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Preface

The 15th International Conference on Formal Modelling and Analysis of Timed Sys-
tems (FORMATS 2017) was held during September 5–7, 2017, in Berlin, Germany.
FORMATS 2017 was part of QONFEST and was co-located with CONCUR 2017,
QEST 2017, and EPEW 2017.

Control and analysis of the timing of computations are crucial to many domains of
system engineering, be it, e.g., for ensuring timely response to stimuli originating in an
uncooperative environment, or for synchronizing components in VLSI. Reflecting this
broad scope, timing aspects of systems from a variety of domains have been treated
independently by different communities in computer science and control. Researchers
interested in semantics, verification, and performance analysis study models such as
timed automata and timed Petri nets, the digital design community focuses on prop-
agation and switching delays, while designers of embedded controllers have to take
account of the time taken by controllers to compute their responses after sampling the
environment, as well as of the dynamics of the controlled process during this span.

Timing-related questions in these separate disciplines have their particularities.
However, there is a growing awareness that there are basic problems (of both scientific
and engineering level) that are common to all of them. In particular, all these
sub-disciplines treat systems whose behavior depends upon combinations of logical
and temporal constraints; namely, constraints on the temporal distances between
occurrences of successive events. Often, these constraints cannot be separated, as the
intrinsic dynamics of processes couples them, necessitating models, methods, and tools
facilitating their combined analysis. Reflecting this, FORMATS 2017 promoted sub-
missions on hybrid discrete-continuous systems, and held a special session on this
topic.

FORMATS 2017 was a three-day event, featuring three invited talks (two of which
co-located with QEST 2017 and CONCUR 2017), and single-track regular podium
sessions.

In all, 28 Program Committee members helped to provide at least three reviews
of the 31 submitted contributions, 18 of which were accepted and presented during the
single-track sessions and appear as full papers in these proceedings. We furthermore
put in place a process of shepherding for a few of the 18 accepted submissions.

A highlight of FORMATS 2017 was the presence of the invited speaker Laurent
Fribourg (CNRS and ENS, Université Paris-Saclay), who gave a talk titled “Euler’s
Method Applied to the Control of Switched Systems.”

Furthermore, FORMATS 2017 sponsored two additional speakers: Morten Bis-
gaard, (GomSpace), co-sponsored with QEST 2017, and Hongseok Yang (Department
of Computer Science, Oxford University) co-sponsored with CONCUR 2017 and
QEST 2017.

Further details on FORMATS 2017 are featured at: http://formats17.ulb.be.

http://formats17.ulb.be


Finally, a few words of acknowledgment are due. Thanks to Katinka Wolter (FU
Berlin), and to Uwe Nestmann (TU Berlin), for the supportive and can-do attitude as
well as the local seamless organization of QONFEST. Thanks to Springer for pub-
lishing the FORMATS proceedings in its Lecture Notes in Computer Science. Thanks
to Oded Maler and Martin Fränzle from the Steering Committee for support and
direction, to Thao Dang for the help with publicity, to all the Program Committee
members and additional reviewers for their work (105 reviews in total) in ensuring the
quality of the contributions to FORMATS 2017, and to all the participants for con-
tributing to this event. Finally, thanks to the EasyChair website for providing us with
the necessary support in the selection process.

July 2017 Alessandro Abate
Gilles Geeraerts
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Euler’s Method Applied to the Control
of Switched Systems

Laurent Fribourg(B)

LSV, CNRS & ENS Paris-Saclay & INRIA, Cachan, France
fribourg@lsv.ens-cachan.fr

Abstract. Hybrid systems are a powerful formalism for modeling and
reasoning about cyber-physical systems. They mix the continuous and
discrete natures of the evolution of computerized systems. Switched sys-
tems are a special kind of hybrid systems, with restricted discrete behav-
iours: those systems only have finitely many different modes of (contin-
uous) evolution, with isolated switches between modes. Such systems
provide a good balance between expressiveness and controllability, and
are thus in widespread use in large branches of industry such as power
electronics and automotive control. The control law for a switched sys-
tem defines the way of selecting the modes during the run of the system.
Controllability is the problem of (automatically) synthesizing a control
law in order to satisfy a desired property, such as safety (maintaining
the variables within a given zone) or stabilisation (confinement of the
variables in a close neighborhood around an objective point). In order to
compute the control of a switched system, we need to compute the solu-
tions of the differential equations governing the modes. Euler’s method
is the most basic technique for approximating such solutions. We present
here an estimation of the Euler’s method local error, using the notion
of “one-sided Lispchitz constant” for modes. This yields a general con-
trol synthesis approach which can encompass several features such as
bounded disturbance and compositionality.

1 Introduction

In this paper, we present some recent results obtained for the control synthesis
of nonlinear switched systems using the one-sided Lipschitz conditions of their
dynamics. The main idea is to use “one-sided Lipschitz conditions” on the sys-
tem vector fields in order to generate a sequence of balls enclosing the sets of
trajectories. The method can be easily extended to take into account uncertainty
and compositional synthesis. These results mainly originate from collaboration
with A. Le Coënt, F. De Vuyst, L. Chamoin, J. Alexandre dit Sandretto and
A. Chapoutot (see [13,14]).

The plan of the paper is as follows: in Sect. 2, we present the notions of
switched systems and (R,S)-stability; in Sect. 3, we introduce a new error analy-
sis for Euler’s method, and explain how to use it for ensuring (R,S)-stability in
control synthesis of switched systems; we extend this control synthesis method

c© Springer International Publishing AG 2017
A. Abate and G. Geeraerts (Eds.): FORMATS 2017, LNCS 10419, pp. 3–21, 2017.
DOI: 10.1007/978-3-319-65765-3 1



4 L. Fribourg

to uncertain switched systems, and to compositional synthesis (Sect. 4); we con-
clude in Sect. 5.

2 Switched Systems and (R, S)-Stability

2.1 Switched Systems

A hybrid system is a system where the state evolves continuously according
to several possible modes, and where the change of modes (switching) is done
instantaneously. We consider here the special case of hybrid systems called “sam-
pled switched systems” where the change of modes occurs periodically with a
period of τ seconds. We will suppose furthermore that the state keeps its value
when the mode is changed (no jump). More formally, we denote the state of the
system at time t by x(t) ∈ R

n. The set of modes U = {1, . . . , N} is finite. With
each mode j ∈ U is associated a vector field fj that governs the state x(t); we
have:

ẋ(t) = fj(x(t))

We make the following hypothesis:

(H0) For all j ∈ U, fj is a locally Lipschitz continuous map.

We will denote by φj(t;x0) the solution at time t of the system

ẋ(t) = fj(x(t)),

x(0) = x0.
(1)

The existence of φj is guaranteed by assumption (H0). Let us consider S ⊂ R
n

be a compact and convex set, typically a “box” or “rectangular set”, that is a
cartesian product of n closed intervals. We know by (H0) that there exists a
constant Lj > 0 such that:

‖fj(y) − fj(x)‖ ≤ Lj ‖y − x‖ ∀x, y ∈ S. (2)

We also define, for all j ∈ U :

Cj = sup
x∈S

Lj‖fj(x)‖. (3)

Example 1. One consider the example (adapted from [12]) of a two rooms apart-
ment, with one heater per room. See Fig. 1. There is heat exchange between the
two rooms and with the environment. The objective is to control the tempera-
ture of the two rooms. The continuous dynamics of the system is given by the
equation:

˙(T1

T2

)
=

(−α21 − αe1 − αf j1 α21

α12 −α12 − αe2 − αf j2

)(
T1

T2

)
+

(
αe1Te + αfTf j1
αe2Te + αfTf j2

)
.
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Fig. 1. 2-rooms example

Here the state of the system is (T1, T2) where T1 and T2 are the temperatures
of the two rooms. The control mode of the system is of the form j = (j1, j2)
where variable j1 (respectively j2) can take the values 0 or 1 depending on
whether the heater in room 1 (respectively room 2) is switched off or switched
on (hence U = U1 × U2 = {0, 1} × {0, 1}). Te corresponds to the temperature
of the environment, and Tf to the temperature of the heaters. The values of
the different parameters are the following: α12 = 5 × 10−2, α21 = 5 × 10−2,
αe1 = 5 × 10−3, αe2 = 5 × 10−3, αf = 8.3 × 10−3, Te = 10 and Tf = 35.
We suppose that the heaters can be switched periodically at sampling instants
τ, 2τ, . . . with τ = 5s. The objective is to stabilize the state (T1, T2) of the system
in the neighborhood of the region R = [18, 22] × [18, 22].

A pattern π is a finite sequence of modes; e.g., the expression((
0
1

)
·
(

0
0

)
·
(

1
1

))
is a pattern in Example 1. The (state-dependent) control

synthesis problem consists in finding at each sampling time τ , 2τ , . . . , the appro-
priate mode u ∈ U (in function of the current value of x) to be selected for
satisfying some objective, for example a safety property. More generally, the
control synthesis problem (with a “time-horizon” bounded by a positive integer
K) consists first in selecting at time 0 a pattern π1 of length, say 1 ≤ k1 ≤ K,
according to the value of state x(0); then after k1τ seconds, selecting a new
pattern π2, according to the value of x(k1τ), and so on repeatedly. This induces
a control (or switching) rule σ which is a piecewise constant function of time,
with discontinuities occurring at sampling times. By convention, the control law
σ is right-continuous.

2.2 (R,S)-Stability

Among the classical objectives that one is generally aiming for, there are

– the reachability objective: given an initial region Rinit and a target region R,
find a pattern which drives x(t) to R, for any initial state x0 = x(0) ∈ Rinit;

– the stability objective: for any initial point x0 = x(0) ∈ R, find a pattern
π ∈ Uk (with 1 ≤ k ≤ K) which makes the trajectory return in R (i.e.:
x(kτ) ∈ R) while always maintaining x(t) in a neighborhood S = R + ε of R,
(i.e.: x(t) ∈ S for 0 ≤ t ≤ kτ).
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The effect of such control rules is depicted on Fig. 2.

Fig. 2. Illustration of reachability (left) followed by stability (right)

For the sake of simplicity, we focus here on a property that we call “(R,S)-
stability”: given two rectangular sets (i.e., cartesian products of intervals) R and
S with R ⊆ S ⊂ R

n, called respectively “recurrence set” and “safety set”, the
(R,S)-stability control problem consists in finding a control σ ensuring, for all
x(0) ∈ R.

1. recurrence: the state of the system x(t) belongs to R for an infinite number
of values of t;

2. safety: the state of the system x(t) belongs to S for all t ≥ 0.

The property of (R,S)-stability is illustrated in Fig. 3 in the case of Example
1, with R = [18, 22] × [18, 22].

Fig. 3. (R, S)-stability

We now give the general scheme of control synthesis that has been proposed
in MINIMATOR [10] for ensuring (R,S)-stability. This scheme consists in two
steps:



Euler’s Method Applied to the Control of Switched Systems 7

1. cover R via a finite number m of subsets B0
1 , B

0
2 , ..., B

0
m of S (with R ⊂⋃m

i=1 B0
i ⊆ S);

2. for each B0
i (1 ≤ i ≤ m), find a pattern πi of length ki ≤ K such that, starting

at t = 0 from any point of B0
i , the trajectory x(t) controlled by πi satisfies:

x(t) ∈ S for all t ∈ [0, kiτ ] ∧ x(t) ∈ R for t = kiτ.

Note that, when the system returns to R (after application of some pattern)
at time, say t = t1, the state x(t1) belongs to B0

i1
for some 1 ≤ i1 ≤ m;

the pattern πi1 is then applied, which makes the system return to R at time
t2 = t1 + ki1τ , and so on iteratively.

Remark 1. Let us give a rough estimation of the complexity of MINIMATOR
scheme. Let N be the number of modes, n the state dimension, K the time-
horizon (or maximum length of patterns), m = 2nd the number of modes (assum-
ing a uniform covering obtained by bisection of depth d); the MINIMATOR
scheme consists essentially in enumerating all the possible patterns of length
≤ K until finding, for each B0

i (1 ≤ i ≤ m) a safe recurrent candidate; a simple
calculation shows that there are 2ndNK candidate patterns; the complexity of
the MINIMATOR scheme is thus exponential in n, d, K (note that the number
of modes N may be itself exponential in the dimension n: for example, in a
classical n-room heating example with one heater per room and two modes by
heater, there are N = 2n modes).

Remark 2. Note that the set of trajectories starting at points of R form a (pos-
itive) invariant set included into S. There are classical methods for generat-
ing (maximal) invariant sets included into S [4,7]. Unfortunately, these general
methods are based on a backward reachability constructs, which, as noticed by
I.M. Mitchell [16], “are more likely to suffer from numerical stability issues, espe-
cially in systems with significant contraction – the very systems where forward
simulation and reachability are most effective”. The forward analysis used by
the MINIMATOR scheme (application of patterns) avoids such a difficulty.

2.3 Guaranteed Integration

The MINIMATOR paradigm described in Sect. 2.2 relies implicitly on the exis-
tence of a process for overapproximating the set of trajectories originating from
a subset B0

i during a multiple of sampling periods. Such a process is called
“guaranteed integration” (or “set-integration”). As said in [18]:

“Methods of guaranteed integration are methods capable to compute bounds
that are guaranteed to contain the solution of a given ODE at points tj ,
j = 1, 2, . . . ,m in the interval (t0, tm] for some tm > t0. These methods are
usually based on Taylor series or extension of Hermite-Obreschkoff schemes to
interval methods. They usually consist of two phases. On an integration step
from tj−1 to tj , the first phase validates existence and uniqueness of the solu-
tion of (1) for all [tj−1, tj ] and computes a priori bounds for this solution for al
t ∈ [tj−1, tj ], [19, 20]; and the second phase compute tight bounds for the solution
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of (1) at tj . Note that a major problem in the second phase is the wrapping effect
[16]. It occurs when a solution set that is not a box in R

n, n ≥ 2, is enclosed, or
wrapped, by a box on each integration step. (...) As a result of such a wrapping,
an overestimation is often introduced on each integration step. Those overesti-
mations accumulate as the integration proceeds, and the computed bounds may
soon become unacceptably large. Many methods have been proposed to reduce
the wrapping effect in the context of interval methods.”

In order to avoid such a wrapping effect, we proposed an alternate method
which, instead of using interval arithmetic [17] and higher order Taylor series, has
simply recourse to the basic (forward) Euler method [14]. This is made possible
through a new error analysis of the Euler method via the notion of “one-sided
Lipschitz constant”.

3 Euler’s Method and Error Estimation

3.1 One-Sided Lipschitz Constant

As remarked in [1]:
“The Lipschitz constant of [many] functions is usually region-based and often

dramatically increases as the operating region is enlarged. On the other hand,
even if the nonlinear system is Lipschitz in the region of interest, it is gener-
ally the case that the available observer design techniques can only stabilize the
error dynamics for dynamical systems with small Lipschitz constants but fails
to provide a solution when the Lipschitz constant becomes large. The problem
becomes worse when dealing with stiff systems. Stiffness means that the ordinary
differential equation (ODE) admits a smooth solution with moderate derivatives,
together with nonsmooth (“transient”) solutions rapidly converging towards the
smooth ones (...) This problem has been recognized in the mathematical litera-
ture and specially in the field of numerical analysis for some time and a powerful
tool has developed to overcome this problem. This tool is a generalization of the
Lipschitz continuity to a less restrictive condition known as one-sided Lipschitz
(OSL) continuity.”

Unlike Lipschitz constants, OSL constants can be negative, which express
a form of contractivity of the system dynamics. Even if the OSL constant is
positive, it is in practice much lower than the Lipschitz constant [8]. The use
of OSL thus allows us to obtain an upper bound for the error associated with
Euler’s method that is more precise than by using Lipschitz constants [14].

Let us denote by T a compact overapproximation of the image by φj of box
S for 0 ≤ t ≤ τ and j ∈ U , i.e. T is such that

T ⊇ {φj(t;x0) | j ∈ U, 0 ≤ t ≤ τ, x0 ∈ S}.

The existence of T is guaranteed by assumption (H0). We now make the addi-
tional hypothesis that the vector fields fj of the system are one-sided Lipschitz
(OSL) [9]. Formally:

(HU ) For all j ∈ U , there exists a constant λj ∈ R such that
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〈fj(y) − fj(x), y − x〉 ≤ λj ‖y − x‖2 ∀x, y ∈ T,

where 〈·, ·〉 denotes the scalar product of two vectors of Rn.

Remark 3. Constants λj as well as Lj and Cj (j ∈ U) can be computed using
constrained optimization algorithms. See Sect. 3.5 for details.

3.2 Euler Approximate Solutions

Given an initial point x̃0 ∈ S and a mode j ∈ U , we define the following “linear
approximate solution” φ̃j(t; x̃0) for t ∈ [0, τ ] by:

φ̃j(t; x̃0) = tfj(x̃0) + x̃0. (4)

Formula (4) is nothing else but the explicit forward Euler scheme with“time
step” t. It is thus a consistent approximation of order 1 in t of the exact solution
of (Sect. 2) under the hypothesis x̃0 = x0 (see Fig. 4). More generally, given an
initial point x̃0 ∈ S and pattern π of Uk, we can define a “(piecewise linear)
approximate solution” φ̃π(t; x̃0) of φπ at time t ∈ [0; kτ ] as follows:

– φ̃π(t; x̃0) = tfj(x̃0) + x̃0 if π = j ∈ U , k = 1 and t ∈ [0, τ ], and
– φ̃π(kτ + t; x̃0) = tfj(z̃) + z̃ with z̃ = φ̃π′((k − 1)τ ; x̃0), if k ≥ 2, t ∈ [0, τ ],

π = j · π′ for some j ∈ U and π′ ∈ Uk−1.

Fig. 4. Illustration of Euler’s method (from Wikipedia)

We wish to synthesize a guaranteed control σ using approximate functions
of the form φ̃π. We define the closed ball of center x ∈ R

n and radius r > 0,
denoted B(x, r), as the set {x′ ∈ R

n | ‖x′ −x‖ ≤ r}. Given a positive real δ0, we
now define the expression δj(t) which, as we will see in Theorem 1, represents
(an upper bound on) the error associated to φ̃j(t; x̃0) (i.e. ‖φ̃j(t; x̃0)−φj(t;x0)‖).

Definition 1. Let δ0 be a positive constant. Let us define, for all 0 ≤ t ≤ τ ,
δj(t) as follows:
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– if λj < 0:

δj(t) =

(

(δ0)2eλjt +
C2

j

λ2
j

(

t2 +
2t

λj
+

2
λ2

j

(
1 − eλjt

)
)) 1

2

– if λj = 0 :

δj(t) =
(
(δ0)2et + C2

j (−t2 − 2t + 2(et − 1))
) 1

2

– if λj > 0 :

δj(t) =

(

(δ0)2e3λjt +
C2

j

3λ2
j

(

−t2 − 2t

3λj
+

2
9λ2

j

(
e3λjt − 1

)
)) 1

2

Note that δj(t) = δ0 for t = 0. The function δj(·) depends implicitly on
parameter: δ0 ∈ R>0. In Sect. 3.3, we will use the notation δ′

j(·) where the value
of δ′

j(t) for t = 0 is implicitly a parameter denoted by (δ′)0.

Theorem 1. Given an ODE system satisfying (H0 − HU ), consider a point x̃0

and a positive real δ0. We have, for all x0 ∈ B(x̃0, δ0), t ∈ [0, τ ]:

φj(t;x0) ∈ B(φ̃j(t, x̃0), δj(t)).

The proof of this theorem is given in [14].

Remark 4. In Theorem 1, we have supposed that the step size h used in Euler’s
method was equal to the sampling period τ of the switching system. Actually, in
order to have better approximations, it is often convenient to take a fraction of
τ as for h (e.g., h = τ

10 ). Such a splitting is called “sub-sampling” in numerical
methods.

Corollary 1 (one-step invariance). Given an ODE system satisfying (H0−HU ),
consider a point x̃0 ∈ S and a real δ0 > 0 such that:

1. B(x̃0, δ0) ⊆ S,
2. B(φ̃j(τ ; x̃0), δj(τ)) ⊆ S, and
3. d2(δj(t))

dt2 > 0 for all t ∈ [0, τ ].

Then we have, for all x0 ∈ B(x̃0, δ0) and t ∈ [0, τ ]: φj(t;x0) ∈ S.

Corollary 1 is illustrated in Fig. 5. Note that condition 3 of Corollary 1 on
the convexity of δj(·) on [0, τ ] can be established again using an optimization
function.
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Fig. 5. Illustration of one-step invariance in S

3.3 Application to Control Synthesis for (R,S)-Stability

Consider a point x̃0 ∈ S, a positive real δ0 and a pattern π of length k. Let
π(k′) denote the k′-th element (mode) of π for 1 ≤ k′ ≤ k. Let us abbreviate
the k′-th approximate point φ̃π(k′τ ; x̃0) as x̃k′

π for k′ = 1, ..., k, and let x̃k′
π = x̃0

for k′ = 0. It is easy to show that x̃k′
π can be defined recursively for k′ = 1, ..., k,

by: x̃k′
π = x̃k′−1

π + τfj(x̃k′−1
π ) with j = π(k′).

Let us now define the expression δk′
π as follows: for k′ = 0: δk′

π = δ0, and for
1 ≤ k′ ≤ k: δk′

π = δ′
j(τ) where (δ′)0 denotes δk′−1

π , and j denotes π(k′). Likewise,
the expression δπ(t) is defined, for 0 ≤ t ≤ kτ , by:

– for t = 0: δπ(t) = δ0,
– for 0 < t ≤ kτ : δπ(t) = δ′

j(t
′) with (δ′)0 = δ�−1

π , j = π(
), t′ = t − (
 − 1)τ
and 
 =  t

τ �.
Note that, for 0 ≤ k′ ≤ k, we have: δπ(k′τ) = δk′

π . Following the MINIMATOR
paradigm (see Sect. 2.2), we are now ready to synthesize a control σ ensuring
(R,S)-stability, using the approximate functions φ̃π.

Theorem 2. Given a sampled switched system satisfying (H0 − HU ), consider
a point x̃0 ∈ S, a positive real δ0 and a pattern π of length k such that, for all
1 ≤ k′ ≤ k:

1. B(x̃k′
π , δk′

π ) ⊆ S and

2. d2(δ′
j(t))

dt2 > 0 for all t ∈ [0, τ ], with j = π(k′) and (δ′)0 = δk′−1
π .

Then we have, for all x0 ∈ B(x̃0, δ0) and t ∈ [0, kτ ]: φπ(t;x0) ∈ S.

Corollary 2. Given a switched system satisfying (H0−HU ), consider a positive
real δ0 and a finite set of points x̃1, . . . x̃m of S such that all the balls B(x̃i, δ

0)
cover R and are included into S (i.e. R ⊆ ⋃m

i=1 B(x̃i, δ
0) ⊆ S). Suppose fur-

thermore that, for all 1 ≤ i ≤ m, there exists a pattern πi of length ki such
that:

1. B((x̃i)k′
πi

, δk′
πi

) ⊆ S, for all k′ = 1, . . . , ki − 1
2. B((x̃i)ki

πi
, δki

πi
) ⊆ R.
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Fig. 6. Set of balls covering R (left) and safe recurrent pattern associated with one of
these balls (right).

3. d2(δ′
j(t))

dt2 > 0 with j = πi(k′) and (δ′)0 = δk′−1
πi

, for all k′ ∈ {1, ..., ki} and
t ∈ [0, τ ].

These properties induce a control σ1 which guarantees

– (safety): if x0 ∈ R, then φσ(t;x0) ∈ S for all t ≥ 0, and
– (recurrence): if x0 ∈ R then φσ(kτ ;x0) ∈ R for some k ∈ {k1, . . . , km}.

A covering of R with balls as stated in Corollary 2 is illustrated in Fig. 6 (left)
with a pattern satisfying safety and recurrence in Fig. 6 (right). Corollary 2 thus
leads to the following method (inspired by the MINIMATOR scheme described
in Sect. 2.2), aiming for (R,S)-stability:

– we (pre-)compute λj , Lj , Cj for all j ∈ U ;
– we find m points x̃1, . . . , x̃m of S and δ0 > 0 such thatR ⊆ ⋃m

i=1 B(x̃i, δ
0)) ⊆ S;

– we find m patterns πi (i = 1, . . . , m) such that conditions 1-2-3 of Corollary 2
are satisfied.

3.4 Avoiding Wrapping Effect with Euler’s Method

The problem of “wrapping effect” inherent to the method of interval analysis has
been noticed from the outset: R. Moore [17] illustrates it on the simple rotation

ẋ =
(

0 1
−1 0

)

x; x0 ∈ A

1 Given an initial point x ∈ R, the induced control σ corresponds to a sequence of
patterns πi1 , πi2 , . . . defined as follows: Since x ∈ R, there exists a a point x̃i1 with
1 ≤ i1 ≤ m such that x ∈ B(x̃i1 , δ0); then using pattern πi1 , one has: φπi1

(ki1τ ; x) ∈
R. Let x′ = φπi1

(ki1τ ; x); there exists a point x̃i2 with 1 ≤ i2 ≤ m such that

x′ ∈ B(x̃i2 , δ0), etc.
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Fig. 7. left: guaranteed integration with interval method (from [17]); right: with Euler-
based method.

for an initial set A which is rectangular. At each step, the rectangle is rotated
and has to be wrapped by another one. At t = 2π, the blow up factor is by a
factor e2π ≈ 535, as the step size tends to zero (Fig. 7: left). In contrast, the
application of the Euler-based method starting from a ball of radius 0.1 with
step size 0.005, does not blow up on this example (Fig. 7: right).

3.5 Numerical Results

Our Euler-based synthesis method has been implemented by Adrien Le Coënt in
the interpreted language Octave, and the experiments performed on a 2.80 GHz
Intel Core i7-4810MQ CPU with 8 GB of memory. The computation of constants
Lj , Cj , λj (j ∈ U) are realized with a constrained optimization algorithm.
They are performed using the “sqp” function of Octave, applied on the following
optimization problems:

– Constant Lj :

Lj = max
x,y∈S, x�=y

‖fj(y) − fj(x)‖
‖y − x‖

– Constant Cj :
Cj = max

x∈S
Lj‖fj(x)‖

– Constant λj :

λj = max
x,y∈T, x�=y

〈fj(y) − fj(x), y − x〉
‖y − x‖2

The convexity test d2(δ′
j(t))

dt2 > 0 can be performed similarly. Note that in some
cases, it is advantageous to use a time sub-sampling to compute the image of a
ball. Indeed, because of the exponential growth of the radius δj(t) within time,
computing a sequence of balls can lead to smaller ball images. It is particularly
advantageous when a constant λj is negative. We illustrate this with the example
of the DC-DC converter [6]. It has two switched modes, for which we have
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)b()a(

Fig. 8. Behavior of δj(t) for the DC-DC converter with δj(0) = 0.045. (a) Evolution of
δ1(t) (with λ1 < 0); (b) Evolution of δ2(t) (with λ2 > 0).

λ1 ≈ −0.014 and λ2 ≈ 0.14. In the case λj < 0, the associated formula δj(t) has
the behavior of Fig. 8(a). In the case λj > 0, the associated formula δj(t) has
the behavior of Fig. 8(b). In the case λj < 0, if the time sub-sampling is small
enough, one can compute a sequence of balls with reducing radius, which makes
the synthesis easier.

Example 2 (Four-room apartment). We describe a first application on a 4-room
16-switch building ventilation case study adapted from [15]. The model has been
simplified in order to get constant parameters. The system is a four room apart-
ment subject to heat transfer between the rooms, with the external environment,
the underfloor, and human beings. The dynamics of the system is given by the
following equation:

dTi

dt
=

∑

j∈N*\{i}
aij(Tj − Ti) + δsibi(T

4
si

− T
4
i ) + ci max

(
0,

Vi − V *
i

V̄i − V *
i

)
(Tu − Ti), for i = 1, ..., 4.

The state of the system is given by the temperatures in the rooms Ti, for
i ∈ N = {1, . . . , 4}. Room i is subject to heat exchange with different entities
stated by the indices N * = {1, 2, 3, 4, u, o, c}. We have T0 = 30, Tc = 30, Tu = 17,
δsi

= 1 for i ∈ N . The (constant) parameters Tsi
, V *

i , V̄i, aij , bi, ci are given
in [15]. The control input is Vi (i ∈ N ). In the experiment, V1 and V4 can take
the values 0V or 3.5V, and V2 and V3 can take the values 0V or 3V. This leads
to 16 switching modes corresponding to the different possible combinations of
voltages Vi. The sampling period is τ = 30 s. Compared simulations are given in
Fig. 9. On this example, the Euler-based method works better than DynIBEX
in terms of CPU time (see Table 1).
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Table 1. Numerical results for the four-room example.

Euler DynIBEX

R [20, 22]2 × [22, 24]2

S [19, 23]2 × [21, 25]2

τ 30

Time subsampling No

Complete control Yes Yes

maxj=1,...,16 λj maxj=1,...,16 Cj −6.30 × 10−3 4.18 × 10−6

Number of balls/tiles 4096 252

Pattern length 1 1

CPU time 63 s 249 s

Fig. 9. Simulation of the four-room case study with Euler-based synthesis method
(left) and with the synthesis method of [2] (right).

4 ODEs with Uncertainty

4.1 Bounded Uncertainty

Let us now consider the case where the mode j is governed by the uncertain
ODE:

ẋ(t) = fj(x(t), w(t)) with w(t) ∈ W

where W is a bounded set of diameter2 denoted by |W | (see, e.g., [3,5,11]).
Let us suppose that the uncertain ODE satisfies the assumption:

(HU,W ) For all j ∈ U , there exist λj ∈ R and γj ∈ R≥0 such that, for all x, x′ ∈ S, and all w, w′ ∈ W :

〈fj(x,w) − fj(x′, w′), x − x′〉 ≤ λj‖x − x′‖2 + γj‖x − x′‖‖w − w′‖.

Definition 2. Let δ0 be a positive real, and W a rectangular set of diameter
|W |. We define, for all j ∈ U and 0 ≤ t ≤ τ , the expression δj,W (t) as follows:

2 The diameter of a set is the maximal distance of two elements.



16 L. Fribourg

– if λj < 0,

δj,W (t) =

(
C2

j

−λ4
j

(
−λ2

j t
2 − 2λjt + 2eλjt − 2

)

+
1

λ2
j

(
Cjγj |W |

−λj

(
−λjt + eλjt − 1

)

+ λj

(
γ2

j (|W |/2)2

−λj
(eλjt − 1) + λj(δ

0)2eλjt

)))1/2

(5)

– if λj = 0,

δj,W (t) =
(
C2

j

(−t2 − 2t + 2et − 2
)

+
(
Cjγj |W | (−t + et − 1

)
+

(γ2
j (|W |/2)2(et − 1) + (δ0)2et)))1/2 (6)

– if λj > 0,

δj,W (t) =
1

(3λj)3/2

(
C2

j

λj

(
−9λ2

j t
2 − 6λjt + 2e3λjt − 2

)

+ 3λj

(
Cjγj |W |

λj

(
−3λjt + e3λjt − 1

)

+ 3λj

(
γ2

j (|W |/2)2

λj
(e3λjt − 1) + 3λj(δ

0)2e3λjt

)))1/2

(7)

Under assumption (HU,W ) instead of (HU ), one can naturally extend Theo-
rem 1 and Corollary 1 to take the uncertainty set W into account, using δj,W (·)
in place of δj(·). These extended results are useful to control systems with uncer-
tainty, for example when the coefficients in the vector field definitions are known
with a limited precision. Such extended forms of Theorem1 and Corollary 1 can
also be applied to control interconnected subsystems, each component regarding
the input from the other one as a form of bounded uncertainty (see Sect. 4.2).

4.2 Application to Distributed Control Synthesis

We now consider the distributed (or “compositional”) approach which consists
in splitting the original system into two sub-systems, in order to synthesize
a controller σi (i = 1, 2) for each sub-system independently, then apply the
control σ = (σ1|σ2) (by concurrent application of σ1 and σ2) to the global
system. The interest of the approach is to break the exponential complexity of
the original method w.r.t. the dimension of the system and the number of modes
(see Sect. 2.2). We consider an ODE of the form ẋ = fj(x) with x ∈ R

n, j ∈ U ,
which is of the form

ẋ1 = f1
j1(x1, x2) (8)

ẋ2 = f2
j2(x1, x2) (9)

where the state x is of the form (x1, x2) with x1 ∈ R
n1 , x2 ∈ R

n2 , n1 + n2 = n,
the mode j is of the form (j1, j2), with j1 ∈ U1, j2 ∈ U2, U = U1 × U2. Given
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an initial condition of the form
(

x0
1

x0
2

)

, and a mode j = (j1, j2) ∈ U = U1 × U2,

the solution of the ODE is now denoted by φ(j1,j2)(t;x
0), for all t ∈ [0, τ ]. The

system (8, 9) can be seen as the interconnection of a 1st sub-system (8) where
x2 plays the role of an “input” given by (9), with a 2nd sub-system (9) where
x1 is an “input” given by (8).

Accordingly, the sets R, S and T are seen under their compositional form
R = R1 × R2, S = S1 × S2, T = T1 × T2. We will denote by xm

1 (resp. xm
2 ) an

arbitrary point of R1 (resp. R2), typically its central point. We denote by L1
j1

the Lipschitz constant for sub-system 1 under mode j1:

‖f1
j1(x1, x2) − f1

j1(y1, y2)‖ ≤ L1
j1

∥
∥
∥
∥

(
x1

x2

)

−
(

y1
y2

)∥
∥
∥
∥

We introduce also the constant:

C1
j1 = sup

x1∈S1

L1
j1‖f1

j1(x1, x
m
2 )‖

Similarly, we define the constants for sub-system 2:

‖f2
j2(x1, x2) − f2

j2(y1, y2)‖ ≤ L2
j2

∥
∥
∥
∥

(
x1

x2

)

−
(

y1
y2

)∥
∥
∥
∥

and
C2

j2 = sup
x2∈S2

L2
j2‖f2

j2(x
m
1 , x2)‖

In the following, we assume that, for all j1 ∈ U1, there exist a real λj1 and a non-
negative real γj1 which make the 1st sub-system satisfy assumption (HU1,W2)
for some overapproximation W2 of T2. Symmetrically, we assume that, for all
j2 ∈ U2, there exist a real λj2 and a non-negative real γj2 which make the 2nd
sub-system satisfy (HU2,W1) for some overapproximation W1 of T1.

Given two modes j1 ∈ U1, j2 ∈ U2, and two initial conditions x̃0
1, x̃

0
2, we define

the “decompositional” Euler approximate solutions φ̃1
j1

and φ̃2
j2

, for t ∈ [0, τ ], as
follows:

φ̃1
j1(t; x̃

0
1) = x̃0

1 + tf1
j1(x̃

0
1, x

m
2 ) (10)

φ̃2
j2(t; x̃

0
2) = x̃0

2 + tf2
j2(x

m
1 , x̃0

2) (11)

We can now give the distributed version of Theorem 1.

Theorem 3. Given a distributed sampled switched system satisfying, suppose
that the 1st and 2nd sub-systems satisfy, for all j1 ∈ U1 and j2 ∈ U2, the
assumptions (HU1,W2) and (HU2,W1) respectively. Consider a point x̃0

1 and a
positive real δ0. We have, for all x0

1 ∈ B(x̃0
1, δ

0), t ∈ [0, τ ], j1 ∈ U1:

φ(j1,j2)(t;x
0)|1 ∈ B(φ̃1

j1(t, x̃
0
1), δj1,W2(t)) ∀j2 ∈ U2,∀x0

2 ∈ S2, x
0 =

(
x0
1

x0
2

)

.
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Table 2. Numerical results for centralized four-room example.

Centralized

R [20, 22]4

S [19, 23]4

τ 30

Time subsampling τ/20

Complete control Yes

Error parameters max
j=1,...,16

λj = −6.30 × 10−3 max
j=1,...,16

Cj = 4.18 × 10−6

Number of balls/tiles 256

Pattern length 2

CPU time 48 s

Likewise, we have, for all x0
2 ∈ B(x̃0

2, δ
0), t ∈ [0, τ ], j2 ∈ U2:

φ(j1,j2)(t;x
0)|2 ∈ B(φ̃2

j2(t, x̃
0
2), δj2,W1(t)) ∀j1 ∈ U1,∀x0

1 ∈ S1, x
0 =

(
x0
1

x0
2

)

.

The proof of this theorem is in [13]. We can now state the distributed version
of Corollary 2.

Corollary 3. Given a positive real δ0, consider two sets of points x̃1
1, . . . , x̃

1
m1

and x̃2
1, . . . , x̃

2
m2

such that all the balls B(x̃1
i1

, δ0) and B(x̃2
i2

, δ0), for 1 ≤ i1 ≤ m1

and 1 ≤ i2 ≤ m2, cover R1 and R2. Suppose that there exist patterns π1
i1

of length
ki1 for the 1st sub-system such that:

1. B((x̃1
i1

)k′
π1
i1

, δk′
π1
i1

) ⊆ S1, for all k′ = 1, . . . , ki1 − 1;

2. B((x̃1
i1

)ki1
π1
i1

, δ
ki1
π1
i1

) ⊆ R1;

3.
d2(δ′

j1
(t))

dt2 > 0 with j1 = π1
i1

(k′) and (δ′)0 = δk′−1
π1
i1

, for all k′ ∈ {1, ..., ki1} and

t ∈ [0, τ ].

and symmetrically for the 2nd sub-system. These properties induce a control σ1

for the 1st sub-system, and σ2 for the 2nd sub-system such that the composed
control σ = (σ1|σ2) ensures recurrence in R and safety in S, i.e.:

– if x0 ∈ R, then φσ(t;x0) ∈ S for all t ≥ 0;
– if x0 ∈ R, then φσ(ki1τ ;x0)|1 ∈ R1 for some i1 ∈ {1, . . . , m1}, and symmet-

rically φσ(ki2τ ;x0)|2 ∈ R2 for some i2 ∈ {1, . . . , m2}.

Example 3. We demonstrate the interest of the distributed approach by compar-
ing it with respect to the (centralized) approach performed in Example 2. The
main difficulty of this example is the large number of modes in the switching
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Table 3. Numerical results for the distributed four-room example.

Sub-system 1 Sub-system 2

R [20, 22]2 × [20, 22]2

S [19, 23]2 × [19, 23]2

τ 30

Time subsampling No τ/10

Complete control Yes Yes

Error parameters max
j1=1,...,4

λ1
j1 = −1.39 × 10−3

max
j1=1,...,4

γ1
j1 = 1.79 × 10−4

max
j1=1,...,4

C1
j1 = 4.15 × 10−4

max
j2=1,...,4

λ2
j2 = −1.42 × 10−3

max
j2=1,...,4

γ2
j2 = 2.47 × 10−4

max
j2=1,...,4

C2
j2 = 5.75 × 10−4

Number of balls/tiles 16 16

Pattern length 2 2

CPU time <1 s <1 s

Fig. 10. Simulation of the centralized (left) and distributed (right) Euler-based con-
trollers from the initial condition (22, 22, 22, 22).

system, which induces a combinatorial issue. The centralized controller in Exam-
ple 2 was obtained with 256 balls in 48 s, the distributed controller was obtained
with 16 + 16 balls in less than a second. In both cases, patterns of length 2 are
used. A sub-sampling of h = τ/20 is required to obtain a controller with the cen-
tralized approach (see Table 2). For the distributed approach, no sub-sampling is
required for the first sub-system, while the second one requires a sub-sampling of
h = τ/10 (see Table 3). Simulations of the centralized and distributed controllers
are given in Fig. 10, where the control objective is to stabilize the temperature
in [20, 22]4 while never going out of [19, 23]4.
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5 Final Remarks

We have presented a simple method of control synthesis for switched systems
using a new scheme of guaranteed integration based on Euler’s method. Prelimi-
nary experiments show that, on some examples, the method avoids the wrapping
effect occurring with interval-based integration methods. On-going work is done
for adapting this Euler-based method to the treatment of stochastic differential
equations.

Acknowledgement. The results presented in this paper have been obtained through
collaborations with Adrien Le Coënt, Florian De Vuyst, Ludovic Chamoin, Julien
Alexandre dit Sandretto and Alexandre Chapoutot. I have also benefited from numer-
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Abstract. We introduce a new formalism called automata over a timed
domain which provides an adequate framework for the determinization of
timed systems. In this formalism, determinization w.r.t. timed language
is always possible at the cost of changing the timed domain. We give a
condition for determinizability of automata over a timed domain without
changing the timed domain, which allows us to recover several known
determinizable classes of timed systems, such as strongly-non-zeno timed
automata, integer-reset timed automata, perturbed timed automata, etc.
Moreover in the case of timed automata this condition encompasses most
determinizability conditions from the literature.

1 Introduction

Timed automata. Timed automata [AD94] extend finite-state automata with
real-valued variables, called clocks, that can be used to constrain delays between
transitions along executions of an automaton. This is performed by decorating
transitions with timing constraints and clock resets: timing constraints compare
some of the clocks to integer values; a transition is then available only at times
when the timing constraint is satisfied; clock resets set some of the clocks back
to value zero.

Figure 1 is a simple example representing the (simplified) behaviour of a com-
puter mouse. Timed automata are very convenient to model real-time reactive
systems: they enjoy polynomial-space analysis algorithms (with efficient imple-
mentations) for reachability (and many related verification problems), which is
quite low in view of their expressiveness and handiness.

Determinization of timed automata. However, the situation is a bit less appeal-
ing in terms of the language-theoretic questions, where timed automata do not
enjoy most of the nice properties of finite-state automata: they cannot be com-
plemented nor determinized, and language inclusion and universality are unde-
cidable [AD94]. As an example, the timed automaton of Fig. 2 does not admit
a deterministic equivalent timed automaton: indeed, any deterministic1 timed

This work was supported by ERC project EQualIS (308087).
1 Deterministic for a timed automaton means that any two transitions out of the same
state and carrying the same letter should have disjoint timing constraints.

c© Springer International Publishing AG 2017
A. Abate and G. Geeraerts (Eds.): FORMATS 2017, LNCS 10419, pp. 25–41, 2017.
DOI: 10.1007/978-3-319-65765-3 2
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press? press?

click!

double click!
x=300

x:=0 x<300

x=300

Fig. 1. Modelling a computer mouse

a a; x < 1

a

x := 0

a

x = 1

Fig. 2. A non-determinizable
timed automaton

automaton accepting the same language would have to guess which occurrence
of the letter a will have a matching a one time unit later. It can be proved
that no finite timed automaton can achieve this. It has even been shown that
determinizability of a timed automaton is undecidable [Tri06,Fin06].

Two research directions have emerged from this situation. First, several sub-
classes of timed automata have been shown to allow determinization:

– Event-clock automata [AFH94] are automata in which each letter σ of the
alphabet is associated with two clocks xσ and yσ: the former clock keeps track
of the time elapsed since the last occurrence of σ in the execution, while the
latter stores the time until the next occurrence of σ (if any). The class of event-
clock automata has been proven to be closed under determinization [AFH94].
This result heavily relies on the fact that event-clock automata are input-
determined [DT04], i.e., the values of the clocks (hence also the satisfaction
of the guards) all along any execution of the automaton only depend on the
input word; they do not depend on the execution itself.

– The class of timed automata with 0 as the only constant has been proven
determinizable in [OW04], by determinizing its region automaton (and aug-
menting the resulting DFA with one clock to detect time elapses);

– Integer-reset timed automata [VPKM08] are timed automata in which clock
resets may only occur at integer times (by constraining resetting transitions
with x = c for some clock x and integer c). The class of integer-reset timed
automata is closed under determinization [VPKM08], by determinizing an
enriched version of the region automaton and augmenting it with one clock.

– A common phenomenon in timed automata is that of time convergence:
for instance, Zeno runs are infinite executions of timed automata along
which the sum of the delays remains bounded. Strongly-non-Zeno timed
automata [AMPS98] are timed automata in which any two entries in the
same location are at least one time unit apart. It is proved in [BBBB09] that
the class of strongly-non-Zeno timed automata is determinizable.

– Perturbed timed automata [ALM05] are timed automata whose semantics is
perturbed by clock drifts, making clocks have different rates in [1 − ε, 1 + ε]
for some 0 < ε < 1. It is proved in [ALM05] that the ε-perturbed language
of a timed automaton can be captured as the (non-perturbed) language of
a deterministic timed automaton. This result is different in nature from the
previous one, as it is not a closure property.



On the Determinization of Timed Systems 27

A second direction has focused on developing incomplete or approximation
techniques for determinization. Several approaches have been proposed:

– In [BBBB09], the input timed automaton is unfolded into a tree with unbound-
edly many clocks; under some conditions, this tree may be refolded into a
finite deterministic timed automaton. This technique can be used to (re)prove
several of the results listed above (event-clock automata, integer-reset timed
automata, strongly-non-Zeno timed automata).

– Approximating techniques have also been developed: in [KT09], an algorithm
is developed to compute a deterministic timed automaton, using a limited
number of clocks, that over-approximates the language of the original timed
automaton, by trying to keep track (as much as possible) of the states the
input automaton can be in at each step.

– Finally, a game-based approach has been developed in [BSJK15]: it turns an
automaton A into a two-player turn-based game, where winning strategies of
the first player (with safety objective) can be turned into deterministic timed
automata accepting the same language as A. If the strategy is not winning,
the resulting automaton would only over-approximate the language of A.

Our contributions. In this paper, we consider a novel approach, based on a very
expressive formalism for representing timed automata (and much more). Our
formalism is based on timed domains, which are a versatile tool for representing
the dynamics of continuous variables. Timed domains are equipped with update
functions, corresponding to (but extending) clock resets of timed automata. Then
automata over timed domains are automata built on these formalisms.

We propose various notions of determinism, and we discuss determinization
procedures for some of them. We also discuss finite representation of those deter-
minized automata. This new approach to the determinization of automata over
timed domains allows to recover several existing results.

Related works. Besides the works already listed above, our approach was inspired
by the approach of [BL12], even if the latter is not directly linked to determiniza-
tion. To tackle the problem of minimization, the authors introduce a super-class
of timed automata called constrained timed register automata, which is decidable
and closed under minimization.

An extended version of this work will be available under the same title as an
arXiv paper.

2 Definitions

2.1 Timed Domains

Timed domains are our formalism for representing the evolution of continuous
variables: a timed domain is made of values (e.g. vectors of nonnegative reals,
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which would correspond to clock valuations in timed automata) and a function
encoding the evolution of those values when time elapses.

Definition 1. A timed domain is a triple D = 〈V, ↪−→〉 where V is a set of val-
ues, and ↪→:V×R≥0 → V is the time transition function, satisfying the condition
↪→(v, d + d′) = ↪→(↪→(v, d), d′) for all v ∈ V and all d, d′ ∈ R≥0.

In the sequel, we may write v
d

↪−→ v′ for ↪→(v, d) = v′.

Product and Subset Domains. Given two timed domains D = 〈V, ↪→V〉 and
D′ = 〈V ′, ↪→V′〉, we define their product D × D′ = 〈V×, ↪→×〉 where V× = (V ∪
{⊥})×(V ′ ∪{⊥}) and ↪→×((v, v′), d) = (↪→V(v, d), ↪→V′(v′, d)) with ↪→V(⊥, d) =
↪→V′(⊥, d) = ⊥. For n ∈ N>0, the timed domain Dn is defined inductively
as D1 = D and Dn+1 = D × Dn. Taking the product of timed domains can
be viewed as considering multiple resources evolving synchronously. We add a
special symbol ⊥ to specify that a resource may be inactive; in that case, it does
not evolve over time.

For a timed domain D = 〈V, ↪→〉, we also define its powerset P(D) as the
timed domain 〈VP , ↪−→P〉 with VP = P(V) and ↪−→P extends ↪−→ to sets in the
natural way.

Lemma 2. Given timed domains D and D′, and for any positive integer n,
D × D′, Dn and P(D) are timed domains.

Example 1. Fix M ∈ N. The M -bounded one-dimensional clock domain DM =
〈CM , ↪→CM

〉 is defined by CM = [0;M ] ∪ {+∞} equipped with the time tran-
sition function ↪→CM

satisfying the requirements of the definition above, and
such that ↪→CM

(v, d) = v + d if v + d ≤ M and ↪→(v, d) = ∞ if v + d > M .
The M -bounded n-dimensional clock domain is defined as the product Dn

M ,
which we write DMn = 〈CMn , ↪→CMn 〉. A value in the timed domain Dn

M cor-
responds to a clock valuation in timed automata [AD94]. Contrary to what is
usually done, we explicitely replace every value larger than M with +∞. As an
example, (0.3, 1.6,⊥) ∈ C3

2 represents a clock valuation over three clocks, and

(0.3, 1.6,⊥)
1.1

↪−−→C3
2

(1.4,+∞,⊥) represents a time-elapsing transition of 1.1 time
units.

Example 2. Fix a continuous function f ∈ C∞(R≥0,R
n × R

m) describing the
evolution of two continuous variables x and y over time. We can define the timed
domain Df = 〈R≥0 × R

n × R
m, ↪→Df

〉 where ↪→Df
satisfies the requirements of

the definition above and such that ↪→Df
((t, x, y), d) = (t + d, f(t + d)). Such a

timed domain would allow to define dynamical systems.

Many more examples of timed domains could be given, which would define rather
complex systems evolving over time. For instance, we show in Sect. 4.3 how timed
domains can be defined to represent perturbed clocks.



On the Determinization of Timed Systems 29

2.2 Updates

In this section, we introduce operations to be performed on values when taking
transitions; it includes clock resets of timed automata, but is much more general.
For v ∈ V, we write vV :V → V for the constant function mapping all elements
of V to v.

Definition 3. Let D = 〈V, ↪−→〉 be a timed domain, and Σ be a finite alphabet.
An update set for D and Σ is a set Λ ⊆ Σ × VV .

Given an update set Λ and a letter σ ∈ Σ, we write Λσ for the set {w ∈ VV |
(σ,w) ∈ Λ}. An element of Λσ is called a σ-update, or simply update.

Product Update Sets, Subset Update Sets. Take a timed domain D
equipped with an update set Λ over Σ. We equip Dn with its canonical
update set, denoted Λn, and defined as follows:

Λn =
{

(σ, (wi ◦ πn
ki

)1≤i≤n)
∣∣∣

σ ∈ Σ and ∀1 ≤ i ≤ n. wi ∈ Λσ ∪ {⊥V} and 1 ≤ ki ≤ n
}

where for 1 ≤ b ≤ a, the function πa
b is the projection (dj)1≤j≤a → db. Notice

that we add to Λσ a function ⊥V which allows to set a “resource” inactive.
Given an update set Λ over D = 〈V, ↪−→〉 and Σ, and given p ∈ N>0, we define

an update set Pp(Λ) over P(D)p and Σ as follows. Fix σ ∈ Σ and γ = (γi)1≤i≤p

with γi ⊆ V × Λσ for all 1 ≤ i ≤ p. Each relation γi defines the possi-
ble updates of Λσ we can apply to a value v ∈ V. To each γi we can asso-
ciate a function oσ,γi

:V → P(V) which aggregates all possible updated val-
ues of v following instructions in γi: oσ,γi

(v) = {w(v) | (v, w) ∈ γi}. We
extend oσ, γi on P(V) and obtain Oσ,γi

:P(V) → P(V) which aggregates this
time the possible updated values of all values in V (following instructions in
γi): Oσ,γi

(V ) =
⋃

v∈V oσ,γi
(v). Finally, Oσ,γ :P(V)p → P(V) aggregates the

possible updated values of V1, . . . , Vp, following respectively the instructions in
γ1, . . . , γp: Oσ,γ((Vi)1≤i≤p) =

⋃
1≤i≤p Oσ,γi

(Vi). In one line:

Oσ,γ : P(V)p → P(V)
(Vi)1≤i≤p →

⋃
1≤i≤p

{w(ν) | (ν, w) ∈ γi and ν ∈ Vi}

Then Pp(Λ) = is the set
{

(σ, (Oσ,γj )1≤j≤p)
∣∣∣ σ ∈ Σ and ∀1 ≤ j ≤ p, γj ⊆ P(V × Λσ)p

}
.

From the remarks above, the resulting sets are indeed update sets:

Lemma 4. If Λ and Λ′ are update sets for D and D′ over Σ, and if n ∈ N>0,
then Λ × Λ′ and Λn are a update sets respectively for D × D′ and Dn over Σ.
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Example 3. Given Σ a finite alphabet, the one-dimensional clock domain DM

defined in Example 1 can be equipped with the (canonical) update set ΛM =
Σ × {Id, 0}, where Id(v) = v (that is, it keeps the clock value unchanged), and
0 = 0CM (that is, it resets the clock to 0).

Then, Dn
M is equipped with operations of Λn

M (the product operations). Given
an input vector v = (vi)1≤i≤n ∈ Cn

M , an operation ω of Λn
M is characterized by

ι:{1, . . . , n} → {1, . . . , n} ∪ {0,⊥} such that for every v′ = (v′
i)1≤i≤n, v′ = ω(v)

if, and only, if:

v′
i =

⎧
⎨
⎩

0 if ι(i) = 0
⊥ if ι(i) = ⊥
vj if ι(i) = j

Seeing v as a clock valuation, the i-th clock is reset in the first case, it is made
inactive in the second case, and it takes the value of the j-th clock in the last
case (note that if j = i, then the clock value is unchanged). We write ωι for the
corresponding operation.

2.3 Automata over Timed Domains

Definition 5. Fix a timed domain D = 〈V, ↪−→〉 and an update set Λ for D
over Σ. An automaton on D and Λ is a tuple A = 〈Q, qinit, νinit, T, F 〉 where
Q is a finite set of states, qinit ∈ Q is an initial state, νinit is an initial value,
T ⊆ Q × V × Λ × Q is the transition function, and F ⊆ Q is the set of final
states.

Given an automaton A over D and Λ, we write SA for the set Q × V of
configurations of A. An automaton A induces a (possibly infinite) state transition
system S = 〈SA,→A〉 where →A= ( d−→A)d∈R≥0 � (

σ,w−−→A)(σ,w)∈Λ, defined as
follows:

(q, ν) → dA(q′, ν′) ⇔ q = q′ and ν
d

↪−→ ν′

(q, ν)
σ,w−−→A (q′, ν′) ⇔ (q, ν, (σ,w), q′) ∈ T and ν′ = w(ν).

Given a timed domain D and its update set Λ, and given n ∈ N>0, we write
An(D, Λ) for the set of all automata on Dn and Λn. Notice that An(D, Λ) =
A1(Dn, Λn). We let A(D, Λ) =

⋃
n∈N>0

An(D, Λ). Similarly, for n ∈ N, we let
PAn(D, Λ) =

⋃
p∈N

A(P(Dn)p,Pp(Λn)), and PA(D, Λ) =
⋃

n∈N
PAn(D, Λ).

Remark 1. This definition of an automaton is half-way between standard
automata and transition systems: there is no symbolic guards and symbolic
guarded transitions, but a “list” of transitions, specifying, for each state, and
for each value in the timed domain, what the next state should be, and how the
value should be updated. This general form of automaton will be useful to apply
a determinization procedure.
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q1 q2 q3

[0, 1] ∪ {∞}, a, {Id}

[0, 1] ∪ {∞}, a, {0}

[0, 1), a, {Id}

{1}, a, {Id}

Fig. 3. A finitely-representable timed automaton B

Example 4. An example of an automaton in A1(DM , ΛM ) over Σ = {a} is
A = 〈{q1, q2, q3}, q1, 0, T, {q3}〉 where T = {(q1, ν, (a, 0CM ), q2) | ν ∈ CM} ∪
{(q2, ν, (a, Id), q3) | ν ∈ CM ∩ Q}. It generates (for instance) the sequences

(q1, 0) d1−→A (q1, d1)
a,0CM

−−−−→ (q2, 0) d2−→A (q2, d2)
a,Id−−→ (q3, d2)

requiring that d2 is a rational number bounded by M .

2.4 Finite Representation of Automata over Timed Domains

With our definition, each transition (q, ν, (σ,w), q′) is only available from con-
figuration (q, ν). In general, the set of transitions is infinite. However, in order
to get a finite representation, we may group transitions together.

Let G ⊆ P(V); we call it a set of guards. A G-guarded update for σ ∈ Σ is
a pair (G,O) ∈ G × P(Λσ). A set {(Gi, Oi) | i ∈ I} (I being a finite or infinite
subset of N) of G-guarded updates for σ is (i) sound from q to q′ whenever
for every i ∈ I, for every ν ∈ Gi, for every w ∈ Oi, (q, ν, (σ,w), q′) ∈ T ; and
(ii) complete from q to q′ whenever for every (q, ν, (σ,w), q′) ∈ T , there exists
i ∈ I such that ν ∈ Gi and w ∈ Oi.

An automaton A = 〈Q, qinit, νinit, T, F 〉 is finitely representable using G when-
ever for every q and q′ in Q, for every σ ∈ Σ, there exists a finite set of G-guarded
updates for σ, which is sound and complete from q to q′. In that case, there is
a natural way to graphically represent the automaton, by depicting a transition
for every G-guarded update involved in the representation. We illustrate those
representations in the following example.

Example 5. We consider the automaton B ∈ A(D1, Λ1) (over the one-dimensional
clock domain) represented on Fig. 3, which as we explain corresponds to the timed

automaton of Fig. 2. The guarded transition q1
[0,1]∪{∞},a,{0}−−−−−−−−−−→ q2 represents all the

transitions (q1, ν, (a, 0), q2) of B, with ν ∈ [0, 1] ∪ {∞} = C1 \ {⊥}. This automa-
ton has a single clock variable, and the above transition resets the variable to 0,

whatever its original value. The guarded transition q2
{1},a,{Id}−−−−−−→ q3 checks that

the value of the variable is 1 prior to going to q3. Later we may write [0,∞) for
[0, 1] ∪ {∞} when considering the one-dimensional clock domain D1.
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Following this example, we remark that n-clocks timed automata with clock
constraints bounded by M [AD94] correspond to those automata in A(Cn

M , Λn
M ),

which can be finitely represented using guards of the form (I1, . . . , In) ∈ In
M ,

where IM is the set of intervals I whose bounds are nonnegative integral con-
stants bounded by M , or +∞. Strictly speaking, the current model allows trans-
fers of clocks (using the updates ωι ∈ Λn

M – see page 5), but we know that such
updates can be expressed in timed automata [BDFP04]. In the following, we call
timed automata those automata in the set:

⋃
M∈N

⋃
n∈N

{
A ∈ A(Cn

M , Λn
M )

∣∣∣∣∣
A can be finitely represented
using guards of the form (I1, . . . , In) ∈ In

M

}

2.5 Commands

We now introduce the notion of commands, which we use to define different kinds
of determinism.

Definition 6. Let D be a timed domain and Λ be an update set. Let A ∈
A(D, Λ). Let Γ be a set (called command alphabet). Let c ∈ Γ . The c-command
of A is a subset

c−�A⊆ SA×SA s.t., writing →+
A for the transitive closure of →A,

(q, ν)
c−�A (q′, ν′) =⇒ (q, ν) →+

A (q′, ν′)

A command for a class C of automata over a timed domain D is a set
κ = (

c−�)c∈Γ where
c−� maps each automaton A of C to a command

c−�A of A.

Notice that some transitions from the automaton may be lost, and correspond
to no command.

Fix a timed domain D and an update set Λ, a set C of automata over D
and Λ, a command κ = (

c−�)c∈Γ over C. Let A be an automaton in C.
A κ-trace from a configuration (q, ν) is a finite sequence τ = (qi, νi)0≤i≤n where
(q0, ν0) = (q, ν), and for which there exists a word C = (ci)1≤i≤n ∈ Γn such
that (qi, νi)

ci−� (qi+1, νi+1) for all 1 ≤ i ≤ n. Trace τ is then said to be generated
by C. Notice that a single word C ∈ Γn may generate several traces (even from
a single configuration), and that several words may generate the same trace. For
a word C ∈ Γn, we write T κ

A ((q, ν), C) for the set of traces from (q, ν) generated
by C.

Definition 7. An automaton A ∈ C is said κ-deterministic if, for any C ∈ Γ ∗,
the cardinality of T κ

A ((qinit, νinit), C) is at most 1.

A word C ∈ Γ ∗ reaches a configuration (q′, ν′) from (q, ν) w.r.t. κ if there
exists a trace τ = (qi, νi)0≤i≤n ∈ T κ

A (C) from (q, ν) with (qn, νn) = (q′, ν′). Then
(q′, ν′) is said κ-reachable from (q, ν); we write Sκ

A(q, ν) for the set of κ-reachable
configurations from (q, ν). For all the notations introduced above, we may omit
to mention (q, ν) when we mean (qinit, νinit).
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Finally, a word C ∈ Γn is accepted by A from (q, ν) if there is a trace τ ∈
T κ

A ((q, ν), C) whose last configuration is in F ×V. For a set of configurations S ⊆
SA, we write Lκ(A, S) for the set of words accepted by A from some (q, ν) ∈ S.
Finally, Lκ(A) corresponds to Lκ(A, {qinit, νinit}).

Proposition 8. An automaton A ∈ C is κ-deterministic if, and only if, for
any c ∈ Γ and any κ-reachable configuration (q, ν) of A, there is at most one
configuration (q′, ν′) such that (q, ν)

c−�A (q′, ν′).

2.6 Different Notions of Determinism

We consider two different types of commands, leading to two notions of accepted
language and two notions of determinism that we study in the sequel.

Full command. The full command corresponds to ΓF = R≥0 � Λ: in this setting,
a word contains full information about the operations that have been performed
on the values. More precisely, the full command of A over ΓF is the relation �F

A
defined as

(q, ν)
d−�F

A(q, ν′) ⇔ ν
d

↪−→ ν′ ∀d ∈ R≥0

(q, ν)
a,w
−−�F

A(q′, ν′) ⇔ (q, ν, (a,w), q′) ∈ T and ν′ = w(ν) ∀(a,w) ∈ Λ.

Then κF = (
c−�F)c∈ΓF

is the full command over A(D, Λ).
Being deterministic for the full command is not very demanding: it just

amounts to satisfying that if (q, ν, (a,w), q1) ∈ T and (q, ν, (a,w), q2) ∈ T , then
q1 = q2. Thus the operator (of the commands) has access to all the variables of
the system.

This is the kind of determinism that is used e.g. for event-clock timed
automata [AFH94]—we discuss this further in Sect. 4.2.

Timed command. The timed command corresponds to ΓT = R≥0 � Σ: this gives
rise to the classical setting of timed words, with �T

A defined as

(q, ν)
d−�T

A(q, ν′) ⇔ ν
d

↪−→ ν′ ∀d ∈ R≥0

(q, ν)
a−�T

A(q′, ν′) ⇔ (q, ν, (a,w), q′) ∈ T and ν′ = w(ν) ∀(a,w) ∈ Λ.

Then κT = (
c−�T)c∈ΓT

is the timed command over A(D, Λ).
This corresponds to the usual notion of determinism used for timed

automata [AD94]. In a sense, the operator (of the commands) has access to
the absolute time value (starting from value ν0 at time 0) and to the action to
be played.

Remark 2. We could define many other command sets, with the idea to finely
describe which resources of the system the operator can access. Interesting
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command alphabets include partial observation (either of the variables or of
the action alphabet of the system). For instance, following [DM02], consider a
plant P given by a timed automaton with controllable (Σc) and uncontrollable
(Σu) actions; an interesting command set would then be R≥0 ∪Σc: the operator
would then control delays and controllable actions, but could not control nor
observe uncontrollable actions. Exploring such commands is part of our future
work.

3 Determinization of ATD

3.1 Full-Command Determinization

In this section, we consider the full command κF, over the alphabet ΓF = R≥0∪Λ.

Theorem 9. Let D be a timed domain and Λ be an update set. For any A ∈
A1(D, Λ), there exists a κF-deterministic automaton Adet ∈ A1(D, Λ) such that
LκF

(A) = LκF
(Adet).

Proof (Sketch). The proof follows the classical determinization procedure by
powerset construction. We fix A = 〈Q, qinit, νinit, T, F 〉 ∈ A1(D, Λ), and construct
Adet = 〈P(Q), {qinit}, νinit, Tdet, Fdet〉 with Fdet = {P ∈ P(Q) | F ∩ P �= ∅} and

(P, ν, (a,w), P ′) ∈ Tdet iff P ′ = {q′ ∈ Q′ | ∃q ∈ P, (q, ν, (a,w), q′) ∈ T}.

This automaton is in A1(D, Λ). κF-determinism is straightforward from the def-
inition of Tdet and κF. Finally, it is easily proven that LκF

(A) = LκF
(Adet). �

Finite representation. If A can be finitely represented using guards in some set G,
then the automaton Adet constructed in the previous can be (straightforwardly)
finitely represented using boolean combinations of guards in G.

3.2 Timed-Command Determinization

We recall that ΓT = R≥0�Σ is the timed-command alphabet. Determinizing with
regards to that alphabet is the standard point-of-view used for timed systems.

3.2.1 General Determinization
We first formalize a kind of powerset construction for our general automata.
Note the change in the timed domain of the determinized automaton.

Theorem 10. Let D be a timed domain and Λ be an update set. For any A ∈
A1(D, Λ), there exists a κT-deterministic automaton Adet ∈ PA1(D, Λ) such that
LκT

(A) = LκT
(Adet).
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Proof. Write D = 〈V, ↪−→〉 and A = 〈Q, qinit, νinit, T, F 〉, and let Σ be the alphabet
used by Λ. Write Q = {q1, . . . , qp}, and assume w.l.o.g. that qinit = q1. For every
q ∈ Q, define ind(q) the index of q, that is, i such that q = qi.

We now construct a κT-deterministic automaton in A1(P(D)p,Pp(Λ)) ⊆
PA1(D, Λ) accepting the same κT-language as A. For every V = (Vi)1≤i≤p ∈
P(V)p, we define the set QV = {q ∈ Q | Vind(q) �= ∅}. Intuitively, each set Vi

represents the set of possible values at state qi, hence QV represents the set of
states the system can be in, when the possible values in each state is given by V.

Fix σ ∈ Σ. For every 1 ≤ i, j ≤ p, let γi→j
σ be the set {(ν, w) ∈ V ×

Λσ | (qi, ν, (σ,w), qj) ∈ T} and γ→j
σ = (γi→j

σ )1≤i≤p. We define the following
operation, which belongs to Pp(Λ) (see page 5):

Oσ,A = (Oσ,γ→1
σ

, . . . , Oσ,γ→p
σ

)

Somehow, γi→j
σ records how one can reach state qj from state qi with letter σ,

i.e. the set of possible values, together with the set of updated values; and the
operation Oσ,γ→j

σ
(V) aggregates all the possible ways to reach qj , if we start

from some (qi, ν) with ν ∈ Vi (with 1 ≤ i ≤ p).

Lemma 11. Let V = (Vi)1≤i≤p ∈ P(V)p, and V′ = (V ′
i )1≤i≤p = Oσ,A(V).

Then, for every q′ ∈ Q, for every ν′ ∈ V:

ν′ ∈ V ′
ind(q′) ⇐⇒ ∃(q, ν, (σ,w), q′) ∈ T s.t. ν ∈ Vind(q) and ν′ = w(ν)

We then let Adet = 〈P(Q), {qinit}, ({νinit}, ∅, . . . , ∅), Tdet, Fdet〉 where:

– Tdet is made of the transitions (QV,V, (σ,Oσ,A), Q′) where:
• V ∈ P(V)p

• Q′ = QV′ where V′ = Oσ,A(V)
– Fdet = {Q′ ⊆ Q | Q′ ∩ F �= ∅}.

Proposition 12. Adet is κT-deterministic and LκT
(A) = LκT

(Adet).

Proof (Sketch). The κT-determinism of Adet is obvious (by Proposition 8) since,
for every σ ∈ Σ, there is a unique operation associated with σ, namely Oσ,A. It
remains to show the equality of the two languages. We first define a correspon-
dence between vectors V and sets of configurations of A as follows:

φ:P(V)p → P(SA)
V → {(q, ν) | q ∈ QV and ν ∈ Vind(q)}

It is easy to see that this is a bijection. By induction, we can prove that for every
V ∈ P(V)p, LκT

(Adet, (QV,V)) = LκT
(A, φ(V)).
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Finite representation. We discuss now the finite representability of automa-
ton Adet constructed in the previous proof. We only consider the case of
timed automata here, and have a more general discussion in the correspond-
ing research report. The operations allowed in timed automata are ωι, where
ι:{1, . . . , n} → {1, . . . , n} ∪ {0,⊥} (see page 5). We assume that in A, there is
a guard Gq,q′,σ,ι defined with disjunctions and conjunctions (involving several
clocks) of intervals constraints such that (Gq,q′,σ,ι, ωι) is a guarded update from
q to q′ for σ.

The transitions between two states Q1 and Q2 of Adet labelled by σ can then
be written as:

– a constraint requiring that ∀qj ∈ Q2, ∃qi ∈ Q1, Vi ∩
(⋃

ι(j) �=⊥ Gqi,qj ,σ,ι

)
�= ∅;

– a constraint requiring that ∀qj /∈ Q2, ∀qi ∈ Q1, Vi ∩
(⋃

ι(j) �=⊥ Gqi,qj ,σ,ι

)
= ∅;

– for each qi ∈ Q1, for each qj ∈ Q2, for every ι, there are rules Vi

Gqi,qj ,σ,ι,ωι

−−−−−−−−→
V ′

j , representing a transfer of valuations from Vi (for those valuations of Vi

which belong to Gqi,qj ,σ,ι) to V ′
j , after update ωι.

Example 6. Consider again the automaton B depicted on Fig. 3. The κT-deter-
ministic automaton Bdet is depicted on Fig. 4, with the convention we have just
discussed. Given that there are three states in B and one clock, the timed domain
of Bdet is P(D1)3; hence there are three sets of clocks, one for each state of B.
We write V1 (resp. V2, V3) for the set of clocks corresponding to q1 (resp. q2, q3).
As explained before, the guarded updates are represented explicitly as follows:
we write Vi

G,O−−−→ Vj for “for each element ν ∈ Vi ∩ G, for each w ∈ O, add
w(ν) to Vj”. So, for instance, the transition between {q1, q2} and {q1, q2, q3} is

{q1} {q1, q2}

{q1, q2, q3}

a,

[
V1

[0,∞),{Id}→−−−−−−−−� V1

V1
[0,∞),{0}→−−−−−−−−� V2

]
∀ν ∈ V2, ν �= 1, a,

⎡
⎢⎢⎣

V1
[0,∞),{Id}→−−−−−−−−� V1

V1
[0,∞),{0}→−−−−−−−−� V2

V2
[0,∞)\{1},{Id}→−−−−−−−−� V2

⎤
⎥⎥⎦

∃ν ∈ V2, ν = 1, a,

⎡
⎢⎢⎢⎢⎣

V1
[0,∞),{Id}→−−−−−−−−� V1

V1
[0,∞),{0}→−−−−−−−−� V2

V2
[0,∞)\{1},{Id}→−−−−−−−−� V2

V2
{1},{Id} →−−−−−−−−� V3

⎤
⎥⎥⎥⎥⎦

∃ν ∈ V2, ν = 1, a,

⎡
⎢⎢⎢⎢⎣

V1
[0,∞),{Id}→−−−−−−−−� V1

V1
[0,∞),{0}→−−−−−−−−� V2

V2
[0,∞)\{1},{Id}→−−−−−−−−� V2

V2
{1},{Id} →−−−−−−−−� V3

⎤
⎥⎥⎥⎥⎦

∀ν ∈ V2, ν �= 1, a,

⎡
⎢⎢⎣

V1
[0,∞),{Id}→−−−−−−−−� V1

V1
[0,∞),{0}→−−−−−−−−� V2

V2
[0,∞)\{1},{Id}→−−−−−−−−� V2

⎤
⎥⎥⎦

Fig. 4. Determinization of B of Fig. 3
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guarded by the existence of some ν ∈ V2 such that ν = 1, and if this holds,
then we perform action a and take the transition while keeping all values in V1,
adding a 0 to V2, keeping all values but value 1 in V2, and initializing V3 with 1.

We realize that, while this is not really a timed automaton (since it involves
unboundedly many clocks), all these clocks can be partitioned, and can be manip-
ulated using first-order quantifications.

3.2.2 Strong Determinization
We now focus on the case where the previously constructed deterministic
automaton satisfies some nice boundedness property, which allows to flatten
it (that is, if the original automaton is in A(Dn, Λn), then so will be the deter-
minized automaton).

We fix A = 〈Q, qinit, νinit, T, F 〉 ∈ A1(Dn, Λn), and write p = |Q|. Borrowing
notations from the proof of Theorem10, every reachable state in Adet is charac-
terized by some V ∈ P(Vn)p. Furthermore, for such a vector V, we write Vi for
its i-th component (for every 1 ≤ i ≤ p), and we use this implicit convention for
all the vectors we manipulate; we also extend operations componentwise.

We say that Adet is m-weakly monotonic whenever there exists M ∈ N
p, with

m =
∑p

i=1 Mi, such that for every V ∈ P(Vn)p in Adet, there exists V′ ∈ P(Vn)p

such that (i) QV = QV′ , (ii) V′ ⊆ V, (iii) |V′| ≤ M (that is, |V ′
i | ≤ Mi for

every 1 ≤ i ≤ p) and (iv) LκT
(Adet,V′) = LκT

(Adet,V). The intuition behind
this condition is that V′ selects a bounded number of values out of V, which are
enough to pursue the computation correctly (reading and accepting only relevant
words). Condition (i) is for ensuring one should stay in the same discrete state
of the automaton for pursuing the computation; Condition (ii) ensures that one
can keep the same kinds of updates (we preserve the set of values on which we
can apply the updates); Condition (iii) bounds the size of the sets of selected
values; Finally, condition (iv) ensures the correctness of V′ w.r.t. V.

Theorem 13. Let D be a timed domain and Λ be an action domain. Let A ∈
An(D, Λ) = A1(Dn, Λn), and write Adet for the automaton constructed in the
proof of Theorem10. Assume furthermore that there exists m ∈ N such that
Adet is m-weakly monotonic. Then, there exists a κT-deterministic automaton
Asdet ∈ A1(Dnm, Λnm) such that LκT

(A) = LκT
(Asdet).

The idea is to represent each vector V such that |V| ≤ M by a single huge
vector ν ∈ (Vn)m such that the first M1 components of ν stores the elements
of V1, the next M2 components stores the elements of V2, etc. The element ⊥n is
used to fill the components of ν which are not used by some element of Vi (this
can happen when the cardinal of Vi is (strictly) smaller than Mi). Through this
correspondence, we transform the transitions of Adet into transitions over (Vn)m.
In particular, to compute an update for some σ ∈ Σ on ν, which corresponds
to some V, we apply Oσ,A on V, reduce it using the condition given m-weak
monotonicity, and reorder the resulting “small” vector of P(Vn)p into a vector
ν′ ∈ (Vn)m.
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Finite representation. It is not possible to obtain a finite representation for Asdet

in general, even if Adet can be finitely represented; indeed, the construction relies
on a choice of V′ ⊆ V, which is a priori arbitrary. This can however be used
when all reachable V are such that |V| ≤ M.

Actually, we can modify the m-weak monotonicity assumption of Theorem 13
into a more complex and abstract condition, so that the obtained deterministic
automaton has a finite representation as soon as Adet has a finite representation.

4 Applications

4.1 Applications to Plain Timed Automata

We have already explained how Theorem10 applies to timed automata, yielding
deterministic automata Adet in PA(DM , ΛM ). Theorem 13 can be used to get a
deterministic automaton in A(DM , ΛM ): our notion of m-weak monotonicity in
a sense corresponds to the clock-boundedness condition of [BBBB09].

Our approach is actually a bit stronger, as it can capture other classes of
determinizable timed automata, such as the class of finally-imprecise timed
automata: a location q is imprecise if any word accepted from some configura-
tion (q, ν) is also accepted from any other configuration (q, ν′) in the same region;
a timed automaton is then said finally-imprecise if after a fixed number m of
discrete steps, it only visits imprecise states. We can prove that finally-imprecise
timed automata do have an equivalent deterministic timed automata. This class
actually encompasses all timed automata with 0 as the only constant [OW04].

4.2 Applications to Event-Clock Automata

In order to capture event-clock automata [AFH94] in our formalism, we first
define the event-clock domain. We fix a maximal constant M , and let EM =
([0,M ] ∪ {+∞,⊥})2: the first component corresponds to an event-recording
clock, while the second is for event-predicting clocks. For d ∈ R≥0, we then

set (x, y)
d

↪−→EM
(x′, y′) whenever x

d
↪−→CM

x′, and y′ = y − d if y − d ≥ 0, and
y′ = +∞ otherwise (and y′ = ⊥ if, and only if, y = ⊥). Thus the first com-
ponent corresponds to the M -bounded one-dimensional clock domain defined at
Example 1 (with an additional symbol ⊥ when the clock is inactive). This defines
the M -bounded one-letter event-clock domain FM = 〈EM , ↪→EM

〉. Given an
alphabet Σ = {σi | 1 ≤ i ≤ n}�{init} (see below), the M -bounded Σ-event-clock
domain, denoted FΣ

M , is the timed domain Fn
M .

We now associate updates with this timed domain; for this we reuse the
projections πa

b we defined in Sect. 2.2: we define the action domain ΘM on EM

as {(σ, (w ◦π2
1 , w

′ ◦π2
2)) | σ ∈ Σ, w ∈ {Id, 0,⊥}, w′ ∈ {Id,⊥}∪{d | d ∈ R≥0}}.

Again, we extend this action domain to FΣ
M , denoting the resulting action domain

with ΘΣ
M .

We now define M -bounded Σ-event-clock automata. For this, we set Σ =
{σi | 1 ≤ i ≤ n} ∪ {init}, where init is a special symbol used only for initializing
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the automaton. An automaton A = 〈Q, qinit, νinit, T, F 〉 is in the class ECA(Σ,M)
of M -bounded Σ-event-clock automata if

– νinit = (⊥)1≤i≤2n, and (qinit, νinit) only initializes the computation, with tran-
sitions (qinit, νinit, (init, (⊥, di)1≤i≤n), q1) for each (di)1≤i≤n ∈ (R≥0 ∪ {⊥})n;

– for any transition (q, ν, (σi, w), q′) ∈ T with σ �= init and q �= qinit, variable yi

must have value 0 in ν, and operation w must set variable xi to 0, variable yi

to some value in [0,M ] ∪ {⊥}, and leave the other variables unchanged.
– finally, for any transition (q, ν, (σi, w), qf ) with qf ∈ F , we require that yj = ⊥

in ν for any j �= i, and that yi = 0.

An important feature of event-clock automata is that they are input-deter-
mined : in our setting, this can be expressed as an isomorphism between LκT

(A)
and LκF

(A): intuitively, the operations performed on the clocks can be derived
from observing the time of occurrence of the letters along words. Now, applying
Theorem 9 to an event-clock automaton A, we get a κF-deterministic automa-
ton Adet accepting the same κF-language as A, hence also the same language
(in the usual sense). Moreover, Adet is easily proved to lie in ECA(Σ,M).

Remark 3. The automaton Adet is not κT-deterministic, since from any configu-
ration, there are several transitions, each having a different “guess” for updating
the clock yi associated with the letter carried by the transition. This is also the
case of the determinization result of [AFH94].

If A only involves event-recording clocks, then so does Adet. Thus the resulting
automaton does not have to guess values for clocks yi, and it is κT-deterministic.

4.3 Application to Perturbed Timed Automata

The model of perturbed timed automata has been proposed in [ALM05], with the
idea that adding perturbations to the system can indeed help having interesting
properties like determinizability. The syntax of this model is a standard timed
automaton, but its semantics is parametrized by some ε ∈ (0, 1): in this model,
we consider that the slope of a clock can be perturbed by at most ε. It is shown
in [ALM05] that single-clock perturbed timed automata can be determinized
into standard timed automata. We can fit this model into our framework.

To track the possible slopes of a clock, we use two “variables”, one which
runs at speed 1 − ε, and the other at speed 1 + ε. If M ∈ N, the M -bounded
one-dimensional ε-perturbed clock domain is DM,ε = 〈CM,ε, ↪→CM,ε

〉 with:

– CM,ε = ([0,M(1 + ε)] ∪ {∞})2;

– (x−, x+)
d

↪−→CM,ε
(x− + d(1 − ε), x+ + d(1 + ε)) with conventions similar to the

clock domain for manipulating ∞.

The two values x− and x+ represent respectively the lowest and greatest value
that the perturbed clock x can take.

We equip this one-dimensional perturbed clock domain with a subset of the
canonical action domain on two clocks, where updates on x− and x+ are forced to
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be the same. It is then easy to define a set of guards IM,ε such that any one-clock
perturbed timed automata of [ALM05] can be represented by an automaton in
A1(DM,ε, ΛM,ε), which is finitely representable using guards in IM,ε.

We can show that a proof very similar to that of Theorem13 (or to its
modified version) can be used to determinize the automaton. The result is not a
timed automaton, but can be modified into a real timed automaton. This allows
to recover the determinizability result of [ALM05].

5 Conclusions and Future Work

In this work, we have proposed a general model of automata based on a timed
domain, and general notions of updates over that domain. We have discussed the
notion of determinism for this model, by defining the notion of commands and
discussing some possible sets of such commands. For two of these sets of com-
mands (the full command, and the timed command), we have designed a generic
procedure for determinizing the automata. While the full-command determiniza-
tion stays within the class of automata we start with, the timed-command
determinization involves a powerset construction, which increases the number of
“variables” the automaton can manipulate. We have exhibited conditions under
which this construction can be flattened into the original class of automata. We
have applied our approach mostly to timed-automata-like classes of systems,
and recovered many existing determinizability results. In particular, our app-
roach gives a good understanding of event-clock timed automata [AFH94], gives
a fresh view over the generic unfolding procedure for standard timed automaton
of [BBBB09], and allows to recover the determinizability result for single-clock
perturbed timed automata [ALM05].

As illustrated all along the paper, our framework encompasses timed
automata and can represent various kinds of dynamical systems, but also timed
systems with richer discrete structures. We can e.g. fit into our framework some
families of pushdown timed automata, by encoding in the timed domain the
“clock values” possibly stored in a stack. While it is not clear yet whether our
approach can yield new results for those systems, we believe it is worth investi-
gating.

Further, we believe that the notion of commands and the different kinds of
determinism it generates are interesting. As illustrated in Example 2, we believe
this approach could be worth investigating for monitoring or controller synthesis.

Finally, it is not completely clear to us how our approach for timed automata
compares to the game approach of [BSJK15], so this would be worth investigating
as well. Also, the fact that perturbations can be encoded in the timed domain
(recall Sect. 4.3) might also have some interest for robustness issues.
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Abstract. Networks of timed automata are a widely used formalism
to model timed systems. Models are often concise and convenient since
timed automata abstract from many details of actual implementations.
One such abstraction is that the semantics of networks of timed automata
introduces an implicit global scheduler which blocks edges which are
sending on a channel until a matching receiving edge is enabled. When
models are used a priori, that is, to develop, e.g., a communication proto-
col which is supposed to have a (non-shared memory) distributed imple-
mentation, a corresponding global scheduler is not desired.

To facilitate distributed implementations of timed automata models,
we introduce a new class of networks of timed automata whose behav-
iour does not depend on the blocking of sending edges. We show that the
membership problem for this new class of networks of timed automata
is decidable and evaluate our new decision procedure.

1 Introduction

Timed automata [2], in particular in the flavour of Uppaal [4], are widely used
as a modelling formalism for timed systems. There are efforts on a-posteriori
analysis of timed systems (like LUNAR as analysed in [14] or AODV in [5]), and
a-priori verification, for example, for the self monitoring and notification proto-
cols of a wireless fire alarm system (WFAS) [6]. In an a-posteriori analysis, the
timed system to be analysed already exists, or has a clear specification or even
an implementation, so certain aspects of the system can safely be abstracted
for effective analyses without compromising implementability. In the a-priori
setting, new communication protocols are developed using a model based app-
roach. Formal models of design ideas for communication protocols are created
and thoroughly analysed before the system as such is built, in particular before
any implementation activities. In this a-priori setting, the final implementation
of the communication protocol is desired to reflect the properties of the model.

In the case of the wireless fire alarm system (WFAS) mentioned above, a
distributed implementation is necessary: the final system consists of individ-
ual components such as sensors, so-called repeaters, and a central unit, which
exchange messages exclusively via wireless communication. The code for each
component is supposed to implement the protocol aspects modelled by a corre-
sponding component timed automaton in the model. In this motivating WFAS
c© Springer International Publishing AG 2017
A. Abate and G. Geeraerts (Eds.): FORMATS 2017, LNCS 10419, pp. 42–57, 2017.
DOI: 10.1007/978-3-319-65765-3 3
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l1l0 a!
‖

l4l3l2 a?

(a) Blocking send.

l1l0

x > 1

a!
‖

l4l3l2

y <= 1

a?

(b) Non-blocking send.

Fig. 1. Networks of timed automata (double outline indicates initial location).

example, the components only share a common, synchronised notion of time
and can exchange information only via messages. We call exactly these kinds
of non-shared memory systems distributed, in contrast to partially distributed
programs consisting of multiple processes running, e.g., on the same host or on
different cores of a multi-core CPU. Timed automata models of timed systems
do not necessarily have a distributed implementation due to the fact that the for-
mal semantics of timed automata introduces an implicit, global scheduler. This
implicit global scheduler resolves non-determinism, and, more crucially, blocks
sending edges if there is no matching receiving edge available. Conversely, tran-
sitions sending on broadcast channels are never blocked. Similarly, transitions
from non-committed locations are blocked if at least one committed location is
assumed in the current global configuration.

For example, in the network of timed automata shown in Fig. 1a, the timed
automaton on the left is in principle ready to send in location �0 right from the
initial configuration but the synchronisation is effectively blocked until the timed
automaton on the right reaches location �3. By the semantics of timed automata,
sending edges are only taken if a corresponding receiving edge is enabled. In order
to determine a schedule, the implicit global scheduler needs information from the
processes participating in (or affecting a) synchronisation, e.g., which location
is assumed and which edges are enabled according to the guards which may
depend on local and global variables. The information whether an edge of another
component is enabled is in general not available in an architecture which only
provides synchronised time and message exchange as the WFAS. Ensuring that
all receiving edges are enabled at each point in time is often not a realistic option
under energy considerations. For example, in the WFAS, being ready to receive
consumes about as much energy as sending so the required battery lifetimes
would not be realisable (cf. [6]). The amount of information exchanged using
messages is similarly limited due to energy concerns, so extensive information
exchange about enabled edges is not feasible either.

In the network of timed automata shown in Fig. 1b in contrast, the sending
edge is never blocked by the absence of a corresponding receiving edge, since
the timing constraints ensure that the receiver is enabled whenever the sending
edge is enabled in the timed automaton on the left hand side. So there is strictly
speaking no need for the implicit global scheduler in this case since the two timed
automata in the network work according to a common time scheme. Thus, a
distributed implementation exists.

In this work, we investigate a class of networks of timed automata where the
behaviour does not depend on a global scheduler. More formally, a network of
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timed automata does not depend on a global scheduler if its behaviour under a
new non-blocking semantics is equal to the behaviour in the classical semantics.
In this regard, our work is similar to [15] who also study a different seman-
tics, called ASAP. We show that the problem whether a given network of timed
automata does not depend on a global scheduler is decidable. We give a deci-
sion procedure for this problem which reduces the problem to classical timed
automata model-checking using an efficient syntactical transformation, thus a
strictly easier procedure than required for ASAP.

We see our work as a contribution towards the automatic generation of dis-
tributed code for timed automata models of timed systems, which will be avail-
able for models which do not depend on a global scheduler. Automatic code
generation promises to avoid human errors during manual implementations and
to be cost and time efficient, so there is a need to automatically derive (at least
parts of) an implementation from an existing Uppaal model. Generating code
from Uppaal models has been approached before [1,3,7,8,13]. These works have
in common that they also generate code for a scheduler (as an additional, explicit
component) which corresponds to the implicit, global scheduler introduced by
the timed automata semantics. So they are not immediately applicable if a dis-
tributed implementation is required.

This paper is structured as follows. We introduce necessary preliminaries in
Chap. 2 and the concept of non-blocking semantics in Chap. 3. We present our
decision procedure for global scheduling independency in Chap. 4, and finalise
with an experimental evaluation (Chap. 5) and conclusions (Chap. 6).

2 Preliminaries

In this section, we recall the necessary preliminaries for self-containedness. The
presentation of extended timed automata (as used by Uppaal) follows [12] with
the addition of broadcast channels. Readers familiar with the theory of timed
automata may still consider our definition of the operational semantics where
we introduce some non-standard notations which will be used throughout the
subsequent chapters.

An (extended) timed automaton A = (L,C,A,B,X, V, I, E, �ini ) consists of
a finite set L of locations with a subset C ⊆ L of committed locations, a set A
of channels with a subset B ⊆ A of broadcast channels, disjoint sets X and V of
clocks and data variables, a location invariant function I, a finite set of directed
edges E, and an initial location �ini ∈ L. The location invariant function I assigns
to each location � ∈ L an expression I(�) ∈ Φ(X,V ), where Φ(X,V ) denotes a
set of boolean expressions over X and V . The boolean terms containing clocks
in X are clock constraints, i.e., comparisons of a clock variable with an integer.

An element (�, α, ϕ,�r, �′) ∈ E describes an edge from location � to �′ with
action α ∈ A!? := {a!, a? | a ∈ A} ∪̇ {τ}, guard ϕ, and a finite sequence of
reset operations �r ∈ R(X,V )∗, where R(X,V ) denotes a set of reset operations
(updates of the valuations of clock and variables that occur during a transition,
e.g., x := 0, where clock x is reset to the value 0) on X and V . We write L(A)
etc. to denote the set of locations L of timed automaton A.



On Global Scheduling Independency in Networks of Timed Automata 45

A network (of timed automata) is a finite set N = {A1, . . . ,An} of compatible
timed automata, i.e., if a channel α is a broadcast channel of some A ∈ N then
α /∈ A(Ai)\B(Ai) for all i ∈ {1, . . . , n}, if x ∈ X(A) then x /∈ V (Ai) for all
i ∈ {1, . . . , n}, and if v ∈ V (A) then v /∈ X(Ai) for all i ∈ {1, . . . , n}.

Let X be a set of clocks and V a disjoint set of variables. A valuation of
X and V is a function ν : X ∪ V → IR+

0 ∪ D such that ν(x) ∈ IR+
0 for all

x ∈ X, and ν(v) ∈ D for all v ∈ V , where D ⊇ {0, 1, 2} 1 is a non-empty, finite
subset of the integers. Valuations are canonically lifted to integer and boolean
expressions. We write ν |= ϕ if and only if boolean expression ϕ ∈ Φ(X,V )
evaluates to true under ν, and ν �|= ϕ otherwise. For a valuation ν and t ∈ IR+

0 ,
we use ν + t to denote the valuation with (ν + t)(x) = ν(x) + t for all x ∈ X
and (ν + t)(v) = ν(v) for all v ∈ V (time shift). We use ν[r] to denote the
valuation which is the effect of the reset operation r ∈ R(X,V ) on ν and set
ν[r1, . . . , rn] := ((ν[r1])[r2] . . . )[rn].

The operational semantics of network N = {A1, . . . ,An} is defined by the
(labelled) transition system (Conf (N ), IR+

0 ∪ {τ}, { λ−→| λ ∈ IR+
0 ∪ 2A∪B},Cini)

with A =
⋃n

i=1 A(Ai) and B =
⋃n

i=1 B(Ai). It consists of a set of configurations

Conf (N ) = {〈��, ν〉 | �� ∈ L(A1) × · · · × L(An), ν : X ∪ V → IR+
0 ∪ D, ν |= I(��)}

where X =
⋃n

i=1 X(Ai), V =
⋃n

i=1 V (Ai), and I(�1, . . . , �n) =
∧n

i=1 I(Ai)(�i), a
set of initial configurations Cini = Conf (N ) ∩ {〈(�ini(A1), . . . , �ini(An)), νini〉}
where νini = {x �→ 0, v �→ 0 | x ∈ X, v ∈ V } (Cini is empty if the conjunction of
the invariants of the initial locations of the timed automaton in the network is
not satisfied by νini), and the transition relations defined below.

For convenience, we introduce a set of helper notations for the definition of
the transition relations. Given a timed automaton A from N , we use E(A)|τ
to denote the set {(�, α, ϕ,�r, �′) ∈ E(A) | α = τ} of non-sychronising edges,
and similarly E(A)|a! and E(A)|a? for any channel a ∈ A. Let e0, e1, . . . , em,
m ≥ 0, be edges of different automata Aki

in N , i ∈ {0, . . . , m}, with guards
ϕi, reset operations �ri, and destination locations �′

i, i ∈ {0, . . . ,m}. Let 〈��, ν〉 ∈
Conf (N ) be a configuration of network N . We write 〈��, ν〉[e0; e1, . . . , em] to
denote the effect of sending (or τ) edge e0 with receiving edges e1, . . . , em (in
general, the order matters), i.e. 〈��′, ν′〉 with ��′ = ��[�0 := �′

0] . . . [�m := �′
m] and

ν′ = ν[�r0] . . . [�rm]. In case m = 0, we may just write 〈��, ν〉[e0]. In our non-blocking
semantics, we will extend this notation to a sequence of sending edges before the
semicolon.

For e0 ∈ E(Ak0)|a! and ei ∈ E(Aki
)|a?, i ∈ {1, . . . , m}, (or e0 ∈ E(A)|τ

for some A ∈ N and m = 0) we say that e0, . . . , em are enabled in 〈��, ν〉,
denoted by 〈��, ν〉  e0; e1, . . . , em (or 〈��, ν〉  e0), if and only if ν |=

∧m
j=0 ϕj and

〈��′, ν′〉 = 〈��, ν〉[e0; e1, . . . , em] is an element of Conf (N ) (that is, after applying

1 We need at least the values 0, 1, 2 (and the standard interpretation of increment
and decrement) in our transformation presented in Sect. 4.
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the reset operations of the considered edges, the invariants of the destination
locations are satisfied by ν′).

Using our helper notations, the transition relations are defined as follows:

– (delay transition) 〈��, ν〉 t−→ 〈��, ν + t〉, t ∈ IR+
0 , if and only if ν + t′ |= I(��) holds

for all t′ ∈ [0, t] and �i /∈ C(Ai) for all i ∈ {1, . . . , n} (that is, there is no delay
transition if at least one timed automaton is in a committed location).

– (local action transition) 〈��, ν〉 τ−→ 〈��′, ν′〉, if and only if for some A ∈ N , there
is an edge e ∈ E(A)|τ such that 〈��, ν〉  e and 〈��′, ν′〉 = 〈��, ν〉[e].

– (rendezvous transition) 〈��, ν〉 a−→ 〈��′, ν′〉, if and only if there are edges e0 ∈
E(Ak0)|a! and e1 ∈ E(Ak1)|a? of two different automata Ak0 and Ak1 in N
such that a ∈ A(Ak0)\B(Ak0) (that is, a is not a broadcast channel), and
〈��, ν〉  e0; e1 and 〈��′, ν′〉 = 〈��, ν〉[e0; e1].

– (broadcast transition) 〈��, ν〉 a−→ 〈��′, ν′〉, if and only if there are edges e0 ∈
E(Ak0)|a! and ei ∈ E(Aki

)|a?, i ∈ {1, . . . , m}, with k0, . . . , km pairwise dif-
ferent and m maximal, such that a ∈ B(Ai), and 〈��, ν〉  e0; e1, . . . , em and
〈��′, ν′〉 = 〈��, ν〉[e0; e1, . . . , em]. 2

– Local action, rendezvous and broadcast transitions are further constrained by
the condition that if there is i ∈ {1, . . . , n} such that �i ∈ C(Ai), then for at
least one of the participating edges, the source location is also committed.3

Note that the transition relations are well-defined because enabledness
implies that the invariants of the destination locations are satisfied after applying
the reset operations of the involved edges in the given order.

A transition sequence is any finite or infinite sequence of the form 〈��0, ν0〉 λ1−→
〈��1, ν1〉 λ2−→ . . . which is initial, i.e., 〈��0, ν0〉 ∈ Cini , and consecutive, i.e., for all
i ∈ N0, 〈��i, νi〉 and 〈��i+1, νi+1〉 are in transition relation

λi+1−−−→. A configuration
〈��, ν〉 is called reachable (in T (N )) if and only if there is a finite transition
sequence of length n such that 〈��n, νn〉 = 〈��, ν〉. A location � is called reachable
(in T (N )) if and only if a configuration 〈��, ν〉 with �i = � is reachable. We write
T (N )|reach to denote the restriction of T (N ) to reachable configurations.

The configuration reachability problem is decidable for appropriate choices of
the expression language Φ(X,V ) [2]; in the following, we only consider networks
with decidable configuration reachability problem.

3 Non-blocking Operational Semantics

In the following, we introduce two new semantics for networks of timed automata.
The local enabledness semantics considers a notion of local enabledness of edges
2 The Uppaal tool considers only one sequence of receiving edges induced by the
so-called system declaration.

3 We consider committed locations (although any model with committed locations
does depend on a global scheduler) since we will use committed locations in our
source-to-source transformation based decision procedure in Sect. 4.
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and we observe that the behaviour of networks of timed automata without global
variables or committed locations in the local enabledness semantics is equal to
the classical semantics, which we just recalled in Sect. 2. In the second, non-
blocking semantics, sending edges are not blocked, i.e., sending edges can be
taken without a corresponding receiving edge.

Definition 1 (Locally Enabled). An edge e = (�, α, ϕ,�r, �′) of some timed
automaton Ai in network N = {A1, . . . ,An} is called locally enabled in config-
uration 〈��, ν〉 ∈ Conf (N ), denoted by 〈��, ν〉 loc e, if and only if �i = �, ν |= ϕ,
and ν[�r] |= I(�′). ♦

In the following, we use Nloc to denote networks of timed automata with
only local clocks and variables, and without committed locations, that is, in
Nloc = {A1, . . . ,An}, the sets X(Ai), i ∈ {1, . . . , n} are pairwise disjoint, the
sets V (Ai) are pairwise disjoint, and C(Ai) = ∅ for all i ∈ {1, . . . , n}. We call
these networks closed component networks.

Definition 2 (Local Enabledness Semantics). Let Nloc = {A1, . . . ,An}
be a closed component network. The local-enabledness operational semantics of
network Nloc is defined by the transition system Tloc(Nloc) = (Conf (Nloc), IR+

0 ∪
{τ}, { λ−→| λ ∈ IR+

0 ∪ 2A∪B},Cini) where

– configurations, initial configurations, and transition labels are as in T (Nloc),
– the transition relations are defined as follows:

• delay: same as in T (Nloc),
• local: use 〈��, ν〉 loc e as enabledness condition instead of 〈��, ν〉  e,
• rendezvous: use 〈��, ν〉 loc e0 ∧ 〈��, ν〉 loc e1 as enabledness condition

instead of 〈��, ν〉  e0; e1
• broadcast: use 〈��, ν〉 loc e0 ∧ 〈��, ν〉 loc ek, k ∈ {1, . . . , m}, m maximal,

as enabledness condition instead of 〈��, ν〉  e0; e1, . . . , em. ♦
Lemma 1. Let Nloc = {A1, . . . ,An} be a closed component network. Then
Tloc(Nloc) = T (Nloc).

Proof. Let j0, j1, . . . , jm ∈ {1, . . . , n}, m ≥ 0 and m maximal, be pairwise differ-
ent indices and let e0 = (�j0 , a!, ϕj0 , �rj0 , �

′
j0

) ∈ E(Aj0) and ek = (�jk , a?, ϕjk , �rjk ,
�′
jk

) ∈ E(Ajk), k ∈ {1, . . . , m} be edges of timed automata in Nloc . Then:

〈��, ν〉  e0; e1, . . . , em

⇐⇒ ν |=
∧m

j=0 ϕj and 〈��′, ν′〉 = 〈��, ν〉[e0; e1, . . . , em] is an element of Conf (N )
⇐⇒ ν |=

∧m
j=0 ϕj , ν′ = ν[r1] . . . [rn], and ν′ |=

∧m
j=0 I(Akj

)(�′
j),

⇐⇒ (reset operations in Nloc only affect local variables, hence their overall
effect is independent from the order of application)
∧m

j=0 ν |= ϕj , and
∧m

j=0 ν[rj ] |= I(Akj
)(�′

j), ⇐⇒
∧m

j=0〈��, ν〉 loc ej .

Thus the enabledness conditions in the construction of T (Nloc) and Tloc(Nloc)
are equivalent for Nloc , thus Tloc(Nloc) = T (Nloc); since Nloc does not have any
committed locations, the corresponding constraints in the definition of T (Nloc)
are all trivially satisfied. ��
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l1l0 a!
‖

l3l2 a?
‖

l5l4 a!

Fig. 2. Network of timed automata with multiple senders.

Definition 3. Let Nloc = {A1, . . . ,An} be a closed component network. The
non-blocking operational semantics of Nloc is defined by the transition system
Tnb(Nloc) = (Conf (Nloc), IR+

0 ∪ {τ}, { λ−→| λ ∈ IR+
0 ∪ 2A∪B},Cini) where

1. configurations, initial configurations, and transition labels are as in Tloc(Nloc),
2. the transition relations are defined as follows:

(a) delay and local transitions are as in Tloc(Nloc),
(b) rendezvous: 〈��, ν〉 α0,...,αm+1−−−−−−−→ 〈��′, ν′〉, if and only if there are sending edges

ei ∈ E(Aki
)|ai!, i ∈ {0, . . . , m}, with k0, . . . , km pairwise different and

m ≥ 0 maximal, ai ∈ A(Aki
)\B(Aki

), all locally enabled, i.e., 〈��, ν〉 loc

ei, i ∈ {0, . . . ,m} and
i. there is a receiving edge em+1 ∈ E(Akm+1)|am+1? with am+1 = ai

for i ∈ {0, . . . , m} in an automaton Akm+1 which is different from
k0, . . . , km such that em+1 is locally enabled, i.e., 〈��, ν〉 loc em+1,
and 〈��′, ν′〉 = 〈��, ν〉[e0, . . . , em; em+1], or

ii. there is no locally enabled edge em+1 ∈ E(Akm+1)|am+1? in any dif-
ferent automaton Akm+1 in N with am+1 = ai, i ∈ {0, . . . , m}, and
〈��′, ν′〉 = 〈��, ν〉[e0, . . . , em].

Here, 〈��, ν〉[e0, . . . , em; em+1] denotes the effect of applying the reset vec-
tors of edges ei, i ∈ {0, . . . , m}, on 〈��, ν〉 in any order, and then the reset
vector of em+1 (if given).

(c) broadcast: similar to rendezvous with

〈��′, ν′〉 = 〈��, ν〉[e0, . . . , em; em+1, . . . , eM ]

where em+1, . . . , eM is a maximal set of edges receiving on a broadcast
channel from a0, . . . , am which belong to automata in the network which
are not sending by edges e0, . . . , em. ♦

The transition system Tnb(Nloc) may have behaviour which is not present in
T (Nloc), Additional behaviour may be caused by taking a sending edge (that
is, an edge with a sending action a!) without an enabled corresponding receiver
(that is, an edge with receiving action a?), or when more than one sending
edge is locally enabled in a configuration. For example, in the classical (and the
local enabledness) semantics the network of timed automata in Fig. 1a has only
computation paths of the form

〈(�0, �2), x = y = 0〉 t−→ 〈(�0, �2), x = y = t〉 τ−→ 〈(�0, �3), x = y = t〉
t′
−→ 〈(�0, �3), x = y = t + t′〉 a−→ 〈(�2, �4), x = y = t + t′〉, t, t′ ∈ IR+

0 .
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In the non-blocking semantics, there are also computation paths of the form

〈(�0, �2), x = y = 0〉 t−→ 〈(�0, �2), x = y = t〉 a−→ 〈(�1, �2), x = y = t〉, t ∈ IR+
0 ,

since the edge sending on channel a can be taken before the receiving edge is
enabled.

The transition system T (Nloc) may conversely have behaviour which is not
present in Tnb(Nloc). For example, if more than one sending edge is locally
enabled, then they are taken in a strict interleaving in T (Nloc); this interleaving
will in general not be present in Tnb(Nloc). For example, in the classical (and
local enabledness) semantics, the network shown in Fig. 2 has only computation
paths of the two forms

〈(�0, �2, �4), x = y = 0〉 t−→ 〈(�0, �2, �4), x = y = t〉 a−→ 〈(�1, �3, �4), x = y = t〉 and

〈(�0, �2, �4), x = y = 0〉 t−→ 〈(�0, �2, �4), x = y = t〉 a−→ 〈(�0, �3, �5), x = y = t〉.

In the non-blocking semantics, there are only computation paths of the form

〈(�0, �2, �4), x = y = 0〉 t−→ 〈(�0, �2, �4), x = y = t〉 a−→ 〈(�1, �3, �5), x = y = t〉.

Note that, in Definition 3, we consider all situations where multiple sending
edges are enabled to be undesirable. Here, we consider channels to represent
messages sent over a globally shared medium, so sending more than one message
at a time could cause message collisions (and loss). It is possible to extend
Definition 3 to consider multiple media. If, for example, message a is always sent
on one medium and message b on a separate medium, then sending a and b at
the same time could be allowed as long as each sending edge has an enabled
receiving automaton (there is an interleaving in the classical semantics).

Our choice of taking a maximum number of enabled senders is arbitrary; for
our purposes it would be sufficient to allow two sending edges to be taken in one
transition. Our purpose is to make two conditions semantically visible which are
undesirable for a distributed implementation of a model on a platform where
global scheduling cannot be assumed:

– a sending edge is effectively blocked because the global scheduler waits for at
least one corresponding receiving edge to be enabled,

– a sending edge is effectively blocked because the global scheduler chooses a
different sending edge which is also enabled in the current configuration.

Lemma 2. Let Nloc be a closed component network. Any rendezvous transition
of edges e0 and e1 in Tnb(Nloc) is also present in T (Nloc), i.e.,

∀ c ∈ Conf (Nloc) ∀ a ∈ A • c
a−→nb c[e0; e1] =⇒ c

a−→ c[e0; e1],

where a−→nb denotes the transition relation a−→ of Tnb(Nloc); similar for broadcast.

The following lemma observes that the non-blocking semantics is in general
different from changing all rendezvous channels to be broadcast channels. With
broadcast channels, more than one receiving edge may synchronise. In the non-
blocking semantics, at most one receiver participates in a transition.
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Lemma 3. Let Nloc = {A1, . . . ,An} be a closed component network. Let each
non-broadcast channel a ∈ A(Nloc) have at most one automaton Ai0 ∈ Nloc

where action a! occurs and at most one automaton Ai1 where action a? occurs.
Then

T (Bi := A(Ai) | 1 ≤ i ≤ nloc) = Tnb(Nloc)[
a1,...,am−−−−−→:= ∅ | m > 1],

that is, the behaviour of the network obtained from Nloc by turning all chan-
nels into broadcast channels is the same as Tnb(Nloc) up to those transitions
in Tnb(Nloc) where multiple senders are enabled at the same time in different
automata. ♦

Our goal is to identify networks of timed automata where none of the two
situations of a locally enabled sending edge without any locally enabled receiving
edge, or multiple sending edges locally enabled in a configuration, ever occurs in
any reachable configuration. These situations are undesired when modelling for
a distributed implementation without global scheduling where senders “just pro-
ceed” according to their internal time schedule. In the first situation, messages
get lost because no other component is listening; in the second situation, mes-
sages may get lost due to message collision on a shared medium. Those networks
of timed automata are then not in principle un-implementable in a distributed
way on a platform where a global scheduler cannot be assumed. We call networks
of timed automata which do not reach any of the two situations discussed here
to not depend on a global scheduler as follows.

Definition 4. A closed component network Nloc is said not to depend on a
global scheduler if and only if Tnb(Nloc)|reach = T (Nloc)|reach . ♦

Intuitively, a network of timed automata does not depend on a global sched-
uler if the non-blocking semantics does not add or remove any behaviour from
T (Nloc) on the reachable configurations. Local, discrete non-determinism does
not necessarily affect the non-blocking semantics; a timed automaton in a net-
work may have multiple sending or receiving edges locally enabled, and a dis-
tributed implementation can devise a local scheduler to resolve this non-deter-
minism. If determinism is desired for an implementation, the network of timed
automata model may be checked for being deterministic before beginning with
the implementation.

The set of networks of timed automata which do not depend on a global
scheduler is non-empty, and it is a strict subset of the set of all networks of
timed automata. For example, the network shown in Fig. 1a does depend on a
global scheduler while the network shown in Fig. 1b does not.

4 Deciding Independency from Global Scheduling

In the following, we establish a sufficient and necessary condition for indepen-
dency from global scheduling, and we use this condition to devise a source-to-
source transformation of networks of timed automata on which independency
from global scheduling can be decided by a configuration reachability analysis.
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We begin by stating the independency of closed component networks from a
global scheduler.

Lemma 4. Let Nloc = {A1, . . . ,An} be a closed component network. Nloc does
not depend on a global scheduler if and only if

∀ c ∈ Conf (Nloc)|reach ∀ 1 ≤ i ≤ n ∀ a ∈ A ∀ e ∈ E(Ai)|a! • c loc e (1)
=⇒ (c  e ∧ ∀ 1 ≤ j ≤ n ∀ b ∈ A ∀ e′ ∈ E(Aj)|b! • c loc e′ =⇒ j = i).

Proof. Equation (1) states that Nloc depends on central control if and only if,
for each sending edge which is locally enabled in some reachable configuration
of Nloc , there is exactly one receiving edge that is locally enabled (i.e., the edge
is the only sending edge globally enabled).

We show the contra-position. If Eq. (1) does not hold for Nloc , then there
is a configuration c reachable such that c locally enables an edge e sending on
channel a, but e is not (globally) enabled or there is another edge e′ sending on
channel b locally enabled.

If e is not enabled in c, Case 2(b)ii of Definition 3 applies. Then there is a
transition c

a−→ c′ in Tnb(Nloc) but not in T (Nloc), thus Nloc depends on a global
scheduler. If at least two edges e1 and e2 (of different automata) sending on
channels a1 and a2 are locally enabled in c, then there is a transition c

a1,a2,...−−−−−→ c′

in Tnb(Nloc) but not in T (Nloc), thus Nloc depends on a global scheduler. ��

Now, we define a source-to-source transformation useful for our analysis.

Definition 5. Let Nloc = {A1, . . . ,An} be a closed component network. The
transformed network N ′

loc = {A′
1, . . . ,A′

n} is obtained by transforming each
timed automaton A = (L,C,A,B,X, V, I, E, �ini ) in Nloc to the transformed
automaton A′ = (L′, C ′, A′, B′,X ′, V ′, I ′, E′, �′

ini) as follows:

– B′ = B, X ′ = X, �′
ini = �ini ,

– V ′ = V ∪ {enabled}, ‘enabled’ a fresh integer variable,
– L′ = L ∪ LE, C ′ = L ∪ LE, LE = {�e | e ∈

⋃
a∈A E|a!} fresh locations,

– I ′ = I ∪ {�e �→ I(�′) | e = (�, α, ϕ,�r, �′) ∈ E, �e ∈ LE},
– A′ = A ∪ {addEnabled}, ‘addEnabled’ a fresh channel,
– E′ = {(�, addEnabled !, ϕ, �r; enabled++, �e), (�, τ, ϕ, �r; enabled++, �e),

(�e, addEnabled?, enabled ≤ 1, 〈〉, �e), (�e, a!, enabled = 1, enabled−−, �′)
| e = (�, α, ϕ,�r, �′) ∈ E|a!, a ∈ A} ∪ E\

⋃
a∈A A|a!. ♦

Figure 3b shows the transformed timed automaton for the left timed automa-
ton in Fig. 3a. The idea is to split up each sending edge into two edges. The first
edge from �0 to �e has the same guard and action as the original edge, but is
a τ -transition. Thus this first edge can be taken whenever it is locally enabled.
Location �e has an edge to �1 which comprises the send action. Since �e is commit-
ted (and since the original network is a closed component network), the absence
of an enabled receiver results in a deadlock. In addition, the first edge increments
the counter enabled . If another sending edge is enabled while in �e, this sending
will have been split up similarly, so a synchronisation on channel addEnabled
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is possible, and enforced by the committed location. This synchronisation will
increment the counter enabled to 2, so enabled reaches a value of 2 if and only if
at least two sending edges are locally enabled in two different timed automata.

Theorem 1. Let Nloc be a closed component network. Then the following state-
ments are equivalent:

1. Nloc does not depend on a global scheduler.
2. Condition (1) of Lemma 4 holds for Nloc.
3. N ′

loc |= E♦ (enabled ≥ 1 ∧ deadlock).4

Thus, checking whether a given network Nloc depends on global scheduling
reduces to applying the transformation from Definition 5 and the reachability
query given above. The approach based on a source-to-source transformation
has the advantage that it is independent from tools for timed automata model-
checking. The transformed network N ′

loc is again a proper timed automaton, so
any available checking tool can be applied and their full language features (from
which in particular Uppaal may draw its popularity) are immediately supported,

The convenience of performing a syntactic transformation comes at a price.
The number of configurations reachable in N ′

loc is at least as large as for Nloc (cf.
Lemma 5). The transformation introduces one new location per sending edge,
so for each configuration 〈��, ν〉 which is reached by a synchronisation, i.e., there
is some c0 such that c0

a−→ 〈��, ν〉, there is 〈��′, ν′〉 with ν′(enabled) = 1 and the
corresponding committed location in ��′ reachable in Nloc . In networks which do
not depend on a global scheduler, there is (by definition) at most one sending
edge per configuration enabled, so N ′

loc has at most twice as many reachable
configurations as Nloc . In networks which do depend on a global scheduler, a
relevant measure is the amount of configurations which need to be explored
in order to detect the dependency. As long as the configurations which do not
satisfy the condition of Lemma 4 are explored, the overall number will again be
at most twice as much as would be explored in Nloc . For instance, the breadth-
and depth-first explorations of Uppaal stop as soon as either a blocked sending
or multiple enabled senders are detected, so at most two more configurations
as in the original network will be explored. Overall, we expect that for most
networks for which it is feasible to verify (in the sense of confirm) some invariant
(which is usually part of model-based development of, e.g., new communication
protocols), it will be feasible to detect whether the network depends on a global
scheduler. Showing that a network does depend on a global scheduler will in
average be much faster than verifying an invariant of the network. See Sect. 5
for a preliminary, quantitative evaluation of our approach.

In the following, we show the equivalence of statements (2) and (3) of The-
orem 1 by using a two-step bisimulation relation. The two-step bisimulation

4 We write N ′
loc |= E♦ (enabled ≥ 1 ∧ deadlock) if and only if T (Nloc) has a reachable

configuration c with c |= (enabled ≥ 1 ∧ deadlock); c |= deadlock if and only if, for

all configurations c′, c′′ and t ∈ IR+
0 , c

t−→ c′ λ−→ c′′ implies λ ∈ IR+
0 .
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relation focuses on reachability of configurations in the original and the trans-
formed network. The transformed network N ′

loc can simulate the behaviour of
the original network Nloc if it just exits a committed location immediately with-
out doing any synchronisation on addEnabled (which detects multiple enabled
senders). N ′

loc may reach a deadlock, but only in some unrelated intermediate
configurations 〈��c, νc〉, so the blocking of not globally enabled sends is preserved.

Definition 6. A relation ≈2stp ⊆ Conf (N1) × Conf (N2) is called two-step
bisimulation relation on networks N1 and N2 iff the following conditions hold:

1. Cini,1 ∪ Cini,2 = ∅, or Cini,1 �= ∅, Cini,2 �= ∅, and Cini,1 × Cini,2 ⊆ ≈2stp,
2. ∀ 〈��1, ν1〉, 〈��2, ν2〉 ∈ ≈2stp ∀ϕ ∈ Φ(X,V ) • ν1 |= ϕ ⇐⇒ ν2 |= ϕ

where X and V are the common variables of N1 and N2,
3. for all 〈��1, ν1〉, 〈��2, ν2〉 ∈ ≈2stp

(a) if 〈��1, ν1〉 λ−→ 〈��′
1, ν

′
1〉 for some 〈��′

1, ν
′
1〉 ∈ Conf (N1), then there are

〈��c, νc〉, 〈��′
2, ν

′
2〉 ∈ Conf (N2) such that 〈��′

1, ν
′
1〉, 〈��′

2, ν
′
2〉 ∈ ≈2stp and

〈��2, ν2〉 λ−→ 〈��′
2, ν

′
2〉 or 〈��2, ν2〉 τ−→ 〈��c, νc〉 λ−→ 〈��′

2, ν
′
2〉,

(b) if 〈��2, ν2〉 λ−→ 〈��′
2, ν

′
2〉 or 〈��2, ν2〉 τ−→ 〈��c, νc〉 λ−→ 〈��′

2, ν
′
2〉 for some 〈��c, νc〉,

〈��′
2, ν

′
2〉 ∈ Conf (N2) then there is 〈��′

1, ν
′
1〉 ∈ Conf (N1) such that 〈��′

1, ν
′
1〉,

〈��′
2, ν

′
2〉 ∈ ≈2stp and 〈��1, ν1〉 λ−→ 〈��′

1, ν
′
1〉.

We write N1 ≈2stp N2 if and only if there exists a two-step bisimulation relation
on Conf (N1) and Conf (N2). ♦

Lemma 5. Let Nloc be a closed component network. Then Nloc ≈2stp N ′
loc.

Proof. Set ≈2stp = {〈��, ν〉, 〈��′, ν′〉 | �� = ��′, ν′ = ν ∪ {enabled �→ 0}} and let
c1 ≈2stp c2.

– Let c1
λ−→ c′

1 be a transition in T (Nloc). Any delay or local transition of
T (Nloc) is also present in T (N ′

loc) (since edges with action τ are not modified
by the transformation), thus there is c′

2 ∈ Conf (Nloc) such that c′
1 ≈2stp

c′
2 and c2

λ−→ c′
2. If λ = a ∈ A, then let e0 = (�0 , a!, ϕ0 , �r0 , �

′
0
) and e1 =

(�1 , a?, ϕ1 , �r1 , �
′
1
) be the edges in Nloc which justify the considered transition

in T (Nloc). By construction, the edge e0,1 from �0 to �e0 is enabled thus c′
1

τ−→
c′
1[e0,1] =: cc. In cc, e1 is enabled since only local variables are affected by the

transition as well as the edge e0,2 from �e0 to �′
0. Thus cc

a−→ c′
1[e0,1][e0,2; e1] =:

c′
2. By construction of N ′

loc , c′
1 ≈2stp c′

2.

– Let c2
λ−→ c′

2 be a transition in T (N ′
loc). Any delay and local transition of

T (N ′
loc) is also present in T (Nloc) (since not modified by the transformation).

All rendezvous and broadcast transitions in N ′
loc involve originating at one

of the fresh, committed locations where ν2(enabled) �= 0 (by construction).
Thus λ /∈ A.
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l1

x < 1

l0
n == 0

a!

n := 1
‖

l2 l4l3 a?

(a) Original network Nloc = {A1,A2}.

le

x < 1

l1

x < 1

l0
enabled <= 1
addEnabled?

n == 0
n := 1, enabled++

enabled == 1
a!

enabled--

n == 0
addEnabled!

n := 1,
enabled++

(b) Tranformed automaton A′
1.

Fig. 3. Network transformation example.

Let c2
τ−→ cc

λ−→ c′
2 be a transition in T (N ′

loc). If the second transition is a delay
or local transition, the previous case applies. Otherwise (in case of rendezvous;
broadcast similar) there is an edge e0 = (�0 , a!, ϕ0 , �r0 , �

′
0
) ∈ E(Ai0) of some

automaton Ai0 ∈ N ′
loc such that �c,i0 = �e0 for some of the fresh locations in

N ′
loc and an edge e1 receiving on a in an automaton Ai1 ∈ Nloc with i1 �= i0.

Since enabledness of e1 does not depend on the local transition (by construc-
tion of N ′

loc), e1 is also (locally) enabled in c2 and thus in c1.
Thus c1

a−→ c1[e0; e1] =: c′
1 and c′

1 ≈2stp c′
2. ��

Lemma 6. Configuration 〈��, ν〉 ∈ Conf (Nloc) is reachable in closed component
network Nloc if and only if 〈��, ν ∪ {enabled �→ 0}〉 is reachable in N ′

loc.

Proof. Induction over the length of computation paths and Lemma 5. ��

Proof. (of Theorem 1). Statements (1) and (2) are equivalent by Lemma 4.

– Statement (2) implies (3): Let Nloc = {A1, . . . ,An} depend on a global
scheduler. By (2), it follows that there is a edge e0 = (�0 , α0 , ϕ0 , �r0 , �

′
0
)

of automataon Ai0 sending on some channel a0 ∈ A(Ai0) (in case of ren-
dezvous; broadcast similar) and a configuration c = 〈��, ν〉 reachable in Nloc

such that e0 is locally but not globally enabled in c, or another edge e1
of a different automaton Ai1 , i.e., i0 �= i1, is also locally enabled in c.
By Lemma 6, the configuration c′ = 〈��, ν ∪ {enabled �→ 0}〉 is reachable
in N ′

loc . Then the edge (�0, τ, ϕ0, �r0; enabled++, �e0), which has the same
guard and reset operations as e and whose destination �e0 has the same
location invariant as �′

0 added by the transformation (cf. Definition 5) is
locally and (since Nloc only has local clocks and variables) also globally
enabled. Thus c′′ = 〈��[�i0 := �e0 ], ν[�r0] ∪ {enabled �→ 1}〉 is reachable in
Nloc . If another edge e1 = (�1 , α1 , ϕ1 , �r1 , �

′
1
) of Ai1 is also locally enabled in

c, then the pair of (�1, addEnabled !, ϕ1, �r1; enabled++, �e1) in Ai1 and (�e0 ,
addEnabled?, enabled = 1, 〈〉, �e0) in Ai0 are enabled in c′′ (in the classi-
cal semantics) and thus 〈��[�i0 := �e0 [�i1 := �e1 ]], ν[�r0][�r1] ∪ {enabled �→ 2}〉
is reachable in N ′

loc . Since the edges with source location �e0 have guards
enabled ≤ 1 and enabled = 1 respectively, none of them is enabled in c′′. Thus
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(since c′′ includes committed location �e0 and Nloc does not have any com-
mitted locations), c′′ is a deadlock configuration, hence N ′

loc |= E♦ (enabled ≥
1 ∧ deadlock).

Otherwise, e0 is the only locally enabled sending edge and there is no locally
enabled edge receiving on a0. Again, by edge (�0, τ, ϕ0, �r0; enabled++, �e0), c′

is reachable in N ′
loc . Since this edge only changes the local clocks and variables

of A0, there is still no locally enabled edge receiving on a0, so the edge from
�e0 to �′

0 is not enabled. And since e0 was the only locally enabled sending
edge, the self-loop on �e0 is also not enabled, c′ is a deadlock configuration,
hence N ′

loc |= E♦ (enabled ≥ 1 ∧ deadlock).
– Statement (3) implies Statement (2): Let N ′

loc |= E♦ (enabled ≥ 1∧deadlock).
Then there is a configuration c′ = 〈��′, ν′〉 ∈ Conf (N ′

loc) reachable in T (N ′
loc)

such that ν′(enabled) ≥ 1 and c′ is a deadlock. Since ν′(enabled) > 0 for fresh
variable enabled , and since enabled is only incremented on edges added by the
transformation (cf. Definition 5), there is an edge e0 = (�0 , a!, ϕ0 , �r0 , �

′
0
) with

a ∈ A of an automaton Ai0 ∈ Nloc such that �′
0 = �e0 . Since �e0 is not initial,

there is a configuration c′′ = 〈��′′, ν′′〉 in T (N ′
loc) such that ν′′(enabled) = 0

and either (a) c′′ τ−→ c′ or (b) c′′ τ−→ c′′′ addEnabled−−−−−−−→ c′, since there are only two
edges reaching �e0 , one incrementing enabled and the self-loop on �e0 , which
has guard enabled = 1, so the self-loop on �e0 can be taken at most once.
As ν′′(enabled) = 0, there is a configuration c ∈ Conf (Nloc) with c ≈2stp c′′

reachable in T (Nloc) by Lemma 6. In case (a), in particular the edge with
source �e0 is not enabled in c′, thus there is no edge receiving on a enabled
in c′ and, since all variables are local, also not in c. Thus Statement (2)
holds. In case (b), the first transition is similar to the one just discussed, and
in addition the self-loop on �e0 is taken. By construction of N ′

loc , there is
another sending edge e1 of an automaton Ai1 ∈ Nloc with i1 �= i0 enabled in
c. Thus Statement (2) holds. ��

5 Evaluation

We have implemented Definition 5 in our tool Saset [11] and applied it to a
selection of Uppaal models: The simple desktop lamp from [4] does not depend
on a global scheduler since there is always a receiving edge enabled; the gen-
eralised train/gate controller from [12] does not depend on a global scheduler
since the protocol design ensures that the receiving edges in the gate controller
are enabled when the train sends; the simplified self-monitoring protocol of the
wireless fire alarm system (WFAS) as presented in [9,10] does not depend on
a global scheduler since the master (which is running on wall power) is always
ready to receive messages and sends acknowledgements to the monitored sen-
sors only at expected times according to the protocol. In [6], the fully detailed
self-monitoring is presented. It does depend on a global scheduler in its original
form, which is surprising since the WFAS has a distributed implementation. The
reason is an artificial monitor (or observer, or test automaton) which has been
added to the model to observe violations of the desired deadlines. If this monitor
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Table 1. Evaluation results.

|N | L E states Memory/MB time/s depends model

2 4 5 3 4.78 < 0.01 Fig. 1 in [4]

5 8 6 4.80 < 0.01 no

2 7 9 5 4.81 < 0.01 Example 4.18 in [12]

9 15 8 4.83 < 0.01 no

11 73 92 2, 088 5.78 0.09 Sect. 1.3 in [10]; [9]

93 152 2, 108 5.93 0.08 no

23 190 274 6, 292, 287 987.94 3840.29 [6] with monitor

273 523 4 5.87 0.03 yes

22 187 271 4, 194, 721 715.89 2428.94 [6] without monitor

249 457 4, 194, 844 715.06 2345.94 no

is disabled in the model, we can show that the protocol as such does not depend
on a global scheduler.

Table 1 presents the evaluation results. Columns |N |, L, and E give the
number of automata (not templates), and the overall number of locations and
edges in the network. Column ‘states’ gives the number of states explored as
reported by verifyta(1), version 4.1.19. Memory (as reported by verifyta(1))
and time (‘usr’ as reported by time(1)) are averages over 3 runs (AMD Opteron
6174, 2.2 GHz, 64 GB, Debian 3.16.39-1). For each model, the first row reports
on checking deadlock freedom on the original model, the second row on checking
dependency on a global scheduler on the transformed model. Transformation
takes about 30 ms on the large models.

6 Conclusion

We have identified a new class of networks of timed automata defined by the
property of independency from a global scheduler. We have shown that it is
practically feasible to prove independency from a global scheduler for the large
industrial case-study of a wireless fire alarm system.

We plan to exploit independency from a global scheduler to extend the exist-
ing work on code generation from timed automata models (like [1]) by the gener-
ation of a distributed implementation on a platform where we can only assume a
common notion of time and message exchange, but no global variables or global
scheduling. Independency from a global scheduler is a necessary criterion for the
existence of a distributed implementation, but not sufficient. Real-world plat-
forms (of course) do not guarantee an exactly equal common notion of time in
a distributed system and neither do they provide synchronisation in zero-time.
We will opt for a notion of correct implementation whose behaviour is suffi-
ciently similar to the model behaviour. By our results, the necessary criterion of
independency from a global scheduler is decidable.
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Abstract. In order to model resource-consumption or allocation prob-
lems in concurrent real-time systems, we propose an extension of time
Petri nets (TPN) with a linear cost function and investigate the mini-
mum/infimum cost reachability problem. We build on the good proper-
ties of the state class symbolic abstraction, which is coarse and requires
no approximation (or k -extrapolation) to ensure finiteness, and extend
this abstraction to symbolically compute the cost of a given sequence of
transitions. We show how this can be done, both by using general con-
vex polyhedra, but also using the more efficient Difference Bound Matrix
(DBM) data structure. Both techniques can then be used to obtain a
symbolic algorithm for minimum cost reachability in bounded time Petri
nets with possibly negative costs (provided there are no negative cost
cycles). We prove that this algorithm terminates in both cases by prov-
ing that it explores only a finite number of extended state classes for
bounded TPN, without having to resort to a bounded clock hypothesis,
or to an extra approximation/extrapolation operator. All this is imple-
mented in our tool Romeo and we illustrate the usefulness of these results
in a case study.

1 Introduction

Time Petri nets (TPN for short) have been introduced by Merlin in 1974 to
extend the modelling and analysis powers of Petri nets to time dependent sys-
tems. They allow to specify different kinds of time constraints by means of
intervals associated with transitions. Furthermore, they offer effective reacha-
bility analysis methods that take into account the time constraints of systems.
These methods are generally based on the state space abstraction where all the
firing sequences and reachable markings are represented. Even if the reachability
problem is not decidable for TPN, there are some subclasses of TPN, such as
bounded TPN, for which the reachability problem is decidable. Using reacha-
bility analysis methods, tools such as Tina and Romeo provide an interesting
platform to verify various qualitative and quantitative properties of TPN.

Cost time Petri nets (cTPN for short) extend TPN with costs associated with
transitions and markings. The cost of a transition represents its firing cost while
the cost of a marking is the price per time unit for staying in the marking. As
c© Springer International Publishing AG 2017
A. Abate and G. Geeraerts (Eds.): FORMATS 2017, LNCS 10419, pp. 58–73, 2017.
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a run in the TPN is a succession of discrete transitions interspersed with time
elapsing (delay transitions), the cost of the run is the accumulation of the costs
of its discrete and delay transitions. Several runs may lead with different costs
to a goal marking. These costs represent in general resource-consumptions such
as memory and power consumptions. In such cases, it would be interesting to
be able to determine the runs that yield the optimal cost. This problem, called
the optimal-cost reachability, can be stated formally as follows in the context of
cTPN: Given a goal marking m, what is the optimal (minimal/infimum) cost to
reach m in the cTPN?

This paper deals with the optimal-cost problem for cTPN. It proposes a
forward exploration of cost state classes that provides the optimal cost to reach
a given goal marking for all bounded cTPN with no negative-cost cycles.

1.1 Related Works

In the literature, the optimal-cost problem has been addressed for Priced Timed
automata (PTA) in [2–4,9,12] and Priced Timed Petri nets (PTPN) in [1]. A
PTA is a timed automaton where locations have rate costs and edges have costs.
The rate cost of a location gives the cost per time unit for staying in the location,
whereas the cost of a transition indicates its firing cost. A PTPN is a timed arc
Petri net where each place has a rate cost, each transition has a firing cost
and the firing semantics of its transitions is weak. It is well known that many
verification problems such as reachability and coverability are undecidable under
the strong semantics but decidable under the weak semantics. However, timed
models based on strong semantics are more appropriate to specify urgency than
those based on weak semantics. Moreover, they do not need to manage dead
tokens or transitions.

For PTA with non negative integer costs, two different solutions based on
priced regions and priced zones have been proposed, in [2,12], respectively for
the optimal-cost problem. The solution proposed in [2] has allowed the authors
to prove decidability of the optimal-cost problem. However, from a practical
point of view, region graphs are less useful than zone graphs. In [3,4,9,12], the
computation of the optimal-cost to reach a goal location is based on a forward
exploration of priced zones, where an extra variable Cost gives the currently
best known cost of reaching the goal location. A priced zone extends a zone with
a linear cost function specifying the optimal cost to reach every state of that
zone [3,4,9,12]. The optimal cost of a priced zone is obtained by minimising its
cost function under the constraints of the zone. The priced zones of the discrete
and continuous successors are computed by considering some zone facets1. The
exploration is performed congruently with a “bigger and cheaper” inclusion rela-
tion over priced zones. The inclusion relation used in [4,12] and implemented in
the UPPAAL-CORA tool ensures termination of the exploration for all bounded

1 A zone facet is obtained by adding a constraint of the form x = c (or x − y = c),
where c is a constant and x ≺ c (or x − y ≺ c) is an atomic constraint of the zone.
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PTA (meaning all clocks are bounded). However, the termination is not guaran-
teed for PTA with unbounded clocks. Furthermore, if negative costs are allowed,
the exploration does not necessarily provide the optimal-cost to reach the goal
location. Indeed, if a path leading to the goal location goes through a priced zone
belonging to some cycle with negative cost, the optimal cost to reach the goal
location may be −∞. In [9], the authors have improved the approach, devel-
oped in [3,4,12], by refining and combining the inclusion relation over priced
zones with an over-approximation relation over clock valuations, by ignoring
clock values that exceed some bound when priced zones are compared together.
This improvement ensures termination of the forward exploration algorithm even
when clocks are not bounded and costs are negative, provided that the PTA is
free of negative cost cycles.

For PTPN, the optimal-cost reachability problem is also decidable, but only
if all costs are non negative integers. The computation of the optimal-cost for
reaching a goal marking is based on similar techniques to those of PTA [1].

1.2 Our Contribution

While weighted, priced, or cost timed automata have been well-studied in the lit-
erature, very few comparable results exist for time Petri nets. Yet, beyond subjec-
tive preferences for one or another formalism, time Petri nets exhibit some inter-
esting properties. In particular, while the symbolic techniques defined for timed
automata can be adapted to TPN, the symbolic abstraction of choice remains
the so-called state classes. They are naturally very coarse and have the great
advantage of not requiring any further approximation (as in k-extrapolation,
LU -extrapolation, etc.), or any boundedness hypothesis on the clock variables,
to ensure their finite number. This has proven quite problematic and the restric-
tion that clocks should be bounded to ensure termination has has been lifted
only recently in [9], 15 years after the the initial approach of [12].

We therefore investigate here how this specific abstraction can be adapted to
symbolically compute optimal costs. As we expected, the state class abstraction,
even extended with costs, does not require any approximation. While the results
we obtain are similar, in terms of what we can do in the end, to the results
obtained for timed automata, the underlying techniques are quite specific. For
instance, an important result is that we can partition the domains (encoded as
Difference Bound Matrices or DBMs) to ensure that the constraints on the cost
remain simple as in [12] but the notion of facet used in that paper does not apply
to our model.

Outline. The paper is structured as follows. Section 2 presents the TPN formal-
ism, its extension with costs (cTPN) and their semantics. Section 3 extends the
state class method to cTPN. In Sect. 4, we present the symbolic algorithm used
to compute the optimal cost. In Sect. 5, by describing how cost state classes
can be partitioned, we both improve the algorithm efficiency and provide a key
result for the termination proof of the symbolic algorithm, given in Sect. 6. In
Sect. 7, we present our implementation in the Romeo tool and a case study to
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illustrate how cTPN can be useful for the design of real-time systems. Finally,
Sect. 8 concludes this paper.

2 Cost Time Petri Nets

2.1 Preliminaries

We denote the set of natural numbers by N, the set of integers by Z, the set of
rational numbers by Q, the set of real numbers by R and the set of non-negative
real numbers by R≥0.

For I ∈ IQ≥0 , I denotes its left end-point and I denotes its right end-point
if I is bounded and ∞ otherwise. Moreover, for any θ ∈ R≥0, we let I−̈θ be the
interval defined by {x − θ | x ∈ I ∧ x − θ ≥ 0}.

Let F and F ′ be two systems of linear inequalities over a set of variables
X; F ≡ F ′ denotes that both systems have the same set of solutions over X.
Furthermore, F|Y (with Y ⊆ X) denotes the projection of F over Y obtained
for instance by a Fourier–Motzkin elimination of all variables that are in X but
not in Y .

2.2 Time Petri Nets

Definition 1 (Time Petri Net (TPN)). A Time Petri Net is a sextuple
N = (P, T, •., .•,m0, Is) where:

– P is a finite non-empty set of places,
– T is a finite set of transitions such that T ∩ P = ∅,
– •. : T → N

P is the backward incidence mapping,
– .• : T → N

P is the forward incidence mapping,
– m0 : P → N is the initial marking,
– Is : T → IQ≥0 is a function assigning a firing interval to each transition.

The distribution of tokens over the places of N is called a marking which is
a mapping from P to N. For a marking m ∈ N

P , m(p) denotes the number of
tokens in place p. A Petri net N is said to be k-bounded or simply bounded if
the number of tokens in each place does not exceed a finite number k for any
marking reachable from m0.

A transition t ∈ T is said to be enabled by a given marking m ∈ N
P if m

supplies t with at least as many tokens as required by the backward incidence
mapping •. We define En(m) as the set of transitions that are enabled by the
marking m:

En(m) = {t ∈ T | m ≥ •(t)}
A transition t′ ∈ T is said to be newly enabled by the firing of a transition t

from a given marking m ∈ N
P if it is enabled by m − •t + t• but not by m − •t.

The set of transitions that are newly enabled by the firing of t from the marking
m is:

N ewlyEn(m, t) =
{
t′ ∈ En(m − •t + t•) | t′ �∈ En(m − •t) or t = t′

}
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Definition 2 (State). A state of the net N is described by an ordered pair
(m, I) in N

P × IT
Q≥0

, where m is a marking of N and I is a function called
the interval function. I : T → IQ≥0 associates a temporal interval with every
transition enabled by m.

Definition 3 (Semantics of a TPN). The semantics of a TPN is defined by
a timed transition system (Q, q0,→) where:

– Q ⊆ N
P × IT

Q≥0

– q0 = (m0, I0) s.t. ∀t ∈ En(m0) I0(t) = Is(t)
– → consists of two types of transitions:

• discrete transitions: (m, I) t−→ (m′, I ′) iff
∗ m ≥ •t, m′ = m − •t + t• and I(t) = 0,
∗ ∀t′ ∈ En(m′)

· I ′(t′) = Is(t′) if t′ ∈ N ewlyEn(m, t),
· I ′(t′) = I(t′) otherwise

• time transitions: (m, I)
θ∈Q≥0−−−−→ (m, I−̈θ) iff ∀t ∈ En(m), (I−̈θ)(t) ≥ 0.

A run of a time Petri Net N is a (finite or infinite) path starting in state q0
and whose steps follow the semantics described above. The set of runs of a TPN
N is denoted by Runs(N ). A run is therefore a succession of time and discrete
transitions; let us for instance consider the elapsing of a duration θ followed by
the firing of a transition t: (m, I) θ−→ (m, I−̈θ) t−→ (m′, I ′). In the following, such
a succession is denoted by (m, I) t@θ−−→ (m′, I ′).

Furthermore, sequence(ρ) denotes the projection of the run ρ over T . The
sequence σ corresponding to the run ρ = q0

t0@θ0−−−−→ q1
t1@θ1−−−−→ q2

t2@θ2−−−−→ q3 is
therefore σ = sequence(ρ) = t0t1t2.

Definition 4 (Discrete state graph of a TPN). The discrete state graph
(DSG) of a TPN is the structure DSG = (S, s0, ↪→) where S ∈ N

P × IT
Q≥0

,

s0 = (m0, Is) and s
t

↪−→ s′ iff ∃θ ∈ Q≥0 | s
t@θ−−→ s′

Any state of the DSG is a state of the semantics of the TPN and any state of
the semantics which is not in the DSG is reachable from some state of the DSG
by a continuous transition. The DSG is a dense graph and a state may have
infinite number of successors by

t
↪−→. Finitely representing state spaces involves

grouping some sets of states.

State Classes. For an arbitrary sequence of transitions σ = t1 . . . tn ∈ T ∗,
let Cσ be the set of all states that can be reached by the sequence σ from s0:
Cσ = {s ∈ S|s0 t1

↪−→ s1 · · · tn
↪−→ s}. All the states of Cσ share the same marking

and can therefore be written as a pair (m,D) where m is the common marking
and D is the union of all points belonging to the set of firing intervals. D is
called the firing domain.

∼= denotes the relation satisfied by two such sets of states when they have
both the same marking and the same firing domain.
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Definition 5. Let Cσ = (m,D) and C ′
σ′ = (m′,D′) be two sets of states; Cσ

∼=
Cσ′ iff m = m′ and D ≡ D′.

If Cσ
∼= Cσ′ , any firing schedule firable from some state in Cσ is firable

from state in Cσ′ and conversely. The state classes as defined in [5,6] are the
equivalence classes of the ∼= relation defined on the set of classes Cσ.

Definition 6. The state class graph (SCG) of [5,6] is defined by the set of state
classes equipped with a transition relation: Cσ

t−→ X iff Cσ.t
∼= X.

Hence the SCG computes the smallest set C of state classes w.r.t. ∼=. The
SCG is finite iff the net is bounded. Moreover, the SCG is a complete and sound
state space abstraction of the TPN.

Given a state class C = (m,D), a point x = (θ1, θ2, ..., θn) ∈ D is composed
of the values of variables θ1, θ2, ..., θn that refers to the firing instants in C of
transitions t1, t2...tn that are enabled by m. The firing domain may be described
by linear inequations of the form θj − θi ≤ c or θi ≤ c where c ∈ Q; therefore,
they can be encoded as a Difference Bound Matrix (DBM) [6,10].

Let Θ = {θ1...θn} and C a set of constraints over Θ. Let θ0 a reference
variable whose value is always 0 and Θ0 = Θ ∪ {θ0}. A DBM M representing C
is a matrix of size |Θ0| × |Θ0| such that Mij = inf{c|(θj − θi ≤ c) ∈ C} where
inf(∅) = +∞. A DBM has a unique canonical form which gives the tightest
bounds on all differences between variables.

2.3 Cost Time Petri Nets

Definition 7 (Cost Time Petri Net (cTPN)). A Cost Time Petri Net is
a tuple Nc = (P, T, •., .•,m0, Is, ω, cr) where:

– N = (P, T, •., .•,m0, Is) is a TPN,
– ω : T → Z is the discrete cost function,
– cr : N

P → Z is the cost rate function; as a matter of fact, cr is a linear
function over markings.

Definition 8 (Semantics of a cTPN). The semantics of a cTPN Nc =
(P, T, •., .•,m0, Is, ω, cr) is the semantics of the TPN N = (P, T, •., .•,m0, Is).

The cost state of a cTPN is (m, I, c) ∈ N
P × IT

Q≥0
× R, where (m, I) is a

TPN state and c is the accumulation, from the initial state, of the costs of the
discrete and timed transitions of a run that leads to (m, I). More specifically:

– the cost of a discrete transition (m, I, c) t−→ (m′, I ′, c′) is c′ − c = ω(t);
– the cost of a timed transition (m, I, c) d−→ (m, I ′, c′) is c′ − c = d ∗ cr(m).

Definition 9 (Cost of a run (Ωr)). The cost of a run ρ = (m0, I0, c0)
t0@θ0−−−−→

(m1, I1, c1)
t1@θ1−−−−→ (m2, I2, c2) · · · tn−1@θn−1−−−−−−−→ (mn, In, cn) is

Ωr(ρ) =
n−1∑

i=0

θi ∗ cr(mi) + ω(ti)
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Definition 10 (Optimal cost of a sequence). The optimal cost Ω(σ) of
the sequence of transitions σ is Ω(σ) = Ωr(ρ) such that sequence(ρ) = σ and
� ∃ρ′ ∈ Runs(N ) | Ωr(ρ′) < Ωr(ρ).

Since Cσ is the set of all states that can be reached by the sequence σ, we
also denote Ω(Cσ) = Ω(σ).

3 Cost State Classes

We now extend the notion of state class to additionally include an information
on the cost of the corresponding runs. We call cost state classes these extended
state classes.

Recall that the firing domain D of a classic state class Cσ = (m,D) of [5,6]
is a convex polyhedron constraining the firing times of the transitions enabled
by m. Note that these firing times are relative to the absolute firing date of the
last transition of σ (or 0 for the initial class). For an enabled transition ti, θi

denotes the corresponding variable in D.
Cost state classes Lσ = (m,F ) extend the firing domain with an additional

cost variable c, initially null, and evolving as described in the semantics above,
and using the following observation: since firing dates are relative to the last fired
transition, the time spent in a class before firing some transition ti is exactly θi.

Computing the successive cost state classes then naturally extends the classic
computation of [5,6] as follows:

– the initial cost state class is: Lε = (m0, {θi ∈ Is(ti)|ti ∈ En(m0)} ∧ {c = 0})
– a transition tf is firable from class Lσ = (m,F ) iff:

• tf is enabled by m;
• F ∧ ∧

i�=f θf ≤ θi �= ∅.
– the successor Lσ.tf of cost state class Lσ by a transition tf firable from Lσ is

given by Algorithm 1.

Algorithm 1. Successor L′ = (m′, F ′) of L = (m,F ) by firing tf : L′ =
Next(L, tf )
1: m′ ← m′ = m − •tf + t•

f

2: F ′ ← F ∧∧i�=f θf ≤ θi

3: for all i �= f , add variable θ′
i to F ′, constrained by θi = θ′

i + θf to F ′

4: add variable c′ to F ′, constrained by c′ = c + θf ∗ cr(m) + ω(tf )
5: eliminate (by projection) variables c, θi for all i, and θ′

j for all tj disabled by firing
tf , from F ′

6: for all tj ∈ N ewlyEn(m, tf ), add variable θ′
j , constrained by θ′

j ∈ Is(tj)

Remark that the only change to the classic successor computation in
Algorithm 1 is the addition of line 4 (and of course the elimination of c in
line 5).
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By iteratively computing the extended state classes, we obtain a possibly
infinite graph with edges labeled by fired transitions and nodes by classes. The
quotient of the graph by the equivalence relation ≡ defined by (m,F ) ≡ (m′, F ′)
iff m = m′ and F = F ′ (in the sense that the polyhedra contain the same points),
provides a finite graph for regular state classes, when the net is bounded. This
is however not necessarily the case with cost state classes since the cost variable
c may increase or decrease unboundedly, and its relation to the other variables
may be arbitrarily complex (though still linear).

Lemma 1 (Lσ |θ ∼= Cσ). Let σ a firable sequence from the initial state, Lσ |θ ∼= Cσ.

A corollary of lemma 1 is that Next(Lσ |θ, t) ∼= Next(Lσ, t)|θ.

Lemma 2 (Optimal cost of Lσ). Ω(σ) = inf(Lσ |c).

We will now denote Ω(Lσ) = Ω(Cσ) = Ω(σ).

4 Symbolic Algorithm

Now that we have a symbolic abstraction, we can reuse the symbolic algorithm
from [12,15], originally designed for priced zones. The only property we need to
ensure correctness and soundness is that we can extract the minimum cost for a
given sequence of transitions. We have seen how to do that for cost state classes
in the previous section.

So, given a target set of markings Goal, if Algorithm 2 terminates, it will
provide the optimal cost to reach Goal.

Algorithm 2. Symbolic algorithm for optimal cost
1: Cost ← ∞
2: Passed ← ∅
3: Waiting ← {(m0, F0)}
4: while Waiting �= ∅ do
5: select Lσ = (m, F ) from Waiting
6: if m ∈ Goal and Ω(Lσ) < Cost then
7: Cost ← Ω(Lσ)
8: end if
9: if for all L′ ∈ Passed, Lσ �� L′ then

10: add Lσ to Passed
11: for all t ∈ Firable(Lσ), add Lσ.t to Waiting
12: end if
13: end while
14: return Cost

The algorithm consists in a classic exploration of the symbolic state-space,
updating the optimal cost whenever we visit a marking in Goal. It uses a passed
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list to store already visited symbolic states but since the cost is not bounded a
priori there is no reason the same states will eventually repeat.

To overcome this difficulty the algorithm uses a dedicated comparison oper-
ator � between symbolic states that is easily adapted to cost state classes as
follows.

For any cost state class L = (m,F ) and any point θ ∈ F|θ, the optimal cost
of θ in F is defined by ΩF (θ) = min(θ,c)∈F c.

In the sequel, given a point θ = (θ1, . . . , θn) ∈ F|θ, we often write (θ, c)
instead of (θ1, . . . , θn, c) for the corresponding point in F with cost value c.

Definition 11. Let L = (m,F ) and L′ = (m′, F ′) two cost state classes. We
say that L is subsumed by L′, which we denote by L � L′ iff m = m′ and for all
F|θ ⊆ F ′|θ, and for all θ ∈ F|θ, ΩF ′(θ) ≤ ΩF (θ).

Relation � can be checked for cost state classes in the same way proposed
for priced zones in [15]: consider (m,F ) � (m′, F ′), then m = m′ and F ⊂ F ′

are easy to check as polyhedral operations. To check the last condition, if c is the
cost variable in F and c′ the cost variable in F ′, we need only minimize c− c′ on
F and check that it is non negative. This minimisation can again be done using
classic polyhedral operations, such as the simplex method.

We can however also reduce � checking to standard inclusion on polyhedra.
Given a cost state class Lσ = (m,F ), we denote by ↑F the convex polyhedron

obtained from F by removing all upper bound constraints on cost variable c (or
equivalently, by adding an extremal ray in the direction of c). By extension, we
note ↑Lσ = (m, ↑F ).

It is easy to see that for all points (θ1, . . . , θn, c′) in ↑F there exists a point
(θ1, . . . , θn, c), with c ≤ c′ in F and therefore Ω(↑Lσ) = Ω(Lσ). This also implies
that for any transition t firable from Lσ, the successor of ↑Lσ by t (obtained with
Algorithm 1) is equal to ↑Lσ.t. Furthermore, we have the following lemma.

Lemma 3. Let L and L′ be two cost state classes. We have L � L′ iff ↑L ⊆ ↑L′.

Now, to prove that the algorithm indeed always terminates, we first have to
show that relaxed cost state classes can always be partitioned in a finite number
of cost state classes with only one lower bound constraint on the cost variable.

Definition 12. A simple cost state class is a cost state class such that its
domain contains only one constraint over the cost variable and this constraint is
a lower bound constraint.

This will also give us a usually more efficient way to symbolically compute
the optimal cost, using the efficient DBM datastructure and, in particular, min-
imisation of a linear expression over a DBM, instead of the simplex or polyhedral
inclusion, using the results of [15]. Suppose we have two simple cost state classes
L and L′: their firing domains F and F ′ can be decomposed as DBMs D and D′,
each with an additional constraint on the cost variable, c ≥ 	(θ) and c′ ≥ 	′(θ).
Then instead of minimizing c − c′ over F , we only need to minimize 	(θ) − 	′(θ)
over D, which is usually much easier [15].
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5 Computing the Simple Cost State Classes

We now show how we can partition relaxed cost state classes into simple cost
state classes. Note that the initial cost state class, once relaxed with ↑ , is indeed
a simple cost state class. We then focus on computing the successors of simple
cost state classes.

Let us consider a simple cost state class L = (m,F ) where F is a combination
of a classic firing domain D, written as a DBM, and of a linear inequality over
variables θi constraining the cost c. To ease further reading, we also define sets
E as En(m) and Ef as En(m)\{tf}. The firing domain F is thus defined:

F :

⎧
⎪⎨

⎪⎩

D :
{∀ti ∈ E αi ≤ θi ≤ βi

∀ti, tj ∈ E θi − θj ≤ γij

c ≥ ∑

ti∈E
aiθi + b

Let us compute its successor L′ = (m′, F ′) by firing transition tf following
Algorithm 1 and show that L′ can be written as a finite union of simple cost
state classes.

Applying line 2 simply means that we modify D by adding the constraint
θf ≤ θi for all ti in Ef . Following line 3, we then replace θi by θ′

i + θf ; after
simplification, we obtain the following domain:

F3 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D3 :

⎧
⎪⎪⎨

⎪⎪⎩

αf ≤ θf ≤ βf (5.1)

∀ti ∈ Ef

{
αi − θ′

i ≤ θf ≤ βi − θ′
i (5.2)

max(0,−γfi) ≤ θ′
i ≤ γif

∀ti, tj ∈ Ef θ′
i − θ′

j ≤ γij

c ≥ ∑

ti∈Ef

aiθ
′
i +

(
∑

ti∈E
ai

)

θf + b

We then compute the constraint on the new cost c′, according to line 4 of
the algorithm: c′ ≥ ∑

ti∈Ef
aiθ

′
i + C ∗ θf + B (5.3) where C = cr(m) +

∑
ti∈E ai

and B = b + ω(tf ).
Before proceeding to line 5 of the algorithm, in which we need to eliminate

θf (amongst other variables) from the system, let us notice that only inequalities
(5.1), (5.2) and (5.3) involve θf . To eliminate θf by projection, we use Fourier–
Motzkin elimination (FME): we keep all the inequalities in F4 that don’t involve
θf and we add all the inequalities stating that any lower bound of θf should be
lower than any of its upper bounds. We obtain the following system:

F5 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D5 :
{∀ti ∈ Ef max(0,−γfi, αi − βf ≤ θ′

i ≤ min(γif , βi − αf )
∀ti, tj ∈ Ef θ′

i − θ′
j ≤ min(γij , βi − αj)

c′ ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
(

αf , max
ti∈Ef

(αi − θ′
i)

)
∗ C +

∑

ti∈Ef

aiθ
′
i + B if C ≥ 0

min
(

βf , min
ti∈Ef

(βi − θ′
i)

)
∗ C +

∑

ti∈Ef

aiθ
′
i + B otherwise
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Again, D5 is a DBM; following Lemma 1, it is indeed equal to the DBM
obtained by a computation of the next state without considering the cost. On a
side note, exact expressions for the bounds of the canonical form of this DBM
can be found in [7,8]. We now consider that D5 is defined by:

D5 :
{∀ti ∈ Ef α′

i ≤ θ′
i ≤ β′

i

∀ti, tj ∈ Ef θ′
i − θ′

j ≤ γ′
ij

In our aim to obtain an union of simple cost state classes, we shall now
consider the constraints on the new cost c′. Let us suppose that C ≥ 0; the
constraint over c′ can be split in two cases: either αf is the largest coefficient,
or one transition tI ∈ Ef yields largest coefficient. Supposing that αf is indeed
the largest coefficient, we know that αi − θ′

i ≤ αf for all ti in Ef and that
c′ ≥ αf ∗ C +

∑
ti∈Ef

aiθ
′
i + B. By combining these constraints with F5, we

obtain the following simple cost state class:

F ′
5 :

⎧
⎨

⎩
D′

5 :
{∀ti ∈ Ef max(α′

i, αi − αf ) ≤ θ′
i ≤ β′

i

∀ti, tj ∈ Ef θ′
i − θ′

j ≤ γ′
ij

c′ ≥ αf ∗ C +
∑

ti∈Ef
aiθ

′
i + B

All other cases (e.g. one of the αI −θ′
I is the greatest coefficient, and also the

cases when C < 0) also lead to adding constraints preserving the DBM form,
and we can thus show that F5 can indeed be split as a finite union of simple cost
state classes of the following form:

F ′
5 :

⎧
⎨

⎩
D′

5 :
{∀ti ∈ Ef α′′

i ≤ θ′
i ≤ β′′

i

∀ti, tj ∈ Ef θ′
i − θ′

j ≤ γ′′
ij

c′ ≥ ∑
ti∈Ef

a′
iθ

′
i + B′

In order to complete line 5 of the algorithm, we need to eliminate in all
domains F ′

5 all variables refering to transitions that have been disabled by the
firing of tf . Let tk be such a transition; to eliminate θ′

k from F ′
5, we apply the

FME method again. Note that, to eliminate θ′
k in D′

5, provided D′
5 is in canonical

form, we simply erase any inequality involving this variable, which gives us DBM
D′′

5 ; we therefore focus on inequalities over the cost c′ and obtain the following
domain:

F ′
5 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D′′
5

c′ ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max

(

α′′
k , max

ti∈Ef\{tk}
(θ′

i − γ′′
ik)

)

∗ a′
k +

∑

ti∈Ef\{tk}
a′

iθ
′
i + B′ if a′

k ≥ 0

min

(

β′′
f , min

ti∈Ef\{tk}
(θ′

i + γ′′
ki)

)

∗ a′
k +

∑

ti∈Ef

a′
iθ

′
i + B′ otherwise

Again, we can split the constraint on c′ to obtain a finite union of simple
cost state classes and iterate the process for all the transitions that have been
disabled by the firing of tf .
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Finally, we add the constraints given by line 6 to finish the computation of
F ′. In the end, we indeed obtain the successor of our initial simple cost state
class as a finite union of simple cost state classes.

Each of the elements of this finite union can then be considered as a stand-
alone successor of that state class in Algorithm 2 much like in [12,15].

6 Termination of the Algorithm

To prove the termination, we consider � the symmetric relation to �, such that
x � y iff y � x, and prove that it is a well quasi-order (wqo), i.e., that for every
infinite sequence of cost state classes, there are at least L and L′ in the sequence,
with L strictly preceding L′ such that L � L′. This implies that the exploration
of children in Algorithm 2 will always eventually stop.

The idea is to first prove that � is a wqo on simple cost state classes, and
then to lift this result to a certain quasi-order derived from � and defined on sets
of simple cost state classes. To ensure the lifted order is indeed a wqo, � has to
have a stronger property: indeed, we need to prove that it is a better quasi-order
(bqo). The definition of bqo’s is a bit involved and we actually do not need to
use it explicitly so we refer the interested reader to [14] for instance.

Proposition 1. Let N be a bounded TPN such that the cost of all runs is uni-
formly lower-bounded by some constant M , then relation � is a better quasi-order
on the simple cost state classes of N .

The wqo on cost state classes and the termination of Algorithm 2 are rather
direct consequences of Proposition 1.

Corollary 1. Let N be a bounded TPN such that the cost of all runs is uniformly
lower-bounded by some constant M , then relation � is a well quasi-order on the
cost state classes of N .

Corollary 2. When N is bounded and the cost of all runs is uniformly lower-
bounded by some constant M , Algorithm 2 terminates.

7 Practical Results

We have implemented the above algorithms in Romeo2, a tool for the verification
of (parametric) time Petri nets [13]. In this section, we illustrate the above
approaches with a practical example. It uses negative costs, the point here being
to show how to obtain a scheduler using prediction about environmental features.

2 http://romeo.rts-software.org.

http://romeo.rts-software.org
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7.1 EPOC (Energy Proportional and Opportunistic Computing
systems)

The EPOC project [11] focusses on energy-aware task execution in the context
of a mono-site and small data center which is connected to the regular electric
grid and to local renewable energy sources (such as windmills or solar cells).

Given a reliable prediction model, it is possible to design a scheduling that
aims at optimizing resource utilization and energy usage. A power-driven app-
roach allows shifting or scheduling the postponable workloads to the time period
when the electricity is available (from the renewable energy sources) or at the
best price.

Description. We consider here a small system with four tasks: Task1 can be
scheduled at any time with non-renewable energy whereas the other tasks must
be computed using renewable energy. To run the four tasks, there are two proces-
sors: Task2, Task3 and Task4 can run on both, but Task1 must run on the first
processor. Furthermore, the second processor, which can only use renewable
energy, is twice as slow as the first processor.

The energy source is assumed to rely on solar cells and wind turbines; as
illustrated by Fig. 2, the weather pattern used in the case study is the following:

– 10 a.m.–11:20 a.m.: windy, with a mix of sunny and cloudy;
– 11:20 a.m.–11:30 a.m.: calm and cloudy;
– 11:30 a.m.–11:40 a.m.: calm and weakly sunny;
– 11:40 a.m.–12 p.m. (noon): calm and sunny.

If a task is executed after the deadline, the cost rate is 100. Using non-
renewable energy for Task1 has a cost rate of 40. If tasks 2, 3 and 4 are executed
during a sunny period, the cost rate is −20; during a period of weak sun, it is
−10; and during a windy period, it is −10. Evidently, costs add up: e.g. when
the weather is sunny and windy, the cost rate is −20 − 10 = −30.

The TPN model is presented in Fig. 1. Proc1 and Proc2 stand for the proces-
sors (1 and 2).

The associated cost function is: 40 ∗ R1 1 + (DL) ∗ (R1 1 + R2 1 + R2 2 +
R3 1 + R3 2 + R4 1 + R4 2) ∗ 100 − (1 ∗ Windy + 2 ∗ (Sun1 + Sun2 + Sun3 +
Sun4) + 1 ∗ WeakSun) ∗ (R2 1 + R2 2 + R3 1 + R3 2 + R4 1 + R4 2) ∗ 10.

Objective. We want to reach a marking corresponding to the situation where all
tasks have been executed, which corresponds to all places in the upper net being
empty except Proc1 and Proc2, which contains exactly one token.

Results. The minimal cost to reach a state such that all the tasks are executed is
−1560 and from the associated trace, given by Romeo, we can derive the Gantt
chart in Fig. 2. As for Fig. 3, it shows the evolution of the cost rate during the
scenario proposed in the Gantt chart Fig. 2.

Table 1 summarizes the performances of Romeo to reach the minimal cost
using cost state classes (and polyhedral operations) or simple cost state classes
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Task1

T1
[0, 0]

W1

start1-1
[0, ∞[

R1-1

end1-1
[40, 40]

Proc1

Task2

T2
[20, 20]

W2

start2-1
[0, ∞[

R2-1

end2-1
[4, 4]

start2-2
[0, ∞[

R2-2

end2-2
[8, 8]

Task3

T3
[30, 30]

W3

start3-1
[0, ∞[

R3-1

end3-1
[5, 5]

start3-2
[0, ∞[

R3-2

end3-2
[10, 10]

Task4

T4
[40, 40]

W4

start4-1
[0, ∞[

R4-1

end4-1
[10, 10]

start4-2
[0, ∞[

R4-2

end4-2
[20, 20]

Proc2

WeatherModel
tenAM
[10, 10]

Sun1

T25
[20, 20]

Covered

T26
[40, 40]

P29

T28
[0, 0]

Sun3

Windy

noWind
[80, 80]

P19

staticCloud
[0, 0]

Cloudy

cloudLeaving
[10, 10]

WeakSun

noMoreCloud
[10, 10]

Sun4

noon
[20, 20]
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Cloud

cloudOut
[5, 5]

Sun2

cloudIn
[5, 5]

Fig. 1. EPOC example
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Fig. 2. EPOC: Gantt chart
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T ime0 10 20 30 40 50 60 70 80 90 100 110 120

Cost

0

-1000

-2000

-3000

•−1560

Fig. 3. EPOC: Cost evolution

(relying on DBMs). As a sanity check we can remark that both abstractions
indeed compute the same minimal cost. As we are still implementing Romeo
with cost features, we are not yet able to get consistent data about the memory
used for each computation.

For this example, we can notice that using simple state classes to find the
minimal cost is more efficient (almost 3 times faster): it is something we observed
with other examples studied, but not exposed in this paper. Therefore, experi-
ment urges us to favour this method over the use of cost state classes algorithms,
even though both methods give correct results.

Table 1. Offline non-preemptive scheduler: Romeo performances

Method Cost state classes Simple state classes

Minimal cost −1560 −1560

Computing time 4856.3 s 1696.3 s

8 Conclusion

In this paper, we have studied the optimal-cost reachability problem for time
Petri nets, where both letting time elapse and firing transitions have costs. We
have proposed a forward exploration algorithm based on the state class method
that provides the optimal-cost to reach a marking, for all bounded TPN with
no negative-cost cycles. We have first defined the reachability cost problem by
means of time-dependent cost constraints integrated to state classes and then
adapted consequently the firing rule. The optimal-cost to reach a state class
from the initial state class is reduced to a linear programming problem. Unlike
other approaches [1–4,9,12], the one presented in this paper doesn’t need any
approximation/extrapolation nor handling dead tokens or transitions. Finally,
we have confirmed the effectiveness and efficiency of our approach through a
case study.
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Abstract. This paper studies optimal time-bounded control in multi-
mode systems with discrete costs. Multi-mode systems are an important
subclass of linear hybrid systems, in which there are no guards on tran-
sitions and all invariants are global. Each state has a continuous cost
attached to it, which is linear in the sojourn time, while a discrete cost is
attached to each transition taken. We show that an optimal control for
this model can be computed in NExpTime and approximated in PSpace.
We also show that the one-dimensional case is simpler: although the prob-
lem is NP-complete (and in LogSpace for an infinite time horizon), we
develop an FPTAS for finding an approximate solution.

1 Introduction

Multi-mode systems [8] are an important subclass of linear hybrid systems [4],
which consist of multiple continuous variables and global invariants for the values
that each variable is allowed to take during a run of the system. However, unlike
for the full linear hybrid systems model, multi-mode systems have no guards on
transitions and no local invariants. In this paper, we study multi-mode systems
with discrete costs, which extend linear hybrid systems by adding both contin-
uous and discrete costs to states. Every time a transition is taken (i.e. when the
current state changes), the discrete cost assigned to the target state is incurred.
The continuous cost is the sum of the products of the sojourn time in each state
and the cost assigned to this state. Our aim is to minimise the total cost over a
finite-time horizon or a long-time average cost over an infinite time horizon. We
exemplify this by applying this model to the optimal control of heating, venti-
lation, and air-conditioning (HVAC) systems. HVAC systems account for about
50% of the total energy cost in buildings [27], so a lot of energy can be saved
by optimising their control. Many simulation programs have been developed to
analyse the influence of control on the performance of HVAC system components
such as TRNSYS [3], EnergyPlus [1], and the Matlab’s IBPT [2]. Our approach
has the advantage over the existing control theory techniques that it provides
approximation guarantees. Although the actual dynamics of a HVAC system is
governed by linear differential equations, one can argue [22,24,25] that constant
rate dynamic, as in our model, can approximate well such a behaviour.

The simplest subclass of our model is multi-mode systems with a single
dimension. It naturally occurs when controlling the temperature in a single room
c© Springer International Publishing AG 2017
A. Abate and G. Geeraerts (Eds.): FORMATS 2017, LNCS 10419, pp. 77–96, 2017.
DOI: 10.1007/978-3-319-65765-3 5
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or building to stay in a pleasant range. For this, the system can be in different
modes, e.g. the air-conditioning can be switched on or off, or one can choose
to switch on an electrical radiator or a gas burner. Each such a configuration
can be modelled as mode of our multi-mode system. Modes have start-up cost
(gas burners, e.g. may suffer some wear and tear when switched on) as well as
continuous costs.

When keeping an office building in a pleasant temperature range during
opening hours, we face a control problem for multi-mode systems with a finite
time horizon. We show that finding an optimal schedule in such a case is NP-
complete and significantly more challenging than for the infinite time horizon
(LogSPACE). However, we devise an FPTAS for the finite time horizon problem.

Heating multiple rooms simultaneously can be naturally modelled by multi-
mode systems (with multiple dimensions). In such a scenario, we might have
different pleasant temperature ranges in different rooms and the tempera-
tures of the individual rooms may influence each other. Naturally, controlling
a multi-dimensional multi-mode systems is more complex than controlling a
one-dimensional multi-mode system. We develop a nondeterministic exponen-
tial time algorithm for the construction of optimal control, whose complexity is
only driven by potentially required high precision in exponentially many mode
switches. Allowing for an ε-deviation from the ranges of pleasant temperatures
reduces the complexity to PSpace.

Related Work. Our model can be viewed as a weighted extension of the linear
hybrid automata model [5,17], but with global constraints only. Even basic ques-
tions for the general linear hybrid automata model are undecidable already for
three variables and not known to be decidable for two variables [9]. Most of the
research for this model has focused on qualitative objectives such as reachability.
Various subclasses of hybrid systems with a decidable reachability problem were
considered, see e.g. [9] for an overview. In particular, reachability in linear hybrid
systems, where the derivative of each variable in each state is constant, can be
shown to be decidable for one continuous variable by using the techniques from
[19]. In [6], it has been shown that reachability is decidable for timed automata,
which are a particular subclass of hybrid automata where the slope of all vari-
ables is equal to 1.

In [22] we only studied the one-dimensional case of our model with the simpli-
fying assumption that there is exactly one mode that can bring the temperature
down and it is cost-free. In this paper, we drop this assumption and generalise
the model to multiple dimensions. In the one-dimensional setting, we manage to
prove similar nice algorithmic properties as in [22], i.e. the existence of finitely
many patterns for optimal schedules, polynomial constant-factor approximation
algorithm and an FPTAS. However, as opposed to the existence of a unique
pattern for an optimal schedule in [22], we show that there can be 44 different
patterns when the simplifying assumption is dropped. To show this, we need
to devise five safety-preserving and cost-non-increasing operations on schedules,
while in [22] it sufficed for each mode to just lump together all timed actions
that use this mode. Also, our constant-factor approximation algorithm requires
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a careful analysis of the interplay between different sections of the normal form
for schedules, which results in an O(n7) algorithm, while in [22] it sufficed to use
one mode all the time and the algorithm ran in linear time.

Multi-mode systems were studied in [8], but with no discrete costs and with
infinite time horizons only. They were later extended in [7] to a setting where
the rate of change of each variable in a mode belonging to an interval instead
of being constant. [28] studied a hybrid automaton model where the dynamics
are governed by linear differential equations, but again without switching costs
and only with an infinite time horizon. Both of these papers show that, for any
number of variables, a schedule with the optimal long-time average cost can be
computed in polynomial time. In [24,25], the same models without switching
costs have been studied over the infinite time horizon, with the objective of
minimising the peak cost, rather than the long-time average cost. In [11], long-
time average and total cost games have been shown to be decidable for hybrid
automata with strong resets, in which all variables are reset to 0 after each
discrete transition. The long-time average and total cost optimisation for the
weighted timed automata model have been shown to be PSpace-complete (see
e.g. [10] for an overview).

There are many practical approaches to the reduction of energy consumption
and peak demand in buildings. One particularly popular one is model predictive
control (MPC) [12]. In [26], stochastic MPC was used to minimise the energy
consumption in a building. In [21], On-Off optimal control was considered for air
conditioning and refrigeration. The drawback of using MPC is its high compu-
tational complexity and the fact that it cannot provide any worst-case guaran-
tees. UPPAAL Stratego [15] supports the analysis of the expected cost in linear
hybrid systems, but uses a stochastic semantics of these models [14,16]. I.e. a
control strategy induces a stochastic model where the time delay in each state
is uniformly or exponentially distributed. This is different to the standard non-
deterministic interpretation of the model, which we use in this paper. In [20], an
on-line controller synthesis combined with machine learning and compositional
synthesis techniques was applied for optimal control of a floor heating system.

Structure of the Paper. The paper is organised as follows. We introduce
all necessary notation and formally define the model in Sect. 2. In Sect. 3, we
study the computational complexity of limit-safe and ε-safe control in multi-
ple dimensions. In Sect. 4, we show that in one dimension every schedule can be
transformed without increasing its cost into a schedule following one of 44 differ-
ent patterns. In Sect. 5, we show that the cost optimisation decision problem in
one-dimension with infinite and finite horizon is LogSpace and NP-complete,
respectively. In Sect. 6, still for the one-dimension case, we first show a con-
stant factor approximation algorithm and, building on it, develop an FPTAS by
a reduction to the 0-1 knapsack problem. Due to the space constraints, some
of the proofs and algorithms are only available in the extended version of this
paper [23].
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2 Preliminaries

Let 0N and 1N be N -dimensional vectors with all entries equal to 0 and 1,
respectively. By R≥0 and Q≥0 we denote the sets of all non-negative real and
rational numbers, respectively. We assume that 0 ·∞ = ∞·0 = 0. For a vector v,
let ‖v‖ be its ∞-norm (i.e. the maximum coordinate in v). We write v1 ≤ v2 if
every coordinate vector of vector v1 is smaller than or equal to the corresponding
coordinate in vector v2, and v1 < v2 if, additionally, v1 �= v2 holds.

2.1 Formal Definition of Multi-mode Systems

Motivated by our application of keeping temperature in multiple rooms within
comfortable range, we restrict ourselves to safe sets being hyperrectangles, which
can be specified by giving its two extreme corner points. A multi-mode system
with discrete costs, A, henceforth referred to simply as multi-mode system, is
formally defined as a tuple A = (M,N,A, πc, πd, Vmin, Vmax, V0) where:

– M is a finite set of modes;
– N ≥ 1 is the number of continuous variables in the system;
– A : M → Q

N is the slope of all the variables in a given mode;
– πc : M → Q≥0 is the cost per time unit spent in a given mode;
– πd : M → Q≥0 is the cost of switching to a given mode;
– Vmin, Vmax ∈ Q

N : Vmin < Vmax, define the safe set, S, as follows {x ∈ R
N :

Vmin ≤ x ≤ Vmax};
– V0 ∈ Q

N , such that V0 ∈ S, defines the initial value of all the variables.

2.2 Schedules, Their Cost and Safety

A timed action is a pair (m, t) ∈ M × R≥0 of a mode m and time delay t > 0.
A schedule σ (of length k) with time horizon tmax is a finite sequence of timed
actions σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉, such that

∑k
i=1 ti = tmax.

A schedule σ with infinite time horizon is either an infinite sequence of timed
actions σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk), . . .〉, such that

∑∞
i=1 ti = ∞ or a

finite sequence of timed actions σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉, such that
tk = ∞. The run of a finite schedule σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 is a
sequence of states run(σ) = 〈V0, V1, ..., Vk〉 such that, for all 0 ≤ i ≤ k − 1, we
have that Vi+1 = Vi + tiA(mi).

A schedule and its run are called safe if Vmin ≤ Vi ≤ Vmax holds for all 1 ≤
i ≤ k. A schedule and its run are called ε-safe if Vmin−ε ·1N < Vi < Vmax+ε ·1N

holds for all 1 ≤ i ≤ k. The run of an infinite schedule and its safety and ε-safety
are defined accordingly.

The total cost of a schedule σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 with a finite
time horizon is defined as π(σ) =

∑k
i=1 πd(mi) + πc(mi)ti. The limit-average

cost for a finite schedule σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 with an
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infinite time horizon is defined as πavg(σ) = πc(mk) and for an infinite schedule
σ = 〈(m1, t1), (m2, t2), . . .〉 it is defined as

πavg(σ) = lim sup
k→∞

(
k∑

i=1

πd(mi) + πc(mi)ti

)
/ k∑

i=1

ti

A safe finite schedule σ is ε-optimal if, for all safe finite schedules σ′, we have
that π(σ′) ≥ π(σ) − ε. A safe finite schedule is optimal if it is 0-optimal. A safe
infinite schedule σ is optimal if, for all safe infinite schedules σ′, we have that
πavg(σ′) ≥ πavg(σ).

The following example shows that there may not be an optimal schedule for
a multi-mode system with a finite time horizon.

Example 1. Consider a multi-mode system with three modes: M1,M2,M3. The
slope vectors in these modes are A(M1) = (1, 1), A(M2) = (1,−1) and A(M3) =
(−1, 1), respectively. The continuous cost of using M1 is πc(M1) = 1 and all the
other costs are 0. Let V0 = Vmin = 02 and Vmax = 12. Notice that we can only
use M2 or M3 once we get out of the initial corner V0. This can only be done
using M1. Now let the time horizon be tmax. Note that the following schedule
σε = (M1, ε),

(
(M2, t), (M3, t)

)l, where t′ = tmax−ε, l = �t′/ε�, and t = t′/2l, has
time horizon tmax and total cost ε > 0. As ε can be made arbitrarily small but
has to be >0, σε is an ε-optimal schedule for all ε > 0, but no optimal schedule
exists.

Note that in Example 1, for any ε > 0, there exists an optimal ε-safe schedule
σ with total cost 0: σ0 = 〈((M2, t), (M3, t)

)l〉 where l is defined as in Example 1.
Our aim is to find an “abstract schedule” that, for any given ε > 0, can be used
to construct in polynomial time an ε-safe ε-optimal schedule.

Let M∗ = {m ∈ M | πd(m) = 0} be the subset of modes without discrete
costs. Note that, as shown in [8], the cost and safety of a schedule with M∗

modes only, depends only on the total amount of time spent in each of the M∗

modes. We therefore lump together any sequence of timed actions that only
use M∗ modes and define an abstract timed action (over M∗) as a function
t : M∗ → R≥0. A finite abstract schedule with time horizon tmax (of length k)
is a finite sequence τ = 〈t1, (m1, t1), t2, (m2, t2), . . . , (mk−1, tk−1), tk〉 such
that ∀i mi ∈ M\M∗ and

∑
i≤k,m∈M∗ ti(m) +

∑
i<k ti = tmax. The run of the

abstract schedule τ is a sequence 〈V0, V1, . . . , V2k+1〉 such that, for all i ≤ k, we
have V2i = V2i−1 + A(mi)ti and V2i+1 = V2i +

∑
m∈M∗ A(m)ti(m). We say that

an abstract schedule is limit-safe if its run is safe. The total cost of an abstract
schedule τ is defined as

∑

i≤k,m∈M∗
πc(m, ti(m)) +

∑

i<k

(
πd(mi) + πc(mi)ti

)
.

Note that any safe schedule can be turned into a limit-safe abstract schedule
with the same cost by simply replacing any maximal subsequence of consecutive
timed actions that only use M∗ modes by a single abstract timed action. A
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limit-safe abstract schedule σ is optimal if the total cost of all other limit-safe
abstract schedules is higher than π(σ). The following statement justifies the
name “limit-safe”.

Proposition 1. Given a limit-safe abstract schedule τ and ε > 0, we can con-
struct in polynomial time an ε-safe schedule σ such that π(τ) = π(σ).

Proof. Let M∗ = {m1,m2, . . . ,mj}. To obtain σ from τ , we replace each abstract
timed action

{(
m, tm) | m ∈ M∗} by a sequence

(
(m1, tm1/l), . . . , (mj , tmj

/l)
)l

for a sufficiently large l ∈ N.
Sufficiently largemeans that, for t∗ =

∑
m∈M∗ tm, l > t∗·maxm∈M∗ ‖A(m)‖/ε.

This choice guarantees that
∑

m∈M∗ ‖A(m)‖ · tm/l < ε. Thus, when the
abstract action

{(
m, tm) | m ∈ M∗} joins two states V2i, V2i+1 along the run

〈V0, V1, . . . , . . . , V2k+1〉 of τ , we know that this concrete schedule will cover the l-
th part of V2i, V2i+1 after every sequence (m1, tm1/l), (m2, tm2/l), . . . , (mj , tmj

/l).
As the safe set is convex, the start and end points of this sequence are safe points.
Also,

∑
m∈M∗ ‖A(m)‖ · tm/l < ε implies that the points in the middle are

ε-safe. ��

Example 1 continues. An example limit-safe abstract schedule of length 1 is
τ = {(m1, tmax/2), (m2, tmax/2)}. Based on τ we can construct an ε-safe schedule
〈((m1, tmax/2l), (m2, tmax/2l)

)l〉 where l is any integer greater than tmax/ε.

2.3 Structure of Optimal Schedules

We show here that it later suffices to consider only schedules with a particular
structure.

Definition 1. We call a finite schedule σ angular if there are no two consecutive
timed actions (mi, ti), (mi+1, ti+1) in σ such that A(mi) = A(mi+1).

We show that while looking for an (ε-)safe (ε-)optimal finite schedule, we can
restrict our attention to angular schedules only.

Proposition 2. For every finite (ε-)safe schedule with time horizon tmax there
exists an angular safe schedule with the same or lower cost.

Henceforth, we assume that all finite schedules are angular. Let M0 = {m |
A(m) = 0}, which we will also refer to as zero-modes.

Proposition 3. For every finite safe schedule with time horizon tmax there
exists a safe schedule with the same or lower cost, in which at most one zero-
mode is used at the very beginning.

Henceforth, we assume that all finite schedules use at most one zero-mode
timed action and only at the very beginning.



Optimal Control for Multi-mode Systems with Discrete Costs 83

2.4 Approximation Algorithms

We study approximation algorithms for the total cost minimisation problem in
multi-mode systems. We say that an algorithm is a constant factor approximation
algorithm with a relative performance ρ iff, for all inputs x, the cost of the solution
that it computes, f(x), satisfies OPT (x) ≤ f(x) ≤ (1 + ρ) · OPT (x), where
OPT (x) is the optimal cost for the input x. We are particularly interested in
polynomial-time approximation algorithms. A polynomial-time approximation
scheme (PTAS) is an algorithm that, for every ρ > 0, runs in polynomial-time
and has relative performance ρ. Note that the running time of a PTAS may
depend in an arbitrary way on ρ. Therefore, we typically strive to find a fully
polynomial-time approximation scheme (FPTAS), which is an algorithm that
runs in polynomial-time in the size of the input and 1/ρ.

The 0-1 Knapsack problem is a well-known NP-complete optimisations prob-
lem, which possess multiple FPTASes (see e.g. [18]). In this problem we are given
a knapsack with a fixed volume and a list of items, each with an integer volume
and value. The aim is to pick a subset of these items that together do not exceed
the volume of the knapsack and have the maximum total value.

3 Complexity of Limit-Safe and ε-safe Finite Control

As our one-dimensional model strictly generalises the simple linear hybrid
automata considered in [22], we immediately obtain the following result.

Theorem 1 (follows from [22], Theorem 3). Given (one-dimensional)
multi-mode system A, constants tmax and C (both in binary), checking whether
there exists a safe schedule in A with time horizon tmax and total cost at most
C is NP-hard.

In the rest of this section we fix a (multi-dimensional) multi-mode system A
and time horizon tmax.

Theorem 2. If a limit-safe abstract schedule exists in A, then there exists one
of exponential length and it can be constructed in polynomial time.

Proof (sketch). Before we formally prove this theorem, we need to introduce first
a bit of terminology. We call a mode m safe for time t > 0 at V ∈ S := {x ∈
R

N : Vmin ≤ x ≤ Vmax} if V + A(m)t ∈ S. Also, m is safe at V if there exists
t > 0 such that m is safe for time t at V . We say that a coordinate of a state,
V ∈ S, is at the border if that coordinate in V is equal to the corresponding
coordinate in Vmin or Vmax.

Our algorithm first removes from M all modes that will never be safe to use
in a limit-safe schedule (and it can be found in the extended version of this paper
[23]). This is an adaptation of [8, Theorem 7] where an algorithm was given for
finding safe modes that can ever be used in a schedule with no time horizon. The
main difference here is that the modes in M∗ can always be used in a limit-safe
abstract schedule even if they are not safe to use. We find here a sequence of
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sets of modes M∗ = M0 ⊂ M1 ⊂ M2 ⊂ . . . such Mi+1 is the set of modes that
are safe at a state reachable from V0 via a limit-safe abstract schedule that only
uses modes from Mi. Note that at some step k ≤ |M | this sequence will stabilise,
i.e. Mk = Mk+1. Similarly as in the proof of [8, Theorem 7], we can show that
no mode from M\Mk can ever be used by a limit-safe abstract schedule. As a
result, we can remove all these modes from M .

Next, we remove all modes that cannot be part of a limit-safe abstract sched-
ule with time horizon tmax. For this, for each m, we formulate a very similar linear
programme (LP) as above (again, more details in [23]), where we ask for the time
delay of m to be positive and the total time delay of all the modes to be tmax. By
a simple adaptation of the proof of [8, Theorem 4], if this LP is not satisfiable
then m can be removed from A.

Next, we look for the easiest possible target state Vend that can potentially be
reached using a limit-safe abstract schedule from V0 with time horizon tmax. For
this, Vend has to have the least number of coordinates at the border of the safe
set. Note that this is well-defined, because if V and V ′ are two points reachable
from V0 via a limit-safe abstract schedules τ and τ ′ with time horizon tmax,
respectively, then τ/2 (i.e. divide all abstract and timed actions delays in τ by
2) followed by τ ′/2, is also a limit-safe abstract schedule with time horizon tmax,
which reaches (V +V ′)/2. However, (V +V ′)/2 has a coordinate at the border iff
both V and V ′ have it as well. This shows that there is a state with a minimum
number of coordinates at the border.

To find the coordinates that need to be at the border we will use the following
LP. We have a variable xi for each dimension i ≤ N and a constraint that requires
xi to be less or equal to the i-th coordinate of Vmax − Vend and Vend − Vmin.
We also add that

∑
m∈M tm = tmax and Vend = V0 +

∑
m∈M tm · A(m), with

the objective Maximise
∑

i xi. If the value of the objective is > 0, we will get to
know a new coordinate that does not have to be at the border. We then remove
it from the LP and run it again. Once the objective is 0, then all the remaining
coordinates, I, have to be at the border and the solution to this LP tells us, at
which border the solution has to be located (it cannot possibly be at the border
of both Vmin and Vmax as then we could reach the middle).

Next, in order to bound the length of a limit-safe abstract schedule by an
exponential in the size of the input, we not only need a state with the minimum
number of coordinates at the border, but also sufficiently far way from the border.
Otherwise, we may need super-exponentially many timed actions to reach it. In
order to find such a point, we replace all xi-s in the previously defined LP by a
single variable x which is smaller or equal to all the coordinates of Vmax − Vend

and Vend − Vmin from I. We then set the objective to Maximise x, which will
give us a suitable easy target state Vend.

Now, consider A′, which is the same as A but with all slopes negated (i.e.
A′(m) = −A(m) for all m ∈ M). We claim that Vend is reachable from V0 using
a limit-safe abstract schedule τ iff (V0 + Vend)/2 is reachable from V0 in A with
time horizon tmax/2 and (V0 + Vend)/2 is reachable from Vend in A′ with time
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horizon tmax/2; this again follows by considering τ/2. Note that a coordinate of
(V0 + Vend)/2 is at the border iff it is at the border in both V0 and Vend.

This way we reduced our problem to just checking whether a limit-safe
abstract schedule exists from one point to another more permissive point (i.e.
where the set of safe modes is at least as big) within a given time horizon.
The algorithm that solves this problem is provided in the extended version. It
again reuses the same constructions as above, e.g. constructs exactly the same
sequence of sets of modes M∗ = M0 ⊂ M1 ⊂ . . . ⊂ Mk, and its correctness
follows by a similar reasoning as above. We now need to invoke this algorithm
twice: to check that (V0 +Vend)/2 is reachable from V0 with time horizon tmax/2
and that (V0 +Vend)/2 is reachable from Vend with time horizon tmax/2 in A′. If
at least one of these calls return NO, then no limit-safe abstract schedule from
V0 to Vend can exist. Otherwise, let σ and σ′ be the schedules returned by these
two calls, respectively. Then the concatenation of σ with the reverse of σ′ is a
limit-safe abstract schedule that reaches Vend from V0 with time horizon tmax. ��
Theorem 3. Finding an optimal limit-safe abstract schedule in A can be done
in nondeterministic exponential time.

Proof. The limit-safe abstract schedule constructed in Theorem 2 has an expo-
nential length. To establish a nondeterministic exponential upper bound, we can
guess the modes (and the order in which they occur). With them, we can pro-
duce an exponentially sized linear program, which encodes that the run of the
abstract schedule is safe and minimises the total cost incurred. ��

Theorem 3 and Proposition 1 immediately give us the following.

Corollary 1. If a limit-safe abstract schedule exists in A, then for any ε > 0 an
ε-safe schedule with the same cost can be found in nondeterministic exponential
time.

Moreover, from Theorem2 and the fact that in the case of multi-mode sys-
tems with no discrete costs all abstract schedules have length 1, we get the
following.

Corollary 2. Finding an optimal limit-safe abstract schedule for multi-mode
systems with no discrete costs can be done in polynomial time.

We can reduce the computational complexity in the general model if we are
willing to sacrifice optimality for ε-optimality.

Theorem 4. If a limit-safe abstract schedule exists, then finding an ε-safe
ε-optimal strategy can be done in deterministic polynomial space.

Proof. When reconsidering the linear programme from the end of the proof of
Theorem 3, we can guess the intermediate states in polynomial space (and thus
guess and output the schedule) as long as all states along the run (including the
time passed so far) are representable in polynomial space.
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Otherwise we use the opportunity to deviate by up to ε from the safe set by
increasing or decreasing the duration of each timed action up to some δ > 0, in
order to keep the intermediate values representable in space polynomial in |A|
and ε. However, we apply these changes in a way that the overall time remains
tmax. Clearly this is possible, because within δ/2 of the actual time point of each
state along the run, there is a value whose number of digits in the standard
decimal notation is at most equal to the sum of the number of digits in δ/2 and
tmax. Picking any such point for every interval would induce a schedule with the
required property and they can be simply guessed one by one.

The final imprecision introduced by this operation is at most b · δ ·
maxm∈M |A(m)|, where b is a bound on the number of timed actions in a
limit-safe schedule, which is exponential in |A|. If we choose δ = ε/(b ·
maxm∈M |A(m)|), then we will get the required precision.

Although our algorithm is nondeterministic, due to Savitch’s theorem, it can
be implemented in deterministic polynomial space. ��

4 Structure of Finite Control in One-Dimension

We show in this section that any finite safe schedule in one-dimension can be
transformed without increasing its cost into a safe schedule, which follows one
of finitely many regular patterns. The crucial component of this normal form
will be a “leap” that we define below. We first introduce some notation. Let
M+ = {m | A(m) > 0} and M− = {m | A(m) < 0}. Recall that M0 = {m |
A(m) = 0}. We will call a mode, m, an up mode, down mode, or zero-mode if
m ∈ M+, m ∈ M−, or m ∈ M0, respectively. Similarly, the trend of a timed
action (m, t) is up, down, flat if m is an up, down, zero-mode, respectively. For
any subsequence of timed actions σ′ = 〈(mi, ti), . . . , (mj , tj)〉 in a schedule σ,
whose run is run(σ) = 〈V0, V1, . . . , Vk〉, we say that σ′ starts at state v and ends
at state v′ iff v = Vi−1 and v′ = Vj . We use the same terminology for a single
timed action (in this case this subsequence has length 1).

Definition 2. A partial leap is a pair of consecutive timed actions
(mi, ti), (mi+1, ti+1) in a safe schedule such that mi ∈ M+, mi+1 ∈ M−, and
A(mi)ti+A(mi+1)ti+1 = 0, i.e. the state of a multi-mode system does not change
after any partial leap. A partial leap is complete if A(mi)ti = Vmax − Vmin. We
will simply refer to complete leaps as leaps.

There are |M+×M−| types of leap. A leap is of type (m,m′) ∈ M+×M− iff
mi = m and mi+1 = m′. Let Δtm and Δπm denote the time and cost it takes for
an up mode m to get from Vmin to Vmax or a down mode m to get from Vmax to
Vmin. Note that Δtm = |(Vmax −Vmin)/A(m)| and Δπm = πd(m)+πc(m) ·Δtm.
By Δtm,m′ and Δπm,m′ we denote the time duration and the cost of a leap of
type (m,m′) ∈ M+ × M−, respectively. Note that Δtm,m′ = Δtm + Δtm′ and
Δπm,m′ = Δπm + Δπm′ .

Any safe schedule σ can be decomposed into three sections that we will call
its head, leaps, and tail. The head section ends after the first timed action that
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ends at Vmin. The leaps section contains only leaps of possibly different types
following the head section. Finally, the tail section starts after the last leap in
the leaps section has finished. Note that any of these sections can be empty and
the tail section can in principle contain further leaps. We show here that, for
any safe schedule of length at least three, there exists another safe one with
the same or a smaller cost, whose head and tail sections follow one of the 10
patterns presented in Figs. 3 and 4, respectively, where partial up/down means
that the next state is not at the border. For each of these patterns, there exists
an example which shows that an optimal safe schedule may need to use such
a pattern and hence it is necessary to consider it. In order to prove this, we
first need to define several cost-nonincreasing and safety-preserving operations
that can be applied to safe schedules. These will later be applied in Theorem 5
to transform any safe schedule into one of the just mentioned regular patterns.
These operations are easy to explain via a picture, but cumbersome to define
formally. Therefore, the formal definitions can be found in the extended version
of this paper [23] and we present here only the intuition behind them.

Let σ be any safe finite schedule. Following Propositions 2 and 3, we can
assume that σ is angular and only contains at most one timed action with a
zero-mode, and if it contains one, this action occurs at the very beginning. Unless
explicitly stated, the operations below are defined for timed actions with up or
down trend only.

Vmax

Vmin
1

2

m1

3
m2

4m3

2′
m2

3′
m3

m1

Vmax

Vmin
1

2

m1

3

m2

4

m3

5

m4

2′

m3

3′

m4 4′

m1
m2

Fig. 1. On the left, the rearrange operation applied to three timed actions 1-2-3 with
modes m1,m2,m3 results in 1′-2′-3′ with modes m2,m3,m1. On the right, the shift
operation is being applied to a partial leap 1-2-3 which will be moved after the (com-
plete) leap 3-4-5.

The first operation that we need is the rearrange operation, which simply
changes the order of any subsequence of timed actions with the same trend. The
next one is the shift operation. It cuts any subsequence of timed actions that
start and end at the same state, V , and pastes this subsequence after any timed
action that ends at V . The effect of these two operations can be seen in Fig. 1.

Next is the shift-down operation. We can see an example of applying this
operation in Fig. 2. Intuitively, it can rearrange any subsequence of timed actions
that start and end at the same state and move them after any timed action that
ends at Vmin. The most complicated operation we define is the wedge operation.
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Fig. 2. On the left, an example of applying the shift-down operation to timed actions
mi+1,mi+2. These actions are rearranged to move after point 5, which becomes point
3’ (i.e. following timed action mi+3). On the right, an example of applying the wedge
operation to three timed actions m1,m2,m3. This operation is a (parallel) translation
of the action m2, which changes the time duration of each of theses actions. After this
operation either the m2 line touches Vmin, which would remove m1 from the schedule,
or the m2 line touches Vmax, which would change a state along the run of the schedule
to be at the border.

It acts on three consecutive timed actions in a safe schedule and simultaneously
shrinks the middle action while extending the other two, or stretches the middle
action while shrinking the other two. We can see its behaviour in Fig. 2. Intu-
itively, it moves the timed action m2 parallelly up or down, until either the timed
action m1 is removed or m2 ends at Vmax. The direction depends on the cost
gradient, but as the cost delta function of this operation is linear, one of these
directions is cost-nonincreasing.

Finally, we define the resize operation that will be used the most in our
procedure. The resize operation requires one parameter t ∈ R and can act on
any two consecutive timed actions in a safe schedule. Intuitively, if t < 0, this
operation decreases the total time of this pair of timed actions by |t| while
changing only the middle state between these two timed actions along the run of
the schedule. If t > 0, this operation increases the duration of this pair of timed
actions by t while again changing only the state between them along the run.
If t > 0 then we will also refer to this operation as the stretch operation and if
t < 0 as the shrink operation with parameter −t > 0. If the stretch and shrink
operations are simultaneously applied with the same parameter t to two non-
overlapping pairs of timed actions, the result is a safe schedule with the same
time horizon as before, but with a possibly different total cost. We will call a flexi
any subsequence of length 2 in a safe schedule such that both shrink and stretch
operations can be applied to it for some t > 0 without compromising its safety.
A simultaneous application of these two operations to flexis is demonstrated in
Figs. 5 and 6.

Consider two non-overlapping flexis at positions i and j in a safe sched-
ule σ. Let σ′ = resize(σ, i, t) be the resulting schedule of applying the resize
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operation with parameter t to the i-th and i + 1-th timed actions in σ
and resize-domain(σ, i) be the maximal closed interval from which t can be
picked to ensure that σ′ is safe. Similarly, let σ′′ = resize(σ, j,−t) and σ′′′ =
resize(resize(σ, i, t), j,−t)). Note that σ′′′ has the same time horizon as σ and it
is safe as long as t ∈ resize-domain(σ, i) ∩ resize-domain(σ, j) and let us denote
this closed interval by I. Furthermore, π(σ′′′)−π(σ) = π(σ′)−π(σ)+π(σ′′)−π(σ)
because the two flexis did not overlap. As it is shown in the extended version,
both π(σ′) − π(σ) and π(σ′′) − π(σ) are linear functions in t in the interior of I.
As a result, π(σ′′′)−π(σ) is also a linear function in t and so its minimum value is
achieved at one of the endpoints of I. Also, at such an endpoint, one of the time
actions in these two flexis will disappear and as a result the total cost would be
reduced even further. It follows, that there is an endpoint of I such that selecting
it as t will not increase the cost of the schedule, but it will remove a flexi from
σ. As the zero-mode timed action and the last timed action in a schedule can
have flexible time delay, we can also define the resize operation for them in a
similar way. As a result, we can apply the resize operation with parameter t to
any of these (including a flexi) and with parameter −t to the other. Reasoning
as above, there is a value for t such that the cost of the resulting schedule does
not increase, the schedule remains safe, and at least one of the timed actions is
removed from σ or one more state along the run of σ becomes Vmin or Vmax.

t = 0 t = 0 t = 0

t = 0 t = 0 t = 0

Vmax

Vmax

Vmin

Vmin
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Fig. 3. Ten possible head patterns: (a) flat+down (b) down (c) partial-up+down (d)
flat+up+down (e) up+down (f) partial-down+up+down (g) partial-up+up+down (h)
partial-down+down (i) up+partial-down+down and (j) empty (not depicted).
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Fig. 4. Ten possible tail patterns: (a) partial-up (b) partial-up+up (c) up+partial-
down+down (d) up+partial-down (e) up (f) partial-up+down (g) partial-up+up+down
(h) partial-up+down+up (i) up+partial-down+down+up and (j) empty (not depicted).

Theorem 5. For every safe schedule σ in a one-dimensional multi-mode system
there exists a safe schedule σ′ whose head section matches one of the patterns in
Fig. 3, tail section matches one of the patterns in Fig. 4, and π(σ′) ≤ π(σ) holds.
Furthermore, it suffices to consider only 44 combinations of these head and tail
patterns, and the length of all of them is at most five.

Proof. We will repeatedly apply combination of shrink and stretch operations
to flexis until we remove all non-overlapping ones. Note that after each such an
application either a timed action is removed or one more state along the run of σ
becomes equal to Vmax or Vmin. We claim that the following steps will transform
σ into a suitable σ′:

1. as long as there are at least one pair of non-overlapping flexis then shrink one
and stretch the other until a timed action is removed or a new state at the
border is created;

2. once there is only one flexi left or two overlapping ones, use the shift or
shift-down operation to move them to the end of the schedule;

3. if the first timed action is flat, pair it with the remaining flexi to remove one
of them using the shrink-stretch operation combination;

4. if the last state of run(σ) is not at the border and a flexi or flat timed action
remains after the previous step, they should be paired with each other for the
shrink-stretch operation combination;
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5. if two overlapping flexis exist, use the wedge operation to resolve them;
6. finally, if the tail section still does not follow any of the patterns, apply the

shift-down operation to the (unique) segment that starts and ends at Vmax.

A graphical representation of this procedure when applied to an example sched-
ule is provided in the extended version. It is easy to see that the first step of this
procedure will stop eventually because σ has a finite number of timed actions
and states along its run. The rest of the steps of this procedure just try to reduce
the number of possibilities for the head and tail sections. Note that, apart from
the initial state, there can be only one state, along the run of the resulting σ′,
which is not at the border. This is because otherwise a shrink-stretch or wedge
operation could still be applied. Drawing all possible patterns with one point
not at the border and eliminating the ones that are inter-reducible using one
of these operations, results in Fig. 3 for the head section and Fig. 4 for the tail
section.

If we try to combine all these head and tail pattern together then this would
result in 10 · 10 = 100 possible combinations. However, as just mentioned, there
can be only one point not at the border or a zero-mode timed action in a sched-
ule so these combinations of head and tail patterns can be reduced further. In
particular, any head pattern can be combined with tail patterns (e) and (j),
but only (b), (e), (j) head patterns can be combined with the remaining tail
ones. Therefore, there are 10 · 2 + 3 · 8 = 44 combined patterns and it is easy
to check that none of them has length larger than five (this is important for the
computational complexity stated in Theorem8). ��
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Fig. 5. Shrink and stretch operations being applied to two up-up flexis. The 1-2-3 one
is stretched by t, which results in 1-4-5, and 1′-2′-3′ is shrunk by t, which results in
4′-5′-3′. Note that 3 and 5 (also, 1′ and 4′) are the same states but shifted in time. In
fact, all states along the run of the schedule stay the same apart from 2 and 2′, and as
a result the schedule stays safe.

5 Complexity of Optimal Control in One-Dimension

We start with considering the easy case of infinite time horizons, before turning
to the interesting case of finite time horizons.
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Fig. 6. Shrink and stretch operations being applied to two up-down flexis.

5.1 Infinite Time Horizon

First let us consider the case M0 = ∅. If also M+ × M− = ∅ then there
are no safe schedules with infinite horizon at all. Otherwise, let (i′, j′) =
argmin(i,j)∈M+×M− Δπi,j/Δti,j . Let us pick any mode m− ∈ M− and denote
t− := (Vmin−V0)/A(m−). Consider the infinite schedule σ, which starts with the
timed action (m−, t−) followed by infinitely many complete leaps of type (i′, j′).
Obviously, at all times t = t− + k · Δti′,j′ where k ∈ N, σ is more expensive
by at most πd(m−) + πc(m−)t− from the cheapest schedule with time horizon
t. Consequently, as k → ∞, this shows that the limit superior of the average
cost cannot be smaller than Δπi′,j′/Δti′,j′ . At the same time, σ realises this
long-time average.

If M0 �= ∅, then let m′ = minm∈M0 πc(m) be the zero-mode with the lowest
continuous cost to run. We claim that if πc(m′) < Δπi′,j′/Δti′,j′ or M+×M− =
∅ then an optimal safe schedule is simply (m′,∞), whose limit-average cost
is πc(m′), and otherwise σ defined above is an optimal safe schedule. This is
because, if πc(m′) < Δπi′,j′/Δti′,j′ , then, at any time point of σ where a leap of
some type (i, j) is used, removing this leap and increasing the time m′ is used
for by Δti,j reduces the total cost up to this time point.

Taking into account that argmin(i,j)∈M+×M− Δπi,j/Δti,j can be computed
using logarithmic space (because multiplication, division and comparison can be
[13]) we get the following theorem.

Theorem 6. An optimal safe infinite schedule for one-dimensional multi-mode
systems can be computed in deterministic LogSpace.

5.2 Finite Time Horizon

Due to Theorem 1, we already know that the decision problem for optimal sched-
ules in one-dimensional multi-mode systems is at least NP-hard. Here, we show
that the problem is NP-complete by showing that an optimal schedule exists
and that each section of an optimal schedule can be guessed.
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Note that the existence of an optimal schedule for the one-dimensional case
sets it apart from the general case. In Example 1, we have shown that opti-
mal schedules are not even guaranteed to exist for two-dimensional multi-mode
systems.

Theorem 7. For any one-dimensional multi-mode systems A and tmax ≥ 0,
there exists an optimal schedule with time horizon tmax, and checking for the
existence of an optimal schedule with cost ≤ C is NP-complete. (When tmax and
C are given in binary.)

Proof. First, we can simply iterate over all schedules of length one and directly
calculate their costs. Next, we can iterate over pairs of modes, m1 and m2, and for
each of them solve a linear program (LP) which will give us the cheapest schedule
of length two using these two modes. This LP finds the cheapest partition of
tmax between the two modes and has the following form: Minimise πc(m1)t1 +
πc(m2)(tmax − t1) + πd(m1) + πd(m2)

Subject to: 0 ≤ t1 ≤ tmax, Vmin ≤ V0+A(m1)t1 ≤ Vmax and
Vmin ≤ V0+A(m1)t1+A(m2)(tmax − t1) ≤ Vmax.

This can be done in O(|A|2) time.
Now, for schedules of length at least three, we showed in Sect. 4 that any

such a schedule can be transformed without increasing its cost into one that
can be split into three sections: the head section, the leaps section, and the tail
section (some of which may be empty). Due to Theorem 5, there are 44 combined
patterns for the tail and head sections. Note that, when considering only the cost
of the whole schedule, it suffices for us to know the number of leaps of each type
in the leaps section and not their precise order. Notice that a schedule with
time horizon tmax can contain at most �tmax/Δπi,j� leaps of type (i, j). The
size of this number is polynomial in the size of the input A. There are O(|M |2)
types of leaps so the number of leaps of each type and the combined pattern of
the schedule can be guessed non-deterministically with polynomially many bits.
This guess uniquely determines the cost of the schedule. This is because, after
the total time of the leaps section is deducted from tmax, we get the exact time
the head and tail section have to last for. Each combined pattern has at most
one of the following: a flexi, a zero-mode, or the last state not at the border.
The time remaining will determinate exactly (if at all possible) the value of this
single flexible point along this schedule. Now, computing the cost of the resulting
schedule and checking whether it is lower than C can be done in polynomial time.
This shows that the problem is in NP. It also shows that optimal schedules exist,
because there are only finitely many options to choose from. ��

6 Approximate Optimal Control in One-Dimension

We first show an approximation algorithm with a 3-relative performance for the
cost minimisation problem in one-dimensional multi-mode systems, which runs
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in O(|A|7) time. Our algorithm tries all possible patterns for an optimal schedule
and for the leaps section always picks leaps of the same type. It then adds, if
necessary or for cost efficiency, a partial leap to the leaps section and minimises
the total cost of the just constructed schedule by optimising the time duration of
this partial leap. This constant approximation algorithm is crucial for showing
the existence of an FPTAS for the same problem in the next subsection.

Theorem 8. Computing a safe schedule with total cost at most three times
larger than the optimal one for one-dimensional multi-mode system A can be
done in O(|A|7) time.

We now show that the cost minimisation problem for one dimensional multi-
mode systems is in FPTAS by a polynomial time reduction to the 0-1 Knapsack
problem, for which many FPTAS algorithms are available (see e.g. [18]). This
is similar to the FPTAS construction in [22], but differs in how the modes with
fractional duration are handled. First we iterate over all possible schedules of
length at most two and find the cheapest one in polynomial time. Next, thanks
to Theorem 5, all optimal schedules longer than two can be transformed into
one of 44 different patterns. Each of these patterns results in a slightly different
FPTAS formulation. An FPTAS for the general model consists of all of these
individual FPTASes executed one after another. The details of the proof are
provided in the extended version.

Theorem 9. Solving the optimal control problem for multi-mode systems with
relative performance ρ takes O(poly(1/ρ)poly(size of the instance)) time and is
therefore in FPTAS.
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Abstract. Zonotopes are a useful set representation for bounded time
reach set computation of affine hybrid systems because of their clo-
sure under Minkowski sum and matrix multiplication operations. For
unbounded time reach set approximation of arbitrarily switched affine
hybrid systems, template complex zonotopes and a corresponding invari-
ant computation procedure were introduced, which utilized the possibly
complex eigenstructure of the affine maps. But a major hurdle in extend-
ing the technique for computing invariants of more general affine hybrid
systems, where switching is state dependent and controlled by linear
constraints, is that the class of template complex zonotopes is not closed
under intersection with linear constraints. In this paper, we use a more
expressive set representation called augmented complex zonotopes, for
which we propose an algebraic over-approximation of the intersection
with linear constraints. This over-approximation is then used to derive a
set of second order conic constraints for computing an augmented com-
plex zonotopic positive invariant for discrete time affine hybrid systems
with additive disturbance input and linear safety constraints. We demon-
strate the efficiency of this approach by experimenting on some bench-
mark examples.

1 Introduction

In the design of embedded and cyber-physical systems, one of the most impor-
tant requirements is safety, which can be roughly stated as that the system will
never enter a bad state. Safety verification for such systems are known to be
computationally challenging due to the complexity resulting from the interac-
tions among heterogenous components, having mixed (continuous and discrete)
dynamics. In this paper, we focus on the problem of finding invariants for hybrid
systems, which are widely recognized as appropriate for modelling embedded
and cyber-physical systems. An invariant is a property that is satisfied in every
state that the system can reach. Therefore a common approach for proving a
safety property is to find an invariant that implies the safety property. Invari-
ant computation has been studied extensively in the context of verification of
transition systems and program analysis (see for example [8,10,11,16,34] and

This research work is partially supported by ANR project MALTHY.

c© Springer International Publishing AG 2017
A. Abate and G. Geeraerts (Eds.): FORMATS 2017, LNCS 10419, pp. 97–115, 2017.
DOI: 10.1007/978-3-319-65765-3 6



98 A. Adimoolam and T. Dang

the developed techniques have been extended to continuous and hybrid systems
[9,12,26,30,31,33]. Barrier certificates [23] are closely related to invariants in the
sense that they describe a boundary that the system starting from a given initial
set will never cross to enter a region containing bad states. Another common app-
roach to safety verification is to compute or over-approximate the reachable set
of the system, and these reachability computation techniques have been devel-
oped for continuous and hybrid systems. Many such techniques are based on
iterative approximation of the reachable state on a step-by-step basis, which
can be thought of as a set-based extension of numerical integration. A major
drawback of this approach, inherent to undecidability of general hybrid systems
with non-trivial dynamics, is that such an iterative procedure may not terminate
and thus can only be used for bounded-time safety verification (except when the
over-approximation error accumulation is not too bad that the safety can be
decided). In contrast, invariants and barrier certificates are based on conditions
that are satisfied at all times. Although solving these conditions often involves
fixed point computation, by exploiting the structure of the dynamics (such as
eigenstructures of linear systems), one can derive meaningful conditions which
can significantly reduce the number of iterations until convergence.

Zonotopes have the advantage that they accurately capture matrix multi-
plication and linear transformation operations, but they are used mainly for
bounded time reachability computation. For approximating unbounded time
reachable sets of arbitrarily switched affine hybrid systems based on positive
invariants, template complex zonotopes were introduced in [1], which have
the following useful property. Any template complex zonotope generated by
the eigenvectors of a Schur stable linear transformation is positively invariant
with respect to the transformation. Therefore, template complex zonotopes can
exploit the possibly complex eigenstructure of the system dynamics for comput-
ing invariants, while real zonotopes can not. However, a formidable hurdle using
them for invariant computation of more general affine hybrid systems, where
switching is state-dependent and controlled by linear constraints, is that we
have to handle the intersection of template complex zonotopes with the guard
sets that trigger switching. In this regard, template complex zonotopes share
the drawback of usual zonotopes that these classes of sets are not closed under
intersection with linear constraints. In this paper, we address this problem as fol-
lows. We use a slightly more general set representation, called augmented complex
zonotope, based on which we propose an algebraic overapproximation of the inter-
section with a class of linear constraints, called sub-parallelotopic. Henceforth,
we derive a numerically efficiently solvable sufficient condition for computing an
augmented complex zonotopic invariant satisfying linear safety constraints, for
a discrete-time affine hybrid system with subparallelotopic switching constraints
and bounded additive disturbance input. The sufficient condition is expressed
as a set of second order conic constraints. We also note that the class of sub-
parallelotopic constraints that we consider are quite general and can be used in
the specification of many practical affine hybrid systems. We corroborate our
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approach by presenting the experimental results for three benchmark examples
from the literature.

Related work. For hybrid systems verification, convex polyhedra [11,18], and
their special classes such as octagons [22] and zonotopes [15,20] and tropical
polyhedra [5] are the most commonly used set representations. During reacha-
bility analysis, which requires operations under which a set representation is not
closed (such as the union or join operations for convex polyhedra and additionally
intersection for zonotopes), the complexity of generated sets increases rapidly in
order to guarantee a desired error bound. One way to control this complexity
increase is to fix the face normal vectors or generators, which leads to template
convex polyhedra [12,29]. Although our template complex zonotopes proposed
in [1] do not belong to the class of convex polyhedra, they follow the same
spirit of controlling the complexity using templates. Set representations defined
by non-linear constraints include ellipsoids [19], polynomial inequalities [7] and
equalities [25], quadratic templates and piecewise quadratic templates [3,27,28],
which are used for computing non-linear invariants. A major problem of template
based approaches finding good templates. In this regard, using template complex
zonotopes and the augmented version introduced in this paper, we can exploit
eigen-structures of linear dynamics which reflect the contraction or expansion of
a set by the dynamics, and define good templates for efficient convergence to an
invariant (see Proposition 4.3 of [2]).

The extension to complex zonotope [2] is very similar in spirit to quadratic
zonotopes [4] and more generally polynomial zonotopes [6]. Nevertheless, while
a polynomial zonotope is a set-valued polynomial function of intervals, a com-
plex zonotope is a set-valued function of unit circles in the complex plane. Our
idea in this paper of coupling additional linear constraints with complex zono-
topes is inspired by the work on constrained zonotopes proposed in [14,32] for
computing intersection with linear constraints. But while [14,32] compute the
intersection or its overapproximation, algorithmically, we instead derive a simple
algebraic expression to overapproximate the intersection. This algebraic expres-
sion is latter used to obtain second order conic (convex) constraints, for invariant
computation in a single step of convex optimization.

Organization. The rest of the paper is organized as follows. Firstly, we explain
some of the mathematical notation used in this paper. Then in Sect. 2, we
describe the model of a discrete-time affine hybrid system, controlled by sub-
parallelotopic switching conditions and having a bounded additive disturbance
input. In Sect. 3, we present the set representation of augmented complex zono-
topes and discuss some important operations and relations, in particular inter-
section with sub-parallelotopic constraints, projection in any direction, linear
transformation, Minkowski sum and inclusion checking. In Sect. 4, we derive a
set of second order conic constraints to compute an augmented complex zono-
topic invariant, satisfying linear safety constraints and containing an initial set.
Furthermore, we explain how to choose the template. In Sect. 5, we report some
experimental results. The conclusion and future work are given in Sect. 6.
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Notation. Some notations for which we consider explanation may be required is
described below. We denote R = R

⋃{−∞,∞}. If S is a set of complex numbers,
then Re(S) and Im(S) represent the real and imaginary projections of S, respec-
tively. If z is a complex number, then |z| denotes the absolute value of z. On the
other hand, if X is a complex matrix (or vector), then |X| denotes the matrix
(or vector) containing the absolute values of the elements of X. The diagonal
square matrix containing the entries of a complex vector z along the diagonal is
denoted by D(z). The conjugate transpose of a matrix V ∈ Mm×n(C) is denoted
V ∗ = (Re(V ) − i Im(V ))T

. If V V ∗ is invertible, then V † = V ∗ (V V ∗)−1, which
is the pseudo-inverse of V . Given two vectors l, u ∈ R

k and any relation ��
between numbers in R, we say l �� u if li �� ui, ∀i ∈ {1, ..., k}. The meet of the two
vectors l and u is denoted l

∧
u, defined as (l

∧
u)i = min (li, ui) ∀i ∈ {1, ..., k}.

The join is denoted l
∨

u, defined as (l
∨

u)i = max (li, ui) ∀i ∈ {1, ..., k}.

2 Hybrid Systems and Positive Invariants

In a discrete-time affine hybrid system, there is a finite set of discrete variables,
called locations, and a finite set of continuous variables, whose valuation is in
the real Euclidean space of dimension n ∈ Z>0. For each location, a set of linear
constraints called staying conditions constrain the continuous state of the system
in the location. Also, there is an affine transition map with a (possibly) additive
uncertain but bounded disturbance input set, which specifies the evolution of
the continuous variables in the location. A set of labeled directed edges specify
the discrete transitions, which result in a possible change of locations along with
an affine reset of continuous variables, where the reset has a bounded additive
uncertainty. Also, each edge transition can have a set of preconditions, called a
guard, given by linear constraints.

In this paper, we consider a specific class of linear constraints called sub-
parallelotopic, for defining guards and staying conditions, such that their inter-
section with the reachable set represented by augmented complex zonotopes
(introduced later) can be effectively computed. The sets corresponding to sub-
parallelotopic constraints can be seen as a generalization of parallelotopes to
possibly unbounded sets.

Definition 1 (Sub-parallelotope). Let K ∈ Mk×n(R) such that k ≤ n
and

(
KKT

)
is non-singular. We call such a matrix K as a sub-parallelotopic

template. Let û, l̂ ∈ R
k

such that l̂ ≤ û. Then a sub-parallelotopic set is
P

(
K, l̂, û

)
=

{
x ∈ R

n : l̂ ≤ Kx ≤ û
}
.

For example, the set of linear constraints −1 ≤ x + y − z ≤ 1 ∧ x − y + z ≤ 3
is equivalent to a sub-parallelotope

P
([

[1 1 − 1]
[1 − 1 1]

]

,

[ −1
−∞

]

,

[
1
3

])

,



Augmented Complex Zonotopes for Computing Invariants 101

because the rows of the sub-parallelotopic template are linearly independent.
On the other hand, the set of constraints −1 ≤ x + y − z ≤ 1 ∧ x + y + z ≤
2 ∧ − 1 ≤ x + y do not constitute a sub-parallelotope, because the three
row vectors

[
1 1 −1

]
,

[
1 1 1

]
, and

[
1 1 0

]
together are linearly dependent.

Sub-parallelotopic constraints are algebraically related to a generator repre-
sentation. We can express P

(
Kk×n, l̂, û

)
=

{
c + K†ζ : c ∈ R

n, ζ ∈ R
k,Kc = 0,

l̂ ≤ ζ ≤ û
}

. Here, the columns vectors in the pseudo-inverse K† can be consid-
ered as generators. Therefore, it is possible to express the intersection of sub-
parallelotope with a suitably aligned zonotope as a simple algebraic expression,
as we will see latter.

System model. We consider discrete-time affine hybrid systems defined by a
tuple H = (Q,K, γ,A, U,E). Here, Q is a finite set of locations. For each location
q ∈ Q, a sub-parallelotopic template Kq ∈ Mkq×n(R), i.e., Kq (Kq)

T is non-
singular, and kq is the number of rows of the template, is used for defining the
staying conditions and the guards on edges emanating from the location. A pair
of upper and lower bounds γq =

(
γ−

q , γ+
q

) ∈ R
kq × R

kq : γ−
q ≤ γ+

q together
with the sub-parallelotopic template define the sub-parallelotopic staying set,
given as P (Kq, γ

−
q , γ+

q

)
. A matrix Aq and a bounded set Uq ⊆ R

n correspond
to the affine transformation in the location. The set of edges is E, where σ ∈ E
is a tuple σ = (σ1, σ2, σ

−, σ+, Θσ, Ωσ). The pre and post locations of the edge
are σ1 ∈ Q and σ2 ∈ Q, respectively. The pair of upper and lower bounds
(σ−, σ+) ∈ R

kσ1 × R
kσ1 : σ− ≤ σ+, gives the sub-parallelotopic guard set

P (Kσ1 , σ
−, σ+), which is a precondition on the edge transition. The matrix Θσ

and a bounded set Ωσ ⊆ R
n correspond to the affine transition map along

the edge.

Dynamics. The state of the hybrid system is a pair (x, q), where x ∈ R
n is called

the continuous state and q ∈ Q is called the discrete state. The evolution of the
state of the system in time is called a trajectory of the system. The trajectory is
a function (x,q) : Z≥0 → R

n × Q, such that for all t ∈ Z≥0, one of the following
is true.

1. Continuous transition.

∃u ∈ Uq(t) such that all of the following are collectively true.
x(t + 1) = Aq(t)x(t) + u, q(t + 1) = q(t) and

x(t), x(t + 1) ∈ P
(
Kq(t), γ

−
q(t), γ

+
q(t)

)
.

(1)

2. Discrete transition.

∃σ ∈ E and u ∈ Ωσ such that all of the following are collectively true.

q(t) = σ1, x(t) ∈ P
(
Kσ1 , σ

− ∨
γ−

σ1
, σ+

∧
γ+

σ1

)

x(t + 1) = Θq(t)x(t) + u, q(t + 1) = σ2

x(t + 1) ∈ P (Kσ2 , γ
−
σ2

, γ+
σ2

)
.

(2)
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Given a set of continuous states S ∈ R
n in a location, for computing the set of

reachable continuous states in the next step of continuous or discrete transition,
we define the following functions, respectively.

Rq (S) =
{(Aq

(
S

⋂ P (Kq, γ
−
q , γ+

q

)) ⊕ Uq

)

⋂ P (Kq, γ
−
q , γ+

q

) .

Rσ (S) =
{(

Θσ

(
S

⋂ P (Kσ1 , σ
− ∨

γ−
σ1

, σ+
∧

γ+
σ1

)) ⊕ Ωσ

)

⋂ P (Kσ2 , γ
−
σ2

, γ+
σ2

) .

We shall identify a set of states by a mapping of the kind Γ : Q → 2R
n

,
called a state set, which corresponds to the set of states {(x, q) : x ∈ Γ (q)}. For
notational convenience, we shall denote Γq as the set of continuous states of Γ
in a location q. A positive invariant is a set of states of the system such that all
trajectories beginning at any state in the positive invariant remain within the
positive invariant. Equivalently, a state set is a positive invariant if the reachable
set in one time step by both the intralocation and interlocation dynamics is
contained within the original state set.

Definition 2. A state set Γ is a positive invariant if ∀q ∈ Q, Rq (Γq) ⊆ Γq

and ∀σ ∈ E, Rσ (Γσ1) ⊆ Γσ2 .

3 Augmented Complex Zonotopes

Before introducing augmented complex zonotope, we briefly review the related
set representations used in this paper. First, polytopes can be defined in
terms of halfspace representation. Let T ∈ Mn×k(R) and d ∈ R

k. Then a
(possibly unbounded) polytope, denoted by J (T, d), is defined as J (T, d) ={

x ∈ R
k

: Tx ≤ d
}

. Usual zonotopes form a subclass of polytopes, which are
geometrically Minkowski sums of line segments. They are represented as a linear
combination of real vectors, called generators, whose combining coefficients are
bounded in real-valued intervals. Let W ∈ Mn×k(R) and l, u ∈ R

m : l ≤ u. Then
a real zonotope is Z (W, l, u) =

{
Wζ : ζ ∈ R

k, ζi ∈ [li, ui] ∀i ∈ {1, ..., k}} . For
simple examples of zonotopes like boxes and octagons, efficient interconversion
between the zonotopic representation and the halfspace polytopic representation
is possible. However, in general, zonotopes do not admit efficient halfspace rep-
resentations as polytopes. The reason is that a zonotope with m generators in an
n-dimensional space has

(
m

n−1

)
faces (bounding hyperplanes), if all combinations

of any n generators are linearly independent. That is, the halfspace representa-
tion of a zonotope can be exponentially large, compared to the above generator
representation.

Zonotopes are closed under linear transformations and Minkowski sums,
which can be computed efficiently. Hence, zonotopes are considered efficient
for reachability analysis of continuous linear systems. Nevertheless, a major
drawback of zonotopes is that their intersection with sets defined by linear
constraints need not be zonotopes. Also, there is no unique smallest zonotope
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that overapproximates such intersections. However, we observe that when the
linear constraints constitute a sub-parallelotope with a template aligned with
that of the zonotope, their intersection can be exactly computed. This is also
the reason we considered the case of staying conditions and guards specified
as sub-parallelotopes in this work. As a simple example, the intersection of

Z
([

1 0
0 1

]

,

[−1
−1

]

,

[
2
2

])

with x1 ≤ 1 ∧ x2 ≥ 0.5 gives Z
([

1 0
0 1

]

,

[−1
0.5

]

,

[
1
2

])

.

The general case is described in the following lemma.

Lemma 1. Let K ∈ Mk×n(R) such that k ≤ n and
(
KKT

)
is non-singular.

Then
Z (

K†, l, u
) ⋂

P
(
K, l̂, û

)
= Z

(
K†, l

∨
l̂, u

∧
û
)

A template complex zonotope introduced in [1] has complex valued vectors
as generators, whose combining coefficients are complex and bounded in their
absolute values. It has the useful property that when multiplied by a Schur stable
matrix whose (possibly complex) eigenvectors are its generators, the transformed
complex zonotope is contained inside the original complex zonotope. A formal
statement of a similar property is given in Proposition 4.3 of [2]. Because of this
property, template complex zonotopes can utilize the possibly complex eigen-
structure while computing invariants.

Definition 3 (Template complex zonotope). Let V ∈ Mn×m(C) (template)
and s ∈ R

m
≥0 (scaling factors) and c ∈ R

n (center). Then the following is a template
complex zonotope: C (V, c, s) = {c + V ε : ε ∈ C

m, |εi| ≤ si ∀i ∈ {1, ...,m}} .

We note that unlike real zonotopes, template complex zonotopes can have
non-polyhedral real projections because they describe Minkowski sums of ellip-
soids and line segments. We now introduce an augmented complex zonotope,
which is a Minkowski sum of a template complex zonotope and a real zono-
tope. In terms of expressivity, an augmented complex zonotope is slightly more
general than template complex zonotopes. But geometrically, the sets that can
be described as real projections of augmented complex zonotopes can also be
described as real projections of template complex zonotopes. However, with aug-
mented complex zonotopes, the intersection with subparallelotopic constraints
can be succinctly specified, as we will see latter. Consequently, this represen-
tation is more convenient to derive conditions for computing invariants for the
affine hybrid system.

Definition 4 (Augmented complex zonotope). Let V ∈ Mn×m(C) called
primary template, W ∈ Mn×k(R) called secondary template, c ∈ R

n called pri-
mary offset, s ∈ R

m called scaling factors, u, l ∈ R
k called lower and upper

interval bounds, respectively, such that l ≤ u. The following is an augmented
complex zonotope

G (V, c, s,W, l, u) = C (V, c, s) ⊕ Z (W, l, u) .
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We first discuss the intersection operation of an augmented complex zonotope
with sub-parallelotopic constraints, before discussing other operations. Note that
due to the space limit, we do not include all the proofs but only those of the key
results.

For deriving a formula for the intersection, we first prove some results on
intersection among convex sets. Let us define the support of a vector v in a
set S ⊂ R

n relative to a point w ∈ R
n as ρ (v, w, S) = maxx∈S vT (x − w).

The following lemma states a relationship between the support of vectors and
inclusion between sets.

Lemma 2. Let S1, S2 ⊆ R
n be two closed convex sets such that S1

⋂
S2 = ∅.

Let w ∈ S1

⋂
S2. Then S1 ⊆ S2 iff ∀v ∈ R

n : ρ (v, w, S1) ≤ ρ (v, w, S2).

Let us say that two convex and closed sets S1 and S2 have non-empty intersection
and w is a common point, i.e., inside the sets. According to the above lemma,
saying that S1 is contained inside S2, is equivalent to saying that the maximum
possible displacement in S1 from w along the direction of any vector v is less
than the maximum possible displacement in S2 from w along the direction of
the vector v.

Recall that an augmented complex zonotope is a Minkowski sum of a com-
plex zonotope and a real zonotope, i.e., C (V, c, s) ⊕ Z (W, l, u). From Lemma 1,
we see that the intersection of a sub-parallelotope P

(
K, l̂, û

)
with a zono-

tope Z (W, l, u) can be computed when W = K†. Motivated by this, we
want to find a condition under which we can overapproximate the intersection
(C (V, c, s) ⊕ Z (W, l, u))

⋂ P
(
K, l̂, û

)
by C (V, c, s)⊕

(
Z (W, l, u)

⋂ P
(
K, l̂, û

))
,

that is computing first the intersection (which can be done efficiently) and then
the Minkowski sum. Indeed we can find the required condition for a more general
case of any three closed convex sets S1, S2, S3 (that is, find a condition under
which (S1 ⊕ S2)

⋂
S3 can be overapproximated by S1⊕(S2

⋂
S3)) and apply this

result to augmented complex zonotopes. We state this condition as follows.

Lemma 3. Let S1 ⊆ C
n and S2, S3 ∈ R

n be closed convex sets such that S2 ∩
S3 = ∅ and 0 ∈ S1. Then (S1 ⊕ S2)

⋂
S3 ⊆ S1 ⊕ (S2 ∩ S3).

Proof. Firstly, the imaginary parts of both sides of above inequality are equal to
Im(S1) because Im(S2) = Im(S3) = 0. So, we show the inclusion of real parts.
Let w ∈ S2

⋂
S3. Then, since 0 ∈ S1, so w = w + 0 ∈ S1 ⊕ S2 =⇒ w ∈

(Re (S1) ⊕ S2)
⋂

S3. So, based on Lemma 2, it sufficient to prove that for all
v ∈ R

n,

ρ
(
v, w, (Re (S1) ⊕ S2)

⋂
S3

)
≤ ρ (v, w,Re (S1) ⊕ (S2 ∩ S3)) .

Let us define a = ρ (v, 0,Re (S1)), b = ρ (v, w, S2) and c = ρ (v, w, S3). Since,
0 ∈ Re (S1), so a = maxx∈Re(S1) vT x ≥ vT 0 = 0, i.e., a ≥ 0. Further-
more, ρ (v, w, (Re (S1) ⊕ S2)

⋂
S3) = min (ρ (v, w,Re (S1) ⊕ S2) , ρ (v, w, S3)). As

w = w+0, so the above equals min (ρ (v, 0,Re (S1)) + ρ (v, w, S2) , ρ (v, w, S3)) =
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min(a+b, c). By a similar calculation, we can show ρ (v, w,Re (S1) ⊕ (S2 ∩ S3)) =
a+min(b, c). So, we need to prove that min(a+b, c) ≤ a+min(b, c). Since a ≥ 0,
so min(a + b, c) ≤ min(a + b, a + c) = a + min(b, c). ��

Now we introduce the following affine functions which are used latter to
express the overapproximation of the intersection between an augmented com-
plex zonotope and a sub-parallelotope. A binary function Λ̂ : Rk × R

k
, called

min-approximation function, is defined as follows: for u ∈ R
k and û ∈ R

k
,

(
Λ̂ (u, û)

)

i
=

{
ûi if ûi < ∞
ui if ûi = ∞ . Similarly, another binary function Λ : Rk × R

k
,

called max-approximation function, is defined as follows: for l ∈ R
k and l̂ ∈ R

k
,

(
Λ

(
l, l̂

))

i
=

{
l̂i if l̂i > ∞
li if l̂i = −∞ . It is easy to see that the min-approximation

and max-approximation functions are affine, because for any one coordinate, a
respective function is either a constant function or equal to the first argument,
i.e., identity function. The following theorem states that an overapproximation
of the intersection of an augmented complex zonotope with a sub-parallelotope
can be expressed using these affine approximation functions.

Theorem 1. Given a sub-parallelotope P
(
K, l̂, û

)
and an augmented com-

plex zonotope G (
V, c, s,K†, l, u

)
such that V V ∗ is non-singular,

∣
∣V †c

∣
∣ ≤ s,

l ≤ Λ
(
l, l̂

)
≤ Λ̂ (u, û) ≤ u, then G (

V, c, s,K†, l, u
) ⋂ P

(
K, l̂, û

)
⊆

G
(
V, c, s,K†, Λ

(
l, l̂

)
, Λ̂ (u, û)

)
.

Proof Sketch. Consider S1 = C (V, c, s), S2 = Z (K†, l, u
)

and S3 = P
(
K, l̂, û

)
.

First, we check that 0 ∈ S1 and S2

⋂
S3 = ∅, and then we subsitute S1, S2

and S3 in Lemma 3. To compute the intersection between S2 and S3, we use
Lemma 1. ��
Similar to usual zonotopes, augmented complex zonotopes are closed under
Minkowski sums and linear transformations, and their computations are also sim-
ilar. The computation of some important operations are summarized as follows.

1. AG (V, c, s,W, l, u) = G (AV,Ac, s,AW, l, u).
2. Given G1 = G (V, c, s,W, l, u) and G2 = G (V ′, c′, s′,W ′, l′, u′), we have G1 ⊕

G2 = G
(

[V V ′] , c + c′,
[

s
s′

]

, [W W ′] ,
[

l
l′

]

,

[
u
u′

])

.

3. The limits of the projection of an augmented complex zonotope along any
direction can be computed as follows. For v ∈ R

n,

max
x∈G(V,c,s,W,l,u)

vT x = vT

(

c + W
l + u

2

)

+
∣
∣vT [V W ]

∣
∣
([

s
u−l
2

])

(3)

To derive (3), we multiply the linear constraints with the center of the augmented
complex zonotope and add an error term proportional to a set of scaling factors.
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The center is
(
c + W l+u

2

)
, while the scaling factors are

[
s

u−l
2

]

. Based on (3),

we derive the following Lemma relating the real projection of an augmented
complex zonotope and a template complex zonotope.

Lemma 4. Re (G (V, c, s,W, l, u)) = Re
(

C
(

[V W ] , c + W
(

u+l
2

)
,

[
s

u−l
2

]))

.

Because of the above relationship, checking the inclusion between the real pro-
jections of two augmented complex zonotopes amounts to checking the inclusion
between real projections of two template complex zonotopes. Therefore, we first
review an inclusion relation between template complex zonotopes, which was
earlier stated in [1].

Unlike usual zonotopes, template complex zonotopes can have non-
polyhedral real projections. Checking the exact inclusion between two tem-
plate complex zonotopes, in general, amounts to solving a non-convex opti-
mization problem, which could be computationally intractable. Instead, a con-
vex condition was proposed in [1], which is sufficient to guarantee the inclusion
between template complex zonotopes. Here, we present this condition as a rela-
tion between template complex zonotopes.

Definition 5. We define a relation “�” between template complex zonotopes
as C (

V ′
n×m′ , c′, s′) � C (Vn×m, c, s) if all of the below statements are collectively

true.

∃X ∈ Mm×m′(C) and y ∈ C
m s.t.

V X = V ′D (s′) , V y = c′ − c, and
m

max
i=1

⎛

⎝|yi| +
m′
∑

j=1

|Xij | − si

⎞

⎠ ≤ 0
(4)

Lemma 5 (Inclusion: template complex zonotopes). The inclusion
C (V ′, c′, s′) ⊆ C (V, c, s) holds if the relation C (V ′, c′, s′) � C (V, c, s) is true.

Proof idea. We relate the combining coefficients of the two template complex
zonotopes by a linear transformation, with appropriate bounds on the transfor-
mation matrix such that the inclusion holds. ��

We extend the above inclusion relation to augmented complex zonotopes,
based on Lemma 4 as follows.

Definition 6. We say that G (V ′, c′, s′,W ′, l′, u′) � G (V, c, s,W, l, u) if

C
(

[V ′ W ′] , c′ + W ′
(

u′+l′
2

)
,

[
s′

u−l
2

])

� C
(

[V W ] , c + W
(

u+l
2

)
,

[
s

u−l
2

])

.

Lemma 6 (Inclusion between augmented complex zonotopes). The
real inclusion Re (G (V ′, c′, s′,W ′, l′, u′)) ⊆ Re (G (V, c, s,Wn×k, l, u)) holds if the
relation G (V ′, c′, s′,W ′, l′, u′) � G (V, c, s,W, l, u) is true.

For fixed V and V ′, we observe that (4) is equivalent to a set of convex
constraints called second order conic constraints. Recall that a constraint of the
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form ‖Ax‖2 + vT x+w ≤ 0 on an n-dimensional variable x, given A ∈ Mn×k(R),
v ∈ R

n and w ∈ R, is a second order conic constraint (SOCC). We also note
that linear inequalities and equalities can be expressed in the form of SOCC
described above. There are many convex optimization tools that can efficiently
solve SOCC up to a high numerical precision. Our aforementioned observation
about (4) is extended to augmented complex zonotopes and formalized as below.

Proposition 1. For constant V ,V ′,W ,W ′, the relation G (V ′, c′, s′,W ′, l′, u′) �
G (V, c, s,W, l, u) is equivalent to a set of second order conic constraints on the
variables c, c′, s, s′, l, l′, u, u′ and some additional variables.

4 Computation of Positive Invariants

In this section, we first derive a sufficient condition for positive invariance of an
augmented complex zonotope. Also, we state conditions for containment of an
initial set and satisfaction of polytopic safety constraints. Latter, we explain how
to compute the augmented complex zontope based on these conditions.

Earlier, we had computed the linear transformations and Minkowki sums of
augmented complex zonotope and possible overapproximations of their intersec-
tion with subparalleotopic constraints. Accordingly, we can compute the overap-
proximation of the reachable set of an augmented complex zonotope as another
augmented complex zonotope. Then, we utilize the relation given in Definition 6
to deduce a sufficient condition for positive invariance, as follows. We consider
a state set Γ given as, for a location q ∈ Q, Γq = Re

(G (
Vq, cq, sq,K†

q , lq, uq

))

such that VqV
∗
q is invertible. Let us consider that the additive input for an

intralocation transition in any location q ∈ Q is overapproximated as Uq ⊆
G (

V in
q , cin

q , sin
q ,W in

q , linq , uin
q

)
. Similarly, for an edge σ ∈ E, let the additive input

set be overapproximated as Ωσ ⊆ G (
V in

σ , cin
σ , sin

σ ,W in
σ , linσ , uin

σ

)
. Furthermore,

for any q ∈ Q, the safe set in the location is Sq = J (Tq, dq) and the initial set
is Iq = Re

(G (
V I

q , cI
q , s

I
q ,W

I
q , lIq , uI

q

))
.

Lemma 7 (Positive invariance). For all locations q ∈ Q and all edges σ ∈ E,
the inclusions Rq (Γq) ⊆ Γq and Rσ (Γσ1) ⊆ Γσ2 holds if ∀q ∈ Q and ∀σ ∈ E, all
of the below statements are collectively true.

/* intersection with staying conditions and one continuous transition */
∣
∣V †

q cq

∣
∣ ≤ sq, lq ≤ Λ

(
lq, γ

−
q

) ≤ Λ̂
(
uq, γ

+
q )

) ≤ uq (5)

there exist real vectors c′
q, s

′
q, l

′
q, u

′
q, l

′′
q , u′′

q such that

c′
q = Aqcq + cin

q , s′
q =

[
sq

sin
q

]

, l′q =
[

Λ
(
lq, γ

−
q

)

linq

]

, u′ =
[

Λ̂
(
uq, γ

+
q )

)

uin
q

]

(6)
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/* inclusion condition */

G ([AqVq V in
q

]
, c′

q, s
′
q,

[AqK†
q W in

q

]
, l′q, u

′
q

) � G (
Vq, cq, sq,K†

q , l
′′
q , u′′

q

)

l′′q ≤ Λ
(
l′′q , γ−

q

) ≤ Λ̂
(
u′′

q , γ+
q

) ≤ u′′
q , Λ

(
l′′q , γ−

q

) ≥ lq and Λ̂
(
u′′

q , γ+
q

) ≤ uq.
(7)

/* intersection with staying and guard condition of current location and one
discrete transition*/

there exist real vectors c′
σ2

, s′
σ2

, l′σ2
, u′

σ2
, l′′σ2

, u′′
σ2

such that

c′
σ = Θσcσ1 + cin

σ , s′
σ =

[
sσ1

sin
σ

]

, lσ1 ≤ Λ
(
lσ1 , γ

−
σ1

) ≤ Λ̂
(
uσ1 , γ

+
σ1

) ≤ uσ1

(8)

l′σ =
[

Λ
(
lσ1 , γ

−
σ1

∨
σ−)

linσ

]

, u′
σ =

[
Λ̂

(
uσ1 , γ

+
σ1

∧
σ+

)

uin
σ

]

(9)

/* intersection with staying condition of target location and inclusion condition */

G ([
ΘσVσ1 V in

σ

]
, c′

σ, s′
σ,

[
ΘσK†

σ1
W in

σ

]
, l′σ, u′

σ

) � G (
Vσ2 , cσ2 , sσ2 ,K†

σ2
, l′′σ, u′′

σ

)

l′′σ ≤ Λ
(
l′′σ, γ−

σ2

) ≤ Λ̂
(
u′′

σ, γ+
σ2

) ≤ u′′
σ

Λ
(
l′′σ, γ−

σ2

) ≥ lσ2 and Λ̂
(
u′′

σ, γ+
σ2

) ≤ uσ2 . (10)

Next, for the augmented complex zonotopic state set to contain the initial set, we
state the following sufficient condition based on the inclusion relation between
augmented complex zonotopes from Lemma 6. For a location q ∈ Q, Iq ⊆ Γq if,

G (
V I

q , cI
q , s

I
q ,W

I
q , lIq , uI

q

) � G (
Vq, cq, sq,K†

q , lq, uq

)
. (11)

For satisfaction of polytopic safety constraints, i.e., for a location q ∈ Q, Γq ⊆ Sq,
the following is a necessary and sufficient condition, which is a reformulation of (3).

Tq

(

cq + K†
q

(
uq + lq

2

))

+
∣
∣T

[
Vq, K†

q

]∣
∣
[

s
uq−lq

2

]

≤ dq. (12)

By simply collecting all the results of this section for computing a safe positive
invariant, we state the following theorem.

Theorem 2. If ∀q ∈ Q and ∀σ ∈ E, all of the Eqs. (5–12) are collectively true,
then the state set Γ is a positive invariant, satisfies the given safety constraints
and contains the given initial set.

Solving the conditions. First we note that the secondary template in a loca-
tion is predefined as the pseudoinverse of the subparallelotopic template in the
location, in accordance with the above results in this section. Then, we observe
that for a fixed primary template in each location, the set of Eqs. (5–12) are
equivalent to second order conic constraints on the primary offset, upper and
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lower interval bounds in each location and some additional variables. This can
be inferred from the Proposition 1 and the fact that the min-approximation and
max approximation functions are affine. So, we first fix the primary template
in each location and solve the aforementioned constraints as a convex program.
The choice of the primary template is explained below.

Choosing the primary template. Ensuring that the primary template has
full rank, so that its pseudo-inverse as defined exists, we may collect all or some
of the following vectors in the primary template. (1) Eigenvectors of the trans-
formation matrices and their products, for the different transition maps. This is
motivated by the observation that complex zonotopes generated by eigenvectors
of a Schur stable matrix contract when multiplied by the matrix (see Proposi-
tion 4.3 of [2]). (2) The primary and secondary templates of the zonotopes which
overapproximate the additive disturbance input sets and their products with
the linear matrices of the transition maps. This is because the input set and
its transformations are added in continuous step computation. (3) Orthogonal
projections of the above vectors on the null space of the subparallelotopic tem-
plate. This is because the proposed intersection in Theorem 1 is exact when the
primary template belongs to the null space of the subparallelotopic template.
(4) Adding any set of arbitrary vectors will increase the chance of computing a
desired invariant, but at a computational expense. This is because the scaling
factors will be adjusted accordingly by the optimizer.

5 Experiments

We performed experiments on 3 benchmark examples from the literature and com-
pared the results with that obtained by the tool SpaceEx [13] which performs ver-
ification by step-by-step reachability computation. On one example, we compared
the computational time with the reported results of the MPT tool [24]. For convex
optimization, we used CVX (version 2.1) with MOSEK solver (version 7.1) and
Matlab (version: 8.5/R2015a) on a computer with 1.4 GHz Intel Core i5 proces-
sor and 4 GB 1600 MHz DDR3. The precision of the solver is set to the default
precision of CVX.

Robot with a Saturated Controller. Our first example is a benchmark model of
a self-balancing two wheeled robot called NXTway-GS1 by Yorihisa Yamamoto,
presented in the ARCH workshop [17]. We consider the sampled data (discrete
time) networked control system model presented in the paper. In our experi-
ment, we decoupled some unbounded directions of the dynamics of the system
from bounded directions by making an appropriate linear transformation of the
coordinates. The transformation is such that the coordinates corresponding to
the body pitch angle and controller inputs are among the bounded directions.
We do not explain the transformation here because it is beyond the scope of this
paper.

The state space of the saturated system can be divided into 9 different regions
such that the system exhibits different affine dynamics in different regions. There-
fore, the saturated sampled data system can be seen as a discrete time affine
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Table 1. Unsaturated robot model:
results

Method |ψ| ≤ Comp.

time (s)

SpaceEx Octagon

template

UB NT

400 support

vectors

UB NT

Suggested in [17] 1.39 n/a

ACZ invariant 1.29 4

UB: >1000, NT: Not terminating in more than

180s, n/a: Not applicable/not available, ACZ:

Augmented complex zonotope.

Table 2. Saturated robot model: results

Method |ψ| ≤ Comp.

time (s)

SpaceEx Octagon

template

UB NT

400 support

vectors

UB NT

Suggested in [17] 1.571 − ε :

ε > 0

n/a

ACZ invariant 1.13 45

UB: >1000, NT: Not terminating in more than 180s,

n/a: Not applicable/not available, ACZ: Augmented

complex zonotope.

Table 3. Small invariant computa-
tion: Perturbed double integrator

Method |x1| ≤ |x2| ≤ Comp.

time (s)

SpaceEx Octagon

template

0.38 0.43 1.7

100

support

vectors

0.38 0.43 23.6

ACZ invariant 0.38 0.36 5.1

Table 4. Large invariant computation:
Perturbed double integrator

Method Comp. time (s)

MPT tool [24] 107

ACZ 12

hybrid system. On the other hand, the unsaturated system has just one affine
dynamics and is not a hybrid system. We model the saturated system using one
location and nine self edges, corresponding to the nine different affine dynamics
in different regions, which are specified by the guards on the edges. The unsat-
urated system is modelled with one location and no edges such that the only
dynamics is the continuous affine dynamics in the location. The same discrete
time models are specified in SpaceEx for comparison of performance.

Size of unsaturated model: 10 dimensional, 1 location, 0 edges.

Size of saturated model: 10 dimensional, 1 location and 9 edges.
The safety requirement is that the body pitch angle of the robot, which in our

model is denoted by x1, should be bounded within some value. In the benchmark,
it was suggested that x1 ∈ [−π

2 + ε, π
2 − ε

]
: ε > 0 for the saturated system,

while x1 ∈ [ −π
2.26 , π

2.26

]
for the unsaturated system. The initial set is the origin.

Experiment settings. The primary template for the hybrid system is chosen
as the collection of the (complex) eigenvectors of linear matrices of all affine
maps for the edge transitions, the orthonormal vectors to the guarding hyper-
plane normals and the projections of the eigenvectors on the subspace spanned
by the orthonormal vectors. For the linear system, it consists of the eigenvectors
of the linear map, the input set template and its multiplication by the linear
matrix (related to affine map) and square of the linear matrix. Concerning the
experiment using SpaceEx, we tested with the octagon template and a template
with 400 uniformly sampled support vectors. For the hybrid system, we com-



Augmented Complex Zonotopes for Computing Invariants 111

Table 5. Networked vehicle platoon: results and matrices

Method Slow switching Fast switching

−x1 ≤ −x4 ≤ −x7 ≤ Comp.time (s) −x1 ≤ −x4 ≤ −x7 ≤ Comp. time

(s)

SpaceEx Octagon

template

28 27 10 NT UB UB UB NT

100 support

vectors

28 25 13 1.3 UB UB UB NT

Real zonotope [21] 25 25 10 n/a n/a n/a n/a n/a

ACZ invariant 28 26 12 12 46 54 57 12.6

UB: >1000, NT: Not terminating in more than 180s, n/a: Not applicable/not available, ACZ: Aug-

mented complex zonotope.

puted a single augmented complex zonotopic invariant satisfying both the upper
and lower safety bounds. But for the linear system, we computed two different
invariants, each of which satisfies the upper and lower bounds, respectively.

Results. For both the hybrid and the linear systems, we could verify smaller
magnitudes for the bounds on the pitch angle than what is proposed in the
benchmark [17]. But the SpaceEx tool could not find a finite bound for either of
the above systems. The results are reported in the Tables 1 and 2.

Perturbed Double Integrator. Our second example is a perturbed double inte-
grator system given in [24]. The closed loop system with a feedback control is
piecewise affine, having four different affine dynamics in four different regions of
space, as x(t + 1) = Mix(t) + w, i ∈ {1, 2, 3, 4}. The additive disturbance input
w is bounded as ‖w‖∞ ≤ 0.2.

We perform two different experiments on this system. In the first experi-
ment, we try to verify the smallest possible magnitude of bounds on the two
coordinates, denoted x1 and x2. We compare these bounds with that found by
the SpaceEx tool. In the second experiment, we try to quickly compute a large
invariant for the system under the safety constraints given in [24]. We draw com-
parison in terms of the computation time with the reported result for the MPT
tool [24].

In our formalism, we model the system with 4 locations and 12 edges con-
necting all the locations. Appropriate staying conditions are specified in each
location, reflecting the division of the state space into different regions where
the dynamics is affine. The initial set is the origin. The same model is specified
in SpaceEx.

Size of model: 2 dimensions, 4 locations and 12 edges.

Experiment settings. For the primary template, we collected the (complex)
eigenvectors of all linear matrices of the affine maps and their binary products.
For the SpaceEx tool, we experimented with two different templates, the octagon
template and a template with 100 uniformly sampled support vectors.

Results. In the first experiment, we verified smaller bounds for x2 than that of
SpaceEx, while the bounds verified for x1 were equal for both methods. In our
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second experiment on this example, the computation time for finding a large
invariant by our method is significantly smaller than that of the reported result
for the MPT tool. The results are summarized in the Tables 3 and 4.

Networked Platoon of Vehicles. Our third example is a model of a networked
cooperative platoon of vehicles, which is presented as a benchmark in the ARCH
workshop [21]. The platoon consists of three vehicles M1, M2 and M3 along with
a leader board ahead. In the benchmark proposal, the continuous time dynamics
of the vehicles is described as a hybrid system with two possible dynamics, related
to the presence and absence of communication between the vehicles, respectively.
Furthermore, there are time constraints on when the switching can happen. The
state of the system is a 9 dimensional vector x. Any upper bounds on −x1, −x4,
and −x7 provide lower limits on the reference distances of M1, M2 and M3 to
their successor vehicles, beyond which the platoon is will not collide. Therefore,
the verification challenge is to find the smallest possible upper bounds on −x1,
−x4, and −x7. The benchmark then provides the experimental results for the
case when the minimum dwell time is 20 s, i.e., C = {c > 20} (also specified in
the distributed SpaceEx implementation1). In our experiment, apart from the
case of the minimum dwell time of 20s (slow switching), we also study a case
of fast switching, where the possible switching times C is the set of all non-
negative integers. We could specify discrete time models that overapproximate
the reachable sets of both these above models.

Size of slow switching model: 9 dimensions, 2 locations and 4 edges.

Size of fast switching (integer times) model: 9 dimensions, 2 locations, 2
edges.

Experiment settings. We chose the primary template as the collection of the
(complex) eigenvectors of linear matrices of the affine maps in the two locations
and their binary products, the axis aligned box template and the templates used
for overapproximating the input sets. For the SpaceEx tool, we experimented
with two templates, octagon and hundred uniformly sampled support vectors.

Results. For the large minimum dwell time of 20 s, the discrete time SpaceEx
implementation and also a method based on using real zonotopes [21] could verify
slightly smaller bounds compared to our approach. But for the small minimum
dwell time (1 s) model, SpaceEx could not even find a finite set of bounds,
whereas our approach could verify a finite set of bounds. The reason is that the
system is more stable under slow switching as compared to fast switching. These
results are reported in the Table 5.

6 Conclusion

We introduced augmented complex zonotopes as a more general set represen-
tation than template complex zonotopes, based on which we derived efficiently
1 http://cps-vo.org/node/15096.

http://cps-vo.org/node/15096
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solvable conditions for computing invariants, subject to linear safety constraints,
for discrete time affine hybrid systems with linear guards and additive distur-
bance input. Like template complex zonotopes, augmented complex zonotopes
have the advantage that we can meaningfully choose the templates for efficient
fixpoint computation, based on the eigenstructure and other relevant aspects of
the dynamics. But additionally, we overcame a drawback of template complex
zonotopes in that we derived a simple algebraic expression for reasonable over-
approximation of the intersection with a class of linear constraints. We use this
algebraic expression to obtain of a set of second order conic constraints that
can be efficiently solved to compute an invariant. In contrast to the step-by-step
reachability computation approaches that iteratively accumulate overapproxi-
mation error, we instead compute an invariant in a single convex optimization
step such that the optimizer inherently minimizes the overapproximation error.
We demonstrated the efficiency of our approach on some benchmark examples.

As future work, we can investigate ways to minimize the overapproximation
error in the intersection operation, such that the overapproximation can still
be algebraically computed. In particular, the relation between the choice of the
template and the over-approximation error in the intersection has to be analyzed.
Also, we would like to extend this computational framework to continuous time
hybrid systems.
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Abstract. Despite researchers’ efforts in the last couple of decades,
reachability analysis is still a challenging problem even for linear hybrid
systems. Among the existing approaches, the most practical ones are
mainly based on bounded-time reachable set over-approximations. For
the purpose of unbounded-time analysis, one important strategy is to
abstract the original system and find an invariant for the abstraction. In
this paper, we propose an approach to constructing a new kind of abstrac-
tion called conic abstraction for affine hybrid systems, and to computing
reachable sets based on this abstraction. The essential feature of a conic
abstraction is that it partitions the state space of a system into a set
of convex polyhedral cones which is derived from a uniform conic par-
tition of the derivative space. Such a set of polyhedral cones is able to
cut all trajectories of the system into almost straight segments so that
every segment of a reach pipe in a polyhedral cone tends to be straight
as well, and hence can be over-approximated tightly by polyhedra using
similar techniques as HyTech or PHAVer. In particular, for diagonaliz-
able affine systems, our approach can guarantee to find an invariant for
unbounded reachable sets, which is beyond the capability of bounded-
time reachability analysis tools. We implemented the approach in a tool
and experiments on benchmarks show that our approach is more power-
ful than SpaceEx and PHAVer in dealing with diagonalizable systems.

Keywords: Affine system · Hybrid system · Reachability analysis ·
Conic abstraction · Discrete abstraction

1 Introduction

Hybrid systems [1,2] are systems that admit interacting discrete and continuous
dynamics. Reachability analysis of hybrid systems has been a major research
issue over the past couple of decades [3–8]. An important part of the effort has
been devoted to hybrid systems where the continuous dynamics is described by
linear or affine differential equations or inclusions. For the purpose of efficient
computation, a number of representations of convex set have been proposed,
including polyhedrons [9,10], ellipsoids [11,12], hyperrectangles [13], zonotopes
[14,15], and support functions [16]. A common feature of these approaches is
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that all of them apply only to reachability analysis with bounded continuous
time although sometimes a fixed point could be found.

For the purpose of unbounded-time analysis, a very useful strategy is to
use lightweight runtime technique for continuous online verification [17,18], and
another important strategy is to abstract the original system and find an invari-
ant for the abstraction [19]. However, obtaining a high-quality abstraction auto-
matically for the original system is challenging by itself and this is why PHAVer
chooses to leave this important work to users, who have some domain expertise
available for this purpose [20]. Roughly speaking, the ultimate goal of abstraction
is to use a partition of the state space which is as coarse as possible, to derive an
over-approximation of the original system which is as accurate as possible and
allows a computation of the reachable state set which is as efficient as possible.
Depending on the set representation that is used, the schemes that have been
proposed for state space partition vary significantly [5,21–28]. When polyhedra
are used for the set representation of states, a guiding principle for state space
partitioning is that the partition should result in a set of regions that are as
“straight” as possible. By “straight region”, we mean that the maximal angle
between the derivative vectors in that region (which we define as the twisting of
the region) is small, so that every trajectory tends to be straight in the region.
The benefit of straight regions is that they can be over-approximated accurately
by polyhedra. However, for a given system, obtaining the least number of straight
regions under a given threshold of twisting is by no means trivial.

With this principle in mind, we propose a new abstraction called conic
abstraction for affine hybrid systems and we compute reachable state sets based
on the abstraction. Given an n-D linear system defined by ẋ = Ax, assume
that A is an invertible matrix (note that any affine system ẋ = Ax + b can be
transformed into a linear system under this assumption). The basic idea behind
conic abstraction is as follows. First, the derivative space of the system is parti-
tioned uniformly into a set D of convex polyhedral cones. Then, D is mapped
back from the derivative space to the state space to obtain a conic partition
C of state space, i.e., ∀Ci ∈ C : ∃Di ∈ D : Ci = {A−1y | y ∈ Di}. Finally,
every state region Ci is treated as a discrete location (“mode”) and the discrete
transitions between these modes are decided on-the-fly according to whether
there exists a trajectory between them. By doing so, we can easily obtain the
differential inclusion Di for each polyhedral cone Ci. Therefore, for any subset
Ii of Ci, the reachable set of Ii in Ci can be overapproximated by (Ii ⊕Di)∩Ci,
where ⊕ denotes the Minkowski sum. More importantly, since the twisting of Ci

is determined by the maximal angle of Di, the partition can be refined easily
to any desired precision, by shrinking the maximal angle of the conic partition
of the derivative space. Note that an important feature of Ci is that it is an
unbounded set, however, with a bounded twisting, which means that each Ci

captures infinitely long trajectories only if they are straight enough. Diagonaliz-
able affine systems, for which the matrix A is diagonalizable, form such a class
of systems, because for diagonalizable systems all trajectories eventually evolve
into approximately straight lines.
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Using properties of diagonalizable affine systems, we develop an algorithm
that constructs a conic abstraction as a directed acyclic graph (DAG) for which
an invariant (i.e., an over-approximation of the reachable state set) exists and
the computation of the invariant is guaranteed to terminate. The algorithm is
implemented in a tool and experiments on randomly generated examples as
well as published benchmarks show that our approach is more powerful than
PHAVer in finding unbounded invariants. Note that computing an unbounded
invariant for diagonalizable affine systems lies beyond the capability of tools for
time-bounded reachability analysis, such as SpaceEx [29].

The main contributions of this paper are as follows. First, we propose conic
abstractions and a method for constructing them for affine hybrid systems. The
core idea lies in deriving a state space partition from a uniform partition of the
derivative space. Second, we develop an algorithm for building conic abstractions
as DAGs for diagonalizable affine systems and for computing invariants on these
abstractions. Finally, we implement and evaluate our approach in a tool.

The paper is organized as follows. Section 2 is devoted to preliminary defin-
itions. In Sect. 3, we introduce conic abstractions for affine systems. In Sect. 4,
we show how to construct conic abstractions as DAGs for diagonalizable sys-
tems. Section 5 describes how we compute invariants for continuous systems and
affine hybrid systems. In Sect. 6, we present our experimental results. Finally,
we conclude with Sect. 7.

2 Preliminaries

In this section, we recall some concepts used throughout the paper. We first
clarify some notation conventions. We use bold uppercase letters such as A
to denote matrices and bold lowercase letters such as b to denote vectors and
diag(λ1, · · · , λn) to denote a diagonal matrix with λ1, · · · , λn as its diagonal
elements. We call a dynamical system defined as ẋ = Ax + b an affine system
and we use a superscript T for the transpose of a matrix.

Definition 1 (Affine System). An n-dimensional affine system consists of a
matrix A ∈ IRn×n and a vector b ∈ IRn, which define the vector flow ẋ = Ax+b,
and an initial region X0 ⊆ IRn defined by a polyhedron.

Whenever the initial set is immaterial, we refer to an affine system just as to
ẋ = Ax + b. We next introduce the concept of Lie derivative.

Definition 2 (Lie derivative). For a given polynomial p ∈ K[x] and a con-
tinuous system ẋ = f , the Lie derivative of p ∈ K[x] along f is defined as

Lfp
def
= 〈∇p,fT 〉.

For an affine system ẋ = Ax + b, we can simply write the Lie derivative as
LA〈a,x〉 = 〈aA,xT 〉 + 〈a, bT 〉. We call a polyhedral cone C an intersection of
linear inequalities of the form 〈a,x〉 ≤ 0, and we denote its boundary as ∂C.
For X,Y ⊆ IRn, X ⊕ Y denotes their Minkowski sum {x + y : x ∈ X and y ∈
Y }, and for A ∈ IRn×n and X ⊆ IRn, AX denotes the linear transformation
{Ax : x ∈ X}.
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3 Conic Abstractions of Affine Systems

Discrete abstraction is a basic strategy for verifying continuous and hybrid sys-
tems. There are many abstraction approaches proposed for this purpose. Rec-
tangular abstraction [5,19,30] and nonlinear abstraction [22–24,26] are widely
used. However, even for linear systems, the existing abstraction approaches are
still inefficient. In this section, focusing on linear systems, we propose a new
abstraction approach called conic abstraction. However, since every affine sys-
tem can be transformed into an equivalent linear system ẋ = Ax, as we discuss
in Sec. 4, our discussion applies to affine systems too.

The idea is that we partition the state space of a linear system into a set of
convex polyhedral cones. We call this set a conic partition.

Definition 3 (Conic Partition). A conic partition is a set of polyhedral cones
Δ such that ∪Ci∈ΔCi = IRn and every two cones C1, C2 ∈ Δ have disjoint
interiors, i.e., (C1\∂C1) ∩ (C2\∂C2) = ∅.
We call an element of the partition C ∈ Δ a region. Then we construct a graph
whose vertices correspond to partition regions and edges indicate possible flow
between them. We call such a graph a conic abstraction.

Definition 4 (Conic Abstraction). The conic abstraction of the linear sys-
tem ẋ = Ax derived from the conic partition Δ consists of the finite directed
graph (L,E) as follows. Every vertex lC ∈ L corresponds to one and only
one cone C ∈ Δ. There exists an edge (lC1 , lC2) ∈ E if and only if there
exists a plane F1 = {x | 〈a,xT 〉 = 0} such that (1) ∂C1 ∩ ∂C2 ⊆ F1, (2)
C1 ⊆ {x | 〈a,xT 〉 ≤ 0}, (3) the Lie derivative of 〈a,xT 〉 is non-negative at
some common point, i.e., LA〈a,xT 〉 ≥ 0 for some x ∈ ∂C1 ∩ ∂C2.

We elaborate on how to construct a conic abstraction for diagonalizable sys-
tems in Sect. 4. A conic abstraction can be seen as a Linear Hybrid Automaton
(LHA, [1]), whose locations lC are such that its invariant is given by C, its flow
is given by a differential inclusion defined as ẋ ∈ AC, and whose switch guards
consist of the common facet of the respective adjacent cones.

Example 1 (running example). Consider the linear system described by ẋ =
−2x − 2y, ẏ = −5x + y. A conic partition of the state space, the corresponding
differential inclusion and the conic abstraction of the system is shown in Fig. 1a,
b and c, respectively. As you can see, both the invariant and the differential
inclusion of each location are polyhedral cones. ��

Similarly as for the symbolic reachability analysis of LHA [2], the set of states
that are reachable from an initial set X ⊆ IRn through the continuous flow at
location lC ∈ L corresponding to C ∈ Δ is given by

(X ⊕ AC) ∩ C. (1)

A conic abstraction represents an overapproximation of the system, whose
tightness depends on the maximum angle between any two points in the cone
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Fig. 1. Example 1. (a) Conic partition of state space. (b) Conic differential inclusion.
(c) Conic abstraction of the system.

AC in derivative space. Roughly speaking, the more acute the cone AC in
derivative space, the more accurate the overapproximation. Figure 2a shows a
comparison between conic partitions with different accuracies (depicted in two
different shades) for the same initial region. We encapsulate the accuracy given
by a partition with the notion of twisting.

Definition 5 (Twisting of a state region). Let ẋ = Ax be a linear system
and P ⊆ IRn be a (not necessarily conic) region of the state space. Then P is
said to have a twisting of θ (or to be θ twisted) if it satisfies that

sup
x1,x2∈P

arccos
( 〈ẋ1, ẋ2〉

‖ẋ1‖‖ẋ2‖
)

= θ. (2)

Intuitively, a cone with smaller twisting allows only trajectory segments that
are almost straight, inducing a more accurate overapproximation. In the con-
text of conic abstraction, properly inducing smaller and smaller twistings induce
refinements of the abstraction, providing a better overapproximation.
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Fig. 2. (a) Overapproximation inside different cones. The smaller the cone, the more
precise the overapproximation. (b) A cone capable of offering accurate overapproxima-
tion for unbounded reach pipe.

Definition 6 (Conic abstraction refinement). Given two conic abstrac-
tions (L1, E1) and (L2, E2) for a linear system ẋ = Ax, (L2, E2) refines
(L1, E1) if |L2| > |L1| and for all l1 ∈ L1 with cone C1 there does always
exist l12, . . . , l

m
2 ∈ L2 with cones C1

2 , . . . , Cm
2 such that C1 = C1

2 ∪ · · · ∪ Cm
2 .

It is subject of Sect. 4 how to generate abstraction refinements by tuning the
value of twisting.

The property we desire is that the twisting of every state partition is bounded
by a small angle θ. A common strategy to achieve this goal is to split the state
space into small rectangles iteratively until the twisting of each rectangle falls
below θ [19,30,31]. However, such strategy is inefficient, as the twisting may not
change uniformly in a rectangular partition. On the contrary, a conic partition
naturally enjoys bounded twisting using unbounded regions. This allows a conic
partition to accurately overapproximate both bounded and unbounded reach
pipes, if in the latter case the trajectories are straight enough. Figure 2b shows
such an example, where the tiny cone overapproximates all trajectories entering
it, as they tend to be parallel to its left boundary.

3.1 Conic Abstractions Derived from Derivative Space Partitions

In existing work on discrete abstraction of continuous systems, to obtain a high-
quality state space partition, the focus is mostly placed on state space. However,
what really matters here is the derivative space. Therefore, our state space par-
tition should be derived from a derivative space partition. Given a continuous
system ẋ = f(x), every convex cone D in the derivative space with a maximal
angle θ corresponds to a set C of states which has a twisting of θ. Moreover, C
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can be obtained through simple substitution. However, for nonlinear systems, C
is nonlinear and is hard to handle, so we leave it for future work.

We assume that the systems under consideration are linear. To derive a
conic abstraction for an n-dimensional linear system, we first partition the whole
derivative space into a set Ω of convex polyhedral cones which satisfies that

1.
⋃

Di∈Ω Di = IRn;
2. ∀Di,Dj ∈ Ω : (Di\∂Di)

⋂
(Di\∂Dj) = ∅;

3. ∀Di ∈ Ω : �Di ≤ θ, where �Di denotes the maximal angle of Di (i.e. the
maximal angle between the vectors in Di) and θ is a given bound.

By mapping Ω back to the state space, we can obtain another set Δ of state
regions. The property of Δ is formalized in the following theorem.

Theorem 1. Given a linear system ẋ = Ax let Ω be a set of convex polyhedral
cones defined as above and Δ = {A−1D | D ∈ Ω}. Then,

1. every Ci ∈ Δ is a convex polyhedral cone and the twisting of Ci is θ-bounded;
2.

⋃
Ci∈Δ Ci = IRn;

3. ∀Ci, Cj ∈ Δ : (Ci\∂Ci)
⋂

(Ci\∂Cj) = ∅;
Remark 1. According to Theorem 1, we know that, given any linear system H
with an invertible matrix A and a θ-bounded conic partition Ω of the derivative
space, a conic partition Δ for the state space with θ-bounded twisting can be
obtained by a linear transformation. Note that the twisting of Ci is θ-bounded
does not mean that Ci is θ-bounded. Conversely, the maximal angle of each
cone Ci varies significantly depending on how straight the trajectories are in
that cone. Roughly speaking, the straighter the trajectories are, the larger the
maximal angle of Ci is, provided that the twisting is the same. ��

Now, let us get back to the issue of generating a conic partition of the deriv-
ative space. Our approach borrows the idea of slicing watermelons. Concretely,
given an n-dimensional derivative space, we first choose a group of seed planes
passing through the origin and then generate a cluster of planes by rotating
each seed plane counterclockwise around an independent axis by a fixed angle
θ1, step by step until no further θ1 rotation is possible. Finally, the whole vector
space can be sliced into a set of convex polyhedral cones by the generated planes
and each of them is θ2-bounded for some θ2. By mapping these cones into the
state space, we can achieve a conic partition of θ2-bounded twisting for the state
space. The following example shows how a conic state space partition derived
from a uniform derivative space partition looks like.

Example 2 (running example). Consider the following linear system H described
by ẋ = −2x − 2y, ẏ = −5x + y. As shown in Fig. 3a, the derivative space is first
uniformly partitioned into 18 cones. Then, these cones are mapped into the state
space. As can be seen in Fig. 3b, in every cone, the straighter the trajectories
are, the larger the maximal angle of the cone is. ��
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Fig. 3. Example 2 (a) Uniformly conic partition of the the derivative space. (b) Conic
partition of state space derived from the derivative space partition.

The reachable set computation of a conic abstraction is a basic operation of
linear hybrid automata. As usual, due to the undecidable nature of the issue, the
reachable set computation of a conic abstraction cannot guarantee to terminate
for a general linear system. However, for the conic abstraction of a specific class
of systems, the reachable set computation can be guaranteed to terminate, which
is shown in the next section.

4 Diagonalizable Systems

In this section, we focus on a class of affine systems for which the matrix used
to describe the system dynamics is diagonalizable in IR, called diagonalizable
systems. The reason why diagonalizable systems are interesting is that, given
a conic abstraction, the reachable set computation is guaranteed to terminate.
Formally, a diagonalizable system is defined as follows.

Definition 7 (Diagonalizable system). An affine system ẋ = Ax+b is diag-
onalizable if there exist a real matrix Q such that Q−1AQ = diag(λ1, · · · , λn),
where λi ∈ IR, λi �= 0, i = 1, · · · , n.

In the following, we introduce how to derive a conic abstraction for a diago-
nalizable system and how to overapproximate their reachable sets by the conic
abstraction. We also extend the theory to hybrid affine systems.

4.1 Properties of Diagonalizable Systems

The most important feature of diagonalizable system is that all of their eigenval-
ues are real numbers. Given a diagonalizable affine system ẋ = Ax+b with initial
region X0, by doing a translation on the coordinate system with y = x + A−1b,
we can always transform the system into a linear system ẏ = Ay with initial
region Y0 = X0⊕{A−1b}. Let λ1, . . . , λn be the eigenvalues of A and u1, . . . ,uj
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be the corresponding eigenvectors respectively, then the general solution of the
linear system can be written as (refer to [32])

x(t) = c1e
λ1tu1 + · · · + cneλntun (3)

where c1, . . . , cn depends on the initial value x0 of the system of differential
equations and can be obtained by solving x(0) = x0. Let U = (u1, . . . ,un) and
c = (c1, . . . , cn), Cone(c,U) = {x ∈ IRn | x =

∑n
i=1 ticiui, ti ≥ 0} denote the

convex polyhedral cone generated by the vectors c1u1, . . . , cnun. Then, we have
the following theorem.

Theorem 2. Given a diagonalizable system ẋ = Ax + b, let U be defined as
above and Ξ = {−1, 1}n. Then, for every ξ ∈ Ξ, Cone(ξ,U) is an invariant
and the twisting of Cone(ξ,U) is bounded by radian π.

Remark 2. According to Theorem 2, the state space of a diagonalizable system
can always be partitioned into a set of invariant cones and the twisting of every
invariant cone is bounded by radian π. Therefore, given a diagonalizable sys-
tem, to overapproximate the reachable set, we do not have to construct a conic
abstraction for the whole state space. Instead, we only need to figure out which
invariant cones the initial set spans and then construct a conic abstraction for
each of them respectively. As mentioned previously, we would start from par-
titioning the derivative space. Based on the property of diagonalizable system,
we develop a partitioning scheme which can construct a conic abstraction as a
directed acyclic graph.

4.2 Diagonalization and Conic Partition

The first step of constructing a conic partition consists of diagonalizing the orig-
inal system. Given a diagonalizable system ẏ = Ay with initial region Y0, a
diagonalization of it is a linear system ż = Aλz with initial region Z0 where
Aλ = Q−1AQ is a diagonal matrix and Z0 = Q−1Y0 for some Q. In theory,
the diagonalized system is equivalent to the original system in terms of safety
verification. However, by doing diagonalization, we manage to transform every
invariant cone and its derivative cone into an independent orthant respectively.
Since an orthant as a cone has some good properties such as having a fixed maxi-
mal angle of π

2 and all the generating vectors of the invariant cones are orthogonal
to each other, we propose a special conic partition scheme, called radial partition,
which can result in a directed acyclic graph for the conic abstraction.

Given a diagonalized n-dimensional system ż = Aλz and an orthant
O = {z ∈ IRn | Bz ≤ 0} in derivative space, where B = diag(b11, . . . , bnn)
with bii = 1 or −1. Let Bi,Bj be the i’th and j’th row vectors of B respec-
tively, where i �= j. The basic idea of radial partition is as follows. For every
pair of (Bi,Bj), we generate a sequence of vectors Sij : vij1, . . . ,vij(Kij+1) by
rotating the vector vij1 = Bj from Bi to Bj step by step with an rotating
amplitude π

2Kij
. Then, Sij is used as the sequence of normal vectors of par-

titioning planes. Thus, each pair of adjacent vectors vijk,vijk+1 forms a slice
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Algorithm 1. Reach pipe overapproximation of affine systems
input : System ẋ = Ax + b and initial set X0 ;
local : Heap of partition regions H; /*stores unique elements only*/
output: Map from partition region to polyhedron R; /*by default maps to ∅*/

1 Aλ ← Q−1AQ; /*diagonalize*/
2 Z0 ← Q−1(X0 ⊕ {A−1b}); /*transform into linear system and diagonalize*/
3 foreach C partition region in state space such that Z0 ∩ C �= ∅ do
4 insert into R(C) the template polyhedron of [(Z0 ∩ C) ⊕ AλC] ∩ C;
5 push C into H;

6 end
7 while H is not empty do
8 C ← pop the top of H;
9 foreach D successor partition region of C such that R(C) ∩ D �= ∅ do

10 join R(D) with the template polyhedron of [(R(C) ∩ D) ⊕ AλD] ∩ D;
11 push D into H;

12 end

13 end

{z ∈ IRn | 〈vijk,zT 〉 ≤ 0, 〈−vijk+1,z
T 〉 ≤ 0} of the orthant O and O will

be partitioned into Kij slices by all the planes formed by Sij . Hence, we can
get n(n−1)

2 ordered sequences of planes at most totally. These planes intersect-
ing each other yield a conic partition D for the orthant O. However, we do not
really need so many sequences of partitioning planes. Actually, n−1 sequences of
planes suffices to construct a partition with an arbitrarily small maximal angle.

For the conic abstraction derived from radial partition, we have the following
theorem.

Theorem 3. Every conic abstraction derived from a radial partition of the
derivative space is a directed acyclic graph.

Remark 3. By Theorem 3, the reachable set exploration of the conic abstraction
derived from a radial partition is guaranteed to terminate. Moreover, as indicated
in the proof, the direction of the discrete transition between locations can be
easily determined by the sign of the Lie derivatives of the partitioning planes at
the beginning [33]. ��

5 Time-Unbounded Reachability Analysis

In this section, we present how to compute the overapproximation of reach pipe
of a given affine system based on the conic abstraction.

We first diagonalize the system (as in Sect. 4.2) and we identify the regions
that hit the initial region. Then we iteratively explore the adjacent regions, while
computing and storing the reach pipe. In particular, we build the control graph of
the conic abstraction incrementally and only for those locations that are indeed
reachable. We outline our procedure in Algorithm1.
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– The first two lines aim to translate the equilibrium point to the origin and
further diagonalize the system. The initial set X0 undergoes a similar trans-
formation.

– In line 3–6, we split the initial set into multiple regions. For each split, we
compute the overapproximation of the reach pipe inside the respective region,
as defined in Eq. 1. We store the result in R and we push the region to H for
further exploration.

– In line 7–13, we compute the overapproximation of following reach pipes inside
the adjacent regions. The result is joined to what previously computed in
the same region. The join consists of taking a convex hull between template
polyhedra. Each such successor region is pushed to H.

We optimize the exploration order so to explore the successors of a specific
region at most once, namely we want the heap H to never pop a region twice
at line 8. To this aim, we instruct H to maintain a topological order between
regions given by the graph of the conic abstraction (see Definition 4). Such order
always exists, as a radial partition always induces an acyclic one (see Theorem 3).
Similarly, on the enumeration of line 9, each region D must satisfy the same order
w.r.t. C. Concretely, the order between regions is the closure of the order given
by the Lie derivative of their common facets (as in Definition 4).

We produce a map from partition regions to template polyhedra, where each
template polyhedron overapproximates the reach pipe at the respective region.
Precisely, the template polyhedron of a convex set X ⊆ IRn w.r.t. the finite set
of directions D ⊆ IRn, which we call the template, is the tightest polyhedron
enclosing X whose facets are normal to all and only the directions in D. We
efficiently compute the template polyhedra at lines 4 and 10 using linear pro-
gramming [34] and the convex hull at line 10 by simply taking for each direction
the facet that is the loosest between the two. The choice of template is critical
for the quality of the abstraction and the efficiency of the procedure. In each
region we use the octagonal template, augmented with the normals of the facets
of both the derivative and the state space cones.

In the following, we exemplify the result of the procedure on our running
example under different granularities of the partition.

Example 3 (running example). Consider the system in Example 1, let the initial
set be X0 = {(x, y) ∈ IR2 | −30 ≤ x ≤ −28,−45 ≤ y ≤ −43} and the invariant
be IR2. We diagonalize and transform the system dynamics into ẋ = −4x, ẏ = 3y
with initial state Z0 = {(x, y) ∈ IR2 | −x + 2

5y ≤ 30, x − 2
5y ≤ −28,−x − y ≤

45, x + y ≤ −43}. By partitioning the orthant into 5, 20 and 60 cones respec-
tively, we got 3 overapproximations of different accuracies for the unbounded
reachable set, which is shown in Fig. 4. As can be seen, the precision of the
overapproximation increases rapidly with the number of cones. ��
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Fig. 4. Unbounded invariants obtained for Example 3 under different numbers of slices
of partition.

5.1 Mode Switching

The theory presented in the previous sections can be easily extended to deal with
hybrid systems. Given a hybrid system, the conic abstraction of each discrete
location can be done as presented. However, due to the transformation of the
system dynamics in each location, the same transformation also needs to be
applied to the guards and reset operations of the discrete transitions between
locations.

Concretely, let ẏ = Aiy + bi and ẏ = Ajy + bj be the dynamics of two
discrete locations li, lj of a hybrid system, Gij = {y ∈ IRn | J ijy ≤ hij} be the
guard of the transition (li, lj) and Tij : y′ �→ M ijy + eij be the reset operation.
Suppose the diagonalization of Ai,Aj are Aλi

= Q−1
i AiQi,Aλj

= Q−1
j AjQj ,

respectively. Let x be the variable name after transformation, then we have
li : y = Qix + A−1

i bi and lj : y = Qjx + A−1
j bj . Thus, the guard and the reset

operation are transformed into the following.

G∗
ij = {x ∈ IRn | J ijQix ≤ hij − J ijA

−1
i bi} (4)

T ∗
ij : x �→ Q−1

j (M ijQix + M ijA
−1
i bi + eij − A−1

j bj) (5)

Location invariants Ij are transformed as well using the formula I ′
j = {x ∈

IRn | x = Q−1(y + A−1b),y ∈ Ij}. By applying the above transformations to
the whole hybrid system and then performing the conic abstraction, we obtain
an LHA, whose reachability analysis can be done as usual. However, unlike for
pure continuous systems, termination is not guaranteed.

6 Experiments

We have implemented the procedure presented above in C++ using the GLPK
library for linear programming [35], and we have performed two experiments. In
the first, we have performed a scalability test using purely continuous systems
given by random matrices of increasing size and for increasing precision of the
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)b()a(

Fig. 5. Scalability of our method in computing the abstraction of purely continuous
systems. The abscissa of (a) refer to the number of variables and each curve refers to
a precision (maximum angle), while the abscissa of (b) refers to precisions and each
curve refers to a system size (# variables). Both ordinates show the average runtime
for 50 randomly generated systems for each system size and precision.

analysis. In the second, we have considered the room heating benchmark and com-
pared against SpaceEx under scenarios supp and stc and PHAVer [16,20,36].

We generated random diagonal matrices with non-zero distinct integer values
between −10 and 10 on the diagonal. Then we measured the runtime of our
procedure for the maximum angles of π

2k for increasing k (two by two) and the
initial state being a unit box centered in (50, . . . , 50). Figure 5a shows that the
runtime increases exponentially with the number of variables, while the more
the precision increases the less (for fixed system size) the difference in runtime is
affected. The latter is also confirmed by Fig. 5b, which shows that the runtime
increases polynomially with the increase in precision and that the number of
variables affects the degree of the polynomial as, in fact, the number of partitions
is worst case kn.

The room heating benchmark describes a protocol for heating a number of
rooms with a limited number of shared heaters [37]. We consider houses with 2
to 6 ordered rooms, each room is only adjacent to the previous and the following
room, and all but one room have a heater. The temperature of room i is governed
by a linear ODE of the form

ẋi = ch + bi(u − xi) +
∑
j �=i

aij(xj − xi) (6)

where c is the heater efficiency, h indicates whether the heater is present, bi is
the room dispersion, u is external temperature, and aij is the heat exchange
between rooms (aij = 0 for non-adjacent rooms). The switching logic moves a
heater from a room to an adjacent room if the temperature difference exceeds a
threshold and the latter is colder. In addition, we augmented every mode with a
dummy self switch, so to force SpaceEx to perform time-unbounded reachability.

We have verified the room heating benchmark using SpaceEx with both sce-
narios supp and stc and in both cases it either crashes or timeouts. Conversely,
using PHAVer the procedure terminated, but for small models only. Similarly to
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Table 1. Runtimes for the abstraction of the room heating benchmark with 2 to 6
rooms. SpaceEx has been run with scenarios supp and stc, template oct, and time
horizon of 1. PHAVer has been run on explicit conic partitions for the given precisions
whose generation time is excluded here. We used a 2.6 GHz CPU with 4 Gb RAM. The
key err indicates error, oot out of time (24 h), and - experiment not executed, i.e., the
explicit partitioning run out of 24 h time.

Time part. Conic part.

SpaceEx PHAVer Our method

supp stc π/4 π/20 π/40 π/80 π/4 π/20 π/40 π/80

heat-2 err oot 0.17 2.20 9.86 50.86 0.24 0.25 0.31 0.41

heat-3 err oot oot oot oot – 147 2.41 5.18 12.32

heat-4 err oot oot – – – 14155 278 190 1217

heat-5 err oot oot – – – oot oot 27467 56671

heat-6 err oot – – – – oot oot oot oot

(a) (b) (c)

(d) (e) (f)

Fig. 6. Conic abstractions of the heating benchmark for 2 rooms (a, b, and c) and
2-dimensional projection for 3 rooms (d, e, and f) for resp. precisions π/20 (a and d),
π/80 (b and e), and π/400 (c and f).
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our method, PHAVer abstracts affine systems into LHA, but it requires the user
to provide an explicit partition of the state space (rather than the derivative
space). We have generated equivalent conic abstractions in the form of explicit
LHA and verified them with PHAVer. Note that if such LHA is not provided,
PHAVer computes trivial abstractions by using the whole mode invariants as
partitions. PHAVer uses quantifier elimination for forward reachability, while
we compute template polyhedra.

The time results are shown in Table 1. First, PHAver always times out for
systems with more than 2 variables and even for 2-dimensional it scales poorly
in precision compared to our method. Second, beyond three dimensional systems
our method is even faster than generating the explicit LHA. The scalability in
dimensionality indicated the advantage of using template polyhedra rather quan-
tifier elimination while the scalability in precision demonstrates the advantage
of using our incremental construction of the conic partition. Figure 6 depicts the
abstractions for the 2 and 3 rooms systems and for precisions π/20, π/80, and
additionally π/400, computed using our method. Predictably, one can see how
the quality of the abstraction increases as the precision increases.

7 Conclusion

Deriving a high-quality abstraction for hybrid systems for the purpose of reach-
ability analysis remains a challenging issue to this day. To attack this issue,
we propose conic abstractions and a method for constructing them for affine
hybrid systems. The core idea lies in deriving a state space partition from a
uniform partition of the derivative space. In particular, for diagonalizable affine
systems, we develop an algorithm for building conic abstractions as DAGs and
for computing invariants on these abstractions. We implement the approach in
a tool and experiments on benchmarks show that our approach is more power-
ful than SpaceEx and PHAVer for the time-unbounded reachability analysis of
diagonalizable systems.

Acknowledgments. This work was partly supported by the Austrian Science Fund
(FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award)
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Abstract. A promising technique for the formal verification of embed-
ded and cyber-physical systems is flow-pipe construction, which creates
a sequence of regions covering all reachable states over time. Flow-pipe
construction methods can check whether specifications are met for all
states, rather than just testing using a finite and incomplete set of simu-
lation traces. A fundamental challenge when using flow-pipe construction
on high-dimensional systems is the cost of geometric operations, such
as intersection and convex hull. We address this challenge by showing
that it is often possible to remove the need to perform high-dimensional
geometric operations by combining two model transformations, direct
time-triggered conversion and dynamics scaling. Further, we prove the
overapproximation error in the conversion can be made arbitrarily small.
Finally, we show that our transformation-based approach enables the
analysis of a drivetrain system with up to 51 dimensions.

1 Introduction

Hybrid automata [6] are often used to model embedded and cyber-physical sys-
tems with a combination of discrete and continuous dynamics. Due to their
expressiveness, however, hybrid automata can be difficult to verify. The flow-pipe
construction technique [39] performs analysis with regions of states; it starts with
a given initial set of states and propagates the set forward in time, constructing
a sequence of regions that overapproximate the reachable set of states up to a
time bound. To check which states can take a discrete transition, a geometric
intersection is performed between the continuous reachable region and a transi-
tion’s guard set. Afterwards, the intersected states are combined together in an
aggregation step, often done by taking their convex hull or performing a template
polytope overapproximation. Without guards, methods exist which can scale to
analyze purely continuous systems with thousands of state variables [10], but
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no such scalability results exist for systems with guards, due to the complexity
of high-dimensional intersection and aggregation. For this reason, we propose a
new method to try to remove the need for these costly geometric operations.

In particular, we leverage time-triggered transitions [2,8]. In a system with
time-triggered transitions, the discrete mode change occurs after a certain
amount of time has elapsed. In contrast, space-triggered transitions have mode
changes based on the system’s continuous state, and may arise from models of
switched systems, or continuous systems with gain-scheduled controllers. Propa-
gating sets of states through time-triggered transitions is practically free; it does
not require performing high-dimensional intersection or convex hull.

In this paper, we present a transformation that can, under certain assump-
tions, convert a space-triggered transition to a series of time-triggered transi-
tions. The main assumption for this conversion is that all executions of the
hybrid automaton must pass through the guard completely (partial intersec-
tions with the guard are not considered here), and resets along transitions are
not allowed. The main contributions of this paper are as follows:

• We present a new transformation process to convert a space-triggered tran-
sition to a series of time-triggered transitions;

• We prove that, in theory, the overapproximation error due to the proposed
transformation can be reduced to an arbitrarily small constant;

• We demonstrate that, in practice, the approach works well on a numerical
example of a high-dimensional drivetrain system.

This paper first introduces key definitions (Sect. 2), provides descriptions of
the proposed transformations and accuracy proof (Sect. 3), and then evaluates
the approach on a numerical example (Sect. 4). Related approaches are then
discussed (Sect. 5), followed by a conclusion (Sect. 6).

2 Preliminaries

In order to define and justify the soundness of the model transformation steps
used in our approach, we need to first precisely define the syntax and semantics
of hybrid automata and some related concepts.

Definition 1 (Hybrid Automaton). A hybrid automaton H is a tuple
H Δ= (Modes, Var, Init, Flow, Trans, Inv), where: (a) Modes is a finite set of
discrete elements, each of which we call a mode; (b) Var = (x1, . . . , xn) is a
list of real-valued variables. (c) Init(m) ⊆ R

n is a bounded set of initial values
for Var for each mode m ∈ Modes; (d) For each m ∈ Modes, the flow relation
Flow(m) has the form of ẋ ∈ fm(x), where x ∈ R

n and fm : Rn → 2R
n

. (e)
Trans is a set of discrete transitions, each of which is a 4-tuple (m,G, υ,m′),
where m and m′ are the source and the target modes, G ⊆ R

n is the guard, and
υ : Rn → R

n is the update or reset of the transition; (f) Inv(m) ⊆ R
n is an

invariant for each mode m ∈ Modes.
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When a hybrid automaton has n real-valued variables, we say that H is
n-dimensional, and has states with continuous part in R

n. Note that fm is a set-
valued function, i.e., differential inclusions, ẋ ∈ fm(x), are allowed [46]. When
the flows are deterministic, we may simply write them as a differential equation
ẋ = fm(x). Now, we introduce a notion of distance which is useful to quantify
properties of hybrid automata as well as errors.

Definition 2 (Distance). Let ‖·‖ be the L2 norm of a point in R
n and

d(x,x′) = ‖x − x′‖ be the distance between two points in R
n. We will write

dS(x) to mean the lower bound on the distance between the point x and a set S,
dS(x) = inf{d(x,x′) | x′ ∈ S}.

Although the flows can be non-deterministic, they must obey a Lipschitz
continuity property: in each mode m, there exists a constant Lm such that,
for any two points x1,x2 ∈ R

n, for any y1 ∈ fm(x1), there exists a y2 ∈
fm(x2) with d(y1,y2) ≤ Lm ·d(x1,x2). To define the formal semantics of hybrid
automata, we introduce the notion of a state.

Definition 3 (State). A state s ∈ States of an n-dimensional hybrid automa-
ton is a pair (m,x), with mode m ∈ Modes and continuous part x ∈ R

n.

The semantics of hybrid automata is defined in terms of executions where an
execution is a sequence of states. A state can change either due to a continuous
flow or discrete transition, which requires the definition of successors.

Definition 4 (Continuous Successor). A state (m′,x′) is a continuous
successor of another state (m,x) if m′ = m and there exists a positive time
t and a differentiable function g : [0, t] → R

n such that the following holds:
(1) g(0) = x, (2) g(t) = x′ and (3) for all δ ∈ (0, t): g(δ) ∈ Inv(m) and
(g(δ), ġ(δ)) ∈ Flow(m).

We refer to the time t as a dwell time spent in the mode m.

Definition 5 (Discrete Successor). A state (m,x′) is a discrete successor
of another state (m,x) if there exists a transition (m,G, υ,m′) ∈ Trans such that
x ∈ G and υ(x) = x′.

Based on these definitions, we can define an execution of a hybrid automaton:

Definition 6 (Execution). An execution ξ = s0s1 . . . of a hybrid automaton
H is a (finite or infinite) sequence which starts at an initial state s0 of H, i.e.
for s0 = (m,x) it holds that x ∈ Init(m). Each of si+1 is either a continuous
or discrete successor of si. For finite executions, we call the last state in the
sequence the end state, and can refer to the duration of the execution as the sum
of the dwelling times over all continuous successors in the execution. Given two
executions of a hybrid automaton ξ and ξ′, where ξ is finite, we say ξ is a prefix
of ξ′ if the sequence ξ′ begins with ξ.

The consideration of all possible executions defines the reachable states:
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Definition 7 (Reachable States). A state s is a reachable state of a
hybrid automaton H if s is the end state of some execution of H. In this paper,
we primarily compare the continuous parts of reachable states. The set of all
points which are the continuous part of some reachable state of H is written
as Reach(H). The set of time-bounded continuous reachable states, which corre-
sponds to the continuous parts of end states of all executions with durations no
longer than T , is written as Reach≤T (H).

To analyze our time-triggered transformation, we introduce overapproximat-
ing hybrid automata as well as a definition of error in the overapproximation.
Note that, when considering continuous overapproximations (and later their
errors), if H′ has more variables than H, the variables exclusive to H′ are pro-
jected away before doing the comparison. That is, the projection of Reach(H′)
onto Var , Reach(H′) ↓Var , is used instead of Reach(H′), where Var are the vari-
ables of the original automaton H.

Definition 8 (Continuous Overapproximation). A hybrid automaton H′

is a continuous overapproximation of another hybrid automaton H if the
inclusion Reach(H′) ⊇ Reach(H) holds. A time-bounded version can also be
defined. We say that H′ with time bound T ′ is a time-bounded continuous overap-
proximation of automaton H with time bound T if Reach≤T (H) ⊆ Reach≤T ′(H′).

Definition 9 (Time-Bounded Continuous Overapproximation Error).
Let H be a hybrid automaton with a time bound T , and H′ with time bound T ′ be
a time-bounded continuous overapproximation of H. Then, the time − bounded
continuous overapproximation error is supx′∈Reach≤T ′ (H′) dReach≤T (H)(x′).

This measurement of error is equal to the asymmetric Hausdorff distance
from Reach≤T ′(H′) to Reach≤T (H′). Further, such a measurement is relevant
for model transformations, such as the ones proposed in this paper. Rather than
computing the reachable set of states of an automaton H with time bound T ,
we can instead compute reachable sets on a modified automaton H′ with a
different time bound T ′. The time-bounded continuous overapproximation error
can be used to measure the amount of error, in space, that an ideal reachability
computation would have due to the use of H′ instead of the original H.

3 Transformations

In this section, we describe a way to convert certain space-triggered transitions
into time-triggered ones. This is beneficial for reachability analysis algorithms,
since time-triggered transitions can be handled efficiently. In order to do this,
we first describe a direct time-triggered conversion transformation in Sect. 3.1,
followed by a dynamics scaling transformation in Sect. 3.2. We combine the two
transformations to construct the final automaton in Sect. 3.3, which we prove
is an overapproximation with an error that can be made arbitrarily small in
Theorem 1. We make four assumptions about the original automaton.
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Assumption 1. We present the conversion assuming that the original automa-
ton H consists of two modes m1 and m2 with deterministic dynamics connected
by a single transition (see top of Fig. 1), and all the initial states are in m1.

It is often possible to apply the transformation to a more general hybrid
automaton, by adapting the proposed process and considering a single transition
at a time for the finite time-bound, as will be shown later in our evaluation in
Sect. 4. In this conversion, there are two cases to consider: (1) The reachable set
hits one guard set at a time. (2) Several guard sets are hit at once. Again, by
removing the parts of the reachable set that are already hit by other guards,
one can extract cases with a single guard intersection, as studied in this work
(also see Sect. 5.5 of [2]). The only difference is that now a tree of possible next
discrete states is spanned instead of consecutive next discrete states as in case
1). Notice that due to the finite time bound, and under a non-Zeno assumption,
it is possible to unroll any loops in the automaton.

Assumption 2. The single transition of H is space-triggered with a single linear
condition, G = {x | a · x = b}. Since the transition is space-triggered, there is
no reset and the invariant of m1 is a · x ≤ b (one side of the guard).

The approach may be generalizable to more complex guards, but it would
require a more complicated dynamics scaling process.

Assumption 3. At some time tmax, all executions have taken the transition.

Not all transitions satisfy Assumption 3, and it is one of the main restrictions
of the approach.

Assumption 4. For any amount of time tγ , there exists a distance γ from the
guard G, such that any execution that gets within distance γ of the guard must
take the transition before tγ time.

Assumption 4 ensures that there are no executions that can touch the guard
set and then back away without crossing the guard. One way to ensure this is
by examining the Lie derivative of the guard level-set function, B(x) = a · x− b
with respect to the mode’s flow vector field. Due to the continuity of the flows,
the condition is satisfied if there is some constant ε > 0, such that at every point
x where a transition might occur, ∂B

∂x fm1(x) ≥ ε.

3.1 Direct Time-Triggered Conversion Transformation

First, we aim to replace the space-triggered transition of H with two time-
triggered transitions. This is done by constructing a new automaton Htt, which
is a continuous overapproximation of H. We proceed with the following steps to
transform the original hybrid automaton H to Htt:

1. We remove the space-triggered transition between m1 and m2.
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Fig. 1. The direct time-triggered conversion transformation, described in Sect. 3.1, con-
verts the original automaton H (top), to an overapproximating automaton that only
has time-triggered transitions, Htt (bottom), using the parameters t1 and t2.

2. We add a new intermediate mode meither and transitions such that the hybrid
automaton switches from m1 to meither and then to m2.

3. We add a new time variable, t, to the automaton with derivative ṫ = 1 in
each mode. This will be used to force certain dwell times (exact times spent
in each mode) as part of the new time-triggered transitions.

4. We equip the newly-introduced transitions with time-triggered guards. In
other words, the guards are of the form t = t1 and t = t2, with invariants of
the modes set to when t is less than t1 or t2, and resets t := 0 upon entering
each mode. The first dwell time t1 is selected to be the minimum duration
when, in the original automaton, every finite execution with duration up to t1
has an end state still in mode m1. Similarly, t2 is selected to be the smallest
time such that the sum t1 + t2 is a time after which every finite execution
with duration greater than or equal to t1 + t2 has an end state with mode
m2. Time t2 exists because by Assumption 3, all executions eventually take
the transition.

5. We assign the continuous dynamics in the mode meither so that it over-
approximates the dynamics in m1 and m2. This means that for any state x,
the flow in meither contains the flows in m1 and m2, f1(x)∪f2(x) ⊆ feither(x).
In this way, we express the fact that executions of H with durations in the
range [t1, t1 + t2] end in states that can be in either mode.

The conversion of H to Htt is illustrated in Fig. 1. Notice that, in practice,
the times t1 and t2 would be available during flow-pipe construction since a tool
must check at each step if a guard can be reached. This transformation results
in a time-bounded overapproximation, which we prove next.

Lemma 1. For any time bound T , the constructed Htt is a time-bounded contin-
uous overapproximation of the original automaton H with the same time bound.
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Proof. Consider any execution ξ of H which ends at a state s with continuous
part x. If the mode of s is m1, then ξ is also directly an execution of Htt, and so
an execution exists that ends with a state with continuous part equal to x. In
the other case, if the mode of s is m2, then let ttrans be the maximum duration
of any prefix of ξ ending in a state with mode m1 (ttrans is the time of the
transition). By the construction of Htt, ttrans ≥ t1.

The duration of ξ is either (1) less than or (2) greater than or equal to t1+t2.
In the first case, there is an execution of Htt which first spends t1 time in m1, then
spends ttrans − t1 using the dynamics of m1 in mode meither (because meither’s
dynamics are a differential inclusion containing the dynamics of m1), and finally
spends the remaining time using the dynamics of m2 in mode meither (again,
because, meither’s dynamics contain m2’s dynamics). This execution ends in a
state with continuous part equal to x. In the second case, the execution would
spend t2 − (ttrans − t1) in mode meither using the dynamics of m2, and then use
the remaining time in mode m2 to also end at a state with continuous part x.
In all cases, we have constructed an execution of Htt of equal duration with an
end state with continuous part equal to x, and this holds for any execution ξ of
H, and so Reach≤T (H) ⊆ Reach≤T (Htt). ��

The time-bounded continuous overapproximation error of Htt crucially
depends on the dwell time t2 spent in the intermediate mode meither. This fol-
lows from the fact that the dynamics in meither is nondeterministic, subsuming
both the dynamics of m1 and m2. This can be reduced by choosing the dynamics
feither to be as small as possible while still containing both f1 and f2. In general,
however, the error cannot be eliminated without a further transformation.

3.2 Dynamics Scaling Transformation

Next, we introduce a dynamics scaling transformation that is later used to sub-
stantially reduce the overapproximation error in Htt. We first describe this trans-
formation in isolation since it is quite general and we can show that it theoreti-
cally does not modify the continuously reachable states (Lemma 2).

Let Hsingle be a hybrid automaton with a single mode m with continuous
dynamics ẋ = f(x). We proceed with the following steps to transform to con-
struct a new automaton Hscaling from a copy of Hsingle:

1. We create two additional copies of m: mscaling and m′.
2. We add a new time variable t in the automaton to measure the dwell time

(unless such a variable already exists), with ṫ = 1 in all three modes.
3. We equip the automaton with time-triggered transitions with dwell times

tbegin (from m to mscaling) and tscaling (from mscaling to m′), where tbegin > 0
and tscaling > 0 are parameters of the transformation.

4. We change the flow of mscaling to ẋ = g(x) · f(x) where f(x) is the original
dynamics in m, and g(x), a user-defined function, is a scalar function that
outputs a nonnegative number for every reachable state x.



140 S. Bak et al.

Fig. 2. The dynamics scaling transformation, described in Sect. 3.1, converts a single-
mode automaton Hsingle (top), to an automaton with an identical continuous reachable
set Hscaling (bottom).

The dynamics scaling transformation is shown in Fig. 2. It does not change
the time-bounded continuous reachable set of states, which is proved next.

Lemma 2. For any times T and tscaling, the reachable set of the constructed
Hscaling with time bound T ′ = T + tscaling is a zero-error time-bounded contin-
uous overapproximation of the reachable set of Hsingle with time bound T .

Proof. First, we show that Hscaling is a time-bounded continuous overapproxi-
mation, and then we analyze its error.

Consider any execution of H ending with a continuous state x ∈ Reach≤T (H).
The dynamics of each mode in Hscaling are identical to the original Hsingle,
except in mscaling, where they get multiplied by a non-negative value at each
point in space. This has the effect of scaling the vector field, without chang-
ing any of the directions. In the worst-case, the scaling factor in mscaling, g
can be zero, which effectively pauses the executions for at most tscaling time.
Since the time bound of Hscaling is T ′ = T + tscaling, we can ensure that
x ∈ Reach≤T ′(Hscaling) ↓ Var , and so Hscaling is a time-bounded continuous
overapproximation. Notice that if ever g(x) > 1, more states may be reached by
Hscaling than H for the same time-bound. However, any execution of H up to
time T is still contained in (the larger) Reach≤T ′(Hscaling).

In terms of error, consider any point in x′ ∈ Reach≤T ′(Hscaling). Since the
direction of the vector field in each of the modes of Hscaling is unchanged from
H, the point x′ will eventually be the continuous part of a reachable state of H.
Thus, dReach(H)(x′) = 0, and so the overapproximation error is zero. ��
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Fig. 3. For the Van der Pol dynamics, the currently-tracked set of states becomes
flattened against the x axis when using a scaling function g(x) = −y. The time-
invariant set of reachable states below the x axis (grey states) is unchanged.

Dynamics scaling can alter the set of states reachable with executions of a
fixed duration, without altering the final (time-invariant) continuous reachable
set. This is practically useful, because reachability algorithms usually perform
their computations using sets which correspond to continuous trajectories of a
fixed duration, which is sometimes called the currently-tracked set of states [8].

To reduce the error in the time-triggered conversion, we use dynamics scal-
ing to flatten the currently-tracked set of states against a guard boundary.
An illustration of this for the Van der Pol system, with dynamics ẋ = y and
ẏ = (1 − x2) · y − x, is shown in Fig. 3. Here, when the dynamics is scaled based
on the distance from the y = 0 guard, the currently-tracked set of states becomes
flattened as it approaches the x axis.

3.3 Combined Scaled Time-Triggered Transformation

We now combine the transformations from Sects. 3.1 and 3.2 into a single trans-
formation, which can theoretically be done with arbitrary accuracy. The steps
to produce the final automaton Hfinal starting from H are as follows:

1. We first apply the time-triggered transformation on H to produce Htt.
2. Next, we apply a version of the dynamics scaling transformation to mode m1

of Htt. For the time tbegin of the transformation we use t1. Time tscaling is
a parameter of the transformation. For the scaling function g(x), we use the
minimum distance from the point to the guard set, dG(x). Since the guard
set is defined with a single linear condition, G = {x | a · x = b}, we use the
dynamics scaling function g(x) = −â · x + b, where â = a

‖a‖ is the normal
vector associated with a and · is the standard dot product. This function is
nonnegative for any x in m1, meeting the required condition for g in step 4
of the dynamics scaling transformation.

3. We directly transition from mscaling to meither, deleting m′
1 and its associated

transitions.
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The transformation is shown in Fig. 4. Since the time-triggered transforma-
tion results in a time-bounded overapproximation (Lemma 1), and the applica-
tion of the scaling transformation does not alter the reachable states but only
the time at which they are reached (Lemma 2), the following corollary holds:

Corollary 1. For any choice of tscaling ≥ 0, the constructed Hfinal with time
bound T ′ = T + tscaling is a time-bounded continuous overapproximation of H
with time bound T .

Not only is Hfinal a time-bounded continuous overapproximation, but the
overapproximiation error can also be reduced to an arbitrarily small constant.
Intuitively, the reason why the error can be made arbitrarily small is that by
increasing tscaling, the set of states upon entering meither becomes more and
more flattened against the original guard’s boundary. Since all states are then
about to cross the guard, the time needed in meither becomes arbitrarily small,
reducing the only source of overapproximation error in the time-triggered con-
version. Then, by the Lipschitz continuity of the dynamics, in finite time, the
total divergence can also be made arbitrarily small as shown next.

Fig. 4. The original automaton H (top) is transformed using both time-triggered
conversion and dynamics scaling to produce the final automaton Hfinal (bottom).
Theorem 1 proves that the error due to this transformation can be reduced to an
arbitrarily small constant by increasing tscaling.

Theorem 1. For any time T and any desired error δ > 0, there exists a tscaling

such that the time-bounded continuous overapproximation error between H with
time bound T and Hfinal with time bound T ′ = T + tscaling is less than δ.

Proof. First, by Corollary 1, we know that Hfinal is a time-bounded overap-
proximation. Second, to show the error can be reduced to less than any δ > 0,



Time-Triggered Conversion of Guards for Reachability Analysis 143

we will find a tscaling such that, given any point x′ ∈ Reach≤T ′(Hfinal), there
exists a point x ∈ Reach≤T (H) such that d(x,x′) < δ.

Consider any δ > 0. Let s′ be the final state of an execution ξ′ of Hfinal that
has continuous part x′, such that s′ = (m′,x′). We proceed by showing there
exists a tscaling for each of the four possible cases of m′.

Case m′ = m1: ξ′ is directly an execution of H for any value of tscaling, so s′ is
reachable in H. Thus, x = x′ with d(x,x′) = 0 < δ.

Case m′ = mscaling: since the execution ξ′ only reaches m1 and mscaling, we
can apply the same reasoning as in Lemma 2, and for any value of tscaling, find an
execution of H that ends with continuous part x = x′. Again, d(x,x′) = 0 < δ.

Case m′ = meither: the execution ξ′ will contain a prefix execution ξ′
prefix of

maximum duration that ends in mode mscaling. Let x′
prefix be the continuous

part of the end state of ξ′
prefix, and let teither be the time ξ′ spends in meither

(the duration of ξ′ minus the duration of ξ′
prefix). Notice that by the same

argument as in the second case, x′
prefix is the continuous part of some reachable

state of H. Let Leither be the Lipschitz constant of the flows in meither. Using
the definition of Lipschitz constants, the distance between x′

prefix and x′ will
be bounded by ‖x′

prefix‖(eLeither·teither − 1). Thus, if we can show that teither

can be made arbitrarily small, we can also make the distance between x′
prefix

and x′ less than δ. Notice that teither is upper bounded by t2, which is the
maximum amount of time it takes for all executions reach the single guard G
of the original automaton. Further, by Assumption 4 of the original automaton,
for any amount of time t, there exists a distance γ from the guard G, such
that any execution that gets within distance γ of G must take G’s transition
before tγ time. We instantiate this assumption taking tγ to be small enough
such that ‖x′

prefix‖(eLeither·tγ − 1) < δ. Next, we assign a value of tscaling that
ensures all continuous parts of executions are within γ distance of the guard set
G upon entering meither. By Assumption 3, all executions of H eventually take
the transition. Let tmax be the maximum duration needed to take the transition
using the original dynamics of m1. Since the scaling function g was taken to be
the distance from the guard set G (step 2 of the construction of Hfinal), if we
take tscaling ≥ tmax−t1

γ , we can ensure that all executions, upon transitioning
to meither, are within γ distance of G (because if the dynamics of mscaling

were used from the start, all executions would get within γ distance of G in at
most tmax

γ time). In this case, we have teither ≤ t2 ≤ tγ , which ensures that
‖x′

prefix‖(eLeither·teither − 1) ≤ ‖x′
prefix‖(eLeither·tγ − 1) < δ. Taking x = x′

prefix,
this ensures the desired d(x,x′) < δ.

Case m′ = m2: Any execution of H′ will have an intermediate continuous state
at the moment it takes the transition to m2 which we call x′

i. By the same
reasoning as in the above case, when tscaling is large enough, we can guarantee
there is an execution of H that ends at a state that has just transitioned to
m2 with continuous part xi, with ‖xi − x′

i‖ less than any positive constant. If
Lm2 is a Lipschitz constant of m2, then the divergence in trajectories between
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two points xi and x′
i under m2’s dynamics is bounded by ‖xi − x′

i‖eLm2 ·t, for
any time t. Pick tscaling such that ‖xi − x′

i‖eLm2 ·T < δ. Now, since tm2 , the
amount of time spent in mode m2, is less than the time bound T , we have
‖xi − x′

i‖eLm2 ·tm2 < ‖xi − x′
i‖eLm2 ·T < δ. Thus, we can take x as the end

point of the execution that goes through xi, and then uses the flow in m2. This
guarantees d(x,x′) < δ.

In all cases, there exists a tscaling so that the error can be reduced to less
than δ. ��
Constructing tscaling: One way to construct the final value of tscaling is:
Following the reasoning in the m2 case, we must ensure ‖xi − x′

i‖eLm2 ·T < δ.
This can be done by ensuring the error after meither (which bounds ‖xi − x′

i‖)
is less than δ/(eLm2 ·T ). By the reasoning in the meither case, this occurs
when ‖x′

prefix‖(eLeither·teither − 1) < δ/(eLm2 ·T ), where ‖x′
prefix‖ is the norm

of the continuous part of the state upon entering meither, which is less than
‖Init(m1)‖eLm1 t1 . Substituting and solving for teither, we get the condition
teither < (ln(δ/(eLm2 ·T )/‖Init(m1)‖eLm1 t1) + 1)/Leither. Using Assumption 4,
we get the γ corresponding to the teither condition, and then need to find
tscaling to ensure all executions are within γ distance of the guard upon switch-
ing to meither. This can be ensured by taking the maximum time an execution
can remain in the first mode tmax, multiplied by the maximum slowdown due
to scaling γ, resulting in the value of tscaling that ensures the desired error,
tscaling > tmaxγ. Notice that although theoretically the error can be made arbi-
trarily small by choosing a large enough tscaling, flow-pipe construction methods
often have overapproximation error, which may prevent this in practice.

Also notice that the proposed transformations do not depend on
Assumption 4, but only the proof that we can make the error small uses it.
By using a different scaling function g, we may be able to remove it.

4 Evaluation

We evaluate the proposed approach using a drivetrain system model [38]. The
complete system dynamics, controller, and initial set description are available in
another work [2], and here we only provide a brief description.

The model is a parameterized vehicle drivetrain, where one can add any
number θ of rotating masses, corresponding to gears and other parts of the
drivetrain such as transmission shafts. Given θ rotating masses, the model con-
tains n = 7 + 2θ dimensions. The hybrid behavior of the drivetrain originates
from backlash [42], which is caused by a physical gap between two components
that are normally touching, such as gears. When the rotating components switch
direction, for a short time they temporarily disconnect, and the system is said
to be in the dead zone. All flows are linear ODEs.

We analyze an extreme maneuver from an assumed maximum negative accel-
eration that lasts for 0.2 [s], followed by a maximum positive acceleration that
lasts for 1.8 [s]. The initial states of the model are taken to be a zonotope with
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a single generator (a line segment in the n-dimensional space). We can make
the reachability problem easier by considering scaling down the initial states by
some percentage. The model has the following specification: after the change of
direction of acceleration, the drivetrain completely passes the dead zone before
being able to transmit torque again. Due to oscillations in the torque trans-
mission, the drivetrain should not re-enter the dead zone of the backlash. The
system has three modes with two transitions between them, and so as mentioned
after Assumption 1, we needed to apply the proposed transformation twice.

Table 1. Computational times in seconds (n = 2θ + 7).

Dimensions 11 21 31 41 51

SpaceEx (smaller init) 541 1669 T/O T/O T/O

CORA Total 75 264 475 654 1073

CORA1st guard

Scaling Mode 36.95 132.00 281.44 377.25 620.54

Either Mode 0.06 0.11 0.37 1.49 2.96

CORA2nd guard

Scaling Mode 28.87 122.17 182.22 259.96 427.98

Either Mode 0.05 0.12 0.19 0.72 1.68

The implementation was done in CORA [1], a MATLAB-based tool, on an i7
Processor and 6 GB memory. We computed reachable sets with a varying number
of rotating masses, where the total number of dimensions n ∈ {11, 21, 31, 41, 51}
(plots are shown in Fig. 5). Using the transformation approach from this paper,
we could successfully analyze the model using initial states up to 40% of the
desired size, while provably meeting the specification. The overall computational
time, as well as the individual intersection times with the two guard sets are listed
in Table 1. The total CPU time for the largest system with 51 dimensions is about
18 min. The table also shows that the runtime is dominated by computation in
the scaling modes. This demonstrates a trade-off of our approach: Although we
can eliminate geometric intersections, the dynamics in the scaling mode becomes
more complicated. Further, the error can be reduced by spending more time in
the scaling mode, at the cost of additional computation time.

We also analyzed the same system using SpaceEx [27], the state-of-the art
reachability tool for linear systems which performs geometric operations for
guard intersection and successor aggregation. Note that SpaceEx is a more
general-purpose tool, while the approach here requires that all executions eventu-
ally reach the guard set. For SpaceEx, we used the space-time clustering analysis
scenario [29], and, for each of the models, we tried to maximize the size of the
initial set while ensuring the specification was not violated and the analysis time
was less than 20 min. For the n = 11 model, using a flowpipe-tolerance para-
meter of 0.0005, in 541 seconds we could successfully analyze the system with
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up to 1.1% of the desired initial set size (1.2% violated the error specification).
For the n = 21 model, using a flowpipe-tolerance value of 0.01, in 1669 s we
could successfully analyze the system with up to 0.2% of the desired initial set
size (0.3% exceeded the time bound). We did not find parameters which suc-
ceeded for the other models within the 20 min timeout. This demonstrates that
this model is particularly hard for techniques which do geometric intersection
and aggregation as part of reachability analysis. A plot of the reachable states
using SpaceEx and our technique with CORA is shown in Fig. 5.

Fig. 5. Reachable set using SpaceEx with n = 11 (top left), and using our transforma-
tion approach with n = 31 (others).

5 Related Work

Hybrid automata [6] can be analyzed by a number of methods [45]. These range
from SMT [19,25,36], deduction [43], level sets [41], and simulation [24] based to
flow-pipe construction based methods. In this paper, we compute time-bounded
reachability [18] using flow-pipe construction. These methods work by propagat-
ing regions of states, which can be represented using constraint polyhedra [26],
support functions [32], orthogonal polyhedra [23], zonotopes [5], Taylor mod-
els [21,44] or ellipsoids [17,37]. These representations have been implemented in
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powerful analysis tools for hybrid automata including HyTech [34], Ariadne [13],
Flow* [20], PHAVer [26], SpaceEx [27], CORA [1], and Hylaa [11].

Research on intersection in flowpipe construction involves techniques which
avoid the intersection operation by employing a nonlinear mapping onto the
guard [2]. Continuization methods [3,4,12] eliminate intersections using abstrac-
tions that get rid of fast-switching dynamics or eliminate guard intersections
between similar continuous dynamics, as performed for meither in this work.
Frehse et al. [30] cast the intersection operator as a convex minimization prob-
lem. Other research examines the problem of efficiently computing geometric
intersections for particular choices of data structures [31,33,35,40].

Our approach was presented using model transformations [9]. Model trans-
formations can be used to derive abstractions [14–16,28]. Bak et al. [8] use model
transformations to encode a hybridization process, i.e. reduction of the analysis
of non-linear hybrid automata to linear ones, also using time-triggered transi-
tions. The pseudo-invariants model transformation [7] can be used to reduce
wrapping-effect error, which may also be possible with the dynamics scaling
approach described in this work, without requiring geometric intersections.

In terms of applicability, benchmarks for various classes of hybrid systems
have been proposed [22]. Of these proposed hybrid benchmarks, the main limit
to applicability is the presence of resets along transitions. Some models, such as
the filtered oscillator or glycemic control system, only use identity resets and do
not have synchronization points, and so may be applicable for our method.

6 Conclusion

In this paper, we have presented a new way to handle certain types of discrete
transitions when performing hybrid systems reachability analysis. We do this by
creating an overapproximation abstraction of the original hybrid automaton that
uses only time-triggered transitions. Given a space-triggered transition, our tech-
nique works in two steps: (1) we first add an intermediate mode which accounts
for a “grey” zone when executions can be in either mode; (2) we scale the con-
tinuous dynamics in the first mode to decrease the time interval executions must
spend in previously-mentioned “grey” zone. By applying these transformations,
we remove the need to perform high-dimensional set intersection and set aggre-
gation, which can be both time-consuming and error-prone.

The trade-off with this approach is that the system dynamics become more
complicated when the dynamics are scaled. A system with linear ODEs, for
example, becomes a quadratic system when scaling is being performed. The pro-
posed method can also work for systems that originally have nonlinear dynamics,
and so it is a promising approach to address part of the grand challenge of veri-
fying high-dimensional nonlinear hybrid systems.
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Abstract. We consider the problem of model-checking a subset of prob-
abilistic CTL, interpreted over (discrete-time) Markov reward models,
allowing the specification of lower bounds on the probability of the set of
paths satisfying a cost-bounded path formula. We first consider a reduc-
tion to fixed-point computations on a graph structure that encodes a
division of the problem into smaller sub-problems by explicit unfolding
of the given formula into sub-formulae. Although correct, the size of the
graph constructed is highly dependent on the size of the cost bound. To
this end, we provide a symbolic extension, effectively ensuring indepen-
dence between the size of the graph and the cost-bound.

Keywords: Model-checking · Probabilistic CTL · Dependency graphs

1 Introduction

Addressing non-functional properties of embedded and distributed systems has
been studied intensely in recent years. This has called for extensions of traditional
modeling formalisms and specification languages to directly incorporate informa-
tion such as resource consumption, timing constraints and probabilistic behav-
ior. For real-time systems, various extensions of the popular Timed Automata
[1] formalism have been studied and successfully implemented in model-checking
tools such as Uppaal[17] and PRISM [16]. These extensions include variations
and combinations of Priced Timed Automata [4], where costs are associated to
both locations and transitions, and Probabilistic Timed Automata [19] where
edges have associated probability distributions. Various extensions of Markov
chains such as Markov Reward Models [12] assigning cost expressions to states
and transitions, have been studied and successfully incorporated in tools such as
MRMC [14], PRISM and recently STORM [10]. The underlying semantics of
all these models can be given in terms of traditional transition systems where the
transition relation is endowed with costs and probabilities. To reason about the
costs and probabilities of the underlying (discrete) quantitative models, proba-
bilistic CTL (PCTL) [11] extends the classical logic CTL [7] with probabilistic
quantification over path formulae. Various extensions of PCTL have been devel-
oped, notably PRCTL [2] for specification of constraints over reward measures.
c© Springer International Publishing AG 2017
A. Abate and G. Geeraerts (Eds.): FORMATS 2017, LNCS 10419, pp. 153–169, 2017.
DOI: 10.1007/978-3-319-65765-3 9
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Devising efficient techniques for verifying such specifications for complex models
is non-trivial as any näıve exploration of the entire state space is many times
not possible due to time and memory constraints, even when the state space is
finite.

Our contribution. We consider model-checking a subset of PCTL. Our formal-
ism allows for specification of non-trivial properties such as “the probability to
reach a goal state through only approved states (indicated by labels), using no
more than X amounts of some resource, is strictly greater than 90%”. Thus, we
consider a cost-bounded logic. This is natural for verification of embedded sys-
tems as resources such as time and energy are often sparse and one often wants
to ensure that the probability of reaching a goal configuration without running
out of resources, is above a certain threshold. We show that the problem can be
reduced to fixed-point computations on a probabilistic extension of dependency
graphs first introduced by Liu and Smolka [18]. They provide linear-time algo-
rithms for computing least fixed-point for a Boolean domain, lending itself to
e.g. CTL model checking. They offer both a global and local approach, where
the global approach computes the fixed-point value for each node while the local
approach in many cases will only explore parts of the entire graph. Our con-
tribution is a lifting of the approach from the Boolean domain to a domain of
probabilities for model-checking a subset of PCTL. The first approach is a new
type of probabilistic dependency graph, constructed by a simple unfolding of the
formula. Although correct, this approach is highly dependent on the size of the
concrete cost bounds. To this end we provide a symbolic extension of probabilis-
tic dependency graphs that effectively ensures independence between the size of
the graph and the cost-bound. Although this paper does not describe a concrete
implementation, the framework is constructed in such a way that it lends itself
to an adaptation of the local algorithm by Liu and Smolka [18].

Related work. The framework of dependency graphs and the local algorithm
of Liu and Smolka [18] has recently been extended in various ways. For the
Boolean domain, a distributed implementation of the local algorithm has been
developed [9] and very recently extended to express negation [8] with promis-
ing experimental results. Several extension to different domains have also been
proposed. In [5] an extension to time bounds is presented to efficiently analyse
Timed Games [5] and in [6,13] the approach was lifted to a (parametric) weighted
domain for model-checking a (parametric) weighted variant of CTL. This paper
further extends the theory behind this framework by a novel extension to the
probabilistic domain. In [2] the notion of a Path Graph is used to solve similar
model-checking problems. These graphs also express an unfolding of the model,
but instead of nodes encoding probabilities for a certain state and formula, as is
the case in this paper, the nodes represent possible rewards for path fragments
and the associated probabilities. It will be interesting in the future to compare
a distributed implementation of our approach to the Path Graph approach.



Symbolic Dependency Graphs for PCTL>
≤ Model-Checking 155

s0, a

s1, b s2, a

3, 1
4 1, 1

4

10, 1

5, 1
2

1, 1

(a) M1.

t0, a

t1, b

3, 1
2

5, 1
2

1, 1

(b) M2.

Fig. 1. Two MRMs, M1 and M2.

2 Models and Properties

This section introduces the modeling formalism and specification language. Our
models will be instances of Markov Reward Models (MRMs) [12]. As we are
interested in upper bounds on the non-probabilistic quantities we will from now
on refer to them as costs instead of rewards, hence the inclusion of a transition
cost function.

Definition 1 (Markov Reward Model). A Markov Reward Model (MRM)
is a structure M = (S, P, c,L) where S is a finite set of states, P : S ×S → [0, 1]
is the transition probability function such that for all s ∈ S,

∑
s′∈S P (s, s′) = 1,

c : S × S → N
+ is the transition cost function and L : S → 2AP is the labeling

function, assigning to each state a set of atomic propositions from a set AP .

For two states s, s′ with s being the current state, P (s, s′) is the probability
that the next state will be s′ and c(s, s′) represents the cost of exercising the
transition. As our approach requires all paths to diverge w.r.t cost, we simply
impose all weights to be strictly positive. Our approach also works for the case
where all loops are required to have at least one transition with a strictly positive
cost1. We denote such a transition from s to s′ with probability p and cost w

by s
w,p−−→ s′2. Thus, any MRM, defines a transition system for which we want to

model-check properties. A path from a state s0 is an infinite sequence of states
π = s0, s1, s2, s3, s4, . . . with P (si, si+1) > 0 for any i ∈ N. We denote by π[j]
the j’th state of π, sj .

Example 1. Consider the MRMs in Fig. 1. Each circle represents a state and the
set of atomic propositions of that state. Set notation is omitted as each state
has exactly one atomic proposition.

1 Note that using costs from Q
+ does not change the expressivity of the formalism; as

any model is finite, one can always multiply all costs by the least common denomi-
nator to obtain a model with costs in N

+.
2 Any such transition could be replaced by a number of unit length transitions with

probability 1, transforming the MRM into a (much larger) Markov chain.
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As specification language, we consider PCTL restricted to strict lower bounds on
the probabilistic modality and upper bounds on path formulae. The combination
of a lower and upper bound induces a monotonic fixed point operator while the
strict lower bound is needed for the operator to be chain-continuous, which
implies the existence of the fixed point in the symbolic case (see Lemma 2).

Definition 2 (PCTL>
≤). The syntax of PCTL>

≤ state formulae is as follows:

Φ:: = a | ¬a | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | P>λ(ϕ)

where a ∈ AP and λ ∈ [0, 1). The path formulae are then constructed according
to the following grammar, with k ∈ N:

ϕ:: = X≤kΦ | Φ1U≤kΦ2.

Informally, a state s satisfies P>λ(Φ1U≤kΦ2) if the probability of the set of paths
from s satisfying Φ1U≤kΦ2 is greater than λ. A path satisfies Φ1U≤kΦ2 if, from
the beginning of the path, all states satisfy Φ1 until a state satisfying Φ2 is
reached while the sum of the costs between the start of the path and the state
satisfying Φ2 is less than or equal to k.

The probability associated with a given path-formula is well defined based
on the σ-algebra generated from the standard cylinder-set construction (see [3,
Chap. 10]) assigning probabilities to sets of infinite paths sharing a finite prefix.
This construction ensures that the following PCTL>

≤ semantics is well defined.
P will be used to denote the (unique) probability measure.

For a state formula Φ and an MRM M with state s, we denote by M, s |= Φ
the satisfiability of Φ in s. Similarly M, π |= ϕ denotes the satisfaction of path
formula ϕ by the path π of M.

Definition 3 (PCTL>
≤ Semantics). For MRM M = (S, P, c,L) with state s,

the satisfiability relation |= is defined inductively on PCTL>
≤ formulae:

M, s |= a iff a ∈ L(s)
M, s |= ¬a iff a /∈ L(s)
M, s |= Φ1 ∧ Φ2 iff M, s |= Φ1 and M, s |= Φ2

M, s |= Φ1 ∨ Φ2 iff M, s |= Φ1 or M, s |= Φ2

M, s |= P>λ(ϕ) iff P(π | π[0] = s,M, π |= ϕ) > λ

M, π |= X≤kΦ iff M, π[1] |= Φ and c (π[0], π[1]) ≤ k

M, π |= Φ1U≤kΦ2 iff there exists a j such that M, π[j] |= Φ2,

M, π[i] |= Φ1 for all i < j and
j−1∑

l=0

c (π[l], π[l + 1]) ≤ k.
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The satisfiability of a formula of the form P>λ(ϕ) for a state s can be model-
checked by deciding satisfiability of certain sub-formulae in the successor states
of s.

Proposition 1. If M, s |= P>λ(Φ1U≤kΦ2) then at least one of the two follow-
ing properties must hold:

1. there exists transitions s
wi,pi−−−→ si with wi ≤ k such that

M, si |= P>λi
(Φ1U≤k−wi

Φ2) with
∑

pi · λi > λ.
2. M, s |= Φ2.

Proposition 1 suggests a procedure for generation of dependencies for PCTL>
≤

model checking as a disjunction between the dependencies represented by prop-
erty (1) and the dependency of property (2). In Sect. 3 we will explicitly encode
these dependencies as a probabilistic dependency graph. This involves a recursive
application of property (1) At some point, a cost bound of less than or equal to
0 is reached. At this point, the generation of dependencies stops, as we do not
allow 0-weights in a MRM.

Finally, the probability measure associated with path formulae is monotoni-
cally increasing w.r.t cost bounds.

Proposition 2. For any MRM M and state s,

M, s |= P>λ(Φ1U≤kΦ2) =⇒ M, s |= P>λ′(Φ1U≤k′Φ2)

whenever λ′ ≤ λ and k′ ≥ k.

Example 2. Consider the formula Φ = P> 1
2
(ϕ) with ϕ = aU≤k b, k ∈ N and

the MRM M1 in Fig. 1a. For k = 10, P(π | π[0] = s0,M1, π |= ϕ) =
P (s0, s1) + P (s0, s0) · P (s0, s1) = 1

4 + 1
8 = 3

8 < 1
2 If instead k = 11 the direct

path through s2 affects the total probability i.e. P(π | π[0] = s0,M1, π |= ϕ) =
3
8 + P (s0, s2) · P (s2, s1) = 5

8 > 1
2 . Thus, M1, s0 |= P> 1

2
(aU≤11 b). By Proposi-

tion 2 we conclude M1, s0 |= P> 1
2
(aU≤kb) for any k ≥ 11. Similarly for M2 of

Fig. 1b we conclude M2, t0 |= P> 5
8
(aU≤k b) for any k ≥ 8.

3 Probabilistic Dependency Graphs

This section introduces probabilistic dependency graphs to explicitly represent
the dependencies implied by Proposition 1. We show that PCTL>

≤ model check-
ing can be solved by computing the least fixed-point on a complete lattice of
probability assignments to nodes of the graph. These assignments will be con-
crete probabilities.

Consider the model-checking problem M, t0 |= P> 1
3
(aU≤8 b) for t0 of

Fig. 1b. To encode this problem, a node representing the entire problem is con-
structed. This can be seen in Fig. 2. Now, the probability mass for the set of
paths that satisfy the path formula aU≤8 b must be strictly greater than 1

3 .
This dependency is encoded by a special cover edge (dashed edge), labeled by
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the probability, to a successor node encoding the sub-problem. The semantics is
that the assignment (probability) of the successor node must be strictly greater
than 1

3 for the node to have value 1. At this point we can directly apply Proposi-
tion 1 to construct new nodes. If M, t0 |= b, then the problem is trivial and must
have associated probability 1, hence the labeling of max on the outgoing edge,
indicating that a maximum will be computed. If M, t0 	|= b, then M, t0 |= a
must be the case (value 1) and at the same time we have to apply Proposition 1
(1) to reason about successors of t0 in the MRM, hence the minimum. A hyper
edge is created, labeled by the transition probabilities out of t0 with target nodes
encoding the sub-problems by Proposition 1 (1). The rest of the graph can be
generated in a similar manner, but one can also apply a local approach in lieu of
Liu and Smolka [18]. If we choose to locally expand the tree at node 〈t1, a U≤5 b〉
and first construct the node 〈t1, b〉 it is trivial that the value of 〈t1, a U≤5 b〉
should be 1 as 〈t1, b〉 would have value 1. The value for the node 〈Σ〉 would then
be p · 1

2 + 1
2 · 1 which, no matter the value for p, is strictly greater than 1

3 . Hence
the root gets the value 1 and we can stop, even though p is completely unknown.

Our aim is in the future to use this approach to implement an extension of
the local fixed-point algorithm by Liu and Smolka [18].

〈t0, P> 1
3
(a U≤8 b)〉 〈t0, a U≤8 b〉

〈 〉 〈t0, b〉
0

〈Σ〉〈t0, a〉1

〈t0, a U≤3 b〉p 〈t1, a U≤5 b〉 〈t1, b〉 1

1
3

max

min

1
2

1
2

Fig. 2. On-the-fly unfolding of dependencies.

Definition 4 (Probabilistic dependency graph). A probabilistic dependen-
cy graph (PDG) is a structure G = (N,C,EΣ , Emin, Emax) where

– N is a finite set of nodes.
– C ⊆ N × [0, 1] × N is a finite set of cover edges.
– EΣ ⊆ N × 2[0,1]×N is a finite set of (probabilistic weighted) sum-edges where

• for any E ∈ EΣ with E = (n, T ),
∑

(wi,pi,ni)∈T pi = 1.
– Emin, Emax ⊆ N × 2N are finite sets of minimum/maximum-edges.

All nodes are restricted to have at most one outgoing edge.
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PDGs for PCTL>
≤ model checking will mostly have nodes of the types 〈s, Φ〉 or

〈s, ϕ〉 where Φ is a state-formula and ϕ is a path-formula. Figure 3 shows the
concrete construction rules. Given an MRM state and a PCTL>

≤ formula, one
can apply the rules in a recursive manner to obtain a PDG. The rules for ¬a are
omitted as they are simply the inverse of the rules for a. Maximum/minimum
edges are labeled with max/min, cover edges are represented by dashed lines and
sum edges by solid lines. Note that any PDG will be finite and without cycles
as MRMs are finite and 0-costs are not allowed. Cover edges abstract away the
probability bound before unfolding the until formula by the until rule (Fig. 3h)
according to Proposition 1. The semantic value of a node 〈s, ϕ〉 is a value in the
interval [0, 1] corresponding to the probability of the set of paths out of s that
satisfy ϕ. Nodes 〈s, Φ〉 will be assigned either 1 or 0, depending on whether Φ is
satisfied in s or not.

Example 3. Consider MRM M2 in Fig. 1b with formula Φ = P> 5
8
(aU≤8 b). After

applying the construction rules we get the PDG in Fig. 3. As the entire PDG is
quite large, a few nodes have been omitted, indicated by dots. These nodes all
represent the unfolding of aU≤k b in state t1 for various k. The size of the PDG
is therefore highly dependent on the cost bound.

The formal semantics of a node is given by an assignment.

Definition 5 (Assignments). Given a PDG G = (N,C,EΣ , Emin, Emax), an
assignment, A : N → [0, 1] on G is a mapping from each node to a probability.

An assignment represents the probability associated with the satisfiability of a
PCTL>

≤ formula in an MRM state. We denote by AG, the set of all assignments
for a PDG G and order assignments by the partial order : for two assignments
A1, A2, A1  A2 iff ∀n ∈ N.A1(n) ≤ A2(n). (AG,) then constitutes a complete
lattice as the meet and join of any (possibly infinite) subset D = {A1, A2, . . .}
is given by the well defined supremum and infimum defined on elements of the
unit interval [0, 1]. The join is given by

∨
D = A∨ where ∀n ∈ N.A∨(n) =

supAi∈D Ai(n). The meet can be defined similarly, using infimum.
As we are interested in the least fixed point of (AG,), we define a monotone

function that iteratively refines assignments. In the following we let max ∅ = 1.

Definition 6 (Iterator). For a PDG G = (N,C,EΣ , Emin, Emax), F : AG →
AG is a function that, given an assignment A on G, produces a new updated
assignment, F (A), defined for any node n ∈ N :

F (A)(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
1 if A(n′) > λ

0 otherwise
if (n, λ, n′) ∈ C

∑
(pi,ni)∈T (A(ni) · pi) if (n, T ) ∈ EΣ

maxn′∈T {A(n′)} if (n, T ) ∈ Emax

minn′∈T {A(n′)} if (n, T ) ∈ Emin

0 otherwise
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〈s, P>λ(X≤kΦ)〉

〈s, X≤kΦ〉

λ

(a) Next cover edge

〈s, P>λ(Φ1U≤kΦ2)〉

〈s, Φ1U≤kΦ2〉

λ

(b) Until cover edge

〈s, X≤kΦ〉
for s

wi,pi−−−→ si with wi ≤ k, 1 ≤ i ≤ m

〈s1, Φ〉 〈sm, Φ〉· · ·

p1 pm

(c) Next

〈s, Φ1 ∨ Φ2〉

〈s, Φ1〉 〈s, Φ2〉

max

(d) Disjunction

〈s, Φ1 ∧ Φ2〉

〈s, Φ1〉 〈s, Φ2〉

min

(e) Conjunction

〈s, a〉

∅

max

(f) a ∈ L(s)

〈s, a〉
(g) a /∈ L(s)

〈s, Φ1U≤kΦ2〉

〈s, Φ2〉

〈 〉 〈s, Φ1〉

〈Σ〉 〈sm, Φ1U≤k−wmΦ2〉

〈s1, Φ1U≤k−w1Φ2〉
for s

wi,pi−−−→ si with wi ≤ k, 1 ≤ i ≤ m

··
·

max

min

p1

pm

(h) Until

Fig. 3. PDG construction rules

For a formula ϕ = Φ1U≤kΦ2 and a state s, a cover edge is created to abstract
away the cost bound. The target node of this edge will compute the probability
for the set of paths from s that satisfy ϕ which is compared to λ in the cover edge
case of F . By Proposition 1, this probability can be split into a weighted sum of
probabilities for similar formula in successor states. This is implemented in the
sum-edge case of F . To argue that F is well defined we note that assignments are
closed under maximum and minimum. Furthermore, for the case (n, T ) ∈ EΣ

we have, by definition of EΣ , that
∑

(pi,ni)∈T pi = 1 for any (n, T ) ∈ EΣ . Thus,
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〈t0, P> 5
8
(a U≤8 b)〉1

〈t0, a U≤8 b〉2

〈 〉4〈t0, b〉3

〈Σ〉6〈t0, a〉
5

∅

〈t0, a U≤3 b〉 7 〈t1, a U≤5 b〉 10

〈 〉 8

〈Σ〉9

··
··

··
··

··
··

〈t1, a U≤0 b〉
11

〈 〉
13

〈Σ〉
15

〈t1, b〉12

∅

〈t1, a〉
14

5
8

max

min

1
2

1
2

max

max

min

1
2

max

max

min

Fig. 4. PDG constructed from M2 (Fig. 1) and Φ = P> 5
8
(a U≤8 b)

each term of the sum can be at most pi implying that the sum is within [0,1].
We now argue for the existence of a least fixed point of F . To this end we show
that F is monotone on the complete lattice of assignments.

Lemma 1 (Monotonicity). F is monotone on the complete lattice (AG,).

Let F i(A) denote i repeated applications of F on assignment A i.e. F i(A) =
F (F i−1(A)) for i > 0 and F 0(A) = A. As F is monotone on the complete lattice
(AG,), Tarski’s fixed point theorem [21] guarantees the existence of a least
(pre-) fixed point assignment Amin. As the PDG is finite and has no cycles,
the least fixed point is computable by a repeated application of the monotone
function F on the bottom element of the complete lattice of assignments. The
following theorem states the correctness of our approach.

Theorem 1 (Correctness). Given a state s of an MRM M, a PCTL>
≤ state-

formula Φ and the generated PDG G with root node 〈s, Φ〉,
– M, s |= Φ ⇐⇒ Amin(〈s, Φ〉) = 1
– For any node n = 〈s′, ϕ′〉 where ϕ′ is a path-formula,

Amin(n) = P(π | π[0] = s′,M, s′ |= ϕ′).

Example 4. We now apply F on the PDG in Fig. 4. Our starting assumption is
that the assignment to all nodes is 0. The node indices in bold will be used as
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shorthand for a given node and F i(j) denotes F i(0)(n) whenever j is the index
of node n. First note that F 1(12) = 1 and therefore F 2(11) = 1, which will
never change as F i(13) = F i(14) = F i(15) = 0 for any i. Now, there are a set
of nodes 〈s1, a U≤k b〉 for 0 ≤ k ≤ 5, two of them shown (k ∈ {5, 0}). According
to F , the assignment to such a node for iteration i will be

F i(〈t1, aU≤kb〉) = max
{

F i−1(〈t1, b〉),
min{F i−1(〈t1, a〉), F i−1(〈t1 aU≤k−1 b}

}

.

As F 1(12) = 1, F 2(〈t1, aU≤kb〉) = 1. These values can never change by the max-
imum and the fact that 12 is fixed after just 1 iteration of F . Table 1 shows the
first 10 iterations for nodes that at some point have their value increased above
0. ’–’ denotes that the assignment did not change from previous the iteration;
hence a fixed point is reached after 9 iterations. The fixed-point assignment to
node 1 is 1, correctly implying satisfiability of formula Φ = P> 5

8
(aU≤8 b) in state

t0 of the MRM M2 in Fig. 1b.

Table 1. Iterations of F on PDG in Fig. 3

Iter#/Node 1 2 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0

1 - - - 1 - - - - - - 1

2 - - - - - - - - 1 1 -

3 - - - - 1
2

- - 1
2

- - -

4 - - 1
2

- - - 1
2

- - - -

5 - 1
2

- - - 1
2

- - - - -

6 - - - - 3
4

- - - - - -

7 - - 3
4

- - - - - - - -

8 - 3
4

- - - - - - - - -

9 1 - - - - - - - - - -

10 - - - - - - - - - - -

4 Probabilistic Symbolic Dependency Graphs

As witnessed by the previous section, a simple unfolding of the dependencies
arising from a probabilistic formula can be used for PCTL>

≤ model-checking.
Although correct, the approach implies that larger cost bounds on path formula
results in larger PDGs as illustrated in Example 4. In this section we introduce
a symbolic version of PDGs that abstracts away the cost bound, effectively
collapsing many concrete nodes into symbolic nodes of the form 〈s, Φ1U≤?Φ2〉.
This reduces the size of the graph significantly but may introduce cycles.



Symbolic Dependency Graphs for PCTL>
≤ Model-Checking 163

Definition 7 (Probabilistic symbolic dependency graph). A probabilistic
symbolic dependency graph (PSDG) is a structure G = (N,C,EΣ , Emin, Emax)
where

– N,Emin, Emax are defined as for PDGs.
– EΣ ⊆ N × 2N

+×[0,1]×N is a finite set of sum-edges.
– C ⊆ N × N

+ × [0, 1] × N is a finite set of cover edges.

All nodes are restricted to have at most one outgoing edge.

The new construction rules for cover edges and symbolic nodes are shown in
Fig. 5. From the rules, we see that symbolic nodes imply independence between
the size of the PSDG and the cost-bound.

〈s, P>λ(X≤kΦ)〉

〈s, X≤?Φ〉

k, λ

(a) Next cover edge

〈s, P>λ(Φ1U≤kΦ2)〉

〈s, Φ1U≤?Φ2〉

k, λ

(b) Until cover edge

〈s, X≤?Φ〉

〈s1, Φ〉 〈sm, Φ〉· · ·

w1, p1 wm, pm

(c) Symbolic next

〈s, Φ1U≤?Φ2〉

〈s, Φ2〉

〈 〉 〈s, Φ1〉

〈Σ〉 〈sm, Φ1U≤?Φ2〉

〈s1, Φ1U≤?Φ2〉
··

·

max

min

w1, p1

wm, pm

(d) Symbolic until

Fig. 5. PSDG construction rules for state s where s
wi,pi−−−→ si for all i with 1 ≤ i ≤ m.

Example 5. Consider again the MRM M2 in Fig. 1. Figure 6 shows the con-
structed PSDG for M2, t0 |= P> 5

8
(aU≤8 b) which is much smaller than the

corresponding PDG in Fig. 3.

As for PDGs, the semantics of each node is given by an assignment. Now that
the upper bound on path formulae is abstracted away, each node represents a
function from strictly positive naturals to concrete probabilities. Thus, an assign-
ment to a node 〈s, Φ1U≤?Φ2〉 is a function f from cost bounds to probabilities
such that f(k) is the probability of the set of paths from s that satisfy Φ1U≤kΦ2.
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〈t0, P> 5
8
(a U≤8 b)〉1

〈t0, a U≤? b〉2

〈t0, b〉3

〈 〉4

〈t0, a〉5

〈Σ〉6

∅

〈t1, a U≤? b〉
7

〈t1, b〉8

〈 〉9

〈t1, a〉10

〈Σ〉11

∅

8, 5
8

max

max

min

5, 1
2

3, 1
2

max

min

1, 1
max

Fig. 6. PSDG constructed from M2 (Fig. 1b) and Φ = P> 5
8
(a U≤8 b)

Definition 8 (Assignments). Given a PSDG G = (N,C,EΣ , Emin, Emax),
an assignment, A : N → (N → [0, 1]) on G is a mapping from each node to a
function that, given a natural number, yields a probability.

As for PDGs, we assume a component-wise partial ordering,  on assignments;
A1  A2 iff ∀n ∈ N,w ∈ N.A1(n)(w) ≤ A2(n)(w). The set of assignment AG for
a PSDG G ordered by  constitutes a complete lattice (AG,).

In practice, a (finite) representation of the assignments is needed. For this,
we introduce probabilistic step-functions. We will show (Lemma 3) that these are
the only types of assignments of interest.

Definition 9 (Probabilistic Step Function). A (finite discrete) probabilis-
tic step-function f : N → [0, 1] is a function

f(k) =
n∑

i=0

piχBi
(k)

where n ∈ N is the number of steps, pi ∈ [0, 1] denotes the probability associated
with step i, Bi is the interval of step i and χBi

is the indicator function for the
interval Bi. The intervals partition N and all intervals Bi are on the form [l, u)
with l < u, l ∈ N, u ∈ N ∪ {∞}.
Note that our definition of (probabilistic) step-function requires a finite num-
ber of steps, implying that any step-function is bounded. We will represent a
step-function f as a set Cf = {(ki, pi − pi−1) | ki = low(Bi), 0 < i ≤ n} where
low(Bi) is the lower end of the interval Bi. Thus, for each step, Cf includes a pair
describing the position and size of the step. As we will show, all assignments of
interest are probabilistic step-functions (cf. Lemma 3) i.e. any assignment A of
interest is weight-monotonic; for any node n, A(n)(w) ≥ A(n)(w′) whenever
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w ≥ w′, capturing that the probability measure associated with properties
increases with an increased cost bound (see Proposition 1). An assignment will
be referred to as a step-function assignment if it assigns a probabilistic step-
function to each node in the PSDG.

Example 6. Consider again the MRM M2 in Fig. 1b and the path formula
aU≤k b. For k ≤ 13, the step-function depicted in Fig. 7 correctly computes the
probability of the set of paths outgoing of t0 that satisfy aU≤k b. This function
is represented by the set

{
(3, 1

2 ), (8, 1
4 ), (13, 1

8 )
}
.

P

k

0.25

0.5

0.75

1.0

0 3 8 13

Fig. 7. Step-function for probability of set of paths outgoing of t0 (MRM M2, Fig. 1b)
satisfying a U≤k b for k ≤ 13.

Wenowdefine thefixed-point iterator for aPSDGG = (N,C,EΣ , Emin, Emax),
to iteratively refine assignments. In the following we let x be an assignment such
that for any node n ∈ N and natural number w, x(n)(w) = x.

Definition 10 (Iterator). For a PSDG G = (N,C,EΣ , Emin, Emax),
F : AG → AG is a function that, given an assignment A on G, produces a new
updated assignment, F (A). For any node n ∈ N and weight w ∈ N:

F (A)(n)(w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

{
1 if A(n′)(k) > λ
0 otherwise if (n, k, λ, n′) ∈ C

∑
(wi,pi,ni)∈T

wi≤w

(A(ni)(w − wi) · pi) if (n, T ) ∈ EΣ

maxn′∈T {A(n′)(w)} if (n, T ) ∈ Emax

minn′∈T {A(n′)(w)} if (n, T ) ∈ Emin

0 otherwise

Monotonicity of F is straightforward. Thus, by Tarski’s fixed point theorem [21],
a least fixed point, Amin, exists.

As the complete lattice (AG,) of assignments is of arbitrary size, in addition
to the possibility of cycles in the PSDG, applying only the fixed-point theorem
by Tarski does not imply a way of constructing Amin. To this end, we prove that
F is chain (Scott [20])-continuous and apply the Kleene fixed point theorem
[15] to show that Amin = supn∈N

Fn(0). A function f : U → U on a partially
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ordered set U with order  is chain-continuous iff, for any subset D ⊆ U totally
ordered by  (a chain), f(sup D) = supui∈D f(ui). By the Kleene fixed point
theorem [15], we have that if f is chain-continuous on a complete lattice (U,)
with bottom element ⊥, then lfp(f) = supn fn(⊥) where lfp(f) denotes the
least fixed-point of f . As F is monotone on (AG,) the least fixed-point Amin

exists and a repeated application of F on the bottom element 0 produces the
chain F 0(0)  F 1(0) . . .. Thus, if F is chain-continuous, Amin = supn Fn(0).
Chain-continuity of F thus implies an iterative procedure to approximate the
least fixed-point Amin. The following lemma shows that F is chain-continuous.

Lemma 2 (F chain-continuity). The iterator F defined for a PSDG G =
(N,C,EΣ , Emin, Emax) is chain-continuous.

Note that, if instead ≥ λ was the cover-condition for a cover edge (n, k, λ, n′) ∈
C, there would be cases where F computes a chain D′ of assignments Ai con-
verging to λ. In this case, (sup D)(n′) = λ while Ai(n′) < λ for all i. Thus
F (supD′)(n) = 1 and the lemma would not hold as F (Ai)(n) = 0 for any Ai,
implying supAi∈D′ F (Ai)(n) = 0. This is the exact reason for our choice of a
strict lower bound on the probabilistic modality.

We have now established that Amin can be approximated by repeated appli-
cation of F on 0. We now argue that all assignments of interest are step-function
assignments.

Lemma 3. For a PSDG G = (N,C,EΣ , Emin, Emax), node n ∈ N and assign-
ment A ∈ AG, if A is a step-function assignment then F (A) is a step-function
assignment.

The following lemma states that for any i, the i′th repeated application of F
on the top (bottom) element gives an over(under)-approximation of the least
fixed-point. This follows directly from the definition of the least fixed-point.

Lemma 4. For an arbitrary PSDG G, node n, iteration m and weight w,

Amin(n)(w) ∈ [Fm(0)(n)(w), Fm(1)(n)(w)].

Similarly, the approximations provide upper and lower bounds on the probability
associated with the set of paths satisfying a given path formula.

Lemma 5. For any symbolic node n = 〈s, Φ1U≤?Φ2〉, iteration m and weight
w, P(π | π[0] = s,M, s |= Φ1U≤wΦ2) ∈ [Fm(0)(n)(w), Fm(1)(n)(w)].

Finally, the next theorem states that we only need a finite number of iterations to
guarantee these approximations to be equal to the least fixed-point, up to a given
cost. Combining this result with Lemma 5 implies correctness of our approach;
for any given concrete cost bound, we can compute the exact probability of the
set of paths outgoing from a state that satisfy the formula, in a finite number of
steps.

Theorem 2. For an arbitrary PSDG G, node n and weight w, there exists an
iteration i such that for any w′ ≤ w, F i(0)(n)(w′) = F i(1)(n)(w′).
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Example 7. We now apply the iterator F to the PSDG in Fig. 6 to correctly
verify M2, t0 |= P> 5

8
(aU≤8 b). We will use Cx = {(0, x)} to represent the

constant step-function with value x. Table 2 shows the first 9 iterations of F
for the nodes that change value, starting from C0. After 9 iterations, node 1
is assigned C1 as 2 was assigned

{
(3, 1

2 ), (8, 1
4

)} in iteration 8. This represents

the fact that t0
3, 12−−→ t1 adds 1

2 to the probability if the cost bound is equal to

or greater than 3 and t0
5, 12−−→ t0

3, 12−−→ t1 adds 1
2 · 1

2 = 1
4 if the bound is 8 or

greater. Thus, for a bound of exactly 8 the two steps are added and we get the
probability 6

8 > 5
8 . Note that the fixed-point is not reached as there is a cycle

between nodes 2,4,6. Hence the set
{
(3, 1

2 ), (8, 1
4 ), (13, 1

8 )
}

will be propagated
to 2, but this will not change the assignment to 1. Thus, at iteration 9 we can
stop.

Table 2. Iterations of F on PDG in Fig. 6

Iter#/Node 1 2 4 5 6 7 8

0 C0 C0 C0 C0 C0 C0 C0

1 - - - C1 - - C1

2 - - - - - C1 -

3 - - - -
{
(3, 1

2

}
- -

4 - -
{
3, 1

2
)
}

- - - -

5 -
{
(3, 1

2
)
}

- - - - -

6 - - - -
{
(3, 1

2
), (8, 1

4
)
}

-

7 - -
{
(3, 1

2
), (8, 1

4
)
}

- - - -

8 -
{
(3, 1

2
), (8, 1

4
)
}

- - - - -

9 C1 - - -
{
(3, 1

2
), (8, 1

4
), (13, 1

8
)
}

- -

5 Conclusion

We presented an approach for model-checking PCTL>
≤, a subset of PCTL

restricted to strict lower bounds on the probabilistic modalities and lower bounds
on the path formulae, against weighted probabilistic transition systems by reduc-
tion to fixed-point computations on new probabilistic versions of dependency
graphs. First, we presented a simple encoding by unfolding of the path formula,
leading to graphs highly dependent on the size of the cost-bound. To this end, a
symbolic approach was developed to ensure independence between the size of the
graph and the cost-bound, by collapsing many concrete nodes into one symbolic
node. For the symbolic approach, all assignments are step-functions that, given
a cost bound return a probability that corresponds to the probability mass of
the set of paths that satisfy the path formula with the specified cost-bound.

Future work includes efficient data-structures for step-functions and oper-
ations on step-function in order to develop an efficient implementation based
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on the polynomial time on-the-fly algorithm presented in [13]. Another direc-
tion could be to lift the approach to parametric model-checking of probabilistic
weighted systems.
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Abstract. In this paper we propose a (sub)distribution-based bisimula-
tion for labelled Markov processes and compare it with earlier definitions
of state and event bisimulation, which both only compare states. In con-
trast to those state-based bisimulations, our distribution bisimulation is
weaker, but corresponds more closely to linear properties. We construct
a logic and a metric to describe our distribution bisimulation and discuss
linearity, continuity and compositional properties.

1 Introduction

1.1 Labelled Markov Processes

Markov processes are one of the most popular types of stochastic processes in
the fields of mathematics, physics, biology, economics, and computer science.
Markov processes have a common property, called Markov property: Given exact
information on the present, the future is independent of the past. There are
many examples of Markov processes, like Brownian motion, spread of infectious
diseases, option pricing, and quantitative information flow. In some of these, the
state space is continuous, so it is worth studying such Markov processes.

Labelled Markov processes (LMPs) were first studied in [4,14]. Contrary to
common Markov processes, they contain action labels on the transitions: There
is a set of actions, and for each action there is exactly one subprobabilistic tran-
sition function to describe the transition with this action. That is to say, labelled
Markov processes are transition systems with action labels and (sub)probabilistic
transitions. They are input-enabled if all transitions are fully probabilistic. We
adapt the following example from [2] to show what is an LMP.

Example 1.1. There are n rooms in a building, and each room has a heater that is
either On or Off. The state space is the state of the heaters and the temperatures
of every room, i.e. S = {On,Off}n × R

n. On every transition we can change
the states of heaters, so the set of actions A = 2{1,2,...,n}. The temperature of
the i-th room at time k is denoted by xk

i , and these xi are determined by the
following stochastic difference equation:

xk+1
i = xk

i + bi(x0 − xk
i ) +

∑

j �=i

aij(xk
j − xk

i ) + ciI{qk
i =On} + wk

i .

c© Springer International Publishing AG 2017
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Here x0 is the outside temperature, bi is the rate of heat transfer between the
i-th room and the outside environment, aij is the rate of heat transfer from the
j-th room to the i-th room. qi(k) = On means from time k to k+1 the heater of
the i-th room is On, ci describes the temperature influence of this heater, and
wi(k) are independent normally distributed random variables which represent
errors. Now the state space is no longer discrete, but hybrid, and we have a
discrete-time evolution. At every step we choose an action from the set A, and
the probabilistic transition is determined by a system of difference equations.

1.2 Motivation and Related Work

A bisimulation is a relation that describes which states of an automaton or
process exhibit equivalent behaviour. It can help us simplify the models and
grasp the core properties of systems. Bisimulation relations were first studied
in [24,25] for discrete probabilistic systems. On the downside, bisimulations for
probabilistic systems are known to lack robustness: a small perturbation of the
probabilities may change bisimilar states to become different. As a result, met-
rics for probabilistic systems have been proposed, such that a smaller distance
between two states implies their behaviours are more similar. A distance of
zero agrees with the standard (precise) bisimulation. We refer to [26, Chap. 8]
for a detailed discussion. In [3,5,7,28], decision algorithms and optimisations
for bisimulation metrics have been investigated. Bisimulation distance between
probabilistic processes composed by standard process is characterised in [21].
In [1], approximating bisimulation based on relations, metrics, and approximat-
ing functions for LMPs were discussed systematically.

Bisimulations for Markov processes with continuous state spaces (especially
analytic spaces) were studied in [4,13,14]. These papers also introduced the
name “labelled Markov processes”. They defined bisimulation for LMPs in a
coalgebraic way and constructed a simple logic to characterise this bisimulation.
This work led to a lot of further research on bisimulations for LMPs [26].

Metrics, approximations and other topics based on bisimulation for labelled
Markov processes were studied in [8–10,15,16]. In [6], a bisimulation relation was
defined in a categoric way for abstract Markov processes, and that paper also
discussed logical characterisation and approximation based on their definition of
bisimulation. [11] discussed state and event bisimulation for non-deterministic
LMPs and gave a logic characterisation of event bisimulation.

The work mentioned above all focuses on bisimulations between states. That
is to say, their bisimulations are binary relations on the state space. Inspired by
[17], research on bisimulations based on distributions (or subdistributions) for
probabilistic systems with discrete state spaces bloomed up [19,22,23].

Distribution-based bisimulations are usually coarser than state-based bisim-
ulations, i.e. they declare more states in probabilistic systems equivalent. We are
not aware of any research on distribution-based bisimulation for LMPs or other
probabilistic systems with continuous state spaces or time evolution, which moti-
vates us to carry on with such research. There are many methods and results
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which are inspired by the discrete situation, but also some new problems, obser-
vations and differences have appeared.

Different from state-based bisimulation, distribution-based bisimulation has
a tight connection with linear-time properties. In [19], an equivalence metric
is put forward to measure the distance between two systems. Basically the
metric characterising bisimulation is equal to this equivalence metric, so their
distribution-based bisimulation corresponds to trace distribution equivalence.
In our setting, similar results hold, which indicates that our distribution-based
bisimulation characterises equivalence of linear properties. When discussing dis-
tribution bisimulation, we can construct a logical characterization even for state
spaces that are not analytic. Also, some proofs which are trivial for discrete
models need a second thought.

Summarising, the main contributions of our paper are:

– First, we propose a distribution-based bisimulation for LMPs (Sect. 2). We
show that our definition conservatively extends standard state-based and
event-based bisimulations in the literature.

– Second, We provide a logical characterisation result for our bisimulation based
on extensions of the Hennessy–Milner logic (Sect. 3).

– Also, we define a (pseudo)metric between distributions of LMPs with dis-
counting factor 0 < c ≤ 1 (Sect. 4). A distance of 0 is equivalent to our notion
of bisimilarity. Further, we investigate the notion of equivalence metric, char-
acterising trace equivalence distance, and show that our metric matches the
trace equivalence distance in a natural manner. We study some useful prop-
erties and then investigate the compositional properties.

2 Subdistribution Bisimulation

We assume that the readers have basic knowledge of measure theory, like mea-
surable spaces, (sub)probability measures, Borel σ-algebras, and integration of
measurable functions. We refer to [18] for details.

2.1 Bisimulations for Labelled Markov Processes

First we introduce the definition of labelled Markov processes (LMPs) formally
[4,26]. We equip an LMP with an initial distribution.

Definition 2.1. A labelled Markov process (LMP) is a tuple (S,Σ, (τa)a∈A, π),
where

– (S,Σ) is a measurable space;
– τa : S × Σ → [0, 1] is a subprobability transition function indexed with an

element a in the set A of actions, where we assume that A is countable;
– π ∈ Dist(S) is the initial distribution.
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Here (τa)a∈A induces a relation → on S × A × subDist(S): (s, a, μ) ∈ →, also
denoted by s

a−→ μ, if τa(s, ·) = μ(·). For μ, μ′ ∈ subDist(S), we write μ
a−→ μ′, if

μ′(·) =
∫

τa(s, ·)μ(ds).

Moreover, the relation → can be expanded to subDist(S) × A∗ × subDist(S) by:

– μ
ε−→ μ, where ε is the empty word;

– For w ∈ A∗ and a ∈ A, write μ
wa−−→ μ′ if there exists μ′′ s.t. μ

w−→ μ′′ a−→ μ′.

Now we will define subdistribution bisimulation, state bisimulation and event
bisimulation for LMPs so that we can compare these bisimulations. Subdistrib-
ution bisimulation extends the discrete version in [19].

Definition 2.2. Let (S,Σ, (τa)a∈A, π) be an LMP. We say a symmetric relation
R ⊆ subDist(S) × subDist(S) is a (subdistribution) bisimulation relation, if
μ R ν implies:

– μ(S) = ν(S);
– For any a ∈ A and μ

a−→ μ′, there exists ν
a−→ ν′, s.t. μ′ R ν′.

We say μ, ν ∈ subDist(S) are bisimilar, denoted by μ ∼d ν, if there exists a
bisimulation relation R, s.t. μ R ν.

Remark. The wording of Definition 2.2 is classical and can be used for
non-deterministic LMPs [11] as well. Since our LMPs do not contain non-
determinism, the second condition holds if and only if for any a ∈ A, μ

a−→ μ′

and ν
a−→ ν′ implies μ′ R ν′.

Like other bisimilarity relations, the relation ∼d is an equivalence relation,
and the proof is classical.

Proposition 2.3. The relation ∼d is an equivalence relation.

The following example from [19] shows an LMP with a finite state space,
which is classical in discussing bisimulation based on distributions.

s0

s1

s2 s3 t3

t1

t4 t5

t2

t6

t0

1

1
2

1
2

1

1
2

1
2

1
3

2
3

1
3

2
3

1 1

Fig. 1. An example of subdistribition bisimulation: δs0 ∼d δt0 .
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Example 2.4. Figure 1 shows an LMP with a single action in its action set A =
{a}. In this LMP, we have δs0 ∼d δt0 . Let the relation R be {(δs0 , δt0), (δs1 ,

1
2δt1 +

1
2δt2), (

1
2δs2+

1
2δs3 ,

1
6δt3+

1
3δt4+

1
6δt5+

1
3δt6), (

1
2δs2 ,

1
6δt3+

1
3δt6)}. Then it is easy to

check that its symmetric and reflexive closure R̄ is a subdistribution bisimulation
relation. Therefore, we have δs0 ∼d δt0 .

Then we recall state bisimulation according to [8]. Given a binary relation
R ⊆ S × S, we say A ⊆ S is R-closed, if R(A) := {t ∈ S|∃s ∈ A, s R t} ⊆ A.

Definition 2.5. Let (S,Σ, (τa)a∈A, π) be an LMP. We say an equivalence rela-
tion R ⊆ S × S is a state bisimulation relation, if s R t implies that for any
a ∈ A and R-closed set A ∈ Σ,

τa(s,A) = τa(t, A). (1)

We say s, t ∈ S are state-bisimilar, denoted by s ∼s t, if there exists a state
bisimulation relation R, s.t. s R t.

In Definition 2.5, we check (1) only for measurable R-closed sets. We do not
require all R-equivalence classes to be measurable, just as the following example
shows.

Example 2.6. ([8]). Let (R,B(R), (τa)a∈{∗}, π) be an LMP. The transitions are
defined by τ∗(s, {s}) = 1 for all s ∈ R. Let A ⊆ R be a set which is not Lebesgue-
measurable. Then the relation R := (A × A) ∪ (Ac × Ac) is a state bisimulation
relation with non-measurable equivalence classes.

In the example, intuitively we dislike such a bisimulation relation, since the
separation is too fine. To avoid this problem, [8] defined event bisimulation by:

Definition 2.7. Let (S,Σ, (τa)a∈A, π) be an LMP. We say a sub-σ-algebra Λ ⊆
Σ is an event bisimulation, if (S,Λ, (τa)a∈A, π) is still an LMP. We define the
the Λ-indistinguishable relation R(Λ) to contain all pairs of states x, y ∈ S for
which there is no set A ∈ Λ that distinguishes x from y (i.e. {x, y} ∩ A contains
exactly one element). If Λ is an event bisimulation, we sometimes also call R(Λ)
an event bisimulation relation. We say s, t ∈ S are event-bisimilar, denoted by
s ∼e t, if there exists an event bisimulation relation R, s.t. s R t.

2.2 Relations of Bisimulations

In [8], there are several results on the relation between state bisimulation and
event bisimulation. Basically, state bisimilarity always implies event bisimilarity.
For LMPs with analytic spaces as state spaces, event bisimilarity is equivalent to
state bisimilarity. However, for general LMPs, event bisimilarity does not imply
state bisimilarity. See [29] for a counterexample.

We show that state bisimilarity implies subdistribution bisimilarity.

Theorem 2.8. Given an LMP with measurable single-point sets. s ∼s t implies
δs ∼d δt, but δs ∼d δt does not imply s ∼s t.
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Consequently, we can extend state bisimilarity ∼s to subDist(S) ×
subDist(S): We write μ ∼s ν if there is a state bisimulation R, s.t. for any
R-closed set A ∈ Σ, μ(A) = ν(A). While μ ∼s ν now implies μ ∼d ν, they are
not equivalent.

In [1], instead of R-closed sets, only equivalence classes are checked in Eq. (1)
of Definition 2.5. However, these two definitions differ, and using equivalence
class has counterintuitive consequences. In particular, Theorem 2.8 does not hold
any more. The following example shows this fact.

Example 2.9. Let M = ([0, ],B([0, 1]), (τa)a∈A, π) be an LMP, where A = {a}
and τa is defined as follows:

τa(0, A) =
1
2
m(A); τa(1, A) =

1
2

∫

A

(x +
1
2
) dx;

τa(s, {0}) = τa(s, {1}) =
s

2
, τa(s, (0, 1)) = 0, 0 < s < 1.

Here m is the Lebesgue measure on (R,B(R)). Let R ⊆ [0, 1] × [0, 1] be the
smallest equivalence relation that satisfies 0 R 1. Then, the set of equivalence
classes contains all singletons {x}, for 0 < x < 1, and {0, 1}. It is easy to
check that R is not a state bisimulation, since for the R-closed set I = (0, 1/2),
τa(0, I) 
= τa(1, I). However, if we replace “R-closed set” with “equivalence class”
in Definition 2.5, then R is a state bisimulation.

Now we show that δ0 ∼d δ1 does not hold. Otherwise, there exists a bisim-
ulation relation R′, s.t. δ0 R′ δ1. Now δ0

a−→ μ0 and δ1
a−→ μ1, where μ0

has density p0(x) = 1/2 and μ1 has density p1(x) = 1/2(x + 1/2), both
on [0, 1]. Then we consider the next step μ0

a−→ μ′
0 and μ1

a−→ μ′
1. Here

we have μ′
0({0}) = μ′

0({1}) =
∫
(0,1)

s
2 μ0(ds) =

∫
(0,1)

1
2 · s

2 ds = 1
8 and

μ′
1({0}) = μ′

1({1}) =
∫
(0,1)

s
2 μ1(ds) =

∫
(0,1)

1
2

(
s + 1

2

) · s
2 ds = 7

48 . Because
R′ is a bisimulation relation, μ′

0 R′ μ′
1, but μ′

0(S) 
= μ′
1(S). Contradiction!

Intuitively, the states 0 and 1 should not be bisimilar, since transitions from
0 and 1 induce different distributions on (0, 1), where no states appear to be
bisimilar. Therefore, we prefer Definition 2.5.

In this example, if we replace τa(1, ·) with any non-uniform subdistribution
that has measure 1/2 on [0, 1] and mean 1/2, then we have δ0 ∼d δ1. However,
0 ∼s 1 still does not hold. This is a counterexample with a continuous state space
showing that subdistribution bisimulation does not imply state bisimulation.

The proof that event bisimulation implies subdistribution bisimulation is
more intricate; we postpone it to the end of the next section.

3 Logical Characterisation

Inspired by [4,8,13,14,19], we construct a logic to characterise subdistribution
bisimulation in this section. Also, we compare our logical characterisation with
that for state bisimulation [4,13,14] and event bisimulation [8].
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3.1 Logical Characterisation for Subdistribution Bisimulation

Definition 3.1. We assume a fixed set A of actions and define a logic given by

L0 ::= T | ϕ1 ∧ ϕ2 | 〈a〉qϕ | 〈ε〉q,

where a ∈ A and q ∈ Q ∩ [0, 1], and the formula 〈ε〉q does not appear in the
scope of any diamond operator 〈a〉q. Given an LMP M = (S,Σ, (τa)a∈A, π), the
semantics are defined inductively as follows:

– M, μ |= T,
– M, μ |= ϕ1 ∧ ϕ2 iff M, μ |= ϕ1 and M, μ |= ϕ2,
– M, μ |= 〈a〉qϕ iff μ′(S) ≥ q and μ′ |= ϕ, where μ

a−→ μ′,
– M, μ |= 〈ε〉q iff μ(S) ≥ q.

We write M |= ϕ, if M, π |= ϕ. If there is no misunderstanding, we simply
write μ |= ϕ instead of M, μ |= ϕ.

Our formulae 〈a〉qϕ look similar to the logic defined in [4], but their seman-
tics are quite different. We only care about whether the subdistribution of the
next step satisfies ϕ and not about the states any more. In addition, we have
added 〈ε〉q to measure how “large” the subdistribution is, since subdistribution
bisimulation requires that two subdistributions have the same measure on S. If
we only consider bisimulation between full distributions, then 〈ε〉q can be omit-
ted. Also, we request that 〈ε〉q does not appear in the scope of any diamond
operator 〈a〉q because 〈a〉0(〈ε〉q ∧ ϕ) is semantically equivalent to 〈a〉qϕ.

Now we show that the logic L0 characterises subdistribution bisimulation.

Theorem 3.2. μ ∼d ν if and only if μ and ν satisfy the same formulae in L0,
i.e. L0 characterises subdistribution bisimulation.

Next we define four extensions of L0, which are inspired by [4,13,14].

LCan := L0 | Can(a), L¬ := L0 | ¬ϕ,

LΔ := L0 | Δa, L∧ := L¬ |
∧

i∈N

ϕi,

where a ∈ A. Given an LMP M = (S,Σ, (τa)a∈A, π), the semantics are defined
inductively as follows:

– μ |= Can(a) iff μ′(S) > 0, where μ
a−→ μ′;

– μ |= Δa iff μ′(S) = 0, where μ
a−→ μ′;

– μ |= ¬ϕ iff μ 
|= ϕ;
– μ |= ∧

i∈N
ϕi iff for all i ∈ N, μ |= ϕi.

These four extended logics all characterise subdistribution bisimulation.

Proposition 3.3. LCan, LΔ, L¬ and L∧ all characterise subdistribution
bisimulation.
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In previous research of state bisimulation [4,14], only L∧ characterises equiv-
alence classes. Here we have the following similar result.

Proposition 3.4. L∧ characterises bisimilarity equivalence classes, i.e. for any
LMP and any equivalence class C ⊆ subDist(S), there exists a formula ϕ ∈ L∧,
s.t. for any μ ∈ subDist(S), μ ∈ C if and only if μ |= ϕ.

Proof. Let C ⊆ subDist(S) be a bisimilarity equivalence class. Let F (C) be
the set of L0 formulae which are satisfied by the subdistributions in C. It is
easy to see that F (C) is countable. Let ϕ =

∧
ψ∈F (C) ψ ∈ L∧. Then for any

μ ∈ subDist(S), μ ∈ C if and only if for any ψ ∈ F (C), μ |= ψ, i.e. μ |= ϕ.

However, the other logics cannot characterise equivalence classes.

Example 3.5. Let M0 be an LMP with one action a and only one state s0 going
to itself through the action a with probability 1. Let Mn be an LMP with one
action a and n states which can do the action n − 1 times and finally goes to a
dead state. Consider the union LMP M =

⋃∞
n=0 Mn, then the equivalence class

of δs0 cannot be characterised by any finite formula.

While for state bisimulation, L¬ characterises equivalence classes of any finite
LMP, its subdistribution bisimilarity equivalence classes still cannot be charac-
terised by L0, LCan, LΔ or L¬, as shown by the next example.

Example 3.6. Let M be an LMP with one action a and two states: s going to
itself with probability 1, and t going to itself with probability 0.5. We can see
that the two states (or rather δs and δt) are not bisimilar. Then the equivalence
class {√2/2 δs} cannot be characterised by any finite formula because an irra-
tional number must be characterised by an infinite sequence of rational numbers.
Moreover, even L0 (LCan, LΔ or L¬) cannot characterise equivalence classes of
distributions. Consider the equivalence class {√2/2 δs +(1−√

2/2) δt}: it is still
impossible to characterise an irrational number.

3.2 Comparison of Logical Characterisations

In this part we recall the logical characterisation for state-based bisimulation
and compare it with ours, to understand the difference between them deeper.
Also, we will show that event bisimilarity implies subdistribution bisimilarity.
First let’s recall the logic that characterises state-based bisimulation [4,14].

Definition 3.7. We assume a fixed set A of actions and define a logic given by

L ::= T | φ1 ∧ φ2 | 〈a〉stq φ,

where a ∈ A and q ∈ Q. Given an LMP M = (S,Σ, (τa)a∈A, π), the semantics
are defined inductively as follows:

– M, s |= T,
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– M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2,
– M, s |= 〈a〉stq φ iff there exists A ∈ Σ, s.t. μ(A) ≥ q, and t |= φ for all t ∈ A.

If there is no misunderstanding, we simply write s |= φ instead of M, s |= φ.

The formula 〈a〉stq φ looks similar to 〈a〉qϕ in L0. However, their semantics
differ. For 〈a〉stq φ, satisfibility requests a measurable set which is large enough
and only contains states satisfying φ, but for 〈a〉qϕ, we only request that after
an action a, the resulting subdistribution should be large enough and satisfy ϕ.

From [4,14], we know that the logic L can characterise state bisimulation for
LMPs with analytic state spaces. In [8], it is proven that L characterises event
bisimulation for arbitrary LMPs. We summarise their results as follows:

Proposition 3.8.

(1) For an LMP with an analytic state space, s ∼s t if and only if s and t satisfy
the same formulae in L.

(2) For any LMP, s ∼e t if and only if s and t satisfy the same formulae in L.

Now we consider whether event bisimilarity implies subdistribution bisimi-
larity. We only need to show that, if s and t satisfy the same formulae in L,
then δs and δt (provided that every single-point set is measurable) satisfy the
same formulae in L0. We note that δs and δt satisfy the same formulae of the
form 〈ε〉q, so we do not consider such formulae any more. Then the syntaxes of
the two logics L and L0 become very similar. We inductively define a mapping
f : L → L0 by:

– f(T) = T,
– f(φ1 ∧ φ2) = f(φ1) ∧ f(φ2),
– f(〈a〉stq φ) = 〈a〉qf(φ).

Basically we just replace every 〈a〉stq in L formulae with 〈a〉q. Obviously this f
is surjective. First we have the following observation:

Proposition 3.9.

(1) In L0, we have 〈a〉q(ϕ1∧ϕ2) ≡ (〈a〉qϕ1)∧(〈a〉qϕ2), where ≡ means semantic
equivalence.

(2) In L, s |= 〈a〉stq (φ1 ∧ φ2) implies s |= 〈a〉stq φ1 and s |= 〈a〉stq φ2.

The proposition is easy to prove from the semantics of L0 and L. From this
observation, first we can turn every formula in L0 to a conjunctive normal form
(CNF)

∧m
i=1 ϕi, where every ϕi has the form 〈a1〉q1 · · · 〈ani

〉qni
T. First we deal

with formulae like φi. We have the following proposition:

Proposition 3.10. Given an LMP with measurable single-point sets. We have
that s |= 〈a1〉stq1 · · · 〈an〉stqnT is equivalent to δs |= 〈a1〉q1 · · · 〈an〉qnT.
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For a general formula in L0, we compare its f−1-image with the f−1-image
of its CNF. The latter implies the former, as transforming a formula in L to
CNF may lead to a weaker formula. Therefore we get the following result:

Proposition 3.11. Given an LMP with measurable single-point sets. If s and t
satisfy the same formulae in L, then δs and δt satisfy the same formulae in L0.

Then from Proposition 3.8, we immediately get the following result:

Theorem 3.12. Given an LMP with measurable single-point sets. s ∼e t
implies δs ∼d δt, but the other direction does not hold.

4 Metrics

In this section we will introduce a pseudometric and an approximating subdis-
tribution bisimulation.

Given a nonempty set X, we say a function d : X × X → [0,∞) is a
pseudometric on X, if for all x, y, z ∈ X, we have d(x, x) = 0, symmetry
d(x, y) = d(y, x), and the triangle inequality d(x, y) + d(y, z) ≥ d(x, z). If in
addition d(x, y) = 0 implies x = y, then d is a metric.

4.1 Metrics and Approximating Bisimulation

First we give the definition of the pseudometric dc, which is inspired by [16].

Definition 4.1. Let (S,Σ, (τa)a∈A, π) be an LMP. We define dc : subDist(S)×
subDist(S) → [0, 1] as follows:

dc(μ, ν) := sup
w∈A∗,μ

w−→μ′,ν
w−→ν′

c|w||μ′(S) − ν′(S)|,

where c ∈ (0, 1] is a constant called the discounting factor, and |w| is the length
of the word w.

It is obvious that dc is indeed a pseudometric. Although dc is not a proper
metric since different subdistributions may have distance 0, we follow earlier
literature and call this dc a metric.

Then, the (pseudo)metric dc characterises subdistribution bisimulation.

Theorem 4.2.(1) μ ∼ ν implies that for any c ∈ (0, 1], dc(μ, ν) = 0;
(2) μ ∼ ν if there exists c ∈ (0, 1], s.t. dc(μ, ν) = 0.

With a metric dc characterising subdistribution bisimulation, we can define
approximating bisimilarity through this metric.

Definition 4.3. Let (S,Σ, (τa)a∈A, π) be an LMP. Given ε ≥ 0 and c ∈ (0, 1],
we say μ, ν ∈ subDist(S) are ε-bisimilar with the discounting factor c, denoted
by μ ∼c

ε ν, if dc(μ, ν) ≤ ε.
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It is easy to prove the following properties of approximating bisimilarity.

Proposition 4.4.

(1) For any c ∈ (0, 1], ∼d = ∼c
0;

(2) For any c ∈ (0, 1] and 0 ≤ ε ≤ ε′, ∼c
ε ⊆ ∼c

ε′ ;
(3) For any c ∈ (0, 1], ∼d =

⋂
ε>0 ∼c

ε;
(4) For any ε ≥ 0 and 0 < c ≤ c′ ≤ 1, ∼c

ε ⊆ ∼c′
ε ;

(5) If μ1 ∼c
ε μ2 and μ2 ∼c

ε′ μ3, then μ1 ∼c
ε+ε′ μ3.

Different from other papers [1,19], we directly define our approximating
bisimilarity based on the metric, not on an approximating bisimulation relation.
In fact, we could also do the latter, and the two definitions are equivalent:

Definition 4.5. Given a discounting factor c ∈ (0, 1], we say a collection of
symmetric relations {Rc

ε}ε>0 on subDist(S) is an approximating bisimulation
relation with the discounting factor c, if μ Rc

ε ν implies:

– |μ(S) − ν(S)| ≤ ε;
– For any a ∈ A and μ

a−→ μ′, there exists ν
a−→ ν′, s.t. μ′ Rc

ε/c ν′.

We write μ ≈c
ε′ ν, if there exists an approximating bisimulation relation {Rc

ε}ε>0,
s.t. μ Rc

ε′ ν.

Then we have the following property:

Proposition 4.6. ∼c
ε′ = ≈c

ε′ for any c ∈ (0, 1] and ε′ > 0.

4.2 Equivalence Metric for LMP

In [19], distribution-based bisimulation for probabilistic automata [27] is con-
structed, and an equivalence metric to describe linear-time properties is defined.
Basically, their equivalence metric is the supremum of the distribution differ-
ence on finite words. In probabilistic automata, every state is labelled with a
set of atomic propositions. Not so in LMPs; however, we can label every state
in an LMP with the same label �, with the intuitive meaning: the process
has not stopped or blocked; then, distribution on traces are just the same as
distributions on paths. Then we can define trace equivalence for two subdistri-
butions in an LMP as follows: Given an LMP M = (S,Σ, (τa)a∈A, π), we say
π1, π2 ∈ subDist(S) are trace equivalent, if for any w ∈ A∗, π1(w) = π2(w),
where π(w) = μ(S), provided π

w→ μ. Also we can define equivalence metric for
LMPs as follows:

Definition 4.7 (Equivalence Metric). Let Mi = (Si, Σi, (τ i
a)a∈A, πi) for i =

1, 2 be two LMPs. We say M1 and M2 are ε-equivalent, denoted by M1 ∼ε M2,
if for any word w ∈ A∗, |π1(w) − π2(w)| ≤ ε. The equivalence metric between
M1 and M2 is defined by D(M1,M2) = inf{ε ≥ 0 : M1 ∼ε M2}.
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From the definition, it is obvious that this metric D is equivalent to our metric
d1. From Proposition 4.6, it also corresponds to our approximating bisimulation
relation ∼1

ε . Therefore, we claim that our approximating bisimulation describes
the distance between two LMPs with respect to linear properties. Also, subdis-
tribution bisimilarity is equivalent to trace equivalence.

In some papers [16,19], metrics are defined through a logic. Here in a similar
way we can define a metric dc

l based on a logic. Furthermore, we will show that
this metric is equivalent to dc.

Definition 4.8. Let c ∈ (0, 1] be a discounting factor. Let M =
(S,Σ, (τa)a∈A, π) be an LMP. We define a logic given by

Lc
M ::= 1 | ϕ ⊕ p | ¬ϕ |

∧

i∈I

ϕi | 〈a〉cϕ,

where p ∈ [0, 1], a ∈ A and I is an index set. The semantics of the formula ϕ in
Lc

M is a function on subDist(S), defined inductively as follows:

1(μ) := μ(S)
(ϕ ⊕ p)(μ) := min{ϕ(μ) + p, 1}

¬ϕ(μ) := 1 − ϕ(μ)

(
∧

i∈I

ϕi)(μ) := inf{ϕi(μ) : i ∈ I}

〈a〉cϕ(μ) := c · ϕ(μ′), where μ
a−→ μ′.

Definition 4.9. Let M = (S,Σ, (τa)a∈A, π) be an LMP. For μ, ν ∈ subDist(S),
we define dc

l : subDist(S) × subDist(S) → [0, 1] as follows:

dc
l (μ, ν) := sup

ϕ∈Lc
M

|ϕ(μ) − ϕ(ν)|.

Obviously dc
l is indeed a pseudometric. The next theorem shows that dc

l

defined through logic is equivalent to dc.

Proposition 4.10. Let M = (S,Σ, (τa)a∈A, π) be an LMP. Then for any μ, ν ∈
subDist(S) and c ∈ (0, 1], dc(μ, ν) = dc

l (μ, ν).

4.3 Linearity and Continuity of Subdistribution Bisimulation

Theorem 4.2 is powerful, because with it we can prove some properties of the rela-
tion ∼d more easily. In this part, we illustrate how to exploit them to prove the
linearity and continuity of our subdistribution bisimulation. In [12,19], similar
results have been proven for discrete models. However, for LMPs with arbitrary
state spaces, the proofs are quite different. Here approximation with simple func-
tions and the monotone convergence theorem are applied multiple times, which
indicates the intuition that it is a good way to use finite models to approximate
an LMP in many problems.
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Given a sequence of subdistributions {μn} on (X,F), we say {μn} converges
to μ, denoted by μn → μ, or limn→∞ μn = μ, if for any A ∈ F , μn(A) → μ(A)
as n → ∞. Now we give the definitions of linearity, σ-linearity and continuity of
a relation on subDist(S).

Definition 4.11. We say a relation R ⊆ subDist(S) × subDist(S) is linear, if
for any μi R νi, i = 1, 2, . . . , n, and {ai}n

i=1 s.t.
∑n

i=1 aiμi as well as
∑n

i=1 aiνi

are subdistributions, where ai ≥ 0, we have
∑n

i=1 aiμi R
∑n

i=1 aiνi.
We say a relation R ⊆ subDist(S) × subDist(S) is σ-linear, if for any

μi R νi, i = 1, 2, . . ., and {ai}∞
i=1 s.t.

∑∞
i=1 aiμi as well as

∑∞
i=1 aiνi are subdis-

tributions, where ai ≥ 0, we have
∑∞

i=1 aiμi R
∑∞

i=1 aiνi.
We say a relation R ⊆ subDist(S) × subDist(S) is continuous, if for any

μi R νi, i = 1, 2, . . ., with μi → μ and νi → ν as n → ∞, we have μ R ν.

We first discuss linearity and σ-linearity. We need a lemma showing that the
relation w−→ ⊆ subDist(S) × subDist(S) is linear and σ-linear on the space of
Borel-measurable functions.

Lemma 4.12. For any w ∈ A∗, the relation w−→ is linear and σ-linear.

Then we have the following linear and σ-linear properties.

Proposition 4.13. The relation ∼d is linear and σ-linear.

Proof. We assume μi ∼d νi, and we have dc(μi, νi) = 0, i.e. for any w ∈ A∗,
μ′

i(S) = ν′
i(S), where μi

w−→ μ′
i and νi

w−→ ν′
i. Then from the linearity of w−→, we

have
∑n

i=1 aiμi
w−→ ∑n

i=1 aiμ
′
i and

∑n
i=1 aiνi

w−→ ∑n
i=1 aiν

′
i, and naturally

n∑

i=1

aiμ
′
i(S) =

n∑

i=1

aiν
′
i(S),

which indicates dc(
∑n

i=1 aiμi,
∑n

i=1 aiνi) = 0 since w is arbitrary.
By taking the limit n → ∞ in the proof above, we can see that the relation

∼d also is σ-linear.

Now we discuss continuity. Similarly we only need to prove that the relation
w−→ is continuous.

Lemma 4.14. The relation w−→ is continuous.

Actually from the proof of Lemma4.14, we can get a stronger result: If μi
w−→

νi and limi→∞ μi = μ, then there exists a subdistribution ν, s.t. limi→∞ νi = ν.
Then it is natural that the relation ∼d is continuous.

Proposition 4.15. The relation ∼d is continuous.
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Proof. We assume μi ∼d νi, μi → μ and νi → ν. We need to prove μ ∼d ν. From
Theorem 4.2 we have dc(μi, νi) = 0, i.e. for any w ∈ A∗, μ′

i(S) = ν′
i(S), where

μi
w−→ μ′

i and νi
w−→ ν′

i. Because μi → μ and νi → ν, there exist μ′ and ν′, s.t.
limi→∞ μ′

i = μ′ and limi→∞ ν′
i = ν′, and we have μ

w−→ μ′ and ν
w−→ ν′. Then

μ′(S) = limi→∞ μ′
i(S) = limi→∞ μ′

i(S) = ν′(S), which indicates dc(μ, ν) = 0
since w was arbitrary.

What’s more, if the LMP has a Borel measurable space as its state space,
and all its subprobability transition functions τa(·, A) are continuous almost
everywhere, then the subdistribution bisimilarity relation ∼d is continuous w.r.t.
weak convergence. (See [18] for the definition of weak convergence and other
details.) The following example illustrates this fact.

Example 4.16. Let M = (S,Σ, (τa)a∈A, π) be an LMP, where S = [0, 1], Σ =
B([0, 1]), and A = N. We use E0 to denote the set [0, 1]\( 13 , 2

3 ), and En to denote
the set obtained by removing the middle third of each interval that remains in
En−1. The limit set C = limn→∞ En is called the Cantor set. (See [18] for more
details.) We define the transitions as follows:

τi(x,A) =

{
1
2 ( 32 )i+1m(A ∩ Ec

i ), if x ∈ Ei,

δx(A), otherwise,

where m is the Lebesgue measure on ([0, 1],B([0, 1])). First, it is easy to see that
this M is indeed an LMP. We use U(E) to denote the uniform distribution over
E ∈ B([0, 1]) with m(E) > 0. We can see that U([0, 3−n−1]) and U(En) are
subdistribution bisimilar because these two distributions have the same subdis-
tribution after any ai-transition. We have that U([0, 3−n−1]) converges weakly
to the Dirac distribution δ0 as n → ∞. Also, the sequence of distributions U(En)
converges because the distribution function Fn of the distribution U(En) con-
verges uniformly to some F as n → ∞, and obviously F is also a distribution
function. We call the distribution with the distribution function F the uniform
distribution on the Cantor set, denoted by U(C), and obviously U(En) converges
to U(C) as n → ∞. Therefore, we have δ0 ∼d U(C).

4.4 Compositionality

Compositionality is a great help in simplifying model checking: When a large
system is composed from several small systems, we would like to work on these
small systems to see whether their composition satisfy some property. In this
part we discuss the compositionality of our subdistribution bisimilarity. This
part also relies on Theorem 4.2 heavily. We will see that two large systems are
subdistribution bisimilar if their composition components are subdistribution
bisimilar, respectively, in our LMP setting. We assume that all the LMPs in
this part have the same action set A. First we introduce the definition of the
composition for two LMPs:
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Definition 4.17. Let Mi = (Si, Σi, (τ i
a)a∈A, πi), i = 1, 2 be two LMPs. Their

composition M1 || M2 = (S,Σ, (τa)a∈A, π) is defined as follows:

– (S,Σ) = (S1 × S2, σ(Σ1 × Σ2));
– τa((s1, s2), ·) = τ1

a (s1, ·) × τ2
a (s2, ·) for (s1, s2) ∈ S;

– π = π1 × π2.

Then we show that composition preserves bisimilarity:

Theorem 4.18. M1 ∼d M′
1 and M2 ∼d M′

2 imply M1 || M2 ∼d M′
1 || M′

2.

From Theorem 4.18, we can immediately know that for any LMP M, M1 ∼d

M′
1 implies M1 ||M ∼d M′

1 ||M. Actually Theorem 4.18 is a special case of the
following theorem, by taking ε1 = ε2 = 0:

Theorem 4.19. Given the discounting factor c ∈ (0, 1] and approximation
ε1, ε2 ∈ [0, 1], M1 ∼c

ε1 M′
1 and M2 ∼c

ε2 M′
2 imply M1 || M2 ∼c

ε1+ε2−ε1ε2M′
1 || M′

2.

Theorem 4.19 bounds the distance between the composed LMPs. This bound
ε1 + ε2 − ε1ε2 can be approximated by ε1 + ε2, which is a linear function of ε1
and ε2. Also we can see that composition with bisimilar LMPs does not make
the distance of two LMPs larger, so bisimulation is compositional in this sense.
Observe the bound in Theorem4.19 is tight.

5 Conclusion

In this paper we propose to define subdistribution bisimulation for LMPs based
on distributions rather than states, and we described its basic properties. We
compare it with earlier bisimulations to show that it is a weaker relation. Fol-
lowing a common way to study a bisimulation, we construct a logic and a metric
both characterising our subdistribution bisimulation.

There are several interesting directions for future work. First, we plan
to investigate an approximation scheme for our subdistribution bisimulation.
Another direction is to deal with systems that are more complex than LMPs.
For example, we can add non-deterministic choice for the same action, as the
model in [11]. In addition, we can add the internal action τ to the set of actions
and investigate weak bisimulation for LMPs/ Further, we can investigate the
metric definition for continuous-time models [20].

Last but not least, using coalgebras is a popular way to describe bisimulation
and simulation relations for probabilistic systems (e.g. [30,31]), and we expect
that our distribution-based bisimulation for LMPs and other more complex mod-
els will have a pretty coalgebraic description.
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Abstract. Signal regular expressions can specify sequential properties
of real-valued signals based on threshold conditions, regular operations,
and duration constraints. In this paper we endow them with a quanti-
tative semantics which indicates how robustly a signal matches or does
not match a given expression. First, we show that this semantics is a
safe approximation of a distance between the signal and the language
defined by the expression. Then, we consider the robust matching prob-
lem, that is, computing the quantitative semantics of every segment of
a given signal relative to an expression. We present an algorithm that
solves this problem for piecewise-constant and piecewise-linear signals
and show that for such signals the robustness map is a piecewise-linear
function. The availability of an indicator describing how robustly a signal
segment matches some regular pattern provides a general framework for
quantitative monitoring of cyber-physical systems.

1 Introduction

Regular expressions (RE) are among the cornerstones of computer science, being
one of several formalism that can express sets of sequences (languages) acceptable
by finite-state automata. In addition to their application in domains such as
lexical analysis and pattern matching, regular expression are used in verification
as a specification formalism to express correct or erroneous behaviors of reactive
systems. In this context they are used along with another popular specification
formalism, linear-time temporal logic (LTL) [27] that can express (star-free)
regular languages in a different and complementary style. For both formalisms,
the commonly-used semantics consists of discrete-time sequences often defined
over finite small alphabets without a rich structure.

Over the years several extensions related to these two aspects, namely, dis-
crete time and discrete non-numerical values, have been pursued in various con-
texts. To model real-time systems, finite automata have been augmented with
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continuously-evolving clocks resulting in timed automata [2] that can generate
and accept sets of timed behaviors consisting of Boolean signals or time-event
sequences, where events and state transitions are embedded in the dense real-
time axis, not forced to occur at pre-specified sampling points or clock ticks.
On the specification side, temporal logics have been extended with real-time
constructs resulting in logics such as metric temporal logic (MTL) [22] and its
decidable fragment MITL [3]. These logics can express quantitative timing prop-
erties such as bounds on the temporal distance between two events. Likewise,
timed regular expressions have been defined and one of their variants has been
proved to be expressively equivalent to timed automata [5,6].

In terms of alphabets, recent years saw a growing interest in large or infinite
alphabets taken from richer domains such as N or R, admitting order and arith-
metic operations. Such languages are accepted by symbolic automata [33] whose
transitions are labeled by predicates such as inequalities. Various questions, such
as minimization [10], closure under various operations and learnability [25] have
been studied in this context. Temporal logics over sequences of numbers [28]
and first-order temporal logics in general [9], as well as regular expressions over
quantitative domains [4] have also been defined and investigated.

The starting point of this work is signal temporal logic (STL) [23,24], which
combines the dense time of MTL with predicates over real-valued variables. As
such it can be used to express properties of continuous and mixed signals result-
ing from the simulation (or measurement) of continuous and hybrid systems such
as analog circuits or cyber-physical control systems. Given a simulation trace w
and an STL formula ϕ, simple and efficient algorithms [23], linear in the length
of the trace, can check whether w satisfies ϕ and liberate users from the tedious
and error-prone task of evaluating such traces manually. These algorithms have
been implemented in tools such as AMT [26] and Breach [14] and have been
applied to case-studies in domains ranging from control systems and robotics,
via electronic circuits to systems biology.

Satisfaction (or membership) is traditionally a yes/no matter and it cannot
distinguish between robust and non-robust satisfaction, a meaningful issue in
numerical domains. To take a simple example, the requirement that some vari-
able x is always positive is equally satisfied by safe behaviors being all the time
far above zero and more dangerous and edgy ones that approach zero but do not
cross it. To capture this distinction, quantitative semantics have been proposed
for various temporal logics [15,17,28] including STL along with efficient algo-
rithms to compute it [16]. In a nutshell, with every STL formula ϕ and signal
w, a real-valued robustness measure ρ = ρ(ϕ,w) is associated, admitting the
following two important properties:

1. The robustness ρ is positive if w satisfies ϕ, negative if w violates ϕ;
2. The ϕ-satisfaction of a signal w′, whose maximal pointwise distance from w

is smaller than ρ, is equal to that of w.

The inductive definition of the quantitative semantics of STL is isomorphic to the
standard definition of the qualitative semantics. The semantics of atomic pred-
icates such as x≥ 0 at a point t is defined as x[t]. Boolean operations (∧,∨,¬)
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are interpreted in the algebra (min,max,−), and temporal operators are inter-
preted as min or max over time windows according to the disjunctive/conjunctive
nature of the operator.

In this paper we define and compute such a quantitative semantics for sig-
nal regular expressions (SRE), which are timed regular expressions that use
numerical predicates as atoms. Our semantics satisfies the same two important
properties stated above. For regular expressions, due to the special nature of
concatenation which requires to check all possible factorizations of a sequence or
signal, it is natural to solve the more general pattern matching problem: given
an expression ϕ and a signal w, find the set of all segments w[t, t′) that satisfy
(match) ϕ. The set of all segments of a signal w is captured by the triangle
Tw = {(t, t′) ∈ T

2 | 0 ≤ t ≤ t′ ≤ |w|}. The segments that satisfy ϕ define a sub-
set of Tw that we call the match set of ϕ in w and denote by M(ϕ,w). In [32] it
was proven that for every Boolean signal of bounded variability, the match set is
a finite union of zones that can be computed by induction on the structure of the
expression. The analogous problem for the quantitative semantics is to compute
the robust satisfaction degree ρ of ϕ w.r.t. w for every segment (t, t′) ∈ Tw. This
is the problem we solve in this paper.

2 Signal Regular Expressions

In this section, we introduce signal regular expressions (SRE), recall their qual-
itative semantics and introduce a quantitative semantics. Signal regular expres-
sions are an adaptation of the timed regular expressions (TRE) of [5,6] designed
to deal with real-valued, rather than Boolean signals. They are built from atomic
constraints (e.g., x≥ 2 specifies a signal segment where x is above 2), standard
regular operations, and duration constraints. For an expression ϕ and an interval
I, the duration constraint 〈ϕ〉I specifies that the duration of the signal segment
that matches ϕ should be within I.

Signals. A signal is a function w : T → R
n where T = [s, s′) is a bounded

interval of R≥0, called the temporal domain. We usually take s = 0. The length
of signal w is given by |w| = s′ − s. By w[t] ∈ R

n, we denote the value of w
at time t ∈ T. By w[t, t′), we denote the signal that has the temporal domain
[t, t′) ⊆ [s, s′) and agrees with w on [t, t′). We call such a signal a factor of
w. Signal values are accessed by variables from the set X = {x1, . . . xn}. For a
variable x ∈ X we denote by wx : T → R the projection of w on x. We say that
wx is a component of w.

Definition 1 (Syntax of SRE). SREs are formed according to the grammar:

ϕ :: = ∅ | ε | x≥ c | x≤ c | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ · ϕ | ϕ∗ | 〈ϕ〉I

where x ∈ X, c ∈ R, and I is an interval of R with integer bounds.

As standard, we write iterated concatenation of an expression ϕ using power
notation: ϕ0 = ε, and ϕk = ϕk−1 · ϕ for an integer k > 0.
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The qualitative semantics of expression ϕ w.r.t. a signal w is given by
the function μ that returns a Boolean value (in {0, 1}), indicating whether w
matches ϕ.

Definition 2 (Qualitative Semantics of SRE). The semantics μ(ϕ,w) of
expression ϕ w.r.t a signal w is defined inductively as follows:

μ(∅, w) = 1 ⇔ ⊥
μ(ε, w) = 1 ⇔ |w| = 0

μ(x≥ c, w) = 1 ⇔ |w| > 0 and ∀t ∈ [0, |w|), wx[t] ≥ c

μ(x≤ c, w) = 1 ⇔ |w| > 0 and ∀t ∈ [0, |w|), wx[t] ≤ c

μ(ϕ ∨ ψ,w) = 1 ⇔ μ(ϕ,w) = 1 or μ(ψ,w) = 1
μ(ϕ ∧ ψ,w) = 1 ⇔ μ(ϕ,w) = 1 and μ(ψ,w) = 1
μ(ϕ · ψ,w) = 1 ⇔ ∃uv = w, μ(ϕ, u) = 1 and μ(ψ, v) = 1

μ(ϕ∗, w) = 1 ⇔ ∃k ≥ 0, μ(ϕk, w) = 1
μ(〈ϕ〉I , w) = 1 ⇔ μ(ϕ,w) = 1 and |w| ∈ I

where uv denotes the concatenation of signals u and v.

The set of signals that matches an expression ϕ is called the language of ϕ;
L(ϕ) = {w | μ(ϕ,w) = 1}.

We introduce a quantitative semantics of an expression ϕ w.r.t. a signal w,
given by the function ρ that returns a real value (in R ∪±∞) and indicates how
robustly w matches ϕ. We call it the robustness of ϕ w.r.t. w (or the robustness
of w w.r.t. ϕ).

Definition 3 (Quantitative Semantics of SRE). The robustness ρ(ϕ,w) of
an expression ϕ w.r.t. a signal w is defined inductively as follows:

ρ(∅, w) = −∞

ρ(ε, w) =
{

+∞, if |w| = 0
−∞, otherwise

ρ(x≥ c, w) =
{

inft∈[0,|w|) wx[t] − c if |w| > 0
−∞ otherwise

ρ(x≤ c, w) =
{

inft∈[0,|w|) c − wx[t] if |w| > 0
−∞ otherwise

ρ(ϕ ∨ ψ,w) = max{ρ(ϕ,w), ρ(ψ,w)}
ρ(ϕ ∧ ψ,w) = min{ρ(ϕ,w), ρ(ψ,w)}
ρ(ϕ · ψ,w) = sup

uv=w
min{ρ(ϕ, u), ρ(ψ, v)}

ρ(ϕ∗, w) = sup
k≥0

ρ(ϕk, w)

ρ(〈ϕ〉I , w) =
{

ρ(ϕ,w), if |w| ∈ I
−∞, otherwise

where sup ∅ = inf R = −∞ and inf ∅ = sup R = +∞.
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In what follows, we can assume without loss of generality that atomic expressions
are of the form x≥ 0. Given a constraint x≥ c (resp. x≤ c), we can replace it by the
constraint y ≥ 0, where y is a fresh variable, and the projection of w on y is defined
as wy[t] = wx[t] − c (resp. c − wx[t]). This replacement preserves the quantitative
and qualitative semantics, as well as the assumptions that we make later (e.g., the
signal being piecewise-constant or continuous piecewise-linear, etc.).

3 Properties of the Quantitative Semantics

In this section, we present two important properties of our semantics. First, we
relate the qualitative and quantitative semantics based on a notion of a distance.
Second, we show that the quantitative semantics of a Kleene star expression ϕ∗

can be computed as a finite iteration of ϕ.

3.1 Robustness Estimate

We now introduce a metric on the signal space and then derive two notions of
distance between signals and expressions.

Definition 4 (Signal Distance). The (uniform norm) distance between sig-
nals v and w, denoted d(v, w), is defined by d(v, w) = supt∈T

maxx∈X |vx[t] −
wx[t]| if v and w have the same temporal domain T, otherwise d(v, w) = +∞.

Definition 5 (Expression Distance). The distance from signal w to expres-
sion ϕ, denoted d(ϕ,w), is defined by d(ϕ,w) = infv∈L(ϕ) d(v, w). The co-
distance from signal w to expression ϕ, denoted d(ϕ,w), is defined by d(ϕ,w) =
infv/∈L(ϕ) d(v, w).

Such (Hausdorff) distances indicate by how much w needs to be changed to
satisfy or violate ϕ, respectively. The quantitative semantics of SRE has the
following characteristics: on a given signal its sign indicates membership in the
language of the expression, and its magnitude estimates the distance to language
boundary.

Theorem 1 (Soundness). Let ϕ be an expression, and w a signal. If ρ(ϕ,w) >
0 then w ∈ L(ϕ). Symmetrically if ρ(ϕ,w) < 0 then w /∈ L(ϕ).

Theorem 2 (Correctness). Let ϕ be an expression, and v, w two signals. If
w ∈ L(ϕ) and d(v, w) < ρ(ϕ,w) then v ∈ L(ϕ). Symmetrically if w /∈ L(ϕ) and
d(v, w) < −ρ(ϕ,w) then v /∈ L(ϕ).

These two characteristics are in fact direct corollaries of the following statement:

Lemma 1 (Distance Bounds). Let ϕ be an expression and w a signal. Then,
we have −d(ϕ,w) ≤ ρ(ϕ,w) ≤ d(ϕ,w).
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Due to space constraints, we cannot give the full proof here. It proceeds by
straightforward induction on the expression structure, using lattice properties of
min, max, inf and sup.

Theorems 1 and 2 derive from Lemma 1 as follows. Assume ρ(ϕ,w) > 0. We
have d(ϕ,w) > 0 and thus w ∈ L(ϕ) by definition of d(ϕ,w); the statement of
Theorem 1 is proved. If d(v, w) < ρ(ϕ,w), then d(ϕ, v) ≥ d(ϕ,w) − d(v, w) >
0 and again v ∈ L(ϕ); the statement of Theorem 2 is proved. Symmetrical
reasoning applies to the case ρ(ϕ,w) < 0; when ρ(ϕ,w) = 0 both statements
hold vacuously true.

3.2 Star Boundedness

We now prove that for every signal w (from a broad class of well-behaved sig-
nals) there exists some index m such that ρ(ϕ∗, w) = ρ(

∨m
n=0 ϕn, w). Intuitively,

this is because for practical signals, there is a limit to how many non-redundant
factors it can be partitioned into. In particular, if a factor v is sufficiently short,
ρ(ϕ2, v) ≤ ρ(ϕ, v), and v does not need to be partitioned further during the
computation of ρ(ϕ∗, w). A similar result was obtained in [32] for the qualita-
tive semantics of SRE, but for the quantitative case the proof is much more
complicated since we do not assume the signals to be piecewise-constant.

Let us formalize what is a sufficiently short signal. For a pair of signals f
and g over temporal domain T, we write f ≤ g when f [t] ≤ g[t] for every t ∈ T.
A real signal f is increasing (decreasing) if f [t] ≤ f [t′] (respectively f [t] ≥ f [t′])
for all t < t′ ∈ T. A signal that is increasing or decreasing is called monotone.

Definition 6 (Unitary Signal). A signal w is unitary when |w| < 1, for every
x ∈ X, wx is monotone, and for every x, y ∈ X, wx ≤ wy or wy ≤ wx.

Intuitively, a unitary signal is sufficiently short and need not be partitioned
further during the computation of ρ(ϕ∗, w). More formally, we have the following.

Lemma 2 (Square). For a unitary signal u and an expression ϕ, ρ(ϕ2, u) ≤
ρ(ϕ, u).

Let us delay the proof of Lemma 2, and instead state and prove (using Lemma 2)
an important result of this section.

Definition 7 (Well-behaved signal). A signal w is well-behaved if there
exists k ∈ N such that w can be factored into w = u1u2 . . . uk where every
ui for i ∈ {1, . . . , k} is unitary. The smallest such k is denoted κ(w).

Theorem 3 (Star is Bounded). For a well-behaved signal w with κ(w) = k

we have ρ(ϕ∗, w) = ρ(
∨2k+1

n=0 ϕn, w).

Proof. Assume, in search of a contradiction, that ρ(ϕn+1, w) > ρ(ϕn, w) for some
n > 2k + 1. This means that there exists a decomposition w = u1u2 . . . un+1

such that for every 1 ≤ i ≤ n+1, ρ(ϕ, ui) > ρ(ϕn, w). However κ(w) = k, so
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by pigeon hole principle there exists j such that the factor u′ = ujuj+1 is uni-
tary. From Lemma 2, ρ(ϕ, u′) ≥ ρ(ϕ2, u′) ≥ min{ρ(ϕ, uj), ρ(ϕ, uj+1)} and thus
ρ(ϕ, u′) > ρ(ϕn, w). We obtain the decomposition w = u1 . . . uj−1u

′uj+2 . . . un+1

with n factors, s.t. robustness of ϕ on every factor is greater than ρ(ϕn, w), which
contradicts the definition of ρ(ϕn, w). Thus, it has to be that ρ(ϕn+1, w) ≤
ρ(ϕn, w) for every n > 2k + 1. According to the semantics of Kleene star,
ρ(ϕ∗, w) = supn≥0 ρ(ϕn, w) = max2k+1

n=0 ρ(ϕn, w) = ρ(
∨2k+1

n=0 ϕn, w). ��
Due to space constraints, we cannot give the proof of Lemma 2 in full, but we

guide the reader through its most important steps. Let us write ϕ ≈w ψ when
ρ(ϕ, v) = ρ(ψ, v) for every factor v of w; and ϕ �w ψ when ρ(ϕ, v) ≤ ρ(ψ, v) for
every factor v of w. It turns out, given a unitary signal w, we can always rewrite
an expression ϕ into another expression γ, s.t. γ ≈w ϕ and for which we can
prove γ2 �w γ. Let us give an example of such a rewriting.

Example 1. Consider the unitary signal w defined on [s1, s2) in Fig. 1 and the
expression ϕ = 〈x≥ 0 · z ≥ 0〉(0,2) ∨ y ≥ 0. Let v be an arbitrary factor w[r1, r2).
Observe that ρ(x≥ 0 · z ≥ 0, v) = supr′∈(r1,r2) min{inf [r1,r′) wx, inf [r′,r2) wz} =
inf [r1,r′) wx (since wx is increasing and everywhere below wz). That is x≥ 0 ·
y ≥ 0 ≈w x≥ 0. Then, notice that the duration constraint has no influence on
signals of length less than one. Finally, since wy is pointwise below wx, x≥ 0 ∨
y ≥ 0 ≈w x≥ 0. Thus, ϕ = 〈x≥ 0 · z ≥ 0〉(0,2) ∨ y ≥ 0 ≈w x≥ 0.

Example 2. Consider the same unitary sig-
nal, the expression ϕ = x≥ 0 · z ≥ 0 · y ≥ 0 and
let v be an arbitrary factor w[r1, r2). Observe
that ρ(ϕ, v) = supr′,r′′∈(r1,r2) min{inf [r1,r′) wx,
inf [r′,r′′) wz, inf [r′′,r2) wy}. To maximize the
minimum, we want to move the time point
r′′ infinitely close to r2 and obtain ρ(ϕ, v) =
min{infv wx, supv wy} (since wz is everywhere
above wx and wy, the corresponding term
is discarded). Similarly, we can show that
ρ(x≥ 0 · y ≥ 0, v) = min{infv wx, supv wy} and
thus ϕ ≈w x≥ 0 · y ≥ 0.

t

w

wy

wx

wz

s1 s2r1 r2

Fig. 1. A unitary signal w
defined on [s1, s2).

In general, the robustness of an expression over a unitary signal and over its
every factor is given by some min-max expression. We prefer to state this in a
more algebraic way and say that for a given unitary signal, every expression can
be rewritten to an equivalent quadratic expression.

Definition 8 (Monomial, Polynomial). A monomial expression (of degree
n) is of the form ε · α1 · α2 · · · αn, where every αi is and atomic expression. A
polynomial expression (of degree n) is of the form ∅∨∨m

j=1 βj where each βj is
a monomial expression (of degree at most n). A polynomial expression of degree
at most 2 is called quadratic.
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Quadratic expressions are sufficient to represent the robustness of an arbi-
trary expressions over unitary signals. They are also necessary, as illustrated in
Example 2, in the sense that atomic expressions cannot replace arbitrary
expressions.

Proposition 1 (Quadratic Expressions). For every expression ϕ and uni-
tary signal u, there exists a quadratic expression γ such that ϕ ≈u γ.

The proof proceeds by structural induction, rewriting the expressions using
Kleene algebra and lattice equivalences. Lemmas 3 and 4 state the key prop-
erty of polynomial expressions relative to unitary signals. By proving them, we
prove Lemma 2.

Lemma 3 (Product of Monomials). Let u be a unitary signal. For every
pair of monomials β1, β2 there exists a monomial β3 of degree at most 2 such
that the following is true: β1 · β2 ≈u β3 �u β1 ∨ β2

Proof idea. To find β3, we want to find an atomic expression y ≥ 0 appearing
in β1 · β2 such that y is minimal. Then if y is increasing, all factors in β1 · β2 at
the right of y ≥ 0 can be ignored, and only the leftmost factor x ≥ 0 is needed.
We let β3 = x ≥ 0 · y ≥ 0, and check that monotonicity and ordering entail the
equation of Lemma 3; the case where y is decreasing is symmetrical. ��
Lemma 4 (Squaring Polynomials). For every unitary signal u and polyno-
mial expression γ we have γ2 �u γ.

Proof idea. For every pair of monomials β1, β2 appearing in γ, (via Lemma 3)
we have β1 · β2 �u β1 ∨ β2. Distributing unions over concatenation we see that
every monomial in γ2 is dominated according to �u by a monomial in γ. ��

4 The Robust Matching Problem

Given an expression ϕ and a signal w, robust matching is the problem of com-
puting the quantitative semantics of ϕ for every segment w[t, t′) of w.

Definition 9 (Robustness Map). For an expression ϕ and a signal w, the
robustness map is the function (t, t′) �→ ρ(ϕ,w[t, t′)) that maps every t, t′ (s.t.
0 ≤ t ≤ t′ ≤ |w|) to the robustness of ϕ w.r.t w on [t, t′).

It is convenient to represent the robustness map indirectly, using the following
notion of robustness support.

Definition 10 (Robustness Support). For a signal w and an expression ϕ,
the robustness support is the set R(ϕ,w) = {(t, t′, r) | r < ρ(ϕ,w[t, t′))}
The robustness map can be extracted from the robustness support by taking its
pointwise supremum: ρ(ϕ,w[t, t′)) = sup{r | (t, t′, r) ∈ R(ϕ,w)}.

In what follows, we consider two classes of signals, continuous piecewise-linear
and piecewise-constant. We show that for these signals, the robustness support
can be represented as a finite union of polyhedra or zones respectively. As a
result, the robustness map for these signals is respectively piecewise-linear or
piecewise-constant.
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Definition 11 (Zone). A zone is a polyhedron formed by intersection of con-
straints of the form x 
� c or x − y 
� c where x and y are variables, c is a
constant, and 
� ∈ {<,≤,=,≥, >}.
Zones are often used in verification of timed systems. They admit efficient rep-
resentation and computation via difference bound matrices [13].

Connection to Qualitative Matching. The match set M(ϕ,w) of an expres-
sion ϕ w.r.t. a signal w is the set of pairs (t, t′) such that the factor w[t, t′)
matches ϕ. That, is, (t, t′) ∈ M(ϕ,w) iff w[t, t′) ∈ L(ϕ). For a signal of bounded
variability (i.e., when the truth value of every atomic proposition has finitely
many switching points), this set was shown [32] to be computable and repre-
sentable by a finite union of zones.

4.1 Finite Representation of Signals

Signals are typically represented by finitely many sampling points and interpo-
lated between them. When computing robustness, we are interested in simple
interpolation schemes that produce piecewise-constant or continuous piecewise-
linear signals (our theoretical results are applicable to a larger class of signals).
Formally, we can define

Definition 12 (Piecewise-Constant Signal). A signal w : T → R
n is

piecewise-constant if there exists a partition of T into a finite ordered sequence of
left-closed right-open intervals (J1, . . . , Jn), s.t. for every i = 1 . . . n, the value
of w on Ji is constant.

Definition 13 (Piecewise-Linear Signal). A signal w : T → R
n is piece-

wise-linear if there exists a partition of T into a finite sequence of left-closed
right-open intervals (Ji)1≤i≤n, and there exist sequences of vectors (ai)1≤i≤n

and (bi)1≤i≤n such that w[t] = ait + bi for every t ∈ Ji, for every 1 ≤ i ≤ n.

For both classes of signals, we call the endpoints of the intervals, inf Ji and supJi,
the switching points. When computing the robustness, we are only interested in
piecewise-linear signals that are also continuous, i.e., where ak(supJk) + bk =
ak+1(sup Jk+1) + bk+1 for every two adjacent segments Jk, Jk+1.

The notion of a piecewise-constant or a piecewise-linear function can be
extended to higher dimensions. In particular, for T

2 → R, we can define:

Definition 14 (Piecewise-Constant and Piecewise-Linear Functions).
We say that a function f : T

2 → R is piecewise-constant if there exists a finite set
of convex polyhedra {Pi}1≤i≤n over t, t′, s.t. dom(f) =

⋃n
i=1 Pi, and on every Pi,

f is constant. If on every Pi, f is linear in t, t′, we say that f is piecewise-linear.

Theorem 4 (Piecewise-Linear Decomposition). For an expression ϕ
and piecewise-constant signal w, the robustness map (t, t′) �→ ρ(ϕ,w[t, t′)) is
piecewise-constant. For a continuous piecewise-linear signal w, the robustness
map is piecewise-linear.
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Section 5 gives a constructive proof of this.
As a final remark, we note that if we sample and interpolate an analog signal,

for which we know the bound on its derivative, we can infer the bound on the
pointwise distance between this analog signal and its piecewise representation.
This number will also be the bound on the difference between the robustness of
the original signal and the robustness of its piecewise representation.

5 Algorithms

In this section we present robust matching algorithms for piecewise-constant
and continuous piecewise-linear signals. More specifically, our algorithms com-
pute a polyhedral representation of the robustness support. For a signal w and
an expression ϕ, by induction on the structure of ϕ, we compute a set Sϕ of
convex polyhedra (over t, t′, and r), whose union is R(ϕ,w). In particular, for
a piecewise-constant signal, Sϕ is a set of zones. We use the robustness support
as an implicit representation of the robustness map: given a pair (t, t′), we take
the maximum value of r over all (t, t′, r) in the polyhedra in Sϕ. First, we show
how to compute Sϕ for the atomic propositions (x ≥ c, x ≤ c). Then, for the
other operations, the robustness support is characterized by induction on the
structure of the expression using basic operations on sets of convex polyhedra.

Atomic Propositions. Recall that we only need an algorithm to compute the
robustness support for the basic atomic proposition x≥ 0. For a proposition such
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Fig. 2. A piecewise-constant
signal component and a step
of the algorithm for the
expression x ≥ 0
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Fig. 3. A constant seg-
ment and its robustness for
x ≥ 0.
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Fig. 4. A signal compo-
nent consisting of two seg-
ments and its robustness
for x ≥ 0.
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as x≥ c, we introduce an auxiliary signal component y defined as wy[t] = wx[t]−c
and then compute the support for y ≥ 0. For the expression x ≥ 0, robustness
support can be characterized as follows

R(x ≥ 0, w) = {(t, t′, r) | r < ρ(x ≥ 0, w, [t, t′))} = {(t, t′, r) | r < inf
t′′∈(t,t′)

wx[t′′]}

That is, Sx≥0 should be a set of polyhedra, where for every t and t′, the value
of r is bounded from above by the infimum of wx on the interval (t, t′). For both
piecewise-constant and continuous piecewise-linear signals we can compute it by
induction on the signal structure, although in slightly different ways.

Piecewise-Constant Signals. Assume we are given a signal w and a finite
sequence of intervals (J1, . . . , Jn), s.t., on every Ji the signal is constant. Also
assume that on an interval Jk, wx reaches its global minimum bk. Then, we imme-
diately know that for every interval (t, t′) that intersects with Jk, the robustness
value is given by bk. Based on this observation, we build the following recursive
algorithm.

1. Given a sequence (J1, . . . , Jn), find an interval Jk, where component wx

achieves its minimum value bk.
2. Add to Sx≥0 the zone (inf J1 ≤ t < supJk ∧ inf Jk < t′ ≤ supJn ∧ t < t′ ∧ r <

bk). It corresponds to the shaded area in Fig. 2.
3. If k > 1, apply the procedure recursively to the sequence (J1, . . . , Jk−1).
4. If k < n, apply the procedure recursively to the sequence (Jk+1, . . . , Jn).

In Fig. 2, we give an example of one step of this procedure.

f1 f2

f3
f4 = fn

recur recur
xmin

t1 tmin tn
t

wx

xmin

f2[t′]

f 1
[t
]

recur

recur

t

t′

Fig. 5. A signal component with more
than two segments and a step of the algo-
rithm for the expression x ≥ 0.

The procedure produces one zone for
every constant segment of the signal
(every recursive call produces one zone
and removes one segment from consid-
eration). Also, every constraint on r is
of the form r < c. This is important for
Theorem 4.

Continuous Piecewise-Linear
Signals. To simplify the presentation,
we make two assumptions. First, we
define the value of the signal at the right
endpoint: w[sup T] = limt→supT w[t].
Second, we assume that wx reaches the
minimum on both endpoints: wx[0] =
wx[sup T] = min wx (recursively, this
will be preserved). We can always extend
a signal to ensure this property, which
saves us from extra case analysis. To get
the idea of the algorithm, consider Fig. 5,
which shows the general form of a signal
with n ≥ 3 segments. Let xmin be the
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minimal value of the signal on segments 2 to n − 1, that is, excluding the first
and the last segments, and let tmin be the corresponding time point. This infor-
mation is sufficient for computing the robustness value for certain segments.
(1) In all segments that contain tmin and where the values in the first and last
segments is above xmin, the robustness value is the constant xmin. This holds in
the rectangle defined by t ∈ [t1, tmin] and t′ ∈ [tmin, tn] where t1 and tn satisfy
f1[t1] = fn[tn] = xmin.
(2) When t ≤ t1 and t′ ≤ tn, the robustness value is given by f1[t] and likewise
when t > t1 and t′ > tn, the value is given by fn[t′].
(3) When t ≤ t1 and t′ > tn the value is given by either f1[t] or fn[t′] depending
on a linear inequality based on their respective slopes.
(4) Other segments not covered by the above and where the minimal value is
larger than xmin, are subject to two recursive calls over the intervals [t1, tmin]
and [tmin, tn].

More formally, Let w be a signal, x be a variable, and J be a time interval.
We consider three cases, displayed in Figs. 3, 4, and 5.

Case 1: When wx has one segment, because of our assumption, it is constant:
wx[t] = b, for t ∈ J , as shown in Fig. 3. Then for t < t′ ∈ J , the robustness value
is b. That is, we add to Sx≥0 the zone (t, t′ ∈ J, t < t′ ∧ r < b).

Case 2: When wx consists of two segments, it always has a wedge-like shape
as in Fig. 4. In this case we again can immediately produce the result. More
formally, let J be split into J1, J2, s.t. wx[t] = a1t + b1 = f1[t] when t ∈ J1,
a2t+ b2 = f2[t] when t ∈ J2, and (since wx is continuous) f1[sup J1] = f2[inf J2].
Then, for t < t′ ∈ J1 ∪ J2, robustness is given by min{ f1[t], f2[t′] }. Thus, we
add to Sx≥0 the polyhedron (t, t′ ∈ J1 ∪ J2, t < t′ ∧ r < a1t + b1 ∧ r < a2t

′ + b2).

Case 3: Now assume that wx consists of three or more segments, i.e., J can
be split into a sequence of adjacent intervals J1, . . . , Jn, s.t., for t ∈ Ji, wx[t] =
fi[t] = ait + bi. We show an example in Fig. 5. In this case, let us find x′

min =
mint∈J2...Jn−1 wx[t] and some tmin, s.t. wx[tmin] = x′

min (tmin can always be found
at a switching point). Then we find the time points t1 ∈ [inf J1, sup J1] and
tn ∈ [inf Jn, sup Jn], s.t. f1[t1] = fn[tn] = x′

min. Now we consider the following
sub-cases, based on where t and t′ lie w.r.t the time points inf J1, t1, tmin, tn, and
supJn.

1. When t ∈ [t1, tmin] and t′ ∈ [tmin, tn], we know that the robustness value
should be x′

min. Thus, we add to Sx≥0 the polyhedron (t ∈ [t1, tmin] ∧ t′ ∈
[tmin, tn] ∧ r < x′

min ∧ t < t′);
2. When t ≤ t1 and t′ ≥ tn, the robustness value is given by min{wx[t1], wx[tn]}.

More formally, when t1 > inf J1 and tn < supJn (either both will be true
or, if x′

min = wx[inf J1] = wx[sup Jn], both will be false), we add to Sx≥0 two
polyhedra: (t ∈ [inf J1, t1] ∧ t < t′ ∧ a1t + b1 ≤ a2t

′ + b2 ∧ r ≤ a1t + b1) and
(t′ ∈ [tn, sup Jn] ∧ t < t′ ∧ a2t

′ + b2 ≤ a1t + b1 ∧ r ≤ ant′ + bn). This also
accounts for the cases where t ≤ t1, but t′ < tn (robustness is wx[t]) and
where t > t1 and t′ ≥ tn (robustness is wx[t′]).
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3. If tmin > t1, we apply the procedure recursively to the interval J = [t1, tmin]
(there may be a degenerate case where tmin = t1 = supJ1);

4. If tmin < tn, we apply the procedure recursively to the interval J = [tmin, tn]
(there may be a degenerate case where tmin = tn = inf Jn).

One can show that this procedure produces a number of polyhedra linear in the
number of segments of the signal. The total number of recursive calls of the
second and third kind is bounded by the number of switching points, since every
call consumes the interior point of a wedge or a point of local minimum and this
point cannot appear in either role in the other recursive calls. Additionally, we
make a number of recursive calls of the first kind bounded by the number of
segments. Also, observe that in the resulting polyhedra, r is always unbounded
from below.

Other Expressions. Robustness support can be characterized by induction
on the expression structure using basic set operations. The rules below can be
derived from this inductive characterization.

Empty word. For the expression ε, one can show that R(ε, w) = {(t, t′, r) | t =
t′}, which is represented using the singleton zone: Sε = {(t = t′)}.

Falsehood. In this case, robustness support is empty, thus S∅ = ∅.

Disjunction. For the disjunction ϕ ∨ ψ, we have R(ϕ ∨ ψ,w) = R(ϕ,w) ∪
R(ψ,w), thus we take the union of the sets of polyhedra, Sϕ∨ψ = Sϕ ∪ Sψ.

Conjunction. For the conjunction ϕ ∧ ψ, R(ϕ ∧ ψ,w) = R(ϕ,w) ∩ R(ψ,w),
thus we take the pairwise intersection: Sϕ∧ψ =

⋃
Pϕ∈Sϕ

Pψ∈Sψ

{Pϕ ∩ Pψ}

Concatenation. Notice that we identify polyhedra (or zones) with conjunctions
of constraints. Thus, for two polyhedra P and Q, the formula P ∧Q denotes the
polyhedron that is the intersection of P and Q. For a polyhedron P with 4
dimensions t, t′, t′′ and r, the formula ∃t′′. P [t, t′, t′′, r] denotes the polyhedron
that is the projection of P on t, t′, r. For concatenation, one can show that
R(ϕ · ψ,w) = {(t, t′, r) | ∃t′′. (t, t′′, r) ∈ R(ϕ,w) ∧ (t′′, t′, r) ∈ R(ψ,w)}. Thus,
Sϕ·ψ is the set of polyhedra {∃t′′. Pϕ[t, t′′, r] ∧ Pψ[t′′, t′, r] | Pϕ ∈ Sϕ, Pψ ∈ Sψ}.

Kleene star. From Theorem 3 it follows that for every signal w and expression
ϕ, there exists k ≥ 0, s.t. (i) R(ϕk, w) ⊇ R(ϕk+1, w); and (ii) R(ϕ∗, w) =⋃k

i=0 R(ϕi, w). By definition of the Kleene star, R(ϕ∗, w) =
⋃

k≥0 R(ϕk, w),
hence Sϕ∗ =

⋃k
i=0 Sϕi where k is the smallest index, s.t. R(ϕk, w) ⊇ R(ϕk+1, w).

A sufficient stopping condition thus is to check whether the set of polyhedra Sϕk

geometrically covers the set of polyhedra Sϕk+1 (it can be implemented, e.g.,
by checking intersection with the complement). In [32], it was shown that for
the pattern matching problem, a sufficient stopping condition can be formulated
using pairwise inclusion rather than geometric coverage. Whether this is also
true in the case of robust pattern matching relative to arbitrary polyhedra, is
yet to be shown.
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Duration Restriction. For the duration restriction 〈ϕ〉I , one can show
R(〈ϕ〉I , w) = R(ϕ,w) ∩ {(t, t′, r) | t′ − t ∈ I}. Thus, we restrict every element of
Sϕ as follows: S〈ϕ〉I

= {P ∧ (t′ − t ∈ I) | P ∈ Sϕ}.

Proof (of Theorem 4). We can now prove Theorem 4. For a piecewise-constant
signal w and an expression ϕ, Sϕ is a set of zones over t, t′, r, s.t. every con-
straint on r is of the form r < c. This holds for the base cases and is pre-
served by intersection and projection operations performed for the inductive
cases. When a zone Z, bounds r from above by c (possibly ∞), the pointwise
supremum function (t, t′) �→ sup{r | (t, t′, r) ∈ Z} is piecewise-constant. The
robustness map (t, t′) �→ ρ(ϕ,w, [t, t′)) is a pointwise maximum of finitely many
piecewise-constant functions, and is piecewise-constant. Similarly, for a continu-
ous piecewise-linear signal, Sϕ is a set of polyhedra, where r is unbounded from
below. For every such polyhedron P , the function (t, t′) �→ sup{r | (t, t′, r) ∈ P}
is piecewise-linear. The robustness map is a pointwise maximum of finitely many
piecewise-linear functions and is piecewise-linear. ��

Possible Optimizations. A practical issue of computing robustness support in
this bottom-up way is that we have to compute and store the robustness value
for every segment of the signal and every sub-expression, regardless of how small
this value is and whether it will be used when matching the higher-level expres-
sions. One workaround is to approximate robustness by replacing the values that
are below some threshold with −∞ (discarding the corresponding polyhedra).
Another optimization is to rewrite the original expression and propagate time
restriction operations to the sub-expressions. This will allow to earlier discard
the polyhedra that would anyway be discarded by the time restriction later in
the computation.

6 Experiments

In this section, we evaluate our matching algorithms on a problem of finding
ringing patterns in a signal. Ringing is a damped oscillation of an output of a
system as a response to a sudden change in the input. In Fig. 6 (left), we give an
example of a ringing behavior of a linear system with respect to a square wave
input. We define ringing using the following expression:

〈x ≤ 0.2〉≤0.05 · 〈0.1 ≤ x ≤ 0.9〉≤0.05 · 〈0.7 ≤ x ≤ 1.3〉[0.3, 1] · 〈0.9 ≤ x ≤ 1.1〉[3, 6]

This is a concatenation of constraints that describe (from left to right) low
value, rising edge, ringing, and stable high value periods, using thresholds on the
value and duration. We discretize the input signal and feed it to our matching
tool Montre [31], which was extended to support robust matching of piecewise-
constant signals. In Fig. 6 (right), we show the robustness map produced by
Montre, where darker colors correspond to time segments with higher robustness
values. In particular, thin dark bands correspond to the segments that start on
the rising edge of the signal and end at high signal value. These segments also
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Fig. 6. A ringing signal w (left) and its robustness map (right).

satisfy the expression qualitatively. The surrounding lighter areas correspond
to the segments that do not satisfy the expression qualitatively, but are close
to satisfaction. These are the segments that start before the rising edge of the
signal, or during or after the second ringing oscillation.

To evaluate the practical complexity of robust matching, we generate longer
input signals, consisting of multiple square waves with ringing. In Table 1, we
give execution times and numbers of output zones for different lengths of the
input (measured in the number of discrete samples). We observe that for this
example the runtime of the algorithm is linear in the length of the input, which is
expected when the duration constraints in the expression are much shorter than
the input itself. Additionally (not shown in Table 1) we measured the overhead
of performing matching on piecewise-linear interpolation of a signal compared
to piecewise-constant, which is due to using polyhedra instead of zones. To rep-
resent and manipulate polyhedra, we use Parma Polyhedra Library (PPL) [7].
Our experiments with PPL suggest that individual operations on polyhedra (cor-
responding to SRE operators) are 30 to 40 times slower than those on zones.
The implementation of zones is optimized for the particular form of constraints,
while for polyhedra, PPL implements the double-description method [8], where a
polyhedron is represented by a system of constraints and a system of generators.

Table 1. Experimental results

Input length 10K 20 K 40 K

Execution Time (sec) 3.88 7.80 15.5

Number of output zones 156K 315 K 631 K

7 Conclusion

This work can be seen as part of the trend of extending formal language theory
and its related formalisms towards the quantitative; somewhat in the spirit of
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[29,30] (for metric time) and [18,19]. Our first contribution is to introduce a
quantitative semantics for SRE which indicates how robustly a signal matches
or does not match a given expression. This semantics, which is a safe approxi-
mation of the uniform norm distance between the signal and the expression, can
also be applied in discrete time to characterize the robustness of the member-
ship of a sequence of numbers in a regular language over a numerical alphabet.
We then define the problem of robust pattern matching, i.e., determining the
robustness of every segment of the input signal. This problem arises naturally
when computing the robustness of a signal for an expression containing con-
catenation. Moreover, this additional information can be very useful in novel
applications of such specification formalisms, for example [1,11,21]. Unlike clas-
sical verification, where we want to verify properties of the whole behavior, in
monitoring of real systems or in data mining, we would like to detect the occur-
rence of patterns at various parts of the signal. We developed algorithms to solve
this robust matching problem for two classes of signals: piecewise-constant and
continuous piecewise-linear, which are both common in digital signal processing
based on sampled signals. We observe that robust pattern matching can be seen
as constructing a 3-dimensional surface, and show that this surface is piecewise-
linear for piecewise-linear signals. Practically, we represent the volume under
this surface as a set of zones or convex polyhedra.

Future Work. We consider the following directions for future work. First, we
observe that our definition of robustness represents purely spatial distance and
thus does not address time robustness (see discussion in [15]). This issue is best
demonstrated with the duration operator. Consider an expression 〈ϕ〉[2,3] and a
signal that matches ϕ but with duration 2 − δ, for a small δ. With our current
semantics, its robustness is −∞, regardless of how small δ is. An alternative more
continuous semantics of the time restriction operator will bring our semantics
closer to other (non-pointwise) metrics that allow stretching and shrinking of
behaviors [12,20].

Also, as mentioned in the end of Sect. 5, unlike the very efficient qualitative
matching [32], our quantitative matching algorithm is costly. One reason is the
use of arbitrary convex polyhedra for piecewise-linear signals. Another is the fact
that we need to cover the whole triangle 0 ≤ t ≤ t′ ≤ |w| by polyhedra or zones,
while for the qualitative semantics, the match set is very sparse. In addition
to the ad-hoc optimizations mentioned in the end of Sect. 5, we foresee two
more rigorous ways to address this problem. First, we can use an approximate
semantics that quantizes the robustness values into a finite set of ranges. Second,
if we are only interested in the robustness with respect to the whole signal, we
may be able to replace the current bottom-up algorithm by a more sophisticated
top-down scheme that will compute robustness only with respect to a subset of
the sub-expressions and time segments.
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Abstract. We define a new notion of satisfaction of a temporal logic
formula ϕ by a behavior w. This notion, denoted by (w, t, t′) |= ϕ, is
characterized by two time parameters: the position t from which satisfac-
tion is considered, and the end of the (finite) behavior t′ which indicates
how much do we know about the behavior. We define this notion in dense
time where ϕ is a formula in the future fragment of metric temporal logic
(MTL) and w is a Boolean signal of bounded variability. We show that
the set of all pairs (t, t′) such that (w, t, t′) |= ϕ can be expressed as a
finite union of two-dimensional zones and give an effective procedure to
compute it.

1 Introduction and Motivation

Within the traditional use of temporal logic (TL) in verification, formulas are
interpreted over non-terminating1 behaviors, viewed mathematically as ω-words.
These are sequences which are infinite in one dimension with a time domain
order-isomorphic to N (to R+ or Q+, if we consider dense time). In this setting,
the availability of a generative model of the system dynamics is assumed in a form
of a transition system (automaton) where all those behaviors are represented by
infinite runs that go through cycles. Likewise, the TL specification can also be
translated to an ω-automaton and the verification problem reduces to a test of
inclusion between two ω-regular languages [31]. This problem can be solved by
reasoning about cycles in finite-state automata.

Historical Remark: This was not always the point of view in the early works
of logicians on tense logic, before the importation of TL to verification by Pnueli
[24,25]. Kamp [13] who added the until and since operators to the original tense
logic of Prior [26], and showed expressive equivalence to the first-order theory
of sequences, considered arbitrary time structures satisfying order axioms, that
could be infinite in both directions. Regular languages over bi-infinite words,
indexed by Z rather than N, were considered by Nivat and Perrin in [23]. The
1 In the context of reactive systems, finite behaviors are sometimes even considered

anomalous, representing deadlocks.
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DOI: 10.1007/978-3-319-65765-3 12



208 E. Asarin et al.

current ω-view has been nailed down in the anchored interpretation of Manna
and Pnueli [21] which associated an initial state with every computation and,
moreover, considered satisfaction from this initial state as having a special status
compared to satisfaction from an arbitrary point in time. Readers interested in
more historical and technical details are advised to consult [30] and the references
therein. ��

There are several contemporary motivations to consider finite, time bounded
behaviors as the semantic model for TL. In many (if not most) real-life situ-
ations, especially in the hybrid cyber-physical world, exhaustive verification is
impossible and one resorts to simulation-based (runtime, dynamic, lightweight)
verification, where behaviors are generated individually. Each of these behav-
iors is checked for property satisfaction, or using a language-theoretic terminol-
ogy, the inclusion test of model checking is replaced by numerous membership
tests. We use the term monitoring for this activity. An important advantage of
monitoring is that it can be applied to systems models not admitting a clean
description (programs, simulators, black boxes) and hence not amenable to for-
mal reasoning. For a behavior to be observed and checked by a mortal agent (or
analyzed by a terminating program), it should be finite and the semantics of the
specifications should be adapted to yield answers based on such finite behaviors.

This problem had to be (and has been) addressed by anyone developing such
monitoring tools [1]. One way to tackle this issue is to provide finitary interpre-
tation of TL. The truncated semantics for future TL is rigorously studied in [9],
where weak, strong and neutral interpretation of the temporal specifications are
proposed. This work is further developed in [8], providing the topological charac-
terization of the weakness and strength of temporal formulas. In [6], the authors
study LTL interpreted over finite behaviors and show the limited expressiveness
of the logic in the finitary setting. They propose linear dynamic logic over finite
traces (LDLf ) that significantly increases the expressiveness of the logic with-
out additional computational cost. Another way to address the interpretation of
TL over finite behaviors is to employ a 3-valued semantics ranging over {0, 1,⊥}
where ⊥ is viewed as unknown to model the fact that the finite behavior does not
contain sufficient information needed to determine the satisfaction or a violation
of a temporal formula at a given instant in time [2,3,27]. We finally mention [20],
which discusses various options of handling temporal logic over finite behaviors.

Another motivation comes from the application of specification formalisms
outside the traditional design-time verification framework. After all, monitor-
ing can be applied to data measured from real physical systems, not only to
models [16]. In monitoring real systems during their execution we would like to
detect some alarming patterns of behavior as they occur, so as to do something
about them. In not so safety-critical situations, we would like to analyze a given
behavior and distinguish, say, periods in which some bounded-response property
has been satisfied from periods when it was not. All these application domains
call for an approach where finite segments of a behavior, not necessarily starting
at time zero, and certainly not ending at the “end”, are the major objects of
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study. In this setting, monitoring has often to be performed online, with the
values of the monitored behavior being disclosed progressively as time goes by.

The major contribution of this work is in defining a two-dimensional notion of
satisfiability, denoted by (w, t, t′) |= ϕ, where t indicates, as usual, the position
from which satisfaction is considered, and t′ indicates the endpoint of the sig-
nal, the limit of our current knowledge about it. This work is partially inspired
by [28] where the relation (w, t, t′) |= ϕ means that the segment w[t, t′) of a
Boolean signal w matches a timed regular expression. In that paper, the match
set M(ϕ,w) = {(t, t′) : (w, t, t′) |= ϕ} was shown to be computable and to
consist of a finite union of zones. While we borrow some of the two-dimensional
techniques from [28], it turns out that for TL, which is less symmetric than
regular expressions with respect to the direction of time, these notions are trick-
ier and require a distinction between the temporal and epistemic components.
Note that unlike other works that combine knowledge and time [10,12,29], where
knowledge is relative to different agents in a distributed system who may observe
different variables and events at different times, our notion is centralized and is
focused on the knowledge associated with the unfolding of time.

The rest of the paper is organized as follows. In Sect. 2 we present the algo-
rithm for MTL monitoring of Boolean signals as developed in [17,22]. It is based
on two major operation, interval back-shifting to treat the timed eventually oper-
ator and another operation on intervals to handle the untimed until. In Sect. 3
we define the two-dimensional satisfaction relation for future MTL and its asso-
ciated match-set computation problem. We show that the latter can be solved by
extending the above two interval-based operations to deal with zones. In Sect. 4
we illustrate how our implementation of the algorithm works on MTL formulas
of a practical interest. Section 5 is devoted to conclusions and suggestions for
future work. Needless to say, the results and insights obtained for dense time
and MTL hold, as a degenerate case, for the discrete time setting of LTL and
sequences.

2 Preliminaries

A Boolean signal w is a function from an interval dom(w) = [0, �) to B
n. The

signal is infinite when � = ∞, and finite, otherwise. We restrict ourselves to
signals that satisfy the sanity condition of bounded variability, which for finite
signals means that dom(w) can be partitioned into finitely many intervals, and
w is constant in each interval. Such an interval is said to be maximal if it is not
strictly contained in another interval where the signal is constant.

The syntax of the future fragment of metric temporal logic (MTL) as defined
in [15] is given by

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1UIϕ2

where p ∈ {p1, . . . , pn} is a propositional variable and I is any non-empty interval
of the form [a, b], [a, b), (a, b] or (a, b) with a and b being integers. To avoid tedious
case analysis and focus on the new features introduced by the two-dimensional
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notion of satisfaction, we treat only the case I = [a, b]. It has been shown in [19]
that with this restriction, if w decomposes into unions of maximal intervals which
are left-closed right-open, all the other signals generated during the monitoring
procedure admit such a decomposition without singular points, a fact that will
simplify the presentation. For the same reason, we do not explore all variants of
the timed until operator and focus on the non-strict version, whose semantics
is given using the standard satisfaction relation (w, t) |= ϕ indicating that w
satisfies ϕ from position t:

(w, t) |= ϕ1U[a,b]ϕ2 iff ∃r ∈ [t + a, t + b](w, r) |= ϕ2 ∧ ∀r′ ∈ [t, r] (w, r′) |= ϕ1

The timed eventually operator F[a,b] is a degenerate case where ϕ1 is replaced by
true, F[a,b]ϕ = �U[a,b]ϕ. It only requires that t will occur sometime in [t+a, t+b].
Its dual, the timed always, which require ϕ to hold throughout the interval, is
defined as G[a,b]ϕ = ¬(F[a,b]¬ϕ).

It has been shown in [7,22] that the timed until operator can be rewritten as a
combination of F[a,b] and the untimed until U which does not put any restriction
on the future time point r:

ϕ1U[a,b]ϕ2 = G[0,a]ϕ1Uϕ2 ∧ F[a,b]ϕ2

Hence from now on we consider the syntax

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | F[a,b] | ϕ1Uϕ2

The monitoring procedure of [17,22] is based on reformulating the time-
dependent satisfaction relation in terms of satisfaction signals. A satisfaction
signal for a formula ϕ relative to signal w is a one-dimensional Boolean signal2

ϕ(.) such that

ϕ(t) =
{

1 if (w, t) |= ϕ
0 if (w, t) �|= ϕ

The standard semantics of MTL can be reformulated in terms of such signals.
We use wp to denote the projection of w on variable p.

Definition 1 (MTL Semantics with Satisfaction Signals). The semantics
of MTL formulas with respect to a Boolean signal w is defined inductively:

p(t) = wp(t)
(¬ϕ)(t) = ¬(ϕ(t))
(ϕ ∨ ψ)(t) = ϕ(t) ∨ ψ(t)
(F[a,b]ϕ)(t) =

∨
r∈[t+a,t+b]

ϕ(r)

(ϕ1Uϕ2)(t) =
∨
r≥t

(ϕ2(r) ∧
∧

r′∈[t,r]

ϕ1(r′))

2 By a slight abuse of notation we use the same symbol for a formula and its satisfaction
signal.
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We say that w satisfies ϕ from t if ϕ(t) = 1. We use M(ϕ,w), or simply
M(ϕ) when w is clear from the context, to denote the time points from which ϕ
is satisfied. For every ϕ, M(ϕ) admits a canonical representation as a minimal
set I of maximal intervals. The above semantics can be viewed as specifying
recursive calls that descend the parse tree of ϕ down to the atomic propositions
whose satisfaction signals are just the appropriate projections of w. Then, while
climbing up, it combines the lower-level satisfaction signals until it gets to the top
formula. The crucial procedures are those that compute the satisfaction signals
of F[a,b]ϕ and ϕ1Uϕ2 from those of their sub-formulas.

Let ϕ′ = F[a,b]ϕ. The back-shifting method of [17,22] for computing ϕ′ from
ϕ is based on the following simple concepts that generalize time shifts to the non-
deterministic setting (more on these operations and their relation to determinism
can be found in [18]).

Definition 2 (Forward and Backward Cones, Back-Shift). Let t be a time
point and let I = [c, d] be an interval.

1. The [a, b]-forward cone of t is the interval [t + a, t + b];
2. The [a, b]-back cone of t is the interval [t − b, t − a];
3. The [a, b]-back shift of interval I is I ′ = σ[a,b](I) = [c − b, d − a].

The forward cone consists of all time points r such that ϕ(r) may influence ϕ′(t).
The back cone specifies the points r such that ϕ′(r) can be influenced by ϕ(t), those
that t is in their forward cone. The back-shift of I is the union of the back cones of
its elements, the set of all time points t such that ϕ′(t) is influenced by ϕ(r), r ∈ I.
The following observation underlies the monitoring procedure of [17,22].

Observation 1 (Back Shifting). The back-shift of interval I consists of all
points whose forward cone intersects I: σ[a,b](I) = {t : [t + a, t + b] ∩ I �= ∅}.

c d

c − b d − a

ϕ

ϕ′ = F[a,b]ϕ

I

I′

t1 t2 t3 t4

Fig. 1. A finite satisfaction signal ϕ which is true at interval I = [c, d]. (left): Back-
shifting I ′ = σ[a,b](I); (right): the forward cones of points t1, t2 ∈ I ′ do indeed intersect
I hence ϕ′ = F[a,b]ϕ holds there. On the other hand, ϕ = 0 throughout all the forward
cone of t3 and hence ϕ′(t3) = 0. The forward cone of t4 does not intersect I either but
part of it goes outside dom(ϕ). We use in this paper a semantics where ϕ′(t4) = 0.
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The satisfaction signal of ϕ′ = F[a,b]ϕ is thus computed by back-shifting all
maximal intervals in M(ϕ) and their union characterizes ϕ′, see Fig. 1. This pro-
cedure is obviously correct for points t such that [t + a, t + b] ⊆ dom(ϕ). For
other points like t4 in the figure, the question is how to evaluate the disjunction
(existential quantification) over the values of ϕ in that cone. A common app-
roach, the one used implicitly in [22], is to consider ϕ′(t) = 0 if ϕ(r) = 0 for all
r ∈ [t + a, t + b] ∩ dom(ϕ). We will use this semantics but our results can be
easily adapted to an alternative 3-valued semantics where ϕ(t) = ⊥ (unknown)
if some possible completion of the signal lead to satisfaction and some others, to
violation.

To illustrate the computation of ϕ = ϕ1Uϕ2 observe first that (ϕ1Uϕ2) holds
at t when ϕ1 holds continuously between t and some future point r where ϕ2

holds. This motivates the following operation between intervals I1 = [c, d) and
I2 = [c′, d′):

Ω(I1, I2) =

⎧⎨
⎩

∅ if d ≤ c′

[c, d) if c′ < d ∧ d ≤ d′

[c, d′) if c′ < d ∧ d′ < d

The three cases are illustrated Fig. 2. The following observation justifies the com-
putation of the set M(ϕ) of positive intervals in the satisfaction signal of ϕ, by
applying this operation to all pairs of maximal intervals in M(ϕ1) and M(ϕ2).

c dc d

c′

I1

I2

c d

c′ d′ c′ d′

Ω(I1, I2)

c d′d c

Fig. 2. Computing ϕ1Uϕ2 by computing Ω(I1, I2) for two maximal intervals. (a) ϕ1

does not hold until ϕ2; (b) it does but stops holding before ϕ2 stops; (c) it does but
ϕ2 stops holding before and hence some parts of I1 have no future where ϕ2 holds.

Observation 2. Let M(ϕ1) and M(ϕ2) be represented, respectively, by sets I1

and I2 of maximal intervals. Then

M(ϕ) =
⋃

I1∈I1

⋃
I2∈I2

Ω(I1, I2).

The fact that I1 consists of maximal intervals is crucial here. If an interval [c, d)
satisfying d′ < d is split into non-maximal intervals [c, e) and [e, d) with e < c′,
the points in [c, e) will be wrongly considered as not satisfying ϕ1Uϕ2.
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3 Satisfaction in Two Dimensions

The essence of our definition is to consider the end of the signal as an additional
parameter t′. We would like to know what can be said about satisfaction at t
after observing a prefix w[0, t′). Although this characterization of the pair (t, t′)
is different here from the matching property used for regular expressions in [28],
we will use a similar terminology, partly because we have not yet found a simple
name for this relation.

Let w be a Boolean signal defined over a bounded time domain dom(w) =
[0, �). Any sub-interval [t, t′) of dom(w) defines a sub-segment of w that we
denote by w′ = w[t, t′). The set of all non-empty sub-segments of w can be
represented by the triangle Tw = {(t, t′) : 0 ≤ t < t′ < �} (Fig. 3-(a)).

t′

t

�

�0

Z1

c d c′ d′

c

d

c′

d′

t

t′

Z2

(t, t′)

Tw

Fig. 3. (a) The triangle Tw associated with a signal defined over [0, �). The length of
the horizontal or vertical line from a point (t, t′) to the diagonal is t′ − t, the length of
the segment [t, t′) that it represents; (b) A proposition which is true at the intervals
[c, d] and [c′, d′]. Its match set is Z1 ∪ Z2.

Definition 3 (Matching and Match Sets). A segment (t, t′) of signal w
matches an MTL formula ϕ, denoted as (w, t, t′) |= ϕ, if (w[0, t′), t) |= ϕ. The
match-set of ϕ in w is the set of all matching segments:

M(ϕ,w) = {(t, t′) : (w, t, t′) |= ϕ}.

The relation between matching in one and two dimensions can be expressed as

M(ϕ,w) =
⋃

t′∈[0,�)

M(ϕ,w[0, t′)) × {t′} (1)

We will use notation M(ϕ) when w is clear from the context. To compute M(ϕ)
we first define the two-dimensional analog of satisfaction signal, the satisfaction
map, where ϕ(t, t′) indicates the satisfaction status of ϕ by w[t, t′).



214 E. Asarin et al.

Definition 4 (MTL Matching Semantics with Satisfaction Maps). The
matching semantics of MTL formulas with respect to a Boolean signal w is
defined inductively as follows:

p(t, t′) = wp(t) ∧ t < t′ < �
(¬ϕ)(t, t′) = ¬(ϕ(t, t′))
(ϕ ∨ ψ)(t, t′) = ϕ(t, t′) ∨ ψ(t, t′)
(F[a,b]ϕ)(t, t′) =

∨
r∈[t+a,t+b]

ϕ(r, t′)

(ϕ1Uϕ2)(t, t′) =
∨
r≥t

(ϕ2(r, t′) ∧
∧

r′∈[t,r]

ϕ1(r′, t′))

In the sequel we will show that for a bounded-variability signal w, M(ϕ,w)
can be expressed as a finite union of zones.

Definition 5 (Two-dimensional Zones). A two-dimensional zone Z is a sub-
set of R2

+ which is defined via a conjunction of orthogonal and difference inequal-
ities of the following form

α ≺ t ≺ α

β ≺ t′ ≺ β

γ ≺ t′ − t ≺ γ
(2)

where ≺ is either < or ≤. The representation of a zone by the intervals [α, α],
[β, β] and [γ, γ] can be tightened and brought into a normal form where no
inequality is implied by any combination of the others, except possibly in a
marginal way.3 We assume that we always work with such normalized zones
where the constants satisfy the following constraints.

β − γ ≤ α ≤ α ≤ β − γ

α + γ ≤ β ≤ β ≤ α + γ

β − α ≤ γ ≤ γ ≤ β − α

As convex sets, zones are not closed under union and complementation and
these operations yield the class of sets that we will call timed polyhedra. Non-
convex timed polyhedra can be expressed as a finite union of zones but this
representation is not unique, and there is no canonical minimal representation
as in the case of intervals. Moreover, the choice of the zones in the representation
may affect the correctness of the procedure we propose in the sequel for the until
operator. For this reason we define explicitly the notion of a representation of a
timed polyhedron.

Definition 6 (Timed Polyhedra, Representation). A timed polyhedron Z is
a set expressible as a Boolean combination of orthogonal and difference constraints
as in (2). A set of zones Z = {Z1, . . . , Zk} is a representation of Z if

Z =
⋃
i

Zi

3 It means that if a constraint f(t, t′) ≤ c is implied by other constraints, the constraint
f(t, t′) ≤ c − ε is not implied by them for any ε > 0.
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Z

t

t′

t

t′

t

t′

t2

t′
1

t′
1 t2

t′
2

t′
2

ϕ

t′
1

t′
1

t1

Fig. 4. The effect of t and t′ on satisfaction of ϕ′ = F[a,b]ϕ with respect to a given
satisfaction signal ϕ whose match-set is the zone Z. The thick dashed lines indicate
the forward cones of the respective values of t. (a) segment (t1, t

′
1) does not satisfy ϕ′

because the forward cone of t1 does not intersect Z; (b) segment (t2, t
′
1) which starts

later does satisfy ϕ′ because the forward cone of (t2, t
′
1) intersects Z. In other words

[t2 +a, t2+b] intersects ϕ1 before t′
1; (c) segment (t2, t

′
2) which ends earlier than (t2, t

′
1)

does not satisfy ϕ′ because it ends before ϕ becomes true.

To characterize match sets we will first show that those of propositions are timed
polyhedra and that the latter are closed under the operations in Definition 4. This
is trivial for disjunction and negation and we focus on F[a,b] and U for which we
provide constructive proofs.

When a proposition p holds throughout an interval I = [c, d], M(p) contains
segments of w whose starting point t is in I. The role of t′ is just to ensure,
in addition, that [t, t′) is a well-defined segment, a sub-interval of dom(w). This
can be written explicitly as (c ≤ t ≤ d) ∧ (t < t′ < �), or using a zone-like
notation, (c ≤ t ≤ d)∧ (0 < t′ − t)∧ (0 ≤ t′ < �). This will hold for any p-interval
and consequently M(p) is a timed polyhedron (see Fig. 3-(b)). The concepts of
cones and back-shifting can be adapted to points and zones in R

2
+. Recall that

the satisfaction of F[a,b]ϕ at t is a function of the satisfaction of ϕ throughout
[t + a, t + b]. The role of t′ is to determine whether parts of the forward cone go
outside dom(ϕ) and should not be considered. Figure 4 illustrates the effect of t
and t′ on satisfaction.

Definition 7 (Cones and Back-Shifting in the Plane). Let (t, t′) be a point
in R

2
+ and let Z be a zone represented by the following (normalized) inequalities:

α ≤ t ≤ α

β ≤ t′ ≤ β

γ ≤ t′ − t ≤ γ
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Then

1. The [a, b]-forward cone of (t, t′) is [t + a, t + b] × {t′};
2. The [a, b]-back cone of (t, t′) is [t − b, t − a] × {t′};
3. The [a, b]-back shift of zone Z is Z ′ = σ[a,b](I), a zone defined by

α − b ≤ t ≤ α − a

β ≤ t′ ≤ β

γ + a ≤ t′ − t ≤ γ + b
(3)

Claim (Zone Back Shifting). The back-shift of a zone consists of all points whose
forward cone intersects Z:

σ[a,b](Z) = {(t, t′) : [t + a, t + b] × {t′} ∩ Z �= ∅}
Proof. Given that Z is normalized, (3) is what you get by applying quantifier
elimination to the following formula

∃r

⎛
⎜⎜⎝

a ≤ r ≤ b
α ≤ t + r ≤ α

β ≤ t′ ≤ β

γ ≤ t′ − (t + r) ≤ γ

⎞
⎟⎟⎠

��
Figure 5 illustrates zone back-shifting. Perhaps the simplest way to view it is to
back-shift the vertices of Z along the horizontal t dimension. The left vertices
are shifted by b and the right ones by a.

What remains to be shown is that if both M(ϕ1) and M(ϕ2) are timed
polyhedra, so is M(ϕ1Uϕ2). Recalling the relation between one-dimensional
matching by intervals and two-dimensional matching as expressed in (1), we
will associate with every Z ⊆ Tw and every t′, a one-dimensional object, the
t′-slice (projection) of Z, defined as IZ,t′ = {t : (t, t′) ∈ Z}. For a convex zone
Z, IZ,t′ is a single interval and for this reason we first prove our result for the
case where both match-sets are single zones.

Claim. Let M(ϕ1) = Z1 and M(ϕ2) = Z2 be zones, then M(ϕ1Uϕ2) is also a
zone.

Proof. Following the semantics of until we have

(t, t′) ∈ M(ϕ1Uϕ2) iff ∃r ∈ [t, t′] (r, t′) ∈ Z2

and ∀r′ ∈ [t, r] (r′, t′) ∈ Z1

which translates to

∃r ∈ [t, t′]

⎧⎨
⎩

⎧⎨
⎩

α2 ≺ r ≺ α2

β
2

≺ t′ ≺ β2

γ
2

≺ t′ − r ≺ γ2

⎫⎬
⎭ and ∀r′ ∈ [t, r]

⎧⎨
⎩

α1 ≺ r′ ≺ α1

β
1

≺ t′ ≺ β1

γ
1

≺ t′ − r′ ≺ γ1

⎫⎬
⎭

⎫⎬
⎭
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γ1

γ2

α1 α2

Z

β2

β1

γ2 + b

γ1 + a

α1 − b

β1

β2

σ[a,b](Z)

α2 − a

Fig. 5. An illustration of zone back-shifting.

First we eliminate the universal quantification by taking the dual and applying
the Fourier-Motzkin procedure and then eliminate the existential quantifier to
finally obtain

M(ϕ1Uϕ2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1 ≺ t ≺ min{α1, α2}

max
{

β
1
, β

2
,

α2 + γ
1

}
≺ t′ ≺ min

{
β1, β2,
α1 + γ2

}

max{γ
1
, γ

2
} ≺ t′ − t ≺ γ1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4)

��
Let us denote this operation on zones as Ω(Z1, Z2). It can be viewed as

performing in a symbolic manner an uncountable number of interval-based until
computations:

Ω(Z1, Z2) =
⋃

t′∈[0,�)

Ω(IZ1,t′ , IZ2,t′) × {t′}.

Consider now the more general case where M(ϕ1) is a non-convex timed
polyhedron Z, represented as a set of zones Z. Trying to apply the procedure to
every pair of zones in the respective representations, we may face the following
problem. There might be a maximal interval I in IZ,t′ which is not fully included
in a single zone in Z but is spread over two or more zones. This is illustrated in
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Fig. 6-(a) with Z = {Z1, Z2}, such that IZ1,t′ = I1 and IZ2,t′ = I2, both strict
sub-intervals of I. On the other hand, adding to the representation the zone Z3,
shown in Fig. 6-(b) will remedy this problem for I and for a bunch of other slices
associate with a range of t′ values. This motivates the following definition.

Z1

Z2

I

I1

I2

Z3

I

Fig. 6. (a) A representation Z = {Z1, Z2} of a timed polyhedron such that neither
zone contains a maximal interval of a t′-slice. (b) Adding Z3 to the representation fixes
the problem.

Definition 8 (Maximal Zones, Maximal Normal Form). Let Z be a timed
polyhedron. A zone Z ⊆ Z is maximal in Z if there is no other zone Z ′ such that
Z ⊂ Z ′ ⊆ Z. A representation Z of Z is maximal if contains all maximal zones.
A representation is reduced maximal if it consists of the set of all maximal zones.

The notion of maximal representation is an adaptation of the concept of a syllo-
gistic form of a Boolean function, a DNF representation that contains all maxi-
mal cubes. The reduced maximal representation corresponds to what is known
as Blake normal form. Both were introduced in [4] and the reader can find more
about it in [5]. In a maximal representation Z of Z, every zone included in Z is
included in some Z ∈ Z, a fact which implies the following claim.

Claim (Pairwise Operation on Maximal Representation). Let M(ϕ1) = Z1 and
M(ϕ2) = Z2 be timed polyhedra, represented by Z1 and Z2, respectively, with
Z1 being maximal. Then M(ϕ1Uϕ2) is also a timed polyhedron computed as⋃

Z1∈Z1

⋃
Z2∈Z2

Ω(Z1, Z2).

Proof. The inclusion

M(ϕ1Uϕ2) ⊇
⋃

Z1,Z2

Ω(Z1, Z2)

is trivial. Let us prove the opposite (⊆) inclusion. Consider any (t, t′) ∈
M(ϕ1Uϕ2). By definition of the until satisfaction map, there exists r ≥ t, such
that

(r, t′) ∈ Z2 ∧
∧

r′∈[t,r]

((r′, t′) ∈ Z1)
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Applying the representation of Z2, we deduce from the first conjunct that (r, t′) ∈
Z2 for some zone Z2 ∈ Z2. We rewrite the second conjunct as I ⊆ Z1, where
I is the interval with extremities (t, t′) and (r, t′). Using maximality of Z1, we
deduce that I ⊆ Z1 for some Z1 ∈ Z1 or, in pointwise notation,

∧
r′∈[t,r]

((r′, t′) ∈ Z1).

Gathering everything, we get that for some r ≥ t, Z1 ∈ Z1, Z2 ∈ Z2, it holds
that

(r, t′) ∈ Z2 ∧
∧

r′∈[t,r]

((r′, t′) ∈ Z1),

in other words (t, t′) ∈ Ω(Z1, Z2). ��
This concludes the proof of our main result.

Theorem 1 (Match Sets for MTL). For any MTL formula ϕ and a bounded
variability Boolean signal w, M(ϕ,w) is a timed polyhedron represented as a
finite union of zones.

We sketch below how one can transform a representation of a timed poly-
hedron into a maximal one. We apply the multiplication (intersection) tech-
nique [4,5] to complement a timed polyhedron Z represented by a set of zones.
In essence it applies De Moragn rule to obtain a CNF representation of Z, and
then opens the parentheses to collect the terms (zones). The representation of Z
thus obtained is maximal by a direct extension of the results proved by Blake [5].
Applying this operation twice we obtain a maximal representation of Z.

While a maximal representation is sufficient for proving the results, in our
implementation we keep the representation reduced by making incremental inclu-
sion tests and other optimization such as plane sweep techniques that may avoid
intersections between zones that are far apart.

4 Case Study

In this section, we illustrate the computation of match sets on an example of a
bounded recurrence property, taken from the catalog of commonly-used real-time
properties [14]:

ϕ1 := (q ∧ ¬r ∧ Fr) → (F[0,c](p ∨ r) U r)

Property ϕ1 requires proposition p to hold at least every c time units between
q and r. Such properties are commonly used to express periodic tasks to be
performed between two events. Figure 7-(top left) depicts some input signals for
propositions p, q, and r. The satisfaction maps for some sub-formulas are shown
in Fig. 7-(left) followed by the satisfaction map for the top-level formula ϕ1 in
Fig. 7-(right). This figure illustrates the evolution of the formulas satisfaction
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with time and knowledge. Recall that a t′-section of the map gives us the satis-
faction signal for the formula ϕ by w[0, t′). We depict t′-sections for time points
t1, t2 and t3 in Fig. 7-(bottom-right). We can observe that ϕ1 is satisfied at all
times t ∈ [0, t1) based on the knowledge available at t1. However, it turns out to
be violated at some times t ∈ [0, t1) when additional knowledge about the input
signals is provided at times t2 and t3.

Our techniques also open the way for using MTL for specifying local timed
properties (patterns) that only hold at some segments of the signal. We illus-
trate this using three examples. First, consider a formula ϕ2 = q ∧ ϕ1 and its
satisfaction map which filters away segments that satisfy ϕ1 trivially due to ¬q.
Second, we consider an MTL formula ϕ3 = GF[0,c](p ∨ r) which describes time
periods where p or r holds periodically at least every c time units. Third, in

Fig. 7. Input signals p, q, and r, respectively (top left). Satisfaction maps for some
subformulas (left). The satisfaction map for ϕ (right). Cross-sections of the satisfaction
map for ϕ that corresponds to satisfaction signals at t1, t2, and t3 (bottom right).
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Fig. 8. Satisfaction maps for the formula q ∧ ϕ1 (left), the formula GF[0,c](p ∨ r)
(middle), and the formula q ∧ GF[0,c](p ∨ r) (right).

order to express a pattern describing time periods where p or r holds at least
every c time units and starting with q, the formula ϕ3 is intersected with q such
that ϕ4 = q ∧ GF[0,c](p ∨ r). Figure 8 depicts the satisfaction maps for ϕ2, ϕ3,
and ϕ4 using the same signals appearing in Fig. 7.

5 Conclusions and Future Work

The major contribution of this work is in exporting and adapting the two-
dimensional segment matching technology from timed regular expressions [28]
to MTL. On the way to prove the main result, namely that the match sets for
MTL are unions of zones, we had to cope with the alternating nature of the until
operator, using the maximal representation for timed polyhedra. This concept,
adapted from the syllogistic representation of Boolean functions, may have some
other applications in the analysis of timed systems. Our matching algorithm has
been implemented and demonstrated on some non-trivial examples.

Regular expressions and temporal logic are inherently different due to various
reasons, including the different nature of the major sequential operator (concate-
nation compared to until) and the positional and directed satisfaction relation
of TL. Consequently, the MTL interpretation of the satisfaction map consists of
separate positional and epistemological components. One way to go further in
this direction is to consider a 3-dimensional satisfaction map defined on tuples
(s, t, t′) where [t, t′) stands for what is known about the signal and s is the posi-
tion from which satisfaction is considered, not necessarily included in [t, t′). It
looks a priori as if such an approach could handle full MTL with both future
and past operators.

As mentioned, our technique can be adapted to a 3-values semantics with ⊥
standing for unknown. To this end, the representation of the satisfaction map
should be augmented with a second timed polyhedron M⊥, which should be
shifted and manipulated in coordination with M and its complement.

Finally, the satisfaction of formulas in interval temporal logics, such as those
studied in [11,32], is associated naturally with intervals. It might be the case
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that interval-based logics are more suited for defining patterns than point-based
ones. We are currently working on the application of our techniques to handle
metric extensions of such logics.
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Abstract. The timed pattern matching problem is an actively studied
topic because of its relevance in monitoring of real-time systems. There
one is given a log w and a specification A (given by a timed word and
a timed automaton in this paper), and one wishes to return the set of
intervals for which the log w, when restricted to the interval, satisfies
the specification A. In our previous work we presented an efficient timed
pattern matching algorithm: it adopts a skipping mechanism inspired by
the classic Boyer–Moore (BM) string matching algorithm. In this work
we tackle the problem of online timed pattern matching, towards embed-
ded applications where it is vital to process a vast amount of incoming
data in a timely manner. Specifically, we start with the Franek-Jennings-
Smyth (FJS) string matching algorithm—a recent variant of the BM
algorithm—and extend it to timed pattern matching. Our experiments
indicate the efficiency of our FJS-type algorithm in online and offline
timed pattern matching.

1 Introduction

Monitoring of real-time properties is an actively studied topic with numerous
applications such as automotive systems [19], medical systems [8], data clas-
sification [6], web service [26], and quantitative performance measuring [12].
Given a specification A and a log w of activities, monitoring would ask questions
like: if w has a segment that matches A; all the segments of w that match A;
and so on.

For a monitoring algorithm efficiency is a critical matter. Since we often
need to monitor a large number of logs, each of which tends to be very long,
one monitoring task can take hours. Therefore even constant speed up can make
significant practical differences. Another important issue is an algorithm’s per-
formance in online usage scenarios. Monitoring algorithms are often deployed in
embedded applications [18], and this incurs the following online requirements:

• Real-time properties, such as: on prefixes of the log w, we want to know their
monitoring result soon, possibly before the whole log w arrives.

c© Springer International Publishing AG 2017
A. Abate and G. Geeraerts (Eds.): FORMATS 2017, LNCS 10419, pp. 224–243, 2017.
DOI: 10.1007/978-3-319-65765-3 13
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• Memory consumption, such as: early prefixes of w should not affect the mon-
itoring task of later segments of w, so that we can throw the prefixes away
and free memory (that tends to be quite limited in embedded applications).

• Speed of the algorithm. In an online setting this means: if the log w arrives
at a speed faster than the algorithm processes it, then the data that waits to
be processed will fill up the memory.

Constant improvement in aspects like speed and memory consumption will be
appreciated in online settings, too: if an algorithm is twice as fast, then this
means the same monitoring task can be conducted with cheaper hardware that
is twice slower.

The goal of the current paper is thus monitoring algorithms that perform well
both in offline and online settings. We take a framework where timed words—
they are essentially sequences of time-stamped events—stand for logs, and timed
automata express a specification. Both constructs are well-known in the commu-
nity of real-time systems. The problem we solve is that of timed pattern matching :
see Sect. 2.1 for its definition; Fig. 1 for an example; and Table 1 for comparison
with other matching problems.

s0start s1 s2 s3 s4

a, x > 1
/x := 0

a, x < 1
/x := 0 a, x < 1 $, true

t0

a

0.5

a

0.9

b

1.3

b

1.7

a

2.8

a

3.7

a

5.3

a

4.9

a

6.0

Fig. 1. An example of timed pattern matching. For the pattern timed automaton A
and the target timed word w, as shown, the output is the set of matching intervals
{(t, t′) | w|(t,t′) ∈ L(A)} = {(t, t′) | t ∈ [3.7, 3.9), t′ ∈ (6.0, ∞)}. Here $ is a special
terminal character.

Towards the goal our strategy is to exploit the idea of skip values in efficient
string matching algorithms (such as Boyer–Moore (BM) [7]), together with their
automata-based extension for pattern matching by Watson and Watson [35], to
skip unnecessary matching trials. In our previous work [32] we took the strategy
and introduced a timed pattern matching algorithm with BM-type skipping.

Table 1. Matching problems

Log, target Specification, pattern Output

String
matching

a word
w ∈ Σ∗

a word pat ∈ Σ∗ {(i, j) ∈ (Z>0)
2 | w(i, j) = pat}

Pattern
matching

a word
w ∈ Σ∗

an NFA A {(i, j) ∈ (Z>0)
2 | w(i, j) ∈ L(A)}

Timed
pattern
matching

a timed
word w ∈
(Σ × R>0)

∗

a timed automaton A {(t, t′) ∈ (R>0)
2 | w|(t,t′) ∈ L(A)}
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The current work improves on this previous BM algorithm: it is based on the
more recent Franek–Jennings–Smyth (FJS) algorithm [13] for string matching
(instead of BM); and our new algorithm is faster than our previous BM-type one.
Moreover, in online usage, our FJS-type algorithm better addresses the online
requirements that we listed in the above. This is in contrast with our previous
BM-type algorithm that works necessarily in an offline manner (it must wait for
the whole log w before it starts).

Contributions. Our main contribution is an efficient algorithm for timed pat-
tern matching that employs (an automata-theoretic extension of) skip values
from the Franek–Jennings–Smyth (FJS) algorithm for string matching [13]. By
experiments we show that the algorithm generally outperforms a brute-force
one and our previous BM algorithm [32]: it is twice as fast for some realistic
automotive examples. Through our theoretical analysis as well as experiments
on memory consumption, we claim that our algorithm is suited for online usage
scenarios, too. We also compare its performance with a recent tool Montre for
timed pattern matching [29], and observe that ours is faster, at least in terms of
the implementations currently available.

In its course we have obtained an FJS-type algorithm for untimed pattern
matching, which is one of the main contributions too. The algorithm is explained
rather in detail, so that it paves the way to our FJS-type timed pattern matching
that is more complex.

A central theme of the paper is benefits of the formalism of automata, a
mathematical tool whose use is nowadays widespread in fields like temporal
logic, model checking, and so on. We follow Watson & Watson’s idea of extend-
ing skipping from string matching to pattern matching [35], where the key is
overapproximation of words and languages by states of automata. Our main con-
tribution on the conceptual side is that the same idea applies to timed automata
as well, where we rely on zone-based abstraction (see e.g. [4,5,14]) for computing
reachability.

Related Works. Several algorithms have been proposed for online monitoring
of real-time temporal logic specifications. An online monitoring algorithm for
ptMTL (a past time fragment of MTL) is in [27] and an algorithm for MTL[U,S]
(a variant of MTL with both forward and backward temporal modalities) is
in [15]. In addition, a case study on an autonomous research vehicle monitor-
ing [19] shows such procedures can be performed in an actual vehicle—this is
where our motivation comes from, too.

We have chosen timed automata as a specification formalism. This is because
of their expressivity as well as various techniques that operate on them. Some
other formalisms can be translated to timed automata, and via translation, our
algorithm offers to these formalisms an online monitoring algorithm. In [3], a vari-
ant of timed regular expressions (TREs) are proved to have the same expressive
power as timed automata. For MTL and MITL, transformations into automata
are introduced for many different settings; see e.g. [2,10,20,22,24].
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The work with closest interests to ours is by Ulus, Ferrère, Asarin, Maler and
their colleagues [29–31]. In their series of work, logs are presented by signals, i.e.
values that vary over time. Their logs are thus state-based rather than event-
based like timed words. Their specification formalism is timed regular expressions
(TREs). An offline monitoring algorithm is presented in [30] and an online one is
in [31]. These algorithms are implemented in the tool Montre [29], with which we
conduct performance comparison. The difference between different specification
formalisms (TREs, timed automata, temporal logics, etc.) are subtle, but for
many realistic examples the difference does not matter. In the current paper we
exploit various operations on automata, most notably zone-based abstraction.

Notations Let Σ be an alphabet and w = a1a2 . . . an ∈ Σ∗ be a string over
Σ, where ai ∈ Σ for each i ∈ [1, n]. We let w(i) denote the i-th character ai of
w. Furthermore, for i, j ∈ [1, n], when i ≤ j we let w(i, j) denote the substring
aiai+1 . . . aj , otherwise we let w(i, j) denote the empty string ε. The length n of
the string w is denoted by |w|.
Organization of the Paper. In Sect. 2 are preliminaries on: our formulation
of the problem of timed pattern matching; and the FJS algorithm for string
matching. The FJS-type skipping is extended to (untimed) pattern matching
in Sect. 3, where we describe the algorithm in detail. This paves the way to
our FJS-type timed pattern matching algorithm in Sect. 4. In Sect. 4 we also
sketch zone-based abstraction of timed automata, a key technical ingredient in
the algorithm. In Sect. 5 we present our experiment results. They indicate our
algorithm’s performance advantage in both offline and online usage scenarios.

2 Preliminaries

2.1 Timed Pattern Matching

Here we formulate our problem. Our target strings are timed words [1], that
are time-stamped words over an alphabet Σ. Our patterns are given by timed
automata [1].

Definition 2.1 (timed word, timed word segment). For an alphabet Σ, a
timed word is a sequence w of pairs (ai, τi) ∈ (Σ × R>0) satisfying τi < τi+1 for
any i ∈ [1, |w| − 1]. Let w = (a, τ) be a timed word. We denote the subsequence
(ai, τi), (ai+1, τi+1), · · · , (aj , τj) by w(i, j). For t ∈ R≥0, the t-shift of w is (a, τ)+
t = (a, τ + t) where τ + t = τ1 + t, τ2 + t, · · · , τ|τ | + t. For timed words w = (a, τ)
and w′ = (a′, τ ′), their absorbing concatenation is w ◦ w′ = (a ◦ a′, τ ◦ τ ′) where
a◦a′ and τ ◦ τ ′ are usual concatenations, and their non-absorbing concatenation
is w · w′ = w ◦ (w′ + τ|w|). We note that the absorbing concatenation w ◦ w′ is
defined only when τ|w| < τ ′

1.
For a timed word w = (a, τ) on Σ and t, t′ ∈ R>0 satisfying t < t′, a timed

word segment w|(t,t′) is defined by the timed word (w(i, j) − t) ◦ ($, t′) on the
augmented alphabet Σ � {$}, where i, j are chosen so that τi−1 ≤ t < τi and
τj < t′ ≤ τj+1. Here the fresh symbol $ is called the terminal character.
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Definition 2.2 (timed automaton). Let C be a finite set of clock variables,
and Φ(C) denote the set of conjunctions of inequalities x �� c where x ∈ C,
c ∈ Z≥0, and �� ∈ {>,≥, <,≤}. A timed automaton A = (Σ,S, S0, C,E, F ) is
a tuple where: Σ is an alphabet; S is a finite set of states; S0 ⊆ S is a set of
initial states; E ⊆ S × S × Σ × P(C) × Φ(C) is a set of transitions; and F ⊆ S
is a set of accepting states. The components of a transition (s, s′, a, λ, δ) ∈ E
represent: the source, target, action, reset variables and guard of the transition,
respectively.

We define a clock valuation ν as a function ν : C → R≥0. We define the t-shift
ν+t of a clock valuation ν, where t ∈ R≥0, by (ν+t)(x) = ν(x)+t for any x ∈ C.
For a timed automaton A = (Σ,S, S0, E,C, F ) and a timed word w = (a, τ),
a run of A over w is a sequence r of pairs (si, νi) ∈ S × (R≥0)C satisfying the
following: (initiation) s0 ∈ S0 and ν0(x) = 0 for any x ∈ C; and (consecution)
for any i ∈ [1, |w|], there exists a transition (si−1, si, ai, λ, δ) ∈ E such that
νi−1 + τi − τi−1 |= δ and νi(x) = 0 (for x ∈ λ) and νi(x) = νi−1(x) + τi − τi−1

(for x 	∈ λ). A run only satisfying the consecution condition is a path. A run
r = (s, ν) is accepting if the last element s|s|−1 of s belongs to F . The language
L(A) is defined to be the set {w | there is an accepting run of A over w} of
timed words.

Definition 2.3 (timed pattern matching). Let A be a timed automaton,
and w be a timed word, over a common alphabet Σ. The timed pattern matching
problem requires all the intervals (t, t′) for which the segment w|(t,t′) is accepted
by A. That is, it requires the match set M(w,A) = {(t, t′) | w|(t,t′) ∈ L(A)}.

The match set M(w,A) is in general uncountable; however it allows finitary
representation, as a finite union of special polyhedra called zones. See [32].

2.2 String Matching and the FJS Algorithm

String matching is a fundamental problem in computer science. Given a pattern
string pat and a target string w, it requires the set

{
(i, j) ∈ (Z>0)2

∣
∣ w(i, j) =

pat
}

of all the occurrences of pat in w. A brute-force algorithm, by trying to
match |pat | characters for all the possible |w| − |pat | positions of the pattern
string, solves the string matching problem in O(|pat ||w|). Efficient algorithms for
this classic problem have been sought for a long time, with significant progress
made as recently as in the last decade [11]. Among them the Knuth–Morris–
Pratt (KMP) algorithm [21] and the Boyer–Moore (BM) algorithm [7] are well-
known, where unnecessary matching trials are skipped utilizing skip value func-
tions. Empirical studies have shown speed advantage of BM—and its variants
like Quick Search [28]—over KMP, while theoretically KMP exhibits better
worst-case complexity O(|pat | + |w|). By combining KMP and Quick Search,
the Franek–Jennings–Smyth (FJS) algorithm [13], proposed in 2007, achieves
both linear worst-case complexity and good practical performance.

The current paper’s goal is to introduce FJS-like optimization to timed
pattern matching. We therefore take the FJS algorithm as an example and
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T H I S I S A S T R O N G S T R I N G
S T R I N G
1 2 3 4 5 6

Δ(S)=6
=⇒

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T H I S I S A S T R O N G S T R I N G
S T R I N G
1 2 3 4 5 6

Δ(R)=4
=⇒

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T H I S I S A S T R O N G S T R I N G
S T R I N G
1 2 3 4 5 6

β(3)=3
=⇒

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T H I S I S A S T R O N G S T R I N G
S T R I N G
1 2 3 4 5 6

Fig. 2. The Franek–Jennings–Smyth (FJS) algorithm for string matching: an example

demonstrate how skip values are utilized in the string matching algorithms we
have mentioned.1

The FJS algorithm combines two skip value functions: Δ : Σ → [1, |pat | + 1]
and β : [0, |pat |] → [1, |pat |]; the former Δ comes from Quick Search and the
latter β comes from KMP (the choice of symbols follows [13]). See Fig. 2 where
the pattern string pat = STRING is shifted by 6, 4 and 3 (instead of one-by-one).

In the first shift we use the Quick Search skip value Δ(S) = 6: we try matching
the tail of pat ; it fails (pat(6) 	= w(6)); then we find that the next character
w(7) = S of the target only occurs in the first position of the pattern. Formally
we define Δ by

Δ(a) = min
( {

i ∈ [1, |pat |] ∣∣ a = pat(|pat | − i + 1)
} ∪ {|pat | + 1

} )
for a ∈ Σ. (1)

In the example of Fig. 2 we have Δ(I) = 3 and Δ(Q) = 7.
Now we are in the second configuration of Fig. 2 and we try matching the

tail pat(6) = G with w(12). It fails and we invoke the Quick Search skip value
function Δ; this results in a shift by Δ(R) = 4 positions.

Fig. 3. β(3) = 3,
where the argument
3 is the length of
the successful par-
tial match.

For the shift from the third configuration to the fourth
in Fig. 2 we employ the KMP skip value function β. It is
defined as follows. Observe first that, in the third configu-
ration of Fig. 2, matching trials from the head succeed for
three positions and then fail (w(11, 13) = pat(1, 3), w(14) 	=
pat(4)). From this information alone we can see that, for a
potential string match, the pattern string must be shifted
at least by β(3) = 3. See Fig. 3 where shifting the pat-
tern string pat by one or two positions necessarily leads
to a mismatch with pat(1, 3). It is important here that we
know pat(1, 3) coincides with w(11, 13) from the previous
successful matching trials. Formally:

β(p) = min{n ∈ [1, pat ] | pat(1, p − n) = pat(1 + n, p)} for p ∈ [0, |pat |]. (2)

In the FJS algorithm we combine the two skip value function Δ and β. Specif-
ically: let us be in a configuration where pat(1) is in the position of w(1 + n). We
1 The FJS-type algorithm we present here is a simplified version of the original FJS

algorithm. Our simplification is equipped with all the features that we will exploit
later for pattern matching and timed pattern matching; the original algorithm fur-
ther omits some other trivially unnecessary matching trials. We note that, because of
the difference (that is conceptually inessential), our simplified algorithm (for string
matching) no longer enjoys linear worst-case complexity.
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Algorithm 1. The FJS string matching algorithm (simplified)
Require: A target string w and a pattern string pat .
Ensure: Z is the set of matching intervals.
1: n ← 1; � n is the position in w of the head of pat
2: while n ≤ |w| − |pat | + 1 do
3: while w(n + |pat | − 1) �= pat(|pat |) do � Try matching the tail of pat
4: n ← n + Δ(w(n + |pat |)) � Quick Search-type skipping
5: if n > |w| − m + 1 then return
6: if pat = w(n, n + |pat | − 1) then � We try matching from left to right
7: p ← |pat | + 1; Z ← Z ∪ {[n, n + |pat | − 1]}
8: else
9: p ← min{p′ | pat(p′) �= w(n + p′ − 1)} � Matching trials fail at position p for the first time

10: n ← n + β(p) � KMP-type skipping

first try matching the pattern’s tail pat(|pat |) with its counterpart w(|pat | + n);
if it fails we invoke the Quick Search skipping Δ; otherwise we turn to the pat-
tern’s head pat(1) try matching from left to right. After its success or failure we
invoke the KMP skipping β. Note that preference is given to the Quick Search
skipping. See Algorithm 1.

It is important that the skip value functions Δ : Σ → [1, |pat | + 1] and
β : [0, |pat |] → [1, |pat |] rely only on the pattern string pat . Therefore it is pos-
sible to pre-compute the function values in advance (i.e. before a target string
w arrives); moreover since |pat | is usually not large those values can be stored
effectively in look-up tables. Skipping by these skip values does not improve the
worst-case complexity, but practically it brings pleasing constant speed up, as
demonstrated in Fig. 2.

Finally we note the following alternative presentation of Δ and β.

Δ(a) = min{n ∈ Z>0 | Σnpat ∩ Σ|pat|aΣ∗ �= ∅} for each a ∈ Σ,

β(p) = min{n ∈ Z>0 | Σnpat(1, p) ∩ pat(1, p)Σ∗ �= ∅} for each p ∈ [0, |pat |]. (3)

3 An FJS-Type Algorithm for Pattern Matching

In this section we present our first main contribution, namely an adaptation of
the FJS algorithm (Sect. 2.2) from string matching to pattern matching.

Definition 3.1 (pattern matching). Let A be a nondeterministic finite
automaton over an alphabet Σ (a pattern NFA), and w ∈ Σ∗ be a tar-
get string. The pattern matching problem requires all the intervals (i, j) for
which the substring w(i, j) is accepted by A. That is, it requires the set{

(i, j)
∣
∣ 1 ≤ i ≤ j ≤ |w| and w(i, j) ∈ L(A)

}
.

For an example see Fig. 4, where the automaton A satisfies L(A) =
L({ab, cd}cc∗d).

A brute-force algorithm solves pattern matching in O(|S||w|2), where S is the
state space of the pattern A (the factor |S| is there due to nondeterminism). Some
optimizations are known, among which is the adaptation of the Boyer–Moore
algorithm by Watson & Watson [35]. In their algorithm they adapt the BM-type
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s0start

s1

s2

s3 s4 s5

a

c

b

d

c

c

d

1 2 3 4 5 6 7 8 9 10 11 12

w = a b d a b c c b a b c d
L(A) � a b c d

Fig. 4. Pattern matching. For the pattern NFA A on the left, for which it is easy to
see that L(A) = L({ab, cd}cc∗d), the output is {(9, 12)} as shown on the right.

L(A) =

abcd, cdcd,
abccd , cdccd ,
abcccd , cdcccd ,

...

L′′ = L′·Σ∗ =

{
abcd, cdcd,
abcc, cdcc

}
Σ∗

Fig. 5. Overapproximation of the language L(A)

skip values to pattern matching: the core idea in doing so is to overapproximate
languages and substrings, so that the skip value function can be organized as a
finite table and hence can be computed in advance. Our adaptation of the FJS
algorithm employs similar overapproximation.

In the original FJS algorithm (for string matching) one uses skip value
functions

Δ : Σ → [1, |pat | + 1] and β : [0, |pat |] → [1, |pat |]. (4)

One may wonder what we can use in place of |pat |, now that the pattern A can
accept infinitely many words that are unboundedly long.

It turns out that our adaptations have the types

Δ : Σ → [1,m + 1] and β : S → [1,m], (5)

where m is the length of the shortest words accepted by A and S is the state
space of A. Intuitively, the original Δ does a comparison of the pattern pat with
a character a ∈ Σ and the original β does a comparison of pat with the substring
w(i, j) of the target string we actually read in the last matching trial. Thus the
adaptation can be done by a finite presentation of the overapproximation of
L(A) and w(i, j).

More specifically, for the approximation of L(A): (1) we focus on the length
m of the shortest accepted strings (four in the example of Fig. 4); (2) we collect
all the prefixes of length m that appear in L(A) (abcd, cdcd, abcc, cdcc in the
same example); and (3) we let an overapproximation L′′ consist of any word
that starts with those prefixes. See Fig. 5 for illustration; precise definitions are
as follows.

m = min{|w| | w ∈ L(A)} L′ =
{
w′ ∈ Σm

∣
∣∃w′′ ∈ Σ∗. w′w′′ ∈ L(A)

}
L′′ = L′ · Σ∗

Here L′ ⊆ Σm is necessarily a finite set; thus L′′ = L′ · Σ∗ is an overapproxima-
tion of L(A) with a finite representation L′.
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1 2 3 4 5 6 7 8 9 10 11 12

a b d a b c c b a b c d
pat

a b c d
a b c c
c d c d
c d c c

Δ(b)=3
=⇒

1 2 3 4 5 6 7 8 9 10 11 12

a b d a b c c b a b c d
pat

a b c d
a b c c
c d c d
c d c c

=⇒
1 2 3 4 5 6 7 8 9 10 11 12

a b d a b c c b a b c d
{s1} {s3} {s4} {s4} ∅

β(s4)=2
=⇒

1 2 3 4 5 6 7 8 9 10 11 12

a b d a b c c b a b c d
pat

a b c d
a b c c
c d c d
c d c c

Δ(b)=3
=⇒

1 2 3 4 5 6 7 8 9 10 11 12

a b d a b c c b a b c d
pat

a b c d
a b c c
c d c d
c d c c

=⇒
1 2 3 4 5 6 7 8 9 10 11 12

a b d a b c c b a b c d
{s1} {s2} {s4} {s5}

Fig. 6. Our FJS-type algorithm for pattern matching, for the example in Fig. 4

Algorithm 2. The FJS algorithm for pattern matching, for a target w and a
pattern A
Ensure: Z is the set of matching intervals.
1: n ← 1; � n is the position in w of the head of pat
2: while n ≤ |w| − m + 1 do
3: while ∀w′ ∈ L′. w(n + m − 1) �= w′(m) do � Try matching the tail of L′

4: n ← n + Δ(w(n + m)) � Quick Search-type skipping
5: if n > |w| − m + 1 then return
6: Z ← Z ∪ {(n, n′) | w(n, n′) ∈ L(A)} � We try matching by feeding w(n, |w|) to A
7: n′ ← max{n′ ∈ [1, |w|] | ∃s0 ∈ S0, s ∈ S. s0

w(n,n′)−−−−−→ s} � n′ is the position of the last successful match

8: S′ ← {s ∈ S | ∃s0 ∈ S0. s0
w(n,n′)−−−−−→ s} � Matching trials stack at the states S′

9: n ← n + maxs∈S′ β(s) � KMP-type skipping

For the overapproximation of the substring w(i, j) that we actually read at

the last matching trial, we exploit the set S(w(i, j)) = {s ∈ S | s0
w(i,j)−−−−→ s in A}

of states of A. We have w(i, j) ∈ {w′ | ∀s ∈ S(w(i, j)),∃s0 ∈ S0. s0
w′
−→ s in A},

when S(w(i, j)) 	= ∅. Using the overapproximation same as the one for L′, we
obtain an overapproximation of such w(i, j) represented by at most 2|S| sets.

Let us demonstrate our two skip value functions Δ and β using the exam-
ple in Fig. 4; the execution trace of our algorithm is in Fig. 6. In the first
configuration we try to match the tail of all the possible length-4 prefixes of
L(A) with w(4) = a, which fails. Then we invoke the Quick Search-type skip-
ping Δ(w(5)) = Δ(b); since b occurs no later than in the second position in
L′ = {abcd, abcc, cdcd, cdcc}, we can skip by three positions and reach the sec-
ond configuration.

We again try matching from the tail; this time we succeed since w(7) = c
appears as a tail in L′. We subsequently move to the phase where we match from
left to right, much like in the original FJS algorithm (Sect. 2.2). Concretely this
means we feed the automaton A (see Fig. 6) the remaining segment w(4)w(5) . . .
from left to right; we obtain {s1}{s3}{s4}{s4}∅ as the sequence of reachable sets.
Since no accepting states occur therein and we have reached the emptyset, we
conclude that the matching trial starting at the position w(4) is unsuccessful.
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a b c
c d c

}
= L′

s4
* a b c d
* a b c c
* c d c d
* c d c c

⎫⎪⎪⎬
⎪⎪⎭

= L′

* * a b c d
* * a b c c
* * c d c d
* * c d c c

⎫⎪⎪⎬
⎪⎪⎭

= L′

Fig. 7. β(s4)

Now we invoke the KMP-type skipping β. In the orig-
inal FJS algorithm we used the data of successful partial
matching (w(4, 7) = abcc in the current case) for comput-
ing β; this is not possible, however, since it is infeasible to
prepare skip values for all possible w(i, j). Instead we use
the data S(w(4, 7)) = {s4} and the set L′

s4
= {abc, cdc} as

an overapproximation of the partial match w(4, 7) = abcc.
The intuition of the set L′

s4
is that: for a word w′ to drive A

from an initial state to s4, w′ must have either abc or cdc as
its prefix. In Fig. 7 is how we compute the skip value β(s4),
using the approximant L′

s4
of the partial match and the approximant L′ of the

pattern. Note also that it follows the same pattern as Fig. 3.
We are now in the fourth configuration in Fig. 6. The matching trial at the

position 9 fails and we invoke the Quick Search-type skipping, much like before.
In the fifth configuration, the matching trial at the position 12 succeeds, which
makes us try matching from the left, feeding A with w(9, 12). We reach s5 and
thus succeed.

Overall our FJS-type algorithm for pattern matching is as in Algorithm2.
The skip value functions therein are defined as follows. They are similar to the
ones in (3). Since L′ and L′

s are all finite, computing Δ and β is straightforward.

Definition 3.2 (Skip values in our FJS-type pattern matching algo-
rithm). Let A = (Σ,S, S0, E, F ) be a pattern NFA, a ∈ Σ be a character, s be
a state of A, and As = (Σ,S, S0, E, {s}) be the automaton where s is the only
accepting state. Let ms = min{|w| | w ∈ L(As)} (the length of a shortest word
that leads to s) and m = mins∈F ms (the length of a shortest accepted word).
The skip value functions Δ : Σ → [1,m + 1] and β : S → [1,m] are defined as
follows.

L′ = {w(1, m) | w ∈ L(A)} L′
s = {w(1, min{ms, m}) | w ∈ L(As)}

Δ(a) = min{n ∈ Z>0 | ΣnL′ ∩ ΣmaΣ∗ �= ∅}
β(s) = min{n ∈ Z>0 | ΣnL′ ∩ L′

sΣ
∗ �= ∅}

4 An FJS-Type Algorithm for Timed Pattern Matching

Here we present our second main contribution: an FJS-type algorithm for
timed pattern matching. It is superior to our previous Boyer–Moore-type algo-
rithm [32], in its performance both in offline and online scenarios. We fix a
target timed word w = (a, τ) and a pattern timed automaton A = (Σ �
{$}, S, S0, C,E, F ). We further assume the following that means A is a suitable
pattern for timed pattern matching.

Assumption 4.1. A satisfies the following: any transition to an accepting state
is labelled with the terminal character $; no other transition is labelled with $;
and there is no transition from an accepting state.
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The basic idea of our FJS-type algorithm here is the same as in Sect. 3: we use
two skip value functions Δ and β; and and for their finitary representation we let
states of automata overapproximate various infinitary data, as we explain later.
In the current timed setting, however, we cannot use a pattern timed automaton
A itself to play the same role—in a run of A a state is always accompanied with a
clock valuation that takes continuous values. We overcome this difficulty relying
on the zone abstraction of timed automata, a construction that turns a timed
automaton into an NFA maintaining reachability (see e.g. [14]).2

Definition 4.2 (zone). Let A be a timed automaton over the set C of clock
variables, and M be the maximum constant occurring in the guards of A. A zone
is a |C|-dimensional polyhedron specified with a conjunction of the constraints
of the form ν(xj) − ν(xi) ≺ c, ν(xi) ≺ c or −ν(xi) ≺ c, where ≺ ∈ {<,≤} and
c ∈ [−M,M ].

A zone automaton Z for a timed automaton A is an NFA whose states are
pairs (s, α) of a state s of A and a zone α; it is meant to be a finite abstrac-
tion of the timed automaton A via which we study properties of A. There are
many different known constructions of zone automata (see e.g. [4,14]): they come
with different efficiency (i.e. the size of the resulting NFA), and with different
preservation properties (bisimilarity to A, similarity, etc.). For our current pur-
pose it does not matter which precise construction we use; we chose a common
construction SGa from [14], mainly for its ease of implementation.

A path of a zone automaton Z is much like a run, but it is allowed to start at
a possibly non-initial state. A path r = (s, ν) of a timed automaton A is called
an instance of a path r = (s, α) of a zone automaton Z for A if, for any n ∈
[0, |s|−1], we have νn ∈ αn. Conversely, such r is called an abstraction of r. In this
paper we rely on the following preservation property of the specific construction
Z = SGa(A) of zone automata: every run in SGa(A) is an abstraction of some
run of A; conversely every run of A is an instance of some run in SGa(A).
See [14] for details.

Our algorithm is in Algorithm 3. The constructs therein are defined as follows.

Definition 4.3 (FJS-type skip values for timed pattern matching).
Let r be a path of the zone automaton SGa(A). The set W(r) of timed words
represented by r is:

W(r) = {w ∈ (Σ × R>0)
∗ | there is a path r of A over w that is an instance of r}.

For a set K of paths of SGa(A), the definition naturally extends by W(K) =⋃
r∈K W(r). Let As = (Σ,S, S0, E,C, {s}) be the modification of A in which s is

the only accepting state. Let ms = min{|w| | w ∈ L(As)} and m = mins∈F ms.
Following the discussion in Sect. 3, we define the overapproximations L′′ of L(A)

2 In our previous work [32] we used regions [1] in place of zones. Though equivalent
in terms of finiteness, zones give more efficient abstraction than regions.
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Algorithm 3. Our FJS-type algorithm for timed pattern matching, for a target w
and a pattern A
Ensure: Z is the match set M(w, A) in Def. 2.3.
1: n ← 1; � n is the position in w of the beginning of the current matching trial
2: ν0 ← (the clock valuation that returns 0 for any clock variable)
3: while n ≤ |w| − m + 2 do

4: while ∀ r ∈ L′. an+m−2 �= a′ (where a′ is such that rm−2
a′−→ rm−1) do � Try matching the tail of L′

5: n ← n + Δ(an+m−1) � Quick Search-type skipping
6: if n > |w| − m + 2 then return
7: Z ← Z ∪ {(t, t′) ∈ [τn−1, τt) × (τn−1, ∞) | w|(t,t′) ∈ L(A)} � Try matching from left to right

8: n′ ← max{n′ ∈ [1, |w|] | ∃s0 ∈ S0, s ∈ S, ν ∈ (R≥0)
C . (s0, ν0)

w(n,n′)−−−−−→ (s, ν)}
9: S′ ← {s ∈ S | ∃s0 ∈ S0, ν ∈ (R≥0)

C . (s0, ν0)
w(n,n′)−−−−−→ (s, ν)} � Matching trials stack at the states S′

10: n ← n + maxs∈S′ β(s) � KMP-type skipping

and L′
s. as follows. Note that L′ and L′

s are in fact sets of runs of SGa(A); L′′

is a set of timed words.

L′ = {r(0, m − 1) | r is a run of SGa(A), and W(r) ∩ L(A) �= ∅}
L′′ = W(L′) · (Σ × R>0)

∗

L′
s = {r(0, min{ms, m − 1}) | r is a run of SGa(A), and W(r) ∩ L(As) �= ∅}

These are used in the following definition of skip values. Here a ∈ Σ and s ∈ S.

Δ(a) = min{n ∈ Z>0 |
∃t ∈ R>0. (Σ × R>0)

n · W(L′) ∩ (Σ × R>0)
m−1 · (a, t) · (Σ × R>0)

∗ �= ∅}
β(s) = min{n ∈ Z>0 | (Σ × R>0)

n · W(L′) ∩ W(L′
s) · (Σ × R>0)

∗ �= ∅}
(6)

Note the similarity between the last definition and (3).
Explanation is in order how some operations in Algorithm 3 (and in

Definition 4.3) can be implemented. First note that W(r) is an infinite set.
The set L′ is finite and computable nevertheless: due to the preservation prop-
erty of the zone automaton SGa(A), the condition W(r) ∩ L(A) 	= ∅ simply
means r is accepting. The same goes for L′

s. For Δ, we realize that the second
argument (Σ × R>0)m−1 · (a, t) · (Σ × R>0)∗ of the intersection does not pose
any timing constraint. Therefore the timed nonemptiness problem reduces to an
untimed one that is readily solved. Solving the timed nonemptiness problem for
β in (6) is nontrivial. Here we use emptiness check in SGa(A × A)—the zone
automaton of the product of A with itself, changing its initial state suitably in
order to address shift of words—to check whether the intersection of the two
relevant languages is empty. Finally, the left-to-right matching on Line 7 is done
by accumulating constraints on t in the course of necessary transitions. Further
details are in Appendices A–B of [34].

A correctness proof (i.e. our skipping does not affect the output) is in
Appendix C of [34].

One important idea in our algorithm is that we use timing constraints—in
addition to character constraints like in Figs. 3 and 7—in calculating skip values.
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]
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⎡
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]
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FJS

w
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⎡
⎢⎢⎣n = 1

]
unnec.
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...�

⎡
⎢⎢⎣n = 2

]
unnec.
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�
�
�

...�

⎡
⎢⎢⎣n = |w| − m + 2 ]

unnec.

Fig. 8. How matching trials proceed: our previous BM-type algorithm (on the left) and
our current FJS-type algorithm (on the right).

By this we achieve greater skip values, while keeping the computational overhead
minimal by the use of the zone automaton SGa(A × A).

The way our algorithm (Algorithm 3) operates is very similar to the one
in Sect. 3 for (untimed) pattern matching, as we already described earlier. There
the zone automaton SGa(A) plays important roles in the calculation of skip
values. For the record we include in Appendix B of [34] the illustration of our
algorithm using the example in Fig. 1.

Online Properties. We claim that the current FJS-type algorithm is much better
suited to online usage scenarios than our previous BM-type one [32]. See Fig. 8. In
our FJS-type algorithm we can sometimes increment n before reading the whole
target timed word w (“unnec.” for “unnecessary” in Fig. 8); this is the case when
we observe that no further transition is possible in the pattern automaton A.
(Additionally, thanks to the skip values Δ and β, sometimes we can increment n
by more than one). For real-world examples we can assume that matches tend to
be much shorter than the whole log w; this means the “unnec.” parts are often
big.

In the BM-type algorithm, in contrast, matching trials start almost at the
tail of w,3 and we have to wait until the arrival of the whole target word. This
contrast is witnessed in our experimental results, specifically on those for memory
usage.

5 Experiments

We implemented our FJS-type algorithm for timed pattern matching—its
online and offline variations difference between which will be elaborated later.
3 To be precise we can start without the last m − 1 characters, where m is the length

of a shortest word accepted by A. Usually m is by magnitude smaller than |w|.
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We compared its performance with that of: brute-force algorithms (online and
offline); the BM-type algorithm [32]; and the tool Montre [29] for timed pattern
matching.

brute-force BM FJS Montre

offline from [32] from [32] new from [29]
online from [32] — new from [29]

The BM- and FJS-type algo-
rithms employ zone-based abstrac-
tion; it is implemented using dif-
ference bound matrices, follow-
ing [9]. Zone construction and cal-
culation of skip values are done in
the preprocessing stage, where the most expensive is the emptiness checking
for β(s) (see (6)). We optimized this part, memorizing parts of zone automata
and reusing them in computing β(s) for different s. As a result the preprocess-
ing stage takes a fraction of a second for each of our benchmark problems. See
Appendix E of [34] for details.

For brute-force and FJS, the algorithms are the same in their online and
offline implementations. In the online implementations, a target timed word is
read lazily and a memory cell is deallocated as soon as we realize it is no longer
needed. In the offline implementations, the whole target timed word is read and
stored in memory in the beginning, and the memory cells are not deallocated
until the end. The tool Montre employs different algorithms in its online and
offline usage modes. See [29] for details.

In our current implementations, we hardcode a pattern timed automaton in
the code. Developing a parser for user-defined timed automata should not be
hard.

The benchmark problems we used are in Figs. 9, 10, 11, 12, 13 and 14 (the
pattern automata A and the set W of target words). They are from automotive
scenarios except for the first two.

5.1 Comparison with the Brute Force and BM-Type Algorithms

We implemented the brute-force, BM, FJS algorithms in C++ [33] and we com-
piled them by clang-800.0.42.1. All the experiments are done on MacBook Pro
Early 2013 with 2.6 GHz Intel Core i5 processor and 8 GB 1600MHz DDR3
RAM.

Speed (i.e. Permissible Density in Online Usage). In Figs. 15, 16, 17, 18, 19
and 20 are the comparison of the offline implementations of the brute-force, BM
and FJS algorithms, respectively (average of five runs). Preprocessing time is
excluded (it is anyway negligible, see Appendix E of [34]). We also exclude time
of loading the input timed word in memory; this is because in many deployment
scenarios like embedded ones, I/O is pipelined by, for example, DMA.

The pattern automata for the benchmarks Torque, Setting, and Gear
look similar to each other. However their input timed words—generated by a
suitable Simulink model for each benchmark—exhibit different characteristics,
such as how often the characters in the pattern automaton occur in the input
timed words. Accordingly the performance of the timed pattern matching algo-
rithms varies, as we see in Figs. 17, 18 and 19.
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We observe that our FJS algorithm generally outperforms the BM and brute-
force ones. For Settling and Accel the performance gap is roughly twice, and
it possibly makes a big practical difference e.g. when a data set is huge and the
monitoring task takes hours. For Large Constraints it seems to depend on
specific words which algorithm performs better. The advantage in performance is
as we expected, given that the FJS algorithm combines the KMP-type skipping
(that works well roughly when the BM-type one does) and the Quick Search-
type skipping (that complements KMP). After all, it is encouraging to observe
that our FJS algorithm performs better in the automotive examples, where our
motivation is drawn.

s0start s1 s2 s3
a, true b, true $, true

Fig. 9. Simple from [32]. The set W con-
sists of alternations of a and b whose
length is from 20 to 1,024,000. Timing
is random.

〈p · ¬p〉(0,10]

)∗ ∧ 〈q · ¬q〉(0,10]

)∗ ) · $
〉
(0,80]

Fig. 10. Large Constraints from [32].
The pattern A is a translation of the
above timed regular expression (5 states
and 9 transitions). The set W con-
sists of superpositions of the alterna-
tions p, ¬p, p, ¬p, . . . and q, ¬q, q, ¬q, . . .
whose timing follows a certain exponen-
tial distribution. The length of words in
W is from 1,934 to 31,935. The pattern
A is in Fig. 24 of [34]

s0start s1 s2 s3

s4s5s6s7

low, true
/x := 0

high,
0 < x < 1

high,
0 < x < 1

high,
0 < x < 1high,

0 < x < 1
high,
1 < x

high, true

$, true

Fig. 11. Torque, an automotive exam-
ple from [32]. It monitors for five or
more consecutive occurrences of high
in one second. The target words in W
(length 242,808–4,873,207) are generated
by the model sldemo enginewc.slx in
the Simulink Demo palette [23] with ran-
dom input.

start nml unstl
normal/x := 0 unsettled $, x > 100

Fig. 12. Settling. The set W (length 472–
47,200,000) is generated by the Simulink
powertrain model in [17]. The pattern
(Requirement (32) in [17]) is for an event
in which the system remains unsettled for
100 s after moving to the normal mode.

start g1 g2
g1/x := 0 g2, x < 2 $

Fig. 13. Gear. The set W (length 307–
1,011,427) is generated by the automatic
transmission system model in [16]. The pat-
tern, from φAT

5 in [16], is for an event in
which gear shift occurs too quickly (from
the 1st to 2nd).

?start

g1

?

g2

g1

g3

g2

g4

g3 g4

g1, true

g2, true g3, true
g4, x ≤ 10
/x := 0

rpmHigh, true rpmHigh, true rpmHigh, true rpmHigh, true

g1, true g2, true g3, true

g4, x ≤ 10
/x := 0

rpmHigh, true

$, x > 1

Fig. 14. Accel. The set W (length 25,002–
17,280,002) is generated by the same auto-
matic transmission system model as in
Gear. The pattern is from φAT

8 in [16]:
although the gear shifts from 1st to 4th
and RPM is high enough somewhere in
its course, the vehicle velocity is not
high enough (i.e. the character veloHigh is
absent).
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Fig. 20. Accel: exec. time

In every benchmark except for Large Constraint, the execution time
grows roughly linearly on the length of the input word. This is a pleasant prop-
erty for monitoring algorithms for which an input word can be very long.

These results for offline implementations also support our claim of FJS’s
superiority in online usage scenarios. In online usage we must process an input
word faster than the speed with which the word arrives; otherwise the word
eventually floods memory. Thus running twice as fast means that our algorithm
can handle twice as dense input—or that we can use cheaper hardware to conduct
the same monitoring task. Note that the difference between our online and offline
implementations is only in the memory management and I/O. Thus their speed
should be similar.
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Table 2. Simple (sec.)

|w| FJS
(online)

Montre
(offline)

Montre
(online)

32,000 0.01 0.05 3.00
64,000 0.02 0.10 6.06
100,000 0.03 0.16 9.41
128,000 0.04 0.20 12.54
200,000 0.07 0.31 18.89
256,000 0.09 0.40 23.76
300,000 0.10 0.48 28.19
400,000 0.14 0.63 38.24
500,000 0.18 0.78 46.33
512,000 0.18 0.81 48.77
600,000 0.21 0.96 56.76
700,000 0.25 1.13 66.53
800,000 0.28 1.28 74.91
900,000 0.32 1.43 84.58

1,000,000 0.36 1.60 93.52
1,024,000 0.37 1.62 95.62

Table 3. Settling (sec.)

|w| FJS
(online)

Montre
(offline)

Montre
(online)

300 0.00 0.01 0.01
30,000 0.01 0.01 0.01
300,000 0.11 0.01 0.01

3,000,000 1.11 3.85 299.85
6,000,000 2.23 7.74 600.66
9,000,000 3.34 11.66 893.88
12,000,000 4.46 15.65 1,188.02
15,000,000 5.58 19.75 1,475.89
18,000,000 6.72 24.48 1,788.18
21,000,000 9.27 27.80 Timeout
24,000,000 8.96 31.78 Timeout
27,000,000 10.09 37.10 Timeout
30,000,000 11.21 41.10 Timeout

Table 4. Gear (sec.)

|w| FJS
(online)

Montre
(offline)

Montre
(online)

1,000 0.00 0.01 0.04
86,400 0.04 0.15 11.63
172,800 0.08 0.29 23.48
259,200 0.13 0.42 37.51
345,600 0.17 0.54 47.20
432,000 0.21 0.67 57.99
518,400 0.25 0.85 69.76
604,800 0.30 0.96 87.59
691,200 0.34 1.09 90.36

Table 5. Accel (sec.)

|w| FJS
(online)

Montre
(offline)

Montre
(online)

1,000 0.00 0.01 69.05
86,400 0.06 0.63 Timeout
172,800 0.13 1.25 Timeout
259,200 0.20 1.88 Timeout
345,600 0.26 2.50 Timeout
432,000 0.33 3.12 Timeout
518,400 0.40 3.75 Timeout
604,800 0.46 4.38 Timeout
691,200 0.53 4.99 Timeout

Table 6. Memory consumption of
FJS (online) and BM

|w| BM (MB) FJS (MB)

300 1.16 1.16
30,000 2.61 1.16
300,000 15.55 1.16

3,000,000 145.21 1.16
6,000,000 289.25 1.16
9,000,000 433.31 1.16
12,000,000 577.32 1.19
15,000,000 721.37 1.18
18,000,000 865.42 1.19
21,000,000 1,009.46 1.16
24,000,000 1,153.50 1.16
27,000,000 1,297.57 1.16
30,000,000 1,441.61 1.16

Memory Usage. In Table 6 is the memory consumption of our online FJS imple-
mentation and that of BM, for the Settling benchmark (the tendency is the
same for the other benchmarks). The absolute values are not very important
because they include our program and dynamically linked libraries; what mat-
ters is the tendency that memory consumption is almost constant for online FJS
while it increases for BM. Constant memory consumption is an important prop-
erty for monitoring algorithms, especially in online usage. The results here also
concurs with our theoretical observation at the end of Sect. 4 (see Fig. 8).

5.2 Comparison with Montre

Here we compare with Montre, a recent tool for (both online and offline) timed
pattern matching [29]. Montre’s online and offline algorithms differ from each
other; both of them are quite different from our FJS algorithm, too. Montre’s
emphasis is on the algebraic structure of timed regular expressions and composi-
tional reasoning thereby, while our algorithm features automata-theoretic views
on the problem.
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Since we had difficulty running Montre in the same environment as
in Sect. 5.1, we instead used GCC 4.9.3 as a compiler, and conducted exper-
iments on an Amazon EC2 c4.xlarge instance (April 2017, 4 vCPUs and 7.5
GB RAM) that runs Ubuntu 14.04 LTS (64 bit). The timeout is set to thirty
minutes.

In Tables 2, 3, 4 and 5 are the results. Here we use the benchmarks Simple,
Settling, Gear, and Accel, for which the translation between timed words
(our input) and signals (Montre’s input) makes sense. Our (online) FJS imple-
mentation is about 3 to 8 times faster than offline Montre and about 250 times
faster than online Montre. The big performance advantage over online Montre
can be attributed to various reasons, including: (1) online Montre needs to fre-
quently compute derivatives of TREs; (2) online Montre is comparable to our
brute-force algorithm in that there is no skipping involved; and (3) Montre is
implemented in a functional language (Pure [25]) that is in general slower. The
reason for the advantage over offline Montre is yet to be seen: given that the
algorithms are very different, the advantage may well be solely attributed to
implementation details. We claim however that good online performance of our
FJS algorithm is a big advantage for monitoring applications.

6 Conclusions and Future Work

We continued [32] and presented an algorithm for timed pattern matching. Based
on the FJS algorithm [13] it exhibits better online properties, as witnessed in our
experiments. As future work we wish to implement an interface of our experimen-
tal implementation and distribute as a tool. We also wish to try the algorithm
in actual embedded hardware, like [18].
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büchi automata. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol.
6174, pp. 148–161. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 15

15. Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192.
Springer, Cham (2014). doi:10.1007/978-3-319-11164-3 15

16. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic requirements
for automotive systems. In: Frehse, G., Althoff, M. (eds.) 1st and 2nd Interna-
tional Workshop on Applied veRification for Continuous and Hybrid Systems,
ARCH@CPSWeek 2014, Berlin, Germany, April 14, 2014 / ARCH@CPSWeek
2015, EPiC Series in Computing,Seattle, WA, USA, April 13, 2015, vol. 34, pp.
25–30. EasyChair (2014)

17. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.R.: Powertrain con-
trol verification benchmark. In: Fränzle M., Lygeros, J. (eds.) HSCC 2014, Berlin,
Germany, April 15–17, 2014, pp. 253–262. ACM (2014)

18. Kane A.: Runtime monitoring for safety-critical embedded systems. Ph.D. thesis,
Carnegie Mellon University, USA (2015)

19. Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study on runtime mon-
itoring of an autonomous research vehicle (ARV) system. In: Bartocci, E., Majum-
dar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 102–117. Springer, Cham (2015).
doi:10.1007/978-3-319-23820-3 7

20. Kini, D.R., Krishna, S.N., Pandya, P.K.: On construction of safety signal automata
for MITL[ U , S] using temporal projections. In: Fahrenberg, U., Tripakis, S. (eds.)
FORMATS 2011. LNCS, vol. 6919, pp. 225–239. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-24310-3 16

21. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

http://dx.doi.org/10.1007/3-540-52148-8_17
http://dx.doi.org/10.1007/978-3-319-21668-3_19
http://dx.doi.org/10.1007/978-3-642-14295-6_15
http://dx.doi.org/10.1007/978-3-319-11164-3_15
http://dx.doi.org/10.1007/978-3-319-23820-3_7
http://dx.doi.org/10.1007/978-3-642-24310-3_16


Efficient Online Timed Pattern Matching by Automata-Based Skipping 243

22. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer,
Heidelberg (2006). doi:10.1007/11867340 20

23. The MathWorks Inc, Natick, MA, USA. Simulink User’s Guide (2015)
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Abstract. In a recent work we proposed an algorithm for reachabil-
ity analysis in distributed systems modeled as networks of automata.
The main interest of this algorithm is that it performs its analysis in
a lazy way: decision is done by only taking into account the automata
potentially involved in a path to the reachability goal. This new work
extends the approach to networks of timed automata, lazily consider-
ing the automata but also lazily adding the clocks to the analysis, which
implies not only to consider clocks tested along the paths to the goal, but
also to deal with the special issues due to urgency and shared clocks. We
have implemented our approach as a tool and provide some interesting
experimental results, in a comparison with the model-checker Uppaal.

1 Introduction

The verification of concurrent timed systems is a crucial and challenging issue.
It is subject to both an explosion of the number of discrete states due to the
number of concurrent components, and an explosion of the clock space due to
the number of clocks.

To model such systems we focus here on networks of timed automata and the
verification of reachability properties. Since the seminal article of Alur and Dill
establishing the PSPACE completeness of this problem [1], many techniques have
been developed to improve the practical efficiency of reachability verification.

Efficient symbolic representations of the clock space have been proposed,
implemented using a data structure called Difference Bound Matrix [5,7], as
well as efficient algorithms to handle them [16]. Different kind of abstractions
have then been devised to further improve them [2,12].

Better exploration orders [13] have also been proposed and quite a few
authors have defined partial-order reductions for timed automata (see e.g.
[6,10,18] and the references therein). Some decision-diagram-based represen-
tations of the state-space have also been proposed [15,20]. Several tools are
available that implement part of these techniques, this is in particular the case
of Uppaal [17].

In this article, we exploit a technique orthogonal to most of those mentioned
above and build on a recently proposed lazy reachability analysis algorithm in
c© Springer International Publishing AG 2017
A. Abate and G. Geeraerts (Eds.): FORMATS 2017, LNCS 10419, pp. 247–263, 2017.
DOI: 10.1007/978-3-319-65765-3 14



248 L. Jezequel and D. Lime

compound systems modeled as networks of labelled transition systems [14], that
we extend to the timed setting. The resulting algorithm can be implemented
using the successful DBM data structure. It starts separately from each of the
components explicitly mentioned in the reachability property and adds other
components, as well as clocks, on demand, based on the analysis of the successive
overapproximations obtained by ignoring some components or clocks. Since we
start by verifying separately that each component in the property can indeed
reach its goal, the algorithm also performs synchronisations to make sure that
in reaching its goal, one component does not prevent another one to do so.

The timed setting brings a few difficulties of its own, namely: choosing the
clocks to add, handling urgency, and accounting for shared clocks. It can be
proven that our algorithm is sound, complete and that it terminates. We pro-
vide a rather naive prototype implementation that nonetheless produce some
interesting experimental results.

This paper is organized as follows. In Sect. 2 we recall basic definitions about
timed automata, give some definitions and notations about compound systems
built from timed automata, and we define the reachability problem we consider.
In Sect. 3 we briefly recall the lazy reachability algorithm of [14] and we describe
the modifications needed to make it cope with timed systems. In Sect. 4 we discuss
an implementation of this algorithm as a publicly available tool: LaRA-T and
we present an experimental evaluation, comparing its performances to those of
Uppaal on a few classic examples.

2 Definitions

In this section we first recall standard definitions for timed automata and set
the notations we use in the paper. Then, we define the reachability problem on
compound systems built from timed automata that we aim at solving.

2.1 Timed Automata

Definition 1 (Clocks, clock constraints). Let X be a set of real-valued vari-
ables called clocks. A clock constraint over X is a constraint of the form x ∼ k
with x ∈ X, k ∈ N, and ∼∈ {<,≤,=,≥, >}. The set of all possible such clock
constraints over X is denoted by B(X). The subset of B(X) where ∼∈ {<,≤} is
denoted by B′(X).

For simplicity, we do not consider clock differences in the above defined con-
straints. The high level algorithm presented in this paper is however independant
of the exact reachability analysis technique used, so our approach is not restricted
to these simple constraints.

Definition 2 (Clock valuations). For a set of clocks X we call clock valu-
ation a function v : X → R≥0 associating a non-negative real number to each
clock in X. We denote by V (X) the set of all such valuations. Given a subset
R of X and a clock valuation v, we denote by v[R] the clock valuation such that
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∀x ∈ R, v[R](x) = 0 and ∀x /∈ R, v[R](x) = v(x). Given d ∈ R≥0, we denote by
(v + d) the clock valuation such that ∀x ∈ X, (v + d)(x) = v(x) + d.

Definition 3 (Constraint satisfaction). A clock valuation v satisfies a con-
straint b = x ∼ k, written v |= b, if and only if v(x) ∼ k. A clock valuation v
satisfies a set of constraints g, written v |= g, if and only if it satisfies each of
its elements.

In this article, we consider timed automata with invariants [11]. Finite
automata are extended with clocks that can be tested in guards to allow some
transition to be taken, and can also be reset to 0 when some transition is taken.
Invariants further specify constraints on clocks that must be satisfied to stay or
enter in a given location. They add a notion of urgency to the timed automata
of [1].

Definition 4 (Timed automata: syntax). A Timed automaton (TA) is a
tuple A = (L, �0, Σ,X,E, Inv) where L is a set of locations, �0 ∈ L is an initial
location, Σ is a set of action labels, X is a set of clocks, E ⊆ L × 2B(X) × Σ ×
2X ×L is a set of transitions, and Inv : L → 2B′(X) associates invariants to the
locations.

In the rest of the paper A will denote the tuple (L, �0, Σ,X,E, Inv). Simi-
larly, A′ will denote the tuple (L′, �0′

, Σ′,X ′, E′, Inv′). And, for any i, Ai will
denote the tuple (Li, �

0
i , Σi,Xi, Ei, Invi). For a transition e = (�, g, σ,R, �′) ∈ E,

we note �(e) = �, g(e) = g, σ(e) = σ, R(e) = R, and �′(e) = �′. Moreover,
Σ(A) = {σ ∈ Σ : ∃e ∈ E, σ(e) = σ} denotes the set of actions actually used by
A. Similarly, X(A) = {x ∈ X : ∃e ∈ E, g(e) ∩ B({x}) �= ∅ ∨ x ∈ R(e)} ∪ {x ∈
X : ∃� ∈ L, Inv(�) ∩ B({x}) �= ∅} denotes the set of clocks actually appearing
in A. And finally, Res(A) = {x ∈ X : ∃(�, g, σ,R, �′) ∈ E, x ∈ R} denotes the
set of clocks reset by A.

A state of a timed automaton consists of a location, and a value for each of
its clocks. The state of a timed automaton evolves either by letting time pass,
or by taking a transition. This is formalised in the following definition:

Definition 5 (Timed automata: semantics, timed-paths, timed-runs,
reachable locations, duration). A state of a timed automaton A is a pair
(�, v) ∈ L × V (X) so that v |= Inv(�). A transition relation →A is defined over
the states of A as follows: (�, v) →A (�′, v′) if and only if:

– � = �′ and ∃d ∈ R≥0 so that v′ = (v + d) (time elapsing of duration d), or
– ∃e ∈ E, such that �(e) = �, �′(e) = �′, v |= g(e), and v′ = v[R(e)] (discrete

transition firing – of duration 0).

A finite timed-path (or simply, path) of A is a sequence (�0, v0) . . . (�n, vn) of
states such that ∀i ∈ {0..n − 1}, (�i, vi) →A (�i+1, vi+1). If, moreover, �0 = �0

(i.e. �0 is the initial location of A), we call (�0, v0) . . . (�n, vn) a finite timed-run
(or simply, run) of A. When there exists such a run, we say that �n is reachable
in A. The duration of a timed-path is the sum of the durations of its transitions.
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In the rest of the paper we denote by Urg(A) the set of initially urgent
locations of A. These locations are the ones appearing on a timed-run so that
any location in it has a non-empty invariant. Formally, Urg(A) is the smallest
set such that (a) if Inv(�0) �= ∅ then �0 ∈ Urg(A), and (b) if e ∈ E with
�(e) ∈ Urg(A) and Inv(�′(e)) �= ∅ then �′(e) ∈ Urg(A).

And we denote by Req(A) the set of actions that could be requested by A
due to urgency: the actions appearing in transitions originating from locations
in Urg(A). Formally, Req(A) = {σ ∈ Σ : ∃e ∈ E, σ(e) = σ ∧ �(e) ∈ Urg(A)}.

2.2 Reachability Problem in Compound Systems

We are interested in systems made of several interacting components. To for-
malise this notion, we define compound systems.

Definition 6 (Compound system). Let A1, . . . ,An be TAs. The compound
system A1|| . . . ||An is the TA A such that:

– L = L1 × · · · × Ln, �0 = (�01, . . . , �
0
n), Σ = Σ1 ∪ · · · ∪ Σn, X = X1 ∪ · · · ∪ Xn,

– ((�1, . . . , �n), g1 ∪ · · · ∪ gn, σ,R1 ∪ · · · ∪ Rn, (�′
1, . . . , �

′
n)) ∈ E if and only if

∀i ∈ [1..n]:
• σ ∈ Σi implies (�i, gi, σ,Ri, �

′
i) ∈ Ei, and

• σ /∈ Σi implies �i = �′
i, gi = ∅, and Ri = ∅,

– ∀� = (�1, . . . , �n) ∈ L, Inv(�) = Inv1(�1) ∪ · · · ∪ Invn(�n).

Definition 7 (Time-non blocking timed automaton). A timed automaton
A is time-non blocking if, in any state and for any duration d, there exists a
finite timed-path from that state with duration d.

In all this article, we assume that compound systems are time-non blocking
TA. Else, an invariant of any TA could block the whole system. This would force
to always consider all the TA of a system to perform reachability analysis.

The next definitions allow us to specify reachability objectives related to only
a part of the global system.

Definition 8 (Global locations, partial locations, concretisation). In a
compound system A1|| . . . ||An we call any element from L1 × · · · × Ln a global
location. We call partial location any element from (L1 ∪ {�}) × · · · × (Ln ∪
{�})\{(�, . . . , �)}, where � is a special symbol not in any Li. We say that a
global location (�′

1, . . . , �
′
n) concretises the partial location (�1, . . . , �n) if and only

if ∀i ∈ [1..n], �i �= � implies �′
i = �i.

Definition 9 (Reachability problem). In a compound system A we say that
a partial location � is reachable (in A) if and only if there exists a global location
that (1) is reachable in A and (2) concretises �. Given a set R of partial locations,
we call reachability problem the problem of deciding if there exists a reachable
element in R. We denote this problem by RPR

A .
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In this paper, we propose a lazy backtracking-based algorithm for solving
such reachability problems. We avoid as much as possible to compute the full
compound systems considered, only taking into account the subsets of their
components and clocks that are needed for reachability analysis. In the remaining
of this section we introduce a few more definitions, simplifying the description
of our algorithm.

2.3 Partial Compound Systems

The following definitions allow us to reason about only parts of the global system,
be they obtained by considering only some of the components, some of the clocks,
or even a partial behaviour of some components.

Definition 10 (Isomorphic timed automata). Let A1 and A2 be two TA.
We say that they are isomorphic if and only if Σ1 = Σ2, X1 = X2, and there
exists a bijection f : L1 → L2 so that: f(�01) = �02, (�, g, σ,R, �′) ∈ E1 if and only
if (f(�), g, σ,R, f(�′)) ∈ E2 and ∀� ∈ L1, Inv1(�) = Inv2(f(�)).

Definition 11 (Neutral element). We denote by Aid the TA such that Lid =
{id}, �0id = id, Σid = ∅, Xid = ∅, Eid = ∅, and Invid(id) = ∅. As, for any TA
A, A||Aid is isomorphic to A, Aid can be considered as the neutral element for
the composition of TAs. For any TA A we denote by id(A) the TA whose only
location is the initial location of A and which is isomorphic to Aid.

Definition 12 (Clock projection). For a TA A and a set of clocks X ′, we
denote by PX′(A) the TA A′ so that: L′ = L, �0′ = �0, Σ′ = Σ, X ′ is the set of
clocks, E′ = {(�, g ∩ B(X ′), σ,R ∩ X ′, �′) : (�, g, σ,R, �′) ∈ E}, Inv′ is so that
∀� ∈ L, Inv′(�) = Inv(�) ∩ B(X ′).

Definition 13 (Extensions). A TA A1 extends a TA A′
2, noted A1 � A′

2,
if and only if A′

2 is isomorphic to some TA A2 so that: L2 ⊆ L1, �02 = �01,
Σ2 ⊆ Σ1, X2 = X1, E2 ⊆ E1|L2,Σ2 , Inv2 = Inv1|L2 , with E1|L2,Σ2 = {e ∈
E1 : �(e), �′(e) ∈ L2 ∧ σ(e) ∈ Σ2} and Inv1|L2 the function defined over L2

and so that ∀� ∈ L2, Inv1|L2(�) = Inv1(�). If moreover at least one of the above
inclusions is strict, we say that A1 strictly extends A′

2, which we note A1 � A′
2.

Definition 14 (Initialisation). For a TA A and a set of clocks X ′ we denote
by ini(A,X ′) the TA with the same locations, initial location, and transitions as
id(A) but with X ′ as set of clocks, the same set of actions as A, and the same
invariants as A on its initial location. Notice that PX′(A) � ini(A,X ′).

Definition 15 (Partial compound system). A TA A′ is a partial com-
pound system of A = A1|| . . . ||An if there exist m TAs A′

k1
, . . . ,A′

km
with

{k1, . . . , km} ⊆ [1..n], such that A′ = A′
k1

|| . . . ||A′
km

and PX′
ki

(Aki
) � A′

ki

for all i in [1..m].
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In the rest of this paper, for a compound system A = A1|| . . . ||An, a partial
compound system A′ = A′

k1
|| . . . ||A′

km
of A, the set K = {k1, . . . , km}, and a

set R of partial locations of A, we adopt the following notations.
By A′ → R|K we denote that R is (partially) reachable in A′. That is, the

fact that there exists a location from R|K = {(�′
k1

, . . . , �′
km

) : ∃(�1, . . . , �n) ∈
R,∀i ∈ [1..n],∀j ∈ [1..m], i = kj ⇔ �i = �′

kj
} which is reachable in A′.

By Conf(A′,K) we denote the set of actions in conflict with A′ with respect to
K: the actions from AK = Ak1 || . . . ||Akm

originating from locations in L′ but not
appearing in transitions from E′. Formally Conf(A′,K) = {σ /∈ Σ(A′) : ∃eK ∈
EK , σ(eK) = σ ∧ �(eK) ∈ L′} (assuming not only isomorphism but equality in
Definition 13).

3 From Lazy Reachability to Lazy Reachability
with Time

In this section we give an as generic as possible description of our lazy reachabil-
ity algorithm. This description is strongly based on what we proposed recently
for non-timed systems [14]. We show that it extends naturally to timed-systems.
This however implies non-trivial modifications, in particular to handle invari-
ants and resets of shared clocks. These modifications mostly impact the notion
of completeness, which is the main notion behind the validity of the approach.

3.1 Introductory Example

The main goal of our algorithm is to be as lazy as possible when solving a reach-
ability problem in a compound system. That is, trying to involve the smallest
number of automata and the smallest number of clocks of these automata in the
reachability analysis. In order to get an overview of our approach to do so, lets
consider the example of Fig. 1.

A1

x ≤ 0

α a, {x}

A2

α y ≥ 2, b

y ≥ 2, b z ≤ 1, b

A3

β

A4

c, {z} t ≤ 4, β

Fig. 1. A compound system involving four timed automata.
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This figure shows a compound system made of four TAs: A1, A2, A3, and
A4. Locations are depicted as circles and transitions as arrows with labels indi-
cating guards, actions, and clocks resets (in this order, with empty guards and
empty sets of resets omitted). Initial locations are the ones with input arrows
coming from no other location. Invariants are depicted in rectangles near the
corresponding locations (there is only one invariant, in A1, in this figure). There
are three interactions in this system: A1 interacts with A2 because they share
the α action, A2 interacts with A4 because they share the z clock, and A3 inter-
acts with A4 because they share the β action. The objective here is to reach the
double circled location in A2.

One can start from a partial compound system P∅(A2), and look for a path
to the objective. A possibility is bb. The clock constraints have to be added,
moving to a partial compound system A2. The constraint y ≥ 2 for the first b
can be satisfied by waiting for (at least) 2 time units. After that, the constraint
z ≤ 1 for the second b cannot be fulfilled. However, z is a clock that can be reset
by A4. One thus adds P{z}(A4) to the partial compound system. It appears that
bcb allows to reach the objective, fulfilling all the timing constraints.

However, in A2, the first b is in conflict with α. And α is shared with
A1, where it has to be used with no delay, due to the invariant x ≤ 0. This
immediately discards bcb as a possible path to the reachability objective in the
global compound system. One thus, looks for another path to the objective in
A2||P{z}(A4).

A possibility is αbcb. This immediately implies to add A1 to the partial
compound system because of the shared action α. In the partial compound
system A1||A2||P{z}(A4), αbb is clearly a timed-run. It can be verified that this
run is also a run of the global compound system.

Using this incremental process, one has found a way to satisfy the reachability
objective. This has been done without considering the automaton A3, nor the
clock t. This is why we call our algorithm lazy. The remainder of this section
formalizes the approach we just exemplified.

3.2 General Scheme of the Algorithm

Algorithm 1 presents the general scheme of our algorithm1. This algorithm starts
from a partition of the TAs involved in the reachability objective. The idea is to
verify this objective separately on each involved component, with the hope to
find a solution involving no interaction between these components. The current
state of the search is stored in the list Ls which has initially one element per part
of the initial partition. Each such element is a list of tuples (A,C, I, J,K,L,M) –

1 Notice that the algorithms presented in this paper make use of the classic abstract
list data-structure. The usual operations hd(), tl(), and len() give respectively the
head, tail, and length (number of elements) of a list. The list constructor (prepend)
is denoted by: and the list concatenation is denoted by ++. The rev() operator
reverses a list. The empty list is denoted by [ ]. Finally, L[i] denotes the ith element
of list L.
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described in details in the next subsection – that represent more and more con-
crete partial compound systems: they include more and more automata and take
into account more and more clocks. The more concrete partial compound system
is at the head of the list.

First note that the initial partition of the TAs has to be well-formed (line 1),
by that we mean that it should contain only one element I1 = Lg if any TA has
an invariant on a reachability objective (that is ∃i ∈ Lg, ∃(�1, . . . , �n) ∈ R, so
that �i �= � and Invi(�i) �= ∅).

Algorithm 1. Algorithm solving RPR
A (Lg: indices of TAs involved in R)

1 choose any well-formed partition {I1, . . . , Ip} of Lg

2 for all k in [1..p] {
3 let I ′

k = Ik
4 until stability let I ′

k = I ′
k ∪ {i /∈ I ′

k : ∃j ∈ I ′
k,Res(Ai) ∩ X(Aj) �= ∅}

5 let IDk = ||i∈I′
k
id(Ai)

6 let INI k = ||i∈I′
k
ini(Ai, ∅)

7 }
8 let Ls = [[(ID1, INI 1, I1, ∅, I ′

1, ∅, ∅)], . . . , [(IDp, INI p, Ip, ∅, I ′
p, ∅, ∅)]]

9 let Complete = false
10 let Consistent = false
11 while not Complete or not Consistent {
12 let Complete = IsComplete(Ls)
13 if not Complete {
14 optional unless Consistent {
15 if not Concretise(Ls) { return false }
16 }
17 }
18 let Consistent = IsConsistent(Ls)
19 if not Consistent {
20 optional unless Complete { Merge(Ls) }
21 }
22 }
23 return true

Each element in the initial partition has to be completed with all automata
resetting some clocks of the automata in that element (lines 3, 4). Resetting a
clock may indeed add some behaviours, which could be overlooked otherwise.

After initialising Ls, we proceed to the main loop, which consists of two oper-
ations: concretisation, ensuring completeness, and merging, ensuring consistency.
These notions and functions are described in the following subsections.

3.3 Completeness, Concretisation and the CONCRETISE Function

The main loop of Algorithm1 iterates as long as the current state Ls of the
search is not complete. We say that Ls is complete (noted IsComplete(Ls))
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if and only if, for any indice k, Ls[k] is complete. Intuitively, this means that
the partial compound system represented by hd(Ls[k]) contains a path to reach
the corresponding local goal. Moreover, this path has to (1) use no action of
any automaton not participating in this partial compound system, (2) have no
conflict with actions that could be externally forced by an invariant (this was the
case of action α in the above example), (3) avoid relying on the satisfaction of
a clock constraint involving a clock that is reset by an automaton not from this
partial compound system (this was the case of clock z in the above example),
and (4) take into account all clock constraints on any transition involved. In
other words: a partial compound system is complete if it can reach a local goal
alone.

In any tuple (A,C, I, J,K,L,M), in particular in hd(Ls[k]), C is the TA
representation of the partial compound system considered, and J ∪ K contains
the indices of the TAs (from the global compound system) involved in this partial
compound system. The above notion of completeness can be formalized from only
C, J , and K. The other elements of the tuple are instrumental for building our
algorithm and are described later. In the following definition of completeness,
points (1–4) correspond to intuitions (1–4) above.

Definition 16 (Completeness). The list Ls[k] so that hd(Ls[k]) = (A,C, I, J,
K,L,M) is complete if ∃C∗ so that: C � C∗, C∗ → R|J∪K , and (1) ∀i /∈
J ∪K,Σi∩Σ(C∗) = ∅, (2) ∀i /∈ J ∪K,Conf(C∗J ∪ K)∩Req(Ai) = ∅ (3) ∀i /∈ J ∪
K,Res(Ai)∩X(C∗) = ∅ (4) {x /∈ X(C∗) : ∃A∗, ||i∈J∪KAi � A∗, PX(C∗)(A∗) =
C∗, x ∈ X(A∗)} = ∅.

In order to achieve completeness, we use the Concretise function defined
in Algorithm 2. This is basically a standard backtracking algorithm, specialized
for incrementally building more and more concrete partial compound systems:
partial compound systems containing (1) more and more states and transitions,
for a fixed set of TAs and clocks, and (2) more and more TAs and clocks.

The list Ls[k] contains the search history: backtracking means replacing this
list by its tail (else part of the conditional at line 4). Notice that, when back-
tracking, it could be possible to allow to remember the unsuccessful searches
(this can be used for speeding up the future searches). This has been described
in [14] for un-timed systems.

Any element of Ls[k], and in particular the one reflecting the current state
of the search (the head of Ls[k]), is a tuple (A,C, I, J,K,L,M) where: A is the
partial compound system computed at the previous call to Concretise, C is
the current partial compound system we consider, I gives the initial partition of
TAs involved in the objective, J gives the TAs involved in A, K gives the TAs
that can be used to build C from A, L gives the clocks involved in A, and M
gives the clocks that are used to build C from A.

The main idea of the function consists in first choosing a partial compound
system C∗ bigger than what we already had, and that can reach the goal. Set
NA then corresponds to the automata sharing some action with C∗, but not
added, and NX to the clocks tested, but not present, in C∗. From these sets,
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Algorithm 2. Auxiliary function Concretise(Ls) for Algorithm 1

1 choose any k in [0..len(Ls) − 1] such that not IsComplete(Ls[k])
2 let (A, C, I, J, K, L, M) = hd(Ls[k])
3 let Back = tl(Ls[k])
4 if ∃C∗ s.t. (||i∈KPL∪M (Ai))||A 
 C∗ � C and C∗ → R|J∪K {
5 choose any such C∗

6 let NA = {i /∈ J ∪ K : Σi ∩ Σ(C∗) �= ∅}
7 let A′ be such that ||i∈J∪KAi 
 A′ and P∅(A

′) = P∅(C
∗)

8 let NX = {x /∈ L ∪ M : x ∈ X(A′)}
9 case NA ∪ NX �= ∅

10 choose any K′, M ′ such that K′ ⊆ NA and M ′ ⊆ NX and K′ ∪ M ′ �= ∅
11 let Back′ = (A, C∗, I, J, K, L, M) : Back
12 let J ′ = J ∪ K
13 let L′ = L ∪ M
14 let K′′ = K′

15 until stability let K′′ = {i /∈ J ′ ∪ K′′ : ∃j ∈ K′′,Res(Ai) ∩ X(Aj) �= ∅}
16 let A∗ be such that ||i∈J∪KPL′∪M′(Ai) 
 A∗ and P∅(A

∗) = P∅(C
∗)

17 let Ls[k] = (A∗, ||i∈J′∪K′′ ini(Ai, L
′ ∪ M ′), I, J ′, K′′, L′, M ′) : Back′

18 case N = ∅
19 let Ls[k] = (A, C∗, I, J, K, L, M) : Back
20 } else {
21 if Back = [ ] { return false }
22 else { let Ls[k] = Back }
23 }
24 return true

we can choose automata or clocks to add to our partial compound system in
order to try to make it complete (line 10). The next lines create the new tuple
that will be put at the head of Ls as the new current level of concretisation
(line 17), to reflect these choices. Line 15 forces the addition of automata that
reset some clocks we have chosen to add. This is important because resetting
a clock may add some new behaviours. Finally, A∗ (line 16) is a version of C∗

with the whole set of clocks we have up to now (those we already had and those
we have just chosen to add). It will serve as an upper bound (w.r.t. �) for the
choice of C∗ at the next level of concretisation. Note that at this next level we
start with a partial compound system reduced to the initial states of the chosen
automata (and with all the chosen clocks). If we have no clocks or automata to
add from NX ,NA, then we simply update the current partial compound with
C∗ (line 19) and back in the main algorithm we will check if this has allowed
us to achieve completeness (line 11 of Algorithm 1). If we could not find C∗ at
all, then it is not possible to reach the goal with the current upper bound an we
need to backtrack to extend this upper bound at a lower level of concretisation,
i.e., with fewer clocks or automata (line 22).
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3.4 Consistency, Merging and the MERGE Function

Achieving completeness for each element of Ls is not sufficient however to solve
our reachability problem. Indeed, it may be the case that some automata appear
in several different elements of Ls: we start from a partition but the same
automata may be added to elements of Ls during concretisation steps. In this
case, it is likely that some paths in different partial compound systems interfere:
they use the same actions but not in the same order or they need incompat-
ible valuations of the clocks for satisfying clock constraints. The main loop of
Algorithm 1 reflects this by iterating as long as the current state Ls of the search
is not complete, as explained above, or not consistent.

Definition 17 (Consistency). Ls = [(A1, C1, I1, J1,K1, L1,M1) : Back1, . . . ,
(An, Cn, In, Jn,Kn, Ln,Mn) : Backn] is consistent if ∀i �= j ∈ [1..n], (Ji ∪ Ki) ∩
(Jj ∪ Kj) = ∅.

In order to achieve consistency we use a Merge function to replace two
elements of Ls: Ls[i] (with hd(Ls[i]) = (Ai, Ci, Ii, Ji,Ki, Li,Mi) and tl(Ls[i]) =
Backi) and Ls[j] (with hd(Ls[j]) = (Aj , Cj , Ij , Jj ,Kj , Lj ,Mj) and tl(Ls[j]) =
Backj) by a single one h : Back obtained by merging them, thus reducing
the length of Ls by one. The simplest such new element would be such that:
Back = [ ] and h = (ID i||IDj , INI i||INI j , Ii ∪ Ij , ∅, I ′

i ∪ I ′
j , ∅, ∅). However, it

may be of interest to use the current state of the search in both Ls[i] and
Ls[j], taking instead: Back = [(ID i||IDj , INI i||INI j , Ii ∪ Ij , ∅, I ′

i ∪ I ′
j , ∅, ∅)], and

h = (PLj
(Ai)||PLi

(Aj), PLj∪Mj
(Ci)||PLi∪Mi

(Cj), Ii ∪ Ij , Ji ∪ Jj ,Ki ∪ Kj).
In fact, it is even possible to replace Ls[i] and Ls[j] by any history that

could have been produced by a sequence of call to Concretise starting from
(ID i||IDj , INI i||INI j , Ii ∪ Ij , ∅, I ′

i ∪ I ′
j , ∅, ∅) (of which the two above examples

are particular cases). This avoids to un-merge when backtracking, has been for-
malized as a notion of good Merge in our previous work [14], and remains
essentially the same for timed systems.

3.5 Termination, Soundness, Completeness

Theorem 1 explicits the fact that Algorithm1 always terminates, and is sound
and complete. Due to space limitations, its proof is omitted.

Theorem 1. Algorithm1 always terminates. It returns true if and only if the
goal is reachable.

3.6 Example

We get back to the introductory example and see how our algorithm may find
the result we intuitively outlined.

First we choose an initial partition of the automata directly involved in the
objective. Here there is only A2 so Ls = [(id(A2)||id(A4), ini(A2, ∅)||ini(A4, ∅),
{2}, ∅, {2, 4}, ∅, ∅)]. Note in particular that I ′

1 = {2, 4} because clock z is present
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in A2 and reset by A4. Also, since we have only one element in our partition,
we will always stay consistent in this example.

Now we can call Concretise and choose k = 0 (the only possibility). We
choose for instance C∗ as the compound system C24 made of the path bb in
A2 and the path c in A4, which permits to reach the goal. Then NA = ∅
and NX = {y, z}. We can now choose K ′ = ∅ and M ′ = {y, z} for instance.
Then K ′′ = ∅. Finally, A∗ is C∗ = C24 augmented by the clocks y and z,
slightly abusing notations we denote it by P{y,z}(C24). The function returns true,
and Ls[0] = [Ls1, Ls′

0] with Ls′
0 = (id(A2)||id(A2), C24, {2}, ∅, {2, 4}, ∅, ∅)], and

Ls1 = (P{y,z}(C24), ini(A2, {y, z})||ini(A4, {y, z}), {2}, {2, 4}, ∅, ∅, {y, z}).
Back in the main algorithm, starting from ini(A2, {y, z})||ini(A4, {y, z}) we

obviously do not have completeness. So we call Concretise again. We choose,
for instance C∗ as the full P{y,z}(C24), in which the goal can be reached.
Both NA and NX are empty, so we proceed to line 19 and Ls[0] becomes
[(P{y,z}(C24), P{y,z}(C24), {2}, {2, 4}, ∅, ∅, {y, z}), Ls′

0]. We return true.
Back in the main algorithm, P{y,z}(C24) is not complete because α is in

conflict with the first b in A2 and α is urgent due to the invariant in A1 ((2) of
Definition 16) so we need to call Concretise again. There, we have to choose
something strictly bigger than the C, i.e. P{y,z}(C24), which is not possible with
K being empty. We reach line 22 (backtracking) and Ls[0] becomes [Ls′

0].
In the main algorithm again, Ls is not complete because C24 (the C value of

Ls′
0) is not complete (for the same conflict with α as above). We choose to add the

rest of A2 and choose therefore C∗ as the compound system C ′
24 made of A2 and

the path c of A4. Then NA = {1} because α is shared with A1 and NX = {y, z}.
We choose K ′ = {1}, M ′ = ∅ and since we have no further shared clock, we
have K ′′ = K ′. Since we have not added clocks, A∗ = C ′

24 and finally Ls[0]
becomes [Ls′

1, Ls′′
0 ] with Ls′′

0 = (id(A2)||id(A4), C ′
24, {2}, ∅, {2, 4}, ∅, ∅), and

Ls′
1 = (C ′

24, ini(A1, ∅)||ini(A2, ∅)||ini(A4, ∅), {2}, {2, 4}, {1}, ∅, ∅). We return
true.

Back in the main algorithm we are not complete since we do not reach the
goal in ini(A1, ∅)||ini(A2, ∅)||ini(A4, ∅) so we call Concretise. We choose for
instance C∗ as the compound system C124 made of the path α in A1, the whole
of A2 and the path c in A4. Then NA = ∅ but NX = {x, y, z} because clock x
is tested in the invariant of A1. So we have to choose K ′ = ∅ and decide to take
M ′ = {x, y, z}. We have K ′′ = K ′. Hence, A∗ is C124 augmented by the clocks
x, y and z, slightly abusing notations we denote it by P{x,y,z}(C124). And Ls[0]
becomes [Ls2, Ls′′

1 , Ls′′
0 ], with Ls′′

1 = (C ′
24, C124, {2}, {2, 4}, {1}, ∅, ∅) and Ls2 =

(P{x,y,z}(C124), ini(A1, {x, y, z}) || ini(A2, {x, y, z}) || ini(A4, {x, y, z}), {2},
{1, 2, 4}, ∅, ∅, {x, y, z}). We return true.

Again in the main algorithm we are not complete because we do not reach the
goal in the C value of Ls2, so we call Concretise. We choose C∗ as the com-
pound system C ′

124 made of the path α in A1 (but with x this time), the whole of
A2 (with y and z this time ) and the path c in A4 (with z this time). Now taking
into account the clocks C ′

124 does allow to reach the goal, but only through the
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path αbcb. Furthermore, NX = NA = ∅ so we proceed to line 19 and Ls[0] is now
[Ls′

2, Ls′′
1 , Ls′′

0 ], with Ls′
2 = (P{x,y,z}(C124), C ′

124, {2}, {1, 2, 4}, ∅, ∅, {x, y, z}). We
return true. Finally, the main algorithm concludes that C ′

124 is complete and ter-
minate, by concluding that the goal is indeed reachable.

4 Experimental Analysis

We implemented an instance of the above algorithm as a tool called LaRA-T.
The LaRA-T tool represents around 2000 lines of code written in the func-
tional language Haskell2. It is built over the previous LaRA tool for reachabil-
ity analysis in networks of (untimed) automata [14]. Both tools are available for
download3.

The algorithm we have presented is very general and the current implemen-
tation results from some important choices. First, each time we add automata
or clocks, we compute the resulting partial compound system completely. This
eliminates the need for backtracking, since if we cannot find the goal in this par-
tial compound system then it is for sure not reachable at all. In that respect, this
choice also heuristically favors the unreachable case. Second, we only compute
the reachable parts of the compound systems, using a classic DBM-based sym-
bolic state exploration [16], with DBM inclusion checking and maximal constant
per clock extrapolation. Finally, when we have computed a whole partial com-
pound system, we look at the paths we have followed to reach all goal states. If
some automata or clocks are required for completeness with respect to all those
paths, then we add them all at the next level. Otherwise, we add one arbitrary
required automaton or clock with the following priority: first automata ((1) of
Definition 16), then clocks actually used on some path to the goal (4), and finally
clocks coming from urgent conflicts due to invariants (2). We have not yet imple-
mented the support for shared clocks (hence (3) of Definition 16 not appearing
in the previous priority order).

We compared LaRA-T to Uppaal [4] on several examples from the literature
on analysis and verification of timed systems4:

CritReg is a modeling of a critical region protocol from PAT [19] benchmarks.
We check the reachability of an error location in one of the automata. This
is a true property.

Fddi is a modeling of a communication protocol based on a token ring network
presented in [9] and adapted to our setting in [13]. We check the reachability
of a couple of mutually exclusive locations. This is a false property.

Fischer is a modeling of Fischer’s mutual exclusion protocol [3]. We check
the reachability of a couple of mutually exclusive locations. This is a false
property.

2 https://www.haskell.org/.
3 http://lara.rts-software.org/.
4 Uppaal templates and inputs for LaRA-T: http://lara.rts-software.org/.

https://www.haskell.org/
http://lara.rts-software.org/
http://lara.rts-software.org/
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Fischer2 is a variation of Fischer’s mutual exclusion protocol where a time
constant has been changed, breaking the mutual exclusion guarantee. In this
example, the property is true.

Trains1 is the Train model of Uppaal [3]. A controller is responsible for a queue
of trains and has to prevent more than one of them to access a bridge together.
We check the reachability of a state in which the two first trains are crossing
the bridge at the same time. This is a false property.

Trains2 is a variation of the Trains1 benchmark where the controller manages
a set of trains rather than a queue of trains.

Trains3 is a model where a railway crosses a road [8]. A controller has to
ensure that the gate is closed (cars cannot crosse the railway) as soon as a
train crosses the road. We check the reachability of a state in which a train
crosses the road while the gate is open. This is a false property.

4.1 Experimental Results

For each example we ran Uppaal and LaRA-T on instances of growing size (the
size is, roughly, the number of timed-automata, see Table 2 for precise informa-
tion), with a time-limit of 20 min at each size. In order to better evaluate the per-
formances of the laziness mechanism (independently of our implementation of the
DMB-based computation of the state-space of a TA) we also ranLaRA-Twith all
components and clocks in a single element of the initial partition (LaRA-T Full).
All the experiments were run on the same machine with four Intel R© Xeon R© E5-
2620 processors (six cores each) with 128 GB of memory. Though this machine
has some potential for parallel computing, all the experiments presented here are
actually monothreaded.

Table 1 gives the largest instance of each example solved by each tool within
the time-limit.

Table 1. Size of last instances solved within 20min by Uppaal and LaRA-T

CritReg Fddi Fischer Fischer2 Trains1 Trains2 Trains3

LaRA-T ≥1500 ≥5000 7 ≥500 8 13 7

LaRA-T Full 4 15 6 5 8 13 5

Uppaal 46 13 13 65 10 16 6

For each example, we also evaluated the number of automata and clocks
that LaRA-T takes into account to decide its result in an instance of size n. In
Table 2, we compare it to the total number of automata and clocks in the same
instance. Our goal was to evaluate to which extent our algorithm is actually lazy.
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Table 2. Number of automata (A) and clocks (C) used by LaRA-T for solving
instances of size n, and total number of automata and clocks in such instances.

CritReg Fddi Fischer Fischer2 Trains1 Trains2 Trains3

A C A C A C A C A C A C A C

LaRA-T 3 1 4 5 n+ 1 n 3 2 3 3 3 3 n+ 2 3

Total 2n+ 1 n n+ 1 3n+ 1 n+ 1 n n+ 1 n n+ 1 n n+ 1 n n+ 2 n+ 2

4.2 Analysis of the Results

We first remark that LaRA-T clearly outperforms Uppaal on three of our
seven examples: CritReg, Fddi, and Fischer2. This is because the number of
automata and clocks considered by LaRA-T in these examples does not increase
with the size of the instances considered. This is particularly striking in the case
of Fddi where the property we consider is false: Uppaal needs to completely
explore a quickly growing state-space.

On three other examples, namely Trains1, Trains2, and Trains3, LaRA-
T copes with Uppaal. It is surprising that, while the number of automata and
clocks does not increase with the size of the instances considered, LaRA-T
solves a bit less instances of Trains1 and Trains2 than Uppaal. This can be
explained by the fact that one of the automata considered by LaRA-T repre-
sents the centralized data-structure (either a queue or a set) involved in these
examples. The size of this automaton increases exponentially with the size of
the instances considered. LaRA-T does not implement efficient search in large
automata (this is orthogonal to our work). On the Trains3 example, LaRA-T
always uses all the automata. However, it needs only a subset (of size indepen-
dent from the size of the instance considered) of the clocks to conclude. So, the
timed reachability analysis is made easier, explaining the fact that LaRA-T
solves a bit more instances than Uppaal.

Finally, LaRA-T is clearly outperformed by Uppaal on the Fischer exam-
ple. This can be explained by the fact that LaRA-T needs to consider all the
automata and all the clocks, that is, to perform the full reachability analysis.
On such a task it is illusory to be as efficient as Uppaal.

5 Conclusion

We have proposed a new algorithm for the verification of concurrent timed sys-
tems, modelled as products of timed automata. This algorithm extends our pre-
vious proposition for untimed systems [14] by considering not only the different
automata components, but also clocks, in a lazy manner. By examining closely
which actions and clocks are needed to reach some goal locations, and how they
interact with urgency, in successive over-approximations of the whole system,
we are, in many cases, able to conclude on the reachability property by consid-
ering only a subset of the components and clocks. And we can do it regardless
of the actual truth value of the property. We have implemented a version of
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the algorithm in a freely available tool, named LaRA-T and we report on its
efficiency in comparison to Uppaal, a state-of-the-art model-checker for timed
automata. These experimental results, obtained on classic benchmarks from the
timed systems community, are very encouraging, with LaRA-T outperforming
Uppaal, sometimes by several magnitude orders, on a few of the benchmarks,
and being never too far behind even in the worst cases where all components
and clocks have to be considered to decide the property.

The proposed algorithm provides a quite general framework open for many
heuristic improvements, and part of future work naturally consists in finding
good heuristics for better choosing the components and clocks to add. The com-
puted over-approximations also contain a lot of information on the system and, in
practice, we currently only use them to prune actions leading to non-coreachable
states. It would be interesting to make a better use of that information, and, for
instance in the case of timed systems, to use it to cheaply find good exploration
orders minimizing the number of “mistakes” when a bigger DBM is reached after
a smaller one for a given location, and all the successors have to be explored again
(see [13] for precise account of the problem). Further work also includes extend-
ing to properties beyond reachability, and taking discrete variables into account
to improve the conciseness of the models.
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Abstract. To solve the reachability problem for timed automata, model
checkers usually apply forward search and zone abstraction. To ensure
efficiency and termination, the computed zones are generalized using
maximal constants obtained from guards either by static analysis or lazily
for a given path. In this paper, we propose a lazy method based on
zone abstraction that, instead of the constants in guards, considers the
constraints themselves. The method is a combination of forward search,
backward search and interpolation over zones: if the zone abstraction is
too coarse, we propagate a zone representing bad states backwards using
backward search, and use interpolation to extract a relevant zone to
strengthen the current abstraction. We propose two refinement strategies
in this framework, and evaluate our method on the usual benchmark
models for timed automata. Our experiments show that the proposed
method compares favorably to known methods based on efficient lazy
non-convex abstractions.

Keywords: Timed automata · Model checking · Reachability · Zone
abstraction · Interpolation

1 Introduction

Timed automata [1] is a widely used formalism for the modeling and verification
of real-time systems. The reachability problem deals with the question whether
a given error state is reachable from an initial state along the transitions of the
automaton. The standard solution of this problem involves performing a forward
exploration in the so-called zone-graph induced by the automaton [9].

To ensure performance and termination, model checkers for timed automata
usually apply some sort of generalization of zones based on maximal lower-
and upper bounds [3] (LU -bounds) appearing in the guards of the automaton.
This can be performed directly by extrapolation [3] parametrized by bounds
obtained by static analysis [2]. Alternatively, bounds can be propagated lazily
for all transitions [12] or along an infeasible path [11], which, combined with
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an efficient method for inclusion checking [13] with respect to a non-convex
abstraction induced by the bounds, results in an efficient method for reachability
checking of timed automata. This latter approach can be seen as a variant of
counterexample-guided abstraction refinement [8] (CEGAR), a technique widely
used in model checking.

In this paper, we propose a similar lazy algorithm for reachability checking
of timed automata. However, instead of propagating the bounds appearing in
guards, the algorithm considers the guards themselves. If the abstraction is too
coarse to exclude an infeasible path, a zone representing the guards of a disabled
transition is propagated backwards using pre-image computation. Based on the
pre-image, we compute a zone strong enough to block the disabled transition in
form of an interpolant [14]. In a similar fashion, we use interpolation to effectively
prune the search space by enforcing coverage of a newly discovered state with
an already visited state when possible. We propose two refinement strategies in
this framework. Both methods are a combination of forward search, backward
search and zone interpolation, and can be considered as a generalization of zone
interpolation to sequences of transitions of a timed automaton.

We compared the proposed interpolation based method and the non-convex
LU -abstraction based method [11] on the usual benchmark models for timed
automata. Results show that our method performs similarly to the highly sophis-
ticated algorithm of [11], and in cases can even generate a smaller state space.
Moreover, it turned out that for some models the proposed refinement strategies
are less sensitive to search order, thus are more robust against bad decisions
during search.

Comparison to Related Work. Lazy abstraction [10] is an approach widely
used for model checking, and in particular for model checking software. It consists
of building an abstract reachability graph on-the fly, representing an abstraction
of the system, and refining a part of the tree in case a spurious counterexample
is found. Lazy abstraction with interpolants [15] (also known as Impact) and
lazy annotation [16] are both lazy abstraction techniques for software where
refinement is performed using interpolant generation.

For timed automata, a lazy abstraction approach based on non-convex LU -
abstraction and on-the-fly propagation of bounds has been proposed [11]. A
significant difference of this algorithm compared to usual lazy abstraction algo-
rithms is that it builds an abstract reachability graph that preserves exact reach-
ability information (a so-called adaptive simulation graph). As a consequence it
is able to apply refinement as soon as the abstraction admits a transition dis-
abled in the concrete system. In our work, we apply the same approach, but for
a different abstract domain, with different refinement strategies.

The work closest to ours is difference bound constraint abstraction [18]. The
refinement method presented there and our refinement strategy we refer to as
the binary (bin) strategy are highly analogous, and both are very similar to lazy
annotation. However, our refinement strategy that we refer to as the sequence
(seq) strategy is different in concept. Moreover, in [18], abstractions are sets of
difference constraints, and refinement rules are defined on a case-by-case basis for
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guards, resets and delay. In our paper, we represent abstractions as canonical
difference bound matrices, and define abstraction refinement in more general
terms, as a combination of symbolic forward and backward search and zone
interpolation. This formulation enables a simple generalization of our approach
to automata with diagonal constraints in guards [6] and to updatable timed
automata [5], as well as to the application of backward exploration. Moreover,
by representing abstractions as canonical difference bound matrices, known zone-
based abstraction methods can be considered orthogonal to our approach.

Organization of the Paper. The rest of the paper is organized as follows.
In Sect. 2, we define the notations used throughout the paper, and present the
theoretical background of our work. In Sect. 3 we propose a lazy reachability
checking algorithm based on zone abstraction for timed automata. We propose
two methods for abstraction refinement in Sect. 4. Section 5 describes experi-
ments performed on the proposed algorithm. Finally, conclusions are given in
Sect. 6.

2 Background and Notations

Let X be a set of clock variables over R. We assume x0 ∈ X , where x0 is a
distinguished reference clock with constant value 0. A clock constraint over X
is a conjunction of atoms of the form xi − xj ≺ c where xi, xj ∈ X , c ∈ Z and
≺ ∈ {<,≤}. We denote the set of clock constraints over X by Φ(X ).

A clock valuation over X is a function η : X → R. We denote by Eval(X )
the set of clock valuations over X , and by 0 ∈ Eval(X ) the clock valuation
where 0(x) = 0 for all x ∈ X . For a real number δ ≥ 0 and for all x ∈ X , let
(η + δ)(x) = η(x) + δ. Moreover, for R ⊆ X and for all x ∈ X , let ([R] η)(x) = 0
if x ∈ R and ([R] η)(x) = η(x) otherwise. For a clock constraint ϕ ∈ Φ(X ),
we denote by η |= ϕ iff ϕ is satisfied under valuation η. Furthermore, let
�ϕ� = {η | η |= ϕ}.

2.1 Timed Automata

Definition 1 (Timed automaton). Syntactically, a timed automaton is a
tuple A = (L,X ,T , �0) where

– L is a finite set of locations,
– X is a finite set of clock variables,
– T ⊆ L × Φ(X ) × P(X ) × L is a finite set of transitions where for a transition

(�, g, R, �′) ∈ T, constraint g is a guard and R is a set containing clocks to be
reset, and

– �0 ∈ L is the initial location.

A state of A is a pair (�, η) where � ∈ L and η ∈ Eval(X ).
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Definition 2 (Semantics). The operational semantics of a timed automaton
is given by a labeled transition system with initial state (�0,0) and two kinds of
transitions:

– Delay: (�, η) δ−→ (�, η + δ) for some δ ≥ 0;
– Action: (�, η) t−→ (�′, [R] η) for some transition t = (�, g, R, �′) where η |= g.

A run of a timed automaton is a sequence of states from the initial state along
the transition relation (�0, η0)

α1−→ (�1, η1)
α2−→ . . .

αn−−→ (�n, ηn) where η0 = 0 and
αi ∈ T ∪ R≥0 for all 0 ≤ i ≤ n. A location � ∈ L is reachable iff there exists a
run such that �n = �.

2.2 Symbolic Semantics

As the concrete semantics of a timed automaton is infinite due to real valued
clock variables, model checkers are often based on a symbolic semantics defined in
terms of zones. A zone Z ∈ Z is the solution set of a clock constraint ϕ ∈ Φ(X ),
that is Z = �ϕ�. For zones Z and Z ′, we will denote by Z 	 Z ′ iff Z ⊆ Z ′.
Moreover, if Z and Z ′ are zones and t ∈ T , then

– ⊥ = ∅,
– � = Eval(X ),
– Z  Z ′ = Z ∩ Z ′,
– Z0 = {η | η = 0 + δ for some δ ≥ 0},
– postt(Z) =

{
η′ | (�, η) t−→ s

δ−→ (�′, η′) for some η ∈ Z and δ ≥ 0
}

, and

– pret(Z ′) =
{

η | (�, η) t−→ s
δ−→ (�′, η′) for some η′ ∈ Z ′ and δ ≥ 0

}

are also zones. Zones are not closed under complementation, but the complement
of any zone is the union of finitely many zones. For a zone Z, we are going to
denote a finite set of such zones by ¬Z.

The functions postt(Z) and pret(Z) represent the strongest postcondition
and weakest precondition of Z with respect to a transition t of a timed automa-
ton, respectively. We are going to use the following simple lemma.

Lemma 1. Let A, B be zones and t ∈ T a transition. Then A  pret(B) 	 ⊥
iff postt(A)  B 	 ⊥.

Using post, we can define a zone-based symbolic semantics for timed
automata.

Definition 3 (Symbolic semantics). The symbolic semantics of a timed
automaton is given by a labeled transition system with states of the form (�, Z),
with initial state (�0, Z0), and with transitions of the form (�, Z) t=⇒ (�′,postt(Z))
where t = (�, g, R, �′).

Definition 4 (Symbolic run). A symbolic run of a timed automaton is a
sequence (�0, Z0)

t1=⇒ (�1, Z1)
t2=⇒ . . .

tn=⇒ (�n, Zn) where Zn �= ⊥.

Proposition 1. For a timed automaton, a location � ∈ L is reachable iff there
exists a symbolic run with �n = �.
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2.3 Difference Bound Matrices

Clock constraints and thus zones can be efficiently represented by difference
bound matrices.

A bound is either ∞, or a finite bound of the form (m,≺) where m ∈ Z and
≺ ∈ {<,≤}. Difference bounds can be totally ordered by “strength”, that is,
(m,≺) < ∞, (m1,≺1) < (m2,≺2) iff m1 < m2 and (m,<) < (m,≤). Moreover
the sum of two bounds is defined as b+∞ = ∞, (m1,≤)+(m2,≤) = (m1+m2,≤)
and (m1, <) + (m2,≺) = (m1 + m2, <).

A difference bound matrix (DBM) over X = {x0, x1, . . . , xn} is a square
matrix D of bounds of order n + 1 where an element Dij = (m,≺) represents
the clock constraint xi − xj ≺ m. We denote by �D� the zone induced by the
conjunction of constraints stored in D. We say that D is consistent iff �D� �= ∅.
The following is a simple sufficient and necessary condition for a DBM to be
inconsistent.

Proposition 2. A DBM D is inconsistent iff there exists a negative cycle in
D, that is, a set of pairs of indexes {(i1, i2), . . . , (ik−1, ik), (ik, i1)} such that
Di1,i2 + . . . + Dik−1,ik + Dik,i1 < (0,≤).

For a consistent DBM D, we say it is canonical iff constraints in it can not be
strengthened without losing solutions, formally, iff Dii = (0,≤) for all 0 ≤ i ≤ n
and Dij ≤ Dik + Dkj for all 0 ≤ i, j, k ≤ n. For convenience, we will also consider
the inconsistent DBM D with the single finite bound D00 = (0, <) canonical.
Up to the ordering of clocks, the canonical form is unique. Moreover, the zone
operations in Sect. 2.2 can be efficiently implemented over canonical DBMs [4].
Therefore, we will refer to a canonical DBM D (syntax) and the zone �D� it
represents (semantics) interchangeably throughout the paper.

For two DBMs A and B, we will denote by min(A,B) the (not necessarily
canonical) DBM D where Dij = min(Aij , Bij), which encodes �A� ∩ �B�.

3 Algorithm

In this section, we present our algorithm for lazy reachability checking of timed
automata.

3.1 Adaptive Simulation Graph

The definitions and propositions presented here are adaptations of concepts
introduced in [11] to our convex, zone-based setting.

Definition 5 (Unwinding). An unwinding of a timed automaton (L,X ,T , �0)
is a tuple U = (V,E, v0,Mv,Me, �) where

– (V,E) is a directed tree rooted at node v0 ∈ V ,
– Mv : V → L is the vertex labeling,
– Me : E → T is the edge labeling, and
– � ⊆ V × V is the (functional) covering relation.
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For an unwinding we require that the following properties hold:

– Mv(v0) = �0,
– for each edge (v, v′) ∈ E the transition Me(v, v′) = (�, g, R, �′) is such that

Mv(v) = � and Mv(v′) = �′,
– for all v and v′ such that v � v′ it holds that Mv(v) = Mv(v′).

Informally, the purpose of the covering relation � is to mark if the search space
has been pruned at a node due to an other node that admits all runs possible from
the covered node. For convenience, we define the following shorthand notations:
�v = Mv(v) and tv,v′ = Me(v, v′).

Definition 6 (Adaptive simulation graph). An adaptive simulation graph
(ASG) for a timed automaton A is a tuple G = (U,ψZ , ψW ) where

– U is an unwinding of A, and
– ψZ , ψW : V → Z are labelings of vertices by zones.

We will use the following shorthand notations: Zv = ψZ(v) and Wv = ψW (v).
Later, we will ensure that Zv represents the exact set of reachable valuations for
v, and Wv an overapproximation of it.

A node v is expanded iff it has a successor for all transitions t = (�, g, R, �′)
such that �v = �. Without loss of generality, we assume that for each location the
automaton has at least one outgoing transition, thus if a node is expanded, then
it is not a leaf. A node v is feasible iff Wv �= ⊥. It is covered iff v � v′ for some
node v′. It is excluded iff it is covered, infeasible or it has an excluded parent. A
node is complete iff it is either expanded or excluded. A node is �-safe iff �v �= �.

For an ASG to be useful for reachability checking, we have to introduce
restrictions on the labelings ψZ and ψW .

Definition 7 (Well-labeled node). A node v of an ASG G for a timed
automaton A is well-labeled iff the following conditions hold:

– (initiation) if v = v0, then (a) Zv = Z0 and (b) Z0 	 Wv;
– (consecution) if v �= v0, then for its parent u and the transition t = tu,v we

have (a) Zv = postt(Zu) and (b) postt(Wu) 	 Wv;
– (coverage) if v � v′ for some node v′, then Wv 	 Wv′ , and v′ is not excluded;
– (simulation) if Zv = ⊥, then Wv = ⊥.

The above definitions for nodes can be extended to ASGs: an ASG is com-
plete, �-safe or well-labeled iff all its nodes are complete, �-safe or well-labeled,
respectively. As the conditions for well-labeledness suggest, the main challenge
for the construction of a well-labeled ASG is how the labeling ψW is computed.
In Sect. 4, we propose two strategies for computing a labeling that satisfies well-
labeledness. A well labeled ASG preserves reachability information, which is
expressed by the following proposition.
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Proposition 3. Let G be a complete, well-labeled ASG for a timed automaton
A. Then A has a symbolic run (�0, Z0)

t1=⇒ (�1, Z1)
t2=⇒ . . .

tn=⇒ (�n, Zn) iff G has a
non-excluded node v such that �v = �n.

Proof. The left-to right direction is a consequence of Lemma 2, and the converse
is a consequence of Lemma 3. �
Lemma 2. Let G be a complete, well-labeled ASG for a timed automaton A.
If A has a symbolic run (�0, Z0)

t1=⇒ (�1, Z1)
t2=⇒ . . .

tn−1===⇒ (�n−1, Zn−1)
tn=⇒ (�, Z)

then G has a non-excluded node v such that � = �v and Z 	 Wv.

Proof. We prove the statement by induction on the length n of the symbolic
run. If n = 0, then � = �0 and Z = Z0, thus v0 is a suitable witness by con-
dition initiation(b). Suppose the statement holds for runs of length at most
n − 1. Thus there exists a non-excluded node vn−1 such that �n−1 = �vn−1 and
Zn−1 	 Wvn−1 . As vn−1 is complete and not excluded, it is expanded, thus by
condition consecution(b), there is a successor node vn for transition tn such that
�n = �vn

and posttn(Wn−1) 	 Wvn
. Clearly, Z 	 Wn, as Z = posttn(Zn−1) and

postt is monotonic for any t ∈ T . Thus if vn is not covered then it is a suitable
witness. Otherwise there exists a node v ∈ V such that vn � v. By condition
coverage, we know that Wvn

	 Wv and v is not excluded, thus it is a suitable
witness. �
Lemma 3. Let G be an ASG for a timed automaton A. Let v be a non-excluded,
well-labeled node of G such that all its ancestors are well-labeled. Then A has a
symbolic run (�0, Z0)

t1=⇒ (�1, Z1)
t2=⇒ . . .

t=⇒ (�v, Zv).

Proof. We prove the statement by induction on the depth n of v in the tree. If
n = 0, then v = v0. Thus �v = �0 and Zv = Z0 by condition initiation(a), and
(�0, Z0) is a suitable run of A. Assume that the statement holds for nodes in
depth at most n−1. Let u be the parent of v. As u is non-excluded, well-labeled,
and all its ancestors are well-labeled, there exists a symbolic run to (�u, Zu).
By condition consecution(a), we have postt(Zu) = Zv for t = tu,v. As v is not
excluded, Zv �= ⊥ by condition simulation, thus the run to u can be extended
to a run to v by appending to it (�v, Zv) for t. �
Remark 1. Note that for an automaton A, the labeling ψW can be chosen so
that the ASG is finite. A way to construct such an ASG is for example by taking
Wv = Extra+

LU (Zv) [3] for some bound functions L and U statically computed
for �v, for all nodes v. Similarly, the termination of any reasonable algorithm for
constructing a well-labeled ASG can be ensured by maintaining the additional
invariant Wv = Extra+

LU (Wv) for all nodes v. As doing so is straightforward,
termination can be considered an issue orthogonal to abstraction computation.
In this paper, we focus on the latter.
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3.2 Algorithm

The pseudocode of the reachability algorithm is shown in Algorithm1. The main
procedure of the algorithm is explore, which gets as input a timed automaton
A and an error location �e ∈ L. Upon termination, it either witnesses reachability
by a symbolic run of A to �e, or proves unreachability of �e for A with a well-
labeled, complete, �e-safe ASG.

The main data structures of the algorithm are the ASG G over set of nodes
V , and sets waiting and passed , both of which store nodes from V . Informally,
waiting stores leaves that are not yet excluded, and passed stores nodes that
have been expanded. The algorithm consists of three subprocedures, expand,
cover, and refine. The procedure cover attempts to add a covering edge
for a node. Procedure expand creates the successors for a node. For a node v
and zone W such that Zv 	 W , procedure refine enforces that also Wv 	 W
holds. This is performed by calls to a procedure block, for which two possible
algorithms based on interpolation are given in Sect. 4. The contract of block
asserts that whenever zones Zv and B are inconsistent, then after the call, the
inconsistency of Wv and B is also ensured. Note that this condition is sufficient
to satisfy the contract of refine.

Informally, the algorithm employs the following strategy. The algorithm con-
sists of the single loop in line 10 that consumes nodes from waiting one by one. If
waiting becomes empty, then A is deemed safe. Otherwise, a node v is removed
from waiting . If Zv 	 ⊥, then simulation is established by calling to refine.
Otherwise, if the node represents an error location, then A is deemed unsafe.
Otherwise, in order to avoid unnecessary expansion of the node, the algorithm
tries to cover it. This is attempted by a call to cover to enforce coverage by a
candidate node v′. As the labeling of v′ might be strengthened during the call as
a side effect, after the call, the condition for coverage is checked. If it is satisfied,
v gets covered. Otherwise, v is put back to waiting . If there are no suitable can-
didates for coverage, then the algorithm expands the node by a call to expand,
puts it in passed , and puts all its newly created successors in waiting .

To show correctness of explore w. r. t. the annotation specified in line 1,
we will refer to the following subsets of V : let infeasible = {v | v is infeasible}
and tentative = {v | v is covered}.

Proposition 4. Procedure explore is partially correct: if explore(A, �e) ter-
minates, then the result is safe iff �e is unreachable for A.

Proof (sketch). The main loop in line 10 maintains the following invariants:

1. V = passed ∪ waiting ∪ tentative ∪ infeasible,
2. passed is a set of non-excluded, expanded, �e-safe, well-labeled nodes,
3. waiting is a set of non-excluded leaves that satisfy all conditions of well-

labeledness, except maybe simulation,
4. tentative is a set of feasible, covered, �e-safe, well-labeled leaves, and
5. infeasible is a set of infeasible, �e-safe, well-labeled leaves.
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Algorithm 1. Lazy reachability algorithm for timed automata
1: ensure ρ = safe iff �e is unreachable for A
2: function explore(A, �e) returns ρ ∈ {safe,unsafe}
3: let v0 be a node such that �v0 = �0, Zv0 = Z0 and Wv0 = �
4: V ← {v0}
5: E ← ∅
6: � ← ∅
7: let G be an ASG for A over V , E and �
8: passed ← ∅
9: waiting ← {v0}

10: while v ∈ waiting for some v do
11: waiting ← waiting \ {v}
12: if Zv � ⊥ then
13: refine(v, ⊥)
14: else if �v = �e then
15: return unsafe
16: else if there exists v′ ∈ passed such that �v′ = �v and Zv � Wv′ then
17: cover(v, v′)
18: else
19: expand(v)

20: return safe

21: require Zv � Wv′

22: procedure cover(v, v′)
23: refine(v, Wv′)
24: if Wv � Wv′ then
25: � ← � ∪ {(v, v′)}
26: else
27: waiting ← waiting ∪ {v}

28: procedure expand(v)
29: for all t ∈ T such that t = (�v, g, R, �′) do
30: let v′ be a new node such that �v′ = �′, Zv′ = postt(Zv) and Wv′ = �
31: let (v, v′) be a new edge such that tv,v′ = t
32: V ← V ∪ {v′}
33: E ← E ∪ {(v, v′)}
34: waiting ← waiting ∪ {v′}
35: passed ← passed ∪ {v}

36: require Zv � W
37: ensure Wv � W
38: procedure refine(v, W )
39: for all B ∈ ¬W do
40: block(v, B)

41: require Zv 	 B � ⊥
42: ensure Wv 	 B � ⊥
43: procedure block(v, B)
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It is easy to verify that under the above assumptions, these sets form a
partition of V . Partial correctness of the algorithm is then a direct consequence.
Since at line 20 the set waiting is empty, so G is complete, well-labeled and
�e-safe, and as a consequence of Lemma 2, the location �e is indeed unreachable
for A. Conversely, at line 15, a node is encountered that is non-excluded, well-
labeled and not �e-safe, with all its ancestors well-labeled, thus by Lemma 3,
there is a symbolic run of A to �e.

Building on the assumption that expand, cover and refine preserve
the conditions of well-labeledness, showing that the loop invariant holds is
straightforward. For expand and cover, this assumption can be easily proved.
For refine, we need to prove that block preserves the conditions of well-
labeledness. As calls to block might strengthen the labeling, care must be
taken that the conditions (and in particular, initiation(b) and consecution(b))
are maintained In Sect. 4, this assumption is proved to hold. �

Termination, hence total correctness of the algorithm in this form can not
be established, however, with the additional restriction in Remark 1, termina-
tion can be guaranteed. This is because refinement progress is ensured by the
algorithm. After each call to cover, either a node v gets covered, or a node
v′ ∈ passed gets strengthened. As a node v′ does not get strengthened beyond
Zv′ , eventually, either all leaves become covered, an error node gets discovered,
or a leaf gets expanded.

4 Abstraction Refinement

To maintain well-labeledness, procedure refine relies on a procedure block
that performs abstraction refinement by safely adjusting labels of nodes (see the
reachability algorithm in Sect. 3.2). In this section, we propose two methods for
abstraction refinement based on interpolation for zones.

4.1 Interpolation for Zones

Let A and B be two canonical DBMs such that A  B 	 ⊥. An interpolant for
the pair (A,B) is a canonical DBM I such that

– A 	 I,
– I  B 	 ⊥, and
– clocks constrained in I are constrained in both A and B.

This definition of a DBM interpolant is analogous to the definition of an inter-
polant in the usual sense [14]. As DBMs encode formulas in DL(Q), a theory
that admits interpolation [7], an interpolant always exists for a pair of incon-
sistent DBMs. Algorithm 2 is a direct adaptation of the graph-based algorithm
of [7] for DBMs. For simplicity, we assume that A and B are defined over the
same set of clocks with the same ordering, and are both canonical. Naturally,
these restrictions can be lifted. For a more general description, see [17].
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Algorithm 2. Interpolation for zones represented as canonical DBMs
1: require A 	 B � ⊥
2: ensure A � I
3: ensure I 	 B � ⊥
4: function interpolate(A, B) returns I
5: if A � ⊥ then
6: return ⊥
7: else if B � ⊥ then
8: return �
9: else

10: let D = min(A, B)
11: let C = {(i1, i2), . . . , (ik−1, ik), (ik, i1)} be a negative cycle in D
12: let CA = {(i, j) ∈ C | Aij = Dij}

13: let Iij =

⎧
⎪⎨

⎪⎩

(0, ≤) if i = j

Aij if (i, j) ∈ CA

∞ otherwise

14: let I = [Iij ]ij
15: return I

After checking the trivial cases, the algorithm searches for a negative cycle in
min(A,B) to witness its inconsistency. This can be done e.g. by running a variant
of the Floyd-Warshall algorithm. As A  B is inconsistent, such a cycle C exists
by Proposition 2. Then the set CA of edges that come from A is constructed.
We can assume that no two such edges are subsequent, as A is canonical. Thus
the DBM I induced by the corresponding constraints of A is clearly canonical.
Moreover, it is easy to verify that I is indeed an interpolant.

4.2 Interpolation Strategies for Abstraction Refinement

We propose two methods for abstraction refinement based on zone interpolation.
Both methods are based on pre- and post-image computation, and can be con-
sidered as a generalization of zone interpolation to sequences of transitions of a
timed automaton.

Conceptually, both methods for block work as follows. Given a node v and
a zone B for which Zv  B 	 ⊥ holds, a zone inconsistent with B is computed
in form of an interpolant that is used to strengthen the current labeling. Mean-
while, conditions for well-labeledness are maintained. The condition of coverage
is maintained by procedure strengthen that removes covering edges that would
violate the condition after strengthening. However, the two methods differ in the
strategy to ensure conditions initiation(b) and consecution(b).

Algorithm 3 depicts the pseudocode for the two methods. We will refer to
procedure blockseq as the sequence (seq) strategy, and to procedure blockbin

as the binary (bin) strategy. The main difference is that bin only applies back-
ward propagation for refinement, whereas seq also uses forward propagation.
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Algorithm 3. Interpolation strategies for abstraction refinement
1: require Zv � I
2: ensure Wv � I
3: procedure strengthen(v, I)
4: for all u such that u � v and Wu �� I do
5: � ← � \ (u, v)
6: waiting ← waiting ∪ {u}
7: Wv ← Wv 	 I

8: require Zv 	 B � ⊥
9: ensure Wv � I

10: ensure Wv 	 B � ⊥
11: function blockseq(v, B) returns I
12: if Wv 	 B � ⊥ then
13: return Wv

14: else
15: if (u, v) ∈ E for some u then
16: let t = tu,v
17: let B′ = pret(B)
18: let A′ = blockseq(u, B′)
19: let A = postt(A

′)
20: else
21: let A = Zv

22: let I = interpolate(A, B)
23: strengthen(v, I)
24: return I

25: require Zv 	 B � ⊥
26: ensure Wv 	 B � ⊥
27: procedure blockbin(v, B)
28: if Wv 	 B � ⊥ then
29: return
30: else
31: let A = Zv

32: let I = interpolate(A, B)
33: if (u, v) ∈ E for some u then
34: let t = tu,v
35: for all B′′ ∈ ¬I do
36: let B′ = pret(B

′′)
37: blockbin(u, B′)

38: strengthen(v, I)

We show that both procedures are correct w. r. t. the annotations in Algorithm3
and maintain well-labeledness.

Proposition 5. Both variants of block are totally correct: if Zv B 	 ⊥, then
block(v,B) terminates and ensures WvB 	 ⊥. Moreover, they maintain well-
labeledness.

Proof. Termination of both methods is trivial, so we focus on partial correctness
and the preservation of well-labeledness.

For blockbin, if Wv B 	 ⊥, then no strengthening is needed. If v is a root,
it is easy to see that initiation(b) is maintained, and the postcondition trivially
holds. Otherwise, after the loop, Wupret(B′′) 	 ⊥ for all B′′ ∈ ¬I by contract.
Thus postt(Wu)  B′′ 	 ⊥ for all B′′ ∈ ¬I by Lemma 1. Hence postt(Wu) 	 I,
so consecution(b) is maintained for v after strengthening. Moreover, I  B 	 ⊥,
thus B is successfully blocked.

For blockseq, if Wv B 	 ⊥, then no strengthening is needed. If v is a root,
it is easy to see that initiation(b) is maintained, and the postconditions trivially
hold. Otherwise A′ is such that A′  pret(B) 	 ⊥ by contract, thus A  B 	 ⊥
by Lemma 1. Thus the interpolant I can be computed, and postt(A′) 	 I.
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Moreover, Wu 	 A′ by contract, thus postt(Wu) 	 postt(A′) by monotony
of post. Hence postt(Wu) 	 I, so consecution(b) is maintained for v after
strengthening. Moreover, I  B 	 ⊥, thus B is successfully blocked. �

5 Evaluation

We implemented a prototype version of Algorithm1 in Java as an instantiation
of the open source model checking framework Theta1. The only optimization
we applied in the implementation compared to the presented algorithm is how
coverage is handled: in the implementation, refine is only called if no covering
node is present. Moreover, we implemented the two interpolation-based refine-
ment strategies described in Algorithm 3.

For comparison, we also implemented a version of the lazy refinement algo-
rithm of [11] based on LU -bounds (a�LU , disabled). The main difference in our
implementation compared to [11] is that bounds are propagated from all guards
on an infeasible path, and not just from ones that contribute to the infeasibil-
ity. Because of this, refinement in the resulting algorithm is extremely cheap,
but as the comparison of our data with that of [11] suggests, for the examined
models, the algorithm is still at least as space- and time-efficient as the original
one. In some aspects, this refinement strategy is the opposite of interpolation
based refinement: it provides a very cheap, non-convex, specialized refinement
algorithm, as opposed to a relatively costly, convex, more general strategy. Apart
from the abstraction and refinement strategy used (a�LU , bin or seq), the three
implementations of Algorithm 1 are identical.

Table 1 reports the results of our experiments. It contains the execution time
(in seconds) and the final sizes of sets V and passed . The execution time is the
average of 10 runs, obtained from 12 runs by removing the slowest and the fastest
one. The input models are based on the PAT benchmarks2. For each model, the
more efficient of BFS and DFS was applied as search order, which is BFS for all
models except FDDI. We performed the measurements on a machine running
Windows 10 with a 2.6 GHz dual core CPU and 8 GB of RAM.

For CSMA, FDDI, Fischer and Lynch, the three algorithms generated and
expanded the same number of nodes. For FDDI, Fischer and Lynch, all three
algorithms are optimal in this sense: the number of expanded nodes equals the
number of distinct discrete states (plus one for FDDI), that is, clock variables
do not influence the size of the ASG.

With respect to execution time, Fischer and Lynch provide the worst cases for
our algorithm. The reason for the higher execution time despite the same number
of generated nodes is that for these two models, the more costly refinement
was not counterweighed by the smaller number of refinements performed, as
opposed to CSMA, where the interpolation-based algorithms performed (as our
logs showed) significantly less refinement steps. For FDDI, the three algorithms
performed the same small number of refinement steps each, which explains the
1 http://theta.inf.mit.bme.hu.
2 http://www.comp.nus.edu.sg/∼pat/bddlib/timedexp.html.

http://theta.inf.mit.bme.hu
http://www.comp.nus.edu.sg/~pat/bddlib/timedexp.html
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Table 1. Comparison of lazy reachability algorithms

Model a�LU bin seq

Time Nodes Passed Time Nodes Passed Time Nodes Passed

Critical 3 1.8 23428 4923 1.6 14377 3213 1.6 14075 3157

Critical 4 65.0 838213 130779 78.2 536733 83686 75.2 499245 78252

CSMA 9 6.6 99207 30476 7.3 99207 30476 7.9 99207 30476

CSMA 10 21.3 251749 78605 21.0 251749 78605 22.8 251749 78605

CSMA 11 61.4 625215 198670 58.9 625215 198670 63.8 625215 198670

CSMA 12 167.2 1525525 493583 168.7 1525525 493583 179.1 1525525 493583

FDDI 50 1.4 504 402 2.0 504 402 2.0 504 402

FDDI 70 2.9 704 562 3.5 704 562 3.7 704 562

FDDI 90 5.9 904 722 6.8 904 722 7.1 904 722

FDDI 120 12.9 1204 962 15.0 1204 962 15.4 1204 962

Fischer 7 1.9 31060 7737 2.8 31060 7737 2.8 31060 7737

Fischer 8 5.1 111825 25080 7.7 111825 25080 8.7 111825 25080

Fischer 9 21.3 395956 81035 29.0 395956 81035 32.4 395956 81035

Fischer 10 94.4 1382921 260998 133.2 1382921 260998 149.7 1382921 260998

Lynch 7 2.6 51570 9977 3.6 51570 9977 4.0 51570 9977

Lynch 8 7.7 179273 30200 12.2 179273 30200 13.9 179273 30200

Lynch 9 32.8 620236 92555 45.2 620236 92555 54.2 620236 92555

slight relative overhead of the interpolation-based algorithms. However, the three
algorithms scale in the same way.

A favorable case for our algorithm with respect to ASG size is provided by
the model Critical. For this model, the interpolation-based algorithms were able
to generate a 40% smaller ASG as a�LU , with a 15–20% relative overhead in
execution time. Among the two interpolation strategies, seq was somewhat more
efficient in both aspects.

We also evaluated the three methods under random search order. We used
FDDI as an input model, as this model is known to be sensitive to search order:
with the right abstraction and search order, it scales linearly in the number of
processes (as in Table 1), otherwise, it scales exponentially. The results of our
experiment are shown on the boxplot in Fig. 1, which depicts the ASG sizes for
50 random runs of each algorithm. As the boxplot suggests, the interpolation-
based refinement methods, and seq in particular, are less sensitive to search
order with respect to the size of the generated tree, and are better at recovering
from bad decisions during search.
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Fig. 1. ASG size for random search of FDDI 10

6 Conclusions

In this paper, we proposed a lazy reachability checking algorithm for timed
automata based on interpolation for zones. Moreover, we proposed two refine-
ment strategies, both a combination of forward search, backward search and
interpolation. We demonstrated with experiments that - even without the use of
extrapolation - the method is competitive with sophisticated non-convex abstrac-
tions in both execution time and memory consumption.

Future Work. As the method we proposed computes abstractions in terms
of zones, it is straightforward to combine it with existing zone-based abstrac-
tions for timed automata. In particular, we believe that a combination with
a�LU , disabled would potentially yield a more efficient method with no consid-
erable overhead, as backward propagation of LU -bounds is much cheaper than
the propagation of interpolants. In this setting, interpolation can be considered
as a further reduction on top of a�LU abstraction.

An interesting application of our approach would be to apply it to more
expressive variants of timed automata, e.g. to automata with diagonal con-
straints in guards [6], or to updatable timed automata [5] with updates of the
form xi := c, xi := xi + c (shift), xi := xj (copy) or, more generally, even
xi := xj + c. As all these operations yield zones both for forward and backward
computation, with a generalization of pre and post, the approach becomes
directly applicable. Naturally, due to general undecidability and the lack of a
suitable extrapolation operator, termination can not be guaranteed in some of
these cases [5].

We note that by switching the role of pre and post in the algorithm, a variant
can be obtained that performs backward exploration in a lazy manner. Such an
algorithm might result in an interesting method for simple timed automata with
a restricted use of integer operations.
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There are also many possibilities for fine-tuning the proposed algorithm. For
example, the algorithm as described applies an aggressive covering strategy, as it
tries all possible nodes for coverage before expanding a node. The investigation
of more sophisticated covering strategies (e.g. forced covering as in [15]) might
yield better scaling with respect to execution time. Moreover, our current imple-
mentation is based on DBMs. The adaptation of the method to e.g. minimal
constraint systems is straightforward, and is possibly more efficient.
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Abstract. Delays in feedback control loop, as induced by networked
distributed control schemes, may have detrimental effects on control
performance. This induces an interest in safety verification of delay dif-
ferential equations (DDEs) used as a model of embedded control. This
article explores reachable-set computation for a class of DDEs featuring
a local homeomorphism property. This topological property facilitates
construction of over- and under-approximations of their full reachable
sets by performing reachability analysis on the boundaries of their ini-
tial sets, thereby permitting an efficient lifting of reach-set computa-
tion methods for ODEs to DDEs. Membership in this class of DDEs is
determined by conducting sensitivity analysis of the solution mapping
with respect to the initial states to impose a bound constraint on the
time-lag term. We then generalize boundary-based reachability analysis
to such DDEs. Our reachability algorithm is iterative along the time
axis and the computations in each iteration are performed in two steps.
The first step computes an enclosure of the set of states reachable from
the boundary of the step’s initial state set. The second step derives an
over- and under-approximations of the full reachable set by including
(excluding, resp.) the obtained boundary enclosure from certain convex
combinations of points in that boundary enclosure. Experiments on two
illustrative examples demonstrate the efficacy of our algorithm.

1 Introduction

The rapidly increasing deployment of cyber-physical systems into diverse safety-
critical application domains ranging from, among others transportation systems
over chemical processes to health-care renders safety analysis and verification for
these systems societally important. Formally, the safety verification problem can
often be reduced to a problem of deciding whether the system of interest may in
c© Springer International Publishing AG 2017
A. Abate and G. Geeraerts (Eds.): FORMATS 2017, LNCS 10419, pp. 281–299, 2017.
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its evolution touch a specified set of unsafe states [22,24,29]. Reachability analy-
sis, which involves computing appropriate approximations of the reachable state
sets, plays a fundamental role in addressing such safety verification challenges. It
usually employs either over-approximations (i.e., super-sets of the actual reach
set) to determine whether a system starting from legal initial states satisfies
some specified safety properties, or under-approximations (i.e., sub-sets [12]) to
detect falsification of safety properties by finding counterexamples1. The use of
such approximations instead of exact reach sets is justified by the fact that the
exact sets are generally not computable.

Ordinary differential equations (ODEs) are traditionally used for describing
system dynamics within continuous or hybrid-state feedback control loops. Con-
sequently, significant research has been invested in reachability analysis of such
dynamical systems. For the problem of computing over-approximations, signif-
icant advances have continuously been reported in the literature over the last
decades (e.g., [6,9,11,18–21,25]). For computing under-approximation, methods
have initially focused on linear systems (e.g., [14,17]), but recently, approaches
have been proposed to also tackle nonlinear systems (e.g., [8,12,15,28,30]).

ODEs are, however, an idealized model of the feedback dynamics in con-
trol systems. Simply conjoining the ODEs describing the plant dynamics with
the ODEs describing control laws may be misleading, as any delay introduced
into the feedback loop may induce significantly deviating dynamics. In practice,
delays are involved in sensing or actuating by physical devices, in data forwarding
to or from the controller, in signal processing in the controller, etc. An appro-
priate generalization of ODE able to model the delay within the framework of
differential equations is delay differential equations (DDEs), as originally sug-
gested by Bellman and Cooke for modeling physical, biological, and chemical
processes involving delayed dynamics [4].

DDEs are a class of differential equations where the time derivatives at the
current time depend on the solution and possibly its derivatives at previous
times as well. The presence of delayed dynamics may invalidate any stability
and safety certificate obtained on the related delay-free model, as delays may
significantly alter the overall shape of the system dynamics. This situation is
illustrated through the following simple example from [16] where arbitrarily small
delays have significant effect on state dynamics: the solution of the ODE

ẋ(t) + 2ẋ(t) = −x(t) (1)

is asymptotically stable, converging to the equilibrium point x = 0 from any
initial state. However, the solution of its corresponding DDE

ẋ(t) + 2ẋ(t − τ) = −x(t) (2)

is unstable for any positive delay τ . Therefore, taking time-delay terms into
account to either verify or falsify properties of systems by performing reachability

1 If the under-approximation intersects a given unsafe set, there is definitely at least
one of the trajectories entering the unsafe set, i.e., the system is definitely unsafe.
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analysis is not just desirable, but ought to be imperative for systems that are
more accurately modelled by DDEs, especially in safety-critical applications.

The problem of computing over- and/or under-approximations for the reach-
able sets of DDEs obviously is more challenging than for the proper sub-class of
ODEs. Recently, a set-boundary based reachability analysis method being capa-
ble of generating over- and under-approximations of reach sets of ODEs was
proposed in [29,30] making use of the homeomorphism property of the ODE’s
solution mapping. A homeomorphism is a bijection ψ from a topological space
X to a topological space Y with the property that the pre-image ψ−1(P ) is an
open subset in X if and only if P is an open subset in Y . An important property
induced by a homeomorphism from X to Y is that the homeomorphism maps
the boundary and interior points of Q onto the boundary and interior points of
ψ(Q), respectively. In this vein, the solution mapping to initial value problems
(IVP) featuring unique solutions is a homeomorphism between the space of ini-
tial values and that of values reached by the solution trajectory at any given time
t ≥ 0. Based on the observation that the DDE will converge to an ODE when
the time-lag term tends to zero, this motivates us to explore a class of DDEs
with solutions featuring a similar homeomorphism property and to generalize the
aforementioned set-boundary based reachability analysis method accordingly.

Membership of a given DDE in the class of DDEs exhibiting the necessary
homeomorphism property is determined by conducting a sensitivity analysis on
the solution mapping. This sensitivity analysis imposes a bound on the time-
lag term as the properties of the solution change when time-lag exceeds certain
bounds like the stability border. In an engineering process, this upper bound on
time-lag can be considered as an automatically derived design space constraint,
asking the development engineers for selection of appropriate components (sen-
sors, processors, actuators, communication networks) guaranteeing sufficiently
low latency in the feedback loop.

The main contributions of this paper is the generalization of the set-boundary
reachability analysis based method for ODEs to DDEs exposing the necessary
homeomorphism property, as detected by the sensitivity analysis. The reacha-
bility algorithm is iterative along the time axis and the computations in each
iteration are performed in two steps. First step computes an enclosure of the set
of states reachable from the boundary of the step’s initial state set. Second step
derives an over- and under-approximations of the full reachable set by including
(excluding, resp.) the obtained boundary enclosure from certain convex combi-
nations of points in this boundary enclosure. We demonstrate the efficacy of our
algorithm on two illustrative examples.

Related Work

As mentioned above, the reachability analysis to dynamic systems mod-
eled by delay differential equations (DDEs), especially for computing under-
approximations, is in its infancy and thus provides an open area of research.

Zou et al. proposed in [31] a safe enclosure method using interval-based
Taylor over-approximation to enclose a set of functions by a parametric Taylor
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series with parameters in interval form. To avoid dimension explosion incurred
by the ever-growing degree of the Taylor-series along the time axis, the method
depends on fixing the degree for the Taylor series and moving higher-degree
terms into the parametric uncertainty permitted by the interval form of the
Taylor coefficients, thereby being able to provide analysis of time-unbounded
solutions to DDE. In [23], Prajna et al. extended the barrier certificate method-
ology for ODEs to the polynomial time-delay differential equations setting, in
which the safety verification problem is formulated as a problem of solving sum-
of-square programs. The work in [13] presents a technique for simulation-based
time-bounded invariant verification of nonlinear networked dynamical systems
with delayed interconnections by computing bounds on the sensitivity of tra-
jectories (or solutions) to changes in initial states and inputs of the system. A
similar simulation method integrating error analysis of the numeric solving and
the sensitivity-related state bloating algorithms was proposed in [7] to obtain
safe enclosures of time-bounded reach sets for systems modelled by DDEs. In
the aforementioned work, however, the authors focused on over-approximating
reachable sets for systems modeled by DDEs with finite or infinite time horizon,
not touching on the problem of under-approximation methods of reachable sets
for DDEs as needed, e.g., in system falsification.

In this paper, we infer a class of DDEs with solution mappings featuring
an appropriate homeomorphism property with respect to initial states, where
membership in the class can be determined by sensitivity analysis. For such a
DDE, the boundary of the reachable set is maintained under dynamic evolution,
thereby enabling us to construct over- and under-approximations of reachable
sets by extending the set-boundary based reachability analysis method for ODEs
from [29,30].

Outline . We formulate the reachability problem of interest and give a brief
introduction into nonlinear control systems in Sect. 2. In Sect. 3, we expose a class
of delay differential equations featuring a desirable homeomorphism property for
its solutions and present our boundary-based reachability analysis algorithm for
computing over- and under-approximations of reachable sets respectively. Then
we illustrate our approach on two examples as well as discuss its impact in
Sect. 4. Finally, we conclude our paper in Sect. 5.

2 Preliminaries

In this section, we formally define the dynamical systems of interest and recall
the basic notion of reachability used throughout this paper. The following con-
ventions will be used in the remainder of this paper: the space of continuously
differentiable functions on X is denoted by C1(X ); for a set Δ, the decorations
Δ◦, Δc and ∂Δ represent its interior, complement, and boundary respectively;
vectors in the R

n as well as of functions are denoted by boldface letters. The set
of n × n matrices over the field R of real numbers is denoted by R

n×n.
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In this paper we consider systems that can be modelled by delay differential
equations (DDEs) of the form

ẋ =

{
g(x), if t ∈ [0, τ),x(0) ∈ I0

f(x,xτ ), if t ∈ [τ,Kτ ],
(3)

where x(t) = (x1(t), x2(t), . . . , xn(t))
′ ∈ X , xτ = (x1(t−τ), x2(t−τ), . . . , xn(t−

τ))
′ ∈ X , X ⊆ R

n, K ≥ 2 is a positive integer, g : X �→ R
n describes the process

which the initial function is determined by the initial value x(0) ∈ I0, and I0 ⊂
R

n is a simply connected compact set and f : X × X �→ R
n is globally Lipschitz

continuous over the variables x(t) and x(t − τ). Also, we require that g(x) ∈
C1(X ) and g : X �→ R

n satisfies the Lipschitz continuity condition w.r.t. the
variables x(t), guaranteeing that ẋ = g(x) with initial value x(0) = x0 ∈ I0 has
a unique solution on [0, τ ]. Therefore, Eq. (3) describes a deterministic process on
[0,Kτ ]. Besides, we assume that max norms ‖∂f(x,y)

∂x ‖max and ‖∂f(x,y)
∂y ‖max of

the matrices ‖∂f(x,y)
∂x ‖ and ‖∂f(x,y)

∂y ‖ are uniformly bounded for any combination
of x ∈ X and y ∈ X , i.e.,

∂f(x,y)
∂x

‖max ≤ M, ‖∂f(x,y)
∂y

‖max ≤ N, (4)

where M and N are positive real numbers.
Given System (3) with an initial set I0, and a finite time duration t, where

0 ≤ t ≤ Kτ and K ≥ 2 is a positive integer, the set of allowable initial functions
selected by g(x) is just a set of solutions of the ordinary differential equation
(ODE) ẋ = g(x) initialised in I0 w.r.t. the time interval [0, τ ]. The trajectory
of System (3) is defined to be φ(t;x0) = x(t), where x(t) is the solution of
System (3) that satisfies the initial condition x(0) = x0 at time instant t = 0. In
addition, we define the reachable set of a given initial set I0 for any time t ≥ 0
and its corresponding over- and under-approximations as follows.

Definition 1. The reachable set Ω(t; I0) at time t ≥ 0 is a set of states visited
by trajectories originating from I0 at time t = 0 after time duration t, i.e.

Ω(t; I0) = {x : x = φ(t;x0),x0 ∈ I0}.

Definition 2. An over-approximation of the reachable set Ω(t; I0) is a set
O(t; I0), where Ω(t; I0) ⊆ O(t; I0). In contrast, an under-approximation U(t; I0)
of the reachable set is a nonempty subset of the reachable set Ω(t; I0).

Notice that from Definition 2, the over-approximation O(t; I0) is an enclosure
s.t. ∀x0 ∈ I0 : φ(t;x0) ∈ O(t; I0) holds, where 0 ≤ t ≤ Kτ . On the other hand,
the under-approximation U(t; I0) is a nonempty set s.t. ∀x(t) ∈ U(t; I0) : ∃x0 ∈
I0 : x(t) = φ(t;x0).

Aiming at computing over- as well as under-approximations, we wish to
extend the set-boundary based reachability method for ODEs from [30] to DDEs.
This method relies on the fact that the solution mapping is a homeomorphism
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and thus preserves set boundaries, permitting to retrieve safe over- and under-
approximations from enclosures of the dynamic images of the boundaries of the
initial set. The solution mappings of DDEs in the form of Eq. (3), however, need
not be homeomorphisms. Hence, we devote ourselves to exposing a class of sys-
tems of the form (3) with solution mappings having that desirable property. We
study, in this paper, the following problems:

Problem 1. Which class of systems characterized by Eq. (3) has solution map-
pings forming a homeomorphism?

Problem 2. How can we efficiently compute over- and under-approximations
of the reachable set for the systems described in Problem 1 if the initial set
I0 is a simply connected compact set?

2.1 Nonlinear Control Systems

Nonlinear control systems are characterized by the presence of nonlinear ele-
ments in the right-hand side of the characterizing differential equation. Such
non-linearities may stem from both the system under control (i.e., the plant)
and the controller itself. Ordinary differential equations (ODEs) are tradition-
ally used to model the continuous behaviour of such systems. In general, the
nonlinear control systems that are modeled by ODEs with a control input are
of the following form

ẋ(t) = h(x(t),u(t)), (5)

where x(0) ∈ X0 ⊆ R
n, u(t) ∈ U ⊆ R

m, and X0, U are both compact sets. The
Eq. (5) is required to be (globally) Lipschitz-continuous and the input trajectory
u(·) : R

+ �→ U is required to be piecewise continuous so that a solution is
guaranteed to exist globally in the sense for all t ≥ 0. For convenience, we
denote the space of piecewise continuous functions from R

+ to U as P.
Let us denote the solution to System (5) for a given initial state and an input

trajectory by χ(t;x0,u(·)), where t ≥ 0, x(0) = x0 ∈ X0 and u(·) ∈ U is the
input trajectory within the time interval [0, t]. The reachable set at time t = r
can be defined for a set of initial states X0 and a set of input values U as

R(r) = {χ(r;x0,u) ∈ R
n|x0 ∈ X0,u ∈ P}.

Althoff’s approaches [1,3] are among the many methods for computation of
over-approximations of the reachable set R(r). Such methods can also be applied
to over-approximating the reachable set for cases involving DDEs of the form
(3) by regarding the delay term xτ as the time-varying uncertainty u (cf. [13]
for such an algorithm).

3 Reachable Sets Computation

This section mainly focuses on solving Problem 1 and Problem 2 as presented
in Sect. 2. Firstly, we address Problem 1 by conducting sensitivity analysis on
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the solution mappings φ(t; ·) w.r.t. the initial states for DDEs of the form of
Eq. (3). This facilitates imposition of a bound constraint on the time-lag term
such that the homeomorphism property is guaranteed. Then, addressing Prob-
lem 2, we generalize the set-boundary based method for reachability analysis
of [29,30] to the computation of safe approximations of reach sets for systems
of the form (3). This way, we can construct over- and under-approximations of
their reachable sets.

3.1 Sensitivity Analysis Theory

For a system governed by the ODE

ẋ = g(x),

where t ∈ [0, τ ], its flow mapping φ(t;x0) as a function of x0 is differentiable
w.r.t. the initial state x0, if g ∈ C1(X ) and g is Lipschitz continuous. The
sensitivity of solutions at time t ∈ [0, τ ] to initial conditions is defined by

sx0(t) =
∂φ(t;x0)

∂x0
, (6)

where sx0(t) is a square matrix of order n. The (i, j)th element of sx0 basically
represents the influence of variations in the ith coordinate x0,i of x0 on the jth

coordinate xj(t) of φ(t;x0). To compute the sensitivity matrix, we first apply
the chain rule to get the derivative of sx0 w.r.t. time [10], as follows:

d

dt

∂φ(t;x0)
∂x0

= Dg(φ(t;x0))
∂φ(t;x0)

∂x0
,

which yields the ODE
ṡx0 = Dgsx0

describing evolution of sensitivity over time, where Dg is the Jacobian matrix of
vector field g along the trajectory φ(t;x0). This equation is a linear time-varying
ODE and the relevant initial value sx0(0) is the identity matrix I ∈ R

n×n.

Remark 1. From the definition of the sensitivity matrix sx0(t), we observe that
sx0(t) is also the Jacobian matrix of the mapping φ(t; ·) : I0 �→ Ω(t; I0), where
t ∈ [0, τ ].

Lemma 1. There exists a τ∗ > 0 such that the determinant of sensitivity matrix
sx0(t) in Eq. (6) is different from zero for any t ∈ [0, τ∗].

For the proof of Lemma1, please refer to the Appendix. Assume that the
solution mapping φ(t;x0) of System (3) for time ranging over t ∈ [(k − 1)τ, kτ ]
and the state variable x0 ∈ I0, could be equivalently reformulated as a continu-
ously differentiable function of the state variable x((k − 1)τ) in Ω((k − 1)τ ; I0)
and the time variable t ∈ [(k − 1)τ, kτ ] , i.e.,

φ(t;x0) = ψk−1(t;x((k − 1)τ), (k − 1)τ),
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where k ∈ {1, . . . , K − 1}, and x((k − 1)τ) = φ((k − 1)τ ;x0). Also assume the
determinant of the Jacobian matrix of the mapping ψk−1(t;x((k−1)τ), (k−1)τ)
w.r.t. any state x((k−1)τ) ∈ Ω((k−1)τ ; I0) is not zero for any t ∈ [(k−1)τ, kτ ].
Then, we deduce what follows. For its proof, please refer to the Appendix.

Lemma 2. Given the above assumptions, the sensitivity matrix sx(kτ)(t) =
∂x(t)

∂x(kτ) , t ∈ [kτ, (k + 1)τ ], for System (3) satisfies the following linear time-
varying ODE:

ṡx(kτ) =
∂f(x,xτ )

∂x
sx(kτ) +

∂f(x,xτ )
∂xτ

∂xτ

∂x(kτ)
, (7)

where ṡx(kτ) = dsx(kτ)

dt , and sx(kτ)(kτ) = I ∈ R
n×n.

From the definition of the sensitivity matrix sx(kτ)(t) = ∂x(t)
∂x(kτ) together

with the fact that its determinant is not equal to zero, the solution mapping
φ(t; ·) : I0 �→ Ω(t; I0) for t ∈ [kτ, (k + 1)τ ] could be formulated equivalently
as a continuously differentiable function of the state variable x(kτ) ∈ Ω(kτ ; I0)
for any fixed t ∈ [kτ, (k + 1)τ ], and this mapping from Ω(kτ ; I0) to Ω(t; I0)
for t ∈ [kτ, (k + 1)τ ] is a continuously differentiable homeomorphism between
two topological spaces Ω(kτ ; I0) and Ω(t; I0). This assertion is formalized in
Corollary 1.

Corollary 1. If the determinant of the sensitivity matrix sx(kτ)(t) w.r.t. any
state x(kτ) ∈ Ω(kτ ; I0) at time kτ is not zero for any t ∈ [kτ, (k + 1)τ ], then
φ(t;x0) for x0 ∈ I0 and t ∈ [kτ, (k + 1)τ ] could be equivalently reformulated
as a continuously differentiable function of the state variable x(kτ) ∈ Ω(kτ ; I0)
and the time variable t ∈ [kτ, (k +1)τ ], and the state x(t) = φ(t;x0) is uniquely
determined by the state x(kτ) for any fixed t ∈ [kτ, (k + 1)τ ], where x(kτ) =
φ(kτ ;x0).

3.2 Generating a Constraint Bounding the Time-Lag Term

According to what we discussed above, here, we will infer a class of DDEs of
the form (3), where the determinant of the corresponding sensitivity matrix
sx(kτ)(t) w.r.t. the state variable x(kτ) ∈ Ω(kτ ; I0) at time kτ is not zero for
t ∈ [kτ, (k + 1)τ ], and k = 0, . . . , K − 1. Such a class of equations is derived
by appropriately confining the time-lag term of the DDE (3), i.e., τ . In what
follows, first, we review the classical result about diagonally dominant matrices
from Varah [27].

If a matrix A ∈ R
n×n is strictly diagonally dominant, i.e.,

Δi(A) = |Aii| −
∑
j �=i

|Aij | > 0, with 1 ≤ i ≤ n,

where Aij is the entry in the ith row and jth column of the matrix A, then the
inverse of the matrix A satisfies the bound

‖A−1‖∞ ≤ max1≤i≤n
1

Δi(A)
.
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Note that, by convention, ‖ · ‖∞ is the maximum absolute row sum of a matrix.
Based on this classical result, we derive a constraint on the time-lag term τ
in System (3) rendering the sensitivity matrix mentioned in Lemma 2 strictly
diagonally dominant.

Assume that the sensitivity matrix sx((k−1)τ)(t) is strictly diagonally domi-
nant s.t.

‖sx((k−1)τ)(t)‖max ≤ R, (8)

max1≤i≤n
1

Δi(sx((k−1)τ)(t))
≤ ε, (9)

for any t ∈ [(k − 1)τ, kτ ], where k ∈ {1, . . . , K − 1}, ε > 1, and R > 1. Then, we
construct the bound constraint on the time-lag term τ as follows.

Lemma 3. Based on Eqs. (8) and (9), if the time-lag term is

τ ≤ min

{
ε − 1

ε(nMR + Nε)
,

lnR2+1
2√

n(2
√

nM + Nε)

}
,

where M and N are presented in Constraint (4), then sx(kτ)(t) for t ∈ [kτ, (k +
1)τ ] is strictly diagonally dominant with the property of ‖sx(kτ)(t)‖max ≤ R and
max1≤i≤n

1
Δi(sx(kτ)(t))

≤ ε.

Proof. Since the sensitivity matrix sx((k−1)τ)(t) is strictly diagonally dominant
and Eq. (9) holds, the inequality

‖s−1
x((k−1)τ)(t)‖∞ ≤ ε,

also holds, where t ∈ [(k − 1)τ, kτ ] and k ∈ {1, . . . , K − 1}. Accordingly, this
implies that ‖s−1

x((k−1)τ)(t)‖max ≤ ε. This way, according to Lemma 2, the sen-
sitivity matrix sx(kτ)(t) for t ∈ [kτ, (k + 1)τ ] w.r.t. the state x(kτ) satisfies the
sensitivity equation

ṡx(kτ) =
∂f(x,xτ )

∂x
sx(kτ) +

∂f(x,xτ )
∂xτ

∂xτ

∂x(kτ)
, with sx(kτ)(kτ) = I. (10)

In the following, we employ the comparison principle for ODEs to derive a
bound on the solution to Eq. (10).

Let
Md = max(k−1)τ≤t≤kτ

√
n(2

√
n‖A(t)‖max + ‖b(t)‖max),

Nd = max(k−1)τ≤t≤kτ

√
n‖b(t)‖max,

where A(t) = ∂f(x,xτ )
∂x and b(t) = ∂f(x,xτ )

∂xτ

∂xτ

∂x(iτ) . It is obvious that Md ≤√
n(2

√
nM + Nε) and Nd ≤ √

nNε.
We take the jth column of the sensitivity matrix sx(kτ)(t) and the matrix b(t)

as a vector y(t) and bj(t), where j ∈ {1, . . . , n}. Let u(t) = ‖y(t)‖22 = 〈y(t),y(t)〉
with u(kτ) = 1, where ‖y(t)‖2 is the 2-norm for y and 〈·, ·〉 is an inner product
in R

n.
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Based on Cauchy-Schwarz inequality and the fact that 2‖y‖2 ≤ ‖y‖22 +1, we
obtain

u̇ = 2〈y, ẏ〉 ≤ 2‖y‖2‖ẏ‖2 = 2‖y‖2‖A(t)y + bj(t)‖2 ≤ 2‖y‖2
2‖A(t)‖2 + 2‖y‖2‖bj(t)‖2

≤ 2‖A(t)‖2‖y‖2
2 + ‖bj(t)‖2(‖y‖2

2 + 1) ≤ Md‖y‖2
2 + Nd = Mdu + Nd. (11)

Applying Gronwall’s inequality [5] to Eq. (11), we deduce that

u(t) ≤ u0e
Md(t−kτ)+

∫ t

kτ

Nde
Md(t−s)ds=u0e

Md(t−kτ)+
Nd

Md
eMd(t−kτ)− Nd

Md
≤ Rd,

for kτ ≤ t ≤ (k + 1)τ , where u0 = u(kτ) = 1, and

Rd =
(

1 +
Nd

Md

)
eMdτ − Nd

Md
.

Therefore, ‖y(t)‖22 ≤ Rd for kτ ≤ t ≤ (k + 1)τ . By solving the inequality
Rd ≤ R2, we conclude that ‖sx(kτ)(t)‖max ≤ R for t ∈ [kτ, (k + 1)τ ] holds if

τ ≤ lnR2+1
2√

n(2
√

nM + Nε)
,

where the right side of this inequality could be gained when Md = Nd.
For the sensitivity matrix sx(kτ)(t) with t ranging in the interval [kτ, (k+1)τ ],

the diagonal element in the i-th row of the matrix sx(kτ)(t) is equal to

1 +
[
∂fi(x,xτ )

∂x

∂x

∂xkτ,i
+

∂fi(x,xτ )
∂xτ

∂xτ

∂xkτ,i

]
t=ξi

(t − kτ),

the element in the ith row and jth column is equal to[
∂fi(x,xτ )

∂x

∂x

∂xkτ,j
+

∂fk(x,xτ )
∂xτ

∂xτ

∂xkτ,j

]
t=ξj

(t − kτ),

where j ∈ {1, . . . , n}\{i} and ξl, for l = 1, . . . , n, is some value in (kτ, (k + 1)τ).
Thus Δi(sx(kτ)(t)) is larger than

1 − τ
n∑

j=1

∣∣∣∣∂fi(x,xτ )
∂x

∂x

∂xkτ,j
+

∂fi(x,xτ )
∂xτ

∂xτ

∂xkτ,j

∣∣∣∣
t=ξj

,

which in turn is larger than 1 − (nMR + Nε)τ .
By solving the inequality 1

1−(nMR+Nε)τ ≤ ε, we obtain that τ ≤ ε−1
ε(nMR+Nε) .

Therefore, if
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τ ≤ min

{
ε − 1

ε(nMR + Nε)
,

lnR2+1
2√

n(2
√

nM + Nε)

}
,

then ‖sx(kτ)(t)‖max ≤ R and max1≤i≤n
1

Δi(sx(kτ)(t))
≤ ε hold, and sx(kτ)(t) is

also diagonally dominant for t ∈ [kτ, (k+1)τ ] since τ ≤ ε−1
ε(nMR+Nε) , 1−(nMR+

Nε)τ > 0 holds. ��
Combining Lemmas 1 and 3, we deduce the following theorem.

Theorem 1. If the time-lag term of DDE (3) is

τ ≤ min

{
τ∗,

ε − 1
ε(nMR + Nε)

,
lnR2+1

2√
n(2

√
nM + Nε)

}
,

where τ∗ is from Lemma 1, then the solution mapping φ(t; ·) : I0 �→ Ω(t; I0) to
System (3) is a homeomorphism between two topological spaces I0 and Ω(t; I0)
for any t ∈ [0,Kτ ].

When the time-lag τ satisfies the condition presented in Theorem 1, the
homeomorphism property in Theorem 1 implies that the solution mapping
φ(t; ·) : I0 �→ Ω(t; I0) to System (3), where t ∈ [0,Kτ ], maps the boundary
and interior points of the initial set I0 onto the boundary and interior points
of the set Ω(t; I0) respectively. Therefore, the full reachable set induced by the
initial set of System (3) could be retrieved by computing the reachable set just of
the initial set’s boundary. We illustrate Theorem1 through the following exam-
ple involving a delay τ that could be caused by sensor circuitry. Determining a
bound on that delay could thus help facilitate the choice of appropriate sensors
such that the delay τ incurred satisfies the conditions of Theorem1.

Example 1. Consider a modified model of an electromechanical oscillation of a
synchronous machine,

ẋ =

{
g(x), if t ∈ [0, τ),x(0) ∈ I0

f(x,xτ ), if t ∈ [τ,Kτ ],
(12)

with x = (δ, w)′, xτ = (δτ , wτ ), g(x) = (g1(x), g2(x))′ = (0, 0)′, f(x,xτ ) =
(f1(x,xτ ), f2(x,xτ ))′ = (w, 0.2 − 0.7sinδτ − 0.05wτ )′, and I0 = [−0.5, 0.5] ×
[2.5, 3.5], K = 60 and X = [−100, 100] × [−100, 100]. Through simple calcula-
tions, we obtain that M = 1, N = 0.7, R = 2 and ε = 2.5, thus any τ ≤ 0.104
satisfies the condition in Theorem 1. In our experiments, we set τ = 0.1.

From the result illustrated in Fig. 1, we conclude that the corresponding
solution mapping φ(6; ·) : I0 �→ Ω(6; I0) maps the boundary and interior points
of the initial set I0 onto the boundary and interior points of the set Ω(6; I0)
respectively, as the homeomorphism property suggests.
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Fig. 1. An illustration of the reachable set for Example 1 at time t = 6.0 using sim-
ulation methods, (red, green, blue and yellow points – the approximate sampling
states reachable from the boundary subsets [−0.5, −0.5]× [2.5, 3.5], [0.5, 0.5]× [2.5, 3.5],
[−0.5, 0.5]× [2.5, 2.5] and [−0.5, 0.5]× [3.5, 3.5] respectively; black points – the approx-
imate sampling states reachable from the entire initial set). (Color figure online)

3.3 Constructing Reachable Sets

We in this section extend the set-boundary based reachability analysis method
of [29,30] for nonlinear control systems to reachability computations of System
(3) with a time-lag τ satisfying the conditions of Theorem 1. The reduction is
based on regarding the delayed state variable xτ in System (3) as a control input
u(t), and the confinement to set boundaries adds considerably to precision as it
significantly reduces the volume of the tube containing all such input trajectories
xτ . In our algorithm we obviously restrict the initial set I0 to a specific family
of computer-representable sets in the R

n such as polytopes.
Assume that the initial set’s boundary can be represented as an union of m

subsets from the respective family, that is, ∂I0 = ∪m
i=1I0,i. For t ∈ [0, τ ], the

system is governed by ODE ẋ = g(x). Therefore, we can apply any existing
reachability analysis technique for ODEs that is able to deal with reachability
computations with initial sets of forms such as polytopes, to the computation
of an enclosure B0,t of the reachable set for the initial set’s boundary ∂I0 at
time t ∈ [0, τ ], where B0,t = ∪m

i=1B0,i(t) and B0,i(t) is an over-approximation of
the reachable set at time t ∈ [0, τ ] starting from the set I0,i, for i = 1, . . . , m.
The corresponding over-and under-approximations of the reachable set at time
t could be constructed by including (excluding, resp.) the set B0,t from the set
obtained from convex combinations of points in B0,i(t), according to [30].

Based on these computations for the initial trajectory segment up to time τ ,
for t ∈ [kτ, (k+1)τ ], k = 1, . . . ,K−1, the following steps are used to compute its
corresponding over- and under-approximations of the reachable set respectively.

1. Firstly, we compute an enclosure Bk,i(t), for t ∈ [kτ, (k + 1)τ ], of the
reachable set Ω(t; I0,i) for System (3) with the initial set Bk−1,i(kτ) and
xτ ∈ Bk−1,i(t − τ). This enclosure can be computed by employing reacha-
bility analysis methods for nonlinear control systems of the form (5) with a
time-varying input u(t) = xτ ∈ Bk−1,i(t − τ). Therefore, Bk,t = ∪m

i=1Bk,i(t)
is an enclosure of the reachable set for the initial set’s boundary ∂I0 at time
t ∈ [kτ, (k + 1)τ ].
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2. Secondly, we construct a simply connected compact polytope Ok,t such that
it covers Bk,t. The set Ok,t is an over-approximation of the reachable set
Ω(t; I0) at time t ∈ [kτ, (k + 1)τ ] according to Lemma 1 in [30].

3. Thirdly, we construct a simply connected polytope Uk,t that satisfies two con-
ditions: (1) the enclosure of the reachable set from the boundary of the initial
set, i.e., Bk,t, is obtained to be a subset of the enclosure of its complement,
and (2) it intersects the interior of the reachable set Ω(t; I0). Then, accord-
ing to Lemma 2 in [30], Uk,t is an under-approximation of the reachable set
Ω(t; I0) at time t ∈ [kτ, (k + 1)τ ].

4 Examples and Discussions

In this section, we test our method on two examples of a two-dimensional sys-
tem and a seven-dimensional system. Our implementation is based on Althoff’s
continuous reachability analyzer (CORA) [2], which is a MATLAB toolbox for
prototype design of algorithms for reachability analysis. All computations are
carried out on an i5-3337U 1.8 GHz CPU with 4 GB running Ubuntu Linux
13.10.

Example 2. Consider a modified Lotka-Volterra two-variables system with a
delay τ , given by

ẋ =

{
g(x), if t ∈ [0, τ),x(0) ∈ I0

f(x,xτ ), if t ∈ [τ,Kτ ]
(13)

with x = (x, y)′, xτ = (xτ , yτ )′, g(x) = (g1(x), g2(x))′ = (y,−0.2x + y −
0.2x2y)′, f(x,xτ ) = (f1(x,xτ ), f2(x,xτ ))′ = (y,−0.2xτ + y − 0.2x2y)′, I0 =
[0.9, 1.1] × [0.9, 1.1] with ∂I0 = ∪4

i=1I0,i and X = [0.5, 3.5] × [0.2, 1.5], where
I0,1 = [0.9, 0.9] × [0.9, 1.1], I0,2 = [1.1, 1.1] × [0.9, 1.1], I0,3 = [0.9, 1.1] × [0.9, 0.9]
and I0,4 = [0.9, 1.1] × [1.1, 1.1].

In this example, the valuations M = 2.10, N = 0.2, R = 2 and ε = 2 fulfill
the condition in Lemma 3. Through simple calculations, τ = 0.01 satisfies the
requirement in Theorem 1. Also, K is assigned to 100, i.e. the entire time interval
is [0, 1.0]. The over- and under-approximation of the reachable set illustrated in
Figs. 2 and 3 are represented by polytopes. The computation time for computing
over- and under-approximations is 111.56 s.

Example 3. Consider a seven-dimensional system with a delay τ2,

ẋ =

{
g(x), if t ∈ [0, τ),x(0) ∈ I0

f(x,xτ ), if t ∈ [τ,Kτ ]
(14)

2 The delay-free system could be found in the Package CORA.
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Fig. 2. An illustration of the reachable set of the initial set’s boundary for Example 2
at time t = 1.0, (red curve – ∂O(1.0; I0,1); blue curve – ∂O(1.0; I0,2); green curve –
∂O(1.0; I0,3); yellow curve– ∂O(1.0; I0,4); black points – the approximate sampling
states reachable from the initial set I0 after time duration of 1.0, which are computed
using simulation methods). (Color figure online)
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Fig. 3. An illustration of the reachable set of initial set’s boundary for Example 2
at time t = 1.0, (red curve – ∂O(1.0; I0,1); blue curve – ∂O(1.0; I0,2); green curve –
∂O(1.0; I0,3); yellow curve – ∂O(1.0; I0,4); black curve – boundary ∂O(1.0; I0) of the
over-approximation obtained by our boundary method; black dash curve – bound-
ary ∂U(1.0; I0) of the under-approximation obtained by our boundary method; purple
curve – boundary ∂O(1.0; I0) of less tight over-approximation obtained by extrapolat-
ing the entire initial set rather than its boundaries). (Color figure online)

with x = (x1, . . . , x7)′, xτ = (x1,τ , . . . , x7,τ )′, g(x) = 0, f(x,xτ ) = (1.4x3 −
0.9x1,τ , 2.5x5 − 1.5x2, 0.6x7 − 0.8x3x2, 2.0 − 1.3x4x3, 0.7x1 − 1.0x4x5, 0.3x1 −
3.1x6, 1.8x6 − 1.5x7x2)′, I0 = [1.1, 1.3] × [0.95, 1.15] × [1.4, 1.6] × [2.3, 2.5] ×
[0.9, 1.1] × [0.0, 0.2] × [0.35, 0.55] and X = [0.5, 1.5] × [0.5, 1.5] × [1.0, 2.0] ×
[2.0, 3.0] × [0.5, 1.5, ] × [0.0, 0.5] × [0.0, 1.0].

The valuations M = 3.9, N = 0.9, R = 2 and ε = 9 fulfill the condition in
Lemma 3. Thus, τ ≤ 0.01 satisfies the requirement in Theorem 1. Also, τ and K
are assigned to 0.01 and 10 respectively, i.e., the entire time interval is [0, 0.1].

The computed over-approximation at time instant 0.1 is O(0.1; I0) =
[1.062, 1.302] × [1.001, 1.216] × [1.311, 1.529] × [2.099, 2.322] × [0.792, 0.989] ×
[0.022, 0.183]×[0.302, 0.516]. The computed under-approximation at time instant
0.1 is U(0.1; I0) = [1.113, 1.251] × [1.052, 1.165] × [1.362, 1.477] × [2.150, 2.271] ×
[0.843, 0.0.937] × [0.073, 0.132] × [0.353, 0.465]. The computation time for both
is 505.03 s. The projections for over-and under-approximations at time instants
t = 0.02, 0.04, 0.06, 0.08, 0.1 on the x1 − x2 space are illustrated in Fig. 4.
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Fig. 4. An illustration of the reachable set on the x1 −x2 space for Example 3 at times
t = 0.0, 0.02, 0.04, 0.06, 0.08, 0.1, (yellow solid line – the boundary of the initial set on
the x1 − x2 space at time instant t = 0.0; purple, red, green, blue and black solid
lines – the boundaries of over-approximations on the x1 − x2 space at time instants
t = 0.02, 0.04, 0.06, 0.08, 0.1 respectively; purple, red, green, blue and black dashed
lines – the boundaries of under-approximations on the x1 − x2 space at time instants
t = 0.02, 0.04, 0.06, 0.08, 0.1 respectively). (Color figure online)

From Fig. 2 that presents the approximation of the reachable set’s boundary
obtained by applying numerical simulation methods along with the set-boundary
based method to Example 2, it is further confirmed that the set-boundary based
method is able to produce a valid over-approximation of the reachable set’s
boundary when the delay-lag term τ satisfies the conditions in Theorem 1.
Furthermore, it is concluded from Fig. 3 that the set-boundary based method
as in Subsect. 3.3 is able to output validated over- and under-approximations
of the reachable sets. Also, the results in Fig. 3 demonstrate convincingly that
the set-boundary based method induces a smaller wrapping effect in performing
reachability analysis compared with extrapolating the entire initial set, since the
boundaries of the initial set definitely have much smaller volume than the entire
initial set. For Example 3, the approximations of the interval form as illustrated
in Fig. 4 are computed for the sake of reducing computational burden. Note that
the bound imposed for maintaining homeomorphism property applies to the
time-lag in the DDE only and is not a bound on the temporal horizon coverable
by reach-set computation, which can be arbitrarily larger if only the time-lag
suits the condition. The relatively small horizons in these examples are due to
the wrapping effect in the underlying reachability techniques, not the method
itself, as discussed below.

Next, we should point out that the positive aspect induced by this kind of
representation, is that they enable the analysis of some properties such as safety
and reliability by reasoning in the theory of linear arithmetic. On the other
side, they might not be the best representations of the reachable sets for non-
linear systems since the reachable sets of nonlinear systems modeled by ODEs
and DDEs may be far from being convex as demonstrated in Fig. 1, thereby
generating poor results when employing polytopes to characterize the reachable
sets. In order to remedy this shortcoming of conservativeness induced by poly-
topes, we will struggle to employ representations of more complex shapes such
as semi-algebraic sets in the construction of the reachable sets at the expense
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of computational efficiency. Another undesirable feature might be in our imple-
mentation, is due to the excessive use of previous state information to compute
the set of current reachable states from the boundaries of the initial set. In a
sense, while computing the set of reachable states at time t ∈ [kτ, (k + 1)τ ], the
entire reachable set of the past states within the time interval [(k − 1)τ, kτ ] is
used for the computations rather than the set of reachable states at just time
instant t − τ . Therefore, a large amount of spurious states not actually reach-
able at previous time from the boundaries of the initial set might be introduced,
significantly increase the wrapping effect. Due to constructing over- and under-
approximations by including (excluding, resp.) the obtained boundary enclosure
from certain convex combination of points, a pessimistic over-approximation of
the reachable sets from the boundaries of the initial set may reduce the tight-
ness of computed results accordingly. In order to circumvent this issue, we will
extend Taylor-model based reachability analysis for ODEs to the proposed class
of DDEs in the future work. Since Taylor models are functions being explicitly
dependent on time and state variables, this dependence enables the use of an
over-approximation associated with the reachable sets of the boundaries of the
initial set at previous time t−τ rather than within the time interval [(k−1)τ, kτ ]
to over-approximate the set of states reachable from the boundaries of the initial
set at current time t ∈ [kτ, (k + 1)τ ], thereby resulting in a significant reduction
in the wrapping effect.

Finally, we should point out that our method, in this paper, is suitable for
systems modeled by DDEs of the form (3) with solutions having homeomorphism
property. But, it is restricted to a class of DDEs with time-lag term τ satisfying
the conditions in Theorem 1. As a future work, we will expand such class of
systems by loosing bound constraints on τ . Also, in order to measure the con-
servativeness on such bounds, we plan to deduce constraints on τ such that the
solution to the associated system does not equip with homeomorphism property.
Besides, if such homeomorphism property fails, one feasible solution to compute
its over- and under-approximations of reachable sets is first to reformulate the
associated DDE as an ODE via the method of steps in [26] and then apply
the set-boundary based reachability analysis method of [29,30] to the obtained
ODE. However, the formulated ODE suffers an increase of space dimension over
reachability time of interest. We will investigate more about this in future work.

5 Conclusion

In this paper, we have exposed a class of delay differential equations (DDEs)
exhibiting homeomorphic dependency on initial conditions. Membership in this
class is determined by conducting sensitivity analysis of the solution mapping
with respect to the initial states, therefrom deriving an upper bound on the
time-lag term of the DDE thus ensures homeomorphic dependency. One of the
primary benefits of the existence of a corresponding homeomorphism is that
state extrapolation can be pursued from the boundaries of the initial set only,
rather than the full initial set, as the homeomorphism preserves boundaries and
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interiors of sets. As (appropriate enclosures of) the boundaries of the initial set
have much smaller volume, such an approach tremendously reduces the wrapping
effect incurred when using set-based state extrapolation on ODE with inputs as
a means for enclosing solutions to the DDE. Furthermore, it allows us to con-
struct an over- and under-approximations of the full reachable set by including
(excluding, resp.) the obtained boundary enclosure from certain convex combi-
nations of points in that boundary enclosure. We have illustrated the efficiency
of our method on two examples of dimension 2 and 7.
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by the CAS/SAFEA International Partnership Program for Creative Research Teams.
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Appendix

The Proof of Lemma 1

Proof. From Eq. (6), we obtain that

sij
x0

(t) = Iij + J ijt,

where J ij =
(
Dg(φ(t;x0))sx0(t)

)ij

t=τij

, τij lies between 0 and t, sij
x0

is the

(i, j)th element of the matrix sx0 and J ij is the (i, j)th element of the
matrix Dg(φ(t;x0))sx0(t) with t = τij . Also, since g(x) ∈ C1(X ), i.e. g(·) :
X �→ R

n is a continuously differentiable function, the element in the matrix
Dg = ∂g

∂x is bounded over an arbitrary compact set covering the reachable
set ∪t∈[0,τ1]Ω(t; I0) in the set X , where τ1 can be any number in (0, τ ] such
that ∪t∈[0,τ1]Ω(t; I0) ⊆ X . The bounded property also applies to the matrix
sx0(t). Consequently, a lower bound for all elements of the matrix J exists.
Thus, limt→0sx0(t) = I implies that there exists a τ∗ ∈ (0, τ1] s.t. the sensitiv-
ity matrix sx0(t) for t ∈ [0, τ∗] is diagonally dominant. The conclusion follows
from this fact. ��
The Proof of Lemma 2

Proof. Since the determinant of the Jacobian matrix of the mapping x(t) =
ψk−1(t;x((k −1)τ, (k −1)τ) w.r.t. any state x((k −1)τ) ∈ Ω((k −1)τ ; I0) is not
zero for t ∈ [(k − 1)τ, kτ ], then for any fixed t ∈ [(k − 1)τ, kτ ], the mapping

x(t) = ψk−1(t; ·, (k − 1)τ) : Ω((k − 1)τ ; I0) �−→ Ω(t; I0)

is a bijection and its inverse mapping from Ω(t; I0) to Ω((k − 1)τ ; I0) is contin-
uously differentiable. Thus, the sensitivity matrix sx(kτ)(t) for t ∈ [kτ, (k + 1)τ ]
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satisfies the sensitivity equation:

ṡx(kτ) =
∂f(x,xτ )

∂x
sx(kτ) +

∂f(x,xτ )
∂xτ

∂xτ

∂x(kτ)
,

with sx(kτ)(kτ) = I ∈ R
n×n. ��
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Abstract. In this paper, we present an algorithm for synthesizing cer-
tificates for safety of continuous time dynamical systems, so-called bar-
rier certificates. Unlike the usual approach of using constraint solvers
to compute the certificate from the system dynamics, we synthesize the
certificate from system simulations. This makes the algorithm applicable
even in cases where the dynamics is either not explicitly available, or
too complicated to be analyzed by constraint solvers, for example, due
to the presence of transcendental function symbols.

The algorithm itself allows the usage of heuristic techniques in which
case it does not formally guarantee correctness of the result. However,
in cases that do allow rigorous constraint solving, the computed barrier
certificate can be rigorously verified, if desired. Hence, in such cases,
our algorithm reduces the problem of finding a barrier certificate to the
problem of formally verifying a given barrier certificate.

1 Introduction

A common technique in formal verification is the reduction of a verification
problem to a constraint solving problem. A main limitation of such approaches
comes from theoretical and practical limitations of the decision procedures used
to solve the resulting constraints. In the case of continuous systems, this is
usually the theory of the real numbers which is undecidable as soon as periodic
function symbols, such as the sine function are allowed. Even in the polynomial
case, which is decidable [37], existing decision procedures are by far not efficient
enough to be able to solve realistic problems. In contrast to that, simulations of
continuous systems, approximating the solutions of the underlying differential
equations, are possible for systems far beyond those restrictions.

In this paper, we circumvent the constraint solving bottleneck by using an
approach that is data-driven instead of deductive: We use simulation data instead
of system dynamics as the main input for computing certificates. From a given
set of simulations we compute a candidate for a certificate. If this candidate
turns out to not to be a certificate for the system itself, we use a refinement loop
to run further simulations. In our concrete case, the certificates are formed by
so-called barrier certificates [29].

The algorithm uses optimization as its main workhorse. Here, we allow sub-
optimal results which enables the use of fast heuristic [22] and numerical [27]
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DOI: 10.1007/978-3-319-65765-3 17

http://orcid.org/0000-0003-1710-1513


304 S. Ratschan

optimization algorithms. In cases, where the system dynamics can be handled
by rigorous decision procedures, the final result can be rigorously verified. This
final verification step is then applied to a barrier certificate that is already given.
Hence it is a much easier problem than the computation of the barrier certifi-
cate itself. In our experiments, the non-verified results always turned out to
be mathematically correct. Moreover, the final rigorous verification step always
took negligible time. The experiments also show that the approach can compute
barriers for ordinary differential equations of a complexity that has been out of
reach for computation of barrier certificates up to now.

The structure of the paper is as follows: In Sect. 2 we define the problem
that the paper solves. In Sect. 3 we describe the general algorithmic framework.
In Sects. 4 and 5 we show how to concretize this framework into a working
algorithm, and in Sect. 6 we provide this algorithm. In Sect. 7 we describe our
implementation of the algorithm, in Sect. 8 we describe computational experi-
ments on several examples, and in Sect. 9 we discuss related work. Section 10
concludes the paper.

The research published in this paper was supported by GAČR grant GA15-
14484S and by the long-term strategic development financing of the Institute
of Computer Science (RVO:67985807). We thank Hui Kong for discovering a
significant mistake in an earlier version of the paper.

2 Problem Description

Definition 1. A safety verification problem is a tuple (Ω, f, I, U) where

– Ω ⊆ R
n (the state space of the safety verification problem),

– f : Ω → R
n, Lipschitz continuous (the vector field or dynamics),

– I ⊆ R
n (the set of initial states), and

– U ⊆ R
n (the set of unsafe states).

We want to verify that a given safety verification problem does not have a
solution of the ordinary differential equation ẋ = f(x) that leads from an initial
to an unsafe state. The corresponding decision problem is in general undecid-
able [1], and decidable only for very special cases [14]. Hence we head for an
algorithm that successfully solves benchmark problems.

The following object [29,36] certifies successful safety verification:

Definition 2. A barrier certificate of a safety verification problem (Ω, f, I, U)
is a differentiable function V such that

– ∀x ∈ I . V (x) < 0,
– ∀x ∈ U . V (x) > 0, and
– ∀x ∈ Ω . V (x) = 0 ⇒ (∇V (x))T f(x) < 0.

In this paper, we will introduce an algorithm that, for an arbitrary given
safety verification problem, tries to compute such a barrier certificate. If suc-
cessful, this implies safety:
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Property 1. If a safety verification problem (Ω, f, I, U) has a barrier certificate,
then there is no solution x : [0, T ] → Ω of the ODE ẋ = f(x) such that x(0) ∈ I
and x(T ) ∈ U .

Our approach is template based. That is, we introduce parameters into the
function V , resulting in a parametric function V (p, x) that we call template. This
reduces the problem of finding a barrier to the problem of finding parameter
values such that the template is a barrier. The template can have an arbitrary
form, but we will usually work with polynomial templates, that is, templates
of the form p0 +

∑
pix

i, where the x i are power products, and p0, p1, . . . are
parameters.

So, now we are left with the problem of finding a vector p of parameter values
such that ∀x ∈ I . V (p, x) < 0, ∀x ∈ U . V (p, x) > 0, and ∀x ∈ Ω . V (p, x) =
0 ⇒ (∇V (p, x))T f(x) < 0.

We denote the conjunction of these three constraints by Cf . The constraint
∃p Cf represents a decision problem in the theory of real numbers with quantifier
prefix ∃∀. In the polynomial case, this is decidable [37], function symbols such
as sin make the problem undecidable. However, even in the polynomial case,
in practice, existing decision procedures can only solve problems with a few
variables. Note also, that for a template with k parameters, this constraint has
n + k variables.

3 Algorithmic Framework

Even if the dynamics f is complex, it is usually possible to compute simulations
of the system behavior. That is, for a given x0 ∈ Ω and a time bound T ,
one can compute an approximation of the solution of the ordinary differential
equation ẋ = f(x) of length T , starting in x0. Simulation is an essential tool
in practical systems modeling, and approximation is usually taken into account
already during the modeling process. As a consequence such simulations often
describe the intended system behavior more accurately than even the precise
mathematical solution.

We will represent such simulations by pairs (s, s′) ∈ Ω × Ω, where s is the
starting point, and s′ is the endpoint of the simulation. We will call such pairs
simulation segments. The straightforward way of computing such a pair (s, s′)
is to fix s and a time bound T and then to compute s′ using simulation. Note
however, that it is also possible to do reverse simulation, that is to fix s′ and to
compute s by solving the ordinary differential equation ẋ = −f(x).

We will maintain a set S of such simulation segments. Our goal is to use
this set S for computing a solution p of the constraint Cf . For this we relax
the universal quantifiers to finite conjunctions. For the first two parts of the
constraint Cf we simply replace the set I bounding the universal quantifiers in
the first part with the set of all initial points in S, and the set U with the set of
all unsafe points in S. However, for the third part of Cf , due to the implication
occurring here, it does not suffice to replace the set Ω by a finite subset. This
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would allow trivial satisfaction of this implication using a parameter vector p
such that V (p, s) is non-zero for every element of this finite subset. Instead, we
use the observation, that the third part of Cf—which ensures a certain direction
of the vector field f on the zero set of the barrier—implies that no solution of
ẋ = f(x) may connect a point with negative value of V to a point with positive
value of V . The resulting constraints are:

–
∧

(s,s′)∈S,I(s) V (p, s) < 0,
∧

(s,s′)∈S,I(s′) V (p, s′) < 0
–

∧
(s,s′)∈S,U(s) V (p, s) > 0,

∧
(s,s′)∈S,U(s′) V (p, s′) > 0,

–
∧

(s,s′)∈S V (p, s) > 0 ∨ V (p, s′) < 0

We will call the conjunction of these constraints sampled constraint and will
denote it by CS . Clearly, this approximation of Cf by CS does not lose barrier
certificates:

Property 2. Cf implies CS .

Unlike the original constraint Cf , the sampled constraint CS does not contain
any quantifier alternation which makes it easier to solve. However, it may have
spurious solutions, that is, solutions that do not correspond to a solution of the
original constraint and that, hence, do not represent a barrier certificate

In order to handle such a situation, we use the following property:

Property 3. If S ⊆ S′ then CS′ implies CS .

So adding more segments to S does not weaken the approximation. To actu-
ally strengthen the approximation we use an algorithm based on the principle
of counter-example based refinement: The algorithm computes a solution of CS

that we will call barrier candidate, checks whether this barrier candidate is spu-
rious, and if yes, generates and adds a counter-example in the form of a new
simulation segment that refutes the given barrier candidate. If the barrier can-
didate is not spurious, we return the vector p which then represents a barrier
certificate.

The resulting algorithm looks as follows:

initialize S with some simulation segments
let p be s.t. p |= CS

while p 
|= Cf do
S ← S ∪ {(s, s′)}, where (s, s′) is a simulation segment with p 
|= CS∪{(s,s′)}
let p be s.t. p |= CS

return p

The algorithm leaves the concrete choice of the barrier candidate and counter-
example open. As it is, allowing an arbitrary choice of those objects, it does not
work. The main problem is a consequence of the fact that the space of barrier
candidates is uncountable. Computing an arbitrary barrier candidate, and then
removing this single barrier candidate does, in general, not make enough progress
in removing spurious barrier candidates1. Moreover, if the system dynamics f

1 Decision procedures for real closed fields, can circumvent this problem [15], due to
the fact that semi-algebraic sets possess an algorithmically computable finite cellular
decomposition [4].
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is non-polynomial, it is, in general, not possible to decide the satisfiability test
p |= Cf which is the termination condition of the algorithm.

In the next three sections we will design a variant of the above algorithm that
overcomes those problems. We will compute a barrier candidate p s.t. p |= CS

and a counter-example (s, s′) with p 
|= CS∪{(s,s′)} that ensure as much progress
of the algorithm as possible. As a side-effect we will also get a termination
condition for the refinement loop that represents a computable and practically
reliable replacement for the satisfiability test p |= Cf .

4 Computing a Barrier Candidate

The sampled constraint CS can have many solutions. Which one should we
choose? Certainly we should prefer non-spurious solutions that is, solutions that
also satisfy the original constraint Cf . Moreover, if a solution turns out to be
spurious, removing it should remove as many further spurious solutions as pos-
sible. We will work with the assumption, that those objectives will be fulfilled
by solutions that are as central as possible in the solution set of the sampled
constraint.

For this we replace the inequalities, that can be either satisfied or not, by a
finer measure [30]. Observing, that the right-hand side of every inequality is zero,
we base this measure on the value of the term on the left-hand side: This value
measures how strongly a given point p satisfies a greater-than-zero predicate. In
the case of a less-than-zero predicate, we can measure this by multiplying the
value of the term on the left-hand side by −1. Moreover, we replace conjunction
by the minimum operator and disjunction by the maximum operator in the style
of fuzzy logic.

The result is the function

min

⎧
⎨

⎩

mins∈I,(s,s′)∈S −V (p, s),mins′∈I,(s,s′)∈S −V (p, s′),
mins∈U,(s,s′)∈S V (p, s),mins′∈U,(s,s′)∈S V (p, s′),
min(s,s′)∈S max{V (p, s),−V (p, s′)}

⎫
⎬

⎭

which we maximize to find points that satisfy the constraint CS as strongly as
possible.

Now observe that template polynomials V (p, x) of the form p0 +
∑

pix
i are

linear in their parameters p0, p1, . . . . Hence, the result of substituting points s
and s′ for x in V (p, x) is a linear inequality of the form aT p < 0 with p being the
parameter vector (p0, p1, . . . ) and a being a vector of real numbers whose first
entry, resulting from the monomial p0, is the constant 1.

For a polynomial template and λ ≥ 0, V (λp, s) = λV (p, s). Hence, also the
above function scales in such a way, the corresponding optimization problem is
unbounded, and optimization algorithms will usually simply come up with larger
and larger values for the vector p. In other words, instead of optimizing for our
goal of being as much as possible in the solution set of the sampled constraint
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this formulation optimizes for large parameter values which, in turn, result in
large values of V (p, s). We avoid this by constraining the (max)-norm of the
vector p to not to exceed 1.

However, even then, minimizing a linear term aT p enforces large distance
from the boundary of the solution set of CS , if ||a|| is small, and vice versa.
For avoiding this, we normalize the terms, resulting in aT

||a||2 p. This amounts to
computation of the Chebyshev center [2], that is, the center of the largest ball
contained in the solution set2.

So we solve the optimization problem

max
||p||≤1

FS(p)

where FS(p) is the minimax function above with all linear terms normalized by
dividing them with the 2-norm of their coefficients.

Property 4. FS(p) > 0 iff p |= CS

Hence, a positive result of the optimization problem gives us a solution of the
sampled constraint. By optimizing further, we get solutions that are as central
as possible in the solution set of CS , hence also increasing the chances of finding
a solution of the original constraint Cf .

5 Computing a Counter-Example

The solution p of the sampled constraint CS might be spurious, that is, it might
not satisfy the original constraint Cf . If the computed solution is spurious, we
generate a counter-example, that is, a new simulation segment (s, s′) s.t. p does
not satisfy the strengthened sampled constraint CS∪{(s,s′)}. However, this con-
straint should not only refute the computed barrier candidate p, but as many
further spurious solutions as possible. The techniques from the previous section,
that is, maximizing FS instead of computing an arbitrary solution of CS , allevi-
ates the problem. However, in addition, we also want to add a simulation segment
(s, s′) that removes as many spurious solutions as possible.

For this we again translate the constraint solving problem of finding a
counter-example into an optimization problem. However, searching for a strong
violation of CS∪{(s,s′)} by searching for a simulation segment (s, s′) s.t. FS∪{(s,s′)}
is minimal, is an ODE-constrained optimization problem. Such problems are
notoriously difficult to solve. In order to avoid this, we work with the original
constraint Cf , instead.

We have a fixed barrier candidate p and look for an x violating one of the
individual parts of Cf . By looking for an x violating one of the individual parts
of Cf as much as possible we hope to construct a counter-example not only for

2 Note that due to the disjunction, we do not have a polyhedron here. Still, this
formulation models the Chebyshev center.
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the given spurious candidate p, but for as many further spurious candidates as
possible.

Applying the constraint-to-function transformation already described in the
previous section to the three parts of the constraint Cf , we arrive at the functions

min{−V (p, x) | x ∈ I},
min{V (p, x) | x ∈ U}, and
min{−(∇V (p, x))T f(x) | V (p, x) = 0, x ∈ Ω}.

.

However, the third entry does not fully correspond to the original intention of
the corresponding constraint: Its task is to measure, whether all solution of the
ODE crossing the zero level set {x | V (p, x) = 0} do so in the correct direction.
This direction should be independent wrt. scaling of f(x) or ∇V (x). In order
to normalize those factors, we replace the objective function −(∇V (p, x))T f(x)
with the objective function

− ∇V (p, x)
||∇V (p, x)||

T
f(x)

||f(x)|| .

As a result, we have three optimization problems,

– minx∈I FI(p, x), where FI(p, x) := −V (p, x),
– minx∈U FU (p, x), where FU (x) := V (p, x), and

– minx∈Ω,V (p,x)=0 F∇(p, x) where F∇(p, x) := − ∇V (p,x)
||∇V (p,x)||

T f(x)
||f(x)|| .

Compared to the problem from the previous section, where the search space is
the parameter space, and the state space was discretized, here p is fixed, and we
search in the original state space Ω.

Denoting the endpoint of a solution of length T of the ODE ẋ = f(x) starting
in x0 by φ(x0, T ), we have:

Property 5. Let x ∈ I with FI(p, x) < 0. Then for all T ≥ 0, p 
|= CS∪{(x,φ(x,T ))}.

Property 6. Let x ∈ U with FU (p, x) < 0. Then for all T ≥ 0, p 
|=
CS∪{(φ(x,−T ),x)}.

Property 7. Let x be such that V (p, x) = 0 and F∇(p, x) < 0. Then there is a
T ∗ > 0 s.t. for all 0 < T ≤ T ∗, p 
|= CS∪{(φ(x,−T ),φ(x,T ))}.

So we add simulation segments approximating (x, φ(x, T )), (φ(x,−T ), x),
and (φ(x,−T ), φ(x, T )), respectively. In the case of (φ(x,−T ), φ(x, T )) we have
to be careful to not to do too long simulations, due to the upper bound T ∗ in
Property 7.

6 Resulting Algorithm

initialize S with some simulation segments
(cand, cntrxpl) ← check(S)
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while ¬[cand = ⊥ ∨ ctrxpl = ∅] do
S ← S ∪ cntrxpl
(cand, cntrxpl) ← check(S)

if cand = ⊥ then return “no barrier found”
rigorously verify cand optional verification step
return cand

subalgorithm check(S): returns barrier candidate and counter-example
let p be s.t. FS(p) is as large as possible compute a barrier candidate
if FS(p) ≤ 0 then return (⊥, ∅) no barrier candidate found
let xI ∈ I be s.t. FI(p, xI) is as small as possible
let xU ∈ U be s.t. FU (p, xU ) is as small as possible
let x∇ ∈ Ω be s.t. V (p, x∇) = 0 and F∇(p, x∇) is as small as possible
m ← min{FI(p, xI), FU (p, xU ), F∇(p, x∇)}
if m ≥ 0 then return (p, ∅) no counterexample found
return (p, {(s, s′)}) where

(s, s′) =

⎧
⎨

⎩

a forward simulation from xI , if m = FI(p, xI)
a backward simulation from xU , if m = FU (p, xU )
a forward/backward simulation from x∇, if m = F∇(p, x∇)

Note that here we only need values for which the objective functions are
large (small, respectively). We do not insist on a lower bound of the minimiza-
tion problem (upper bound on the maximization problem, respectively), let alone
a decision procedure. This allows the use of various heuristic optimization tech-
niques [22] that even can be applied in cases where finding a precise optimum
is impossible due to non-decidability issues, for example, due to non-polynomial
system dynamics f occurring in F∇.

Also observe that the optimization of FS(p) is a search problem of the para-
meter space dimension k, and the computation of xI , xU , and x∇ is a search
problem of the state space dimension n. In contrast to that, directly solving
original constraint Cf is a problem in dimension n + k.

The final step of rigorously verifying the barrier candidate, that is, verifying
p |= Cf , is a problem in state space dimension n, as well. Due to the strategy of
optimizing for a barrier candidate, the computed candidate will usually satisfy
Cf robustly. Hence, even in undecidable cases, this allows the application of
procedures that exploit robustness [31].

7 Implementation

In the section, we show how the optimization problems and the final verification
step of the algorithm from the previous section can be solved in practice.

As described in Sect. 4, FS(p) is linear in p. However, it contains a min/max
alternation which is beyond the capabilities of usual numerical optimization
algorithm. The key to solving this constraint is the observation that the min/max
operators occurring within FS(p) are finite. Hence the optimization problem can
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be rewritten to the following constrained optimization problem: Maximize δ
under ∧

(s,s′)∈S,I(s) −V (p, s) ≥ δ,
∧

(s,s′)∈S,I(s′) −V (p, s′) ≥ δ,
∧

(s,s′)∈S,U(s) V (p, s) ≥ δ,
∧

(s,s′)∈S,U(s′) V (p, s′) ≥ δ, and
∧

(s,s′)∈S V (p, s) ≥ δ ∨ −V (p, s′) ≥ δ.

This is an optimization modulo theory [26,33] problem in the theory LRA (linear
real arithmetic).

For minimizing FI(p, x), FU (p, x), and F∇(p, x) one can use classical numer-
ical optimization [27]. Since such methods do local search, they may run into
local, but non-global optima. To search for global solutions one can start several
optimization runs from random starting points which is also known under the
term multi-start [23]. Note that this is trivial to parallelize efficiently.

For the final rigorous verification step, one can use a simple branch-and-
bound approach, evaluating the terms V (p, x) using interval arithmetic [25],
checking the inequalities of Definition 2 on the resulting intervals, and using
splitting to tighten the bounds, if necessary.

8 Computational Experiments

We did experiments with a prototype implementation of the method described
so far. The prototype requires the state space, set of initial states and the set
of unsafe states to have the shape of a hyper-rectangle. We initialize the set
S by forward simulations from all vertices of the initial hyper-rectangle and
backward simulations from all vertices of the unsafe hyper-rectangle. Due to this
initialization, our prototype implementation does not check barrier candidates
for violations of the first two conditions of Definition 2, and indeed, even without
such a check, the computed barriers do not violate those conditions.

For each example, we set the lengths of all simulations manually to a certain
constant σ that we show below. Moreover, we cancel simulations that leave a
bloated version of the state space. Here, we simply bloat each interval bound of Ω
by a certain percentage from its distance from the interval center: bloat([a, a]) =
[a+a

2 − b(a+a
2 − a), a+a

2 + b(a − a+a
2 )] = [ (1+b)a+(1−b)a

2 , (1−b)a+(1+b)a
2 ]. In our

experiments, we use b = 1.1.
The examples that we used are:

1. a standard ODE modeling a pendulum with normalized parameters (e.g.,
Kapinski et al. [18], Example 1), where the variable x models the angle of the
pendulum, and y models angular speed.

ẋ = y
ẏ = − sin x − y

Ω = [−10, 10] × [−10, 10], I = [−10, 10] × [8, 10], U = [−10, 10] × [−10,−5],
σ = 0.5
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2. dynamics from [5, Example 5]

ẋ = y + (1 − x2 − y2)x + ln(x2 + 1)
ẏ = −x + (1 − x2 − y2)y + ln(y2 + 1)

Ω = [−5, 5] × [−5, 5], I = [1, 3] × [−1.5, 3.0], U = [−3,−0.6] × [1, 3], σ = 1
3. a standard Lorenz system [38], see also [6, Example 7]

ẋ = 10(y − x)
ẏ = x(28 − z) − y
ż = xy − 8

3z

Ω = [−20, 20] × [−20, 0] × [−20, 20], I = [−14.8,−14.2] × [−14.8,−14.2] ×
[12.2, 12.8], U = [−16.8,−16.2] × [−14.8,−14.2] × [2.2, 2.8], σ = 0.1

4. composition of trivial dynamics (variable x1) and pendulum (variables x2

and x3)
ẋ1 = 1
ẋ2 = x3

ẋ3 = −10 sin x2 − x3

Ω = [−10, 10]3, I = [9, 10] × [−10, 10]2, U = [−10,−9] × [−10, 10]2, σ = 0.1
5. scalable example, manually constructed

ẋ1 = 1 + 1
l (

∑
i∈{1,...,l} xi+1 + xi+2))

ẋ2 = x3

ẋ3 = −10 sin x2 − x2

. . .
ẋ2l = x2l+1

ẋ2l+1 = −10 sin x2l − x2

Ω = [−10, 10]2l+1, I = [9, 10] × [−10, 10]2l, U = [−10,−9] × [−10, 10]2l, σ =
0.1, with l = 1

6. same as Example 5, but l = 2
7. same as Example 5, but l = 3
8. same as Example 5, but l = 4

All experiments were executed on a notebook with Intel(R) Core(TM) i7-
5600U CPU @ 2.60 GHz and running Ubuntu Linux 16.10. For simulation we
used the software package CVODE version 2.5.0 from the SUNDIALS suite of
solvers. For optimizing FS(p) we use the tool OptiMathSAT [34]. For minimizing
FI(p, x), FU (p, x), and F∇(p, x) we use the function sqp from the software pack-
age GNU Octave 4.0.3 which implements the optimization method of sequential
quadratic programming. We globalized this method by multi-start with 16 local
optimization runs. For the final rigorous verification step, we use our software
RSolver (http://rsolver.sourceforge.net) which extends a basic interval branch-
and-bound method with interval constraint propagation.

We list the results in Table 1. Here, the column “dim” denotes the problem
dimension and “templ” denotes one of the following templates:

http://rsolver.sourceforge.net
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Table 1. Results of experiments

dim templ iter simulation candidate counter-example verif

1 2 Q 10 0.24 1.2 8.21 0

2 2 Q 5 0.11 0.25 5.7 0.41

3 3 T 10 0.3 1.01 17.03 0

4 3 L 1 0.02 0 1.07 0

5 3 L 1 0.01 0.01 1.21 0

6 5 L 1 0.14 0.36 3.51 0

7 7 L 1 1.06 7.38 7.67 0

8 9 L 1 15.81 1340.6 19.76 0.01

Q: p0 + p1x
2 + p2xy + p3y

2 + p4x + p5y
T: p0 + p1x

2 + p2x + p3y
L: the linear template p0 + p1x1 + · · · + pnxn with n being the state space

dimension

Moreover, the column “iter” denotes the number of iterations of the refine-
ment loop. Further columns denote the time spent in simulation, computation
of a barrier candidate, computation of a counter-example, and verification. The
time unit are seconds.

As can be seen, in all cases, the computed barrier could be rigorously verified.
Moreoever, the time needed to do so is negligible. The whole method scales to
higher-dimensional examples, but as the problem dimension increases, the opti-
mization module theory solver used to compute a barrier candidate is increas-
ingly becoming a bottleneck. Note that we used the solver as a black box, with
the original parameter settings.

To ensure verifiability of our results, we list the computed barriers:

1. 0.118462553528y2 − 0.011722981249xy− 0.709542580128y− 0.0550927673883x2 −
0.0586149062452x− 1

2. 0.408692986165y2 − 0.386033509251xy− 0.227005969996y + 0.0866893912879x2 −
0.925807829028x− 1

3. (−z) + 0.0862165171738x2 + 0.406513973333x− 0.668459116412
4. 0.12774317671 − x1

5. 6.94919072662 × 10−4x3 + 7.29701934574 × 10−4x2 − x1 + 0.127740909365
6. 0.00298446742425x5 − 0.00705872836204x4 − 0.00693382587388x3 +

0.00295825595803x2 − x1 + 0.100721787174
7. 0.00567387721155x7 + 0.00131139026963x6 + 0.00409187476431x5 −

0.00293955884622x4 − 0.00148234438362x3 + 0.0102405191466x2 − x1 +
0.0693868524466

8. 0.00474371409319x9 + 6.04082564889 × 10−4x8 + 0.00539357982978x7 −
3.62914727064 × 10−5x6 − 0.00305191611365x5 + 0.00234411670971x4 +
0.00308900495946x3 + 0.00766513576991x2 − x1 + 0.0526159036023
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9 Related Work

The original method for computing barrier certificates [29] was based on sums-
of-squares programming [28]. Since then, various further methods for computing
barrier certificates and inductive invariants of polynomials systems have been
designed [10,12,19,32,39,40].

To the best of our knowledge, there is only one method capable of comput-
ing barrier certificates for non-polynomial systems [6]. The method is not based
on simulation but uses interval-based constraint solving techniques, in a similar
way as we do in the final verification step, and in a similar way as the algorithm
implemented in RSolver [31]. This restricts the method to systems where such
techniques are available, which corresponds to those systems, where our algo-
rithm can do the final verification step. The method applies branching to both
the state and parameter space, whereas our algorithm, at a given time, always
searches only in one of the two. Instead of our method for computing barrier
candidates, the method guesses barrier certificates by simply trying midpoints
of intervals which can be very efficient if this guess happens to be lucky, but
very inefficient, if not. Especially, if the midpoint of the user-provided parame-
ter space already happens to be a barrier certificate, then the method succeeds
without any search. Unfortunately, the paper does not give any information on
the computed barriers, which makes comparison difficult.

The approach to generalize or learn system behavior from simulations has
been used before for computing Lyapunov functions [17,18] and for computing
the region of attraction [20]. Simulations can also be used to directly verify
system behavior [7–9,11]. For an overview of simulation-based approaches to
systems verification see Kapinski et al. [16].

In software verification, the usage of test runs was shown to be useful in the
computation of inductive invariants [13,35]. However, the problem and solution
are quite different from what we have here due to the discrete nature of both
time and data types occurring in computer programs.

Our algorithm can also be interpreted as an online machine learning [24]
process that learns a barrier certificate from simulations, querying for new simu-
lations to improve the barrier certificate. Moreover, the samples reachable from
an initial state or leading to an unsafe state can be interpreted as positive and
negative examples. However, here we do not have a classification problem due
to the third property of Definition 2.

10 Conclusion

In this paper, we have presented an approach for synthesizing barrier certifi-
cates from system simulations. The resulting method is able to compute barrier
certificates for ODEs that have been out of reach for such methods so far.

In the future we will increase the usability of the method by automatizing
the choice of the used template and by automatically adapting the length of
the computed simulation. We will also combine the method with falsification
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methods [21] that search for ODE solutions that lead from an initial to an
unsafe state. In such a combined method, falsification should exploit the result
of failed attempts at computing a barrier certificate and vice versa.
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Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 241–250.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-69407-6 28
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Abstract. TESL addresses the specification of the temporal aspects of
an architectural composition language that allows the composition of
timed subsystems. TESL specifies the synchronization points between
events and time scales. Methodologically, subsystems having potentially
different models of execution are abstracted to their interfaces expressed
in terms of timed events.

In this paper, we present an operational semantics of TESL for con-
structing symbolic traces that can be used in an online-test scenario:
the symbolic trace containing a set of constraints over time-stamps and
occurrences of events is matched against concrete runs of the system.

We present the operational rules for building symbolic traces and illus-
trate them with examples. Finally, we show a prototype implementation
that generates symbolic traces, and its use for testing.

Keywords: Heterogeneity · Synchronicity · Timed behaviors

1 Introduction

The design of complex systems involves different formalisms for modeling their
different parts or aspects. The global model of a system may therefore consist
of a coordination of sub-models that use differential equations, state machines,
synchronous data-flow networks, discrete event models and so on. This raises
the interest in architectural composition languages that allow for “bolting the
respective sub-models together”, along their various interfaces, and specifying
the various ways of collaboration and coordination. Figure 1 shows a conceptual
diagram of such a heterogeneous system model.

The Ptolemy project [10] was one of the first to provide support for mixing
heterogeneous models. More recently, the GEMOC initiative [9] has been putting
the focus on the development of techniques, frameworks and environments to
facilitate the creation, integration, and automated processing of heterogeneous
modeling languages. While Ptolemy follows a generic approach to architectural
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Fig. 1. A heterogeneous timed system

composition, the BCOoL language [20] is more specifically targeted at coordina-
tion patterns for Domain Specific Events, which define the interface of a domain
specific modeling language.

Our interest in architectural composition has a particular emphasis on sub-
systems involving time and timed behavior. In contrast to BCOoL, which trans-
lates its coordination patterns into CCSL (Clock Constraints Specification Lan-
guage, see [11,15]), we target TESL (Tagged Events Specification Language,
see [6]), a language that we designed to allow the specification of durations as
differences between tags, and not only as a number of occurrences of an event.
This model of time is close to the time in the MARTE [1] profile, or in the
Tagged Signal Model [14]. This allows us to coordinate systems with different
forms of time that flow at different rates.

The TESL language, which was developed in the ModHel’X [12] heteroge-
neous simulation platform, was originally targeted only at the timed coordi-
nation of sub-models during the simulation of heterogeneous models. It allows
sub-systems to live in different “time islands” by supporting the notion of time
scale and of relations between the speed at which time elapses for different clocks.
TESL is totally synchronous and focuses on causality between events and syn-
chronization on time scales. Causality is expressed in statements such as: “event
X should occur now because event Y occurs now”. Synchronization is expressed
in statements such as: “event X should occur because time reaches t on the time
scale of a clock”. This can be used to coordinate the execution of models that
have different notions of time (physical time, angular position, distance) that
flow at different rates, which are in the most general case only loosely coupled
and can even accelerate.

In this paper, we extend our simulation framework to a verification frame-
work: we present a novel test method establishing that the time coordination of
some sub-models, as it is actually implemented in a given system, conforms to
the specification modeled in TESL. Since an enumerative model-checking app-
roach is impossible for real-time systems and infeasible for practical discrete time
systems, we develop a novel operational semantics geared to the symbolic exe-
cution of TESL specifications. If the latter is run in parallel to a system under
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test (SUT), symbolic traces containing variables for instants of time, constraints
over time scale relations, and causal conditions, can be instantiated following the
reactions of the SUT, refining the current constraints to produce a new specifi-
cation conforming to input stimulus. The approach has been implemented in a
novel prototype tool, for which we will present early experimental results.

2 An Introduction to TESL

The Tagged-Event Specification Language (TESL) [6] is a declarative language
designed for the specification of the timed behavior of discrete events and their
synchronization. Event occurrences (aka ticks) are grouped in clocks, which give
them a time-stamp (aka a tag) on their own time scale. Tags represent the occur-
rence of the event at a specific time. The tag domains used for time must be
totally ordered; typically, they are reals, rationals, integers, as well as the single-
ton Unit, which is used for purely logical clocks where time does not progress.

TESL allows for specifying causality and time scales between clocks, basically
by three main classes of constraints.
Event-triggered implications. The occurrence of an event on one clock might
trigger another one: “Whenever clock a ticks, clock b will tick under conditions”.
For instance, to model the fact that the minutes hand of a watch moves every
minute, we will say that the min clock implies the move clock.
Time-triggered implications. This kind of causality enforces the progression of
time. The occurrence of an event triggers another one after a chronometric delay
measured on the time scale of a clock. For instance, in order to specify that the
min clock ticks every minute, we can require that clock min implies itself with
a time delay of 1.0 measured on its time scale. It is important to note that this
delay is a duration (a difference between two tags) and not a number of ticks.
Tag relations. When all clocks are combined in a specification, each of them
lives in its own “time island”, with a potentially independent time scale. The
purpose of tag relations is to link these different time scales. For instance, time
runs 60 times as fast on clock sec as on clock min. This does not mean that the
faster clock has more ticks, it only means that in any given instant, the tags of
these clocks are in a ratio of 60. In general, TESL allows for fairly general tag
relations (permitting even acceleration or slow-down); for the sake of simplicity,
we will present only affine tag relations throughout this paper; this reduces the
complexity of constraint-solving to handling linear equation systems.

Here is a TESL specification for the examples above:

1 rational-clock sec
2 rational-clock min sporadic 0.0
3 unit-clock move
4 tag relation sec = 60.0 * min
5 min implies move
6 min time delayed by 1.0 on min implies min
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Fig. 2. Two partially satisfying runs

Lines 1 to 3 declare clocks sec and min with rational tags, and clock move
with the unit tag. The constraint sporadic enforces a tick on min with tag 0.
Line 4 specifies that time on sec flows 60 times as fast as on min. Line 5 requires
that each time the min clock ticks, the move clock ticks as well. Line 6 forces
clock min to be periodic with period 1.0, specifying that it ticks every minute.
The grammar of such expressions is detailed in Subsect. 3.2.

TESL is a specification language that defines the set of possible execution
traces or runs of a global system. In Fig. 2 we present two of them; runs are
presented by ticks (solid rectangles) timestamped with tags (small numbers) on
the time-scales of the clocks sec, min and move; additionally, they are grouped
in a sequence of synchronization instants (dashed rectangles).

Note that an infinity of other runs satisfy this specification, both from an
architectural point of view (runs with additional clocks) and from a behavioral
point of view (runs with additional ticks or instants). For instance, Fig. 2(b)
shows a run with an additional tick on move, which may correspond to a move-
ment of the minute hand caused by setting the time on the watch.

The original TESL simulator only computes “minimal” runs, as shown in
Fig. 2(a), which makes its interpretation deterministic. Since our objective is to
turn TESL into a specification language for timed behaviors, we consider not
only minimal runs of the system, but any run of a given specification.

For more information about TESL and more application-oriented examples
involving multiform time and heterogeneous time scales, see the TESL gallery;
its engine ignition example1 may be the most illustrative one.

3 Operational Semantics

In this section, we define an operational semantics of TESL for deriving all
possible runs satisfying a given TESL specification. The operational semantics
works with a specification of the future of the run, and instantiates it in the

1
http://wdi.supelec.fr/software/TESL/, http://wdi.supelec.fr/software/TESL/GalleryEngine.

http://wdi.supelec.fr/software/TESL/
http://wdi.supelec.fr/software/TESL/GalleryEngine
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present instant, which incrementally builds a set of constraints on the runs. This
process also extends the specification of the future when a choice for the present
has consequences in the future because of time delayed implications.

3.1 Runs

We describe the execution of a model as a sequence of instants, each instant
being a map from clocks to event occurrences. The latter are represented by a
boolean indicating the occurrence and a time tag which gives the date of the
occurrence. Such a sequence of instants is called a run. More formally, we define:

K set of clocks K1,K2, . . .

B booleans

T =
⊎

K∈K

TK universe of tags, with TK the domain of tags of clock K

Σ = K → (
B × T

)
set of instants

Σ∝ = N
+ → Σ set of runs

ρn nth position (instant) in the run ρ ∈ Σ∝

where
⊎

is the disjoint union operator. Informally, some tag type conditions
apply: for a given instant σ ∈ Σ, a clock K maps to an event occurrence with a
fixed tag domain TK .

Additionally, we define two projections to extract the components of an
instant for a given clock:

ticks(σ(K)) ticking predicate of clock K at instant σ ∈ Σ (first projection)
tag(σ(K)) tag value of clock K at instant σ ∈ Σ (second projection)

For instance, if we write ρ as the run in Fig. 2(a), we have

ticks(ρ1(sec)) = false ticks(ρ1(min)) = true

tag(ρ1(min)) = 0.0 tag(ρ1(move)) = ()

3.2 TESL Specifications

A TESL specification ϕ is a set of atomic constraints that must all be satisfied
by a conforming run. To simplify notations, we write them as conjunctions, and
we ignore clock types and some operators of the full TESL. Here is a grammar:
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ϕ ::= 〈atom〉 ∧ · · · ∧ 〈atom〉
〈atom〉 ::= 〈clock〉 sporadic 〈tag〉

| 〈clock〉 sporadic 〈tag〉 on 〈clock〉
| tag relation 〈clock〉 = 〈tag〉 × 〈clock〉 + 〈tag〉
| 〈clock〉 implies 〈clock〉
| 〈clock〉 time delayed by 〈tag〉 on 〈clock〉 implies 〈clock〉

〈clock〉 ∈ K

〈tag〉 ∈ T

We also define the subset of sporadic specifications as follows:

Sporadic(ϕ) = {ϕatom ∈ ϕ | ϕatom is a sporadic atom}
The expression c1 sporadic τ on c2 is a generalization of the sporadic statement.
It means that clock c1 has to tick in an instant where time is τ on the time scale
of c2. Therefore c1 sporadic τ is the same as c1 sporadic τ on c1.

3.3 Primitives for Run Contexts

Symbolic runs are defined by run contexts constructed from a set of constraint
primitives introduced below. Run contexts may contain variables that can be
arbitrarily instantiated; instances of symbolic runs with ground terms are called
concrete runs.

Definition 1 (Run context). A run context Γ is a set containing constraint
primitives of the following kind:

K ⇑n clock K is ticking at instant index n

K �⇑n clock K is not ticking (idle) at instant index n

K ⇓n x clock K has timestamp (tag) x at instant index n

x1 = α × x2 + β affine relation between x1 and x2 with constants α, β

where symbols x, x1, x2 can be variables or tag constants in T.

Note that a symbolic run can be instantiated as an infinite number of concrete
runs. We give below the interpretation of symbolic runs as concrete runs:

�Γ � =
⋂

γ∈Γ

�γ�

�K ⇑n� =
{
ρ ∈ Σ∝ | ticks(ρn(K)) is true

}

�K �⇑n� =
{
ρ ∈ Σ∝ | ticks(ρn(K)) is false

}

�K ⇓n τ� =
{
ρ ∈ Σ∝ | tag(ρn(K)) = τ

}

�τ1 = α × τ2 + β� =
{
ρ ∈ Σ∝ | τ1 = α × τ2 + β

}

It is possible to construct run contexts that contain contradictory primitive
constraints. They are interpreted as the empty set reflecting the fact that they
do not denote any concrete run. We observe the following:
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Lemma 1. The consistency of a context Γ – i.e. whether �Γ � �= ∅ – is decidable.

Proof sketch. The affine relations described above belong to the class of linear
arithmetic problems which are known to be decidable for integers and rationals,
using Fourier-Motzkin elimination. The propositional part is a SAT problem and
their combination remain decidable.

3.4 Configurations of the Execution Process

We now define the machinery for constructing symbolic runs. We chose to treat
TESL as a logic of resources, where some TESL formulae (such as sporadic,
which denotes a single event occurrence) are consumed, while others (such as
implies, which denotes a permanent constraint) are persistent. Processing these
formulae produces additional constraint primitives, which refine the shape of
satisfying symbolic runs.

The rules of our operational semantics relate configurations of our symbolic
execution process, similarly to triples in a Hoare logic. Configurations consist of:

n current simulation step index
Γ run context containing primitives, describing the “past”
ψ TESL-formula to satisfy in the “present”
ϕ TESL-formula to satisfy in the “future” of the process

and are formally introduced in:

Definition 2 (Configuration). A configuration is a tuple (Γ, n, ψ, ϕ) that we
write as Γ |=n ψ � ϕ

The operational semantics can be seen as an abstract machine, in which a con-
figuration corresponds to an abstract state comprising the past (Γ ), present (ψ)
and future (ϕ) of the symbolic run under construction. Intuitively, the abstract
machine constructs a symbolic run by refining the current configuration via the
actions:

1. moving or duplicating parts from the future to the present (introduction)
2. then, consuming the present to produce the past (elimination)

3.5 Execution Rules

The execution rules of our abstract machine are defined by the → relation, which
we decompose into →i and →e to identify introduction and elimination rules.

Introduction Rule for Instant Initialization. We build a run by adding
instants to it. Initializing an instant makes time progress by copying constraints
(defined in Subsect. 3.2) from the future to the present. Sporadic constraints are
moved (consumed) rather than copied. Initializing an instant consists of:
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– checking that the present constraints of the previous instant have been con-
sumed (i.e. ψ = ∅)

– copying permanent constraints from ϕ to ψ
– moving sporadic constraints from ϕ to ψ

This is defined by rule instanti, whose goal is to initialize a new instant.

Γ |=n ∅ � ϕ →i Γ |=n+1 ϕ �
(
ϕ − Sporadic(ϕ)

)
(instanti)

As an instant has been created, ψ contains instantaneous constraints that are
pending to be instantiated into Γ . We now give reduction rules to eliminate
formulae from ψ, adding constraints in Γ for the current instant n.

Elimination Rules for sporadic-on. Formula K1 sporadic τ on K2 con-
strains K1 to tick when the time on K2 is τ . K sporadic τ is syntactic sugar for
K sporadic τ on K. Such a constraint can be satisfied in the current instant,
or postponed to a future instant. We therefore have two elimination rules for it:

Γ |=n ψ ∧ (K1 sporadic τ on K2) � ϕ

→e Γ |=n ψ � ϕ ∧ (K1 sporadic τ on K2)

(sporadic − one1)

Γ |=n ψ ∧ (K1 sporadic τ on K2) � ϕ

→e Γ ∪
{

K1 ⇑n

K2 ⇓n τ

}
|=n ψ � ϕ

(sporadic − one2)

Elimination Rule for tag relation. An affine tag relation has to be satisfied
at every instant by adding a constraint on the tags of the corresponding clocks:

Γ |=n ψ ∧ (tag relation K1 = α × K2 + β) � ϕ

→e Γ ∪
⎧
⎨

⎩

K1 ⇓n tagn
K1

K2 ⇓n tagn
K2

tagn
K1

= α × tagn
K2

+ β

⎫
⎬

⎭ |=n ψ � ϕ

(tagrele)

where tagn
K1

and tagn
K2

are symbolic values, which will be instantiated with
ground values in concrete runs.

Elimination Rules for implies. An implication is satisfied at every instant,
either by forbidding a tick on the master clock (rule impliese1), or by making the
slave clock tick also (rule impliese2):

Γ |=n ψ ∧ (K1 implies K2) � ϕ →e Γ ∪ {
K1 �⇑n

} |=n ψ � ϕ (impliese1)

Γ |=n ψ ∧ (K1 implies K2) � ϕ →e Γ ∪
{

K1 ⇑n

K2 ⇑n

}
|=n ψ � ϕ (impliese2)
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Elimination Rules for time delayed implication
K1 time delayed by δt on K2 implies K3 means that whenever K1 ticks, K3

will tick after a delay of δt measured on the time scale of K2. It can be satisfied
either by forbidding a tick on K1 (with primitive K1 �⇑n), or by making K1 tick
and adding the corresponding sporadic-on constraint to the future formula ϕ:

Γ |=n ψ ∧ (K1 time delayed by δt on K2 implies K3) � ϕ

→e Γ ∪ {
K1 �⇑n

} |=n ψ � ϕ

(time − delayede1)

Γ |=n ψ ∧ (K1 time delayed by δt on K2 implies K3) � ϕ

→e Γ ∪
{

K1 ⇑n

K2 ⇓n tagn
K2

}
|=n ψ � ϕ ∧ (

K3 sporadic (tagn
K2

+ δt) on K2

)

(time − delayede2)

3.6 Termination of a Simulation Step

A simulation step consists in building the next instant of the symbolic run by:

1. initializing an instant with reduction →i (uniquely defined by rule instanti);
2. eliminating all ψ-subformulae using →e elimination rules until ψ = ∅.

A simulation step is more formally defined as a reduction rule, with · the com-
position of relations, and →∗

e the reflexive transitive closure of →e:

→� := {(Γ1 |=n ∅ � ϕ1) →i · →∗
e (Γ2 |=n ∅ � ϕ2) | Γ1 and Γ2 are consistent}

(simulation)

Note that we add a consistency constraint on Γ -contexts as we are interested
in symbolic runs that have concrete instances. Indeed, reductions given by →
are purely syntactical and do not take into account the constraints in Γ . For
instance, →e allows adding K1 ⇑n to a context that already contains K1 �⇑n.

The termination of the computation of one simulation step →� is ensured by
the termination of →e, because the number of formulae in ψ strictly decreases
when a rule is applied. Moreover, whenever ψ is not empty, there is at least one
applicable elimination rule, so when →∗

e terminates, ψ is necessarily empty and
we can proceed with the next simulation step.

Following the specification given as an example in Sect. 2 (denoted as ϕ0),
we illustrate the use of our operational rules in Fig. 3. We start with an empty
symbolic run and show the two first simulation steps on the left hand-side. Then
we focus on the first step and provide the underlying reduction details on the
right-hand side. This step is decomposed into the application of the introduction
rule instanti, then a sequence of elimination reductions (sporadic − one2, tagrele,
impliese2, time − delayede1), until irreducibility.
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Fig. 3. Detail of the reduction steps of the operational semantics
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4 Heron: A Solver for TESL Specifications

Since the operational semantics can be seen as an abstract execution machine, its
implementation is conceptually straightforward. The resulting prototype solver,
called Heron2, is more general than the original deterministic TESL solver since
it is not restricted to “minimal” runs. It consists of approximately 2500 lines
of Standard ML code, and is compiled with MLton [22]. Heron is a standalone
command-line interpreter, which takes a TESL specification as input and pro-
duces prefixes of satisfying symbolic runs, written in the Value-Change Dump
format [3]. The solver is complete in the sense discussed in Subsect. 3.6, i.e. it
produces all satisfying runs up to a fixed step index. Assuming that the ‘future’
formula contains no contradiction, this means that the satisfying symbolic runs
have instances which are exactly the prefixes of all satisfying concrete runs.

Heron can be used in four modes:

Exhaustive exploration. The non-deterministic nature of our semantics allows
multiple choices for deriving runs. By default, they are all explored when no
specific simulation policy is given. In this mode, state-space explosion emerges
quickly.

Minimal fast simulation. Several heuristic policies are provided to restrict the
state-space, among them, the “minimal run strategy” mimics the original TESL
simulator by making events occur as early as possible, and only when mandatory
(a clock does not tick unless an implication or a sporadic constraint forces it to
tick). These policies turn Heron into an execution engine targeted at specific
kinds of runs.

Scenario monitoring. The state-space can also be restricted by the behavior of
a concrete system under test (SUT) observed at its interfaces (see Fig. 1). The
observed behavior — both from the interface of system components and from
the architectural glue — is checked against the TESL specification.

Scenario testing. For testing, scenario monitoring is extended with the concept of
distinguished driving-clocks, for which Heron can produce tagged event instances
that are consistent with the current constraint-set (it essentially picks an instance
at each instant among the consistent instances). These event-instances can be
converted into suitable stimuli for the SUT (however, we have currently not yet
implemented a driver for this).

In the following, we discuss the monitoring scenario in more detail and then
refine it into a kind of input-output conformance [19] test scenario.

4.1 Conformance Monitoring and Error Detection

The Heron solver can be used as an online monitoring tool, permitting to tackle
the infinite number of possibilities for concrete test-runs at all possible instants.
The conformance monitoring scenario makes the following assumptions:
2 Heron is distributed as free software at https://github.com/heron-solver/heron.

https://github.com/heron-solver/heron


A Symbolic Operational Semantics for TESL 329

1. we assume the monitor has an access to the SUT interfaces (see Fig. 1) via a
driver that abstracts observations into tagged events on clocks;

2. we assume that the computing time of the driver and of Heron can be
neglected with regard to the execution time of the SUT, and

3. we assume that the system is output deterministic; i.e after an initialization
of the SUT by the tester, it is possible to track the state of the SUT by only
observing its inputs and outputs [8].

The idea for the monitoring scenario is to filter out the branches in the set of
runs maintained by Heron that are no longer compatible with the behavior of the
system, as observed through the interfaces. If the SUT produces a behavior that
does not conform to the specification, the solver will fail to produce a satisfying
configuration and abort.

A monitoring sequence is illustrated in Fig. 4. The solver first starts by gener-
ating all satisfying states (circled |=). It then keeps the states that are compatible
with the observed behavior of the SUT (plain circles), while dropping the other
ones (dashed grey circles). When the SUT produces a bad behavior (circled �|=),
the solver drops all of its states and finds none that match the behavior of the
SUT. No further simulation is possible.

Paths generated by Heron

|=

= |=

|= |= |=

|= |= |=

SUT

|=

|=

|=

�|=

Step 0
Conformance

Step 1
Conformance

Step 2
Conformance

Step 3
Violation

Fig. 4. Executing Heron and the SUT in parallel

Example: based on the specification shown in Listing 2 on page 3, we use the
@scenario directive to feed Heron with the observed behavior, and the @step
directive to take this behavior into account and update the reachable states:
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7 @scenario strict 1 min move
8 @step
9 @scenario strict 2 min move

10 @step
11 @scenario strict 3 move
12 @step
13 @scenario strict 4 min move
14 @step

For instance in Line 7, we tell Heron that we observed that clocks min and
move tick at instant 1. The strict option indicates that only the given clocks
tick, all the others remain idle in that instant. Alternatively, we could use:

9 @scenario strict 2 (min-> 1.0) move

to indicate that the tag on clock min at this instant is 1.0. This instantiates
the symbolic tag variable in the symbolic run with a concrete tag for clock min.
Thus, the observations on the concrete run of the SUT can be used to prune
execution branches that are not relevant for the future of the run.

In the above example, the solver finds 24 symbolic runs, among them the one
shown in Fig. 2(b):

@print
## Simulation result:

sec min move
[1] � ↑ 0.0 ↑
[2] � ↑ 1.0 ↑
[3] � � ↑
[4] � ↑ 2.0 ↑

The output shows a run containing four instants, with a timeline for each of
the specified clocks (sec, min, move). A ticking clock is depicted by the upwards
arrow (↑) with the associated time tag on the right. An idle clock is depicted by
the circled slash (�). If nothing is specified for a clock, it can either tick or not.

Property Violation. As long as the SUT produces behaviors for which the
solver does not detect a contradiction, the observed run “potentially conforms”
to the TESL specification. However, if a non-conforming behavior occurs, the
solver detects a contradiction in its constraint set. For instance, if in step 3, clock
min ticks but clock move does not, we have:

7 @scenario strict 1 min move
8 @step
9 @scenario strict 2 min move

10 @step
11 @scenario strict 3 min
12 @step
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In this case, the solver detects the violation of the min implies move formula.

4.2 Input/output Conformance Testing

We consider online testing as an extension of online monitoring with a policy
for generating input stimuli on the fly. This policy explores the state space with
respect to a particular coverage criterion.

In order to use Heron as an online testing tool, the clocks that are considered
as inputs must be declared as driving-clocks:

7 @driving-clock move

After this declaration, Heron may be instrumented by:

8 @event-solve 2

which leads to the invocation of a constraint solver (Lemma 1) for step 2, which
by default choses for the driving clocks, an input that satisfies the constraints.
More sophisticated generation policies could be implemented.

Conformance: if the future of a configuration (see Subsect. 3.4) becomes empty
or stable, the observed run “fully conforms” to the TESL specification. A (future)
specification is stable, if it represents a Buchi-automaton producing an infinite
behaviour such as:

min time delayed by 1.0 on min implies min

which represents an infinite stream of event occurrences, each separated from
the previous one by a 1.0 time delay measured on the time scale of clock min.
For the moment, we only have an incomplete set of patterns to characterize
stable specifications. Moreover, we cannot conclude if we do not reach such a
configuration during the test, which corresponds to the classical inconclusive
situation in conformance testing.

4.3 Performance

We give some benchmarks that were made on a conventional laptop computer
with an Intel CoreTM i5-2520M CPU @ 2.50GHz and 8 GB of RAM. They are
based on examples provided by the official gallery of TESL and fully logged
in Table 1. They highlight the state-space explosion for exhaustive paths, while
depicting the feasibility of scenario monitoring of a SUT.
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Table 1. Time (in sec or min:sec) and memory usage (in kB) with respect to a given
policy and a fixed number of simulation steps for several examples of the TESL gallery

Example Policy and steps

Exhaustive Minimal Run SUT Monitoring

1 2 3 4 1 2 3 4 1 2 3 4

HandWatch Time 0.02 0.00 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

Memory 2412 3124 6464 10264 2592 2512 3220 3220 2496 3236 3892 5768

LightSwitch Time 0.00 0.06 3.20 10:02.81 0.00 0.00 0.01 0.02 0.00 0.02 0.04 0.11

Memory 3132 9872 288120 4029676 3172 5300 7088 7064 3180 7080 8140 12444

ConcurrentComp Time 0.00 1.77 10:26.32 Timeout 0.02 0.06 0.08 0.06 0.02 0.23 1.19 3.27

Memory 7064 145208 4029688 7120 7916 7856 7860 7136 15956 68864 121884

LeapYears Time 0.01 3.24 15:12.41 Timeout 0.05 0.06 0.07 0.08 0.01 0.52 1.12 1.53

Memory 8320 217688 4029792 8356 8384 8260 8360 8332 39832 39820 39884

Engine Time 0.00 0.03 0.32 8.34 0.00 0.01 0.01 0.01 0.00 0.02 0.04 0.08

Memory 3212 7752 20728 342240 3300 4780 6628 7196 3252 7384 8044 8460

5 Conclusion

We have presented the Tagged Event Specification Language (TESL) to specify
the timing behavior at the interfaces of components of an heterogeneous system.
We have defined its operational semantics by a set of symbolic evaluation rules,
permitting the construction of symbolic representations of infinite sets of timed
behaviors (runs). We have shown how our semantics leads naturally to an imple-
mentation of a solver that can be used to monitor and test the architectural glue
of heterogeneous systems with timed behavior.

The introduction of driving-clocks (see Subsect. 4.2) paves the way for the
distinction between mere observations of the SUT (and their relative check of
conformance) and the stimulation by timed inputs consistent with the constraint
set that is monitored in a particular symbolic run. This gives TESL the flavor of
an input-output automaton or labelled transition system for which a well-known
theoretic testing framework exists [19] which also has been extended to timed
behavior [13,17]. Due to their proximity to model-checking, these frameworks
are usually restricted to discrete time and cannot treat causality. To overcome
the former limitation, an entire research community emerged under the label
online testing [2] which discusses techniques based on symbolic execution in
parallel to test execution. Our work can be seen as a form of online testing for
heterogeneous timed systems with arbitrary linear relations between time scales.

Related Work. The TESL language is sourced from different ideas. It origi-
nally started as a complementary approach to the CCSL specification language,
by keeping purely synchronous logical clocks, while adding support for time tags
and time scale relations as described in the Tagged Signal Model [14], which
allows specifying the occurrence of events after a chronometric delay. The origi-
nal solving algorithm relies on a constructive semantics in the style of the Esterel
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synchronous language [5]. Compared to CCSL, the restriction to purely synchro-
nous constraints in TESL comes from the necessity to compute time tags, which
is not possible when asynchronous relations give only precedence constraints on
event occurrences. The style of executable semantics we give in this article is
similar to [23] but we abstract time with symbols while preserving the bounded
computability of the run state-space.

The idea of a timed architectural composition language is conceptually simi-
lar to orchestration languages for web-services, for example BPEL [4] and more
formal treatments thereof such as [21]. BPEL is designed to organize and syn-
chronize a set of communication threads, called conversations. In contrast to
TESL, BPEL-like languages allow for dynamic thread creation and therefore a
dynamic evolution of channels and interfaces; however, they are not designed to
treat time, duration, and causality of possibly periodic events.

Future Work. A strengthening of both foundational as well as practical aspects
of the TESL language is desirable. Although the operational semantics has been
carefully designed, there is no formal proof of the inherent logical consistency
of the rule set: to this end, a denotational version is currently under develop-
ment (which assures consistency by construction) in Isabelle/HOL [16] which
could serve as a reference in a validity proof of these rules (which thus become
derived). This would allow also pave the way to describe the exchange of data
between sub-components, either process-oriented [18] or program-oriented [7].
Furthermore, the conformity of a SUT to a spec S can only be established when
the possible futures becomes either trivial or stable. For now, this can only by
decided for certain patterns based on an automata-based reasoning. The deno-
tational semantics may help to find a less ad-hoc characterization of “stability”
based on co-induction. On the practical side, we wish to explore more refined
heuristics to monitor and test heterogeneous systems with Heron.
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Abstract. Today’s Real-Time Systems’ (RTSs) increasing speed and
complexity make debugging of timing related faults one of the most
challenging engineering tasks. Debugging starts with capturing the fault
symptoms, which requires continuous cycle-accurate execution traces.
However, due to limitations of on-chip buffers’ area and output ports’
throughput, these cannot be obtained easily.

This paper introduces an approach that divides the tracing into two
tasks, monitoring on-chip execution to retrieve accurate timing informa-
tion and high level functional simulation to retrieve signal contents. A
semi-formal cycle-accurate reconstruction method uses these two sources
to retrieve a complete, cycle-accurate trace of a given signal. An experi-
ment illustrates how this method allows the cycle-accurate reconstruction
of on-chip traces of a Real-Time Autonomous-Guided-Vehicle software.

1 Introduction

Locating errors is a crucial part of the Systems-on-Chip (SoC) development
process. In order to be able to pinpoint bugs in the design, sophisticated logging
and monitoring techniques are used. Usually, designers have to decide between:
(1) much information from potentially slow simulations, (2) formal approaches
that often limit the model’s timing (if considered it at all) to a given upper
accuracy and/or duration bounds or (3) limited data from on-chip runs.

Simulation-based techniques may be used to analyze a given system as soon
as there is an executable prototype down to the end of the development process.
While simulators supposedly provide an exact model of the given design, they
inherently only offer (1) an abstraction of the real fabricated final hardware and
(2) a fraction of the performance of it (running on general purpose host systems,
a full accurate simulation of a single input-output-combination takes much longer
than on the final SoC). While this is not much of an issue for a wide variety of
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use cases, it is for the location of timing-related errors in today’s SoC’s. Correct
SoC’s timing simulations require more details; hence excessive computations
causing prohibitive slow-down in the simulation performance. Simulations can
count only for those apriori known and modeled effects, so they can not cover
all possible sporadic executions of the actual system.

Model-based approaches utilize functional hardware models that are
e.g. provided to the software developers for functional testing. These mod-
els are based on hardware specifications like an instruction set architecture
(ISA) [16]. Approaches such as worst case execution time (WCET) analyses [21]
and abstract interpretations [19] are using this concept to give some guarantees
about the behavior of the software when it operates on hardware. However, the
more reliable and formal these methods, the more computation they require to
account for every possibility and aspect in reality. The multitude of environment
effects and variations of input/output interactions makes these model-based veri-
fication techniques very challenging – if not downright impossible. The execution
on the fabricated hardware can still differ from its model-specifications due to
possible unexpected (and hence non-modeled) process variations or other envi-
ronmental operating conditions.

On-chip debugging requires stopping the system to get a scan-out of the
current chip registers or state. Traditionally, scan-chains, Multi-Input Shift Reg-
isters (MISR) and Test Access Points (TAP) are used for post silicon valida-
tion [11], whereas specialized trace buffers and debug support units are mainly
used in embedded processors [5]. This run/stop approach is inherently unsuitable
for temporal behavior debugging, and requires many reruns until the root-cause
is identified – which may result in it missing the sporadic behavior. To support
continuous logging in embedded processors domain, current solutions are very
customized (they use on-chip debugging modules and/or depend on compiler’s
generated meta data [2,4]), that they cannot be extended to any SoC. Cur-
rent on-chip techniques are often intrusive, i.e. they alter the temporal behavior
itself, potentially affecting the timing that may be causing the error in the first
place. Therefore, post-silicon timing aspects are usually addressed by different
methods to avoid expensive continuous or time-accurate logging. These, how-
ever, focus only on capturing specified timing constraints violations and do not
provide further means to detect a violation’s root-cause, as in [10,15].

Methods for determining which signals to log or monitor to accurately reflect
the system state at a specific instance (enhancing logic visibility) have been inves-
tigated [18]. However logging such signals continuously on a temporal accurate
base was not considered so far.

Assuming that relevant signals have been identified beforehand to provide the
best coverage of possible root-causes, obtaining a temporally accurate access to
their evolution over time is still limited by factors such as the trace-buffers’ area
(if they would be stored on-chip) or the output ports’ capabilities (when they are
to be logged on-line). For SoCs in general, on-chip area can not accommodate
continuous (theoretically) infinite traces; and on-chip signals/transactions speeds
are orders of magnitudes greater than current logging ports capabilities [20].
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Each of these techniques thus has its specific but severe issues for spot-
ting timing-related errors. To address these shortcomings, this work shifts the
focus from full-scale on-chip tracing to only log the temporal behavior accu-
rately, omitting the functional content, which is provided via an off-chip func-
tional simulation. To realize the reduced on-chip logging functionality, the idea
of signature-summaries previously used in [8,14] is reformulated and generalized
to be applied continuously to any on-chip traced signal. This altered usage of
signatures is introduced as the continuous logging of “footprints” to denote their
light weight and periodic nature. Non-temporal information of the erroneous run
is obtained via traces from running a high level functional simulation of the spe-
cific scenario. While the logged simulation data lacks precise timing information
(due to its potential high-level nature, which may sacrifice timing accuracy to
improve the performance), it provides significantly more detail concerning the
order and changes in value of the traced signal. This data (logged temporal
execution footprints containing timing information and detailed off-chip logs) is
combined and used to reconstruct the accurate on-chip behavior.

The contributions of this work are:

1. a novel yet simple consistent methodology for continuous accurate temporal
execution tracing and

2. a semi-formal offline Cycle-Accurate Temporal Reconstruction Algorithm
(CATRA).

A proof-of-concept implementation for efficiently logging footprints from a
running LEON3 processor [3], using functional Transaction Level Model (TLM)
simulation traces from the SoCRocket simulator [17], is provided to illustrate
how the approach may be applied and used to capture sporadic timing related
bugs.

2 Methodology

The core goal of retrieving cycle accurate traces of on-chip temporal behavior
drives the ideas and design decisions that are taken for the presented approach.
First, an overview of the approach is presented that explains both, the method-
ology itself and the structures of the implementation. Two major parts of the
given approach – the trace logging itself and the merging of on-chip and off-
chip (simulation) traces – are discussed afterwards, providing the details of the
approach.

2.1 Overview

As sporadic timing-related faults are hard to reproduce, precise information
concerning the time and the data of erroneous transactions is required to enable
the designer to identify the cause of the problem. In order to provide both, the
task is split in two parts:
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1. Logging precise timing information of the chip’s behavior, i.e. storing infor-
mation concerning when something happened and

2. logging the behavioral information itself, i.e. storing information concerning
what happened.

The first part is needed to properly capture the temporal on-chip behavior,
and is required to avoid altering the timing and thus changing what is – by
definition – part of the cause of this timing-related fault. Thus, this part is
explicitly logged from the traced on-chip execution. On the other hand, having
an already functioning system removes the burden of logging the exact state or
signal value itself every clock cycle, so only a data-parity-check is logged.

The second part – the data itself – is calculated off-chip in a functional sim-
ulation. Correct abstract functionality is enough to simulate the transitions of
states – or signals values changes – irrespective of their timing, which depends
on architectural and environmental particularities. In practice, SystemC Trans-
action Level Modeling (TLM) models are executed to calculate the behavioral
data of the design. SystemC itself is a C++ library that allows designing hard-
ware systems using high level language constructs, sacrificing synthesizeability
for the sake of being able to quickly develop prototypes, with the TLM addi-
tions providing improved simulation performance at the cost of reduced timing
accuracy. Notice that while the given example relies on SystemC, any functional
simulation framework providing the required data may be used.

These two sources of information are then mapped onto each other, providing
designers with a comprehensive continuous capture of the system’s behavior.
While the hardware is executed, the temporal behavior information (first part)
is logged continuously. When a fault becomes visible, the scenario that was run
on the hardware and lead to the faulty behavior, is used to start a functional
simulation to provide the basic data, of which its temporal behavior was logged
from the hardware execution.

2.2 Definitions

A trace τ is defined as a consecutive traced values of a signal over time. Hence,
a trace can be represented by an ordered vector τu,l = {ρ0, ρ1, ...., ρN} if for
the duration l, N different values were traced. Traced values are samples of
the signal’s continuous value, sampled every clock-cycle. A trace is either timed
τ t,l, (it contains a value for every time instance), or un-timed τu,l (it only con-
tains the consecutive ordered different values, appearing after each other). An
infinite or continuous execution trace is denoted without a period l, i.e. τ t or
τu. When a trace is timed, elements of the trace ordered vector τ t,l, namely
{ρt0 , ρt1 , ..., ρtl−1}, represent the value ρ of a signal S at times t0, t1, ..., tl−1. Due
to the time being discrete and the system running on an internal clock, we can
state that ti = ti−1+1. Thus, if a value ρx remained for two clock-cycles, starting
from ti, then two consecutive values ρti and ρti+1 would be equal. On the other
hand if the trace is un-timed, one value ρi which corresponds to both ρti and
ρti+1 is added to the trace ordered vector τu.
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Traces could be obtained by continuously logging the values of on-chip signal.
Such a complete trace is called Actual Timed Trace τ t

a and represents the ideal
goal. For cycle accurate tracing, such actual timed trace τ t

a needs to be either
stored on-chip or logged off-chip, the former being not possible due to limited
on-chip storage, the latter due to the limited bandwidth of available ports. An
alternative is to obtain the information from the simulation, with such a result
being called Simulation Trace τs, or recovered from logged footprints, called
Reconstructed Trace τr. Each of those traces could be either timed or un-timed.

2.3 Footprints Logging

In this work, we choose to generate and then log the temporal footprints peri-
odically. The actual on-chip trace τ t

a of the signal S is first divided into equal M
long Trace-cycles τ tM

ri , where i is the trace-cycle number. M ’s actual value is a
matter of the designer’s preferences. It is a trade-off between the time required to
decode the information, as shall be seen later, the logging bandwidth being used
and the required on-chip storage. The logging is then limited to three distinct
types of information:

– The timing information is encoded using periodic signatures. Each clock-
cycle within the trace-cycle T t

a is marked with a unique time-stamp TSn,
where 0 � n < M indicates the clock cycle within a trace-cycle. For the
given implementation, wTS bits (denoting bit-width of the time-stamps) are
used to encode each clock-cycle within the trace-cycle. The traced signal S
is sampled/monitored in a clock-cycle accurate basis. The old value of the
signal is kept in a register, and is compared to the current value of S, raising
a Temporal Check TC when it detects a change, as shown in Fig. 1. Time-
stamps marking the cycles at which the given signal changes are aggregated
(in the suggested implementation using XOR operations) into a single Trace−
Cycle’s signature called Temporal Cyclic Footprint TCF . In Fig. 1, TC can be
seen to invoke the aggregation of time-stamps TS 2, TS 6, TS 8, TS 13, and
TS 14 (when the traced signal changes its value) to generate a TCF . Only
this generated signature is logged to express change instances. To reduce
the amount of data of this TCF to a size that fits through any potential
bottlenecks, the time-stamp bit width can be reduced as desired – at the cost
of potentially creating ambiguous footprints.

– A similar technique is applied for the considered signal itself: Each change
in the observed signal’s value at any cycle during the interval, contributes
to creating a signature from the signal, called Functional-Check (FC). (In
the suggested implementation a simple parity check of the consecutive signal
values during the Trace − Cycle is used, also in the form of XOR of these
values). This functional check is later used to match the un-timed simulation
and actual traces.

– Finally, the number of signal changes N is stored and transferred as well.

This data (i.e. the timing and data signatures, and how many signal toggles
occurred within the trace-cycle) is encompassed in a structure, that is logged
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and transferred to the host computer each trace-cycle. This set is called a foot-
print FPs = <s.FC, s.TCF, s.N> of signal s, describing how the signal s leaves
a series of these distinct traits that are unique to the events that happened (or
a set of possible events that could have happened) but do not represent the
information itself. For a 16-clock-cycles long trace-cycle, a 16 bits-wide foot-
print gives exactly one solution, which is equivalent to logging one bit every
clock cycle. Such footprint of width wTCF = M enables the full recovery of the
trace temporal check TC (and thus the times at which the signal was altered),
irrespective of the number of changes N . To reduce the required bandwidth,
the time-stamps’ width wTCF is reduced, and N is used afterwards to narrow
the possibilities down. These footprints do not contain any explicit informa-
tion about the behavior. However, the missing information is generated using a
high-level functional simulation.

2.4 Functional Simulation

Techniques such as TLM allow designers to run simulations that sacrifice accu-
rate timing information to gain performance. The assumption is thus that the
semantics of the functional simulation are identical to the chip’s behavior but
the timing may be inaccurate and that the simulation can be executed when the
on-chip execution reports an error that needs to be investigated. The data that
can be retrieved from the simulation thus complements the footprints, which
provide the timing information that the simulation’s trace is lacking.

The functional simulation is executed in a controlled environment, so a sig-
nal’s simulated functional values (constituting an un-timed functional simulation
trace τu

f ) can easily be generated and stored on a host system. Although the sim-
ulation is conducted on higher granularity and might differ in some details, it still
provides a baseline from which the actual timed trace τ t

a can be reconstructed. In
literature, the different flow possibilities of interrupts and threads of executions
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of the simulated scenarios can be obtained via methods like [13]. When there
is a set of known flow possibilities that could be short-listed for matching, the
process becomes easier as shall be seen in the experiments section. In general,
the complexity of such dynamic behavior matching was addressed in [9].

The process of retrieving complete traces is illustrated in Fig. 2. For the func-
tional part (left-hand side of the figure), basic scenario specifications (such as
e.g. inputs with their schedule, a software image and the set of interrupts to be
fed to the system with their periodicity and/or estimated/planned occurrence
instances) are needed to execute the functional simulation. From such simula-
tion, the monitored signal values are also stored and then buffered: i.e. repetitions
are eliminated to obtain un-timed functional traces (as stated in the definitions
section); also the basic trace segments are identified. Segments are those groups
of values of the trace known to be consecutive even if other segments came in
between. Extracting the trace segments can be done with different granularity
levels, in our experiment for example as the SoCRocket simulation already sup-
ports interrupts injection, we considered the whole main program as a single
segment as obtained from simulation and interrupts service routines each as a
segment. These two operations (eliminating repetitions and extracting segments)
are called buffering in the figure. Hence, a potential candidate un-timed trace
τu
f -or group of traces as a result from composition of segments- is obtained.

Then, using N and FC obtained from the hardware (right-hand side of the
figure), the un-timed simulation trace τu

s can be mapped to trace-cycles Tu
si ,

of N changes each. Comparing a trace-cycle’s logged FC to the simulated N
values’ generated FC is a parity check of τu

si = τu
ai

; i.e. the simulation values
matches the actual values, providing a safeguard for the assumption about the
simulation’s correctness. It can also help amending discrepancies between simu-
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lation and actual traces if they existed; but only when the difference’s root-cause
can be speculated (i.e. correcting functional simulation trace/scenario to match
the reality from a set of possibilities that can be tried by the designer until the
logged FC matches the values checked in the simulation trace).

After applying this mapping, we have an M-Cycles-Accurate reconstructed
trace τ tM

r , where tM denotes that the timing accuracy is within M clock cycles.
This mapping does not need to be done separately for every trace-cycle. Instead,
the number of changes N can be added all along the execution, until reaching the
suspected trace-cycles. The simulation of long executions can also be projected
into repeating periodic patterns. Still, obtaining the exact change clock-cycles,
for a complete cycle accurate reconstructed trace is not trivial.

2.5 Cycle Accurate Trace Reconstruction Algorithm (CATRA)

To reach single-cycle-accuracy, the on-chip timing information of particular
trace-cycles is reconstructed from the collected timing-part of the footprint TCF .
This is done only for trace-cycles that are suspected to be of special interest and
require cycle-accurate (i.e. timed) reconstructed trace-cycles τ t,M

r . This allows
designers to pick any arbitrary trace cycle to inspect without having to process
the whole execution log to get the exact cycle accurate data of a particular part.

In the Trace-Cycle mapping, it is possible that discrepancies in the values
could go undetected if the suggested parity-check based functional check FC
cannot detect it. For example, if the footprint was generated from the signal S
from Fig. 1 and the FC was generated using the suggested XOR-aggregation,
as shown in Fig. 3 below, the two identical values Sn+1 and Sn+3 would cancel
each other out. If Sc

n+1 = Sc
n+3 on chip were both different from the simulation’s

Ss
n+1 = Ss

n+3, the footprint’s FC would not indicate any problem.
Figure 3 shows a set of time-stamps that are aggregated (here using XOR)

into the temporal cyclic footprint parts TCF . If a given trace cycle should be
analyzed, all possible combinations that could lead to this specific TCF are
obtained, with the actual combination that was calculated on-chip being among
them. The number of possibilities may be large, though: for the example, when
time-stamps of width wTS = 8 are used (as indicated in the Fig. 3), there are 256
possible combinations of TSs that could have led to this logged TCF . Of these
256, only one contains 5 changes, which is the number N in our trace-cycle. In
this case, an exact cycle accurate reconstruction is obtained. Notice that there
may be more than one possible result though, making determining which one
exactly is what happened on hardware probabilistic (as the designer can assign
probabilities to the obtained solutions).

Reconstruction Using Formal Methods. The footprints contain a set of
constraints describing characteristics of on-chip execution. From them, searching
for solutions using established formal methods to deduce the actual on-chip
trace is a viable approach. The TCF is created by merging all relevant time
step signatures into a single footprint; now this process needs to be reversed. In
order to quickly retrieve all possible combinations of time steps that result in
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a given footprint, the relation between footprint and time steps is formulated
as a problem for (established) satisfiability solvers. The reconstruction of M
cycles from an w-bits-wide signature (footprint) can be formulated as a simple
Satisfiability Modulo Theory (SMT) problem as shown in Algorithm 1. The
algorithm first initializes the value of the footprint TCF0 to ρ0 (which is user
defined in reset -for the first trace-cycle- and the previously logged footprint
afterwards) in line 1. It then builds a set of M consecutive if-then-else (ite)
statements to be given to the solver in lines 3 and 4 that instruct the solver how to
build the footprint: if the ith bit in the Temporal Check TC[i] indicates a change,
the corresponding time-stamp TS is XORed. The solver is then constrained to
finding a solution that matches one that has been retrieved from the hardware
(loggedTCF ) in line 6, thus giving a possible solution to when the signal was
altered in line 7.

Algorithm 1. TC Reconstruction from Temporal Cyclic Footprints
Data: ρ0, TS, loggedTCF

1 TCF0 = ρ0

2 bitvector[M ] TC /* where M is the width of the bit vector variable

TC */

3 foreach i in 1 −→ M do
4 TCFi = ite(TC[i], TCFi−1 ⊕ TSi, TCFi−1)

/* where TC[i] is the ith bit of TC */

5 end
6 AddConstraint(TCFM = loggedTCF )
7 Solve SAT ⇒ TC
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Table 1. Average run-time in seconds of Algorithm 1 for different M and w = wTCF

M w = M w = 4 w = 8 w = 16 w = 32

8 Direct mapping 0.02 – – –

16 Direct mapping 0.3 1.9 – –

32 Direct mapping 1.05 1.7 13.9 –

512 Direct mapping – – – 3576

The SMT solver Boolector [7] was used to solve Algorithm 1, reconstructing
TC in times shown in Table 1. In the case of smaller time-stamps bit-width
wTS , Algorithm 1 is used incrementally. In accordance to the number of possible
solutions, the amount of time needed to compute all possible reconstructions
of TC grows exponentially, which can be seen in the columns of Table 1, with
different wTS .

Improving Results Using Available Information. To improve the scala-
bility, the fact that the number of solutions can be reduced by N (which is the
number of changes in the given trace-cycle) can be utilized to exclude all solu-
tions containing number of changes that does not equal N during the solving
process itself. N is required to map the functional trace vector’s elements to the
trace-cycles (and thus is logged anyway), so utilizing it to improve reconstruction
performance does not cause any additional overhead. Excluding the solutions
obtained by Algorithm 1 that do not match the given amount of changes N
reduces the number of possible solutions but not the time required to obtain
them. So in Algorithm 2 below, N is used as input to the solver.

Algorithm 2. Bounded to N Changes (No-changes) Trace Reconstruction
Data: ρ0, TS, N

1 FP0 = ρ0

2 bitvector[N ][�log(M)�] change index
3 AddConstraint(TCFN = loggedTCF )

4 foreach j in 1 −→ 2M−wTCf do
/* where M is the trace length after which we log the footprint;

and wTCf is the footprint’s bit-width */

5 foreach i in 1 −→ N do
6 TCFi = TCFi−1 ⊕ TS[change index[i]] /* change index[i] is index

of the clock-cycle in which the ith change happened */

7 end
8 Solve SAT ⇒ change indexj

9 if UNSAT break
10 AddConstraint(change index �= change indexj)

11 end



Semi-formal Cycle-Accurate Temporal Execution Traces Reconstruction 345

Algorithm 2 uses N to reduce the amount of possible solutions and the time
required to obtain them as follows. The algorithm relies on solving for a list
of N indices, each indicating the time (inside the trace cycle) where a change
occurred instead of a list of bits TC, where each indicates whether a change
happened at the given index or not. Table 2 shows the average run times of
the modified algorithm. Reductions in computation time are significant if few
changes occur within a trace-cycle. It still needs to be applied iteratively to
locate all possible (ambiguous) solutions. This algorithm relies on a list of indices,
stored in the change index bitvector that is declared in line 2. This set references
the timestamps that should be used to calculate the resulting footprint. Table 2
shows the average run times of Algorithm 2 for different N and M . The reduction
in computation time by Algorithm2 is remarkably significant in the two extreme
cases: where there are very few and (as explained next) too much changes in a
trace-cycle.

For signals that change frequently, the logged footprint may be first XORed
with an all-time-stamps-XOR value, hence resulting in a new footprint that car-
ries only the XOR of the remaining instances that were not XORed in the logged
footprint; then the algorithm is used to locate those M − N time-stamps that
indicate the instances of no change. This reduces the reconstruction complexity
for larger N , allowing the algorithm to have an upper worst case for the recon-
struction algorithm, which is N = M

2 . So the algorithm shall be reconstructing
either (changing or stagnating) change instances.

Table 2. Algorithm bounded by N , average run-time in m minutes and s seconds,
for different trace lengths M and number of changes N . For N = 1, it’s just a direct
mapping, i.e. the TCF is the single change’s time-stamp.

M\N 1 2 3 4 5 6

8 0 ∼0 ∼0 ∼0 ∼0 ∼0

16 0 ∼0 0.1 s 0.2 s 0.3 s 0.4 s

32 0 ∼0 0.5 s 1.6 s 2.1 s 5.4 s

512 0 1m 16 s 7 m 10 s 43 m 65 s – –

1024 0 6m 42 s 37 m 46 s – – –

This bounded by N-changes algorithm can result in only one solution if the
time-stamps are designed to provide unique TCF for each different combination
of N aggregated time-stamps. As the time-stamps are set prior to the execution,
they may be generated to specifically satisfy this criterion. This is particularly
useful, if a given N is assumed to be problematic. For only one change (N = 1),
the uniqueness of time-stamps is enough for cycle-accurate trace reconstruction;
as a logged time-stamp can then be directly mapped to its respective instance.
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For N = 2 and using XOR gates to merge the time-stamps, the condition is:

∀i, j, k, l,[TSi �= TSj ]
∩[TSi ⊕ TSj �= TSk ⊕ TSl],

(1)

where

(0 < i, j, k, l � M) ∩ i �= j ∩ k �= l

∩(i = k ⇒ j �= l) ∩ (j = l ⇒ i �= k)
∩(i = l ⇒ j �= k) ∩ (j = k ⇒ i �= l)

Similar conditions can be derived for higher N .
In summary, using a combination of on-chip traced footprints, off-chip func-

tional simulation data, and the reconstruction and mapping of this information,
a cycle accurate reconstruction of on-chip behavior is possible. The next section
illustrates the applicability of the method in practice, showing how the reduc-
tion in the amount of logged data allows the approach to be used in continuous
logging. This in turn allows the designer to efficiently capture timing related
sporadic faults and assists in finding their root-causes.

3 Experiments

As a case study, the presented methodology was used to continuously capture
the temporal behavior of a toy software, which contains an integrated safe-zone
calculation module for mobile robots from the SAMS project1. In the given
design, the current angle of the moving robot is updated via an interrupt service
routine (ISR), which checks for differences from the previous value Δθ as shown
in Fig. 4. If the difference is below an accepted limit θ1, it continues the previously
executed task. Otherwise it restarts the safety zone calculation algorithm with
the new values if there is enough time to finish it before the deadline. If restarting
the algorithm will result in missing the deadline, the ISR checks whether the
difference is less than another value θ2 where θ2 > θ1. If it is, it adds a margin to
the current calculation. The value to be added depends on the time difference
between the last two time readings. If the difference Δθ ≥ θ2, it activates a worst
case algorithm with the updated values. The maximum interrupt rate is 100 ms.
The generated software image was run on a LEON3 processor implemented using
Xilinx zync7020 FPGA. The same software image was run on SoCRocket, a
LEON3 SystemC TLM simulator to get the functional execution traces.

A trace-cycle with M = 1023 clock cycles, given the 83 MHz (12 ns) input
clock of the Zynq FPGA, would make 12.276 µs duration of each trace-cycle;
during which no interrupt can occur twice (the quickest is the timer interrupt
with periodicity 10 ms). Including the watchdog interrupt, the maximum num-
ber of interrupts we can have in one trace-cycle is three corresponding to the 3
1 www.sams-project.org, the module is certified for use in safety systems up to SIL-3

according to IEC EN 61508.
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interrupts occurring at the same trace-cycle. The signals chosen for tracing were
the program counter (PC, ws = 32 bits) and two interrupts lines (IRQ l1,2, ws

= 2 bits). One of those 2 bits of IRQ l is our ISR’s IRQ line and the other is
timer interrupt line. So, here IRQ l.FC is not only a check, but it also indi-
cates which interrupts occur. At which clock cycle exactly an interrupt that has
occurred starts to be served is not usually known because of the pipeline mechan-
ics and interrupt masking (if used). In our case, there is no masking, no critical
sections where interrupts are disabled and the different interrupts are allowed
to be nested according to their priorities. So within a trace-cycle at which the
interrupt line’s footprint indicates an interrupt request, the exact instance of
interrupt occurrence is obtained using CATRA and the exact instance where
the interrupt starts executing lies within the maximum detailed architectural
delay (cache miss, pipeline, interrupt priority ...etc).

A hardware module (implementing the hardware-box in Fig. 2 containing the
generators and counter) was implemented on-chip to generate and log FC, TCF
and N for both PC and IRQ separately every trace-cycle (for M = 511 and
M = 1023 as in Table. 3 below). Our implementation does not cause any system
slow-down, as we used continuous EXORing with previous FC and TCF . So the
changes at the borders between trace-cycles do not require any special handling.

Additionally, the values of those two signals (PC and IRQ l) are logged
during the SoCRocket simulation and buffered to eliminate consecutive similar
values. SoCRocket enables injecting interrupts via timers and given certain delay
from the start time. The exact time when interrupts occurred can be obtained
from applying CATRA to the interrupt line footprint. Still during simulation,
the actual time in which the interrupt occurs may be not exactly the time the
interrupt was fired in the simulation (because the model is not cycle accurate).

The direct way to map changes to their respective trace-cycles is to start from
reset where the initial values of both simulation and hardware are similar. Each
trace-cycle, the logged PC.N is used to pick N values from the simulation trace
and assigning them to a trace-cycle. Then the generated FC for these values is
compared to the logged footprint’s FC as a check. It is possible to skip this step
(when there is high confidence in the functional simulation results) and jump
to the suspected trace-cycle (Kthtrace − cycle, where more than one interrupt
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occur), get the sum of all previous changes (Nsum = Σk−1
i=0 Ni) and then get the

start of the traced signal from the simulated trace τu
s values as the N th

sum value.
Within a specific trace-cycle, if there was an interrupt, how many among the

N changes in the trace-cycle belong to the interrupt and how many belong to
the interrupted segment are initially unknown. We start by assuming that the
actual interrupt occurrence instance obtained from the logged IRQ l footprint
via CATRA is the exact instance in which the PC value has switched to the
interrupt segment; then from the PC.TCF via CATRA as well, we determine the
first change instance appearing at or after actual interrupt occurrence instance.
We then assume PC values before this instance belong to the interrupted seg-
ment, and from the instance on belong to the interrupt. Then we calculate the
FC by EXORing these PC simulation trace values and check if it matches the
logged footprint’s FC. We increment the PC-switch-to-interrupt instance to the
next possibility by considering one more PC value from the interrupted segment
and one less from the interrupt. We repeat this to consider the range of possible
maximum architectural delay. As a result, candidate traces that match the logged
FC for further investigation are collected. If no FC matches were found, then
the previous assumption leading to the start value obtained from the simulation
is probably wrong, hence earlier trace-cycles are investigated.

Two scenarios in which we used the above mechanism to debug sporadic
faults that did not appear consistently are shown in Table 4. In both cases we
started our analysis from the last trace-cycles that had more than one interrupt
before the fault becomes visible. Then the above described flow was used to get
when exactly (after which instruction) the interrupts were executed and arrived
to the conclusions in Table 4 about the faults’ root-causes.2

Table 3. The number of bits logged every trace cycle, and the required bit-rate for
logging, in the implementation wFC = 32 + 2 and wTCF = 32 for both PC and IRQ

Trace-cycle

length

Naive

logging

Required

bit-rate

TC, FC (1

bit per clk)

Required

bit-rate

TCF, FC,

N(+CATRA)

Required

bit-rate

M = 511 17374 2.92Gbps 1056 171.81Mbps 109 17.73Mbps

M = 1023 34782 2.92Gbps 2080 169.37Mbps 110 8.95Mbps

Using naive logging, M ∗ (ws(PC) + ws(IRQ l)) bits are logged per trace-
cycle, i.e. 34782 bits for M = 1023. Using the proposed logging scheme
and CATRA, only: ws.FC(PC) |32 +ws.FC(IRQ) |2 +ws.TCF (PC) |32
+ws.TCF (IRQ) |32 +ws.N (PC) |10 +ws.N (IRQ)) |2 bits are logged, i.e. 110
bits for the same setup. Table 3 shows the reduction in the required logging bit-
rate. So, instead of logging the signal every clock cycle, a set of footprints are
logged periodically. Using the proposed approach cycle-accurate details of the
exact on-chip execution trace are captured.
2 Note that using interrupts to alter the execution is not recommended for safety criti-

cal software in general. However, it could be unavoidable to fulfill a hard requirement
of responding to external changes instantaneously not via pulling.
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Table 4. Scenarios that encountered sporadic faults and their symptoms in the second
column, root-cause analysis and its computation effort in the 3rd and 4th columns

# Scenario Symptoms Root-cause analysis

1 θ1 < Δθ < θ2 and ISR comes
at an instance where there is
barely enough time to restart
the same task to finish before
its deadline.

sams task is restarted,
but didn’t finish
before its deadline.

It was found that ISR
interrupted the timer
interrupt after it started
execution, but before the
exact instruction in which
it updates the time value.
So the ISR used the old
time value thinking there
is enough time to restart
sams so it finishes.

2 θ1 < Δθ < θ2 and ISR runs
at its maximum rate,
requesting a margin increase
each time.

Wrong value of the
safe-zone output.

The ISR interrupted the
timer twice in row, making
the margin calculations
inside that interrupt
routine being performed
using older, non-updated
values of the time.

4 Related Work

While formal design based approaches like Backspace [8] and Magellan [6] use
the design itself, the presented approach instead relies on a simulated abstract
functional execution trace. This hugely reduces the computational requirements
and limits the tracing to specific trace-cycles. While other approaches that rely
on higher level abstract functional matching may only start from the initial state
(as in [6]) or the final state (as in [8]), the presented approach limits the match-
ing process to short time frames (the trace-cycles) within the given traces. Peri-
odic logging is used to check the on-chip computed signatures in [22], where the
usage of parity-checks decrease the number of debugging sessions. However, requir-
ing frequent rerunning, scan-chains and run-stop mechanism keeps such methods
from detecting inconsistent faults. For circuits implemented on FPGAs, commer-
cial tools like [1] rely on the continuous tracing of values at the operating frequency,
which results in log-size issues. For microprocessors, manufacturers provide propri-
ety solutions for temporal accurate logging [2,4]. Their closed nature and reliance
on compiler-generated meta-data means that conceptually, these approaches can-
not be applied e.g. toASICs.Recently,NuVA [12] verified high speed on-chip trans-
actions, but in turn caused the overall chip performance to drop slightly. In con-
trast, the methodology proposed here does not affect the chip’s performance, uses
very simple logic and is applicable to any signal.
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5 Conclusion and Future Work

Temporally accurate logging using today’s methods is impractical, although it
could be the shortest way for capturing and debugging post-silicon timing related
bugs. We proposed a novel non-intrusive logging scheme and a reconstruction
approach CATRA to provide accurate information about the on-chip execution.
This allows for the first time, to capture and analyze timing-related sporadic
errors.

We are currently developing methods for efficient times-tamps auto-
generation for less solutions of CATRA under-specific conditions and shorter
computation time. Also the computational complexity of using the functional-
check part of the footprints in traces alignment is under analysis.
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