
Chapter 4
Functional Architecture I: The Pinwheels
of V1

We have just seen in the previous chapter how the mechanisms used by visual neurons
to filter the optical signal can implement localized differential data. But this is still
insufficient; the visual cortex can enable the perception of forms only because it can
pass from local to global and integrate local differential data into global geometric
forms. This extraordinary performance has intrigued all vision specialists, even well
before the famous psychophysical experiments of the Gestalt theory at the beginning
of the last century.

In this chapter and the next, we will explore, among other things, the neural
infrastructures that underlie the simplest of the Gestalt principles, that of so-called
good continuation, which is associated with the ideal geometric notion of a line. To do
so, we must introduce the functional architecture of the visual areas. It is indeed the
very particularity and global coherence of this architecture that create the geometry
we want to model. We should be clear that the remarkable geometric properties of
perception result from very specific properties of the generating neural dynamics and
that this specificity requires equally specific functional architectures. Architectures
with connections that are either too local or global, either too isotropic or random,
could not create such geometric structures.

As we have said, we will give particular importance to V 1, the first of the primary
visual areas. Such a restriction might seem too drastic, insofar as the later areas like
V 2 or V 4 have many ‘top-down’ feedback connections to V 1. But V 1 is already very
important, more important than one might think. Let us reiterate that we are adopting
Mumford and Lee’s high-resolution buffer hypothesis (Lee et al. [1]), according to
which V 1 is not a simple ‘bottom-up early module’, but participates in all visual
processes requiring fine resolution, whence its functional architecture is essential for
the totality of the visual system. As William Beaudot and Kathy Mullen argue in
[2, p. 688]:

All higher aspects of form perception rely on this early orientation-selective processing stage.
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114 4 Functional Architecture I: The Pinwheels of V 1

The literature in this area is immense. We therefore run into an obvious problem
of presentation. We have tried to resolve this problem by presenting, although cer-
tainly in too brief a manner, enough data to give the reader some idea of the variety,
the richness, and the difficulty of the questions. This research requires innumerable
experimental feats, so we must be aware of the fact that, despite the mass of remark-
able experimental results already available, all of the data presented here is ‘work in
progress’, subject to debate.

The functional architecture includes two main components, that is two main
classes of connections. The first is the class of retino-geniculo-cortical ‘vertical’
connections, which will be studied in this chapter. The second is the class of cortico-
cortical ‘horizontal’ connections, which will be discussed in the next chapter.

4.1 The Areas of the Visual Cortex

In Sect. 3.1 of Chap. 3, we very briefly mentioned the visual pathways and areas.
Here, we give a few additional clarifications. In humans, there are about fifty such
areas in the cortex, totalling an area of about 2 500 cm2. The thickness of the cortex
varies between 2 and 3 mm, which makes a volume of about 625 cm3. Estimating the
average number of neurons per mm3 to be from 20 000–50 000 yields on the order
of 10 to 30 billion neurons and 60 to 240 × 1012 synapses, although these estimates
vary slightly among specialists.

We have seen in Sect. 3.1 of Chap. 3 (see Fig. 3.1) the general structure of the
retino-geniculo-cortical pathways. Area V 1 corresponds to area 17 in the classifica-
tion of Korbinian Brodmann, represented in Fig. 4.1. A large part is located in the
calcarine fissure, with the retina’s ‘fovea → periphery’ gradient corresponding to
the ‘occipital pole → anterior fissure’ gradient with a magnification of the fovea
(see Fig. 4.12 below). It includes about 100 million neurons (recall that the optical
nerve contains about a million fibres). Figures 4.2 and 4.3 show the localization of
the visual areas around V 1. Figure 4.4 shows a planar flattening of the structure of
the visual areas.

Area V 2 consists of a ventral part and a dorsal part in each hemisphere; as we
shall see in Sect. 5.8 of Chap. 5, it plays an important role in the detection of illusory
contours and the determination of an edge of a figure in front of a background. It is the
same for V 3. V 2 projects onto the dorsal V 3, which in turn projects onto the parietal
cortex. The ventral V 3 projects onto the inferotemporal (I T ) cortex. Area V 4, the
third ventral area after V 2 and V 3, receives direct projections from V 1 and V 2. As
we shall see, it is important for colour processing and recognition of simple forms.
Area V 5, also called MT for ‘medio-temporal’, is sensitive not only to orientations
but also to directions, and it is essential for detecting local movement (e.g. the motion
of points) as well as for controlling eye movements. When V 5 is damaged, vision is
altered by giving the subject the impression of perceiving static images. It is equally
sensitive to binocular disparity and therefore plays a part in stereopsis. It receives

http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.1 The Brodmann areas (1909). •1, 2, 3 Primary sensory cortex. Postcentral gyrus. Sensitivity.
•4 Primary motor cortex. Precentral gyrus. Motricity. •5 Posterior parietal association area. Superior
parietal gyrus. Stereognosis. •6 Premotor cortex and supplementary motor area. Precentral gyrus
and adjacent rostral cortex. Programming of movements. •7 Posterior parietal association area.
Superior parietal gyrus. Visuomotor coordination, perception. •8 Frontal oculomotor field. Superior
and middle frontal gyrus, internal face. Saccades. •9–12 Prefrontal association cortex. Superior and
middle frontal gyrus, internal face. Cognitive areas, programming of movements. •13–16 Vegetative
areas. Insular cortex. •17 Primary visual area. Calcarine fissure. Vision. •18 Secondary visual area.
Around area 17. •19 Tertiary visual area. Around area 18. •20 Inferotemporal visual area. Inferior
temporal gyrus. Recognition of forms. •21 Inferotemporal visual area. Middle temporal gyrus.
Recognition of forms. •22 Association auditory area. Superior temporal gyrus. Hearing. •23–27
Limbic association cortex. Subcallosal, cingulate, retrosplenial, parahippocampal cortex. Emotion,
memory. •28 Olfactory cortex, limbic association cortex. Parahippocampal gyrus. Smell, emotions.
•29–33 Limbic association cortex. Cingulate and retrosplenial gyrus. Emotions. •34–36 Olfactory
cortex, limbic association cortex. Parahippocampal gyrus. Scents, emotions. •37 Parietal-temporal-
occipital association cortex, middle temporal visual area. Middle and inferior temporal gyrus (T-O
junction). Perception, vision, reading, language. •38 Olfactory cortex, limbic association cortex.
Temporal pole. Scents, emotions. •39 T-P-O association cortex. Temporo-parieto-occipital junction
(angular gyrus). Perception, vision, reading, language. •40 T-P-O association cortex. Temporo-
parieto-occipital junction (supramarginal gyrus). Perception, vision, reading, language. •41–42
Primary auditory cortex. Heschl’s gyrus and superior temporal gyrus. Hearing.•43 Olfactory cortex.
Insular cortex, frontal parietal operculum. •44 Broca’s area, lateral premotor cortex. Inferior frontal
gyrus (frontal operculum). Language, planning of movement. •45 Prefrontal association cortex.
Inferior frontal gyrus. •46 Prefrontal association cortex. Middle frontal gyrus. •47 Inferior frontal
gyrus. Taken from Hasboun [3]

Fig. 4.2 Localization of visual areas around V 1. Taken from [4]
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Fig. 4.3 Three-dimensional view of the localization of visual areas. Taken from [5]

Fig. 4.4 Planar flattening of the structure of the visual areas. Taken from [6]
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many connections from V 1, but also from V 2 and the dorsal V 3. All of these areas
possess numerous feedback connections coming back down towards the LGN.

The dorsal and ventral pathways that we have encountered are, respectively:

1. The magnocellular pathway dealing with spatial localization and movement (the
‘Where’ pathway of Ungerleider and Mishkin [7]), viz.

LG N (magno) → V 1 (4Cα) → V 1 (4B) → V 2 (thick stripes) → MT (V 5)

which leads, after the parietal cortex, all the way to the frontal cortex, where the
frontal oculomotor field is located (among others). The latter directs the gaze.

2. The parvocellular pathway dealing with forms and colour (the ‘What’ pathway
of Ungerleider and Mishkin [7]), viz.

Fig. 4.5 Visual areas in humans (see text for acronyms). The prefix h stands for ‘human’, while
◦,+,− denote the fovea and the superior and inferior visual fields, respectively. Taken from [8]
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Fig. 4.6 fMRI of the retinotopic projection of a visual hemifield onto the corresponding visual
hemisphere. The concentric circles of varying eccentricity and the rays of varying orientation on
the half-disc target are colour-coded. Taken from [8]

Fig. 4.7 Position of V 1 (and V 2, V 3) in the cortex. The upper edge corresponds to the inferior
vertical semi-meridian, and the lower edge to the superior vertical semi-meridian. The horizontal
semi-meridian corresponding to the represented hemisphere is situated along the median fissure.
Note that the scale of the eccentricities (radii of the circles of the retinal half-target) is logarithmic.
Taken from [11]
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LG N (parvo) → V 1 (4Cβ) → V 1 (2/3 blobs)

→ V 2 (thin stripes) → V 3 → V 4 and I T

With fMRI methods, already mentioned in Sect. 3.2.6.4 of Chap. 3 (phase-encoded
retinotopy on travelling wave) which use checkered dynamic stimuli (expanding
rings and rotating wedges) and record the induced cortical activity waves, we can get
a better idea of what these areas do in a human brain. In Fig. 4.5, taken from the article
[8] by Brian Wandell and Serge Dumoulin, we see the medial occipital areas (V 1,
V 2, V 3), lateral occipital areas (L O- 1 and L O-2, see [9], hMT +, corresponding
in humans to the macaque’s area MT = V 5), the ventral occipital areas (hV 4, V O-
1, V O-2), the dorsal occipital areas (V 3A, V 3B), and the posterior occipital areas
(from IPS-0 = V 7 to IPS-4, IPS = intraparietal sulcus).

Figure 4.6 is an fMRI version of the classic Fig. 4.12 (see below) first obtained
by Tootell et al. [10] in the macaque using lethal methods. More detail is shown
in Fig. 4.7, which is a more accurate representation of the position of V 1 and its
boundaries, showing how the two hemispherical V 1 areas are glued along the vertical
meridian by the callosal connections.

The definition of the visual areas is often a delicate matter. To give just one
example, it remains an open debate as to whether, in humans, an area V 8 should be

Fig. 4.8 Comparison of the polar angle retinotopy in humans (a) and in macaques (b). The stimuli
are radial gratings rotating at low spatial frequency (the colour code of the angles is given bottom
right). The boundaries of visual areas V 1 to V 4 can thus be established, and the mechanism for
representing angles. The orthogonality of the angular distributions between area V 8 in humans and
area T E O in macaques is clearly visible. V 4v is the ventral V 4 and V 4d is the dorsal V 4. Taken
from [13, Fig. 1]

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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introduced—possessing its own retinotopic representation—that would correspond
to the area TEO (posterior inferotemporal cortex) in macaques (see [12]), or whether
it would be more properly considered as a sub-area of V 4, the problem being that,
with respect to the retinotopy of the already well-identified V 4, the retinotopy of this
hypothetical area would lie at an angle of 90◦ (see Fig. 4.8 of [13]).

All these areas develop and stabilize with great plasticity through (i) critical peri-
ods, (ii) exposure to an enormous amount of stimuli, and (iii) the spontaneous cortical
activity that induces neuronal waves (see, e.g., Hooks and Chen [14]).

4.2 Hypercolumnar Structure of the V1 Area

In V 1, the density of neurons is on the order of 2×105/mm2 , while the receptive fields
are on the order of a few degrees. Neurophysiological studies have made it possible
to distinguish three types of structures in V 1. These are layered, retinotopic, and
(hyper)columnar, respectively.

Layered Structure

This is about 1.8 mm thick and composed of 6 ‘horizontal’ layers, i.e., parallel to
the surface of the cortex. The most important for us is layer 4 (traditionally called
‘granular’) and more specifically the sub-layer 4C . Most of the fibres coming from
the lateral geniculate nucleus project onto the latter, with sub-layer 4Cα receiving in
particular the magnocellular projections and sub-layer 4Cβ the parvocellular projec-
tions (see Figs. 4.9 and 4.10). Layer 4 relays these inputs towards the ‘supragranular’
layers 2 and 3 and also projects in the other direction, onto the ‘infragranular’ layers,
connecting them to the thalamus (layer 6) and the spinal cord (layer 5). Figure 4.11
shows for the macaque a small part of this complex network of projections contain-
ing several loops (see also Sect. 5.10 of Chap. 5). This structure does depend on the
species, but we shall not go into the details here, apart from a brief note in Sect. 4.9.4,
despite the importance of this observation.

Fig. 4.9 Layered structure
of V 1 and layer 4. Taken
from [6]

http://dx.doi.org/10.1007/978-3-319-65591-8_5
http://dx.doi.org/10.1007/978-3-319-65591-8_4


4.2 Hypercolumnar Structure of the V 1 Area 121

Fig. 4.10 Projection of the
lateral geniculate nucleus
onto layer 4C of V 1. Taken
from [6]

Fig. 4.11 Part of the
network of projections
between the layers of V 1 in
the macaque. Taken from
[15]

Retinotopic Structure

Retinotopy refers to the fact that the projections (in the neurophysiological sense) of
the retina onto the cortical layers are in fact mappings (in the mathematical sense)
preserving the retinal topography. A typical example is the logarithmic conformal
mapping between the retina and the 4C sub-layer of layer 4 where, as we have just
seen, it is mainly fibres from the lateral geniculate nucleus that project. If R is the
plane of the retina and M the cortical layer, the retinotopy is described by a mapping
χ : R → M which is a non-isometric isomorphism for a certain level of geometric
structure that is not as rigid as the metric level (see Fig. 4.12).1

There are several models for this retinotopic mapping. The first was a monopole
model Log(z + a), where z is a complex variable varying in R, but better is a dipole
model like

1When we don’t need to distinguish between R and M , we shall set R = M and χ = I d.
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Fig. 4.12 Retinotopic projection of the retina onto layer 4C of area V 1. The retinal hemitarget is
transformed by a diffeomorphism which is not an isometry but a conformal map. From [10]. See
also [16]

Fig. 4.13 Mathematical
model of the retinotopic
projection of the retina onto
V 1 using a conformal map
that is a logarithm of a
homography

Log
z + 0.333

z + 6.66
.

This agrees quite well with empirical data [17], as shown in Fig. 4.13. A still better
model is a wedge-dipole model common to the three areas V 1, V 2, and V 3, such as

Log
w(z) + a

w(z) + b
,

illustrated in Fig. 4.14.
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Fig. 4.14 Model of the form Log
[
(w(z)+a)/(w(z)+b)

]
for V 1, V 2, and V 3. Left Areas V 1, V 2,

and V 3. Right Fit with the model. From Balasubramanian et al. [18]

Column and Hypercolumn Structure

This was the great discovery of Nobel prizewinners David Hubel and Torsten Wiesel
in the early 1960s, following up work by their PhD supervisor Stephen Kuffler on
retinal GCs (see Sect. 3.2.6.1). This was preceded in the late 1950s by the work of
Vernon Mountcastle on the somatosensory cortex of the cat, and after Hubel and
Wiesel, it was also found in the motor cortex and the auditory cortex. As we saw
in Sect. 3.2.6 of Chap. 3, there are ‘simple neurons’ in the V 1 area (as opposed to
the ‘complex’ and ‘hypercomplex neurons’ discussed in Sect. 3.2.6.3) which are
sensitive to orientation, ocular dominance, and colour. These are the ones of interest
to us here.

We have already considered the structure of their receptive fields and receptive
profiles. We shall focus particularly on those having the form of a second derivative
of a Gaussian. If to begin with we simplify the situation as far as possible by not
taking into account either the scale (the resolution and the spatial frequency) or
the phase, we may say that these neurons detect pairs (a, p) of retinal positions a
and orientations p at a. In Sect. 2.7 of the Introduction, these were referred to as
mesoscopic contact elements of the visual plane. Indeed, as we said in Sect. 3.3.4
of Chap. 3, if we consider an edge crossing the receptive field, the response of the
neuron will be maximal when the edge is aligned with the preferred orientation.

Using the methods to record responses to appropriate stimuli discussed in the last
chapter (oriented bars crossing the RF of the neurons, etc.), it can be shown that,
perpendicular to the surface of the cortex, the retinal position a and the preferred
orientation p remain roughly constant. This ‘vertical’ redundancy—which specifies
a population coding of the position—defines orientation columns of about 20 µm.
As shown by DeAngelis [19], it is the phase variation that dominates in the columns:

Spatial phase is the single parameter that accounts for most of the difference between recep-
tive fields of nearby neurons.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_2
http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Fig. 4.15 Classic experiments by Hubel and Wiesel which led to the discovery of the orientation
hypercolumns in V 1. Taken from [24]

Moreover (see Sect. 3.3.5 of Chap. 3), the population coding gives the system a higher
resolution than single neurons. The reader is referred to Beaudot and Mullen [2, 20],
who suggest a mechanism to explain this, and also Snippe and Koenderink [21],
and Ringach [22]. The latter studies the dependence of the resolution on the Fourier
spectrum of the tuning curves of the neurons.

On the other hand, along lines parallel to the surface of the cortex, the preferred
orientation p varies in steps of about 10◦. To a first approximation, it can be consid-
ered to vary monotonically along line segments. In fact, this is not really the case, and
for subtle topological reasons which we shall explain in Sect. 4.4.3 when we com-
ment on Braitenberg’s paper [23], the variation of p is not necessarily monotonic.
However, we shall suppose here that it is. A ‘horizontal’ grouping of columns whose
orientations vary over a range of π defines an orientation hypercolumn which is a
broad neural micromodule measuring between 200 µm and 1 mm (see Figs. 4.15,
4.16 and 4.17).

The idea of a column just discussed clearly needs to be fleshed out, and a great
deal of work has been devoted to this, dealing with problems such as establishing
the link between anatomical and functional definitions, investigating the genuinely
columnar nature of different ways of processing the stimuli (i.e. asking to what extent
they cross the layers of V 1), analyzing the strengthening of the edges of the columns
by lateral inhibition. Among the various reviews available on these matters, the reader
is referred to the one by Lund et al. [25].

We shall discuss different species of mammals, such as the tree shrew (tupaia),
cats, primates, and humans, where the concept of orientation column is of key impor-
tance. This is quite restrictive because, as we saw in Sect. 3.8 of Chap. 3, in other
species of mammals, and in particular rodents like the rat, this idea is less relevant.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Fig. 4.16 Hypercolumn of V 1 from Hubel and Wiesel

Fig. 4.17 Classic diagram
of hypercolumns. From [6]

There we encounter other types of spatial processing, as carried out, for example, by
the grid and place cells (see Sect. 3.8 of Chap. 3). There is orientation selectivity, but
it is dispersed throughout V 1; i.e., it is not brought together anatomically in columns
and hypercolumns by a functional architecture.

However, even restricting to species for which this idea is relevant, there is nev-
ertheless a certain diversity in the structure of V 1. The general structure, concerning
retinotopy, orientation selectivity, spatial frequency tuning, etc., remains the same,
but the fine structure varies. As noted by Stephen Van Hooser:

There is considerable diversity in the abundance of different cell classes, laminar organiza-
tion, functional architecture, and functional connectivity. [26]

Figure 4.18 compares several different species: the macaque (primate, diurnal,
frontally placed eyes), the cat (carnivorous, crepuscular, frontally placed eyes), the
tree shrew or tupaia (Scandentia, diurnal, laterally placed eyes), and the gray squirrel
(rodent, diurnal, laterally placed eyes).2 We find that there is indeed orientation selec-
tivity everywhere, but that it is not always present in all layers, as in the cat or the

2Van Hooser’s paper also discusses the rat (rodent, nocturnal, laterally placed eyes), the night
monkey, also known as the owl monkey or douroucoulis (New World primate, nocturnal, frontally
placed eyes), the ferret, etc.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Fig. 4.18 Similarities and differences in a certain number of geometric features for different species
of mammals. Taken from Van Hooser [26]

squirrel. Direction selectivity occurs throughout all layers in the cat (and also the
ferret), but less in primates and scarcely at all in the tree shrew. The hypercomplex
(end-stopped) cells occur in layers 2 and 3, but not in layer 4, except in the tree
shrew, where they are in fact present only in layer 4. The cells responding most
strongly when the bars on the gratings are longer (length-summing cells) are rare in
carnivores, etc.

We thus see just how important the hypercolumn structure of V 1 is and how
crucial it is to find a suitable mathematical structure to model it. We shall show that,
on the mesoscopic scale that is our own, the right concept, which is altogether natural,
is the geometric concept of a fibration, so well known to mathematicians.
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4.3 V1 as a Mesoscopic Fibration

4.3.1 ‘Bridging Scales’: The Mesoscopic Level

We should stress, as we have already done in Sect. 2.7 of the Introduction, that the
geometric structures we have introduced refer to the mesoscopic scale. Indeed, real-
istic ‘micro’ simulations of an orientation column are already unbelievably complex
and have featured among some of the biggest computational projects in the world.

Launched in 2005 by Henry Markram at the École Polytechnique Fédérale de
Lausanne (EPFL), the Blue Brain Project (BBP) aimed to simulate a rat cortical
column containing some 10,000 neurons and 30 million synapses. It had access to a
computational power (supplied by IBM) of 20 teraflops (one teraflop is 1012 oper-
ations per second). Since 2013, the Human Brain Project (rival of the American
project Brain) has picked up where Blue Brain left off, using supercomputers of
up to 106 teraflops. The HBP aims to simulate complete brain areas, and in partic-
ular, the visual cortex. Bringing together many universities and research institutes,
it has been chosen as one of the two Future and Emerging Technologies (FET)
Flagships of the European Union and will receive a total of a billion euros over 10
years. It explicitly exploits the possibilities of the information and communication
technologies (ICT) and involves six platforms: neuroinformatics, brain simulation,
high-performance computing, medical informatics, neuromorphic computing, and
neurorobotics. Mathematical models do not play a major role because, as noted by
those who designed the project, they are just ‘toy models’, drastically simplifying
the biophysical data to make them amenable to mathematical analysis.

However, certain modelling problems have been identified, in particular regarding
the four themes:

• bridging scales,
• synaptic plasticity, learning, and memory,
• large-scale models,
• principles of brain computation.

An internal debate has sprung up between massively computational approaches and
more model-oriented and structural approaches. Our own model is an element in this
debate.

4.3.2 Fibrations and Engrafted Variables

On the mesoscopic level, through the hypercolumn functional architecture of V 1,
a (discretized) copy of the space P of directions p in the plane is associated (in a
retinotopic and anatomically observable way) with each retinal position a ∈ R. As
a consequence, there is a neural implementation of the projection π : R × P → R

http://dx.doi.org/10.1007/978-3-319-65591-8_2
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of the Cartesian product R × P onto its first factor R, a projection which is in fact a
(trivial) fibration with base the retinal space R and fibre the manifold P .

In these mesoscopic models, a column is thus viewed as a simple contact element
(a, p). This may look like an unacceptable reduction with regard to the computational
projects just mentioned. However, we shall set out to show here that, despite the
enormous reduction in complexity, the functional organization of these elements
leads to a significant geometric complexity. This means that the complexity of a
realistic ‘micro’ model of a functional architecture only becomes manageable by
using highly elaborate multiscale bridges.

According to the materialist principle that ‘a structure only exists if it is imple-
mented’, we must inquire into the neural materiality of the mesoscopic projection
π : R × P → R over and above its formal ideality. Now, if the projection π is math-
ematically (ideally) trivial, it is not at all so from the neurophysiological (material)
point of view:

(i) The receptive fields of the ganglion cells and cortical neurons, or rather the
cortical columns, are very small local charts which overlap and can be glued
together on the overlap.

(ii) We shall see in Sect. 4.9.1 that it is no easy matter to test the direct product
structure experimentally, i.e. the independence of the position and orientation
variables. There, too, there are significant differences between species, as we
saw above: for some species, it is a single layer of V 1 which implements the
product R × P , while for others, several layers are involved.

(iii) The projection π (in the geometrical sense) is implemented by the fine circuitry
of the retino-geniculo-cortical pathways, which project the retina onto V 1 (in
the neurophysiological sense).3

The geometric structure of the product of R as base space with a space of ‘sec-
ondary’ variables such as orientation, ocular dominance, direction of motion was
well expressed by David Hubel when he spoke of ‘engrafted variables’:

What the cortex does is map not just two but many variables on its two-dimensional surface.
It does so by selecting as the basic parameters the two variables that specify the visual field
coordinates (distance out and up or down from the fovea), and on this map it engrafts other
variables, such as orientation and eye preference, by finer subdivisions. [27, p. 131]

A hypercolumn can thus be modelled as the Cartesian product of the RFs with the
space of secondary variables which are ‘grafted on’, so to speak. The overlaps of the
RFs are then interpreted geometrically as a gluing together of these local models,
and the projection π is for its part implemented in the vertical connections:

• from the retina to the hypercolumns,
• within the hypercolumns themselves.

3In the geometric models of neural functional architectures, there are many problems of terminology.
Lexical items such as ‘fibre’, ‘projection’, ‘connection’ are used in different ways by mathematicians
and neurophysiologists. In general, the meaning should be clear from the context.
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This is the idealized model of V 1 proposed by Hubel, leading to the fundamental
geometrical concept of a fibration or fibre bundle.

4.3.3 Fibre Bundles

The key idea of a fibration or fibre bundle was developed by mathematicians, and more
recently by theoretical physicists, for deep reasons. The problem was to associate
with each point in some base space M an entity of a certain type F , such as a scalar,
a vector, a covector, a tensor, an exterior form, a direction, a phase, or a quantum
number, which depends smoothly on this point. An obvious solution for modelling
such a field on M would be to use maps ϕ : M → F . But in many cases, we must
take into account the fact that the whole set F of possible values of such maps ϕ

is associated with each point of M . To take a concrete technical example, in each
pixel of a computer screen, all grey levels (1 byte) or colours RGB (3 bytes) are
represented.

Intuitively, a fibre bundle comprises a base space M (a differentiable manifold)
and copies of a manifold F called the fibre ‘above’ each point of M . Globally,
the space E of the fibre bundle, with the fibres glued together, is not necessarily a
Cartesian product M × F . It results from gluing together several Cartesian products
Ui × F defined on local open domains Ui of M . Up to now, this local triviality has
only been of interest to geometers in cases where the base space M is not a globally
trivial space like R

n but rather a manifold that may not be simply connected and thus
may have a non-trivial homology. In our case, the fibre bundles are globally trivial,
but their local structure is imposed by neurophysiology (the receptive fields).

By definition, a fibre bundle is a 4-uple (E, M, F, π) such that:

1. E , M , and F are differentiable manifolds, called the total space, the base space,
and the fibre of the fibre bundle, respectively.

2. π : E → M is a surjective differentiable map called the projection of the fibre
bundle.

3. The inverse images Ex = π−1(x) (x ∈ M) are isomorphic to F and Ex
∼= F is

called the fibre at the point x (see Fig. 4.19).
4. For any point x ∈ M , there is a neighbourhood U of x such that π−1(U ) is diffeo-

morphic to the Cartesian product U × F equipped with its canonical projection
π : U × F → U , (x, q) �−→ x (local triviality, see Fig. 4.20).

A section of a fibre bundle is a differentiable map that lifts the projection π , associat-
ing an element of the fibre Ex with each point x of the base space M . If s : M → E
is a section, we thus have π ◦ s = I dM (see Fig. 4.21). Sections can be defined
simply locally on open sets U ⊂ M . In the case of a globally trivial fibre bundle
π : E = M × F → M , a section above U is nothing other than a map s : U → F .
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Fig. 4.19 Fibre bundle with
base space M , fibre F , and
total space E . Above each
point x of M , the fibre
π−1(x) = Ex is isomorphic
to F

E

M

π

x

Ex =

π-1(x) =
F

Fig. 4.20 Local triviality of
a fibre bundle. For any point
x in M , there is a
neighbourhood U of x
whose inverse image
π−1(U ) = EU is the direct
product U × F , where π is
the projection onto the first
factor

E

M

π

x

U

EU=UxF

4.3.4 V1 as a Geometric Fibre Bundle

If we idealize the functional architecture of the retino-geniculo-cortical pathway
mathematically on the mesoscopic scale, the retinotopic and hypercolumn structures
of V 1 can be naturally modelled by the bundle π : V → R associating a copy Pa

of the space P of directions in the plane with each point a of the retina R. The total
space V of these copies Pa of P , glued together by local coordinate changes in the
base space R, is a fibre bundle. We shall see in the next section that this is in fact
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Fig. 4.21 A section of a
fibre bundle defined on an
open set U of M associates a
value s(x) in the fibre Ex
above x with each point x of
U

E

M

π

x = π (s (x ))

s

the contact fibre bundle C R of R, in other words, the projectivization of the tangent
bundle T R of R. The points of V , that is, the pairs (a, p) comprising a point a of R
and an orientation p at a, are the contact elements of R, already mentioned several
times (see Fig. 4.22).

M

a

L

a

M

L

P1(a) (b)

Fig. 4.22 The fibre bundle E = V with base space the retinal plane M = R (represented by a
line to simplify) and fibre the projective line P

1 of directions in M . a Elements of the fibre above a
are represented by rotating horizontal line segments viewed in perspective. b Elements of the fibre
above a are represented as points (the coordinate in the fibre encodes the angle θ of the direction p)
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Through this functional architecture, a (discretized) copy of the orientation space
P is associated retinotopically with each retinal position a. There thus exists a neural
implementation of the structure π : R × P → R, the set of feed-forward projections
(in the neurophysiological sense) of the retino-geniculo-cortical pathways imple-
menting the projection π (in the geometric sense).

4.3.5 V1 as a 1-jet Fibre Bundle

Few specialists grasp the fundamental importance of an abstract geometrical model
with dimension equal to the number of degrees of freedom of the given empirical
structure, in this case 3. This theoretical requirement leads us to introduce the fibre
bundle π : V = R × P → R, and this can be interpreted in different ways:

(i) As π : R × P
1 → R if the fibre P is identified with the projective line of

orientations in the plane specified modulo π (P is topologically a circle).
(ii) As π : R × S

1 → R, where S
1 is the unit circle, if the fibre P is described

by an angular coordinate θ modulo 2π , taking into account sense as well as
orientation.

(iii) As π : R × R → R if the fibre P is described by the tangent p = tan θ .

An excellent example of interpretation (i) is provided by the work of Steve Zucker
and Ohad Ben-Shahar. In their paper [28], we find Fig. 4.23.

Fig. 4.23 Fibre bundle
π : R2 × S

1 → R
2

introduced by Ben-Shahar
and Zucker [28] to model the
abstract structure of the
orientation hypercolumns of
V 1
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However, in interpretation (iii), V 1 is identified with what is known as the 1-jet
bundle of curves in R. The idea of jets generalizes the classical notion of Taylor4

expansion, thereby giving it an intrinsic geometric meaning, i.e., independent of
coordinates. Suppose that, in a certain coordinate system (x, y) of R, a smooth curve
γ is the graph {x, f (x)} of a real-valued function f on R. The first-order jet of
f at x , denoted by j1 f (x), is characterized by 3 arguments: the coordinate x , the
value y = f (x) of f at x , and the value p = f ′(x) of the derivative of f at x , i.e.,
the slope of the tangent to the graph of f at the point a = (x, f (x)) of R. So if
we identify R with a domain of R

2, a 1-jet is just a pair c = (a, p), i.e. a contact
element. Conversely, with each contact element c = (a, p), we may associate the set
of regular functions f whose graph is tangent to c at a. Then, J 1 R will denote the
fibre bundle with base space R, usually denoted J 1(R,R), of 1-jets of curves in R.

These 1-jets are feature detectors specialized in the detection of tangents. The fact
that the V 1 area can be ideally identified with J 1 R in the case of ‘simple neurons’
explains why it is functionally essential for contour integrations. In the 2D manifold
R, the determination of the direction p tangent to a contour γ at a point a requires
one to compare the values of γ in the neighbourhood of this point. However, the
neural system can access this local geometric information directly in the pointlike
format of a simple numerical value, provided that it calculates in the jet space V 1,
a three-dimensional space. This saves having to carry out a local computation that
would be costly in terms of wiring.

Jan Koenderink in [29] stressed the importance of the jet concept for theories of
vision. Without jets, it is hard to understand how the visual system could extract
geometrical features like the tangent or the curvature of a curve at a point:

Geometrical features become multilocal objects, i.e., in order to compute [boundary or
curvature] the processor would have to look at different positions simultaneously, whereas
in the case of jets it could establish a format that provides the information by addressing a
single location. Routines accessing a single location may aptly be called point processors,
those accessing multiple locations array processors. The difference is crucial in the sense
that point processors need no geometrical expertise at all, whereas array processors do (e.g.
they have to know the environment or neighbours of a given location). Koenderink [29,
p. 374]

This is indeed the key point: V 1 must carry out geometrical tasks, but without being
availed of any ‘geometrical know-how’. However, this is possible only if the geometry
is neurally hard-wired and, as we shall see, this is precisely the role of a functional
architecture.

We can already say to some extent why functional architectures are so important.
In the brain, there are what are essentially temporal correlations. So how can temporal
coherence transform itself into spatial morphologies, Gestalten, or patterns? As we
shall see in detail in the second volume, the key phenomenon is synchronization.
So how can synchronizations be transformed into patterns? To do this, we require
highly constrained connections and hence a functional architecture.

4Named after Brook Taylor.
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The deepest point, and without doubt the most difficult to understand for a non-
mathematician, is that the introduction of a further independent variable p provides a
way to replace ‘geometrical know-how’ by a functional architecture. Let us say once
again that neurons are point processors (on the scale specified by the size of their
RFs) and as a consequence can only measure a quantity at a point. But in order to do
differential geometry with point processors rather than local processors, the only way
is to add supplementary variables evaluating partial derivatives of appropriate degree.
This is why Jan Koenderink stresses the fact that the (hyper)columns implement jet
spaces neurobiologically:

The modules (like ‘cortical columns’ in the physiological domain) of the sensorium are local
approximations (Nth order jets) of the retinal illuminance that can be addressed as a single
datum by the point processors. [29, p. 374]

Let us specify how V 1 can be interpreted as a neural realization of the space of 1-jets
of curves in R. At each point a in M , consider not the tangent space Ta R, but the set
of its hyperplanes (its vector subspaces of codimension 1 and hence its straight lines),
denoted by Ca R. This is isomorphic to the projective space P

1. The total space in
which these fibres are glued together is called the contact fibre bundle of R, denoted
by C R.5

C R is almost the space of 1-jets J 1(R,R) = J 1 R associated with the choice
of coordinates (x, y). To see this, we only have to interpret the coordinate on its
fibres Ca R in terms of Ta R. Equipping R with local coordinates (x, y) at a and
the tangent plane Ta R with the natural coordinates (ξ, η) associated with it in the
basis (∂/∂x, ∂/∂y), then on an open set not containing the ‘vertical’ straight line
ξ = 0, a local coordinate on Ca R is p = η/ξ , and in the neighbourhood of ξ = 0,
we may take the coordinate p = ξ/η. An element c of C R is thus attributed the
coordinates (x, y, p) = (a, p). It is straightforward to check that changes of chart
associated with these natural coordinates on C R are diffeomorphisms. Hence, C R
is a 3D differentiable manifold isomorphic to V = R × P

1.
The difference between C R and J 1 R is that the fibre of J 1 R is not the whole

of P
1 but the R given by the values of tan θ , the angle θ being specified modulo

π , measured given a choice of x-axis and never taken equal to π/2. To obtain the
fibre P

1 of C R, we must compactify R by adding a point at infinity. C R is the
compactification at infinity of J 1 R, and its fibre corresponds to that of J 1 R via the
stereographic projection P

1 → R, θ → tan θ . In the language of algebraic geometry,
J 1 R is the open affine subset of C R complementary to the section at infinity, the
choice of this section corresponding to the choice of an x-axis in the plane R.

Specifying a section s of the fibre bundle π : V = C R → R above a subset U of
R means associating an element s(a) of the fibre Ca R above a, i.e., an orientation,
with each point a of U . The sections are thus fields of pairs (a, p) = (position,
orientation). A fundamental special case is the sections restricted to differentiable

5We could distinguish between the retinal plane R and the cortical layer M (the base space of
V ) to which it projects. However, to simplify, we shall not do so, considering the retinotopic map
χ : R → M as the identity.
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curves γ in R. They are obtained by choosing, above each point a of γ , the orientation
of the tangent to γ at a.

4.3.6 Legendrian Lifts

By the implicit function theorem, any differentiable curve γ is locally the graph of a
function f (x), except at points with a vertical tangent. Let j1γ (a) be its 1-jet. It can
be identified with the 1-jet j1 f (x) comprising the abscissa x of a, the value y = f (x)
of f at x , and the value p = f ′(x) of its derivative there. Rather than considering
the plane equipped with coordinates (x, y) and calculating y′ = dy/dx—as we have
seen, this requires knowing not only the value y = f (x) of f at x , but also the values
of f in a neighbourhood of x—we work in the space with three dimensions spanned
by coordinates (x, y, p), imposing the constraint y′ = p. This very profound idea
goes back to William Hamilton who, by introducing the conjugate momenta pi of
the position variables qi of a mechanical system as independent variables, replaced
the Lagrangian formulation of mechanics by what is now known as the Hamiltonian
formulation.

Quite generally, if γ is a differentiable curve in R, parametrized by the equations
x(s) and y(s), the 1-jet j1γ (a(s)) of γ at a(s) = (x(s), y(s)) is the contact element
(a(s), p(s)), where p(s) = y′(s)/x ′(s) is the slope of the tangent to γ at a(s).

The image of j1γ is called the Legendrian lift of γ . The Legendrian lifts of curves
γ in R no longer represent these curves as sets of points in R, but in a dual sense,
i.e., what is called projective duality, as envelopes of their tangents. It is remarkable
that biological evolution should have created two neurophysiological structures, the
retina and the V 1 area, in order to implement projective duality for contours.

4.3.7 Integrability Condition

We can thus associate a Legendrian lift Γ = j1γ with any smooth curve γ in R.
However, these lifts Γ are rather specific so we need to characterize them carefully.
Indeed, let Γ = v(s) = (a(s), p(s)) = (x(s), y(s), p(s)) be any skew curve in V .
Its projection a(s) = (x (s) , y(s)) is indeed a curve γ in R. However, there is no
reason why Γ should be the Legendrian lift j1γ of its projection γ . This is only the
case if p(s) = pa(s) (s). Put another way, a curve Γ defined locally by equations
y = f (x), p = g(x) is the lift of a curve γ in V if and only if g(x) = f ′(x), i.e.
p = y′. This condition is called an integrability condition. It is crucial, and we shall
return to this at length.
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4.3.8 SE(2) Invariance of 1-jets

To simplify, set R = R
2. The structure of J 1

R
2 is invariant under the action of the

Euclidean group SE(2) = R
2
� SO(2) of isometries of the plane which is the semi-

direct product � of the group of translations R
2 and the group of rotations SO(2).

Generally speaking, if G is a group and if H is a subgroup of G which operates on
another, normal subgroup N of G, then G is the semi-direct product N � H if its
product law ◦ is

(
n′, h′) ◦ (n, h) = (

n′h′ (n) , h′h
)
.

Let (q, rθ ) be an element of SE(2), where q is a point in R
2 and rθ the rotation

through angle θ . Then, (q, rθ ) acts on the points a of R
2 according to

(q, rθ )(a) = q + rθ (a) .

If (q, rθ ) and (s, rϕ) are 2 elements of SE(2), their (non-commutative) product is
given by

(s, rϕ) ◦ (q, rθ ) = (
s + rϕ(q), rϕ+θ

)
.

The product is non-commutative because (q, rθ ) ◦ (s, rϕ) = (
q + rθ (s), rθ+ϕ

)
. Nat-

urally, rϕ+θ = rθ+ϕ , but s + rϕ(q) 	= q + rθ (s) (see Fig. 4.24).
The rotation rθ acts on the fibre bundle J 1

R
2 → R

2 by

rθ (a, ψ) = (rθ (a), ψ + θ) ,

where ψ is the angular coordinate in the fibre. This further action on the fibre ensures
that the alignment of the preferred orientations is itself also SE(2)-invariant (see

Fig. 4.24 Non-commutativity of the Euclidean group SE(2). The vectors s + rϕ(q) and q + rθ (s)
are completely different
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Fig. 4.25 SE(2) invariance
of the jet space

Fig. 4.25). This makes the action interesting from the point of view of group repre-
sentation theory.

Regarding the group G = SE(2), it is interesting to note a general phenomenon
that is quite fundamental here. By defining SE(2) as the group of isometries in the
plane R

2, we assume that R
2 is given and we consider G only as a consequence. But

this approach can be reversed. Indeed, R
2 and the action of G can be reconstructed

from the group structure of G. For if H = SO(2) 
 S
1 is the compact commutative

subgroup of rotations around 0, its conjugates gHg−1 for g = (q, rθ ) in G give
the rotation subgroups about different points q. We may then identify R

2 with the
quotient G/H and the action of G on R

2 with the quotient of the action of G on
itself.

4.3.9 Generalizing the Model

In accordance with Hubel’s idea of engrafted variables, this model can be extended
to other characteristic variables of the visual signal which are represented in the
hypercolumns. To do this, we consider spaces in which the new variables vary, viz.
the interval [0, 1] for the level of ocular dominance, the projective plane P

2 for the
colour, the circle S

1 for directions of motion (the reader is referred to, e.g. Zhang
and Wu [30] or Weliky et al. [31]). Then, V 1 will be modelled by a fibre bundle with
base space R and fibre the Cartesian product of the spaces of secondary variables.

Such generalizations might also lead us to consider k-jets of order k > 1, as we
shall see in Sect. 5.6 of Chap. 5 when we discuss curvature detectors.

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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4.3.10 Neurophysiology and Its Geometrical Idealization

There are significant differences between the neurophysiological data and the geo-
metrical idealization of the fibre bundle. Here, we mention three of these:

(i) To begin with, the RFs introduce a resolution scale so we require a multiscale
theory of fibre bundles. Moreover, the RFs are adaptive and modulated by stim-
uli.

(ii) Then, there is a significant redundancy in the columns. Indeed, a ‘point’ (a, p)
of the fibre bundle actually corresponds to a whole column. As we have seen, this
so-called population coding is essential for adaptive capacity and refining the
resolution. Among other things, it allows oscillatory responses (the columns can
become oscillators through Hopf bifurcation) and hence synchronizing effects
through phase-locking.

(iii) Finally, there is a fundamental dimensional constraint. From an abstract point
of view, the fibre bundle π : R × P → R has dimension 3, i.e. 2 degrees of
freedom for the retinal position a = (x, y) and 1 degree of freedom for the
orientation p, whereas the cortical layers are essentially 2D. There is therefore
a problem of ‘dimensional collapse’. The visual systems produced by evolution
that interest us here have solved this problem through the fascinating structure
of ‘pinwheels’ in the V 1 area, and these have received much attention since the
pioneering work of Tobias Bonhöffer, Gary Blasdel, and Amiram Grinvald.

4.4 The Pinwheel Structure of V1

The model of V 1 as a 1-jet space is a continuous model which is in fact the limit of
a discrete model defined on a lattice in R. We shall return at length to the idea of
continuous models in the second volume. But in the present chapter, we shall begin
by gathering together some experimental data regarding discrete models.

4.4.1 Observation of Pinwheels

4.4.1.1 Functional Orientation Maps

Fundamental experiments made possible by recent progress in brain imaging have
shown that the hypercolumns are arranged geometrically in little wheels called pin-
wheels. The observed cortical layer is covered with a lattice of singular points (about
1 200 µm apart in the cat and about 600 µm apart in primates): the centres of local
pinwheels which join up to form a global structure. The imaging method used here
was developed at the beginning of the 1990s, by Bonhöffer and Grinvald [32] among
others, and it is referred to as in vivo optical imaging based on activity-dependent
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intrinsic signals. It exploits the fact that the metabolic activity of the nerve tissue
changes its optical properties, whence it can acquire images of the activity of the
surface cortical layers. More precisely, it exploits the differential absorption of oxy-
hemoglobin or deoxyhemoglobin, or of dyes whose fluorescence indicates local
depolarization of neurons.

The method has profoundly transformed the observation of neural activity. Pre-
viously, there were only multielectrode methods for recording the activity of a
few individual neurons,6 or post-mortem visualization of cortical activity using 2-
deoxyglucose maps. Both methods were drastically inadequate. In vivo optical imag-
ing made it possible to visualize functional organization; in other words, it made the
cerebral black box ‘transparent’. As pointed out by Ohki and Reid [33]:

Optical imaging revolutionized the study of functional architecture by showing the overall
geometry of functional maps.

However, the experimental challenge is enormous. First, the signal-to-noise ratio is
very small, viz. ∼10−3, because the background noise is huge. The intrinsic signal
comes from the hemodynamic properties of the cortical tissue and thus from an
area of vascular metabolism greater than the area of the activated neurons. Then,
millions of neurons are connected together, each with hundreds or even thousands
of synapses, and this imaging operates on a mesoscale defined by averaging (in
Sect. 4.7.3, we shall discuss the methods of two-photon confocal microscopy on the
microlevel). One ‘neuron’ is in fact a cortical position at which a bunch of neurons is
located. Moreover, the in vivo optical imaging methods with their good mesoscopic
spatial resolution (50 µm) actually have a rather poor temporal resolution, because
the intrinsic signals are slow, so they can only analyze slow intrinsic changes in the
optical properties of the cortical layer. Other methods are required to visualize the
cortical dynamics, such as voltage-sensitive dyes, which colour the active cells. The
dye molecules bind to the neural membranes and act:

[...] as molecular transducers that transform changes in membrane potential into optical
signals. [34]

As the changes in the membrane potential are correlated with millisecond changes
in the absorbed or emitted fluorescence, we may thus obtain temporal resolutions of
millisecond order.

For a discussion of these new techniques for investigating mammalian brains, the
reader is referred to the review [34], presented by their inventor Amiram Grinvald.
Figure 4.26 shows the accuracy that can be reached in the topography of the V 1
area of the owl monkey (douroucoulis). Such maps became available from the end
of the 1980s. Figure 4.27 produced by Blasdel and Salama in 1986 already shows
pinwheels in the V 1 area of the macaque.

6The transition from recordings of a few isolated neurons to a visualization of the overall activity
of a piece of brain area is analogous to the leap forward in meteorology when recordings made by
weather balloons were replaced by satellite imaging. No need for further comment.
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Fig. 4.26 Topography of the V 1 area of the New World owl monkey as measured by in vivo optical
imaging. A target made of two gratings, one horizontal and the other vertical, is projected onto V 1.
V M vertical meridian, H M horizontal meridian. From Grinvald [34]

Fig. 4.27 Pinwheels in the V 1 area of the macaque. From Blasdel and Salama [35]
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According to a standard experimental protocol, the animal is shown high-contrast
gratings between 20 and 80 times. These are made of black bands (e.g. 6.25◦) alter-
nating with white bands (e.g. 1.25◦), with several different orientations (e.g. 8) and
an angular speed of say 22.5◦/s. A cranial window is opened above V 1, and the
cortex is illuminated with orange light (605 nm). The orientation maps have very
low amplitude relative to the light intensity of the recorded cortical images. We thus
subtract the average intensity of the responses for all orientations, which is known
as the cocktail blank. Then, depending on the orientation of the gratings, differential
absorption patterns are observed, due to local spatial non-uniformities in the ratio
of deoxyhemoglobin to oxyhemoglobin. We subsequently sum the images of V 1
activity obtained for different gratings and construct differential maps. These are
normalized by dividing the relative deviations from the average of each pixel by the
global average deviation, and low-frequency noise is also eliminated.

We thus obtain functional maps like those in Figs. 4.28 and 4.29 obtained by
Crair et al. [36] and Bosking et al. [37], respectively, which concern the 2 and 3
layers of a tree shrew (tupaia): LGN → layer 4 → (strictly feed-forward) → layers
2 and 3. (The tree shrew looks like a primate but with the difference that there is

Fig. 4.28 Method for producing an orientation map of V 1. Preferred orientations are conventionally
colour-coded. Taken from Crair et al. [36]
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Fig. 4.29 V 1 of a tree shrew (tupaia). The different orientations are colour-coded. Right Zoom on
examples of regular points and singular points of opposite chirality, as explained in Sect. 4.4.1.2.
From Bosking et al. [37]

no fovea/periphery distinction, and this simplifies observation. For a survey of the
functional organization of his visual cortex, see Fitzpatrick [38] and Lund et al.
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[39].) The orientations are colour-coded, and the iso-orientation lines are thus the
monochromatic lines.

As emphasized by Yves Frégnac et al. [40], these mesoscale optical functional
imaging methods can be supplemented by microscale recordings of individual neu-
rons, either extracellular and simultaneous recordings of several cells using multielec-
trodes able to measure correlations in the activities of the various neurons involved,
or intracellular recordings that can measure both spiking activity and sub-threshold
activity, and by inverse analysis can be used to reconstruct the afferent network of
the given neuron (functional synaptic imaging). Figure 4.30 from [40] shows the
relationship between these three methods schematically.

Optical imaging data helps us to understand what is meant by the population
coding of a stimulus. Figure 4.31, which we shall consider again in Sect. 4.9.1, shows
the neurons in V 1 which are activated by a long vertical bar. We see that it is a rather
thick band, also very patchy, and nothing like a line. As pointed out by Ulf Eysel
[41, p. 641]:

A continuous line across the whole visual field would be cortically depicted in a patchy
discontinuous fashion.

Fig. 4.30 Three methods for microlevel recording of the activity of individual neurons. Simul-
taneous extracellular recording of several cells, intracellular recording, and reconstruction of the
afferent network of a neuron by functional synaptic imaging. Taken from Frégnac et al. [40]
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Fig. 4.31 Neurons of V 1 activated by a long vertical bar. Note that we obtain a thick and rather
patchy band. From [42]

4.4.1.2 Periodicity, Retinotopy, and Singularities

We return here to Fig. 4.29. Note to begin with that the lattice has a kind of character-
istic length—a mesh or wave number. This periodicity can be measured accurately
by taking the map of the pinwheels, translating it by t = (u, v), and calculating the
correlation between the two maps. The autocorrelation obviously has a primary peak
at t = (0, 0) (the map correlates perfectly with itself) and secondary peaks giving
the periodicity. Figure 4.32 is taken from the paper [43] by McLoughlin and Schiessl
and gives the example of the marmoset monkey.

We shall see in Sect. 4.6.6 that, under a Fourier transform, an orientation map can
be interpreted as a superposition of plane wave solutions of the Helmholtz equa-
tion and that the mesh of the pinwheel lattice comes from the fact that these plane
waves have almost the same wave number. More precisely, let Φ (z) = eiϕ(z) be the
orientation map [or Φ (z) = ei2ϕ(z), if we prefer to work modulo 2π and not take
into account the chirality of the pinwheels]. The autocorrelation function of Φ (z)
is given by C (u) = ∫

C
Φ∗ (z)Φ (z − u) dz, where Φ∗ (z) is the complex conjugate

of Φ (z). Isotropy implies that C (u) = C (r) depends only on the modulus r = |u|
of u. So let us consider the Fourier transform P (k) of C (r) (known as the power
spectrum), viz.

P (k) =
∫

R+
e−ikr C (r) dr .

P (k) is maximal on a ring of radius k0 = 2π/�0, and �0 specifies the mesh of the
pinwheel lattice. This structure in P (k) arises in the following way:
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Fig. 4.32 Autocorrelation with its translates of the pinwheel map of the marmoset monkey V 1
area. It is colour-coded from 0 to 1. At the centre, the red point means that the autocorrelation is 1
for t = (0, 0). The first dark blue ring around the centre corresponds to the distance at which the
pinwheels of opposite chirality are superposed. Then, the first light blue ring corresponds to the
basic period. The average distance between pinwheels is 575 µm in this example. Taken from [43]

(i) Local triviality outside singularities indicates a small local variation in orienta-
tions, and this low local correlation implies that there are no Fourier components
with high spatial frequencies k � k0, because these would induce large local
variations in the orientations everywhere.

(ii) Uniformity, i.e. the fact that all orientations are represented in equal amounts,
implies that there are no Fourier components with low spatial frequencies k 

k0, because these would induce long-range non-uniformities.

Figure 4.33, produced by Niebur and Wörgötter [44], shows an orientation map for a
macaque (area 18) and the power spectrum concentrated on a ring of average radius
k0 = 2π/�0. As already mentioned, we shall return in Sect. 4.6.6 to the limiting
case in which the power spectrum is totally concentrated on a circle of radius k0.

Note that in Fig. 4.29, the orientations (represented by colours) are distributed in a
globally homogeneous way. If the sectors of different colours seem to be distributed
inhomogeneously in the pinwheels, this is because of the perceptual structure of the
continuous wheel of colours; in contrast with what happens for discretized wheels,
the names of the colours correspond to sectors of a different angular width (see
Fig. 4.34).

Note also that there are three classes of points (they are represented in the idealized
diagram of Fig. 4.35):
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Fig. 4.33 Periodicity of an orientation map (right). The power spectrum (Fourier transform of the
autocorrelation function of the map) is concentrated on a ring of average radius k0 = 2π/�0, and
�0 specifies the periodicity of the map. From Niebur and Wörgötter [44]

Fig. 4.34 In the standard
continuous colour wheel, the
names of the colours
correspond in fact to angular
sectors of different angles.
The primary colours in
additive colour mixing, viz.
blue, green, and red, occupy
large sectors, whereas their
complementary colours,
which are the primary
colours in subtractive colour
mixing, viz. yellow,
magenta, cyan, each occupy
narrow sectors

Fig. 4.35 Idealized
‘crystalline’ pinwheel
structure on a regular square
lattice of singularities. There
are three classes of points:
regular, singular (pinwheel),
and saddle points
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(i) Regular points where the orientation field is locally trivial in the sense that the
iso-orientation lines are approximately parallel.

(ii) Singular points at the centres of the pinwheels where all the orientations con-
verge. They have a positive or negative chirality depending on whether, when
we move around the centre, the orientations rotate in the same sense or not.
They have opposite chiralities when adjacent.

(iii) Saddle points at the centres of the lattice cells, points where the iso-orientation
lines bifurcate: two neighbouring iso-orientation lines leave the same singular
point but end up at two opposite singular points.

Xu et al. [45] studied analogous structures for the prosimian primate7 known as the
bush baby (galago), which is a monkey ancestor with an analogous V 1 to the monkey
primates, but very different V 2. Figure 4.36, taken from [5], shows the isochromatic
lines more clearly, these being the iso-orientation field lines of V 1. Figure 4.37,
produced by Hongbo Yu et al. [46], shows the receptive fields corresponding to
positions along a line segment in V 1. We see the superposition of receptive fields for
neighbouring positions in a pinwheel and their slow displacement when we move
from one pinwheel to another. This explains the pioneering experiments by Hubel
and Wiesel.

4.4.2 Limitations of This Analysis

As noted by Amit Basole et al. [47], optical imaging methods are very powerful, but
the result must be interpreted cautiously because they depend among other things
on the type of inputs used. For example, they often use gratings which cross the
receptive fields (RFs), so we can only test the motion selectivity of the neurons in
the orthogonal direction (the aperture problem). If the input patterns are changed
by using shorter segments than the RFs in order to be able to test other directions
of motion, we obtain the same pinwheel structure for the orthogonal motions, but a
distortion of this structure for oblique motions.

4.4.3 Functional Maps as Fields

It is interesting to note that the pinwheel lattices with their iso-orientation lines look
like ‘field models’. The singularities ci with their chiralities are analogous to pos-
itive and negative charges producing field lines in R

2. This kind of field structure
was introduced early on by Valentino Braitenberg, in fact in 1979, in a paper entitled
Geometry of orientation columns in the visual cortex [23], well before the develop-
ment of in vivo optical imaging methods. Starting with Hubel and Wiesel’s results

7There are two classes of primates: on the one hand, monkeys and humans, and on the other, the
prosimians.
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Fig. 4.36 The isochromatic lines are the iso-orientation lines of V 1. From [5]

on monkeys and cats in 1962, and their discoveries (i) that the preferred orientation
of neurons depends smoothly on the tangential penetrations of the electrodes, (ii)
that there is chirality, and (iii) that the latter can reverse along a penetration, the
Braitenbergs tried to build orientation fields. Through quite remarkable abduction,
they came to the following conclusion:
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Fig. 4.37 Receptive fields of simple V 1 neurons at different positions along a line segment. We
see the superposition of the receptive fields for neighbouring positions in a pinwheel and their slow
displacement when we move from one pinwheel to another. From Yu et al. [46]

We believe that the most natural explanation of the facts observed would be in terms of orien-
tations arranged with circular symmetry around centres, either radially or along concentric
circles.

They clearly anticipated by clever abduction the pinwheel structure discovered later
experimentally. Figure 4.38 of [23] shows how a straight line penetration L encoun-
ters the pinwheels and can reverse the chirality when the singularities lie on either
side of L .

Following the work by the Braitenbergs, other specialists like William Baxter and
Bruce Dow carried out further investigations of these inferences. In their paper [48]
on pinwheels in the macaque, they explicitly constructed the flow of the orientation
field and introduced singularities of a different chirality and different topological
index, i.e., singularities of index ±1 giving sources and sinks and those of index
±1/2 giving end points and triple points, which we shall discuss shortly. Figure 4.39
gives an example.

It would be interesting to reconstruct more or less explicit models of orientation
fields that can be observed empirically in the pinwheels of different species. To
do this, we could use the relationship between the fields of straight lines provided
by the orientation fields and vector fields carried by these straight lines. Away from
singularities where the vectors vanish or diverge, a vector field automatically induces
an orientation field, simply by taking the orientations of the vectors. Supposing that
it is meaningful to consider the singularities with their chirality as positive and
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Fig. 4.38 The Braitenbergs’
theoretical reconstruction by
abduction of the pinwheel
structure of V 1. We observe
the orientations along the
straight line tangential
penetration L of an
electrode. The pinwheels are
reconstructed to explain the
data, and in particular the
reversal of chirality when the
singularities lie on either side
of L . From Braitenberg [23]

negative charges, we could then consider the field lines of an associated ‘physical’
field deriving from a potential.

Consider, for example, the field of Fig. 4.40 produced by Geoffrey Goodhill in
[49]. An arrangement of charges ±1 is constructed by applying the rule that two
neighbouring singularities always have opposite charges, together with several sup-
plementary terms to take into account edge effects. By inspection, we find that the
‘physical’ analogy is roughly correct. In Fig. 4.41, the field lines are the orange lines
from the sources (+) towards the sinks (−), while the lines orthogonal to the field
line are equipotentials, i.e. lines of equal potential, for the potential whose gradient
gives the field.

To give another example, consider the fragment shown in Fig. 4.42 of the image
in Fig. 4.97 that we will comment on in Sect. 4.9.3. Figure 4.43 shows the physical
analogy with the field induced by the +1 and −1 charges located at singular points
and with a certain number of equipotential curves which are by definition orthogonal
to the field.

The equipotential line of mean level is a separatrix between the influence zones
of charges +1 and −1 (see Fig. 4.44).

For a regular ‘crystalline’ pinwheel lattice with square unit cell like the one in
Fig. 4.35 of Sect. 4.4, we obtain Figs. 4.45 and 4.46, whose idealized geometry is
shown in Fig. 4.47.

In Figs. 4.48 and 4.49, we show how the ideal crystal model can be distorted.
With the notion of phase field, we shall discuss a deeper way to understand pin-

wheels as ‘physical fields’ in Sect. 4.6.
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Fig. 4.39 Four examples of abstract ‘crystal’ models of pinwheels put forward by William Baxter
and Bruce Dow. White and black squares represent singularities with topological indices +1 and
−1, respectively, while white and black triangles represent singularities with topological indices
+1/2 and −1/2, respectively. Taken from [48]

4.4.4 Development of Pinwheels

There is some experimental data concerning the evolution of orientation maps and
their pinwheels while the V 1 area is developing. For example, in the mid-1990s,
Barbara Chapman, Michael Stryker, and Tobias Bonhöffer [51] adapted the optical
imaging method to carry out what they called chronic optical imaging of intrinsic
signals. The aim was to study the emergence and development of the pinwheel
structure. (They were working on the ferret, whose visual system is similar to the
cat’s.) They showed that, starting from a barely structured initial orientation map,
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Fig. 4.40 Example of an orientation field reconstructed from neural network models, with its
pinwheels and field lines. The black lines are the boundaries of ocular dominance domains, discussed
in Sect. 4.10.1. From Goodhill [49]

Fig. 4.41 ‘Physical’ field
with charges +1 and −1
distributed like the
pinwheels in Fig. 4.40
(ordinate −y). Field lines are
orange lines going from the
sources (+) to the sinks (−).
Lines orthogonal to the field
lines are equipotentials, i.e.
lines of equal potential, for
the potential whose gradient
gives the field. Plot drawn
with Mathematica [50]
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Fig. 4.42 Fragment of the
image in Fig. 4.97

Fig. 4.43 Physical analogue
of the field in Fig. 4.42
induced by +1 and −1
charges located at singular
points. A certain number of
equipotential curves
orthogonal to the field are
also shown
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Fig. 4.44 If we take the
mean level equipotential of
the field in Fig. 4.43, we get a
separatrix between the
influence zones of charges
+1 and −1. The small white
discs around the singular
points are due to the fact that
the divergences of the
potential at these points are
clipped

Fig. 4.45 Field of the
regular ‘crystalline’
pinwheel lattice with square
unit cell in Fig. 4.35 of
Sect. 4.4
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Fig. 4.46 Equipotential
separating the influence
zones of +1 and −1 charges
of the field in Fig. 4.45
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Fig. 4.47 +/− dominance
domains in the ‘crystal’
model idealized in Fig. 4.35
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Fig. 4.48 Idealized
crystalline geometric model
of Fig. 4.47, interpreted using
a physical analogy in which
the pinwheel singularities
generate a field. Gradient
lines (corresponding to
iso-orientation lines) and
equipotentials are shown

Fig. 4.49 Distortion of the
physical analogy in Fig. 4.48

an organized map gradually comes into being and eventually becomes remarkably
stable.

We shall return to pinwheel morphogenesis and the associated learning processes
in Sect. 4.7.1.2, but this time in terms of models.

4.4.5 Pinwheels and Evolution

Regarding the pinwheel structure of V 1, as for any other biological structure, we may
wonder how it evolved, and what exactly was being optimized as a result of some
evolutionary pressure. We already discussed this question in Sect. 3.6 of Chap. 3, in
relation to the shape of the receptive profiles of ganglion cells and LGN and V 1
neurons.

4.4.5.1 Minimizing the Wiring

Alexei Koulakov and Dmitri Chklovskii [52] investigated the hypothesis that the
pinwheel structure minimizes the total length L of intracortical connections, while
maintaining a good representation of the properties of the stimuli. To do this, they con-

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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sidered connection functions c (θ) giving the number of connections between a neu-
ron A with preferred orientation 0 and neurons with orientations θ ∈ [−π/2, π/2].
The functions c (θ) considered have the form c+G (θ), where c is a constant favour-
ing a number of connections independent of θ , and G (θ) is a Gaussian with mean
zero favouring connections with neurons having the same orientation as A . In the
limit, G (θ) gives the Dirac distribution at 0. These two models c and G (θ) compete
to minimize L , and when the Gaussian G is narrow enough, pinwheels appear.

Seen from this point of view, the advantage of the pinwheels is that a neuron
does not have to go further than the nearest pinwheel in order to connect itself to
a neuron of any given orientation. Figure 4.50a of [52] shows an example function
c(θ) and Fig. 4.50b the pinwheel map obtained by minimizing L . The lattice contains
N = 50 × 50 = 2500 neurons. We consider the set M of 2500 × 2500 matrices
M = (

Mi j
)

i, j=1,...,N of connections between neurons i = (xi , yi ) and j = (
x j , y j

)

which satisfy the constraint c (θ) with Mi j = 1 if the neurons i and j are connected
and 0 otherwise. We have L = ∑i, j=N

i, j=1 di j Mi j , where di j is the distance between
i and j , and we minimize L in M, which is difficult, using simulated annealing
algorithms.8

Fig. 4.50 Minimizing the total length L of intracortical connections for the connection function
c (θ) shown in (a). b Pinwheel map for a square lattice of N = 50 × 50 = 2500 neurons. We
consider 2500 × 2500 matrices of connections M = (

Mi j
)

i, j=1,...,N between neurons i = (xi , yi )

and j = (
x j , y j

)
which satisfy the constraint c (θ) with Mi j = 1 if neurons i and j are connected

and 0 otherwise. We have L = ∑i, j=N
i, j=1 di j Mi j , where di j is the distance between i and j . We

minimize L using simulated annealing algorithms. From Koulakov and Chklovskii [52]

8For an introduction to simulated annealing, see, for example, the Bourbaki lecture by Robert
Azencott [53].
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4.4.5.2 Column Structure and Sparse Representations

For their part, Karol Gregor, Arthur Szlam, and Yann LeCun [54] related the column
and hypercolumn structure of V 1 to the sparse code representation of statistical
regularities in natural images. They used the model we discussed in Sect. 3.6.2 of
Chap. 3. Natural images I with P = p2 pixels form a subset � ⊂ R

P and are
thus described by vectors I = (Ir )r=1,...,P in the canonical basis of R

P . We seek
representations I = ∑i=N

i=1 siϕi using filters (RPs of neurons)ϕi ∈ R
P , i = 1, . . . , N .

The latter constitute a ‘dictionary’ Φ which is a P × N matrix and we wish these
representations to be sparse; that is, for each image I , only a limited number of filters
respond, most of the si being zero. As we have seen, the basic idea is to minimize an
energy of the form

E (I, s) = 1

2
‖I − Φs‖2 + λ

i=N∑

i=1

|si | .

But we can also try to structure the lattice of filters by introducing, rather like Hyväri-
nen and Hoyer [55], a set of lateral neural connections between the filters and by
penalizing the simultaneous activity of two neurons by means of inhibitory connec-
tions. If U = {(i1, j1) , . . . , (ik, jk)} is the set of these connections, we cannot have
both si 	= 0 and s j 	= 0 in the coding of an image I when (i, j) ∈ U .

In order to impose this constraint, we introduce a quadratic term sTW s into the
energy E , where W is a matrix of weights for the inhibitory connections. If U
is given, learning will reinforce W . However, if U has to be learnt by exposure
to natural images, then learning will weaken the weights of the connections (i, j)
between filters that are often activated together. The authors of [54] show that the
lattice of filters gets structured into columns and hypercolumns. We shall return to
this point in the second volume.

4.4.6 End Points and Triple Points

All the pinwheels observed experimentally have topological index ±1. However,
singularities with topological index ±1/2 enter the scene when we look at the way the
orientation itself varies. Figure 4.51 was produced by Shmuel. We have included the
orientation field lines in the neighbourhood of two singularities of opposite chirality.

We see that dextrorotatory and levorotatory pinwheels are associated with the two
types of generic singularity in the orientation fields in the plane. This is due to the
fact that, when the ray rotates through an angle θ about the centre of the pinwheel,
the associated orientation rotates through θ/2. Hence, two diametrically opposite
rays correspond to orthogonal orientations.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Fig. 4.51 Orientation maps and pinwheels in the V 1 area of a tree shrew. Here, we see the relation
between pinwheels (colours) and the preferred orientations. We have represented the orientation
field lines in the neighbourhood of two singularities with opposite chirality. Adapted from Shmuel
[56]. Copyright (2000) National Academy of Sciences, USA

If the orientation ψθ associated with the ray at angle θ is

ψ+
θ = α + θ

2
= ϕ+

θ

2
,

the two directions will be the same for ψ+
θ0

= α + θ0/2 = θ0, i.e. for θ0 = 2α, and
then ϕ+

θ = 4α. As α is specified modulo π , there is only one solution and we obtain
the local model in Fig. 4.52 (an end point). If on the other hand the orientation ψθ

associated with the ray at angle θ is

Fig. 4.52 End point
singularity



160 4 Functional Architecture I: The Pinwheels of V 1

Fig. 4.53 Triple point
singularity

ψ−
θ = α − θ

2
= ϕ−

θ

2
,

the two directions will be the same for ψ−
θ0

= α− θ0/2 = θ0, i.e., for θ0 = 2α/3, and
then ϕ+

θ = 4α/3. There are three solutions, and we obtain the local model shown in
Fig. 4.53 (triple point).

It is very easy to calculate the integral curves of the orientation field in the neigh-
bourhood of these singularities, for example for α = 0. Adopting polar coordinates
(ρ, θ), we have x = ρ cos (θ) and y = ρ sin (θ), whence

{
dx = cos (θ) dρ − ρ sin (θ) dθ ,

dy = sin (θ) dρ + ρ cos (θ) dθ .

For end points, the constraint is dy/dx = tan(θ/2), i.e.

sin

(
θ

2

)
dx − cos

(
θ

2

)
dy = 0 ,

or

sin

(
θ

2

)
[

cos (θ) dρ − ρ sin (θ) dθ
] − cos

(
θ

2

)
[

sin (θ) dρ + ρ cos (θ) dθ
]

=
[

sin

(
θ

2

)
cos (θ) − cos

(
θ

2

)
sin (θ)

]
dρ

−r

[
sin

(
θ

2

)
sin (θ) + cos

(
θ

2

)
cos (θ)

]
dθ = 0 .
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But

cos (θ) = cos2

(
θ

2

)
− sin2

(
θ

2

)
, sin (θ) = 2 cos

(
θ

2

)
sin

(
θ

2

)
,

and

cos2

(
θ

2

)
+ sin2

(
θ

2

)
= 1 ,

so we obtain the differential equation

sin

(
θ

2

)
dρ + ρ cos

(
θ

2

)
dθ = 0 ,

and hence,

sin

(
θ

2

)
dρ

dθ
+ ρ cos

(
θ

2

)
= 0 .

The solutions are

ρ = ρπ

sin2 (θ/2)
= 2

ρπ

1 − cos (θ)
,

where the constant of integration ρπ is the value ρ (π). This is a parabola. Its axis of
symmetry is the x-axis, it has vertical tangent at (ρ = ρπ, θ = π), and its branches
tend to infinity for θ → 0. Figure 4.54 shows the case ρπ = 1.

Fig. 4.54 Integral curves of the orientation field in the neighbourhood of the pinwheels. Left End
point singularity. Right Triple point singularity
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For the triple points, the constraint is dy/dx = − tan (θ/2) and an analogous
calculation leads to

sin

(
θ

2

)[
3 cos2

(
θ

2

)
− sin2

(
θ

2

)]
dρ

+ ρ cos

(
θ

2

)[
3 sin2

(
θ

2

)
− cos2

(
θ

2

)]
dθ = 0 ,

which has solutions

ρ = ρπ

sin2/3 (3θ/2)
.

The symmetry θ → θ + 2π/3 is obvious, since it changes 3θ/2 to 3θ/2 + π and
thus leaves sin2/3(3θ/2) invariant. Figure 4.54 shows one of the trajectories in the
case ρπ = 1.

When α 	= 0, the solutions become

ρ = ρπ+2α

sin2

(
θ

2
− α

) , ρ = ρ(π+2α)/3

sin2/3

(
3θ

2
− α

) ,

respectively, and the orientation fields rotate through α. However, it should be noted
that the fields of the ϕ = 2ψ depend in a more subtle way on α. The singularity of
the field ϕ+ varies from a node with central symmetry (α = 0), first to stable foci,
then to a centre (α = π/4), then to unstable foci, whereas the singularity of the field
ϕ− gives different kinds of saddle point. Figure 4.55 (obtained using Mathematica’s
StreamPlot) shows the field lines of ϕ+, ϕ−, ψ+, and ψ− for four values of the
parameter α: 0, π/8, π/4, and 3π/8. These different prototype models of field lines
all correspond to a prototype pinwheel like the one in Fig. 4.56.

4.4.7 Distortions and Defects in the Neighbourhood
of the V1/V2 Boundary

Given the chirality of the pinwheels, the most standard V 1 structure is a distortion of
a square lattice (the ‘crystal’ structure in Fig. 4.35). However, like any distortion of a
regular lattice, it may contain defects inducing, for example triangular or pentagonal
domains (see Fig. 4.57).

The distortion becomes significant at the boundary between V 1 and V 2 because,
as has been shown by Ohki et al. [57] among others, pinwheels of the same chirality
are aligned along this boundary (see Fig. 4.58). Their field lines and level sets can
be studied and simulated in detail, as shown in Fig. 4.59. Distortion is manifested by
the fact that the V 1/V 2 boundary resembles a ‘cliff’, as can be seen from the tightly
bunched parallel level sets.
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Fig. 4.55 Left to right columns Field lines of the fields ϕ+, ϕ−, ψ+, ψ− (see text) for the 4 values
(top to bottom) 0, π/8, π/4, and 3π/8 of the parameter α

Fig. 4.56 Typical pinwheel
with ψθ = θ/2
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Fig. 4.57 Part of Fig. 4.36
showing the distortion
relative to the ‘crystal’ lattice
in Fig. 4.35 and the
appearance of defects in the
ordered structure. We have
not indicated the connections
to pinwheels outside the
frame

Fig. 4.58 Arrangement of pinwheels near the boundary between V 1 and V 2. It is highly distorted
because it includes alignments of several pinwheels with the same chirality. Small white and black
discs represent singularities with levorotatory and dextrorotatory chiralities, respectively. From
Ohki et al. [57]
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Fig. 4.59 Physical field model of the distortion of the pinwheel lattice at the V 1/V 2 boundary.
This boundary resembles a ‘cliff’, as can be seen from the tightly spaced bundles of parallel level
sets

4.5 Topological Universality of Pinwheels

We shall see in Sect. 4.9.4 that the pinwheel structure is widespread in visual systems.
Note, however, that this concrete empirical omnipresence is matched by an abstract
topological universality which helps to explain it. In a very elegant paper [58], Daniel
Bennequin and coworkers Alberto Romagnoni, Jérôme Ribot, and Jonathan Touboul
provided a topological demonstration. The point of this theorem is to show just how
far apparently very general and barely restrictive conditions can effectively amount
to drastic constraints. It is one of the great advantages of mathematics to be able to
identify this kind of ‘Platonic’ constraint.

The idea is to consider the way cells parametrized by z = (x, y) in a domain
Ω ⊂ C of the visual plane identified with the plane C = R

2 can encode orientations
(modulo π ) ψ ∈ S

1
π (where S

1
π is [0, π ], with π identified with 0), i.e., a periodic

quantity. Such a coding can be described by a mapping f : Ω → S
1
π which may

have singularities, i.e. points where it is not defined because multivalued there.
Since the idea is to model hypercolumn functional architectures, we assume that

f is local, i.e. defined apart from a few possible singular points on a domain Ω

which is a small disc centred on 0 and having a circle as boundary Γ = ∂Ω . But at
the same time, since the notion of size is relative to a scale, we seek local models
which would ideally be scale invariant. This means that these are models centred on
a singularity and with a qualitative structure that does not vary when we zoom in or
out.

The authors begin by defining a rather general class F of sufficiently smooth
maps f satisfying natural conditions. They then assume that f is exhaustive, in the
sense that it codes all orientations, i.e. it is surjective. Clearly, the standard model of
the pinwheel, viz.
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f0 : � → S
1
π , z = ρeiθ �−→ ψ = θ

2
,

defined over the unit disc �, must belong to F . Now, f0 has several properties:

(i) f0 is defined away from 0, with 0 being a singularity at which it is multivalued
(the ‘image’ of 0 is the whole of S

1
π ).

(ii) Away from 0, f0 is regular (smooth, infinitely differentiable).
(iii) The level sets Cψ = f −1

0 (ψ) on which f0 is constant are rays and hence smooth
curves joining the boundary Γ to the singular point 0.

The fact that the level sets Cψ are curves is to be expected. Indeed, suppose that
f : Ω → S

1
π is smooth (apart from singularities) and generic, i.e. with a topology

that remains qualitatively the same when f is slightly deformed. Then, the level sets
Cψ must be sub-manifolds of Ω with codimension c = dim

(
S

1
π

) = 1 so that there
exists in Ω a degree of freedom transverse to the Cψ , corresponding to changes in
ψ . Hence, since Ω has dimension n = 2, the level sets Cψ must be sub-manifolds
of dimension n − c = 2 − 1 = 1.9 As curves, the Cψ can have singularities (which
are not necessarily singularities of f , where f is not defined). Generically, these are
end points or triple points.

The authors then introduce a minimal complexity constraint known as ‘parsimony’,
which stipulates that the topological redundancy, that is the number of connected
components of the level sets Cψ , should be minimal, i.e., equal to unity (as for the
rays of the standard pinwheel). The class F defined in this way is thus the class of
maps f : Ω → S

1
π which are smooth away from singularities in the interior of Ω ,

surjective (exhaustivity constraint), and whose level sets Cψ are smooth connected
curves (parsimony constraint). The authors then prove the following theorem:

Theorem Topological universality of pinwheels. The elements f : Ω → S
1
π of F

have the pinwheel topology, i.e., an isolated singularity in the interior of Ω with the
Cψ joining the different points of the boundary Γ = ∂Ω to this singularity.

The proof is based on purely topological arguments. Here, we give a heuristic account.
We use a fundamental topological property of any circle, e.g. the standard circle S

1:
if we remove any point or interval, it will not be disconnected. So if we remove an
arc J = [θ1, θ2] containing (θ1 + θ2)/2, we can still move from θ1 to θ2 by following
the other arc containing π + (θ1 + θ2)/2 [the point opposite to (θ1 + θ2)/2 on S

1].
This is not the case with R = (−∞,+∞): if we remove an interval I = [x1, x2],
we disconnect R into two disjoint intervals (−∞, x1) and (x2,+∞) (see Fig. 4.60).

Let ψ0 ∈ f (Γ ) be an orientation coded by a point on the boundary Γ . By
hypothesis, Cψ0 = C is connected and intersects Γ . Now, consider the complement
Ω − C of C in Ω and let c be the number of its connected components (connected
by arcs10).

9For more on such questions of dimensions, the reader could consult my 1982 review [59] and
references therein.
10Given the assumptions of continuity and smoothness, we need consider only connectedness by
arcs.



4.5 Topological Universality of Pinwheels 167

Fig. 4.60 A circle remains connected if we remove an arc [θ1, θ2], whereas a straight line becomes
disconnected if we remove an interval [x1, x2]

Fig. 4.61 Level curves of f
cannot have triple points
decomposing Ω into three
connected components.
Symbols < and > indicate
f < ψ0 or f > ψ0,
respectively

It can be shown that we cannot have c ≥ 3 (see Fig. 4.61). Indeed, suppose that
C has a triple point t and consider a small enough open neighbourhood T of t and
a small enough open neighbourhood V of ψ0. Let W = f −1 (V ) ∩ T . Then, W is
made up of points close to t , where f takes values close to ψ0. Let Wi , i = 1, 2, 3,
be the three connected components of W −C . We can then arrange for f to be > ψ0

or < ψ0 in each Wi . As this makes two possibilities for three components, there
must therefore be two components with the same property. Suppose, for example,
that f < ψ0 on W1 and W2 and f > ψ0 on W3. This means that (i) the part C12 of C
which is the shared boundary of W1 and W2 is a curve along which f is transversally
maximal, and (ii) the parts C23 and C31 of C which are shared boundaries of W2

and W3 and of W3 and W1 are curves along which f is transversally monotonic.
Figure 4.62 shows that, in this case, the level lines Cψ for ψ 	= ψ0, ψ ∈ V are no
longer connected, which is forbidden by parsimony.
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Fig. 4.62 Left Structure of level lines in the neighbourhood of a triple point of C . Right A level
line close to C (continuous line) which is disconnected and another level line close to C (dashed
line) which is connected

But neither is it possible to have c = 2, Ω−C being decomposed into two disjoint
connected components U1 and U2 on which we would have f > ψ0 and f < ψ0,
respectively (see Fig. 4.63). Let I1 ⊂ S

1
π be the values taken by f on U1 ∪ C . Since

U1 ∪ C is compact and connected and f is continuous, the image I1 is compact
and connected11 and is thus an interval I1 = [ψ0, ψ1] (by continuity, we can have
ψ1 > π ). Likewise, the image of U2 ∪ C is an interval I2 = [ψ2, ψ0] (by continuity,
we can have ψ2 < 0). If ψ1 −ψ2 < π , then part of S

1
π is not covered by f , so f is not

surjective, a situation excluded by hypothesis. If, on the other hand, ψ1 − ψ2 ≥ π ,
then there is at least one value ψ 	= ψ0 for which the level curve Cψ intersects both
U1 and U2, which are disjoint (see Fig. 4.64). These two pieces of Cψ cannot be
connected by Cψ because, for this to happen, Cψ would have to cross the boundaries
of U1 and U2, and hence Cψ0 . But this is impossible because ψ 	= ψ0, whence Cψ

and Cψ0 are disjoint. Therefore, Cψ is not connected and the topological redundancy
is ≥ 2, which is forbidden by hypothesis.

So the connected level line C = Cψ0 does not disconnect Ω . It can be shown that
it cannot be entirely contained within the boundary Γ and that it enters into Ω and
ends at a singular point s. We then choose two points z1 and z2 in Ω −C and connect
then by two paths: one of them γ : z1 → z2 crossing C and the other γ ′ : z1 → z2

going round C , in such a way as to give the situation in Fig. 4.65.
Let ψ1 = f (z1) and ψ2 = f (z2). Since z1, z2 /∈ C , we have ψ1, ψ2 	= ψ0.

Since γ and γ ′ are compact and connected, their images are intervals [ψ1, ψ2] of
S

1
π . Since γ crosses C , its image is the interval [ψ1, ψ2] containing ψ0, and since

γ ′ goes around C , its image is the interval [ψ1, ψ2] not containing ψ0. Hence, the

11Here, the authors use basic theorems of general topology going back to Bolzano, Weierstrass,
Heine, Borel, and Lebesgue. For separated topological spaces, the continuous image of a compact
(connected) set is compact (connected).
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Fig. 4.63 Level curves of f cannot decompose Ω into two connected components. Symbols <

and > indicate f < ψ0 or f > ψ0, respectively

Fig. 4.64 Left If (ψ1 − ψ0) − (ψ2 − ψ0) = ψ1 − ψ2 < π , the interval (ψ1, ψ2) (bottom) is not
covered by f . Right If, on the other hand, (ψ1 − ψ0) − (ψ2 − ψ0) = ψ1 − ψ2 ≥ π , the interval
(ψ2, ψ1) (bottom) is covered twice (example given by angle ψ)

image of γ ∪γ ′ under f is the whole circle S
1
π . But the configuration in Fig. 4.65 can

be shrunk towards s. Thus, all the level lines Cψ must converge towards the point s.
Finally, it can be shown that f is already surjective on the boundaryΓ . Indeed, f

∣∣
Γ

is a continuous map of a circle onto a circle. If it is not surjective, it then takes each
of its values generically at least twice (counted with multiplicity). This means that
there are at least two level curves Cψ for each value ψ in the range, which contradicts
the assumption of minimal topological redundancy (equal to unity). Therefore, f is
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Fig. 4.65 The level line C
does not disconnect Ω ,
enters Ω , and ends at a
singular point s. z1 and z2 are
two points in Ω − C joined
by two paths, one of them
γ : z1 → z2 (red) crossing C
and the other γ ′ : z1 → z2
(green) going around C

surjective. In fact, by the same argument of minimal topological redundancy, it is
also injective.

4.6 Pinwheels as Phase Fields

Having discussed the topological universality of pinwheels as local models of hyper-
columns, we shall now turn to their global lattice structure. On a certain scale, func-
tional orientation maps assign an orientation ψ (a) modπ to each point a of the
cortical surface of V 1. For simplicity, we shall treat this surface as a plane R

2 with
coordinates (x, y), identified with a complex plane C with coordinate z. By treating
V 1 in Sect. 4.3.5 as an implementation of the space of 1-jets of curves in R

2, we
represented ψ by its tangent tan (ψ). It was associated with a function eiϕ , where ϕ

is the phase ϕ = 2ψ , defined mod 2π .
These maps are thus phase fields in which the pinwheels are singularities. This kind

of field turns up in many types of physical phenomenon, and in particular in optical
and liquid crystal structures. There is a vast literature about this, and especially about
the singularities. In this section, we shall import a certain number of the associated
formalisms and models to neurogeometry.

We do this with a certain amount of mathematical detail because we shall not return
to this model in the second volume (where we shall in fact develop an alternative
model in considerable mathematical detail).

4.6.1 Fields and Coordinates

Since we shall be considering several spaces and several fields, we begin by defining
the notation. The cortical layer is modelled by R

2. If a = (x, y) is a point of R
2,
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it will often be useful to consider it as a complex number z = x + iy using the
standard R-linear isomorphism between C and R

2. To study the structure of the field
in the neighbourhood of a singular point a0, it will often be useful to transport the
coordinate system on R

2 to a0 by a translation carrying 0 to a0 and an appropriate
rotation of the axes, and then to take polar coordinates (ρ, θ) around a0 = 0, i.e.
z = ρeiθ , x = ρ cos (θ), y = ρ sin (θ). A phase field assigning the phase ϕ (a) to
each point a ∈ R

2 is thus a map Φ : R
2 → S

1, Φ (a) = eiϕ(a), in other words a
section of the fibre bundle π : R

2 × S
1 → R

2, with singularities of a particular
type in places where the phase ϕ (a) is not defined. Clearly, as ϕ (a) is a function
defined on R

2, if it is differentiable, it can have singularities in the classical sense,
i.e. critical points where the gradient ∇ϕ = 0. Generically, there are three types:
extrema, i.e. maxima or minima, and saddle points. Experimentally, there do not
seem to be any extrema (where the isochromatic curves would be concentric circles
locally), whereas there are many saddle points occupying the ‘centres’ of the cells
defined by the pinwheels.

The experimental data show that the orientation maps ψ (a) = ϕ (a)/2 can also
have lines of discontinuity called fractures, across which the orientation jumps from
one value to another. If there are no fractures, ψ (a) is smooth away from singular
points, where it is not specified. In the local pinwheel models involving end point
and triple point singularities, discussed in Sect. 4.4.6, we took ψ = α ± θ/2.

It is often possible and natural to associate an amplitude, that is a modulus r (a),
with the phase of a phase field. For functional orientation maps, Fred Wolf and
Theo Geisel suggested introducing the strength of the orientation selectivity, i.e.
the width of the tuning curve. We shall return to this key idea in Sect. 4.7.1. Under
such an assumption, the phase field Φ becomes the ‘phase part’ of a complex scalar
field Z : C → C, z = ρeiθ �→ r (z) eiϕ(z), also denoted r (a) eiϕ(a). In Cartesian
coordinates, Z (a) will be written Z (a) = X (a) + iY (a), where X and Y are two
real functions of the variables (x, y).

The map Z can be viewed as a section of the bundle π1 : R
2 × C → R

2 whose
fibre is no longer S

1 but C. The group E (2) acts on π1 as it acts on π : in the standard
way in the base space R

2 and by rotation of the phase in the fibre.

4.6.2 Singularities of a Phase Field

Given a phase field Z (a)—which may be denoted Z (z), X (a) + iY (a), X (z) +
iY (z), r (a) eiϕ(a), or r (z) eiϕ(z), depending on the context—the geometry can be
analyzed using the standard tools of vector analysis, viz. gradients ∇, divergences,
curls, Laplacians �, and so on.

The singularities of Z are points where the phase ϕ is not defined, but where Z is
for its part well defined, although with a particular value, 0 or ∞. They correspond
to zeros and poles of Z . If |Z | is bounded, then they can only be zeros. We go from
zeros to poles by allowing |Z | to diverge and taking for the space of values of Z ,
not only the complex plane C, but its completion Ĉ by a point at infinity (called the
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Riemann sphere or the complex projective line). The reciprocal

1

Z
= 1

r (a)
e−iϕ(a)

of Z then has a pole at a if Z has a zero at a. For a zero, the simplest local model
is ±z if Z is a holomorphic function, i.e., a smooth function of the complex variable
z, hence differentiable with respect to z (and not only with respect to x and y sep-
arately, see below), and for a pole, it is ±1/z if Z is a meromorphic function (see
below). However, there is no reason a priori why Z should be holomorphic. In the
neighbourhood of a point a0 of the base space R

2 taken as the origin 0, we then have
to first order

Z (x, y) ≈ X (0) + x
∂X

∂x
(0) + y

∂X

∂y
(0) + i

[
Y (0) + x

∂Y

∂x
(0) + y

∂Y

∂y
(0)

]
,

whence

Z (a) ≈ Z (0) + a · ∇0 X + ia · ∇0Y ,

where ∇0 X is the value of the gradient of X at 0, ∇ X = (∂X/∂x, ∂X/∂y), and the
same for Y . Hence,

∣∣Z (a) − Z (0)
∣∣2 ≈ R2 = (a · ∇0 X)2 + (a · ∇0Y )2 ,

and the level lines R = const. are ellipses to this order of approximation. They are
only circles if Z (a) can be written as a function Z (z) of z, in other words if on the
one hand x∂X/∂x + iy∂Y/∂y is proportional to z, which requires ∂X/∂x = ∂Y/∂y,
and if on the other hand y∂X/∂y + ix∂Y/∂x is proportional to iz, which requires
∂X/∂y = −∂Y/∂x . These fundamental conditions, known as the Cauchy–Riemann
equations, express the fact that the gradients ∇ X and ∇Y of Z are orthogonal. They
characterize holomorphic functions.

Now in all the situations where we analyze fields, the singularities play a deter-
mining structural role and contain most of the essential morphological information.
As noted by Berry [60], the eminent specialist in optics (whether it be geometrical,
wave, or quantum optics):

Each singularity is a window to a deeper theory.

Regarding lines of phase singularities for 3D waves,12 Berry also stresses that [61,
p. 724]:

Wave vortex lines can be regarded as a skeleton, characterizing and supporting the full
structure of the wave.

12Phase singularities are generically points in 2D and lines in 3D because they are specified by two
conditions and so have codimension 2 (see below).
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This is a general ‘philosophy’ which geometers have clearly established since René
Thom (see Sect. 1.3 of the Preface). We shall take this as a starting point, and all
the more so in that, for a long time now, we have been following Michael Berry’s
work in optics very closely, and in particular his work on caustics, because these
represent one of the main applications of the theory of singularities in fundamental
physics. More recent applications of these studies in phase fields are now also used
in the theory of pinwheels by Fred Wolf and Theo Geisel (we shall return to this),
Bennequin [62], Afgoustidis [63, 64], and Giovanna Citti and Sarti [65].

Many of the concepts used in the theory of singularities, such as genericity, codi-
mension, bifurcations, unfolding, or normal forms, have thus turned out to be highly
relevant in neurogeometry. The reader will find much more about this in our surveys
[59] and [66] on the theory of singularities and critical phenomena, and in particular,
further reading (but see also our Landmarks [67]).

Let us assume that the field Z is smooth outside singular points, where the phase
ϕ is indeterminate and where Z vanishes. Since Z = X + iY , these points are
intersections between curves with equations X = 0 and Y = 0. The condition X = 0
corresponds to r cos (ϕ) = 0, i.e. ϕ = π/2 modπ if r 	= 0, and Y = 0 corresponds
to r sin (ϕ) = 0, i.e. ϕ = 0 modπ if r 	= 0. If X = Y = 0, we necessarily have
r = 0 because the two conditions on ϕ are incompatible. Generically, the curves
X = 0 and Y = 0 cross transversally at isolated points. This means that the points
which satisfy both conditions have codimension 2 and, as the surrounding space
R

2 is 2D, are isolated points (whereas in a 3D surrounding space, they would be
lines). In the theory of mesophases (liquid crystals), these phase singularities are
called dislocations. The same term could be used here to say that the pinwheels are
dislocations in the orientation field implemented in V 1.

Note that these dislocations Z = 0 are invariant under gauge transformation Z →
eiσ Z in the target space and under change of differentiable coordinates (x, y) →
(ξ, η) in the source space.

4.6.3 Orientation and Iso-orientation Fields

There are several different fields here. The field Z is the phase field ϕ (a) = 2ψ (a).
It has isophase lines, called wave fronts by analogy with optics. As isophase means
iso-orientation, they are represented by isochromatic lines in the pinwheel maps.

In addition, there is the orientation field ψ (a) = ϕ (a)/2. As such, it defines
a foliation of the plane R

2 by its integral curves. With the end point and triple
point models in Sect. 4.4.6, we identified the local geometry of these foliations at
the singular points. Let us denote this field by W (a) = s (a) eiψ(a), assuming that
meaning can be attributed to the amplitude s (a). W also has field lines and isophase
lines. However, in contrast to the phase ϕ, which is defined modulo 2π , the angle ψ is
only defined modulo π . For pinwheels without distortion, ϕ can in fact be identified
with 2α ± θ and ψ with α ± θ/2. In this case, we have eiϕ = (

eiψ
)

2. The simplest

http://dx.doi.org/10.1007/978-3-319-65591-8_1
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way to satisfy this condition is to take Z = W 2. Since W = √
Z , there is a Riemann

cut, because when ϕ changes by 2π , which leaves Z invariant, ψ changes by π and
W changes sign, the square root function changing determination.

4.6.4 Topological Charge and Index

Let a0 be a singularity of Z taken as origin. The topological charge of this singularity
is defined to be q = ∮

γ
dϕ/2π , where

∮
γ

dϕ denotes the integral of the differential
1-form dϕ, i.e. the change in ϕ around a small closed path γ going once around a0

in the right-handed sense. Since a0 is an isolated singularity, there are such paths γ

enclosing only this singularity and it can be shown that the integral is independent
of the choice of γ . From the Euclidean structure of R

2, the differential 1-form

dϕ = ∂ϕ

∂x
dx + ∂ϕ

∂y
dy

corresponds to the vector gradient ∇ϕ with components ∇ϕ = (∂ϕ/∂x, ∂ϕ/∂y), and
if the differentials are interpreted as in the past as infinitesimal variations, we have
dϕ = ∇ϕ · da (scalar product) and

∮
γ

dϕ = ∮
γ

∇ϕ · da becomes what is known as
the circulation of the gradient field ∇ϕ around the path γ . The topological charge
q = ∮

γ
∇ϕ · da/2π can then be interpreted as the topological index of the field ∇ϕ.

For the field Z , the phase ϕ varies as ±θ and the index is ±1. However, for the
field W , the orientation ψ varies as ±θ/2 and the index is ±1/2. We already noted
this for the pinwheels in Sects. 4.4.3 and 4.4.6.

In the vicinity of a pinwheel, the isophase lines ϕ = const., i.e. the wave fronts,
are rays of the pinwheel. Along these wave fronts, dϕ = 0 and hence ∇ϕ · da = 0,
which means that the field ∇ϕ is orthogonal to the rays and that its trajectories are
therefore locally qualitatively like concentric circles centred on the singular point.
Quite generally, the trajectories of ∇ϕ are orthogonal to the wave fronts.

4.6.5 Current, Vorticity, and Divergence

To understand the behaviour of ∇ϕ in the neighbourhood of a singularity, the best
thing is to use polar coordinates. Since x = ρ cos (θ) and y = ρ sin (θ), differenti-
ating we obtain

⎧
⎪⎪⎨

⎪⎪⎩

dx = cos (θ) dρ − ρ sin (θ) dθ ,

dy = sin (θ) dρ + ρ cos (θ) dθ ,

dρ = cos (θ) dx + sin (θ) dy ,

ρdθ = − sin (θ) dx + cos (θ) dy .
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Then, since

dϕ = ∂ϕ

∂x
dx + ∂ϕ

∂y
dy ,

we have
⎧
⎪⎪⎨

⎪⎪⎩

∂ϕ

∂x
= cos (θ)

∂ϕ

∂ρ
− sin (θ)

ρ

∂ϕ

∂θ
,

∂ϕ

∂y
= sin (θ)

∂ϕ

∂ρ
+ cos (θ)

ρ

∂ϕ

∂θ
.

At the singular point ρ = 0, the gradient ∇ϕ is not defined and diverges.
To regularize this situation, physicists usually consider the current J of the

field, which is the vector pointing in the direction of the gradient ∇ϕ when it does
not vanish, defined by

J = r2∇ϕ .

Note that if Z = X + iY , then

J = X∇Y − Y∇ X ,

and hence that J is well defined, even at singular points of the phase ϕ of Z . Indeed,
since X = r cos (ϕ) and Y = r sin (ϕ),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ X =
[

cos (ϕ)
∂r

∂x
− r sin (ϕ)

∂ϕ

∂x
, cos (ϕ)

∂r

∂y
− r sin (ϕ)

∂ϕ

∂y

]
,

∇Y =
[

sin (ϕ)
∂r

∂x
+ r cos (ϕ)

∂ϕ

∂x
, sin (ϕ)

∂r

∂y
+ r cos (ϕ)

∂ϕ

∂y

]
,

X∇Y =
[

r cos (ϕ) sin (ϕ)
∂r

∂x
+ r2 cos2 (ϕ)

∂ϕ

∂x
,

r cos (ϕ) sin (ϕ)
∂r

∂y
+ r2 cos2 (ϕ)

∂ϕ

∂y

]
,

Y∇ X =
[

r sin (ϕ) cos (ϕ)
∂r

∂x
− r2 sin2 (ϕ)

∂ϕ

∂x
,

r sin (ϕ) cos (ϕ)
∂r

∂y
− r2 sin2 (ϕ)

∂ϕ

∂y

]
,

X∇Y − Y∇ X =
[

r2 ∂ϕ

∂x
, r2 ∂ϕ

∂y

]
= r2∇ϕ .
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Note also that, in terms of the complex conjugate values Z and Z , the current J
can be written

J = Im
(
Z∇Z

)
.

Indeed,

Z∇Z = (X − iY ) (∇ X + i∇Y ) = X∇ X + Y∇Y + i (X∇Y − Y∇ X) .

We shall see an example of a current in Sect. 4.6.7.
Another vector, in fact a pseudovector, used by physicists is the vorticity Ω of the

current J , i.e. its curl, up to a factor. By definition,

Ω = 1

2
∇ × J = ∇ X × ∇Y ,

where the symbol × stands for the exterior product of two vectors in R
2. If

u = (
ux , uy

) = ux ex + uyey , v = (
vx , vy

) = vx ex + vyey ,

are two vectors in R
2, where ex and ey are unit vectors associated with the x- and

y-axis, the exterior product u × v is a vector of magnitude

det

(
ux uy

vx vy

)
= uxvy − uyvx = ω

along an axis orthogonal to R
2, with unit vector e3, such that the frame

{
ex , ey, e3

}

is right-handed. It is the area of the parallelogram constructed from u and v and
oriented normal to the plane they lie in. For ∇ X × ∇Y ,

ω = det

(
∂X/∂x ∂X/∂y
∂Y/∂x ∂Y/∂y

)

is the determinant of the Jacobian13 of Z considered as a map from R
2 into R

2. In
fact, the right interpretation of Ω = ωe3 is as a differential 2-form. It can be checked
that Ω = ∇ × J /2, the components Jx and Jy of J being

Jx = X
∂Y

∂x
− Y

∂X

∂x
, Jy = X

∂Y

∂y
− Y

∂X

∂y
.

13Named after Carl Gustav Jacob Jacobi.
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Indeed,

Ω = 1

2
∇ × J = 1

2

(
∂Jy

∂x
− ∂Jx

∂y

)
e3

= 1

2

(
∂X

∂x

∂Y

∂y
+ X

∂2Y

∂x∂y
− ∂Y

∂x

∂X

∂y
− Y

∂2 X

∂y∂x
− ∂X

∂y

∂Y

∂x
− X

∂2Y

∂x∂y

+∂Y

∂y

∂X

∂x
+ Y

∂2 X

∂y∂x

)
e3

= det

(
∂X/∂x ∂X/∂y
∂Y/∂x ∂Y/∂y

)
e3 = ωe3 .

Note that when Ω = 0, either ∇ X = 0 or ∇Y = 0 (isolated points with codi-
mension 2), or the real gradients ∇ X and ∇Y have the same orientation (lines
of codimension 1), whence ∇Y = α∇ X for α ∈ R. The complex gradient
∇Z = ∇ X + i∇Y ∈ R

2 ⊕ iR2 is thus the real vector ∇ X multiplied by a factor 1+iα.
The condition Ω = 0 saying that ∇ X and ∇Y are parallel is the opposite of the
Cauchy–Riemann equations saying that ∇ X and ∇Y are orthogonal. We shall also
see an example of vorticity in Sect. 4.6.7.

Note also that, in terms of the values of the complex conjugates Z and Z , the
vorticity Ω can be written

Ω = 1

2
Im

(∇Z × ∇Z
)
.

Indeed,

∇Z × ∇Z = ∂Z

∂x

∂Z

∂y
− ∂Z

∂y

∂Z

∂x

=
(
∂X

∂x
− i

∂Y

∂x

)(
∂X

∂y
+ i

∂Y

∂y

)
−

(
∂X

∂y
− i

∂Y

∂y

)(
∂X

∂x
+ i

∂Y

∂x

)

= 2i

(
∂X

∂x

∂Y

∂y
− ∂X

∂y

∂Y

∂x

)
.

Points where Ω = 0 are invariant under the gauge transformation Z → eiσ Z (multi-
plication by eiσ is effectively a rotation in the Z plane so parallel vectors are mapped
to parallel vectors) and coordinate changes (x, y) → (ξ, η) [because ω becomes
ω′ = ω det (Jac), where Jac is the Jacobian of the change of variables and, since by
definition det (Jac) 	= 0, ω = 0 ⇐⇒ ω′ = 0].

The vorticity of J is not generally trivial. This is not the case for ∇ϕ because
the curl of a gradient ∇ × ∇ f is always zero due to the fact that, for any vector u,
we have u × u = 0. Away from pinwheels where it is not defined, the field ∇ϕ is
thus curl-free.
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The idea of vorticity can be used to resolve a slight difficulty regarding the dif-
ference between the topological charge and index of a singularity. For the charge,
the right-handed orientation of a small closed path γ about a singular point is the
right-handed orientation of R

2. The charges of the field Z (whose trajectories are
isophase lines, i.e. wave fronts) are then ±1. For the index, we often orient the γ

with respect to Ω and then the index is always +1.
We saw above that, to first order, in the neighbourhood of a point a0 taken as

origin 0, the modulus of Z is given by

|Z (a) − Z (0)|2 = R2 = (a · ∇0 X)2 + (a · ∇0Y )2 .

The current J is given to first order by the 2-column vector

J (a) = J (x, y)

≈

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

[
X(0)+ x

∂X

∂x
(0)+ y

∂X

∂y
(0)

][
∂Y

∂x
(0)+ x

∂2Y

∂x2 (0)+ y
∂2Y

∂x∂y
(0)

]

−
[

Y(0)+ x
∂Y

∂x
(0)+ y

∂Y

∂y
(0)

][
∂X

∂x
(0)+ x

∂2 X

∂x2 (0)+ y
∂2 X

∂x∂y
(0)

]

[
X(0)+ x

∂X

∂x
(0)+ y

∂X

∂y
(0)

][
∂Y

∂y
(0)+ x

∂2Y

∂x∂y
(0)+ y

∂2Y

∂y2 (0)

]

−
[

Y(0)+ x
∂Y

∂x
(0)+ y

∂Y

∂y
(0)

][
∂X

∂y
(0)+ x

∂2 X

∂x∂y
(0)+ y

∂2 X

∂y2 (0)

]

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

X(0)
∂Y

∂x
(0)− Y (0)

∂X

∂x
(0)+ x

[

X(0)
∂2Y

∂x2 (0) − Y(0)
∂2 X

∂x2 (0)

]

+y

[

X(0)
∂2Y

∂x∂y
(0)− Y(0)

∂2 X

∂x∂y
(0)+ ∂X

∂y
(0)

∂Y

∂x
(0)− ∂X

∂x
(0)

∂Y

∂y
(0)

]

X(0)
∂Y

∂y
(0)− Y (0)

∂X

∂y
(0)+ y

[

X(0)
∂2Y

∂y2 (0) − Y(0)
∂2 X

∂y2 (0)

]

+x

[

X(0)
∂2Y

∂x∂y
(0)− Y(0)

∂2 X

∂x∂y
(0)− ∂X

∂y
(0)

∂Y

∂x
(0)+ ∂X

∂x
(0)

∂Y

∂y
(0)

]

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

.

If X (0) = 0 and Y (0) = 0 (pinwheel, i.e., dislocation), then these formulas simplify
enormously to give
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J (x, y) ≈

⎛

⎜
⎜
⎝

y

[
∂X

∂y
(0)

∂Y

∂x
(0) − ∂X

∂x
(0)

∂Y

∂y
(0)

]

x

[
−∂X

∂y
(0)

∂Y

∂x
(0) + ∂X

∂x
(0)

∂Y

∂y
(0)

]

⎞

⎟
⎟
⎠

= (a · ∇0 X)∇0Y − (a · ∇0Y )∇0 X = Ω0 × a = ω0

(−y
x

)
.

We can thus evaluate
∣∣J

∣∣ = r2 |∇ϕ| ≈ |ω| ρ in the vicinity of dislocations where
ω 	= 0. However, locally, ϕ is constant on rays from such a singular point and ∇ϕ is
orthogonal to the rays, and in polar coordinates

∇ϕ = ∂ϕ

∂ρ
eρ + 1

ρ

∂ϕ

∂θ
eθ ,

where eρ is the unit vector along the radius at a and eθ is the unit vector orthogonal
to eρ , i.e. eρ rotated through +π/2, so we have

∇ϕ ≈ 1

ρ

∂ϕ

∂θ
eθ ,

and hence,

r2

∣
∣∣∣
∂ϕ

∂θ

∣
∣∣∣ ≈ ρ2 |ω| .

This tells us that, whereas r is locally constant on the ellipses

r2 = (a · ∇ X)2 + (a · ∇Y )2 ,

the quantity r2 |∂ϕ/∂θ | is constant on the circles ρ = const. As noted by Mark
Richard Dennis, this is a kind of Kepler’s law for r2 |∂ϕ/∂θ |, which is analogous to
the angular momentum [68, p. 41]:

Equal area vectors of the core anisotropy ellipse [r2 = const.] are swept out in equal intervals
of phase.

Note that the eccentricity of the ellipses measures the anisotropy of the vorticity. As
we have seen, there is only isotropy (the ellipses are only circles) if the Cauchy–
Riemann equations are satisfied.

4.6.6 Helmholtz Equation

When we discussed the experimental results for pinwheels, we saw that these appear
when we superpose maps showing the response to different orientations. We also
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saw that the pinwheel lattice has a characteristic length (see Sect. 4.4.1). These two
empirical facts suggest considering the field Z as a superposition of simpler fields
with a characteristic mesh. Moreover, on the mathematical level, any field can be
considered through its Fourier transform as a superposition of plane waves. The latter
are the simplest fields with a characteristic length. They have the form Aeiκ·a , where
A is a complex amplitude Eeiφ and κ = (

κx , κy
)

is a vector called the wave vector,
whose magnitude k = |κ|, called the wave number, is analogous to a momentum and
associated with a wavelength � = 2π/k (the smaller the wavelength, the greater
the wave number). When they evolve in time, their prototype is Aei(κ·a−ωt), where
ω is an angular frequency associated with a frequency ν = ω/2π and a period
T = 1/ν = 2π/ω.

It is straightforward to check that the plane waves U = Aeiκ·a satisfy a fun-
damental equation called the Helmholtz equation, viz. �U + k2U = 0. Indeed,
κ · a = xκx + yκy , whence

�U = ∂2U

∂x2
+ ∂2U

∂y2
= −Aκ2

x eiκ·a − Aκ2
y eiκ·a = −k2U .

As the Helmholtz equation is linear, any linear superposition of solutions with dif-
ferent values of κ but the same magnitude k is also a solution. It is thus natural to
assume that the field Z satisfies the Helmholtz equation for a certain wave number k:

�Z + k2 Z = 0 .

Let Hk be the space of solutions C∞ of the Helmholtz equation with wave num-
ber k. It can be shown that Hk is SE (2)-invariant; that is, if Z (a) ∈ Hk and if
g ∈ G = SE (2), then gZ (a) = Z

(
g−1 (a)

)
is also an element of Hk . The action

of G on Hk therefore defines a representation of G, and this has the property of irre-
ducibility in the usual sense that there is no closed subspace which is G-invariant.

Figure 4.66, recomputed from the data of Michael Berry’s work [69] on optical
currents, shows a superposition of 10 plane waves with the same value of k. We see
how closely this phase field resembles our pinwheels, with its isophase lines, i.e.
iso-orientation lines, its orthogonal gradient lines, and its saddle points.

4.6.7 Illustration

It is interesting to consider Michael Berry’s example, which is a superposition of 10
plane waves, viz.

Z =
j=10∑

j=1

E j exp
[
i
[
φ j + 2πx cos

(
α j

) + 2πy sin
(
α j

) ]] = reiϕ ,
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Fig. 4.66 Superposition in
the rectangle [0, 1] × [0, 1]
of 10 plane waves with the
same wave number k = 2π .
The wave vectors κ j =(
2π cos

(
α j

)
, 2π sin

(
α j

))

are given below in Table 4.1.
Recomputed from the data of
Berry [69]

Table 4.1 Values used in Berry’s example [69]

1 2 3 4 5 6 7 8 9 10

α j 5.971 2.666 0.939 4.629 1.023 1.537 2.710 3.273 4.356 5.032

φ j 3.846 0.777 5.008 2.916 6.274 4.344 2.411 5.688 1.734 0.214

E j 0.337 0.015 0.762 0.785 0.625 0.442 0.688 0.065 0.064 0.035

with the same wave number k = 2π (and hence wavelength � = 2π/k = 1) and
wave vectors κ j = (

2π cos
(
α j

)
, 2π sin

(
α j

))
. The angles α j are chosen randomly

in [0, 2π ], the phase shift φ j randomly in [0, 2π ], and the amplitudes E j randomly
in [0, 1]. The values used by Berry are shown in Table 4.1. If Φ j are the phases
φ j + 2πx cos

(
α j

) + 2πy sin
(
α j

)
, we get an expression Z = ∑ j=10

j=1 E j exp
(
iΦ j

)

that is easy to calculate with. Figure 4.67 shows the pinwheels of Z . The white
lines are cuts where ϕ jumps by 2π , due to the fact that ϕ takes values in S

1 but is
represented as having values in R. The coordinates of the 5 pinwheels are

{0.528545, 0.942654} , {0.988124, 0.811337} , {0.433271, 0.516137} ,

{0.761954, 0.258734} , {0.0838329, 0.0359263} .

They are given by the intersections of the level lines X = 0, Y = 0. Figure 4.68
represents the lines X = 0 in red and the lines Y = 0 in blue.

Figure 4.69 shows the structure of the phase field Z on the square x, y ∈ [0, 1].
The first line shows the modulus r of Z (i) with its level lines and (ii) as a function
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Fig. 4.67 Pinwheels of the
phase field Z for
x, y ∈ [0, 1]. White lines are
cuts where ϕ jumps by 2π

Fig. 4.68 Lines X = 0 (red)
and Y = 0 (blue) of the
phase field Z
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Fig. 4.69 Structure of the phase field Z for x, y ∈ [0, 1]. First line modulus r of Z . (i) Level
lines. (ii) The function r (x, y) from two perspectives, the second giving a good view of the singular
points (dislocations) where r = 0 and also the maxima of r . Second line argument ϕ of Z . (i) Level
lines. (ii) Function ϕ (x, y) from two perspectives, the second giving a good view of the cuts where
ϕ jumps by 2π

r (a) = r (x, y) from two perspectives, the second giving a good view of the singular
points (dislocations), where r = 0, and the maxima of r . The second line shows the
argument ϕ of Z (i) with its level lines (we recover those in Fig. 4.66) and (ii) as a
function ϕ (a) = ϕ (x, y) from two perspectives, the second giving a good view of
the cuts, where ϕ jumps by 2π .

Figure 4.70 shows more pinwheels of Z (x, y ∈ [0, 3]). The white cuts represent
ϕ = 0 = 2π . Note that there are 29 pinwheels in an area of 32 = 9, giving a density
d equal to 29/9 ∼ 3.2. We shall explain in Sect. 4.6.11 a formula giving d = π/�2,
which means d = π in our case, since � = 1. We see that the approximation is
excellent. Concerning Fig. 4.71, it represents the phase ϕ for partial sums of Z .

In Fig. 4.72, we also show the orientation lines, that is the field lines of W , and
the field lines of Z (not to be confused with the isophase lines). We do indeed see
examples of the typical singularities illustrated in Fig. 4.55 of Sect. 4.4.6.

It is straightforward to calculate the current

J = r2∇ϕ = X∇Y − Y∇ X = Im
(
Z∇Z

)
.
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Fig. 4.70 Pinwheels of Z
for x, y ∈ [0, 3]. White cuts
represent ϕ = 0 = 2π

Fig. 4.71 Phase ϕ for partial sums of Z
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Fig. 4.72 Field lines of W and Z for the example of Fig. 4.69

Indeed,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X =
k=10∑

k=1

Ek cos(Φk) ,

Y =
k=10∑

k=1

Ek sin(Φk) ,

∂X

∂x
= −

j=10∑

j=1

2π cos
(
α j

)
E j sin(Φ j ) ,

∂X

∂y
= −

j=10∑

j=1

2π sin
(
α j

)
E j sin(Φ j ) ,

∂Y

∂x
=

j=10∑

j=1

2π cos
(
α j

)
E j cos(Φ j ) ,

∂Y

∂y
=

j=10∑

j=1

2π sin
(
α j

)
E j cos(Φ j ) ,

and hence the components Jx and Jy of J are

Jx =
j,k=10∑

j,k=1

(
Jx

)
j;k , Jy =

j,k=10∑

j,k=1

(
Jy

)
j;k ,
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with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Jx

)
j;k = 2πE j Ek cos(α j ) cos

[
φ j + 2π

[
x cos(α j ) + y sin(α j )

]]

× cos
[
φk + 2π

[
x cos(αk) + y sin(αk)

]]

+ 2πE j Ek cos(α j ) sin
[
φ j + 2π

(
x cos(α j ) + y sin(α j )

]]

× sin
[
φk + 2π

[
x cos(αk) + y sin(αk)

]]
,

(
Jy

)
j;k = 2πE j Ek sin(α j ) cos

[
φ j + 2π

[
x cos(α j ) + y sin(α j )

]]

× cos
[
φk + 2π

[
x cos(αk) + y sin(αk)

]]

+ 2πE j Ek sin(α j ) sin
[
φ j + 2π

(
x cos(α j ) + y sin(α j )

]]

× sin
[
φk + 2π

[
x cos(αk) + y sin(αk)

]]
.

Figure 4.66 already displayed above recovers the structure of the phase field Z with
its isophase lines in orange and the current lines orthogonal to them, since the current
J is parallel to the gradient ∇ϕ of ϕ and hence orthogonal to the lines ϕ = const.

The vorticity Ω = ∇ ×J /2 = ∇ X × ∇Y is shown in Fig. 4.73 by the graph of
the function

ω (x, y) = ∂X

∂x

∂Y

∂y
− ∂X

∂y

∂Y

∂x
,

for x, y ∈ [0, 1]. Figure 4.74 shows the position of the lines Ω = 0 for x, y ∈ [0, 3].
We see that adjacent pinwheels do indeed have opposite chirality, since they belong
to regions where Ω has opposite sign.

We know that, when Ω = 0, either ∇ X = 0 or ∇Y = 0 (isolated points of
codimension 2), or the real gradients ∇ X and ∇Y have the same orientation, i.e.
∇Y = α∇ X (see Sect. 4.6.5). Figure 4.75 shows the curves ∂X/∂x = ∂x X = 0 and
∂y X = 0 in red and ∂x Y = 0 and ∂yY = 0 in blue [the ∂x X , etc., are denoted by
X (x), etc., in the label]. Note that points where ∇ X = 0 (intersection of red lines
at top left) and ∇Y = 0 (intersection of blue lines at top right) do indeed lie on the
lines Ω = 0. Likewise, the points where ∇ X and ∇Y are both vertical (∂x X = 0
and ∂x Y = 0) or both horizontal (∂y X = 0 and ∂yY = 0) also lie on the lines Ω = 0
(intersections of red and blue lines at bottom left and bottom right).

Figure 4.76 shows the curves ∂x X = α∂x Y and ∂y X = α∂yY (and their inter-
sections, where ∇ X = α∇Y ) for different values of α. We see that these points do
indeed lie on the lines Ω = 0. Figure 4.77 shows the lines Ω = 0 for x, y ∈ [0, 1].
It is interesting to look at the details. The typical situation is when two adjacent
pinwheels are ‘close’, a line Ω = 0 intersecting the isophase line that connects them
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Fig. 4.73 Vorticity Ω of the phase field Z for x, y ∈ [0, 1], i.e. the graph of the function ω (x, y) =
∂X

∂x

∂Y

∂y
− ∂X

∂y

∂Y

∂x

the most directly in a strongly transverse manner somewhere near the middle. This
typical situation can be highly distorted for ‘distant’ adjacent pinwheels.

4.6.8 Current Conservation

Assuming that Z solves the Helmholtz equation, we consider the divergence of the
current J given by

div
(
J

) = ∂Jx

∂x
+ ∂Jy

∂y
= ∂

∂x

(
r2 ∂ϕ

∂x

)
+ ∂

∂y

(
r2 ∂ϕ

∂y

)

= r2 ∂
2ϕ

∂x2
+ 2r

∂r

∂x

∂ϕ

∂x
+ r2 ∂

2ϕ

∂y2
+ 2r

∂r

∂y

∂ϕ

∂y

= r2�ϕ + 2r∇r · ∇ϕ ,

where ∇r · ∇ϕ is the scalar product and the Laplacian operator �ϕ appears because
it is by definition the divergence of the gradient. The Laplacian �Z of Z = reiϕ is
given by
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Fig. 4.74 Position of the vorticity lines Ω = 0 for the phase field Z when x, y ∈ [0, 3]

�Z = ∂2 Z

∂x2
+ ∂2 Z

∂y2
= ∂2 Z

∂ρ2
+ 1

ρ

∂Z

∂ρ
+ 1

ρ2

∂2 Z

∂θ2

= eiϕ
[
�r − r |∇ϕ|2 + i (r�ϕ + 2∇r · ∇ϕ)

]
,

so if �Z + k2 Z = 0, we must have

{
�r + r

(
k2 − |∇ϕ|2 ) = 0 ,

r�ϕ + 2∇r · ∇ϕ = 0 .

The second equation expresses the fact that the divergence of the current is zero, that is
div

(
J

) = 0. This is a conservation law. It implies thatJ can be written in the form
e3×∇S = (−∂S/∂y, ∂S/∂x). Indeed, since R

2 is simply connected, a necessary and
sufficient condition for this is ∂2S/∂x∂y = ∂2S/∂y∂x , i.e., ∂J /∂x = −∂J /∂y,
which says precisely div

(
J

) = 0. We then have

ω = 1

2

(
∂Jy

∂x
− ∂Jx

∂y

)
= 1

2

[
∂

∂x

(
∂S

∂x

)
+ ∂

∂y

(
∂S

∂y

)]
= 1

2
�S .
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Fig. 4.75 Curves ∂x X = 0 and ∂y X = 0 (red) and ∂x Y = 0 and ∂yY = 0 (blue). Top left points
where ∇ X = 0 (intersection of red lines). Top right points where ∇Y = 0 (intersection of blue
lines). Bottom left points where ∇ X and ∇Y are both vertical [intersections of red and blue lines
∂x X = X (x) = 0 and ∂x Y = Y (x) = 0]. Bottom right points where ∇ X and ∇Y are both horizontal
[intersections of red and blue lines ∂y X = X (y) = 0 and ∂yY = Y (y) = 0]. All these points lie
on the lines Ω = 0

Regarding the first equation, it turns up everywhere in optics in a form where k is part
of the phase, i.e. where Z = reikϕ . It then becomes �r = k2r

( |∇ϕ|2 − 1
)
. When

k → ∞, which corresponds to the geometrical optics approximation, it becomes the
well-known eikonal equation |∇ϕ|2 = 1, which expresses the fact that ‘light rays’,
i.e. the trajectories of the field gradient ∇ϕ, go around the singularity at a constant
rate, while the wave fronts ϕ = const. are the rays coming from the singularity
(leading to some confusion between the two meanings of the word ‘ray’). To see
this, we expand r asymptotically in powers of k, viz.

r (a) ∼ kμ

n=∞∑

n=0

k−nrn (a) ,
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Fig. 4.76 Four examples of curves ∂x X = α∂x Y and ∂y X = α∂yY (and their intersections where
∇ X = α∇Y ) for different values of α. Top left α = −1 (blue). Top right α = −1/2 (green). Bottom
left α = 1/2 (orange). Bottom right α = 1 (red). We see that all points where ∇ X = α∇Y do
indeed lie on the lines Ω = 0

with r0 (a) 	= 0. When k → ∞, we have r (a) → kμr0 (a) and we deduce that
r0
(
1 − |∇ϕ|2 ) = 0, and hence |∇ϕ|2 = 1.
The quantity S can be calculated explicitly for superpositions of plane waves.

Indeed, S is a sum of integrals like

∫
2πE j Ek cos(α j ) cos

[
φ j + 2π

[
x cos(α j ) + y′ sin(α j )

]]

× cos
[
φk + 2π

[
x cos(αk) + y′ sin(αk)

]]
dy′ ,

which gives
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Fig. 4.77 Lines of vorticity Ω = 0 for the phase field Z when x, y ∈ [0, 1]

1

2
E j Ek cos(α j )

⎧
⎨

⎩

sin
[
2π

[
x cos(α j ) + y sin(α j ) − x cos(αk) − y sin(αk)

] + φ j − φk

]

sin(α j ) − sin(αk)

+
sin

[
2π

[
y sin(α j ) + y sin(αk) + x cos(α j ) + x cos(αk)

] + φ j + φk

]

sin(α j ) + sin(αk)

−
sin

[
2πx

[
cos(α j ) + cos(αk)

] + φ j + φk

]

sin(α j ) + sin(αk)

−
sin

[
2πx

[
cos(α j ) − cos(αk)

] + φ j − φk

]

sin(α j ) − sin(αk)

⎫
⎬

⎭
,

for k 	= j and

1
4 E2

j cot(α j )
[

sin
[
2φ j + 4πx cos(α j ) + 4πy sin(α j )

]

− sin
[
2φ j + 4πx cos(α j ) + 4πy sin(α j )

]]
,

for k = j .
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Fig. 4.78 Flow of the current J shown with the level lines of S

Figure 4.78 shows the flow of the current J with the level lines of S. We note
that the dislocations do indeed occur in regions of highest vorticity (> 0 or < 0), but
this does not mean that they coincide with the extrema of S. The definition of the
latter involves second derivatives of the field Z :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ω

∂x
= ∂Y

∂y

∂2 X

∂x2
+ ∂X

∂x

∂2Y

∂x∂y
− ∂Y

∂x

∂2 X

∂x∂y
− ∂X

∂y

∂2Y

∂x2
,

∂ω

∂y
= ∂Y

∂y

∂2 X

∂x∂y
+ ∂X

∂x

∂2Y

∂y2
− ∂Y

∂x

∂2 X

∂y2
− ∂X

∂y

∂2Y

∂x∂y
.

4.6.9 Critical Points

Apart from dislocation singularities where the phase ϕ is not defined, there are other
geometrically interesting points giving structure to the field Z . As already noted,
these are the critical points of ϕ where the gradient ∇ϕ vanishes, and hence also the
current J = r2∇ϕ. At such a point a0, the first term in the Taylor expansion of ϕ
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is second order. If δa is an increment in a, we have to second order ϕ (a0 + δa) ≈
ϕ (a0) + δaT Hϕδa, where δa is treated as a column vector, δaT is its transpose, and
Hϕ is the symmetric 2 × 2 matrix of second partial derivatives of ϕ at a0, a matrix
known as the Hessian of ϕ:

Hϕ =
(

∂2ϕ/∂x2 ∂2ϕ/∂x∂y

∂2ϕ/∂x∂y ∂2ϕ/∂y2

)

.

The eigenvalues of the Hessian Hϕ determine the type of critical point. They are real
because of the symmetry of Hϕ , generically distinct, and nonzero.14 If they are both
strictly positive, then δaT Hϕδa > 0 and a0 is a minimum of ϕ. If they are both strictly
negative, a0 is a maximum. If they have opposite signs, then a0 is a saddle point of ϕ.
Pinwheel maps would not appear to have orientation maxima or minima. However,
we have seen that there are many saddle points, mainly located at the centre of the
cells of the pinwheel lattice.

There can also be critical points in the amplitude r2, where ∇r2 = 0. Since
r2 = X2 + Y 2, we have ∇r2 = 2 (X∇ X + Y∇Y ). At a singularity that is a zero of
Z , X = Y = 0 and the point is critical. However, there are other critical points where
X,Y 	= 0. At these points, ∇ X and ∇Y are necessarily parallel, so the vorticity
Ω = ∇ × J /2 = ∇ X × ∇Y is necessarily zero. We thus see that the critical
points in the intensity include dislocations and the points where Ω = 0. The critical
points in the amplitude are invariant under gauge transformations and coordinate
transformations.

4.6.10 Mesogeometry and Microphysics

The optical analogy which suggests treating orientation maps as phase fields and pin-
wheels as dislocation singularities in such fields is also useful for understanding the
relations between different levels. In optics, there are three levels: geometric, wave,
and quantum. In our analogy, the geometric level corresponds to the mesogeometric
level involving the contact structures, symplectic structures, and sub-Riemannian
structures that we shall discuss here in detail.

The wave level corresponds to what we have just been doing, identifying pin-
wheels with singularities in the phase fields. However, as noted by Berry [69], wave
optics is an average over microphysical interactions described by quantum optics. In
particular, the optical current is an energy flow whose trajectories are the level lines
of S, in a certain sense a momentum density, giving the classical force on a small
particle placed at a:

14Let Hϕ =
(

a b
b c

)
. The eigenvalues are solutions of the quadratic equation Det

(
Hϕ − λI

) = 0,

which can be written λ2 − λ (a + c)+ (
ac − b2

) = 0. The discriminant (a + c)2 − 4
(
ac − b2

) =
(a − c)2 + 4b2 is always non-negative, and the roots are therefore real.
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The current gives the time-averaged force on small particles.

For its part, the phase gradient ∇ϕ gives the momentum imparted to the particle by
impacts from individual photons. And as the probability of these impacts is r2, the
average momentum is indeed J = r2∇ϕ.

We thus recover the assumption (see Sect. 4.3.2 of Chap. 4) that there is a micro-
physics of elementary events for which the mesogeometry of the orientation maps
is a kind of morphological skeleton. It is presumably the action potentials that play
the role of the tiny particles.

4.6.11 Statistics of Pinwheels as Phase Singularities

The pinwheel maps like phase fields can come in many forms. It is thus interesting
to carry out a statistical investigation on the basis of certain simplifying assump-
tions. Such studies have already been carried out in optics, in particular by Michael
Berry and Mark Richard Dennis (see, e.g. [70, 71]). This is a topical subject bring-
ing together work by Wolf and Geisel [72, 73], studies by Daniel Bennequin and
coworkers, and also recent work by Citti, Sarti, and one of their doctoral students,
Davide Barbieri [74].

In his thesis [68], Dennis gives precise results for superpositions of plane waves

Z =
∑

κ

Aκeiκ·a

with complex amplitudes Aκ = Eκeiφκ , in particular in the isotropic case, i.e. where
there is rotation invariance, so that the Eκ have a distribution depending only on the
magnitude k = |κ| of the wave vectors (the wave number) and where the spatial
phases φκ are random variables uniformly distributed on [0, 2π ]. If the sampling
of the κ in the given sums Z is fine enough, we can consider that the statistics of
the components X and Y of Z and their partial derivatives are circular Gaussian
distributions, which makes the calculations more accessible. In particular, we define
the energy spectrum by

1

2

∑

κ

E2
κ =

∫
E (κ)2 dκ ,

and the radial energy spectrum by

1

2

∑

κ

E2
κ =

∫
R (k)2

2πk
dk .

A further simplification comes by considering ‘monochromatic’ waves, with the
same wave number k, where the wave vector κ thus varies over a circle of radius k.
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In this case, R (u) becomes the Dirac delta δ (u − k). This hypothesis corresponds
to the fact that Z is a solution of the Helmholtz equation.

We can then calculate the average density d of phase dislocations. As these are
defined by the conditions X = 0, Y = 0, it will be given by the average of δ (X) δ (Y )

with respect to the measure dXdY . Relative to the measure dxdy, we need to insert
the Jacobian of Z (x, y) = X (x, y) + iY (x, y), i.e.

|ω| = |∇ X ∧ ∇ X | =
∣∣∣∣
∂X

∂x

∂Y

∂y
− ∂X

∂y

∂Y

∂x

∣∣∣∣ .

We must therefore calculate the average

〈
δ (X) δ (Y )

∣
∣∣∣
∂X

∂x

∂Y

∂y
− ∂X

∂y

∂Y

∂x

∣
∣∣∣

〉
.

Assuming that X , Y , and their partial derivatives are independent Gaussian random
variables, we can do this using the integrals

δ (u) = 1

2π

∫
eitudt , |u| = − 1

π

∫
∂

∂s

(
eisu

)ds

s
,

taking the latter in the sense of the Cauchy principal value. We thus obtain

d = K

4π
, K =

∫ ∞

0
k2R (k) dk = 〈

k2〉
R

for the measure R (k) dk .

As noted by Michael Berry, the fact that Z is a superposition of waves barely comes
into the calculation, and [70, p. 2076]:

The results apply to any complex scalar random function. […] The geometry thus revealed
is extraordinarily complicated and occasionally counterintuitive.

The wave number k is proportional to the reciprocal of a wavelength � = 2π/k,
whence�2 = 4π2/k2 and k2/4π = π/�2. Consequently, the density of singularities
d is the average

〈
π/�2

〉
R

. In Sect. 4.7.1.2, we shall once again come across this term
π/�2, also found by Fred Wolf and Theo Geisel.

4.6.12 Pinwheels and Gaussian Fields

Quite generally, the orientation maps can be treated as random sections of the fibre
bundle R

2 × P → R
2 satisfying a set of constraints explaining their pinwheel

geometrical structure. The problem then is to calculate their dislocation distribution
in statistical terms. At each point a of the base space R

2, we thus consider a random
variable Za , which defines a random field Z whose orientation maps Z (a) are
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samples. To simplify, we generally assume that the field Z is Gaussian (RGF), i.e.
that the Za are Gaussians with mean ma = E {Za}, where E is the expectation, and
variance σ 2

a = E
{
(Za − ma)

2}, and that all the joint distributions
∑

i αiZai for a
finite number of points ai are also Gaussian. Moreover, it is natural to assume that the
distribution of the Za is SE (2)-invariant [the distribution of the Za and obviously
not the samples Z (a)]. Translation invariance is known as stationarity and rotation
invariance as isotropy. For an introduction to random Gaussian fields, the reader
could consult, for example, Petter Abrahamsen’s review [75].

In the paper [63] on Gaussian models of pinwheels, Alexandre Afgoustidis carried
out a numerical calculation of the variance of the number N (J, θ) of neurons with
preferred orientation θ along a line segment J in the plane V 1. His calculation used
a formula due to Cramer and Leadbetter which contains oscillating integrals that are
rather difficult to calculate. The main result is that the variance is minimal when the
power spectrum is concentrated on a circle.

While preparing the paper, the author had an interesting discussion with one of the
referees (I was aware of this, being a referee myself). For the initial orientation field,
the assumption of an RGF model is plausible. However, we may wonder whether
it remains so for the stable orientation fields obtained by learning. Indeed, the role
of long-range horizontal connections becomes crucial and changes the statistical
properties of the fields. In his thesis [64], Afgoustidis discusses this point with Fred
Wolf.

The random variables Za cannot be decorrelated (i.e. independent, since for
Gaussian random variables, independence and decorrelation are equivalent), because
otherwise there would only be Gaussian noise and no geometrical structure. Further-
more, the very definition of a continuum of independent Gaussian random vari-
ables raises some tricky questions. What characterizes the field Z is the corre-
lation function C (a, b) = E {(Za − ma) (Zb − mb)}. Dividing by the variances,
we obtain the normalized correlation function Γ (a, b) = C (a, b)/σaσb. Sta-
tionarity implies that C (a, b) = C (a − b), and isotropy implies in addition that
C (a, b) = C (a − b) = C (‖a − b‖) = C (r). The means are all equal, i.e. ma = m,
and so are the variances, i.e., σ 2

a = σ 2 = C (0), and Γ (r) = C (r)/C (0).
The correlation functions are rather special, being symmetric and non-negative

definite:

(i) In the case of stationarity, a theorem due to Salomon Bochner tells us that they
admit a spectral representation which is a generalized Fourier transform. This
implies that Γ (a) = ∫

R2 ei〈a,κ〉dF (κ)15, where F is a bounded non-negative
measure on the space of wave vectors κ dual to the positions a. We have
F
(
R

2
) = Γ (0) = 1. In polar coordinates (k, α) for κ , we have

Γ (a) =
∫

R+×S1
eik

[
x cos(α)+y sin(α)

]
dα dP (k) ,

for a measure P (k) on R
+.

15〈 , 〉 is the natural pairing between vectors and dual covectors. It can also be expressed by a dot.



4.6 Pinwheels as Phase Fields 197

(ii) If the measure F is smooth enough relative to the Lebesgue measure dκ , then
it has a spectral density f (κ) and the generalized FT in Bochner’s theorem
reduces to a Fourier transform

Γ (a) =
∫

R2
ei〈a,κ〉 f (κ) dκ ,

with inverse transform

f (κ) = 1

(2π)2

∫

R2
e−i〈a,κ〉Γ (a) da .

(iii) If there is also isotropy, thenΓ (r) = ∫ ∞
0 J0 (kr) k f (k) dk with k = ‖κ‖, where

J0 is the Bessel function.
(iv) If in addition, we consider the solutions of the Helmholtz equation with wave

number k0, then f (k) is proportional to δ (k − k0) and Γ (r) is proportional to
J0 (kr) k0.

In this context, the formula for the statistics of the dislocations in the fields Z (a)
sampling the random Gaussian field Z is a special case of a fundamental formula
called the Kac–Rice formula (from Kac and Rice) [76]. We would like to calculate
the average d = E {# {a ∈ T : Z (a) = 0}} (recall that # indicates the cardinality of
a set) of the number of zeros of Z in a unit square T . Let NT be this number. We
thus have d = E {NT }. The Rice formula tells us that

d =
∫

T
E
{ |det (Jac (Za))| : Za = 0

}
pZa (0) da ,

where Jac is the Jacobian and pZa the density of Za . The calculation done by Dennis
[68] involved working out Gaussian integrals. Let Xa and Ya be the components of
Za and Ja = ∣

∣ det (Jac (Za))
∣
∣. It can be shown that the 6 random variables

Xa , Ya ,

(
∂X

∂x

)

a

,

(
∂X

∂y

)

a

,

(
∂Y

∂x

)

a

,

(
∂Y

∂y

)

a

,

are independent Gaussian variables, each with a distribution of the form

1√
2πσ

e−ξ 2/2σ 2
.

As we have seen, we then have to evaluate an integral of the form

∫
δ (X) δ (Y ) J p d (X) d (Y ) d

(
∂X

∂x

)
d

(
∂X

∂y

)
d

(
∂Y

∂x

)
d

(
∂Y

∂y

)
,
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where p is the product of the distributions. The first two variables Xa and Ya have

variance 1, which introduces a factor
(

1/
√

2π
)

2 = 1/2π in the integral, and the

other four have variance σ 2 = K/2, which introduces a factor
(

1/
√

2πσ
)

4 =
(
1/2πσ 2

)
2 = 1/(πK ) 2. The condition Za = 0 amounts to putting δ (X) δ (Y ) in

the integral, but
∫
δ (X) e−X2/2 = 1 and the same for Y . It thus remains to evaluate

1

2π

1

(πK )2

∫
Je−

(
‖∇ X‖2+‖∇Y‖2

)
/K d

(
∂X

∂x

)
d

(
∂X

∂y

)
d

(
∂Y

∂x

)
d

(
∂Y

∂y

)
.

If we change to polar coordinates by writing ∇ X = RX eiψX and ∇Y = RY eiψY , the
integral becomes

1

2π

1

(πK )2

∫ RX =∞

RX =0

∫ RY =∞

RY =0

∫ ψX =2π

ψX =0

∫ ψY =2π

ψY =0

(RX )
2 (RY )

2
∣
∣ sin (ψY − ψX )

∣
∣e−

(
R2

X +R2
Y

)
/K dRX dRY dψX dψY .

The integral of the sine gives 8π and the integrals of RX and RY each give K 3/2√π/4.
So finally,

d = 1

2π

1

(πK )2 8π
1

16
K 3π = K

4π
.

When the wave vectors κ are concentrated on a circle of radius k0 = 2π/� in the
Fourier space, the Gaussian random variables

(
∂X

∂x

)

a

,

(
∂X

∂y

)

a

,

(
∂Y

∂x

)

a

,

(
∂Y

∂y

)

a

,

with their distribution

1√
2πσ

e−ξ 2/2σ 2
,

which has variance σ 2 = K/2 satisfy K = k2
0 , and we thus obtain, as stated above,

d = K

4π
= k2

0

4π
=

(
2π

�

)2 1

4π
= π

�2
.

These statistical calculations, which only give one particularly simple example
of the connection between statistics and geometry, are especially interesting from a
theoretical point of view (and not only numerically) for the following reason. In their
2005 reference book Random Fields and Geometry [77], Robert Adler and Jonathan
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Taylor studied in great depth the generalizations of the Kac–Rice formula for random
fields Fa defined on a base space M and with values in R

k .
Let us take, for example, k = 1. One of the main problems, and an extremely dif-

ficult one, is to calculate P
{
supa∈M Fa ≥ u

}
for large u. This so-called probability

of excursion in the interval [u,∞) is well approximated by E
{
χ
(

A[u,∞)

)}
, where

quite generally, if D is a domain of R
k , AD := {a ∈ M : Fa ∈ D}, and where χ is

the Euler–Poincaré characteristic. Assuming Gaussianity, stationarity, isotropy, and
smoothness of the correlation functions C , we can obtain explicit but complicated
formulas for the E {χ (AD)}. What is interesting is that the proof of these formu-
las requires all the fundamental tools of the Morse–Whitney–Thom ‘philosophy’
discussed in Sect. 1.3 of the Preface.

To begin with, in order to be able to handle enough cases, we assume that M
is a manifold with boundary of dimension N , equipped with a ‘good’ stratification
M = ∪k=N

k=0 ∂k M , called a Whitney stratification, satisfying Whitney’s properties A
and B. Here, k is the dimension of the strata making up ∂k M , with ∂N M = M̊ , where
M̊ is the interior of M , and ∂0 M = {vertices of M}. We assume that the smoothness
properties of C imply that the samples F of the field F are Morse functions on
M , using the generalization of Morse theory to stratified manifolds due to Robert
MacPherson. In addition, the field F defines a natural metric dF (a, b) on the base
space M through the formula

d2
F (a, b) = E

{‖Fa − Fb‖2} .

We can thus also make use of the resources of Riemannian geometry, such as cur-
vature tensor, Levi-Civita connection, covariant derivative, Lipschitz–Killing curva-
tures, and so on.

For k = 1, we thus apply to A[u,∞) the formulas relating Morse theory to the
Euler–Poincaré characteristic. If the sample F of F is Morse and if u is a regular,
i.e. non-critical, value of F , then A[u,∞) is a sub-manifold with boundary of M that
is ‘well stratified’ by the intersection strata Å[u,∞) ∩ ∂k M and ∂ A[u,∞) ∩ ∂k M . F is
not necessarily Morse on A[u,∞), but it can be approximated by a Morse function F̃
whose critical points correspond to the critical points of F situated above u.

The Rice–Kac formula corresponds to a rectangle M = T of R
N and to F with

values in R
N . Let J be the Jacobian of a sample F (an N × N matrix). Let Nu be the

number of points of T for which F (a) = u ∈ R
N . Then, the formula tells us that

E {Nu} =
∫

T
E
{ |det (J )| : F (a) = u

}
pa (u) dt .

In our case N = 2, F = Z , u = 0, and T is a unit square.

http://dx.doi.org/10.1007/978-3-319-65591-8_1
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4.6.13 Evolution of Pinwheels as Phase Singularities

We can also study the temporal evolution of the pinwheels, that is, the singularities
in the field Z , e.g. by assuming that Z is a superposition of plane waves Z =∑

κ Aκei(κ·a−ωt), where, as we saw in Sect. 4.6.6,ω is an angular frequency associated
with the frequency ν = ω/2π and the period T = 1/ν = 2π/ω, the corresponding
wavelength being λ = cT = c/ν = 2πc/ω, where c is the speed of propagation.

Topological accidents can occur during this evolution, in particular when a sin-
gularity Z = 0 also satisfies Ω = ωe3 = 0. We saw in Sect. 4.6.5 that, when Ω = 0,
the real ∇ X et ∇Y have the same orientation, ∇Y = α∇ X , α ∈ R, and hence that
the complex gradient ∇Z is the real vector ∇ X multiplied by a factor 1 + iα. As
explained by Michael Berry and Mark Richard Dennis in [71], by a gauge transfor-
mation and a coordinate change, we can reduce to the case in which the field Z (a)
has the form

Z (a) = iβy + 1

2
aT Ha , β ∈ R ,

where the complex Hessian

H =
(

H11 H12

H12 H22

)

is a symmetric 2 × 2 complex matrix. We do indeed have Z (0) = 0, and since
∇ X (0) = 0, Ω (0) = 0.

This unstable normal form can be unfolded using a time variable t , giving the
dynamical model

Z (a, t) = t + iβy + 1

2
aT Ha ,

X (a, t) = t + 1

2

[
x2Re (H11) + 2xyRe (H12) + y2Re (H22)

]
,

Y (a, t) = βy + 1

2

[
x2Im (H11) + 2xyIm (H12) + y2Im (H22)

]
.

For the singularities Z = 0, the equation Y = 0 gives, for the lowest order terms, y ∼
−x2Im (H11) /2β and the equation X = 0 gives x2Re (H11) ∼ −2t . If Re (H11) > 0,
then for t < 0, there are two solutions with abscissa values x = ±[−2t/Re (H11)

]
1/2

on the parabola y = −x2Im (H11) /2β which coalesce and disappear for t ≥ 0: two
singularities with opposite chiralities xβRe (H11) annihilate in what is known as a
fold catastrophe. If on the other hand Re (H11) < 0, then when t becomes positive,
two singularities of opposite chirality appear.

We shall return to these pinwheel bifurcations in more detail in Sect. 4.7.1.2.
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4.7 Pinwheel Singularities

We have seen that pinwheels are centred on singularities. In this section, we shall dis-
cuss some of the experimental data which supports the hypothesis that the functional
orientation maps can be treated as phase fields.

4.7.1 Structure in the Vicinity of Singularities

4.7.1.1 Pinwheels as Zeros of the Orientation Field

If we enter the cortex ‘vertically’ at a regular point, we come across the columns
of Hubel and Wiesel with their redundancy and their population coding. However,
when we enter at a singular point, we come across neurons of every orientation. It
is tricky but crucial to understand this phenomenon correctly. Orientation selectivity
is highly variable in V 1, and clearly, on the level of the mesoscopic resolution of
the images presented so far, it is necessarily rather low or even zero on average at
singular points, since all orientations are present in a roughly uniform manner. In fact,
we may assume that the meso- or ‘coarse-grained’ level is one where the preferred
orientation corresponds to what is known as an order parameter in statistical physics,
and that the models of this level are analogous to the so-called mean field models.

As an example of mesoscopic models, let us return to those proposed by Wolf and
Geisel [72] to understand the learning process behind orientational selectivity (see
Sect. 4.6.1). They are phase field models in the sense of Sect. 4.6. The field of preferred
orientations Φ(a) = eiϕ(a) of simple V 1 neurons can be treated as a section of the
fibre bundle π : R × P → R defined outside the lattice L of the pinwheel centres
of R. Identifying R with R

2 and R
2 with C, Wolf and Geisel suggested modelling

the columns by a continuous complex field Z(a) = r(a)eiϕ(a) = r(a)Φ(a) on the
complex variable a = ρeiθ , where the spatial phase ϕ(a) thus encodes the orientation
preference ψ = ϕ/2 and where the modulus r(a) = |Z(a)| encodes the strength
of selectivity, i.e. the width of the response curve, which is Gaussian. The complex
value Z is thus a section of the fibre bundle π : C × D → C, which has base space
C, and if the maximal selectivity is normalized to unity, its fibre is the unit disc D.
As we have seen, the singular points (pinwheel centres) then correspond to the zeros
of Z . To obtain a naive and simple illustration of the behaviour of the field Z in the
neighbourhood of a zero, we take ϕ = θ and r = ρ/2. Above the points a of a small
circle Cρ with centre 0 and radius ρ fixed in the base space C, we have in the fibre
the circles �ρ/2 of fibres Da of radius ρ/2, and the inverse image of Cρ under π is
thus the torus π : Cρ × �ρ/2 → Cρ . The lift of Cρ on this torus is the curve Γρ (see
Fig. 4.79) given parametrically by

Γρ =
(
ρ

2
sin (θ) , ρ

[
1 − 1

2
cos (θ)

]
cos (θ) , ρ

[
1 − 1

2
cos (θ)

]
sin (θ)

)
.
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Fig. 4.79 The torus
π : Cρ × �ρ/2 → Cρ and
the lift Γρ of Cρ (see text)

Fig. 4.80 When ρ → 0, the
section Γρ → 0

As the orientation selectivity vanishes at 0, when ρ → 0, the section Γρ also tends
to 0 and the projection π is locally a diffeomorphism (see Fig. 4.80).
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4.7.1.2 Pinwheel Morphogenesis and Learning

One of the advantages of this approach is that it provides a good theory of the
learning process. The paper [78] by Nicholas Swindale contains a summary of these
development models. As the author puts it:

The repetitive stochastic patterns of eye dominance and orientation preference [are of an]
intriguing nature. Many aspects of their development seem likely to be dependent upon both
spontaneous and visually driven patterns of neural activity. […] Remarkably simple models,
based on Hebbian synaptic plasticity, intracortical interactions and competitive interactions
between cells and growing axons, have been able to explain much of the phenomenology.

A good example of such models is the one developed by James Bednar and
Risto Miikkulainen in [79, 80] using self-organized map (SOM) models (see
Sect. 4.10.1.4), which are16:

[…] networks of simple artificial neurons with initially unspecific connections that are mod-
ified by Hebbian learning and homeostatic plasticity.

They show quite clearly how the double constraints imposed on the one hand by
the geometry and statistics of external stimuli and, on the other, by the geometry
and statistics of the internal structure of the cortical areas lead in a self-organized
way to pinwheel maps that depend only weakly on the initial synaptic weights of the
neurons, but heavily on the way the stimuli arrive. Figure 4.81 gives an example.

The dynamical self-organization models proposed by Fred Wolf, Theo Geisel,
Matthias Kashube, and Michael Schnabel in [72, 81, 82] are models of pattern for-
mation, starting from an unstructured initial state, through Turing instabilities. They

Fig. 4.81 Pinwheel map built from GCAL self-organized maps (gain control, adaptive, laterally
connected SOMs). Starting from random synaptic weights, the neural network is subjected to a
flow of stimuli of a certain type. The weights are modified by Hebbian learning and homeostatic
plasticity, gradually producing a pinwheel structure which stabilizes. It can be shown that such maps
depend little on the initial synaptic weights of the neurons, but a great deal on the flow of stimuli.
In the last figure, white lines indicate the inhibitory lateral connections of a neuron. Figure adapted
from Bednar [79]

16For Hebb’s law, see Sect. 3.6.2.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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adopt the development model first introduced by Nicholas Swindale and describe the
morphogenesis of the field by a partial differential equation (PDE) of the form

∂Z(a, t)

∂t
= F

(
Z(a, t)

) + η (a, t) ,

where F is a linear operator and η a stochastic term representing the intrinsic fluc-
tuations associated with this activity. This kind of dynamics can be induced by a
Hebbian learning process, with F (Z(a)) the average of Z(a) for rapidly changing
stimuli A with a certain probability distribution.

The authors also take into account ocular dominance and distortion of retinotopy
(see Figs. 4.12 and 4.13 in Sect. 4.2). They show that, starting from an initial state in
which the field Z(a, 0) is weak (with little orientational selectivity), there is first a
period of proliferation of pinwheels, with a growth in selectivity and the appearance of
a characteristic wavelength �, the pinwheel density17 becoming greater than π/�2.
Then, the nonlinearities and long-range lateral interactions stabilize the process and
the number of pinwheels through their displacements, collisions, and annihilations
of pairs of pinwheels of opposite chirality (see Fig. 4.82). The reader could consult
Ha Youn Lee et al. [83].

More precisely, the standard technique for analyzing such a PDE is to expand
F (Z) in a series

F (Z) = L (Z) + F2
(
Z , Z

) + F3
(
Z , Z , Z

) + · · · ,

where L (Z) is linear, F2
(
Z , Z

)
is bilinear, F3

(
Z , Z , Z

)
is trilinear, and so on.18

In the given model, it can be shown that the linearized L
(
Z(a, t)

)
whose spectral

analysis is to be carried out is of fourth order and can be written L = μ− (
k2

c +�
)
2,

where μ is a bifurcation parameter such that, for μ < 0, the homogeneous base
state Z ≡ 0 is stable, while for μ > 0, it becomes unstable and bifurcates towards

Fig. 4.82 Annihilation of pinwheels of opposite chirality simplifies and stabilizes the pinwheel
geometry. From Wolf and Geisel [72]

17We have already encountered this density π/�2 in Sect. 4.6.11.
18We have to use the two variables Z and Z because the functions Fj are not necessarily analytic
functions depending only on Z .



4.7 Pinwheel Singularities 205

patterns with characteristic wavelength � = 2π/kc for critical eigenvalues λ (kc)

(kc 	= 0) of the Fourier representation of L given by μ = λ (kc).19 To third order,
the dynamical PDE becomes analogous to the equation that Jack Swift and Pierre
Hohenberg introduced into the study of convection in hydrodynamics (see [84]).

It is important to note that the PDE must be equivariant under the action of the
group of symmetries of the plane SE (2), and even E (2). We shall return at length
in the second volume on the structure of the group SE (2) and the importance of
symmetries. Let us just say for the moment that they impose strong constraints on
the form of the functional F . Indeed, F must be equivariant under the action of
SE (2), acting by translations a → a + b and rotations a → Rθ (a) on the base
plane R = C of the a, and also by rotations Z → eiψ Z in the fibres. Now recall
that, if Z (a) is a function of a variable a ∈ R and if T is an element of a group G
of transformations of R, T acts on Z (a) by T̃ (Z (a)) = Z

(
T −1 (a)

)
. In addition,

we say that a function or functional F (Z) on which G operates is G-equivariant if
T
(
F (Z)

) = F
(
T̃ (Z)

)
, i.e. if F commutes with the actions of G on Z and on the

space of values of F . Consequently, we must have

b̃
(
F (Z (a))

) = F
(̃
b (Z (a))

) = F (Z (a − b)) ,

for any translation b̃ by a vector b in the plane R,

R̃θ

(
F (Z (a))

) = F
(
R̃θ (Z (a))

) = F
(
Z (R−θ (a))

)
,

for any rotation R̃θ through angle θ of the plane R, and F
(
eiψ Z

) = eiψ F (Z) for
any rotation of Z . Note that the last symmetry implies that F (0) = 0, since if Z = 0,
then eiψ Z = 0 for any ψ , whence eiψ F (0) = 0 for all ψ .

When F is expanded in the neighbourhood of the equilibrium state Z ≡ 0,
its linear part L commutes with the symmetries, and the Fourier representation is
therefore diagonal with eigenvalues λ (kc) which depend only on the magnitude kc.
The authors show that the second-order term F2 can be neglected and that we may
choose a third-order term F3 depending on |Z |2 Z and long-range lateral connections.
We shall see in the second volume that this cubic normal form |Z |2 Z often arises in
problems with E (2) symmetry.

The analysis of patterns Z (a), i.e. pinwheel maps, that can emerge by bifurcation
thus reduces to a classic problem that has been widely studied in physics, the problem
of symmetry breaking. If a modulus (wave number) k is selected by a bifurcation at
μ, we may consider superpositions of eigenstates (Fourier modes) with eigenvectors
(wave vectors) κ j with magnitude

∣∣κ j

∣∣ = k. We thus obtain planforms:

19In the expansion of L , the powers of partial derivatives like (∂/∂x)n mean repeated differentiation
∂n/∂xn . The linear PDE ∂Z/∂t = L (Z) for L = μ describes exponential damping towards 0 for
μ < 0 (stability) and exponential growth for μ > 0 (instability). The PDE ∂Z/∂t = L (Z) for
L = −� is a diffusion equation.
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Z (a) =
j=n−1∑

j=0

A j e
iκ j ·a ,

∣
∣κ j

∣
∣ = k , κ j = k

(
cos

(
2π j

n

)
, sin

(
2π j

n

))
.

The symmetries impose a precise structure on the amplitudes A j . By expressing the
fact that they are solutions of the PDE satisfied by Z , we show that they must satisfy
differential equations of the form

dAi

dt
= Ai −

j=n∑

j=1

gi j

∣∣A j

∣∣2 Ai −
j=n∑

j=1

fi j Ai A j∗ Ai∗ ,

where j∗, the mode antiparallel to the mode j , is defined by κ j∗ = −κ j , and where
the coefficients gi j and fi j satisfy the properties

⎧
⎪⎨

⎪⎩

gi j =
(

1 − 1

2
δi j

)
g
(|αi − α j |

)
,

fi j = (
1 − δi j − δi∗ j

)
f
(|αi − α j |

)
.

Here, δi j is the Kronecker symbol (δi i = 1 and δi j = 0 if i 	= j), αi is the angle of
mode i , and g (α) and f (α) are π -periodic angle functions calculated from F . A
refined version of this model can be found in the paper Schnabel et al. [85].

Figure 4.83, taken from [81, 82], shows the planforms for n = 1, 2, 3, 5, 15, with
the positions of the wave vectors κ j and the density of the pinwheels as a function of
n. An example of a pinwheel map constructed as a linear combination of planforms
is also shown.

4.7.1.3 Pinwheels as Genuine Singularities

These models based on the parallel between pinwheels and dislocations are quite
remarkable. However, two points should be emphasized:

1. The model assumes that the orientation selectivity vanishes on the dislocations
located at the centres of the pinwheels.

2. No meaning can be attached to the limit as the mesh of the pinwheel lattice tends
to 0, since it then gives a field Z that is identically zero.

It thus requires closer examination because it may be that the selectivity remains good
at singular points on the micro level of individual neurons and only vanishes at the
meso level due to averaging. As noted by Jonathan Polimeni et al. when commenting
on a paper by Pedro Maldonado et al. [86] which we shall discuss in a moment [87,
p. 4158]:

The optical recording signal is a population average, and so individual neurons in the pin-
wheel centres—even if they were strongly tuned to orientation—would average to a weak
population response at the pinwheel centres imaged through optical recording.
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Fig. 4.83 Model by Wolf and Geisel. a Planforms for n = 1, 2, 3, 5, 15, with the position of
the wave vectors κ j . b Example of a pinwheel map built as a linear combination of planforms.
c Diagram giving the density ρ of the pinwheels as a function of n : for a given n, each point is the
density of one of the patterns corresponding to n. From [82]
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The difference is clear on the level of the geometry of the models. Let us come back
to Fig. 4.79 and suppose, for example, that the selectivity r is everywhere maximal,
viz. r = 1, even at the origin. Then, the lift of Cρ is the curve Γρ given by

Γρ =
(
ρ

2
sin (θ) ,

(
1 − 1

2
ρ cos (θ)

)
cos (θ) ,

(
1 − 1

2
ρ cos (θ)

)
sin (θ)

)
,

and when ρ → 0, the section Γρ no longer tends to 0 but to the ‘vertical’ unit circle
Γ0 = (0, cos (θ) , sin (θ)), and the projection π is not at all a local diffeomorphism
at 0. It is such away from 0, even if it turns out to be a highly twisted diffeomorphism,
but at 0 itself, it has an ‘exceptional fibre’ Γ0 of dimension 1 (see Fig. 4.84).

It is thus well worth carrying out precise experiments on the structure of the ori-
entation field in the neighbourhood of singularities. They are difficult to do but rich
in results. By combining imaging methods with methods for intracellular recording
of spikes triggered by the synaptic inputs, but also recording of membrane potentials
of single neurons, Pedro Maldonado, Imke Gödecke, Charles Gray, and Tobias Bon-
höffer were able to analyze the fine structure of the orientation maps at singularities,
observing that [86, p. 969]:

Orientation columns contain sharply tuned neurons of different orientation preference lying
in close proximity.

Put another way, column redundancy seems to disappear at singular points.
For further discussion of these results, the reader is referred to David McLaughlin

et al. [88] and Michael Shelley et al. [89], who model the cortical processes generating
orientation selectivity in the 4Cα layer of the macaque V 1 area. They start from the
microlevel with a network of 16 000 integrate-and-fire neurons and reduce it at the
meso level to what they refer to as ‘a spatially coarse-grained system for firing rates of

Fig. 4.84 When ρ → 0, the
section Γρ no longer tends to
0 but to the ‘vertical’ unit
circle Γ0 (see text)
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neuronal subpopulations’ [89, p. 97]. They then introduce a plausible connectivity for
the ‘vertical’ connections coming from the LGN and for the ‘horizontal’ intracortical
inhibitory and excitatory connections (which we shall return to at length in Sect. 5.1
of Chap. 5). In the second volume, we shall discuss cortical models comprising a
huge number of differential equations describing the membrane potentials of each
neuron in the network, along with coarse-grained mean field methods which allow
us to study them on the meso level. What is important here is the result from these
authors, formulated here for an orientation hypercolumn, i.e. a pinwheel, including
isotropic internal inhibitory and excitatory connections, but no anisotropic long-range
lateral connections with other hypercolumns:

This analysis showed it is an interaction between the pinwheel structure of the preferred ori-
entation mapping and the isotropic architecture that produces greater orientation selectivity
near pinwheel centres [89, p. 121].

In other words, these models show that the pinwheels are ‘true’ singularities where
all the orientations are present, each with strong selectivity.

Many experimental results confirm this idea. For example, using moving gratings
as stimuli, James Schummers et al. have shown that:

Neurons near pinwheel centres have sub-threshold responses to all stimulus orientations but
spike responses to only a narrow range of orientations. [90, p. 969]

They assess the selectivity of spike responses and sub-threshold responses as a func-
tion of position relative to the pinwheels. Far from the pinwheels:

[Cells] show a strong membrane depolarization response only for a limited range of stimulus
orientation, and this selectivity is reflected in their spike responses. [90, p. 970]

At the centre of a pinwheel, on the other hand, only the spike response is selective
and the membrane is highly depolarized for all orientations (see Fig. 4.85).

These results show that, at singular points, all orientations are indeed present,
but using a novel solution with regard to the connectivity of the relevant neural
microcircuits:

These examples indicate that both simple and complex cells located near pinwheel centres
receive synaptic inputs over a broad range of stimulus orientations, although not all of these
inputs are represented in the spike outputs. [90, p. 971]

Schummers [91] obtained further results with Jorge Mariño (on cats). The local
neural circuits are very different at regular points and at singular points. If we look at
the total conductance g, we observe that it is strongly peaked at a regular point
and flatter at a singular point. It is the different ways in which it is distributed
between inhibitory and excitatory conductances gi/ge and the interaction between
the excitatory and inhibitory connections which show us how, ‘despite the diversity
of local environments’, there can nevertheless be ‘a sharp orientation tuning at all
locations in the orientation map’ [91, p. 195]. With highly localized injections of
retrograde tracer (where ‘localized’ refers to a region <100 µm), the difference
between excitatory and inhibitory can be clearly distinguished. Figure 4.86 shows

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.85 Responses to stimuli in the form of moving periodic gratings with different orientations.
Left Far from singularities. Scales 8 spikes/s, 10 mV, 2 s. Right At the centre of a pinwheel. Scales 3
spikes/s, 8 mV, 2 s. aComparison between spike emissions (red) and the membrane potential (blue).
c The two curves representing the average amplitude of the responses for different orientations.
d Modulation of responses. From Schummers [90]

an injection site with the inhibitory and excitatory connections. We observe that
inhibition is more localized and more isotropic, whereas excitation propagates over
greater distances, but in a highly anisotropic way, clustering in regions of the same
colour and hence of the same orientation as the injection site. We shall return to this
crucial point, the key to the functional architecture of V 1, in Sect. 5.1 of Chap. 5.

These measurements confirm that the difference between regular and singular
points is not reflected in the level of the spikes (there is good orientation selectivity
in both cases), but at the level of the sub-threshold signals. This is because:

[…] as a result of the appropriate inhibitory balance at orthogonal orientations, which keeps
the membrane potential below threshold, it is not reflected in the spike responses.

4.7.2 The Problem of Resolution

As already mentioned, it is important to note that the question of resolution plays an
important role in the definition of the pinwheels. In an optical device, there is always
a resolution transforming points (Dirac measures) into Gaussians of a certain width
σ . In the optical imaging of intrinsic signals in vivo, there are systematic statistical
errors. As noted by Jonathan Polimeni et al., these are due to:

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.86 The injection site is the small central circle. The outer circle C is at 250 µm from
the intermediate circle (see the 250 µm scale bar in the bottom left corner). White dots represent
inhibitory connections and black dots excitatory connections. We observe that inhibition is more
localized, bounded by the circle C , and more isotropic, whereas excitation propagates well outside
the circle C , but in a highly anisotropic way, clustering in regions of the same colour and hence of
the same orientation as the injection site. From Mariño and Schummers [91]

[…] photon scatter and absorption in brain tissue combined with the blurring introduced by
the optics of the imaging system. [87, p. 4158]

In this sense:

Optical recording, as it has been used to date, has insufficient spatial resolution to accurately
locate pinwheel centers. [87, p. 4158]

Fortunately, as we shall soon see, there are now much higher resolution methods
which provide a way around these difficulties.

However, it remains important to take into account the fact that the functional
orientation maps are obtained by superposing single-orientation maps and are thus
vector-valued images. They have a resolution corresponding to a width σ of about
250 µm. Figure 4.87, taken from [87], shows what happens to a pinwheel map when
it is convolved with a Gaussian kernel of width 250 µm. Obviously, we observe that
the map changes significantly. In other words, good mesoscopic models must always
be multiscale models.
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Fig. 4.87 Transformation of a pinwheel map by convolution with a Gaussian kernel of width
250 µm. White pinwheels are (+), black pinwheels are (−), and continuous and dashed lines are
the zero-crossings of the map. The scale bar represents 1 mm. We note how much the map changes.
a Initial map with 124 pinwheels. b Transformed map with only 93 pinwheels. From Polimeni et
al. [87]. Copyright (2005) National Academy of Sciences, USA

4.7.3 Two-Photon Confocal Microscopy

The imaging techniques mentioned up to now are not accurate enough. However,
recently, new techniques like in vivo imaging by two-photon confocal microscopy
have given us functional maps with a resolution down to the level of single neurons.
Kenichi Ohki and coworkers [92] have shown that, in cats, pinwheels defined on the
mesolevel remain highly ordered on the microlevel. Consequently:

Pinwheel centers truly represent singularities in the cortical map.

The idea of the method is to inject calcium-sensitive indicators (Oregon Green
BAPTA-1 acetoxylmethyl ester) which label a few thousand neurons in regions of
300–600µm. We simultaneously measure calcium signals triggered by visual stimuli
in hundreds of neurons at different depths (from 130 to 290 µm, in steps of 20 µm),
and we find pinwheels with the same orientation wheel (see Fig. 4.88):

This demonstrates the columnar structure of the orientation map at a very fine spatial scale.

Whence the problem of connectivity implementing the fine selection of orientations
near singularities; several hypotheses have been put forward by the authors about the
dendritic tree near the centre C (a few tens of µm) in an iso-orientation domain D
(see Fig. 4.89):
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Fig. 4.88 Two-photon optical imaging can simultaneously measure calcium signals triggered by
visual stimuli in hundreds of neurons at different depths (from 130 to 290 µm in steps of 20 µm).
We find analogous pinwheels with the same orientation wheel at these different depths. From Ohki
et al. [92]

(a) Unbalanced dendritic tree towards D.
(b) Symmetric dendritic tree, but excitatory inputs unbalanced towards D.
(c) Symmetric dendritic tree, symmetric excitatory inputs, but local and within D

(good segregation in the vicinity of C).
(d) Symmetric dendritic tree, symmetric excitatory inputs, integrated over a wide

dendritic area.
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Fig. 4.89 Four dendritic tree structures in the vicinity of a singularity, as proposed by Kenichi Ohki
et al. [92] (see text)

4.8 Pinwheels and Blow-ups

The results of Schummers and Maldonado lead to two competing idealized mod-
els. In both cases, all the orientations are indeed present with good selectivity in
the neighbourhood of singularities, but at the singularity itself (insofar as this has a
precise meaning on the meso level), either the orientation selectivity is sub-threshold
(Schummers), or there is a loss of column redundancy (Maldonado). Further exper-
iments will be needed to elucidate this, but we may nevertheless make a suggestion
for Maldonado’s results. The theoretical problem we have to solve concerns the
dimensional collapse of an ideally 3D structure onto 2D neural layers.
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4.8.1 The Geometric Concept of Blow-up

So how can the concrete 2D structure of pinwheels fit with the abstract 3D structure
of the fibre bundle? To understand this, we shall use the geometric operation known
as ‘blowing up’ of singularities. The intuitive idea, which needs to be carefully tested,
is that the pinwheels could be like local blow-ups of singular points, and the pinwheel
lattice like a gluing together of these local blow-ups to give a discrete approximation
of the projection π : R × P

1 → R. In this picture, π would correspond to a limiting
situation where in some sense all the points of R would blow up in parallel.

In algebraic geometry, the blow-up of a variety such as the plane M = R
2, at a

point, e.g. the origin O = (0, 0), is defined in the following way. Let a = (x, y) 	=
(0, 0) be a point of R

2. We associate the direction p of Oa with this point and thus
specify a map δ :

δ : R
2 − {O} −→ P

1

a = (x, y) �−→ δ(a) = p = y/x

The graph of δ is a helicoidal surface H in the 3D fibre bundle V = R
2 ×P

1, and the
topological closure of H in V is a helicoid H with π−1(O) = � ∼= P

1. This copy
of P

1 above O is an exceptional fibre which, for historical and technical reasons, is
called the exceptional divisor of the blow-up. The restriction to H of the projection
π : R

2 × P
1 → R

2 is an isomorphism of H on R
2 − {O}. If d is the straight line

generated by Oa in R
2, the closure of the inverse image π−1(d − {O}) is made up

of points (λa, δ(a) = p) of V = R
2 × P

1, i.e., by the straight line d ′ at height
δ(a) = p = y/x . When the straight line d rotates in the plane R

2, d ′ also rotates,
but while translating through �, whence the helicoidal motion.

Since the inverse image of the point O under π is the projective line � = P
1,

π is not at all an isomorphism at O , but a projection collapsing a 1D fibre to a
zero-dimensional point. In this sense, the blow-up of the plane at a point generates a
geometric structure which is somehow ‘intermediate’ between the 2D plane and the
3D fibre bundle. It is the fibre bundle V above O and the (twisted) plane R

2 away
from O . One might say that the blow-up π : H → R

2 unfolds the orientation wheel
centred on O = (0, 0) in a third dimension (see Figs. 4.90 and 4.91).

This construction can be understood as an interpretation of polar coordinates in
terms of a field of directions. Indeed, consider the fibre bundle π1 : R

2 × S
1 → R

2.
On the plane with one point removed R

2 − {O}, the argument θ(a) ∈ [0, 2π ] of
a point a is well defined and we may thus consider the section �1 of π1 defined
by �1 : a → �1(a) = (

a, eiθ(a)
)
. The fibre bundle π : R

2 × P
1 → R

2 is the
quotient of the fibre bundle π1 : R

2 × S
1 → R

2 obtained by identifying θ with
θ + π (i.e., by identifying eiθ with −eiθ ) and �1 lifts to π1 the section of π defined
by � : a → �(a) = (

a, eiθ(a)
)
, where θ(a) ∈ [0, π ] is now considered modulo π .

�1(a) is constant on the rays θ = const., and when it is lifted from R
2 × P

1 to
R

2 × S
1, the surface H of R

2 × P
1 becomes the image of �1.
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Fig. 4.90 Blow-up of the
plane at a point a. The
directions at a are unfolded
in a third dimension

Fig. 4.91 When the third
dimension collapses, the
blow-up becomes a pinwheel

The concept of blow-up was introduced under the name of ‘quadratic transfor-
mation’ at the end of the nineteenth century by specialists of projective algebraic
geometry. It represents the simplest case of what are known as birational transfor-
mations, and it is fundamental for desingularizing singular curves. If a curve γ in R

2

has a singular point at O where several branches intersect with different tangents,
then by lifting γ to H , we obtain a curve Γ = π−1(γ ) with various branches at
different heights, thereby eliminating the intersections.

We can now localize this algebraic model and even consider an infinitesimal
version, where we restrict to points a = (dx, dy) infinitely close to the blow-up
point O = (0, 0). To do this, we take what is known as the ‘germ’ of the structure in
the neighbourhood of (�, O). In the local model, which is no longer algebraic but
differential, we have p = dy/dx and the surface H is thus included in the kernel
of the differential form ω = dy − pdx defined on V = R

2 × P
1 (we shall return

to this key point in Sect. 5.4.1 of Chap. 5). Conversely, the algebraic model can be
considered as the ‘tangent’ structure to the local model, where infinitesimal segments
are replaced by tangent vectors.

http://dx.doi.org/10.1007/978-3-319-65591-8_5


4.8 Pinwheels and Blow-ups 217

The blow-up model can be used to understand orientation singularities. We can
neglect the redundancy of the cortical columns outside the singularities insofar as,
at regular points, simple V 1 neurons mainly detect the same pair (a, p). However,
we have seen that, according to Maldonado et al. [86], this is not the case at singular
points, where all orientations are in fact present in the column. The fact that the
orientation associated with a ray of a pinwheel selects this orientation at the centre
of the pinwheel can then be expressed by saying that the operation yielding the
topological closure H of H is implemented neurally and that the singular point is
thereby blown up throughout the thickness of the cortical layer.

When the pinwheel is modelled in this way, it corresponds to the section � of the
projection π : (R2 − {O}) × P

1 → (
R

2 − {O}) given by � (a) = (
a, ei[α+θ(a)/2]),

where α is the orientation encoded by the ray θ(a) = 0. We thus require a double
rotation of θ through angle π (hence two round trips of P

1) to get back to the same
ray, and this is why, as explained above, two diametrically opposite rays at angles θ

and θ + π correspond to orthogonal orientations α + θ/2 and α + θ/2 + π/2. This
means that the pinwheels implement what is known in geometry as a spin structure.
The section � is not the section � : a → �(a) = (

a, eiθ(a)
)
, θ(a) ∈ [0, π ], of the

bundle π : (R2 − {O}) × P
1 → R

2 − {O}, but rather a field of orientations of the
same order, and this justifies modelling it by a blow-up.

4.8.2 Blow-ups and Lines of Dislocations

A link can be made between these blow-ups and the singularities of the phase fields
discussed in Sect. 4.6. On the one hand, if we rotate the x-axis by θ0 without changing
the origin in P

1, the helicoid H is translated by θ0 to the helicoid Hθ0 and the blow-up
can be considered as the set of all the Hθ0 . On the other hand, we can consider the
field of phases Z = ae−ip = ρei(θ−p) in R

2 × P
1, where p varies in the fibre P

1.
Surfaces of constant phase are then the helicoids Hθ0 and the fibre P

1 above 0 is a
line of dislocations.

4.8.3 From Blow-up to Fibre Bundle

To construct a fibre bundle model for a global pinwheel structure from the local blow-
up model, one must blow up all the points of an (irregular) lattice L of the plane,
the lattice of singular points, in parallel. This is not possible in the framework of
algebraic geometry, because the local structures determine the global structures, and
to iterate the algebraic model for the blow-up of a point, one would have to immerse
the successive blow-ups in spaces of ever higher dimension. However, it can be done
in the context of differential geometry by gluing together the local models of different
points in the lattice. We thus obtain a model for the pinwheel structure (see Figs. 4.92
and 4.93).
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Fig. 4.92 Simultaneous blow-up of a lattice of points

Fig. 4.93 When the third
dimension collapses, a
simultaneous blow-up of a
lattice of points yields a
lattice of pinwheels

In a field model like the one in Sect. 4.4.3, the field can be lifted from R
2 to

V = R
2 ×P

1 by blowing up the singularities ci and lifting the field lines like curves:
if a field line γ goes from a source c1 with angle θ1 to reach a sink c2 with angle θ2,
γ lifts to a curve Γ in V starting at height θ1 in the fibre above c1 and arriving at
height θ2 in the fibre above c2. Only the fibres above ci are involved, so everything
happens as though the ci had been blown up in parallel. The structures tangent to this
multiple blow-up in the neighbourhoods of the fibres �i → ci are all isomorphic to
the local algebraic model.

We could therefore consider that, when the mesh of the lattice L tends to 0, the
limit of this multiple blow-up gives back the bundle π : R

2 ×P
1 → R

2, gluing back
the infinitesimal models at all the points of R

2. In this sense, the pinwheel structure
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could effectively be interpreted as a discrete approximation of the bundle π , and
conversely, π could be considered as the simultaneous blow-up of all the points in
the plane. A good way could be to use a non-standard model20 (R∗) 2 of R

2 where,
around each standard point a = (x, y), there would be a ‘halo’ or a ‘monad’ of
infinitesimals μ(a) = {(x + dx, y + dy)}. In the blow-up, the exceptional fibre �∗
would then be

(
P

1
)∗

and dy/dx a non-standard real number p∗ = p+d p, equivalent
to p ∈ P

1. The field lines would all lie within the monads, and so would be non-
standard, and to first order, there would only remain the segments a → (a + da).
The standard part of the structure at �∗ → a would thus be the tangent structure.
In this way, we would obtain not only the bundle π : R

2 × P
1 → R

2, but also the
infinitesimal structure defined on it by the differential 1-form ω = dy − pdx , i.e. the
contact structure, to which we shall return.

The advantage of a non-standard model is that it provides an intuitive picture
of the characteristic dimensional reduction of the pinwheel structure. We take the
bundle π : R

2 × P
1 → R

2, compactify the fibres21 to make them infinitesimal,
then project them into the monads μ(a). I used to think that the idea of blow-up
with the exceptional fibre made infinitesimal and projected back onto the base plane
was original. However, reading the correspondence between Pierre Deligne, Bernard
Malgrange, and Jean-Pierre Ramis on ‘irregular singularities’, I found a letter dated
7 January 1986 on the singularities of analytic functions and Gevrey classes, where
Deligne [94] introduced the concept of ‘thick points’. The idea is to replace a point
a ∈ C, say a = 0, by a small disc D with boundary�, consider the space C̃ = C

∗∪D,
union of C

∗ = C− {0} and D, and equip it with the topology of the blow-up of 0
in C along C

∗ ∪ �. Moreover, in his last paper on Gevrey classes (edited by Jean-
Pierre Ramis [95]), Martinet [96] used this construction with the discs D that are
infinitesimal in the sense of non-standard analysis.22

We could thus say that, in the continuous limit, a pinwheel lattice model amounts
to treating the points of the plane as infinitesimal ‘thick points’ in the sense of
Deligne and Martinet, with the standard part of such a structure giving back the
bundle π : V = R

2 × P
1 → R

2.

4.8.4 Discrete Versus Continuous Models

We thus see that there are two complementary ways to model pinwheels and one
which combines both:

1. We can go to the continuous limit and work in π : V = R
2 × P

1 → R
2. This is

what we shall do at great length in the second volume.

20For a didactic introduction to non-standard analysis, see, for example, Petitot [93] and the refer-
ences therein.
21Rather as in the Kaluza–Klein field theories of physics.
22I thank Guy Wallet and Michel Berthier for this reference.
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2. Alternatively, we do not go to the limit, but keep the finite mesh size of the lattice
L and consider the orientation field �(a) of simple V 1 neurons as a section of
the bundle π defined on the open set R

2 − L . This is the approach we shall pursue
in the following sections of this chapter.

3. However, it is also possible to adopt a mixed approach and introduce continuous
models that get discretized by breaking their symmetry groups. We shall also
pursue this idea in the second volume.

4.9 Different Aspects of Pinwheels

To illustrate our models with experimental data, we shall discuss here some other
aspects of the pinwheel maps.

4.9.1 Position–Orientation Independence and Local Triviality

The pinwheel structure is a good example of the way neurophysiology requires us
to rethink the most basic geometric structures used to model it. In the above, we
have assumed that the direct product structure U × P

1 (U ⊂ R) in the fibre bundle
π : U ×P

1 → U (local triviality) raises no particular problems. However, it assumes
an independence between the position and orientation variables which is not at all
obvious from the neurophysiological point of view (see, e.g. Das, Gilbert [97]) and
must be carefully checked. This is what has been done by Bosking et al. [42] by
analyzing the pattern of neural activity elicited by a long line crossing the visual
field.

Figure 4.94, part of which appears as Fig. 4.31 in Sect. 4.4.1, shows the following:

(a) The band of neurons in V 1 which are activated by a long line located at a precise
(vertical) position x (scale 1 mm).

(b) The way this band is situated within the population of V 1 neurons responding
to the same vertical orientation but at different positions.

By carefully analyzing the way these bands and the response peaks change as the
stimulus moves (10 positions x at intervals of 1◦),23 the authors have shown that the
maps of the positions of the stimulus and the orientations (pinwheels) are essentially
independent. Figure 4.95 shows the relationship between a 1◦ × 1◦ lattice of vertical
and horizontal positions of the bar and the pinwheel structure. From a scale of 4◦ × 4◦
the coverage becomes uniform.

In short, Bosking shows that:

The map of visual space in V 1 is orderly at a fine scale and has uniform coverage of position
and orientation without local relationships in the mapping of these features.

23Lengths are measured in degrees of the visual field.
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Fig. 4.94 Neurons in V 1
activated by a long line
located in a precise vertical
position. From Bosking et al.
[42]

In geometrical terms, this means that the Cartesian product structure (the triviality)
of the bundle π : R × P

1 → R is indeed neurally implemented.

4.9.2 Other Engrafted Variables

Other variables are engrafted in Hubel’s sense in the pinwheel structure, for example
the direction of motion, phase, spatial frequency, and ocular dominance.

4.9.2.1 Direction of Motion

Simple V 1 neurons are orientation selective and detect edges. However, they are
often also sensitive to the direction of motion of the edges, and in general, this is
optimal in the orthogonal direction. This is the case, for example, in the cat, as shown
in Fig. 4.18 taken from Van Hooser [26]. In [98], Ohki et al. confirmed this on the
level of individual cells in area 18 of the cat (see Fig. 4.96).
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Fig. 4.95 Maps of the positions of the stimulus and the pinwheels. The coordinate system (x, y)
reconstructed from the iso-azimuth contours of a 1◦ × 1◦ lattice of vertical and horizontal positions
of the bar is independent of the pinwheel structure. The tiny 1◦ ×1◦ domains clearly have dominant
orientations [histograms (b) and (c)]. But from a scale of 4◦×4◦, the coverage is uniform [histogram
(d)]. From Bosking et al. [42]

Fig. 4.96 Direction selectivity in cats. The colours red and green encode the two directions orthog-
onal to a given orientation. From Ohki et al. [98]
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In Sect. 5.11 of Chap. 5, we shall return to the problem of direction in the context
of other visual areas. We shall also discuss this a little more in Sect. 4.10.1.4.

4.9.2.2 Phase

Concerning the variation of the phase in a given column, DeAngelis et al. [19] com-
pared the spatiotemporal RF (X , Y = space and T = time = correlation delay) of
two neighbouring cells in the same column. The stimuli were small randomly flashed
bars (length 1.5◦, 40 ms flashes) with the preferred orientations of the two cells, these
being recorded simultaneously. The authors measured the cross-correlation between
the sequence of stimuli and the response (spike trains) with different correlation
delays. They observed that the visuotopy, orientations, and spatial frequencies are
the same, but not the phases.

4.9.3 Spatial Frequency

Here, we attribute a little more importance to another engrafted variable, viz. the
spatial frequency, where interesting new models have recently been developed.

4.9.3.1 Some Preparatory Notes

Note that pinwheel rays leave room for a further parameter. Recent work has con-
jectured that this could be the spatial frequency (SF, see, e.g., DeAngelis et al. [19]
and Bressloff-Cowan [99]). The experiments are not easy to carry out. Care must be
taken to use stimuli that only select a single SF, and the results are still controversial.

Figure 4.97 due to Hübener et al. [100] shows the edges of domains of low spa-
tial frequency. Statistically, the pinwheels tend to be located towards the centre of
the frequency domains and the iso-orientation lines are rather strongly transverse,
sometimes almost orthogonal, to the edges. This is a strong transversality condition.

In their work [101], Naoum Issa, Christopher Trepel, and Michael Stryker made
a detailed analysis of this spatial frequency (SF) distribution in cats (see Fig. 4.98).
Their results are slightly different, which shows that this is only the beginning of
such investigations. They have suggested that, for this parameter, there may also
be a column structure comprising columns of about 0.7 mm with ends close to the
pinwheels. As they note:

The organization of cortical maps permits nearly all combinations of orientation and SF
preference to be represented in V 1. [101, p. 8504]

Put another way, it would seem that there is a neural implementation of the bundle
π : R

2 × P × F → R
2, where F is the interval of the SFs observed (roughly from

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.97 Edges of domains of low spatial frequency (gray). From Hübener et al. [100]

0.2 to 1.8 cycle/degree). In fact, the binarization of the SFs into high and low fre-
quencies may be correlated on the one hand with the segregation of the parvocellular
(X) and magnocellular (Y ) pathways and on the other with the chirality of the pin-
wheels. It often happens that two adjacent pinwheels (hence of opposite chirality)
are in frequency columns of opposite colours (hence high and low frequencies).

We see immediately the kind of problems that such results raise for modelling.
We may for example pair together the orientation θ with the SF f in a fibre space
H and thus consider a field with values in H defined on the cortical surface, i.e. a
section of the bundle R

2 × H . But how should H be defined? If θ and f are treated
as independent variables, then H = P × F . But we may also pair θ and f . This
is what is done by Paul Bressloff and Jack Cowan in [99] by introducing a local
‘spherical’ model in which they glue together a disc (pinwheel) of maximal f with a
disc (pinwheel) of minimal f along their boundaries. The common boundary is the
equator, fmin and fmax are the poles, and a point of the sphere is thus a pair (θ, f )
located at a distance from the singular point (the centre of the sphere) defined by f .

However, these results from Issa et al. [101] were taken up by other specialists who
came to different conclusions. For example, Sirovich and Uglesich [102] detected
a bias due to vascular artefacts in the hemodynamic measurements and, when they
eliminated it, they concluded that there was no column organization in the SFs; for
them, the SF was more like a parameter distorting the orientation map. Figure 4.99
shows, for two pinwheels, the difference between the maps obtained with high SFs
(left) and low SFs (right). See also Born and Tootell [103].
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Fig. 4.98 a Orientation columns. b Spatial frequency columns. High frequencies are coded in blue
and low frequencies in red. Note that they correspond well to the two chiralities of the pinwheels, i.e.
two adjacent pinwheels (hence of opposite chirality) are in frequency columns of opposite colours.
The scale bar is 1 mm. From Issa et al. [101]

Fig. 4.99 Spatial frequency
(SF) dependence of
orientation maps. For two
pinwheels (top and bottom),
we observe the difference
between the map obtained
with high SFs (left) and low
SFs (right). From Sirovich
and Uglesich [102].
Copyright (2004) National
Academy of Sciences, USA
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These critical results were themselves repeated with autofluorescence imaging
techniques using oxidation and reduction of flavoproteins in the metabolism of
mitochondria. These techniques can correct for the vascular artefact pointed out
by Sirovich, and it would seem that there is in fact no column organization (see Issa
et al. [104]).

There are many other studies of this issue. We may cite for example the results of
Zhu et al. [105] on the correlated variation of the OR and the SF.

4.9.3.2 First Dipole Model

If we accept this idea, the basic module is no longer the isolated pinwheel as a
hypercolumn, but a pair of adjacent pinwheels with opposite chiralities. Near the
singularities, i.e. the pinwheel centres (PCs), only a small part of the SFs (low or
high) would be represented. A natural model would then be a dipole–dipinwheel
model.

In Sect. 4.4.3, we discussed the analogy between the functional pinwheel maps
and the topological charge fields encountered in physics. A pinwheel is locally like
the field produced by a + or − charge. A pair of pinwheels with opposite chiralities
thus corresponds to the field produced by a pair of opposite charges (+,−). Such a
field source is known in physics as a dipole. It will be useful to dwell on this for a
moment.

In electrostatics, a dipole is made by placing opposite charges −q and +q, e.g.
−1 and +1, at two points A and B. Let d be the distance between A and B and
place A at (−d/2, 0) and B at (d/2, 0), as in Fig. 4.100. Let (r, θ) be the polar
coordinates of M . Up to a multiplicative constant which we ignore, we have the
potential V = 1/B M − 1/AM . Since

Fig. 4.100 Dipole structure.
Opposite charges −q and +q
are placed at two points A
and B and we calculate the
potential V at different
points M . The figure shows
several equipotentials. The
values of V range from −∞
(black) at A to +∞ (white)
at B. The field is −grad (V ),
and its field lines are
orthogonal to the
equipotentials
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Fig. 4.101 Dipole field with
equipotentials in light blue
and field lines in orange

⎧
⎪⎪⎨

⎪⎪⎩

B M2 = r2 + d2

4
− dr cos (θ) ,

AM2 = r2 + d2

4
+ dr cos (θ) ,

we obtain the explicit formula

V (M) = 1

r

⎡

⎢⎢
⎣

1
√

1 + d2

4r2
− d

r
cos (θ)

− 1
√

1 + d2

4r2
+ d

r
cos (θ)

⎤

⎥⎥
⎦ .

In polar coordinates, the field E = −grad (V ) has components

Er = −∂V

∂r
, Eθ = −1

r

∂V

∂θ
.

The + charge is attractive and the − charge repulsive. This is illustrated in Fig. 4.101,
which is a special case of the field configurations of pinwheel lattices considered in
Sect. 4.4.3.

In this dipole–dipinwheel model of an orientation–spatial frequency module com-
prising two adjacent pinwheels of opposite chirality, the field lines are iso-orientation
curves going from low SFs centred on one of the pinwheels to high SFs centred on
the other pinwheel, while the equipotentials are level lines of the SF. These two fam-
ilies of curves are orthogonal, i.e. maximally transverse, thus satisfying the Hübener
hypothesis. Locally, in the neighbourhood of each of the PCs, we have a classical
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Fig. 4.102 Equipotentials
and field lines of an
intrinsically 2D dipole. If we
compare with the field of
Fig. 4.101 with potential
going as 1/r , we see that the
geometries are qualitatively
similar, but that the
directions of the field lines
are reversed, so + charges
are repulsive and − charges
attractive

orthogonal model made up of rays for the orientations and nested circles for the SFs,
the latter varying smoothly near the PC.

Even though what interests us in these physical analogies is the geometry of
the fields, not the physics they actually represent, we should nevertheless note that
potentials of the form 1/r are related to forces of the form 1/r2 which depend
intrinsically on the 3D nature of the space. Since we are working on phenomena that
are intrinsically 2D, we should use 2D physical analogies where the forces go as
1/r and the potentials as Log (r). Such situations have been investigated, but they
are rather strange, because positive charges become repulsive: 1/r decreases when
r increases, whereas Log (r) increases. However, this does not change much in our
case since we consider pairs of opposite charges, and as shown in Fig. 4.102, the
geometry of the field barely changes qualitatively.

In fact, we may even consider forces of the form 1/rσ , where the exponent σ is
a parameter to be determined experimentally.

4.9.3.3 Second Dipole Model

A certain number of more refined experiments using functional imaging techniques
with better resolution have shown that the standard dipole–dipinwheel orthogonal
model is not corroborated experimentally, in ways that go beyond the criticisms made
by Issa [101]:

1. There are both maxima and minima of the SF in the vicinity of many PCs.
2. The strong transversality condition of Hübener is not satisfied at all.
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In a paper in 2016, Ribot et al. [106] (see also [107]) analyzed in great detail the
fine structure of the functional maps of the SFs in area 17 of the cat. They used
sophisticated high-resolution imaging methods, essential from the methodological
point of view if we are to test the possibility of large variations in the SF in the vicinity
of a PC. They discovered that the SF generally has two extrema, a minimum and a
maximum, in the vicinity of a given PC. This is a functional organization because it
means that all the ORs and all the FSs can be represented at the same time within
the same hypercolumn. However, it must then have a completely different topology
to that of the standard orthogonal circular model.

Figure 4.103 shows the results of the data analysis carried out by Jérôme Ribot.
The orders of magnitude are: (i) 1 mm for the size of a hypercolumn, (ii) 300 µm
for the extent of the neighbourhood of the PC analyzed (so this remains well within
the hypercolumn), (iii) 150 µm for the extent of the little neighbourhood of the PC
where measurement errors remain too great. Three examples are shown. The two
extrema are perfectly clear.

Hence the idea of keeping the pinwheel–dipole model, but dissociating the size
d of the dipole from the distance between two adjacent pinwheels. We thus assume
that the dipole size d is small compared with the size of the pinwheel as hypercolumn
module. In the limit, we would then have an infinitesimal dipole, a situation that is
easy to model.

Indeed, if the dimension d of the dipole is small enough relative to the distances
r where the field is measured, then by expanding up to a few terms in d/r , we may
use the approximations

1

B M
= 1

r

[
1 + d

2r
cos (θ)

]
,

1

AM
= 1

r

[
1 − d

2r
cos (θ)

]
, V (M) = d

r2 cos (θ) .

The equipotentials are then given by the equation r2 = k cos (θ). The components
of the field in polar coordinates are

Fig. 4.103 Level lines of the SFs and their extrema in the neighbourhood of three PCs. They lie
within a single hypercolumn. Black pixels are those where measurements are not accurate enough.
From Ribot et al. [106, Fig. 5]
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Er = −∂V

∂r
= 2d

r3
cos (θ) , Eθ = −1

r

∂V

∂θ
= d

r3
sin (θ) .

The equations of the field lines are therefore

dr

r
= Er

Eθ

dθ = 2
cos (θ) dθ

sin (θ)
,

that is Log (r) = 2Log (sin (θ)) + c, whence r = k sin2 (θ).
For the intrinsically 2D dipole, the formulas change. In the limit, we obtain an

approximation of the potential V = −(d/r) cos (θ), equipotentials with equation
r = 2R cos (θ), and field lines with equation r = 2R sin (θ). The first constitute a
family of circles of radius R centred on the x-axis and with tangent the y-axis at 0,
since

x = r cos (θ) , y = r sin (θ) , r2 = x2 + y2 , (x − R)2 + y2 = R2 ,

whence r2 = 2Rx = 2Rr cos (θ), i.e. r = 2R cos (θ). The second constitute the
orthogonal family of circles centred on the y-axis and with tangent the x-axis at 0
(see Fig. 4.104). Figure 4.105 shows the potential V (M) in the neighbourhood of 0.

Fig. 4.104 Equipotentials of an intrinsically 2D infinitesimal dipole. This is a family of circles
centred on the x-axis and with tangent the y-axis at 0
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Fig. 4.105 Potential V (M) of the infinitesimal dipole in Fig. 4.104. We see how V diverges to
+∞ at 0+ and −∞ at 0−

4.9.3.4 Topological Universality of Dipoles

In their elegant paper [58], already cited in Sect. 4.5, Alberto Romagnoni, Jérôme
Ribot, Daniel Bennequin, and Jonathan Touboul showed that just as the topological
structure of the pinwheel is universal for the ‘exhaustive coding’ and the ‘parsimo-
nious coding’ of periodic quantities, so the topological structure of the dipole is
universal for the ‘exhaustive coding’ and the ‘parsimonious coding’ of non-periodic
quantities.

As for the pinwheels, the idea is to consider the way the cells parametrized by
z = (x, y) in a small disc Ω ⊂ C (with boundary Γ = ∂Ω) of the visual plane
(identified with the plane C = R

2) can encode spatial frequencies ν ∈ F in a
local and, ideally, scale invariant way, where F is the allowed spatial frequency
domain. As we are only interested in topological structure, we can take F = R,
introducing saturation if necessary. Such a coding can thus be described by a map
g : Ω → R which may have singularities, i.e. points where it is not defined because
it is multivalued or divergent.

We use the standard topological properties of R:

• R is not compact, i.e. its points escape to infinity.
• In contrast to S

1, if we remove a point or a finite interval from R, it disconnects
into two connected components.

• Intermediate value theorem (which fails disastrously in S
1): if h : I → [hmin, hmax]

is continuous for an interval I and if ν ∈ ]hmin, hmax[ is an intermediate value,
then there exists x ∈ I with image h (x) = ν.

As for the pinwheels, the authors define a rather general classG of sufficiently smooth
maps g satisfying natural constraints. They assume to begin with that g is continuous
away from its singularities and ‘exhaustive’, i.e. it codes all the SFs. In other words,
it is surjective. This implies that g must have at least one singularity. Indeed, if g
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Fig. 4.106 A connected level line C = Cv0 = g−1 (ν0) of a surjective g cannot be entirely
contained within the boundary Γ of Ω unless g ≥ ν0 or g ≤ ν0 everywhere in Ω . But then g is not
surjective. So C must enter Ω . As usual, (≷) means z ≷ ν0

had no singularities, it would be a continuous map on a compact set Ω and its image
g (Ω) would therefore be compact, hence contained in a closed bounded interval
which could not then be equal to R. Since we work locally and topologically, we
shall assume that g has just one singularity and that it is at 0. We write Ω∗ = Ω−{0}.

The authors then introduce three assumptions to define G :

H1 Smoothness condition: the map g : Ω∗ → R is smooth (infinitely differentiable)
and its level lines Cν = g−1 (ν) are smooth curves (as we saw in Sect. 4.5, this
is a generic property [59]).

H2 Exhaustivity condition: since the model must have scale-invariant properties, g
must be exhaustive (surjective) in any neighbourhood of 0.

H3 Minimal complexity or parsimony condition: topological redundancy must be
minimal on all scales. There are arbitrarily small discs Ω ′ centred on 0 where
the topological redundancy is minimal.

Concerning assumption H3, the authors use a lemma according to which there is
no continuous surjective g : Ω∗ → R with topological redundancy 1. Indeed, let
ν0 ∈ g (Γ ) be a value of g taken on the boundary Γ of Ω and consider the level
line C = Cv0 = g−1 (ν0). To begin with, C cannot be completely included in the
boundary Γ (see Fig. 4.106). Indeed, let z1 	= z2 ∈ Ω̊∗ be two points in the interior
Ω̊∗ of Ω∗ and assume that g (z1) < ν0 and g (z2) > ν0. Let γ : z1 → z2 be a
continuous path joining z1 and z2 in Ω̊∗. Then, γ is an embedding of an interval I
in Ω∗ and h = g ◦ γ : I → R is a continuous map, so according to the intermediate
value theorem, there is a point z of γ where g (z) = ν0 and hence z ∈ C ∩ Ω̊∗. But
this is impossible since this intersection is empty by the assumption about C . Hence,
on Ω̊∗, either g ≤ ν0 everywhere or g ≥ ν0 everywhere and g is not surjective,
contradicting H1.

Thus, C enters the interior Ω̊∗ ofΩ∗. If we assume that the topological redundancy
is 1, then C is connected. If C stops in Ω̊∗, then we can find a topological discΩ ′ ⊂ Ω

around 0 (possibly highly twisted) which is decomposed into two parts by C , i.e.,
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Fig. 4.107 If the connected level line C = Cv0 = g−1 (ν0) of g starts from the boundary Γ of Ω
and enters Ω without reaching 0, then C decomposes a neighbourhood Ω ′ of 0 into two subdomains
and g is not surjective on the new Ω = Ω ′, because g ≤ νM everywhere on Ω∗. As usual, (≷)

means g ≷ ν0

Fig. 4.108 If the connected
level line
C = Cv0 = g−1 (ν0) starting
from the boundary Γ of Ω
reaches the singular point 0,
then either g ≥ ν0 or g ≤ ν0
everywhere on Ω∗ and g is
not surjective

C joins two points on the boundary Γ ′. Replacing Ω by Ω ′, we may thus assume
that C decomposes Ω into two closed domains Ω1 and Ω2 with a common boundary
C (see Fig. 4.107). Assume that 0 /∈ Ω1, whence 0 ∈ Ω2 − C . By the intermediate
value theorem once again, we have g > ν0 everywhere on Ω1 − C and g < ν0

everywhere on Ω∗
2 − C , or the opposite. Assume the first case. Since Ω1 is compact

and g is defined on the whole of Ω1, g reaches a maximum νM ≥ ν0 on Ω1 and
hence g ≤ νM everywhere on Ω∗. Consequently, g cannot be surjective.

So if C is connected, C must reach the singular point 0. But then Ω∗ − C is
connected, and g is continuous on Ω∗ − C and does not take the value ν0. As its
image g (Ω∗ − C) is connected, being the continuous image of a connected set, then
from the topological properties of R, either g ≥ ν0, or g ≤ ν0 everywhere on Ω∗, so
g cannot be surjective (see Fig. 4.108).

In short, level curves Cν with points on the boundary Γ necessarily have at least
two connected components and the topological redundancy of g is ≥ 2. However,
Cν ⊂ Ω̊∗ lying completely in the interior of Ω∗ can be connected.
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Clearly, the standard model of the 2D infinitesimal dipole g0 : �∗ → R defined
on the unit disc �∗ = � − {0} with the origin removed,

z = ρeiθ �−→ ν = cos (θ)

r
,

belongs to G :

(i) g0 is well defined away from 0, 0 being a singularity where it is completely
undefined, since θ is not defined and 1/r diverges.

(ii) Away from 0, g0 is smooth (infinitely differentiable).
(iii) The level sets Cν = g−1

0 (ν), where g0 is constant, are smooth curves.
(iv) g0 is surjective on any neighbourhood of 0 (and even on any small circle sur-

rounding 0).
(v) The topological redundancy of g0 is 2, and it is therefore minimal.

Note that (see Fig. 4.104), insofar as the level lines constitute a bundle of circles (with
the origin 0 removed), small enough circles of radius ≤ 1/2 lie within � and are
connected level lines, whereas circles of radius > 1/2 stop at Γ and are level lines
with two connected components. The authors refer to the configuration of internal
circles as a ‘bouquet’ of circles. They prove the following theorem:

Theorem Topological universality of dipoles. The elements g : Ω∗ → R of G , i.e.,
satisfying hypotheses H1, H2, and H3 on all scales, have the dipole topology.

As for the theorem on the topological universality of pinwheels, the ideas used in
the proof are purely topological. We can give a heuristic insight (incomplete and not
rigorous). Topologically, the connected components C of the level lines Cν of g ∈ G
can be of 4 types: (i′) a closed loop not going through 0 and not going around zero,
(i′′) a closed loop not going through 0 but going around 0, (ii) a path from Γ to Γ ,
(iii) a path connecting Γ to 0, and (iv) a loop going through 0 (see Fig. 4.109).

As g is continuous on the boundary Γ and the boundary is compact, g (Γ ) is a
compact subset K of R and hence bounded. As g has its values in K for paths of

Fig. 4.109 The four types of connected components of level lines for a g ∈ G . i Loops in the
interior of Ω and not going through 0 but either encircling it or not. ii Paths connecting two points
on the boundary Γ . iii Paths connecting a point on the boundary Γ with the singularity 0. iv Loops
in the interior of Ω and passing through 0
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types (ii) and (iii) g, there must necessarily be level lines of types (i) or (iv). Let C
be of type (i′), i.e. C ⊂ Ω̊∗, with 0 outside C . Let � be the closed topological disc
with boundary C and Ω∗′ a small disc centred on 0 and contained in Ω∗ − �. From
the scale invariance hypothesis, we can localize in Ω∗′ and � only adds redundancy.
We can thus eliminate the case (i′), and also case (ii) for the same reason (we can
remove the connected component of Ω − C which does not contain 0).

There remain the cases (i′′), (iii), and (iv). Let C be of type (i′′) and � � 0
the topological disc with C as boundary; since C is a level curve, according to the
smoothness assumptions, no level line in the interior of �∗ can meet C . There can
thus only be C ′ of types (i′′) and (iv) in �∗. However, there cannot only be C ′ of
type (i′′) because they would be ‘concentric’, i.e. nested, and localizing even more
closely around 0, g would no longer be surjective, thus violating H2. So there is at
least one C ′ of type (iv) in the interior of �∗.

Let C be a level curve Cν of type (iv) on which g = ν. Then, C is the boundary
of a disc � and 0 ∈ C = ∂�. Since 0 is a singularity of g, the latter can diverge
as we approach 0 in �∗, but it can diverge only to either +∞ or −∞ and not both.
There will thus be curves C+ and C− bounding regions �+ and �−. Consider the
case where g diverges to +∞ and let �̊+

m be the interior of the �+ of the largest
component of type (iv) diverging to +∞. We obtain a lobe of concentric regions
�+ on which g tends to ν when the �+ expands to �+

m and tends to +∞ when �+
contracts to 0. If ν+

m is the value of g on the boundary C+
m of �+

m, g takes the values[
ν+

m ,+∞]
on �+

m.
The complement Ω − �̊+

m is topologically a closed ring on which g must be able
to diverge to −∞ (because this divergence is not realized in �̊+

m by construction).
This requires curves C of type (iv) in the interior of Ω − �̊+

m and bounding regions
�−. We thus have, as for the standard dipole (see Fig. 4.104), a lobe of concentric
regions �+ up to �+

m and a lobe of concentric regions �− expanding out to �−
m. If

ν−
m is the value of g on the boundary C−

m of �−
m, then g takes the values

[−∞, ν−
m

]

on �−
m.

From the minimal complexity hypothesis, i.e. that the topological redundancy is
equal to 2, there cannot be more than two lobes of this kind. Indeed, consider a level
line of type (iv). If we have restricted it to a small enough disc Ω ′ around 0, we
obtain two connected components (see Fig. 4.110i). The values of g on two lobes
cannot be the same because, for small enough Ω ′, that would give four connected
components, thereby violating hypothesis H3 (see Fig. 4.110ii). Suppose then that
there are three lobes. Then, g will take different values on each of them. Suppose
that ν1 < ν3 < ν2 with g (a) = ν1 for a point a of the lobe L1, g (b) = ν2 for a
point b of the lobe L2, and g (c) = ν3 for a point c of the lobe L3. Let γ : a → b be
a path passing outside the lobe L3 (see Fig. 4.110iii). According to the intermediate
value theorem, there is a point d on γ , where g takes the value ν3. But then there is a
connected component of Cν3 outside L3 and reaching 0. Since the part of Cν3 inside
L3 itself has two connected components if Ω is small enough, Cν3 has a topological
redundancy ≥3, thereby violating the hypothesis H3.
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Fig. 4.110 Diagrams illustrating the proof of the topological universality of the dipole

Fig. 4.111 Illustration of the
last part of the proof of the
topological universality of
the dipole

We thus end up with a ‘bouquet’ comprising a lobe �+
m of concentric regions �+

on which g takes the values
[
ν+

m ,+∞]
and a lobe �−

m of concentric regions �− on
which g takes the values

[−∞, ν−
m

]
. On the respective boundaries C+ and C− of �+

m
and �−

m, g takes the values ν+
m and ν−

m , respectively. It remains to consider the values
in the interval

(
ν−

m , ν+
m

)
. The complement of the union �+

m ∪ �−
m of the two lobes in

Ω comprises two disjoint open sets U1 and U2. Let γ1 be a path from C+ to C− in
U1 and γ2 a path from C+ to C− in U2. Using the intermediate value theorem once
again, if ν ∈ (

ν−
m , ν+

m

)
, g takes the value ν on both γ1 and γ2. The level line Cν then

comprises two connected components of type (iii) joining Γ to 0 (see Fig. 4.111).

4.9.3.5 Pinwheel–Dipole Model

Daniel Bennequin and coworkers thus arrive at a model of the orientation–spatial
frequency module of the form ( f, g) with f (z) = θ/2 and g (z) = cos (θ)/rα , with
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z = reiθ in the unit disc with the centre removed �∗ and α an exponent used to fit
the model to the data. Here, 0 is a singularity of both f and g:

[This model] is the unique scale-invariant topology achieving minimal representation of a
pair (θ, ν) for the circular variable θ and the variable ν taking values in an open interval.
[58, p. 9]

In this model, the orthogonality of the level lines of f and g is no longer satisfied at
all. Indeed, let z0 = r0eiθ0 be a point of �∗. The level line F0 of f corresponding to
f (z0) = θ0/2 = const. is the ray through z0. The level line G0 of g corresponding
to g (z0) = cos (θ0)/rα

0 = const. has equation cos (θ)/rα = cos (θ0)/rα
0 = C , i.e.

cos (θ)− Crα = 0. Considering the symmetries of the configuration, we can restrict
to θ ∈ [0, π/2].

Suppose to begin with that α = 1. Then, G0 has equation r = 2R cos (θ), with
2R = r0/cos (θ0) so the tangent at z satisfies dr + 2R sin (θ) dθ = 0. Using

x = r cos (θ) = 2R cos2 (θ) , y = r sin (θ) = 2R cos (θ) sin (θ) ,

we obtain
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx

dθ
= −4R cos (θ) sin (θ) = −2R sin (2θ) ,

dy

dθ
= 2R

[
cos2 (θ) − sin2 (θ)

] = 2R cos (2θ) ,

dy

dx
= − 1

tan (2θ)
= tan

(π

2
+ 2θ

)
.

Hence, the tangents to F0 and G0 at z0 make angles θ0 and ϕ0 = 2θ0 + π/2, so the
angle between them is ψ0 = ϕ0 − θ0 = θ0 + π/2. In particular, they are orthogonal
for θ0 = 0, i.e. at the point (2R, 0), and become tangents when θ0 tends to π/2.
The normalized distribution P (ψ) of the angles ψ is thus uniform and equal to
P (ψ) = 2/π , so that

∫ π

π/2 P (ψ) dψ = 1.
Forα 	= 1, an exact calculation is still possible, but more complicated. We write G0

in the form cos (θ) = Crα , with C = cos (θ0)/rα
0 . So along C , we have sin (θ) dθ +

Cαrα−1dr = 0, i.e.,

r
dθ

dr
= −C

αrα

sin (θ)
.

The tangent is thus

dy

dx
= sin (θ) dr + r cos (θ) dθ

cos (θ) dr − r sin (θ) dθ
=

sin (θ) − C
αrα cos (θ)

sin (θ)

cos (θ) + Cαrα

= sin2 (θ) − Cαrα cos (θ)

sin (θ) cos (θ) + Cαrα sin (θ)
.
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With θ = θ0 and C = cos (θ0)/rα
0 , we thus obtain

tan (ϕ0) = tan (ψ0 + θ0) = tan (ψ0) + tan (θ0)

1 − tan (ψ0) tan (θ0)
= dy

dx

=
sin2 (θ0) − cos (θ0)

rα
0

αrα
0 cos (θ0)

sin (θ0) cos (θ0) + cos (θ0)

rα
0

αrα
0 sin (θ0)

= tan2 (θ0) − α

(1 + α) tan (θ0)
.

We conclude that tan (ψ0) = −α/tan (θ0), so the angular distribution is

dθ = α

1 + (
α2 − 1

)
cos2 (ψ)

dψ = P1 (ψ) dψ .

Normalizing P1 (ψ) to P (ψ) so that
∫ π

π/2 P (ψ) dψ = 1, and since ψ varies from

π/2 to π when θ varies from 0 to π/2 and
∫ π/2

0 dθ = π/2, we obtain the distribution

P (ψ) = 2α

π
[
1 + (

α2 − 1
)

cos2 (ψ)
] .

Figure 4.112 shows several distributions P (ψ) for different values of the exponent
α.

The high-resolution experimental data for the cat reported in [58] and [106] show
that there is a certain advantage for parallelism over orthogonality due to saturation
blocking the dipole divergence at the PC. This can be modelled by taking an exponent
α < 1. The data in Fig. 4.113 from [58] fit particularly well with the value α = 0.73.
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Fig. 4.112 Examples of the angular distribution P (ψ) for different values of α. The angle ψ varies
from 0 to π/2 ∼ 1.57. Black α = 1 and P (ψ) = 2/π ∼ 0.64. Green α = 0.7. Red α = 0.5. Blue
α = 1.5
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Fig. 4.113 Observed
distribution of the angles
between the level lines of the
ORs and the SFs. From [58]

4.9.3.6 Orientation–Spatial Frequency Dependence

In the classic orthogonal circular model centred on a PC where the SF diverges,
for example, to −∞ and grows to, let’s say, ν0, there is for each value of ν ∈
(−∞, ν0) a full circle of orientations ω = θ/2. Thus, Ω∗ has a direct product
structure S

1
π × (−∞, ν0] which is a subset of the direct product S

1
π × R. Combined

with orthogonality, i.e. maximal transversality, this shows that, in this coding of the
(ω, ν), the variables ω and ν are independent. We shall return to the connection
between transversality and independence in Sect. 4.10.2. However, note that, in the
pinwheel–dipole model, ω and ν are not coded independently.

Indeed, in Ω∗, r varies from 0 to 1 and hence, for θ fixed, ν = cos (θ)/r varies
between ±∞ and cos (θ), ± being the sign of cos (θ). Figure 4.114 shows the set
of pairs (ω, ν) represented. They are distributed throughout the full direct product
S

1
π × R, but without covering it and without having a direct product structure. This

agrees with results like those of Tani et al. [108], showing that the ORs and SFs
develop interdependently, at least in cats.

We thus see that the two coding strategies of the dipole–dipinwheel and pinwheel–
dipole models are very different.

4.9.4 Generality of Pinwheels

Since it is so functional, the pinwheel structure is extremely general. It is not only
found in V 1, but also in the other areas of the primary visual cortex. As shown, e.g.,
by Xiangmin Xu et al. [109] for the New World owl monkey (douroucoulis), as we
go from V 1 to V 2 and then V 3, the pinwheel structure remains, but the mesh of the
singularity lattice increases with the size of the receptive fields.

Furthermore, the structure of V 1 depends on the species. However, the existence
of pinwheels is a robust interspecies phenomenon. Here, we give just one example in
Fig. 4.115, produced by Liu and Pettigrew [110], which compares orientation maps
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Fig. 4.114 Image of a regular lattice of (θ, r) ∈ [0, 2π ] × [0, 1] in the cylinder S
1
π × R of the

(ω = θ/2, ν = cos (θ)/r) (represented by the band [0, π ] ×R). The divergence of ν is bounded by
±7. The image of [0, 2π ] × [0, 1] is clearly visible in S

1
π × R

of the V 1 and V 2 areas in the cat and the marmoset monkey with the equivalent
in the tawny owl. We also observe a pinwheel structure in the tawny owl with an
interpatch distance of about 0.9 mm.

4.10 Retinotopic Maps and Their Transversality

With ever more sophisticated experimental techniques, specialists have been able
to build up several retinotopic maps corresponding to different geometric features
and in several different species. We have already discussed orientation, direction,
phase, and spatial frequency. Now, we shall go on to consider ocular dominance,
colour, temporal frequency, and motion. With so many different issues, we may ask
the following questions:

1. Are the geometric features studied with the kind of stimuli generally used, viz.
gratings, etc., sufficient to describe the cortical activity induced by complex and
natural visual stimuli?

2. What are the relations between the maps? Are the features independent of one
another, or not?
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Fig. 4.115 Pinwheels in the V 1 and V 2 areas of the cat, (a) and (b), respectively, and the marmoset
(c) and (d), and equivalent areas in the visual cortex of the tawny owl (e) and (f). From Liu and
Pettigrew [110]
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3. What is the mechanism of the dimensional reduction which implements abstract
(2 + N )-dimensional fibre bundles in the 2D cortical layers (where N is the
number of features)?

Regarding the first question, it seems that the feature detections are adequate if we
take into account, for each feature, the preferred values, intensities, and variances,
i.e. the complete tuning curves, and any possible dependences between the features
(see, e.g. Issa et al. [104]).

Regarding the second question, we have seen several examples, and we shall
discuss several more.

For the third question, it should be emphasized that the maps and their relations
are the solutions to a problem with two opposing constraints. One concerns the
uniformity of coverage of the features in the 2D cortical layer. For example, in the
standard circular model of the SFs, when a pinwheel lies at the centre of a domain of
high spatial frequency, all orientations are automatically combined locally with this
SF (see Sect. 4.9.3.6). The other is a continuity constraint: the features are continuous
functions of the retinotopic position, although with the possibility of singularities.

4.10.1 Pinwheels and Ocular Dominance

4.10.1.1 Some Experimental Data

We have seen the relations between the pinwheels and the spatial frequencies. There
are also quite remarkable relations between the pinwheel structure of V 1 and its
organization into ocular dominance domains (ODDs), i.e. dominance of the left or
right eye, or more precisely, ipsilateral or controlateral dominance relative to the
given hemisphere. The ocular dominance bands measure about 1 mm in the monkey
and the cat and about 2 mm in humans. As shown by Hübener et al. [100], the
iso-orientation lines are essentially transverse, and even almost orthogonal, to the
boundaries of the ODDs (see Figs. 4.116 and 4.117):

Many iso-orientation lines cross the borders between ocular dominance domains close to
right angles, and the pinwheel centers are preferentially located in the middle of these ocular
dominance domains. [100]

Xiangmin Xu et al. [45] found the same relationship in the bush baby or galago, a
small nocturnal African primate, already encountered in Sect. 4.4.1. The histogram
of the angles of intersection between the iso-orientation lines and the boundaries
of the ODDs shows that transversality is statistically well represented: the angles
between 3π/8 and π/2 represent more than 50%. Moreover, as clearly shown by
Crair et al. [36], ocular dominance peaks are situated very close to pinwheel centres
in the middle of the ODDs (see Fig. 4.118).

One can also compare the ocular dominance domains with the spatial frequency
domains (see, e.g., Hübener et al. [100]).
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Fig. 4.116 Relations between pinwheels and ocular dominance domains. Several iso-orientation
lines cross the boundaries of the ODDs almost at right angles. From Hübener et al. [100]

Fig. 4.117 Relations between pinwheels and ocular dominance domains in the macaque. From
Obermayer, Blasdel [111]
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Fig. 4.118 Pinwheel centres
(green stars) and ocular
dominance peaks (red stars)
are neighbours and located
on ODD ridges. From Crair
et al. [36]

4.10.1.2 Fields and Equipotentials

As for the pinwheels, the geometrical configuration of the OD peaks and the ODDs
can be made intuitive using a physical field deriving from a potential V (see
Sect. 4.4.3), the peaks corresponding to the extrema of V . Then, the ODD boundaries
can be identified with the level lines of the potential segregating the influence zones
of the maxima and the minima. If the peaks of OD would be close to the pinwheels
(but it is only partially the case), then the two OR and OD fields would be close and,
as in a field equipotentials are orthogonal to field lines, this could explain the strong
transversality between the iso-orientation lines of the OR field and the boundaries of
the ODDs.

4.10.1.3 An Elastic Net Model

It is easy enough to simulate these field structures with orientation columns and
ODDs using computational models. For example, Carreiro-Perpiñán and Goodhill
[112] used elastic net models which minimize the total length of wiring while satis-
fying a compromise between the uniformity U and the continuity C of the cortical
representation of the various features of the stimuli.24 To do this, they minimize an
energy E = U + βC/2. We work in the space of features

{
position a = (x, y), ocular dominance, orientation (angle and selectivity)

in polar coordinates
}
,

corresponding to a lattice of N = Nx × Ny × NOD × NOR × 1 stimuli in the space

T = [0, 1] × [0, 1] × [−�, �] × [−π/2, π/2] × [0, ρ] .

Let ym be the centre of the receptive field of neuron m, m = 1, . . . , M , in the space
T and xn the vector of stimulus n, n = 1, . . . , N . The uniformity U is defined by

24We have already encountered this problem of minimizing the wiring in Sect. 4.4.5.1.
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Fig. 4.119 Field obtained by minimizing the energy E (see text) for p = 1 and β = 10. From
[112]

U (y1, . . . yM , K ) = −K
n=N∑

n=1

log

[
m=M∑

m=1

exp

(

−1

2

∥∥∥
∥

xn − ym

K

∥∥∥
∥

2
)]

,

where K fixes the size of the receptive fields. The continuity C is defined by

C (y1, . . . yM) =
m=M∑

m=1

‖ f (ym)‖2 ,

where f is a linear combination of the neurons neighbouring neuron m which approx-
imates an order p differential operator. Figure 4.119, already shown in Sect. 4.4.3 (see
Fig. 4.40), illustrates the result of minimizing for p = 1 and β = 10. Figure 4.120
gives the result for p = 3. We see that p = 1 looks like the empirical maps.

4.10.1.4 A LISSOM Model

Other models of joint self-organization of maps of orientation, direction of motion,
and ocular dominance can be found in the work of Bednar and Miikkulainen [113,
114]. They are based on the laterally interconnected synergetically self-organizing
map (LISSOM) model. Their 2005 book entitled Computational Maps in the Visual
Cortex [80], written with Yoonsuck Choe and Joseph Sirosh is particularly interest-
ing:

[It] presents a unified computational approach to understanding the structure, development
and function of the visual cortex.



246 4 Functional Architecture I: The Pinwheels of V 1

Fig. 4.120 Field obtained by minimizing the energy E (see text) for p = 3 and β = 10. From
[112]

For example, Fig. 4.121 shows the result of joint learning of orientation (OR,
colours), ocular dominance (OD, boundaries), and direction of motion (DR, arrows)
in a LISSOM model on the basis of a flux of simple stimuli. Note that the DRs are
reasonably orthogonal to the ORs and that in each orientation patch there are two
sub-patches with opposite directions (orthogonal to the preferred orientation of the
patch). This synthesis provides a good model for the cat. We shall return to direction
maps in Sect. 5.11 of Chap. 5.

4.10.2 Independent Maps and Transversality Principle

We see that, after the spatial frequency, the ocular dominance is another parameter
that is implemented in the 2D neural layers. With the orientation, an abstract 3D
structure collapsed to two dimensions. Now, we have an abstract 5D structure. Such
a drastic reduction in dimension obviously raises questions about how the indepen-
dence of the parameters can be represented in two dimensions. It seems that the
solution discovered by evolution was to maximize a transversality condition: the
boundaries of the frequency domains and those of the ODDs are strongly transverse
to the lines of the iso-orientation field. Clearly, if there is more than one extra para-
meter, the transversality cannot be strong everywhere, but there can nevertheless be
optimization of two opposing constraints on transversality.

Nicholas Swindale explicitly addressed the question of how to understand the
optimization of the interactions between different maps in his paper [115] entitled
How many maps are there in visual cortex? (see also [116]). To simplify, Swindale
started with N binary variables (e.g. binarizing continuous variables like the orien-

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.121 Orientation maps (colours), ocular dominance (boundaries), and direction of motion
(arrows) in a LISSOM model. The DRs are strongly transverse to the ORs. In each orientation
patch there are two sub-patches with opposite directions (orthogonal to the preferred orientation of
the patch: for example, vertical arrows in the red regions correspond to the horizontal orientation,
etc.). From [80, Fig. 5.29]

tation, ocular dominance, or spatial frequency), regions where a variable is constant
corresponding to the different values of the features of the given stimuli. He then
asked about the maximal N ensuring good coding efficiency, the effect of introduc-
ing a new map on the other maps, and the information provided by a map about the
presence of other maps. To answer these questions, he used the well-known algo-
rithm called self-organizing feature maps due to Kohonen, which is analogous to the
algorithms used in the previous section.

For this, we take a retinal grid (i, j), i, j = 0, 1, . . . , M (M = 150) and associate
with the neuron (i, j) the vector wi j = (x, y, t1, . . . , tN ) defined as the set of central
values of its receptive field and the features tk it detects. This is therefore a discrete
and generalized version of what we introduced at the outset when we said that a
simple V 1 neuron codes a contact element (a = (x, y) , p). In other words, we work
in the fibre bundle πN : V = R × T → R, where T is a fibre of dimension N . For
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Fig. 4.122 Swindale’s model for 6 maps. From Swindale [115]

their part, the stimuli are also coded by vectors v of V , vs = (xs, ys, u1, . . . , uN )

and we take enough of them (2.5 × 106) to ensure that the learning is significant.
We select random sequences of them and, at each step v, the wi j are incremented by
Δwi j applying the following standard rule: if (i0, j0) is the neuron in the network
which is closest to the v, then Δwi j = εh (r)

(
v − wi j

)
, where ε is the learning rate

(ε = 0.01), r is the distance between (i0, j0) and (i, j), and h (r) = exp
(−r2/2σc

)

is the learning Gaussian (σc = 2.5). To minimize, we then carry out simulated
annealing, the algorithm already discussed in Sect. 4.4.5.1 when minimizing the
total length of wiring in V 1. For example, Fig. 4.122 shows a piece for N = 6. There
are 2N = 64 feature values, each coded by a colour.

As the variables are binary, each map comprises blobs and stripes whose inter-
sections encode the structural relations between the maps. The morphology of the
individual maps does not change much qualitatively when other maps are added, but
their structural relations change much more. Figure 4.123 shows the boundaries for
N = 6. We observe strong transversality relations.

Hongbo Yu et al. [46] also examined the relations between the three maps, viz.
orientation, ocular dominance, and spatial frequency, but using continuous variables
and focusing on the way strong transversality codes the independence of the asso-
ciated variables. They considered the gradients of the variables and showed first
that the gradients are maximal in disjoint regions and then that the transversality is
maximal when the two gradients are jointly high enough:

Two features are mapped orthogonally in their high-gradient overlap regions. [46, p. 277]

Figure 4.124 shows the orientation field lines (the level lines of the ‘orientation’
variable) and the OD level lines. The pinwheel centres and the ODD boundaries
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Fig. 4.123 Boundaries of the domains of the N = 6 binary variables in Fig. 4.122. From Swindale
[115]

avoid one another since the pinwheel centres are located on the ridges of the ODDs.
The grey zones are those where the two gradients are jointly highest. We observe
that transversality is indeed very strong; in fact, we almost have orthogonality.

One interesting result obtained by Swindale in [115] concerns the retinotopic
map. Figure 4.125 shows the projection of the cortical network on the retinal space
for the case N = 7. Note that there are many folds and pleats. Two remarks are in
order:

1. Firstly, there should be no surprise in finding folds and pleats. Indeed, according
to the well-known theorem due to Hassler Whitney and generalized by René
Thom, the only singularities possible in a generic differentiable map between 2D
manifolds are fold lines and isolated pleat points.

2. Secondly, these singularities are not those of the conformal retinotopic map (a
complex logarithm, see Sect. 4.2) between the retinal positions and the cortical
positions. They are induced by what happens in the fibres of the bundle πN : V =
R × T → R and show that the values of the features wi j = (x, y, t1, . . . , tN )

do not generate a single-valued section of πN , but rather a multivalued section
whose image is a surface in V that is not everywhere transverse to the fibres.25

25For an adequate treatment of this point, one must introduce the rather technical geometric notion
of a Lagrangian sub-manifold. We shall say a little more about this in the second volume. Here we
only make elementary remarks about the geometry.
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Fig. 4.124 Iso-orientation
lines and ODD level lines.
Grey regions are those where
the two gradients are at their
highest. We observe that
transversality is very strong
there. From Yu et al. [46]

4.10.3 Binocularity

4.10.3.1 Ocular Dominance and Binocular Disparity

The ocular dominance maps and ODDs of the controlateral and ipsilateral monocular
cells must be studied in relation to binocular disparity (BD) of the binocular cells.
Among others, Prakash Kara and Jamie Boyd have studied the functional architecture
of the BD and its relationship with OD in a piece of the V 2 area (18) of the cat [117].
Using two-photon confocal microscopy, method already discussed in Sect. 4.7.3 in
the context of Ohki’s work on pinwheels and which can be used to measure the
activity of several hundred individual neurons in layer 2/3 (a region of about 300µm),
Kara and Boyd were able to show that there is a BD selectivity map and that OD
and BD are mutually independent at the level of individual neurons. Once again,
this independence is manifested through strong transversality properties: in regions
where the gradients of the two variables are both high, they are orthogonal.

The stimuli used are gratings with the preferred direction of motion and orientation
of the cell being measured. Either one of the eyes is stimulated by such a grating
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Fig. 4.125 Projection of the cortical network on the retinal space in the Swindale N = 7 model.
From Swindale [115]

and the other by a uniformly grey stimulus, or both eyes are stimulated by such
gratings, with the same orientation and direction, but out of phase (8 values of the
phase difference are used). Figure 4.126 shows the responses of several cells to the
right eye (R) and the left eye (L) and to the phase of the BD. Figure 4.127 shows
maps of the BD and the OD, confirming that, in regions where both gradients are
high, the level lines are close to orthogonal.

4.10.3.2 Bistability and Binocular Rivalry

Since we have been discussing binocularity, let us say a word about the phenom-
ena of binocular rivalry and bistable images, important subjects when studying the
relationship between high and low levels of visual cognition.

Ambiguous bistable images like the Necker cube, which can be perceived in two
different ways, are well known. When we stare at the image for long enough, we
observe regular switches between the conflicting interpretations. It is thus natural to
assume that there are two competing populations of neurons implementing the two
interpretations, the dominant population selecting the perceived interpretation at a
given time and inhibiting the other. When the inhibition falls sufficiently or the cues
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Fig. 4.126 Responses of 5 cells to monocular stimuli and the phase of the binocular disparity. For
example, cell 1 responds to L and R and to phase differences of 0, π , 5π/4, 3π/2, and 7π/4, but
not to phase differences of π/4, π/2, and 3π/4. c gives the BD, d the OD, and e the histogram of
the OD. From Kara and Boyd [117]

Fig. 4.127 Maps of the BD and the OD. In regions where both gradients are high, level lines are
close to orthogonal. From Kara and Boyd [117]

favouring the other interpretation evolve sufficiently, a switch can occur. Here, we
should ask at what level in the elaboration of percepts an interpretation is selected.
Is it a basically low-level mechanism or rather some high-level cognitive mechanism
involving knowledge? In actual fact, it almost certainly involves both because any
interpretation involves inference.
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Spontaneous bifurcation phenomena are well known in every field. We shall meet
some fine examples in the second volume. They can be modelled using the following
guiding idea introduced by René Thom in [118] and [119], an idea already discussed
in Sect. 1.3 of the Preface. Let S be a system satisfying the following hypotheses:

1. Inside S, there is an internal process X which specifies the internal states that S
can occupy.

2. The internal process X specifies all the internal states of S.
3. There is a selection criterion I which selects the current state among the various

possible internal states on the basis of certain criteria specific to the system, and
which may vary significantly.

4. Finally, the system S is controlled, with good regularity properties, by a certain
number of control parameters. These vary in a space W called the external space
(or control space, or substrate space) of S, to distinguish it from the internal space
of S. The internal process X is thus a process Xw depending on w.

If X is the space of possible internal processes, the system S will then be described
by the field σ : W → X associating the corresponding internal process Xw with
w ∈ W , and also by the selection criterion I . As w varies, the actual state will vary
and, for certain critical values of w, it may bifurcate towards another internal state.

The best known model of this kind is known as the cusp model. The states of
the system are represented by the minima of a potential function fw : R → R

parametrized by a parameter w varying in a 2D external space W , and the internal
dynamics Xw are the gradient dynamics of the fw. Depending on the value of w,
fw has either one minimum or two minima A and B separated by a threshold, and
when there are two minima, these are in competition. Hence, there are two kinds
of possible bifurcation corresponding to the exceptional values of w varying along
three lines of W : along two of these lines, A or B disappear, and along the third, A
and B compete and balance each other (see Fig. 4.128).

We shall return to this model in Sects. 5.9.2 and 5.11.3 of Chap. 5. It was used
to model bistable images in the 1970s by Christopher Zeeman, the minima of fw

corresponding to attractors of the relevant neural dynamics.
Binocular rivalry does not concern the conflict between two possible interpre-

tations of a given stimulus, but something deeper and more enigmatic, namely the
conflict between two different stimuli. We consider two stimuli A and B, e.g. a chess-
board and a face, and we present one to each eye using appropriate apparatus. The
two stimuli are thus both present in V 1. However, the subject does not perceive a
superposition A + B, but in each case only one image, the two images alternating
regularly. In other words, there are successive intervals of time in which the subject
perceives only A or B (exclusivity and uniqueness), and between these intervals,
short transition periods during which the stimulus that is actually present, say A, is
destabilized and bifurcates towards the other stimulus B. Temporal series of such
spontaneous shifts have been studied in detail.

There are roughly speaking two classes of theory to explain the phenomena of
binocular rivalry: on the one hand, low-level theories which say that the suppression

http://dx.doi.org/10.1007/978-3-319-65591-8_1
http://dx.doi.org/10.1007/978-3-319-65591-8_5
http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.128 Universal unfolding fw of the cusp singularity. The parameter w varies in a 2D external
space W and the internal dynamics is the gradient descent −grad ( fw). Depending on the value of
w, fw has either one minimum or two competing minima separated by a threshold. There are two
kinds of catastrophe along three strata in W : either one of the minima bifurcates by collision with
the maximum, or the two minima compete and balance each other. This figure will be taken up
again in Fig. 5.39 and explained further in Sect. 5.11.3 of Chap. 5

of one of the competing stimuli already begins in the V 1 area, or even before V 1, and
on the other hand, high-level theories which say that the suppression is made through
cognitive inferences. According to the low-level hypothesis known as interocular
competition, rivalry arises because the two images cannot be merged by binocular
stereopsis and this mismatch blocks one or other of the monocular pathways. But the
two kinds of theory are probably both partly correct. Indeed, fMRI studies show that
high-level non-visual areas (frontal and parietal) are active during bifurcations. This

http://dx.doi.org/10.1007/978-3-319-65591-8_5
http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.129 Cusp model for binocular rivalry. The two percepts are symbolized by + and × and the
depths of their respective potential wells are alternately modulated by the image contrast. Noise pro-
vides the means to overcome the threshold (the maximum). Stochastic resonance is manifested by the
fact that the distribution of the dominance periods has resonance peaks for the values (2k + 1) H P ,
where H P is the half period of contrast modulation. a Peak for H P . b Peak for 3H P . From Kim
et al. [121]

is therefore a complex phenomenon. For a good summary, the reader is referred to
the paper [120] by Randolph Blake and Hugh Wilson.

The cusp dynamical model turns up in certain studies of binocular rivalry. For
example, Yee-Joon Kim et al. [121] use it to apply the methods of stochastic reso-
nance. In Fig. 4.129, the two percepts are symbolized by + and × and the depths of
their respective potential wells are alternately modulated by the image contrast. Noise
is introduced to overcome the threshold represented by the maximum separating the
two minima. Stochastic resonance is manifested by the fact that the distribution of
the dominance periods, i.e. the time series of the shifts, has resonance peaks for the
values (2k + 1) H P , where H P is the half period of contrast modulation.



256 4 Functional Architecture I: The Pinwheels of V 1

Fig. 4.130 Initial fast field
(h1, h2) with two nullclines
∂h1/∂t = 0 (red) and
∂h2/∂t = 0 (blue)
intersecting at three fixed
points (two attractive nodes
and one partially repulsive
saddle point). Recomputed
from de Jong [122]

In his 2008 master’s thesis entitled The Dynamics of Visual Rivalry [122], Ties
Marijn de Jong investigated a simple but explicit model of bifurcation with slow/fast
dynamics. The competing stimuli were orthogonal gratings. By averaging the dynam-
ics of single neurons, we obtain, for the two populations i = 1, 2:

• The local activity fields hi of the percepts (average membrane potentials), these
being the fast variables.

• Slow adaptation variables ai expressing the fact that the activity of the dominant
percept gradually weakens.

Introducing a scale change parameter τ � 1 between slow and fast times and
averaging the standard neural equations, the author produced the following model:

⎧
⎪⎪⎨

⎪⎪⎩

τ
∂hi

∂t
= Xi − (1 + ai ) hi − γ σ

(
h j

)
,

∂ai

∂t
= −ai + ασ (hi ) ,

where α and γ are constants arising from the underlying neural interactions, the Xi

are the initial forces of the two stimuli as inputs, and where σ (h) is a sigmoid curve,
i.e. a C∞ approximation to the Heaviside step function, equal to zero for h < 0 and
unity for h ≥ 0. As the mean firing rate is σ (h), hi < 0 implies that the stimulus i
is suppressed by the perceptual system.

If we begin with a symmetric rivalry, that is two stimuli of the same strength
and equal adaptation coefficients, and examine the field (h1, h2), a classic bifurca-
tion scenario comes to light (see Fig. 4.130). The slow manifolds are the nullclines
∂hi/∂t = 0 with a fixed. At the beginning, they intersect at three points which are
equilibrium points since the field vanishes there. Two of these points are attractive
(nodes), on either side of a third which is partially repulsive (a saddle point). For each
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attractor, one of the hi is strictly positive while the other
(
h j

)
is strictly negative,

implying that only the stimulus i is perceived. If we begin in a state with no activity,
close to 0, and if we activate the system with the stimuli, the fast dynamics projects
the system onto one of the attractors. From this point, the slow dynamics modifies the
field and adaptation breaks the initial symmetry a1 = a2. It displaces the nullclines,
thereby leading to a bifurcation by the merging of the initial attractor and the saddle
point. The system then jumps into the other attractor. We shall return to this kind of
fast/slow dynamics and bifurcations in the second volume.

The most profound causes of perceptual bistabilities are still debated. For example,
in [123], David Leopold and Nikos Logothetis criticize the favoured hypothesis
according to which the bifurcations (spontaneous reversals) result from antagonistic
connections. In their view:

[Alternations] reflect responses to active, programmed events initiated by brain areas that
integrate sensory and non-sensory information to coordinate a diversity of behaviours. [123,
p. 254]

4.10.4 Blobs and Colour

We should also say a word about ‘blobs’ of cytochrome oxidase (CO) in V 1 and V 2
which are sensitive to colour and already process it in V 1. By imaging, we obtain
colour-selective response maps in those regions which, in V 1, are centred on the
ODDs, but which are in fact barely selective to orientation and which do not overlap
with the central regions of the pinwheels. In V 2, the colour regions coincide with
the thin stripes and the orientation regions with the pale and thick stripes. There is
therefore a kind of functional segregation of colour and orientation corresponding in
part (this point is debated) to the distinction between blobs and interblob regions.

The structure of the blob map has been studied by many specialists, such as
Haidong Lu and Anna Roe [124], using optical imaging methods on the macaque. In
primates, the blobs in V 1 are found mainly in layers 2 and 3, but also in layers 1, 4B,
5, and 6. They measure in the range 150–250 µm, and there are about 5/mm2. They
tend to be centred on the ODD axes with an average period of about 350 µm (see
Polimeni et al. [87]). Figure 4.131 shows their distribution. It is valid for a monkey
like the macaque, but in a prosimian primate like the bush baby, the constraints on
the positions of the pinwheels and the blobs within the ODDs are less stringent (see
Xiangmin Xu et al. [45]). Finally, Fig. 4.132 shows a diagram of V 1 with pinwheels,
ODDs, and blobs.

We shall return to the band structure of V 2 in Sect. 5.8 of Chap. 5.

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.131 Distribution of blobs of cytochrome oxidase in the ODDs of a macaque. Red: left eye.
Green: right eye. They are centred preferentially on the ODD axes. Arrows indicate blobs furthest
from the centres. Scale bar: 1 mm. From Lu and Roe [124]

Fig. 4.132 Diagram of V 1
with pinwheels, ODDs, and
blobs. From [24]
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4.10.5 Functionality of Maps

Here, we see just how rich the structure of V 1 is. All the various ‘secondary’ variables,
engrafted in the sense of Hubel onto the primary spatial variables, are processed by
micromodules measuring 400µm × 800µm and containing some 60 000 neurons.
With their functional architectures, they constitute very precise maps that are just
as precisely correlated with one another. This is how, according to Yu et al. [46],
dimensional reduction can:

[…] smoothly map several (more than two) response properties onto a two-dimensional
cortical surface.

It is also how it can solve the fundamental functional problem of ensuring the uni-
formity and continuity of features with respect to their positions by the design of the
neural hardware. To minimize the complexity of this structure and make a ‘simplex’
structure in the sense of Alain Berthoz (who generalized what we shall say about
1-jets in Sect. 5.4.6 of Chap. 5), evolution grouped together functionally related neu-
rons locally through the spatial extent of the cortical layers.

4.11 Hemispheres and Callosal Connections

Here, we shall say something about the way the two halves of V 1 in the two hemi-
spheres are connected up. This provides a remarkable example of a geometrical
gluing process. It is the callosal connections of the corpus callosum that do this.
The corpus callosum is the biggest bundle of nerve fibres in mammals. In humans,
it comprises some 200 million axons.26 The region of the visual field located close
to the vertical meridian, called the transition zone (TZ) or visual midline (VM), is
projected onto the two parts of V 1 in the vicinity of the V 1–V 2 boundary.

The structure of the gluing map is fascinating. Figure 4.133 shows this map for
the cat (areas 17/18). The sub-zones A, B, C, D, E of a hemisphere are connected
to the zones with the same label in the other hemisphere: zones within the TZ are
connected to zones outside it and conversely.

If we cut through the fibres in the optical chiasm coming from the nasal hemi-
retina, while keeping those from the temporal hemiretina (split-chiasm preparation),
the right visual hemifield projects onto the left V 1 area via the left eye and the
activity of the right V 1 area becomes entirely due to the callosal connections (see
Fig. 4.134). Depending on which eye is stimulated, we can thus activate either the
geniculo-cortical pathway or the transcallosal pathway.

The problem is to understand the distribution of the callosal connections in relation
to the pinwheel structure in V 1. This is a very delicate matter. An experiment by
William Bosking (Bosking et al. [126]) shows (see Fig. 4.135) that, for the tree shrew

26Recall that the optic nerve contains about 1.5 million axons, so less than a hundredth of the
number.

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.133 Structure of the callosal gluing map between the two hemispherical parts of V 1 and
V 2 in the cat. Zones A, B, C, D, E of one hemisphere are connected to zones with the same label
in the other hemisphere. From Rochefort [125]

Fig. 4.134 If we cut through the optical chiasm, the right visual hemifield projects onto the left V 1
area via the left eye and the activity of the right V 1 area is entirely due to the callosal connections.
From Rochefort [125]
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Fig. 4.135 Callosal connections in the tupaia (tree shrew). The two red/green sites of V 1L in a
project onto V 1R regardless of orientations as shown in b and c. In V 1R, we find a rather uniform
distribution of activated neurons: they are distributed across several regions of different preferred
orientation (colour). From Bosking et al. [126]

(tupaia), if we inject rhodamine into a small region of V 1L with vertical preferred
orientation (red circle in a black region) and fluorescein into another small region
with horizontal preferred orientation (green circle in a neighbouring white region),
the callosal projections onto V 1R do not exhibit any orientation specificity:

Callosal connections appear to terminate without regard for the map of orientation pref-
erence, showing little sign of the orientation-specific modular and axial specificity that is
characteristic of long-range horizontal connections. (Bosking et al. [126])

For the cat, the situation seems to be different. The classic work by Olavarria
[127] showed that the distribution of retrogradely labelled callosal cells is polarized
by the ocular dominance domains:

Callosal cells correlate preferentially with contralateral ODCs (ocular dominance columns)
within the 17/18 transition zone (TZ), and with ipsilateral ODCs in regions of areas 17 and
18 located outside the TZ.

Milleret and Rochefort [128, 129] made further investigations using in vivo optical
imaging of intrinsic signals coupled with a method for reconstructing and labelling
the callosal axons. They showed that the callosal connections do conserve orientation
selectivity. More precisely, using the split-chiasm preparation with an injection site
in the left hemisphere, they were able to reconstruct the distribution, in layers II, III,
and IV (upper part) of the transition zone (ZT) of the right hemisphere, of the synap-
tic buttons of several labelled callosal axons. They thus observed that these axons
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Fig. 4.136 Front view of the reconstruction of four callosal axons in cats (two neighbouring injec-
tion sites and two axons per site) and their clusters of synaptic buttons in layers II, III, and IV (upper
part) of the transition zone TZ between area 17 and area 18. WM white matter, D dorsal, M medial.
Scale bar 500 µm. From Rochefort et al. [129]

Fig. 4.137 Conservation of orientation by transcallosal connections in the cat. Left Injection site
in the left hemisphere. Right Reconstruction of the distribution of the synaptic buttons of a labelled
callosal axon in the right hemisphere. The axon projects into isochromatic zones (blue) of the same
colour as the injection site. From Rochefort [125]
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project into isochromatic zones relative to the colour of the injection site, thereby
showing that the orientation is conserved. Figure 4.136 shows four reconstructed
axons. Figure 4.137 shows the conservation of orientation by the transcallosal con-
nections.

4.12 Homogeneous and Inhomogeneous Qualities

4.12.1 Responses to Homogeneous Surfaces

Up to now the basic geometric feature we have studied is the orientation of contour
elements. However, if we consider in the most qualitative phenomenological way a
natural image made up of identifiable objects, we see immediately that there are two
fundamentally different kinds of local structure:

1. Locally homogeneous points near which features vary only slightly and in a
continuous way.

2. Locally heterogeneous points near which certain features reveal discontinuities.

This dichotomy between homogeneous and heterogeneous is absolutely fundamental
and very general, going back at least to Aristotle, who, himself referring to Anaxago-
ras, made a distinction in biology between homoeomeric parts (‘made up’ of similar
[omios] parts [meros]) and anhomoeomeric parts.27 As we shall see in the second
volume, this distinction is of key importance in Husserl’s phenomenology of per-
ception. It also underpins René Thom’s morphological models. Thom referred to the
locally homogeneous points of the substrate of a form as its regular points and the
locally inhomogeneous points as its singular points. The latter are the phenomeno-
logical manifestation of symmetry breaking in the underlying processes, and this is
why the theory of singularities, the theory of bifurcations, and the theory of symme-
try breaking formed the backbone of all his models of natural morphology, not just
in physics, chemistry, and biology, but also in psychology and the social sciences.

These models are based on Thom’s guiding idea as discussed in Sect. 4.10.3.2.
Here, we apply to the case where the external space W is that of the visual field
and where the attractors of the internal dynamics Xw implement sensory qualities.
In this case, when the internal dynamics Xw undergoes a bifurcation, the point w is
singular.28

The dichotomy between regular and singular points was also important in the
visual theories of Grossberg [131], which assume that there are two fundamental
systems of visual perception:

27On generation and corruption, I, 5, 312b.
28All the details can be found in René Thom’s two books [118] and [119]. For a didactic introduction,
see [130].
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1. The boundary contour system (BCS), which detects, enhances, and completes
edges using a ‘spatially long-range cooperative process’.

2. The featural contour system (FCS), which fills in the regions bounded by the
BCS with qualities (‘featural filling-in’): ‘These filling-in processes lead to visible
percepts of colour-and-form-in-depth at the final stage of the FCS’.

According to Grossberg [131, p. 35]:

Boundary contours activate a boundary completion process that synthesizes the boundaries
that define perceptual domains. Feature contours activate a diffusion filling-in process that
spreads featural qualities, such as brightness or color, across these perceptual domains.

It is thus interesting to know whether the dichotomy between homogeneous-regular
and heterogeneous-singular is relevant in the coding of features in V 1 or V 2.29

Toshiki Tani et al. [132] reached this conclusion by exhibiting in the 17/18 areas
of the cat a map of neurons that detect the interior of homogeneous domains and
respond to spots which completely cover their receptive fields. These neurons are
located in the V 2 area near the boundary with the V 1 area. The authors conclude
that, in the primary visual cortex, there is not only a representation of contours but
also a representation of surfaces. They stress that these regions of V 2 are small and
centred on the pinwheels where all the orientations are present.

As these zones for local detection of homogeneous surfaces are located close to
the boundary between V 2 and V 1, which is the transition zone (TZ) of the vertical
meridian where the corpus callosum comes into play, as we have seen, the authors
suggest that these neurons may transmit information about the interior of homoge-
neous zones from one hemifield and one hemisphere to the other:

One possible function of the surface-responsive regions may be to link visual information
about large surfaces extending across both the right and left hemifields. [132, p. 1123]

We shall now specify the problem of regular and singular points by returning to the
processing of colour.

4.12.2 Colour Processing

4.12.2.1 First Steps: Goethe, Helmholtz, Hering

We discussed colour processing in the retina in Sect. 3.2.5 of Chap. 3, and we have
just been talking about blobs in V 1 and V 2. Let us now say a little more about this.

The trichromatic theory developed by Thomas Young and Hermann von Helmholtz
in the first half of the nineteenth century involved a remarkable anticipation of the

29The pinwheel structure is based on the dichotomy between regular and singular points, but this
concerns field lines of the orientation field. Here we are talking about something quite different.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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way the retina actually processes colour. However, it was clearly inadequate. Goethe
had already recorded decades of phenomenological observation of colour perception
in his Farbenlehre of 1810. He was interested in the phenomenon of colour as an
experienced quality and sought to describe this experience in as precise a way as
possible, since accurate description was for him essential. From the details of these
observations (which are experimental in the scientific sense and also in the subjective
sense of experience), he hoped to infer more explicative underlying mechanisms. In
particular, he noted that the persistent image of a coloured figure has another colour:
pieces of white paper on a yellow wall become tinted with purple, and when we
remove an orange sheet of paper from a white wall, this induces a blue image and
an orange background. As he notes in § 60:

These phenomena are of the greatest importance, because they point to laws of vision.

Indeed, they point to the antagonisms between complementary colours, namely yel-
low/purple (Y/R+B), blue/orange (B/Y+R), and red/green (R/B+Y), where R = red,
G = green, B = blue, and Y = yellow.

Later, in 1892, the great Austrian physiologist Ewald Hering (1834–1918) devel-
oped an antagonistic theory, known as the opponent process theory, in a simplified
tetrachromatic form, assuming that there are in fact four fundamental colours RGBY,
organized in two pairs of complementary colours R/G and B/Y. With this theory, he
was able to solve the problem of yellow, which seemed to be an elementary colour
rather than a mixture. Hence, the idea that there were indeed three RGB detectors,
but four simple primary physiological colours.

Hering’s theory of pairs of complementary colours anticipated in a quite remark-
able way what we know today about colour processing in the cortex, between the
LGN and V 1.

4.12.2.2 Chromatic Opponency: Single Versus Double

In the LGN, colour-tuned cells are essentially parvocellular ‘single-opponent’ cells
detecting R/G contrasts, i.e. L/M.30 Magnocellular cells are insensitive to colour.
However, there are also cells in the koniocellular pathway, discovered in 1994, which
detect B/Y contrasts, i.e. S/(L+M). In V 1, the colour cells located in blobs are of two
kinds. The first calculate chromatic contrasts R/G, i.e., L/M, and B/Y, i.e. S/(L+M).
The second calculate spatial contrasts between the complementary colours R/G and
B/Y. These are therefore doubly antagonistic (double-opponent cells) which calculate
opponency in both the external space and the chromatic space. They can be denoted
±L/ ∓ M. In other words, these are orientation cells that also detect chromatic
contrasts. They are essential because, as emphasized by Shapley and Hawken [133,
p. 701]:

30Recall (see Sect. 3.2.5 of Chap. 3) that the three kinds of cones in humans are L/M/S, L red, M
green, S blue.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Color, form and motion are inextricably linked as properties of objects in visual perception
and in the visual cortex.

So from the lowest levels of the V 1 and the V 2 areas, there is a functional entangle-
ment between the spatiality of perceived scenes and the colours of objects making
them up. The brain must reconstruct by inference from the colour the objective
reflectance of the surfaces perceived and this independently of a host of extremely
variable factors such as the illumination of sources, indirect irradiation, angles of
incidence, and reflection. This inverse problem is exceedingly hard to solve. The
direct problem is this: for each position a = (x, y) of the visual field, given the
reflectances ρ (a, λ) and an illumination spectrum σ (a, λ), to calculate the spec-
trum γ (a, λ) = σ (a, λ) ρ (a, λ), where γ (a, λ) is itself encoded locally by the
excitation of the L/M/S cones at a. The inverse problem is not well posed, like most
inverse problems, and can only be solved if the system has priors at its disposal,
i.e. priors in the Bayesian sense, regarding the σ (a, λ). An examination of these
difficulties can be found in the paper by Foster [134].

In [133], Robert Shapley and Michael Hawken study the receptive profilesϕ (a, λ)
of colour-sensitive V 1 neurons which, in the linear case, act by convolution on the
signal I (a, λ). For a trichromatic species like the macaque or humans, they have the
form

ϕ (a, λ) = αL L (λ) rL (a) + αM M (λ) rM (a) + αSS (λ) rS (a) ,

where the α are coefficients, the r (a) are spatial receptive profiles, and L (λ), M (λ),
and S (λ) are the spectral responses of the different kinds of cone. For example,
the opponent cells R/G, i.e. L/M, correspond to αS = 0 and αL = −αM, while
the B/Y, i.e. S/(L+M) correspond to αS = − (αL + αM). Figure 4.138, produced
by Elizabeth Johnson in [135] and reproduced in [133], represents the receptive
profile of a double-opponent cell R/G, where the ON and OFF regions have positive
and negative heights, respectively. We see the level lines corresponding to L-cones
and M-cones. Figure 4.139 shows schematically single- and double-opponent cell
models with oriented or circular spatial profile. Note in particular the orientation
cells L ± /M∓.

The difference between single- and double-opponent cells is crucial from the
theoretical point of view, but also for the purposes of modelling. Indeed, single-
opponent cells respond to interior regions of continuously varying colour domains
(with no detectable spatial contrast), whereas double-opponent cells respond to the
edges of such regions where the colour undergoes a qualitative discontinuity. This
confirms neurophysiologically the phenomenological models suggested by René
Thom at the end of the 1960s [118, 119], models which we have already related to
Stephen Grossberg’s work in [131].
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Fig. 4.138 a Complete receptive profile of a double-opponent cell R/G of V 1. This is the superpo-
sition of an L profile and an M profile. The ON and OFF regions (where an increase or a decrease
in luminosity bring about a greater response) have positive and negative heights, respectively. b and
c Level lines of the L-cones and the M-cones obtained by the technique of inverse correlation. The
scale of growth goes from blue (low) to red (high). At the position marked with a star, the L map
is OFF (blue) and the M map is ON (red), and at the position marked with a circle, the opposite.
From Johnson [135] and Shapley and Hawken [133]

4.12.2.3 Double Opponency and Natural Images

As pointed out in Sect. 3.6.2 of Chap. 3, the receptive profiles (RPs) can be deduced
from the statistical properties of natural images using the techniques of independent
component analysis (ICA), insofar as they minimize redundancy in the neural rep-
resentations of sense data. Likewise for the RPs of colour processing neurons. For
example, Dharmesh Tailor, Leif Finkel, and Gershon Buchsbaum showed in [136]
that independent spatiochromatic filters extracted from databases of natural colour
images look much like those of double-opponent colour cells observed, for example,
in the macaque V 1 area. For statistical correlations between colour and orientation
in natural images, see also [137].

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Fig. 4.139 Diagrams of single- and double-opponent L/M cells with oriented or circular spatial
profile. From Johnson [135]
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