April 2016

13. Lewis, J., Fowler, M.: Microservices, Mar 2014. https://martinfowler.com/articles/
microservices.html

14. Lytra, I., Tran, H., Zdun, U.: Supporting consistency between architectural design
decisions and component models through reusable architectural knowledge trans-
formations. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 224–239. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39031-9 20

http://dx.doi.org/10.1007/978-3-540-24769-2_14
http://dx.doi.org/10.1007/978-3-540-30998-7
http://dx.doi.org/10.1007/978-3-540-30998-7
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-540-30998-7
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://dx.doi.org/10.1007/978-3-642-39031-9_20

170 S. Haselböck et al.

15. MacLean, A., McKerlie, D.: Design space analysis and use-representations. In:
Carroll, J.M. (ed.) Scenario-Based Design: Envisioning Work and Technology in
System Development. Wiley, New York (1995)

16. MacLean, A., Young, R.M., Bellotti, V.M.E., Moran, T.P.: Questions, options, and
criteria elements of design space analysis. Hum. Comput. Interact. 6(3), 201–250
(1991). http://dx.doi.org/10.1207/s15327051hci0603&4 2

17. Miles, M.B., Huberman, A.M.: Qualitative Data Analysis: An Expanded Source-
book. Sage, Thousand Oaks (1994)

18. Newman, S.: Building Microservices. O’Reilly Media Inc., Sebastopol (2015).
http://shop.oreilly.com/product/0636920033158.do

19. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings
of the 6th International Conference on Cloud Computing and Services Science -
Volume 1: CLOSER, pp. 137–146 (2016)

20. Pohl, K., Böckle, G., van Der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer Science & Business Media, Hei-
delberg (2005)

21. Richardson, C.: What are microservices?. http://microservices.io
22. Seaman, C.B.: Qualitative methods. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.)

Guide to Advanced Empirical Software Engineering, pp. 35–62. Springer, London
(2008). doi:10.1007/978-1-84800-044-5 2

23. Tofan, D., Galster, M., Avgeriou, P., Schuitema, W.: Past and future of software
architectural decisions a systematic mapping study. Inf. Softw. Technol. 56(8), 850–
872 (2014). http://www.sciencedirect.com/science/article/pii/S0950584914000706

24. Weinreich, R., Groher, I.: Software architecture knowledge management
approaches and their support for knowledge management activities: a system-
atic literature review. Inf. Softw. Technol. 80, 265–286 (2016). http://www.
sciencedirect.com/science/article/pii/S0950584916301707

25. Wieringa, R., Moralı, A.: Technical action research as a validation method in infor-
mation systems design science. In: Peffers, K., Rothenberger, M., Kuechler, B.
(eds.) DESRIST 2012. LNCS, vol. 7286, pp. 220–238. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29863-9 17

26. Wieringa, R.J.: Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, Heidelberg (2014). http://www.springer.com/de/
book/9783662438381

27. Wolff, E.: Microservices: Flexible Software Architecture. Addison-Wesley Profes-
sional, New Jersey (2016)

28. Zdun, U.: Systematic pattern selection using pattern language grammars
and design space analysis. Softw. Pract. Exp. 37(9), 983–1016 (2007).
http://onlinelibrary.wiley.com/doi/10.1002/spe.799/abstract

29. Zimmermann, O., Wegmann, L., Koziolek, H., Goldschmidt, T.: Architectural deci-
sion guidance across projects - problem space modeling, decision backlog manage-
ment and cloud computing knowledge. In: 2015 12th Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA), pp. 85–94 (2015)

30. Zimmermann, O., Miksovic, C.: Decisions required vs. decisions made connect-
ing enterprise architects and solution architects via guidance models. In: Aligning
Enterprise, System, and Software Architectures, p. 176 (2012)

http://dx.doi.org/10.1207/s15327051hci0603&4_2
http://shop.oreilly.com/product/0636920033158.do
http://microservices.io
http://dx.doi.org/10.1007/978-1-84800-044-5_2
http://www.sciencedirect.com/science/article/pii/S0950584914000706
http://www.sciencedirect.com/science/article/pii/S0950584916301707
http://www.sciencedirect.com/science/article/pii/S0950584916301707
http://dx.doi.org/10.1007/978-3-642-29863-9_17
http://www.springer.com/de/book/9783662438381
http://www.springer.com/de/book/9783662438381
http://onlinelibrary.wiley.com/doi/10.1002/spe.799/abstract

Software Architecture Risk Containers

Andrew Leigh(✉), Michel Wermelinger, and Andrea Zisman

School of Computing and Communications, The Open University, Milton Keynes, UK
andrew.leigh@open.ac.uk

Abstract. Our motivation is to determine whether risks such as implementation
error-proneness can be isolated into three types of containers at design time. This
paper identifies several container candidates in other research that fit the risk
container concept. Two industrial case studies were used to determine which of
three container types tested is most effective at isolating and predicting at design
time the risk of implementation error-proneness. We found that Design Rule
Containers were more effective than Use Case and Resource Containers.

1 Introduction

According to Bass et al. (2012) 161 historical projects were analysed by Boehm and
Turner who found that the bigger the project is, the more architecture risk assessment
is needed to avoid rework. No results for the comparative performance of architecture
evaluation methods for isolating risks were found in existing work. Not knowing the
risk scope limits the ability to estimate the risk impact and cost of mitigations. Our
proposition is to investigate whether it is more effective to base risk assessment around
risk containers that isolate related risk-inducing elements.

In this paper, we test three types of risk containers for their ability to isolate the risk
of implementation error-proneness at the design stage, namely Design Rule, Use Case
and Resource Containers. If container level design metrics that indicate a design might
be complex to implement (e.g. coupling metrics), can be used to rank containers, then
containers can be used to predict the areas of greatest risk. If the degree of element
sharing between containers is low, they are said to be element isolating. Furthermore,
if containers are risk predicting and element isolating, they must also be risk isolating
because the elements in the container are inducing the risk, and they are not shared with
other containers. Risk isolating containers would enable practitioners to identify the risk
areas and understand their scope in terms of the affected elements. In this paper we
address the following research question:

Can the risk of implementation error-proneness be isolated within risk containers
based on the design time architectural description?

The remainder of this paper is structured as follows. Section 2 lists the existing work
that most closely fits the risk container concept. Section 3 presents the method used to
test three types of containers using two industrial case studies. Section 4 presents anal‐
ysis of the results. Finally, conclusions are drawn in Sect. 5.

© Springer International Publishing AG 2017
A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 171–179, 2017.
DOI: 10.1007/978-3-319-65831-5_12

2 Background

We next present existing work that most closely fits the proposed concept of architecture
risk containers. This section is organised by the container types we synthesised from the
commonalities we found between architecture evaluation techniques.

Attack Graph Containers are tuples containing nodes that an attacker can interact
with to exploit a vulnerability in a goal component (Said et al. 2011). UML models are
used to estimate component failure probability to assess scenario security risks. Proba‐
bilities assigned to graph elements are used to calculate the probability of failure for the
goal component. Since the tuple isolates the elements associated with the risk, attack
graphs fit the risk container concept.

Design Rule Containers (DRSpaces) proposed by Xiao et al. (2014), are graphs
based on the key interfaces (design rules) that split an architecture into independent
modules. The vertices are related classes and the edges are the relationships between
those related classes. Xiao et al. concluded that if a leading file of a DRSpace is error-
prone, a large proportion of the other DRSpace files are likely to be error-prone, and
that most error-prone files will be found in just a few DRSpaces. Xiao et al. used a
clustering algorithm called Design Rule Hierarchy (DRH) proposed by Wong et al.
(2009) to extract DRSpaces from source code. Wong et al. were motivated to develop
the DRH algorithm to separate modules of related elements in UML designs to maximise
developer parallelism. Leigh et al. (2016) manually populated DRSpaces from UML
class diagrams taken from an industrial case study. The term ‘Design Rule Containers’
is used to standardise terminology in this paper.

Component Containers contain the classes a component is composed of. Stevanetic
and Zdun (2016) calculated design metrics from UML to indicate the understandability
of components. Their results show that if the internal relationships of a component are
difficult to comprehend it might be difficult to maintain and therefore the classes it is
composed of isolate the risk. Abdelmoez et al. (2006) estimated requirement maturity
and traced it to components to determine component change probability and identify
maintainability risks. Goseva-Popstojanova et al. (2003) and Yacoub and Ammar (2002)
calculated complexity metrics from designs to assess reliability risks of components.
These contributions suggest maintainability and reliability risks could be isolated within
Component Containers.

Resource Containers contain the elements dependent on a resource such as a
component, service or data store. Stevanetic and Zdun (2016) also showed that if the
component functionality is difficult to comprehend, developers might misunderstand
how to use it, leading to more errors in dependent code. A Resource Container could be
used to isolate elements dependent upon the resource component to isolate the risk.

Scenario Containers contain the elements that support a specific scenario. Williams
and Smith (1998) and Cortellessa et al. (2005) used resource estimates (e.g. CPU) to
determine whether a scenario is likely to exceed a non-functional requirement. Their
methods are limited by their dependency on the accuracy of design time resource esti‐
mates and assumptions about the target platform. Their results suggest Scenario
Containers could isolate performance related risks at design time.

172 A. Leigh et al.

Use Case Containers contain the elements that support a specific use case. Mustafiz
et al. (2008) assign a success probability to each use case step. Use cases are then
analysed to compare the achievable reliability with the required reliability. The research
by Mustafiz et al. and Goseva-Popstojanova et al. suggests reliability risks can be
isolated to the set of operations or classes that fulfil the use case.

Despite the methods found being suggestive of risk containers, little evidence about
their risk isolation properties is provided. No results regarding the comparative perform‐
ance of risk containers types for isolating different risks were found. These limitations
mean practitioners have no advice for selecting which containers to use for specific risks.
For example, the work of Abdelmoez et al. (2006), Xiao et al. (2014), Leigh et al. (2016),
and Stevanovic and Zdun (2016) identifies Design Rule and Component Containers as
container candidates for maintainability risks. Whilst we know something about specific
cases where each have been effective, their relative performance for isolating risks
remains unknown.

Sections 3 and 4 present our most recent work to understand how effectively different
design time risk containers isolate the risk of implementation error-proneness.

3 Method

This section describes the method used to test how well three risk container types isolate
at design time the risk of implementation error-proneness. These three risk container
types have been chosen due to the different ways they split the architecture. Design Rule
(DR) Containers group elements subordinate to modularising design rules, Use Case
(UC) Containers group elements supporting use cases, and the Resource Containers
group elements that depend upon a database table (as opposed to resources such as CPU).

3.1 Risk Container Creation

DR Containers were constructed using the method described in Leigh et al. (2016). Each
design rule class was used as a container basis before expansion with subordinate classes
by consulting design relationships. For example, in Fig. 1 element c2 is the basis of DR
Container A because it is an abstract class. Elements c3 and c5 are then added to that
container because they are sub-classes. One UC Container was created per use case and
included each class referenced by the use case. Note how Fig. 1 shows that UC Container
D contains all the elements on the use case sequence diagram. Resource Containers were
populated with all elements dependent upon a specific database table by seeding with
the table encapsulation element and recursively adding elements where the encapsula‐
tion element is the child of a relationship. This can be seen in Fig. 1 where element c4
is the basis for container D and c1 and c3 are added because they are recursively
dependent upon c4. Additional implementation classes were added to the initially popu‐
lated containers using strict name conventions. This was necessary because each design
element was realised by an interface and an implementation. Therefore, when an inter‐
face was allocated to a container its one to one implementation class was also added.

Software Architecture Risk Containers 173

Unlike Xiao et al. (2014) who used automation, our containers were populated by manual
analysis.

Fig. 1. Example container population and coupling calculation

Control containers were created for each container type by randomly allocating the
same elements in the test containers to the same number of control containers. The
average number of elements per control container and the average number of containers
per element was approximately the same as the test containers. The control containers
were used to determine whether basing containers on related elements is a better indi‐
cator of error-proneness than random population. The control containers are based on
the mean values from ten sets of random assignments per container type.

Coupling is a significant contributory factor in the complexity of software (Bass et al.
2012). Thus, it is expected that containers having elements with greater coupling are
more likely to be error-prone during implementation. Such a correlation would imply
that error-proneness has been isolated to a degree. That is because the error-proneness
is associated with coupling stemming from the architectural feature (e.g. Design Rule,
Use Case or Resource) on which the risk container is based. If the architectural feature
were to be removed, the risk associated with it would be eliminated (and potentially
replaced with risk attached to substitute features). Thus, the presence of a correlation
between feature based containers and implementation error-proneness implies isolation
to the scope of the features on which the containers have been based.

Tightly coupled elements are more likely to change together when software is devel‐
oped and maintained due to the ripple effect. As stated by Bass et al. (2012), ‘reducing
the strength of coupling between two modules A and B will decrease the expected cost
of any medication that affects A’ (p. 122). Therefore, a more precise answer to our
research question can be obtained by determining to what degree containers share
elements and how much of the coupling is between elements in the same container. That
is because if containers are risk isolating the architectural elements should exist in few

174 A. Leigh et al.

containers and elements should have less coupling to other elements outside of their
own container.

As per Fig. 1, design coupling is calculated for all elements in the container for
relationships like aggregation, composition and dependencies if the element is the rela‐
tionship parent, and generalisations if the element is the child. This metric indicates how
tightly coupled container members are to other elements in the architecture.

Error-proneness is defined as the files having more confirmed bugs per thousand
lines of released code (KLOC) than a threshold. We used again the 75th percentile of
bugs per KLOC as the threshold (Leigh et al. 2016). Bug identifiers were extracted from
the Subversion commit messages for each implementation file.

Using our method, we can compare the container types tested by how well they
implicitly isolate error-proneness based on correlation between design time container
level coupling and implementation error-proneness, and how well they explicitly isolate
individual architectural elements and internal coupling. Thus, a strong and significant
correlation between coupling and error-proneness, in combination with high isolation
metrics, would answer the research question affirmatively.

3.2 Metric Calculation

The following risk container type metrics were used to test their relative capability for
predicting the risk of implementation error-proneness and being element isolating:

– Number of Containers (N): number of containers the design has been split into.
– Percent Container Coverage (PCC): percentage of all implementation elements that

were allocated to risk containers. This metric indicates how much of the implemen‐
tation was represented in the design.

– Spearman’s rank correlation ρ and confidence level α between design coupling and
implementation error-proneness: Spearman’s rank correlation coefficient ρ and
confidence level α is computed to indicate the association between container level
coupling and percentage of error-prone files. The correlation indicates how well the
container type predicts and implicitly isolates error-proneness.

– Mean Containers Per Class (CPC-M): mean number of containers each element has
been allocated to. This metric indicates the average amount of element sharing
between containers and represents the degree of element isolation.

– Upper Quartile Containers Per Class (CPC-UQ): 75th percentile of containers each
element has been allocated to. This metric is used to confirm the degree of element
isolation within containers.

– Mean Percent Internal Coupling (IC-M): mean percentage of container level
coupling that is between two elements inside the same container. This metric indi‐
cates the degree of coupling isolated within containers.

– Upper Quartile Internal Coupling (IC-UQ): 75th percentile percentage of container
level coupling that is between two elements inside the same container. This metric
is used to confirm the degree of coupling isolated within containers.

Software Architecture Risk Containers 175

– Percent Single Neat Container Change Sets (NCC): percentage of Subversion change
sets that fit neatly inside a single risk container. This metric indicates how well
containers isolate source code edits made to change the software and fix bugs.

4 Analysis

Two cases studies from the same software company have been used to evaluate our
method. The company prefers to remain anonymous, but their name is registered with
the Open University in an intellectual property agreement.

4.1 Case Study 1 – API

The first case study is a bespoke Application Programming Interface (API) that enables
clients to integrate with a database in an enterprise solution. The architectural description
of the API is a UML model and the implementation contains 87.85 KLOC of object-
oriented Java code. Table 1 shows the API results.

Table 1. Case study 1 results

API case study
API case
study

Coverage Risk predicting Element isolating

Container
type

N PCC ρ α CPC-M CPC-UQ IC-M IC-UQ NCC

Control
DR
Containers

13 80.90 -0.05 >0.100 1.08 1.00 9.03 12.48 26.40

Control
UC
Containers

36 12.13 0.38 0.025 5.29 6.60 12.66 17.24 0.49

Control
Resource
Containers

23 32.81 0.04 >0.100 6.37 9.00 24.09 28.53 0.00

DR
Containers

13 80.89 0.85 0.001 1.08 1.00 35.33 55.56 41.33

UC
Containers

36 12.13 0.71 0.001 4.74 5.00 18.52 23.08 2.22

Resource
Containers

23 30.81 0.63 0.001 7.77 8.00 37.37 41.54 0.00

DR Containers have the strongest (ρ) and most significant (α) correlation. The
random assignment of elements to containers resulted in a negative correlation for the
control DR Containers. DR Containers had the lowest mean containers per class (CPC-
M). On average, each element is allocated to just over one DR Container. This contrasts
with UC Containers and Resource Containers where each element is allocated on

176 A. Leigh et al.

average to approximately 5 and 8 containers respectively. The 75th percentile (CPC-UQ)
confirms that elements are distributed across fewer DR Containers than UC and
Resource Containers. The mean percentage of coupling where both related elements are
inside the same container (IC-M) is greatest for Resource Containers and DR Containers.
However, the 75th percentile (IC-UQ) is greater for DR Containers which suggests they
typically have less external coupling than Resource Containers.

The percentage of Subversion change sets fitting neatly inside a single container
(NCC) is greatest for DR Containers. This result is expected because DR Containers
have the highest IC-M/IC-UQ and lowest CPC-M/CPC-UQ, which suggests that DR
Containers better isolate the related source code files developers must edit when making
changes or fixing bugs in the software. All test containers have stronger correlation and
are more risk isolating than their corresponding control containers.

In Leigh et al. (2016) we asked developers to nominate areas of the API that were
difficult to implement and maintain. We observed that 2 of 3 nominations fitted neatly
inside a DR Container. It is worth noting that none of the nominations could be matched
to the API UC Containers. Some elements belonging to the nominated areas could be
matched to Resource Containers but a Resource Container that fitted the whole nomi‐
nation could not be found. This further strengthens the evidence for DR Containers being
the most isolating container type in the API case study.

4.2 Case Study 2 – Server

The second case study is concerned with the Server side modules of a COTS data
management application. The Server architecture is documented in MS Word documents
and the implementation contains 333.55 KLOC of procedural Oracle PL/SQL code.
Table 2 shows the Server results.

Table 2. Case study 2 results

Server case study
Server case
study

Coverage Risk predicting Element isolating

Container type N PCC ρ α CPC-M CPC-
UQ

IC-M IC-UQ NCC

Control DR
Containers

9 12.50 –0.07 >0.100 1.14 1.00 7.45 6.25 23.48

Control UC
Containers

68 5.60 0.03 >0.100 6.16 9.70 0.04 0.00 3.26

Control
Resource
Containers

16 9.48 0.02 >0.100 2.64 5.20 9.19 10.99 0.00

DR Containers 9 12.50 0.92 0.001 1.14 1.00 48.61 100.00 23.19
UC Containers 68 5.60 0.32 0.005 5.69 8.00 0.00 0.00 3.26
Resource
Containers

16 9.48 0.31 0.250 2.77 6.00 15.14 6.00 0.00

Software Architecture Risk Containers 177

DR Containers again had the strongest (ρ) and most significant (α) correlation. The
strong correlation observed for UC Containers in the API case study was not reproduced.
DR Containers again have the lowest mean CPC-M and CPC-UQ indicating elements
are shared between fewer DR Containers than UC and Resource Containers. DR
Containers also have the highest IC-M and IC-UQ which again suggests DR Containers
have less coupling to external elements. The change set isolating results for the API
were not reproduced in the Server because NCC is approximately the same for the test
containers as their corresponding controls.

In both case studies DR Containers cover more of the design (PCC) than UC and
Resource Containers. This means more of the risk was isolated into DR Containers. The
much lower PCC values calculated for the server were due to more time having passed
since the design was produced. This meant more implementation elements were present
that were not documented in the design.

5 Conclusion

This paper presents the results of testing three types of risk containers to determine their
relative efficacy at isolating the risk of implementation error-proneness at design time.
The three types tested were Xiao et al.’s (2014) DRSpaces, adapted to split the archi‐
tectural design by modularising design rules, and two novel containers that group
elements supporting use cases, and elements dependent upon databases.

Results from two industrial projects suggest DR Containers are the most effective at
isolating the risk of implementation error-proneness at design time. This is due to them
having the strongest correlation between container level design coupling and imple‐
mentation error-proneness and least amount of element sharing and external coupling
in both case studies. The results strengthen our previous evidence (Leigh et al. 2016)
that DR Containers can be used for design time assessment of software architectures for
the risk of implementation error-proneness, based on UML class diagrams or module
dependency graphs.

Whilst DR Containers are the most effective of the three container types tested, even
more effective risk containers may remain to be found. Further investigation is also
needed to understand why the high number of change sets fitting neatly inside a single
DR Container in the API was not observed in the Server case study. Furthermore, work
is required to determine whether container based risk assessment is generalizable for
other risks, and if so, whether the same containers or others work best, and at which
levels of architecture abstraction different container types are effective. More work is
also required to determine how meaningful different container types are to software
practitioners and how durable they are throughout the software development life-cycle.
These questions represent opportunities for future work.

178 A. Leigh et al.

References

Abdelmoez, W.M., Goseva-Popstojanova, K., Ammar, H.H.: Methodology for maintainability-
based risk assessment. In: Annual Reliability and Maintainability Symposium, RAMS 2006,
pp. 337–342. IEEE (2006)

Bass, L., Clement, P., Kazman, R.: Software Architecture in Practice, 3rd edn., pp. 121–124 and
p. 280. Addison Wesley, Reading, USA (2012)

Cortellessa, V., Goseva-Popstojanova, K., Appukkutty, K., Guedem, A.R., Hassan, A., Elnaggar,
R., Abdelmoez, W., Ammar, H.H.: Model-based performance risk analysis. IEEE Trans.
Softw. Eng. 31(1), 3–20 (2005)

Goseva-Popstojanova, K., Hassan, A., Guedem, A., Abdelmoez, W., Nassar, D.E.M., Ammar,
H., Mili, A.: Architectural-level risk analysis using UML. IEEE Trans. Softw. Eng. 29(10),
946–960 (2003)

Leigh, A., Wermelinger, M., Zisman, A.: An evaluation of design rule spaces as risk containers.
In: Proceedings of the 13th Working International Conference on Software Architecture
(WICSA), pp. 295–298. IEEE (2016)

Mustafiz, S., Sun, X., Kienzle, J., Vangheluwe, H.: Model-driven assessment of system
dependability. J. Softw. Syst. Model. 7(4), 487–502 (2008)

Said, F.H., Ammar, H.H., Valenti, M.C., Ross, A., Lai, H.J.: Security-based Risk Assessment for
Software Architecture, pp. 1–126. West Virginia University Libraries (2011)

Stevanetic, S., Zdun, U.: Exploring the understandability of components in architectural
component models using component level metrics and participants’ experience. In: 19th
International ACM SIGSOFT Symposium on Component-Based Software Engineering
(CBSE), pp. 1–6. IEEE (2011)

Williams, L.G., Smith, C.U.: Performance evaluation of software architectures. In: Proceedings
of the 1st International Workshop on Software and Performance, pp. 164–177. ACM (1998)

Wong, S., Cai, Y., Valetto, G., Simeonov, G., Sethi, K.: Design rule hierarchies and parallelism
in software development tasks. In: Proceedings of the 24th International Conference on
Automated Software Engineering (ASE), pp. 197–208. ACM (2009)

Xiao, L., Cai, Y., Kazman, R.: Design rule spaces: a new form of architecture insight. In:
Proceedings of the 36th International Conference on Software Engineering, pp. 967–977.
ACM (2014)

Yacoub, S.M., Ammar, H.H.: A methodology for architecture-level reliability risk analysis. IEEE
Trans. Softw. Eng. 28(6), 529–547 (2002)

Software Architecture Risk Containers 179

Software Architecture Practice

A Model for Prioritization of Software Architecture Effort

Eoin Woods1(✉) and Rabih Bashroush2

1 Endava Limited, 125 Old Broad Street, London EC2N 1AR, UK
eoin.woods@endava.com

2 University of East London, University Way, London E16 2RD, UK
r.bashroush@uel.ac.uk

Abstract. As part of our software architecture research and practice we have
found that a common difficulty for new architects is knowing where to focus their
effort to maximise their effectiveness. This led us to wonder whether successful
experienced architects have reusable heuristics or guidelines that they follow to
help them prioritise their work. To investigate this we have performed a study
using semi-structured interviews to explore how experienced software architects
prioritise their activities in order to maximise their effectiveness. From the
primary data collected through the interviews we have synthesised a simple model
that organises and explains the heuristics that we found to be common across a
number of experienced software architects.

Keywords: Software architecture · Software architecture decision making ·
Software architect effectiveness

1 Introduction

In our research and practice in the field of software architecture, we have noticed and
experienced how complex it is for software architects to prioritise their work. The soft‐
ware architect’s responsibilities are broad and in principle they can be involved in almost
any technical aspect of a project from requirements to operational concerns.

However we observe that successful software architects appear to be very good at
focusing their effort effectively, which led us to wonder how they achieve this. They
may use generic time management techniques (like [1]) but we were interested in
commonly used, role-specific, heuristics which could be taught to new architects.

We decided to investigate this via a questionnaire-based study of a group of expe‐
rienced architects. We discovered that there are common heuristics which experienced
architects use to prioritise their work and we have created a model to capture them.

In this paper, we explain the approach we took and present the model that we created
from the results that we obtained. The contribution of our work is not specifically the
heuristics in our model, indeed most of them are quite familiar to experienced practi‐
tioners, but rather the organisation of the heuristics and the validation that they are used
by experienced practitioners to guide their work. We believe that this makes the model
potentially useful as a reminder for experienced practitioners and as a teaching aid for
new architects who are learning how to fulfil the role.

© Springer International Publishing AG 2017
A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 183–190, 2017.
DOI: 10.1007/978-3-319-65831-5_13

http://orcid.org/0000-0001-7858-1552
http://orcid.org/0000-0002-9610-0027

2 Related Work

When we started investigating this topic, we were primarily interested in how practi‐
tioners really worked however we also performed a literature search to find related work
from the research community.

We did not find any studies investigating our specific topic, but an architectural
method which helps architects to direct their effort is Risk and Cost Driven Architecture
(RCDA) [12]. This method transforms the architect’s approach from defining finished
architectural structures at the start of a project, to use the risk and cost of open decisions
to prioritise the architect’s work throughout the project. Another practitioner oriented
approach that stresses the importance of risk in guiding architecture work is [6]. We
were also interested to find some very specific advice from a very experienced architect
and researcher [10] that architects should spend 50% of their time on architecting, 25%
on inbound communication and 25% on outbound communication.

In the research domain, we found a research community interested in prioritisation
of requirements [3, 7], but this only addresses part of an architect’s work.

Finally, there is a large amount of mainstream business and self-help literature on
time management (such as the well-known [1, 9] and some more focused on software
engineering such as [5]) however we were interested in architecture specific approaches
and heuristics rather than more general advice.

3 Research Method

When planning this research, we selected a qualitative research approach because we
needed to explore the “lived-experiences” of expert practitioners by asking them ques‐
tions to encourage reflection and insight [13] rather than assessing performance or
alignment with specific practices via quantitative means.

We chose to gather our primary data using semi-structured interviews, where we
provided the interviewees with a written introduction to the question we wanted to
answer and then some specific questions to start their thought processes.

The analysis of the primary data was performed using a simple application of
Grounded Theory as it is a suitable method for theory building, to understand the rela‐
tionships between abstract concepts [4], which described our situation and needs very
closely. We performed initial coding on the primary data and then refined this with a
focused coding exercise. As suggested in [13] the process of collection and analysis was
a parallel, iterative process, rather than a linear one with fixed phases.

This exercise produced a set of themes that classify the heuristics that the architects
use, as well as the heuristics themselves. A heuristic had to be mentioned by at least
three of the participants (which represented a third of them) for us to consider it signif‐
icant enough to be included in the model. We combined the themes and heuristics to
form a simple model of how experienced architects go about prioritizing their effort.

184 E. Woods and R. Bashroush

4 The Study

Our primary data gathering was performed using a semi-structured, face-to-face survey
of 8 experienced software architecture practitioners working across 4 countries.

We found the participants by approaching suitable individuals from our professional
networks. We were looking for practitioners who had a minimum of 10 years’ profes‐
sional experience and who worked as architects in the information systems domain
(rather than architects from – for example – embedded systems).

We focused on the information systems domain because we know from experience
that working practices differ between professional domains like information systems
and embedded systems. Hence, we thought it more likely that we could create a useful
model if we limited ourselves to one broad domain, at least initially.

We deliberately selected candidates that we knew differed from each other in organ‐
isation, specialisation and geography to get a reasonably diverse population and avoid
obvious sample bias (we discuss the threat of sample bias further in Sect. 6).

Some characteristics of the participants in the study are summarised in the graphs in
Fig. 1. As can be seen they represent a range of experience, role type and country.

Fig. 1. Study participants (8 in total)

We used a semi-structured interview format with a written introduction to the ques‐
tion which each interviewee read before being asked a standard set of open ended ques‐
tions which explored how they went about prioritisation of architecture work and any
specific factors that they used to guide them.

The question we asked during the interview was “how can architects concentrate
their attention so that they are most effective?” The more specific questions we asked
the interviewees to stimulate thought were:

• How do you go about this in your work?
• What factors do you consider when prioritising your attention?
• Do you consider what to focus on? Or what not to focus on?
• For example, how do you prioritise architectural governance compared to other

aspects of the project?

The interviewer asked additional questions to understand the answers fully or to
encourage the interviewee to add more detail or fill in ambiguous aspects of the answer.

A Model for Prioritization of Software Architecture Effort 185

The process of initial coding of the primary data resulted in 25 items, which could
be associated with at least one of the interviews. A further focused coding process
revealed that there were 9 underlying heuristics which appeared to be significant to the
participants in the study and then a further analysis iteration lead to the identification of
three categories of prioritisation heuristic which we use to structure our model.

5 A Model for Prioritising Architectural Effort

5.1 The Model

Our heuristic model for focusing architectural effort is shown in Fig. 2.

Fig. 2. Model for focusing architectural attention

The three categories of heuristic that the study revealed were firstly, the need to focus
on stakeholder needs, secondly, the importance of considering risks when deciding on
where to focus effort, and finally the importance of spending time to achieve effective
delegation of responsibilities. These categories form the structure of our model, and
remind the architect of the general ways in which they should prioritise their efforts. The
categories and heuristics are explained in more detail in Sect. 5.2.

It is important to understand the nature of this model and how it should be used. It
is not a prescriptive process for architects to follow or a process for developing an
architecture. This model is an aide memoire to organise a set of heuristics that experi‐
enced practitioners appear to find useful when prioritising their work. While we believe
this to be a useful model to teach trainee architects, and a useful reminder for experienced
architects, it is necessary to apply the model in a context sensitive manner, within what‐
ever method that the architect is using to develop software architectures.

186 E. Woods and R. Bashroush

5.2 Content of the Model

Understand the Stakeholder Needs and Priorities. The first theme which emerged
strongly in our study was focusing on the needs and priorities of the stakeholders
involved in the situation. The principle that architecture work involves working closely
with stakeholders is widely agreed [2, 14] and this theme reinforces that. Architects need
to focus significant effort to make sure that stakeholder needs and priorities are under‐
stood to maximise focus on the critical success factors for a project and maximise the
chances of its success. Three specific heuristics to achieve this which emerged from the
study are:

• Consider the whole stakeholder community. Spend time understanding the different
groups in the stakeholder community and avoid the mistake of just considering
obvious stakeholder groups like end-users, acquirers and the development team. As
the architecture methods referenced above note, ignoring important stakeholders
(like operational staff or auditors) can prevent the project meeting its goals and cause
significant problems on the path to production operation.

• Ensure that the needs of the delivery team are understood and met. Spend sufficient
time to ensure that the delivery team can be effective. What is the team good at? What
does it know? What does it not know? What skill and knowledge gaps does it have?
These areas need attention early in the project so that architecture work avoids risks
caused by the capabilities of the team and that time is taken to support and develop
the team to address significant weaknesses.

• Understand the perspective and perceptions of the acquirers of the system. Acquirers
are a key stakeholder group who judge its success and usually have strategic and
budgetary control, so can halt the project before delivery if they are unhappy. Specif‐
ically addressing this group’s needs, perceptions and concerns emerged as an impor‐
tant factor for some of the experienced architects in our study. Acquirers are often
distant from the day-to-day reality of a project and need clear communication to
understand their concerns and ensure that they have a realistic view of the project.

Prioritise Effort According to Risks (Driven by Impact x Probability). During a
project, an effective approach to prioritising architectural attention is to use a risk driven
approach to identify the most important tasks. If the significant risks are understood and
mitigated then enough architecture work has probably been completed. If significant
risks are open then more architecture work is needed. The specific heuristics to consider
for risk assessment are:

• Consider external dependencies. Understand your external dependencies because
you have little control over them and they need architectural attention early in the
project and whenever things change.

• Look for novel aspects of domain, problem and solution. Another useful heuristic,
from the experience of our study participants, is to focus on novelty in your project.
What is unfamiliar? What problems have you not solved before? Which technology
is unproven? The answers to these questions highlight risks and the participants in
our study used them to direct their effort to the most important risks to address.

A Model for Prioritization of Software Architecture Effort 187

• Identify the high impact decisions. Prioritise architecture work that will help to miti‐
gate risks where many people would be affected by a problem (e.g. problems with
the development environment or problems that will prevent effective operation) or
where the risk could endanger the programme (e.g. missing regulatory constraints).

• Analyse your local situation for risks. Consider the local factors unique to your
situation, which you will be aware of due to the knowledge you have of the domain,
problem and solution. It is impossible to give more specific guidance on this heuristic
as every situation is different, but the participants in our study noted the importance
of “situational awareness” [15] that allows the architect to find and address the risks
specific to the local environment (perhaps due to organisational factors, specific
technical challenges, domain complexities or business constraints).

Delegate as Much as Possible. Delegation was an unexpected theme that emerged in
the study. The architects who mentioned this theme viewed themselves as a potential
bottleneck in a project and delegation and empowerment of others was a way to minimize
this. Delegation was also seen as a way of freeing the architect to focus on the aspects
of the project that they had to focus on rather than all the other aspects that they could
possibly get involved in.

The general message of this theme is to delegate as much architecture work as
possible to the person or group best suited to perform it, to prevent individuals becoming
project bottlenecks, allow architects to spend more time on risk identification and miti‐
gation, and to spread architectural knowledge through the organisation. The heuristics
that were identified to help achieve this are:

• Empower the development teams. To allow delegation and work sharing, architects
need to empower (and trust) the teams that they work with. This allows governance
to become a shared responsibility and architecture to be viewed as an activity rather
than something that is only performed by one person or a small group. This causes
architectural knowledge, effort and accountability to be spread across the organisa‐
tion, creates shared ownership, reduces the load on any one individual and prevents
reliance on a single individual from delaying progress.

• Create groups to take architectural responsibilities. A related heuristic is to formalise
delegation somewhat and create groups of people to be accountable for specific
aspects of architectural work. For example, in a large development programme, an
architecture review board can be created to review and approve significant architec‐
tural decisions. Such a group can involve a wide range of expertise from across the
programme and beyond, so freeing a lead architect from much of the effort involved
in gathering and understanding the details of key decisions, while maintaining effec‐
tive oversight to allow risks to be controlled and technical coherence maintained.
Similarly, a specific group of individuals could be responsible for resilience and
disaster recovery for a large programme, allowing them to specialise and focus on
this complex area, and allowing a lead architect to confidently delegate to them,
knowing that they will have the focus and expertise to address this aspect of the
architecture.

188 E. Woods and R. Bashroush

6 Threats to Validity

There are potential limitations to any qualitative study, including our work, and there
are potential threats to its validity. Although we do not believe that any of these seriously
threaten the usefulness of our study, it is important to acknowledge them.

There are four main types of threat to the validity of a study like this, namely
construct, internal, external and conclusion validity as defined in [11].

Construct and internal validity relate to the effectiveness and integrity of the imple‐
mentation of the research methodology adopted. In our case, sample bias could affect
the study due to the small size, specific experience, and regional distribution of our
sample of practitioners and author bias could be a problem because the authors of this
study are involved in software architecture research and practice. We addressed the
former by deliberately inviting a fairly diverse set of practitioners to participate in the
study and we plan to address this weakness more robustly by validating the model with
a much larger group. Author bias was addressed by careful construction and execution
of the interviews, to avoid leading the participants to any specific answers.

External validity ensures the applicability of the results of the study beyond its initial
scope and conclusion validity ensures the validity of the conclusions drawn. In our case,
we believe we avoid these risks through the reasonable diversity we achieved in our
participants and because we did not have any preconceived ideas of likely answers and
did not suggest any answers to the participants in the written material or verbally and,
we drew our conclusions (i.e. the model) using grounded theory and we believe that this
process will largely address risks to our conclusion validity.

7 Future Work

We have created a candidate heuristic model for guiding architects through the process
of prioritising their effort to maximise their effectiveness. The next step in the work is
to construct a simple questionnaire to explore the usefulness and credibility of the model
for a much larger number of practitioners. We believe that this will provide us with a
strong validation or refutation of it.

If the model proves to be valid and found to be useful by a significant majority of a
larger study group then we would aim to publicise it in practitioner circles via conference
sessions and short articles in practitioner-oriented web and print publications.

8 Conclusion

Our experience and informal discussion with architects over many years suggested that
they find it difficult to decide how to focus their effort to maximise their effectiveness.
We were interested in how practitioners solved this problem and if there were commonly
used heuristics. To investigate this, we used a semi-structured interview process with
eight experienced practitioners and used Grounded Theory to analyse the results.

The conclusion of our initial study is that there are some shared heuristics which
practitioners use, but that the community is not aware that the heuristics are widely

A Model for Prioritization of Software Architecture Effort 189

known. We found that the heuristics clustered into three groups: focus the architects
attention on stakeholders, use their time to address specific risks and delegate as much
as possible, in order to give them as much time for architecture work as possible.

These findings are not completely unexpected and many of the heuristics are familiar.
However, neither the participants or ourselves knew that these were the key heuristics
before we undertook the study, so we believe that the model we have created will have
value as a teaching aid and as a reminder to experienced practitioners. This is preliminary
work based on a small study, so to validate its usefulness, we plan to continue this work
with a much wider, questionnaire based study to find out whether a larger group of
practitioners finds the model useful and credible.

References

1. Allen, D.: Getting Things Done: The Art of Stress-free Productivity, 2nd edn. Piatkus, London
(2015)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn. Addison
Wesley, Upper Saddle River (2012)

3. Berander, P., Andrews, A.: Requirements prioritization. In: Aurum, A., Wohlin, C. (eds.)
Engineering and Managing Software Requirements, pp. 69–94. Springer, Heidelberg (2005)

4. Charmaz, K.: Constructing Grounded Theory: A Practical Guide through Qualitative
Analysis. Sage, London (2006)

5. De Marco, T.: Slack: Getting Past Burn-out, Busywork, and the Myth of Total Efficiency.
Dorset House, New York (2001)

6. Fairbanks, G.: Just Enough Software Architecture, A Risk Driven Approach. Marshall &
Brainerd, Boulder (2010)

7. Herrmann, A., Daneva, M.: Requirements prioritization based on benefit and cost prediction:
an agenda for future research. In: Tetsuo, T. (ed.) 16th IEEE International Requirements
Engineering, RE 2008. IEEE (2008)

8. Karlsson, J., Ryan, K.: A cost-value approach for prioritizing requirements. IEEE Softw.
14(5), 67–74 (1997)

9. Koch, K.: The 80/20 Principle: The Secret of Achieving More with Less. Nicholas Brearley
Publishing, London (2007)

10. Kruchten, P.: What do software architects really do? J. Syst. Softw. 81(12), 2413–2416 (2008)
11. Matt, G.E., Cook, T.D.: Threats to the validity of research synthesis. In: Cooper, H., Hedges,

L.V. (eds.) The Handbook of Research Synthesis, pp. 503–520. Russell Sage Foundation,
New York (1994)

12. Poort, E.R., van Vliet, H.: RCDA: architecting as a risk-and cost management discipline. J.
Syst. Softw. 85(9), 1995–2013 (2012)

13. Reimer, F.J., Quartaroli, M.T., Lapan, S.D.: Qualitative Research: An Introduction to Methods
and Designs. Wiley, London (2012)

14. Rozanski, N., Woods, E.: Software systems architecture, working with stakeholders using
viewpoints and perspectives, 2nd edn. Addison Wesley, Upper Saddle River (2011)

15. Wikipedia, Situational Awareness. https://en.wikipedia.org/wiki/Situation_awareness.
Accessed 10 Apr 2017

190 E. Woods and R. Bashroush

https://en.wikipedia.org/wiki/Situation_awareness

Architectural Assumptions
and Their Management

in Industry – An Exploratory Study

Chen Yang1,2, Peng Liang1(&), Paris Avgeriou2, Ulf Eliasson3,4,
Rogardt Heldal4, and Patrizio Pelliccione4

1 State Key Lab of Software Engineering, School of Computer Science,
Wuhan University, Wuhan 430072, China

liangp@whu.edu.cn
2 Department of Mathematics and Computing Science, University of Groningen,

Nijenborgh 9, 9747 AG Groningen, The Netherlands
3 Volvo Cars, Volvo Jacobs Väg, 405 31 Gothenburg, Sweden

4 Department of Computer Science and Engineering, Chalmers University
of Technology and University of Gothenburg, 412 96 Gothenburg, Sweden

Abstract. As an important type of architectural knowledge, architectural
assumptions should be well managed in projects. However, little empirical
research has been conducted regarding architectural assumptions and their
management in software development. In this paper, we conducted an
exploratory case study with twenty-four architects to analyze architectural
assumptions and their management in industry. In this study, we confirmed
certain findings from our previous survey on architectural assumptions (e.g.,
neither the term nor the concept of architectural assumption is commonly used
in industry, and stakeholders may have different understandings of the archi-
tectural assumption concept). We also got five new findings: (1) architects
frequently make architectural assumptions in their work; (2) the architectural
assumption concept is subjective; (3) architectural assumptions are
context-dependent and have a dynamic nature (e.g., turning out to be invalid or
vice versa during their lifecycle); (4) there is a connection between architectural
assumptions and certain types of software artifacts (e.g., requirements and
design decisions); (5) twelve architectural assumptions management activities
and four benefits of managing architectural assumptions were identified.

Keywords: Architectural assumption � Architectural assumptions
management � Case study

1 Introduction

The concept of assumption in software engineering is not new. Various types of
assumptions have been investigated in the software engineering literature, such as
requirement assumptions [1], architectural assumptions [10], and code-level

© Springer International Publishing AG 2017
B.A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 191–207, 2017.
DOI: 10.1007/978-3-319-65831-5_14

assumptions [2], each focusing on a different aspect of the software development
lifecycle. Architectural assumptions (AA1) are an important type of architectural
knowledge in both architecting and software development in general [5]. Similar to the
definition of “assumption” in Oxford English Dictionary2 and Merriam-Webster3, we
define AA as: architectural knowledge taken for granted, or accepted as true without
evidence. The essence of the AA concept is “uncertainty”: stakeholders are not
(completely) certain regarding various aspects of architectural knowledge, including
correctness, impact, importance, suitability, etc. As an example, a stakeholder may
assume that “the number of users (visitors) of the system would be around 1 million per
day”. When the uncertainty of an AA is eliminated, the AA can be removed or
transformed to other types of software artifacts (e.g., a design decision).

AA that are not well managed (and thus remain implicit AA or become invalid AA)
can lead to a multitude of problems in software development [5]. As an example of
such a problem, consider architectural misunderstanding: stakeholders may misun-
derstand an architectural design decision, because they are not aware of the AA behind
this decision. Another example is undetected risks: one essential characteristic of
assumptions is uncertainty, which may lead to risks in projects, especially if AA remain
implicit.

Little empirical research has been conducted regarding the notion of AA as well as
their management. In this paper, we conducted an exploratory case study with
twenty-four architects to analyze AA and their management in industry. The results
confirm certain findings from our previous survey on AA [5]: (1) neither the term nor
the concept of AA is commonly used in industry, and stakeholders may have different
understandings of the AA concept; (2) AA are not only important in architecting, but
also of paramount importance in software development as they span the whole software
development lifecycle; (3) there is a lack of approaches, tools, and guidelines for AA
management, and there are certain challenges in managing AA. Furthermore, we got
five new findings: (1) architects frequently make AA in their work; (2) the AA concept
is subjective; (3) AA are context-dependent and have a dynamic nature (e.g., turning
out to be invalid or vice versa during their lifecycle); (4) there is a connection between
AA and certain types of software artifacts (e.g., requirements and design decisions);
(5) twelve AA management activities and four benefits of managing AA were
identified.

The rest of this paper is structured as follows: Sect. 2 describes related work on AA
and their management. Section 3 introduces the case study design. Section 4 presents
the results of the case study, while Sect. 5 discusses the findings. Section 6 describes
the threats to the validity of the case study, and Sect. 7 concludes this work along with
future research directions.

1 AA in this paper is singular as well as plural based on the context in which it is used.
2 http://www.oxforddictionaries.com/definition/english/assumption.
3 http://www.merriam-webster.com/dictionary/assumption.

192 C. Yang et al.

http://www.oxforddictionaries.com/definition/english/assumption
http://www.merriam-webster.com/dictionary/assumption

2 Related Work

Garlan et al. [11] treated AA as an important factor that causes architectural mismatch.
The authors suggested that guidelines should be provided for documenting AA (e.g.,
how to integrate AA Documentation into architecture documentation). The authors
further suggested several approaches (e.g., architecture views and description lan-
guages) and techniques (e.g., XML) to support AA Documentation.

Lago and van Vliet [10] distinguished AA from requirements and constraints as the
reasons for architectural design decisions that are arbitrarily taken based on personal
experience and knowledge. An assumption meta-model was proposed to document
these assumptions in an explicit way. The authors classified AA into three types:
(1) managerial assumptions, (2) organizational assumptions, and (3) technical
assumptions. Roeller et al. [9] classified AA into four types: (1) implicit and undoc-
umented (the architect is unaware of the assumption, or it concerns tacit knowledge),
(2) explicit but undocumented (the architect takes a decision for a specific reason),
(3) explicit and explicitly undocumented (the reasoning is hidden), (4) explicit and
documented (this is the preferred, but often exceptional, situation). The authors also
proposed an approach (RAAM – Recovering Architectural Assumption Method) for
AA Recovery from five sources in development (e.g., source code and documentation).

Van Landuyt et al. [12] discussed a specific type of AA (i.e., early AA), which are made
by requirements engineers in the early phases of development (e.g., requirements elicita-
tion). The authors highlighted the necessity of the documentation of early AA. In their
subsequent work, Van Landuyt and Joosen [13] introduced a metamodel and an instanti-
ation strategy to document early AA based on quality attribute scenarios and use cases.

Ordibehesht [14] argued that implicit and invalid AA are the major cause that leads
to system failures and poor performance. The author proposed an approach based on an
architectural analysis and description language to document AA.

Mamun and Hansson [15] conducted a literature review on assumptions in software
development. In their review, the authors identified problems (e.g., architectural mis-
match), challenges (e.g., distinguishing assumptions from other software artifacts), and
approaches (e.g., assumption description language) for assumptions management (e.g.,
Assumptions Documentation). In their following work, Mamun et al. [16] proposed to
use Alloy language to document AA in software development.

Ostacchini and Wermelinger [17] proposed a lightweight approach to manage AA
in agile development, and summarized four main tasks of AA management from
existing literature: (1) recording new assumptions, (2) monitoring assumptions regu-
larly, (3) searching for assumptions, and (4) recovering past assumptions. The authors
used the taxonomy of AA proposed by Lago and van Vliet in [10].

In our previous work [18], we focused on AA and their documentation in agile
development, and proposed a simplified conceptual model for AA with a lightweight
approach for AA Documentation. Furthermore, we surveyed 112 practitioners to
investigate the practice of AA in software development [5]. The results of the survey
show that most AA are kept implicit due to the lack of documentation; the lack of
specific approaches and tools is the major challenge (reason) of (not) identifying and
documenting AA.

Architectural Assumptions and Their Management 193

To the best of our knowledge, there are currently no exploratory case studies
regarding AA and their management in software development from architects’ per-
spective. The aforementioned studies mostly focus on proposing and evaluating
approaches for AA management, while this study aims to explore how architects
perceive AA as well as the existing activities, practices, tools, challenges, and benefits
of AA management. Moreover, this work is a follow-up from our survey on AA [5]; we
detail the comparison between the survey and this study in Sect. 3.2.

3 Case Study

We followed the guidelines proposed by Runeson and Höst [6] to design and report on
this case study.

3.1 Goal and Research Questions

The goal of the case study, formulated using the Goal-Question-Metric approach [3], is
to analyze AA and their management for the purpose of characterization with respect
to understanding AA and activities, practices, tools, challenges, and benefits of AA
management from the point of view of architects in the context of software devel-
opment in industry. The research questions (RQs) of this study according to the goal
are formulated as follows:

RQ1: How do architects perceive AA?
Stakeholders may perceive AA differently [5]. This RQ intends to explore how

architects understand the concept of AA through definitions and examples, as well as
characteristics of AA and potential relationships between AA and other software
artifacts (e.g., requirements).

RQ2: What are the activities, practices, tools, challenges, and benefits of AA
management?

As evidenced in our systematic mapping study on assumptions and their man-
agement in software development [4], assumptions management is comprised of a set
of assumptions management activities (e.g., Assumptions Making) and supported by
various practices and tools. Furthermore, AA management leads to certain benefits in
software development but also has challenges. This RQ aims at helping researchers and
practitioners to get a practical understanding of AA management in software
development.

3.2 Case and Units of Analysis

Our case study explores a phenomenon (managing AA) in a real context, by asking
each subject to select one non-trivial software project from their work and to manage
AA in the context of the selected project. Note that we did not study the AA managed
by the subjects, but their opinions on AA and their management. Therefore, we treat
this study as a multiple and holistic case study [8]: each architect is both a case and a
unit of analysis. Furthermore, this case study aims at exploring new insights of AA and

194 C. Yang et al.

their management as well as generating new ideas for further research, so it is an
exploratory case study [6].

This case study follows up on our earlier work [5]: a survey with 112 practitioners
on AA and their identification and documentation in software development. Compared
to that survey, there are several key differences with the current study: (1) We only
used questionnaire for data collection to answer the RQs in our survey, while this case
study employs both interview and focus group for data collection (two different data
sources help in improving the validity of the study) to answer the RQs; (2) The subjects
in the survey were practitioners in software development, including various roles, such
as project manager and designer, while the subjects of this study were architects;
(3) The subjects in the survey were asked to fill in a questionnaire and give their
opinions, while the subjects in this study received a tutorial on AA and their man-
agement and managed AA in their own projects as practice; (4) The scope of this study
is broader, as it not only extends from AA Identification and Recording (i.e., the
survey) to AA management in general (i.e., this study), but also included several new
aspects, such as characteristics of AA and relationships between AA and other software
artifacts (e.g., requirements).

3.3 Data Collection and Analysis

We conducted five workshops (half day per workshop, including a half-hour tutorial on
AA and their management) in Beijing and Shenzhen, China and Gothenburg, Sweden
with twenty-four architects from ten companies and different domains (e.g., Internet of
Things and Automotive Industry) to collect data.

Three data collection methods were used in the case study: questionnaire, inter-
view, and focus group. We asked each subject to fill in a questionnaire to collect their
background information. We interviewed all the subjects (one by one, 30 min per
subject) with specific questions related to the RQs. We conducted five focus groups
(30 min per focus group per workshop) according to the RQs.

We used descriptive statistics to analyze quantitative answers (i.e., background
information of the subjects), and Constant Comparison [7] for qualitative answers (i.e.,
generating concepts and categories from the collected data to answer the RQs). Con-
stant Comparison (the core of the Grounded Theory approach) is a systematic approach
used for qualitative analysis, and a continuous process for verifying the generated
concepts and categories [7]. In this case study, Constant Comparison was iteratively
performed, and the codes and their relationships were refined in each iteration. Table 1
shows the relationships among the data collection methods, data analysis methods, and
RQs. Furthermore, we used MAXQDA4 to analyze the qualitative data.

4 http://www.maxqda.com/.

Architectural Assumptions and Their Management 195

http://www.maxqda.com/

4 Results

4.1 Subjects Experience and Projects Information

The experience of the subjects in software-intensive systems and architecting is gen-
erally classified in three levels as shown in Fig. 1. Most of the subjects (22 out of 24,
91.7%) have at least five years of experience in software-intensive systems, and 15
subjects (out of 24, 62.5%) have at least five years of experience in architecting. We
also asked the subjects whether they had architecture-related training (excluding higher
education). Four subjects (out of 24, 16.7%) claimed that they had such training
experience.

Furthermore, the twenty-four subjects managed AA in twenty-eight projects, i.e.,
there are four subjects that each of them had managed AA in two of their projects. The
duration, team size, and lines of code of the projects are shown in Fig. 2. Note that two
subjects did not provide us the lines of code of their projects (two projects) because the
projects were in progress when we conducted the workshops.

Table 1. Relationships among the data collection methods, data analysis methods, and RQs

Data collection method Data analysis method RQs

Questionnaire Descriptive statistics Background information
Interview Constant comparison RQ1, RQ2
Focus group Constant comparison RQ1, RQ2

2

11 11

0

5

10

15

<5 5-10 >10N
u

m
b

er
 o

f
su

b
je

ct
s

Years of experience in
IT industry

9 10

5

0

5

10

15

<5 5-10 >10N
u

m
b

er
 o

f
su

b
je

ct
s

Years of experience in
architecting or design

Fig. 1. Years of experience in software-intensive systems and architecting of the subjects

196 C. Yang et al.

4.2 Results of RQ1 – Perception of AA

Term and Concept of AA
The results show that neither the term nor the concept of AA is commonly used in
industry, although the subjects admitted that they frequently made AA in their work.
As one subject put it: “I had something in my thinking about architecture work that
transformed into an assumption, but I missed that, and assumption is a very good word
to use here.”

Moreover, the results support that stakeholders may have different understandings
of the AA concept. One of the most intensive arguments between the subjects con-
cerned the nature of AA. As one subject understood: “When we develop systems, we
have various flows. AA are like uncertain key points in these flows.” As another subject
stated: “If a statement is made based on personal experience without being able to
prove that it is feasible or has no risks, it is an AA.”

Finally, the subjects agreed that AA are not only important in architecting, but also
of paramount importance in software development, and the influence of AA is through
the entire development process, instead of only during the architecting or design phase.
As one subject explained: “AA are made from requirements engineering. When
architecting, we make new AA, and the existing AA would evolve. I think AA can
influence the whole project lifecycle as well as product lifecycle.”

9

10

9

8.5

9

9.5

10

10.5

<6 6-12 >12N
u

m
b

er
 o

f
p

ro
je

ct
s

Duration (months)

4

12 12

0

5

10

15

<5 5-10 >10N
u

m
b

er
 o

f
p

ro
je

ct
s

Team size (Persons)

8

9 9

7.5

8

8.5

9

9.5

<100,000 100,000 -500,000 >500,000

N
u

m
b

er
 o

f
p

ro
je

ct
s

Lines of code

Fig. 2. Information of the projects used by the subjects in the case study

Architectural Assumptions and Their Management 197

AA Examples
The subjects provided more than twenty AA examples based on their own under-
standing. We present two examples: “As we can’t foresee the functional growth, we
need to have a scalable network topology, which means it should be possible to add
network segments without changing the architecture, assuming that the actual design
of the network topology is not part of the architecture.” Another assumption: “There
would not be any need for a high speed bus inside the vehicle dynamics area until 2019
or later. This is an explicit assumption. We actually wrote it down.”

Characteristics of AA
The subjects mentioned that the AA concept is subjective (e.g., whether something is
architecturally-significant or whether an information is an assumption). This is a reason
that stakeholders may have a different understanding of the AA concept, and can make
different AA according to their own understanding.

Furthermore, AA are context-dependent, i.e., they can be different depending on
context (e.g., project context). As one subject put it: “If I have assumption1 and
assumption2, and they have a relationship in project 1. For project 2, they don’t have
any relationship. So the relationship between these two AA is context-dependent on the
project.”

Moreover, the subjects talked about the dynamic nature of AA, i.e., AA can evolve
over time. This means that a valid AA can turn out to be invalid or vice versa, as well
as an AA can transform to another type of software artifact or vice versa during its
lifecycle: “AA may transform to another artifact, or something that is not an AA in the
first place, but change to an AA. The transformation between AA and other artifacts
should be bi-directional.”

Finally, the subjects agreed that relationships between two AA could be zero, one,
or multiple. As one subject stated: “In some way, two types of relationships (e.g., “is
caused by” and “constrains”) could coexist between two AA.”

AA and Other Software Artifacts
The subjects agreed that AA are not independent in software development; instead,
there is a connection between AA and other software artifacts. As one subject men-
tioned: “I can see that a lot of things are based on assumptions. When we have a new
project, we could start with some basic or important assumptions that we have, and
base design patterns or requirements on those AA.”

The subjects listed several artifacts related to AA, including requirements, design
decisions, design patterns, design models, components, and risks. As one subject sta-
ted: “Some requirements we have are actually AA, and we have strategies based on
assumptions, so it could be good to acknowledge that.” As another subject put it: “How
does an AA evolve to a requirement? The dependencies between assumptions and
things like that are the most important. We could connect AA to decisions, require-
ments, and components.”

Summary of RQ1
We summarize the aforementioned results of RQ1: (1) Neither the term nor the concept
of AA is commonly used in industry. (2) The subjects (architects) frequently made AA
in their work. (3) Stakeholders may have different understandings of the AA concept.

198 C. Yang et al.

(4) AA are important in both architecting and software development. (5) AA span the
whole software development lifecycle. (6) The AA concept is subjective. (7) AA are
context-dependent and have a dynamic nature. (8) There is a connection between AA
and certain types of software artifacts.

4.3 Results of RQ2 – AA Management

AA Management Activities
By considering the assumptions management activities identified and summarized in
our mapping study [4], we found that all the twelve assumptions management activities
were mentioned by the subjects in the case study: AA Making, Description, Evaluation,
Maintenance, Tracing, Monitoring, Communication, Understanding, Reuse, Recovery,
Searching, and Organization. These AA management activities include both the
activities the subjects used in their projects and the activities the subjects considered
important or difficult. For example, the subjects agreed that making AA (including both
identifying existing AA and making new AA) was hard for them. Furthermore, AA
Making, Description, Evaluation, Maintenance, Tracing, and Monitoring were the most
frequently discussed AA management activities by the subjects in the case study.

Practices and Tools Used for AA Management
The subjects did not employ any general AA management process or approaches in
their work, but they used certain practices and tools for AA management activities. We
listed all the practices and tools used by the subjects in Table 2. Note that the tools are
listed without a mapping to the specific AA management activities because the subjects
did not provide that information.

Challenges of AA Management
Furthermore, we identified a set of challenges regarding AA management in software
development as shown in Table 3.

Benefits of AA Management
Finally, we identified a set of benefits of AA management in software development as
shown in Table 4.

Summary of RQ2
We summarize the aforementioned results of RQ2: (1) Twelve AA management
activities were identified. (2) No systematic approaches were used by the subjects for
AA management. (3) Nine practices without guidelines were used by the subjects in
five AA management activities. (4) All the tools used by the subjects for AA man-
agement are general in software development. (5) There are eight challenges and four
benefits identified in managing AA.

Architectural Assumptions and Their Management 199

Table 2. Practices and tools used for AA management

AA management
activity

Practice Tools

AA making Making AA in requirements engineering MS PowerPointa;
MS Visiob;
MS Wordc;
MS Projectd;
Enterprise architecte;
Rational Software
Architect Designerf;
SmartDrawg;
Originh;
PowerDesigneri;
ProcessOnj;
internal tools

Making AA in architecting
Making AA using brainstorming

AA description Describing AA in documents (e.g., design
documents)
Describing AA in models (e.g., architecture
models)

AA evaluation Evaluating AA in architecture evaluation
Evaluating AA in software testing

AA maintenance Involving customers and users in the discussions
of maintaining AA

AA
communication

Face-to-face communication of AA

ahttps://products.office.com/en/powerpoint
bhttps://products.office.com/en-us/visio/flowchart-software
chttps://products.office.com/en-us/word
dhttps://products.office.com/en-us/project/project-and-portfolio-management-software
ehttp://www.sparxsystems.com/
fhttp://www-03.ibm.com/software/products/en/ratsadesigner
ghttps://www.smartdraw.com/
hhttp://www.originlab.com/
ihttp://www.powerdesigner.biz/EN/
jhttps://www.processon.com/

Table 3. Challenges of AA management

Challenge Description

Understanding of
AA

Neither the concept nor the term of AA was commonly used by the
subjects. It is challenging to understand the AA concept and term: “It
was difficult to get started. You need to figure out getting to the mode
of understanding, which was the trickiest part.”
Furthermore, stakeholders may have different understandings of the AA
concept, which could cause inconsistency in AA management

AA management
activities

One of the most important challenges is how to conduct individual AA
management activities in software development, i.e., there is a lack of
specific approaches for AA management. For example, considering
AA Making and Description, one subject put it: “We write a lot of
things based on so many assumptions, but we don’t document. The
problem is actually how to catch the assumptions because we have so
much in our heads.”

(continued)

200 C. Yang et al.

https://products.office.com/en/powerpoint
https://products.office.com/en-us/visio/flowchart-software
https://products.office.com/en-us/word
https://products.office.com/en-us/project/project-and-portfolio-management-software
http://www.sparxsystems.com/
http://www-03.ibm.com/software/products/en/ratsadesigner
https://www.smartdraw.com/
http://www.originlab.com/
http://www.powerdesigner.biz/EN/
https://www.processon.com/

Table 3. (continued)

Challenge Description

Tools There is a lack of tools for AA management, which should be able to
deal with different project context (e.g., an AA is valid in a project, but
invalid in another project), support not only AA Description, but also
other AA management activities (e.g., Making and Evaluation), have
good quality of outputs, and support automation or semi-automation.
As one subject mentioned: “We have maybe 100 decisions and 400
requirements, and we have different projects, which have the same
assumptions in different validation states, so the tool must handle these
situations and be very scalable.”

Lack of data There is a lack of data (e.g., empirical data) regarding AA and their
management in existing projects, which makes conducting AA
management activities (e.g., AA Reuse and Evaluation) difficult. As
one subject put it: “If you have data regarding AA from 10,000
projects, you can generate an AA model to analyze AA in future
projects.”

Integration AA are related to other software artifacts, such as requirements.
Therefore, there is a challenge to integrate AA and their management
with existing software development processes, approaches, tools, etc.
An example given by one subject: “In embedded systems, flowchart
diagram is the most important, and AA management should be
compatible with flowchart diagrams, when introducing AA in
embedded systems.”

Project context AA management depends on project context (e.g., resources,
complexity, development processes employed, and application
domain). Thus, an AA management approach may work in one project,
but not work in another project. As one subject explained: “For some
projects AA management may grow to be a huge unwieldy thing that
everyone is afraid of, and you need to maintain, because no one else
touches that.”

Experience AA management requires certain experience (project experience,
architecting experience, etc.). One challenge is how to mitigate the gap
between junior and experienced stakeholders regarding AA
management. As one subject stated: “Experienced architects
understand AA management better than junior architects. Experienced
architects can make more reasonable AA, while junior architects may
not even know what AA they have or need to make. You can´t just go
out on the street and pick up the first guy, and say: you will be the
architect!”

Stakeholders There is a lack of guidance regarding who should be involved in AA
management. As one subject mentioned: “AA are related to various
aspects of software development, and AA management should be
teamwork.”

Architectural Assumptions and Their Management 201

5 Discussion

5.1 Interpretation of RQs Results

Interpretation of the Results of RQ1
There is an obvious paradox: on the one hand, neither the term nor the concept of AA
was commonly used in industry; on the other hand, the subjects frequently made AA in
their work. One reason could be that the subjects were not aware of the AA when they
made them. The most probable reason however is that AA were not treated as first class
entities in software development. Instead, AA were considered as, for example, a type
of constraint or rationale of other software artifacts (e.g., design decisions).

Stakeholders may have a different understanding of the AA concept. One reason
could be that the AA concept is subjective, as the subjects mentioned. Furthermore, AA
are context-dependent (e.g., project context). This indicates that, for example, an AA
can be valid in one project but invalid in another project depending on the context. As
mentioned by the subjects, one potential reason is that AA are related to various
artifacts. For example, an AA can be caused or constrained by a requirement.

Table 4. Benefits of AA management

Benefit Description

Being aware of AA and
related problems

The most intuitive benefit of managing AA is to make AA
explicit, i.e., stakeholders become aware of the AA made in
projects. This can further help stakeholders to be aware of and
avoid potential problems (e.g., risks) caused by implicit or
invalid AA. As one subject put it: “It would definitely be good
for us to acknowledge that we have assumptions in the first
place and to work with them to some extent.”

Improving traceability AA are not independent in software development, but
intertwined with various software artifacts, e.g., design
decisions. Management of AA can help to trace AA to other
artifacts. As one subject stated: “The benefits of managing AA
are that you can see what decisions have been made based on
assumptions, and know why you made some decisions.”

Facilitating maintenance
and handover

AA are usually implicit, and intertwined with various software
artifacts. Management of AA can make AA explicit, and
prevent knowledge vaporization in software development,
which can further facilitate maintenance and handover within
projects. As one subject mentioned: “AA management enriches
software knowledge, which helps to maintain, for example,
architecture or source code.”

Reducing costs Invalid AA may lead to problems such as inappropriate
architecture design, and consequently increase costs (e.g.,
additional development effort) of a project. AA management
aims at reducing invalid AA and thus reduces cost. As one
subject explained: “Invalid AA would make the system that is
based on the architecture more expensive than it needs to be.”

202 C. Yang et al.

Therefore, if the requirement changes in another project, the AA may also change (e.g.,
from valid to invalid).

Moreover, AA have a dynamic nature, i.e., AA can evolve over time. This means
that a valid AA can turn out to be invalid or vice versa, but also that an AA can transform
to another type of software artifact or vice versa. A potential reason for the former (i.e.,
bi-directional changes between valid and invalid) is the context-dependent characteristic
of AA. For the latter (i.e., bi-directional transformation between AA and other types of
software artifacts), the reason could be that AA are inherently uncertain: once the
uncertainty of an AA is eliminated, this AA transforms to another type of artifact; an
artifact, such as a design decision, may also become uncertain and thus turn into an AA.

Finally, as stated by the subjects, AA are not only important in architecting, but also
of paramount importance in software development; its lifecycle is throughout the whole
software development lifecycle. One reason could be that AA are related to various
software artifacts, such as requirements, design decisions, components, and risks.
Another reason, as the subjects explained, is that AA management is teamwork,
involving different stakeholders, instead of only architects.

Interpretation of the Results of RQ2
The results of RQ2 confirm the twelve assumptions management activities identified
and summarized in our systematic mapping study [4]. Furthermore, AA Making,
Description, Evaluation, Maintenance, Tracing, and Monitoring got the most attention
by the subjects. One reason may be that the subjects considered these six activities as
the primary AA management activities in software development; if AA management is
employed in development, these activities are more likely to take place or get more
attention than other activities.

In this study, we did not find any particular approaches the subjects used for AA
management, which is consistent with the findings of our survey on AA [5]. Though
the subjects suggested several practices for managing AA, these practices are general
without any elaborated guidelines. We also found several tools for AA management
used by the subjects. However, all of them are general software development tools, and
thus do not specifically focus on AA management.

Furthermore, besides the lack of guidelines, approaches, tools, resources, etc. for
AA management, which have also been discussed in our survey on AA [5], we found
several other challenges of AA management in software development, including “Lack
of data”, “Integration”, and “Project context” as elaborated in Table 3. For example, as
mentioned by the subjects, there is a lack of data (e.g., empirical data) regarding AA
and their management in existing projects. This is potentially because stakeholders do
not make AA explicit and document them in a systematic way. The lack of existing
data regarding AA from projects is also a reason that impedes conducting individual
AA management activities in software development.

Finally, we identified four benefits of AA management in software development.
However, we argue that these benefits are not for free, as they depend on certain
conditions (e.g., related to specific AA management activities), and there is always a
tradeoff between benefits and costs. For example, AA Tracing helps to improve
traceability between AA and other software artifacts in software development, but the
effort needed for establishing traces could be prohibitive.

Architectural Assumptions and Their Management 203

5.2 Implications for Researchers

AA in Empirical Studies
The AA concept is subjective, and stakeholders may have different understandings of
the AA concept. When conducting empirical studies regarding AA and their man-
agement, these nuances need to be taken into account during the study design. Espe-
cially when evaluating related approaches or tools for AA management in empirical
studies, researchers need to make a decision: allowing their subjects to have their own
understanding of AA or enforcing a consistent definition.

AA Management
On the one hand, AA are important in both architecting and software development. On
the other hand, there are various challenges regarding AA and their management that
need to be addressed in software development, as we identified in the case study. There
is a clear need to develop, for example, dedicated approaches and tools, as well as
well-designed practices and guidelines (e.g., when to manage AA or what AA should
be managed in software development) for AA management.

Furthermore, the reasons that AA are usually not-well managed could be various:
for example, the challenges listed in Table 3, or the return on investment is rather
limited. We suggest that researchers collect evidence regarding the return on invest-
ment for AA management. Moreover, not-well managed AA can lead to a multitude
problems in software development. There is a need for researchers to identify these
problems from both literature and empirical studies. This could motivate spending extra
effort on AA management.

Finally, since AA are intertwined with various types of software artifacts and their
lifecycle spans the whole software development lifecycle, there is a possibility for
further research regarding integrating AA management into existing software devel-
opment approaches (e.g., decision-centric architecture evaluation approaches).

5.3 Implications for Practitioners

Treating AA as First Class Entities
AA are important in both architecting and software development, as they span the
whole software development lifecycle. However, practitioners (e.g., architects) fre-
quently make AA in their daily work, without always being aware what AA they made.
We advocate treating AA as first class entities in software architecting as well as in
software development, and integrating AA management with existing processes,
approaches, tools, etc. in software development.

Understanding of AA
Understanding of AA (e.g., the AA concept) is usually an issue in AA management.
We suggest that practitioners in a project should at least reach an agreement on, for
example, what AA are, as well as how to manage them.

204 C. Yang et al.

Teamwork
AA management is teamwork. Although, according to our systematic mapping study
[4], in the context of software design, architects and designers are the major stake-
holders in assumptions management, we encourage practitioners with different roles
(e.g., project manager) being involved in managing AA. For example, practitioners can
evaluate AA as a team, instead of only letting architects perform AA Evaluation.

Experience
AA management requires certain experience (including project experience and archi-
tecting experience). In general, experienced practitioners understand AA management
deeper and perform it better than junior practitioners. We encourage discussions
regarding AA and their management between practitioners with different levels of
experience to alleviate this issue.

6 Threats to Validity

The threats to the validity of this case study are presented in this section according to
the guidelines proposed by Runeson and Höst [6]. Note that internal validity is not
discussed in this paper because this work does not study causality.

Construct validity
reflects to what extent the research questions and the studied operational measures are
consistent [6]. A potential threat concerns whether the collected data can answer the
RQs. To reduce this threat, we iteratively refined the RQs and the data collection
procedures. To improve the validity of the case study we used both interviews and
focus groups for the data collection.

External validity
concerns the generalization of the findings [6]. The subjects were architects from
various companies and domains, and with different levels of working experience in
software intensive-systems and architecting; we argue that the results are representative
for practitioners with a similar background. However, the results may not be gener-
alized to other contexts (e.g., project managers and programmers); replication of this
case study is one way to reduce this threat.

Reliability
focuses on whether the study would yield the same results when other researchers
replicate it [6]. We performed a pilot study to refine the case study design (e.g., the
interview questions), and reduced the ambiguities in the execution of the case study.
The protocol of the case study was reviewed by the researchers iteratively, and also by
eight external reviewers, to mitigate the threat of bias in the design of the case study.
The whole process of the case study was recorded through audio recording devices to
reduce the threat of information vaporization. Furthermore, two authors conducted
Constant Comparison through MAXQDA in parallel to reduce the threat of bias in the
qualitative data analysis.

Architectural Assumptions and Their Management 205

7 Conclusions and Future Work

As an important type of architectural knowledge, little empirical research has been
conducted regarding AA and their management in software development. In this paper,
we conducted an exploratory case study with twenty-four architects to analyze AA and
their management in industry.

In this study, we confirmed certain findings from our previous survey on AA [5],
including (1) neither the term nor the concept of AA is commonly used in industry, and
stakeholders may have different understandings of the AA concept; (2) AA are not only
important in architecting, but also of paramount importance in software development as
they span the whole software development lifecycle; (3) there is a lack of approaches,
tools, and guidelines for AA management, and there are certain challenges in managing
AA. Furthermore, we had five new findings: (1) architects frequently make AA in their
work; (2) the AA concept is subjective; (3) AA are context-dependent and have a
dynamic nature (e.g., turning out to be invalid or vice versa during their lifecycle);
(4) there is a connection between AA and certain types of software artifacts (e.g.,
requirements and design decisions); (5) twelve AA management activities and four
benefits of managing AA were identified.

Our next steps are: (1) developing approaches for AA management, and particu-
larly a general AA management process in software development; (2) developing
practices and guidelines for AA management to address, for example, the identified
challenges in the case study; and (3) developing a dedicated tool for AA management.
Note that our intention is not to develop a standalone tool, but a tool integrated with
existing software development tools (e.g., a plug-in of the existing tools).

Acknowledgements. This work is partially sponsored by the NSFC under Grant
No. 61472286 and the Ubbo Emmius scholarship program by the University of Groningen. This
work is also partially supported by the Vinnova FFI projects Next Generation Electronic
Architecture and Next Generation Electronic Architecture step 2. We would like to thank the
participants of the case study, and the architects who participated in the pilot study.

References

1. Haley, C.B., Laney, R.C., Moffett, J.D., Nuseibeh, B.: Using trust assumptions with security
requirements. Requir. Eng. 11(2), 138–151 (2006)

2. Lehman, M.M., Ramil, J.F.: Rules and tools for software evolution planning and
management. Annal. Soft Eng. 11(1), 15–44 (2001)

3. Basili, V., Caldiera, G., Rombach, D.: The Goal Question Metric Approach. In: Marciniak,
J.J. (ed.) Encyclopedia of Software Engineering. Wiley, New York (1994)

4. Yang, C., Liang, P., Avgeriou, P.: Assumptions and their management in software
development: A systematic mapping study (under review)

5. Yang, C., Liang, P., Avgeriou, P.: A survey on software architectural assumptions. J. Syst.
Softw. 113(3), 362–380 (2016)

6. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

206 C. Yang et al.

7. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative
Research. Aldine Publishing, New York (1967)

8. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, New york (2012)

9. Roeller, R., Lago, P., van Vliet, H.: Recovering architectural assumptions. J. Syst. Softw.
79(4), 552–573 (2006)

10. Lago, P., van Vliet, H.: Explicit assumptions enrich architectural models. In: Proceedings of
the 27th International Conference on Software Engineering (ICSE), St Louis, Missouri,
USA, pp. 206–214 (2005)

11. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch: Why reuse is still so hard.
IEEE Softw. 26(4), 66–69 (2009)

12. Van Landuyt, D., Truyen, E., Joosen, W.: Documenting early architectural assumptions in
scenario-based requirements. In: Proceeding of the Joint Working IEEE/IFIP Conference on
Software Architecture (WICSA) and European Conference on Software Architecture
(ECSA), Helsinki, Finland, pp. 329–333 (2012)

13. Van Landuyt, D., Joosen, W.: Modularizing early architectural assumptions in
scenario-based requirements. In: Proceedings of the 17th International Conference on
Fundamental Approaches to Software Engineering (FASE), Grenoble, France, pp. 170–184
(2014)

14. Ordibehesht, H.: Explicating critical assumptions in software architectures using AADL.
Master thesis, University of Gothenburg (2010)

15. Mamun, M.A.A., Hansson, J.: Review and challenges of assumptions in software
development. In: Proceedings of the 2nd Analytic Virtual Integration of Cyber-Physical
Systems Workshop (AVICPS), Vienna, Austria (2011)

16. Mamun, M.A.A., Tichy, M., Hansson, J.: Towards formalizing assumptions on architectural
level: a proof-of-concept. Research report, University of Gothenburg (2012)

17. Ostacchini, I., Wermelinger, M.: Managing assumptions during agile development. In:
Proceedings of the 2009 ICSE Workshop on Sharing and Reusing Architectural Knowledge
(SHARK), Vancouver, BC, Canada, pp. 9–16 (2009)

18. Yang, C., Liang, P.: Identifying and recording software architectural assumptions in agile
development. In: Proceedings of the 26th International Conference on Software Engineering
and Knowledge Engineering (SEKE), Vancouver, Canada, pp. 308–313 (2014)

Architectural Assumptions and Their Management 207

Microservices in a Small Development
Organization

An Industrial Experience Report

Georg Buchgeher1(B), Mario Winterer1, Rainer Weinreich2, Johannes Luger3,
Roland Wingelhofer3, and Mario Aistleitner3

1 Software Competence Center Hagenberg GmbH, Hagenberg im Mühlkreis, Austria
{georg.buchgeher,mario.winterer}@scch.at

2 Johannes Kepler University Linz, Linz, Austria
rainer.weinreich@jku.at

3 AMS Engineering GmbH, Hagenberg im Mühlkreis, Austria
{johannes.luger,roland.wingelhofer,mario.aistleitner}@stiwa.com

Abstract. Microservice architectures promise high flexibility and sus-
tainability in system development. Multiple principles have emerged
for the successful adoption of microservices, principles which impact
not only the technical but also the organizational levels of a devel-
opment organization. This paper reports our experiences introducing
microservices in a company with a small development organization and
a customer-solution-oriented business model. Our experiences show that
the company can benefit from using microservices on a technical level
but requires adaptations at the organizational level.

Keywords: Microservices · Microservice architecture · Small develop-
ment organization · Microservice principles · Services · Service-oriented
architecture

1 Introduction

Microservice architecture is an approach to software architecture in which a
system comprises many small, independently developed and operated services.
Microservices began to emerge a few years ago and have been successfully
adopted by many large companies, like Google, Amazon, Netflix, and Spotify
[7,11]. In these companies, development organizations with hundreds, even thou-
sands of developers are working on microservice architectures. Microservices
promise to overcome many drawbacks of monolithic applications, with a modular
design, the ability to bring new features quickly into production, and improved
sustainability through continuous system evolution. These same benefits also
make microservice architecture interesting for small and medium-sized enter-
prises (SMEs) with only small development departments and different business
models.

c© Springer International Publishing AG 2017
A. Lopes and R. de Lemos (Eds.): ECSA 2017, LNCS 10475, pp. 208–215, 2017.
DOI: 10.1007/978-3-319-65831-5 15

Microservices in a Small Development Organization 209

Multiple principles have emerged for the development of microservice archi-
tectures [9,10], guiding development at both the technical and the organizational
levels of software development. Adopting microservices is not easy [3,5,8]. They
are said to have a high learning curve and to introduce new complexities and
challenges [3]. This raises the question if small companies or companies with dif-
ferent business models can also adopt a microservice architecture. Singleton [11]
argues that microservices make no sense for teams of fewer than 60 people (with
some exceptions). The literature is still lacking experience reports discussing the
introduction of microservice architecture in such a context. Francesco et al. [4]
identified eight existing experience reports on microservices, only one of which
[1] describes the migration to a microservice architecture, but that report pro-
vides no information on the size of the development organization and and does
not extensively discuss of the usefulness of microservice principles. In general,
industry- and practitioner-oriented studies have not yet been a focus of microser-
vice research [4].

In this paper, we report our experiences introducing microservice architec-
ture at an Austrian company developing solutions for laboratory automation.
The company has a small development organization with a customer-solution-
oriented business model. We report whether and to what degree central prin-
ciples of microservice architecture [9,10] could be adopted by the development
organization, along with other experiences we had.

The remainder of this paper is organized as follows. Section 2 presents the
industrial context for the work presented in this paper. Section 3 overviews the
central principles of microservice development. Section 4 discusses these princi-
ples in the context of a small development organization. In Sect. 5, we discuss
further lessons learned, and Sect. 6 presents a summary and some conclusions.

2 Context

AMS Engineering, part of the STIWA Group1, is an Austrian company devel-
oping industrial automation solutions. AMS Engineering is organized into mul-
tiple business units, one of which is developing solutions for the automation
of laboratories analyzing medical samples from hospitals and medical practices.
AMS Engineering provides solutions for laboratories of different sizes, from small
laboratories analyzing only a few hundred samples per day to big laboratories
analyzing more than 50,000 samples daily on fully automated assembly lines.

AMS Engineering is in the process of replacing their system for laboratory
automation, which is expected to reach its end of life in 2020. At the beginning
of 2016, AMS Engineering held a requirements workshop with central system
stakeholders to identify the central requirements for the next version of their
laboratory automation solution. Some of the identified requirements were:

– Scalability : The new system must scale from very small to very large labora-
tories.

1 http://www.stiwa.com/en/.

http://www.stiwa.com/en/

210 G. Buchgeher et al.

– Flexibility of Provided Functionality: Each laboratory requires different func-
tionality, such as interaction with different kinds of hardware products and
communication with different hospital information systems.

– Fast Time-to-Market : New functionality - requested by customers - needs to
be brought into production as fast as possible.

– Stepwise Migration: The new system needs to be developed incrementally.
Old and new systems must be operated in parallel until the old system is
completely replaced.

– Operation in Private Computing Centers: Large laboratories want to operate
the new system in their own computing centers (private cloud environment).

A microservice architecture promises to address these requirements for AMS
Engineering to achieve future business goals. However, the development team had
some reservations about whether a microservice architecture was the right way to
go. Their main concerns were the limited experience and expertise of the devel-
opment organization with service-based development and the impression that
microservice architectures are mainly useful within large development organiza-
tions. The development organization at AMS Engineering currently comprises
only eight developers, and their business model differs from other companies
developing microservices. While such companies typically develop and operate
their systems themselves, AMS Engineering is developing a system where cus-
tomers operate customized solutions at over 100 different sites. This raised the
questions of (Q1) whether a microservice architecture-based system could be
developed by such a small development team and (Q2) whether the develop-
ment of a microservice architecture in such a context would make sense from a
cost/benefit perspective.

In order to answer these questions, AMS Engineering launched a pilot project
for a adopting microservice architecture. As part of this pilot project, four ser-
vices and a set infrastructure services for the laboratory automation solution
were implemented as microservices. Over eight months, a spearhead team com-
prising three developers was working on this project. All project members were
experienced software developers with multiple years of experience, though not
in the context of service-based development.

3 Microservice Principles

Multiple principles have emerged from practice [9,10] for the development of
microservice architectures, which are briefly described below.

Componentization via Services [9] (Hide Internal Implementation Details
[10]): Microservice architectures componentize their software by means of
independently deployable and evolvable services. Services provide technology-
agnostic APIs (e.g., REST) to be used from different technology stacks.

Organized Around Business Capabilities [9] (Model Around Business Con-
cepts [10]): Microservices structure an application into business capabilities (also
business-bounded contexts) and not into technical layers like user interface,

Microservices in a Small Development Organization 211

application logic, and persistence. This leads to cross-functional teams (also
known as full-stack teams) with a full range of skills.

Products not Projects [9]: Development teams are not only responsible for
developing but also for building, testing, deploying, and monitoring a microser-
vice. This enables developers to get feedback about how their software behaves
in production.

Smart Endpoints and Dumb Pipes [9]: Microservice architectures avoid the
use of heavy-weight messaging infrastructures for message routing, choreography,
data transformation and applying business rules. Instead they are as decoupled
and cohesive as possible, following a request - process - response process. Com-
munication is performed through HTTP or lightweight messaging.

Decentralized Governance [9] (Decentralize All the Things [10]): There is
(almost) no centralized governance, maximizing the autonomy of microservices.
Instead, the development team is responsible for all decisions regarding their ser-
vices, including, the selection of implementation technologies and the frequency
of releases. Decisions concerning more than one microservice can be made using
a shared governance model, where decisions are made together by members of
different teams.

Decentralized Data Management [9] (Hide Internal Implementation Details
[10]): Each service manages its own data. This applies not only to data models
but also to storage solutions, like databases.

Infrastructure Automation [9] (Adapt a Culture of Automation [10]):
Microservices are developed using an automated continuous delivery pipeline
that permits the frequent release of new service versions. Automated activities
include automated testing and quality control, automated creation of deploy-
able executables (e.g., Docker images), and even automated deployment into
production zones.

Design for Failure [9] (Isolate Failure [10]): Single services may become
unavailable; Thus, microservices must be able to tolerate the failure of services,
and services failing must be restored automatically.

Evolutionary Design [9]: Microservices foster evolutionary design. Since they
are independently deployable, services can evolve independently. Single services
can also be replaced with a completly new implementation of a service, and
services can be removed when no longer needed.

Independently Deployable [10]: Individual microservices can be deployed inde-
pendently from the other services of a system, permitting the frequent release of
services with new features or resolved bugs. Multiple versions of a microservice
can co-exist in order to handle breaking API changes, giving service consumers
time to switch to new service versions.

Highly Observable [10]: Microservice architectures require a comprehensive
monitoring infrastructure that permits observation of the running system and
all its constituent services and their interactions. Monitoring solutions need to
support aggregating data from different services, but they also need to support
drilling down to single services in order to investigate issues.

212 G. Buchgeher et al.

4 Applying Microservice Principles in a Small
Development Organization

In the following, we discuss our experiences applying the microservice principles
presented in the previous section at AMS Engineering.

Componentization via Services: An appropriate system modularization was
defined and adhered to from the beginning of the project. An issue was calculat-
ing the memory resources required for the whole system, since different clients
have laboratory infrastructures that range from dedicated private clouds for large
laboratories to less powerful infrastructures for small laboratories. Public cloud
infrastructures were excluded from consideration because of privacy issues when
handling patient-related medical data.

Organized Around Business Capabilities: Business services were easily identi-
fied due to the small size of the development team and the product-line character
of the existing system, with system features previously identified. AMS Engi-
neering plans in the future to have small service teams with two developers per
service, with the option to bring in developers with specialized skills on demand.

Products not Projects: A pure DevOps approach is not possible for AMS
Engineering because of its customer-solution-oriented business model that dif-
fers from the product-oriented business model of other organizations that use
microservices. The systems AMS develops are operated by AMS customers,
not by AMS Engineering itself. Currently, AMS Engineering has over 100 cus-
tomers with significantly different system features and configurations. It would
be impossible for the development team to manage and monitor over 100 system
installations. A dedicated quality-control team is responsible for installing and
servicing the systems at customer sites. This team is also involved in the devel-
opment process, for example, by reviewing the software/system architecture and
test plans. There is a defined feedback process between system operators and
developers. If AMS Engineering also operated the developed system, a DevOps
approach would be feasible, even for a small development organization.

Smart Endpoints and Dumb Pipes : AMS has never used heavy-weight mes-
saging infrastructure. AMS already uses an HTTP-based request-response inter-
action style, which is typical of many microservice architectures.

Decentralized Governance: Developers cannot freely select implementation
technologies due to the small size of the development team and the resulting low
bus factor that may lead to the loss of technology-specific knowledge. Also, the
use of libraries has to follow a defined process for legal reasons related to the
business. Developers can make their own technology decisions, as long as they
are approved centrally. Frequent service releases are also limited, because cus-
tomers do not want release cycles shorter than three months, which can again be
attributed to the business model of AMS Engineering. However, service teams
can perform frequent “internal” releases that are not shipped to customers imme-
diately. It also remains to be seen how requirements regarding the release fre-
quency at customer sites might change in the future if more frequent releases
can be provided more easily by the development team of AMS Engineering.

Microservices in a Small Development Organization 213

Decentralized Data Management : While the existing system has one central-
ized data model, newly developed services will manage their own data. It is still
unresolved whether this model can be pursued for all future services; that is,
AMS Engineering will decide on a case-by-case basis whether or not services can
be decoupled on the data level. However, it is their clear intention to decouple
services on the data level as much as possible.

Infrastructure Automation: AMS Engineering is using an automated deploy-
ment pipeline for their services. Pushing new releases directly into production
is not possible, because their clients operate the systems. Consumer-driven con-
tract testing has been implemented as part of the deployment pipeline.

Design for Failure: Services using other services have been designed to deal
with the temporary unavailability of the used services. Failing services are auto-
matically detected and restarted by the infrastructure.

Evolutionary Design: Continuous evolvability is perceived as the main benefit
by AMS Engineering, because this will save system evolution costs in the future.
Currently, no long-term data are available regarding whether or not this will
work as intended.

Independently Deployable: Developed services are all independently deploy-
able, permitting not only their independent development and evolution but also
offering customized solutions with different functionality for different clients.

Highly Observable: AMS Engineering has set up a dedicated monitoring
infrastructure, where metrics for each service are collected and aggregated in
a centralized monitoring service for the entire system.

5 Lessons Learned

The discussion of AMS’ adherence to microservice principles in the previous
section revealed that while technical principles could be applied very well, adher-
ence to organizational principles was not always possible and adaptations were
required. It can be further observed that the required adaptations at the organi-
zational level mainly resulted from the business model of the developed system
rather than from the small size of the development team. Thus, we conclude that,
theoretically, the presented organizational principles could also be implemented
by a small development team.

Deviations from the Decentralized Governance principle can also be observed
in larger companies. For instance, Spotify [6], Soundcloud [2], and PegahTech
Co. [1] also restrict decision-making around service teams’ selection of imple-
mentation technologies. The fact that multiple companies break the principle
of Decentralized Governance is an interesting point worth further investigation,
especially considering the fact that microservices should be so small that they
can be easily re-implemented (replaced) within a short period of time (about
two weeks) [10].

We can also confirm that microservices currently have a high learning curve.
Neither the concepts nor the principles were perceived as difficult, but their

214 G. Buchgeher et al.

technical realization in learning and using dedicated frameworks and technolo-
gies was time-intensive and thus costly. Companies considering the adoption of
microservices should be aware of the required effort, giving the development
teams sufficient time to develop and master a microservice infrastructure.

Technology selection for the microservice infrastructure was considered to
be complex as well, because of the large number of different implementation
technologies from which to choose, and because a developer had to learn each
technology. AMS Engineering did not have the time to evaluate all existing
solutions and then choose the best one. Instead, they followed a more pragmatic
approach to technology selection, selecting technologies that were frequently used
in practice, meaning they were discussed on tech blogs and expert exchange sites
like Stack Overflow2 and had enough documentation available.

At the beginning, we observed skepticism about new technologies in the
development team, especially when functionality that was previously developed
in-house was planned to be replaced by third-party frameworks. For example,
AMS engineering developed its own concept for tracing requests across service
boundaries (via a correlation ID). First, AMS engineering wanted to keep this
functionality, although the selected communication infrastructure provided the
same functionality in an even more powerful way that could also be used by the
monitoring infrastructure out of the box. Only after a prototype was developed
showing the advantages of the built-in solution did the development team decide
to remove the custom solution. This also shows how a microservices architecture
requires a paradigm shift towards dependence on third-party functionality, one
which a development team has to accept.

Experiences with microservices that are operated at customer sites are still
lacking. Thus, it remains unclear how easily this can be achieved with regard to
the knowledge required to operate microservices and the communication between
the development organization and customers.

6 Conclusion

AMS Engineering has invested about 2,500 h in building up a dedicated microser-
vice infrastructure. The development of the first business services took only
about 100 h. This shows that adopting microservices requires a huge one-time,
up-front investment before bringing the first services into production. At AMS
Engineering, this was seen as an investment from which the organization will
benefit in the future; that is, it was seen as likely that microservices will become
relevant in other (larger) business units of the company, where the gained knowl-
edge can be reused.

AMS Engineering is planning to increase the size of the development team
in the future from eight to ten developers. They expect their future system
to comprise about 100 services, leading to a services-per-developer ratio of 10
services per developer. The planned ratio of services per developer is much higher

2 http://stackoverflow.com/.

http://stackoverflow.com/

Microservices in a Small Development Organization 215

than at large companies. For instance, Spotify has over 600 developers working on
over 800 services [6], while Zalando has more than 1000 employees in technology
working on 200 services [5]. It remains to be seen if this number of services will
be manageable in the future, or if the size of the development team must be
increased.

Our experiences show that a microservice architecture can be developed by
a small development organization. In the context at AMS Engineering, a team
of three developers built a microservice infrastructure and a first set of services.
The software architect at AMS Engineering would have wished for a slightly
larger team (5–6 people) so that individual developers could focus more on single
technologies. After eight months of trial, AMS Engineering is confident that a
microservice architecture is the right choice to adopt for their future system.

Acknowledgement. The research reported in this paper was supported by the Aus-
trian Ministry for Transport, Innovation and Technology, the Federal Ministry of Sci-
ence, Research and Economy, and the Province of Upper Austria in the frame of the
COMET center SCCH.

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures
using microservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC
Workshops 2015. CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). doi:10.1007/
978-3-319-33313-7 15

2. Calçado, P.: Building products at soundcloud–part III: Microservices in scala and
finagle (2014). https://developers.soundcloud.com/blog/building-products-at-
soundcloud-part-3-microservices-in-scala-and-finagle. Accessed 10 April 2017

3. Dehghani, Z.: Real world microservices - lessons from the frontline (2014). https://
www.youtube.com/watch?v=hsoovFbpAoE. Accessed 10 April 2017

4. Di Francesco, P., Malavolta, I., Lago, P.: Research on architecting microservices:
Trends, focus, and potential for industrial adoption. In: Proceedings of the 1st
International Conference on Software Architecture (ICSA) (2017)

5. Giamas, A.: From monolith to microservices, zalando’s journey (2016).
http://www.infoq.com/news/2016/02/Monolith-Microservices-Zalando. Accessed
10 April 2017

6. Goldsmith, K.: Microservices @ spotify (2015). https://www.youtube.com/watch?
v=7LGPeBgNFuU. Accessed 10 April 2017

7. Gray, J.: A conversation with werner vogels. ACM Queue 4(4), 14–22 (2006)
8. Killalea, T.: The hidden dividends of microservices. Commun. ACM 59(8), 42–45

(2016)
9. Lewis, J., Fowler, M.: Microservices - a definition of this new architectural term

(2014). http://martinfowler.com/articles/microservices.html. Accessed 10 April
2017

10. Newman, S.: Building Microservices. O’Reilly Media Inc., Sebastopol (2015)
11. Singleton, A.: The economics of microservices. IEEE Cloud Comput. 3(5), 16–20

(2016)

http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1007/978-3-319-33313-7_15
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-3-microservices-in-scala-and-finagle
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-3-microservices-in-scala-and-finagle
https://www.youtube.com/watch?v=hsoovFbpAoE
https://www.youtube.com/watch?v=hsoovFbpAoE
http://www.infoq.com/news/2016/02/Monolith-Microservices-Zalando
https://www.youtube.com/watch?v=7LGPeBgNFuU
https://www.youtube.com/watch?v=7LGPeBgNFuU
http://martinfowler.com/articles/microservices.html

Author Index

Abughazala, Moamin 95
Abusair, Mai 95
Aistleitner, Mario 208
Andrade, Rossana 67
Avgeriou, Paris 51, 191

Bashroush, Rabih 183
Berger, Christian 84
Bhat, Manoj 138
Biesdorf, Andreas 138
Borowa, Klara 123
Britto, Ricardo 67
Buchgeher, Georg 155, 208

Cámara, Javier 3
Chatzigeorgiou, Alexander 51

Digkas, Georgios 51

Eliasson, Ulf 191

Filho, Juarez L.M. 67

Garlan, David 3
Giaimo, Federico 84
Grolleau, Emmanuel 22

Haselböck, Stefan 155
Heldal, Rogardt 191
Hohenstein, Uwe 138

Khakpour, Narges 112
Kirchner, Crispin 84

Leigh, Andrew 171
Liang, Peng 191
Luger, Johannes 208
Lungu, Mircea 51

Matthes, Florian 138
Mirandola, Raffaela 40
Muccini, Henry 95

Nguyen, Thanh Dat 22

Ouhammou, Yassine 22

Pelliccione, Patrizio 191

Ratkowski, Andrzej 123
Rocha, Lincoln 67

Schmerl, Bradley 3
Sharaf, Mohammad 95
Shumaiev, Klym 138

Trubiani, Catia 40

Weinreich, Rainer 155, 208
Wermelinger, Michel 171
Wingelhofer, Roland 208
Winterer, Mario 208
Woods, Eoin 183

Yang, Chen 191

Zalewski, Andrzej 123
Zisman, Andrea 171

	Preface
	Organization
	Software Architectures: How Components Can Go Politely Social (Invited Talk)
	Contents
	Software Architecture Analysis and Verification
	Synthesis and Quantitative Verification of Tradeoff Spaces for Families of Software Systems
	1 Introduction
	2 Overview of the Approach
	3 Motivating Scenario
	4 Formalizing Structure, Behavior, and Qualities
	4.1 Architectural Style, Configurations, and States
	4.2 Behavior
	4.3 Qualities

	5 Exploring the Design Space
	5.1 Configuration Generation
	5.2 Configuration Behavior Model Generation
	5.3 Quantification, Filtering and Ranking

	6 Results
	7 Related Work
	8 Conclusions and Future Work
	References

	PARAD Repository: On the Capitalization of the Performance Analysis Process for AADL Designs
	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Paper Contribution
	1.4 Paper Outline

	2 Background and Work Positioning
	2.1 Real-Time Concerns
	2.2 Motivating and Running Example
	2.3 AADL in a Nutshell
	2.4 Related Work

	3 PARAD Approach and Its Fundamentals
	3.1 PARAD Overview
	3.2 Core Concepts of PARAD
	3.3 PARAD Identification Process

	4 Proof of Concept
	4.1 PARAD Repository
	4.2 Analysis Process Using PARAD as a Decision Support
	4.3 Learned Lessons and Discussion

	5 Conclusion
	References

	Continuous Rearchitecting of QoS Models: Collaborative Analysis for Uncertainty Reduction
	1 Introduction
	2 Related Work
	3 Wind Generator System
	3.1 WGS Modelling
	3.2 WGS Analysis

	4 Research Challenges and Conclusions
	References

	Software Architecture Evolution
	The Evolution of Technical Debt in the Apache Ecosystem
	1 Introduction
	2 A Motivating Example
	3 Study Design
	3.1 Project Selection

	4 Results and Discussion
	5 Threats to Validity
	6 Related Work
	7 Conclusions and Future Work
	References

	Preventing Erosion in Exception Handling Design Using Static-Architecture Conformance Checking
	1 Introduction
	2 Exception Handling Design
	2.1 Exceptions at the Architectural Level
	2.2 Design Rules for Exception Handling

	3 The Proposed Approach
	3.1 ArCatch.Rules: The Syntax
	3.2 ArCatch.Checker: The Semantics

	4 Case Study
	4.1 Case Study Design
	4.2 Results and Discussion
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

	Considerations About Continuous Experimentation for Resource-Constrained Platforms in Self-driving Vehicles
	1 Introduction
	2 Related Work
	3 Assessing the Scarcity of Resources
	4 Software Architecture
	5 Discussion
	6 Conclusions and Future Work
	References

	Automatic Generation
	An Architecture Framework for Modelling and Simulation of Situational-Aware Cyber-Physical Systems
	1 Introduction
	2 Background
	2.1 The CAPS Modeling Framework
	2.2 CupCarbon Simulator
	2.3 UnivAq Street Science System

	3 CAPS Code Generation
	3.1 Parsing
	3.2 Analyzing
	3.3 Generating Script
	3.4 Generating Project

	4 Application of CAPS Models, Code Generation and Simulation to the NdR Case Study
	5 Results
	6 Conclusions and Future Work
	References

	Control of Self-adaptation Under Partial Observation: A Modular Approach
	1 Introduction
	2 Symbolic Controller Synthesis
	3 Moldeing a Reconfiguring System
	4 Modular Synthesis of a Controller
	5 Related Work
	6 Conclusions
	References

	Architectural Decisions
	On Cognitive Biases in Architecture Decision Making
	Abstract
	1 Introduction
	2 Related Work
	3 Investigating Biases in Architectural Decision Making
	3.1 Workshop on Biases in Architecture Decision-Making
	3.2 Influence of Cognitive Biases on Architecture Decision-Making

	4 Cognitive Biases in the Practical Conditions of Architectural Decision Making
	5 Results
	6 Discussion, Limitations
	7 Summary and Research Outlook
	References

	Automatic Extraction of Design Decisions from Issue Management Systems: A Machine Learning Based Approach
	1 Introduction
	2 Related Work
	3 ADD Categories
	4 Dataset
	4.1 Data Extraction
	4.2 Data Curation
	4.3 Manual Labeling

	5 Machine Learning Pipeline
	6 Evaluation
	6.1 Results - Automatic Design Decision Detection
	6.2 Results - Automatic Design Decision Classification

	7 Threats to Validity
	8 Conclusion
	References

	Decision Models for Microservices: Design Areas, Stakeholders, Use Cases, and Requirements
	1 Introduction
	2 Background and Related Work
	3 Research Design
	3.1 Literature Review
	3.2 TAR Study

	4 Results
	4.1 RQ1: Design Areas
	4.2 RQ2: Stakeholders
	4.3 RQ3: Use Cases
	4.4 RQ4: Decision Model Elements and Presentation

	5 Discussion
	6 Threats to Validity
	7 Conclusion
	References

	Software Architecture Risk Containers
	Abstract
	1 Introduction
	2 Background
	3 Method
	3.1 Risk Container Creation
	3.2 Metric Calculation

	4 Analysis
	4.1 Case Study 1 – API
	4.2 Case Study 2 – Server

	5 Conclusion
	References

	Software Architecture Practice
	A Model for Prioritization of Software Architecture Effort
	Abstract
	1 Introduction
	2 Related Work
	3 Research Method
	4 The Study
	5 A Model for Prioritising Architectural Effort
	5.1 The Model
	5.2 Content of the Model

	6 Threats to Validity
	7 Future Work
	8 Conclusion
	References

	Architectural Assumptions and Their Management in Industry – An Exploratory Study
	Abstract
	1 Introduction
	2 Related Work
	3 Case Study
	3.1 Goal and Research Questions
	3.2 Case and Units of Analysis
	3.3 Data Collection and Analysis

	4 Results
	4.1 Subjects Experience and Projects Information
	4.2 Results of RQ1 – Perception of AA
	4.3 Results of RQ2 – AA Management

	5 Discussion
	5.1 Interpretation of RQs Results
	5.2 Implications for Researchers
	5.3 Implications for Practitioners

	6 Threats to Validity
	7 Conclusions and Future Work
	Acknowledgements
	References

	Microservices in a Small Development Organization
	1 Introduction
	2 Context
	3 Microservice Principles
	4 Applying Microservice Principles in a Small Development Organization
	5 Lessons Learned
	6 Conclusion
	References

	Author Index

