
Symbolic Dependency Graphs for PCTL>
≤

Model-Checking

Anders Mariegaard(B) and Kim Guldstrand Larsen

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg, Denmark

{am,kgl}@cs.aau.dk

Abstract. We consider the problem of model-checking a subset of prob-
abilistic CTL, interpreted over (discrete-time) Markov reward models,
allowing the specification of lower bounds on the probability of the set of
paths satisfying a cost-bounded path formula. We first consider a reduc-
tion to fixed-point computations on a graph structure that encodes a
division of the problem into smaller sub-problems by explicit unfolding
of the given formula into sub-formulae. Although correct, the size of the
graph constructed is highly dependent on the size of the cost bound. To
this end, we provide a symbolic extension, effectively ensuring indepen-
dence between the size of the graph and the cost-bound.

Keywords: Model-checking · Probabilistic CTL · Dependency graphs

1 Introduction

Addressing non-functional properties of embedded and distributed systems has
been studied intensely in recent years. This has called for extensions of traditional
modeling formalisms and specification languages to directly incorporate informa-
tion such as resource consumption, timing constraints and probabilistic behav-
ior. For real-time systems, various extensions of the popular Timed Automata
[1] formalism have been studied and successfully implemented in model-checking
tools such as Uppaal[17] and PRISM [16]. These extensions include variations
and combinations of Priced Timed Automata [4], where costs are associated to
both locations and transitions, and Probabilistic Timed Automata [19] where
edges have associated probability distributions. Various extensions of Markov
chains such as Markov Reward Models [12] assigning cost expressions to states
and transitions, have been studied and successfully incorporated in tools such as
MRMC [14], PRISM and recently STORM [10]. The underlying semantics of
all these models can be given in terms of traditional transition systems where the
transition relation is endowed with costs and probabilities. To reason about the
costs and probabilities of the underlying (discrete) quantitative models, proba-
bilistic CTL (PCTL) [11] extends the classical logic CTL [7] with probabilistic
quantification over path formulae. Various extensions of PCTL have been devel-
oped, notably PRCTL [2] for specification of constraints over reward measures.
c© Springer International Publishing AG 2017
A. Abate and G. Geeraerts (Eds.): FORMATS 2017, LNCS 10419, pp. 153–169, 2017.
DOI: 10.1007/978-3-319-65765-3 9

154 A. Mariegaard and K.G. Larsen

Devising efficient techniques for verifying such specifications for complex models
is non-trivial as any näıve exploration of the entire state space is many times
not possible due to time and memory constraints, even when the state space is
finite.

Our contribution. We consider model-checking a subset of PCTL. Our formal-
ism allows for specification of non-trivial properties such as “the probability to
reach a goal state through only approved states (indicated by labels), using no
more than X amounts of some resource, is strictly greater than 90%”. Thus, we
consider a cost-bounded logic. This is natural for verification of embedded sys-
tems as resources such as time and energy are often sparse and one often wants
to ensure that the probability of reaching a goal configuration without running
out of resources, is above a certain threshold. We show that the problem can be
reduced to fixed-point computations on a probabilistic extension of dependency
graphs first introduced by Liu and Smolka [18]. They provide linear-time algo-
rithms for computing least fixed-point for a Boolean domain, lending itself to
e.g. CTL model checking. They offer both a global and local approach, where
the global approach computes the fixed-point value for each node while the local
approach in many cases will only explore parts of the entire graph. Our con-
tribution is a lifting of the approach from the Boolean domain to a domain of
probabilities for model-checking a subset of PCTL. The first approach is a new
type of probabilistic dependency graph, constructed by a simple unfolding of the
formula. Although correct, this approach is highly dependent on the size of the
concrete cost bounds. To this end we provide a symbolic extension of probabilis-
tic dependency graphs that effectively ensures independence between the size of
the graph and the cost-bound. Although this paper does not describe a concrete
implementation, the framework is constructed in such a way that it lends itself
to an adaptation of the local algorithm by Liu and Smolka [18].

Related work. The framework of dependency graphs and the local algorithm
of Liu and Smolka [18] has recently been extended in various ways. For the
Boolean domain, a distributed implementation of the local algorithm has been
developed [9] and very recently extended to express negation [8] with promis-
ing experimental results. Several extension to different domains have also been
proposed. In [5] an extension to time bounds is presented to efficiently analyse
Timed Games [5] and in [6,13] the approach was lifted to a (parametric) weighted
domain for model-checking a (parametric) weighted variant of CTL. This paper
further extends the theory behind this framework by a novel extension to the
probabilistic domain. In [2] the notion of a Path Graph is used to solve similar
model-checking problems. These graphs also express an unfolding of the model,
but instead of nodes encoding probabilities for a certain state and formula, as is
the case in this paper, the nodes represent possible rewards for path fragments
and the associated probabilities. It will be interesting in the future to compare
a distributed implementation of our approach to the Path Graph approach.

Symbolic Dependency Graphs for PCTL>
≤ Model-Checking 155

s0, a

s1, b s2, a

3, 1
4 1, 1

4

10, 1

5, 1
2

1, 1

(a) M1.

t0, a

t1, b

3, 1
2

5, 1
2

1, 1

(b) M2.

Fig. 1. Two MRMs, M1 and M2.

2 Models and Properties

This section introduces the modeling formalism and specification language. Our
models will be instances of Markov Reward Models (MRMs) [12]. As we are
interested in upper bounds on the non-probabilistic quantities we will from now
on refer to them as costs instead of rewards, hence the inclusion of a transition
cost function.

Definition 1 (Markov Reward Model). A Markov Reward Model (MRM)
is a structure M = (S, P, c,L) where S is a finite set of states, P : S ×S → [0, 1]
is the transition probability function such that for all s ∈ S,

∑
s′∈S P (s, s′) = 1,

c : S × S → N
+ is the transition cost function and L : S → 2AP is the labeling

function, assigning to each state a set of atomic propositions from a set AP .

For two states s, s′ with s being the current state, P (s, s′) is the probability
that the next state will be s′ and c(s, s′) represents the cost of exercising the
transition. As our approach requires all paths to diverge w.r.t cost, we simply
impose all weights to be strictly positive. Our approach also works for the case
where all loops are required to have at least one transition with a strictly positive
cost1. We denote such a transition from s to s′ with probability p and cost w

by s
w,p−−→ s′2. Thus, any MRM, defines a transition system for which we want to

model-check properties. A path from a state s0 is an infinite sequence of states
π = s0, s1, s2, s3, s4, . . . with P (si, si+1) > 0 for any i ∈ N. We denote by π[j]
the j’th state of π, sj .

Example 1. Consider the MRMs in Fig. 1. Each circle represents a state and the
set of atomic propositions of that state. Set notation is omitted as each state
has exactly one atomic proposition.

1 Note that using costs from Q
+ does not change the expressivity of the formalism; as

any model is finite, one can always multiply all costs by the least common denomi-
nator to obtain a model with costs in N

+.
2 Any such transition could be replaced by a number of unit length transitions with

probability 1, transforming the MRM into a (much larger) Markov chain.

156 A. Mariegaard and K.G. Larsen

As specification language, we consider PCTL restricted to strict lower bounds on
the probabilistic modality and upper bounds on path formulae. The combination
of a lower and upper bound induces a monotonic fixed point operator while the
strict lower bound is needed for the operator to be chain-continuous, which
implies the existence of the fixed point in the symbolic case (see Lemma 2).

Definition 2 (PCTL>
≤). The syntax of PCTL>

≤ state formulae is as follows:

Φ:: = a | ¬a | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | P>λ(ϕ)

where a ∈ AP and λ ∈ [0, 1). The path formulae are then constructed according
to the following grammar, with k ∈ N:

ϕ:: = X≤kΦ | Φ1U≤kΦ2.

Informally, a state s satisfies P>λ(Φ1U≤kΦ2) if the probability of the set of paths
from s satisfying Φ1U≤kΦ2 is greater than λ. A path satisfies Φ1U≤kΦ2 if, from
the beginning of the path, all states satisfy Φ1 until a state satisfying Φ2 is
reached while the sum of the costs between the start of the path and the state
satisfying Φ2 is less than or equal to k.

The probability associated with a given path-formula is well defined based
on the σ-algebra generated from the standard cylinder-set construction (see [3,
Chap. 10]) assigning probabilities to sets of infinite paths sharing a finite prefix.
This construction ensures that the following PCTL>

≤ semantics is well defined.
P will be used to denote the (unique) probability measure.

For a state formula Φ and an MRM M with state s, we denote by M, s |= Φ
the satisfiability of Φ in s. Similarly M, π |= ϕ denotes the satisfaction of path
formula ϕ by the path π of M.

Definition 3 (PCTL>
≤ Semantics). For MRM M = (S, P, c,L) with state s,

the satisfiability relation |= is defined inductively on PCTL>
≤ formulae:

M, s |= a iff a ∈ L(s)
M, s |= ¬a iff a /∈ L(s)
M, s |= Φ1 ∧ Φ2 iff M, s |= Φ1 and M, s |= Φ2

M, s |= Φ1 ∨ Φ2 iff M, s |= Φ1 or M, s |= Φ2

M, s |= P>λ(ϕ) iff P(π | π[0] = s,M, π |= ϕ) > λ

M, π |= X≤kΦ iff M, π[1] |= Φ and c (π[0], π[1]) ≤ k

M, π |= Φ1U≤kΦ2 iff there exists a j such that M, π[j] |= Φ2,

M, π[i] |= Φ1 for all i < j and
j−1∑

l=0

c (π[l], π[l + 1]) ≤ k.

Symbolic Dependency Graphs for PCTL>
≤ Model-Checking 157

The satisfiability of a formula of the form P>λ(ϕ) for a state s can be model-
checked by deciding satisfiability of certain sub-formulae in the successor states
of s.

Proposition 1. If M, s |= P>λ(Φ1U≤kΦ2) then at least one of the two follow-
ing properties must hold:

1. there exists transitions s
wi,pi−−−→ si with wi ≤ k such that

M, si |= P>λi
(Φ1U≤k−wi

Φ2) with
∑

pi · λi > λ.
2. M, s |= Φ2.

Proposition 1 suggests a procedure for generation of dependencies for PCTL>
≤

model checking as a disjunction between the dependencies represented by prop-
erty (1) and the dependency of property (2). In Sect. 3 we will explicitly encode
these dependencies as a probabilistic dependency graph. This involves a recursive
application of property (1) At some point, a cost bound of less than or equal to
0 is reached. At this point, the generation of dependencies stops, as we do not
allow 0-weights in a MRM.

Finally, the probability measure associated with path formulae is monotoni-
cally increasing w.r.t cost bounds.

Proposition 2. For any MRM M and state s,

M, s |= P>λ(Φ1U≤kΦ2) =⇒ M, s |= P>λ′(Φ1U≤k′Φ2)

whenever λ′ ≤ λ and k′ ≥ k.

Example 2. Consider the formula Φ = P> 1
2
(ϕ) with ϕ = aU≤k b, k ∈ N and

the MRM M1 in Fig. 1a. For k = 10, P(π | π[0] = s0,M1, π |= ϕ) =
P (s0, s1) + P (s0, s0) · P (s0, s1) = 1

4 + 1
8 = 3

8 < 1
2 If instead k = 11 the direct

path through s2 affects the total probability i.e. P(π | π[0] = s0,M1, π |= ϕ) =
3
8 + P (s0, s2) · P (s2, s1) = 5

8 > 1
2 . Thus, M1, s0 |= P> 1

2
(aU≤11 b). By Proposi-

tion 2 we conclude M1, s0 |= P> 1
2
(aU≤kb) for any k ≥ 11. Similarly for M2 of

Fig. 1b we conclude M2, t0 |= P> 5
8
(aU≤k b) for any k ≥ 8.

3 Probabilistic Dependency Graphs

This section introduces probabilistic dependency graphs to explicitly represent
the dependencies implied by Proposition 1. We show that PCTL>

≤ model check-
ing can be solved by computing the least fixed-point on a complete lattice of
probability assignments to nodes of the graph. These assignments will be con-
crete probabilities.

Consider the model-checking problem M, t0 |= P> 1
3
(aU≤8 b) for t0 of

Fig. 1b. To encode this problem, a node representing the entire problem is con-
structed. This can be seen in Fig. 2. Now, the probability mass for the set of
paths that satisfy the path formula aU≤8 b must be strictly greater than 1

3 .
This dependency is encoded by a special cover edge (dashed edge), labeled by

158 A. Mariegaard and K.G. Larsen

the probability, to a successor node encoding the sub-problem. The semantics is
that the assignment (probability) of the successor node must be strictly greater
than 1

3 for the node to have value 1. At this point we can directly apply Proposi-
tion 1 to construct new nodes. If M, t0 |= b, then the problem is trivial and must
have associated probability 1, hence the labeling of max on the outgoing edge,
indicating that a maximum will be computed. If M, t0 	|= b, then M, t0 |= a
must be the case (value 1) and at the same time we have to apply Proposition 1
(1) to reason about successors of t0 in the MRM, hence the minimum. A hyper
edge is created, labeled by the transition probabilities out of t0 with target nodes
encoding the sub-problems by Proposition 1 (1). The rest of the graph can be
generated in a similar manner, but one can also apply a local approach in lieu of
Liu and Smolka [18]. If we choose to locally expand the tree at node 〈t1, a U≤5 b〉
and first construct the node 〈t1, b〉 it is trivial that the value of 〈t1, a U≤5 b〉
should be 1 as 〈t1, b〉 would have value 1. The value for the node 〈Σ〉 would then
be p · 1

2 + 1
2 · 1 which, no matter the value for p, is strictly greater than 1

3 . Hence
the root gets the value 1 and we can stop, even though p is completely unknown.

Our aim is in the future to use this approach to implement an extension of
the local fixed-point algorithm by Liu and Smolka [18].

〈t0, P> 1
3
(a U≤8 b)〉 〈t0, a U≤8 b〉

〈 〉 〈t0, b〉
0

〈Σ〉〈t0, a〉1

〈t0, a U≤3 b〉p 〈t1, a U≤5 b〉 〈t1, b〉 1

1
3

max

min

1
2

1
2

Fig. 2. On-the-fly unfolding of dependencies.

Definition 4 (Probabilistic dependency graph). A probabilistic dependen-
cy graph (PDG) is a structure G = (N,C,EΣ , Emin, Emax) where

– N is a finite set of nodes.
– C ⊆ N × [0, 1] × N is a finite set of cover edges.
– EΣ ⊆ N × 2[0,1]×N is a finite set of (probabilistic weighted) sum-edges where

• for any E ∈ EΣ with E = (n, T),
∑

(wi,pi,ni)∈T pi = 1.
– Emin, Emax ⊆ N × 2N are finite sets of minimum/maximum-edges.

All nodes are restricted to have at most one outgoing edge.

Symbolic Dependency Graphs for PCTL>
≤ Model-Checking 159

PDGs for PCTL>
≤ model checking will mostly have nodes of the types 〈s, Φ〉 or

〈s, ϕ〉 where Φ is a state-formula and ϕ is a path-formula. Figure 3 shows the
concrete construction rules. Given an MRM state and a PCTL>

≤ formula, one
can apply the rules in a recursive manner to obtain a PDG. The rules for ¬a are
omitted as they are simply the inverse of the rules for a. Maximum/minimum
edges are labeled with max/min, cover edges are represented by dashed lines and
sum edges by solid lines. Note that any PDG will be finite and without cycles
as MRMs are finite and 0-costs are not allowed. Cover edges abstract away the
probability bound before unfolding the until formula by the until rule (Fig. 3h)
according to Proposition 1. The semantic value of a node 〈s, ϕ〉 is a value in the
interval [0, 1] corresponding to the probability of the set of paths out of s that
satisfy ϕ. Nodes 〈s, Φ〉 will be assigned either 1 or 0, depending on whether Φ is
satisfied in s or not.

Example 3. Consider MRM M2 in Fig. 1b with formula Φ = P> 5
8
(aU≤8 b). After

applying the construction rules we get the PDG in Fig. 3. As the entire PDG is
quite large, a few nodes have been omitted, indicated by dots. These nodes all
represent the unfolding of aU≤k b in state t1 for various k. The size of the PDG
is therefore highly dependent on the cost bound.

The formal semantics of a node is given by an assignment.

Definition 5 (Assignments). Given a PDG G = (N,C,EΣ , Emin, Emax), an
assignment, A : N → [0, 1] on G is a mapping from each node to a probability.

An assignment represents the probability associated with the satisfiability of a
PCTL>

≤ formula in an MRM state. We denote by AG, the set of all assignments
for a PDG G and order assignments by the partial order : for two assignments
A1, A2, A1 A2 iff ∀n ∈ N.A1(n) ≤ A2(n). (AG,) then constitutes a complete
lattice as the meet and join of any (possibly infinite) subset D = {A1, A2, . . .}
is given by the well defined supremum and infimum defined on elements of the
unit interval [0, 1]. The join is given by

∨
D = A∨ where ∀n ∈ N.A∨(n) =

supAi∈D Ai(n). The meet can be defined similarly, using infimum.
As we are interested in the least fixed point of (AG,), we define a monotone

function that iteratively refines assignments. In the following we let max ∅ = 1.

Definition 6 (Iterator). For a PDG G = (N,C,EΣ , Emin, Emax), F : AG →
AG is a function that, given an assignment A on G, produces a new updated
assignment, F (A), defined for any node n ∈ N :

F (A)(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
1 if A(n′) > λ

0 otherwise
if (n, λ, n′) ∈ C

∑
(pi,ni)∈T (A(ni) · pi) if (n, T) ∈ EΣ

maxn′∈T {A(n′)} if (n, T) ∈ Emax

minn′∈T {A(n′)} if (n, T) ∈ Emin

0 otherwise

160 A. Mariegaard and K.G. Larsen

〈s, P>λ(X≤kΦ)〉

〈s, X≤kΦ〉

λ

(a) Next cover edge

〈s, P>λ(Φ1U≤kΦ2)〉

〈s, Φ1U≤kΦ2〉

λ

(b) Until cover edge

〈s, X≤kΦ〉
for s

wi,pi−−−→ si with wi ≤ k, 1 ≤ i ≤ m

〈s1, Φ〉 〈sm, Φ〉· · ·

p1 pm

(c) Next

〈s, Φ1 ∨ Φ2〉

〈s, Φ1〉 〈s, Φ2〉

max

(d) Disjunction

〈s, Φ1 ∧ Φ2〉

〈s, Φ1〉 〈s, Φ2〉

min

(e) Conjunction

〈s, a〉

∅

max

(f) a ∈ L(s)

〈s, a〉
(g) a /∈ L(s)

〈s, Φ1U≤kΦ2〉

〈s, Φ2〉

〈 〉 〈s, Φ1〉

〈Σ〉 〈sm, Φ1U≤k−wmΦ2〉

〈s1, Φ1U≤k−w1Φ2〉
for s

wi,pi−−−→ si with wi ≤ k, 1 ≤ i ≤ m

··
·

max

min

p1

pm

(h) Until

Fig. 3. PDG construction rules

For a formula ϕ = Φ1U≤kΦ2 and a state s, a cover edge is created to abstract
away the cost bound. The target node of this edge will compute the probability
for the set of paths from s that satisfy ϕ which is compared to λ in the cover edge
case of F . By Proposition 1, this probability can be split into a weighted sum of
probabilities for similar formula in successor states. This is implemented in the
sum-edge case of F . To argue that F is well defined we note that assignments are
closed under maximum and minimum. Furthermore, for the case (n, T) ∈ EΣ

we have, by definition of EΣ , that
∑

(pi,ni)∈T pi = 1 for any (n, T) ∈ EΣ . Thus,

Symbolic Dependency Graphs for PCTL>
≤ Model-Checking 161

〈t0, P> 5
8
(a U≤8 b)〉1

〈t0, a U≤8 b〉2

〈 〉4〈t0, b〉3

〈Σ〉6〈t0, a〉
5

∅

〈t0, a U≤3 b〉 7 〈t1, a U≤5 b〉 10

〈 〉 8

〈Σ〉9

··
··

··
··

··
··

〈t1, a U≤0 b〉
11

〈 〉
13

〈Σ〉
15

〈t1, b〉12

∅

〈t1, a〉
14

5
8

max

min

1
2

1
2

max

max

min

1
2

max

max

min

Fig. 4. PDG constructed from M2 (Fig. 1) and Φ = P> 5
8
(a U≤8 b)

each term of the sum can be at most pi implying that the sum is within [0,1].
We now argue for the existence of a least fixed point of F . To this end we show
that F is monotone on the complete lattice of assignments.

Lemma 1 (Monotonicity). F is monotone on the complete lattice (AG,).

Let F i(A) denote i repeated applications of F on assignment A i.e. F i(A) =
F (F i−1(A)) for i > 0 and F 0(A) = A. As F is monotone on the complete lattice
(AG,), Tarski’s fixed point theorem [21] guarantees the existence of a least
(pre-) fixed point assignment Amin. As the PDG is finite and has no cycles,
the least fixed point is computable by a repeated application of the monotone
function F on the bottom element of the complete lattice of assignments. The
following theorem states the correctness of our approach.

Theorem 1 (Correctness). Given a state s of an MRM M, a PCTL>
≤ state-

formula Φ and the generated PDG G with root node 〈s, Φ〉,
– M, s |= Φ ⇐⇒ Amin(〈s, Φ〉) = 1
– For any node n = 〈s′, ϕ′〉 where ϕ′ is a path-formula,

Amin(n) = P(π | π[0] = s′,M, s′ |= ϕ′).

Example 4. We now apply F on the PDG in Fig. 4. Our starting assumption is
that the assignment to all nodes is 0. The node indices in bold will be used as

162 A. Mariegaard and K.G. Larsen

shorthand for a given node and F i(j) denotes F i(0)(n) whenever j is the index
of node n. First note that F 1(12) = 1 and therefore F 2(11) = 1, which will
never change as F i(13) = F i(14) = F i(15) = 0 for any i. Now, there are a set
of nodes 〈s1, a U≤k b〉 for 0 ≤ k ≤ 5, two of them shown (k ∈ {5, 0}). According
to F , the assignment to such a node for iteration i will be

F i(〈t1, aU≤kb〉) = max
{

F i−1(〈t1, b〉),
min{F i−1(〈t1, a〉), F i−1(〈t1 aU≤k−1 b}

}

.

As F 1(12) = 1, F 2(〈t1, aU≤kb〉) = 1. These values can never change by the max-
imum and the fact that 12 is fixed after just 1 iteration of F . Table 1 shows the
first 10 iterations for nodes that at some point have their value increased above
0. ’–’ denotes that the assignment did not change from previous the iteration;
hence a fixed point is reached after 9 iterations. The fixed-point assignment to
node 1 is 1, correctly implying satisfiability of formula Φ = P> 5

8
(aU≤8 b) in state

t0 of the MRM M2 in Fig. 1b.

Table 1. Iterations of F on PDG in Fig. 3

Iter#/Node 1 2 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0

1 - - - 1 - - - - - - 1

2 - - - - - - - - 1 1 -

3 - - - - 1
2

- - 1
2

- - -

4 - - 1
2

- - - 1
2

- - - -

5 - 1
2

- - - 1
2

- - - - -

6 - - - - 3
4

- - - - - -

7 - - 3
4

- - - - - - - -

8 - 3
4

- - - - - - - - -

9 1 - - - - - - - - - -

10 - - - - - - - - - - -

4 Probabilistic Symbolic Dependency Graphs

As witnessed by the previous section, a simple unfolding of the dependencies
arising from a probabilistic formula can be used for PCTL>

≤ model-checking.
Although correct, the approach implies that larger cost bounds on path formula
results in larger PDGs as illustrated in Example 4. In this section we introduce
a symbolic version of PDGs that abstracts away the cost bound, effectively
collapsing many concrete nodes into symbolic nodes of the form 〈s, Φ1U≤?Φ2〉.
This reduces the size of the graph significantly but may introduce cycles.

Symbolic Dependency Graphs for PCTL>
≤ Model-Checking 163

Definition 7 (Probabilistic symbolic dependency graph). A probabilistic
symbolic dependency graph (PSDG) is a structure G = (N,C,EΣ , Emin, Emax)
where

– N,Emin, Emax are defined as for PDGs.
– EΣ ⊆ N × 2N

+×[0,1]×N is a finite set of sum-edges.
– C ⊆ N × N

+ × [0, 1] × N is a finite set of cover edges.

All nodes are restricted to have at most one outgoing edge.

The new construction rules for cover edges and symbolic nodes are shown in
Fig. 5. From the rules, we see that symbolic nodes imply independence between
the size of the PSDG and the cost-bound.

〈s, P>λ(X≤kΦ)〉

〈s, X≤?Φ〉

k, λ

(a) Next cover edge

〈s, P>λ(Φ1U≤kΦ2)〉

〈s, Φ1U≤?Φ2〉

k, λ

(b) Until cover edge

〈s, X≤?Φ〉

〈s1, Φ〉 〈sm, Φ〉· · ·

w1, p1 wm, pm

(c) Symbolic next

〈s, Φ1U≤?Φ2〉

〈s, Φ2〉

〈 〉 〈s, Φ1〉

〈Σ〉 〈sm, Φ1U≤?Φ2〉

〈s1, Φ1U≤?Φ2〉
··

·

max

min

w1, p1

wm, pm

(d) Symbolic until

Fig. 5. PSDG construction rules for state s where s
wi,pi−−−→ si for all i with 1 ≤ i ≤ m.

Example 5. Consider again the MRM M2 in Fig. 1. Figure 6 shows the con-
structed PSDG for M2, t0 |= P> 5

8
(aU≤8 b) which is much smaller than the

corresponding PDG in Fig. 3.

As for PDGs, the semantics of each node is given by an assignment. Now that
the upper bound on path formulae is abstracted away, each node represents a
function from strictly positive naturals to concrete probabilities. Thus, an assign-
ment to a node 〈s, Φ1U≤?Φ2〉 is a function f from cost bounds to probabilities
such that f(k) is the probability of the set of paths from s that satisfy Φ1U≤kΦ2.

164 A. Mariegaard and K.G. Larsen

〈t0, P> 5
8
(a U≤8 b)〉1

〈t0, a U≤? b〉2

〈t0, b〉3

〈 〉4

〈t0, a〉5

〈Σ〉6

∅

〈t1, a U≤? b〉
7

〈t1, b〉8

〈 〉9

〈t1, a〉10

〈Σ〉11

∅

8, 5
8

max

max

min

5, 1
2

3, 1
2

max

min

1, 1
max

Fig. 6. PSDG constructed from M2 (Fig. 1b) and Φ = P> 5
8
(a U≤8 b)

Definition 8 (Assignments). Given a PSDG G = (N,C,EΣ , Emin, Emax),
an assignment, A : N → (N → [0, 1]) on G is a mapping from each node to a
function that, given a natural number, yields a probability.

As for PDGs, we assume a component-wise partial ordering, on assignments;
A1 A2 iff ∀n ∈ N,w ∈ N.A1(n)(w) ≤ A2(n)(w). The set of assignment AG for
a PSDG G ordered by constitutes a complete lattice (AG,).

In practice, a (finite) representation of the assignments is needed. For this,
we introduce probabilistic step-functions. We will show (Lemma 3) that these are
the only types of assignments of interest.

Definition 9 (Probabilistic Step Function). A (finite discrete) probabilis-
tic step-function f : N → [0, 1] is a function

f(k) =
n∑

i=0

piχBi
(k)

where n ∈ N is the number of steps, pi ∈ [0, 1] denotes the probability associated
with step i, Bi is the interval of step i and χBi

is the indicator function for the
interval Bi. The intervals partition N and all intervals Bi are on the form [l, u)
with l < u, l ∈ N, u ∈ N ∪ {∞}.
Note that our definition of (probabilistic) step-function requires a finite num-
ber of steps, implying that any step-function is bounded. We will represent a
step-function f as a set Cf = {(ki, pi − pi−1) | ki = low(Bi), 0 < i ≤ n} where
low(Bi) is the lower end of the interval Bi. Thus, for each step, Cf includes a pair
describing the position and size of the step. As we will show, all assignments of
interest are probabilistic step-functions (cf. Lemma 3) i.e. any assignment A of
interest is weight-monotonic; for any node n, A(n)(w) ≥ A(n)(w′) whenever

Symbolic Dependency Graphs for PCTL>
≤ Model-Checking 165

w ≥ w′, capturing that the probability measure associated with properties
increases with an increased cost bound (see Proposition 1). An assignment will
be referred to as a step-function assignment if it assigns a probabilistic step-
function to each node in the PSDG.

Example 6. Consider again the MRM M2 in Fig. 1b and the path formula
aU≤k b. For k ≤ 13, the step-function depicted in Fig. 7 correctly computes the
probability of the set of paths outgoing of t0 that satisfy aU≤k b. This function
is represented by the set

{
(3, 1

2), (8, 1
4), (13, 1

8)
}
.

P

k

0.25

0.5

0.75

1.0

0 3 8 13

Fig. 7. Step-function for probability of set of paths outgoing of t0 (MRM M2, Fig. 1b)
satisfying a U≤k b for k ≤ 13.

Wenowdefine thefixed-point iterator for aPSDGG = (N,C,EΣ , Emin, Emax),
to iteratively refine assignments. In the following we let x be an assignment such
that for any node n ∈ N and natural number w, x(n)(w) = x.

Definition 10 (Iterator). For a PSDG G = (N,C,EΣ , Emin, Emax),
F : AG → AG is a function that, given an assignment A on G, produces a new
updated assignment, F (A). For any node n ∈ N and weight w ∈ N:

F (A)(n)(w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

{
1 if A(n′)(k) > λ
0 otherwise if (n, k, λ, n′) ∈ C

∑
(wi,pi,ni)∈T

wi≤w

(A(ni)(w − wi) · pi) if (n, T) ∈ EΣ

maxn′∈T {A(n′)(w)} if (n, T) ∈ Emax

minn′∈T {A(n′)(w)} if (n, T) ∈ Emin

0 otherwise

Monotonicity of F is straightforward. Thus, by Tarski’s fixed point theorem [21],
a least fixed point, Amin, exists.

As the complete lattice (AG,) of assignments is of arbitrary size, in addition
to the possibility of cycles in the PSDG, applying only the fixed-point theorem
by Tarski does not imply a way of constructing Amin. To this end, we prove that
F is chain (Scott [20])-continuous and apply the Kleene fixed point theorem
[15] to show that Amin = supn∈N Fn(0). A function f : U → U on a partially

166 A. Mariegaard and K.G. Larsen

ordered set U with order is chain-continuous iff, for any subset D ⊆ U totally
ordered by (a chain), f(sup D) = supui∈D f(ui). By the Kleene fixed point
theorem [15], we have that if f is chain-continuous on a complete lattice (U,)
with bottom element ⊥, then lfp(f) = supn fn(⊥) where lfp(f) denotes the
least fixed-point of f . As F is monotone on (AG,) the least fixed-point Amin

exists and a repeated application of F on the bottom element 0 produces the
chain F 0(0) F 1(0) Thus, if F is chain-continuous, Amin = supn Fn(0).
Chain-continuity of F thus implies an iterative procedure to approximate the
least fixed-point Amin. The following lemma shows that F is chain-continuous.

Lemma 2 (F chain-continuity). The iterator F defined for a PSDG G =
(N,C,EΣ , Emin, Emax) is chain-continuous.

Note that, if instead ≥ λ was the cover-condition for a cover edge (n, k, λ, n′) ∈
C, there would be cases where F computes a chain D′ of assignments Ai con-
verging to λ. In this case, (sup D)(n′) = λ while Ai(n′) < λ for all i. Thus
F (supD′)(n) = 1 and the lemma would not hold as F (Ai)(n) = 0 for any Ai,
implying supAi∈D′ F (Ai)(n) = 0. This is the exact reason for our choice of a
strict lower bound on the probabilistic modality.

We have now established that Amin can be approximated by repeated appli-
cation of F on 0. We now argue that all assignments of interest are step-function
assignments.

Lemma 3. For a PSDG G = (N,C,EΣ , Emin, Emax), node n ∈ N and assign-
ment A ∈ AG, if A is a step-function assignment then F (A) is a step-function
assignment.

The following lemma states that for any i, the i′th repeated application of F
on the top (bottom) element gives an over(under)-approximation of the least
fixed-point. This follows directly from the definition of the least fixed-point.

Lemma 4. For an arbitrary PSDG G, node n, iteration m and weight w,

Amin(n)(w) ∈ [Fm(0)(n)(w), Fm(1)(n)(w)].

Similarly, the approximations provide upper and lower bounds on the probability
associated with the set of paths satisfying a given path formula.

Lemma 5. For any symbolic node n = 〈s, Φ1U≤?Φ2〉, iteration m and weight
w, P(π | π[0] = s,M, s |= Φ1U≤wΦ2) ∈ [Fm(0)(n)(w), Fm(1)(n)(w)].

Finally, the next theorem states that we only need a finite number of iterations to
guarantee these approximations to be equal to the least fixed-point, up to a given
cost. Combining this result with Lemma 5 implies correctness of our approach;
for any given concrete cost bound, we can compute the exact probability of the
set of paths outgoing from a state that satisfy the formula, in a finite number of
steps.

Theorem 2. For an arbitrary PSDG G, node n and weight w, there exists an
iteration i such that for any w′ ≤ w, F i(0)(n)(w′) = F i(1)(n)(w′).

Symbolic Dependency Graphs for PCTL>
≤ Model-Checking 167

Example 7. We now apply the iterator F to the PSDG in Fig. 6 to correctly
verify M2, t0 |= P> 5

8
(aU≤8 b). We will use Cx = {(0, x)} to represent the

constant step-function with value x. Table 2 shows the first 9 iterations of F
for the nodes that change value, starting from C0. After 9 iterations, node 1
is assigned C1 as 2 was assigned

{
(3, 1

2), (8, 1
4

)} in iteration 8. This represents

the fact that t0
3, 12−−→ t1 adds 1

2 to the probability if the cost bound is equal to

or greater than 3 and t0
5, 12−−→ t0

3, 12−−→ t1 adds 1
2 · 1

2 = 1
4 if the bound is 8 or

greater. Thus, for a bound of exactly 8 the two steps are added and we get the
probability 6

8 > 5
8 . Note that the fixed-point is not reached as there is a cycle

between nodes 2,4,6. Hence the set
{
(3, 1

2), (8, 1
4), (13, 1

8)
}

will be propagated
to 2, but this will not change the assignment to 1. Thus, at iteration 9 we can
stop.

Table 2. Iterations of F on PDG in Fig. 6

Iter#/Node 1 2 4 5 6 7 8

0 C0 C0 C0 C0 C0 C0 C0

1 - - - C1 - - C1

2 - - - - - C1 -

3 - - - -
{
(3, 1

2

}
- -

4 - -
{
3, 1

2
)
}

- - - -

5 -
{
(3, 1

2
)
}

- - - - -

6 - - - -
{
(3, 1

2
), (8, 1

4
)
}

-

7 - -
{
(3, 1

2
), (8, 1

4
)
}

- - - -

8 -
{
(3, 1

2
), (8, 1

4
)
}

- - - - -

9 C1 - - -
{
(3, 1

2
), (8, 1

4
), (13, 1

8
)
}

- -

5 Conclusion

We presented an approach for model-checking PCTL>
≤, a subset of PCTL

restricted to strict lower bounds on the probabilistic modalities and lower bounds
on the path formulae, against weighted probabilistic transition systems by reduc-
tion to fixed-point computations on new probabilistic versions of dependency
graphs. First, we presented a simple encoding by unfolding of the path formula,
leading to graphs highly dependent on the size of the cost-bound. To this end, a
symbolic approach was developed to ensure independence between the size of the
graph and the cost-bound, by collapsing many concrete nodes into one symbolic
node. For the symbolic approach, all assignments are step-functions that, given
a cost bound return a probability that corresponds to the probability mass of
the set of paths that satisfy the path formula with the specified cost-bound.

Future work includes efficient data-structures for step-functions and oper-
ations on step-function in order to develop an efficient implementation based

168 A. Mariegaard and K.G. Larsen

on the polynomial time on-the-fly algorithm presented in [13]. Another direc-
tion could be to lift the approach to parametric model-checking of probabilistic
weighted systems.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). http://dx.doi.org/10.1016/0304-3975(94)90010-8

2. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked.
In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-40903-8 8

3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
4. Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J.,

Vaandrager, F.: Minimum-cost reachability for priced time automata. In:
Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034,
pp. 147–161. Springer, Heidelberg (2001). doi:10.1007/3-540-45351-2 15

5. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., Alfaro, L. (eds.) CON-
CUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). doi:10.1007/
11539452 9

6. Christoffersen, P., Hansen, M., Mariegaard, A., Ringsmose, J.T., Larsen, K.G.,
Mardare, R.: Parametric verification of weighted systems. In: 2nd International
Workshop on Synthesis of Complex Parameters, SynCoP 11, 2015, London, UK,
pp. 77–90 (2015). http://dx.doi.org/10.4230/OASIcs.SynCoP.2015.77

7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986). http://doi.acm.org/10.1145/5397.5399

8. Dalsgaard, A.E., et al.: Extended dependency graphs and efficient distributed
fixed-point computation. In: van der Aalst, W., Best, E. (eds.) PETRI NETS
2017. LNCS, vol. 10258, pp. 139–158. Springer, Cham (2017). doi:10.1007/
978-3-319-57861-3 10

9. Dalsgaard, A.E., Enevoldsen, S., Larsen, K.G., Srba, J.: Distributed computation
of fixed points on dependency graphs. In: Fränzle, M., Kapur, D., Zhan, N. (eds.)
SETTA 2016. LNCS, vol. 9984, pp. 197–212. Springer, Cham (2016). doi:10.1007/
978-3-319-47677-3 13

10. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. CoRR abs/1702.04311 (2017). http://arxiv.org/abs/1702.
04311

11. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Asp. Comput. 6(5), 512–535 (1994). http://dx.doi.org/10.1007/BF01211866

12. Howard, R.A.: Dynamic Probabilistic Systems, vol. 2. Wiley, New York (1971)
13. Jensen, J.F., Larsen, K.G., Srba, J., Oestergaard, L.K.: Efficient model-checking

of weighted CTL with upper-bound constraints. STTT 18(4), 409–426 (2016).
http://dx.doi.org/10.1007/s10009-014-0359-5

14. Katoen, J., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: Second
International Conference on the Quantitative Evaluaiton of Systems (QEST 2005),
Torino, Italy, 19–22 September 2005, pp. 243–244 (2005). http://dx.doi.org/10.
1109/QEST.2005.2

15. Kleene, S.C.: Introduction to metamathematics. Van Nostrand, Princeton (1952)

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/978-3-540-40903-8_8
http://dx.doi.org/10.1007/3-540-45351-2_15
http://dx.doi.org/10.1007/11539452_9
http://dx.doi.org/10.1007/11539452_9
http://dx.doi.org/10.4230/OASIcs.SynCoP.2015.77
http://doi.acm.org/10.1145/5397.5399
http://dx.doi.org/10.1007/978-3-319-57861-3_10
http://dx.doi.org/10.1007/978-3-319-57861-3_10
http://dx.doi.org/10.1007/978-3-319-47677-3_13
http://dx.doi.org/10.1007/978-3-319-47677-3_13
http://arxiv.org/abs/1702.04311
http://arxiv.org/abs/1702.04311
http://dx.doi.org/10.1007/BF01211866
http://dx.doi.org/10.1007/s10009-014-0359-5
http://dx.doi.org/10.1109/QEST.2005.2
http://dx.doi.org/10.1109/QEST.2005.2

Symbolic Dependency Graphs for PCTL>
≤ Model-Checking 169

16. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

17. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–
152 (1997). http://dx.doi.org/10.1007/s100090050010

18. Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points. In:
Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
53–66. Springer, Heidelberg (1998). doi:10.1007/BFb0055040

19. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Formal Methods Syst. Des. 43(2), 164–190 (2013). http://dx.doi.org/
10.1007/s10703-012-0177-x

20. Scott, D.: Continuous lattices. In: Lawvere, F.W. (ed.) Toposes, Algebraic Geom-
etry and Logic. LNM, vol. 274, pp. 97–136. Springer, Heidelberg (1972). doi:10.
1007/BFb0073967

21. Tarski, A., et al.: A lattice-theoretical fixpoint theorem and its applications. Pacific
J. Math. 5(2), 285–309 (1955)

http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1007/BFb0055040
http://dx.doi.org/10.1007/s10703-012-0177-x
http://dx.doi.org/10.1007/s10703-012-0177-x
http://dx.doi.org/10.1007/BFb0073967
http://dx.doi.org/10.1007/BFb0073967

	Symbolic Dependency Graphs for PCTL> Model-Checking
	1 Introduction
	2 Models and Properties
	3 Probabilistic Dependency Graphs
	4 Probabilistic Symbolic Dependency Graphs
	5 Conclusion
	References

