
Chapter 2
Introduction

Without a proper shape mathematics for biology, we are in the
position that physics would have been in trying to develop
mechanics without Euclidean geometry.

Harry Blum

2.1 Origin of Space and Neurogeometry

2.1.1 Geometric, Physical, and Sensorimotor Conceptions
of Space

The origin and status of spatial representations is a long-standing question that has
beenmuch discussed in the history and philosophy of science. It has been approached
from several different angles up to now, including those of mathematics, physics,
physiology, and psychology.

1. From the mathematical point of view, starting out with the basic reference pro-
vided by Euclidean geometry, the concept of space has been gradually general-
ized: non-Euclidean geometries and geometries specified by their transformation
groups, Riemannian geometry, differential geometry with Cartan connections,
and others.

2. From the physical point of view, starting with the idea that space and time form an
a priori background structure for physical phenomena, a physical genesis of space
has been gradually built up: from general relativity, based on Riemannian geom-
etry, and non-Abelian1 gauge theories in quantum field theory which are based

1Named after Niels Henrik Abel.
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22 2 Introduction

on Cartan geometry, to the admirable synthesis of quantum physics and geometry
developed by Alain Connes under the name of ‘non-commutative geometry’.

3. As regards perceptual space or ‘perceived space’, from the profound insights
of physiologists like Helmholtz, geometers like Poincaré, phenomenologists like
Husserl, and psychologists like the proponents ofGestalt theory (Stumpf, Klüver,
Kanizsa, etc.), up to contemporary studies on the physiology of perception and
action, we have deepened our understanding of the way the classic Euclidean
space derives from our sensorimotor relationship with the environment, where
solid objects play a fundamental role.

All these developments have been either directly mathematical or else based on
considerable progress in mathematics. This is obvious for level (1) above, since
these are simply the most impressive developments of geometry, which followed on
so quickly from Gauss to Riemann and Poincaré, then Weyl and Cartan, and today
Alain Connes.2

The link with mathematics is no less obvious for level (2), which concerns physi-
cal space. Here, it is worth emphasizing the way the astonishing progress in the for-
malisms of fundamental physics can be considered as a ‘geometrization of physics’.
This is not the place to go further into this vast subject. Let us just say that the
geometrization process consists in identifying more and more geometrical structures
and symmetry groups of physical theories in such a way as to understand the whole
complexity and diversity of observed physical phenomena in an ever more synthetic
way. This is indeed the main process of mathematization since, on the one hand,
it ‘reduces’ more and more physical phenomena to a priori geometrical statements,
while on the other hand, it ‘unfolds’ these a priori statements in a profusion of dif-
ferent models, exploiting to the full the characteristic ‘generativity’ of mathematics.
In the words of Jean-Marie Souriau, one of the founders of geometric quantization,
who made this point so clearly [7]:

Philosophically, [geometrization] means reducing physics to geometric symmetries in order
to do a priori [i.e., ‘rational’] physics.

In other words, as Souriau puts it:

There is nothing more in physical theory than symmetry groups, except the mathematical
construction which allows us to show that there is nothing more.

Regarding this point, the interested reader may consult [8] and [6] and the references
therein.

Regarding level (3), the question of perceptual space, the connection with fun-
damental mathematical structures, is less obvious, and it is precisely here that the
present book aims to bring new insights. In fact, as we know, perception and motric-
ity are tightly linked from a functional point of view, and one of the main ideas
developed from Helmholtz to Poincaré was to relate the geometry of external space
to our sensorimotor relationship with solid objects in our environment.

2Among many other works, see, for example, the classic Space, Time, Matter by Weyl [1], the
proceedings [2], the book by Toretti [3], the studies [4] and [5] by Thomas Ryckman, or our own
review of non-commutative geometry [6].
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Consider for example the way Hermann von Helmholtz responded to Bernhard
Riemann’s famous Habilitationsvortrag in 1854, viz. Über die Hypothesen welche
der Geometrie zu Grunde liegen [9], by his no less famous reply [10] Über die
Tatsachen, die der Geometrie zu Grunde liegen.3 Helmholtz suggested reducing the
problem of perceptual space to a system of axioms specifying, not Riemann’s infini-
tesimal metric elements, but rather the transformations of space which are observed
experimentally to be the congruences (of free motions) between rigid bodies. An
elegant examination of this so-called Riemann–Helmholtz problem, concerning the
origin of the geometry of external space, can be found in Joël Merker’s Le problème
de Riemann–Helmholtz–Lie [11].

There are four axioms, and the first three are rather natural:

1. The points of the space E can be represented by the values of three coordinates,
in such a way that transformations correspond to (smooth) variations of these
coordinates. (For Euclidean R

3, this gives the six-dimensional group of trans-
formations comprising the three translational degrees of freedom and the three
rotational degrees of freedom.)

2. There exists a function f (a, b) defined on E × E which is invariant under all
transformations.

3. Any point in E can be carried to any other point of E by a transformation (tran-
sitivity).

The fourth axiom, called the monodromy axiom, is much less obvious:

4. If we choose two points a and b in a rigid body, then there is one remaining
degree of freedom (rotations with axis ab in the case of Euclidean R3), and such
a ‘rotation’ must move all the points and bring the body point by point back onto
itself after one complete turn.

In volume III of their famous treatise Theorie der Transformationsgruppen [12],
Sophus Lie and his disciple Friedrich Engel spelt out the above axioms, rectify-
ing certain errors made by Helmholtz and classifying all the solutions, noting that
Euclidean geometry was only one solution among others (see [13]). To do this, they
used the theory of the groups and algebras now known by the name of Lie groups
and Lie algebras, something we shall make constant use of throughout this book.

Regarding Henri Poincaré, some of his basic ideas about physical space and per-
ceived space are discussed in Chaps. 4 and 5 of Science and Hypothesis [14], entitled
Space and Geometry and Experience and Geometry, respectively. The principle of
geometric conventionalism asserts that the geometry we apply in physics is conven-
tional, i.e. neither true nor false, that its axioms are neither experimental (criticism
of empiricism), nor synthetic a priori (criticism of the narrow idealist interpretation
of Kantian apriorism), and that the same factual physical contents can be described
within alternative geometrical frameworks. As a convention, a geometry provides a
language for description and does not possess any experimental or empirical truth in
itself. By introducing the thesis that the group concept is an a priori feature of our

3‘Tatsachen’ or ‘facts’ are contrasted with ‘Hypothesen’.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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understanding that thus ‘pre-exists in our minds, at least potentially’, Poincaré was
putting forward a version of the transcendental ideality of space which is compatible
with the existence of several different geometries and hence with the progress made
in theoretical physics. Let us recall here the conclusion of Space and Geometry:

The object of geometry is the study of a particular ‘group’; but the general concept of group
pre-exists in ourminds, at least potentially. It is imposed on us not as a form of our sensibility,
but as a formof our understanding; only, from among all possible groups,wemust choose one
that will be the standard, so to speak, to which we shall refer natural phenomena. Experience
guides us in this choice, which it does not impose on us. It tells us not what is the truest, but
what is the most convenient geometry.4

Poincaré expands on this idea in Experience and Geometry, where he explains that
the principles of geometry are not experimental facts. A given physical fact can
always be expressed by changing the convention represented by the geometrical
framework and changing the laws of physics; e.g., one can keep Euclidean geometry
but reject the principle that light rays follow geodesics. This point of view was
already anticipated by Clifford: there is an equivalence between (1) physical causes
of changes in a space thought of a priori as flat and (2) a non-trivial (curved) space
geometry. Physical experiments are always carried out on bodies, never on space.
Therefore, they cannot help us to decide upon the geometry.

Regarding perceived space, Poincaré considered that its geometry must come
essentially from our fundamental sensorimotor experience of the motions of solid
bodies (see, in particular, Science and Method [15]). This constitutes our notion of
space and, by distinguishing between proprioceptive internal changes and external
changes that may balance them, leads to the aprioricity of the group concept and to
the idea that geometry is conventional.5

2.1.2 The Neurogeometric Approach

With this in mind, it should be said that there is (at least) a fourth way to inquire as
to the origin of spatial representations. Until recently, it had only been the subject
of a few bold and generally incorrect speculations, due to the lack of experimental
evidence. This fourthway concerns the highly complex neurophysiological processes
through which the geometrical structures of the external space are constituted as a
result of the internal activities of our brains.

This can be tackled by considering at least two main lines of approach:

• Sensorimotor and locomotor positioning and navigation of an organism moving
through space. For example, the nowclassic bookThe Hippocampus as a Cognitive
Map (1978) by John O’Keefe6 and Lynn Nadel [17] has a long first chapter with a

4This is a clear reference to Kant’s opposition between sensibility and understanding.
5For the relations between Mathematics and Physics in Poincaré, see La Valeur de la Science [16].
6See Sect. 1.1 of the Introduction.

http://dx.doi.org/10.1007/978-3-319-65591-8_1
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historical slant relating this new work on navigation to the philosophies of space
propounded by philosophers and mathematicians such as Leibniz, Euler, Kant,
Helmholtz, and Poincaré. Similar discussions can be found in the many works of
neurophysiologists of perception and action like Alain Berthoz.

• The geometrical structuring of visual images. This will be our main subject in the
present book.

We coined the term ‘neurogeometry’ to refer to this neural origin of perceived space.
The aim in the present work is to take a first step in this direction, something made
possible by the huge amount of new and fascinating experimental results now avail-
able thanks to new imaging techniques. As long as the brain remained, from an
experimental point of view, a ‘black box’, there was no way of developing such an
approach. What made this possible was thus that the brain became, at least to some
extent, a ‘transparent box’.

Brain imaging techniques are here the equivalent of the new observational meth-
ods that are always found to underlie any scientific revolution. We shall show that
their results can be modelled using sophisticated mathematics that corresponds in
the deepest possible ways to mathematics already invented by certain outstanding
geometers like those already mentioned, and in particular Lie and Cartan, when
they set out to understand mathematically how the geometry of the external world
(Euclidean or otherwise) could come about. We would thus like to insert a new page
in the age-old story of the foundations of geometry. There will be two main aims:

• To provide models for a whole new set of neurophysiological data.
• To fit these models into modern developments in the foundations of geometry.

The analogy with the history of the theories of physics could be illuminating here.
Just as the modern theories of fundamental physics (general relativity, gauge theo-
ries, Higgs field, etc.) have led to ever further geometrization of empirical physical
phenomena which, in its turn, provides a better understanding of the physical genesis
of space, so neurogeometry consists in a geometrization of empirical neural phenom-
ena which, in its turn, provides a better understanding of the neural genesis of space.
Our whole investigation will be based on this ‘dialectic’ between the geometrization
of internal neural dynamics and the neural foundations of external geometry.

2.2 Perceptual Geometry, Neurogeometry, and Gestalt
Geometry

Let us begin by giving a few points of reference and some clarifications:

1. Following on from the great geometers, phenomenologists, and psychologists
who have turned their attention to our perception of forms, as discussed above,
a certain number of eminent scholars have recently made considerable contribu-
tions to the geometry of visual perception. We may mention René Thom, who
developed the first general dynamical theory of shapes, Jan Koenderink, who
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applied Thom’s theory of singularities to visual neurophysiology, the heirs to
the Gestalt psychologists, and in particular, Gaetano Kanizsa, to whom we shall
return at length, David Marr, who, at the end of the 1970s, brought a host of
new insights into the problem of vision, and David Mumford (Fields medallist
like René Thom), who completely revolutionized the area. When we talk about
neurogeometry here, what we shall aim for is the neural implementation of the
algorithms of this geometry, the problem being to understand how perceptual
‘macrostructures’ and their morphodynamics can emerge from the underlying
neural ‘microlevel’.

2. The aspect of neurophysiology that is relevant in this research is functional neuro-
anatomy. It is not concerned with the biochemical details of the individual neu-
rons (ion channels, membrane potentials, etc.), but treats them rather as func-
tional units, e.g. threshold automata in neural network models, connecting to
form neuroanatomically specifiable populations. We shall say a few words about
the ‘micro’ cellular level relevant to molecular biology, but most of what follows
will concern a ‘meso’ functional level.

3. One characteristic of perception is that perceptual ‘phenomenal consciousness’
results from integration, in the neurophysiological sense, of the partial process-
ing carried out by a great many different brain modules connected together in an
extremely complicated way with a high level of feedback. Processing is highly
modular (whence the very specific nature of pathologies), but consciousness is
highly integrated. Thismeans thatmodels for specific areas are necessarily incom-
plete. Here, we shall be dealingmainlywith the first area, known as V 1 (or area 17
in cats), of the primary visual cortex. This does of course limit the discussion, but
we shall see that much can already be said and that this provides a good example
of what is meant by neurogeometry. Furthermore, despite being so restrictive,
this case can also be considered as fundamental if we adopt David Mumford and
Tai Sing Lee’s ‘high-resolution buffer hypothesis’. According to this, V 1 takes
part in any higher level processing which requires high resolutions (see Mumford
[18] and Lee et al. [19]).

4. We stress that neurogeometry is about the internal geometry (already referred
to here as ‘immanent’) of low-level vision, and not therefore the conventional
‘transcendent’ geometry of the perceived external 3DEuclidean space. It concerns
a much more fundamental level, and to use the nice expression adopted by Misha
Gromov to speak about sub-Riemannian geometry, it tries to understand perceived
space from within.

5. In neurogeometry, anything that is not implemented neurally does not exist. This
means that all the mathematical concepts used operationally in the models must
have some material counterpart. There is a similar situation in computer sci-
ence, where the software only works if it is compiled and realized materially in
the physics of the hardware. It is not easy to implement this equivalence between
geometric idealities and neural materialism. Indeed, on the one hand, trivialmath-
ematical structures such as alignments, gluing of local charts, or direct products
are implemented neurally in a very subtle way that is hard to study experimen-
tally, and on the other hand, certain properties of the modelling structures will not
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be implemented and so will have no empirical meaning. The reader should bear
this crucial point in mind: when a set of empirical phenomena is modelled by
mathematical structures of a certain kind, only certain aspects of these structures
will be open to empirical interpretation.7

6. Furthermore, implementations can differ significantly depending on the species,
and the same abstract functional structure can be achieved materially in different
ways in the various layers of V 1 (see Sect. 4.9.4 in Chap.4.). We need therefore
to carry out very careful interspecific comparative studies on rats, ferrets, tree
shrews (tupaias), cats, macaques, humans, etc.

7. The neurons in V 1 have small receptive fields and thus process information from
the photoreceptors in a very local manner, i.e. localized in the visual field. The
main problem is to know how these local data are organized into global structures
such as lines, edges, surfaces, and shapes. This is a problem of ‘integration’
in the mathematical sense, and here, the concept of functional architecture—
referring to the design of the connectivity of neurons within an area—proves to
be crucial. The enigmatic phenomena studied by Gestalt theory relate to the fact
that perception ‘integrates’ local data and ‘fills in the gaps’, if there are any. In
this sense, neurogeometry could be qualified as Gestalt geometry.

2.3 Geometry’s ‘Twofold Way’

Let us stress oncemore that, in neurogeometry, there is a twofold relationship between
the geometry and neurophysiology of vision. As we shall explain in detail, it is the
functional architecture of the visual areas, the precise organization of their neural
connections, which generates the geometric properties of perceptual space, i.e. the
perceived 3D space in which the objects of the external world are situated. We may
thus envisage a ‘neural→ spatial genesis’ of the kind ‘functional architecture→ geo-
metric properties of external space’. But as we shall see later, there exist geometric
models of the functional architectures themselves; that is, the latter implement well-
defined sui generis geometrical structures. It is important to distinguish carefully
between the two levels at which geometry enters the discussion. The whole purpose
of this bookwould become incomprehensible if theywere confused.Aswe have seen,
to formulate the distinction, we may return to the classical philosophical opposition
between immanence and transcendence. The geometry of functional architectures
is immanent in perception, internal and local, and its global structure is obtained
by integration and coherent association of local data. In contrast, the geometry of
perceived space is transcendent in the sense that it concerns the outside world and is
given to us immediately as global.

7This problem already arose with the invention of rational mechanics. In order to mathematize the
physical motions of material points, one must choose a frame of reference. But neither absolute
positions, nor absolute directions, nor absolute velocities have any physical meaning, hence the
advent of Galilean relativity.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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Fig. 2.1 Connections between ‘immanent’ geometry and ‘transcendent’ geometry

But it turns out that neurally implemented immanent geometry can itself be mod-
elled using deep geometric structures already introduced by the geometersmentioned
earlier, such as Elie Cartan, Hermann Weyl, René Thom, Alain Connes, and Misha
Gromov, to understand the genesis of transcendent geometry. This implies that, once
modelled in this way, the neural genesis of space can be internalized in the math-
ematics and thereby identified with a mathematical genesis of a macro and global
geometry from a micro and local one, globalized by integration and coherent match-
ing. This should come as no surprise, because the genesis of physical space occurs
in exactly the same way: once physics has been mathematized, it is identified with
the genesis of classical geometry from Riemannian geometry (in general relativity)
or from the non-commutative geometry called ‘quantum’ or ‘spectral’ geometry in
quantum field theory. The diagram in Fig. 2.1 explains this interaction between the
different philosophical levels of understanding geometry.

2.4 Idealities and Material Processes

To clarify this key point, let us make an analogy. Although it differs with regard to
content, the new direction provided by neurogeometry is methodologically speaking
of the same kind as the one taken during the last century with the advent of the
Turing machine, λ-calculus, and computers. This computational revolution took the
symbols that underlie logical idealities and turned them into material operations.
It explained how the dominant logical idealism and analytic apriorism expounded
from Bolzano to Frege could be naturalized and even physicalized. In other words,
it explained how logical ‘software’ could be implemented in physical ‘hardware’.

We are doing just the same here. The aim of the ‘neurogeometric’ approach is
to obtain an explicit understanding of the material operations that underlie the geo-
metric idealities of the synthetic a priori and to explain how some kind of geomet-
ric ‘software’ could be implemented in our neural ‘hardware’, hence the following
analogy:
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Idealities Type of a priori Implementation
Logic Logical idealities Analytic λ-calculus
Geometry Spatial idealities Synthetic Neurogeometry

Let us say a little more about this analogy. In logic, we have what is known as the
Curry–Howard correspondence which relates low-level machine language with the
high-level language of logic. Low-level calculations are described, for example, by
the λ-terms of a λ-calculus which describes the programs. In the simplest λ-calculus,
the λ-terms (the programs) are constructed inductively by iterating two basic
operations:

• the application M N of one λ-term M to another λ-term N ,
• the abstraction operation λx .M transforming the free occurrences of the variable

x in M into places for other λ-terms.

The basic rule of λ-calculus (which corresponds to executing the programme
described by the λ-term) is known as β-reduction. It consists in applying a λ-term
λx .M to another λ-term N by substituting N in all the free occurrences of x in M ,
which can be written (λx .M)N →β M[x := N ]. The normalization of a λ-term is
a sequence of β-reductions which stops at a β-irreducible λ-term. The normalizable
λ-terms thus describe effective computations which stop and deliver a result. The
fundamental link with logic comes from the typing of the λ-terms M into types μ

(notation M : μ). Intuitively, if M : μ is a λ-term of type μ, and if x : σ is a variable
of type σ , then the abstraction λx .M has the type σ → μ of functions of source
σ and target μ. Likewise, if M : σ → τ is a λ-term with functional type σ → τ

and if N : σ is of type σ , then M N is of type τ . In fact, these are the types which
correspond to the formulas of a logic system: intuitionistic propositional logic. The
Curry–Howard correspondence between programs and proofs is summarized here:

λ-calculus, programs Logic, proofs
Low level High level
Code Expression
Compilation Decompilation
Execution of the program Theorem
Encoding Typing
Instruction Logic rule

It is this kind of correspondence that we shall describe in this book but yet with three
fundamental differences:

1. The low-level calculations will be neural calculations and not programs written
in a machine language.

2. The high-level structureswill not be expressions of a logic system, but geometrical
structures.
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3. In contrast to computers (universal Turing machines), the neural hardware is
dedicated to certain tasks, and its concrete physical activity is thus equivalent to
the abstract ideal ‘calculation’ it carries out.

These points can be displayed as follows:

Neural ‘calculation’ Geometry
Low level High level
Neural code Geometric structures
Compilation Decompilation
Neural activity Geometric construction
Encoding Typing
Instruction Construction rule

2.5 Mathematical Prerequisites and the Nature of Models

By its very nature, the following will raise certain issues relating to didactic pre-
sentation, issues that might prove off-putting to some readers. Indeed, we shall use
many mathematical concepts generally considered to be rather ‘advanced’: differ-
ential forms, connections, Lie groups, contact structures and symplectic structures,
sub-Riemannian geometry, variational models, non-commutative harmonic analysis,
and so on. We shall define these as we go along, assuming a basic understanding of
differential and integral calculus, linear algebra, and elementary group theory. These
are basic concepts that will be familiar to any science student and which are in any
case easy to find in a good enyclopaedia.

Having said that, the reader may wonder quite rightly why such mathematics is
relevant here. Our long experience as teacher and researcher in cognitive science
has shown us that biologists and psychologists are often intrigued, even shocked, by
the idea that non-trivial mathematical models (going beyond simple methods of data
analysis) should be needed in their field of study.

A first source of suspicion comes from the idea that mathematics should only be
applicable to intrinsically rational phenomena and that, insofar as evolution results
from a ‘tinkering’ process, biological structures could not be intrinsically rational and
so could not as amatter of principle be expressible in terms ofmathematics. There are
several possible answers to this. To begin with, there is no metaphysical reason why
physical phenomena themselves should be intrinsically rational. It is rather because
our efforts to express them mathematically have been so successful that they now
appear a posteriori to be so rational. Secondly, what characterizes physical rationality
expressed in this way is the existence of simple laws, from Kepler and Newton to
superstring Lagrangians.8 Butmodelling goes well beyondwhat is governed by laws.

8Named after Joseph-Louis Lagrange.
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For example, many differential equations can be applied to a whole range of different
fields: Turing-type reaction–diffusion equations for morphogenetic processes, the
Hodgkin–Huxley equation [20] for the propagation of action potentials, the spin glass
equations of statistical physics for neural networks, the Lotka–Volterra equations for
ecology, and so on. There is thus no deep reason why there should be any natural
limit to the use of mathematical models.

Another argument often put forward is that if we make the hypothesis that algo-
rithms are implemented neurally, this would mean that neurons ‘calculate’, which
is impossible. But this argument is also mistaken. In Mechanics the planets do not
‘calculate’ their trajectories. The only thing we can say is that theories based on
laws involving global interactions (as is the case with Newton’s universal law of
gravitation) are problematic and that the interactions must be localized (something
achieved by general relativity). However, in neuroscience, we can be sure of the
locality of the interactions, because these interactions occur through material con-
nections between neurons. What passes for a neural ‘calculation’ is essentially the
propagation of activity along connections, and this is a ‘calculation’ because the con-
nections are organized into highly specific functional architectures. In other words, it
is the structure of the functional architectures—in a sense, the ‘design’ of the neural
‘hardware’—which amounts to a calculation.

A third argument is that even if we are convinced of the relevance of mathematical
models in neurophysiology, we should at least seek out the simplest possible models
and that we should in principle be suspicious of any complexity in this context.
Once again, this is simply a prejudice and indeed constitutes another fallacy. To see
this, we only need to return to the beginnings of differential and integral calculus
and mathematical physics. To solve what seemed to be very simple problems, such
as calculating the length of the arc of an ellipse, new functions had to be invented,
viz. the elliptical functions,muchmore complicated than the trigonometric functions.
Likewise inmechanics, to solve apparently very simple problems, such as the problem
of a hanging chain, i.e. the shape of the curve adopted by a chain of uniform linear
density when suspended by its two ends and subject to the force of gravity alone,
the pendulum, or the shape of a uniform elastic rod when curved (elastica problem),
mathematicians had to solve specific differential equations or variational problems,
which were what they were and which turned out to involve astonishing internal
complexity. Newton’s law of gravitation is expressed by an extremely simple second-
order differential equation, but in most cases, when the relevant forces are fed in, it
becomes a specific differential equation whose solutions have nothing simple about
them at all. The complexity of the solutions often makes them quite inaccessible, as
illustrated by the n-body problem.

The emergence of complexity is in fact perfectly commonplace, and we shall
return to this in the second volume. It is often due to the fact that the integration of
a differential equation involves iterating the infinitesimal generator of the equation.
But the iteration of operations generally leads to a great deal of complexity, even if
these operations are very simple. Fractals provide us with many examples.



32 2 Introduction

2.6 Mathematical Structures and Biophysical Data

For our investigation of neurophysiology, we should like to return to the spirit of the
pioneers of the seventeenth and eighteenth centuries, such as Euler and Lagrange,
in their investigation of mechanics. Indeed, there is really no reason why ‘calcula-
tion’ of perceptual geometry by the visual cortex should be simpler and less subtle
mathematically than the calculation of the arc of an ellipse, the hanging chain, the
pendulum, or the elastic rod. Empirical phenomena have to be taken as they are. The
important thing is to model them correctly, and it is perfectly understandable that, in
order to do that, we must appeal to somewhat elaborate mathematics.

However, we are fully aware that we may convince neither the neurocognitivists
nor the mathematicians, because we know from experience that the transition from
‘neither, nor’ to ‘both, and’ can be a difficult one. As soon as we leave the field of
physics, whose practitioners have been making mathematical models of empirical
reality for centuries, we find a ‘gap’, often even a ‘gulf’, and not only theoretical, but
institutionalized, between mathematical structures and empirical observations (here
neurophysiological). Experimenters tend to want to preserve the full complexity of
the data they have acquired using highly sophisticated equipment and thus tend to pre-
fer computer simulations rather than formal models which always simplify the data
in order to extract structural properties. The computational programs ‘Blue Brain’
and ‘Human Brain’, to be discussed in Sect. 4.3.1 of Chap.4, are good examples.
And this mistrust on the part of experimental neuroscience will find little to coun-
terbalance it from the mathematicians because, as one might imagine, many of these
will only see in these models elementary special cases of structures they have long
been perfectly familiar with, even though they may be considered insurmountably
difficult to grasp by their neurocognitivist colleagues.

But we shall nevertheless take this risk, making the optimistic hypothesis that
some readers will feel that, as far as the neuroscience of vision and neural genesis of
perceived space are concerned, the gap between mathematics and experimentation
is actually less difficult to negotiate than one might think.

In fact, we consider neurogeometry to be intrinsically cross-disciplinary, that is
intrinsically involving many different disciplines, something forced upon us by the
very nature of the phenomena it seeks to theorize, but with the long-term aim of
becoming a discipline in its own right. Until now, the basis of neuromathematical
projects has consisted above all of (ordinary or partial) differential equations for
neural activity. Our purposewill be to introducemore abstract methods of differential
geometry.

So let us stress that we shall therefore concentrate on geometric models. On the
other hand, this will not prevent us from giving a glimpse of other methods when
the opportunity arises. In this way, the reader will get a better idea of the wealth and
diversity of neuroscience models.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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2.7 Levels of Investigation: Micro, Meso, and Macro

Another potential problem here is the sheer breadth of the topics treated here. Of
course, we shall focus on modelling the functional architecture of the primary visual
areas and in particular V 1. But despite the apparently rather limited nature of the sub-
ject, we shall nevertheless only discuss a very small part of it. It is easy to understand
why. To begin with, we shall only be dealing with the so-called functional, integra-
tive, and computational neurosciences, and apart from the discussion in Sect. 5.12 of
Chap.5 which we shall explain when the time comes, we shall not be concerned with
any aspect of molecular biology or genetics. This said there are still three levels of
investigation for the purpose at hand: those ofmicroneurophysiology,mesogeometry,
and macrodynamics. These will receive differing amounts of attention.

For instance, one of our basic experimental inputs (see Sect. 4.3 of Chap.4) will
be the fact that the single neurons in V 1 detect a retinal position a = (x, y) and a
preferred orientation p at a, although naturally at a certain scale. The data (a, p)

is called a contact element in differential geometry, and we shall thus consider the
single neurons of V 1 as filters extracting contact elements from the optical signal.
But just this simple claim is the subject of a huge experimental effort. For example,
one needs to compare the situations for different species and take into account the
fact that, in these results, neurons are treated as linear filters acting on stimuli reduced
to single bars (simulating the edge of an object) or systems of parallel bars in motion
(drifting gratings),while it is clear that there are significant nonlinearities and also that
natural stimuli may have very different structures.9 One must also take into account
the fact that the imaging techniques used do not have sufficient spatial resolution to
distinguish individual neurons,10 whence one is in fact dealing with local averages
over small groups of neurons, and a piece of geometric data like a contact element
(a, p) reflects an average of the underlying activity. The geometric quantity we refer
to as a ‘contact element’ thus represents a mesoscopic entity when compared with
the microscopic level of individual neurons.

One consequence of this choice of a mesoscopic level for neurogeometry is that
what we shall call a ‘neuron’ will actually be a small patch of neurons, and we shall
thus say little about true elementary neural circuits. There is an extensive literature
on this subject and some sophisticated engineering, but we shall only refer to it from
time to time.

It should also be noted that even a very high resolutionwould not remove the prob-
lem of levels. Indeed, the neural code is a population coding, where each elementary
operation activates a large number of neurons. A ‘high-resolution’ neurogeometry
that was truly microscopic would therefore have to be based on the tools of stochastic
differential geometry, something pointed out by specialists such as David Mumford,
Jack Cowan, and Daniel Bennequin. So let us stress once again that the neurogeome-
try developed here will idealize things by sticking to a mesoscopic level. The global

9See, for example, Marre [21].
10However, in Sect. 4.7.3 of Chap.4, we shall discuss the latest methods of two-photon confocal
microscopy, which can in fact distinguish individual neurons.

http://dx.doi.org/10.1007/978-3-319-65591-8_5
http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_4
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structures, processes, and dynamics that we shall study will thus be based on gluing
together mesoscopic geometric elements.

All the various aspects of the microlevel are currently the subject of ever more
highly specialized studies. What this means is that, while our neurogeometric meso-
models are mathematically rather sophisticated, they concern only a very limited part
of what contemporary neuroscience can teach us, and in a highly simplified way, so
they are only a first step into this new field. What we would like to advocate in neu-
roscience is mainly the geometric framework, which seems relevant and natural for
the mathematical modelling of functional architectures.

2.8 The Context of Cognitive Science

As we have rather briefly specified above, this book is about the problem of mod-
elling in cognitive science, that is in the natural science of cognitive faculties and
mental activities. Let us therefore say a fewwords about this context.11 The cognitive
sciences bring together all the various disciplines that tackle the question of human,
animal, and artificial intelligence, starting with the underlying neurobiological sub-
strate, its embodiment, that is the relationship between mental activity and the body
apart from just the neural aspects, and its relationship also with the emotions, but
going on to include its formal and mathematical structure (there are many different
types of model in cognitive science), its computer simulations, and its linguistic,
psychological, and social realizations.

The different areas of research in the cognitive sciences, specifically perception,
action, reasoning, and language, are carried out with an endogenous, intrinsic, and
unified ‘polyscientific’ approach, whose cross-disciplinary nature is imposed by the
subjects of study and combines statistical physics, differential geometry, cognitive,
computational, and integrative neuroscience, cognitive psychology, artificial intel-
ligence, logic, linguistics, philosophy, and the social sciences. Biological evolution
has produced an amazing biochemical machine, the brain, with intellectual, men-
tal, and symbolic capacities. In a few tenths, or even hundredths of a second, this
machine can recognize a complex visual shape, calculate the sequence of instructions
required by the muscles to catch a ball in flight, or decode an acoustic message by
identifying the words and their meaning. It includes a whole range of processing
levels, from low-level peripheral sensory processing, such as retinal processing of an
optical signal, to high-level central abstract symbolic processing, such as judgement
and inference, or aesthetic assessment.

The aim of cognitive science is thus to explainmental phenomena—be they states,
entities, structures, events, or processes—in a strictly naturalistic and causal way.
These are the problems which, by definition, have long been studied by physiology
and psychology. They have also been the subject of extensive and rigorous conceptual

11There are many excellent introductory Websites to find out about cognitive science, such as The
MIT Encyclopedia of the Cognitive Sciences [22].
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analysis by philosophers from Aristotle to Descartes, Hume, Locke, Leibniz, Kant,
and many others, who have reflected upon the nature of ‘ideas’, ‘human understand-
ing’, and ‘mental faculties’. As a science of the ‘mind’, the cognitive sciences are
thus by definition natural sciences, bringing with them a vast philosophical legacy.
The novel aspect of the current scientific situation is, on the one hand, the remarkable
harvest of results obtained over the past few decades in neuroscience and, in par-
ticular in brain imaging, and, on the other hand, the integration of theoretical work
on cognition, not just in the natural sciences, statistical physics, and biochemistry,
but also in the formal sciences of geometry, logic, and theoretical computing. What
is more, insofar as the cognitive sciences also concern artificial cognition, they are
now inseparable from information processing systems and methods for analyzing
and synthesizing image and sound, not to mention artificial intelligence (AI) and
robotics.

We therefore stress once more that the cross-disciplinary nature of cognitive sci-
ence is intrinsic and endogenous: it is imposed by the very nature of the entities,
structures, and mental processes it investigates. An ability such as the perception
of objects in three-dimensional space on the basis of ‘pixellated’ two-dimensional
retinal data can be studied on a formal level (to identify the mathematical and formal
features of the problem of constituting objects bounded by edges and filled with
perceived qualities), on a behavioural level (studying the computational procedures,
i.e. processes of integration, recognition, inference, and interpretation), and on the
level of the biological substrate (investigation of neurophysiological mechanisms).
This ability thus involves several levels of integration in both space and time.

The cognitive sciences treat all thesemental phenomena a priori as a broad class of
natural phenomena. They do for thementalwhat biology has been doing for the living
since the nineteenth century. Consequently, their status depends on thewaywe extend
the concept of ‘nature’. If we understand ‘nature’ in the narrow (strictly physicalist)
sense, this leads to a reductionist or ‘eliminativist’ understanding of the mental. But
if ‘nature’ is taken in a broader sense, we arrive at an ‘emergentist’ understanding
of the mental, e.g. emergence of macrostructures from microinteractions in complex
systems, as in thermodynamics and sociology. But whichever option is chosen, the
approach will be naturalistic and monistic, rejecting any Cartesian form of dualism
between mind and body (two substances).

The term ‘natural sciences’ also includes mathematical modelling, computer sim-
ulation, and an experimental approach. Cognitive science has become a new frontier
in the contemporary hard technosciences, with considerable technological spin-offs
(neural networks, robotics, hybrid natural–artificial systems, and so on). The effect
has been to completely break down the conventional boundaries between the physical
and mathematical sciences, the biological sciences, and the social sciences. Thanks
to what are now called the convergent technologies, the physical, the biological, and
the mental come together into a unified understanding of complexity in nature.

This naturalization of all that is mental—and at the end of the day, that means
also consciousness, intentionality, and meaning—brings with it formidable episte-
mological challenges, and it will thus be impossible to develop the cognitive sciences
without facing up to a whole set of problems relating to the theory of knowledge.
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2.9 Complex Systems and the Physics of the Mental

As ‘hard’ technosciences, the cognitive sciences are inextricably related to the study
of complexity and derive from the intellectual environment that came into being in
the 1940 to 50s, so admirably exemplified by exceptional scholars such as John von
Neumann, Norbert Wiener, Warren McCulloch, and Walter Pitts. They belong to the
movement that saw the joint emergence of the theories, techniques, and methods
of computers, neural networks, cellular automata, information processing, and self-
organizing, self-regulating complex systems.12 After several decades of progress in
constant interaction with neuroscience, cognitive psychology, linguistics, and certain
approaches to economics, these activities are now mature enough to justify referring
to them as a ‘science’.

This is part of a deep trend. There has been a gradual development of mathe-
matical physics to treat the organizational complexity of material systems and the
emergence of patterns and shapes, but also cognitive activities as ‘unphysical’ as con-
ceptual categorization and learning. We began by understanding how shapes could
‘emerge’ and ‘self-organize’ in a stable manner on the macroscopic scale as causal
consequences of complex interactions on the microscopic scale. Collective micro-
physical phenomena, both cooperative and competitive, provide the causal origin of
joint behaviour on a macroscopic level which can break the homogeneity of a sub-
strate. The classic physical example is provided by critical phenomena like phase
transitions. It was then realized that neural networks are the same kind of system, but
in which emergent shapes and structures can be interpreted as cognitive processes.

If rather similarmodels crop up in rather disparate fields of empirical investigation,
this is because complex systems possess certain relatively universal properties.13 By
definition, these are large systems of interacting elementary units with emergent
global macroscopic properties arising from cooperative or competitive collective
interactions between these units. These systems contrast with classical deterministic
mechanical systems in the following ways:

• They are singular and individuated, largely contingent, not concretely determin-
istic, even when they are ideally so: they are sensitive to tiny variations in their
control parameters, a sensitivity that can induce divergence effects.

• They are historical products, resulting from processes of evolution and adaptation.

12For an introduction to this scientific revolution, the reader is referred to the reflections of Dupuy
[23].
13This is actually a common theme throughout the history of science. FromGalileo and Newton, we
learnt that types of motion as apparently disparate as ‘sublunar’ ballistic motions and ‘superlunar’
celestial motions could be understood using a single mathematical theory, the universal theory of
gravitation. This formal similarity between empirical areas hitherto considered to be ontologically
incommensurable was once culturally traumatic, but it eventually became commonplace in science.
The same can be said here. For example, the fact that neural networks carrying out cognitive
operations of categorization are formally analogous to spin glasses may look quite bewildering,
given the gulf that separates these two ontologically incommensurable areas. But it is already a
scientific commonplace for the young generation.
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• They are out of equilibrium and have an internal regulation that keeps them within
their range of viability.

They have little to do with classical mechanistic determinism. They are ana-
lyzed using new physical and mathematical theories and a computational approach
making heavy use of computer simulation. The role of nonlinear dynamical systems
(attractors, structural stability properties, andbifurcations), chaos theory, fractals, sta-
tistical physics (renormalization group), self-organized criticality, algorithmic com-
plexity, genetic algorithms, and cellular automata has become key to understanding
their statistical and computational properties. In short, through the engineering of
self-organized, non-hierarchical, distributed, and acentered artificial systems, we
are beginning to be able to model and simulate reasonably well biological systems
(immunological systems, neural networks, evolutionary processes), ecological sys-
tems, cognitive systems, social systems, and economic systems.

2.10 The Philosophical Problem of Cognitive Science

Cognitive science canbe approached in apurely operational and instrumentalway, but
its development nevertheless raises many issues on the philosophical level because,
as we have just seen, it questions the traditional dividing line between the science of
nature and the science of mind. To be more specific here, let us return for a moment
to certain epistemological basics.

In the formalization of the so-called exact sciences, there is a lot more than, on
the one hand, the processing of empirical data using universally applicable methods
such as statistics, factor analysis, principal component analysis, data mining and,
on the other hand, the axiomatization of theoretical concepts. These two types of
formalization also exist in the social sciences and involve general methods that are
independent of the source of the data and the kinds of things towhich they are applied.

But in the physical sciences, there is also modelling in a stronger sense which is
of a quite different kind. For this modelling in the strong sense, methods are specific
to the theoretical conceptualization of a particular kind of object and can be used
to reconstruct the phenomena in some real field from its constitutive theoretical
concepts. Mathematical physics is able to reconstruct the whole diversity of physical
phenomena from its theoretical concepts. This completely changes the status and
function of concepts. We no longer subsume empirical diversity by abstraction under
the unity of theoretical categories and concepts. Rather, concepts are transformed
into algorithms for reconstructing the diversity of phenomena. Put another way,
conceptual analysis is converted into a computational synthesis.

At the present time, the ideal of a computational synthesis of phenomena has
only really been achieved in physics, which is restricted to a very narrow and highly
constrained region of empirical reality. Huge regions of phenomena have been left
outside the reconstruction zone, even though a fair number of these regions have
been studied in detail by many empirical and descriptive disciplines. Here, we may
cite:
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• The whole macroscopic organizational and morphological complexity of material
systems.

• All cognitive operations, including categorization, inference, induction, learning.
• The whole semiotic and linguistic dimension of meaning.
• And in fact anything having to do with phenomenality itself as a process of phe-
nomenalization of an underlying physical objectivity.

In otherwords, it is only by restricting phenomenal reality to itsmost elementary form
(essentially, the trajectories of material bodies, fluids, particles, and fields) that we
have been able to carry through the programme of reconstruction and computational
synthesis. For the other classes of phenomena, this project has long come up against
unsurmountable epistemological obstacles.

At this point, it was taken as self-evident that there was an unavoidable scission
between phenomenology (being as it appears to us in the perceived world and the
cognitive faculties that process it) and physics (the objective being of the material
world). However, we may say that it is not so much self-evident as a straightforward
prejudice. In any case, this disjunction transformed the perceived world into a world
of subjective-relative appearances—mental projections—with no objective content
and belonging to psychology. Beyond psychology, the most that could be attributed
to these appearances in the way of objectivity was a logical form of objectivity to
be found in the theories of meaning and mental contents, from Bolzano and Frege,
Husserl and Russell, to contemporary analytical philosophy.

We may say that the current work aims to go beyond this scission by develop-
ing a mathematical neurophysics of the phenomenology of the perceived world and
common sense. The neurogeometry of vision presented here will be one aspect of
this.

2.11 Some Examples

To end this introduction, let us mention some of the most striking examples of
perfectly intuitive but theoretically problematic perceptual features that we shall
attempt to understand.

2.11.1 The Gestalt Concept of Good Continuation

Figure2.2 shows small aligned segments against a background of random distrac-
tors.14 The alignment seems to jump out at us, and indeed, this is typical of what is
known as a ‘pop out’ phenomenon. It results from ‘binding’ and integration of local
information into a global structure. Psychophysical experiments have shown that it

14These are Gabor patches, not geometric segments, as we shall explain.
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Fig. 2.2 Example of ‘good
continuation’. From Hess et
al. [24]

is indeed the global alignment that causes this effect. But what is the meaning of a
global alignment on the neural level? For each of us conscious sentient beings, it is
trivially and immediately obvious from the perceptual point of view. But each neuron
only filters a tiny part of the visual field. There is no homunculus in the brain. There
is no ‘ghost in the machine’, and the perceptual consciousness of a given individual
is precisely the great mystery that we would like to explain. On the neural level,
the Gestalt principle of ‘good continuation’, which asserts that alignment will be
perceptually prominent, can thus be taken to identify a formidable problem.

2.11.2 Kanizsa’s Illusory Contours

Figure2.3 shows an example of a still more spectacular phenomenon. The red sectors
of the concentric grey rings specify the boundary conditions generating the illusory
(or subjective) contours which constitute one of the most enigmatic manifestations
of the Gestalt properties of completion of missing sensory data. Furthermore, a pink-
tinted square emerges from this configuration (neon or watercolour effect), showing
that not only does the visual system construct long-range contours that do not exist
in the sensory stimulus, but these hallucinated contours can serve as the edges for a
colour-spreading process that is just as much a hallucination.

The transition from local to global works over a very long range here on the
neural length scale, and this is why these phenomena have always been considered
so particularly enigmatic.
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Fig. 2.3 Example of a
Kanizsa style illusory
contour with a neon effect

2.11.3 Entoptic Phenomena

Our third example is the even more surprising case of visual hallucinations in which
there is absolutely no stimulus, while the percept is richly structured from the geo-
metric standpoint. Some of these purely geometric hallucinations relating towhat has
been called ‘entoptic vision’ were already classified long ago by Heinrich Klüver,
who first brought Gestalt theory to the USA. Figure2.4 shows some examples of
these visual patterns perceived under the influence of mezcal. It also shows some
neurogeometric models with a remarkable empirical fit which are due in particular
to Paul Bressloff, Jack Cowan, Martin Golubitsky (see Bressloff et al. [25]) and will
be discussed further in the second volume.

Fig. 2.4 Left I, II, III, IV:Visual hallucinations observed byKlüver.Right a, b, c, d: Neurogeometric
models for the Klüver data. See [25] and the second volume
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2.11.4 The Cut Locus

Our last example concerns the cut locus of a figure, also called the generalized
symmetry axis or ‘skeleton’. Following the psychologist Blum [26], Thom [27]
always stressed its fundamental role in perception (see Fig. 2.5).

Once again, imaging can showus the neural reality of the construction of this inner
skeleton, forwhich there is no tracewhatever in the sensory input, the latter consisting
merely of an outer contour. Figures2.6 and 2.7, produced by David Mumford’s
disciple Tai Sing Lee, illustrate the response of a population of simple V 1 neurons,
whose preferred orientation is vertical, to textures with edges specified by opposing
orientations. Up to around 80–100 ms, the early response involves only the local
orientation of the stimulus. Between 100 and 300 ms, the response concerns the
overall perceptual structure and the cut locus appears. These experiments are rather
delicate to carry out, and they are much debated, but the detection of cut loci seems
to be well demonstrated experimentally.

Fig. 2.5 Example of a cut
locus. From Kimia [28]

Fig. 2.6 Response to a stimulus whose form is specified by opposing textural orientations. From
Lee [29]
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Fig. 2.7 Recording of the construction of the cut locus. From Lee [29]

All these examples share the fact that the geometry of the percept is constructed—
Husserl would say ‘constituted’—from sensory data which do not contain it, whence
it must originate somewhere else. Put another way, they all involve subjective
Gestalts. This is indeed why we chose them, because, as claimed by Jancke et al.
[30], these subjective global structures ‘reveal fundamental principles of cortical
processing’, the kind of principles that interest us here.

The origins of visual perceptual geometry can be found in the functional architec-
ture which implements an immanent geometry, and it is the latter that provides the
focus of neurogeometry. So the time has come to get down to business, by presenting
some neurophysiological data for the receptive profiles and receptive fields of the
visual neurons.
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