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Chapter 1
Preface

1.1 The Goal of This Work

This two-volumework synthesizes several years of researchon theuseof specificgeo-
metric structures in the neuroscience of vision. It is a new edition, greatly expanded
and enriched. The first edition [1], based on my lectures Introduction aux sciences
cognitives at the École Polytechnique in Paris, was published in French in 2008 by
the Éditions de l’École Polytechnique.

In close relation with a comprehensive set of experimental data, the book presents
several physico-mathematical models of the primary visual cortex—in particular,
area V 1, the first of the visual cortex areas—and suggests an original geometric
model for its functional architecture, that is for the very specific organization of its
neural connections.

Its purpose is to describe in detail certain geometric algorithms implemented by
this functional architecture. Its primary concern is therefore the internal neural origin
of external spatial representations, and this is whywe coined the term neurogeometry
to name its field of investigation. Neurogeometry thus deals with the ‘internal’ and
‘immanent’ geometric algorithms that allow the visual system to build the ‘external’
and ‘transcendent’ geometry of our surrounding world.

To the extent that the origin of spatial representations constitutes a major problem,
not only scientifically but also philosophically, our work also has important episte-
mological consequences. We shall return to these in the second volume. Briefly, the
idea is that the internal geometry ‘immanent’ in neural infrastructures correspond-
ing to external ‘transcendent’ space can greatly clarify what is meant in philosophy
by the ‘synthetic a priori’ character of this space, a character that has been flatly
rejected for the past two centuries by nearly all philosophers of science, but which
is nonetheless imposed by the results of contemporary neuroscience.

I have long argued that contemporary cognitive neuroscience supports many
tenets of transcendental philosophy and that there are neurophysiological roots for
what Kant called ‘pure intuitions’. Recently, some of the best neuroscientists have
defended similar theses. For instance, in June 2014, John O’Keefe of the Institute
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of Cognitive Neuroscience, University College, London, who was awarded the 2013
Horwitz prize ‘for significant advancements to the field of neuroscience’, gave a pub-
lic lecture entitled“Immanuel Kant: Pioneer neuroscientist” [2]. The abstract was as
follows:

In his Critique of Pure Reason, Kant argued that our concept of space was not derived from
sensations arising from our interaction with the physical world but instead represented the
a priori basis for our perception of the world in the first place. Extensive work in modern
neuroscience has provided strong evidence in support of this position.Wenowknow that there
is an extensive network of brain areas in the temporal lobes dedicated to the construction
of an allocentric space framework and that some parts of this network develop relatively
independently of the animal’s experience. This map-like spatial representation is constructed
frommore primitive representations of places, directions and distances and allows the animal
to know where it is in an environment and how to navigate to desired locations. In my talk, I
will present the evidence for these more primitive representations and discuss how they may
interact with each other to produce a Kantian map-like representation of space. In the latter
part of my talk I will discuss how our understanding of these brain systems sheds light on
some of the postulates of Euclidean geometry, one of the conceptual domains used by Kant
to support his view of the synthetic a priori nature of our spatial representations.

In the same year (2014), JohnO’Keefe was awarded the Nobel prize for his discovery
of ‘place cells’ in 1971, along with May-Britt and Edvard Moser for their discovery
of ‘grid cells’ in 2005. We will discuss place cells and grid cells in Sect. 3.8.

In 2012, another great specialist of cognitive neuropsychology, StanislasDehaene,
professor at the Collège de France in Paris and member of the French Académie des
Sciences, proposed a ‘Kantian’ research program as part of theHuman Brain Project,
the most important European Future and Emerging Technologies (FET) flagship in
neurosciences. With Elizabeth Brannon, he formulated this proposal in Trends in
Cognitive Sciences, Special Issue: Space, Time and Number [3]. The title was ‘Space,
time, and number: a Kantian research program’ with the following abstract:

What do the representations of space, time and number share that might justify their joint
presence in a special issue? In his Critique of Pure Reason, Immanuel Kant famously argued
that they provide ‘a priori intuitions’ that precede and structure how humans experience the
environment. Indeed, these concepts are so basic to any understanding of the external world
that it is hard to imagine how any animal species could survive without having mechanisms
for spatial navigation, temporal orienting (e.g. time-stamped memories) and elementary
numerical computations (e.g. choosing the food patch with the largest expected return). In
the course of their evolution, humans and many other animal species might have internalized
basic codes and operations that are isomorphic to the physical and arithmetic laws that govern
the interaction of objects in the external world. The articles in this special issue all support
this point of view: from grid cells to number neurons, the richness and variety of mechanisms
bywhich animals and humans, including infants, can represent the dimensions of space, time
and number is bewildering and suggests evolutionary processes and neural mechanisms by
which Kantian intuitions might universally arise. […] If Immanuel Kant were born today,
he would probably be a cognitive neuroscientist!

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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1.2 An Outline of This Work

1.2.1 Outline of the First Volume

After a general introduction focusing on the origin of spatial representations, the
structures of perception, cognitive sciences, and the way the neurogeometry of vision
fits into them, we devote the first three chapters of this first volume to neurophysio-
logical experimental data and a first stage of modelling.

We present many results, obtained by the best specialists in the field. This is
absolutely necessary, for two reasons. First, to raise the reader’s awareness of the
extraordinary richness and neuronal complexity of the visual system. Second, to
give a sufficiently detailed justification for the construction of the models and the
choice of geometrical tools enabling their construction. Even though this experimen-
tal incursion will be rather broad, it must nevertheless remain somewhat superficial,
simply because the subject is so vast. That said, it will not just be a scholarly com-
pilation, because we will put the results in perspective with respect to the geometric
approaches that we develop. Their presentation will be consolidated by our desire to
formulate adequate models.

In Chap.3, we discuss receptive fields and receptive profiles of visual neurons,
starting with the photoreceptors and the ganglion cells of the retina and proceeding
via the neurons of the lateral geniculate nucleus to those of V 1. We explain how
they act on the optical signal as filters, and we broach the problem of their linearity
or nonlinearity. In the linear case, the effect they have on the signal falls to a large
extent under the rule of what is known as ‘wavelet analysis’ in signal processing.
We shall give an outline of this fundamental notion and then discuss how receptive
profiles can be interpreted within the framework of information theory as a means of
optimizing the processing of natural images, which have very particular statistical
properties. To a certain extent, the geometric formatting of the signal by means of
a certain kind of wavelet (essentially, partial derivatives of Gaussians1) is a way of
optimizing the compression of natural images.

InChap.4,we present a first set of experimental data on the functional architecture
of area V 1 and, in particular, on what is referred to as its ‘pinwheel’ structure. If
we simplify their highly complicated activity, we may say that most of the so-called
simple neurons in V 1 detect positions and orientations2 in the visual field, with
those detecting the various orientations for each position being grouped together into
functional micromodules that can be defined anatomically and are called orientation
hypercolumns or pinwheels. In this sense, V 1 implements a discrete approximation
of the fibration π : V = R × P

1 → R, with the retinal plane R as its base space and

1Named after Carl Friedrich Gauss.
2In this book, we use the term ‘orientation’ in the sameway as neurophysiologists to refer to straight
lines in the plane with angles specifiedmodulo π . Orientations can thus have two senses with angles
specified modulo 2π . Mathematicians speak rather of ‘direction’ in the first case and orientation
in the second case. However, neurophysiologists reserve the term ‘direction’ for the direction of
motion of an oriented segment.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_4
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the projective line P1 of orientations in the plane as its fiber. This fiber bundle V has
an abstract dimension of 3 (two degrees of freedom for position and one degree of
freedom for orientation).

The geometric notion of fibration is a first key geometric concept that makes it
possible tomodel the ‘vertical’ retino-geniculo-cortical functional architecture ofV 1.
We then explain something that is well known to geometers: to use their language,
this fibration is nothing other than the space of 1-jets of curves in the plane. The
retinotopic map that projects curves from the visual field onto chains of activation
of neurons in V 1 is thus geometrically identified with a process called ‘Legendrian3

lifting’ of planar curves to the bundle of their 1-jets.
A substantial part of this chapter is devoted to the fact that the pinwheels of V 1

implement a dimensional reduction of the bundle of 1-jets, this reduction being nec-
essary in order to solve a key problem: the two-dimensional layers of V 1 implement
a fibration of abstract dimension (at least) 3. After reduction, V 1 then appears to
be a field of orientations in 2 dimensions (called ‘orientation maps’ by neurophys-
iologists), a field whose singularities are the centres of the pinwheels. We study
these singularities, give their normal forms, and specify the distortions and defects
of their networks. We present many accurate experimental data on this matter, as
well as some hypotheses regarding their evolutionary origins, such as minimization
of wiring.

Oneway tomodel these orientationmaps is to treat themas phase fields, analogous
to those encountered in optics, whose singularities (called in this case ‘dislocations’)
have been thoroughly analyzed by specialists such asMichael Berry. These fields are
superpositions of solutions to the Helmholtz equation, whose wave number depends
in a precise manner on the mesh of the pinwheel lattice. They enable the construction
of very interesting models, such as those proposed by Fred Wolf and Theo Geisel.
We explain these models with a fair amount of mathematical detail because we will
not return to them in the second volume.

However, in these models of phase fields, orientation selectivity must vanish at
singularities. Yet many experimental results show that this is not the case. We thus
present another model based on the geometric notion of blow-up. As the mesh of the
pinwheel lattice tends to 0, these alternative discrete models converge to the bundle
of 1-jets.

In this chapter, we also explain how the fibration that models the orientation vari-
able interferes with other fibrations (other visual ‘maps’) that model other variables
such as direction, ocular dominance, phase, spatial frequency, or colour. For spatial
frequency,wewill present the dipolemodel proposed byDanielBennequin.V 1 there-
fore implements fibrations of rather high dimension 2 + m, m ≥ 3, in 2-dimensional
layers. This leads to the very interesting problemof knowing how to express the inde-
pendence of these different variables.Aplausible hypothesis relies on a transversality
principle: the transversality of the level curves of two independent maps is maximal
(indeed they are nearly orthogonal) in the areas of the base plane where the two
gradients are jointly strong.

3Named after Adrien-Marie Legendre.
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We conclude Chap.4 with data on two other aspects of neurobiology: (i) the
relation between the cerebral hemispheres through callosal connections and (ii) the
primary processing of colour in the ‘blobs’ of V 1.

In Chap.5, we enrich and complete the data assembled in Chap.4 by studying
the second component of the functional architecture of primary visual areas, namely
what are called cortico-cortical ‘horizontal’ connections. For the orientation hyper-
columns, these connections join together neurons that detect orientations at different
points which are parallel, and not only parallel, but even approximately aligned. This
‘parallel transport’ reinforced by a rough coaxiality has been confirmed by numerous
psychophysical experiments on what David Field, Anthony Hayes, and Robert Hess
called the association field. We explain its principles and results.

Thuswe show that, to a first approximation, parallel transport can be considered as
an implementation of what is known in differential geometry as the contact structure
of the fibre bundle VJ of 1-jets of curves in the plane R. VJ is isomorphic to a space
R

3 with coordinates (x, y, p), where (x, y) are the spatial coordinates and p is the
angular coordinate tan θ . Its contact structure lies at the heart of our ‘neurogeometric’
approach. It is invariant under the action of the group SE(2) of isometries of the
Euclidean plane. In fact, it is composed of the field K of planes generated by the
action of SE(2) on the plane K0 of points (x, p) through the origin. Since K0 is
the plane y = 0, or in other words the kernel of the differential 1-form dy,K is the
kernel of the differential 1-form ω = dy − p dx obtained by translating dy by the
elements of SE(2).

What is more, the contact structure is associated with a non-commutative group
structure on VJ, the action of SE(2) then being identified with the left translations
of VJ on itself. This group is isomorphic to the ‘polarised’ Heisenberg group, which
is well known to physicists. When endowed with its field of contact planes, this
is a nilpotent group belonging to the class of what are called Carnot groups. We
use this to transfer to neurogeometry an important and beautiful set of results from
mathematical physics. (In a similar way, the discovery of the fact that the Wilson–
Cowan–Hopfield equations of neural networks were analogous to the equations of
spin glasses made possible a massive transfer of results from statistical physics to
the theory of neural networks.)

The definition of an SE(2)-invariant metric (i.e. invariant under left translations)
on the contact planes thus defines what is called a sub-Riemannian4 geometry. We
show that, in this first neurogeometric approach, the natural mathematical frame-
work for modelling the functional architecture of V 1 is provided by the contact
geometry of VJ and the sub-Riemannian geometry that is closely associated with it.
This type of sub-Riemannian geometry (also called Carnot–Carathéodory geome-
try) has been extensively studied by many geometers. For our part, we were greatly
inspired by Misha Gromov and, subsequently, specialists such as Andrei Agrachev,
Richard Beals, André Bellaïche, Ugo Boscain, Giovanna Citti, Jean-Paul Gauthier,
Bernard Gaveau, Peter Greiner, Richard Montgomery, Pierre Pansu, Yuri Sachkov,
Alessandro Sarti, and Robert Strichartz.

4Named after Bernhard Riemann.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_5
http://dx.doi.org/10.1007/978-3-319-65591-8_4
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Using the sub-Riemannian geometry of the contact structure, one obtains a natural
explanation for the enigmatic phenomenon whereby the visual system constructs
long-range illusory contours. These phenomena of filling in gaps in sensory data by
the integrative mechanisms of perception have been known since the beginnings of
the Gestalt theory, and they have given rise to countless studies, particularly since the
celebrated work by Gaetano Kanizsa. Together with our colleague Jacques Ninio at
the École Normale Supérieure, we have carried out experiments on illusory contours
with curvature in order to test what kinds of curves one observes. We were naturally
led to variational models. At the end of the 1980s, DavidMumford already proposed
a first model, defined in the plane R2 of the visual field, which minimized a certain
functional of curve length and curvature. We propose a model in the contact bundle
VJ that rests on the hypothesis that illusory contours are sub-Riemannian geodesics.

After this initial analysis of the V 1 contact geometry and the sub-Riemannian
geometry associated with it in the model VJ, we will say a word about the ‘prolon-
gation’ of this structure, called the Engel structure, which corresponds to the 2-jets
of curves in the plane R2. This prolongation must be taken into account if we want
to report on the experimental data showing that, in the primary visual system, there
exist not only orientation detectors (tangents and 1-jets), but also curvature detectors
(osculating circles and 2-jets).

To conclude this chapter, we then point out a few properties of the functional
architecture of areas V 2, V 4 (for colour), V 5 or MT (for motion). We also discuss
Swindale’s model for directions.

Finally, we briefly describe the genetic control of the neural morphogenesis of
the functional architectures whose geometry we have analyzed. The neurogenesis
of visual pathways and axon guidance are marvels of self-organization that make it
possible to glimpse the origin of spatial representation.

To conclude this first volume, in the final chapter we describe the transition to the
mathematical themes that will be developed in the second volume.

We first outline the explicit calculation of geodesics in the VJ model using the
tools of control theory. To do this, we adapt to the polarised Heisenberg group
results obtained for the Heisenberg group H by a long line of specialists such as, in
addition to those already mentioned, Jean-Michel Bismut, Luca Capogna, Vladimir
Gershkovich, John Mitchell, Anatoly Vershik, and others, following the ground-
breaking work by pioneers such as Lars Hörmander, Elias Stein, and Gerald Folland.
It is then a simplematter to calculate all the elements of the sub-Riemannian geometry
of VJ, including its geodesics, unit sphere, wave front, caustic, cut locus, conjugate
points.

However, the most natural model is not VJ, constructed on the space of 1-jets by
the action of SE(2), but rather VS, constructed on SE(2) itself. Here, we make the
standard transition from a fibre bundle with a structure group to the associated prin-
cipal bundle. With Alessandro Sarti and Giovanna Citti, we stressed the importance
of this second model. Now, the isometry group SE(2) of the Euclidean plane, with
its so-called shift-twist action on the bundle, is not nilpotent. Its ‘nilpotentization’,
which defines its ‘tangent cone’ at the origin, is indeed isomorphic to the polarised
Heisenberg group H, but globally, it has a very different sub-Riemannian geometry.
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We observed with some surprise that this aspect had never been explored up until
then, even though SE(2) is a well-known and elementary group. Andrei Agrachev
and coworkers (in particular Yuri Sachkov, Jean-Paul Gauthier, Ugo Boscain, and
Igor Moiseev) subsequently examined this geometry, and we shall summarize their
investigation of its geodesics.

We shall also discuss the fact that, in the present context, the sub-Riemannian
contact geometries model a functional architecture of connections between neurons
which act as filters. This means that the natural mathematical framework for low-
level visual perception is the one in which non-commutative harmonic analysis on
the group SE(2) is related to its sub-Riemannian geometry. Since harmonic analysis
is carried out using a ‘mother’ wavelet translated by SE(2), i.e. by what is known as a
coherent state, it is thus the relationship between coherent states and sub-Riemannian
geometry which turns out to be the natural mathematical framework for low-level
vision.

We then explain how David Mumford’s variational model, based on the elastica
functional, and its stochastic interpretation can be reformulated in this novel con-
text. As shown by Giovanna Citti, Alessandro Sarti, Remco Duits, and Markus van
Almsick, this leads to advection–diffusion algorithms described by a Fokker–Planck
equation which can be calculated explicitly for the VJ model (while the calculation
in VS remains very complicated).

Such techniques belong to the general theory of the heat kernel for the hypoelliptic
Laplacians5 of sub-Riemannian manifolds. There has been an enormous literature
on this subject since Hörmander’s pioneering work. Here, we discuss in particular
results by Giovanna Citti and Andrei Agrachev’s group on the hypoelliptic Lapla-
cians and heat kernels of the VJ and VS models. To do this, one must obtain the
irreducible unitary representations of these groups, i.e. their dual space equipped
with a Plancherel measure, and the Fourier transforms of the Laplacians. This brings
in the Hermite functions in the case of VJ and the Mathieu functions in the case of
VS.

We then explain how one can interpolate between VJ and VS using a continuous
family of sub-Riemannian models.

1.2.2 Some Remarks Concerning the Second Volume

In the second volume, we shall return in detail to these topics and focus more closely
on physical models of V 1. In this first volume, we concentrate mainly on analyz-
ing the geometrical structure of the functional architecture. However, this structure
connects neurons which are dynamical units with internal states and which interact
together via the couplings determined by the ‘synaptic weights’ of their connections.
To take these physical aspects into account, we shall use Hodgkin–Huxley-type
equations to describe the dynamics of the action potentials generated by individual

5Named after Pierre-Simon de Laplace.
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neurons and Wilson–Cowan–Hopfield equations to describe neural nets, applying
‘spin glass’ type models to describe the statistical physics of such networks.We shall
also discuss the theory of synchronization of oscillator networks developed since the
pioneering work by Yoshiki Kuramoto, Hiroaki Daido, Bard Ermentrout, and Nancy
Kopell, among others.

We shall dwell particularly on the remarkable work carried out by Bard Ermen-
trout, JackCowan, PaulBressloff, andMartinGolubitskyon thedynamics ofHopfield
networks whose synaptic weights encode the functional architecture of V 1. These
authors have shown that, under a self-excitation of V 1, even in the absence of any
stimulus, the ground state of the network can spontaneously bifurcate into states cor-
responding to perceptual patterns with well-defined geometry. Several such patterns
have long been known in visual hallucinations.

We shall also present our work with Alessandro Sarti and Giovanna Citti. This
shows how, by introducing a scale parameter (defined by the width of the neural
filters), one can move naturally from the contact structure of the fibration V to a
symplectic structure defined on V × R, which is the symplectized space. As in any
symplectic structure, a structure of the kind found in geometrical optics can be
specified, and when a shape bounded by a closed contour in the visual plane R
is treated in this way, we obtain the cut locus—also known as the ‘skeleton’ or
‘generalized symmetry axis’—of the shape which, as we know from the fundamental
work by Harry Blum and René Thom, plays a key role in the perceptual analysis of
shapes.

We shall also explain the basics of multiscale differential geometry, or ‘scale-
space analysis’, which is needed when we consider optical signal processing by
neurons acting by convolution as filters. As an example, we discuss James Damon’s
application of the Thom–Mather singularity theory to the multiscale context.

We shall also introduce image segmentation algorithms. There are two closely
related classes. The first consists of models in which segmentation is achieved
by applying nonlinear anisotropic diffusion equations. These homogenize regions
where the signal varies little, but introduce clear discontinuities where the signal
varies sharply. The second class contains the variational models introduced byDavid
Mumford and Jayant Shah. Here, we discuss the difficult subject of the ‘Mumford
conjecture’ on the one hand and also work by Alessandro Sarti and Giovanna Citti
which shows that the Mumford–Shah model is a limit (in the variational sense) of
an oscillator synchronization model.

Further, in the second volume, we shall tackle certain epistemological issues, from
the phenomenology of perception in the sense of Husserl and Merleau-Ponty to the
Kantian problem of transcendental aesthetics. We shall show that the possibility of
deriving the global morphology and geometry of percepts from what might be called
‘neural mesophysics’ confirms a strictly naturalistic emergentist understanding of
perceptual consciousness and invalidates the claims of many philosophers who deny
the reducibility of consciousness to neural activity.

Finally, we shall show how neurogeometry and the related neural materialism can
provide a naturalistic foundation for the most profound philosophical approaches to
perception and space, namely the transcendental approaches. We shall discuss the
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phenomenology of perception as developed by Husserl, stressing just how close it
comes to the neurogeometric understanding put forward in the preceding chapters.
We shall end by going back to the Kantian problem of transcendental aesthetics and
the claim that space is essentially of a ‘synthetic a priori’ nature, showing that all
the neurophysiological data and all the models we present do indeed point in this
direction.

As we said at the outset, this claim is in our opinion the main philosophical
message of this work, and we are profoundly convinced that it should have far-
reaching consequences when we realize that, for over a hundred years now, the
whole area of philosophy of mind has been built upon the demise of transcendental
aesthetics and the promotion of purely logical and conceptual principles of mental
activity. On the contrary, neurogeometry shows that space is indeed a ‘pure intuition’,
that is a non-conceptual, antepredicative, and prejudicative format for sensory data,
that this format is specified by the functional architectures of the primary visual
areas, and that, insofar as the latter are products of evolution, they are innate and
ontogenetically a priori as regards perceptual content and judgement.

The formats, i.e. the functional architectures, which are synthetic and a priori
for the percepts of an adult organism, are not ‘judgements’. There are doubtless
no synthetic a priori judgements, but there are synthetic a priori formats, ‘forms of
intuition’ or ‘pure intuitions’.

In these two volumes, we shall aim to carry out for the neuroscience of vision
what has been done in fundamental physics, and more exactly, in field theory, with
the development of gauge theory; that is, we shall geometrize the functional archi-
tectures governing the interactions between neurons. Indeed, as was well understood
by the founders of the Gestalt theory, these interactions operate like ‘fields’, even
though they propagate along material connections in this case. The geometrization
of neurophysics into neurogeometry comes with a bonus, the transfer of the methods
of differential geometry to this area.

1.2.3 Limits of This Investigation

This work is cross-disciplinary in a rather special sense. Indeed, it does not deal with
general methodological or epistemological problems common to several disciplines.
What we have here is rather an ‘intrinsic’ cross-disciplinarity imposed by the subject
under investigation. It would thus be better to say that it is ‘multispecialized’ or
perhaps ‘polyscientific’. There is an analogy with the biathlon in sport, which brings
together two rather different, even antagonistic, skills, with the result that even the
best specialists in this ‘polysportive’ discipline could not be the best specialists in
both cross-country skiing and rifle shooting. The same is true here. I have gone to
considerable lengths to bring together the skills required for cognitive neuroscience,
mathematical modelling, and the philosophy of space, but I am fully aware of the
limitations of the result. In each of these fields, one could certainly do a lot better.
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So the achievement of this work, if indeed there is one, would be to bring together
these highly disparate disciplines.

My main hope is simply that this book will allow mathematicians, physicists,
and philosophers and historians of science who are interested in the foundations
of geometry—from Euclid to Riemann, Helmholtz, Klein, Poincaré, Hilbert, and
Cartan—to realize just how greatly neuroscience is likely to revolutionize hundreds
of years of human understanding.

1.3 History, Context, and Acknowledgements

The considerations described here would not have been possible without the collabo-
ration of a great many colleagues in many different disciplines. I extend my warmest
thanks to them.

My interest in the geometry of perception goes back a long way to my encounter
with René Thom and his dynamical models of morphogenesis at the end of the
1960s. I had begun doing research at the Centre de Mathématiques just set up by
Laurent Schwartz at the École Polytechnique and started working on the theory
of singularities in algebraic geometry with Jean Giraud (a disciple of Alexandre
Grothendieck). There I was fortunate enough to follow courses given by two leading
authorities, Heisuke Hironaka and René Thom.6

René Thom used the tools of singularity theory (of which he was one of the
main inventors, following Marston Morse and Hassler Whitney) to explain how
morphologies and patterns can appear and develop in material substrates M . The
key idea, and we shall return to this several times, was that, at every point a of M ,
the physical, chemical, or metabolic properties of the substrate are described by an
attractor Aa of an ‘internal’ dynamics Xa and that the dynamics of neighbouring
points are coupled. Then for some critical values ac of a, bifurcations can happen,
the attractor Aa being replaced abruptly by another attractor Ba . The subset K of
the ac can be very complex (fractal, Cantor, etc.), but in not too complex cases it
stratifies M andbreaks its homogeneity,whereupon this symmetry breakinggenerates
a morphology. In that sense, any morphology is a segmentation of the qualities of a
substrate by a set of qualitative discontinuities.

Thom’s models (see [4, 5] and my surveys [6–8]) constitute a broad extension of
the pioneering reaction–diffusionmodels introduced in 1952 byAlan Turing [9]. The
challenge is the same: how can ‘the chemical information contained in the genes’
be ‘converted into a geometrical form’. For Turing, the internal dynamics are sys-
tems of (nonlinear) differential equations modelling the chemical reactions between
‘morphogens’ inside the substrate, the spatial coupling is afforded by diffusion, and
the cause of the ‘patternized’ morphologies is the breaking of homogeneity induced
by ‘diffusion-driven instabilities’ (see my survey [10]). The same great biologists

6For more on the historical background of neurogeometry, the interested reader is referred to my
‘Landmarks for Neurogeometry’ [11].
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inspired both Turing’s and Thom’s projects: Sir D’Arcy Wentworth Thompson and
Conrad Hal Waddington.

Thom’s models were called ‘catastrophic’ by Christopher Zeeman. I preferred the
term ‘morphodynamical’. Morphodynamical models belong to a mathematical uni-
verse which experienced an extraordinary development in the 1960s–1970s under
the leadership of masters such as René Thom, Bernard Malgrange, John Mather,
Christopher Zeeman, Vladimir Arnold, Stephen Smale, David Ruelle, David Mum-
ford, John Milnor, Martin Golubitsky, Robert MacPherson, and many others. Their
main tools were as follows:

• The theory of dynamical systems (for the study of internal dynamics), their attrac-
tors (possibly with strong ergodic properties), their structural stability properties,
and their bifurcations.

• The theory of critical points of differentiable mappings (when the internal dynam-
ics is gradient-like).

• The geometrical theory of jet spaces and their stratifications.
• The universal unfoldings of finite codimension singularities.

They aim at a mathematical understanding of morphogenesis and, going beyond
biological morphogenesis, of morphological structures whatever their substrate may
be, from physics to cognitive sciences (see my survey [12]).

Thom’s models were inspired by a deep and rather universal mathematical ‘phi-
losophy’ elaborated in the 1950s and 1960s (see, e.g., his two classic papers ‘Les
singularités des applications différentiables’ in 1956 [13] and ‘Ensembles et mor-
phismes stratifiés’ in 1968 [14]):

• The singularities of a space or of a map between spaces concentrate information
about its global structure into local singular morphologies.

• To analyze a differentiable map f : M → N locally, it is efficient to look at its
successive jets, these being defined up to a change of coordinates (a diffeomor-
phism) in M and in N . In general, jets of sufficiently high order are ‘determined’
and f can be reduced locally to an algebraic ‘normal’ form.

• Jet spaces J k (M, N ) of successive order k are manifolds stratified by a strat-
ification Σk whose strata of increasing codimension (of decreasing dimension)
correspond to more and more singular singularities.

• One of Thom’s most fundamental theorems is the transversality theorem in jet
spaces. The k-jet j k ( f ) of f is a map j k ( f ) : M → J k (M, N ), and the theorem
says that, generically, j k ( f ) is transversal on Σk . A consequence is that f cannot
generically have singularities of codimension > dim (M).

Very soon, having joined the École des Hautes Études en Sciences Sociales (EHESS)
Center for Mathematics (CAMS) in 1971, I focused on the applications of Thomian
morphodynamics to models in the cognitive sciences and semiolinguistics and also
on their far-reaching epistemological consequences.

In order to build such models, it was crucial to maintain in close contact with
pure mathematics. In those early days, I was able to do this thanks to the colleagues
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I worked with in Laurent Schwartz’s laboratory: Bernard Teissier (specializing in
the study of singularities in algebraic geometry along the lines of Zariski, Hironaka,
and Mumford), Alain Chenciner (an expert on singularity theory and the theory of
dynamical systems whowould later turn to difficult Poincaré-type problems in celes-
tial mechanics), Jean-Pierre Bourguignon (an expert on Hamiltonian7 mechanics and
future director of the Institut des Hautes Études Scientifiques, IHÉS), Jean-Marc
Deshouillers (an arithmetician who later became interested in cognitive science),
Lê Dũng Tráng (an algebraic geometer who would subsequently direct the Mathe-
matics Department at the Abdus Salam International Center for Theoretical Physics
in Trieste), and then younger colleagues like Daniel Bennequin (an expert, among
other things, on symplectic geometry and contact geometry who has been working
in neuroscience for a few years now, in close collaboration with Alain Berthoz at the
Collège de France) and Marc Chaperon (specializing in singularity theory).

Over many years, Thom’s weekly seminar on singularity theory at the IHÉS
allowed me to remain fully up to date with the latest research in this area and to learn
so much from presentations by so many renowned geometers. It was an honour to be
able to attend lectures given by such great mathematicians and physicists, including
David Ruelle, Stephen Smale, David Mumford, Misha Gromov, and Alain Connes.

A great deal of cross-disciplinary activity was generated around singularity the-
ory and its applications in the 1970s. It started out within mathematics (including
mathematical physics, e.g. caustics in optics, defects in ordered media, critical phe-
nomena, and phase transitions) with major conferences such as the Liverpool Singu-
larities Symposium, organized and published by C.T.C. Wall in 1971, or the Summer
Schools at the Institut d’Études Scientifiques in Cargèse, organized in 1973 and
1975 by Frédéric Pham. It evolved in an extremely rich scientific context, bring-
ing together several traditions. The morphodynamic models came into it, sometimes
controversially, as, for example, with the dissipative structures in thermodynamics
and chemistry studied by Ilya Prigogine, Grégoire Nicolis, and Isabelle Stengers
in Brussels, the work on self-organization by Henri Atlan, Jean-Pierre Dupuy, and
Francisco Varela, the synergetics of Hermann Haken and Scott Kelso, etc. This was
a whole new paradigm in science, which set out to understand the emergence of
morphology in physics, chemistry, and biology.

There were exciting philosophical consequences, too. The question of a dynamics
of shapes had been neglected since the revolution brought about by Galileo and
Newton in the seventeenth century, when it became possible to develop a mechanics
based on forces. This was because such a dynamics would have involved certain
finalistic Aristotelian concepts like entelechy. From a philosophical point of view,
many great thinkers had been aware of this. To begin with, there was Leibniz, who
spent his whole life reflecting on this problem, then Diderot (see his debate with
d’Alembert), Kant (see his Critique of Judgement), Geoffroy Saint-Hilaire, Goethe
(inventor of modern structural morphology), Brentano in psychology, Husserl with
his phenomenology, Gestalt theory, andD’Arcy Thompson andWaddington (already
mentioned). By showing how it was possible to construct a mathematical dynamics

7Named after William Rowan Hamilton.
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of shapes which was compatible with physics and could be extended, by virtue of its
transphenomenal nature, to psychology and the social sciences, René Thom made
a philosophical breakthrough which did much to dissolve the traditional boundaries
between the natural sciences and the sciences of the mind.

I thus decided to concentrate my research on this unification of the issues of shape
andmorphogenesis that would involve all the empirical disciplines. To get some idea
of the scope and the possibilities, in 1982, I organized the Cerisy conference entitled
Logos and Catastrophe Theory [15], a tribute to René Thom, which was attended
by Christopher Zeeman and many other mathematicians, but also physicists such as
David Ruelle and Michael Berry, biologists specializing in morphogenesis such as
Yves Bouligand and Brian Goodwin, philosophers of science, semiolinguists, and
experts on Aristotle.

It was in the 1980s that my research inspired by Thom in perceptual geometry
began to connect with parallel studies by experts working on natural and compu-
tational vision and image processing. I would like to mention here those that most
influenced me.

To begin with, in the mid-1980s, I discovered the work of William Hoffman, one
of those pioneering the application of differential geometry and Lie group theory
to vision, and Jan Koenderink (and later the group at the University of Utrecht,
and in particular, Luc Florack) who studied the geometry of visual perception. For
the first time, I was to meet experts in perceptual psychology using the methods
and resources of differential geometry, and in particular, the theory of singularities.
Among the fundamental achievements of these scholars, I would like to mention the
following:

• The idea that the visual cortex is a ‘geometric engine’, implementing structures
such as fibrations, jet spaces of order 1 and 2, and contact structures [16, 17].

• The key structural role of singularities in perceptual geometry [18].
• The need to integrate (in the mathematical sense) local neuronal detections into
global geometric structures. If the brain is indeed a ‘geometric engine’, this is
because groups of receptive fields of visual neurons can detect ‘local features’ such
as edge orientations, crossovers, points of inflection, which can subsequently be
integrated through the functional architectures connecting these detectors together
in a very specific way.

• The key role played by scale. Perceptual geometry results from the integration of
local detections by receptive fields which have a certain width and so occurs at a
certain scale, i.e. with a certain resolution. Perceptual differential geometry must
therefore be multiscale, while conventional differential geometry corresponds to
the idealization of infinite resolution (scale 0). Koenderink and Witkin thus intro-
duced themethodof scale-space analysis. It consists in uniformlyparametrizing all
the relevant geometrical structures by a scale parameter σ by imposing a so-called
causality constraint; i.e., when σ increases, the complexity of the geometrical
structures simplifies.

In general, the latter constraint is expressed using a diffusion operator D, the simplest
of which is the one corresponding to the heat equation (Gaussian blurring). However,
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Gaussian blurring has a major disadvantage in image processing and computational
vision, in that it does not respect image morphology. Indeed, as we have seen, the
latter is dominated by the perceptual salience of qualitative discontinuities, and by
definition, the isotropic diffusion induced by the heat equation smooths out these
discontinuities. This is why a certain number of specialists based scale-space analysis
on highly anisotropic nonlinear parabolic diffusion equations in which the image
intensity gradient actually inhibits diffusion. Along discontinuities, this gradient is
very large or even divergent, whence there is no diffusion: in fact, diffusion can
only occur in a direction transverse to the discontinuity, whence morphology is
preserved. These kinds of partial differential equation (PDE) are difficult to integrate
numerically because they involve reverse diffusion and deconvolution which makes
them unstable. A certain class of such equations has been studied by geometers such
as Michael Gage, Richard Hamilton, Matthew Grayson, Lawrence Evans, and Joel
Spruck under the headings of ‘curve shortening’, ‘flow by curvature’, and ‘heat flow
on isometric immersions’.

But as the term suggests, neurogeometry is about the neural implementation of
the algorithms of perceptual geometry and is thus based upon neuroscience. Regard-
ing my own relationship with neuroscience, the decisive event came in 1990 when
Michel Imbert started a Diplôme d’études approfondies (DEA, now a Masters) in
cognitive science at the École des Hautes Études en Sciences Sociales, the Univer-
sity of Paris VI, and the École Polytechnique, given the explosive development of
these new disciplines on the international level. Imbert, an eminent neurophysiol-
ogist specializing in vision, but also a maths and philosophy enthusiast, succeeded
in the difficult task of institutionalizing this emergent interaction of disciplines and
realizing a whole range of innovations in the fertile soil of neuroscience, psychology,
linguistics, physico-mathematical modelling, logical and programming formalisms,
and philosophy. Associated with the ‘Cerveau, Cognition, Comportement’ (3C) doc-
toral school of Paris VI (Jean-Francois Allilaire, Philippe Asher, Marie-Jo Besson,
Alain Prochiantz, and Danièle Tritsch, among others), this DEA, which I had the
honour of running after Michel Imbert, gave me a way of redirecting my research
and teaching, at least in some respects, and also the possibility of working closely
with some of the best specialists in neuroscience. In particular, I would like to thank
Yves Frégnac, director of the Unité de Neurosciences Intégratives et Computation-
nelles (UNIC8) where Alain Destexhe9 also worked, Alain Berthoz, director of the
Laboratoire de Physiologie de la Perception et de l’Action (LPPA) andmember of the
Collège de France, my colleagues at the Laboratoire de Neurosciences Cognitives et
Imagerie Cérébrale (LENA, CNRS), the research institute of Jean Lorenceau (who
was also a member of the LPPA and UNIC), and my late friend Francisco Varela.

Being a member of the Centre d’Analyze et de Mathématique Sociales (CAMS)
of the EHESS, founded by Georges Th. Guilbaud and Marc Barbut, helped me to
engage in this exciting scientific and institutional adventure. I would therefore like

8Under the aegis of the Centre National de la Recherche Scientifique (CNRS), and today called the
Unité de Neurosciences, Information et Complexité.
9Today, director of the European Institute for Theoretical Neuroscience (EITN) in Paris.
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to thank the following directors Pierre Rosenstiehl and Henri Berestycki.10 In 1999,
a special issue of the CAMS publication Mathématiques, Informatique et Sciences
Humaines carried the first review of this work [19].

I was also greatly assisted by my membership of the Centre de Recherche en
Epistémologie Appliquée at the École Polytechnique (CREA),11 which I joined as
an associate researcher in 1986 when Daniel Andler set up a cognitive science team
there. I already knew the CREA and its founding director Jean-Pierre Dupuy because
I had taken part in debateswith him since the 1970s aboutmodels of self-organization
and morphogenesis (René Thom, Henri Atlan, Ilya Prigogine). The exceptional sci-
entific profile of Jean-Pierre Dupuy played a decisive role in precipitating my move
to neurocognitivism, and it was therefore a great honour to become his successor as
director of the CREA in 2000. At the CREA, I met with a friend from student days,
Paul Bourgine, who had since become an expert on, and enthusiastic advocate of
complex systems, for which he was setting up the first institute. We created a branch
of the CREA at the Palaiseau site of the École Polytechnique.

These connections allowed me to introduce cognitive science into the curricu-
lum of the École Polytechnique, and from 2000, to fulfil a double teaching bill in
the Department of Humanities and Social Sciences, organizing on the one hand a
course entitled Introduction to Cognitive Science, and then, with Patrick Charnay of
the Biology Department at the École Normale Supérieure, a seminar called Brain
and Cognition to which we were able to invite many specialists each year.12 As I
mentioned at the outset, it was this course that gave rise to the first edition of this
book.

Three other circumstances at the beginning of the 1990s were particularly favour-
able to thiswork at the interface between differential geometry, signal processing, and
the neuroscience of vision. One of these was the remarkable development of wavelet
algorithms since the end of the 1980s, by analysts such as Yves Meyer, Stéphane
Mallat, and Ingrid Daubechies (see, e.g., A Wavelet Tour of Signal Processing by
Mallat [20]). A connection was soon made with the pioneering way in which David
Marr [21] had approached retinal signal processing by ganglion cells in the retina,
and it became clear that the retina, the lateral geniculate nucleus (LGN), and the
primary cortical layers were carrying out a kind of successive wavelet analysis of
the optical signal, which led to the primary geometrical formatting of visual input.

A second point was the link established with David Mumford’s work on vision
and image processing, and the interest for these subjects shown by some of my
mathematician colleagues, including in particular Bernard Teissier who, back in
1991, gave me the opportunity to present the first elements of the neurogeometry
of vision at the Mathematics Department of the École Normale Supérieure (ENS).

10 Today, CAMS is directed by Jean-Pierre Nadal, an expert on statistical physics, neural networks,
and complex systems at the ENS. We shall say more about him later in the book.
11At that time, the CREA was located in Paris at the former site of the École Polytechnique.
12Apart from the colleagues already mentioned and those invited by Patrick Charnay, I would like
to thank among others Yves Burnod, Jean-Pierre Changeux, Stanislas Dehaene, Gérard Dreyfus,
EmmanuelDupoux, JacquesDroulez, ÉtienneKoechlin,DenisLeBihan, PascalMamassian,Claude
Meunier, Kevin O’Reagan, Khashayar Pakdaman, and Bernard Renault.
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Many cross-disciplinary collaborations were then built up, leading to the formation
of a working group which organized several meetings in the wonderful environment
of the Fondation des Treilles, founded by Madame Anne Gruner-Schlumberger. The
first conferences in 1993–94 brought together Bernard Teissier, Jean-Michel Morel,
David Mumford, Gérard Toulouse, Stéphane Mallat, Yves Frégnac, Jean Lorenceau,
Olivier Faugeras, and Elie Bienenstock, among others. The 1998 conference was
devoted to the theme Methodology in Cognitive Science. There were several other
meetings, including in 1995 a conference entitledMathematics and Brain at the Insti-
tut Henri Poincaré in Paris. The upshot was a fruitful interaction between differential
geometry, the theory of singularities, morphological image processing, signal theory,
and the neurophysiology and psychophysics of vision, which led Jean-MichelMorel,
David Mumford, and Bernard Teissier in 1998 to organize a special term focusing
on Mathematical Questions in Signal and Image Processing at the Centre Émile
Borel of the Institut Henri Poincaré. And then there was the important conference
organized in 2001 at the Mathematisches Forschungsinstitut Oberwolfach by David
Mumford, Christoph von der Malsburg, and Jean-Michel Morel under the heading
Mathematical, Computational and Biological Study of Vision.

With Giuseppe Longo, whom Imet in the 1990s, and Bernard Teissier, we also set
up a seminar on Geometry and Cognition at the ENS. This later interacted fruitfully
with the Philosophy and Mathematics seminar we ran together under the direction of
Pierre Cartier. I should also mention the ‘Neurogeometry’ project of the Nouvelles
Interactions des Mathématiques (ACI-NIM), runwithDanielBennequin andBernard
Teissier (Paris VII, Chevaleret), Jacques Droulez and Chantal Milleret (LPPA), Yves
Frégnac (UNIC), and several young doctoral students and researchers, a working
group that proved to be particularly stimulating.

All these interactions led to a new review of the principles of neurogeometry [22]
which appeared in 2003 in the Journal of Physiology-Paris.

The research described in the present book then benefitted greatly from collabo-
ration with two researchers at the University of Bologna, namely Alessandro Sarti
(today working at CAMS, CNRS-EHESS, in France ), who specialized in models of
vision and image processing, and his colleague Giovanna Citti, expert on functional
analysis, PDEs, and harmonic analysis, who were then working on the first geodesic
model of illusory contours, which I suggested in 1998. There began a particularly
fruitful collaboration in 2001, when A. Sarti returned from Berkeley where he had
been working at the Department of Mathematics from 1997 to 2000 with James
Sethian on Kanizsa-style illusory contours.

We embarked upon a deeper interpretation of the geodesic model in terms of sub-
Riemannian geometry. This led them to organize three conferences: the first in 2004 at
the University of Bologna, entitled Mathematical Models of Visual Perception. From
Neuroscience to Phenomenology, the second in 2006 at the Centro Ennio De Giorgi
of the Scuola Normale Superiore in Pisa, entitled School on Neuromathematics of
Vision, and the third in 2009 back at the University of Bologna again, under the title
International Conference of Sub-Riemannian Geometry and Vision. This was once
again an opportunity to discuss with eminent practitioners, including Paul Bressloff,
Jack Cowan, Guy David, Alain Destexhe, Olivier Faugeras, Yves Frégnac, Walter
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Gerbino, Jan Koenderink, Jean Lorenceau, Lamberto Maffei, Marc Mézard, Jean-
Michel Morel, Scott Pauls, Martin Reimann, James Sethian, Wolf Singer, and Steve
Zucker.

My colleague Hélène Frankowska in the CREA, expert on partial differential
equations (the Hamilton–Jacobi–Bellman equation) and control theory, was working
with a post doc, Piernicola Bettiol, of Andrei Agrachev at the SISSA in Trieste, and
introduced me to his group (and in particular, Jean-Paul Gauthier, Ugo Boscain, Yuri
Sachkov, and Igor Moiseev). I owe them much for improving my understanding of
sub-Riemannian geometry. In this regard, I would also like to thank André Bellaïche.

The ‘vertical’ part of the VJ and VS models was greatly improved in 2009 by
Faugeras and Chossat [23]. They had the idea that the hypercolumns of V 1 should
encode (on the scale specified by the size of the receptive profiles), not only jets like
the orientation and the curvature, but also the ‘structure tensor’ of the signal.

An active cross-disciplinary community thus came into being. I would like to
mention several publications which will attest to this: first, the double special issue
(no. 97, 2–3) Neurogeometry and Visual Perception of the Journal of Physiology-
Paris which I organized in 2003 with J. Lorenceau, on the suggestion of Y. Frégnac;
then the Journée annuelle 2006 organized by the Société Mathématique de France
(SMF) on the theme ofMathematics and Vision, with presentations by StéphaneMal-
lat, Jean-MichelMorel, andmyself; and finally, another double special issue (no. 103,
1–2) Neuromathematics of Vision of the Journal of Physiology-Paris, published in
2009 with A. Sarti and G. Citti.

In the fall of 2014, Andrei Agrachev, Davide Barilari, Ugo Boscain, Yacine Chi-
tour, Frédéric Jean, Ludovic Rifford, and Mario Sigalotti organized a special term at
the Centre Émile Borel of the Institut Henri Poincaré, entitled Geometry, Analysis
and Dynamics on Sub-Riemannian Manifolds. Many of the geometers already men-
tioned were present, including Montgomery, Bryant, Ambrosio, Gauthier, Pansu,
and Bellaïche. With J.-P. Gauthier, G. Citti, and A. Sarti, we organized a workshop
attended by Jack Cowan, Yves Frégnac, Jean Lorenceau, Pascal Chossat, Olivier
Faugeras, FredWolf, Steve Zucker, Daniel Bennequin, Remco Duits, Stéphane Mal-
lat, Xavier Pennec, Romain Veltz, Ugo Boscain, Dmitri Alekseevsky, Peter Michor,
and Giovanni Bellettini.

Regarding the psychology of perception and in particular the Gestalt theory, I
had the opportunity to be involved in two conferences organized jointly in 2001–
2002, the first by Arturo Carsetti at Tor Vergata University in Rome, entitled Seeing,
Thinking and Knowing [24], and the other by Liliana Albertazzi, and Roberto Poli
of the Mitteleuropa Foundation at the University of Trento, entitled The Legacy of
Kanizsa in Cognitive Science. In 2010, A. Carsetti also organized a workshop on
Models of the Mind, devoted largely to neurogeometry.

As regards the philosophical aspect of the present book, in which Husserl’s phe-
nomenology of perception plays a central role, I am deeply indebted to the group
Naturalizing Phenomenology, founded with Jean-Michel Roy, Francisco Varela, and
Bernard Pachoud. I had already long since brought together the Thomian morpho-
dynamic approach to perception and Husserlian eidetic descriptions, in fact since
the 1970s. I had built up a particularly fruitful collaboration with my friends Kevin
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Mulligan and Barry Smith who, for their part, had rehabilitated Husserlian phenom-
enology in the context of analytic philosophy and the philosophy of mind. At the
time responsible for cognitive science at the Husserl Archives in the École Nor-
male Supérieure in Paris, Jean-Michel Roy was greatly interested in these ideas and,
fuelled by his enthusiasm, a seminar was set up. In 1995, Jean-Michel Roy organized
an important conference at the University of Bordeaux, which served as the starting
point for the reference book Naturalizing Phenomenology published by Stanford
University Press in 1999.

At the same time, Alain Berthoz and Jean-Luc Petit, an expert on Husserl, orga-
nized a whole series of remarkable meetings to discuss the surprising convergence
of phenomenology and cognitive neuroscience.

Finally, regarding the links between Husserlian phenomenology and the Kantian
tradition of transcendental philosophy, I would like to thank my colleagues Michel
Bitbol and Pierre Kerszberg at the CREA. We published a book with Springer called
Constituting Objectivity, Transcendental Perpectives on Modern Physics, which
described the high degree of convergence with philosophers of physics like Michael
Friedman, Thomas Ryckman, and Bas van Fraassen.

The cross-disciplinary research described in this book has found many other fine
opportunities for presentation in high level academic contexts. I would like to men-
tion a few of these which have for me played a special role, so that I may thank their
organizers: the International Academy of Philosophy of Science (president Evandro
Agazzi); the seminars run by Jacques Bouveresse [25], Alain Berthoz [26], Alain
Prochiantz and Philippe Descola at the Collège de France; the conference Dynamic
approaches to cognition at theÉcoleNormale Supérieure inLyon (Jean-MichelRoy);
the Valparaiso Complex Systems Institute (directed by Eric Goles); the Scuola Supe-
riore di StudiUmanistici and the Istituto Italiano di ScienzeUmane (UmbertoEco and
PatriziaVioli); the Center for Semiotic Research at theUniversity ofAarhus (directed
by Per Aage Brandt); the Istituto Universitario di Studi Superiori in Pavia (Amedeo
Conte, Franco Rositi, and Salvatore Veca); the Scuola Internazionale Superiori Studi
Avanzati (SISSA) in Trieste (Andrei Agrachev); the Laboratoire de Mathématiques,
Image et Applications at the University of La Rochelle (GuyWallet, Michel Berthier,
Eric Benoît, Aziz Hamdouni, see [27]); the Philosophy Department of the Univer-
sity of Quebec in Montréal (Jean-Guy Meunier); the ERMITES 2010 conference
at the École de Recherche Multimodale d’Information, Techniques and Sciences
(Hervé Glotin); the special term entitled Theoretical, Mathematical and Computa-
tional Neuroscience at theCentre International deRencontreMathématiques (CIRM)
in Marseille-Luminy and the two conferences Spatio-temporal Evolution Equations
and Neural Fields and Mathematical Models of Cognitive Architectures organized
there by Olivier Faugeras, Paul Bressloff, Stephen Coombes, and Viktor Jirsa; the
conference Géométrie sans frontières at the University of Paris VII, organized in
2012 in honour of Daniel Bennequin; and the conference Singular Landscapes orga-
nized in 2015 in honour of Bernard Teissier.

Finally, I would like to thank the editorial team which made possible the publi-
cation and translation of this second edition by Springer: first Catriona Byrne, then
Eva Hiripi, Jan-Philip Schmidt, and Alessandro Sarti who accepted the book in the
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series Lecture Notes in Morphogenesis, but also Olga Chiarcos and Federica Corradi
Dell’Acqua, and last but not least, my excellent translator Stephen Lyle.

The final text of this English edition was for the main part written during a fel-
lowship in 2013–2014 at the Humanities Center of Stanford University. Here I must
thank the Reverend Marta Sutton Weeks for her euergetism and also the director
Caroline Winterer and the staff at the SHC for their warm hospitality in this magnif-
icent academic context, which thoroughly deserves the name ‘home of the human
experience’.
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Chapter 2
Introduction

Without a proper shape mathematics for biology, we are in the
position that physics would have been in trying to develop
mechanics without Euclidean geometry.

Harry Blum

2.1 Origin of Space and Neurogeometry

2.1.1 Geometric, Physical, and Sensorimotor Conceptions
of Space

The origin and status of spatial representations is a long-standing question that has
beenmuch discussed in the history and philosophy of science. It has been approached
from several different angles up to now, including those of mathematics, physics,
physiology, and psychology.

1. From the mathematical point of view, starting out with the basic reference pro-
vided by Euclidean geometry, the concept of space has been gradually general-
ized: non-Euclidean geometries and geometries specified by their transformation
groups, Riemannian geometry, differential geometry with Cartan connections,
and others.

2. From the physical point of view, starting with the idea that space and time form an
a priori background structure for physical phenomena, a physical genesis of space
has been gradually built up: from general relativity, based on Riemannian geom-
etry, and non-Abelian1 gauge theories in quantum field theory which are based

1Named after Niels Henrik Abel.
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on Cartan geometry, to the admirable synthesis of quantum physics and geometry
developed by Alain Connes under the name of ‘non-commutative geometry’.

3. As regards perceptual space or ‘perceived space’, from the profound insights
of physiologists like Helmholtz, geometers like Poincaré, phenomenologists like
Husserl, and psychologists like the proponents ofGestalt theory (Stumpf, Klüver,
Kanizsa, etc.), up to contemporary studies on the physiology of perception and
action, we have deepened our understanding of the way the classic Euclidean
space derives from our sensorimotor relationship with the environment, where
solid objects play a fundamental role.

All these developments have been either directly mathematical or else based on
considerable progress in mathematics. This is obvious for level (1) above, since
these are simply the most impressive developments of geometry, which followed on
so quickly from Gauss to Riemann and Poincaré, then Weyl and Cartan, and today
Alain Connes.2

The link with mathematics is no less obvious for level (2), which concerns physi-
cal space. Here, it is worth emphasizing the way the astonishing progress in the for-
malisms of fundamental physics can be considered as a ‘geometrization of physics’.
This is not the place to go further into this vast subject. Let us just say that the
geometrization process consists in identifying more and more geometrical structures
and symmetry groups of physical theories in such a way as to understand the whole
complexity and diversity of observed physical phenomena in an ever more synthetic
way. This is indeed the main process of mathematization since, on the one hand,
it ‘reduces’ more and more physical phenomena to a priori geometrical statements,
while on the other hand, it ‘unfolds’ these a priori statements in a profusion of dif-
ferent models, exploiting to the full the characteristic ‘generativity’ of mathematics.
In the words of Jean-Marie Souriau, one of the founders of geometric quantization,
who made this point so clearly [7]:

Philosophically, [geometrization] means reducing physics to geometric symmetries in order
to do a priori [i.e., ‘rational’] physics.

In other words, as Souriau puts it:

There is nothing more in physical theory than symmetry groups, except the mathematical
construction which allows us to show that there is nothing more.

Regarding this point, the interested reader may consult [8] and [6] and the references
therein.

Regarding level (3), the question of perceptual space, the connection with fun-
damental mathematical structures, is less obvious, and it is precisely here that the
present book aims to bring new insights. In fact, as we know, perception and motric-
ity are tightly linked from a functional point of view, and one of the main ideas
developed from Helmholtz to Poincaré was to relate the geometry of external space
to our sensorimotor relationship with solid objects in our environment.

2Among many other works, see, for example, the classic Space, Time, Matter by Weyl [1], the
proceedings [2], the book by Toretti [3], the studies [4] and [5] by Thomas Ryckman, or our own
review of non-commutative geometry [6].
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Consider for example the way Hermann von Helmholtz responded to Bernhard
Riemann’s famous Habilitationsvortrag in 1854, viz. Über die Hypothesen welche
der Geometrie zu Grunde liegen [9], by his no less famous reply [10] Über die
Tatsachen, die der Geometrie zu Grunde liegen.3 Helmholtz suggested reducing the
problem of perceptual space to a system of axioms specifying, not Riemann’s infini-
tesimal metric elements, but rather the transformations of space which are observed
experimentally to be the congruences (of free motions) between rigid bodies. An
elegant examination of this so-called Riemann–Helmholtz problem, concerning the
origin of the geometry of external space, can be found in Joël Merker’s Le problème
de Riemann–Helmholtz–Lie [11].

There are four axioms, and the first three are rather natural:

1. The points of the space E can be represented by the values of three coordinates,
in such a way that transformations correspond to (smooth) variations of these
coordinates. (For Euclidean R

3, this gives the six-dimensional group of trans-
formations comprising the three translational degrees of freedom and the three
rotational degrees of freedom.)

2. There exists a function f (a, b) defined on E × E which is invariant under all
transformations.

3. Any point in E can be carried to any other point of E by a transformation (tran-
sitivity).

The fourth axiom, called the monodromy axiom, is much less obvious:

4. If we choose two points a and b in a rigid body, then there is one remaining
degree of freedom (rotations with axis ab in the case of Euclidean R3), and such
a ‘rotation’ must move all the points and bring the body point by point back onto
itself after one complete turn.

In volume III of their famous treatise Theorie der Transformationsgruppen [12],
Sophus Lie and his disciple Friedrich Engel spelt out the above axioms, rectify-
ing certain errors made by Helmholtz and classifying all the solutions, noting that
Euclidean geometry was only one solution among others (see [13]). To do this, they
used the theory of the groups and algebras now known by the name of Lie groups
and Lie algebras, something we shall make constant use of throughout this book.

Regarding Henri Poincaré, some of his basic ideas about physical space and per-
ceived space are discussed in Chaps. 4 and 5 of Science and Hypothesis [14], entitled
Space and Geometry and Experience and Geometry, respectively. The principle of
geometric conventionalism asserts that the geometry we apply in physics is conven-
tional, i.e. neither true nor false, that its axioms are neither experimental (criticism
of empiricism), nor synthetic a priori (criticism of the narrow idealist interpretation
of Kantian apriorism), and that the same factual physical contents can be described
within alternative geometrical frameworks. As a convention, a geometry provides a
language for description and does not possess any experimental or empirical truth in
itself. By introducing the thesis that the group concept is an a priori feature of our

3‘Tatsachen’ or ‘facts’ are contrasted with ‘Hypothesen’.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_5


24 2 Introduction

understanding that thus ‘pre-exists in our minds, at least potentially’, Poincaré was
putting forward a version of the transcendental ideality of space which is compatible
with the existence of several different geometries and hence with the progress made
in theoretical physics. Let us recall here the conclusion of Space and Geometry:

The object of geometry is the study of a particular ‘group’; but the general concept of group
pre-exists in ourminds, at least potentially. It is imposed on us not as a form of our sensibility,
but as a formof our understanding; only, from among all possible groups,wemust choose one
that will be the standard, so to speak, to which we shall refer natural phenomena. Experience
guides us in this choice, which it does not impose on us. It tells us not what is the truest, but
what is the most convenient geometry.4

Poincaré expands on this idea in Experience and Geometry, where he explains that
the principles of geometry are not experimental facts. A given physical fact can
always be expressed by changing the convention represented by the geometrical
framework and changing the laws of physics; e.g., one can keep Euclidean geometry
but reject the principle that light rays follow geodesics. This point of view was
already anticipated by Clifford: there is an equivalence between (1) physical causes
of changes in a space thought of a priori as flat and (2) a non-trivial (curved) space
geometry. Physical experiments are always carried out on bodies, never on space.
Therefore, they cannot help us to decide upon the geometry.

Regarding perceived space, Poincaré considered that its geometry must come
essentially from our fundamental sensorimotor experience of the motions of solid
bodies (see, in particular, Science and Method [15]). This constitutes our notion of
space and, by distinguishing between proprioceptive internal changes and external
changes that may balance them, leads to the aprioricity of the group concept and to
the idea that geometry is conventional.5

2.1.2 The Neurogeometric Approach

With this in mind, it should be said that there is (at least) a fourth way to inquire as
to the origin of spatial representations. Until recently, it had only been the subject
of a few bold and generally incorrect speculations, due to the lack of experimental
evidence. This fourthway concerns the highly complex neurophysiological processes
through which the geometrical structures of the external space are constituted as a
result of the internal activities of our brains.

This can be tackled by considering at least two main lines of approach:

• Sensorimotor and locomotor positioning and navigation of an organism moving
through space. For example, the nowclassic bookThe Hippocampus as a Cognitive
Map (1978) by John O’Keefe6 and Lynn Nadel [17] has a long first chapter with a

4This is a clear reference to Kant’s opposition between sensibility and understanding.
5For the relations between Mathematics and Physics in Poincaré, see La Valeur de la Science [16].
6See Sect. 1.1 of the Introduction.

http://dx.doi.org/10.1007/978-3-319-65591-8_1
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historical slant relating this new work on navigation to the philosophies of space
propounded by philosophers and mathematicians such as Leibniz, Euler, Kant,
Helmholtz, and Poincaré. Similar discussions can be found in the many works of
neurophysiologists of perception and action like Alain Berthoz.

• The geometrical structuring of visual images. This will be our main subject in the
present book.

We coined the term ‘neurogeometry’ to refer to this neural origin of perceived space.
The aim in the present work is to take a first step in this direction, something made
possible by the huge amount of new and fascinating experimental results now avail-
able thanks to new imaging techniques. As long as the brain remained, from an
experimental point of view, a ‘black box’, there was no way of developing such an
approach. What made this possible was thus that the brain became, at least to some
extent, a ‘transparent box’.

Brain imaging techniques are here the equivalent of the new observational meth-
ods that are always found to underlie any scientific revolution. We shall show that
their results can be modelled using sophisticated mathematics that corresponds in
the deepest possible ways to mathematics already invented by certain outstanding
geometers like those already mentioned, and in particular Lie and Cartan, when
they set out to understand mathematically how the geometry of the external world
(Euclidean or otherwise) could come about. We would thus like to insert a new page
in the age-old story of the foundations of geometry. There will be two main aims:

• To provide models for a whole new set of neurophysiological data.
• To fit these models into modern developments in the foundations of geometry.

The analogy with the history of the theories of physics could be illuminating here.
Just as the modern theories of fundamental physics (general relativity, gauge theo-
ries, Higgs field, etc.) have led to ever further geometrization of empirical physical
phenomena which, in its turn, provides a better understanding of the physical genesis
of space, so neurogeometry consists in a geometrization of empirical neural phenom-
ena which, in its turn, provides a better understanding of the neural genesis of space.
Our whole investigation will be based on this ‘dialectic’ between the geometrization
of internal neural dynamics and the neural foundations of external geometry.

2.2 Perceptual Geometry, Neurogeometry, and Gestalt
Geometry

Let us begin by giving a few points of reference and some clarifications:

1. Following on from the great geometers, phenomenologists, and psychologists
who have turned their attention to our perception of forms, as discussed above,
a certain number of eminent scholars have recently made considerable contribu-
tions to the geometry of visual perception. We may mention René Thom, who
developed the first general dynamical theory of shapes, Jan Koenderink, who
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applied Thom’s theory of singularities to visual neurophysiology, the heirs to
the Gestalt psychologists, and in particular, Gaetano Kanizsa, to whom we shall
return at length, David Marr, who, at the end of the 1970s, brought a host of
new insights into the problem of vision, and David Mumford (Fields medallist
like René Thom), who completely revolutionized the area. When we talk about
neurogeometry here, what we shall aim for is the neural implementation of the
algorithms of this geometry, the problem being to understand how perceptual
‘macrostructures’ and their morphodynamics can emerge from the underlying
neural ‘microlevel’.

2. The aspect of neurophysiology that is relevant in this research is functional neuro-
anatomy. It is not concerned with the biochemical details of the individual neu-
rons (ion channels, membrane potentials, etc.), but treats them rather as func-
tional units, e.g. threshold automata in neural network models, connecting to
form neuroanatomically specifiable populations. We shall say a few words about
the ‘micro’ cellular level relevant to molecular biology, but most of what follows
will concern a ‘meso’ functional level.

3. One characteristic of perception is that perceptual ‘phenomenal consciousness’
results from integration, in the neurophysiological sense, of the partial process-
ing carried out by a great many different brain modules connected together in an
extremely complicated way with a high level of feedback. Processing is highly
modular (whence the very specific nature of pathologies), but consciousness is
highly integrated. Thismeans thatmodels for specific areas are necessarily incom-
plete. Here, we shall be dealingmainlywith the first area, known as V 1 (or area 17
in cats), of the primary visual cortex. This does of course limit the discussion, but
we shall see that much can already be said and that this provides a good example
of what is meant by neurogeometry. Furthermore, despite being so restrictive,
this case can also be considered as fundamental if we adopt David Mumford and
Tai Sing Lee’s ‘high-resolution buffer hypothesis’. According to this, V 1 takes
part in any higher level processing which requires high resolutions (see Mumford
[18] and Lee et al. [19]).

4. We stress that neurogeometry is about the internal geometry (already referred
to here as ‘immanent’) of low-level vision, and not therefore the conventional
‘transcendent’ geometry of the perceived external 3DEuclidean space. It concerns
a much more fundamental level, and to use the nice expression adopted by Misha
Gromov to speak about sub-Riemannian geometry, it tries to understand perceived
space from within.

5. In neurogeometry, anything that is not implemented neurally does not exist. This
means that all the mathematical concepts used operationally in the models must
have some material counterpart. There is a similar situation in computer sci-
ence, where the software only works if it is compiled and realized materially in
the physics of the hardware. It is not easy to implement this equivalence between
geometric idealities and neural materialism. Indeed, on the one hand, trivialmath-
ematical structures such as alignments, gluing of local charts, or direct products
are implemented neurally in a very subtle way that is hard to study experimen-
tally, and on the other hand, certain properties of the modelling structures will not
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be implemented and so will have no empirical meaning. The reader should bear
this crucial point in mind: when a set of empirical phenomena is modelled by
mathematical structures of a certain kind, only certain aspects of these structures
will be open to empirical interpretation.7

6. Furthermore, implementations can differ significantly depending on the species,
and the same abstract functional structure can be achieved materially in different
ways in the various layers of V 1 (see Sect. 4.9.4 in Chap.4.). We need therefore
to carry out very careful interspecific comparative studies on rats, ferrets, tree
shrews (tupaias), cats, macaques, humans, etc.

7. The neurons in V 1 have small receptive fields and thus process information from
the photoreceptors in a very local manner, i.e. localized in the visual field. The
main problem is to know how these local data are organized into global structures
such as lines, edges, surfaces, and shapes. This is a problem of ‘integration’
in the mathematical sense, and here, the concept of functional architecture—
referring to the design of the connectivity of neurons within an area—proves to
be crucial. The enigmatic phenomena studied by Gestalt theory relate to the fact
that perception ‘integrates’ local data and ‘fills in the gaps’, if there are any. In
this sense, neurogeometry could be qualified as Gestalt geometry.

2.3 Geometry’s ‘Twofold Way’

Let us stress oncemore that, in neurogeometry, there is a twofold relationship between
the geometry and neurophysiology of vision. As we shall explain in detail, it is the
functional architecture of the visual areas, the precise organization of their neural
connections, which generates the geometric properties of perceptual space, i.e. the
perceived 3D space in which the objects of the external world are situated. We may
thus envisage a ‘neural→ spatial genesis’ of the kind ‘functional architecture→ geo-
metric properties of external space’. But as we shall see later, there exist geometric
models of the functional architectures themselves; that is, the latter implement well-
defined sui generis geometrical structures. It is important to distinguish carefully
between the two levels at which geometry enters the discussion. The whole purpose
of this bookwould become incomprehensible if theywere confused.Aswe have seen,
to formulate the distinction, we may return to the classical philosophical opposition
between immanence and transcendence. The geometry of functional architectures
is immanent in perception, internal and local, and its global structure is obtained
by integration and coherent association of local data. In contrast, the geometry of
perceived space is transcendent in the sense that it concerns the outside world and is
given to us immediately as global.

7This problem already arose with the invention of rational mechanics. In order to mathematize the
physical motions of material points, one must choose a frame of reference. But neither absolute
positions, nor absolute directions, nor absolute velocities have any physical meaning, hence the
advent of Galilean relativity.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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Fig. 2.1 Connections between ‘immanent’ geometry and ‘transcendent’ geometry

But it turns out that neurally implemented immanent geometry can itself be mod-
elled using deep geometric structures already introduced by the geometersmentioned
earlier, such as Elie Cartan, Hermann Weyl, René Thom, Alain Connes, and Misha
Gromov, to understand the genesis of transcendent geometry. This implies that, once
modelled in this way, the neural genesis of space can be internalized in the math-
ematics and thereby identified with a mathematical genesis of a macro and global
geometry from a micro and local one, globalized by integration and coherent match-
ing. This should come as no surprise, because the genesis of physical space occurs
in exactly the same way: once physics has been mathematized, it is identified with
the genesis of classical geometry from Riemannian geometry (in general relativity)
or from the non-commutative geometry called ‘quantum’ or ‘spectral’ geometry in
quantum field theory. The diagram in Fig. 2.1 explains this interaction between the
different philosophical levels of understanding geometry.

2.4 Idealities and Material Processes

To clarify this key point, let us make an analogy. Although it differs with regard to
content, the new direction provided by neurogeometry is methodologically speaking
of the same kind as the one taken during the last century with the advent of the
Turing machine, λ-calculus, and computers. This computational revolution took the
symbols that underlie logical idealities and turned them into material operations.
It explained how the dominant logical idealism and analytic apriorism expounded
from Bolzano to Frege could be naturalized and even physicalized. In other words,
it explained how logical ‘software’ could be implemented in physical ‘hardware’.

We are doing just the same here. The aim of the ‘neurogeometric’ approach is
to obtain an explicit understanding of the material operations that underlie the geo-
metric idealities of the synthetic a priori and to explain how some kind of geomet-
ric ‘software’ could be implemented in our neural ‘hardware’, hence the following
analogy:
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Idealities Type of a priori Implementation
Logic Logical idealities Analytic λ-calculus
Geometry Spatial idealities Synthetic Neurogeometry

Let us say a little more about this analogy. In logic, we have what is known as the
Curry–Howard correspondence which relates low-level machine language with the
high-level language of logic. Low-level calculations are described, for example, by
the λ-terms of a λ-calculus which describes the programs. In the simplest λ-calculus,
the λ-terms (the programs) are constructed inductively by iterating two basic
operations:

• the application M N of one λ-term M to another λ-term N ,
• the abstraction operation λx .M transforming the free occurrences of the variable

x in M into places for other λ-terms.

The basic rule of λ-calculus (which corresponds to executing the programme
described by the λ-term) is known as β-reduction. It consists in applying a λ-term
λx .M to another λ-term N by substituting N in all the free occurrences of x in M ,
which can be written (λx .M)N →β M[x := N ]. The normalization of a λ-term is
a sequence of β-reductions which stops at a β-irreducible λ-term. The normalizable
λ-terms thus describe effective computations which stop and deliver a result. The
fundamental link with logic comes from the typing of the λ-terms M into types μ

(notation M : μ). Intuitively, if M : μ is a λ-term of type μ, and if x : σ is a variable
of type σ , then the abstraction λx .M has the type σ → μ of functions of source
σ and target μ. Likewise, if M : σ → τ is a λ-term with functional type σ → τ

and if N : σ is of type σ , then M N is of type τ . In fact, these are the types which
correspond to the formulas of a logic system: intuitionistic propositional logic. The
Curry–Howard correspondence between programs and proofs is summarized here:

λ-calculus, programs Logic, proofs
Low level High level
Code Expression
Compilation Decompilation
Execution of the program Theorem
Encoding Typing
Instruction Logic rule

It is this kind of correspondence that we shall describe in this book but yet with three
fundamental differences:

1. The low-level calculations will be neural calculations and not programs written
in a machine language.

2. The high-level structureswill not be expressions of a logic system, but geometrical
structures.
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3. In contrast to computers (universal Turing machines), the neural hardware is
dedicated to certain tasks, and its concrete physical activity is thus equivalent to
the abstract ideal ‘calculation’ it carries out.

These points can be displayed as follows:

Neural ‘calculation’ Geometry
Low level High level
Neural code Geometric structures
Compilation Decompilation
Neural activity Geometric construction
Encoding Typing
Instruction Construction rule

2.5 Mathematical Prerequisites and the Nature of Models

By its very nature, the following will raise certain issues relating to didactic pre-
sentation, issues that might prove off-putting to some readers. Indeed, we shall use
many mathematical concepts generally considered to be rather ‘advanced’: differ-
ential forms, connections, Lie groups, contact structures and symplectic structures,
sub-Riemannian geometry, variational models, non-commutative harmonic analysis,
and so on. We shall define these as we go along, assuming a basic understanding of
differential and integral calculus, linear algebra, and elementary group theory. These
are basic concepts that will be familiar to any science student and which are in any
case easy to find in a good enyclopaedia.

Having said that, the reader may wonder quite rightly why such mathematics is
relevant here. Our long experience as teacher and researcher in cognitive science
has shown us that biologists and psychologists are often intrigued, even shocked, by
the idea that non-trivial mathematical models (going beyond simple methods of data
analysis) should be needed in their field of study.

A first source of suspicion comes from the idea that mathematics should only be
applicable to intrinsically rational phenomena and that, insofar as evolution results
from a ‘tinkering’ process, biological structures could not be intrinsically rational and
so could not as amatter of principle be expressible in terms ofmathematics. There are
several possible answers to this. To begin with, there is no metaphysical reason why
physical phenomena themselves should be intrinsically rational. It is rather because
our efforts to express them mathematically have been so successful that they now
appear a posteriori to be so rational. Secondly, what characterizes physical rationality
expressed in this way is the existence of simple laws, from Kepler and Newton to
superstring Lagrangians.8 Butmodelling goes well beyondwhat is governed by laws.

8Named after Joseph-Louis Lagrange.
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For example, many differential equations can be applied to a whole range of different
fields: Turing-type reaction–diffusion equations for morphogenetic processes, the
Hodgkin–Huxley equation [20] for the propagation of action potentials, the spin glass
equations of statistical physics for neural networks, the Lotka–Volterra equations for
ecology, and so on. There is thus no deep reason why there should be any natural
limit to the use of mathematical models.

Another argument often put forward is that if we make the hypothesis that algo-
rithms are implemented neurally, this would mean that neurons ‘calculate’, which
is impossible. But this argument is also mistaken. In Mechanics the planets do not
‘calculate’ their trajectories. The only thing we can say is that theories based on
laws involving global interactions (as is the case with Newton’s universal law of
gravitation) are problematic and that the interactions must be localized (something
achieved by general relativity). However, in neuroscience, we can be sure of the
locality of the interactions, because these interactions occur through material con-
nections between neurons. What passes for a neural ‘calculation’ is essentially the
propagation of activity along connections, and this is a ‘calculation’ because the con-
nections are organized into highly specific functional architectures. In other words, it
is the structure of the functional architectures—in a sense, the ‘design’ of the neural
‘hardware’—which amounts to a calculation.

A third argument is that even if we are convinced of the relevance of mathematical
models in neurophysiology, we should at least seek out the simplest possible models
and that we should in principle be suspicious of any complexity in this context.
Once again, this is simply a prejudice and indeed constitutes another fallacy. To see
this, we only need to return to the beginnings of differential and integral calculus
and mathematical physics. To solve what seemed to be very simple problems, such
as calculating the length of the arc of an ellipse, new functions had to be invented,
viz. the elliptical functions,muchmore complicated than the trigonometric functions.
Likewise inmechanics, to solve apparently very simple problems, such as the problem
of a hanging chain, i.e. the shape of the curve adopted by a chain of uniform linear
density when suspended by its two ends and subject to the force of gravity alone,
the pendulum, or the shape of a uniform elastic rod when curved (elastica problem),
mathematicians had to solve specific differential equations or variational problems,
which were what they were and which turned out to involve astonishing internal
complexity. Newton’s law of gravitation is expressed by an extremely simple second-
order differential equation, but in most cases, when the relevant forces are fed in, it
becomes a specific differential equation whose solutions have nothing simple about
them at all. The complexity of the solutions often makes them quite inaccessible, as
illustrated by the n-body problem.

The emergence of complexity is in fact perfectly commonplace, and we shall
return to this in the second volume. It is often due to the fact that the integration of
a differential equation involves iterating the infinitesimal generator of the equation.
But the iteration of operations generally leads to a great deal of complexity, even if
these operations are very simple. Fractals provide us with many examples.
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2.6 Mathematical Structures and Biophysical Data

For our investigation of neurophysiology, we should like to return to the spirit of the
pioneers of the seventeenth and eighteenth centuries, such as Euler and Lagrange,
in their investigation of mechanics. Indeed, there is really no reason why ‘calcula-
tion’ of perceptual geometry by the visual cortex should be simpler and less subtle
mathematically than the calculation of the arc of an ellipse, the hanging chain, the
pendulum, or the elastic rod. Empirical phenomena have to be taken as they are. The
important thing is to model them correctly, and it is perfectly understandable that, in
order to do that, we must appeal to somewhat elaborate mathematics.

However, we are fully aware that we may convince neither the neurocognitivists
nor the mathematicians, because we know from experience that the transition from
‘neither, nor’ to ‘both, and’ can be a difficult one. As soon as we leave the field of
physics, whose practitioners have been making mathematical models of empirical
reality for centuries, we find a ‘gap’, often even a ‘gulf’, and not only theoretical, but
institutionalized, between mathematical structures and empirical observations (here
neurophysiological). Experimenters tend to want to preserve the full complexity of
the data they have acquired using highly sophisticated equipment and thus tend to pre-
fer computer simulations rather than formal models which always simplify the data
in order to extract structural properties. The computational programs ‘Blue Brain’
and ‘Human Brain’, to be discussed in Sect. 4.3.1 of Chap.4, are good examples.
And this mistrust on the part of experimental neuroscience will find little to coun-
terbalance it from the mathematicians because, as one might imagine, many of these
will only see in these models elementary special cases of structures they have long
been perfectly familiar with, even though they may be considered insurmountably
difficult to grasp by their neurocognitivist colleagues.

But we shall nevertheless take this risk, making the optimistic hypothesis that
some readers will feel that, as far as the neuroscience of vision and neural genesis of
perceived space are concerned, the gap between mathematics and experimentation
is actually less difficult to negotiate than one might think.

In fact, we consider neurogeometry to be intrinsically cross-disciplinary, that is
intrinsically involving many different disciplines, something forced upon us by the
very nature of the phenomena it seeks to theorize, but with the long-term aim of
becoming a discipline in its own right. Until now, the basis of neuromathematical
projects has consisted above all of (ordinary or partial) differential equations for
neural activity. Our purposewill be to introducemore abstract methods of differential
geometry.

So let us stress that we shall therefore concentrate on geometric models. On the
other hand, this will not prevent us from giving a glimpse of other methods when
the opportunity arises. In this way, the reader will get a better idea of the wealth and
diversity of neuroscience models.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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2.7 Levels of Investigation: Micro, Meso, and Macro

Another potential problem here is the sheer breadth of the topics treated here. Of
course, we shall focus on modelling the functional architecture of the primary visual
areas and in particular V 1. But despite the apparently rather limited nature of the sub-
ject, we shall nevertheless only discuss a very small part of it. It is easy to understand
why. To begin with, we shall only be dealing with the so-called functional, integra-
tive, and computational neurosciences, and apart from the discussion in Sect. 5.12 of
Chap.5 which we shall explain when the time comes, we shall not be concerned with
any aspect of molecular biology or genetics. This said there are still three levels of
investigation for the purpose at hand: those ofmicroneurophysiology,mesogeometry,
and macrodynamics. These will receive differing amounts of attention.

For instance, one of our basic experimental inputs (see Sect. 4.3 of Chap.4) will
be the fact that the single neurons in V 1 detect a retinal position a = (x, y) and a
preferred orientation p at a, although naturally at a certain scale. The data (a, p)

is called a contact element in differential geometry, and we shall thus consider the
single neurons of V 1 as filters extracting contact elements from the optical signal.
But just this simple claim is the subject of a huge experimental effort. For example,
one needs to compare the situations for different species and take into account the
fact that, in these results, neurons are treated as linear filters acting on stimuli reduced
to single bars (simulating the edge of an object) or systems of parallel bars in motion
(drifting gratings),while it is clear that there are significant nonlinearities and also that
natural stimuli may have very different structures.9 One must also take into account
the fact that the imaging techniques used do not have sufficient spatial resolution to
distinguish individual neurons,10 whence one is in fact dealing with local averages
over small groups of neurons, and a piece of geometric data like a contact element
(a, p) reflects an average of the underlying activity. The geometric quantity we refer
to as a ‘contact element’ thus represents a mesoscopic entity when compared with
the microscopic level of individual neurons.

One consequence of this choice of a mesoscopic level for neurogeometry is that
what we shall call a ‘neuron’ will actually be a small patch of neurons, and we shall
thus say little about true elementary neural circuits. There is an extensive literature
on this subject and some sophisticated engineering, but we shall only refer to it from
time to time.

It should also be noted that even a very high resolutionwould not remove the prob-
lem of levels. Indeed, the neural code is a population coding, where each elementary
operation activates a large number of neurons. A ‘high-resolution’ neurogeometry
that was truly microscopic would therefore have to be based on the tools of stochastic
differential geometry, something pointed out by specialists such as David Mumford,
Jack Cowan, and Daniel Bennequin. So let us stress once again that the neurogeome-
try developed here will idealize things by sticking to a mesoscopic level. The global

9See, for example, Marre [21].
10However, in Sect. 4.7.3 of Chap.4, we shall discuss the latest methods of two-photon confocal
microscopy, which can in fact distinguish individual neurons.

http://dx.doi.org/10.1007/978-3-319-65591-8_5
http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_4
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structures, processes, and dynamics that we shall study will thus be based on gluing
together mesoscopic geometric elements.

All the various aspects of the microlevel are currently the subject of ever more
highly specialized studies. What this means is that, while our neurogeometric meso-
models are mathematically rather sophisticated, they concern only a very limited part
of what contemporary neuroscience can teach us, and in a highly simplified way, so
they are only a first step into this new field. What we would like to advocate in neu-
roscience is mainly the geometric framework, which seems relevant and natural for
the mathematical modelling of functional architectures.

2.8 The Context of Cognitive Science

As we have rather briefly specified above, this book is about the problem of mod-
elling in cognitive science, that is in the natural science of cognitive faculties and
mental activities. Let us therefore say a fewwords about this context.11 The cognitive
sciences bring together all the various disciplines that tackle the question of human,
animal, and artificial intelligence, starting with the underlying neurobiological sub-
strate, its embodiment, that is the relationship between mental activity and the body
apart from just the neural aspects, and its relationship also with the emotions, but
going on to include its formal and mathematical structure (there are many different
types of model in cognitive science), its computer simulations, and its linguistic,
psychological, and social realizations.

The different areas of research in the cognitive sciences, specifically perception,
action, reasoning, and language, are carried out with an endogenous, intrinsic, and
unified ‘polyscientific’ approach, whose cross-disciplinary nature is imposed by the
subjects of study and combines statistical physics, differential geometry, cognitive,
computational, and integrative neuroscience, cognitive psychology, artificial intel-
ligence, logic, linguistics, philosophy, and the social sciences. Biological evolution
has produced an amazing biochemical machine, the brain, with intellectual, men-
tal, and symbolic capacities. In a few tenths, or even hundredths of a second, this
machine can recognize a complex visual shape, calculate the sequence of instructions
required by the muscles to catch a ball in flight, or decode an acoustic message by
identifying the words and their meaning. It includes a whole range of processing
levels, from low-level peripheral sensory processing, such as retinal processing of an
optical signal, to high-level central abstract symbolic processing, such as judgement
and inference, or aesthetic assessment.

The aim of cognitive science is thus to explainmental phenomena—be they states,
entities, structures, events, or processes—in a strictly naturalistic and causal way.
These are the problems which, by definition, have long been studied by physiology
and psychology. They have also been the subject of extensive and rigorous conceptual

11There are many excellent introductory Websites to find out about cognitive science, such as The
MIT Encyclopedia of the Cognitive Sciences [22].
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analysis by philosophers from Aristotle to Descartes, Hume, Locke, Leibniz, Kant,
and many others, who have reflected upon the nature of ‘ideas’, ‘human understand-
ing’, and ‘mental faculties’. As a science of the ‘mind’, the cognitive sciences are
thus by definition natural sciences, bringing with them a vast philosophical legacy.
The novel aspect of the current scientific situation is, on the one hand, the remarkable
harvest of results obtained over the past few decades in neuroscience and, in par-
ticular in brain imaging, and, on the other hand, the integration of theoretical work
on cognition, not just in the natural sciences, statistical physics, and biochemistry,
but also in the formal sciences of geometry, logic, and theoretical computing. What
is more, insofar as the cognitive sciences also concern artificial cognition, they are
now inseparable from information processing systems and methods for analyzing
and synthesizing image and sound, not to mention artificial intelligence (AI) and
robotics.

We therefore stress once more that the cross-disciplinary nature of cognitive sci-
ence is intrinsic and endogenous: it is imposed by the very nature of the entities,
structures, and mental processes it investigates. An ability such as the perception
of objects in three-dimensional space on the basis of ‘pixellated’ two-dimensional
retinal data can be studied on a formal level (to identify the mathematical and formal
features of the problem of constituting objects bounded by edges and filled with
perceived qualities), on a behavioural level (studying the computational procedures,
i.e. processes of integration, recognition, inference, and interpretation), and on the
level of the biological substrate (investigation of neurophysiological mechanisms).
This ability thus involves several levels of integration in both space and time.

The cognitive sciences treat all thesemental phenomena a priori as a broad class of
natural phenomena. They do for thementalwhat biology has been doing for the living
since the nineteenth century. Consequently, their status depends on thewaywe extend
the concept of ‘nature’. If we understand ‘nature’ in the narrow (strictly physicalist)
sense, this leads to a reductionist or ‘eliminativist’ understanding of the mental. But
if ‘nature’ is taken in a broader sense, we arrive at an ‘emergentist’ understanding
of the mental, e.g. emergence of macrostructures from microinteractions in complex
systems, as in thermodynamics and sociology. But whichever option is chosen, the
approach will be naturalistic and monistic, rejecting any Cartesian form of dualism
between mind and body (two substances).

The term ‘natural sciences’ also includes mathematical modelling, computer sim-
ulation, and an experimental approach. Cognitive science has become a new frontier
in the contemporary hard technosciences, with considerable technological spin-offs
(neural networks, robotics, hybrid natural–artificial systems, and so on). The effect
has been to completely break down the conventional boundaries between the physical
and mathematical sciences, the biological sciences, and the social sciences. Thanks
to what are now called the convergent technologies, the physical, the biological, and
the mental come together into a unified understanding of complexity in nature.

This naturalization of all that is mental—and at the end of the day, that means
also consciousness, intentionality, and meaning—brings with it formidable episte-
mological challenges, and it will thus be impossible to develop the cognitive sciences
without facing up to a whole set of problems relating to the theory of knowledge.
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2.9 Complex Systems and the Physics of the Mental

As ‘hard’ technosciences, the cognitive sciences are inextricably related to the study
of complexity and derive from the intellectual environment that came into being in
the 1940 to 50s, so admirably exemplified by exceptional scholars such as John von
Neumann, Norbert Wiener, Warren McCulloch, and Walter Pitts. They belong to the
movement that saw the joint emergence of the theories, techniques, and methods
of computers, neural networks, cellular automata, information processing, and self-
organizing, self-regulating complex systems.12 After several decades of progress in
constant interaction with neuroscience, cognitive psychology, linguistics, and certain
approaches to economics, these activities are now mature enough to justify referring
to them as a ‘science’.

This is part of a deep trend. There has been a gradual development of mathe-
matical physics to treat the organizational complexity of material systems and the
emergence of patterns and shapes, but also cognitive activities as ‘unphysical’ as con-
ceptual categorization and learning. We began by understanding how shapes could
‘emerge’ and ‘self-organize’ in a stable manner on the macroscopic scale as causal
consequences of complex interactions on the microscopic scale. Collective micro-
physical phenomena, both cooperative and competitive, provide the causal origin of
joint behaviour on a macroscopic level which can break the homogeneity of a sub-
strate. The classic physical example is provided by critical phenomena like phase
transitions. It was then realized that neural networks are the same kind of system, but
in which emergent shapes and structures can be interpreted as cognitive processes.

If rather similarmodels crop up in rather disparate fields of empirical investigation,
this is because complex systems possess certain relatively universal properties.13 By
definition, these are large systems of interacting elementary units with emergent
global macroscopic properties arising from cooperative or competitive collective
interactions between these units. These systems contrast with classical deterministic
mechanical systems in the following ways:

• They are singular and individuated, largely contingent, not concretely determin-
istic, even when they are ideally so: they are sensitive to tiny variations in their
control parameters, a sensitivity that can induce divergence effects.

• They are historical products, resulting from processes of evolution and adaptation.

12For an introduction to this scientific revolution, the reader is referred to the reflections of Dupuy
[23].
13This is actually a common theme throughout the history of science. FromGalileo and Newton, we
learnt that types of motion as apparently disparate as ‘sublunar’ ballistic motions and ‘superlunar’
celestial motions could be understood using a single mathematical theory, the universal theory of
gravitation. This formal similarity between empirical areas hitherto considered to be ontologically
incommensurable was once culturally traumatic, but it eventually became commonplace in science.
The same can be said here. For example, the fact that neural networks carrying out cognitive
operations of categorization are formally analogous to spin glasses may look quite bewildering,
given the gulf that separates these two ontologically incommensurable areas. But it is already a
scientific commonplace for the young generation.
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• They are out of equilibrium and have an internal regulation that keeps them within
their range of viability.

They have little to do with classical mechanistic determinism. They are ana-
lyzed using new physical and mathematical theories and a computational approach
making heavy use of computer simulation. The role of nonlinear dynamical systems
(attractors, structural stability properties, andbifurcations), chaos theory, fractals, sta-
tistical physics (renormalization group), self-organized criticality, algorithmic com-
plexity, genetic algorithms, and cellular automata has become key to understanding
their statistical and computational properties. In short, through the engineering of
self-organized, non-hierarchical, distributed, and acentered artificial systems, we
are beginning to be able to model and simulate reasonably well biological systems
(immunological systems, neural networks, evolutionary processes), ecological sys-
tems, cognitive systems, social systems, and economic systems.

2.10 The Philosophical Problem of Cognitive Science

Cognitive science canbe approached in apurely operational and instrumentalway, but
its development nevertheless raises many issues on the philosophical level because,
as we have just seen, it questions the traditional dividing line between the science of
nature and the science of mind. To be more specific here, let us return for a moment
to certain epistemological basics.

In the formalization of the so-called exact sciences, there is a lot more than, on
the one hand, the processing of empirical data using universally applicable methods
such as statistics, factor analysis, principal component analysis, data mining and,
on the other hand, the axiomatization of theoretical concepts. These two types of
formalization also exist in the social sciences and involve general methods that are
independent of the source of the data and the kinds of things towhich they are applied.

But in the physical sciences, there is also modelling in a stronger sense which is
of a quite different kind. For this modelling in the strong sense, methods are specific
to the theoretical conceptualization of a particular kind of object and can be used
to reconstruct the phenomena in some real field from its constitutive theoretical
concepts. Mathematical physics is able to reconstruct the whole diversity of physical
phenomena from its theoretical concepts. This completely changes the status and
function of concepts. We no longer subsume empirical diversity by abstraction under
the unity of theoretical categories and concepts. Rather, concepts are transformed
into algorithms for reconstructing the diversity of phenomena. Put another way,
conceptual analysis is converted into a computational synthesis.

At the present time, the ideal of a computational synthesis of phenomena has
only really been achieved in physics, which is restricted to a very narrow and highly
constrained region of empirical reality. Huge regions of phenomena have been left
outside the reconstruction zone, even though a fair number of these regions have
been studied in detail by many empirical and descriptive disciplines. Here, we may
cite:
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• The whole macroscopic organizational and morphological complexity of material
systems.

• All cognitive operations, including categorization, inference, induction, learning.
• The whole semiotic and linguistic dimension of meaning.
• And in fact anything having to do with phenomenality itself as a process of phe-
nomenalization of an underlying physical objectivity.

In otherwords, it is only by restricting phenomenal reality to itsmost elementary form
(essentially, the trajectories of material bodies, fluids, particles, and fields) that we
have been able to carry through the programme of reconstruction and computational
synthesis. For the other classes of phenomena, this project has long come up against
unsurmountable epistemological obstacles.

At this point, it was taken as self-evident that there was an unavoidable scission
between phenomenology (being as it appears to us in the perceived world and the
cognitive faculties that process it) and physics (the objective being of the material
world). However, we may say that it is not so much self-evident as a straightforward
prejudice. In any case, this disjunction transformed the perceived world into a world
of subjective-relative appearances—mental projections—with no objective content
and belonging to psychology. Beyond psychology, the most that could be attributed
to these appearances in the way of objectivity was a logical form of objectivity to
be found in the theories of meaning and mental contents, from Bolzano and Frege,
Husserl and Russell, to contemporary analytical philosophy.

We may say that the current work aims to go beyond this scission by develop-
ing a mathematical neurophysics of the phenomenology of the perceived world and
common sense. The neurogeometry of vision presented here will be one aspect of
this.

2.11 Some Examples

To end this introduction, let us mention some of the most striking examples of
perfectly intuitive but theoretically problematic perceptual features that we shall
attempt to understand.

2.11.1 The Gestalt Concept of Good Continuation

Figure2.2 shows small aligned segments against a background of random distrac-
tors.14 The alignment seems to jump out at us, and indeed, this is typical of what is
known as a ‘pop out’ phenomenon. It results from ‘binding’ and integration of local
information into a global structure. Psychophysical experiments have shown that it

14These are Gabor patches, not geometric segments, as we shall explain.
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Fig. 2.2 Example of ‘good
continuation’. From Hess et
al. [24]

is indeed the global alignment that causes this effect. But what is the meaning of a
global alignment on the neural level? For each of us conscious sentient beings, it is
trivially and immediately obvious from the perceptual point of view. But each neuron
only filters a tiny part of the visual field. There is no homunculus in the brain. There
is no ‘ghost in the machine’, and the perceptual consciousness of a given individual
is precisely the great mystery that we would like to explain. On the neural level,
the Gestalt principle of ‘good continuation’, which asserts that alignment will be
perceptually prominent, can thus be taken to identify a formidable problem.

2.11.2 Kanizsa’s Illusory Contours

Figure2.3 shows an example of a still more spectacular phenomenon. The red sectors
of the concentric grey rings specify the boundary conditions generating the illusory
(or subjective) contours which constitute one of the most enigmatic manifestations
of the Gestalt properties of completion of missing sensory data. Furthermore, a pink-
tinted square emerges from this configuration (neon or watercolour effect), showing
that not only does the visual system construct long-range contours that do not exist
in the sensory stimulus, but these hallucinated contours can serve as the edges for a
colour-spreading process that is just as much a hallucination.

The transition from local to global works over a very long range here on the
neural length scale, and this is why these phenomena have always been considered
so particularly enigmatic.
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Fig. 2.3 Example of a
Kanizsa style illusory
contour with a neon effect

2.11.3 Entoptic Phenomena

Our third example is the even more surprising case of visual hallucinations in which
there is absolutely no stimulus, while the percept is richly structured from the geo-
metric standpoint. Some of these purely geometric hallucinations relating towhat has
been called ‘entoptic vision’ were already classified long ago by Heinrich Klüver,
who first brought Gestalt theory to the USA. Figure2.4 shows some examples of
these visual patterns perceived under the influence of mezcal. It also shows some
neurogeometric models with a remarkable empirical fit which are due in particular
to Paul Bressloff, Jack Cowan, Martin Golubitsky (see Bressloff et al. [25]) and will
be discussed further in the second volume.

Fig. 2.4 Left I, II, III, IV:Visual hallucinations observed byKlüver.Right a, b, c, d: Neurogeometric
models for the Klüver data. See [25] and the second volume
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2.11.4 The Cut Locus

Our last example concerns the cut locus of a figure, also called the generalized
symmetry axis or ‘skeleton’. Following the psychologist Blum [26], Thom [27]
always stressed its fundamental role in perception (see Fig. 2.5).

Once again, imaging can showus the neural reality of the construction of this inner
skeleton, forwhich there is no tracewhatever in the sensory input, the latter consisting
merely of an outer contour. Figures2.6 and 2.7, produced by David Mumford’s
disciple Tai Sing Lee, illustrate the response of a population of simple V 1 neurons,
whose preferred orientation is vertical, to textures with edges specified by opposing
orientations. Up to around 80–100 ms, the early response involves only the local
orientation of the stimulus. Between 100 and 300 ms, the response concerns the
overall perceptual structure and the cut locus appears. These experiments are rather
delicate to carry out, and they are much debated, but the detection of cut loci seems
to be well demonstrated experimentally.

Fig. 2.5 Example of a cut
locus. From Kimia [28]

Fig. 2.6 Response to a stimulus whose form is specified by opposing textural orientations. From
Lee [29]
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Fig. 2.7 Recording of the construction of the cut locus. From Lee [29]

All these examples share the fact that the geometry of the percept is constructed—
Husserl would say ‘constituted’—from sensory data which do not contain it, whence
it must originate somewhere else. Put another way, they all involve subjective
Gestalts. This is indeed why we chose them, because, as claimed by Jancke et al.
[30], these subjective global structures ‘reveal fundamental principles of cortical
processing’, the kind of principles that interest us here.

The origins of visual perceptual geometry can be found in the functional architec-
ture which implements an immanent geometry, and it is the latter that provides the
focus of neurogeometry. So the time has come to get down to business, by presenting
some neurophysiological data for the receptive profiles and receptive fields of the
visual neurons.
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Chapter 3
Receptive Fields and Profiles, and Wavelet
Analysis

In this chapter, we focus on the ‘ascending’ visual pathways, i.e. from the retina to
the V 1 area or striate cortex, the most occipital area, located around the calcarine
fissure (or calcarine sulcus), and we shall very (too) succinctly summarize the way in
which their neurons can be considered to a first approximation as linear filters acting
on the optical signal.

3.1 Structure of the Retino-Geniculo-Cortical Visual
Pathways

We begin with some orders of magnitude. The human brain contains some 1012

neurons and about 10 times as many glial cells. Neurons are cells measuring a few
µm long (but up to a few hundred µm), with axons that can be very long and very
complicated dendritic trees. There are around 104 synapses per neuron, making a
total of around 1016 synapses, which are either electric (gap junctions) or chemical
(emission of neurotransmitters across the synaptic gaps by specialized vesicles).

It would not be possible here to present the history of neuroscience, even in
a rudimentary way. The interested reader may consult the remarkable Traité du
Cerveau (2006) by Michel Imbert [1]. This explains how, back in the fourth century
BC, Hippocrates declared the brain to be the seat of consciousness, and how in the
third century BC, Herophilos of Chalcedon and Erasistratus of Chios undertook to
describe it. It also explainsmore recent progress, fromDescartes to theEnlightenment
(Diderot, La Métrie, Helvétius) and the pioneering work of the nineteenth and early
twentieth centuries: Paul Broca, the discovery of functional areas (Hughlin Jackson,
Gustav Theodor Fritsch, Eduard Hitzig), the discovery of neurons (Camille Golgi
and SantiagoRamón yCajal), brainmaps, measurement of nerve impulses and action
potentials, synaptic transmission (Charles Sherrington), right up to the formation of
the first neuroscience associations and international programmes in the 1960s.

© Springer International Publishing AG 2017
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Fig. 3.1 Structure of the
retino-geniculo-cortical
visual pathways. From [3]

Neither would it be possible here to present the fine structure of the visual system.
A great deal of information is available from many reliable websites such as [2–
8], but also the books by Imbert [1] and Buser and Imbert [9]. Figure3.1 gives
a rather general idea. The optic nerve fibres from the left and right hemiretinas
(corresponding to the right and left visual hemifields, respectively) come together at
the optic chiasm and lead to the left and right lateral geniculate nucleus, respectively,
and from this thalamic relay, onto the left and right visual areas V 1, respectively. Each
visual hemifield is thus projected onto the contralateral hemisphere, the nerve fibres
from the nasal hemiretina crossing the chiasm and those of the temporal hemiretina
remaining on the ipsilateral side. Transmission of signals from the retina to the lateral
geniculate nucleus takes from 2.5 to 10 ms, and transmission to V 1 from 40 to 60 ms.

Figure3.2 shows that, in mammals, apart from the retino-geniculo-cortical path-
way, there is also a pathway to the superior colliculus which is a subcortical brain
structure, a kind of first step, followed by the pulvinar, providing a route from the
retina that does not lead to V 1 (the striate cortex), but to the extrastriate cortex V 3
and MT (see also Feldheim and O’Leary [11], and see the beginning of Chap. 4 for
the definition of these areas).

The retino-geniculo-cortical pathways comprise two large classes of cells known,
at least in primates, as parvocellular, and magnocellular neurons. To these, we must
add the koniocellular neurons, which project their axons onto the cytochrome oxidase

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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Fig. 3.2 A diagram showing the pathways from the retina to the visual cortex and the superior
colliculus. From Hooks and Chen [10]

Table 3.1 Differences between the two classes of ganglion cells (GCs) of the retina, viz., P/M or
X/Y

Parvocellular neurons (X cells) Magnocellular neurons (Y cells)

Tonic cells: respond

slowly (in∼30ms)

whenever the stimulus is present

Phasic cells: respond

quickly (in∼10 ms) when

the stimulus appears or disappears

Small Large

Thin axons Thick axons

Slow conduction rate

(∼6 m/s)

Fast conduction rate

(∼15 m/s)

Narrow centre,

high centre-to-periphery

gradient (see the next section)

Large centre,

low centre-to-periphery

gradient

High spatial resolution,

low temporal resolution

Low spatial resolution,

high temporal resolution

Sensitive to colour contrast Insensitive to colour contrast

Analysis of spatial contrast

(spatial analysis)

Detection of motion

(temporal analysis)

Calculation of �G ∗ I (see Sect. 3.3.4) Calculation of ∂(�G ∗ I )/∂t

Linear summation Nonlinear summation
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Fig. 3.3 Layered structure of the right lateral geniculate nucleus which receives the projections of
the two right hemiretinas, i.e. the two left visual hemifields. We can see how ocular dominance is
distributed: the left (contralateral) eye sends signals to layers 1, 4, and 6, and the right (ipsilateral)
eye to layers 2, 3, and 5. We can also see how the parvocellular and magnocellular pathways are
distributed: 1 and 2 for the magnocellular pathways, 4 and 3, 6 and 5 for the parvocellular pathways.
From [3]



3.1 Structure of the Retino-Geniculo-Cortical Visual Pathways 49

Fig. 3.4 From V 1, the magnocellular and parvocellular pathways split into the ‘Where pathway’
and the ‘What pathway’. From Wikipedia, Visual Cortex

blobs processing colour in V 1. In cats, the P/M/K cells correspond to the X/Y/W cells
(see Shapley and Perry [12]), although there is still some debate about this homology.
Table3.1 shows themain differences between the two classes of ganglion cells (GCs)
of the retina, viz., P/M or X/Y, corresponding to about 80% and 10%, respectively,
of all the cells.

The parvo- and magnocellular pathways are finely distributed through the layers
of the lateral geniculate nucleus, as shown in Fig. 3.3. For example, for the right LGN,
the left (contralateral) eye sends signals to layers 1, 4, and 6 and the right (ipsilateral)
eye to layers 2, 3, and 5, while the magnocellular pathways lead to layers 1 and 2
and the parvocellular pathways to layers 4 and 3, 6 and 5.

From V 1, the magno- and parvocellular pathways split, one—called the dorsal
stream—going up to the parietal areas for motion, close to those for motor functions,
the other—the ventral stream—going to the temporal areas for shape recognition,
close to those for language. Ungerleider and Mishkin [13] called the first (magno)
the ‘Where’ pathway and the second (parvo) the ‘What’ pathway (see Fig. 3.4).1 The
‘Where pathway’ or ‘dorsal stream’ goes from V 1 to V 2 and V 5 (MT ), while the
‘What pathway’ or ‘ventral stream’ goes from V 1 to V 2, V 4, and I T (inferior tem-
poral area) which are no longer retinotopic. We shall discuss these areas in Chap. 5.

1Note that these are Aristotelian categories. We shall return to this philosophical aspect in the
conclusion of the second volume.

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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3.2 Receptive Fields and Receptive Profiles

Let us now discuss some basic neurophysiological concepts and some related exper-
iments, involving new experimental techniques that can observe the activity of the
micromodules taking part in visual processes, even though the results are still hard
to interpret given that the resolution is only a few hundred neurons, each containing
hundreds or even thousands of synapses. The first concept required to understand
how, even at the very lowest levels, the visual system formats the optical signal is
the concept of receptive field (RF).

3.2.1 Structure of the Retina

From the earliest sensorial and peripheral level of the ganglion cells in the retina,
which carry out what is known as transduction (neural coding) of the signal by
measuring it and transforming it into neural information that can be exploited by
the central nervous system, the signal is formatted geometrically. At the end of the
nineteenth century, Camillo Golgi (1885), Ramón y Cajal (1892), and others were
already beginning to understand the microanatomy of the retina (see Fig. 3.5).

With a thickness of around 0.25 mm (0.1–0.5mm), apart from the Müller glial
cells, the retina comprises five layers (3 + 2) and even as many as ten if we include
the retinal pigment epithelium (RPE), the bounding membranes, and the layer of
fibres of the optical nerve. The three main layers are as follows:

(i) A layer containing photoreceptors. These constitute the ‘measurement device’
(in the quantum sense) which picks up the photon signal and pixelates it. These
have dimensions of a fewµm and number around 6 × 106 cones and 120 × 106

rods (about twenty times as many) in humans.

Fig. 3.5 One of the first
cross sections of the retina,
by Ramón y Cajal, in 1892
[5]
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(ii) A layer containing bipolar cells which connect the photoreceptors to the third
layer.

(iii) A layer containing ganglion cells (GCs), whose axons are the fibres of the
optical nerve. There are of the order of 1.5 × 106 of these, and the compression
ratio of photoreceptors → GCs, what neurophysiologists call the ‘degree of
convergence’ of the photoreceptors on the GCs, is thus of the order of 100. GCs
can respond to few photons (see Barlow et al. [14]).

These three main layers are joined together by two ‘horizontal’ intermediate layers
known as plexiform layers, one comprising the horizontal cells (the outer plexiform
layer between photoreceptors and bipolar cells, involvedmainly in spatial analysis of
stimuli) and the other comprising amacrine cells (the inner plexiform layer between
the bipolar cells and the ganglion cells, involved mainly in the temporal analysis of
stimuli). Figures3.6, 3.7 and 3.8 show the structure of the retina.

Through the complicated ‘vertical’ and ‘horizontal’ connectivity of these layers,
each GC is joined to a precise domain on the retina (a disk with an area of 0.1–
2mm2 and a visual angle of 0.5–10◦) which is called its receptive field (Fig. 3.9).
This concept was introduced in 1938 by Hartline [15] (Nobel prize 1967).

3.2.2 Neurons and Action Potentials

Since we are concerned here with integrative and functional cognitive neuroscience,
we shall say almost nothing about the fine structure of neurons. However, a certain
minimum will be useful. Figure3.10 shows a typical neuron (a pyramidal neuron in
layer V of V 1) with its soma, nucleus, dendrites, and axon.

The basic signals transmitted through neural networks are action potentials, or
spikes, emitted by the neurons along their axons. Spikes are formed by a universal
process involving the opening and closing of ion channels in cell membranes. The
flowof sodium, potassium, calcium, and chlorine ions (Na+, K+, Ca++, Cl−) through
their specific channels defines a rest potential (RP) V ≈ −75 mV. The membrane is
initially polarized. The respective equilibriumpotentials (EP) of the ions are typically
E PNa+ = +62 mV, E PK+ = −80 mV, E PCa++ = +123 mV, and E PCl− = −65 mV.
A depolarization increases the RP and, when it reaches the threshold −45 mV, the
neuron discharges very quickly (∼1ms), emitting a spikewhich propagates along the
axon with a speed from 0.1 m/s up to many tens of m/s. The discontinuous nature of
the spikes is due to a positive feedback of the depolarization on the opening of theNa+
channels, which are very fast; the RP increases catastrophically to+60 mV (roughly
the EP of Na+). The Na+ channels are subsequently deactivated. But the sudden
large depolarization opens the K+ channels, which are slow, and the membrane
is repolarized, returning to the basic RP value after a period of hyperpolarization
(−85 mV, roughly the EP of K+).
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Fig. 3.6 The 5 layers of the retina. Lumière = Light, Couche des ganglionnaires = Ganglion cell
layer, Couche granuleuse interne = Inner granular layer, Couche des photorécepteurs = Photore-
ceptor layer, Cellule ganglionnaire = Ganglion cell, Cellule amacrine = Amacrine cell, Cellule
bipolaire = Bipolar cell, Cellule horizontale = Horizontal cell, Bâtonnet = Rod, Cône = Cone.
From [2]

In the second volume, we shall return to the mathematical models (FitzHugh–
Nagumo, etc.) of these processes, which derive from the fundamental model of
Hodgkin-Huxley [16].

3.2.3 Structure of the Photoreceptors

The photon flux of the optical signal is converted into action potentials by the photore-
ceptors. This transduction reveals them to be quite remarkable quantum detectors.
Figures3.11 and 3.12 show the structure. There are two main types:
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Fig. 3.7 Cross section of the retina. From [4]

Fig. 3.8 Cross section of the
author’s retina obtained by
Optical Coherence
Tomography (OCT ).
Courtesy of Dr. David Sayag

• The rods are sensitive to low light intensities and black/white contrast. They have
high sensitivity but low definition, and regenerate slowly.

• The cones are sensitive to high light intensities and colour. They have low sensi-
tivity but high definition, and regenerate quickly.

Photoreceptors have two ‘segments’. The outer segment, where the signal is actually
transduced, contains molecules of a photopigment called rhodopsin, inserted into
its phospholipid membrane. It is constituted by a pile of around 2000 discs, each
containing about 40 million rhodopsin molecules.
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Fig. 3.9 Simplified diagram of the receptive field of a ganglion cell. Nerf optique = Optic nerve,
Fibre optique ou axon=Axon,Cellule ganglionnaire=Ganglion cell, Cellule amacrine=Amacrine
cell, Cellules bipolaires = Bipolar cells, Cellules horizontales = Horizontal cells, Photorécepteurs
= Photoreceptors, Pourtour = Periphery, Centre = Centre, Champ rétinien = Retinal field. From
[2]

The rhodopsin molecule, shown in Fig. 3.13, is a protein made from opsin and a
molecule of the chromophore retinal, derived from vitamin A, at the 11-cis position.
In fact, vitamin A in the form of the alcohol group retinol is oxidized to retinaldehyde
or retinal by the enzyme dehydrogenase. This 11-cis retinal gives rhodopsin a very
strong absorption spectrum for visible light in the range 400–600nm, with a peak
around 500nm. It is the variation in the amino acid sequences of the opsins in
the cones, a variation controlled by genes located on the X chromosome (OPN1,
OPN = opsin), which is responsible for the spectral differences between the various
pigments of the long/middle/short (L/M/S) cones.We shall return to this in Sect. 3.2.5.
However, the 11-cis retinal chromophore remains unchanged.

A photoreceptor detects a photon through an isomerization that alters the con-
figuration of the opsin by a cis–trans transition of the retinal, thereby triggering a
cascade of enzyme activity. When the rhodopsin is activated in this way, it binds
to transducin, and this in turn causes the enzyme phosphodiesterase to act on 3–5
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Fig. 3.10 Structure of a typical neuron with its cell body, nucleus, dendrites, and axon. From [6]

Fig. 3.11 Structure of the outer segment of a photoreceptor. From [5]
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Fig. 3.12 Disk structure of a photoreceptor. From [5]

Fig. 3.13 Structure of rhodopsin. From [5]

cyclic guanosinemonophosphate (cGMP). The latter controls the flow of cations into
the outer segment. The Na+, Ca++, and K+ channels are open in darkness and the
voltage across the photoreceptor membrane is −40 mV. Light causes the Na+ and
Ca++ channels of the outer segment to close, and this induces a hyperpolarization
of the photoreceptor membrane, which itself induces a hyperpolarization of the OFF
horizontal and bipolar cells and a depolarization of the ON horizontal and bipolar
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cells. This is followed by a depolarization of the amacrine cells and the ganglion
cells, and hence spike emission in the ON/OFF regions of their receptive profiles.
We shall return to the definition of these ON/OFF regions in Sect. 3.2.6.

The process of disk formation or morphogenesis has been studied in detail. The
discs are formed through the action of an intermediate filament (IF) protein called
peripherin, at the proximal end (the base) of the outer segment, where it is joined to
the inner segment by a connecting cilium (flagellum). The ciliary plasma membrane
transforms into a closed disk from the outer edge: opsin is synthesized in the inner
segment and transferred to the outer segment by the cilium. The growth rate is about
2.5 µm/day in humans. The reader may consult the paper by Arikawa et al. [17].
Figure3.14 shows the development of cones and rods, and also their structure.

In humans, thismorphogenesis can be observed non-invasively in vivo using a very
high resolution OCT and adaptive optics techniques transforming the outer segment
into a kind of ‘biological interferometer’ (see, for example, Jonnal et al. [19]).

At the distal end, the outer segment of a photoreceptor is in contact with the
retinal pigment epithelium (see Fig. 3.7), a tissue containing some 5 million cells,
each acting on several tens of photoreceptors. The pigment epithelium (PE) plays a

Fig. 3.14 a Development of cones and rods. b Their structure. C = cone, R = rod, F = flagellum
(cilium), FM = folds of the ciliary membrane, BB = basal body, PD = presumptive disk, OS =
outer segment, D = disk, OD = oil droplet, Dr = dendrite, EM = ellipsoid mitochondria, IS =
inner segment, P = paraboloid, N = nucleus, S = synapse. From Ruben Adler and Pamela Ray-
mond [18]
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Fig. 3.15 Example of a
ganglion cell, taken from
Helga Kolb et al. [21]

fundamental role, regulating the subretinal medium on the microlevel and carrying
out several functions, as an antioxidant, for the transport and deposit of retinoids
derived from vitamin A, for phagocytosis of discs in the plasma membrane of the
outer segments, and for regenerating the visual pigment rhodopsin. About 10% of
the discs are renewed each day; old ones detach and are phagocyted. Apoptosis of
PE cells occurs in age-related macular degeneration (AMD).

On the genetic level, the development, differentiation, and regulation of pho-
toreceptors are controlled by a network of transcription factors (proteins binding to
specificDNA sequences and controlling the transcription of their genetic information
into mRNA) centred on the Crx gene (cone–rod homeobox containing gene). This
gene contains a homeobox (a DNA sequence involved in regulating morphogenetic
processes) in the Otx family (orthodenticle homeobox gene) (see, for example, Hen-
nig et al. [20]). We shall return to genetic control in Sect. 3.2.5 of this chapter and
Sect. 5.12.4 of Chap.5.

3.2.4 Ganglion Cells

The circuitry of the retina is very subtle. There are 8 different kinds of cones, 3 or 4
kinds of horizontal cells, 9–11 kinds of bipolar cells, and over 23 kinds of amacrine
cells. Regarding the ganglion cells, there are 15–20 kinds (very probably 18), with
different physiological properties, different cortical targets, different dendritic trees
in terms of size, shape, and stratification, and different kinds of connected bipolar and
amacrine cells, with all these differences being controlled genetically. Figure3.15,
taken from the paper [21] by Helga Kolb et al., shows a 500 µm human GC.2

2The paper contains many other examples of retinal cells.

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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As already mentioned earlier, parvocellular (or X ) GCs, which detect spatial
contrasts, act as essentially linear filters, while magnocellular (or Y ) GCs, which
detect movements, are more nonlinear.

Moreover, the GCs have remarkable acuity. As pointed out by Barry Lee et al.
[22, p. 2743]:

[…] a single cell can signal stimulus position within its receptive field to within a fraction
of the centre diameter.

This paper describes physiological experiments on macaques and psychophysical
experiments on humans. One of the protocols consists in flashing edges at 300 ms
intervals, shifting them each time by an increment of � = 36 arcsec to 1.5 arcmin.
Discrimination of the order of 2 arcmin is then observed for GCs and receptive fields
with centre diameters of 14 arcmin and 36 arcmin, respectively.

Regarding transcription factor networks controlling the morphological and func-
tional diversity of the GCs, the reader may refer to the work of Badea et al. [23].
Many GCs express the genes Brn3a and Brn3b in their development. If Brn3a is
not expressed, the dendritic tree is dramatically modified. If Brn3b is not expressed,
manyGCsbecomeamacrine cells or horizontal cells and die; axondevelopment, axon
morphology, path-finding, and target selection become incoherent (see Sect. 5.12.4
of Chap.5).

3.2.5 Retinal Colour Coding Circuitry

Here, we discuss briefly the genetic control of the cone → GC retinal circuitry
involved in colour processing. The photoreceptors are sensitive to wavelengths λ

reflected by objects in a certain interval of a few hundred nanometres in the order
infrared, red, orange, yellow, green, cyan, blue, violet, ultraviolet. The three kinds of
cone of the human being, a trichromatic primate, are L/M/S (many mammals are
dichromatic or have only rods, while certain species of birds and fish are tetrachro-
matic). The class L = long = red have an absorption peak near 565nm and absorb
over a range of about 500–600nm, M = medium = green have an absorption peak
near 535nm and absorb over a range of about 480–580nm, and S = short = blue
have an absorption peak near 420nm and absorb over a range of about 400–440nm.
We can distinguish some 10 million colours, with a discrimination of about 1nm in
the green and yellow and about 10nm in the red and blue.

Since the pioneering work by Jeremy Nathans (see, for example, Nathans
et al. [24]), genetic control has been pretty well understood. The reader may
consult the paper [25] by Jay and Maureen Neitz. In humans, the opsin genes
OPN1LW, OPN1MW, and OPN1SW (see above) controlling the difference between
the long-wave-sensitive (LW ), medium-wave-sensitive (MW ), and short-wave-
sensitive (SW ) cones are located at position Xq28 on the X chromosome for the
LW and MW cones and at position 7q32 on chromosome 7 for the SW cones. The
specialists think that the L/M difference may have arisen in primates from an allelic

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 3.16 The 6 exons of the genes OPN1LW and OPN1MW distinguishing the L/M cones. These
are the white lines separating the introns. The initials of the amino acids and the numbers indicating
their codons are as follows: Y = tyrosine, T = threonine, A = alanine, I = isoleucine, S = serine,
F = phenylalanine. For exon 5, L has Y/277, T/285, Y/309, while M has F/277, A/285, F/309.
The spectral shifts induced by these differences in the amino acids are given in nm. From [25]

diversification of a single gene. Indeed, the L and M opsin genes each have 6 exons,
the first and sixth being identical and the L/M spectral shift being explained essen-
tially by the difference in exon 5. Figure3.16 shows the 6 exons for L/M separating
the introns. Once again, we shall return to these questions in Sect. 5.12.4 of Chap.5.

Genetically controlled in this way, the retinal colour circuitry is rather subtle.
There is a centre/surround opponency in the colour sensitive GCs corresponding to
opposition of colours: these are the opponent cells. In dichromatic species, the basic
opposition is S vs L/M , with L − S3 giving Y (yellow) and S − L giving B (blue).4

Trichromatic species evolved from dichromatic ones by separation of L and M . This
gave M − (S + L) (G = green) cells and L − (S + M) (Y = yellow) cells, both ON
and OFF, with specific circuitry. Figure3.17, taken from Neitz [25], is a schematic
view of the different classes of colour sensitive GCs.5

Figure3.18, also taken from Neitz [25], shows how the various types of cones are
connected to the GCs via the bipolar cells in a trichromatic primate. For example, in
the first column on the left, we see how an S cone (blue) and an M cone (green) can be
involved in an ON-centre M (green) GC with M − (S + L) (green/red) opponency
and an OFF-centre (S + L) (red) GC with (S + L) − M (red/green) opponency.

This kind of work on the retinal circuitry confirms some very early scientific
intuitions, and we can only admire the insight of those responsible for them. As
early as 1802, Thomas Young put forward the idea of three kinds of retinal receptors.
In 1866 Hermann von Helmholtz carried out psychophysical experiments which

3 A − B indicates a colour opposition between the centre and the periphery of the GC.
4Some specialists like Nathans think that the blue/yellow (B/Y ) opposition evolved from single-
celled organisms inwhich it controlled the circadian (day/night) response by signalling large spectral
changes in the sun’s light.
5Even though the names are the same, the colour labels of the cones should not be confused with
those of the GCs. The mechanisms are not the same. The first refer to spectral absorption properties
and the second to circuitry and a receptive field structure.

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 3.17 Different classes of colour sensitive ganglion cells. aDichromatic GCs. The basic oppo-
sition is S vs L , with L − S giving Y and S − L giving B. b Trichromatic GCs. Here L and M are
separated, whence L − (S + M) cells give Y , (S + M) − L cells give B, M − (S + L) cells give
G, and (S + L) − M cells give G. From Neitz [25]

Fig. 3.18 Retinal circuitry connecting the different types of cone to GCs (diamonds) via bipolar
cells (circles) in a trichromatic primate. The various layers of the retina are indicated on the right.
From Neitz [25]

supported this hypothesis and developedwhat has since becomeknown as theYoung–
Helmholtz trichromatic theory. Later, in 1892, Ewald Hering introduced the idea that
there are in fact 4 fundamental colours RGBY, forming two pairs of complementary
colours R/G and B/Y (the opponent process theory). On the philosophical level,
Goethe defended a physiological theory of colours in his famous Farbenlehre of
1810, thus opposing the purely physicalist theory of Newton. We shall return to this
story in the second volume.
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3.2.6 General Receptive Fields and Neural Coding

3.2.6.1 Receptive Fields and Profiles

Given a visual neuron belonging to the retino-geniculo-cortical pathways going from
the retina to the cortex via the thalamic relay of the lateral geniculate nucleus, the
simplest definition of its receptive field is the zone D of the retina to which it is
connected through this highly complicated connectivity. So the neuron can respond
to stimuli inside D by emitting spike trains. It can be shown that there are regions of
the receptive field (RF)—said to be O N—which have positive excitatory response
to pointlike light signals (effectively Dirac deltas, this is a case of impulse response).
Other regions—said to be O F F—have negative inhibitory response. This leads to
the concept of the receptive profile (RP) of a receptive field. The RP is a function
ϕ : D → R defined on the domain D of the RF and representing the response ϕ(x, y)

of the neuron (positive for O N and negative for O F F) to stimulation at the point
(x, y). It can be considered as the transfer function of the neuron treated as a filter. For
GCs in the retina, the spatial O N–O F F centre/surround antagonismwas discovered
by Stephen Kuffler [26]. The classic Fig. 3.19 shows a few examples of RFs.

In fact, the definition of the RF can vary enormously depending on the way we
define the response of a visual neuron. The impulse responses in terms of spike trains
lead to a rather narrow classical concept of RF called the minimal discharge field
(MDF). But since a threshold of the membrane potential must be exceeded in order
to trigger a spike (neurons act like threshold automata), a neuron may have many
subthreshold responses for a given global contextual activity. As shown by Yves
Frégnac (Frégnac [27], Frégnac and Shulz [28], Seriès et al. [29], but see also Maffei
[30], Gilbert [31] and Lamme [32]), the classical concept of RF can thus be refined.
In this section, we shall only consider the MDF, returning to the generalization in
Chap.4 and Sect. 5.3.1 of Chap.5.

The spikes and subthreshold activity of the membranes determine the neural cod-
ing. One coding is based on the frequency of the spikes in the spike trains, referred
to as rate coding. Temporal accuracy needs to be taken into account. For example, it
has been shown (Butts et al. [33]) that the accuracy of the spike trains of cells in the
visual system (retina, LGN, cortex) for white noise stimuli is of millisecond order.
There is lower accuracy for natural images in which the spatial frequency spectrum
is different, but the ratio of the relative accuracy to the time required to process the
stimulus remains roughly constant.

However, there is another kind of coding called rank coding, introduced by Simon
Thorpe and other specialists in this field [34]. The idea arose from experiments on
ultrafast image categorization. For example, we can recognize the image of an animal
when it is flashed for only 20 ms. When we calculate the transfer times involved,
we conclude that only the first few spikes could possibly be involved in the coding,
whence rate codingwould not be plausible here. This leads to the idea of rank coding,
which asserts that this kind of classification is carried out on the basis of the order
of the first spikes. As explained by Thorpe [34]:

http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 3.19 Examples of
receptive fields and profiles.
Upper neuron in the lateral
geniculate nucleus with O N
centre and O F F surround.
A light impulse in the centre
activates the neuron (spike
train), while one in the
surround inhibits it. Centre
V 1 neuron sensitive to a
specific orientation (vertical).
Lower neuron sensitive to
the direction of motion. It
only responds significantly
when the horizontal bars go
down. From [6]

In an attempt to explain this sort of ultra-rapid processing I proposed a novel coding scheme
that uses the order in which cells fire spikes, rather than firing rates, to encode information.
It turns out that using such a code may allow us to recognize objects when as few as 1% of
the neurons in the visual pathways have fired a spike.

3.2.6.2 Receptive Profiles of the Retina and the LGN

Here, we shall say a few words about the structure of the receptive profiles. Highly
developed methods of electrophysiology (see, for example, DeAngelis et al. [35])
have been able to measure the level curves of the RPs of different visual neurons.
Using sinusoidal gratings of light and dark bands and varying the widths, spatial
frequency, orientation, speed, temporal frequency, and size of the bands, the position,
size, and preferred orientation of the RF can be precisely specified. The next step is
to use fast and random series of pointlike or bar-shaped flashes, e.g. lasting 50 ms,
located on a grid, e.g. 20 × 20, at intervals of about 100 ms to 1 s (white noise
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analysis). This produces a few thousand spikes. The correlation between the input
(flashes) and the output (action potentials), possibly with a time delay parameter,
delivers the transfer function of the neuron. This is an astonishing experimental feat
and the results are quite remarkable.

We shall consider two main types of RP. To begin with, it is a standard result of
neurophysiology, already stressed by David Marr at the end of the 1970s, that the
RFs of retinal ganglion cells have RPs that are Laplacians of Gaussians, viz., �G.
The same is true for the cells of the lateral geniculate nucleus (see Figs. 3.20, 3.21
and 3.22).

3.2.6.3 Spatial Receptive Profiles of V1

We now move on from the retina and the LGN to V 1. There are several classes of
visual neurons in V 1 and V 2 (areas 17 and 18, respectively, for the cat):

Fig. 3.20 Receptive profile of an O N -centre cell in the lateral geniculate nucleus. Left Diagram
of the RP with + (O N ) and − (O F F) domains in green and red, respectively. Right Level curves
of the RP. From DeAngelis et al. [35]

Fig. 3.21 The Laplacian of
a Gaussian model �G of a
ganglion cell and an O N cell
of the lateral geniculate
nucleus
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Fig. 3.22 Level curves of a
Laplacian of a Gaussian �G,
to be compared with the
empirical results of Fig. 3.20

1. The so-called ‘simple’ cells have an anisotropic RF elongated in some preferred
orientation. They are sensitive to the position and orientation of an edge or a
grating at rest or in motion. They dominate in layer 4. Since they all have inputs
from the LGN, Hubel andWiesel conjectured that their RPs could be constructed
by ‘converging’ the patterns of LGN receptive fields: if we consider a short row
of O N -centre cells of the LGN whose RFs are aligned and if we couple it with
a parallel row of O F F-centre cells, we obtain the characteristic anisotropy of
simple cells. Other hypotheses, no longer based on converging thalamocortical
afferents, but, e.g. local intracortical excitation, have been investigated (see, e.g.
Somers et al. [36] and Troyer et al. [37]). Computer models of orientation selec-
tivity using afferent and intracortical connections have also been built (see, e.g.
Wörgötter and Koch [38]).

2. The so-called ‘complex’ cells (layers 2, 3, and 5) also respond to edges and grat-
ings, but their RFs are not patterned into antagonistic O N–O F F zones and have
no preferred orientation. They only respond to moving stimuli and are sensitive
to the direction of motion. One way to construct them is to converge the RPs of
simple cells with different preferred orientations.

3. The so-called ‘hypercomplex’ cells are also sensitive to orientation, movement,
and direction, but only respond significantly to edges ending inside their RF. They
thus have an ‘end-stopping’ structure (essential for detecting the ends of edges
and corners). It was originally thought that these only occurred in V 2. However,
Geoffrey Henry, Bogdan Dreher, and Charles Gilbert (a doctoral student of Hubel
andWiesel) discovered them in V 1. In fact, V 1 contains both simple and complex
‘end-stopped’ cells. Apart from the pattern of O N and O F F regions, their RF
has end-zones which inhibit their activity when the stimulus is present there.

There are many computational models for these different classes of cells with
appropriate circuitry. They can be as follows:

(i) ‘Hierarchical’, building the RPs of a higher level by converging the RPs of lower
levels (hierarchical model of convergence of LGN RFs to RFs of simple cells in
layer 4, or the hierarchical model of convergence of simple cell RPs to complex
cell RPs).
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(ii) ‘Parallel’, with complex cells built directly by convergence from patterns with
no preferred orientation of LGN cells, and not from simple cells.

(iii) ‘Recurrent’, taking into account the fact that the complex cells receive most of
their input from other cortical layers, and thus building RPs from intracortical
circuits.

The reader will find a survey in Martinez-Alonso [39] and a discussion of the rela-
tions between the RF properties and the underlying cortical circuitry in Gilbert [40].
However, as already mentioned, we shall not go into the technical details of these
circuits, but focus rather on the structure of the RPs.

The receptive profiles of the simple V 1 neurons most commonly encountered
comprise an O N domain extended in one preferred orientation, with two smaller
O F F domains on either side. A simple idealized model is provided by the second
derivative of a Gaussian, viz., ∂2G/∂x2 (see Fig. 3.23). But since the experimental
data cannot be particularly accurate, they can also be interpreted as Gabor wavelets
(see e.g. [41]). Figure3.24 compares the former, viz.,

ϕ(x, y) = ∂2G

∂x2
, G = exp

[ − (
x2 + y2

) ]
,

with the Gabor wavelet model

ϕ(x, y) = exp(i2x) exp
[ − (

x2 + y2
) ]

(real part) .

There are several neurophysiological schemes for the orientational selectivity of V 1
neurons. They use different combinations of thalamic feedforward signals and intra-
cortical feedback, together with different short-range excitatory and inhibitory con-
nection effects (see, for example, Kayser et al. [42], Carandini et al. [43], Ben-Yishai
et al. [44], McLaughlin et al. [45]). But even though the underlying mechanisms are

Fig. 3.23 Idealized standard receptive profile of a simple V 1 neuron
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Fig. 3.24 Two models of the standard receptive profile of a simple V 1 neuron. Upper Second
derivative of a Gaussian, viz., ϕ(x, y) = ∂2G/∂x2, with G = exp

[ − (
x2 + y2

) ]
. Lower Gabor

wavelet ϕ(x, y) = exp(i2x) exp
[ − (

x2 + y2
) ]

(real part)

still debated, it is nevertheless clear that intracortical connections select a preferred
orientation and eliminate the others. Moreover, this selectivity is acquired very early
in development. In monkeys, orientation discrimination and selection (tuning) are
innate, and in humans, although weak at birth, they are as good as in adults by the
age of 3months.

There are other RPs. For example, Fig. 3.25, produced by Gregory DeAngelis and
coworkers at Berkeley, shows the RP of a simple V 1 neuron comprising two sym-
metric O N/O F F regions extended in a preferred orientation, with smaller O F F
and O N domains on either side. These two types of RPs (a central domain with two
smaller antagonistic domains on either side, or two equivalent antagonistic central
domains with two smaller domains on either side) were found right from the start
by Hubel and Wiesel. Figures3.26 and 3.27 show two models: a third derivative of
a Gaussian, viz.,

ϕ(x, y) = ∂3G

∂x3
, G = exp

[ − (
x2 + y2

) ]
,
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Fig. 3.25 Another receptive profile of a simple V 1 neuron. Left Structure of the RP with + (O N )
and − (O F F) lobes. Right Level curves. From DeAngelis et al. [35]

Fig. 3.26 Model of the RP of a simple V 1 neuron using a third derivative ∂3G/∂x3 of a Gaussian

and a Gabor wavelet model

ϕ(x, y) = exp(i4x) exp
[ − (

x2 + y2
) ]

(imaginary part) .

3.2.6.4 Spatiotemporal Receptive Profiles

If we introduce the correlation delay as a time variable t , we can also measure spatio-
temporal receptive profiles. In these ‘reverse correlation’ techniques, we calculate
the cross-correlation of the spike train of the neuron with a random sequence of
bright and dark bars with an orientation corresponding to the preferred orientation
of the neuron and flashed at different positions in the RF (typically, bars of length
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Fig. 3.27 Model of the RP of a simple V 1 neuron using a Gabor wavelet

15◦, flashed for about twenty ms and at about thirty positions in the RF). Figure3.28
exemplifies for LGN cells.

In general, the spatiotemporal RP has a biphasic time response, i.e. like the first
derivative of a Gaussian, and a centre/surround spatial organization, i.e. like the
second derivative of a Gaussian. The RP is then the third derivative of a Gaussian (see
Figs. 3.29 and 3.30). When bars with sinusoidally modulated luminance are applied
at different positions with a certain frequency and the cell response is recorded, one
can measure its latency. When the latency is low (<100 ms) and the first phase of the
time response dominates, the cell is said to be non-lagged. When the latency is high
(>100 ms) and the second phase dominates, the cell is said to be lagged. The role of
lagged and non-lagged cells is particularly important in the LGN, because it could
explain how orientation selectivity in V 1 is built up from the LGN (see Saul [47]).

The above example is a case of space/time separability, which means that the
O N/O F F regions of the RP do not change position, only intensity, the latter being
uniformly modulated by a temporal profile. In other words, the spatiotemporal RP
ϕ(x, y, t) is a product of the form ϕ(x, y, t) = ϕ(x, y)ψ(t). As already mentioned,
ψ(t) is often biphasic, i.e. like the first derivative of a Gaussian, and profiles like the
one above are obtained from ∂3G/∂x2∂t . However, there are also monophasic cases
ψ(t) = G, and triphasic casesψ(t) = ∂2G/∂t2, the latter given by fourth derivatives
of a Gaussian, viz., ∂4G/∂x2∂t2.

The fit betweenmodels and experimental data can be excellent. For example, there
are neurons in which the spatial profile and the temporal profile are not separable.
When there is non-separability, the O N/O F F regions move, the response of the
surround is delayed relative to the response of the centre, and this means that the
neuron can be motion-selective and detect edge speeds. Figure3.31, taken from
DeAngelis et al. [35], shows the temporal evolution of just such a non-separable
receptive profile. We see here the way the receptive profile of a neuron of this kind
evolves in time. Figure3.32 shows a model using derivatives of a Gaussian. In fact,
it uses a third derivative ∂3G/∂u2∂v, the (x, t) plane being obtained by rotating the
(u, v) plane through π/10. The fit to the data is remarkable.
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Fig. 3.28 Method for calculating a spatiotemporal receptive profile in the case of an LGN cell. Four
cross sections of the RP are represented relative to the space dimension X and the time dimension
T , two of these at constant T and two at constant X . From Cai et al. [46]

Fig. 3.29 Receptive profile of the form ∂3G/∂x2∂t on the (x, t) plane, with y varying as aGaussian
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Fig. 3.30 Empirical level curves of a receptive profile of the form ∂3G/∂x2∂t on the (x, t) plane.
The coordinate x on the horizontal axis is spatial, and the vertical axis represents time, from 0 to
200 ms (time delay). From DeAngelis et al. [35]

Fig. 3.31 Time evolution of a non-separable receptive profile ϕ(x, y, t) for t = 20–220 ms. The
spatial organization of the receptive profile changes, something that does not happen for separable
receptive profiles. Top Spatial profile ϕt (x, y) = ϕ(x, y, t). Bottom Cross section for y = 0. From
DeAngelis et al. [35]

In humans, RPs cannot be measured using such invasive electrophysiological
methods. However, other techniques have been developed since the end of the1990s.
They combine millimetre resolution functional magnetic resonance imaging (fMRI,
introduced in 1990 bySeijiOgawa, seeWandell andWinaver [48])with the properties
of the RFs on a scale of µm. For example, one can put checkerboard stimuli, such as
moving bars, expanding rings, rotating wedges, at different points of the visual field
and then measure the response. This is exemplified in Fig. 3.33, from Dumoulin and
Wandell [49].

As the neurons in a voxel (a 3D pixel) respond to several positions, we are in fact
studying the corresponding population pRF of RFs.6 Visual maps and the sizes of
the pRFs are derived by integrating the data from different stimuli. This inference

6One voxel is typically 2.5 × 2.5 × 3 mm3 in fMRI.
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Fig. 3.32 Gaussian derivative model for the temporal evolution of the receptive profile ϕ(x, y, t) in
Fig. 3.31. Here we have taken ϕ(x, y, t) = ∂3G(u, y, v)/∂u2∂v with the rotation (u, v) = rθ (x, t)
and θ = π/10. Upper Evolution of the spatial profile ϕt (x, y) = ϕ(x, y, t). Centre Cross sections
for y = 0. Lower Receptive profile ϕ(x, 0, t) on the plane (x, t) for y = 0

Fig. 3.33 a–d Checkerboard stimuli used in an experiment to determine RFs in humans by fMRI:
rotating wedges, expanding rings, mean luminance periods, and moving bars. e Rotation cycles of
the wedge in (a): 6 cycles of 24s per run and 8–16 runs per session. f The rotating wedge can be
replaced by grey mean luminance blocks as in (c). g Motion of the bar in (d), with 4 orientations
and 2 opposite directions per run. From [49]
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Fig. 3.34 Two views of a human visual cortex. a Medial. b Lateral. Colours code the sizes of the
local RF populations. The size increases with the eccentricity and the transition from V 1 through
V 2 to V 3. From [49]

amounts to solving the inverse of the following direct problem: starting with the
individual RFs, we consider a Gaussian population of such RFs centred at a point
(x0, y0) with given width σ and calculate its response r(t); we convolute r(t) with a
hemodynamic response function h(t); we obtain a blood oxygenation level dependent
(BOLD) signal p(t) which we assume to be linearly related to the response y(t) of
the fMRI; we fit p(t) to the data y(t) and infer the sizes of the pRFs.

We then check that this non-invasive method agrees well with electrophysiolog-
ical measurements on monkeys, and if so, we can draw conclusions for humans.
Figure3.34, also taken from [49], shows an estimate of the size of the pRFs. In V 1–
V 3, it is 0.5–2◦, and it increases with the eccentricity and the transition from V 1
through V 2 to V 3.

3.3 Visual Neurons as Filters

3.3.1 Gabor Wavelets and Derivatives of Gaussians

There are many discussions about the exact form of the RPs. It was Daugman [50],
then Judson Jones and Palmer [51] who first showed on the basis of detailed and
accurate empirical data that receptive fields and profiles of visual neurons, e.g. the
striated cortex, area 17 of the cat, could be approximated by Gabor filters, i.e. by
trigonometric functions modulated by a Gaussian:

The Gabor function provides a useful and reasonably accurate description of most spatial
aspects of simple receptive fields. [51, p. 1233]
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The motivation for treating RPs as Gabor patches is twofold. To begin with, the
ratio of the scale (the width of the Gaussian) to the spatial frequency, and also the
phase factor, can be varied continuously. We then obtain wavelets associated with
windowed Fourier transforms which are well suited to harmonic analysis on Lie
groups (like the Heisenberg group), and these come into the models of functional
architecture we shall be dealing with in later chapters.

But it is also illuminating to consider Gaussian derivative models. We still obtain
the scale factor and the phase factor, but the spatial frequency is now determined by
the order of differentiation and is thus highly constrained (see Fig. 3.35). In any case,
these two classes of functions have good properties when we seek minimal solutions
to the uncertainty principle. For a quantitative comparison between them, the reader
may consult, for example, the paper by Bloom and Reed [52].

In 1D, the derivatives dn(e−x2/2σ 2
)/dxn are given by the formula

dn

dxn

(
e−x2/2σ 2) = Hn,σ (x)e−x2/2σ 2

, Hn,σ (x) =
(

1

σ
√
2

)n

Hn
(
x/σ

√
2
)

,

where Hn is the n th Hermite polynomial.7 For 2σ 2 = 1, we thus have

dn

dxn

(
e−x2) = Hn(x)e−x2

.

The Hn (x) are given by recurrence H0 (x) = 1, H1 (x) = −2x , and

Fig. 3.35 Successive
derivatives of a Gaussian in
1D, showing how the spatial
frequency is determined by
the order of differentiation

7Readers wishing to experiment with derivatives of Gaussians are referred to the Gaussian Deriv-
ative package of Mathematica, by Bart M. ter Haar Romeny and Markus van Almstick. These
techniques in which derivatives of Gaussians are used as filters have applications in image com-
pression (JPEG). See, for example, the reference books by Mallat [53] or Morgan et al. [54].
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Hn (x) = 2x Hn−1 (x) − 2 (n − 1) Hn−2 (x) .

In particular, H2 (x) = −2
(
2x2 + 1

)
and H3 (x) = 4x

(−2x2 + 1
)
. The Hn (x) are

polynomials of ordern, even for evenn and odd for oddn. The functions Hn (x) e−x2/2

are orthogonal8 in L2 (R) with norm squared 2nn!√π . This gives the orthonormal
system of Hermite functions

ϕn (x) = 1
√
2nn!√π

Hn (x) e−x2/2 .

The ϕn (x) satisfy the differential equation ϕ′′
n (x) + (

2n + 1 − x2
)
ϕn (x) = 0 and

are eigenfunctions of the Fourier transform with eigenvalue (−i)n . Indeed, the gen-
erating function of the Hn (x) is exp

(
2xt − t2

)
, since

e2xt−t2 =
n=∞∑

n=0

Hn (x)
tn

n! .

Multiplying by e−x2/2 and taking the Fourier transform F of the left-hand side, we
obtain

e(2xt−t2−x2/2) =
n=∞∑

n=0

Hn (x) e−x2/2 tn

n! ,

F
(
e(2xt−t2−x2/2)

)
=

n=∞∑

n=0

Hn (k) e−k2/2 (−it)n

n! =
n=∞∑

n=0

F
(

Hn(x)e−x2/2
) tn

n! ,

and hence,
F

(
Hn (x) e−x2/2

)
= (−i)n Hn (k) e−k2/2 .

It was without doubt Richard Young who best analyzed the theoretical interest and
empirical superiority of thesemodels. The readermay refer toYoung [55, 56], where,
following Jan Koenderink, the author stresses that:

The initial stage of processing of receptive fields in the visual cortex approximates a ‘deriv-
ative analyzer’ that is capable of estimating the local spatial and temporal directional deriv-
atives of the intensity profile in the visual environment.

We shall return to this in Sect. 3.3.4.

8For the definition of L2 (R) see below Sect. 3.4. Hn (x) e−x2/2 can be in L2 (R) because e−x2/2

decreases more quickly at infinity than any polynomial can increase there.
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3.3.2 Steerable Filters

One advantage of derivatives of Gaussians is that they can provide steerable filters.
Let us explain what this means. Suppose F is a filter with a preferred orientation and
Fθ the filter derived from F by rotation through an angle θ . Then, F is said to be
steerable if all the Fθ can be obtained by linear combinations, i.e. by interpolation,
from a small number of them, viz., Fθ j , j = 1, . . . , S :

Fθ =
j=S∑

j=1

k j (θ) Fθ j .

This is a big advantage from the computational point of view since convolution is a
linear operation and the filtering of a signal I by Fθ then amounts essentially to the
filtering of I by the Fθ j , since the interpolation coefficients k j (θ) are independent
of I .

For example, if G = e−(x2+y2) is a Gaussian, its first derivative Gθ
1 in the direction

θ is steerable. Indeed,

∂G

∂x
= −2xe−(x2+y2) = G0

1 ,
∂G

∂y
= −2ye−(x2+y2) = Gπ/2

1 ,

and
Gθ

1 = cos (θ) G0
1 + sin (θ) Gπ/2

1 .

Hence, if I is a signal,

Gθ
1 ∗ I = cos (θ) G0

1 ∗ I + sin (θ) Gπ/2
1 ∗ I .

Steerable functions are remarkable, and there aremany theorems characterizing them.
The interested reader may refer, for example, to the classic paper [57] by William
Freeman and Edward Adelson. For example, if F (x, y) written in polar coordinates
F (r, ϕ) has a Fourier expansion of the form

F (r, ϕ) =
n=N∑

n=−N

an(r)einϕ ,

then F is steerable of the form Fθ (x, y) = ∑ j=S
j=1 k j (θ) Fθ j (x, y) if and only if we

have ⎛

⎜⎜
⎜
⎝

1 · · · 1
eiθ1 · · · eiθS

...
. . .

...

eiNθ1 · · · eiNθS

⎞

⎟⎟
⎟
⎠

⎛

⎜
⎝

k1 (θ)
...

kS (θ)

⎞

⎟
⎠ =

⎛

⎜⎜
⎜
⎝

1
eiθ

...

eiNθ

⎞

⎟⎟
⎟
⎠

,
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only the rows of the matrix corresponding to an 
= 0 being taken into account.
For example, if we return to the oriented first derivative G1 of G, we have

G1 (r, ϕ) = −2re−r2 cos(ϕ) = −re−r2
(
eiϕ + e−iϕ)

,

whence N = 1, a0 = 0, only a−1 and a1 are nonzero, and S = 2. We must therefore
solve the equation

(
eiθ1 eiθ2

) (
k1 (θ)

k2 (θ)

)
= eiθ ,

k1 (θ) eiθ1 + k2 (θ) eiθ2 = eiθ = cos (θ) + i sin (θ) ,

giving θ1 = 0, eiθ1 = 1, and k1 (θ) = cos (θ), θ2 = π/2, eiθ2 = i, k2 (θ) = sin (θ).

3.3.3 Linearity Versus Nonlinearity

Visual neurons act on the optical signal like largely linear filters. This is remarkable
since the connections and the spike inputs are highly nonlinear. The great special-
ist Robert Shapley wrote an interesting synopsis of this issue in 2009, in which he
explains that the visual system reconstructs ‘a linearly filtered version of the visual
world’ [58, p. 908]. He begins by observing that, under normal conditions, the ver-
tebrate retinas are highly linear, from the photoreceptors to the GCs, because the
synapses act linearly near the average level of the photon flux. For the rods, this aver-
age level is less than 1 photon, whence these actually act as photon counters. For the
cones, the average level is several photons. If we apply a stimulus with illumination
E (t) given by an average illumination E0 (t) modulated by a sinusoidal term with
temporal frequency f (in cycles/s, i.e. in Hz) and wave number ω = 2π f , so that
E (t) = E0 (t) + E1 (t) cos (ωt), a linear response will have the form

R (t) = L0E0 (t) + L1 (ω) E1 (t) cos
(
ωt + θ (ω)

)
,

andwill thus contain only the first (fundamental) harmonic. A second-order response
will have the form

R (t) = N0E0 (t)2 + 2N0N1 (ω) E0 (t) E1 (t) cos
(
ωt + θ (ω)

)

+N1 (ω)2 E1 (t)2 cos
(
2
(
ωt + θ (ω)

))
,

andwill thus exhibit a second harmonic with wave number 2ω, and so on. Experience
shows that these higher harmonics are very weak. The photoreceptors thus respond
in an essentially linear way.

For GCs, for example in cats, the animal is shown a grating with sinusoidally
varying contrast, i.e. a signal of the form
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Fig. 3.36 Response of an X OFF GC in a cat to a spatially and temporally modulated grating. The
fundamental harmonic is significant, while the second is practically non-existent. Clearly, since the
cell isOFF, the amplitude of the fundamental is maximal (minimal) when a dark (light) band occurs
at the centre of the receptive field. From [58]

I (x, t) = I0 + I1 sin (ϕx + ξ) cos (ωt) ,

where ϕ = 2πk is the wave number corresponding to the spatial frequency k of the
grating (in cycles per degree) and ξ is the spatial phase. The response (spike train)
is then measured to determine its modulation and the amplitude of its harmonics.
Figure3.36 shows that the X cells are linear, because the amplitude of the first
harmonic is significant, while the second harmonic is practically non-existent. We
already pointed out this linearity in Sect. 3.1. However, as can be seen from Fig. 3.37,
the Y cells are nonlinear, with a significant second harmonic. We also pointed out
this nonlinearity in Sect. 3.1.

Regarding the V 1 neurons, we observe that, for the same stimuli, the responses
of simple cells are linear, with a weak second harmonic, and vary with the spatial
phase, whereas those of complex cells have a dominant second harmonic that is
insensitive to the spatial phase. To explain the linearity of the simple cells, Robert
Shapley makes the hypothesis that it is caused by ‘the cancellation of nonlinear LGN
excitation by cortico-cortical inhibition’ [58, p. 916], while the second harmonic of
the LGN cells is eliminated by the second harmonic of the short-range inhibitory
local cortico-cortical connexions. He concludes:

The apparent linearity of response time course and spatial summation are the result of a
balance between nonlinear excitation and nonlinear inhibition. [58, p. 918]
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Fig. 3.37 Response of a Y
OFF GC in a cat to a
spatially and temporally
modulated grating. The
fundamental harmonic not
only is significant, but so also
is the second, which is even
constant, i.e., independent of
the spatial phase. From [58]

3.3.4 Visual Neurons as Convolution Operators

In the context of the linear approximation, which we have just seen to be justified for
the parvocellular GCs and simple cells in V 1, the great advantage of receptive profile
models based on derivatives of Gaussians is that one can do multiscale differential
geometry on the optical signals, despite the fact that the data is noisy and highly
non-differentiable. Indeed, let I (x, y) be the intensity of the optical signal defined
on the domain R of the retina, and ϕ(x, y) the RP, centred on 0 (the centre of R),
of an RF of a certain type of visual neuron. If the RF is centred on (x0, y0), its RP
is ϕ(x − x0, y − y0) and, since the visual neuron acts to a first approximation as a
linear filter on the optical signal, its response is the average of the signal weighted
by ϕ, i.e. the integral

Iϕ(x0, y0) =
∫

D
I (x ′, y′)ϕ(x ′ − x0, y′ − y0)dx ′dy′ .

This is due to the fact that the RP ϕ(x − x0, y − y0) is by definition the impulse
response to a Dirac delta δ(x − x0, y − y0) at (x0, y0), that any signal I (x, y) is a
superposition (integral) of Dirac deltas, and that linearity implies that the response
is the superposition of the responses. Iϕ(x0, y0) is the measure of the signal I at
(x0, y0).

For example, for a receptive profile going as the second derivative of a Gaussian,
as in Fig. 3.23, we can consider the measure it provides of a stimulus in the form
of a thin bar rotating and translating as in Fig. 3.38. Figure3.39 shows that, during
a rotation, the response has a maximum when the bar is aligned with the preferred
orientation of the receptive field, then decreases and almost vanishes when the bar
is perpendicular to this orientation. Fig. 3.40 for its part shows that, if the bar moves
parallel to this preferred orientation, the response is maximal positive when the bar
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is centred on the O N lobe and minimal negative when it is centred on the O F F
lobes. All this is quite intuitive.

If a field of RFs with identical profiles now covers the retina R and measures the
optical signal in parallel, then, in the continuous limit where there exists an RF for
each position (x, y) in R, the response of this global field is the convolution of I
with ϕ, viz.,

Iϕ(x, y) =
∫

D
I (x ′, y′)ϕ(x ′ − x, y′ − y)dx ′dy′ = (I ∗ ϕ)(x, y) .

As suggested by Luc Florack [59], a disciple of Jan Koenderink, a good way to
see things is to treat the signal I (a noisy, hence ‘bad’ function) as a distribution
in the sense of Laurent Schwartz, i.e. a continuous linear functional 〈 I | ϕ〉 on a
space of test functions (C∞ functions with compact support, or fast decreasing in
the case of tempered distributions), and treat the RPs ϕ(x − x0, y − y0), which are
well-localized regular functions, as classes of test functions neurally wired into the
visual system. The measure of the signal I by a neuron with RP ϕ then delivers the
representation 〈 I | ϕ〉 in the sense of distributions.

Now, we know that the Dirac distribution δ is the basic operator for the differential
calculus of distributions, since for any distribution T ,

δ ∗ T = T , δ′ ∗ T = T ′ , δ(m) ∗ T = T (m) ,

where T (m) is the mth derivative of T , and more generally,

Dδ ∗ T = DT ,

for any differential operator D with constant coefficients. It thus suffices to know
what δ becomes from a multiscale point of view in order to give meaning to the
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Fig. 3.38 Thin bar rotating and translating in the receptive field of a simple V 1 neuron
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Fig. 3.39 During a rotation, the response of the simple V 1 neuron has a maximum when the bar
stimulus is aligned with the preferred orientation of the receptive field. It decreases and becomes
negligible when the bar is perpendicular to this orientation

Fig. 3.40 When the bar stimulus moves parallel to the preferred orientation of the simple V 1
neuron, the response is maximal positive when it is centred on the O N lobe and minimal negative
when it is centred on the O F F lobes

concept of scale space (see Florack et al. [60]). In standard scale-space theories, we
take the Gaussians

Gσ = G(x, σ ) = 1√
2πσ

exp

(
− x2

2σ 2

)
.

This Gaussian kernel is the multiscale version of the identity operator. It tells us what
happens to a point on the scale specified by the width σ of Gσ . As the convolution
product Gσ ∗ Gτ = G√

σ 2+τ 2 , the scale composition rule � is σ � τ = √
σ 2 + τ 2.

Put another way, it is the parameter σ 2 which is additive.
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However, since the Gaussian is the heat kernel, it is natural to consider that the
multiscale point of view consists in treating the signal I as the initial condition for a
solution of the heat equation:

(
∂

∂s
�

)
I = 0 (with 2s = σ 2) .

This diffusion equation relates ‘pure geometry’ to its ‘physical’ counterpart (the
multiscale aspect). It expresses the operational constraint of transformation of the
signal into a geometrical observable. It replaces the infinitesimal level by a local
multiscale level, with classical differential geometry corresponding to the ideal case
of a zero scale (infinite resolution).

Given that, if D is a differential operator of order p, we have by definition

〈 DI | ϕ〉 = (−1)p 〈 I | Dϕ〉 ,

we see that the main effect of RPs given by partial derivatives of Gaussians is to
differentiate the signal in the sense of distributions. More precisely, since a Gaussian
G specifies a scale by its width, an RP of the form DG serves to apply the differential
operator D at a certain scale. It is thus multiscale differential geometry that gets
implemented neurally.

This is a really crucial point. If perception is geometrically structured, it is because,
one way or another, the visual system is able to measure derivatives. However, noise
in the signal induces random high-frequency components which render the idea of
differentiation inapplicable. Therefore, the system must first eliminate these high
frequencies by means of a low-pass filter, e.g. smoothing the signal I by convolving
it with aGaussianG, in order to be able to calculate D (I ∗ G). But since D(I ∗ G) =
I ∗ (DG), this is effectively what is done by fields of cells with RP DG. As observed
by Hale [61]:

Convolution of a signal with a Gaussian derivative is equivalent to differentiating that signal
before or after low-pass filtering. This combination of differentiation with Gaussian low-
pass filtering is an efficient way to perform both operations simultaneously. It computes the
derivative of the lower-frequency signal while attenuating higher-frequency noise.

At the end of the 1970s, the great vision specialist Marr [62] was the first to
understand the functionality of the RFs produced by biological evolution. As already
noted, neurophysiologists have long known empirically that retinal ganglion cells
detect spatial contrasts (seeBuser and Imbert [9]). But it was above allMarr (although
we should also mention Ellen Hildreth) who introduced the idea that this was due
to the fact that they carry out a very special kind of convolution, able to extract the
qualitative discontinuities encoded in the signal, discontinuities that he called zero-
crossings. Marr also asserted that the higher levels of visual processing were rooted
in this first level of morphological organization of the retinal image, which he called
the 2D primal sketch. In fact, as we shall see in Sect. 3.4, he had discovered that the
convolution of the signal with RPs of the form�G was effectively awavelet analysis
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Fig. 3.41 Gaussian blurring or smoothing G ∗ I of an image I by Gaussians of increasing width

of the signal, i.e. a spatially localized multiscale Fourier analysis able to extract the
discontinuities.

Let us spell this out. If the RP ϕ(x, y) is a derivative DG of a Gaussian, the classic
formula I ∗ DG = D(I ∗ G) provides a functional interpretation of the filtering
I ∗ DG: it is equivalent to D(I ∗ G), i.e. to application of the differential operator
D to the signal I , smoothed (regularized) on the scale specified by G. Naturally, for
scale 0, we recover the standard derivative DI , since I ∗ Dδ = D(I ∗ δ) = DI .

For example, the ganglion cells in the retina or those in the lateral geniculate
nucleus whose RFs are the Laplacian �G of a Gaussian calculate the Laplacian of
the regularized signal, i.e. �(G ∗ I ) = �G ∗ I . The convolution G ∗ I of I with

G(x, y) = 1

2πσ 2
e−r2/2σ 2

,

where r2 = x2 + y2, corresponds to the smoothing of I by Gaussian blurring (see
Fig. 3.41).

The Laplacian �(G ∗ I ) of this convolution extracts the edges of G ∗ I (see
Fig. 3.42). But since �(G ∗ I ) = �G ∗ I , with

�G(x, y) = − 1

πσ 4

(
1 − r2

2σ 2

)
e−r2/2σ 2

,

edge detection is equivalent9 to convolution of the image I with receptive profiles of
the form�G.We stress the fact that this is an extraction of local edges, i.e. ‘pointlike’
on the scale of G, while our visual system ‘sees’ global edges in Fig. 3.42, because
it automatically integrates these local edges. The local → global integration is not
carried out in the individual neurons of the retina, the LGN, or V 1, but rather, as we
shall see in Chaps. 4 and 5, through the functional architecture of V 1.

9This algorithm can be found today in any image-processing software.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 3.42 Extraction of edges from an image by convolution with receptive profiles in the form of
the Laplacian of a Gaussian

Fig. 3.43 Let f (x) be a differentiable function on R with a ‘discontinuity’ at x0, i.e. a sudden
change in value. At x0, the first derivative f ′(x) has a peak (a Dirac distribution δ, if x0 is a genuine
discontinuity) and the second derivative f ′′(x) has two peaks, one positive and the other negative,
with a zero-crossing between them

The zero-crossing criterion says that, in this context and in one dimension for
simplicity, a discontinuity corresponds to �G ∗ I crossing zero, a crossing which
occurs between two sharp peaks, one positive and one negative. But this is nothing
other than the multiscale version of the well-known dipole structure of the second
derivative δ′′ of the Dirac distribution δ. Figure3.43 illustrates the idea.

3.3.5 Fine Orientation Discrimination

Having said this, since the linear filtering just described is based on RFs with a
certain width, it would not appear to explain the remarkably fine discrimination
of orientations, much more precise than this width. Beaudot and Mullen [63] have
put forward an explanation. Their hypothesis is that the fine discrimination in the
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response of the visual system, based on population coding, should not be confused
with that of the individual RFs, and in fact corresponds to the maximal gradient of
the latter:

Despite their broad orientation tuning, single neurons in the primary visual cortex can reliably
signal orientation differences of about 1 degree and it is the slopes of their tuning curves
and response variability that determine the minimum orientation differences that can elicit
a reliable response change. [63, p. 27]

3.4 Vision and Wavelets

3.4.1 Fourier, Gabor, and Wavelets

As indicated, the mathematical interpretation of the kind of algorithms proposed
by Marr is now provided by the wavelet algorithm. Let us spell this out (in one
dimension) according to the works of Meyer [64] andMallat [65]. We begin with the
conventional Fourier transform. Let L2(R) be the Hilbert space of square-integrable
functions on R, i.e. finite energy signals on R, equipped with the scalar product10

〈 f | g〉 = 1√
2π

∫

R

f (x)g(x)dx .

Harmonic analysis provides a decomposition of each element in f ∈ L2(R) in terms
of an orthonormal basis of trigonometric functions11 eiωx . The decomposition of
f (x) is the Fourier transform (FT) given by

f̂ (ω) = 1√
2π

∫

R

f (x)e−iωxdx = 〈
f (x)| eiωx

〉
.

It can be shown that ̂̂f = f , i.e., that the frequency analysis can give back f by
synthesis:

f (x) = 1√
2π

∫

R

f̂ (ω)eiωxdω = 〈
f̂ (ω)

∣
∣ e−iωx

〉
,

and that the norms ‖ f (x)‖ and
∥∥ f̂ (ω)

∥∥ are equal. In other words, the FT is an
isometry between the Hilbert spaces L2(R)x and L2(R)ω, where the indices x and ω

are the coordinates of the two spaces R of positions and frequencies.
The FT is fundamental largely for the following reason. Consider a linear fil-

ter on L2(R), that is, a continuous linear operator T . The action of T on the

10The signals correspond to real-valued f (x). However, it is convenient also to allow the f (x) to
be complex-valued. f (x) is then the complex conjugate of f (x).
11The eiωx are not actually in this Hilbert space, but we can ignore this well-known technical detail
for our present purposes.



86 3 Receptive Fields and Profiles, and Wavelet Analysis

f (x) ∈ L2(R) (filtering) is calculated from its impulse response, that is, its action
on the Dirac distribution δ(x): ϕ(x) = T (δ(x)). Indeed, by definition of δ, f (x) =∫
R

f (u)δ(x − u)du, i.e. f = f ∗ δ = δ ∗ f , whence δ is the identity for convolution,
and by linearity and continuity

T ( f (x)) =
∫

R

f (u)T (δ(x − u)) du =
∫

R

f (u)ϕ(x − u)du = f ∗ ϕ .

We deduce immediately that the plane waves eiωx are eigenvectors of T . Indeed,

T
(
eiωx

) =
∫

R

ϕ(u)eiω(x−u)du = eiωx
∫

R

ϕ(u)e−iωudu .

The eigenvalue of eiωx is therefore
√
2πϕ̂ (ω). It is thus straightforward to calculate

the action of T . Since f̂ ∗ ϕ = f̂ .ϕ̂, T acts by multiplying the amplitudes f̂ (ω) of
the frequency components eiωx by

√
2πϕ̂ (ω).

The problem raised by the FT is that the spatial information it provides on cues
relating to the position x is delocalized owing to the infinite range of the plane wave
e−iωx . In fact, it is determinate in the frequency space and indeterminate in position
space (compare with the Heisenberg uncertainty relations in quantummechanics). In
order to obtain more localized information processing, the Anglo-Hungarian physi-
cist Dennis Gabor (inventor of holography, Nobel prize in 1971) introduced the
windowed Fourier transform (WFT) or Gabor transform (GT) in the 1940s, inspired
by quantum mechanics:

G f (ω, u) = 1√
2π

∫

R

f (x)g(x − u)e−iωxdx = 〈 f (x)
∣∣gω,u(x)

〉
,

where g is a real spatial window, i.e. g(x) = g(x), which gets translated along the
x axis. The gω,u(x) = eiωx g(x − u) are frequency-space ‘atoms’, more localized in
position than the FT but less in frequency, and G f (ω, u) is a convolution product
since

G f (ω, u) = 1√
2π

f ∗ g̃ω,u , with g̃ω,u (X) = g (X) eiω(X−u) .

The GT is invertible and its inverse transformation is

f (x) = 1

2π

∫

R2
G f (ω, u)g(x − u)eiωxdω du .

It can be shown that ‖ f ‖ = ‖G f ‖ /
√
2π , which means that, up to a multiplicative

constant, the GT is an isometry of the Hilbert spaces L2(R)x and L2(R)ω,u . The GT
is generally redundant, so it is possible to restrict to discrete samples of u and ω.

The problem with the GT is that, even if it localizes the information, it will only
do it at a single level of resolution. If σu is the standard deviation of the window
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Fig. 3.44 Change of scale of
a Laplacian of a Gaussian
wavelet

g(x), i.e.

σ 2
u =

∫

R

x2 |g(x)|2 dx ,

and if σω is the standard deviation of its FT ĝ(ω), i.e.

σ 2
ω =

∫

R

ω2 |̂g(ω)|2dω ,

then the signals f and f̂ are both determined as well as possible with respect to the
resolution cells

[u0 − σu, u0 + σu] × [ω0 − σω, ω0 + σω] ,

but inside these cells, spatial information remains delocalized and diffuse. It is thus
impossible to localize edges on a shorter scale than σu . In particular, if the signal is
multiscale, e.g. fractal, it cannot be correctly analyzed.

This iswhyweneed anFT that is not only localized but also, as for the retina,multi-
scale, and this iswhat is achieved bywavelets. The problem is to find a decomposition
of L2(R) using only a real function ψ(x), i.e. ψ(x) = ψ(x), the mother wavelet,
and its translates ψ(x − u), and changes of scale ψs(x) = √

sψ(sx) or ψs(x) =
ψ (x/s) /

√
s. Yves Meyer, Ingrid Daubechies, and Stéphane Mallat showed that

there exist functions ψ such that, for j, k ∈ Z, the ψ j,k(x) = 2− j/2ψ
(
2− j (x − k)

)

yield an orthonormal basis of L2(R). Figure3.44 shows the example of a Laplacian
of a Gaussian, which does indeed provide a system generating L2(R), although it
exhibits redundance and is not therefore an orthonormal basis. A typical example of
a wavelet is precisely Marr’s wavelet �G.

We then obtain a wavelet transform (WT):

W f (s, u) =
∫

R

f (x)ψs(x − u)dx = 〈 f (x)
∣∣ψs,u(x)

〉
.
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Fig. 3.45 Laplacian of a Gaussianψ(x) = (
1 − x2

)
e−x2/2 in one dimension and its Fourier trans-

form ψ̂(ω) = ω2e−ω2/2. The condition (C) is satisfied because ψ̂(0) = 0 andCψ = ∫
R+

|ψ̂(ω)|2
ω

dω

is equal to
∫
R+ ω3e−ω2

dω = 1/2 < ∞

It is well defined if an admissibility condition (C) is satisfied on the FT ψ̂(ω) of the
mother wavelet ψ(x)

(C) : ψ̂(0) = 0 , Cψ =
∫

R+

∣
∣ψ̂(ω)

∣
∣2

ω
dω < ∞ .

This expresses the fact that the FT of ψ is not only zero but also sufficiently slow-
growing at the origin. This is the case, for example, for the Laplacian of a Gaussian
Marr wavelet �G (see Fig. 3.45). For the WT, the resolution cells are therefore

[
u0 − σu

s
, u0 + σu

s

]
× [ω0 − sσω, ω0 + sσω] .

A theorem due to Jean Morlet and Alex Grossmann says that, up to a constant
multiple, W is an isometry of L2(R)x on L2(R+ × R)s,u . The inverse transform is
given by the following formula, proven long ago by Calderon, well before wavelets
had become relevant to signal and image processing:

f (x) = 1

Cψ

∫

R+

∫

R

W f (s, u)ψs(x − u)ds du .

3.4.2 Wavelets and Group Representation

Here, we comment on something that will become essential in the second volume.
The above wavelets are obtained by making transforms ϕs,u (x) = √

sϕ(s (x − u))

of a function ϕ (x) ∈ L2(R). Note to begin with that ϕ and ϕs,u have the same
norm in L2(R). Indeed, if we consider

∥∥ϕs,u

∥∥2 = ∫
R

s |ϕ(s (x − u))|2 dx , we see
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that by translating x by u, which will not change dx , then doing an enlargement (or
homothety) x ′ = sx , we obtain

∫
R

∣∣ϕ(x ′)
∣∣2 dx ′, which is the square of the norm of ϕ.

Note then that, sinceϕs,u is obtained by acting onϕ on the right by (s, u), we define
a linear operator on L2(R), and also that the composition of two such operators is
given by the composition rule (s, u) · (

s ′, u′) = (
ss ′, u + su′). Now, this can be taken

as the product in a group with identity (1, 0) and inverse (s, u)−1 = (1/s,−u/s),
and this corresponds to the affine group G = R

+ × R. Wavelets are thus associated
with a unitary representation of the affine group G in the Hilbert space L2(R) which
is given by

ρ : G → Aut
(
L2(R)

)

(s, u) �→ ρ(s, u) : ϕ �→ ϕs,u .

3.4.3 Wavelets and Discontinuities

One crucial point is that, as can be seen in Fig. 3.46, the amplitude of the WT is a
privileged indicator of the discontinuities (singularities) encoded in the signal. These
are only implicitly contained in the FT, but become explicit, and hence exploitable,
in the WT. As stressed by Mallat [66, p. 9]:

The ability of the WT to characterize the type of local singularities is a major motivation for
its application to detect the signal sharper variations.12

Figure3.47 shows the quality of the reconstruction of the geometry of a signal by
inverse WT. Only 10% of the information is conserved, and yet the reconstructed
signal is almost indistinguishable from the original one.

3.4.4 Redundancy of Wavelets

There is generally a high level of redundancy in the WT (when there is none, we
speak of orthogonal wavelets). This is expressed in terms of the reproducing kernel,
viz.,

K (s, s ′, u, u′) = 1

Cψ

∫

R

ψs(x − u)ψs ′(x − u′)dx ,

12See also Mallat [53].
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Fig. 3.46 Wavelet transform (WT) of a piecewise constant function using the Morlet wavelet
ψ(x) = (

e2iπx − e−k2/2
)
e−2π2x2/k2 . The abscissa is the space variable x , and the ordinate the

scale k. The figure shows the modulus (left) and the phase (right) of the WT. Values are colour
coded. We see that the coefficients essentially measure the discontinuities in the signal. Image by
Marie Farge

by the formula

W f (s ′, u′) =
∫

R+

∫

R

W f (s, u)K (s, s ′, u, u′)ds du .

For the Marr wavelet ψ = �G, the redundancy is expressed by the heat equation:

∂Ws f

∂t
= �Ws f (t = s2) .

Owing to the redundancy of the WT, one can discretize by sampling the variables u
and ω. For example, by discretizing the scale s, we obtain the discrete WT

W2 j f (x) = 〈 f (x) | ψ2 j ,u(x)〉 .

With the condition
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Fig. 3.47 Quality of the reconstruction of the geometry of a signal by the inverseWT. Top Original
signal. Centre Coefficients of the dyadic WT for a Daubechies wavelet (a sort of Laplacian of a
Gaussianwithout redundancy, giving an orthogonal basis) for five scales from 2 to 25.Bottom Signal
reconstructed by inverse WT from only 10% of the information. From Mallat and Peyré [67]

∑

j∈Z
|ψ̂(2 jω)|2 = 1 , for all ω 
= 0 ,

we obtain
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‖ f ‖2 =
∑

j∈Z
‖W2 j f ‖2 .

In this case, we speak of dyadic wavelets.
In 2D, we introduce preferred orientations and use wavelets looking like the

receptive profiles of simple V 1 cells.

3.4.5 Compression and Geometry

Using transformation tools of this kind, it becomes possible to compress an image in
an intrinsic way, that is, in conformity with its specific geometric structure. In fact,
the image can be reconstructed from its multiscale edges (Marr’s conjecture). The
reconstruction can be extremely faithful because it is based on the morphological
structure of the image. Only the finer details, such as textures, are smoothed out in
this process.

More precisely, if we use the Laplacian �G of a Gaussian G (Marr) or the Lapla-
cian �ϑ of a regularizing function ϑ with compact support (Mallat), we can extract
the qualitative discontinuities using the zero-crossing criterion of the last section. If
we use the gradient of these functions, ∇G or ∇ϑ , as wavelet, we can extract quali-
tative discontinuities by selecting the maxima of the WT. Stéphane Mallat has given
spectacular examples. Figure3.48 shows the maxima of the modulus of the wavelet
transform of a reference image (the face of the model Lena, the image-processing
icon) on a certain scale. By selecting only a few scales and strongly thresholding the
maxima so as to keep only the largest, thereby significantly compressing the image,
the inverse transform nevertheless leads to excellent reconstructions (see Fig. 3.49).

The extraction of discontinuities is so important because those that are stable
under large scale variations can be taken as objective, and in particular, as edges of
external objects.

In short, regardingMarr’s ideas andwavelet analysis, we can say that the compres-
sion of visual information, which is a constraint on information, becomes identified
with a morphological analysis, i.e. a geometrical constraint. The morphological rep-
resentation of images obtained in a bottom-up and data driven way by extraction of
qualitative discontinuities provides a foundation for higher level symbolic represen-
tations. As stressed by Marr [62, p. 67]:

Zero-crossing provides a natural way of moving from an analogue or continuous repre-
sentation like the two-dimensional image intensity values I (x, y) to a discrete, symbolic
representation.

3.4.6 Matching Pursuit and Rank Coding

In someof hiswork, StéphaneMallat introducedmaximal redundancy.He considered
the three-parameter family of space–scale–frequency atoms:
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Fig. 3.48 Wavelet analysis of an image (top left). Top right Modulus of the wavelet transform.
Bottom left Maxima of the modulus. Bottom right Thresholded maxima. From Stéphane Mallat

Fig. 3.49 Reconstruction of the image in Fig. 3.48 by inverse wavelet transform. Left Origi-
nal image. Centre Reconstruction from weakly thresholded maxima. Right Reconstruction from
strongly thresholded maxima (compression by a factor of 32). The geometry of the image is per-
fectly preserved. Only the textures are slightly smoothed. From Stéphane Mallat

D = gγ (x) = gs,u,ω(x) = 1√
s

g

(
x − u

s

)
eiωx ,

where u = position, s = scale, andω = frequency. He then iterated the adaptive algo-
rithm known as matching pursuit, which involves seeking the gγ that best approxi-
mates f :
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Fig. 3.50 Detectors for points of inflection and ‘cross’ singularities in a checkerboard. Left Initial
image with clear edges. Centre Image almost completely hidden by noise. Right Detector response
(white = maximum response) for an appropriate smoothing scale. Top ‘Point of inflection’ singu-
larity. Bottom ‘Cross’ singularity. From Florack [59]

⎧
⎨

⎩

f = 〈 f
∣∣gγ0

〉
gγ0 + R f , with R f orthogonal to gγ0 ,

Rn f = 〈Rn f
∣
∣gγn

〉
gγn + Rn+1 f .

The method can be refined by introducing wavelet packets. Several wavelets are
used in parallel to optimize the choice of decomposition basis to suit the intrinsic
structure of the signal. The fitting criterion is then minimization of the information
entropy.13

The matching pursuit algorithm is analogous to the one known as rank cod-
ing, which was introduced for neurophysiological purposes by Simon Thorpe (see
Sect. 3.2.6). This further strengthens the parallel between the wavelet analysis of
images and optical signal processing by visual neurons.

3.5 Feature Detectors

These methods can easily be used to construct detectors of local geometrical features
that are more complicated than simple straight discontinuities. For example, a corner
detector will pick up high curvatures in edges. The edges are detected by the norm
of the gradient |∇ I | of the signal I . The curvature of an isophote (a level curve of I )
is given by the divergence of the normalized gradient

κ = div

( ∇ I

|∇ I |
)

= 1

|∇ I |
(

�I − H(∇ I,∇ I )

|∇ I |2
)

,

13See, for example, Wickerhauser [68].
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where H is the Hessian14 of I , i.e. the matrix of second derivatives of I with respect
to x and y. Hence, a good corner detector is the invariant κ |∇ I |3. When used in a
multiscale way, we obtain RPs that respond only to those places where the signal
(smoothed byG) has a line of qualitative discontinuitywhich itself has a discontinuity
in its tangent (Florack [59], Hamy [69]). Figure3.50 by Luc Florack shows two
examples of feature detectors: for points of inflection and for ‘cross’ singularities
in a checkerboard pattern. We see that, even when the image is practically totally
hidden in noise, the geometry remains detectable, provided thatwe use an appropriate
smoothing scale.

3.6 Receptive Profiles and Information Theory

3.6.1 Signal Decorrelation and Efficient Coding

3.6.1.1 Models of Decorrelation

Several specialists, such as Joseph Atick and Jean-Pierre Nadal, have shown that the
receptive profiles we have discussed can be recovered from extremely simple general
hypotheses in the context of information theory. This can help us to understand how
evolution might have selected them. They correspond to an information strategy and
design principles that optimize the efficiency with which information is represented:

Efficiency of information representation in the nervous system potentially has evolutionary
advantages. Atick [70, p. 213]

Efficient representations help us to understand the ‘visual vocabulary’ (geometric
features) that can describe the environment in a compact way. Now, the statistics of
natural images is rather particular and not at all Gaussian, because there are very
strong correlations between the pixels, and because of the presence of edges. It is
essential to take this into account because the different possible statistics of the
inputs will affect the spike distribution. For example, Yves Frégnac and coworkers
have studied four different statistics: drifting gratings, dense noise, natural images
with eye movements, and gratings with eye movements. The variability of the spikes
decreases with the complexity of these classes of stimuli, while the accuracy in their
emission times increases.

The pixellated representation in the photoreceptors is thus fundamentally inef-
ficient, because it does not take this into account. It must therefore be made more
efficient. Back in the 1950s to 1960s, Fred Attneave and Horace Barlow suggested
that, in order to be efficient, the neural coding must eliminate as far as possible the
enormous redundancy in the inputs. Put another way, it must compress them. This is
why, as explained by Field in [71], the statistical distributions of natural images must

14Named after Ludwig Otto Hesse.
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play a determining role in the evolutionary explanation of the design of neural hard-
ware. Ecological constraints, in the sense of James Gibson, and priors, in the sense
of Thomas Bayes, are thereby imposed on neural information processes. Regarding
the relations between neurons, the maximization of coding efficiency depends on the
possibility of making the responses of the different neurons statistically independent,
insofar as this can be done, in order that the joint probability of the responses become
the product of the probabilities. However, this is a very hard problem to solve.

The guiding idea is thus to apply some principle for optimizing the information
and suitably decorrelate the signal by eliminating higher and higher order correla-
tions. The simplest example occurs when there is a linear filtering (convolution by a
receptive profile) which compresses the signals I (x) by first decorrelating the spa-
tial autocorrelation R(x1, x2) = 〈I (x1)I (x2)〉.15 Due to homogeneity and isotropy,
the autocorrelation only actually depends on x = x1 − x2, so R(x1, x2) has the form
R(x1, x2) = R(x1 − x2) = R(x). The Fourier transform of R(x) is the power spec-
trum of the signals:

R̂(ω) =
∫

R(x)e−iωxdx .

Now, an examination of natural image statistics shows that these have a power spec-
trum going as 1/ |ω|2 (Field’s law). So let us consider the extreme case where
R̂(ω) = 1/ |ω|2. It corresponds to the fact that the spatial autocorrelation is scale
invariant, in the sense that R (αx) = αR (x). Indeed, by inverse Fourier transform

R(x) =
∫

eiωx

|ω|2 dω ,

so by a change of variable ω = λ/α, we obtain

R(αx) =
∫

eiωαx

|ω|2 dω =
∫

α2eiλx

|λ|2
dλ

α
= αR (x) .

Then, let ϕ(x) be the receptive profile of the given linear filters and let T (I ) (x) =
(I ∗ ϕ) (x) be the result when the signal I has been filtered. The decorrelation means
that

〈
T (I ) (x)T (I ) (x ′)

〉 = δ
(
x − x ′). Now, if we only take into account Field’s law,

we can assume that the images are generated by theGaussian distributionwith covari-
ance matrix R. But then T (I ) is generated by the Gaussian with covariance matrix
T (R) = ϕ ∗ R ∗ ϕ′, where ϕ′(x) = ϕ(−x), and we would like to have T (R) = δ.
Fourier transformed, the equation becomes

T̂ (R)(ω) = ϕ̂(ω)R̂(ω)ϕ̂(ω) = 1 ,

whence |ϕ̂(ω)|2 = 1/R̂(ω), and since R̂(ω) = 1/ |ω|2, we therefore end up with
|ϕ̂(ω)| = |ω|. Since 〈

T (I ) (x)T (I ) (x ′)
〉 = δ

(
x − x ′) implies

∣∣T̂ (I )(ω)
∣∣2 = 1when

15 〈 〉 is the average over signals.
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Fourier transformed, we see that the power spectrum of T (I ) is flat. The decorrela-
tion thus leads to a ‘whitening’ of the signal, obtained by dividing each frequency
component by the square root of its variance and taking the inverse Fourier transform.

While this method is well suited to spectra of the form 1/ |ω|2, it performs very
poorlywith noise, because it amplifies the high frequencies, preciselywhere it already
dominates. The decorrelation must therefore be associated with a smoothing of the
signal to suppress noise. To do this, we may take a filter satisfying

|ϕ̂(ω)|2 = R̂(ω) + N 2

R̂(ω)2
,

where N 2 is the noise power. For N ∼0, we recover the previous filter. However,
for large N , we find |ϕ̂(ω)| ∼ N . To obtain ϕ(x) from |ϕ̂(ω)| by inverse Fourier
transform, we must fix the phase θ (ω) of ϕ̂(ω). This is where it is useful to take the
ϕ(x) even, because we then have ϕ̂(ω) = ϕ̂(−ω), which implies that θ (ω) = 0 or
π .

This is how Atick showed that, if we wish to decorrelate the signal correctly, even
when there is noise, we must use ganglion-cell-type receptive profiles of the form
�G.

Jean-Pierre Nadal and coworkers [72] have gone further with this, not only by
taking into account Field’s law, but also by explicitly considering multiscale edges in
natural image statistics. They have shown that minimizing the redundancy of neural
coding under the constraint of edge detection leads to oriented wavelets.

3.6.1.2 Empirical Decorrelation

It should be noted that decorrelation of neurons like retinal GCs can be tested experi-
mentallywith themethods of information theory. For example, the readermay consult
the work by Nirenberg et al. [73] on the way GCs behave as independent encoders.
The authors show that:

More than 90% of the information about the stimuli can be obtained from the cells when
their correlated firing is ignored.

3.6.2 Receptive Profiles and Natural Images

More generally, we can take very large data bases of natural images and try to
carry out an independent component analysis (ICA, a non-Gaussian version of the
classic factor analysis into principal components, or PCA) of a kind that might be
neurally implemented. We try to obtain components (the RFs of the neurons) which
are both statistically independent and sparse, where sparsity means that, for a given
image, most of the components have a very weak response, and only a very few
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have any significant response. Sparse representations have many advantages. They
provide a compromise between, at one extreme, representations in which almost all
the neurons in the network would be involved in the processing of each stimulus and,
at the other extreme, representations in which, for each stimulus, there would only be
one neuron which responds selectively. They are made up of basic patterns (the RFs
treated as ‘atoms’), these being adapted to the class of stimuli under consideration,
natural images here. They can increase the storage capacity of the network associative
memory without there being interference between the patterns of activity elicited
by the different inputs; they give access to the structure of the stimuli because the
components are themost relevant features; they allow the network to save energy; and
they are easily learnt using Hebbian learning rules. It is useful to recall Hebb’s rule
here: ‘neurons that fire together, wire together’. That is, when neurons are activated
together by the same stimulus, their connections are strengthened.

The problem of finding optimal sparse representations for a class of stimuli is not
an easy one. It can be formulated as follows. Let Σ ⊂ R

P be a class of stimuli I k ,
k = 1, . . . , S = # (Σ) (where #E denotes the cardinality of the set E), these being
images I made up of P = p2 pixels and described by the vectors I = (Ir )r=1,...,P

in the canonical basis of R
P . Note that these are natural images or retinal inputs,

and in the latter case, the pixels are ganglion cell RFs. We would like to find a
‘good dictionary’ Φ of atoms (of RFs) ϕi ∈ R

P , i = 1, . . . , N , providing a ‘good’
decomposition of the I ∈ Σ in the form

I =
i=N∑

i=1

siϕi .

The representation of I ∈ Σ ⊂ R
P by s = (si )i=1,...,N is the code for I relative to

the ‘dictionary’Φ, which is in turn a P × N matrix whose columns are the ϕi ∈ R
P .

In the present case, i.e. the retina and V 1, we have N � P , a situation referred
to as ‘overcompleteness’, because the number of neurons in V 1 is several hundred
orders of magnitude greater than the number of ganglion cells. This means that the ϕi

generate R
P , but then are not at all linearly independent. It is just because of this that

the codes s can be sparse. The space Σ is not at all a vector subspace of R
P because

a linear combination of natural images is not a natural image. It has a complicated
form, and the atoms ϕi are a way to analyze it locally at many points using a kind of
tangent structure.

So how can we find optimal sparse codings? The basic idea is to minimize an
energy of the form

E (I, s) = 1

2
‖I − Φs‖2 + λ

i=N∑

i=1

|si | ,

where the first term is the square of the Euclidean distance between the stimulus I
and its coding Φs and the second term is the L1 norm of the coding. Minimizing the
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Fig. 3.51 Difference
between a normal
distribution (Gaussian) and a
leptokurtic distribution. k is
the excess kurtosis. The
leptokurtic distribution has a
more marked peak and fatter
tail, but a thinner base. From
[74]

first term ensures that the representation Φs will be a good approximation of I and
minimizing the second term ensures that the coding is sparse. If we spell out this
guiding idea algorithmically, we end up with a host of hard problems. The reader is
referred to the papers by Bruno Olshausen and David Field [74] and Karol Gregor
and Yann LeCun [75].

A good coding will reflect the statistical properties of the probability distributions
of the pixels in the natural images. One of these properties is that the distributions
are non-Gaussian, and more precisely, leptokurtic, i.e. more strongly peaked than
Gaussians and with a fat tail or heavy tail, with most of the variance coming from
either very weak or very strong extreme values, rather than fluctuations in intermedi-
ate values. A measure of this non-Gaussian character is the kurtosis, calculated from
the fourth moment by the formula

K =
〈
(Ir − μ)4

〉

(
σ 2

)2 ,

whereμ = 〈Ir 〉 is the expected value of the pixels in the image and σ 2 = 〈
(Ir − μ)2

〉

is the variance. It takes into account the fact that the edges represent sudden jumps,
or ‘catastrophes’, compared with the pixel-to-pixel variations in the image. As
the kurtosis is 3 for Gaussian distributions, we often consider the excess kurtosis
k = K − 3, which is positive for leptokurtic distributions. Figure3.51 shows the dif-
ference between a normal distribution (Gaussian) and a leptokurtic distribution. For
the set Σ of natural images considered here, the kurtosis is the average kurtosis of
the individual images.

As has been shown in a certain number of studies, such as those by Olshausen,
Field, and Simoncelli [74, 76], the basis functions obtained by these methods look
much like the RPs of simple V 1 cells (see Figs. 3.52 and 3.53). We observe the
orientation selectivity of the filters, that they are even, i.e. ϕ (−x) = ϕ (x), with
three lobes, or odd, i.e. ϕ (−x) = −ϕ (x), with four lobes, their ON/OFF property,
their spatial frequency selectivity, and their ability to detect endpoints.
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Fig. 3.52 Basis functions
obtained from large data
bases of natural images.
From [74, 76]

Fig. 3.53 Another example
of basis functions obtained
from large data bases of
natural images
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For further discussion of the models of RFs obtained by this method, the reader
is referred to the paper [77] by Hyvärinen and Hoyer. The images I (x, y) are
treated as linear combinations of RPs ϕi (x, y) with sparse responses si that have
a non-Gaussian distribution, and this gives a discrete version of a convolution
I (x, y) = ∑i=N

i=1 siϕi (x, y). The filters ϕi (x, y) specify a discrete wavelet transfor-
mation which is invertible and can be used to reconstruct the si from si = 〈wi , I 〉 =∑

x,y wi (x, y) I (x, y). By whitening, i.e. elimination of second-order correlations,
wemay assume that the inverse filterswi (x, y) are orthonormal and the si statistically
independent.

What is interesting is that, on top of this first layer of simple cells, the authors
then introduce a second layer of more complicated cells which coordinate the simple
cells locally, showing how their functional architecture also emerges as a principle
of maximization of the ‘sparsity’ of the neural code. Because of their neighbourhood
relations, the simple cells are no longer statistically independent and their responses
si become correlated. We shall return to this point in Sect. 4.4.5 of Chap.4, and in
Sect. 5.6.3 of Chap.5.

3.7 Signal Processing and Geometrical Formatting

We have just seen that one of the central theoretical problems of low-level vision
is to understand how signal processing can also be geometrical formatting. Such
formatting is necessary for the subsequent treatment of the optical signal by higher
level routines, viz., cognitive, symbolic, and inferential.Aswehave seen the difficulty
lies in the fact that the signal is not in itself awell structuredgeometrical object. Itmust
therefore be transformed into a geometrical observable. For a signal, differentiation
operations are not well posed problems. The algorithms of differential geometry
cannot therefore be applied directly. To make differential geometry possible here,
the price to pay is the introduction of a new degree of freedom, viz., scale.

Once we have thoroughly grasped the fact that, after transduction by the photore-
ceptors, the optical signal becomes a geometrical observable as a result of successive
filtering operations which serve as measurement devices, and that the resulting mea-
surements format it geometrically, we can understand the extent to which the objects
of perception are constructed and not simply given. This construction—it would be
better to say constitution—involves in an essential way, not only filtering, but also
the structure of the network of connections between the neural filters, i.e. the cortical
functional architectures.

Let us now move on to this problem, after just one last remark concerning other
types of neurons.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_5
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3.8 Grid Cells and Place Cells

In the rest of the book, we shall focus the discussion mainly on visual neurons
detecting geometrical features such as orientation or curvature. However, many other
types of geometrical ‘calculations’ are carried out by neural modules. For example,
we may cite grid cells and place cells, but also head direction cells in rodents, e.g.
rats, which have been the subject of many studies.

3.8.1 Spatial Navigation

This kind of work comes under the general heading of spatial navigation, a par-
ticularly remarkable sensorimotor feat (i.e. perceptual and locomotor), clearly pre-
sented in the book Le sens du mouvement by Alain Berthoz [78]. For an animal,
navigation involves localization and orientation in space, bringing together a consid-
erable amount of geometric information regarding positions, displacement vectors,
distances, and paths. To achieve this, it must be able to identify and monitor the
positions and orientations (x, y, θ) of its body in a plane [or (x, y, z, θ, ϕ) in space].
There is an important distinction between egocentric and allocentric processing,
which, in geometry, corresponds to the distinction between moving frames and fixed
frames, introduced by Elie Cartan (see Table3.2).

The aim is to understand the computational mechanisms involved in this process-
ing and the way they are implemented by the neurons. The limbic system, and in
particular the hippocampus formemory, the thalamus, the entorhinal cortex (parahip-
pocampal gyrus), and the regions C A1, C A2, C A3, C A4 (cornu ammonis regions),
play a key role here. The animal can encode relative spatial positions by integrating
linear and angular motions along the paths it follows from some initial position.
Many experiments have been carried out on model animals such as rats and mice,
which are able, starting from some point A and reaching some other point B along
an extremely confusing random path, full of loops, to calculate and memorize the
vector

−→
AB. This path integration is quite astonishing. It makes it possible to glue

different locations and orientations together into a single representation. The reader
is referred to the 2006 review by McNaughton et al. [79].

Table 3.2 Egocentric and
allocentric frames

Egocentric processing Allocentric processing

Fixed observer Moving observer

Moving external space Fixed external space

Objects are targets

of action

Subject reorients

relative to landmarks

Cartan geometry:

moving frame

Cartan geometry:

fixed frame
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3.8.2 Place Cells

In 1971, John O’Keefe and John Dostrovsky made the important discovery of the
so-called place cells (PC), a major step forward which deeply changed many studies
on perception and earned J. O’Keefe the Nobel prize in 2014, along with May-Britt
and Edvard Moser, as already mentioned in Sect. 1.1 of the Preface. The first results
were brought together in the book The Hippocampus as a Cognitive Map, published
by O’Keefe and Nadel in 1978 [80] (already discussed in the Introduction).

The exceptional navigation skills of rats are well known. They can find their way
through any labyrinth. (But note that, in these species of rodent, the column structure
of the visual cortex is not very pronounced.) So these rats or mice are released into
a circular arena D, bounded by a little wall, perfectly rotationally symmetric and
without any kind of landmark that would allow the animals to pick out particular
positions. The animal is then left to navigate freely in this homogeneous and isotropic
space. After a certain time, it is noted that certain pyramidal cells in the C A1 of C A3
regions of the hippocampus (especially the dorsal hippocampus) are activated and
fire, emitting several dozen spikes/s, when the animal’s head passes specific places,
and that each of these cells codes a well-defined place, whence the name place cells.
This coding, which is in fact a population coding, constitutes an allocentric location
system. It is stable if the environment remains fixed and it is maintained in darkness.
The places coded by the PCs are distributed fairly homogeneously in the arena D.
The reader may consult the review by Muller [81], and also Muller et al. [82].

The question as to whether the PCs associate some preferred direction with which
the animal crosses the given place is not easy to answer. Clearly, if the arena D is
anisotropic, e.g. star-shaped, the distribution of the angles θ is no longer homoge-
neous and a directionality appears. When D is isotropic, it seems that most of the
PCs, at least those coding positions far from the edge of D, are not directional. But
some are, and they may perhaps be coupled with the head direction cells (see below).
The reader is referred to the study by Muller, Bostock, and Taube [82].

3.8.3 Grid Cells

Thegrid cellswere discovered in 2005 byEdvard andMay-BrittMoser (who received
the 2014Nobel prize with JohnO’Keefe) in the pre- and post-subiculum, the entorhi-
nal cortex (EC), or rather the dorsal EC and the dorsocaudal medial EC, the dorsal
hippocampus, and the posterior parietal cortex of the rat. These are cells that fire
when the animal, confined within an arena D and moving freely along long and
repeated random paths, goes over the vertices of a rather regular triangular lattice Γ

of positions in D. The mesh of the lattice is of the order of 25–30cm in an arena D
measuring 2m across, and it increases along the dorsal–ventral axis. The grid cells
supplement the place cells, which fire when the animal passes at a precise point of D.

http://dx.doi.org/10.1007/978-3-319-65591-8_1


104 3 Receptive Fields and Profiles, and Wavelet Analysis

They constitute topographic maps in which neighbouring grid cells have the same
orientation and the same mesh, but different vertex positions (phases).

The last point is important. The grid cells are mutually coherent. This means
that, idealizing and taking D = R

2, they encode triangular lattices Γa which are
copies of a basic lattice Γ0, translated by vectors a within the mesh of Γ0. To a first
approximation, we may say that they implement the quotient D/Γ (see Fig. 3.54).

The grid cells form an original coordinate system for localization, orientation,
and distance, allowing the animal to ‘calculate’ distances travelled and update its
position. They are checked by means of landmarks, but once established, remain
stable. The reader will find a discussion in the 2005 paper [83] by Hafting et al.
Figure3.55 shows the recording of a grid cell over 30min. The ‘grid’ of positions is
clearly visible.

Figure3.56 by Doeller et al. [84] shows the relationship between the grid (tri-
angular lattice Γ of positions) of a grid cell and the preferred crossing direction θ

Fig. 3.54 Coherence of the
grid cells. The lattices
encoded by the different
cells are translated relative to
one another by vectors lying
within the mesh of the
lattice. Here, we show a
single hexagon of the lattice

Fig. 3.55 Activity of a grid cell monitored for 30min. Left Randomwalk of a rat in a circular arena
and activation clusters (red) of the cell. Centre Rate map showing the firing rate with peaks (red)
and minima (dark blue). Right Spatial autocorrelation of the rate map, from r = −1 (blue), through
r = 0 (green), to r = 1 (red). The triangular lattice of positions is clearly visible. From Hafting et
al. [83]
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Fig. 3.56 Relationship between the triangular lattice Γ of positions of a grid cell (left) and the
preferred crossing direction θ associated with the positions (right). The direction θ = 32◦ (red line
in the left-hand image) is aligned with one of the axes of Γ

associated with the positions. The major experimental result is that θ is aligned with
one of the axes of Γ .

Christian Doeller, Caswell Barry, and Neil Burgess used certain properties of the
grid cells to show in [84] that they also exist in humans. Themethodological problem
is that, since invasive methods like electrodes are not possible, one must turn to non-
invasive techniques such as fMRI, applying them to virtual navigation paradigms,
allowing the subject to navigate around large spaces while remaining within the
laboratory. The idea is (i) to identify fMRI signals in rats which are correlated with
characteristic signals of the grid cells recorded using electrodes, and then (ii) to
identify fMRI signals of the same kind in humans. This is no simple matter, because
fMRI signals aremacroscopic and result from averaging over thousands of individual
neurons.

The authors use the coherence of the grid cells. Insofar as the axes of the lattices of
the different cells are the same, for a given subject, the preferred directions are aligned
along these axes, and the firing rate increases with the speed of navigation, one would
expect a modulation of the fMRI signals analogous to the one in Fig. 3.57 (upper),
that is, a modulation that increases with the speed and has a rotation symmetry of
order 6. As the authors put it:

Entorhinal grid cells form a coherent population in which the common effects of orientation
and speed of movement could produce a macroscopic signal visible with fMRI. [84, p. 657]

And this is precisely what is observed experimentally, as can be seen from Fig.3.57
(lower).

Grid cells may be more fundamental than place cells. Indeed, as can be seen from
Fig. 3.58 taken from McNaughton et al. [79], by summing over several grid cells on
different scales and thresholding the result, we can obtain a place cell which activates
only when the animal crosses some specific position.
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Fig. 3.57 Modulation of fMRI signals depending on the direction and speed of motion. Upper
What we would anticipate: rotation symmetry of order 6 and an increase with speed. Lower What
we observe. From Doeller et al. [84]

Fig. 3.58 By summing over several grid cells on different scales and thresholding the result, we
obtain a place cell. From McNaughton et al. [79]
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Fig. 3.59 HDCcircuit in rats. The neural regions shown are as follows: LDN= laterodorsal thalamic
nucleus, MVN = medial vestibular nucleus, nPH = nucleus prepositus, DTN = dorsal tegmental
nucleus, LMN = lateral mammillary nucleus, IP = interpeduncular nucleus, ADN = anterodorsal
thalamic nucleus, PoS = post-subiculum, RsA = agranulus retrosplenial cortex, RsG = granular
retrosplenial cortex, Oc1 = primary visual area, Oc2 = secondary visual area. Signals regarding
head movements enter the MVN from vestibular afferents. They are then conveyed to the nPH,
and on to the DTN. The latter makes an inhibitory projection to the LMN, which makes ipsilateral
excitatory projections back to the DTN. Likewise between the DTN and the IP. The LMN also
projects bilaterally to the ADN. For its part, the latter projects to the PoS and the RsG. Cues from
visual landmarks enter the HDCs via projections of the visual areas Oc1 and Oc2 to the retrosplenial
cortex and the PoS, then from there to the subcortical structures of the LMN and the ADN. We thus

have the projections nPH → DTN → LMN → ADN
→ → →
→ Rs → PoS, and feedback PoS → LMN.

From [85]

3.8.4 Head Direction Cells

Navigation involves locomotor systems which specify the displacement vector of
the body and the direction of vision. There are also cells coding this direction. They
were discovered by James Ranck Jr in the post-subiculum (PoS) of the rat and fire
only when the animal’s head points in a certain direction (the direction relative to
the surroundings, rather than relative to the body), independently of the motion and
the position of the body. Then, Jeffrey Taube, a doctoral student of Ranck, extended
the research on these head direction cells (HDC). There are many in the PoS (25%
of some 200,000 cells, so around 50,000) and in the anterodorsal thalamic nucleus
(ADN) (60% of around 20,000 cells, so around 12,000). They are controlled by
information both from the surroundings (visual, auditive, and somatic cues) and
from within the animal (vestibular, proprioceptive, and motor cues) regarding the
animal’s proper motion. However, once established, they remain stable. Figure3.59
from the 2003 paper [85] by Taube and Bassett shows the remarkable complexity of
the HDC circuit in the rat.
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3.8.5 Implementing the Tangent Bundle

Equipped with these different kinds of cells, the animal can develop its navigation
skills using cognitive maps of its position, direction, and speed in the surrounding
space. To simplify, on the 2D surface of the arena D, it can ‘calculate’, for its
body and its head which guides the motion, its position a ∈ D, its direction of
motion θ ∈ [2π ], and its speed v. This means that its (sensorimotor, locomotor,
cerebral) organism is able to ‘calculate’ the tangent vectors −→v ∈ Ta D and thereby
implement the tangent bundle T D of D made up of the tangent planes Ta D. With the
computational mechanisms of path integration, it can ‘calculate’ the vector between
the ends of a complicate path, and from there, once the grid, place, and head direction
cells have been established, optimize its movements and take shortcuts to get back
to some position that is relevant to it, e.g., because there is a food reward there.
The animal thus proves itself to be an ‘expert’ in differential and even Riemannian
geometry … As noted by Robert Muller:

Examples of interesting navigational capacities are the production of geodesic paths in
unobstructed space, taking detours and taking shortcuts. [81, p. 821]
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Chapter 4
Functional Architecture I: The Pinwheels
of V1

We have just seen in the previous chapter how the mechanisms used by visual neurons
to filter the optical signal can implement localized differential data. But this is still
insufficient; the visual cortex can enable the perception of forms only because it can
pass from local to global and integrate local differential data into global geometric
forms. This extraordinary performance has intrigued all vision specialists, even well
before the famous psychophysical experiments of the Gestalt theory at the beginning
of the last century.

In this chapter and the next, we will explore, among other things, the neural
infrastructures that underlie the simplest of the Gestalt principles, that of so-called
good continuation, which is associated with the ideal geometric notion of a line. To do
so, we must introduce the functional architecture of the visual areas. It is indeed the
very particularity and global coherence of this architecture that create the geometry
we want to model. We should be clear that the remarkable geometric properties of
perception result from very specific properties of the generating neural dynamics and
that this specificity requires equally specific functional architectures. Architectures
with connections that are either too local or global, either too isotropic or random,
could not create such geometric structures.

As we have said, we will give particular importance to V 1, the first of the primary
visual areas. Such a restriction might seem too drastic, insofar as the later areas like
V 2 or V 4 have many ‘top-down’ feedback connections to V 1. But V 1 is already very
important, more important than one might think. Let us reiterate that we are adopting
Mumford and Lee’s high-resolution buffer hypothesis (Lee et al. [1]), according to
which V 1 is not a simple ‘bottom-up early module’, but participates in all visual
processes requiring fine resolution, whence its functional architecture is essential for
the totality of the visual system. As William Beaudot and Kathy Mullen argue in
[2, p. 688]:

All higher aspects of form perception rely on this early orientation-selective processing stage.

© Springer International Publishing AG 2017
J. Petitot, Elements of Neurogeometry, Lecture Notes in Morphogenesis,
DOI 10.1007/978-3-319-65591-8_4
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The literature in this area is immense. We therefore run into an obvious problem
of presentation. We have tried to resolve this problem by presenting, although cer-
tainly in too brief a manner, enough data to give the reader some idea of the variety,
the richness, and the difficulty of the questions. This research requires innumerable
experimental feats, so we must be aware of the fact that, despite the mass of remark-
able experimental results already available, all of the data presented here is ‘work in
progress’, subject to debate.

The functional architecture includes two main components, that is two main
classes of connections. The first is the class of retino-geniculo-cortical ‘vertical’
connections, which will be studied in this chapter. The second is the class of cortico-
cortical ‘horizontal’ connections, which will be discussed in the next chapter.

4.1 The Areas of the Visual Cortex

In Sect. 3.1 of Chap. 3, we very briefly mentioned the visual pathways and areas.
Here, we give a few additional clarifications. In humans, there are about fifty such
areas in the cortex, totalling an area of about 2 500 cm2. The thickness of the cortex
varies between 2 and 3 mm, which makes a volume of about 625 cm3. Estimating the
average number of neurons per mm3 to be from 20 000–50 000 yields on the order
of 10 to 30 billion neurons and 60 to 240 × 1012 synapses, although these estimates
vary slightly among specialists.

We have seen in Sect. 3.1 of Chap. 3 (see Fig. 3.1) the general structure of the
retino-geniculo-cortical pathways. Area V 1 corresponds to area 17 in the classifica-
tion of Korbinian Brodmann, represented in Fig. 4.1. A large part is located in the
calcarine fissure, with the retina’s ‘fovea → periphery’ gradient corresponding to
the ‘occipital pole → anterior fissure’ gradient with a magnification of the fovea
(see Fig. 4.12 below). It includes about 100 million neurons (recall that the optical
nerve contains about a million fibres). Figures 4.2 and 4.3 show the localization of
the visual areas around V 1. Figure 4.4 shows a planar flattening of the structure of
the visual areas.

Area V 2 consists of a ventral part and a dorsal part in each hemisphere; as we
shall see in Sect. 5.8 of Chap. 5, it plays an important role in the detection of illusory
contours and the determination of an edge of a figure in front of a background. It is the
same for V 3. V 2 projects onto the dorsal V 3, which in turn projects onto the parietal
cortex. The ventral V 3 projects onto the inferotemporal (I T ) cortex. Area V 4, the
third ventral area after V 2 and V 3, receives direct projections from V 1 and V 2. As
we shall see, it is important for colour processing and recognition of simple forms.
Area V 5, also called MT for ‘medio-temporal’, is sensitive not only to orientations
but also to directions, and it is essential for detecting local movement (e.g. the motion
of points) as well as for controlling eye movements. When V 5 is damaged, vision is
altered by giving the subject the impression of perceiving static images. It is equally
sensitive to binocular disparity and therefore plays a part in stereopsis. It receives

http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.1 The Brodmann areas (1909). •1, 2, 3 Primary sensory cortex. Postcentral gyrus. Sensitivity.
•4 Primary motor cortex. Precentral gyrus. Motricity. •5 Posterior parietal association area. Superior
parietal gyrus. Stereognosis. •6 Premotor cortex and supplementary motor area. Precentral gyrus
and adjacent rostral cortex. Programming of movements. •7 Posterior parietal association area.
Superior parietal gyrus. Visuomotor coordination, perception. •8 Frontal oculomotor field. Superior
and middle frontal gyrus, internal face. Saccades. •9–12 Prefrontal association cortex. Superior and
middle frontal gyrus, internal face. Cognitive areas, programming of movements. •13–16 Vegetative
areas. Insular cortex. •17 Primary visual area. Calcarine fissure. Vision. •18 Secondary visual area.
Around area 17. •19 Tertiary visual area. Around area 18. •20 Inferotemporal visual area. Inferior
temporal gyrus. Recognition of forms. •21 Inferotemporal visual area. Middle temporal gyrus.
Recognition of forms. •22 Association auditory area. Superior temporal gyrus. Hearing. •23–27
Limbic association cortex. Subcallosal, cingulate, retrosplenial, parahippocampal cortex. Emotion,
memory. •28 Olfactory cortex, limbic association cortex. Parahippocampal gyrus. Smell, emotions.
•29–33 Limbic association cortex. Cingulate and retrosplenial gyrus. Emotions. •34–36 Olfactory
cortex, limbic association cortex. Parahippocampal gyrus. Scents, emotions. •37 Parietal-temporal-
occipital association cortex, middle temporal visual area. Middle and inferior temporal gyrus (T-O
junction). Perception, vision, reading, language. •38 Olfactory cortex, limbic association cortex.
Temporal pole. Scents, emotions. •39 T-P-O association cortex. Temporo-parieto-occipital junction
(angular gyrus). Perception, vision, reading, language. •40 T-P-O association cortex. Temporo-
parieto-occipital junction (supramarginal gyrus). Perception, vision, reading, language. •41–42
Primary auditory cortex. Heschl’s gyrus and superior temporal gyrus. Hearing.•43 Olfactory cortex.
Insular cortex, frontal parietal operculum. •44 Broca’s area, lateral premotor cortex. Inferior frontal
gyrus (frontal operculum). Language, planning of movement. •45 Prefrontal association cortex.
Inferior frontal gyrus. •46 Prefrontal association cortex. Middle frontal gyrus. •47 Inferior frontal
gyrus. Taken from Hasboun [3]

Fig. 4.2 Localization of visual areas around V 1. Taken from [4]



116 4 Functional Architecture I: The Pinwheels of V 1

Fig. 4.3 Three-dimensional view of the localization of visual areas. Taken from [5]

Fig. 4.4 Planar flattening of the structure of the visual areas. Taken from [6]
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many connections from V 1, but also from V 2 and the dorsal V 3. All of these areas
possess numerous feedback connections coming back down towards the LGN.

The dorsal and ventral pathways that we have encountered are, respectively:

1. The magnocellular pathway dealing with spatial localization and movement (the
‘Where’ pathway of Ungerleider and Mishkin [7]), viz.

LG N (magno) → V 1 (4Cα) → V 1 (4B) → V 2 (thick stripes) → MT (V 5)

which leads, after the parietal cortex, all the way to the frontal cortex, where the
frontal oculomotor field is located (among others). The latter directs the gaze.

2. The parvocellular pathway dealing with forms and colour (the ‘What’ pathway
of Ungerleider and Mishkin [7]), viz.

Fig. 4.5 Visual areas in humans (see text for acronyms). The prefix h stands for ‘human’, while
◦,+,− denote the fovea and the superior and inferior visual fields, respectively. Taken from [8]
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Fig. 4.6 fMRI of the retinotopic projection of a visual hemifield onto the corresponding visual
hemisphere. The concentric circles of varying eccentricity and the rays of varying orientation on
the half-disc target are colour-coded. Taken from [8]

Fig. 4.7 Position of V 1 (and V 2, V 3) in the cortex. The upper edge corresponds to the inferior
vertical semi-meridian, and the lower edge to the superior vertical semi-meridian. The horizontal
semi-meridian corresponding to the represented hemisphere is situated along the median fissure.
Note that the scale of the eccentricities (radii of the circles of the retinal half-target) is logarithmic.
Taken from [11]
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LG N (parvo) → V 1 (4Cβ) → V 1 (2/3 blobs)

→ V 2 (thin stripes) → V 3 → V 4 and I T

With fMRI methods, already mentioned in Sect. 3.2.6.4 of Chap. 3 (phase-encoded
retinotopy on travelling wave) which use checkered dynamic stimuli (expanding
rings and rotating wedges) and record the induced cortical activity waves, we can get
a better idea of what these areas do in a human brain. In Fig. 4.5, taken from the article
[8] by Brian Wandell and Serge Dumoulin, we see the medial occipital areas (V 1,
V 2, V 3), lateral occipital areas (L O- 1 and L O-2, see [9], hMT +, corresponding
in humans to the macaque’s area MT = V 5), the ventral occipital areas (hV 4, V O-
1, V O-2), the dorsal occipital areas (V 3A, V 3B), and the posterior occipital areas
(from IPS-0 = V 7 to IPS-4, IPS = intraparietal sulcus).

Figure 4.6 is an fMRI version of the classic Fig. 4.12 (see below) first obtained
by Tootell et al. [10] in the macaque using lethal methods. More detail is shown
in Fig. 4.7, which is a more accurate representation of the position of V 1 and its
boundaries, showing how the two hemispherical V 1 areas are glued along the vertical
meridian by the callosal connections.

The definition of the visual areas is often a delicate matter. To give just one
example, it remains an open debate as to whether, in humans, an area V 8 should be

Fig. 4.8 Comparison of the polar angle retinotopy in humans (a) and in macaques (b). The stimuli
are radial gratings rotating at low spatial frequency (the colour code of the angles is given bottom
right). The boundaries of visual areas V 1 to V 4 can thus be established, and the mechanism for
representing angles. The orthogonality of the angular distributions between area V 8 in humans and
area T E O in macaques is clearly visible. V 4v is the ventral V 4 and V 4d is the dorsal V 4. Taken
from [13, Fig. 1]

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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introduced—possessing its own retinotopic representation—that would correspond
to the area TEO (posterior inferotemporal cortex) in macaques (see [12]), or whether
it would be more properly considered as a sub-area of V 4, the problem being that,
with respect to the retinotopy of the already well-identified V 4, the retinotopy of this
hypothetical area would lie at an angle of 90◦ (see Fig. 4.8 of [13]).

All these areas develop and stabilize with great plasticity through (i) critical peri-
ods, (ii) exposure to an enormous amount of stimuli, and (iii) the spontaneous cortical
activity that induces neuronal waves (see, e.g., Hooks and Chen [14]).

4.2 Hypercolumnar Structure of the V1 Area

In V 1, the density of neurons is on the order of 2×105/mm2 , while the receptive fields
are on the order of a few degrees. Neurophysiological studies have made it possible
to distinguish three types of structures in V 1. These are layered, retinotopic, and
(hyper)columnar, respectively.

Layered Structure

This is about 1.8 mm thick and composed of 6 ‘horizontal’ layers, i.e., parallel to
the surface of the cortex. The most important for us is layer 4 (traditionally called
‘granular’) and more specifically the sub-layer 4C . Most of the fibres coming from
the lateral geniculate nucleus project onto the latter, with sub-layer 4Cα receiving in
particular the magnocellular projections and sub-layer 4Cβ the parvocellular projec-
tions (see Figs. 4.9 and 4.10). Layer 4 relays these inputs towards the ‘supragranular’
layers 2 and 3 and also projects in the other direction, onto the ‘infragranular’ layers,
connecting them to the thalamus (layer 6) and the spinal cord (layer 5). Figure 4.11
shows for the macaque a small part of this complex network of projections contain-
ing several loops (see also Sect. 5.10 of Chap. 5). This structure does depend on the
species, but we shall not go into the details here, apart from a brief note in Sect. 4.9.4,
despite the importance of this observation.

Fig. 4.9 Layered structure
of V 1 and layer 4. Taken
from [6]

http://dx.doi.org/10.1007/978-3-319-65591-8_5
http://dx.doi.org/10.1007/978-3-319-65591-8_4
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Fig. 4.10 Projection of the
lateral geniculate nucleus
onto layer 4C of V 1. Taken
from [6]

Fig. 4.11 Part of the
network of projections
between the layers of V 1 in
the macaque. Taken from
[15]

Retinotopic Structure

Retinotopy refers to the fact that the projections (in the neurophysiological sense) of
the retina onto the cortical layers are in fact mappings (in the mathematical sense)
preserving the retinal topography. A typical example is the logarithmic conformal
mapping between the retina and the 4C sub-layer of layer 4 where, as we have just
seen, it is mainly fibres from the lateral geniculate nucleus that project. If R is the
plane of the retina and M the cortical layer, the retinotopy is described by a mapping
χ : R → M which is a non-isometric isomorphism for a certain level of geometric
structure that is not as rigid as the metric level (see Fig. 4.12).1

There are several models for this retinotopic mapping. The first was a monopole
model Log(z + a), where z is a complex variable varying in R, but better is a dipole
model like

1When we don’t need to distinguish between R and M , we shall set R = M and χ = I d.
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Fig. 4.12 Retinotopic projection of the retina onto layer 4C of area V 1. The retinal hemitarget is
transformed by a diffeomorphism which is not an isometry but a conformal map. From [10]. See
also [16]

Fig. 4.13 Mathematical
model of the retinotopic
projection of the retina onto
V 1 using a conformal map
that is a logarithm of a
homography

Log
z + 0.333

z + 6.66
.

This agrees quite well with empirical data [17], as shown in Fig. 4.13. A still better
model is a wedge-dipole model common to the three areas V 1, V 2, and V 3, such as

Log
w(z) + a

w(z) + b
,

illustrated in Fig. 4.14.
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Fig. 4.14 Model of the form Log
[
(w(z)+a)/(w(z)+b)

]
for V 1, V 2, and V 3. Left Areas V 1, V 2,

and V 3. Right Fit with the model. From Balasubramanian et al. [18]

Column and Hypercolumn Structure

This was the great discovery of Nobel prizewinners David Hubel and Torsten Wiesel
in the early 1960s, following up work by their PhD supervisor Stephen Kuffler on
retinal GCs (see Sect. 3.2.6.1). This was preceded in the late 1950s by the work of
Vernon Mountcastle on the somatosensory cortex of the cat, and after Hubel and
Wiesel, it was also found in the motor cortex and the auditory cortex. As we saw
in Sect. 3.2.6 of Chap. 3, there are ‘simple neurons’ in the V 1 area (as opposed to
the ‘complex’ and ‘hypercomplex neurons’ discussed in Sect. 3.2.6.3) which are
sensitive to orientation, ocular dominance, and colour. These are the ones of interest
to us here.

We have already considered the structure of their receptive fields and receptive
profiles. We shall focus particularly on those having the form of a second derivative
of a Gaussian. If to begin with we simplify the situation as far as possible by not
taking into account either the scale (the resolution and the spatial frequency) or
the phase, we may say that these neurons detect pairs (a, p) of retinal positions a
and orientations p at a. In Sect. 2.7 of the Introduction, these were referred to as
mesoscopic contact elements of the visual plane. Indeed, as we said in Sect. 3.3.4
of Chap. 3, if we consider an edge crossing the receptive field, the response of the
neuron will be maximal when the edge is aligned with the preferred orientation.

Using the methods to record responses to appropriate stimuli discussed in the last
chapter (oriented bars crossing the RF of the neurons, etc.), it can be shown that,
perpendicular to the surface of the cortex, the retinal position a and the preferred
orientation p remain roughly constant. This ‘vertical’ redundancy—which specifies
a population coding of the position—defines orientation columns of about 20 µm.
As shown by DeAngelis [19], it is the phase variation that dominates in the columns:

Spatial phase is the single parameter that accounts for most of the difference between recep-
tive fields of nearby neurons.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_2
http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Fig. 4.15 Classic experiments by Hubel and Wiesel which led to the discovery of the orientation
hypercolumns in V 1. Taken from [24]

Moreover (see Sect. 3.3.5 of Chap. 3), the population coding gives the system a higher
resolution than single neurons. The reader is referred to Beaudot and Mullen [2, 20],
who suggest a mechanism to explain this, and also Snippe and Koenderink [21],
and Ringach [22]. The latter studies the dependence of the resolution on the Fourier
spectrum of the tuning curves of the neurons.

On the other hand, along lines parallel to the surface of the cortex, the preferred
orientation p varies in steps of about 10◦. To a first approximation, it can be consid-
ered to vary monotonically along line segments. In fact, this is not really the case, and
for subtle topological reasons which we shall explain in Sect. 4.4.3 when we com-
ment on Braitenberg’s paper [23], the variation of p is not necessarily monotonic.
However, we shall suppose here that it is. A ‘horizontal’ grouping of columns whose
orientations vary over a range of π defines an orientation hypercolumn which is a
broad neural micromodule measuring between 200 µm and 1 mm (see Figs. 4.15,
4.16 and 4.17).

The idea of a column just discussed clearly needs to be fleshed out, and a great
deal of work has been devoted to this, dealing with problems such as establishing
the link between anatomical and functional definitions, investigating the genuinely
columnar nature of different ways of processing the stimuli (i.e. asking to what extent
they cross the layers of V 1), analyzing the strengthening of the edges of the columns
by lateral inhibition. Among the various reviews available on these matters, the reader
is referred to the one by Lund et al. [25].

We shall discuss different species of mammals, such as the tree shrew (tupaia),
cats, primates, and humans, where the concept of orientation column is of key impor-
tance. This is quite restrictive because, as we saw in Sect. 3.8 of Chap. 3, in other
species of mammals, and in particular rodents like the rat, this idea is less relevant.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Fig. 4.16 Hypercolumn of V 1 from Hubel and Wiesel

Fig. 4.17 Classic diagram
of hypercolumns. From [6]

There we encounter other types of spatial processing, as carried out, for example, by
the grid and place cells (see Sect. 3.8 of Chap. 3). There is orientation selectivity, but
it is dispersed throughout V 1; i.e., it is not brought together anatomically in columns
and hypercolumns by a functional architecture.

However, even restricting to species for which this idea is relevant, there is nev-
ertheless a certain diversity in the structure of V 1. The general structure, concerning
retinotopy, orientation selectivity, spatial frequency tuning, etc., remains the same,
but the fine structure varies. As noted by Stephen Van Hooser:

There is considerable diversity in the abundance of different cell classes, laminar organiza-
tion, functional architecture, and functional connectivity. [26]

Figure 4.18 compares several different species: the macaque (primate, diurnal,
frontally placed eyes), the cat (carnivorous, crepuscular, frontally placed eyes), the
tree shrew or tupaia (Scandentia, diurnal, laterally placed eyes), and the gray squirrel
(rodent, diurnal, laterally placed eyes).2 We find that there is indeed orientation selec-
tivity everywhere, but that it is not always present in all layers, as in the cat or the

2Van Hooser’s paper also discusses the rat (rodent, nocturnal, laterally placed eyes), the night
monkey, also known as the owl monkey or douroucoulis (New World primate, nocturnal, frontally
placed eyes), the ferret, etc.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Fig. 4.18 Similarities and differences in a certain number of geometric features for different species
of mammals. Taken from Van Hooser [26]

squirrel. Direction selectivity occurs throughout all layers in the cat (and also the
ferret), but less in primates and scarcely at all in the tree shrew. The hypercomplex
(end-stopped) cells occur in layers 2 and 3, but not in layer 4, except in the tree
shrew, where they are in fact present only in layer 4. The cells responding most
strongly when the bars on the gratings are longer (length-summing cells) are rare in
carnivores, etc.

We thus see just how important the hypercolumn structure of V 1 is and how
crucial it is to find a suitable mathematical structure to model it. We shall show that,
on the mesoscopic scale that is our own, the right concept, which is altogether natural,
is the geometric concept of a fibration, so well known to mathematicians.
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4.3 V1 as a Mesoscopic Fibration

4.3.1 ‘Bridging Scales’: The Mesoscopic Level

We should stress, as we have already done in Sect. 2.7 of the Introduction, that the
geometric structures we have introduced refer to the mesoscopic scale. Indeed, real-
istic ‘micro’ simulations of an orientation column are already unbelievably complex
and have featured among some of the biggest computational projects in the world.

Launched in 2005 by Henry Markram at the École Polytechnique Fédérale de
Lausanne (EPFL), the Blue Brain Project (BBP) aimed to simulate a rat cortical
column containing some 10,000 neurons and 30 million synapses. It had access to a
computational power (supplied by IBM) of 20 teraflops (one teraflop is 1012 oper-
ations per second). Since 2013, the Human Brain Project (rival of the American
project Brain) has picked up where Blue Brain left off, using supercomputers of
up to 106 teraflops. The HBP aims to simulate complete brain areas, and in partic-
ular, the visual cortex. Bringing together many universities and research institutes,
it has been chosen as one of the two Future and Emerging Technologies (FET)
Flagships of the European Union and will receive a total of a billion euros over 10
years. It explicitly exploits the possibilities of the information and communication
technologies (ICT) and involves six platforms: neuroinformatics, brain simulation,
high-performance computing, medical informatics, neuromorphic computing, and
neurorobotics. Mathematical models do not play a major role because, as noted by
those who designed the project, they are just ‘toy models’, drastically simplifying
the biophysical data to make them amenable to mathematical analysis.

However, certain modelling problems have been identified, in particular regarding
the four themes:

• bridging scales,
• synaptic plasticity, learning, and memory,
• large-scale models,
• principles of brain computation.

An internal debate has sprung up between massively computational approaches and
more model-oriented and structural approaches. Our own model is an element in this
debate.

4.3.2 Fibrations and Engrafted Variables

On the mesoscopic level, through the hypercolumn functional architecture of V 1,
a (discretized) copy of the space P of directions p in the plane is associated (in a
retinotopic and anatomically observable way) with each retinal position a ∈ R. As
a consequence, there is a neural implementation of the projection π : R × P → R

http://dx.doi.org/10.1007/978-3-319-65591-8_2
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of the Cartesian product R × P onto its first factor R, a projection which is in fact a
(trivial) fibration with base the retinal space R and fibre the manifold P .

In these mesoscopic models, a column is thus viewed as a simple contact element
(a, p). This may look like an unacceptable reduction with regard to the computational
projects just mentioned. However, we shall set out to show here that, despite the
enormous reduction in complexity, the functional organization of these elements
leads to a significant geometric complexity. This means that the complexity of a
realistic ‘micro’ model of a functional architecture only becomes manageable by
using highly elaborate multiscale bridges.

According to the materialist principle that ‘a structure only exists if it is imple-
mented’, we must inquire into the neural materiality of the mesoscopic projection
π : R × P → R over and above its formal ideality. Now, if the projection π is math-
ematically (ideally) trivial, it is not at all so from the neurophysiological (material)
point of view:

(i) The receptive fields of the ganglion cells and cortical neurons, or rather the
cortical columns, are very small local charts which overlap and can be glued
together on the overlap.

(ii) We shall see in Sect. 4.9.1 that it is no easy matter to test the direct product
structure experimentally, i.e. the independence of the position and orientation
variables. There, too, there are significant differences between species, as we
saw above: for some species, it is a single layer of V 1 which implements the
product R × P , while for others, several layers are involved.

(iii) The projection π (in the geometrical sense) is implemented by the fine circuitry
of the retino-geniculo-cortical pathways, which project the retina onto V 1 (in
the neurophysiological sense).3

The geometric structure of the product of R as base space with a space of ‘sec-
ondary’ variables such as orientation, ocular dominance, direction of motion was
well expressed by David Hubel when he spoke of ‘engrafted variables’:

What the cortex does is map not just two but many variables on its two-dimensional surface.
It does so by selecting as the basic parameters the two variables that specify the visual field
coordinates (distance out and up or down from the fovea), and on this map it engrafts other
variables, such as orientation and eye preference, by finer subdivisions. [27, p. 131]

A hypercolumn can thus be modelled as the Cartesian product of the RFs with the
space of secondary variables which are ‘grafted on’, so to speak. The overlaps of the
RFs are then interpreted geometrically as a gluing together of these local models,
and the projection π is for its part implemented in the vertical connections:

• from the retina to the hypercolumns,
• within the hypercolumns themselves.

3In the geometric models of neural functional architectures, there are many problems of terminology.
Lexical items such as ‘fibre’, ‘projection’, ‘connection’ are used in different ways by mathematicians
and neurophysiologists. In general, the meaning should be clear from the context.
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This is the idealized model of V 1 proposed by Hubel, leading to the fundamental
geometrical concept of a fibration or fibre bundle.

4.3.3 Fibre Bundles

The key idea of a fibration or fibre bundle was developed by mathematicians, and more
recently by theoretical physicists, for deep reasons. The problem was to associate
with each point in some base space M an entity of a certain type F , such as a scalar,
a vector, a covector, a tensor, an exterior form, a direction, a phase, or a quantum
number, which depends smoothly on this point. An obvious solution for modelling
such a field on M would be to use maps ϕ : M → F . But in many cases, we must
take into account the fact that the whole set F of possible values of such maps ϕ

is associated with each point of M . To take a concrete technical example, in each
pixel of a computer screen, all grey levels (1 byte) or colours RGB (3 bytes) are
represented.

Intuitively, a fibre bundle comprises a base space M (a differentiable manifold)
and copies of a manifold F called the fibre ‘above’ each point of M . Globally,
the space E of the fibre bundle, with the fibres glued together, is not necessarily a
Cartesian product M × F . It results from gluing together several Cartesian products
Ui × F defined on local open domains Ui of M . Up to now, this local triviality has
only been of interest to geometers in cases where the base space M is not a globally
trivial space like R

n but rather a manifold that may not be simply connected and thus
may have a non-trivial homology. In our case, the fibre bundles are globally trivial,
but their local structure is imposed by neurophysiology (the receptive fields).

By definition, a fibre bundle is a 4-uple (E, M, F, π) such that:

1. E , M , and F are differentiable manifolds, called the total space, the base space,
and the fibre of the fibre bundle, respectively.

2. π : E → M is a surjective differentiable map called the projection of the fibre
bundle.

3. The inverse images Ex = π−1(x) (x ∈ M) are isomorphic to F and Ex
∼= F is

called the fibre at the point x (see Fig. 4.19).
4. For any point x ∈ M , there is a neighbourhood U of x such that π−1(U ) is diffeo-

morphic to the Cartesian product U × F equipped with its canonical projection
π : U × F → U , (x, q) �−→ x (local triviality, see Fig. 4.20).

A section of a fibre bundle is a differentiable map that lifts the projection π , associat-
ing an element of the fibre Ex with each point x of the base space M . If s : M → E
is a section, we thus have π ◦ s = I dM (see Fig. 4.21). Sections can be defined
simply locally on open sets U ⊂ M . In the case of a globally trivial fibre bundle
π : E = M × F → M , a section above U is nothing other than a map s : U → F .
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Fig. 4.19 Fibre bundle with
base space M , fibre F , and
total space E . Above each
point x of M , the fibre
π−1(x) = Ex is isomorphic
to F

E

M

π

x

Ex =

π-1(x) =
F

Fig. 4.20 Local triviality of
a fibre bundle. For any point
x in M , there is a
neighbourhood U of x
whose inverse image
π−1(U ) = EU is the direct
product U × F , where π is
the projection onto the first
factor

E

M

π

x

U

EU=UxF

4.3.4 V1 as a Geometric Fibre Bundle

If we idealize the functional architecture of the retino-geniculo-cortical pathway
mathematically on the mesoscopic scale, the retinotopic and hypercolumn structures
of V 1 can be naturally modelled by the bundle π : V → R associating a copy Pa

of the space P of directions in the plane with each point a of the retina R. The total
space V of these copies Pa of P , glued together by local coordinate changes in the
base space R, is a fibre bundle. We shall see in the next section that this is in fact
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Fig. 4.21 A section of a
fibre bundle defined on an
open set U of M associates a
value s(x) in the fibre Ex
above x with each point x of
U

E

M

π

x = π (s (x ))

s

the contact fibre bundle C R of R, in other words, the projectivization of the tangent
bundle T R of R. The points of V , that is, the pairs (a, p) comprising a point a of R
and an orientation p at a, are the contact elements of R, already mentioned several
times (see Fig. 4.22).

M

a

L

a

M

L

P1(a) (b)

Fig. 4.22 The fibre bundle E = V with base space the retinal plane M = R (represented by a
line to simplify) and fibre the projective line P

1 of directions in M . a Elements of the fibre above a
are represented by rotating horizontal line segments viewed in perspective. b Elements of the fibre
above a are represented as points (the coordinate in the fibre encodes the angle θ of the direction p)
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Through this functional architecture, a (discretized) copy of the orientation space
P is associated retinotopically with each retinal position a. There thus exists a neural
implementation of the structure π : R × P → R, the set of feed-forward projections
(in the neurophysiological sense) of the retino-geniculo-cortical pathways imple-
menting the projection π (in the geometric sense).

4.3.5 V1 as a 1-jet Fibre Bundle

Few specialists grasp the fundamental importance of an abstract geometrical model
with dimension equal to the number of degrees of freedom of the given empirical
structure, in this case 3. This theoretical requirement leads us to introduce the fibre
bundle π : V = R × P → R, and this can be interpreted in different ways:

(i) As π : R × P
1 → R if the fibre P is identified with the projective line of

orientations in the plane specified modulo π (P is topologically a circle).
(ii) As π : R × S

1 → R, where S
1 is the unit circle, if the fibre P is described

by an angular coordinate θ modulo 2π , taking into account sense as well as
orientation.

(iii) As π : R × R → R if the fibre P is described by the tangent p = tan θ .

An excellent example of interpretation (i) is provided by the work of Steve Zucker
and Ohad Ben-Shahar. In their paper [28], we find Fig. 4.23.

Fig. 4.23 Fibre bundle
π : R2 × S

1 → R
2

introduced by Ben-Shahar
and Zucker [28] to model the
abstract structure of the
orientation hypercolumns of
V 1
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However, in interpretation (iii), V 1 is identified with what is known as the 1-jet
bundle of curves in R. The idea of jets generalizes the classical notion of Taylor4

expansion, thereby giving it an intrinsic geometric meaning, i.e., independent of
coordinates. Suppose that, in a certain coordinate system (x, y) of R, a smooth curve
γ is the graph {x, f (x)} of a real-valued function f on R. The first-order jet of
f at x , denoted by j1 f (x), is characterized by 3 arguments: the coordinate x , the
value y = f (x) of f at x , and the value p = f ′(x) of the derivative of f at x , i.e.,
the slope of the tangent to the graph of f at the point a = (x, f (x)) of R. So if
we identify R with a domain of R

2, a 1-jet is just a pair c = (a, p), i.e. a contact
element. Conversely, with each contact element c = (a, p), we may associate the set
of regular functions f whose graph is tangent to c at a. Then, J 1 R will denote the
fibre bundle with base space R, usually denoted J 1(R,R), of 1-jets of curves in R.

These 1-jets are feature detectors specialized in the detection of tangents. The fact
that the V 1 area can be ideally identified with J 1 R in the case of ‘simple neurons’
explains why it is functionally essential for contour integrations. In the 2D manifold
R, the determination of the direction p tangent to a contour γ at a point a requires
one to compare the values of γ in the neighbourhood of this point. However, the
neural system can access this local geometric information directly in the pointlike
format of a simple numerical value, provided that it calculates in the jet space V 1,
a three-dimensional space. This saves having to carry out a local computation that
would be costly in terms of wiring.

Jan Koenderink in [29] stressed the importance of the jet concept for theories of
vision. Without jets, it is hard to understand how the visual system could extract
geometrical features like the tangent or the curvature of a curve at a point:

Geometrical features become multilocal objects, i.e., in order to compute [boundary or
curvature] the processor would have to look at different positions simultaneously, whereas
in the case of jets it could establish a format that provides the information by addressing a
single location. Routines accessing a single location may aptly be called point processors,
those accessing multiple locations array processors. The difference is crucial in the sense
that point processors need no geometrical expertise at all, whereas array processors do (e.g.
they have to know the environment or neighbours of a given location). Koenderink [29,
p. 374]

This is indeed the key point: V 1 must carry out geometrical tasks, but without being
availed of any ‘geometrical know-how’. However, this is possible only if the geometry
is neurally hard-wired and, as we shall see, this is precisely the role of a functional
architecture.

We can already say to some extent why functional architectures are so important.
In the brain, there are what are essentially temporal correlations. So how can temporal
coherence transform itself into spatial morphologies, Gestalten, or patterns? As we
shall see in detail in the second volume, the key phenomenon is synchronization.
So how can synchronizations be transformed into patterns? To do this, we require
highly constrained connections and hence a functional architecture.

4Named after Brook Taylor.
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The deepest point, and without doubt the most difficult to understand for a non-
mathematician, is that the introduction of a further independent variable p provides a
way to replace ‘geometrical know-how’ by a functional architecture. Let us say once
again that neurons are point processors (on the scale specified by the size of their
RFs) and as a consequence can only measure a quantity at a point. But in order to do
differential geometry with point processors rather than local processors, the only way
is to add supplementary variables evaluating partial derivatives of appropriate degree.
This is why Jan Koenderink stresses the fact that the (hyper)columns implement jet
spaces neurobiologically:

The modules (like ‘cortical columns’ in the physiological domain) of the sensorium are local
approximations (Nth order jets) of the retinal illuminance that can be addressed as a single
datum by the point processors. [29, p. 374]

Let us specify how V 1 can be interpreted as a neural realization of the space of 1-jets
of curves in R. At each point a in M , consider not the tangent space Ta R, but the set
of its hyperplanes (its vector subspaces of codimension 1 and hence its straight lines),
denoted by Ca R. This is isomorphic to the projective space P

1. The total space in
which these fibres are glued together is called the contact fibre bundle of R, denoted
by C R.5

C R is almost the space of 1-jets J 1(R,R) = J 1 R associated with the choice
of coordinates (x, y). To see this, we only have to interpret the coordinate on its
fibres Ca R in terms of Ta R. Equipping R with local coordinates (x, y) at a and
the tangent plane Ta R with the natural coordinates (ξ, η) associated with it in the
basis (∂/∂x, ∂/∂y), then on an open set not containing the ‘vertical’ straight line
ξ = 0, a local coordinate on Ca R is p = η/ξ , and in the neighbourhood of ξ = 0,
we may take the coordinate p = ξ/η. An element c of C R is thus attributed the
coordinates (x, y, p) = (a, p). It is straightforward to check that changes of chart
associated with these natural coordinates on C R are diffeomorphisms. Hence, C R
is a 3D differentiable manifold isomorphic to V = R × P

1.
The difference between C R and J 1 R is that the fibre of J 1 R is not the whole

of P
1 but the R given by the values of tan θ , the angle θ being specified modulo

π , measured given a choice of x-axis and never taken equal to π/2. To obtain the
fibre P

1 of C R, we must compactify R by adding a point at infinity. C R is the
compactification at infinity of J 1 R, and its fibre corresponds to that of J 1 R via the
stereographic projection P

1 → R, θ → tan θ . In the language of algebraic geometry,
J 1 R is the open affine subset of C R complementary to the section at infinity, the
choice of this section corresponding to the choice of an x-axis in the plane R.

Specifying a section s of the fibre bundle π : V = C R → R above a subset U of
R means associating an element s(a) of the fibre Ca R above a, i.e., an orientation,
with each point a of U . The sections are thus fields of pairs (a, p) = (position,
orientation). A fundamental special case is the sections restricted to differentiable

5We could distinguish between the retinal plane R and the cortical layer M (the base space of
V ) to which it projects. However, to simplify, we shall not do so, considering the retinotopic map
χ : R → M as the identity.
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curves γ in R. They are obtained by choosing, above each point a of γ , the orientation
of the tangent to γ at a.

4.3.6 Legendrian Lifts

By the implicit function theorem, any differentiable curve γ is locally the graph of a
function f (x), except at points with a vertical tangent. Let j1γ (a) be its 1-jet. It can
be identified with the 1-jet j1 f (x) comprising the abscissa x of a, the value y = f (x)
of f at x , and the value p = f ′(x) of its derivative there. Rather than considering
the plane equipped with coordinates (x, y) and calculating y′ = dy/dx—as we have
seen, this requires knowing not only the value y = f (x) of f at x , but also the values
of f in a neighbourhood of x—we work in the space with three dimensions spanned
by coordinates (x, y, p), imposing the constraint y′ = p. This very profound idea
goes back to William Hamilton who, by introducing the conjugate momenta pi of
the position variables qi of a mechanical system as independent variables, replaced
the Lagrangian formulation of mechanics by what is now known as the Hamiltonian
formulation.

Quite generally, if γ is a differentiable curve in R, parametrized by the equations
x(s) and y(s), the 1-jet j1γ (a(s)) of γ at a(s) = (x(s), y(s)) is the contact element
(a(s), p(s)), where p(s) = y′(s)/x ′(s) is the slope of the tangent to γ at a(s).

The image of j1γ is called the Legendrian lift of γ . The Legendrian lifts of curves
γ in R no longer represent these curves as sets of points in R, but in a dual sense,
i.e., what is called projective duality, as envelopes of their tangents. It is remarkable
that biological evolution should have created two neurophysiological structures, the
retina and the V 1 area, in order to implement projective duality for contours.

4.3.7 Integrability Condition

We can thus associate a Legendrian lift Γ = j1γ with any smooth curve γ in R.
However, these lifts Γ are rather specific so we need to characterize them carefully.
Indeed, let Γ = v(s) = (a(s), p(s)) = (x(s), y(s), p(s)) be any skew curve in V .
Its projection a(s) = (x (s) , y(s)) is indeed a curve γ in R. However, there is no
reason why Γ should be the Legendrian lift j1γ of its projection γ . This is only the
case if p(s) = pa(s) (s). Put another way, a curve Γ defined locally by equations
y = f (x), p = g(x) is the lift of a curve γ in V if and only if g(x) = f ′(x), i.e.
p = y′. This condition is called an integrability condition. It is crucial, and we shall
return to this at length.
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4.3.8 SE(2) Invariance of 1-jets

To simplify, set R = R
2. The structure of J 1

R
2 is invariant under the action of the

Euclidean group SE(2) = R
2
� SO(2) of isometries of the plane which is the semi-

direct product � of the group of translations R
2 and the group of rotations SO(2).

Generally speaking, if G is a group and if H is a subgroup of G which operates on
another, normal subgroup N of G, then G is the semi-direct product N � H if its
product law ◦ is

(
n′, h′) ◦ (n, h) = (

n′h′ (n) , h′h
)
.

Let (q, rθ ) be an element of SE(2), where q is a point in R
2 and rθ the rotation

through angle θ . Then, (q, rθ ) acts on the points a of R
2 according to

(q, rθ )(a) = q + rθ (a) .

If (q, rθ ) and (s, rϕ) are 2 elements of SE(2), their (non-commutative) product is
given by

(s, rϕ) ◦ (q, rθ ) = (
s + rϕ(q), rϕ+θ

)
.

The product is non-commutative because (q, rθ ) ◦ (s, rϕ) = (
q + rθ (s), rθ+ϕ

)
. Nat-

urally, rϕ+θ = rθ+ϕ , but s + rϕ(q) 	= q + rθ (s) (see Fig. 4.24).
The rotation rθ acts on the fibre bundle J 1

R
2 → R

2 by

rθ (a, ψ) = (rθ (a), ψ + θ) ,

where ψ is the angular coordinate in the fibre. This further action on the fibre ensures
that the alignment of the preferred orientations is itself also SE(2)-invariant (see

Fig. 4.24 Non-commutativity of the Euclidean group SE(2). The vectors s + rϕ(q) and q + rθ (s)
are completely different
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Fig. 4.25 SE(2) invariance
of the jet space

Fig. 4.25). This makes the action interesting from the point of view of group repre-
sentation theory.

Regarding the group G = SE(2), it is interesting to note a general phenomenon
that is quite fundamental here. By defining SE(2) as the group of isometries in the
plane R

2, we assume that R
2 is given and we consider G only as a consequence. But

this approach can be reversed. Indeed, R
2 and the action of G can be reconstructed

from the group structure of G. For if H = SO(2) 
 S
1 is the compact commutative

subgroup of rotations around 0, its conjugates gHg−1 for g = (q, rθ ) in G give
the rotation subgroups about different points q. We may then identify R

2 with the
quotient G/H and the action of G on R

2 with the quotient of the action of G on
itself.

4.3.9 Generalizing the Model

In accordance with Hubel’s idea of engrafted variables, this model can be extended
to other characteristic variables of the visual signal which are represented in the
hypercolumns. To do this, we consider spaces in which the new variables vary, viz.
the interval [0, 1] for the level of ocular dominance, the projective plane P

2 for the
colour, the circle S

1 for directions of motion (the reader is referred to, e.g. Zhang
and Wu [30] or Weliky et al. [31]). Then, V 1 will be modelled by a fibre bundle with
base space R and fibre the Cartesian product of the spaces of secondary variables.

Such generalizations might also lead us to consider k-jets of order k > 1, as we
shall see in Sect. 5.6 of Chap. 5 when we discuss curvature detectors.

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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4.3.10 Neurophysiology and Its Geometrical Idealization

There are significant differences between the neurophysiological data and the geo-
metrical idealization of the fibre bundle. Here, we mention three of these:

(i) To begin with, the RFs introduce a resolution scale so we require a multiscale
theory of fibre bundles. Moreover, the RFs are adaptive and modulated by stim-
uli.

(ii) Then, there is a significant redundancy in the columns. Indeed, a ‘point’ (a, p)
of the fibre bundle actually corresponds to a whole column. As we have seen, this
so-called population coding is essential for adaptive capacity and refining the
resolution. Among other things, it allows oscillatory responses (the columns can
become oscillators through Hopf bifurcation) and hence synchronizing effects
through phase-locking.

(iii) Finally, there is a fundamental dimensional constraint. From an abstract point
of view, the fibre bundle π : R × P → R has dimension 3, i.e. 2 degrees of
freedom for the retinal position a = (x, y) and 1 degree of freedom for the
orientation p, whereas the cortical layers are essentially 2D. There is therefore
a problem of ‘dimensional collapse’. The visual systems produced by evolution
that interest us here have solved this problem through the fascinating structure
of ‘pinwheels’ in the V 1 area, and these have received much attention since the
pioneering work of Tobias Bonhöffer, Gary Blasdel, and Amiram Grinvald.

4.4 The Pinwheel Structure of V1

The model of V 1 as a 1-jet space is a continuous model which is in fact the limit of
a discrete model defined on a lattice in R. We shall return at length to the idea of
continuous models in the second volume. But in the present chapter, we shall begin
by gathering together some experimental data regarding discrete models.

4.4.1 Observation of Pinwheels

4.4.1.1 Functional Orientation Maps

Fundamental experiments made possible by recent progress in brain imaging have
shown that the hypercolumns are arranged geometrically in little wheels called pin-
wheels. The observed cortical layer is covered with a lattice of singular points (about
1 200 µm apart in the cat and about 600 µm apart in primates): the centres of local
pinwheels which join up to form a global structure. The imaging method used here
was developed at the beginning of the 1990s, by Bonhöffer and Grinvald [32] among
others, and it is referred to as in vivo optical imaging based on activity-dependent
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intrinsic signals. It exploits the fact that the metabolic activity of the nerve tissue
changes its optical properties, whence it can acquire images of the activity of the
surface cortical layers. More precisely, it exploits the differential absorption of oxy-
hemoglobin or deoxyhemoglobin, or of dyes whose fluorescence indicates local
depolarization of neurons.

The method has profoundly transformed the observation of neural activity. Pre-
viously, there were only multielectrode methods for recording the activity of a
few individual neurons,6 or post-mortem visualization of cortical activity using 2-
deoxyglucose maps. Both methods were drastically inadequate. In vivo optical imag-
ing made it possible to visualize functional organization; in other words, it made the
cerebral black box ‘transparent’. As pointed out by Ohki and Reid [33]:

Optical imaging revolutionized the study of functional architecture by showing the overall
geometry of functional maps.

However, the experimental challenge is enormous. First, the signal-to-noise ratio is
very small, viz. ∼10−3, because the background noise is huge. The intrinsic signal
comes from the hemodynamic properties of the cortical tissue and thus from an
area of vascular metabolism greater than the area of the activated neurons. Then,
millions of neurons are connected together, each with hundreds or even thousands
of synapses, and this imaging operates on a mesoscale defined by averaging (in
Sect. 4.7.3, we shall discuss the methods of two-photon confocal microscopy on the
microlevel). One ‘neuron’ is in fact a cortical position at which a bunch of neurons is
located. Moreover, the in vivo optical imaging methods with their good mesoscopic
spatial resolution (50 µm) actually have a rather poor temporal resolution, because
the intrinsic signals are slow, so they can only analyze slow intrinsic changes in the
optical properties of the cortical layer. Other methods are required to visualize the
cortical dynamics, such as voltage-sensitive dyes, which colour the active cells. The
dye molecules bind to the neural membranes and act:

[...] as molecular transducers that transform changes in membrane potential into optical
signals. [34]

As the changes in the membrane potential are correlated with millisecond changes
in the absorbed or emitted fluorescence, we may thus obtain temporal resolutions of
millisecond order.

For a discussion of these new techniques for investigating mammalian brains, the
reader is referred to the review [34], presented by their inventor Amiram Grinvald.
Figure 4.26 shows the accuracy that can be reached in the topography of the V 1
area of the owl monkey (douroucoulis). Such maps became available from the end
of the 1980s. Figure 4.27 produced by Blasdel and Salama in 1986 already shows
pinwheels in the V 1 area of the macaque.

6The transition from recordings of a few isolated neurons to a visualization of the overall activity
of a piece of brain area is analogous to the leap forward in meteorology when recordings made by
weather balloons were replaced by satellite imaging. No need for further comment.



140 4 Functional Architecture I: The Pinwheels of V 1

Fig. 4.26 Topography of the V 1 area of the New World owl monkey as measured by in vivo optical
imaging. A target made of two gratings, one horizontal and the other vertical, is projected onto V 1.
V M vertical meridian, H M horizontal meridian. From Grinvald [34]

Fig. 4.27 Pinwheels in the V 1 area of the macaque. From Blasdel and Salama [35]
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According to a standard experimental protocol, the animal is shown high-contrast
gratings between 20 and 80 times. These are made of black bands (e.g. 6.25◦) alter-
nating with white bands (e.g. 1.25◦), with several different orientations (e.g. 8) and
an angular speed of say 22.5◦/s. A cranial window is opened above V 1, and the
cortex is illuminated with orange light (605 nm). The orientation maps have very
low amplitude relative to the light intensity of the recorded cortical images. We thus
subtract the average intensity of the responses for all orientations, which is known
as the cocktail blank. Then, depending on the orientation of the gratings, differential
absorption patterns are observed, due to local spatial non-uniformities in the ratio
of deoxyhemoglobin to oxyhemoglobin. We subsequently sum the images of V 1
activity obtained for different gratings and construct differential maps. These are
normalized by dividing the relative deviations from the average of each pixel by the
global average deviation, and low-frequency noise is also eliminated.

We thus obtain functional maps like those in Figs. 4.28 and 4.29 obtained by
Crair et al. [36] and Bosking et al. [37], respectively, which concern the 2 and 3
layers of a tree shrew (tupaia): LGN → layer 4 → (strictly feed-forward) → layers
2 and 3. (The tree shrew looks like a primate but with the difference that there is

Fig. 4.28 Method for producing an orientation map of V 1. Preferred orientations are conventionally
colour-coded. Taken from Crair et al. [36]
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Fig. 4.29 V 1 of a tree shrew (tupaia). The different orientations are colour-coded. Right Zoom on
examples of regular points and singular points of opposite chirality, as explained in Sect. 4.4.1.2.
From Bosking et al. [37]

no fovea/periphery distinction, and this simplifies observation. For a survey of the
functional organization of his visual cortex, see Fitzpatrick [38] and Lund et al.
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[39].) The orientations are colour-coded, and the iso-orientation lines are thus the
monochromatic lines.

As emphasized by Yves Frégnac et al. [40], these mesoscale optical functional
imaging methods can be supplemented by microscale recordings of individual neu-
rons, either extracellular and simultaneous recordings of several cells using multielec-
trodes able to measure correlations in the activities of the various neurons involved,
or intracellular recordings that can measure both spiking activity and sub-threshold
activity, and by inverse analysis can be used to reconstruct the afferent network of
the given neuron (functional synaptic imaging). Figure 4.30 from [40] shows the
relationship between these three methods schematically.

Optical imaging data helps us to understand what is meant by the population
coding of a stimulus. Figure 4.31, which we shall consider again in Sect. 4.9.1, shows
the neurons in V 1 which are activated by a long vertical bar. We see that it is a rather
thick band, also very patchy, and nothing like a line. As pointed out by Ulf Eysel
[41, p. 641]:

A continuous line across the whole visual field would be cortically depicted in a patchy
discontinuous fashion.

Fig. 4.30 Three methods for microlevel recording of the activity of individual neurons. Simul-
taneous extracellular recording of several cells, intracellular recording, and reconstruction of the
afferent network of a neuron by functional synaptic imaging. Taken from Frégnac et al. [40]
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Fig. 4.31 Neurons of V 1 activated by a long vertical bar. Note that we obtain a thick and rather
patchy band. From [42]

4.4.1.2 Periodicity, Retinotopy, and Singularities

We return here to Fig. 4.29. Note to begin with that the lattice has a kind of character-
istic length—a mesh or wave number. This periodicity can be measured accurately
by taking the map of the pinwheels, translating it by t = (u, v), and calculating the
correlation between the two maps. The autocorrelation obviously has a primary peak
at t = (0, 0) (the map correlates perfectly with itself) and secondary peaks giving
the periodicity. Figure 4.32 is taken from the paper [43] by McLoughlin and Schiessl
and gives the example of the marmoset monkey.

We shall see in Sect. 4.6.6 that, under a Fourier transform, an orientation map can
be interpreted as a superposition of plane wave solutions of the Helmholtz equa-
tion and that the mesh of the pinwheel lattice comes from the fact that these plane
waves have almost the same wave number. More precisely, let Φ (z) = eiϕ(z) be the
orientation map [or Φ (z) = ei2ϕ(z), if we prefer to work modulo 2π and not take
into account the chirality of the pinwheels]. The autocorrelation function of Φ (z)
is given by C (u) = ∫

C
Φ∗ (z)Φ (z − u) dz, where Φ∗ (z) is the complex conjugate

of Φ (z). Isotropy implies that C (u) = C (r) depends only on the modulus r = |u|
of u. So let us consider the Fourier transform P (k) of C (r) (known as the power
spectrum), viz.

P (k) =
∫

R+
e−ikr C (r) dr .

P (k) is maximal on a ring of radius k0 = 2π/�0, and �0 specifies the mesh of the
pinwheel lattice. This structure in P (k) arises in the following way:
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Fig. 4.32 Autocorrelation with its translates of the pinwheel map of the marmoset monkey V 1
area. It is colour-coded from 0 to 1. At the centre, the red point means that the autocorrelation is 1
for t = (0, 0). The first dark blue ring around the centre corresponds to the distance at which the
pinwheels of opposite chirality are superposed. Then, the first light blue ring corresponds to the
basic period. The average distance between pinwheels is 575 µm in this example. Taken from [43]

(i) Local triviality outside singularities indicates a small local variation in orienta-
tions, and this low local correlation implies that there are no Fourier components
with high spatial frequencies k � k0, because these would induce large local
variations in the orientations everywhere.

(ii) Uniformity, i.e. the fact that all orientations are represented in equal amounts,
implies that there are no Fourier components with low spatial frequencies k 
k0, because these would induce long-range non-uniformities.

Figure 4.33, produced by Niebur and Wörgötter [44], shows an orientation map for a
macaque (area 18) and the power spectrum concentrated on a ring of average radius
k0 = 2π/�0. As already mentioned, we shall return in Sect. 4.6.6 to the limiting
case in which the power spectrum is totally concentrated on a circle of radius k0.

Note that in Fig. 4.29, the orientations (represented by colours) are distributed in a
globally homogeneous way. If the sectors of different colours seem to be distributed
inhomogeneously in the pinwheels, this is because of the perceptual structure of the
continuous wheel of colours; in contrast with what happens for discretized wheels,
the names of the colours correspond to sectors of a different angular width (see
Fig. 4.34).

Note also that there are three classes of points (they are represented in the idealized
diagram of Fig. 4.35):
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Fig. 4.33 Periodicity of an orientation map (right). The power spectrum (Fourier transform of the
autocorrelation function of the map) is concentrated on a ring of average radius k0 = 2π/�0, and
�0 specifies the periodicity of the map. From Niebur and Wörgötter [44]

Fig. 4.34 In the standard
continuous colour wheel, the
names of the colours
correspond in fact to angular
sectors of different angles.
The primary colours in
additive colour mixing, viz.
blue, green, and red, occupy
large sectors, whereas their
complementary colours,
which are the primary
colours in subtractive colour
mixing, viz. yellow,
magenta, cyan, each occupy
narrow sectors

Fig. 4.35 Idealized
‘crystalline’ pinwheel
structure on a regular square
lattice of singularities. There
are three classes of points:
regular, singular (pinwheel),
and saddle points
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(i) Regular points where the orientation field is locally trivial in the sense that the
iso-orientation lines are approximately parallel.

(ii) Singular points at the centres of the pinwheels where all the orientations con-
verge. They have a positive or negative chirality depending on whether, when
we move around the centre, the orientations rotate in the same sense or not.
They have opposite chiralities when adjacent.

(iii) Saddle points at the centres of the lattice cells, points where the iso-orientation
lines bifurcate: two neighbouring iso-orientation lines leave the same singular
point but end up at two opposite singular points.

Xu et al. [45] studied analogous structures for the prosimian primate7 known as the
bush baby (galago), which is a monkey ancestor with an analogous V 1 to the monkey
primates, but very different V 2. Figure 4.36, taken from [5], shows the isochromatic
lines more clearly, these being the iso-orientation field lines of V 1. Figure 4.37,
produced by Hongbo Yu et al. [46], shows the receptive fields corresponding to
positions along a line segment in V 1. We see the superposition of receptive fields for
neighbouring positions in a pinwheel and their slow displacement when we move
from one pinwheel to another. This explains the pioneering experiments by Hubel
and Wiesel.

4.4.2 Limitations of This Analysis

As noted by Amit Basole et al. [47], optical imaging methods are very powerful, but
the result must be interpreted cautiously because they depend among other things
on the type of inputs used. For example, they often use gratings which cross the
receptive fields (RFs), so we can only test the motion selectivity of the neurons in
the orthogonal direction (the aperture problem). If the input patterns are changed
by using shorter segments than the RFs in order to be able to test other directions
of motion, we obtain the same pinwheel structure for the orthogonal motions, but a
distortion of this structure for oblique motions.

4.4.3 Functional Maps as Fields

It is interesting to note that the pinwheel lattices with their iso-orientation lines look
like ‘field models’. The singularities ci with their chiralities are analogous to pos-
itive and negative charges producing field lines in R

2. This kind of field structure
was introduced early on by Valentino Braitenberg, in fact in 1979, in a paper entitled
Geometry of orientation columns in the visual cortex [23], well before the develop-
ment of in vivo optical imaging methods. Starting with Hubel and Wiesel’s results

7There are two classes of primates: on the one hand, monkeys and humans, and on the other, the
prosimians.
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Fig. 4.36 The isochromatic lines are the iso-orientation lines of V 1. From [5]

on monkeys and cats in 1962, and their discoveries (i) that the preferred orientation
of neurons depends smoothly on the tangential penetrations of the electrodes, (ii)
that there is chirality, and (iii) that the latter can reverse along a penetration, the
Braitenbergs tried to build orientation fields. Through quite remarkable abduction,
they came to the following conclusion:



4.4 The Pinwheel Structure of V 1 149

Fig. 4.37 Receptive fields of simple V 1 neurons at different positions along a line segment. We
see the superposition of the receptive fields for neighbouring positions in a pinwheel and their slow
displacement when we move from one pinwheel to another. From Yu et al. [46]

We believe that the most natural explanation of the facts observed would be in terms of orien-
tations arranged with circular symmetry around centres, either radially or along concentric
circles.

They clearly anticipated by clever abduction the pinwheel structure discovered later
experimentally. Figure 4.38 of [23] shows how a straight line penetration L encoun-
ters the pinwheels and can reverse the chirality when the singularities lie on either
side of L .

Following the work by the Braitenbergs, other specialists like William Baxter and
Bruce Dow carried out further investigations of these inferences. In their paper [48]
on pinwheels in the macaque, they explicitly constructed the flow of the orientation
field and introduced singularities of a different chirality and different topological
index, i.e., singularities of index ±1 giving sources and sinks and those of index
±1/2 giving end points and triple points, which we shall discuss shortly. Figure 4.39
gives an example.

It would be interesting to reconstruct more or less explicit models of orientation
fields that can be observed empirically in the pinwheels of different species. To
do this, we could use the relationship between the fields of straight lines provided
by the orientation fields and vector fields carried by these straight lines. Away from
singularities where the vectors vanish or diverge, a vector field automatically induces
an orientation field, simply by taking the orientations of the vectors. Supposing that
it is meaningful to consider the singularities with their chirality as positive and
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Fig. 4.38 The Braitenbergs’
theoretical reconstruction by
abduction of the pinwheel
structure of V 1. We observe
the orientations along the
straight line tangential
penetration L of an
electrode. The pinwheels are
reconstructed to explain the
data, and in particular the
reversal of chirality when the
singularities lie on either side
of L . From Braitenberg [23]

negative charges, we could then consider the field lines of an associated ‘physical’
field deriving from a potential.

Consider, for example, the field of Fig. 4.40 produced by Geoffrey Goodhill in
[49]. An arrangement of charges ±1 is constructed by applying the rule that two
neighbouring singularities always have opposite charges, together with several sup-
plementary terms to take into account edge effects. By inspection, we find that the
‘physical’ analogy is roughly correct. In Fig. 4.41, the field lines are the orange lines
from the sources (+) towards the sinks (−), while the lines orthogonal to the field
line are equipotentials, i.e. lines of equal potential, for the potential whose gradient
gives the field.

To give another example, consider the fragment shown in Fig. 4.42 of the image
in Fig. 4.97 that we will comment on in Sect. 4.9.3. Figure 4.43 shows the physical
analogy with the field induced by the +1 and −1 charges located at singular points
and with a certain number of equipotential curves which are by definition orthogonal
to the field.

The equipotential line of mean level is a separatrix between the influence zones
of charges +1 and −1 (see Fig. 4.44).

For a regular ‘crystalline’ pinwheel lattice with square unit cell like the one in
Fig. 4.35 of Sect. 4.4, we obtain Figs. 4.45 and 4.46, whose idealized geometry is
shown in Fig. 4.47.

In Figs. 4.48 and 4.49, we show how the ideal crystal model can be distorted.
With the notion of phase field, we shall discuss a deeper way to understand pin-

wheels as ‘physical fields’ in Sect. 4.6.
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Fig. 4.39 Four examples of abstract ‘crystal’ models of pinwheels put forward by William Baxter
and Bruce Dow. White and black squares represent singularities with topological indices +1 and
−1, respectively, while white and black triangles represent singularities with topological indices
+1/2 and −1/2, respectively. Taken from [48]

4.4.4 Development of Pinwheels

There is some experimental data concerning the evolution of orientation maps and
their pinwheels while the V 1 area is developing. For example, in the mid-1990s,
Barbara Chapman, Michael Stryker, and Tobias Bonhöffer [51] adapted the optical
imaging method to carry out what they called chronic optical imaging of intrinsic
signals. The aim was to study the emergence and development of the pinwheel
structure. (They were working on the ferret, whose visual system is similar to the
cat’s.) They showed that, starting from a barely structured initial orientation map,
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Fig. 4.40 Example of an orientation field reconstructed from neural network models, with its
pinwheels and field lines. The black lines are the boundaries of ocular dominance domains, discussed
in Sect. 4.10.1. From Goodhill [49]

Fig. 4.41 ‘Physical’ field
with charges +1 and −1
distributed like the
pinwheels in Fig. 4.40
(ordinate −y). Field lines are
orange lines going from the
sources (+) to the sinks (−).
Lines orthogonal to the field
lines are equipotentials, i.e.
lines of equal potential, for
the potential whose gradient
gives the field. Plot drawn
with Mathematica [50]
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Fig. 4.42 Fragment of the
image in Fig. 4.97

Fig. 4.43 Physical analogue
of the field in Fig. 4.42
induced by +1 and −1
charges located at singular
points. A certain number of
equipotential curves
orthogonal to the field are
also shown
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Fig. 4.44 If we take the
mean level equipotential of
the field in Fig. 4.43, we get a
separatrix between the
influence zones of charges
+1 and −1. The small white
discs around the singular
points are due to the fact that
the divergences of the
potential at these points are
clipped

Fig. 4.45 Field of the
regular ‘crystalline’
pinwheel lattice with square
unit cell in Fig. 4.35 of
Sect. 4.4
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Fig. 4.46 Equipotential
separating the influence
zones of +1 and −1 charges
of the field in Fig. 4.45
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Fig. 4.47 +/− dominance
domains in the ‘crystal’
model idealized in Fig. 4.35
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Fig. 4.48 Idealized
crystalline geometric model
of Fig. 4.47, interpreted using
a physical analogy in which
the pinwheel singularities
generate a field. Gradient
lines (corresponding to
iso-orientation lines) and
equipotentials are shown

Fig. 4.49 Distortion of the
physical analogy in Fig. 4.48

an organized map gradually comes into being and eventually becomes remarkably
stable.

We shall return to pinwheel morphogenesis and the associated learning processes
in Sect. 4.7.1.2, but this time in terms of models.

4.4.5 Pinwheels and Evolution

Regarding the pinwheel structure of V 1, as for any other biological structure, we may
wonder how it evolved, and what exactly was being optimized as a result of some
evolutionary pressure. We already discussed this question in Sect. 3.6 of Chap. 3, in
relation to the shape of the receptive profiles of ganglion cells and LGN and V 1
neurons.

4.4.5.1 Minimizing the Wiring

Alexei Koulakov and Dmitri Chklovskii [52] investigated the hypothesis that the
pinwheel structure minimizes the total length L of intracortical connections, while
maintaining a good representation of the properties of the stimuli. To do this, they con-

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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sidered connection functions c (θ) giving the number of connections between a neu-
ron A with preferred orientation 0 and neurons with orientations θ ∈ [−π/2, π/2].
The functions c (θ) considered have the form c+G (θ), where c is a constant favour-
ing a number of connections independent of θ , and G (θ) is a Gaussian with mean
zero favouring connections with neurons having the same orientation as A . In the
limit, G (θ) gives the Dirac distribution at 0. These two models c and G (θ) compete
to minimize L , and when the Gaussian G is narrow enough, pinwheels appear.

Seen from this point of view, the advantage of the pinwheels is that a neuron
does not have to go further than the nearest pinwheel in order to connect itself to
a neuron of any given orientation. Figure 4.50a of [52] shows an example function
c(θ) and Fig. 4.50b the pinwheel map obtained by minimizing L . The lattice contains
N = 50 × 50 = 2500 neurons. We consider the set M of 2500 × 2500 matrices
M = (

Mi j
)

i, j=1,...,N of connections between neurons i = (xi , yi ) and j = (
x j , y j

)

which satisfy the constraint c (θ) with Mi j = 1 if the neurons i and j are connected
and 0 otherwise. We have L = ∑i, j=N

i, j=1 di j Mi j , where di j is the distance between
i and j , and we minimize L in M, which is difficult, using simulated annealing
algorithms.8

Fig. 4.50 Minimizing the total length L of intracortical connections for the connection function
c (θ) shown in (a). b Pinwheel map for a square lattice of N = 50 × 50 = 2500 neurons. We
consider 2500 × 2500 matrices of connections M = (

Mi j
)

i, j=1,...,N between neurons i = (xi , yi )

and j = (
x j , y j

)
which satisfy the constraint c (θ) with Mi j = 1 if neurons i and j are connected

and 0 otherwise. We have L = ∑i, j=N
i, j=1 di j Mi j , where di j is the distance between i and j . We

minimize L using simulated annealing algorithms. From Koulakov and Chklovskii [52]

8For an introduction to simulated annealing, see, for example, the Bourbaki lecture by Robert
Azencott [53].
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4.4.5.2 Column Structure and Sparse Representations

For their part, Karol Gregor, Arthur Szlam, and Yann LeCun [54] related the column
and hypercolumn structure of V 1 to the sparse code representation of statistical
regularities in natural images. They used the model we discussed in Sect. 3.6.2 of
Chap. 3. Natural images I with P = p2 pixels form a subset � ⊂ R

P and are
thus described by vectors I = (Ir )r=1,...,P in the canonical basis of R

P . We seek
representations I = ∑i=N

i=1 siϕi using filters (RPs of neurons)ϕi ∈ R
P , i = 1, . . . , N .

The latter constitute a ‘dictionary’ Φ which is a P × N matrix and we wish these
representations to be sparse; that is, for each image I , only a limited number of filters
respond, most of the si being zero. As we have seen, the basic idea is to minimize an
energy of the form

E (I, s) = 1

2
‖I − Φs‖2 + λ

i=N∑

i=1

|si | .

But we can also try to structure the lattice of filters by introducing, rather like Hyväri-
nen and Hoyer [55], a set of lateral neural connections between the filters and by
penalizing the simultaneous activity of two neurons by means of inhibitory connec-
tions. If U = {(i1, j1) , . . . , (ik, jk)} is the set of these connections, we cannot have
both si 	= 0 and s j 	= 0 in the coding of an image I when (i, j) ∈ U .

In order to impose this constraint, we introduce a quadratic term sTW s into the
energy E , where W is a matrix of weights for the inhibitory connections. If U
is given, learning will reinforce W . However, if U has to be learnt by exposure
to natural images, then learning will weaken the weights of the connections (i, j)
between filters that are often activated together. The authors of [54] show that the
lattice of filters gets structured into columns and hypercolumns. We shall return to
this point in the second volume.

4.4.6 End Points and Triple Points

All the pinwheels observed experimentally have topological index ±1. However,
singularities with topological index ±1/2 enter the scene when we look at the way the
orientation itself varies. Figure 4.51 was produced by Shmuel. We have included the
orientation field lines in the neighbourhood of two singularities of opposite chirality.

We see that dextrorotatory and levorotatory pinwheels are associated with the two
types of generic singularity in the orientation fields in the plane. This is due to the
fact that, when the ray rotates through an angle θ about the centre of the pinwheel,
the associated orientation rotates through θ/2. Hence, two diametrically opposite
rays correspond to orthogonal orientations.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Fig. 4.51 Orientation maps and pinwheels in the V 1 area of a tree shrew. Here, we see the relation
between pinwheels (colours) and the preferred orientations. We have represented the orientation
field lines in the neighbourhood of two singularities with opposite chirality. Adapted from Shmuel
[56]. Copyright (2000) National Academy of Sciences, USA

If the orientation ψθ associated with the ray at angle θ is

ψ+
θ = α + θ

2
= ϕ+

θ

2
,

the two directions will be the same for ψ+
θ0

= α + θ0/2 = θ0, i.e. for θ0 = 2α, and
then ϕ+

θ = 4α. As α is specified modulo π , there is only one solution and we obtain
the local model in Fig. 4.52 (an end point). If on the other hand the orientation ψθ

associated with the ray at angle θ is

Fig. 4.52 End point
singularity



160 4 Functional Architecture I: The Pinwheels of V 1

Fig. 4.53 Triple point
singularity

ψ−
θ = α − θ

2
= ϕ−

θ

2
,

the two directions will be the same for ψ−
θ0

= α− θ0/2 = θ0, i.e., for θ0 = 2α/3, and
then ϕ+

θ = 4α/3. There are three solutions, and we obtain the local model shown in
Fig. 4.53 (triple point).

It is very easy to calculate the integral curves of the orientation field in the neigh-
bourhood of these singularities, for example for α = 0. Adopting polar coordinates
(ρ, θ), we have x = ρ cos (θ) and y = ρ sin (θ), whence

{
dx = cos (θ) dρ − ρ sin (θ) dθ ,

dy = sin (θ) dρ + ρ cos (θ) dθ .

For end points, the constraint is dy/dx = tan(θ/2), i.e.

sin

(
θ

2

)
dx − cos

(
θ

2

)
dy = 0 ,

or

sin

(
θ

2

)
[

cos (θ) dρ − ρ sin (θ) dθ
] − cos

(
θ

2

)
[

sin (θ) dρ + ρ cos (θ) dθ
]

=
[

sin

(
θ

2

)
cos (θ) − cos

(
θ

2

)
sin (θ)

]
dρ

−r

[
sin

(
θ

2

)
sin (θ) + cos

(
θ

2

)
cos (θ)

]
dθ = 0 .
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But

cos (θ) = cos2

(
θ

2

)
− sin2

(
θ

2

)
, sin (θ) = 2 cos

(
θ

2

)
sin

(
θ

2

)
,

and

cos2

(
θ

2

)
+ sin2

(
θ

2

)
= 1 ,

so we obtain the differential equation

sin

(
θ

2

)
dρ + ρ cos

(
θ

2

)
dθ = 0 ,

and hence,

sin

(
θ

2

)
dρ

dθ
+ ρ cos

(
θ

2

)
= 0 .

The solutions are

ρ = ρπ

sin2 (θ/2)
= 2

ρπ

1 − cos (θ)
,

where the constant of integration ρπ is the value ρ (π). This is a parabola. Its axis of
symmetry is the x-axis, it has vertical tangent at (ρ = ρπ, θ = π), and its branches
tend to infinity for θ → 0. Figure 4.54 shows the case ρπ = 1.

Fig. 4.54 Integral curves of the orientation field in the neighbourhood of the pinwheels. Left End
point singularity. Right Triple point singularity
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For the triple points, the constraint is dy/dx = − tan (θ/2) and an analogous
calculation leads to

sin

(
θ

2

)[
3 cos2

(
θ

2

)
− sin2

(
θ

2

)]
dρ

+ ρ cos

(
θ

2

)[
3 sin2

(
θ

2

)
− cos2

(
θ

2

)]
dθ = 0 ,

which has solutions

ρ = ρπ

sin2/3 (3θ/2)
.

The symmetry θ → θ + 2π/3 is obvious, since it changes 3θ/2 to 3θ/2 + π and
thus leaves sin2/3(3θ/2) invariant. Figure 4.54 shows one of the trajectories in the
case ρπ = 1.

When α 	= 0, the solutions become

ρ = ρπ+2α

sin2

(
θ

2
− α

) , ρ = ρ(π+2α)/3

sin2/3

(
3θ

2
− α

) ,

respectively, and the orientation fields rotate through α. However, it should be noted
that the fields of the ϕ = 2ψ depend in a more subtle way on α. The singularity of
the field ϕ+ varies from a node with central symmetry (α = 0), first to stable foci,
then to a centre (α = π/4), then to unstable foci, whereas the singularity of the field
ϕ− gives different kinds of saddle point. Figure 4.55 (obtained using Mathematica’s
StreamPlot) shows the field lines of ϕ+, ϕ−, ψ+, and ψ− for four values of the
parameter α: 0, π/8, π/4, and 3π/8. These different prototype models of field lines
all correspond to a prototype pinwheel like the one in Fig. 4.56.

4.4.7 Distortions and Defects in the Neighbourhood
of the V1/V2 Boundary

Given the chirality of the pinwheels, the most standard V 1 structure is a distortion of
a square lattice (the ‘crystal’ structure in Fig. 4.35). However, like any distortion of a
regular lattice, it may contain defects inducing, for example triangular or pentagonal
domains (see Fig. 4.57).

The distortion becomes significant at the boundary between V 1 and V 2 because,
as has been shown by Ohki et al. [57] among others, pinwheels of the same chirality
are aligned along this boundary (see Fig. 4.58). Their field lines and level sets can
be studied and simulated in detail, as shown in Fig. 4.59. Distortion is manifested by
the fact that the V 1/V 2 boundary resembles a ‘cliff’, as can be seen from the tightly
bunched parallel level sets.
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Fig. 4.55 Left to right columns Field lines of the fields ϕ+, ϕ−, ψ+, ψ− (see text) for the 4 values
(top to bottom) 0, π/8, π/4, and 3π/8 of the parameter α

Fig. 4.56 Typical pinwheel
with ψθ = θ/2
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Fig. 4.57 Part of Fig. 4.36
showing the distortion
relative to the ‘crystal’ lattice
in Fig. 4.35 and the
appearance of defects in the
ordered structure. We have
not indicated the connections
to pinwheels outside the
frame

Fig. 4.58 Arrangement of pinwheels near the boundary between V 1 and V 2. It is highly distorted
because it includes alignments of several pinwheels with the same chirality. Small white and black
discs represent singularities with levorotatory and dextrorotatory chiralities, respectively. From
Ohki et al. [57]
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Fig. 4.59 Physical field model of the distortion of the pinwheel lattice at the V 1/V 2 boundary.
This boundary resembles a ‘cliff’, as can be seen from the tightly spaced bundles of parallel level
sets

4.5 Topological Universality of Pinwheels

We shall see in Sect. 4.9.4 that the pinwheel structure is widespread in visual systems.
Note, however, that this concrete empirical omnipresence is matched by an abstract
topological universality which helps to explain it. In a very elegant paper [58], Daniel
Bennequin and coworkers Alberto Romagnoni, Jérôme Ribot, and Jonathan Touboul
provided a topological demonstration. The point of this theorem is to show just how
far apparently very general and barely restrictive conditions can effectively amount
to drastic constraints. It is one of the great advantages of mathematics to be able to
identify this kind of ‘Platonic’ constraint.

The idea is to consider the way cells parametrized by z = (x, y) in a domain
Ω ⊂ C of the visual plane identified with the plane C = R

2 can encode orientations
(modulo π ) ψ ∈ S

1
π (where S

1
π is [0, π ], with π identified with 0), i.e., a periodic

quantity. Such a coding can be described by a mapping f : Ω → S
1
π which may

have singularities, i.e. points where it is not defined because multivalued there.
Since the idea is to model hypercolumn functional architectures, we assume that

f is local, i.e. defined apart from a few possible singular points on a domain Ω

which is a small disc centred on 0 and having a circle as boundary Γ = ∂Ω . But at
the same time, since the notion of size is relative to a scale, we seek local models
which would ideally be scale invariant. This means that these are models centred on
a singularity and with a qualitative structure that does not vary when we zoom in or
out.

The authors begin by defining a rather general class F of sufficiently smooth
maps f satisfying natural conditions. They then assume that f is exhaustive, in the
sense that it codes all orientations, i.e. it is surjective. Clearly, the standard model of
the pinwheel, viz.
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f0 : � → S
1
π , z = ρeiθ �−→ ψ = θ

2
,

defined over the unit disc �, must belong to F . Now, f0 has several properties:

(i) f0 is defined away from 0, with 0 being a singularity at which it is multivalued
(the ‘image’ of 0 is the whole of S

1
π ).

(ii) Away from 0, f0 is regular (smooth, infinitely differentiable).
(iii) The level sets Cψ = f −1

0 (ψ) on which f0 is constant are rays and hence smooth
curves joining the boundary Γ to the singular point 0.

The fact that the level sets Cψ are curves is to be expected. Indeed, suppose that
f : Ω → S

1
π is smooth (apart from singularities) and generic, i.e. with a topology

that remains qualitatively the same when f is slightly deformed. Then, the level sets
Cψ must be sub-manifolds of Ω with codimension c = dim

(
S

1
π

) = 1 so that there
exists in Ω a degree of freedom transverse to the Cψ , corresponding to changes in
ψ . Hence, since Ω has dimension n = 2, the level sets Cψ must be sub-manifolds
of dimension n − c = 2 − 1 = 1.9 As curves, the Cψ can have singularities (which
are not necessarily singularities of f , where f is not defined). Generically, these are
end points or triple points.

The authors then introduce a minimal complexity constraint known as ‘parsimony’,
which stipulates that the topological redundancy, that is the number of connected
components of the level sets Cψ , should be minimal, i.e., equal to unity (as for the
rays of the standard pinwheel). The class F defined in this way is thus the class of
maps f : Ω → S

1
π which are smooth away from singularities in the interior of Ω ,

surjective (exhaustivity constraint), and whose level sets Cψ are smooth connected
curves (parsimony constraint). The authors then prove the following theorem:

Theorem Topological universality of pinwheels. The elements f : Ω → S
1
π of F

have the pinwheel topology, i.e., an isolated singularity in the interior of Ω with the
Cψ joining the different points of the boundary Γ = ∂Ω to this singularity.

The proof is based on purely topological arguments. Here, we give a heuristic account.
We use a fundamental topological property of any circle, e.g. the standard circle S

1:
if we remove any point or interval, it will not be disconnected. So if we remove an
arc J = [θ1, θ2] containing (θ1 + θ2)/2, we can still move from θ1 to θ2 by following
the other arc containing π + (θ1 + θ2)/2 [the point opposite to (θ1 + θ2)/2 on S

1].
This is not the case with R = (−∞,+∞): if we remove an interval I = [x1, x2],
we disconnect R into two disjoint intervals (−∞, x1) and (x2,+∞) (see Fig. 4.60).

Let ψ0 ∈ f (Γ ) be an orientation coded by a point on the boundary Γ . By
hypothesis, Cψ0 = C is connected and intersects Γ . Now, consider the complement
Ω − C of C in Ω and let c be the number of its connected components (connected
by arcs10).

9For more on such questions of dimensions, the reader could consult my 1982 review [59] and
references therein.
10Given the assumptions of continuity and smoothness, we need consider only connectedness by
arcs.
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Fig. 4.60 A circle remains connected if we remove an arc [θ1, θ2], whereas a straight line becomes
disconnected if we remove an interval [x1, x2]

Fig. 4.61 Level curves of f
cannot have triple points
decomposing Ω into three
connected components.
Symbols < and > indicate
f < ψ0 or f > ψ0,
respectively

It can be shown that we cannot have c ≥ 3 (see Fig. 4.61). Indeed, suppose that
C has a triple point t and consider a small enough open neighbourhood T of t and
a small enough open neighbourhood V of ψ0. Let W = f −1 (V ) ∩ T . Then, W is
made up of points close to t , where f takes values close to ψ0. Let Wi , i = 1, 2, 3,
be the three connected components of W −C . We can then arrange for f to be > ψ0

or < ψ0 in each Wi . As this makes two possibilities for three components, there
must therefore be two components with the same property. Suppose, for example,
that f < ψ0 on W1 and W2 and f > ψ0 on W3. This means that (i) the part C12 of C
which is the shared boundary of W1 and W2 is a curve along which f is transversally
maximal, and (ii) the parts C23 and C31 of C which are shared boundaries of W2

and W3 and of W3 and W1 are curves along which f is transversally monotonic.
Figure 4.62 shows that, in this case, the level lines Cψ for ψ 	= ψ0, ψ ∈ V are no
longer connected, which is forbidden by parsimony.
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Fig. 4.62 Left Structure of level lines in the neighbourhood of a triple point of C . Right A level
line close to C (continuous line) which is disconnected and another level line close to C (dashed
line) which is connected

But neither is it possible to have c = 2, Ω−C being decomposed into two disjoint
connected components U1 and U2 on which we would have f > ψ0 and f < ψ0,
respectively (see Fig. 4.63). Let I1 ⊂ S

1
π be the values taken by f on U1 ∪ C . Since

U1 ∪ C is compact and connected and f is continuous, the image I1 is compact
and connected11 and is thus an interval I1 = [ψ0, ψ1] (by continuity, we can have
ψ1 > π ). Likewise, the image of U2 ∪ C is an interval I2 = [ψ2, ψ0] (by continuity,
we can have ψ2 < 0). If ψ1 −ψ2 < π , then part of S

1
π is not covered by f , so f is not

surjective, a situation excluded by hypothesis. If, on the other hand, ψ1 − ψ2 ≥ π ,
then there is at least one value ψ 	= ψ0 for which the level curve Cψ intersects both
U1 and U2, which are disjoint (see Fig. 4.64). These two pieces of Cψ cannot be
connected by Cψ because, for this to happen, Cψ would have to cross the boundaries
of U1 and U2, and hence Cψ0 . But this is impossible because ψ 	= ψ0, whence Cψ

and Cψ0 are disjoint. Therefore, Cψ is not connected and the topological redundancy
is ≥ 2, which is forbidden by hypothesis.

So the connected level line C = Cψ0 does not disconnect Ω . It can be shown that
it cannot be entirely contained within the boundary Γ and that it enters into Ω and
ends at a singular point s. We then choose two points z1 and z2 in Ω −C and connect
then by two paths: one of them γ : z1 → z2 crossing C and the other γ ′ : z1 → z2

going round C , in such a way as to give the situation in Fig. 4.65.
Let ψ1 = f (z1) and ψ2 = f (z2). Since z1, z2 /∈ C , we have ψ1, ψ2 	= ψ0.

Since γ and γ ′ are compact and connected, their images are intervals [ψ1, ψ2] of
S

1
π . Since γ crosses C , its image is the interval [ψ1, ψ2] containing ψ0, and since

γ ′ goes around C , its image is the interval [ψ1, ψ2] not containing ψ0. Hence, the

11Here, the authors use basic theorems of general topology going back to Bolzano, Weierstrass,
Heine, Borel, and Lebesgue. For separated topological spaces, the continuous image of a compact
(connected) set is compact (connected).
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Fig. 4.63 Level curves of f cannot decompose Ω into two connected components. Symbols <

and > indicate f < ψ0 or f > ψ0, respectively

Fig. 4.64 Left If (ψ1 − ψ0) − (ψ2 − ψ0) = ψ1 − ψ2 < π , the interval (ψ1, ψ2) (bottom) is not
covered by f . Right If, on the other hand, (ψ1 − ψ0) − (ψ2 − ψ0) = ψ1 − ψ2 ≥ π , the interval
(ψ2, ψ1) (bottom) is covered twice (example given by angle ψ)

image of γ ∪γ ′ under f is the whole circle S
1
π . But the configuration in Fig. 4.65 can

be shrunk towards s. Thus, all the level lines Cψ must converge towards the point s.
Finally, it can be shown that f is already surjective on the boundaryΓ . Indeed, f

∣∣
Γ

is a continuous map of a circle onto a circle. If it is not surjective, it then takes each
of its values generically at least twice (counted with multiplicity). This means that
there are at least two level curves Cψ for each value ψ in the range, which contradicts
the assumption of minimal topological redundancy (equal to unity). Therefore, f is
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Fig. 4.65 The level line C
does not disconnect Ω ,
enters Ω , and ends at a
singular point s. z1 and z2 are
two points in Ω − C joined
by two paths, one of them
γ : z1 → z2 (red) crossing C
and the other γ ′ : z1 → z2
(green) going around C

surjective. In fact, by the same argument of minimal topological redundancy, it is
also injective.

4.6 Pinwheels as Phase Fields

Having discussed the topological universality of pinwheels as local models of hyper-
columns, we shall now turn to their global lattice structure. On a certain scale, func-
tional orientation maps assign an orientation ψ (a) modπ to each point a of the
cortical surface of V 1. For simplicity, we shall treat this surface as a plane R

2 with
coordinates (x, y), identified with a complex plane C with coordinate z. By treating
V 1 in Sect. 4.3.5 as an implementation of the space of 1-jets of curves in R

2, we
represented ψ by its tangent tan (ψ). It was associated with a function eiϕ , where ϕ

is the phase ϕ = 2ψ , defined mod 2π .
These maps are thus phase fields in which the pinwheels are singularities. This kind

of field turns up in many types of physical phenomenon, and in particular in optical
and liquid crystal structures. There is a vast literature about this, and especially about
the singularities. In this section, we shall import a certain number of the associated
formalisms and models to neurogeometry.

We do this with a certain amount of mathematical detail because we shall not return
to this model in the second volume (where we shall in fact develop an alternative
model in considerable mathematical detail).

4.6.1 Fields and Coordinates

Since we shall be considering several spaces and several fields, we begin by defining
the notation. The cortical layer is modelled by R

2. If a = (x, y) is a point of R
2,
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it will often be useful to consider it as a complex number z = x + iy using the
standard R-linear isomorphism between C and R

2. To study the structure of the field
in the neighbourhood of a singular point a0, it will often be useful to transport the
coordinate system on R

2 to a0 by a translation carrying 0 to a0 and an appropriate
rotation of the axes, and then to take polar coordinates (ρ, θ) around a0 = 0, i.e.
z = ρeiθ , x = ρ cos (θ), y = ρ sin (θ). A phase field assigning the phase ϕ (a) to
each point a ∈ R

2 is thus a map Φ : R
2 → S

1, Φ (a) = eiϕ(a), in other words a
section of the fibre bundle π : R

2 × S
1 → R

2, with singularities of a particular
type in places where the phase ϕ (a) is not defined. Clearly, as ϕ (a) is a function
defined on R

2, if it is differentiable, it can have singularities in the classical sense,
i.e. critical points where the gradient ∇ϕ = 0. Generically, there are three types:
extrema, i.e. maxima or minima, and saddle points. Experimentally, there do not
seem to be any extrema (where the isochromatic curves would be concentric circles
locally), whereas there are many saddle points occupying the ‘centres’ of the cells
defined by the pinwheels.

The experimental data show that the orientation maps ψ (a) = ϕ (a)/2 can also
have lines of discontinuity called fractures, across which the orientation jumps from
one value to another. If there are no fractures, ψ (a) is smooth away from singular
points, where it is not specified. In the local pinwheel models involving end point
and triple point singularities, discussed in Sect. 4.4.6, we took ψ = α ± θ/2.

It is often possible and natural to associate an amplitude, that is a modulus r (a),
with the phase of a phase field. For functional orientation maps, Fred Wolf and
Theo Geisel suggested introducing the strength of the orientation selectivity, i.e.
the width of the tuning curve. We shall return to this key idea in Sect. 4.7.1. Under
such an assumption, the phase field Φ becomes the ‘phase part’ of a complex scalar
field Z : C → C, z = ρeiθ �→ r (z) eiϕ(z), also denoted r (a) eiϕ(a). In Cartesian
coordinates, Z (a) will be written Z (a) = X (a) + iY (a), where X and Y are two
real functions of the variables (x, y).

The map Z can be viewed as a section of the bundle π1 : R
2 × C → R

2 whose
fibre is no longer S

1 but C. The group E (2) acts on π1 as it acts on π : in the standard
way in the base space R

2 and by rotation of the phase in the fibre.

4.6.2 Singularities of a Phase Field

Given a phase field Z (a)—which may be denoted Z (z), X (a) + iY (a), X (z) +
iY (z), r (a) eiϕ(a), or r (z) eiϕ(z), depending on the context—the geometry can be
analyzed using the standard tools of vector analysis, viz. gradients ∇, divergences,
curls, Laplacians �, and so on.

The singularities of Z are points where the phase ϕ is not defined, but where Z is
for its part well defined, although with a particular value, 0 or ∞. They correspond
to zeros and poles of Z . If |Z | is bounded, then they can only be zeros. We go from
zeros to poles by allowing |Z | to diverge and taking for the space of values of Z ,
not only the complex plane C, but its completion Ĉ by a point at infinity (called the
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Riemann sphere or the complex projective line). The reciprocal

1

Z
= 1

r (a)
e−iϕ(a)

of Z then has a pole at a if Z has a zero at a. For a zero, the simplest local model
is ±z if Z is a holomorphic function, i.e., a smooth function of the complex variable
z, hence differentiable with respect to z (and not only with respect to x and y sep-
arately, see below), and for a pole, it is ±1/z if Z is a meromorphic function (see
below). However, there is no reason a priori why Z should be holomorphic. In the
neighbourhood of a point a0 of the base space R

2 taken as the origin 0, we then have
to first order

Z (x, y) ≈ X (0) + x
∂X

∂x
(0) + y

∂X

∂y
(0) + i

[
Y (0) + x

∂Y

∂x
(0) + y

∂Y

∂y
(0)

]
,

whence

Z (a) ≈ Z (0) + a · ∇0 X + ia · ∇0Y ,

where ∇0 X is the value of the gradient of X at 0, ∇ X = (∂X/∂x, ∂X/∂y), and the
same for Y . Hence,

∣∣Z (a) − Z (0)
∣∣2 ≈ R2 = (a · ∇0 X)2 + (a · ∇0Y )2 ,

and the level lines R = const. are ellipses to this order of approximation. They are
only circles if Z (a) can be written as a function Z (z) of z, in other words if on the
one hand x∂X/∂x + iy∂Y/∂y is proportional to z, which requires ∂X/∂x = ∂Y/∂y,
and if on the other hand y∂X/∂y + ix∂Y/∂x is proportional to iz, which requires
∂X/∂y = −∂Y/∂x . These fundamental conditions, known as the Cauchy–Riemann
equations, express the fact that the gradients ∇ X and ∇Y of Z are orthogonal. They
characterize holomorphic functions.

Now in all the situations where we analyze fields, the singularities play a deter-
mining structural role and contain most of the essential morphological information.
As noted by Berry [60], the eminent specialist in optics (whether it be geometrical,
wave, or quantum optics):

Each singularity is a window to a deeper theory.

Regarding lines of phase singularities for 3D waves,12 Berry also stresses that [61,
p. 724]:

Wave vortex lines can be regarded as a skeleton, characterizing and supporting the full
structure of the wave.

12Phase singularities are generically points in 2D and lines in 3D because they are specified by two
conditions and so have codimension 2 (see below).
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This is a general ‘philosophy’ which geometers have clearly established since René
Thom (see Sect. 1.3 of the Preface). We shall take this as a starting point, and all
the more so in that, for a long time now, we have been following Michael Berry’s
work in optics very closely, and in particular his work on caustics, because these
represent one of the main applications of the theory of singularities in fundamental
physics. More recent applications of these studies in phase fields are now also used
in the theory of pinwheels by Fred Wolf and Theo Geisel (we shall return to this),
Bennequin [62], Afgoustidis [63, 64], and Giovanna Citti and Sarti [65].

Many of the concepts used in the theory of singularities, such as genericity, codi-
mension, bifurcations, unfolding, or normal forms, have thus turned out to be highly
relevant in neurogeometry. The reader will find much more about this in our surveys
[59] and [66] on the theory of singularities and critical phenomena, and in particular,
further reading (but see also our Landmarks [67]).

Let us assume that the field Z is smooth outside singular points, where the phase
ϕ is indeterminate and where Z vanishes. Since Z = X + iY , these points are
intersections between curves with equations X = 0 and Y = 0. The condition X = 0
corresponds to r cos (ϕ) = 0, i.e. ϕ = π/2 modπ if r 	= 0, and Y = 0 corresponds
to r sin (ϕ) = 0, i.e. ϕ = 0 modπ if r 	= 0. If X = Y = 0, we necessarily have
r = 0 because the two conditions on ϕ are incompatible. Generically, the curves
X = 0 and Y = 0 cross transversally at isolated points. This means that the points
which satisfy both conditions have codimension 2 and, as the surrounding space
R

2 is 2D, are isolated points (whereas in a 3D surrounding space, they would be
lines). In the theory of mesophases (liquid crystals), these phase singularities are
called dislocations. The same term could be used here to say that the pinwheels are
dislocations in the orientation field implemented in V 1.

Note that these dislocations Z = 0 are invariant under gauge transformation Z →
eiσ Z in the target space and under change of differentiable coordinates (x, y) →
(ξ, η) in the source space.

4.6.3 Orientation and Iso-orientation Fields

There are several different fields here. The field Z is the phase field ϕ (a) = 2ψ (a).
It has isophase lines, called wave fronts by analogy with optics. As isophase means
iso-orientation, they are represented by isochromatic lines in the pinwheel maps.

In addition, there is the orientation field ψ (a) = ϕ (a)/2. As such, it defines
a foliation of the plane R

2 by its integral curves. With the end point and triple
point models in Sect. 4.4.6, we identified the local geometry of these foliations at
the singular points. Let us denote this field by W (a) = s (a) eiψ(a), assuming that
meaning can be attributed to the amplitude s (a). W also has field lines and isophase
lines. However, in contrast to the phase ϕ, which is defined modulo 2π , the angle ψ is
only defined modulo π . For pinwheels without distortion, ϕ can in fact be identified
with 2α ± θ and ψ with α ± θ/2. In this case, we have eiϕ = (

eiψ
)

2. The simplest

http://dx.doi.org/10.1007/978-3-319-65591-8_1
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way to satisfy this condition is to take Z = W 2. Since W = √
Z , there is a Riemann

cut, because when ϕ changes by 2π , which leaves Z invariant, ψ changes by π and
W changes sign, the square root function changing determination.

4.6.4 Topological Charge and Index

Let a0 be a singularity of Z taken as origin. The topological charge of this singularity
is defined to be q = ∮

γ
dϕ/2π , where

∮
γ

dϕ denotes the integral of the differential
1-form dϕ, i.e. the change in ϕ around a small closed path γ going once around a0

in the right-handed sense. Since a0 is an isolated singularity, there are such paths γ

enclosing only this singularity and it can be shown that the integral is independent
of the choice of γ . From the Euclidean structure of R

2, the differential 1-form

dϕ = ∂ϕ

∂x
dx + ∂ϕ

∂y
dy

corresponds to the vector gradient ∇ϕ with components ∇ϕ = (∂ϕ/∂x, ∂ϕ/∂y), and
if the differentials are interpreted as in the past as infinitesimal variations, we have
dϕ = ∇ϕ · da (scalar product) and

∮
γ

dϕ = ∮
γ

∇ϕ · da becomes what is known as
the circulation of the gradient field ∇ϕ around the path γ . The topological charge
q = ∮

γ
∇ϕ · da/2π can then be interpreted as the topological index of the field ∇ϕ.

For the field Z , the phase ϕ varies as ±θ and the index is ±1. However, for the
field W , the orientation ψ varies as ±θ/2 and the index is ±1/2. We already noted
this for the pinwheels in Sects. 4.4.3 and 4.4.6.

In the vicinity of a pinwheel, the isophase lines ϕ = const., i.e. the wave fronts,
are rays of the pinwheel. Along these wave fronts, dϕ = 0 and hence ∇ϕ · da = 0,
which means that the field ∇ϕ is orthogonal to the rays and that its trajectories are
therefore locally qualitatively like concentric circles centred on the singular point.
Quite generally, the trajectories of ∇ϕ are orthogonal to the wave fronts.

4.6.5 Current, Vorticity, and Divergence

To understand the behaviour of ∇ϕ in the neighbourhood of a singularity, the best
thing is to use polar coordinates. Since x = ρ cos (θ) and y = ρ sin (θ), differenti-
ating we obtain

⎧
⎪⎪⎨

⎪⎪⎩

dx = cos (θ) dρ − ρ sin (θ) dθ ,

dy = sin (θ) dρ + ρ cos (θ) dθ ,

dρ = cos (θ) dx + sin (θ) dy ,

ρdθ = − sin (θ) dx + cos (θ) dy .
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Then, since

dϕ = ∂ϕ

∂x
dx + ∂ϕ

∂y
dy ,

we have
⎧
⎪⎪⎨

⎪⎪⎩

∂ϕ

∂x
= cos (θ)

∂ϕ

∂ρ
− sin (θ)

ρ

∂ϕ

∂θ
,

∂ϕ

∂y
= sin (θ)

∂ϕ

∂ρ
+ cos (θ)

ρ

∂ϕ

∂θ
.

At the singular point ρ = 0, the gradient ∇ϕ is not defined and diverges.
To regularize this situation, physicists usually consider the current J of the

field, which is the vector pointing in the direction of the gradient ∇ϕ when it does
not vanish, defined by

J = r2∇ϕ .

Note that if Z = X + iY , then

J = X∇Y − Y∇ X ,

and hence that J is well defined, even at singular points of the phase ϕ of Z . Indeed,
since X = r cos (ϕ) and Y = r sin (ϕ),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ X =
[

cos (ϕ)
∂r

∂x
− r sin (ϕ)

∂ϕ

∂x
, cos (ϕ)

∂r

∂y
− r sin (ϕ)

∂ϕ

∂y

]
,

∇Y =
[

sin (ϕ)
∂r

∂x
+ r cos (ϕ)

∂ϕ

∂x
, sin (ϕ)

∂r

∂y
+ r cos (ϕ)

∂ϕ

∂y

]
,

X∇Y =
[

r cos (ϕ) sin (ϕ)
∂r

∂x
+ r2 cos2 (ϕ)

∂ϕ

∂x
,

r cos (ϕ) sin (ϕ)
∂r

∂y
+ r2 cos2 (ϕ)

∂ϕ

∂y

]
,

Y∇ X =
[

r sin (ϕ) cos (ϕ)
∂r

∂x
− r2 sin2 (ϕ)

∂ϕ

∂x
,

r sin (ϕ) cos (ϕ)
∂r

∂y
− r2 sin2 (ϕ)

∂ϕ

∂y

]
,

X∇Y − Y∇ X =
[

r2 ∂ϕ

∂x
, r2 ∂ϕ

∂y

]
= r2∇ϕ .
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Note also that, in terms of the complex conjugate values Z and Z , the current J
can be written

J = Im
(
Z∇Z

)
.

Indeed,

Z∇Z = (X − iY ) (∇ X + i∇Y ) = X∇ X + Y∇Y + i (X∇Y − Y∇ X) .

We shall see an example of a current in Sect. 4.6.7.
Another vector, in fact a pseudovector, used by physicists is the vorticity Ω of the

current J , i.e. its curl, up to a factor. By definition,

Ω = 1

2
∇ × J = ∇ X × ∇Y ,

where the symbol × stands for the exterior product of two vectors in R
2. If

u = (
ux , uy

) = ux ex + uyey , v = (
vx , vy

) = vx ex + vyey ,

are two vectors in R
2, where ex and ey are unit vectors associated with the x- and

y-axis, the exterior product u × v is a vector of magnitude

det

(
ux uy

vx vy

)
= uxvy − uyvx = ω

along an axis orthogonal to R
2, with unit vector e3, such that the frame

{
ex , ey, e3

}

is right-handed. It is the area of the parallelogram constructed from u and v and
oriented normal to the plane they lie in. For ∇ X × ∇Y ,

ω = det

(
∂X/∂x ∂X/∂y
∂Y/∂x ∂Y/∂y

)

is the determinant of the Jacobian13 of Z considered as a map from R
2 into R

2. In
fact, the right interpretation of Ω = ωe3 is as a differential 2-form. It can be checked
that Ω = ∇ × J /2, the components Jx and Jy of J being

Jx = X
∂Y

∂x
− Y

∂X

∂x
, Jy = X

∂Y

∂y
− Y

∂X

∂y
.

13Named after Carl Gustav Jacob Jacobi.
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Indeed,

Ω = 1

2
∇ × J = 1

2

(
∂Jy

∂x
− ∂Jx

∂y

)
e3

= 1

2

(
∂X

∂x

∂Y

∂y
+ X

∂2Y

∂x∂y
− ∂Y

∂x

∂X

∂y
− Y

∂2 X

∂y∂x
− ∂X

∂y

∂Y

∂x
− X

∂2Y

∂x∂y

+∂Y

∂y

∂X

∂x
+ Y

∂2 X

∂y∂x

)
e3

= det

(
∂X/∂x ∂X/∂y
∂Y/∂x ∂Y/∂y

)
e3 = ωe3 .

Note that when Ω = 0, either ∇ X = 0 or ∇Y = 0 (isolated points with codi-
mension 2), or the real gradients ∇ X and ∇Y have the same orientation (lines
of codimension 1), whence ∇Y = α∇ X for α ∈ R. The complex gradient
∇Z = ∇ X + i∇Y ∈ R

2 ⊕ iR2 is thus the real vector ∇ X multiplied by a factor 1+iα.
The condition Ω = 0 saying that ∇ X and ∇Y are parallel is the opposite of the
Cauchy–Riemann equations saying that ∇ X and ∇Y are orthogonal. We shall also
see an example of vorticity in Sect. 4.6.7.

Note also that, in terms of the values of the complex conjugates Z and Z , the
vorticity Ω can be written

Ω = 1

2
Im

(∇Z × ∇Z
)
.

Indeed,

∇Z × ∇Z = ∂Z

∂x

∂Z

∂y
− ∂Z

∂y

∂Z

∂x

=
(
∂X

∂x
− i

∂Y

∂x

)(
∂X

∂y
+ i

∂Y

∂y

)
−

(
∂X

∂y
− i

∂Y

∂y

)(
∂X

∂x
+ i

∂Y

∂x

)

= 2i

(
∂X

∂x

∂Y

∂y
− ∂X

∂y

∂Y

∂x

)
.

Points where Ω = 0 are invariant under the gauge transformation Z → eiσ Z (multi-
plication by eiσ is effectively a rotation in the Z plane so parallel vectors are mapped
to parallel vectors) and coordinate changes (x, y) → (ξ, η) [because ω becomes
ω′ = ω det (Jac), where Jac is the Jacobian of the change of variables and, since by
definition det (Jac) 	= 0, ω = 0 ⇐⇒ ω′ = 0].

The vorticity of J is not generally trivial. This is not the case for ∇ϕ because
the curl of a gradient ∇ × ∇ f is always zero due to the fact that, for any vector u,
we have u × u = 0. Away from pinwheels where it is not defined, the field ∇ϕ is
thus curl-free.
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The idea of vorticity can be used to resolve a slight difficulty regarding the dif-
ference between the topological charge and index of a singularity. For the charge,
the right-handed orientation of a small closed path γ about a singular point is the
right-handed orientation of R

2. The charges of the field Z (whose trajectories are
isophase lines, i.e. wave fronts) are then ±1. For the index, we often orient the γ

with respect to Ω and then the index is always +1.
We saw above that, to first order, in the neighbourhood of a point a0 taken as

origin 0, the modulus of Z is given by

|Z (a) − Z (0)|2 = R2 = (a · ∇0 X)2 + (a · ∇0Y )2 .

The current J is given to first order by the 2-column vector

J (a) = J (x, y)

≈

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

[
X(0)+ x

∂X

∂x
(0)+ y

∂X

∂y
(0)

][
∂Y

∂x
(0)+ x

∂2Y

∂x2 (0)+ y
∂2Y

∂x∂y
(0)

]

−
[

Y(0)+ x
∂Y

∂x
(0)+ y

∂Y

∂y
(0)

][
∂X

∂x
(0)+ x

∂2 X

∂x2 (0)+ y
∂2 X

∂x∂y
(0)

]

[
X(0)+ x

∂X

∂x
(0)+ y

∂X

∂y
(0)

][
∂Y

∂y
(0)+ x

∂2Y

∂x∂y
(0)+ y

∂2Y

∂y2 (0)

]

−
[

Y(0)+ x
∂Y

∂x
(0)+ y

∂Y

∂y
(0)

][
∂X

∂y
(0)+ x

∂2 X

∂x∂y
(0)+ y

∂2 X

∂y2 (0)

]

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

X(0)
∂Y

∂x
(0)− Y (0)

∂X

∂x
(0)+ x

[

X(0)
∂2Y

∂x2 (0) − Y(0)
∂2 X

∂x2 (0)

]

+y

[

X(0)
∂2Y

∂x∂y
(0)− Y(0)

∂2 X

∂x∂y
(0)+ ∂X

∂y
(0)

∂Y

∂x
(0)− ∂X

∂x
(0)

∂Y

∂y
(0)

]

X(0)
∂Y

∂y
(0)− Y (0)

∂X

∂y
(0)+ y

[

X(0)
∂2Y

∂y2 (0) − Y(0)
∂2 X

∂y2 (0)

]

+x

[

X(0)
∂2Y

∂x∂y
(0)− Y(0)

∂2 X

∂x∂y
(0)− ∂X

∂y
(0)

∂Y

∂x
(0)+ ∂X

∂x
(0)

∂Y

∂y
(0)

]

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

.

If X (0) = 0 and Y (0) = 0 (pinwheel, i.e., dislocation), then these formulas simplify
enormously to give



4.6 Pinwheels as Phase Fields 179

J (x, y) ≈

⎛

⎜
⎜
⎝

y

[
∂X

∂y
(0)

∂Y

∂x
(0) − ∂X

∂x
(0)

∂Y

∂y
(0)

]

x

[
−∂X

∂y
(0)

∂Y

∂x
(0) + ∂X

∂x
(0)

∂Y

∂y
(0)

]

⎞

⎟
⎟
⎠

= (a · ∇0 X)∇0Y − (a · ∇0Y )∇0 X = Ω0 × a = ω0

(−y
x

)
.

We can thus evaluate
∣∣J

∣∣ = r2 |∇ϕ| ≈ |ω| ρ in the vicinity of dislocations where
ω 	= 0. However, locally, ϕ is constant on rays from such a singular point and ∇ϕ is
orthogonal to the rays, and in polar coordinates

∇ϕ = ∂ϕ

∂ρ
eρ + 1

ρ

∂ϕ

∂θ
eθ ,

where eρ is the unit vector along the radius at a and eθ is the unit vector orthogonal
to eρ , i.e. eρ rotated through +π/2, so we have

∇ϕ ≈ 1

ρ

∂ϕ

∂θ
eθ ,

and hence,

r2

∣
∣∣∣
∂ϕ

∂θ

∣
∣∣∣ ≈ ρ2 |ω| .

This tells us that, whereas r is locally constant on the ellipses

r2 = (a · ∇ X)2 + (a · ∇Y )2 ,

the quantity r2 |∂ϕ/∂θ | is constant on the circles ρ = const. As noted by Mark
Richard Dennis, this is a kind of Kepler’s law for r2 |∂ϕ/∂θ |, which is analogous to
the angular momentum [68, p. 41]:

Equal area vectors of the core anisotropy ellipse [r2 = const.] are swept out in equal intervals
of phase.

Note that the eccentricity of the ellipses measures the anisotropy of the vorticity. As
we have seen, there is only isotropy (the ellipses are only circles) if the Cauchy–
Riemann equations are satisfied.

4.6.6 Helmholtz Equation

When we discussed the experimental results for pinwheels, we saw that these appear
when we superpose maps showing the response to different orientations. We also
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saw that the pinwheel lattice has a characteristic length (see Sect. 4.4.1). These two
empirical facts suggest considering the field Z as a superposition of simpler fields
with a characteristic mesh. Moreover, on the mathematical level, any field can be
considered through its Fourier transform as a superposition of plane waves. The latter
are the simplest fields with a characteristic length. They have the form Aeiκ·a , where
A is a complex amplitude Eeiφ and κ = (

κx , κy
)

is a vector called the wave vector,
whose magnitude k = |κ|, called the wave number, is analogous to a momentum and
associated with a wavelength � = 2π/k (the smaller the wavelength, the greater
the wave number). When they evolve in time, their prototype is Aei(κ·a−ωt), where
ω is an angular frequency associated with a frequency ν = ω/2π and a period
T = 1/ν = 2π/ω.

It is straightforward to check that the plane waves U = Aeiκ·a satisfy a fun-
damental equation called the Helmholtz equation, viz. �U + k2U = 0. Indeed,
κ · a = xκx + yκy , whence

�U = ∂2U

∂x2
+ ∂2U

∂y2
= −Aκ2

x eiκ·a − Aκ2
y eiκ·a = −k2U .

As the Helmholtz equation is linear, any linear superposition of solutions with dif-
ferent values of κ but the same magnitude k is also a solution. It is thus natural to
assume that the field Z satisfies the Helmholtz equation for a certain wave number k:

�Z + k2 Z = 0 .

Let Hk be the space of solutions C∞ of the Helmholtz equation with wave num-
ber k. It can be shown that Hk is SE (2)-invariant; that is, if Z (a) ∈ Hk and if
g ∈ G = SE (2), then gZ (a) = Z

(
g−1 (a)

)
is also an element of Hk . The action

of G on Hk therefore defines a representation of G, and this has the property of irre-
ducibility in the usual sense that there is no closed subspace which is G-invariant.

Figure 4.66, recomputed from the data of Michael Berry’s work [69] on optical
currents, shows a superposition of 10 plane waves with the same value of k. We see
how closely this phase field resembles our pinwheels, with its isophase lines, i.e.
iso-orientation lines, its orthogonal gradient lines, and its saddle points.

4.6.7 Illustration

It is interesting to consider Michael Berry’s example, which is a superposition of 10
plane waves, viz.

Z =
j=10∑

j=1

E j exp
[
i
[
φ j + 2πx cos

(
α j

) + 2πy sin
(
α j

) ]] = reiϕ ,
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Fig. 4.66 Superposition in
the rectangle [0, 1] × [0, 1]
of 10 plane waves with the
same wave number k = 2π .
The wave vectors κ j =(
2π cos

(
α j

)
, 2π sin

(
α j

))

are given below in Table 4.1.
Recomputed from the data of
Berry [69]

Table 4.1 Values used in Berry’s example [69]

1 2 3 4 5 6 7 8 9 10

α j 5.971 2.666 0.939 4.629 1.023 1.537 2.710 3.273 4.356 5.032

φ j 3.846 0.777 5.008 2.916 6.274 4.344 2.411 5.688 1.734 0.214

E j 0.337 0.015 0.762 0.785 0.625 0.442 0.688 0.065 0.064 0.035

with the same wave number k = 2π (and hence wavelength � = 2π/k = 1) and
wave vectors κ j = (

2π cos
(
α j

)
, 2π sin

(
α j

))
. The angles α j are chosen randomly

in [0, 2π ], the phase shift φ j randomly in [0, 2π ], and the amplitudes E j randomly
in [0, 1]. The values used by Berry are shown in Table 4.1. If Φ j are the phases
φ j + 2πx cos

(
α j

) + 2πy sin
(
α j

)
, we get an expression Z = ∑ j=10

j=1 E j exp
(
iΦ j

)

that is easy to calculate with. Figure 4.67 shows the pinwheels of Z . The white
lines are cuts where ϕ jumps by 2π , due to the fact that ϕ takes values in S

1 but is
represented as having values in R. The coordinates of the 5 pinwheels are

{0.528545, 0.942654} , {0.988124, 0.811337} , {0.433271, 0.516137} ,

{0.761954, 0.258734} , {0.0838329, 0.0359263} .

They are given by the intersections of the level lines X = 0, Y = 0. Figure 4.68
represents the lines X = 0 in red and the lines Y = 0 in blue.

Figure 4.69 shows the structure of the phase field Z on the square x, y ∈ [0, 1].
The first line shows the modulus r of Z (i) with its level lines and (ii) as a function
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Fig. 4.67 Pinwheels of the
phase field Z for
x, y ∈ [0, 1]. White lines are
cuts where ϕ jumps by 2π

Fig. 4.68 Lines X = 0 (red)
and Y = 0 (blue) of the
phase field Z
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Fig. 4.69 Structure of the phase field Z for x, y ∈ [0, 1]. First line modulus r of Z . (i) Level
lines. (ii) The function r (x, y) from two perspectives, the second giving a good view of the singular
points (dislocations) where r = 0 and also the maxima of r . Second line argument ϕ of Z . (i) Level
lines. (ii) Function ϕ (x, y) from two perspectives, the second giving a good view of the cuts where
ϕ jumps by 2π

r (a) = r (x, y) from two perspectives, the second giving a good view of the singular
points (dislocations), where r = 0, and the maxima of r . The second line shows the
argument ϕ of Z (i) with its level lines (we recover those in Fig. 4.66) and (ii) as a
function ϕ (a) = ϕ (x, y) from two perspectives, the second giving a good view of
the cuts, where ϕ jumps by 2π .

Figure 4.70 shows more pinwheels of Z (x, y ∈ [0, 3]). The white cuts represent
ϕ = 0 = 2π . Note that there are 29 pinwheels in an area of 32 = 9, giving a density
d equal to 29/9 ∼ 3.2. We shall explain in Sect. 4.6.11 a formula giving d = π/�2,
which means d = π in our case, since � = 1. We see that the approximation is
excellent. Concerning Fig. 4.71, it represents the phase ϕ for partial sums of Z .

In Fig. 4.72, we also show the orientation lines, that is the field lines of W , and
the field lines of Z (not to be confused with the isophase lines). We do indeed see
examples of the typical singularities illustrated in Fig. 4.55 of Sect. 4.4.6.

It is straightforward to calculate the current

J = r2∇ϕ = X∇Y − Y∇ X = Im
(
Z∇Z

)
.
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Fig. 4.70 Pinwheels of Z
for x, y ∈ [0, 3]. White cuts
represent ϕ = 0 = 2π

Fig. 4.71 Phase ϕ for partial sums of Z
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Fig. 4.72 Field lines of W and Z for the example of Fig. 4.69

Indeed,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X =
k=10∑

k=1

Ek cos(Φk) ,

Y =
k=10∑

k=1

Ek sin(Φk) ,

∂X

∂x
= −

j=10∑

j=1

2π cos
(
α j

)
E j sin(Φ j ) ,

∂X

∂y
= −

j=10∑

j=1

2π sin
(
α j

)
E j sin(Φ j ) ,

∂Y

∂x
=

j=10∑

j=1

2π cos
(
α j

)
E j cos(Φ j ) ,

∂Y

∂y
=

j=10∑

j=1

2π sin
(
α j

)
E j cos(Φ j ) ,

and hence the components Jx and Jy of J are

Jx =
j,k=10∑

j,k=1

(
Jx

)
j;k , Jy =

j,k=10∑

j,k=1

(
Jy

)
j;k ,
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with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Jx

)
j;k = 2πE j Ek cos(α j ) cos

[
φ j + 2π

[
x cos(α j ) + y sin(α j )

]]

× cos
[
φk + 2π

[
x cos(αk) + y sin(αk)

]]

+ 2πE j Ek cos(α j ) sin
[
φ j + 2π

(
x cos(α j ) + y sin(α j )

]]

× sin
[
φk + 2π

[
x cos(αk) + y sin(αk)

]]
,

(
Jy

)
j;k = 2πE j Ek sin(α j ) cos

[
φ j + 2π

[
x cos(α j ) + y sin(α j )

]]

× cos
[
φk + 2π

[
x cos(αk) + y sin(αk)

]]

+ 2πE j Ek sin(α j ) sin
[
φ j + 2π

(
x cos(α j ) + y sin(α j )

]]

× sin
[
φk + 2π

[
x cos(αk) + y sin(αk)

]]
.

Figure 4.66 already displayed above recovers the structure of the phase field Z with
its isophase lines in orange and the current lines orthogonal to them, since the current
J is parallel to the gradient ∇ϕ of ϕ and hence orthogonal to the lines ϕ = const.

The vorticity Ω = ∇ ×J /2 = ∇ X × ∇Y is shown in Fig. 4.73 by the graph of
the function

ω (x, y) = ∂X

∂x

∂Y

∂y
− ∂X

∂y

∂Y

∂x
,

for x, y ∈ [0, 1]. Figure 4.74 shows the position of the lines Ω = 0 for x, y ∈ [0, 3].
We see that adjacent pinwheels do indeed have opposite chirality, since they belong
to regions where Ω has opposite sign.

We know that, when Ω = 0, either ∇ X = 0 or ∇Y = 0 (isolated points of
codimension 2), or the real gradients ∇ X and ∇Y have the same orientation, i.e.
∇Y = α∇ X (see Sect. 4.6.5). Figure 4.75 shows the curves ∂X/∂x = ∂x X = 0 and
∂y X = 0 in red and ∂x Y = 0 and ∂yY = 0 in blue [the ∂x X , etc., are denoted by
X (x), etc., in the label]. Note that points where ∇ X = 0 (intersection of red lines
at top left) and ∇Y = 0 (intersection of blue lines at top right) do indeed lie on the
lines Ω = 0. Likewise, the points where ∇ X and ∇Y are both vertical (∂x X = 0
and ∂x Y = 0) or both horizontal (∂y X = 0 and ∂yY = 0) also lie on the lines Ω = 0
(intersections of red and blue lines at bottom left and bottom right).

Figure 4.76 shows the curves ∂x X = α∂x Y and ∂y X = α∂yY (and their inter-
sections, where ∇ X = α∇Y ) for different values of α. We see that these points do
indeed lie on the lines Ω = 0. Figure 4.77 shows the lines Ω = 0 for x, y ∈ [0, 1].
It is interesting to look at the details. The typical situation is when two adjacent
pinwheels are ‘close’, a line Ω = 0 intersecting the isophase line that connects them
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Fig. 4.73 Vorticity Ω of the phase field Z for x, y ∈ [0, 1], i.e. the graph of the function ω (x, y) =
∂X

∂x

∂Y

∂y
− ∂X

∂y

∂Y

∂x

the most directly in a strongly transverse manner somewhere near the middle. This
typical situation can be highly distorted for ‘distant’ adjacent pinwheels.

4.6.8 Current Conservation

Assuming that Z solves the Helmholtz equation, we consider the divergence of the
current J given by

div
(
J

) = ∂Jx

∂x
+ ∂Jy

∂y
= ∂

∂x

(
r2 ∂ϕ

∂x

)
+ ∂

∂y

(
r2 ∂ϕ

∂y

)

= r2 ∂
2ϕ

∂x2
+ 2r

∂r

∂x

∂ϕ

∂x
+ r2 ∂

2ϕ

∂y2
+ 2r

∂r

∂y

∂ϕ

∂y

= r2�ϕ + 2r∇r · ∇ϕ ,

where ∇r · ∇ϕ is the scalar product and the Laplacian operator �ϕ appears because
it is by definition the divergence of the gradient. The Laplacian �Z of Z = reiϕ is
given by
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Fig. 4.74 Position of the vorticity lines Ω = 0 for the phase field Z when x, y ∈ [0, 3]

�Z = ∂2 Z

∂x2
+ ∂2 Z

∂y2
= ∂2 Z

∂ρ2
+ 1

ρ

∂Z

∂ρ
+ 1

ρ2

∂2 Z

∂θ2

= eiϕ
[
�r − r |∇ϕ|2 + i (r�ϕ + 2∇r · ∇ϕ)

]
,

so if �Z + k2 Z = 0, we must have

{
�r + r

(
k2 − |∇ϕ|2 ) = 0 ,

r�ϕ + 2∇r · ∇ϕ = 0 .

The second equation expresses the fact that the divergence of the current is zero, that is
div

(
J

) = 0. This is a conservation law. It implies thatJ can be written in the form
e3×∇S = (−∂S/∂y, ∂S/∂x). Indeed, since R

2 is simply connected, a necessary and
sufficient condition for this is ∂2S/∂x∂y = ∂2S/∂y∂x , i.e., ∂J /∂x = −∂J /∂y,
which says precisely div

(
J

) = 0. We then have

ω = 1

2

(
∂Jy

∂x
− ∂Jx

∂y

)
= 1

2

[
∂

∂x

(
∂S

∂x

)
+ ∂

∂y

(
∂S

∂y

)]
= 1

2
�S .
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Fig. 4.75 Curves ∂x X = 0 and ∂y X = 0 (red) and ∂x Y = 0 and ∂yY = 0 (blue). Top left points
where ∇ X = 0 (intersection of red lines). Top right points where ∇Y = 0 (intersection of blue
lines). Bottom left points where ∇ X and ∇Y are both vertical [intersections of red and blue lines
∂x X = X (x) = 0 and ∂x Y = Y (x) = 0]. Bottom right points where ∇ X and ∇Y are both horizontal
[intersections of red and blue lines ∂y X = X (y) = 0 and ∂yY = Y (y) = 0]. All these points lie
on the lines Ω = 0

Regarding the first equation, it turns up everywhere in optics in a form where k is part
of the phase, i.e. where Z = reikϕ . It then becomes �r = k2r

( |∇ϕ|2 − 1
)
. When

k → ∞, which corresponds to the geometrical optics approximation, it becomes the
well-known eikonal equation |∇ϕ|2 = 1, which expresses the fact that ‘light rays’,
i.e. the trajectories of the field gradient ∇ϕ, go around the singularity at a constant
rate, while the wave fronts ϕ = const. are the rays coming from the singularity
(leading to some confusion between the two meanings of the word ‘ray’). To see
this, we expand r asymptotically in powers of k, viz.

r (a) ∼ kμ

n=∞∑

n=0

k−nrn (a) ,
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Fig. 4.76 Four examples of curves ∂x X = α∂x Y and ∂y X = α∂yY (and their intersections where
∇ X = α∇Y ) for different values of α. Top left α = −1 (blue). Top right α = −1/2 (green). Bottom
left α = 1/2 (orange). Bottom right α = 1 (red). We see that all points where ∇ X = α∇Y do
indeed lie on the lines Ω = 0

with r0 (a) 	= 0. When k → ∞, we have r (a) → kμr0 (a) and we deduce that
r0
(
1 − |∇ϕ|2 ) = 0, and hence |∇ϕ|2 = 1.
The quantity S can be calculated explicitly for superpositions of plane waves.

Indeed, S is a sum of integrals like

∫
2πE j Ek cos(α j ) cos

[
φ j + 2π

[
x cos(α j ) + y′ sin(α j )

]]

× cos
[
φk + 2π

[
x cos(αk) + y′ sin(αk)

]]
dy′ ,

which gives
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Fig. 4.77 Lines of vorticity Ω = 0 for the phase field Z when x, y ∈ [0, 1]

1

2
E j Ek cos(α j )

⎧
⎨

⎩

sin
[
2π

[
x cos(α j ) + y sin(α j ) − x cos(αk) − y sin(αk)

] + φ j − φk

]

sin(α j ) − sin(αk)

+
sin

[
2π

[
y sin(α j ) + y sin(αk) + x cos(α j ) + x cos(αk)

] + φ j + φk

]

sin(α j ) + sin(αk)

−
sin

[
2πx

[
cos(α j ) + cos(αk)

] + φ j + φk

]

sin(α j ) + sin(αk)

−
sin

[
2πx

[
cos(α j ) − cos(αk)

] + φ j − φk

]

sin(α j ) − sin(αk)

⎫
⎬

⎭
,

for k 	= j and

1
4 E2

j cot(α j )
[

sin
[
2φ j + 4πx cos(α j ) + 4πy sin(α j )

]

− sin
[
2φ j + 4πx cos(α j ) + 4πy sin(α j )

]]
,

for k = j .
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Fig. 4.78 Flow of the current J shown with the level lines of S

Figure 4.78 shows the flow of the current J with the level lines of S. We note
that the dislocations do indeed occur in regions of highest vorticity (> 0 or < 0), but
this does not mean that they coincide with the extrema of S. The definition of the
latter involves second derivatives of the field Z :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ω

∂x
= ∂Y

∂y

∂2 X

∂x2
+ ∂X

∂x

∂2Y

∂x∂y
− ∂Y

∂x

∂2 X

∂x∂y
− ∂X

∂y

∂2Y

∂x2
,

∂ω

∂y
= ∂Y

∂y

∂2 X

∂x∂y
+ ∂X

∂x

∂2Y

∂y2
− ∂Y

∂x

∂2 X

∂y2
− ∂X

∂y

∂2Y

∂x∂y
.

4.6.9 Critical Points

Apart from dislocation singularities where the phase ϕ is not defined, there are other
geometrically interesting points giving structure to the field Z . As already noted,
these are the critical points of ϕ where the gradient ∇ϕ vanishes, and hence also the
current J = r2∇ϕ. At such a point a0, the first term in the Taylor expansion of ϕ
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is second order. If δa is an increment in a, we have to second order ϕ (a0 + δa) ≈
ϕ (a0) + δaT Hϕδa, where δa is treated as a column vector, δaT is its transpose, and
Hϕ is the symmetric 2 × 2 matrix of second partial derivatives of ϕ at a0, a matrix
known as the Hessian of ϕ:

Hϕ =
(

∂2ϕ/∂x2 ∂2ϕ/∂x∂y

∂2ϕ/∂x∂y ∂2ϕ/∂y2

)

.

The eigenvalues of the Hessian Hϕ determine the type of critical point. They are real
because of the symmetry of Hϕ , generically distinct, and nonzero.14 If they are both
strictly positive, then δaT Hϕδa > 0 and a0 is a minimum of ϕ. If they are both strictly
negative, a0 is a maximum. If they have opposite signs, then a0 is a saddle point of ϕ.
Pinwheel maps would not appear to have orientation maxima or minima. However,
we have seen that there are many saddle points, mainly located at the centre of the
cells of the pinwheel lattice.

There can also be critical points in the amplitude r2, where ∇r2 = 0. Since
r2 = X2 + Y 2, we have ∇r2 = 2 (X∇ X + Y∇Y ). At a singularity that is a zero of
Z , X = Y = 0 and the point is critical. However, there are other critical points where
X,Y 	= 0. At these points, ∇ X and ∇Y are necessarily parallel, so the vorticity
Ω = ∇ × J /2 = ∇ X × ∇Y is necessarily zero. We thus see that the critical
points in the intensity include dislocations and the points where Ω = 0. The critical
points in the amplitude are invariant under gauge transformations and coordinate
transformations.

4.6.10 Mesogeometry and Microphysics

The optical analogy which suggests treating orientation maps as phase fields and pin-
wheels as dislocation singularities in such fields is also useful for understanding the
relations between different levels. In optics, there are three levels: geometric, wave,
and quantum. In our analogy, the geometric level corresponds to the mesogeometric
level involving the contact structures, symplectic structures, and sub-Riemannian
structures that we shall discuss here in detail.

The wave level corresponds to what we have just been doing, identifying pin-
wheels with singularities in the phase fields. However, as noted by Berry [69], wave
optics is an average over microphysical interactions described by quantum optics. In
particular, the optical current is an energy flow whose trajectories are the level lines
of S, in a certain sense a momentum density, giving the classical force on a small
particle placed at a:

14Let Hϕ =
(

a b
b c

)
. The eigenvalues are solutions of the quadratic equation Det

(
Hϕ − λI

) = 0,

which can be written λ2 − λ (a + c)+ (
ac − b2

) = 0. The discriminant (a + c)2 − 4
(
ac − b2

) =
(a − c)2 + 4b2 is always non-negative, and the roots are therefore real.
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The current gives the time-averaged force on small particles.

For its part, the phase gradient ∇ϕ gives the momentum imparted to the particle by
impacts from individual photons. And as the probability of these impacts is r2, the
average momentum is indeed J = r2∇ϕ.

We thus recover the assumption (see Sect. 4.3.2 of Chap. 4) that there is a micro-
physics of elementary events for which the mesogeometry of the orientation maps
is a kind of morphological skeleton. It is presumably the action potentials that play
the role of the tiny particles.

4.6.11 Statistics of Pinwheels as Phase Singularities

The pinwheel maps like phase fields can come in many forms. It is thus interesting
to carry out a statistical investigation on the basis of certain simplifying assump-
tions. Such studies have already been carried out in optics, in particular by Michael
Berry and Mark Richard Dennis (see, e.g. [70, 71]). This is a topical subject bring-
ing together work by Wolf and Geisel [72, 73], studies by Daniel Bennequin and
coworkers, and also recent work by Citti, Sarti, and one of their doctoral students,
Davide Barbieri [74].

In his thesis [68], Dennis gives precise results for superpositions of plane waves

Z =
∑

κ

Aκeiκ·a

with complex amplitudes Aκ = Eκeiφκ , in particular in the isotropic case, i.e. where
there is rotation invariance, so that the Eκ have a distribution depending only on the
magnitude k = |κ| of the wave vectors (the wave number) and where the spatial
phases φκ are random variables uniformly distributed on [0, 2π ]. If the sampling
of the κ in the given sums Z is fine enough, we can consider that the statistics of
the components X and Y of Z and their partial derivatives are circular Gaussian
distributions, which makes the calculations more accessible. In particular, we define
the energy spectrum by

1

2

∑

κ

E2
κ =

∫
E (κ)2 dκ ,

and the radial energy spectrum by

1

2

∑

κ

E2
κ =

∫
R (k)2

2πk
dk .

A further simplification comes by considering ‘monochromatic’ waves, with the
same wave number k, where the wave vector κ thus varies over a circle of radius k.
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In this case, R (u) becomes the Dirac delta δ (u − k). This hypothesis corresponds
to the fact that Z is a solution of the Helmholtz equation.

We can then calculate the average density d of phase dislocations. As these are
defined by the conditions X = 0, Y = 0, it will be given by the average of δ (X) δ (Y )

with respect to the measure dXdY . Relative to the measure dxdy, we need to insert
the Jacobian of Z (x, y) = X (x, y) + iY (x, y), i.e.

|ω| = |∇ X ∧ ∇ X | =
∣∣∣∣
∂X

∂x

∂Y

∂y
− ∂X

∂y

∂Y

∂x

∣∣∣∣ .

We must therefore calculate the average

〈
δ (X) δ (Y )

∣
∣∣∣
∂X

∂x

∂Y

∂y
− ∂X

∂y

∂Y

∂x

∣
∣∣∣

〉
.

Assuming that X , Y , and their partial derivatives are independent Gaussian random
variables, we can do this using the integrals

δ (u) = 1

2π

∫
eitudt , |u| = − 1

π

∫
∂

∂s

(
eisu

)ds

s
,

taking the latter in the sense of the Cauchy principal value. We thus obtain

d = K

4π
, K =

∫ ∞

0
k2R (k) dk = 〈

k2〉
R

for the measure R (k) dk .

As noted by Michael Berry, the fact that Z is a superposition of waves barely comes
into the calculation, and [70, p. 2076]:

The results apply to any complex scalar random function. […] The geometry thus revealed
is extraordinarily complicated and occasionally counterintuitive.

The wave number k is proportional to the reciprocal of a wavelength � = 2π/k,
whence�2 = 4π2/k2 and k2/4π = π/�2. Consequently, the density of singularities
d is the average

〈
π/�2

〉
R

. In Sect. 4.7.1.2, we shall once again come across this term
π/�2, also found by Fred Wolf and Theo Geisel.

4.6.12 Pinwheels and Gaussian Fields

Quite generally, the orientation maps can be treated as random sections of the fibre
bundle R

2 × P → R
2 satisfying a set of constraints explaining their pinwheel

geometrical structure. The problem then is to calculate their dislocation distribution
in statistical terms. At each point a of the base space R

2, we thus consider a random
variable Za , which defines a random field Z whose orientation maps Z (a) are
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samples. To simplify, we generally assume that the field Z is Gaussian (RGF), i.e.
that the Za are Gaussians with mean ma = E {Za}, where E is the expectation, and
variance σ 2

a = E
{
(Za − ma)

2}, and that all the joint distributions
∑

i αiZai for a
finite number of points ai are also Gaussian. Moreover, it is natural to assume that the
distribution of the Za is SE (2)-invariant [the distribution of the Za and obviously
not the samples Z (a)]. Translation invariance is known as stationarity and rotation
invariance as isotropy. For an introduction to random Gaussian fields, the reader
could consult, for example, Petter Abrahamsen’s review [75].

In the paper [63] on Gaussian models of pinwheels, Alexandre Afgoustidis carried
out a numerical calculation of the variance of the number N (J, θ) of neurons with
preferred orientation θ along a line segment J in the plane V 1. His calculation used
a formula due to Cramer and Leadbetter which contains oscillating integrals that are
rather difficult to calculate. The main result is that the variance is minimal when the
power spectrum is concentrated on a circle.

While preparing the paper, the author had an interesting discussion with one of the
referees (I was aware of this, being a referee myself). For the initial orientation field,
the assumption of an RGF model is plausible. However, we may wonder whether
it remains so for the stable orientation fields obtained by learning. Indeed, the role
of long-range horizontal connections becomes crucial and changes the statistical
properties of the fields. In his thesis [64], Afgoustidis discusses this point with Fred
Wolf.

The random variables Za cannot be decorrelated (i.e. independent, since for
Gaussian random variables, independence and decorrelation are equivalent), because
otherwise there would only be Gaussian noise and no geometrical structure. Further-
more, the very definition of a continuum of independent Gaussian random vari-
ables raises some tricky questions. What characterizes the field Z is the corre-
lation function C (a, b) = E {(Za − ma) (Zb − mb)}. Dividing by the variances,
we obtain the normalized correlation function Γ (a, b) = C (a, b)/σaσb. Sta-
tionarity implies that C (a, b) = C (a − b), and isotropy implies in addition that
C (a, b) = C (a − b) = C (‖a − b‖) = C (r). The means are all equal, i.e. ma = m,
and so are the variances, i.e., σ 2

a = σ 2 = C (0), and Γ (r) = C (r)/C (0).
The correlation functions are rather special, being symmetric and non-negative

definite:

(i) In the case of stationarity, a theorem due to Salomon Bochner tells us that they
admit a spectral representation which is a generalized Fourier transform. This
implies that Γ (a) = ∫

R2 ei〈a,κ〉dF (κ)15, where F is a bounded non-negative
measure on the space of wave vectors κ dual to the positions a. We have
F
(
R

2
) = Γ (0) = 1. In polar coordinates (k, α) for κ , we have

Γ (a) =
∫

R+×S1
eik

[
x cos(α)+y sin(α)

]
dα dP (k) ,

for a measure P (k) on R
+.

15〈 , 〉 is the natural pairing between vectors and dual covectors. It can also be expressed by a dot.
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(ii) If the measure F is smooth enough relative to the Lebesgue measure dκ , then
it has a spectral density f (κ) and the generalized FT in Bochner’s theorem
reduces to a Fourier transform

Γ (a) =
∫

R2
ei〈a,κ〉 f (κ) dκ ,

with inverse transform

f (κ) = 1

(2π)2

∫

R2
e−i〈a,κ〉Γ (a) da .

(iii) If there is also isotropy, thenΓ (r) = ∫ ∞
0 J0 (kr) k f (k) dk with k = ‖κ‖, where

J0 is the Bessel function.
(iv) If in addition, we consider the solutions of the Helmholtz equation with wave

number k0, then f (k) is proportional to δ (k − k0) and Γ (r) is proportional to
J0 (kr) k0.

In this context, the formula for the statistics of the dislocations in the fields Z (a)
sampling the random Gaussian field Z is a special case of a fundamental formula
called the Kac–Rice formula (from Kac and Rice) [76]. We would like to calculate
the average d = E {# {a ∈ T : Z (a) = 0}} (recall that # indicates the cardinality of
a set) of the number of zeros of Z in a unit square T . Let NT be this number. We
thus have d = E {NT }. The Rice formula tells us that

d =
∫

T
E
{ |det (Jac (Za))| : Za = 0

}
pZa (0) da ,

where Jac is the Jacobian and pZa the density of Za . The calculation done by Dennis
[68] involved working out Gaussian integrals. Let Xa and Ya be the components of
Za and Ja = ∣

∣ det (Jac (Za))
∣
∣. It can be shown that the 6 random variables

Xa , Ya ,

(
∂X

∂x

)

a

,

(
∂X

∂y

)

a

,

(
∂Y

∂x

)

a

,

(
∂Y

∂y

)

a

,

are independent Gaussian variables, each with a distribution of the form

1√
2πσ

e−ξ 2/2σ 2
.

As we have seen, we then have to evaluate an integral of the form

∫
δ (X) δ (Y ) J p d (X) d (Y ) d

(
∂X

∂x

)
d

(
∂X

∂y

)
d

(
∂Y

∂x

)
d

(
∂Y

∂y

)
,
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where p is the product of the distributions. The first two variables Xa and Ya have

variance 1, which introduces a factor
(

1/
√

2π
)

2 = 1/2π in the integral, and the

other four have variance σ 2 = K/2, which introduces a factor
(

1/
√

2πσ
)

4 =
(
1/2πσ 2

)
2 = 1/(πK ) 2. The condition Za = 0 amounts to putting δ (X) δ (Y ) in

the integral, but
∫
δ (X) e−X2/2 = 1 and the same for Y . It thus remains to evaluate

1

2π

1

(πK )2

∫
Je−

(
‖∇ X‖2+‖∇Y‖2

)
/K d

(
∂X

∂x

)
d

(
∂X

∂y

)
d

(
∂Y

∂x

)
d

(
∂Y

∂y

)
.

If we change to polar coordinates by writing ∇ X = RX eiψX and ∇Y = RY eiψY , the
integral becomes

1

2π

1

(πK )2

∫ RX =∞

RX =0

∫ RY =∞

RY =0

∫ ψX =2π

ψX =0

∫ ψY =2π

ψY =0

(RX )
2 (RY )

2
∣
∣ sin (ψY − ψX )

∣
∣e−

(
R2

X +R2
Y

)
/K dRX dRY dψX dψY .

The integral of the sine gives 8π and the integrals of RX and RY each give K 3/2√π/4.
So finally,

d = 1

2π

1

(πK )2 8π
1

16
K 3π = K

4π
.

When the wave vectors κ are concentrated on a circle of radius k0 = 2π/� in the
Fourier space, the Gaussian random variables

(
∂X

∂x

)

a

,

(
∂X

∂y

)

a

,

(
∂Y

∂x

)

a

,

(
∂Y

∂y

)

a

,

with their distribution

1√
2πσ

e−ξ 2/2σ 2
,

which has variance σ 2 = K/2 satisfy K = k2
0 , and we thus obtain, as stated above,

d = K

4π
= k2

0

4π
=

(
2π

�

)2 1

4π
= π

�2
.

These statistical calculations, which only give one particularly simple example
of the connection between statistics and geometry, are especially interesting from a
theoretical point of view (and not only numerically) for the following reason. In their
2005 reference book Random Fields and Geometry [77], Robert Adler and Jonathan
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Taylor studied in great depth the generalizations of the Kac–Rice formula for random
fields Fa defined on a base space M and with values in R

k .
Let us take, for example, k = 1. One of the main problems, and an extremely dif-

ficult one, is to calculate P
{
supa∈M Fa ≥ u

}
for large u. This so-called probability

of excursion in the interval [u,∞) is well approximated by E
{
χ
(

A[u,∞)

)}
, where

quite generally, if D is a domain of R
k , AD := {a ∈ M : Fa ∈ D}, and where χ is

the Euler–Poincaré characteristic. Assuming Gaussianity, stationarity, isotropy, and
smoothness of the correlation functions C , we can obtain explicit but complicated
formulas for the E {χ (AD)}. What is interesting is that the proof of these formu-
las requires all the fundamental tools of the Morse–Whitney–Thom ‘philosophy’
discussed in Sect. 1.3 of the Preface.

To begin with, in order to be able to handle enough cases, we assume that M
is a manifold with boundary of dimension N , equipped with a ‘good’ stratification
M = ∪k=N

k=0 ∂k M , called a Whitney stratification, satisfying Whitney’s properties A
and B. Here, k is the dimension of the strata making up ∂k M , with ∂N M = M̊ , where
M̊ is the interior of M , and ∂0 M = {vertices of M}. We assume that the smoothness
properties of C imply that the samples F of the field F are Morse functions on
M , using the generalization of Morse theory to stratified manifolds due to Robert
MacPherson. In addition, the field F defines a natural metric dF (a, b) on the base
space M through the formula

d2
F (a, b) = E

{‖Fa − Fb‖2} .

We can thus also make use of the resources of Riemannian geometry, such as cur-
vature tensor, Levi-Civita connection, covariant derivative, Lipschitz–Killing curva-
tures, and so on.

For k = 1, we thus apply to A[u,∞) the formulas relating Morse theory to the
Euler–Poincaré characteristic. If the sample F of F is Morse and if u is a regular,
i.e. non-critical, value of F , then A[u,∞) is a sub-manifold with boundary of M that
is ‘well stratified’ by the intersection strata Å[u,∞) ∩ ∂k M and ∂ A[u,∞) ∩ ∂k M . F is
not necessarily Morse on A[u,∞), but it can be approximated by a Morse function F̃
whose critical points correspond to the critical points of F situated above u.

The Rice–Kac formula corresponds to a rectangle M = T of R
N and to F with

values in R
N . Let J be the Jacobian of a sample F (an N × N matrix). Let Nu be the

number of points of T for which F (a) = u ∈ R
N . Then, the formula tells us that

E {Nu} =
∫

T
E
{ |det (J )| : F (a) = u

}
pa (u) dt .

In our case N = 2, F = Z , u = 0, and T is a unit square.

http://dx.doi.org/10.1007/978-3-319-65591-8_1
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4.6.13 Evolution of Pinwheels as Phase Singularities

We can also study the temporal evolution of the pinwheels, that is, the singularities
in the field Z , e.g. by assuming that Z is a superposition of plane waves Z =∑

κ Aκei(κ·a−ωt), where, as we saw in Sect. 4.6.6,ω is an angular frequency associated
with the frequency ν = ω/2π and the period T = 1/ν = 2π/ω, the corresponding
wavelength being λ = cT = c/ν = 2πc/ω, where c is the speed of propagation.

Topological accidents can occur during this evolution, in particular when a sin-
gularity Z = 0 also satisfies Ω = ωe3 = 0. We saw in Sect. 4.6.5 that, when Ω = 0,
the real ∇ X et ∇Y have the same orientation, ∇Y = α∇ X , α ∈ R, and hence that
the complex gradient ∇Z is the real vector ∇ X multiplied by a factor 1 + iα. As
explained by Michael Berry and Mark Richard Dennis in [71], by a gauge transfor-
mation and a coordinate change, we can reduce to the case in which the field Z (a)
has the form

Z (a) = iβy + 1

2
aT Ha , β ∈ R ,

where the complex Hessian

H =
(

H11 H12

H12 H22

)

is a symmetric 2 × 2 complex matrix. We do indeed have Z (0) = 0, and since
∇ X (0) = 0, Ω (0) = 0.

This unstable normal form can be unfolded using a time variable t , giving the
dynamical model

Z (a, t) = t + iβy + 1

2
aT Ha ,

X (a, t) = t + 1

2

[
x2Re (H11) + 2xyRe (H12) + y2Re (H22)

]
,

Y (a, t) = βy + 1

2

[
x2Im (H11) + 2xyIm (H12) + y2Im (H22)

]
.

For the singularities Z = 0, the equation Y = 0 gives, for the lowest order terms, y ∼
−x2Im (H11) /2β and the equation X = 0 gives x2Re (H11) ∼ −2t . If Re (H11) > 0,
then for t < 0, there are two solutions with abscissa values x = ±[−2t/Re (H11)

]
1/2

on the parabola y = −x2Im (H11) /2β which coalesce and disappear for t ≥ 0: two
singularities with opposite chiralities xβRe (H11) annihilate in what is known as a
fold catastrophe. If on the other hand Re (H11) < 0, then when t becomes positive,
two singularities of opposite chirality appear.

We shall return to these pinwheel bifurcations in more detail in Sect. 4.7.1.2.
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4.7 Pinwheel Singularities

We have seen that pinwheels are centred on singularities. In this section, we shall dis-
cuss some of the experimental data which supports the hypothesis that the functional
orientation maps can be treated as phase fields.

4.7.1 Structure in the Vicinity of Singularities

4.7.1.1 Pinwheels as Zeros of the Orientation Field

If we enter the cortex ‘vertically’ at a regular point, we come across the columns
of Hubel and Wiesel with their redundancy and their population coding. However,
when we enter at a singular point, we come across neurons of every orientation. It
is tricky but crucial to understand this phenomenon correctly. Orientation selectivity
is highly variable in V 1, and clearly, on the level of the mesoscopic resolution of
the images presented so far, it is necessarily rather low or even zero on average at
singular points, since all orientations are present in a roughly uniform manner. In fact,
we may assume that the meso- or ‘coarse-grained’ level is one where the preferred
orientation corresponds to what is known as an order parameter in statistical physics,
and that the models of this level are analogous to the so-called mean field models.

As an example of mesoscopic models, let us return to those proposed by Wolf and
Geisel [72] to understand the learning process behind orientational selectivity (see
Sect. 4.6.1). They are phase field models in the sense of Sect. 4.6. The field of preferred
orientations Φ(a) = eiϕ(a) of simple V 1 neurons can be treated as a section of the
fibre bundle π : R × P → R defined outside the lattice L of the pinwheel centres
of R. Identifying R with R

2 and R
2 with C, Wolf and Geisel suggested modelling

the columns by a continuous complex field Z(a) = r(a)eiϕ(a) = r(a)Φ(a) on the
complex variable a = ρeiθ , where the spatial phase ϕ(a) thus encodes the orientation
preference ψ = ϕ/2 and where the modulus r(a) = |Z(a)| encodes the strength
of selectivity, i.e. the width of the response curve, which is Gaussian. The complex
value Z is thus a section of the fibre bundle π : C × D → C, which has base space
C, and if the maximal selectivity is normalized to unity, its fibre is the unit disc D.
As we have seen, the singular points (pinwheel centres) then correspond to the zeros
of Z . To obtain a naive and simple illustration of the behaviour of the field Z in the
neighbourhood of a zero, we take ϕ = θ and r = ρ/2. Above the points a of a small
circle Cρ with centre 0 and radius ρ fixed in the base space C, we have in the fibre
the circles �ρ/2 of fibres Da of radius ρ/2, and the inverse image of Cρ under π is
thus the torus π : Cρ × �ρ/2 → Cρ . The lift of Cρ on this torus is the curve Γρ (see
Fig. 4.79) given parametrically by

Γρ =
(
ρ

2
sin (θ) , ρ

[
1 − 1

2
cos (θ)

]
cos (θ) , ρ

[
1 − 1

2
cos (θ)

]
sin (θ)

)
.
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Fig. 4.79 The torus
π : Cρ × �ρ/2 → Cρ and
the lift Γρ of Cρ (see text)

Fig. 4.80 When ρ → 0, the
section Γρ → 0

As the orientation selectivity vanishes at 0, when ρ → 0, the section Γρ also tends
to 0 and the projection π is locally a diffeomorphism (see Fig. 4.80).
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4.7.1.2 Pinwheel Morphogenesis and Learning

One of the advantages of this approach is that it provides a good theory of the
learning process. The paper [78] by Nicholas Swindale contains a summary of these
development models. As the author puts it:

The repetitive stochastic patterns of eye dominance and orientation preference [are of an]
intriguing nature. Many aspects of their development seem likely to be dependent upon both
spontaneous and visually driven patterns of neural activity. […] Remarkably simple models,
based on Hebbian synaptic plasticity, intracortical interactions and competitive interactions
between cells and growing axons, have been able to explain much of the phenomenology.

A good example of such models is the one developed by James Bednar and
Risto Miikkulainen in [79, 80] using self-organized map (SOM) models (see
Sect. 4.10.1.4), which are16:

[…] networks of simple artificial neurons with initially unspecific connections that are mod-
ified by Hebbian learning and homeostatic plasticity.

They show quite clearly how the double constraints imposed on the one hand by
the geometry and statistics of external stimuli and, on the other, by the geometry
and statistics of the internal structure of the cortical areas lead in a self-organized
way to pinwheel maps that depend only weakly on the initial synaptic weights of the
neurons, but heavily on the way the stimuli arrive. Figure 4.81 gives an example.

The dynamical self-organization models proposed by Fred Wolf, Theo Geisel,
Matthias Kashube, and Michael Schnabel in [72, 81, 82] are models of pattern for-
mation, starting from an unstructured initial state, through Turing instabilities. They

Fig. 4.81 Pinwheel map built from GCAL self-organized maps (gain control, adaptive, laterally
connected SOMs). Starting from random synaptic weights, the neural network is subjected to a
flow of stimuli of a certain type. The weights are modified by Hebbian learning and homeostatic
plasticity, gradually producing a pinwheel structure which stabilizes. It can be shown that such maps
depend little on the initial synaptic weights of the neurons, but a great deal on the flow of stimuli.
In the last figure, white lines indicate the inhibitory lateral connections of a neuron. Figure adapted
from Bednar [79]

16For Hebb’s law, see Sect. 3.6.2.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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adopt the development model first introduced by Nicholas Swindale and describe the
morphogenesis of the field by a partial differential equation (PDE) of the form

∂Z(a, t)

∂t
= F

(
Z(a, t)

) + η (a, t) ,

where F is a linear operator and η a stochastic term representing the intrinsic fluc-
tuations associated with this activity. This kind of dynamics can be induced by a
Hebbian learning process, with F (Z(a)) the average of Z(a) for rapidly changing
stimuli A with a certain probability distribution.

The authors also take into account ocular dominance and distortion of retinotopy
(see Figs. 4.12 and 4.13 in Sect. 4.2). They show that, starting from an initial state in
which the field Z(a, 0) is weak (with little orientational selectivity), there is first a
period of proliferation of pinwheels, with a growth in selectivity and the appearance of
a characteristic wavelength �, the pinwheel density17 becoming greater than π/�2.
Then, the nonlinearities and long-range lateral interactions stabilize the process and
the number of pinwheels through their displacements, collisions, and annihilations
of pairs of pinwheels of opposite chirality (see Fig. 4.82). The reader could consult
Ha Youn Lee et al. [83].

More precisely, the standard technique for analyzing such a PDE is to expand
F (Z) in a series

F (Z) = L (Z) + F2
(
Z , Z

) + F3
(
Z , Z , Z

) + · · · ,

where L (Z) is linear, F2
(
Z , Z

)
is bilinear, F3

(
Z , Z , Z

)
is trilinear, and so on.18

In the given model, it can be shown that the linearized L
(
Z(a, t)

)
whose spectral

analysis is to be carried out is of fourth order and can be written L = μ− (
k2

c +�
)
2,

where μ is a bifurcation parameter such that, for μ < 0, the homogeneous base
state Z ≡ 0 is stable, while for μ > 0, it becomes unstable and bifurcates towards

Fig. 4.82 Annihilation of pinwheels of opposite chirality simplifies and stabilizes the pinwheel
geometry. From Wolf and Geisel [72]

17We have already encountered this density π/�2 in Sect. 4.6.11.
18We have to use the two variables Z and Z because the functions Fj are not necessarily analytic
functions depending only on Z .
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patterns with characteristic wavelength � = 2π/kc for critical eigenvalues λ (kc)

(kc 	= 0) of the Fourier representation of L given by μ = λ (kc).19 To third order,
the dynamical PDE becomes analogous to the equation that Jack Swift and Pierre
Hohenberg introduced into the study of convection in hydrodynamics (see [84]).

It is important to note that the PDE must be equivariant under the action of the
group of symmetries of the plane SE (2), and even E (2). We shall return at length
in the second volume on the structure of the group SE (2) and the importance of
symmetries. Let us just say for the moment that they impose strong constraints on
the form of the functional F . Indeed, F must be equivariant under the action of
SE (2), acting by translations a → a + b and rotations a → Rθ (a) on the base
plane R = C of the a, and also by rotations Z → eiψ Z in the fibres. Now recall
that, if Z (a) is a function of a variable a ∈ R and if T is an element of a group G
of transformations of R, T acts on Z (a) by T̃ (Z (a)) = Z

(
T −1 (a)

)
. In addition,

we say that a function or functional F (Z) on which G operates is G-equivariant if
T
(
F (Z)

) = F
(
T̃ (Z)

)
, i.e. if F commutes with the actions of G on Z and on the

space of values of F . Consequently, we must have

b̃
(
F (Z (a))

) = F
(̃
b (Z (a))

) = F (Z (a − b)) ,

for any translation b̃ by a vector b in the plane R,

R̃θ

(
F (Z (a))

) = F
(
R̃θ (Z (a))

) = F
(
Z (R−θ (a))

)
,

for any rotation R̃θ through angle θ of the plane R, and F
(
eiψ Z

) = eiψ F (Z) for
any rotation of Z . Note that the last symmetry implies that F (0) = 0, since if Z = 0,
then eiψ Z = 0 for any ψ , whence eiψ F (0) = 0 for all ψ .

When F is expanded in the neighbourhood of the equilibrium state Z ≡ 0,
its linear part L commutes with the symmetries, and the Fourier representation is
therefore diagonal with eigenvalues λ (kc) which depend only on the magnitude kc.
The authors show that the second-order term F2 can be neglected and that we may
choose a third-order term F3 depending on |Z |2 Z and long-range lateral connections.
We shall see in the second volume that this cubic normal form |Z |2 Z often arises in
problems with E (2) symmetry.

The analysis of patterns Z (a), i.e. pinwheel maps, that can emerge by bifurcation
thus reduces to a classic problem that has been widely studied in physics, the problem
of symmetry breaking. If a modulus (wave number) k is selected by a bifurcation at
μ, we may consider superpositions of eigenstates (Fourier modes) with eigenvectors
(wave vectors) κ j with magnitude

∣∣κ j

∣∣ = k. We thus obtain planforms:

19In the expansion of L , the powers of partial derivatives like (∂/∂x)n mean repeated differentiation
∂n/∂xn . The linear PDE ∂Z/∂t = L (Z) for L = μ describes exponential damping towards 0 for
μ < 0 (stability) and exponential growth for μ > 0 (instability). The PDE ∂Z/∂t = L (Z) for
L = −� is a diffusion equation.
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Z (a) =
j=n−1∑

j=0

A j e
iκ j ·a ,

∣
∣κ j

∣
∣ = k , κ j = k

(
cos

(
2π j

n

)
, sin

(
2π j

n

))
.

The symmetries impose a precise structure on the amplitudes A j . By expressing the
fact that they are solutions of the PDE satisfied by Z , we show that they must satisfy
differential equations of the form

dAi

dt
= Ai −

j=n∑

j=1

gi j

∣∣A j

∣∣2 Ai −
j=n∑

j=1

fi j Ai A j∗ Ai∗ ,

where j∗, the mode antiparallel to the mode j , is defined by κ j∗ = −κ j , and where
the coefficients gi j and fi j satisfy the properties

⎧
⎪⎨

⎪⎩

gi j =
(

1 − 1

2
δi j

)
g
(|αi − α j |

)
,

fi j = (
1 − δi j − δi∗ j

)
f
(|αi − α j |

)
.

Here, δi j is the Kronecker symbol (δi i = 1 and δi j = 0 if i 	= j), αi is the angle of
mode i , and g (α) and f (α) are π -periodic angle functions calculated from F . A
refined version of this model can be found in the paper Schnabel et al. [85].

Figure 4.83, taken from [81, 82], shows the planforms for n = 1, 2, 3, 5, 15, with
the positions of the wave vectors κ j and the density of the pinwheels as a function of
n. An example of a pinwheel map constructed as a linear combination of planforms
is also shown.

4.7.1.3 Pinwheels as Genuine Singularities

These models based on the parallel between pinwheels and dislocations are quite
remarkable. However, two points should be emphasized:

1. The model assumes that the orientation selectivity vanishes on the dislocations
located at the centres of the pinwheels.

2. No meaning can be attached to the limit as the mesh of the pinwheel lattice tends
to 0, since it then gives a field Z that is identically zero.

It thus requires closer examination because it may be that the selectivity remains good
at singular points on the micro level of individual neurons and only vanishes at the
meso level due to averaging. As noted by Jonathan Polimeni et al. when commenting
on a paper by Pedro Maldonado et al. [86] which we shall discuss in a moment [87,
p. 4158]:

The optical recording signal is a population average, and so individual neurons in the pin-
wheel centres—even if they were strongly tuned to orientation—would average to a weak
population response at the pinwheel centres imaged through optical recording.
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Fig. 4.83 Model by Wolf and Geisel. a Planforms for n = 1, 2, 3, 5, 15, with the position of
the wave vectors κ j . b Example of a pinwheel map built as a linear combination of planforms.
c Diagram giving the density ρ of the pinwheels as a function of n : for a given n, each point is the
density of one of the patterns corresponding to n. From [82]
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The difference is clear on the level of the geometry of the models. Let us come back
to Fig. 4.79 and suppose, for example, that the selectivity r is everywhere maximal,
viz. r = 1, even at the origin. Then, the lift of Cρ is the curve Γρ given by

Γρ =
(
ρ

2
sin (θ) ,

(
1 − 1

2
ρ cos (θ)

)
cos (θ) ,

(
1 − 1

2
ρ cos (θ)

)
sin (θ)

)
,

and when ρ → 0, the section Γρ no longer tends to 0 but to the ‘vertical’ unit circle
Γ0 = (0, cos (θ) , sin (θ)), and the projection π is not at all a local diffeomorphism
at 0. It is such away from 0, even if it turns out to be a highly twisted diffeomorphism,
but at 0 itself, it has an ‘exceptional fibre’ Γ0 of dimension 1 (see Fig. 4.84).

It is thus well worth carrying out precise experiments on the structure of the ori-
entation field in the neighbourhood of singularities. They are difficult to do but rich
in results. By combining imaging methods with methods for intracellular recording
of spikes triggered by the synaptic inputs, but also recording of membrane potentials
of single neurons, Pedro Maldonado, Imke Gödecke, Charles Gray, and Tobias Bon-
höffer were able to analyze the fine structure of the orientation maps at singularities,
observing that [86, p. 969]:

Orientation columns contain sharply tuned neurons of different orientation preference lying
in close proximity.

Put another way, column redundancy seems to disappear at singular points.
For further discussion of these results, the reader is referred to David McLaughlin

et al. [88] and Michael Shelley et al. [89], who model the cortical processes generating
orientation selectivity in the 4Cα layer of the macaque V 1 area. They start from the
microlevel with a network of 16 000 integrate-and-fire neurons and reduce it at the
meso level to what they refer to as ‘a spatially coarse-grained system for firing rates of

Fig. 4.84 When ρ → 0, the
section Γρ no longer tends to
0 but to the ‘vertical’ unit
circle Γ0 (see text)
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neuronal subpopulations’ [89, p. 97]. They then introduce a plausible connectivity for
the ‘vertical’ connections coming from the LGN and for the ‘horizontal’ intracortical
inhibitory and excitatory connections (which we shall return to at length in Sect. 5.1
of Chap. 5). In the second volume, we shall discuss cortical models comprising a
huge number of differential equations describing the membrane potentials of each
neuron in the network, along with coarse-grained mean field methods which allow
us to study them on the meso level. What is important here is the result from these
authors, formulated here for an orientation hypercolumn, i.e. a pinwheel, including
isotropic internal inhibitory and excitatory connections, but no anisotropic long-range
lateral connections with other hypercolumns:

This analysis showed it is an interaction between the pinwheel structure of the preferred ori-
entation mapping and the isotropic architecture that produces greater orientation selectivity
near pinwheel centres [89, p. 121].

In other words, these models show that the pinwheels are ‘true’ singularities where
all the orientations are present, each with strong selectivity.

Many experimental results confirm this idea. For example, using moving gratings
as stimuli, James Schummers et al. have shown that:

Neurons near pinwheel centres have sub-threshold responses to all stimulus orientations but
spike responses to only a narrow range of orientations. [90, p. 969]

They assess the selectivity of spike responses and sub-threshold responses as a func-
tion of position relative to the pinwheels. Far from the pinwheels:

[Cells] show a strong membrane depolarization response only for a limited range of stimulus
orientation, and this selectivity is reflected in their spike responses. [90, p. 970]

At the centre of a pinwheel, on the other hand, only the spike response is selective
and the membrane is highly depolarized for all orientations (see Fig. 4.85).

These results show that, at singular points, all orientations are indeed present,
but using a novel solution with regard to the connectivity of the relevant neural
microcircuits:

These examples indicate that both simple and complex cells located near pinwheel centres
receive synaptic inputs over a broad range of stimulus orientations, although not all of these
inputs are represented in the spike outputs. [90, p. 971]

Schummers [91] obtained further results with Jorge Mariño (on cats). The local
neural circuits are very different at regular points and at singular points. If we look at
the total conductance g, we observe that it is strongly peaked at a regular point
and flatter at a singular point. It is the different ways in which it is distributed
between inhibitory and excitatory conductances gi/ge and the interaction between
the excitatory and inhibitory connections which show us how, ‘despite the diversity
of local environments’, there can nevertheless be ‘a sharp orientation tuning at all
locations in the orientation map’ [91, p. 195]. With highly localized injections of
retrograde tracer (where ‘localized’ refers to a region <100 µm), the difference
between excitatory and inhibitory can be clearly distinguished. Figure 4.86 shows

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.85 Responses to stimuli in the form of moving periodic gratings with different orientations.
Left Far from singularities. Scales 8 spikes/s, 10 mV, 2 s. Right At the centre of a pinwheel. Scales 3
spikes/s, 8 mV, 2 s. aComparison between spike emissions (red) and the membrane potential (blue).
c The two curves representing the average amplitude of the responses for different orientations.
d Modulation of responses. From Schummers [90]

an injection site with the inhibitory and excitatory connections. We observe that
inhibition is more localized and more isotropic, whereas excitation propagates over
greater distances, but in a highly anisotropic way, clustering in regions of the same
colour and hence of the same orientation as the injection site. We shall return to this
crucial point, the key to the functional architecture of V 1, in Sect. 5.1 of Chap. 5.

These measurements confirm that the difference between regular and singular
points is not reflected in the level of the spikes (there is good orientation selectivity
in both cases), but at the level of the sub-threshold signals. This is because:

[…] as a result of the appropriate inhibitory balance at orthogonal orientations, which keeps
the membrane potential below threshold, it is not reflected in the spike responses.

4.7.2 The Problem of Resolution

As already mentioned, it is important to note that the question of resolution plays an
important role in the definition of the pinwheels. In an optical device, there is always
a resolution transforming points (Dirac measures) into Gaussians of a certain width
σ . In the optical imaging of intrinsic signals in vivo, there are systematic statistical
errors. As noted by Jonathan Polimeni et al., these are due to:

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.86 The injection site is the small central circle. The outer circle C is at 250 µm from
the intermediate circle (see the 250 µm scale bar in the bottom left corner). White dots represent
inhibitory connections and black dots excitatory connections. We observe that inhibition is more
localized, bounded by the circle C , and more isotropic, whereas excitation propagates well outside
the circle C , but in a highly anisotropic way, clustering in regions of the same colour and hence of
the same orientation as the injection site. From Mariño and Schummers [91]

[…] photon scatter and absorption in brain tissue combined with the blurring introduced by
the optics of the imaging system. [87, p. 4158]

In this sense:

Optical recording, as it has been used to date, has insufficient spatial resolution to accurately
locate pinwheel centers. [87, p. 4158]

Fortunately, as we shall soon see, there are now much higher resolution methods
which provide a way around these difficulties.

However, it remains important to take into account the fact that the functional
orientation maps are obtained by superposing single-orientation maps and are thus
vector-valued images. They have a resolution corresponding to a width σ of about
250 µm. Figure 4.87, taken from [87], shows what happens to a pinwheel map when
it is convolved with a Gaussian kernel of width 250 µm. Obviously, we observe that
the map changes significantly. In other words, good mesoscopic models must always
be multiscale models.
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Fig. 4.87 Transformation of a pinwheel map by convolution with a Gaussian kernel of width
250 µm. White pinwheels are (+), black pinwheels are (−), and continuous and dashed lines are
the zero-crossings of the map. The scale bar represents 1 mm. We note how much the map changes.
a Initial map with 124 pinwheels. b Transformed map with only 93 pinwheels. From Polimeni et
al. [87]. Copyright (2005) National Academy of Sciences, USA

4.7.3 Two-Photon Confocal Microscopy

The imaging techniques mentioned up to now are not accurate enough. However,
recently, new techniques like in vivo imaging by two-photon confocal microscopy
have given us functional maps with a resolution down to the level of single neurons.
Kenichi Ohki and coworkers [92] have shown that, in cats, pinwheels defined on the
mesolevel remain highly ordered on the microlevel. Consequently:

Pinwheel centers truly represent singularities in the cortical map.

The idea of the method is to inject calcium-sensitive indicators (Oregon Green
BAPTA-1 acetoxylmethyl ester) which label a few thousand neurons in regions of
300–600µm. We simultaneously measure calcium signals triggered by visual stimuli
in hundreds of neurons at different depths (from 130 to 290 µm, in steps of 20 µm),
and we find pinwheels with the same orientation wheel (see Fig. 4.88):

This demonstrates the columnar structure of the orientation map at a very fine spatial scale.

Whence the problem of connectivity implementing the fine selection of orientations
near singularities; several hypotheses have been put forward by the authors about the
dendritic tree near the centre C (a few tens of µm) in an iso-orientation domain D
(see Fig. 4.89):
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Fig. 4.88 Two-photon optical imaging can simultaneously measure calcium signals triggered by
visual stimuli in hundreds of neurons at different depths (from 130 to 290 µm in steps of 20 µm).
We find analogous pinwheels with the same orientation wheel at these different depths. From Ohki
et al. [92]

(a) Unbalanced dendritic tree towards D.
(b) Symmetric dendritic tree, but excitatory inputs unbalanced towards D.
(c) Symmetric dendritic tree, symmetric excitatory inputs, but local and within D

(good segregation in the vicinity of C).
(d) Symmetric dendritic tree, symmetric excitatory inputs, integrated over a wide

dendritic area.
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Fig. 4.89 Four dendritic tree structures in the vicinity of a singularity, as proposed by Kenichi Ohki
et al. [92] (see text)

4.8 Pinwheels and Blow-ups

The results of Schummers and Maldonado lead to two competing idealized mod-
els. In both cases, all the orientations are indeed present with good selectivity in
the neighbourhood of singularities, but at the singularity itself (insofar as this has a
precise meaning on the meso level), either the orientation selectivity is sub-threshold
(Schummers), or there is a loss of column redundancy (Maldonado). Further exper-
iments will be needed to elucidate this, but we may nevertheless make a suggestion
for Maldonado’s results. The theoretical problem we have to solve concerns the
dimensional collapse of an ideally 3D structure onto 2D neural layers.



4.8 Pinwheels and Blow-ups 215

4.8.1 The Geometric Concept of Blow-up

So how can the concrete 2D structure of pinwheels fit with the abstract 3D structure
of the fibre bundle? To understand this, we shall use the geometric operation known
as ‘blowing up’ of singularities. The intuitive idea, which needs to be carefully tested,
is that the pinwheels could be like local blow-ups of singular points, and the pinwheel
lattice like a gluing together of these local blow-ups to give a discrete approximation
of the projection π : R × P

1 → R. In this picture, π would correspond to a limiting
situation where in some sense all the points of R would blow up in parallel.

In algebraic geometry, the blow-up of a variety such as the plane M = R
2, at a

point, e.g. the origin O = (0, 0), is defined in the following way. Let a = (x, y) 	=
(0, 0) be a point of R

2. We associate the direction p of Oa with this point and thus
specify a map δ :

δ : R
2 − {O} −→ P

1

a = (x, y) �−→ δ(a) = p = y/x

The graph of δ is a helicoidal surface H in the 3D fibre bundle V = R
2 ×P

1, and the
topological closure of H in V is a helicoid H with π−1(O) = � ∼= P

1. This copy
of P

1 above O is an exceptional fibre which, for historical and technical reasons, is
called the exceptional divisor of the blow-up. The restriction to H of the projection
π : R

2 × P
1 → R

2 is an isomorphism of H on R
2 − {O}. If d is the straight line

generated by Oa in R
2, the closure of the inverse image π−1(d − {O}) is made up

of points (λa, δ(a) = p) of V = R
2 × P

1, i.e., by the straight line d ′ at height
δ(a) = p = y/x . When the straight line d rotates in the plane R

2, d ′ also rotates,
but while translating through �, whence the helicoidal motion.

Since the inverse image of the point O under π is the projective line � = P
1,

π is not at all an isomorphism at O , but a projection collapsing a 1D fibre to a
zero-dimensional point. In this sense, the blow-up of the plane at a point generates a
geometric structure which is somehow ‘intermediate’ between the 2D plane and the
3D fibre bundle. It is the fibre bundle V above O and the (twisted) plane R

2 away
from O . One might say that the blow-up π : H → R

2 unfolds the orientation wheel
centred on O = (0, 0) in a third dimension (see Figs. 4.90 and 4.91).

This construction can be understood as an interpretation of polar coordinates in
terms of a field of directions. Indeed, consider the fibre bundle π1 : R

2 × S
1 → R

2.
On the plane with one point removed R

2 − {O}, the argument θ(a) ∈ [0, 2π ] of
a point a is well defined and we may thus consider the section �1 of π1 defined
by �1 : a → �1(a) = (

a, eiθ(a)
)
. The fibre bundle π : R

2 × P
1 → R

2 is the
quotient of the fibre bundle π1 : R

2 × S
1 → R

2 obtained by identifying θ with
θ + π (i.e., by identifying eiθ with −eiθ ) and �1 lifts to π1 the section of π defined
by � : a → �(a) = (

a, eiθ(a)
)
, where θ(a) ∈ [0, π ] is now considered modulo π .

�1(a) is constant on the rays θ = const., and when it is lifted from R
2 × P

1 to
R

2 × S
1, the surface H of R

2 × P
1 becomes the image of �1.
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Fig. 4.90 Blow-up of the
plane at a point a. The
directions at a are unfolded
in a third dimension

Fig. 4.91 When the third
dimension collapses, the
blow-up becomes a pinwheel

The concept of blow-up was introduced under the name of ‘quadratic transfor-
mation’ at the end of the nineteenth century by specialists of projective algebraic
geometry. It represents the simplest case of what are known as birational transfor-
mations, and it is fundamental for desingularizing singular curves. If a curve γ in R

2

has a singular point at O where several branches intersect with different tangents,
then by lifting γ to H , we obtain a curve Γ = π−1(γ ) with various branches at
different heights, thereby eliminating the intersections.

We can now localize this algebraic model and even consider an infinitesimal
version, where we restrict to points a = (dx, dy) infinitely close to the blow-up
point O = (0, 0). To do this, we take what is known as the ‘germ’ of the structure in
the neighbourhood of (�, O). In the local model, which is no longer algebraic but
differential, we have p = dy/dx and the surface H is thus included in the kernel
of the differential form ω = dy − pdx defined on V = R

2 × P
1 (we shall return

to this key point in Sect. 5.4.1 of Chap. 5). Conversely, the algebraic model can be
considered as the ‘tangent’ structure to the local model, where infinitesimal segments
are replaced by tangent vectors.

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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The blow-up model can be used to understand orientation singularities. We can
neglect the redundancy of the cortical columns outside the singularities insofar as,
at regular points, simple V 1 neurons mainly detect the same pair (a, p). However,
we have seen that, according to Maldonado et al. [86], this is not the case at singular
points, where all orientations are in fact present in the column. The fact that the
orientation associated with a ray of a pinwheel selects this orientation at the centre
of the pinwheel can then be expressed by saying that the operation yielding the
topological closure H of H is implemented neurally and that the singular point is
thereby blown up throughout the thickness of the cortical layer.

When the pinwheel is modelled in this way, it corresponds to the section � of the
projection π : (R2 − {O}) × P

1 → (
R

2 − {O}) given by � (a) = (
a, ei[α+θ(a)/2]),

where α is the orientation encoded by the ray θ(a) = 0. We thus require a double
rotation of θ through angle π (hence two round trips of P

1) to get back to the same
ray, and this is why, as explained above, two diametrically opposite rays at angles θ

and θ + π correspond to orthogonal orientations α + θ/2 and α + θ/2 + π/2. This
means that the pinwheels implement what is known in geometry as a spin structure.
The section � is not the section � : a → �(a) = (

a, eiθ(a)
)
, θ(a) ∈ [0, π ], of the

bundle π : (R2 − {O}) × P
1 → R

2 − {O}, but rather a field of orientations of the
same order, and this justifies modelling it by a blow-up.

4.8.2 Blow-ups and Lines of Dislocations

A link can be made between these blow-ups and the singularities of the phase fields
discussed in Sect. 4.6. On the one hand, if we rotate the x-axis by θ0 without changing
the origin in P

1, the helicoid H is translated by θ0 to the helicoid Hθ0 and the blow-up
can be considered as the set of all the Hθ0 . On the other hand, we can consider the
field of phases Z = ae−ip = ρei(θ−p) in R

2 × P
1, where p varies in the fibre P

1.
Surfaces of constant phase are then the helicoids Hθ0 and the fibre P

1 above 0 is a
line of dislocations.

4.8.3 From Blow-up to Fibre Bundle

To construct a fibre bundle model for a global pinwheel structure from the local blow-
up model, one must blow up all the points of an (irregular) lattice L of the plane,
the lattice of singular points, in parallel. This is not possible in the framework of
algebraic geometry, because the local structures determine the global structures, and
to iterate the algebraic model for the blow-up of a point, one would have to immerse
the successive blow-ups in spaces of ever higher dimension. However, it can be done
in the context of differential geometry by gluing together the local models of different
points in the lattice. We thus obtain a model for the pinwheel structure (see Figs. 4.92
and 4.93).
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Fig. 4.92 Simultaneous blow-up of a lattice of points

Fig. 4.93 When the third
dimension collapses, a
simultaneous blow-up of a
lattice of points yields a
lattice of pinwheels

In a field model like the one in Sect. 4.4.3, the field can be lifted from R
2 to

V = R
2 ×P

1 by blowing up the singularities ci and lifting the field lines like curves:
if a field line γ goes from a source c1 with angle θ1 to reach a sink c2 with angle θ2,
γ lifts to a curve Γ in V starting at height θ1 in the fibre above c1 and arriving at
height θ2 in the fibre above c2. Only the fibres above ci are involved, so everything
happens as though the ci had been blown up in parallel. The structures tangent to this
multiple blow-up in the neighbourhoods of the fibres �i → ci are all isomorphic to
the local algebraic model.

We could therefore consider that, when the mesh of the lattice L tends to 0, the
limit of this multiple blow-up gives back the bundle π : R

2 ×P
1 → R

2, gluing back
the infinitesimal models at all the points of R

2. In this sense, the pinwheel structure
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could effectively be interpreted as a discrete approximation of the bundle π , and
conversely, π could be considered as the simultaneous blow-up of all the points in
the plane. A good way could be to use a non-standard model20 (R∗) 2 of R

2 where,
around each standard point a = (x, y), there would be a ‘halo’ or a ‘monad’ of
infinitesimals μ(a) = {(x + dx, y + dy)}. In the blow-up, the exceptional fibre �∗
would then be

(
P

1
)∗

and dy/dx a non-standard real number p∗ = p+d p, equivalent
to p ∈ P

1. The field lines would all lie within the monads, and so would be non-
standard, and to first order, there would only remain the segments a → (a + da).
The standard part of the structure at �∗ → a would thus be the tangent structure.
In this way, we would obtain not only the bundle π : R

2 × P
1 → R

2, but also the
infinitesimal structure defined on it by the differential 1-form ω = dy − pdx , i.e. the
contact structure, to which we shall return.

The advantage of a non-standard model is that it provides an intuitive picture
of the characteristic dimensional reduction of the pinwheel structure. We take the
bundle π : R

2 × P
1 → R

2, compactify the fibres21 to make them infinitesimal,
then project them into the monads μ(a). I used to think that the idea of blow-up
with the exceptional fibre made infinitesimal and projected back onto the base plane
was original. However, reading the correspondence between Pierre Deligne, Bernard
Malgrange, and Jean-Pierre Ramis on ‘irregular singularities’, I found a letter dated
7 January 1986 on the singularities of analytic functions and Gevrey classes, where
Deligne [94] introduced the concept of ‘thick points’. The idea is to replace a point
a ∈ C, say a = 0, by a small disc D with boundary�, consider the space C̃ = C

∗∪D,
union of C

∗ = C− {0} and D, and equip it with the topology of the blow-up of 0
in C along C

∗ ∪ �. Moreover, in his last paper on Gevrey classes (edited by Jean-
Pierre Ramis [95]), Martinet [96] used this construction with the discs D that are
infinitesimal in the sense of non-standard analysis.22

We could thus say that, in the continuous limit, a pinwheel lattice model amounts
to treating the points of the plane as infinitesimal ‘thick points’ in the sense of
Deligne and Martinet, with the standard part of such a structure giving back the
bundle π : V = R

2 × P
1 → R

2.

4.8.4 Discrete Versus Continuous Models

We thus see that there are two complementary ways to model pinwheels and one
which combines both:

1. We can go to the continuous limit and work in π : V = R
2 × P

1 → R
2. This is

what we shall do at great length in the second volume.

20For a didactic introduction to non-standard analysis, see, for example, Petitot [93] and the refer-
ences therein.
21Rather as in the Kaluza–Klein field theories of physics.
22I thank Guy Wallet and Michel Berthier for this reference.
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2. Alternatively, we do not go to the limit, but keep the finite mesh size of the lattice
L and consider the orientation field �(a) of simple V 1 neurons as a section of
the bundle π defined on the open set R

2 − L . This is the approach we shall pursue
in the following sections of this chapter.

3. However, it is also possible to adopt a mixed approach and introduce continuous
models that get discretized by breaking their symmetry groups. We shall also
pursue this idea in the second volume.

4.9 Different Aspects of Pinwheels

To illustrate our models with experimental data, we shall discuss here some other
aspects of the pinwheel maps.

4.9.1 Position–Orientation Independence and Local Triviality

The pinwheel structure is a good example of the way neurophysiology requires us
to rethink the most basic geometric structures used to model it. In the above, we
have assumed that the direct product structure U × P

1 (U ⊂ R) in the fibre bundle
π : U ×P

1 → U (local triviality) raises no particular problems. However, it assumes
an independence between the position and orientation variables which is not at all
obvious from the neurophysiological point of view (see, e.g. Das, Gilbert [97]) and
must be carefully checked. This is what has been done by Bosking et al. [42] by
analyzing the pattern of neural activity elicited by a long line crossing the visual
field.

Figure 4.94, part of which appears as Fig. 4.31 in Sect. 4.4.1, shows the following:

(a) The band of neurons in V 1 which are activated by a long line located at a precise
(vertical) position x (scale 1 mm).

(b) The way this band is situated within the population of V 1 neurons responding
to the same vertical orientation but at different positions.

By carefully analyzing the way these bands and the response peaks change as the
stimulus moves (10 positions x at intervals of 1◦),23 the authors have shown that the
maps of the positions of the stimulus and the orientations (pinwheels) are essentially
independent. Figure 4.95 shows the relationship between a 1◦ × 1◦ lattice of vertical
and horizontal positions of the bar and the pinwheel structure. From a scale of 4◦ × 4◦
the coverage becomes uniform.

In short, Bosking shows that:

The map of visual space in V 1 is orderly at a fine scale and has uniform coverage of position
and orientation without local relationships in the mapping of these features.

23Lengths are measured in degrees of the visual field.
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Fig. 4.94 Neurons in V 1
activated by a long line
located in a precise vertical
position. From Bosking et al.
[42]

In geometrical terms, this means that the Cartesian product structure (the triviality)
of the bundle π : R × P

1 → R is indeed neurally implemented.

4.9.2 Other Engrafted Variables

Other variables are engrafted in Hubel’s sense in the pinwheel structure, for example
the direction of motion, phase, spatial frequency, and ocular dominance.

4.9.2.1 Direction of Motion

Simple V 1 neurons are orientation selective and detect edges. However, they are
often also sensitive to the direction of motion of the edges, and in general, this is
optimal in the orthogonal direction. This is the case, for example, in the cat, as shown
in Fig. 4.18 taken from Van Hooser [26]. In [98], Ohki et al. confirmed this on the
level of individual cells in area 18 of the cat (see Fig. 4.96).
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Fig. 4.95 Maps of the positions of the stimulus and the pinwheels. The coordinate system (x, y)
reconstructed from the iso-azimuth contours of a 1◦ × 1◦ lattice of vertical and horizontal positions
of the bar is independent of the pinwheel structure. The tiny 1◦ ×1◦ domains clearly have dominant
orientations [histograms (b) and (c)]. But from a scale of 4◦×4◦, the coverage is uniform [histogram
(d)]. From Bosking et al. [42]

Fig. 4.96 Direction selectivity in cats. The colours red and green encode the two directions orthog-
onal to a given orientation. From Ohki et al. [98]
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In Sect. 5.11 of Chap. 5, we shall return to the problem of direction in the context
of other visual areas. We shall also discuss this a little more in Sect. 4.10.1.4.

4.9.2.2 Phase

Concerning the variation of the phase in a given column, DeAngelis et al. [19] com-
pared the spatiotemporal RF (X , Y = space and T = time = correlation delay) of
two neighbouring cells in the same column. The stimuli were small randomly flashed
bars (length 1.5◦, 40 ms flashes) with the preferred orientations of the two cells, these
being recorded simultaneously. The authors measured the cross-correlation between
the sequence of stimuli and the response (spike trains) with different correlation
delays. They observed that the visuotopy, orientations, and spatial frequencies are
the same, but not the phases.

4.9.3 Spatial Frequency

Here, we attribute a little more importance to another engrafted variable, viz. the
spatial frequency, where interesting new models have recently been developed.

4.9.3.1 Some Preparatory Notes

Note that pinwheel rays leave room for a further parameter. Recent work has con-
jectured that this could be the spatial frequency (SF, see, e.g., DeAngelis et al. [19]
and Bressloff-Cowan [99]). The experiments are not easy to carry out. Care must be
taken to use stimuli that only select a single SF, and the results are still controversial.

Figure 4.97 due to Hübener et al. [100] shows the edges of domains of low spa-
tial frequency. Statistically, the pinwheels tend to be located towards the centre of
the frequency domains and the iso-orientation lines are rather strongly transverse,
sometimes almost orthogonal, to the edges. This is a strong transversality condition.

In their work [101], Naoum Issa, Christopher Trepel, and Michael Stryker made
a detailed analysis of this spatial frequency (SF) distribution in cats (see Fig. 4.98).
Their results are slightly different, which shows that this is only the beginning of
such investigations. They have suggested that, for this parameter, there may also
be a column structure comprising columns of about 0.7 mm with ends close to the
pinwheels. As they note:

The organization of cortical maps permits nearly all combinations of orientation and SF
preference to be represented in V 1. [101, p. 8504]

Put another way, it would seem that there is a neural implementation of the bundle
π : R

2 × P × F → R
2, where F is the interval of the SFs observed (roughly from

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.97 Edges of domains of low spatial frequency (gray). From Hübener et al. [100]

0.2 to 1.8 cycle/degree). In fact, the binarization of the SFs into high and low fre-
quencies may be correlated on the one hand with the segregation of the parvocellular
(X) and magnocellular (Y ) pathways and on the other with the chirality of the pin-
wheels. It often happens that two adjacent pinwheels (hence of opposite chirality)
are in frequency columns of opposite colours (hence high and low frequencies).

We see immediately the kind of problems that such results raise for modelling.
We may for example pair together the orientation θ with the SF f in a fibre space
H and thus consider a field with values in H defined on the cortical surface, i.e. a
section of the bundle R

2 × H . But how should H be defined? If θ and f are treated
as independent variables, then H = P × F . But we may also pair θ and f . This
is what is done by Paul Bressloff and Jack Cowan in [99] by introducing a local
‘spherical’ model in which they glue together a disc (pinwheel) of maximal f with a
disc (pinwheel) of minimal f along their boundaries. The common boundary is the
equator, fmin and fmax are the poles, and a point of the sphere is thus a pair (θ, f )
located at a distance from the singular point (the centre of the sphere) defined by f .

However, these results from Issa et al. [101] were taken up by other specialists who
came to different conclusions. For example, Sirovich and Uglesich [102] detected
a bias due to vascular artefacts in the hemodynamic measurements and, when they
eliminated it, they concluded that there was no column organization in the SFs; for
them, the SF was more like a parameter distorting the orientation map. Figure 4.99
shows, for two pinwheels, the difference between the maps obtained with high SFs
(left) and low SFs (right). See also Born and Tootell [103].
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Fig. 4.98 a Orientation columns. b Spatial frequency columns. High frequencies are coded in blue
and low frequencies in red. Note that they correspond well to the two chiralities of the pinwheels, i.e.
two adjacent pinwheels (hence of opposite chirality) are in frequency columns of opposite colours.
The scale bar is 1 mm. From Issa et al. [101]

Fig. 4.99 Spatial frequency
(SF) dependence of
orientation maps. For two
pinwheels (top and bottom),
we observe the difference
between the map obtained
with high SFs (left) and low
SFs (right). From Sirovich
and Uglesich [102].
Copyright (2004) National
Academy of Sciences, USA
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These critical results were themselves repeated with autofluorescence imaging
techniques using oxidation and reduction of flavoproteins in the metabolism of
mitochondria. These techniques can correct for the vascular artefact pointed out
by Sirovich, and it would seem that there is in fact no column organization (see Issa
et al. [104]).

There are many other studies of this issue. We may cite for example the results of
Zhu et al. [105] on the correlated variation of the OR and the SF.

4.9.3.2 First Dipole Model

If we accept this idea, the basic module is no longer the isolated pinwheel as a
hypercolumn, but a pair of adjacent pinwheels with opposite chiralities. Near the
singularities, i.e. the pinwheel centres (PCs), only a small part of the SFs (low or
high) would be represented. A natural model would then be a dipole–dipinwheel
model.

In Sect. 4.4.3, we discussed the analogy between the functional pinwheel maps
and the topological charge fields encountered in physics. A pinwheel is locally like
the field produced by a + or − charge. A pair of pinwheels with opposite chiralities
thus corresponds to the field produced by a pair of opposite charges (+,−). Such a
field source is known in physics as a dipole. It will be useful to dwell on this for a
moment.

In electrostatics, a dipole is made by placing opposite charges −q and +q, e.g.
−1 and +1, at two points A and B. Let d be the distance between A and B and
place A at (−d/2, 0) and B at (d/2, 0), as in Fig. 4.100. Let (r, θ) be the polar
coordinates of M . Up to a multiplicative constant which we ignore, we have the
potential V = 1/B M − 1/AM . Since

Fig. 4.100 Dipole structure.
Opposite charges −q and +q
are placed at two points A
and B and we calculate the
potential V at different
points M . The figure shows
several equipotentials. The
values of V range from −∞
(black) at A to +∞ (white)
at B. The field is −grad (V ),
and its field lines are
orthogonal to the
equipotentials
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Fig. 4.101 Dipole field with
equipotentials in light blue
and field lines in orange

⎧
⎪⎪⎨

⎪⎪⎩

B M2 = r2 + d2

4
− dr cos (θ) ,
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4
+ dr cos (θ) ,

we obtain the explicit formula

V (M) = 1
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√
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− 1
√
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⎤

⎥⎥
⎦ .

In polar coordinates, the field E = −grad (V ) has components

Er = −∂V

∂r
, Eθ = −1

r

∂V

∂θ
.

The + charge is attractive and the − charge repulsive. This is illustrated in Fig. 4.101,
which is a special case of the field configurations of pinwheel lattices considered in
Sect. 4.4.3.

In this dipole–dipinwheel model of an orientation–spatial frequency module com-
prising two adjacent pinwheels of opposite chirality, the field lines are iso-orientation
curves going from low SFs centred on one of the pinwheels to high SFs centred on
the other pinwheel, while the equipotentials are level lines of the SF. These two fam-
ilies of curves are orthogonal, i.e. maximally transverse, thus satisfying the Hübener
hypothesis. Locally, in the neighbourhood of each of the PCs, we have a classical
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Fig. 4.102 Equipotentials
and field lines of an
intrinsically 2D dipole. If we
compare with the field of
Fig. 4.101 with potential
going as 1/r , we see that the
geometries are qualitatively
similar, but that the
directions of the field lines
are reversed, so + charges
are repulsive and − charges
attractive

orthogonal model made up of rays for the orientations and nested circles for the SFs,
the latter varying smoothly near the PC.

Even though what interests us in these physical analogies is the geometry of
the fields, not the physics they actually represent, we should nevertheless note that
potentials of the form 1/r are related to forces of the form 1/r2 which depend
intrinsically on the 3D nature of the space. Since we are working on phenomena that
are intrinsically 2D, we should use 2D physical analogies where the forces go as
1/r and the potentials as Log (r). Such situations have been investigated, but they
are rather strange, because positive charges become repulsive: 1/r decreases when
r increases, whereas Log (r) increases. However, this does not change much in our
case since we consider pairs of opposite charges, and as shown in Fig. 4.102, the
geometry of the field barely changes qualitatively.

In fact, we may even consider forces of the form 1/rσ , where the exponent σ is
a parameter to be determined experimentally.

4.9.3.3 Second Dipole Model

A certain number of more refined experiments using functional imaging techniques
with better resolution have shown that the standard dipole–dipinwheel orthogonal
model is not corroborated experimentally, in ways that go beyond the criticisms made
by Issa [101]:

1. There are both maxima and minima of the SF in the vicinity of many PCs.
2. The strong transversality condition of Hübener is not satisfied at all.
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In a paper in 2016, Ribot et al. [106] (see also [107]) analyzed in great detail the
fine structure of the functional maps of the SFs in area 17 of the cat. They used
sophisticated high-resolution imaging methods, essential from the methodological
point of view if we are to test the possibility of large variations in the SF in the vicinity
of a PC. They discovered that the SF generally has two extrema, a minimum and a
maximum, in the vicinity of a given PC. This is a functional organization because it
means that all the ORs and all the FSs can be represented at the same time within
the same hypercolumn. However, it must then have a completely different topology
to that of the standard orthogonal circular model.

Figure 4.103 shows the results of the data analysis carried out by Jérôme Ribot.
The orders of magnitude are: (i) 1 mm for the size of a hypercolumn, (ii) 300 µm
for the extent of the neighbourhood of the PC analyzed (so this remains well within
the hypercolumn), (iii) 150 µm for the extent of the little neighbourhood of the PC
where measurement errors remain too great. Three examples are shown. The two
extrema are perfectly clear.

Hence the idea of keeping the pinwheel–dipole model, but dissociating the size
d of the dipole from the distance between two adjacent pinwheels. We thus assume
that the dipole size d is small compared with the size of the pinwheel as hypercolumn
module. In the limit, we would then have an infinitesimal dipole, a situation that is
easy to model.

Indeed, if the dimension d of the dipole is small enough relative to the distances
r where the field is measured, then by expanding up to a few terms in d/r , we may
use the approximations

1

B M
= 1

r

[
1 + d

2r
cos (θ)

]
,

1

AM
= 1

r

[
1 − d

2r
cos (θ)

]
, V (M) = d

r2 cos (θ) .

The equipotentials are then given by the equation r2 = k cos (θ). The components
of the field in polar coordinates are

Fig. 4.103 Level lines of the SFs and their extrema in the neighbourhood of three PCs. They lie
within a single hypercolumn. Black pixels are those where measurements are not accurate enough.
From Ribot et al. [106, Fig. 5]
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Er = −∂V

∂r
= 2d

r3
cos (θ) , Eθ = −1

r

∂V

∂θ
= d

r3
sin (θ) .

The equations of the field lines are therefore

dr

r
= Er

Eθ

dθ = 2
cos (θ) dθ

sin (θ)
,

that is Log (r) = 2Log (sin (θ)) + c, whence r = k sin2 (θ).
For the intrinsically 2D dipole, the formulas change. In the limit, we obtain an

approximation of the potential V = −(d/r) cos (θ), equipotentials with equation
r = 2R cos (θ), and field lines with equation r = 2R sin (θ). The first constitute a
family of circles of radius R centred on the x-axis and with tangent the y-axis at 0,
since

x = r cos (θ) , y = r sin (θ) , r2 = x2 + y2 , (x − R)2 + y2 = R2 ,

whence r2 = 2Rx = 2Rr cos (θ), i.e. r = 2R cos (θ). The second constitute the
orthogonal family of circles centred on the y-axis and with tangent the x-axis at 0
(see Fig. 4.104). Figure 4.105 shows the potential V (M) in the neighbourhood of 0.

Fig. 4.104 Equipotentials of an intrinsically 2D infinitesimal dipole. This is a family of circles
centred on the x-axis and with tangent the y-axis at 0
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Fig. 4.105 Potential V (M) of the infinitesimal dipole in Fig. 4.104. We see how V diverges to
+∞ at 0+ and −∞ at 0−

4.9.3.4 Topological Universality of Dipoles

In their elegant paper [58], already cited in Sect. 4.5, Alberto Romagnoni, Jérôme
Ribot, Daniel Bennequin, and Jonathan Touboul showed that just as the topological
structure of the pinwheel is universal for the ‘exhaustive coding’ and the ‘parsimo-
nious coding’ of periodic quantities, so the topological structure of the dipole is
universal for the ‘exhaustive coding’ and the ‘parsimonious coding’ of non-periodic
quantities.

As for the pinwheels, the idea is to consider the way the cells parametrized by
z = (x, y) in a small disc Ω ⊂ C (with boundary Γ = ∂Ω) of the visual plane
(identified with the plane C = R

2) can encode spatial frequencies ν ∈ F in a
local and, ideally, scale invariant way, where F is the allowed spatial frequency
domain. As we are only interested in topological structure, we can take F = R,
introducing saturation if necessary. Such a coding can thus be described by a map
g : Ω → R which may have singularities, i.e. points where it is not defined because
it is multivalued or divergent.

We use the standard topological properties of R:

• R is not compact, i.e. its points escape to infinity.
• In contrast to S

1, if we remove a point or a finite interval from R, it disconnects
into two connected components.

• Intermediate value theorem (which fails disastrously in S
1): if h : I → [hmin, hmax]

is continuous for an interval I and if ν ∈ ]hmin, hmax[ is an intermediate value,
then there exists x ∈ I with image h (x) = ν.

As for the pinwheels, the authors define a rather general classG of sufficiently smooth
maps g satisfying natural constraints. They assume to begin with that g is continuous
away from its singularities and ‘exhaustive’, i.e. it codes all the SFs. In other words,
it is surjective. This implies that g must have at least one singularity. Indeed, if g
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Fig. 4.106 A connected level line C = Cv0 = g−1 (ν0) of a surjective g cannot be entirely
contained within the boundary Γ of Ω unless g ≥ ν0 or g ≤ ν0 everywhere in Ω . But then g is not
surjective. So C must enter Ω . As usual, (≷) means z ≷ ν0

had no singularities, it would be a continuous map on a compact set Ω and its image
g (Ω) would therefore be compact, hence contained in a closed bounded interval
which could not then be equal to R. Since we work locally and topologically, we
shall assume that g has just one singularity and that it is at 0. We write Ω∗ = Ω−{0}.

The authors then introduce three assumptions to define G :

H1 Smoothness condition: the map g : Ω∗ → R is smooth (infinitely differentiable)
and its level lines Cν = g−1 (ν) are smooth curves (as we saw in Sect. 4.5, this
is a generic property [59]).

H2 Exhaustivity condition: since the model must have scale-invariant properties, g
must be exhaustive (surjective) in any neighbourhood of 0.

H3 Minimal complexity or parsimony condition: topological redundancy must be
minimal on all scales. There are arbitrarily small discs Ω ′ centred on 0 where
the topological redundancy is minimal.

Concerning assumption H3, the authors use a lemma according to which there is
no continuous surjective g : Ω∗ → R with topological redundancy 1. Indeed, let
ν0 ∈ g (Γ ) be a value of g taken on the boundary Γ of Ω and consider the level
line C = Cv0 = g−1 (ν0). To begin with, C cannot be completely included in the
boundary Γ (see Fig. 4.106). Indeed, let z1 	= z2 ∈ Ω̊∗ be two points in the interior
Ω̊∗ of Ω∗ and assume that g (z1) < ν0 and g (z2) > ν0. Let γ : z1 → z2 be a
continuous path joining z1 and z2 in Ω̊∗. Then, γ is an embedding of an interval I
in Ω∗ and h = g ◦ γ : I → R is a continuous map, so according to the intermediate
value theorem, there is a point z of γ where g (z) = ν0 and hence z ∈ C ∩ Ω̊∗. But
this is impossible since this intersection is empty by the assumption about C . Hence,
on Ω̊∗, either g ≤ ν0 everywhere or g ≥ ν0 everywhere and g is not surjective,
contradicting H1.

Thus, C enters the interior Ω̊∗ ofΩ∗. If we assume that the topological redundancy
is 1, then C is connected. If C stops in Ω̊∗, then we can find a topological discΩ ′ ⊂ Ω

around 0 (possibly highly twisted) which is decomposed into two parts by C , i.e.,
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Fig. 4.107 If the connected level line C = Cv0 = g−1 (ν0) of g starts from the boundary Γ of Ω
and enters Ω without reaching 0, then C decomposes a neighbourhood Ω ′ of 0 into two subdomains
and g is not surjective on the new Ω = Ω ′, because g ≤ νM everywhere on Ω∗. As usual, (≷)

means g ≷ ν0

Fig. 4.108 If the connected
level line
C = Cv0 = g−1 (ν0) starting
from the boundary Γ of Ω
reaches the singular point 0,
then either g ≥ ν0 or g ≤ ν0
everywhere on Ω∗ and g is
not surjective

C joins two points on the boundary Γ ′. Replacing Ω by Ω ′, we may thus assume
that C decomposes Ω into two closed domains Ω1 and Ω2 with a common boundary
C (see Fig. 4.107). Assume that 0 /∈ Ω1, whence 0 ∈ Ω2 − C . By the intermediate
value theorem once again, we have g > ν0 everywhere on Ω1 − C and g < ν0

everywhere on Ω∗
2 − C , or the opposite. Assume the first case. Since Ω1 is compact

and g is defined on the whole of Ω1, g reaches a maximum νM ≥ ν0 on Ω1 and
hence g ≤ νM everywhere on Ω∗. Consequently, g cannot be surjective.

So if C is connected, C must reach the singular point 0. But then Ω∗ − C is
connected, and g is continuous on Ω∗ − C and does not take the value ν0. As its
image g (Ω∗ − C) is connected, being the continuous image of a connected set, then
from the topological properties of R, either g ≥ ν0, or g ≤ ν0 everywhere on Ω∗, so
g cannot be surjective (see Fig. 4.108).

In short, level curves Cν with points on the boundary Γ necessarily have at least
two connected components and the topological redundancy of g is ≥ 2. However,
Cν ⊂ Ω̊∗ lying completely in the interior of Ω∗ can be connected.
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Clearly, the standard model of the 2D infinitesimal dipole g0 : �∗ → R defined
on the unit disc �∗ = � − {0} with the origin removed,

z = ρeiθ �−→ ν = cos (θ)

r
,

belongs to G :

(i) g0 is well defined away from 0, 0 being a singularity where it is completely
undefined, since θ is not defined and 1/r diverges.

(ii) Away from 0, g0 is smooth (infinitely differentiable).
(iii) The level sets Cν = g−1

0 (ν), where g0 is constant, are smooth curves.
(iv) g0 is surjective on any neighbourhood of 0 (and even on any small circle sur-

rounding 0).
(v) The topological redundancy of g0 is 2, and it is therefore minimal.

Note that (see Fig. 4.104), insofar as the level lines constitute a bundle of circles (with
the origin 0 removed), small enough circles of radius ≤ 1/2 lie within � and are
connected level lines, whereas circles of radius > 1/2 stop at Γ and are level lines
with two connected components. The authors refer to the configuration of internal
circles as a ‘bouquet’ of circles. They prove the following theorem:

Theorem Topological universality of dipoles. The elements g : Ω∗ → R of G , i.e.,
satisfying hypotheses H1, H2, and H3 on all scales, have the dipole topology.

As for the theorem on the topological universality of pinwheels, the ideas used in
the proof are purely topological. We can give a heuristic insight (incomplete and not
rigorous). Topologically, the connected components C of the level lines Cν of g ∈ G
can be of 4 types: (i′) a closed loop not going through 0 and not going around zero,
(i′′) a closed loop not going through 0 but going around 0, (ii) a path from Γ to Γ ,
(iii) a path connecting Γ to 0, and (iv) a loop going through 0 (see Fig. 4.109).

As g is continuous on the boundary Γ and the boundary is compact, g (Γ ) is a
compact subset K of R and hence bounded. As g has its values in K for paths of

Fig. 4.109 The four types of connected components of level lines for a g ∈ G . i Loops in the
interior of Ω and not going through 0 but either encircling it or not. ii Paths connecting two points
on the boundary Γ . iii Paths connecting a point on the boundary Γ with the singularity 0. iv Loops
in the interior of Ω and passing through 0
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types (ii) and (iii) g, there must necessarily be level lines of types (i) or (iv). Let C
be of type (i′), i.e. C ⊂ Ω̊∗, with 0 outside C . Let � be the closed topological disc
with boundary C and Ω∗′ a small disc centred on 0 and contained in Ω∗ − �. From
the scale invariance hypothesis, we can localize in Ω∗′ and � only adds redundancy.
We can thus eliminate the case (i′), and also case (ii) for the same reason (we can
remove the connected component of Ω − C which does not contain 0).

There remain the cases (i′′), (iii), and (iv). Let C be of type (i′′) and � � 0
the topological disc with C as boundary; since C is a level curve, according to the
smoothness assumptions, no level line in the interior of �∗ can meet C . There can
thus only be C ′ of types (i′′) and (iv) in �∗. However, there cannot only be C ′ of
type (i′′) because they would be ‘concentric’, i.e. nested, and localizing even more
closely around 0, g would no longer be surjective, thus violating H2. So there is at
least one C ′ of type (iv) in the interior of �∗.

Let C be a level curve Cν of type (iv) on which g = ν. Then, C is the boundary
of a disc � and 0 ∈ C = ∂�. Since 0 is a singularity of g, the latter can diverge
as we approach 0 in �∗, but it can diverge only to either +∞ or −∞ and not both.
There will thus be curves C+ and C− bounding regions �+ and �−. Consider the
case where g diverges to +∞ and let �̊+

m be the interior of the �+ of the largest
component of type (iv) diverging to +∞. We obtain a lobe of concentric regions
�+ on which g tends to ν when the �+ expands to �+

m and tends to +∞ when �+
contracts to 0. If ν+

m is the value of g on the boundary C+
m of �+

m, g takes the values[
ν+

m ,+∞]
on �+

m.
The complement Ω − �̊+

m is topologically a closed ring on which g must be able
to diverge to −∞ (because this divergence is not realized in �̊+

m by construction).
This requires curves C of type (iv) in the interior of Ω − �̊+

m and bounding regions
�−. We thus have, as for the standard dipole (see Fig. 4.104), a lobe of concentric
regions �+ up to �+

m and a lobe of concentric regions �− expanding out to �−
m. If

ν−
m is the value of g on the boundary C−

m of �−
m, then g takes the values

[−∞, ν−
m

]

on �−
m.

From the minimal complexity hypothesis, i.e. that the topological redundancy is
equal to 2, there cannot be more than two lobes of this kind. Indeed, consider a level
line of type (iv). If we have restricted it to a small enough disc Ω ′ around 0, we
obtain two connected components (see Fig. 4.110i). The values of g on two lobes
cannot be the same because, for small enough Ω ′, that would give four connected
components, thereby violating hypothesis H3 (see Fig. 4.110ii). Suppose then that
there are three lobes. Then, g will take different values on each of them. Suppose
that ν1 < ν3 < ν2 with g (a) = ν1 for a point a of the lobe L1, g (b) = ν2 for a
point b of the lobe L2, and g (c) = ν3 for a point c of the lobe L3. Let γ : a → b be
a path passing outside the lobe L3 (see Fig. 4.110iii). According to the intermediate
value theorem, there is a point d on γ , where g takes the value ν3. But then there is a
connected component of Cν3 outside L3 and reaching 0. Since the part of Cν3 inside
L3 itself has two connected components if Ω is small enough, Cν3 has a topological
redundancy ≥3, thereby violating the hypothesis H3.
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Fig. 4.110 Diagrams illustrating the proof of the topological universality of the dipole

Fig. 4.111 Illustration of the
last part of the proof of the
topological universality of
the dipole

We thus end up with a ‘bouquet’ comprising a lobe �+
m of concentric regions �+

on which g takes the values
[
ν+

m ,+∞]
and a lobe �−

m of concentric regions �− on
which g takes the values

[−∞, ν−
m

]
. On the respective boundaries C+ and C− of �+

m
and �−

m, g takes the values ν+
m and ν−

m , respectively. It remains to consider the values
in the interval

(
ν−

m , ν+
m

)
. The complement of the union �+

m ∪ �−
m of the two lobes in

Ω comprises two disjoint open sets U1 and U2. Let γ1 be a path from C+ to C− in
U1 and γ2 a path from C+ to C− in U2. Using the intermediate value theorem once
again, if ν ∈ (

ν−
m , ν+

m

)
, g takes the value ν on both γ1 and γ2. The level line Cν then

comprises two connected components of type (iii) joining Γ to 0 (see Fig. 4.111).

4.9.3.5 Pinwheel–Dipole Model

Daniel Bennequin and coworkers thus arrive at a model of the orientation–spatial
frequency module of the form ( f, g) with f (z) = θ/2 and g (z) = cos (θ)/rα , with
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z = reiθ in the unit disc with the centre removed �∗ and α an exponent used to fit
the model to the data. Here, 0 is a singularity of both f and g:

[This model] is the unique scale-invariant topology achieving minimal representation of a
pair (θ, ν) for the circular variable θ and the variable ν taking values in an open interval.
[58, p. 9]

In this model, the orthogonality of the level lines of f and g is no longer satisfied at
all. Indeed, let z0 = r0eiθ0 be a point of �∗. The level line F0 of f corresponding to
f (z0) = θ0/2 = const. is the ray through z0. The level line G0 of g corresponding
to g (z0) = cos (θ0)/rα

0 = const. has equation cos (θ)/rα = cos (θ0)/rα
0 = C , i.e.

cos (θ)− Crα = 0. Considering the symmetries of the configuration, we can restrict
to θ ∈ [0, π/2].

Suppose to begin with that α = 1. Then, G0 has equation r = 2R cos (θ), with
2R = r0/cos (θ0) so the tangent at z satisfies dr + 2R sin (θ) dθ = 0. Using

x = r cos (θ) = 2R cos2 (θ) , y = r sin (θ) = 2R cos (θ) sin (θ) ,

we obtain
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx

dθ
= −4R cos (θ) sin (θ) = −2R sin (2θ) ,

dy

dθ
= 2R

[
cos2 (θ) − sin2 (θ)

] = 2R cos (2θ) ,

dy

dx
= − 1

tan (2θ)
= tan

(π

2
+ 2θ

)
.

Hence, the tangents to F0 and G0 at z0 make angles θ0 and ϕ0 = 2θ0 + π/2, so the
angle between them is ψ0 = ϕ0 − θ0 = θ0 + π/2. In particular, they are orthogonal
for θ0 = 0, i.e. at the point (2R, 0), and become tangents when θ0 tends to π/2.
The normalized distribution P (ψ) of the angles ψ is thus uniform and equal to
P (ψ) = 2/π , so that

∫ π

π/2 P (ψ) dψ = 1.
Forα 	= 1, an exact calculation is still possible, but more complicated. We write G0

in the form cos (θ) = Crα , with C = cos (θ0)/rα
0 . So along C , we have sin (θ) dθ +

Cαrα−1dr = 0, i.e.,

r
dθ

dr
= −C

αrα

sin (θ)
.

The tangent is thus

dy

dx
= sin (θ) dr + r cos (θ) dθ

cos (θ) dr − r sin (θ) dθ
=

sin (θ) − C
αrα cos (θ)

sin (θ)

cos (θ) + Cαrα

= sin2 (θ) − Cαrα cos (θ)

sin (θ) cos (θ) + Cαrα sin (θ)
.
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With θ = θ0 and C = cos (θ0)/rα
0 , we thus obtain

tan (ϕ0) = tan (ψ0 + θ0) = tan (ψ0) + tan (θ0)

1 − tan (ψ0) tan (θ0)
= dy

dx

=
sin2 (θ0) − cos (θ0)

rα
0

αrα
0 cos (θ0)

sin (θ0) cos (θ0) + cos (θ0)

rα
0

αrα
0 sin (θ0)

= tan2 (θ0) − α

(1 + α) tan (θ0)
.

We conclude that tan (ψ0) = −α/tan (θ0), so the angular distribution is

dθ = α

1 + (
α2 − 1

)
cos2 (ψ)

dψ = P1 (ψ) dψ .

Normalizing P1 (ψ) to P (ψ) so that
∫ π

π/2 P (ψ) dψ = 1, and since ψ varies from

π/2 to π when θ varies from 0 to π/2 and
∫ π/2

0 dθ = π/2, we obtain the distribution

P (ψ) = 2α

π
[
1 + (

α2 − 1
)

cos2 (ψ)
] .

Figure 4.112 shows several distributions P (ψ) for different values of the exponent
α.

The high-resolution experimental data for the cat reported in [58] and [106] show
that there is a certain advantage for parallelism over orthogonality due to saturation
blocking the dipole divergence at the PC. This can be modelled by taking an exponent
α < 1. The data in Fig. 4.113 from [58] fit particularly well with the value α = 0.73.
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Fig. 4.112 Examples of the angular distribution P (ψ) for different values of α. The angle ψ varies
from 0 to π/2 ∼ 1.57. Black α = 1 and P (ψ) = 2/π ∼ 0.64. Green α = 0.7. Red α = 0.5. Blue
α = 1.5
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Fig. 4.113 Observed
distribution of the angles
between the level lines of the
ORs and the SFs. From [58]

4.9.3.6 Orientation–Spatial Frequency Dependence

In the classic orthogonal circular model centred on a PC where the SF diverges,
for example, to −∞ and grows to, let’s say, ν0, there is for each value of ν ∈
(−∞, ν0) a full circle of orientations ω = θ/2. Thus, Ω∗ has a direct product
structure S

1
π × (−∞, ν0] which is a subset of the direct product S

1
π × R. Combined

with orthogonality, i.e. maximal transversality, this shows that, in this coding of the
(ω, ν), the variables ω and ν are independent. We shall return to the connection
between transversality and independence in Sect. 4.10.2. However, note that, in the
pinwheel–dipole model, ω and ν are not coded independently.

Indeed, in Ω∗, r varies from 0 to 1 and hence, for θ fixed, ν = cos (θ)/r varies
between ±∞ and cos (θ), ± being the sign of cos (θ). Figure 4.114 shows the set
of pairs (ω, ν) represented. They are distributed throughout the full direct product
S

1
π × R, but without covering it and without having a direct product structure. This

agrees with results like those of Tani et al. [108], showing that the ORs and SFs
develop interdependently, at least in cats.

We thus see that the two coding strategies of the dipole–dipinwheel and pinwheel–
dipole models are very different.

4.9.4 Generality of Pinwheels

Since it is so functional, the pinwheel structure is extremely general. It is not only
found in V 1, but also in the other areas of the primary visual cortex. As shown, e.g.,
by Xiangmin Xu et al. [109] for the New World owl monkey (douroucoulis), as we
go from V 1 to V 2 and then V 3, the pinwheel structure remains, but the mesh of the
singularity lattice increases with the size of the receptive fields.

Furthermore, the structure of V 1 depends on the species. However, the existence
of pinwheels is a robust interspecies phenomenon. Here, we give just one example in
Fig. 4.115, produced by Liu and Pettigrew [110], which compares orientation maps
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Fig. 4.114 Image of a regular lattice of (θ, r) ∈ [0, 2π ] × [0, 1] in the cylinder S
1
π × R of the

(ω = θ/2, ν = cos (θ)/r) (represented by the band [0, π ] ×R). The divergence of ν is bounded by
±7. The image of [0, 2π ] × [0, 1] is clearly visible in S

1
π × R

of the V 1 and V 2 areas in the cat and the marmoset monkey with the equivalent
in the tawny owl. We also observe a pinwheel structure in the tawny owl with an
interpatch distance of about 0.9 mm.

4.10 Retinotopic Maps and Their Transversality

With ever more sophisticated experimental techniques, specialists have been able
to build up several retinotopic maps corresponding to different geometric features
and in several different species. We have already discussed orientation, direction,
phase, and spatial frequency. Now, we shall go on to consider ocular dominance,
colour, temporal frequency, and motion. With so many different issues, we may ask
the following questions:

1. Are the geometric features studied with the kind of stimuli generally used, viz.
gratings, etc., sufficient to describe the cortical activity induced by complex and
natural visual stimuli?

2. What are the relations between the maps? Are the features independent of one
another, or not?
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Fig. 4.115 Pinwheels in the V 1 and V 2 areas of the cat, (a) and (b), respectively, and the marmoset
(c) and (d), and equivalent areas in the visual cortex of the tawny owl (e) and (f). From Liu and
Pettigrew [110]
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3. What is the mechanism of the dimensional reduction which implements abstract
(2 + N )-dimensional fibre bundles in the 2D cortical layers (where N is the
number of features)?

Regarding the first question, it seems that the feature detections are adequate if we
take into account, for each feature, the preferred values, intensities, and variances,
i.e. the complete tuning curves, and any possible dependences between the features
(see, e.g. Issa et al. [104]).

Regarding the second question, we have seen several examples, and we shall
discuss several more.

For the third question, it should be emphasized that the maps and their relations
are the solutions to a problem with two opposing constraints. One concerns the
uniformity of coverage of the features in the 2D cortical layer. For example, in the
standard circular model of the SFs, when a pinwheel lies at the centre of a domain of
high spatial frequency, all orientations are automatically combined locally with this
SF (see Sect. 4.9.3.6). The other is a continuity constraint: the features are continuous
functions of the retinotopic position, although with the possibility of singularities.

4.10.1 Pinwheels and Ocular Dominance

4.10.1.1 Some Experimental Data

We have seen the relations between the pinwheels and the spatial frequencies. There
are also quite remarkable relations between the pinwheel structure of V 1 and its
organization into ocular dominance domains (ODDs), i.e. dominance of the left or
right eye, or more precisely, ipsilateral or controlateral dominance relative to the
given hemisphere. The ocular dominance bands measure about 1 mm in the monkey
and the cat and about 2 mm in humans. As shown by Hübener et al. [100], the
iso-orientation lines are essentially transverse, and even almost orthogonal, to the
boundaries of the ODDs (see Figs. 4.116 and 4.117):

Many iso-orientation lines cross the borders between ocular dominance domains close to
right angles, and the pinwheel centers are preferentially located in the middle of these ocular
dominance domains. [100]

Xiangmin Xu et al. [45] found the same relationship in the bush baby or galago, a
small nocturnal African primate, already encountered in Sect. 4.4.1. The histogram
of the angles of intersection between the iso-orientation lines and the boundaries
of the ODDs shows that transversality is statistically well represented: the angles
between 3π/8 and π/2 represent more than 50%. Moreover, as clearly shown by
Crair et al. [36], ocular dominance peaks are situated very close to pinwheel centres
in the middle of the ODDs (see Fig. 4.118).

One can also compare the ocular dominance domains with the spatial frequency
domains (see, e.g., Hübener et al. [100]).
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Fig. 4.116 Relations between pinwheels and ocular dominance domains. Several iso-orientation
lines cross the boundaries of the ODDs almost at right angles. From Hübener et al. [100]

Fig. 4.117 Relations between pinwheels and ocular dominance domains in the macaque. From
Obermayer, Blasdel [111]
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Fig. 4.118 Pinwheel centres
(green stars) and ocular
dominance peaks (red stars)
are neighbours and located
on ODD ridges. From Crair
et al. [36]

4.10.1.2 Fields and Equipotentials

As for the pinwheels, the geometrical configuration of the OD peaks and the ODDs
can be made intuitive using a physical field deriving from a potential V (see
Sect. 4.4.3), the peaks corresponding to the extrema of V . Then, the ODD boundaries
can be identified with the level lines of the potential segregating the influence zones
of the maxima and the minima. If the peaks of OD would be close to the pinwheels
(but it is only partially the case), then the two OR and OD fields would be close and,
as in a field equipotentials are orthogonal to field lines, this could explain the strong
transversality between the iso-orientation lines of the OR field and the boundaries of
the ODDs.

4.10.1.3 An Elastic Net Model

It is easy enough to simulate these field structures with orientation columns and
ODDs using computational models. For example, Carreiro-Perpiñán and Goodhill
[112] used elastic net models which minimize the total length of wiring while satis-
fying a compromise between the uniformity U and the continuity C of the cortical
representation of the various features of the stimuli.24 To do this, they minimize an
energy E = U + βC/2. We work in the space of features

{
position a = (x, y), ocular dominance, orientation (angle and selectivity)

in polar coordinates
}
,

corresponding to a lattice of N = Nx × Ny × NOD × NOR × 1 stimuli in the space

T = [0, 1] × [0, 1] × [−�, �] × [−π/2, π/2] × [0, ρ] .

Let ym be the centre of the receptive field of neuron m, m = 1, . . . , M , in the space
T and xn the vector of stimulus n, n = 1, . . . , N . The uniformity U is defined by

24We have already encountered this problem of minimizing the wiring in Sect. 4.4.5.1.
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Fig. 4.119 Field obtained by minimizing the energy E (see text) for p = 1 and β = 10. From
[112]

U (y1, . . . yM , K ) = −K
n=N∑

n=1

log

[
m=M∑

m=1

exp

(

−1

2

∥∥∥
∥

xn − ym

K

∥∥∥
∥

2
)]

,

where K fixes the size of the receptive fields. The continuity C is defined by

C (y1, . . . yM) =
m=M∑

m=1

‖ f (ym)‖2 ,

where f is a linear combination of the neurons neighbouring neuron m which approx-
imates an order p differential operator. Figure 4.119, already shown in Sect. 4.4.3 (see
Fig. 4.40), illustrates the result of minimizing for p = 1 and β = 10. Figure 4.120
gives the result for p = 3. We see that p = 1 looks like the empirical maps.

4.10.1.4 A LISSOM Model

Other models of joint self-organization of maps of orientation, direction of motion,
and ocular dominance can be found in the work of Bednar and Miikkulainen [113,
114]. They are based on the laterally interconnected synergetically self-organizing
map (LISSOM) model. Their 2005 book entitled Computational Maps in the Visual
Cortex [80], written with Yoonsuck Choe and Joseph Sirosh is particularly interest-
ing:

[It] presents a unified computational approach to understanding the structure, development
and function of the visual cortex.
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Fig. 4.120 Field obtained by minimizing the energy E (see text) for p = 3 and β = 10. From
[112]

For example, Fig. 4.121 shows the result of joint learning of orientation (OR,
colours), ocular dominance (OD, boundaries), and direction of motion (DR, arrows)
in a LISSOM model on the basis of a flux of simple stimuli. Note that the DRs are
reasonably orthogonal to the ORs and that in each orientation patch there are two
sub-patches with opposite directions (orthogonal to the preferred orientation of the
patch). This synthesis provides a good model for the cat. We shall return to direction
maps in Sect. 5.11 of Chap. 5.

4.10.2 Independent Maps and Transversality Principle

We see that, after the spatial frequency, the ocular dominance is another parameter
that is implemented in the 2D neural layers. With the orientation, an abstract 3D
structure collapsed to two dimensions. Now, we have an abstract 5D structure. Such
a drastic reduction in dimension obviously raises questions about how the indepen-
dence of the parameters can be represented in two dimensions. It seems that the
solution discovered by evolution was to maximize a transversality condition: the
boundaries of the frequency domains and those of the ODDs are strongly transverse
to the lines of the iso-orientation field. Clearly, if there is more than one extra para-
meter, the transversality cannot be strong everywhere, but there can nevertheless be
optimization of two opposing constraints on transversality.

Nicholas Swindale explicitly addressed the question of how to understand the
optimization of the interactions between different maps in his paper [115] entitled
How many maps are there in visual cortex? (see also [116]). To simplify, Swindale
started with N binary variables (e.g. binarizing continuous variables like the orien-

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.121 Orientation maps (colours), ocular dominance (boundaries), and direction of motion
(arrows) in a LISSOM model. The DRs are strongly transverse to the ORs. In each orientation
patch there are two sub-patches with opposite directions (orthogonal to the preferred orientation of
the patch: for example, vertical arrows in the red regions correspond to the horizontal orientation,
etc.). From [80, Fig. 5.29]

tation, ocular dominance, or spatial frequency), regions where a variable is constant
corresponding to the different values of the features of the given stimuli. He then
asked about the maximal N ensuring good coding efficiency, the effect of introduc-
ing a new map on the other maps, and the information provided by a map about the
presence of other maps. To answer these questions, he used the well-known algo-
rithm called self-organizing feature maps due to Kohonen, which is analogous to the
algorithms used in the previous section.

For this, we take a retinal grid (i, j), i, j = 0, 1, . . . , M (M = 150) and associate
with the neuron (i, j) the vector wi j = (x, y, t1, . . . , tN ) defined as the set of central
values of its receptive field and the features tk it detects. This is therefore a discrete
and generalized version of what we introduced at the outset when we said that a
simple V 1 neuron codes a contact element (a = (x, y) , p). In other words, we work
in the fibre bundle πN : V = R × T → R, where T is a fibre of dimension N . For
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Fig. 4.122 Swindale’s model for 6 maps. From Swindale [115]

their part, the stimuli are also coded by vectors v of V , vs = (xs, ys, u1, . . . , uN )

and we take enough of them (2.5 × 106) to ensure that the learning is significant.
We select random sequences of them and, at each step v, the wi j are incremented by
Δwi j applying the following standard rule: if (i0, j0) is the neuron in the network
which is closest to the v, then Δwi j = εh (r)

(
v − wi j

)
, where ε is the learning rate

(ε = 0.01), r is the distance between (i0, j0) and (i, j), and h (r) = exp
(−r2/2σc

)

is the learning Gaussian (σc = 2.5). To minimize, we then carry out simulated
annealing, the algorithm already discussed in Sect. 4.4.5.1 when minimizing the
total length of wiring in V 1. For example, Fig. 4.122 shows a piece for N = 6. There
are 2N = 64 feature values, each coded by a colour.

As the variables are binary, each map comprises blobs and stripes whose inter-
sections encode the structural relations between the maps. The morphology of the
individual maps does not change much qualitatively when other maps are added, but
their structural relations change much more. Figure 4.123 shows the boundaries for
N = 6. We observe strong transversality relations.

Hongbo Yu et al. [46] also examined the relations between the three maps, viz.
orientation, ocular dominance, and spatial frequency, but using continuous variables
and focusing on the way strong transversality codes the independence of the asso-
ciated variables. They considered the gradients of the variables and showed first
that the gradients are maximal in disjoint regions and then that the transversality is
maximal when the two gradients are jointly high enough:

Two features are mapped orthogonally in their high-gradient overlap regions. [46, p. 277]

Figure 4.124 shows the orientation field lines (the level lines of the ‘orientation’
variable) and the OD level lines. The pinwheel centres and the ODD boundaries
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Fig. 4.123 Boundaries of the domains of the N = 6 binary variables in Fig. 4.122. From Swindale
[115]

avoid one another since the pinwheel centres are located on the ridges of the ODDs.
The grey zones are those where the two gradients are jointly highest. We observe
that transversality is indeed very strong; in fact, we almost have orthogonality.

One interesting result obtained by Swindale in [115] concerns the retinotopic
map. Figure 4.125 shows the projection of the cortical network on the retinal space
for the case N = 7. Note that there are many folds and pleats. Two remarks are in
order:

1. Firstly, there should be no surprise in finding folds and pleats. Indeed, according
to the well-known theorem due to Hassler Whitney and generalized by René
Thom, the only singularities possible in a generic differentiable map between 2D
manifolds are fold lines and isolated pleat points.

2. Secondly, these singularities are not those of the conformal retinotopic map (a
complex logarithm, see Sect. 4.2) between the retinal positions and the cortical
positions. They are induced by what happens in the fibres of the bundle πN : V =
R × T → R and show that the values of the features wi j = (x, y, t1, . . . , tN )

do not generate a single-valued section of πN , but rather a multivalued section
whose image is a surface in V that is not everywhere transverse to the fibres.25

25For an adequate treatment of this point, one must introduce the rather technical geometric notion
of a Lagrangian sub-manifold. We shall say a little more about this in the second volume. Here we
only make elementary remarks about the geometry.
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Fig. 4.124 Iso-orientation
lines and ODD level lines.
Grey regions are those where
the two gradients are at their
highest. We observe that
transversality is very strong
there. From Yu et al. [46]

4.10.3 Binocularity

4.10.3.1 Ocular Dominance and Binocular Disparity

The ocular dominance maps and ODDs of the controlateral and ipsilateral monocular
cells must be studied in relation to binocular disparity (BD) of the binocular cells.
Among others, Prakash Kara and Jamie Boyd have studied the functional architecture
of the BD and its relationship with OD in a piece of the V 2 area (18) of the cat [117].
Using two-photon confocal microscopy, method already discussed in Sect. 4.7.3 in
the context of Ohki’s work on pinwheels and which can be used to measure the
activity of several hundred individual neurons in layer 2/3 (a region of about 300µm),
Kara and Boyd were able to show that there is a BD selectivity map and that OD
and BD are mutually independent at the level of individual neurons. Once again,
this independence is manifested through strong transversality properties: in regions
where the gradients of the two variables are both high, they are orthogonal.

The stimuli used are gratings with the preferred direction of motion and orientation
of the cell being measured. Either one of the eyes is stimulated by such a grating
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Fig. 4.125 Projection of the cortical network on the retinal space in the Swindale N = 7 model.
From Swindale [115]

and the other by a uniformly grey stimulus, or both eyes are stimulated by such
gratings, with the same orientation and direction, but out of phase (8 values of the
phase difference are used). Figure 4.126 shows the responses of several cells to the
right eye (R) and the left eye (L) and to the phase of the BD. Figure 4.127 shows
maps of the BD and the OD, confirming that, in regions where both gradients are
high, the level lines are close to orthogonal.

4.10.3.2 Bistability and Binocular Rivalry

Since we have been discussing binocularity, let us say a word about the phenom-
ena of binocular rivalry and bistable images, important subjects when studying the
relationship between high and low levels of visual cognition.

Ambiguous bistable images like the Necker cube, which can be perceived in two
different ways, are well known. When we stare at the image for long enough, we
observe regular switches between the conflicting interpretations. It is thus natural to
assume that there are two competing populations of neurons implementing the two
interpretations, the dominant population selecting the perceived interpretation at a
given time and inhibiting the other. When the inhibition falls sufficiently or the cues
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Fig. 4.126 Responses of 5 cells to monocular stimuli and the phase of the binocular disparity. For
example, cell 1 responds to L and R and to phase differences of 0, π , 5π/4, 3π/2, and 7π/4, but
not to phase differences of π/4, π/2, and 3π/4. c gives the BD, d the OD, and e the histogram of
the OD. From Kara and Boyd [117]

Fig. 4.127 Maps of the BD and the OD. In regions where both gradients are high, level lines are
close to orthogonal. From Kara and Boyd [117]

favouring the other interpretation evolve sufficiently, a switch can occur. Here, we
should ask at what level in the elaboration of percepts an interpretation is selected.
Is it a basically low-level mechanism or rather some high-level cognitive mechanism
involving knowledge? In actual fact, it almost certainly involves both because any
interpretation involves inference.
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Spontaneous bifurcation phenomena are well known in every field. We shall meet
some fine examples in the second volume. They can be modelled using the following
guiding idea introduced by René Thom in [118] and [119], an idea already discussed
in Sect. 1.3 of the Preface. Let S be a system satisfying the following hypotheses:

1. Inside S, there is an internal process X which specifies the internal states that S
can occupy.

2. The internal process X specifies all the internal states of S.
3. There is a selection criterion I which selects the current state among the various

possible internal states on the basis of certain criteria specific to the system, and
which may vary significantly.

4. Finally, the system S is controlled, with good regularity properties, by a certain
number of control parameters. These vary in a space W called the external space
(or control space, or substrate space) of S, to distinguish it from the internal space
of S. The internal process X is thus a process Xw depending on w.

If X is the space of possible internal processes, the system S will then be described
by the field σ : W → X associating the corresponding internal process Xw with
w ∈ W , and also by the selection criterion I . As w varies, the actual state will vary
and, for certain critical values of w, it may bifurcate towards another internal state.

The best known model of this kind is known as the cusp model. The states of
the system are represented by the minima of a potential function fw : R → R

parametrized by a parameter w varying in a 2D external space W , and the internal
dynamics Xw are the gradient dynamics of the fw. Depending on the value of w,
fw has either one minimum or two minima A and B separated by a threshold, and
when there are two minima, these are in competition. Hence, there are two kinds
of possible bifurcation corresponding to the exceptional values of w varying along
three lines of W : along two of these lines, A or B disappear, and along the third, A
and B compete and balance each other (see Fig. 4.128).

We shall return to this model in Sects. 5.9.2 and 5.11.3 of Chap. 5. It was used
to model bistable images in the 1970s by Christopher Zeeman, the minima of fw

corresponding to attractors of the relevant neural dynamics.
Binocular rivalry does not concern the conflict between two possible interpre-

tations of a given stimulus, but something deeper and more enigmatic, namely the
conflict between two different stimuli. We consider two stimuli A and B, e.g. a chess-
board and a face, and we present one to each eye using appropriate apparatus. The
two stimuli are thus both present in V 1. However, the subject does not perceive a
superposition A + B, but in each case only one image, the two images alternating
regularly. In other words, there are successive intervals of time in which the subject
perceives only A or B (exclusivity and uniqueness), and between these intervals,
short transition periods during which the stimulus that is actually present, say A, is
destabilized and bifurcates towards the other stimulus B. Temporal series of such
spontaneous shifts have been studied in detail.

There are roughly speaking two classes of theory to explain the phenomena of
binocular rivalry: on the one hand, low-level theories which say that the suppression

http://dx.doi.org/10.1007/978-3-319-65591-8_1
http://dx.doi.org/10.1007/978-3-319-65591-8_5
http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.128 Universal unfolding fw of the cusp singularity. The parameter w varies in a 2D external
space W and the internal dynamics is the gradient descent −grad ( fw). Depending on the value of
w, fw has either one minimum or two competing minima separated by a threshold. There are two
kinds of catastrophe along three strata in W : either one of the minima bifurcates by collision with
the maximum, or the two minima compete and balance each other. This figure will be taken up
again in Fig. 5.39 and explained further in Sect. 5.11.3 of Chap. 5

of one of the competing stimuli already begins in the V 1 area, or even before V 1, and
on the other hand, high-level theories which say that the suppression is made through
cognitive inferences. According to the low-level hypothesis known as interocular
competition, rivalry arises because the two images cannot be merged by binocular
stereopsis and this mismatch blocks one or other of the monocular pathways. But the
two kinds of theory are probably both partly correct. Indeed, fMRI studies show that
high-level non-visual areas (frontal and parietal) are active during bifurcations. This

http://dx.doi.org/10.1007/978-3-319-65591-8_5
http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.129 Cusp model for binocular rivalry. The two percepts are symbolized by + and × and the
depths of their respective potential wells are alternately modulated by the image contrast. Noise pro-
vides the means to overcome the threshold (the maximum). Stochastic resonance is manifested by the
fact that the distribution of the dominance periods has resonance peaks for the values (2k + 1) H P ,
where H P is the half period of contrast modulation. a Peak for H P . b Peak for 3H P . From Kim
et al. [121]

is therefore a complex phenomenon. For a good summary, the reader is referred to
the paper [120] by Randolph Blake and Hugh Wilson.

The cusp dynamical model turns up in certain studies of binocular rivalry. For
example, Yee-Joon Kim et al. [121] use it to apply the methods of stochastic reso-
nance. In Fig. 4.129, the two percepts are symbolized by + and × and the depths of
their respective potential wells are alternately modulated by the image contrast. Noise
is introduced to overcome the threshold represented by the maximum separating the
two minima. Stochastic resonance is manifested by the fact that the distribution of
the dominance periods, i.e. the time series of the shifts, has resonance peaks for the
values (2k + 1) H P , where H P is the half period of contrast modulation.
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Fig. 4.130 Initial fast field
(h1, h2) with two nullclines
∂h1/∂t = 0 (red) and
∂h2/∂t = 0 (blue)
intersecting at three fixed
points (two attractive nodes
and one partially repulsive
saddle point). Recomputed
from de Jong [122]

In his 2008 master’s thesis entitled The Dynamics of Visual Rivalry [122], Ties
Marijn de Jong investigated a simple but explicit model of bifurcation with slow/fast
dynamics. The competing stimuli were orthogonal gratings. By averaging the dynam-
ics of single neurons, we obtain, for the two populations i = 1, 2:

• The local activity fields hi of the percepts (average membrane potentials), these
being the fast variables.

• Slow adaptation variables ai expressing the fact that the activity of the dominant
percept gradually weakens.

Introducing a scale change parameter τ � 1 between slow and fast times and
averaging the standard neural equations, the author produced the following model:

⎧
⎪⎪⎨

⎪⎪⎩

τ
∂hi

∂t
= Xi − (1 + ai ) hi − γ σ

(
h j

)
,

∂ai

∂t
= −ai + ασ (hi ) ,

where α and γ are constants arising from the underlying neural interactions, the Xi

are the initial forces of the two stimuli as inputs, and where σ (h) is a sigmoid curve,
i.e. a C∞ approximation to the Heaviside step function, equal to zero for h < 0 and
unity for h ≥ 0. As the mean firing rate is σ (h), hi < 0 implies that the stimulus i
is suppressed by the perceptual system.

If we begin with a symmetric rivalry, that is two stimuli of the same strength
and equal adaptation coefficients, and examine the field (h1, h2), a classic bifurca-
tion scenario comes to light (see Fig. 4.130). The slow manifolds are the nullclines
∂hi/∂t = 0 with a fixed. At the beginning, they intersect at three points which are
equilibrium points since the field vanishes there. Two of these points are attractive
(nodes), on either side of a third which is partially repulsive (a saddle point). For each
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attractor, one of the hi is strictly positive while the other
(
h j

)
is strictly negative,

implying that only the stimulus i is perceived. If we begin in a state with no activity,
close to 0, and if we activate the system with the stimuli, the fast dynamics projects
the system onto one of the attractors. From this point, the slow dynamics modifies the
field and adaptation breaks the initial symmetry a1 = a2. It displaces the nullclines,
thereby leading to a bifurcation by the merging of the initial attractor and the saddle
point. The system then jumps into the other attractor. We shall return to this kind of
fast/slow dynamics and bifurcations in the second volume.

The most profound causes of perceptual bistabilities are still debated. For example,
in [123], David Leopold and Nikos Logothetis criticize the favoured hypothesis
according to which the bifurcations (spontaneous reversals) result from antagonistic
connections. In their view:

[Alternations] reflect responses to active, programmed events initiated by brain areas that
integrate sensory and non-sensory information to coordinate a diversity of behaviours. [123,
p. 254]

4.10.4 Blobs and Colour

We should also say a word about ‘blobs’ of cytochrome oxidase (CO) in V 1 and V 2
which are sensitive to colour and already process it in V 1. By imaging, we obtain
colour-selective response maps in those regions which, in V 1, are centred on the
ODDs, but which are in fact barely selective to orientation and which do not overlap
with the central regions of the pinwheels. In V 2, the colour regions coincide with
the thin stripes and the orientation regions with the pale and thick stripes. There is
therefore a kind of functional segregation of colour and orientation corresponding in
part (this point is debated) to the distinction between blobs and interblob regions.

The structure of the blob map has been studied by many specialists, such as
Haidong Lu and Anna Roe [124], using optical imaging methods on the macaque. In
primates, the blobs in V 1 are found mainly in layers 2 and 3, but also in layers 1, 4B,
5, and 6. They measure in the range 150–250 µm, and there are about 5/mm2. They
tend to be centred on the ODD axes with an average period of about 350 µm (see
Polimeni et al. [87]). Figure 4.131 shows their distribution. It is valid for a monkey
like the macaque, but in a prosimian primate like the bush baby, the constraints on
the positions of the pinwheels and the blobs within the ODDs are less stringent (see
Xiangmin Xu et al. [45]). Finally, Fig. 4.132 shows a diagram of V 1 with pinwheels,
ODDs, and blobs.

We shall return to the band structure of V 2 in Sect. 5.8 of Chap. 5.

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.131 Distribution of blobs of cytochrome oxidase in the ODDs of a macaque. Red: left eye.
Green: right eye. They are centred preferentially on the ODD axes. Arrows indicate blobs furthest
from the centres. Scale bar: 1 mm. From Lu and Roe [124]

Fig. 4.132 Diagram of V 1
with pinwheels, ODDs, and
blobs. From [24]
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4.10.5 Functionality of Maps

Here, we see just how rich the structure of V 1 is. All the various ‘secondary’ variables,
engrafted in the sense of Hubel onto the primary spatial variables, are processed by
micromodules measuring 400µm × 800µm and containing some 60 000 neurons.
With their functional architectures, they constitute very precise maps that are just
as precisely correlated with one another. This is how, according to Yu et al. [46],
dimensional reduction can:

[…] smoothly map several (more than two) response properties onto a two-dimensional
cortical surface.

It is also how it can solve the fundamental functional problem of ensuring the uni-
formity and continuity of features with respect to their positions by the design of the
neural hardware. To minimize the complexity of this structure and make a ‘simplex’
structure in the sense of Alain Berthoz (who generalized what we shall say about
1-jets in Sect. 5.4.6 of Chap. 5), evolution grouped together functionally related neu-
rons locally through the spatial extent of the cortical layers.

4.11 Hemispheres and Callosal Connections

Here, we shall say something about the way the two halves of V 1 in the two hemi-
spheres are connected up. This provides a remarkable example of a geometrical
gluing process. It is the callosal connections of the corpus callosum that do this.
The corpus callosum is the biggest bundle of nerve fibres in mammals. In humans,
it comprises some 200 million axons.26 The region of the visual field located close
to the vertical meridian, called the transition zone (TZ) or visual midline (VM), is
projected onto the two parts of V 1 in the vicinity of the V 1–V 2 boundary.

The structure of the gluing map is fascinating. Figure 4.133 shows this map for
the cat (areas 17/18). The sub-zones A, B, C, D, E of a hemisphere are connected
to the zones with the same label in the other hemisphere: zones within the TZ are
connected to zones outside it and conversely.

If we cut through the fibres in the optical chiasm coming from the nasal hemi-
retina, while keeping those from the temporal hemiretina (split-chiasm preparation),
the right visual hemifield projects onto the left V 1 area via the left eye and the
activity of the right V 1 area becomes entirely due to the callosal connections (see
Fig. 4.134). Depending on which eye is stimulated, we can thus activate either the
geniculo-cortical pathway or the transcallosal pathway.

The problem is to understand the distribution of the callosal connections in relation
to the pinwheel structure in V 1. This is a very delicate matter. An experiment by
William Bosking (Bosking et al. [126]) shows (see Fig. 4.135) that, for the tree shrew

26Recall that the optic nerve contains about 1.5 million axons, so less than a hundredth of the
number.

http://dx.doi.org/10.1007/978-3-319-65591-8_5
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Fig. 4.133 Structure of the callosal gluing map between the two hemispherical parts of V 1 and
V 2 in the cat. Zones A, B, C, D, E of one hemisphere are connected to zones with the same label
in the other hemisphere. From Rochefort [125]

Fig. 4.134 If we cut through the optical chiasm, the right visual hemifield projects onto the left V 1
area via the left eye and the activity of the right V 1 area is entirely due to the callosal connections.
From Rochefort [125]
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Fig. 4.135 Callosal connections in the tupaia (tree shrew). The two red/green sites of V 1L in a
project onto V 1R regardless of orientations as shown in b and c. In V 1R, we find a rather uniform
distribution of activated neurons: they are distributed across several regions of different preferred
orientation (colour). From Bosking et al. [126]

(tupaia), if we inject rhodamine into a small region of V 1L with vertical preferred
orientation (red circle in a black region) and fluorescein into another small region
with horizontal preferred orientation (green circle in a neighbouring white region),
the callosal projections onto V 1R do not exhibit any orientation specificity:

Callosal connections appear to terminate without regard for the map of orientation pref-
erence, showing little sign of the orientation-specific modular and axial specificity that is
characteristic of long-range horizontal connections. (Bosking et al. [126])

For the cat, the situation seems to be different. The classic work by Olavarria
[127] showed that the distribution of retrogradely labelled callosal cells is polarized
by the ocular dominance domains:

Callosal cells correlate preferentially with contralateral ODCs (ocular dominance columns)
within the 17/18 transition zone (TZ), and with ipsilateral ODCs in regions of areas 17 and
18 located outside the TZ.

Milleret and Rochefort [128, 129] made further investigations using in vivo optical
imaging of intrinsic signals coupled with a method for reconstructing and labelling
the callosal axons. They showed that the callosal connections do conserve orientation
selectivity. More precisely, using the split-chiasm preparation with an injection site
in the left hemisphere, they were able to reconstruct the distribution, in layers II, III,
and IV (upper part) of the transition zone (ZT) of the right hemisphere, of the synap-
tic buttons of several labelled callosal axons. They thus observed that these axons
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Fig. 4.136 Front view of the reconstruction of four callosal axons in cats (two neighbouring injec-
tion sites and two axons per site) and their clusters of synaptic buttons in layers II, III, and IV (upper
part) of the transition zone TZ between area 17 and area 18. WM white matter, D dorsal, M medial.
Scale bar 500 µm. From Rochefort et al. [129]

Fig. 4.137 Conservation of orientation by transcallosal connections in the cat. Left Injection site
in the left hemisphere. Right Reconstruction of the distribution of the synaptic buttons of a labelled
callosal axon in the right hemisphere. The axon projects into isochromatic zones (blue) of the same
colour as the injection site. From Rochefort [125]
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project into isochromatic zones relative to the colour of the injection site, thereby
showing that the orientation is conserved. Figure 4.136 shows four reconstructed
axons. Figure 4.137 shows the conservation of orientation by the transcallosal con-
nections.

4.12 Homogeneous and Inhomogeneous Qualities

4.12.1 Responses to Homogeneous Surfaces

Up to now the basic geometric feature we have studied is the orientation of contour
elements. However, if we consider in the most qualitative phenomenological way a
natural image made up of identifiable objects, we see immediately that there are two
fundamentally different kinds of local structure:

1. Locally homogeneous points near which features vary only slightly and in a
continuous way.

2. Locally heterogeneous points near which certain features reveal discontinuities.

This dichotomy between homogeneous and heterogeneous is absolutely fundamental
and very general, going back at least to Aristotle, who, himself referring to Anaxago-
ras, made a distinction in biology between homoeomeric parts (‘made up’ of similar
[omios] parts [meros]) and anhomoeomeric parts.27 As we shall see in the second
volume, this distinction is of key importance in Husserl’s phenomenology of per-
ception. It also underpins René Thom’s morphological models. Thom referred to the
locally homogeneous points of the substrate of a form as its regular points and the
locally inhomogeneous points as its singular points. The latter are the phenomeno-
logical manifestation of symmetry breaking in the underlying processes, and this is
why the theory of singularities, the theory of bifurcations, and the theory of symme-
try breaking formed the backbone of all his models of natural morphology, not just
in physics, chemistry, and biology, but also in psychology and the social sciences.

These models are based on Thom’s guiding idea as discussed in Sect. 4.10.3.2.
Here, we apply to the case where the external space W is that of the visual field
and where the attractors of the internal dynamics Xw implement sensory qualities.
In this case, when the internal dynamics Xw undergoes a bifurcation, the point w is
singular.28

The dichotomy between regular and singular points was also important in the
visual theories of Grossberg [131], which assume that there are two fundamental
systems of visual perception:

27On generation and corruption, I, 5, 312b.
28All the details can be found in René Thom’s two books [118] and [119]. For a didactic introduction,
see [130].
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1. The boundary contour system (BCS), which detects, enhances, and completes
edges using a ‘spatially long-range cooperative process’.

2. The featural contour system (FCS), which fills in the regions bounded by the
BCS with qualities (‘featural filling-in’): ‘These filling-in processes lead to visible
percepts of colour-and-form-in-depth at the final stage of the FCS’.

According to Grossberg [131, p. 35]:

Boundary contours activate a boundary completion process that synthesizes the boundaries
that define perceptual domains. Feature contours activate a diffusion filling-in process that
spreads featural qualities, such as brightness or color, across these perceptual domains.

It is thus interesting to know whether the dichotomy between homogeneous-regular
and heterogeneous-singular is relevant in the coding of features in V 1 or V 2.29

Toshiki Tani et al. [132] reached this conclusion by exhibiting in the 17/18 areas
of the cat a map of neurons that detect the interior of homogeneous domains and
respond to spots which completely cover their receptive fields. These neurons are
located in the V 2 area near the boundary with the V 1 area. The authors conclude
that, in the primary visual cortex, there is not only a representation of contours but
also a representation of surfaces. They stress that these regions of V 2 are small and
centred on the pinwheels where all the orientations are present.

As these zones for local detection of homogeneous surfaces are located close to
the boundary between V 2 and V 1, which is the transition zone (TZ) of the vertical
meridian where the corpus callosum comes into play, as we have seen, the authors
suggest that these neurons may transmit information about the interior of homoge-
neous zones from one hemifield and one hemisphere to the other:

One possible function of the surface-responsive regions may be to link visual information
about large surfaces extending across both the right and left hemifields. [132, p. 1123]

We shall now specify the problem of regular and singular points by returning to the
processing of colour.

4.12.2 Colour Processing

4.12.2.1 First Steps: Goethe, Helmholtz, Hering

We discussed colour processing in the retina in Sect. 3.2.5 of Chap. 3, and we have
just been talking about blobs in V 1 and V 2. Let us now say a little more about this.

The trichromatic theory developed by Thomas Young and Hermann von Helmholtz
in the first half of the nineteenth century involved a remarkable anticipation of the

29The pinwheel structure is based on the dichotomy between regular and singular points, but this
concerns field lines of the orientation field. Here we are talking about something quite different.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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way the retina actually processes colour. However, it was clearly inadequate. Goethe
had already recorded decades of phenomenological observation of colour perception
in his Farbenlehre of 1810. He was interested in the phenomenon of colour as an
experienced quality and sought to describe this experience in as precise a way as
possible, since accurate description was for him essential. From the details of these
observations (which are experimental in the scientific sense and also in the subjective
sense of experience), he hoped to infer more explicative underlying mechanisms. In
particular, he noted that the persistent image of a coloured figure has another colour:
pieces of white paper on a yellow wall become tinted with purple, and when we
remove an orange sheet of paper from a white wall, this induces a blue image and
an orange background. As he notes in § 60:

These phenomena are of the greatest importance, because they point to laws of vision.

Indeed, they point to the antagonisms between complementary colours, namely yel-
low/purple (Y/R+B), blue/orange (B/Y+R), and red/green (R/B+Y), where R = red,
G = green, B = blue, and Y = yellow.

Later, in 1892, the great Austrian physiologist Ewald Hering (1834–1918) devel-
oped an antagonistic theory, known as the opponent process theory, in a simplified
tetrachromatic form, assuming that there are in fact four fundamental colours RGBY,
organized in two pairs of complementary colours R/G and B/Y. With this theory, he
was able to solve the problem of yellow, which seemed to be an elementary colour
rather than a mixture. Hence, the idea that there were indeed three RGB detectors,
but four simple primary physiological colours.

Hering’s theory of pairs of complementary colours anticipated in a quite remark-
able way what we know today about colour processing in the cortex, between the
LGN and V 1.

4.12.2.2 Chromatic Opponency: Single Versus Double

In the LGN, colour-tuned cells are essentially parvocellular ‘single-opponent’ cells
detecting R/G contrasts, i.e. L/M.30 Magnocellular cells are insensitive to colour.
However, there are also cells in the koniocellular pathway, discovered in 1994, which
detect B/Y contrasts, i.e. S/(L+M). In V 1, the colour cells located in blobs are of two
kinds. The first calculate chromatic contrasts R/G, i.e., L/M, and B/Y, i.e. S/(L+M).
The second calculate spatial contrasts between the complementary colours R/G and
B/Y. These are therefore doubly antagonistic (double-opponent cells) which calculate
opponency in both the external space and the chromatic space. They can be denoted
±L/ ∓ M. In other words, these are orientation cells that also detect chromatic
contrasts. They are essential because, as emphasized by Shapley and Hawken [133,
p. 701]:

30Recall (see Sect. 3.2.5 of Chap. 3) that the three kinds of cones in humans are L/M/S, L red, M
green, S blue.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Color, form and motion are inextricably linked as properties of objects in visual perception
and in the visual cortex.

So from the lowest levels of the V 1 and the V 2 areas, there is a functional entangle-
ment between the spatiality of perceived scenes and the colours of objects making
them up. The brain must reconstruct by inference from the colour the objective
reflectance of the surfaces perceived and this independently of a host of extremely
variable factors such as the illumination of sources, indirect irradiation, angles of
incidence, and reflection. This inverse problem is exceedingly hard to solve. The
direct problem is this: for each position a = (x, y) of the visual field, given the
reflectances ρ (a, λ) and an illumination spectrum σ (a, λ), to calculate the spec-
trum γ (a, λ) = σ (a, λ) ρ (a, λ), where γ (a, λ) is itself encoded locally by the
excitation of the L/M/S cones at a. The inverse problem is not well posed, like most
inverse problems, and can only be solved if the system has priors at its disposal,
i.e. priors in the Bayesian sense, regarding the σ (a, λ). An examination of these
difficulties can be found in the paper by Foster [134].

In [133], Robert Shapley and Michael Hawken study the receptive profilesϕ (a, λ)
of colour-sensitive V 1 neurons which, in the linear case, act by convolution on the
signal I (a, λ). For a trichromatic species like the macaque or humans, they have the
form

ϕ (a, λ) = αL L (λ) rL (a) + αM M (λ) rM (a) + αSS (λ) rS (a) ,

where the α are coefficients, the r (a) are spatial receptive profiles, and L (λ), M (λ),
and S (λ) are the spectral responses of the different kinds of cone. For example,
the opponent cells R/G, i.e. L/M, correspond to αS = 0 and αL = −αM, while
the B/Y, i.e. S/(L+M) correspond to αS = − (αL + αM). Figure 4.138, produced
by Elizabeth Johnson in [135] and reproduced in [133], represents the receptive
profile of a double-opponent cell R/G, where the ON and OFF regions have positive
and negative heights, respectively. We see the level lines corresponding to L-cones
and M-cones. Figure 4.139 shows schematically single- and double-opponent cell
models with oriented or circular spatial profile. Note in particular the orientation
cells L ± /M∓.

The difference between single- and double-opponent cells is crucial from the
theoretical point of view, but also for the purposes of modelling. Indeed, single-
opponent cells respond to interior regions of continuously varying colour domains
(with no detectable spatial contrast), whereas double-opponent cells respond to the
edges of such regions where the colour undergoes a qualitative discontinuity. This
confirms neurophysiologically the phenomenological models suggested by René
Thom at the end of the 1960s [118, 119], models which we have already related to
Stephen Grossberg’s work in [131].
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Fig. 4.138 a Complete receptive profile of a double-opponent cell R/G of V 1. This is the superpo-
sition of an L profile and an M profile. The ON and OFF regions (where an increase or a decrease
in luminosity bring about a greater response) have positive and negative heights, respectively. b and
c Level lines of the L-cones and the M-cones obtained by the technique of inverse correlation. The
scale of growth goes from blue (low) to red (high). At the position marked with a star, the L map
is OFF (blue) and the M map is ON (red), and at the position marked with a circle, the opposite.
From Johnson [135] and Shapley and Hawken [133]

4.12.2.3 Double Opponency and Natural Images

As pointed out in Sect. 3.6.2 of Chap. 3, the receptive profiles (RPs) can be deduced
from the statistical properties of natural images using the techniques of independent
component analysis (ICA), insofar as they minimize redundancy in the neural rep-
resentations of sense data. Likewise for the RPs of colour processing neurons. For
example, Dharmesh Tailor, Leif Finkel, and Gershon Buchsbaum showed in [136]
that independent spatiochromatic filters extracted from databases of natural colour
images look much like those of double-opponent colour cells observed, for example,
in the macaque V 1 area. For statistical correlations between colour and orientation
in natural images, see also [137].

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Fig. 4.139 Diagrams of single- and double-opponent L/M cells with oriented or circular spatial
profile. From Johnson [135]
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Chapter 5
Functional Architectures II: Horizontal
Connections and Contact Structure

In this chapter, we shall investigate what we consider to be the most important
geometrical property of the functional architecture of V 1, namely the connectivity
between the various hypercolumns which will help us to understand how V 1 can
integrate local data into global configurations. To end this first volume, devoted to
neurophysiology, we shall then say a word about the genetic control of functional
architectures.

5.1 From Pinwheels to Contact Geometry

5.1.1 Horizontal Intracortical Connections

So far we have been focusing mainly on the ‘vertical’ connections of the retino-
geniculo-cortical pathway defining the fibre bundle π : M × P → P with base space
M = R the 2D visual plane and fibre P = P

1, P = R, or P = S
1, the 1D space

of orientations. However, this structure is not sufficient for V 1 to integrate contours.
Indeed, for this, there must be a way to compare orientations (and hence fibres Pa and
Pb) above different points a and b of R. This process is indeed neurally implemented,
through what neurophysiologists call ‘horizontal’ intracortical connections, one of
the great experimental discoveries of the 1980s. As we shall see below, the horizontal
connections for the orientation are long range (up to 6–8 mm), excitatory, slow
(around 0.2 m/s), and distributed patchily and anisotropically.

© Springer International Publishing AG 2017
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Fig. 5.1 Arborescence of an inhibitory cell of layer 2/3. The soma is shown in white and the
axon distribution in black. The axon branches project anisotropically in domains of the same colour
(green–yellow, parallelism) and highly transverse colours, including orthogonal ones (violet–red).
The arrow shows a singular point and the asterisk a regular point. From Eysel [1]

5.1.2 Semi-local Structures

Before introducing the main structure, let us say a word about semi-local structures
which already operate between the various hypercolumns.

5.1.2.1 Cross-Over Detectors

Short-range intracortical connections join neurons belonging to the same hypercol-
umn. They are essentially inhibitory and implement the local triviality of the fibre
bundle π : R × P → P . There are also medium-range inhibitory connections (up to
a few hundred μm) which connect neurons belonging to neighbouring hypercolumns
and which code the different orientations enabling the detection of angles, corners,
and T junctions. For example, Fig. 5.1, taken from the paper [1] by Ulf Eysel, shows
the arborescence of an inhibitory cell of layer 2/3. We observe that the axon projects
in an extremely anisotropic way in neighbouring domains of the same colour (par-
allelism) and of colours coding highly transverse orientations, including orthogonal
ones.
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Fig. 5.2 The local–global map proposed by David Alexander and co-workers. Left A column C
of polar coordinates (r, θ) in a pinwheel of centre p. The column C receives inputs from the point
(R,�) of the visual field line issuing at angle � from the point P which projects retinotopically
onto p. This point is thus represented at (r, θ) on the map. Note that the orientations (light blue) of
the points (R,�) and (R,� + π) are represented by the same (r, θ) and that we do indeed have
� = α ± θ/2, as in Sect. 4.4.6. From Alexander et al. [2]

5.1.2.2 Alexander’s Local–Global Map

Concerning the transition from local to global, we would also like to mention the
work by David Alexander, Paul Bourke, Otto Konstandatos, Phil Sheridan, and James
Wright in [2]. These authors developed the idea that the pinwheels are local maps
of a few hundred μm arranged visuotopically, maps centred on singular points, with
the saddle points (see Sect. 4.4.1) serving as transitions between them. They explain
that these maps encode the geometric feature of orientation, corresponding to the
fibre bundle structure π : V = R × P → R which we introduced for the contact
elements (a, p) = (position, orientation). They also stress that the fibre P is not the
circle S

1, but the projective line P
1 (spin structure) and that there is therefore:

[…] a doubling of the visuotopic angles in the pinwheel. [2, p. 860]

The great originality of their work lies in the way they treat p as a non-retinotopic
feature, generalizing the bundle π and identifying each pinwheel with a domain D,
in fact an open disc D, which is:

[…] a remapping of V 1’s global retinotopic map. [2, p. 860]

This leads to their conjecture of a local–global map which we may interpret in our
geometric language as the fibre bundle πA : R × D → R, where the long-range,
anisotropic, and patchy horizontal connections of the supragranular layers serve to
identify the different fibres Da and Db. Figure 5.2 illustrates the model.

The model essentially involves describing the tangent bundle T R in polar coor-
dinates and quotienting modulo π , thus keeping 2D fibres. Our model, on the other
hand, consists in projectivizing T R, which reduces the fibres to one dimension, and
introducing a further structure in order to go from local to global.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_4
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Fig. 5.3 Short-range
horizonal connections of two
neurons in the upper layers
of V 1. These are distributed
isotropically. From [5].
Copyright (1993) National
Academy of Sciences, USA

5.1.3 Parallelism and Coaxiality

As discussed above, it is essential to be able to compare orientations, and hence
fibres Pa and Pb, above different points a and b of R. This is a process known as
parallel transport, and it is implemented neurally by long-range horizontal intra-
cortical connections. The fundamental property of these connections is indeed to
link cells that have more or less the same preferred orientation in distant hyper-
columns. To detect them, we can measure the correlations between cells belonging
to different hypercolumns: we compare the orientations of the cells encountered in
a cortical penetration with the orientation of a single reference cell, and by estab-
lishing cross-correlograms, we then observe that cells with similar orientations are
strongly correlated, i.e. there is a peak in the correlogram, while cells with sufficiently
different orientations are decorrelated (see, e.g. Ts’o et al. [3]).

We can also use in vivo optical imaging methods (see e.g. [4]). From the beginning
of the 1990s, it thus became possible to visualize horizontal connections by labelling
them with anterograde markers like biocytin. In this way, long-range horizontal con-
nections of 2–5 mm were identified in cats and macaques, joining hypercolumns with
the same ocular dominance. They are very different from short-range connections
(up to 400 μm) within hypercolumns, which are isotropic and homogeneous and not
connected to specific functional domains. Figure 5.3, taken from the paper [5] by
Rafael Malach et al., shows the short-range horizontal connections of two neurons in
the upper layers of V 1. We see that they are distributed very isotropically and cross
several isochromatic regions: therefore they do not preserve orientation.

On the other hand, Fig. 5.4, due to Bosking et al. [6], shows how biocytin injected
locally in a region of around 100 μm of layer 2/3 of the V 1 area of a tupaia (tree
shrew), a given orientation region coded by blue–green, diffuses along the horizontal
connections in an anisotropic, selective, and patchy way. As in the previous figure,
short-range diffusion is isotropic and occurs through inhibitory intrahypercolumn
connections. But long-range diffusion is in fact highly anisotropic, occurring through
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Fig. 5.4 Diffusion of the biocytin marker along horizontal connections of layer 2/3 in the V 1 area
of a tupaia (tree shrew). The distribution is anisotropic and patchy, concentrated locally in domains
of the same orientation as the injection site top left and mainly along the top-left to bottom-right
diagonal. From Bosking et al. [6]

excitatory interhypercolumn connections, and it is restricted to domains with roughly
the same orientation (of the same colour) as the injection site. Previous analogous
results, using horseradish peroxidase diffusion, were already obtained in the early
1980s, before the invention of imaging methods, by Mitchison and Crick [7] (see
also Rockland and Lund [8, 9]).

We have already encountered the property of parallel transport in Sect. 4.7.1.3 of
Chap. 4 with the work of Jorge Mariño and James Schummers. It can be measured
by statistical analysis of the differences in orientation of the marked synaptic buttons
and those of the injection site: the curve is sharply peaked around 0. Note that the
marked synaptic buttons also cluster along a top-left to bottom-right diagonal. We
shall give an interpretation of this key fact.

When these horizontal intracortical connections were discovered, some thought
they might violate retinotopy, whereas in fact they strengthen it, by guaranteeing its
large-scale coherence (see Grinvald et al. [10]). Without them, neighbouring hyper-
columns would remain independent, and the retinotopy would lose any immanent
reality for the system.

The fact that horizontal intracortical connections link neurons with similar ori-
entations in different hypercolumns indicates that the neural system can find out
whether, for b �= a, an orientation p at a is roughly the same as an orientation q at
b. In other words, while the ‘vertical’ retino-geniculo-cortical connections confer an
immanent internal sense on the relations between pairs (a, p) and (a, q) (different
orientations p and q at the same point a), the ‘horizontal’ intracortical connections

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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V

R

π

a b

Pa Pb

p p

Fig. 5.5 Horizontal intracortical connections allow the system to compare in an immanent way the
orientations in two different hypercolumns corresponding to two different retinal locations a and b
(highly schematic)

a

q

p

Vertical connections :
a=b
p≠q

a b

p=q p=q

Horizontal connections :
a≠b
p=q

Fig. 5.6 While the ‘vertical’ retino-geniculo-cortical connections endow the relations between pairs
(a, p) and (a, q) (different orientations p and q at the same point a) with an immanent internal
sense, the ‘horizontal’ intracortical connections do so for the relations between (a, p) and (b, p)

(same orientation p at different points a and b)

do so for the relations between pairs (a, p) and (b, p) (same orientation p at different
points a and b) (see Figs. 5.5 and 5.6).

What is more, and this is absolutely crucial for the geometry of percepts, it can be
shown that the intracortical connections preferentially link not only parallel contact
elements (a, p) and (b, p) but in particular coaxial contact elements, i.e. pairs such
that the common orientation p is the orientation of the axis ab (see Figs. 5.7 and
5.8). This can be seen intuitively by noting that the diagonal where marked synaptic
buttons cluster is roughly parallel to the V 1–V 2 boundary representing the vertical
meridian of the visual space. We may deduce that this overall direction is the quasi-
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Fig. 5.7 Intracortical connections preferentially link neurons detecting pairs (a, p) and (b, p)

which not only have the same orientation, but are also coaxial, where p is the orientation of the axis
ab

Fig. 5.8 In Fig. 5.4, the clustering of synaptic buttons connected to the region where the marker
was injected occurs along a global diagonal. The preferred orientation p of the injection site is 80◦
(top-right corner). The direction of the global elongation of the clusters (long grey strip) rotates
with p. We know that the direction of the vertical meridian of the visual field (90◦) is parallel to
the V 1–V 2 boundary. We see that it has rotated a little. Precise measurements in Bosking et al. [6]
show that this corresponds to the phenomenon of coaxiality

vertical direction marked in the upper right corner of Fig. 5.4. Now this direction is
encoded by a colour which is precisely that of the marked regions.

To sum up, as explained by Bosking [6]:

The system of long-range horizontal connections can be summarized as preferentially linking
neurons with co-oriented, co-axially aligned receptive fields.

As we shall see at some length and with considerable mathematical detail in the
second volume, it is basically this functional architecture that models the geometric
notion of contact structure. However, let us first see how it is confirmed by psycho-
physical observations.
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5.2 Integration of Contours and Association Field

The intracortical connections of V 1 play a key role in the explanation of the first
intriguing perceptual phenomenon mentioned in the Introduction, namely the inte-
gration of contours. ‘What is a line on the neural level?’ From a psychophysical
point of view, one of the great breakthroughs was made by David Field, Anthony
Hayes, and Robert Hess who, in their classic paper of 1993 [11], introduced the idea
of association field.

5.2.1 Some Experimental Facts

The basic idea is simple. If we consider a randomly distributed ensemble of short
line segments, our perception will derive no particular structure (see Fig. 5.9). But
colinearity of segments enhances the response and improves visual sensitivity (see
Kapadia et al. [12, 13]).

The experimental procedure of Field, Hayes, and Hess involves briefly presenting
subjects with a grid of 256 oriented elements (a, p), e.g. they use Gabor patches,
that is, oriented bandpass elements in the spatial domain which, by selecting a spatial
frequency, single out only those cells corresponding to a well-defined scale. The size
of the receptive field of a cell that selects for the wavelength λ is typically 2λ.

Half the time the grid of Gabor patches contains elements aligned along a smooth
path γ , the other elements being oriented randomly (see Fig. 5.10). The rest of the
time, all the elements are oriented randomly. The subject’s task is to decide whether
he/she detects the alignment γ in the grid (two-alternative forced choice method).
The results show that subjects do indeed perceive the alignment if the elements (a, p)

are aligned ‘tangentially’ to γ and if the change in the slope between two consecutive
elements is not too great (≤30◦). This perceptual salience results from a characteristic
pop-out phenomenon.

Fig. 5.9 In a randomly
distributed ensemble of short
line segments, we perceive
no particular structure
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Fig. 5.10 The path (top-left
corner) is embedded in a
background of random
distractors. In this ensemble
of Gabor patches (a, p), the
subject observes the pop-out
of a group of elements
(ai , pi ) if these are suitably
aligned. From Field et al.
[11]

A key point is that the elements of the grid are too far apart to belong to a single
receptive field in V 1 and that:

It is clear that this ‘association field’ covers a considerably wider area than would be covered
by the receptive field of a mammalian cortical cell [11, p. 185].

Now, subjects spontaneously group these elements together. There must therefore be
an automatic mechanism that makes a connection between several receptive fields.
This is low-level integration. As the authors explain:

Recent computational studies have suggested that a useful segregation process for real scenes
may be based on local (rather than global) integration. […] The general theme of these
algorithms is that the points along the length of a curved edge can be linked together according
to a set of local rules that allow the edge to be seen as a whole, even though different
components of the edge are detected by independent mechanisms [11, p. 174].

So here is an excellent formulation of the problem of how to make the transition
from local to global: there are local neurophysiological binding rules which bring
about a global perceptual organization. The fact that the grouping phenomenon is
local and not global in the sense of being associated with large receptive fields turns
out to be crucial:

In our stimuli, there does not exist any ‘global’ feature that allows the path to be segregated
from the background. It is not possible to segregate the path by filtering along any particular
dimension. Our results imply that the path segregation is based on local processes which
group features locally [11, p. 191].

If the grouping is purely local, there must necessarily be an integration mechanism
that is not a straightforward filtering: as the feature detectors are point processors
(on a certain scale), how can their measurements be globalized?

The experiments also show two other fundamental phenomena:

• If the change of slope between consecutive elements is too great, the subject will
no longer perceive any alignment (see Fig. 5.11).
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Fig. 5.11 If the change in
the slope between
consecutive elements
(ai , pi ) is too great, the
subject no longer perceives
any alignment. From Field et
al. [11]

• Likewise, if the orientation of the elements is not tangent but transverse, e.g.
orthogonal, to the curve γ followed by their centres (see Fig. 5.12).

There is then no pop-out effect, and the paths are only detected in a cognitive and
inferential way.

These experiments relate to the Gestalt principle of good continuation. And the
more Gestalt principles are involved, the stronger the pop-out effect. For example,
Fig. 5.13 due to Kovács and Julesz [14] shows that if the alignment of the segments
closes in accordance with the Gestalt law of closure, then pop-out increases signifi-
cantly.

Fig. 5.12 If the orientation
pi of the elements (ai , pi ) is
not tangent but transverse,
e.g. orthogonal, to the
‘curve’ γ followed by their
centres ai , then the subject
no longer perceives the
alignment. From Field et al.
[11]
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Fig. 5.13 Adding the Gestalt law of closure to the Gestalt principle of good continuation strengthens
perceptual pop-out. From Kovács and Julesz [14]. Copyright (1993) National Academy of Sciences,
USA

5.2.2 Pop-Out, Perceptual Salience, and the Helmholtz
Principle

The psychophysical experiments of Field, Hayes, and Hess are based on the phenom-
enon of perceptual salience known as pop-out. We shall give a neurophysiological
interpretation in the next section. But this can also be characterized in probabilistic
terms expressing the novelty and rarity of certain stimuli.

For example, Sajda and Han [15] introduced the following idea. We consider a
pinwheel map Sk with N possible orientations θ = θi , i = 1, . . . , N ; that is, we
decompose each pinwheel into N angular sectors each corresponding to a filter.
The response space of a pinwheel is R

N , where a response is a vector f (θ). To
calculate f (θ), the signal is convolved with the filter associated with θ and we take
into account the functional architecture connecting sectors of the same orientation
in different pinwheels.

We thus consider a distribution P of orientations corresponding to a particular
class of stimuli (e.g. textures made up of segments), and we define the salience of
the pinwheel Sk by Sk = − log

(
p ( fk | P)

)
, where p ( fk | P) is the conditional

probability of fk (θ) relative to the distribution P . This formula tells us that the
rarer the function fk (θ) in the given class of stimuli, i.e. the smaller the conditional
probability, the more salient it becomes.1 In the response space R

N of a pinwheel,

1Recall that log (0) = −∞, so if p ∈ [0, 1] is small, then − log (p) is a large positive number.
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P defines clusters where the responses to the given class of stimuli accumulate, so
saying that a response is salient amounts to saying that it is far from these clusters.

The idea that ‘salient’ is equivalent to ‘rare’ is sometimes called the Helmholtz
principle. It was applied by Jean-Michel Morel to the detection of alignments in
images, which is equivalent to the problem addressed by Field, Hayes, and Hess. The
basic idea is that a large deviation from a statistically generic situation will lead to
perceptual salience. The less probable a configuration, the more salient it will be. The
advantage with Morel’s approach is that it can define ‘maximal meaningful events’
without using priors as is usually done in the conventional Bayesian approach. In a
standard Bayesian model, we take an image I , introduce a class of models satisfying
prior conditions, and try to infer abductively the best model M for I that satisfies
these constraints. According to Bayes’ law, the conditional probability P(M | I ) of
the abduction leading to M from the data I is given by

P(M | I ) = P(I | M)P (M)

P (I )
.

The conditional probability P(I | M) of I when M is given corresponds to the direct
problem of obtaining the image I from the model M , and it is usually straightforward
to calculate. However, the conditional probability P(M | I ) of the model M when
the image I is given corresponds to the inverse problem, and it is generally very hard
to calculate; it requires us to know the priors P (M). The good model M that we
seek under the hypothesis I corresponds to its maximization.

If for example M is given by a Gibbs distribution P (M) = exp (V (M)) /Z ,
where Z is a partition function, as in statistical physics, and V (M) is an ‘energy’,
and if P(M | I ) is given by a Gaussian C exp(−D(M, I )), where D is a ‘distance’
between M and I , then the optimal M is given by minimizing the functional D + V .

Bayesian models are classic top-down techniques of template matching. They are
not well suited to a probabilistic interpretation of salience, where no priors are known
and where we are not trying to find a model giving the best possible interpretation of I ,
but only to extract the salient features of I . In this case, it is better to use a probabilistic
version of the opposition between the generic and non-generic situations. This is what
Jean-Michel Morel did with Agnès Desolneux and Lionel Moisan for the example
of alignment in [16]. His basic assumption was as follows:

The main idea is that a meaningful event is an event that, according to probabilistic estimates,
should not happen in the image and therefore is significant.

Here, ‘meaningful’ means ‘not generic’. Consider, for example, a black square of
10 × 10 pixels on a white background in a frame of 100 × 100 pixels. If the colour
of the pixels is chosen at random, the probability of such a configuration is

90 × 90 ×
(

1

2

)100

×
(

1

2

)900

,
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a probability of the order of 10−300 which is zero for all practical purposes.2

For the alignment property, we take a grid G of N × N sites and at each site x =
(i, j) we consider a small segment centred on the point and with a direction dx which
is a random variable with uniform probability distribution p = 1/n, i.e. we consider
n equiprobable directions that can join the points together. Let S = (x1, . . . , xr ) be a
segment with r points, D the direction of S, and di the directions of the points xi of
S. We calculate the maximal number k(r) of aligned points which must be observed
for the alignment event to be perceptually salient. Let Xi be the Boolean3 random
variable with value 1 if di is aligned with D and 0 otherwise. We have P(Xi = 1) = p
and P(Xi = 0) = 1 − p. The random variable representing the number of points xi

of S with orientation D is thus the sum Sr of the Xi . Since the Xi are independent
random variables, we calculate P(Sr = k) using the binomial law and define the
ε-significance by a significance threshold k(r):

k (r) = min

{
k : P(Sr ≥ k) ≤ ε

N 4

}
,

where N 4 is the number of oriented segments (of arbitrary length r ) in the N × N
grid. The calculation gives precise estimates of the threshold k(r). For example, for
N = 512 and p = 1/16, the minimal length of a 1-significance segment is 9. As N
tends ‘rather quickly’ to ∞, we obtain the estimate

k (r) ≈ pr +
√

2p (p − 1) r log

(
N 4

ε

)
.

We then define the maximally salient segments S, which are those producing per-
ceptual pop-out effects.

This kind of calculation can be generalized. The alignment of segments randomly
oriented along a path (with curvature) is not generic in the space of random segment
configurations, whence it is salient. This is the result obtained by Field, Hayes, and
Hess. However, if we now consider such paths, the constitution of a closed path is
not generic in the space of paths, so the alignment of randomly oriented segments
along a closed path is in a certain sense doubly non-generic. It is therefore doubly
salient. This is the result obtained by Kovács and Julesz.

290 × 90 is the number of ways to position the little square, 1/2 is the probability of black or white
for each pixel, (1/2)100 is the probability that the 100 pixels of the small square are black, and
(1/2)900 is the probability that the 900 pixels remaining in the large square are white.
3Named after George Boole.
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Fig. 5.14 An association field. The elements are pairs (a, p) = (position, orientation). Two ele-
ments (a1, p1) and (a2, p2) can be connected (thick lines) if we can interpolate a curve γ that is not
too curved between positions a1 and a2, and which is tangent to p1 and p2 at a1 and a2, respectively.
Otherwise the two elements are not connectable (thin lines)

Fig. 5.15 ‘Field lines’ of the association field

5.2.3 Explanation in Terms of Association Fields

By measuring the changes in detection rate for different spatial positions and rel-
ative orientations of the elements forming a contour, Field, Hayes, and Hess were
able to conclude that the tendency to perceive the elements ci = (ai , pi ) as being
aligned followed from the existence around each element, of a region in which other
elements tend to be perceived as grouped. This region, referred to as the association
field, is defined by joint constraints on the position and orientation. The form of the
association field is described in Figs. 5.14 and 5.15.

Field, Hayes, and Hess give a remarkable interpretation of the deep geometrical
nature of the association field. To begin with, the association is not simply:

[…] a general spread of activation, linking together all types of features within the field [11,
p. 185].

It manifests a correlation between position and orientation:

Elements are associated according to joint constraints of position and orientation [11, p. 187].

This is a key point. The pop-out phenomenon comes about because the elements are
aligned in such a way as to be tangent to the curve described by their centres:

There is a unique link between the relative positions of the elements and their relative
orientations. […] The orientation of the elements is locked to the orientation of the path;
a smooth curve passing through the long axis can be drawn between any two successive
elements [11, p. 181].
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(a, p) (b, p)

Fig. 5.16 Co-activation of two coaxial cells (a, p) and (b, q) (with p = q = ab) in turn co-activates
intermediate coaxial cells

The process that underlies this segregation shows a specific relation between position and
orientation. Similar orientations are grouped together only when the alignment falls along
particular axes [11, p. 189].

This is a discrete formulation of the integrability constraint. Contact elements such
as ci = (ai , pi ) embedded in a background of random distractors generate a per-
ceptually salient curve if and only if the orientations pi are tangent to a curve γ

interpolating between the positions ai . This is due to the fact that the co-activation
of simple neurons with approximately coaxial preferred orientations, detecting pairs
(a, p) and (b, q) such that b is roughly aligned with a in the direction p and q is
close to p, spontaneously co-activates in its turn the intermediate cells through the
horizontal connections (see Fig. 5.16).

When the distance between the positions ai tends to 0, the ‘joint constraints’ and
the ‘unique link’ between the positions a and the orientations p become precisely
the integrability constraint p = f ′(x) explained in Sect. 4.3.7 of Chap. 4.

5.2.4 Confirmation by fMRI

In the above psychophysical experiments, we must refer to the responses made by
subjects, and hence their lived experience of perceptual pop-out. But if we wish to
obtain neurophysiological measurements, we cannot use local measurement meth-
ods, precisely because the phenomenon under investigation is a process integrating
local orientations into global contours. Fortunately, the emergence of a Gestalt align-
ment under the good continuation constraint can be tested using fMRI methods. For
example, Zoe Kourtzi et al. [17] used an adaptive paradigm to show that there is
indeed a selectivity for collinear contours in the primary visual areas. The idea of the
adaptive protocol is to present random configurations over a long period (150 ms),
during which the response of the visual system gradually decreases, then to measure
the rebound effect brought about by a sudden change leading either to a collinear
configuration, or to another random configuration. As pointed out by the authors:

Stronger rebound effects for conditions with collinear than random patterns would indicate
visual areas responsive to global visual configurations [17, p. 334].

Fig. 5.17 shows that this is indeed the case for the monkey V 1 area.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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Fig. 5.17 a fMRI response at the onset of adaptation at time t = 30 ms. We see the decrease in
the response over the interval [40, 180] ms. b Another stimulus is then presented and the elicited
response is measured up to 280 ms. The rebound effect is clear, and we observe that it is much
stronger for a transition to a collinear pattern. From Kourtzi et al. [17]

5.2.5 Relationship with the Horizontal Connections

In their paper, Field, Hayes, and Hess put forward several physiological specula-
tions about the way the association field might be implemented by the horizontal
connections. These were confirmed by Jean Lorenceau, Peggy Seriès, and Sébastien
Georges in Yves Frégnac’s laboratory [18, 19]. They measured the apparent speed
of rapidly moving sequences of oriented Gabor patches (the speed-up illusion). The
subject is presented with a sequence of Gabor patches which pass by at a rate of 64◦/s
(5 images 17 ms apart) along a vertical straight line at a certain speed. The patches
can be oriented in the direction of motion (vertical collinearity) or in the direction
orthogonal to the motion (horizontal parallelism). The sequences are themselves
separated by intervals of 500 ms. Figure 5.18 shows this protocol. We observe that
the apparent speed is greater (overestimated) in the case of collinearity and smaller
(underestimated) in the case of parallelism.

The authors conjecture that the over- and underestimation of the apparent speed is a
field association effect and that the latter results from the propagation of activity along
the long-range horizontal intracortical connections between neurons with similar
preferred orientations:

Long-range horizontal connections in V 1 elicit differential latency modulations in response
to apparent motion sequences, whose read-out at an MT stage results in a perceptual speed
bias [18, p. 2757].

This conjecture was confirmed by the fact that, in the case of collinearity, the increase
in apparent speed measured using these psychophysical methods turns out to be
essentially the same (around 0.2 m/s) as the speed of propagation in the horizontal
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Fig. 5.18 Sequence of Gabor patches along a vertical straight line. The patches are oriented either
in the direction of motion (vertical collinearity), or in the direction perpendicular to the motion (hor-
izontal parallelism). The apparent speed is greater in the collinear case and smaller for parallelism.
From [20]

intracortical connections as measured using electrophysiological methods. In [21],
the authors explain that:

Spreading activity through [long-range horizontal] connections evoked by a first stimulus
may modulate the dynamics—and in particular the latency—of the neuronal responses to a
second stimulus, presented from a few milliseconds to a few tens of milliseconds later, at
neighbouring positions in visual field.

David Alais, Jean Lorenceau, et al. [22] used the method known as binocular rivalry
(already discussed in Sect. 4.10.3.2 of Chap. 4) to improve these results. The idea is
to send stimuli comprising two Gabor patches (a, p) and (b, q) with p = ab and q
roughly aligned with p, i.e. collinear stimuli, to one of the visual fields and random
noise around a and b to the other visual field. The subject must say when the pair of
contact elements appears or disappears, the hypothesis being that the structure of the
time series encodes the strength of the connection between the two patches. This can
be used to construct an association field that confirms those obtained by the other
methods.

In another paper [23], J. Lorenceau and co-workers used magnetoencephalogra-
phy (MEG) to confirm this increase in the apparent vertical speed. The imaging data

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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show that a wave does indeed propagate along the horizontal intracortical connec-
tions, and more precisely, that there is an alignment mechanism in the spike trains
‘which synchronizes the neural activity produced by a contour’. This alignment
shortens the response latency and induces a phase advance along the contours. This
would indeed appear to explain the phenomenon of pop-out and perceptual salience
observed psychophysically.

5.2.6 Discretization of the Contact Structure

Our graduate student at the École Polytechnique, Yannick Tondut, showed long
ago (in 1997, see [24]) that the association field can indeed be interpreted as a
discretization of the contact structure K of the contact fibre bundle V . As this
structure idealizes the limit of a pinwheel arrangement for a scale tending to 0, it is
natural to discretize.

We fix a spatial discretization step Δs and discretize also the orientations with
a step Δp. We consider the curves 
 in V = R × P which are locally defined
by the equations y = f (x), p = g(x). As we saw in Sect. 4.3.7 of Chap. 4, 


lifts a curve γ of R with equation y = f (x) if and only if the integrability con-
dition p = g(x) = f ′(x) = dy/dx is satisfied. To discretize this equation, we
consider two consecutive points4 A and B on γ which satisfy the metric relation
d(A, B) = Δs, where d is the Euclidean distance in the visual field. If θ is the angle
between the vector AB and the x axis, we have (see Fig. 5.19) xB − xA = Δs cos θ

and yB − yA = Δs sin θ . In this discretized framework, the tangent to γ at A
can be approximated by the straight line AB, and the derivative f ′(x) by the ratio
(yB − yA)/(xB − xA) = tan (θ). The equation corresponding to the contact structure
at A then takes the discrete form |pA − tan (θ)| ≤ Δp. Symmetrically, we also have
|pB − tan (θ)| ≤ Δp. Adding the two inequalities, we obtain the symmetric form
|pA − tan (θ)| + |pB − tan (θ)| ≤ 2Δp.

If we represent graphically the oriented elements that can follow a given element,
we obtain the desired result: two elements that come one after the other satisfy
the constraints of the association field (see Fig. 5.19). The threshold 2Δp is roughly
tan(π/6). We may thus conclude that the association field is indeed a discrete version
of the integrability constraint. Note that one consequence of the discretization of the
contact structure is a limitation of the curvature that the visual system can accept at
a given scale.

It is straightforward to explain the third experiment of Field, Hayes, and Hess (see
Fig. 5.12) in terms of the contact structure: the curve 
 in V is not integrable; that is,
it does not satisfy the integrability condition. Figure 5.20 (top left) shows a curve in
J 1 R which is a Legendrian lift. Figure 5.20 (top right) corresponds to the situation
in the third experiment, where we have added a constant p0 to p = f ′(x) (an angle
π/2, whence the orientations p become orthogonal to the curve γ described by the

4In the rest of this section, A and B will denote the ends of curves.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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Fig. 5.19 Discretization of
the integrability condition.
Courtesy of Yannick Tondut

θ
p p
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positions a). Figure 5.20 (bottom) shows two examples of non-integrable curves in
V , the first (left) because p is constant, whereas f ′ is not, the second (right) because
p varies more quickly than f ′. In each of the three last cases, the pop-out of the curve
γ described by the positions a is impossible because the integrability condition, i.e.
the joint constraint on position and orientation, is not satisfied.

5.2.7 Binding

The pop-out of curves that are generated by approximately aligned contact elements
ci = (ai , pi ) is a typical Gestalt phenomenon resulting from binding between the
activities of the relevant neurons. These synchronize their firing by means of the
horizontal connections. The temporal coherence of the correlated firings binds the
features they encode, and this explains why elements aligned along a contour are per-
ceived as a single whole. Put another way, the integrability constraint is a geometrical
binding condition. As stressed by Tai Sing Lee in [25], one might think that feedback
from V 2 is necessary for binding, but in agreement with the high-resolution buffer
hypothesis discussed in Sect. 2.2 of the Introduction and the beginning of Chap. 4, it
is nevertheless the underlying geometry of V 1 that turns out to be essential.

5.2.8 Comparison with Other Data

As noted by Yannick Tondut, this model of the association field can also explain other
results of Polat, Sagi, Gilbert, or Westheimer which showed that the facilitation zone
induced by an oriented element (a, p) in fact implements the contact plane at the
point corresponding to the contact fibre bundle.

Polat and Sagi [26] considered facilitation and suppression effects in target detec-
tion tasks. Using Gabor patches, they studied the detection of a low-contrast stimulus
(the target) when it is flanked by two high-contrast stimuli (masks) aligned with it.
By varying the distance between the target and the masks, they observed a facilitation
effect for distances between 2λ and 10λ, where λ is the wavelength of the stimuli.

http://dx.doi.org/10.1007/978-3-319-65591-8_2
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Fig. 5.20 Association field as integrability condition. Top left The integrability condition is satisfied.
In the other cases it is not. Top right We add a constant angle to the tangent [p = f ′(x) + p0].
Bottom left p is constant, whereas f ′ is not. Bottom-right p rotates more quickly than f ′

Insofar as the typical size of a receptive field tuned to a wavelength λ is 2λ, the
effect extended well beyond this size. They also compared different configurations
of relative positions and orientations of the stimuli: facilitation occurs in particular
when the orientation of three stimuli coincides with that of their alignment.

The experiments of Gilbert et al. [27] confirmed these results. Using simple ori-
ented bars as stimuli, these authors observed a facilitation in the detection of a
low-contrast target when it is aligned with an analogous high-contrast bar. Two of
their results are particularly interesting:

1. A very small deviation from collinearity that is not accompanied by an appropriate
displacement of the position very quickly reduces facilitation.

2. On the other hand, facilitation persists when the orientation of the relevant bar
is modified in such a way as to preserve the continuity of the path determined
by the two bars, but it then decreases with the curvature of the path and vanishes
beyond a deflection of 30◦.
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Another interesting comparison can be made with the work of Steve Zucker (Zucker
et al. [28], Parent and Zucker [29]). To detect the curves, Zucker used an estimate of
their geometrical coherence based on the compatibility of the neighbouring tangents.
This compatibility is measured either directly from the difference in the orientations,
or by evaluating the local curvature using specialized detectors. Zucker’s model is
rich and goes beyond the association field. However, the compatibility criterion is
very similar to that of the association field.

It would also be extremely interesting to study the relationships between the as-
sociation field and the cooperation/competition processes used by Grossberg and
Mingolla [30]. Between the aligned elements, these authors introduced a coopera-
tion materialized by oriented dipole cells with large receptive fields, able to detect
approximate alignments. The weight of an element in the RF of a dipole cell depends
on its relative position and orientation. The ensemble of weights defines a cooper-
ation field, which is strikingly similar to the association field of Field, Hayes, and
Hess.

5.3 Some Effects of the Horizontal Connections

5.3.1 Contextuality of the Receptive Fields

We thus discover the role of the horizontal intracortical connections and incidentally
also the top-down projections from V 1 to the lateral geniculate nucleus. They play
an important part in making the functional architecture of the V 1 RFs flexible and
plastic. The RFs are in fact adaptive, their responses being modulated by the stimuli.
The notion of RF must therefore be extended. In Sect. 3.2.6 of Chap. 3, we saw that the
minimal discharge field (MDF) was only part of the actual RF, the part where highly
localized stimuli elicit spike responses. However, the horizontal connections induce
strong contextual effects which are important, not only for integrating contours, but
for many other global phenomena identified a long time ago by the Gestalt theory,
such as the perception of surfaces, segmentation, figure/background segregation. To
go ‘beyond the receptive field in the primary visual cortex’, the reader is referred to
the study [31] by David Fitzpatrick. Activity waves propagate:

[…] in a wave-like manner via polysynaptic pathways (Wright et al. [32, p. 2704]).

This explains how neurons can be driven in a purely contextual way without any
stimulus affecting their RF.

Figure 5.21 due to Yves Frégnac et al. [20] shows schematically the way the MDF
extends, thanks to the propagation of cortical waves along the horizontal connections,
to a synaptic integration field (SIF).

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Fig. 5.21 Left Δxv is the eccentricity of the distal retinal stimulus (white segment on the left)
relative to the stimulus located in the MDF (white segment on the right in the grey rectangle). Δxc
is the cortical distance between the neurons of V 1 activated by the two stimuli. Δxt is the latency
time induced by propagation along the horizontal connection. Right At the top we see the minimal
discharge field (MDF) defined by spike responses in the (x, y) plane and its temporal evolution in the
(x, t) space. At the bottom, we see the synaptic integration field (SIF) defined by the sub-threshold
activity. The SIF is much more extensive than the MDF. From Frégnac et al. [20]

5.3.2 Line-Motion Illusion

As we shall see, the horizontal connections can considerably deepen our understand-
ing of perceptual phenomena. We shall return to this at length. But for now, we shall
consider the simple example provided by Okihide Hikosaka’s so-called line-motion
illusion (LMI). This is the perception of an apparent motion that is not present in the
stimuli, which are in fact motionless. The experimental protocol is straightforward:
a little square of side L is flashed to the subject, followed a few milliseconds later
by the flash of a long rectangle of width L which extends the square. The subject
then perceives the static rectangle as a dynamic motion of the small square. This
apparent motion, which depends on V 1, and possibly also on V 2 and MT , is only
illusory relative to the stimulus. Indeed, the experiment shows that the dynamics of
the cortical activity in V 1 and V 2 is the same as that occurring for a real motion of
the stimulus.

Figure 5.22 due to Jancke et al. [33] concerns the primary visual areas 17 and 18 of
an anaesthetized cat and shows the temporal evolution (time on the horizontal axis)
of the membrane potentials using voltage-sensitive dye imaging (VSD). In this tech-
nique, fluorescence indicates local depolarization of neurons and hence marks active
cells (see Sect. 4.4.1 of Chap. 4). This real-time imaging method is highly sensitive
to sub-threshold activity of neural membranes. The authors used four stimuli: (c) a
flashed motionless square, (d) a flashed motionless bar, (e) the moving square, (f) the
motionless square and bar flashed successively. The images show the sub-threshold

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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Fig. 5.22 Cortical dynamics of the LMI in an anaesthetized cat, measured using the VSD technique.
There are four stimuli: (c) a flashed motionless square, (d) a flashed long motionless bar, e the
moving square, (f) the motionless square and the motionless bar flashed in succession. The area
under consideration is shown top right at the end of line (c). At the beginnings of lines (c) and
(f), the dashed yellow contours delimit the cortical area activated by the square and the bar. The
spike emission regions are those with high membrane potentials (red regions bounded by a black
contour), and regions of subthreshold activity are those in yellow and light blue surrounded by a
white contour. The duration of stimulation is indicated at the bottom of the lines. Green vertical
bars in line (e) indicate the position of the moving square. From [33]

activity of the neurons in the relevant part of the area [top right at the end of line
(c)]. At the beginning of lines (c) and (f), the dashed yellow lines delimit the cortical
area activated by the square and the bar. The spike emission regions are those with
high membrane potentials (red regions bounded by a black contour) and the regions
of sub-threshold activity are shown in yellow and light blue surrounded by a white
contour. The duration of stimulation is indicated at the bottom of the lines. Vertical
green bars in line (e) indicate the position of the moving square. The important result
here is that the cortical dynamics (e) and (f) are essentially the same because the
activity propagates along horizontal connections, thereby explaining the LMI. As
noted by the authors:

These findings demonstrate the effects of spatio-temporal patterns of sub-threshold synaptic
potentials on cortical processing and the shaping of perception [33].

In [34], Aaditya Rangan, David Cai, and David McLaughlin proposed a model of
the LMI in the context of a model of V 1 containing horizontal connections in which
removal of inhibition allows lateral spreading of the excitation of orientation cells.
The fit with the experimental data is excellent.
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5.4 Contact Structure

In the last chapter (Sects. 4.3 and 4.8, and in particular Sect. 4.8.4), we saw how the
‘vertical’ (retino-geniculo-cortical) part of the functional architecture of V 1 can be
modelled as a continuous limit of a pinwheel structure, in terms of the 1-jet bundle
of curves in R

2. We shall now show how the ‘horizontal’ cortico-cortical part of this
functional architecture (discovered in the late 1980s, see [35, 36]) can be modelled
in terms of the contact structure.

5.4.1 Integrability Condition and Contact Form

Let us investigate more closely the integrability condition defined in Sect. 4.3.7 of
Chap. 4. Recall that we are working with the model

πJ : J 1 (R, R) = VJ = R
2 × R → R

2 ,

and that, if γ is a smooth parametrized curve a(s) = (x(s), y(s)) in the base plane R
2

[with x ′(s) �= 0], it can be lifted to VJ using the 1-jet map j1γ (a(s)) which associates
the contact element

(
a(s), pa(s)

)
with a(s) = (x(s), y(s)), where pa(s) = y′(s)/x ′(s)

is the slope of the tangent to γ at a(s) (if there are vertical tangents, we have to use
the compactification of VJ). Now if 
 = v(s) = (a(s), p(s)) = (x (s) , y(s), p(s))
is a general skew curve in VJ, its projection a(s) = (x (s) , y(s)) is a curve γ in R

2,
but 
 is the Legendrian lift of γ if and only if p(s) = pa(s) (s). This integrability
condition is the geometric interpretation of the functional architecture of V 1 and
the association field.

The integrability condition can be formulated in a more interesting way. Let t =
(a, p;α, π) = (x, y, p; ξ, η, π) be tangent vectors5 to VJ at v = (a, p) = (x, y, p).
Along γ (we suppose x is the independent variable), t = (x, y, p; 1, y′, p′) and the
integrability condition p = y′ means that we have in fact t = (x, y, p; 1, p, p′).
It is straightforward to check that this is equivalent to t being in the kernel of the
differential 1-form ωJ = dy − pdx , where ωJ = 0 simply means that p = dy/dx .
Indeed, to compute the value of a 1-form � on a tangent vector t = (ξ, η, π) at
(x, y, p), we apply the rules dx(t) = ξ , dy(t) = η, and d p(t) = π . If �(t) =∑

�i ti , where ti and �i are the components of t and � with respect to the bases of
T VJ and T ∗

VJ associated with the coordinates (x, y, p), we get ωJ(t) = −p × 1 +
1 × p + 0 × p′ = −p + p = 0, since ωJ = −pdx + 1 × dy + 0 × d p and dx (resp.
dy, d p) applied to (1, p, p′) selects the first (resp. second, third) component 1 (resp.
p, p′). Note that, if p = y′, the ‘vertical’ component π = p′ of the tangent vector t
in the direction of the p-axis is the curvature of the projection γ at a. Indeed, p = y′
implies p′ = y′′ and therefore π = p′ = y′′.

5The reader should not confuse π the projection π : R × P → R and π the component of a tangent
vector t .

http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_4
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The 1-form ωJ is called the contact form, and its kernel is the field K of planes
Kv, called the contact planes, with equation −pξ + η = 0. The tangent vectors

X1 = ∂

∂x
+p

∂

∂y
= (ξ = 1, η = p, π = 0) , X2 = ∂

∂p
= (ξ = 0, η = 0, π = 1) ,

are obvious generators. Now we can express the integrability condition purely geo-
metrically: a curve 
 in VJ is the Legendrian lift γ̃ of its projection γ if and only if
it is everywhere tangent to the field K of contact planes, i.e. if and only if it is an
integral curve of K .

5.4.2 Contact Structure as a Cartan Connection

The contact structure has several interesting properties. First, if we no longer consider
the projection πJ : VJ = R

2 × R → R
2 on the plane (x, y), but the projection

π ′
J : VJ = R

2 × R → R
2 on the plane (x, p), we can show how the 1-form ωJ

defines a connection in the sense of Elie Cartan, the contact planes Kv becoming
what are called the ‘horizontal’ planes. This representation deepens the projective
duality which we have already mentioned (Sect. 4.3.6 of Chap. 4). Instead of taking
the (x, y) plane as base plane and the axis of the tangent p calculated from the
derivative p = dy/dx as fibre, we take the (x, p) plane as base plane and the y axis
as fibre, the curves γ being given now as functions p = g(x), i.e. as envelopes of their
tangents. The y coordinate is then calculated from the integral y = ∫

y′dx = ∫
pdx .

A general theorem says that the curvature dωJ of the connection 1-form ωJ has to be
a symplectic form on the new base plane. This is clear, since dωJ = dx ∧ d p is the
standard symplectic form on the (x, p) plane.

5.4.3 Non-integrability of the Contact Structure

The contact structure K is the field of planes Kv ⊂ TvVJ defined by the equations
η = pξ parametrized by p. As the Legendrian lifts are its integral curves, there are
many 1D integrals. But there are nevertheless no 2D integrals, no surfaces S of VJ

which are tangent to Kv at every point v ∈ S, i.e. such that Tv S = Kv. This is due to
the fact that the field Kv spins too rapidly with p to be integrable: Kv is the ‘vertical’
plane above the ‘horizontal’ line of slope p and, when p varies along the fibre Ra

above a, it rotates with p.
More precisely, the non-integrability of K —called non-holonomy—results from

the violation of the Frobenius integrability condition, which says that a 1-form � ad-
mits integral surfaces if and only if the wedge product�∧d� = 0, i.e., d�(t, t ′) = 0
for all tangent vectors t and t ′ such that �(t) = �(t ′) = 0. Now, for ωJ = dy− pdx ,

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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from the calculus of differential forms,6

dωJ = −
(

∂p

∂x
dx ∧ dx + ∂p

∂y
dy ∧ dx + ∂p

∂p
d p ∧ dx

)
+ d2 y − pd2x

= −d p ∧ dx = dx ∧ d p ,

whence

ωJ ∧ dωJ = (−pdx + dy) ∧ dx ∧ d p = dy ∧ dx ∧ d p = −dx ∧ dy ∧ d p .

But this 3-form is a volume form of VJ and vanishes nowhere. By the way, for the
basis

X1 = ∂

∂x
+ p

∂

∂y
= (1, p, 0) , X2 = ∂

∂p
= (0, 0, 1) ,

of Kv, we have

[X1, X2] = −X3 = − ∂

∂y
= (0,−1, 0) , X3 = (0, 1, 0) /∈ Kv ,

since ωJ (X3) = 1 �= 0.

5.4.4 Polarized Heisenberg Group

A key point concerning the contact structure of VJ is that it is left-invariant for a
non-commutative Lie group structure which is isomorphic to the Heisenberg group
and called the polarized Heisenberg group. The product is given by

(x, y, p) · (x ′, y′, p′) = (x + x ′, y + y′ + px ′, p + p′) .

It is easy to check that this product is associative, that the origin (0, 0, 0) of VJ is its
neutral element, and that the inverse of v = (x, y, p) is v−1 = (−x,−y + px,−p).
Due to the asymmetry of the coupling term px ′, the product is non-commutative. VJ

is a semi-direct product VJ = R
2

� R. The base plane R
2 (p = 0) of the fibration

πJ : VJ = R
2 ×R → R

2 is the commutative subgroup of translations, and the centre
Z of VJ is the y -axis. Indeed, v′ = (x ′, y′, p′) commutes with all v ∈ VJ if and only
if for every v = (x, y, p) we have px ′ = p′x , which implies x ′ = p′ = 0.

If t = (ξ, η, π) are vectors in the Lie algebra VJ = T0VJ of VJ, VJ has Lie bracket

[
t, t ′] = [

(ξ, η, π), (ξ ′, η′, π ′)
] = (0, ξ ′π − ξπ ′, 0)

6If ω1 and ω2 are two 1-forms, ω2 ∧ ω1 = −ω1 ∧ ω2 (and hence ω ∧ ω = −ω ∧ ω = 0), and if
ω = d f is the differential of a function f (x, y, z), then dω = d2 f = 0.



5.4 Contact Structure 301

and is generated as a Lie algebra by the basis of Kv:

X1 = ∂

∂x
+ p

∂

∂x
= (1, p, 0) , X2 = ∂

∂p
= (0, 0, 1) ,

at v = 0. Indeed, at 0, X1 = (1, 0, 0), X2 = (0, 0, 1) and [X1, X2] = (0,−1, 0) =
−X3 (the other brackets being zero). The fundamental fact that the basis {X1, X2} of
the distribution K is bracket generating, i.e. Lie-generates the whole tangent bundle
T VJ, is called the Hörmander condition. It is the key property for generalizing
our very simple contact structure VJ to higher dimensions and general manifolds.
Moreover, this group is nilpotent of step 2, which means that all brackets of the form
[t, [u, v]] vanish.

5.4.5 Scale and Characteristic Vectors

It should be emphasized that the definition of the contact structure using the 1-form
ωJ contains more information than the definition using its kernel, i.e. the distribution
K of contact planes Kv. Indeed, the 1-forms ωJ and αωJ (α �= 0 ∈ R) have the same
kernel and define the same distribution. The supplementary information encoded in
ωJ is the numerical value of ωJ on the ‘characteristic’ tangent vector field (called
Reeb field) X3 transverse to Kv.

Computations in VJ become very easy if we use the matrix representation

v = (x, y, p) =
⎛

⎝
1 p y
0 1 x
0 0 1

⎞

⎠

and

t = (ξ, η, π) =
⎛

⎝
0 π η

0 0 ξ

0 0 0

⎞

⎠ .

Indeed, the product in VJ becomes the matrix product v · v′ and the Lie product in
VJ becomes the commutator

[
t, t ′] = t t ′ − t ′t . Using this trick, it is easy to see

that the contact structure is left-invariant. The left translation Lv of VJ is defined by
Lv(v′) = vv′ and is a diffeomorphism of VJ whose tangent map at 0 is the linear map

T0 Lv : VJ = T0VJ −→ TvVJ

t = (ξ, η, π) �−→ T0 Lv(t) = (ξ, η + pξ, π)

The matrix of T0 Lv is
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T0 Lv =
⎛

⎝
1 0 0
p 1 0
0 0 1

⎞

⎠ .

This shows that the basis {∂/∂x, ∂/∂y, ∂/∂p} of the tangent bundle T VJ associated
with the coordinates {x, y, p} is not left-invariant. It is the source of non-holonomy.
To get a left-invariant basis, we must translate via Lv the basis {∂/∂x, ∂/∂y, ∂/∂p}0
at 0. We get the basis {∂/∂x + p∂/∂y, ∂/∂y, ∂/∂p}, that is {X1, X3, X2}.

Now let t be a vector of the contact plane K0 at 0. Since η = pξ and p = 0, we
have η = 0. Its translate T0 Lv(t) is therefore (ξ, pξ, π), and since η = pξ , T0 Lv(t)
is an element of the contact plane Kv and the contact structure K = {Kv} is nothing
else than the left-invariant field of planes left-translated from K0. In fact, the 1-form
ωJ is itself left-invariant and left translates ωJ,0 = dy.

5.4.6 Jets, Contact Geometry, and ‘Simplexity’

To give a deeper appreciation of the functional role of the contact structure, we refer
to works by Alain Berthoz. In [37], Berthoz introduced the idea of simplexity to
qualify the novel solutions found by biological evolution to handle the unthinkable
complexity of the real world. What he called the detour principle of simplexity
involves

[…] decomposing complex problems into simpler sub-problems using specialized modules,
then putting everything back together again [37, p. 22].

He gives the example of composite mechanical variables, as used in bioinspired
robotics:

Instead of the simple variable which [the roboticist] wishes to control, [he can use] a mixture
of variables combining position, speed, and acceleration [37, p. 31].

He particularly stresses the fact that ‘geometry is one of the tools of simplexity’
because:

The use of geometry and hence of space to organize neural activity leads to remarkable
simplifications with regard to cerebral processing, flexibility, and adaptability [37, p. 166].

We showed (see [38]) that the notion of jet provides a particularly good example
of simplexity. The complex problem is to calculate derivatives with respect to the
position variables (x, y) and/or integrate them. As pointed out by Jan Koenderink,
it is too complex to be carried out by point processors like neurons (see Sect. 4.3.5
in Chap. 4). The functional architecture of V 1 is a simplex solution for this com-
plex problem which has been discovered by evolution and which uses only simple
operations like taking values at points:

1. We add an independent variable p : simple neurons with orientation selectivity.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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2. The values of the new variable are organized in specialized modules, i.e. contact
elements (a, p) recording position and orientation: orientation hypercolumns.

3. The process simply involves measuring point values of (a, p).
4. To reconstruct, we introduce a functional architecture which ensures that taking

point values of the three variables (x, y, p) is indeed equivalent to differentiating
and/or integrating with respect to the initial variables (x, y).

But it is precisely this simplexity that formalizes the idea of a jet, the functional ar-
chitecture corresponding to a specific geometric structure, namely contact geometry
on the jet space.

5.5 Illusory Contours as Sub-Riemannian Geodesics

In this neurogeometrical framework, we can interpret in a principled way the vari-
ational process giving rise to the Kanizsa illusory contours constituting the second
example of strange phenomena evoked in the Introduction (Sect. 2.11, Fig. 2.3). In a
Kanizsa figure, the pacmen7 define two contact elements (a, p) and (b, q), and an
illusory contour interpolating between (a, p) and (b, q) is a skew curve 
 in VJ from
(a, p) to (b, q) which is at the same time:

1. A Legendrian lift of a curve γ in the base plane R
2, i.e. an integral curve of the

contact structure, with integrability condition p(x) = y′(x).
2. A curve that is ‘as straight as possible’, as already emphasized by Shimon Ullman

in 1972 [39] when he introduced the idea of a variational model ‘minimizing total
curvature’.

The simplest way to satisfy these two requirements is to model illusory contours using
geodesics for a natural metric because, since the variation of p measures the curvature
κ of γ , we minimize both the length and the curvature of the projection γ at the same
time. But, due to condition (1), the metric only has to be defined on the distribution
K of contact planes Kv. In our first synthesis of neurogeometry, in 1999, entitled
Vers une neurogéométrie. Fibrations corticales, structures de contact et contours
subjectifs modaux [40], geodesics were computed by solving the Euler–Lagrange
equations with the Lagrange multiplier expressing the integrability condition. And
these equations were reformulated in the framework developed by Robert Bryant
and Phillip Griffiths for variational models on Lie groups (see [41]). Later on, the
search for minima was naturally interpreted in terms of a suitable metric defined
on the contact distribution K . Such a metric is said to be sub-Riemannian, so the
modelling of illusory contours was embedded in the mathematical context of left-
invariant sub-Riemannian metrics on nilpotent Lie groups.

7The term ‘pacman’ comes from a famous Japanese video game in which a disc with a variable
angular sector representing a stylized mouth (the ‘pac-man’) has to find its way through a maze
while ‘eating pac-dots’ and at the same time avoiding enemies.

http://dx.doi.org/10.1007/978-3-319-65591-8_2
http://dx.doi.org/10.1007/978-3-319-65591-8_2
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So, in a rigorous sense, Kanizsa illusory contours are geodesics of a sub-
Riemannian geometry defined on the contact structure of the fibre bundle of 1-jets of
planar curves.

5.6 Curvature Detectors and 2-Jets

5.6.1 Data

Regarding the geometric features that are derivatives, or better, jets of curves, we
focused on 1-jets, that is, tangents and first-order derivatives. We saw in Sect. 4.3.5
of Chap. 4 and Sect. 5.4.6 that there are two fundamentally different implementations
of a tangent calculation:

1. One uses what Jan Koenderink called array processors, and for a curve with
equation y = f (x), corresponds to the standard school algorithm

f ′ (x) = lim
Δx→0

f (x + Δx) − f (x)

Δx
.

2. The other is a ‘simplex’ implementation, precisely the one carried out by V 1, us-
ing purely point processors which are tangent detectors. As already explained, it
consists in including the supplementary variable p as independent variable, mod-
ules (columns) measuring the different values of p, and a functional architecture
(the horizontal intracortical connections) ensuring that the contact geometry of
the 1-jets is indeed implemented.

However, there is a certain amount of experimental evidence to support the idea
that there are also curvature calculations, i.e. carrying out second derivatives on
curves. For example, Ohad Ben-Shahar and Steve Zucker [42, 43] went back to
the data of Bosking et al. [6] and explained that collinearity does not exhaust their
information content. Insofar as the process of integrating local orientations into global
curves uses the variance of the orientation, a certain curvature is processed by the
functional architecture. The question is therefore whether this is done in a classic
way using array processors which calculate second derivatives or in a simplex way
using point processors which are curvature detectors, introducing the curvature κ as a
new independent variable related by a specific functional architecture to the previous
variables p and a = (x, y).

The idea put forward by Zucker and Ben-Shahar is that curvature is implemented
in V 1 in the second way: there are point curvature detectors connected by a functional
architecture that implements the space of 2-jets of curves. This means that there is
detection of the osculating circles of curves at their regular points and ‘a curvature-
based field of long-range horizontal connections’ [42] which defines a relation, not of

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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Fig. 5.23 An osculating
circle detector. From
Ben-Shahar et Zucker [42]

collinearity, but of cocircularity between neighbouring orientation cells. Figure 5.23
shows an example.

In continuous neurogeometric models, the functional architecture of the space of
2-jets which extends the contact structure of the space of 1-jets corresponds to what
is known as the Engel structure.

5.6.2 Curvature, 2-Jets, and Engel Structure

In addition to x, y, p or x, y, θ , we have to add a fourth independent variable κ and
a supplementary 1-form which forces its interpretation as a curvature. This is what
Sarti, Citti, and I did together. We work in VJ = R

2 × R with the contact 1-form
ωJ = dy − pdx and the non-holonomic basis of the contact planes

{
X1 = ∂

∂x
+ p

∂

∂y
, X2 = ∂

∂p

}
,

the third basis tangent vector X3 being given by the Lie bracket

[X1, X2] = −X3 = − ∂

∂y
.

We introduce a fourth variable κ and working in the space ṼJ = R
2 × R × R, we

express the idea that the natural interpretation of κ is associated with the second
derivative f ′′(x) for curves of equation y = f (x). The space ṼJ of the {x, y, p, κ}
is the space of 2-jets J 2 (R, R) and its canonical structure, the Engel structure,8 is
the Pfaff system comprising the two 1-forms ωJ and τJ = d p − κdx .

The kernel of τJ in ṼJ is generated by the three tangent vectors

8Friedrich Engel was one of the main disciples and collaborators of Sophus Lie.
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Xκ
1 = ∂

∂x
+ p

∂

∂y
+ κ

∂

∂p
= X1 + κ X2 , X3 = ∂

∂y
, X4 = ∂

∂κ
,

whereas the kernel of ωJ extended to ṼJ is generated by Xκ
1 , X2, and X4. The dis-

tribution of planes is now Span
{

Xκ
1 , X4

}
, and it generates the whole Lie algebra

because

[
Xκ

1 , X4
] = −X2 = − ∂

∂p
,

[ [
Xκ

1 , X4
]
, Xκ

1

] = −X3 = − ∂

∂y
.

5.6.3 ‘Good Continuation’ and the Statistics of Natural
Images

In Sect. 3.6 of Chap. 3 and Sect. 4.4.5 of Chap. 4, we saw that the receptive profiles
of simple V 1 neurons and also their ‘vertical’ (hyper)column organization could be
reconstructed from the rather special statistical properties of natural images by mak-
ing the assumption that the neural coding optimizes from the information standpoint,
assuming sparse coding.

We can thus ask whether the ‘horizontal’ functional architecture of V 1 imple-
menting the 1-jets (tangents), 2-jets (osculating circles), and the Gestalt principle of
good continuation as reflected by the structure of the association field cannot also be
reconstructed from the statistics of natural images. This does indeed seem to be the
case. For example, in [44, p. 1935], Mariano Sigman et al. investigated ‘the geomet-
ric regularities of oriented elements […] present in an ensemble of visual scenes.’
They demonstrated ‘strong long-range correlations’ and showed that these are well
explained by ‘a very simple geometric rule, cocircularity’, i.e. the transition from
1-jets to 2-jets in our approach, this being a ‘natural extension of collinearity to the
plane’:

Our findings provide an underlying statistical principle for the establishment of form and
for the Gestalt idea of good continuation. […] The geometry of the pattern of interactions in
primary visual cortex parallels the interactions of oriented segments in natural scenes [44,
p. 1939].

The experimental method involves measuring the correlation between the orienta-
tions of the edges between an arbitrary origin a and another point b for a corpus of
N = 4 000 natural images comprising 1 536 × 1 024 pixels. Filters are 7 × 7 pixels,
the angular resolution 1 arcmin/pixel, and we use 16 orientations in [0, π ]. In pixels,
the coordinate differences Δx and Δy between a and b vary within [−256, 256]. In
order to treat edge orientations (which are cliffs in the level lines of the image) on
the same footing as line orientations (which are peaks and valleys), we use typical
even and odd filters G2 (a, θ) and G3 (a, θ) which are second and third derivatives of
Gaussians (more precisely, what are known as quadrature filters with a phase offset
of π/2) obtained by translating and rotating G2 (0, 0) and G3 (0, 0) (see Sect. 3.3.1
of Chap. 3), and we write the orientation energy as E (a, θ) = G2

2 (a, θ) + G2
3 (a, θ)

http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_3
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with a discretization of θ , e.g. in 16 values.9 For each point a of each image i ,
we seek θmax maximizing Ei (a, θ) and we say that an orientation is detected at
a if Ei (a, θmax) ≥ T , where T is a perceptually tested threshold. The correlation
function for all the images is given by the following average of integrals:

C (Δx,Δy, ϕ, ψ) = 1

N

i=N∑

i=1

∫∫
Ei (a, ϕ) Ei (a + Δa, ψ) da .

Figure 5.24 shows the results, and in particular, the correlation C (a, ψ) between
an orientation ϕ = 0 at 0 and an orientation ψ at a, for ψ = 0, π/8, π/4, 3π/8,
and π/2. To simplify, we can also consider histograms giving the number of times
an orientation ϕ at 0 coexists with an orientation ψ at a. In each vignette of the
figure, the correlation is represented for ψ constant (ψ is the second orientation at
the bottom of the vignette). Red is the maximum and dark blue the minimum. The
vignette Fig. 5.24f represents solutions to the cocircularity problem for orientations
at 20◦ (red) and 40◦ (green lines at 30◦ and 120◦), with 0◦ corresponding to the
vertical. This is based on an elementary geometrical observation: if 
 is the circle
of radius R and centred at (R, 0), hence with equation r = 2R cos (θ) and such that
the y axis is tangent to it at 0, and if c = (r, θ) is a point of 
, the tangent to 
 at c
makes an angle φ = 2θ + π/2 (modulo π ) with the x axis (see Fig. 5.25). Indeed,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = r cos (θ) = 2R cos2 (θ) ,

y = r sin (θ) = 2R sin (θ) cos (θ) ,

y′ = 2R
[

cos2 (θ) − sin2 (θ)
] = 2R cos (2θ) ,

x ′ = −4R cos (θ) sin (θ) = −2R sin (2θ) ,

tan (φ) = y′/x ′ = tan (2θ + π/2) .

5.7 Relationship with Wavelets

In Sect. 3.4 of Chap. 3, we saw that the ganglion cells in the retina and the cells
of the LGN carry out a wavelet analysis of the optical signal. Such a link between
natural vision and image compression was introduced by David Marr and extended
by Stéphane Mallat, among others. Standard wavelets in the form of a Laplacian
of a Gaussian are not able to follow the contours of objects. In order to extend the
idea, we can first introduce oriented wavelets resembling the RPs of simple V 1
cells. However, by taking biomimetics a little further, and observing the functional
architecture for edge detection in V 1, Mallat introduced the idea of bandlets, along

9There are some technical problems in the definition of the energy, but these are well known in
signal theory. To obtain good results, the even/odd filters must be refined, for example, taking the
Hilbert transform of G2 instead of G3.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Fig. 5.24 Correlation C (a, ψ) between an orientation ϕ = 0 at 0 and an orientation ψ at a in
a corpus of 4 000 natural images. Each vignette represents the correlation for constant ψ , where
ψ is the second orientation shown at the bottom of the vignette. Red is the maximum and dark
blue the minimum. In (a), strict collinearity is represented by a very long horizontal lobe: there is
only correlation with (a, 0) when a lies on the horizontal axis. As the orientation ψ rotates, this
collinearity lobe rotates and shortens and a second lobe appears. For ψ = π/2 in (e), the two lobes
become equivalent and symmetric, with an orientation of their symmetry axes at π/4 and 3π/4.
f Solutions to the cocircularity problem for orientations 20◦ (red) and 40◦ (green lines at 30◦ and
120◦), with 0◦ corresponding to the vertical. From Sigman et al. [44]. Copyright (2001) National
Academy of Sciences, USA
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Fig. 5.25 If 
 is the circle
with equation
r = 2R cos (θ), so with
radius R, centre at (R, 0),
and tangent to the y axis at 0,
and if c = (r, θ) is a point of

, the tangent to 
 at c
makes an angle of
φ = 2θ + π/2 (modulo π )
with the x axis

Fig. 5.26 Comparing Stéphane Mallat’s bandlet method with JPEG and JPEG-2000. The gain in
efficiency is spectacular. See the home page of the start-up company Let it wave, and also Mallat
and Peyré [45]

with a new algorithm. The compression properties are remarkable since a human
face can be coded with only 500 bytes (see Fig. 5.26).

As stressed by Mallat and Peyré [45]:

Wavelet bases [in the form of Laplacians of Gaussians] take advantage of isotropic regularity
on neighbourhoods of varying size. The existence of geometric regularity can be interpreted
as an anisotropic regularity. Although discontinuous at a point on a contour, the image
can nevertheless be differentiable in the direction of the tangent to this curve. The bandlet
transform exploits this kind of anisotropic regularity by constructing orthogonal vectors
which extend in the direction of maximal regularity.

The first bandlets were constructed by Erwan Le Pennec [46]. The idea was to relate
the fact that wavelet coefficients are maximal near the edges with the Gestalt principle
of good continuation along the edges.
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The analogy between neurophysiology (the retina and the V 1 area) and image
compression (wavelets and bandlets) is therefore profound, and we come back to
the idea that the constraint of compression may be the evolutionary origin of the
geometry.

5.8 Structure of the V2 Area

Having explained the second part of the functional architecture of V 1 comprising
the horizontal connections, let us take a moment to discuss further clues regarding
the structure of the other areas in the visual cortex, starting with area V 2. We have
already mentioned V 2 on many occasions, in particular in Sects. 3.1 and 3.2.6 of
Chap. 3 and Sects. 4.1, 4.4.7, 4.9.4, 4.10.4, and 4.12.1 of Chap. 4. V 2 receives inputs
directly from V 1, and also from the thalamus, via the pulvinar nuclei among others.
It also gets feedback from the dorsal stream (the ‘Where’ pathway) and the ventral
stream (the ‘What’ pathway).

When discussing the blobs in V 1 in Sect. 4.10.4 of Chap. 4, we explained how V 2
decomposes into ‘stripes’. For example, in the macaque, V 2 comprises 14 sets of
stripes which are well-defined functional regions. We saw that they can be classified
in three groups: thin, pale (or intermediate), and thick. They are between 1 and
2 mm wide and a complete series thin/pale/thick measures about 4 mm. Each type of
stripe tends to process a particular quality: colour and luminosity for the thin ones,
orientation, direction, and depth (binocular disparity and stereopsis) for the thick
ones, and orientation and shape for the pale ones. V 2 is an essentially binocular area,
and this is why a good demarcation criterion between V 1 and V 2 is the end of the
ocular dominance domains of V 1.

In V 2, we encounter the same kinds of neurogeometric issues as in V 1, regarding
the relations between the different retinotopic maps. For example, Ts’o et al. [47]
studied the iso-orientation and iso-disparity lines in a thick band for the two geomet-
ric features orientation and binocular disparity. They observed their transversality
relations. There is an excellent discussion of this structure in the chapter by Roe [48]
in The Primate Visual System.

In the standard view, the blobs of V 1 connect to the thin stripes of V 2 (colour),
the interblob regions of layers 2/3 of V 1 to the pale stripes of V 2, and layer 4B of V 1
to the thick stripes of V 2. However, the actual situation seems to be more complex,
for example, with the interblobs also connecting to the thick stripes.

Regarding the receptive fields, it can be shown that, by taking natural images as
inputs and using plausible models, the V 2 neurons have two preferred orientations,
the first p ∈ P and the second s ∈ S, and this allows them to detect corners, junctions,
and crossings. The orientation domains are larger than those in V 1, and each domain,
for a given primary orientation p, is structured in hypercolumns for the secondary
orientation s (see, e.g. Sit and Miikkulainen [49]). An idealized model would thus
be a bundle with 2D fibre, but also implementing a 1D sub-bundle:

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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P × S × R
2 −→ P × R

2 −→ R
2 , (p, s, a) �−→ (p, a) �−→ a .

Regarding direction, the situation is rather subtle. There is no direction map in the V 1
area of the macaque (while there is in the cat, the ferret, and carnivores, and we shall
return to this in Sect. 5.11), but there is in the thick and pale stripes of V 2 (and not in
the thin stripes). As direction is linked to motion, the latter is therefore processed in
V 2. Moreover, the thick stripes project onto the middle temporal area MT (V 5). In
fact, to be more precise, in V 1, there are neurons sensitive to different directions but
the point is that they are not segregated by a functional architecture, whereas they are
in V 2. This is the same phenomenon as the absence of orientation columns in rodents
that was discussed in Sect. 3.8 of Chap. 3 and in Sect. 4.2 of Chap. 4. Figure 5.27
from Lu et al. [50] shows the pinwheels that form the directional domains of V 2,
still for the macaque, while Fig. 5.28 shows the pinwheels with segments indicating
the preferred orientation and arrows indicating the preferred direction, the length of
the arrow being proportional to the selectivity.

Area V 2 plays a very important role in the geometrical constitution of shapes
because it ‘calculates’ local geometrical features involving several orientations such
as occlusions of contours, crossings, or complex illusory contours, especially in the
thin and pale stripes.

In particular, neurons in V 2 detect virtual orientations which are orthogonal at
ends of segments (see Figs. 5.29 and 5.30 due to Esther Peterhans and Rüdiger von
der Heydt [51]). This can explain subtle phenomena such as the illusory contours
produced in the comb effect shown in Fig. 5.31, by assuming that the responses of
V 1 to those segments that are genuinely contained in the stimulus (the teeth of the
comb) are inhibited at the end points by inversion of the response, with V 2 activating
the orthogonal direction.

This is a good example of inferred contours in the sense of Anna Roe:

Inferred contours are not defined by luminance contrast but rather by more global features that
are perceived only by grouping multiple cues across space. They include occluded contours,
texture element borders, and have been referred to as higher-order contours, illusory contours,
cognitive contours, and anomalous contours [48, p. 121].

Illusory contours like the one in the comb effect have been studied in the cat, among
other animals, by Sheth et al. [53]. Figure 5.32 shows the orientation maps for real
objective orientations (Fig. 5.32c) and illusory subjective orientations (Fig. 5.32d).
Pinwheels appear for the difference between Fig. 5.32c and d, and the histogram of
this difference has a sharp peak at angle 0 which shows that the V 2 neurons respond
strongly to subjective contours.

Fig. 5.33a and b from [53] shows, as we have seen, that the situation is differ-
ent in V 1. The peak of the difference between Fig. 5.33a and b lies at π/2, which
corresponds to real orientations.

Thanks to the treatment of complex boundaries in the thick stripes and surface
qualities in the thin stripes, V 2 also plays a role in ‘calculating’ fundamental segrega-
tion relations between a figure and its background in a perceived image, a calculation

http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_4
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Fig. 5.27 Pinwheel map forming the directional domains in the macaque V 2 area (scale bar 1 mm).
In the upper figure, each panel represents the difference between the direction indicated by the arrow
and the opposite direction. From Lu et al. [50]
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Fig. 5.28 Pinwheels with segments indicating the preferred orientation and arrows indicating the
preferred direction. The length of the arrow is proportional to the selectivity. From Lu et al. [50]

that constitutes one of the great challenges in the theory of perception. As noted by
Anna Roe, the problem is to determine:

[…] how boundaries and surfaces relate to each other, thereby forming the initial stage of
figure/ground segregation [48, p. 127].

The problem of attributing edges to one of the two regions that they separate (border
ownership) cannot be solved by V 1 alone. However, V 2 responds to edges belonging
to a surface because its receptive fields respond, not only to pieces of lines but also
to segments bounding one of the two half-spaces they separate. Background/figure
segregation then results from a global and highly contextual calculation that can
integrate these local edge-assigning data.

5.9 Colour and Area V4

5.9.1 Colour Constancy: Semir Zeki and René Thom

After areas V 1 and V 2, information about colour is processed in particular in area
V 4, as shown by Semir Zeki, then in the infratemporal (IT) area, where the colours
are integrated with the treatment of shapes in the ventral pathway. Since the late
1970s, Semir Zeki has done much work on the way the non-retinotopic V 4 area
produces a perception of colour constancy over quite extensive spatial regions, while
these colours are in fact clearly variable with regard to the spectral composition of
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Fig. 5.29 In this figure and the following, the two discs represent the stimulus (bar or grating)
with orientations of 0◦ and 90◦. The rows of windows represent the responses of the neuron to the
stimulus gradually rotated through 0◦– 180◦, with time on the horizontal axis and the angle on the
vertical axis. Left A neuron of V 1 responding to a preferred orientation p. Right When the stimulus
is a comb whose teeth have the orientation p, the neuron responds to this orientation and does not
respond to the virtual edge with the orthogonal orientation p⊥. Redrawn from Peterhans and von
der Heydt [51] and von der Heydt and Peterhans [52]

Fig. 5.30 Left Neuron in V 2 responding to a preferred orientation p. Right When the stimulus is a
comb whose teeth have orientation p, the neuron does not respond to this orientation, but responds
rather to the virtual edge with the orthogonal orientation p⊥. Redrawn from Peterhans and von der
Heydt [51] and von der Heydt and Peterhans [52]

the stimuli (see his celebrated book A Vision of the Brain [54]). On the one hand,
we only have to observe the pixels of a digital image to convince ourselves of this
extreme variability, and on the other hand, we only have to recall how colour can be a
predicate in statements like ‘the ball is red’ to convince ourselves of its constancy. The



5.9 Colour and Area V 4 315

Fig. 5.31 Comb effect involving the V 2 area

Fig. 5.32 c Orientation maps in the cat for real objective orientations. d Orientation maps for
illusory subjective orientations. There are pinwheels for the difference between (c) and (d). The
histogram of this difference has a sharp peak at 0, showing that the V 2 neurons respond strongly to
the subjective contours. From Sheth et al. [53]

Fig. 5.33 a and b Still for the cat, orientation maps of the V 1 area for objective and subjective
orientations, respectively. In contrast to the situation in V 2 (Fig. 5.32), the peak in the difference
between (a) and (b) lies at π/2, which corresponds to real orientations. From Sheth et al. [53]
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Fig. 5.34 Old world
monkey. Projections of the
CO blobs of V 1 onto the thin
stripes of V 2 and the
interblobs onto the pale and
thick stripes of V 2, followed
by projections of the thin and
pale stripes of V 2 to V 4 and
the thick stripes of V 2 onto
V 5 (MT). From Shapley and
Hawken [57]

assumption was that the retinotopic neurons of V 1 would be ‘wavelength-only’, i.e.
sensitive to true wavelengths λ, even if they include the processing described in the
last section, whereas the non-retinotopic neurons of V 4 would be ‘colour-only’, i.e.
contextually sensitive to a given colour, even when that colour does not necessarily
correspond to the actual wavelengths. Colour constancy over homogeneous regions
bounded by edges would thus involve V 4 through highly contextual non-retinotopic
effects.

Semir Zeki’s idea can be formulated in terms of fibre bundles, as proposed by
René Thom independently in [55, p. 248, Chap. 6] (see our paper [56]). Let R = R

2

be the visual field. We consider the bundle π� : R
2 × � → R

2 with base space R
2

and fibre the colour space �, e.g. the hue circle or the 3D hue–saturation–lightness
(HSL) space. The objective colour is then a generally highly non-smooth section σ of
this bundle. However, the colour space � is categorized by the perceived colours Ci ,
i = 1, . . . , n. The problem is then to approximate σ by a much smoother section �,
but one which can have qualitative discontinuities. This is a problem of segmentation.
We shall encounter another example of such a problem in the second volume. Colour
constancy corresponds to regions Wk of R

2 whose image σ (Wk) under the section
σ is entirely contained in a single chromatic category Ci .

Figure 5.34, also due to Shapley and Hawken [57], shows projections of the CO
blobs of V 1 onto the thin stripes of V 2 and the interblobs onto the pale and thick
stripes of V 2, along with projections of the thin and pale stripes of V 2 to V 4 and
the thick stripes of V 2 onto the motion area V 5 (MT), all this for the case of the old
world monkey.

Area V 4 would thus appear to be specialized in colour processing, as claimed by
Semir Zeki, but this process seems to begin in the V 1 area. This issue is still debated.
Moreover, the functional organization of V 4 is rather complex with colour regions
separated from orientation regions (see, e.g. Tanigawa [58]).
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5.9.2 Objectivism Versus Subjectivism

The processing of colour provides an interesting example of the way contemporary
neurophysiology can revitalize, and often solve, philosophical problems which have
a long and hotly disputed history. There are no end of conceptual reflections on
colour, even if we only consider those produced in the last century, as exemplified by
Husserl and Wittgenstein. But the results we have brought together here can throw
light on one of the most intriguing problems for these authors, namely the objective
or subjective nature of colour.

This problem was very clearly spelt out in a target article by Francisco Varela,
Evan Thompson, and Adrian Palacios [59], published in 1992 in Behavioural and
Brain Science under the title Ways of colouring: Comparative colour vision as a case
study in cognitive science. The authors discuss the question of colour in the frame-
work of an enactive theory of perception which aims to go beyond conventional
antinomies: computational objectivism versus neurophysiological subjectivism, ex-
ternal objectivity versus internal cognitive processing, detection of objective proper-
ties versus construction of enacted properties, heteronomous input–output systems
versus autonomous self-organized systems. Their aim is ‘to offer a new empirical and
philosophical perspective on colour vision’ which is experiential, i.e. not objectivist,
and ecological in the sense of Gibson, i.e. not subjectivist.

Let S be a coloured surface made up of points s. There is a map R : S → �, s �→
R(s) from S to the space � of activities of colour receptors (the three types of cone).
However, due to post-retinal processing which involves the chromatic oppositions
R/G and B/Y, we have a composite map C(s) = M R(s), where M is the post-retinal
transformation. The problem then is to go beyond the classic antinomy of objectivism
versus subjectivism as formulated in the following way by the authors:

1. Thesis: ‘The distal world can be specified independently of the animal; it casts
images on the perceptual system whose task is to recover the world appropriately
from them’.

2. Antithesis: ‘The perceptual system projects its own world and the apparent reality
of this world is merely a reflection of internal laws of the system’.

In our response to this target article (reprinted in [60]), we put forward a solution
to this dilemma based on Thom’s idea, as discussed in Sect. 4.10.3.2 of Chap. 4 on
binocular rivalry and in the previous section on homogeneous surfaces. From the
objectivist computational standpoint, the cognitive task of the visual system is to
reconstruct external 3D visual scenes E from their highly ambiguous 2D retinal
projections. As we have seen, the geometric information about E is encoded in the
qualitative discontinuities of the optical signal as the apparent contours of objects
and provides a geometric configuration (W, K ), where W is the spatial extent of E
and K a set of qualitative discontinuities delimiting the objects and structuring their
shape. So what of sensory qualities like colour, which fill up the different regions of
W bounded by K ? The objectivist approach makes the following assumptions:

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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1. At each point w of W , there is a well-defined objective value R(w) of the re-
flectance of surfaces in E .

2. R(w) varies continuously as a function of w, except along the discontinuities of
K .

3. The perceptual quality of colour C(w) encodes R(w).

However, this is not plausible. Indeed, as we have seen, cortical processing of retinal
transduction converts the reflectance R(w) into the perceptual quality of colour C(w)

in a much more complex manner than a simple coding. Let σ be the relation between
R(w) ∈ R, where R is the space of reflectances, and C(w) ∈ Q, where Q is the
space of colours. The above antinomy comes from a misinterpretation of the relation
σ :

1. For the objectivist, C(w) is a simple coding of R(w), and σ can effectively be
ignored because it is an isomorphism between R and Q.

2. For the subjectivist, on the other hand, C(w) cannot be reduced to R(w), and σ

is an incommensurability relation, resulting in an explanatory gap.

The solution is that the colour space Q is like a space of internal states of the
perceptual system S, whereas the values R(w) are like external stimuli. There is
thus no direct correspondence R(w) → C(w), but only the realization of an internal
state C(w) cued by a stimulus R(w). Then C(w) is the dynamical response of the
system S to the stimulus R(w), and the colour opposition property is a characteristic
feature of this.

The perceptual internal states are attractors of internal dynamics X defined on the
internal space Q. Clearly, Q and X are highly dependent on the species, whereas
R is objective. The discontinuous maps C(w) along K thus result from complex
dynamical processes. Here we have a field of internal dynamics Xw controlled by
W , and C(w) is the attractor of Xw which is selected by the stimulus R(w). The
latter is a control parameter for Xw and W × R is a control space. In this kind of
morphodynamic model, the qualitative discontinuities comprising K are interpreted
as dynamical bifurcation events: when w crosses K , the attractor C(w) selected by
R(w) bifurcates towards another attractor, and this induces a qualitative discontinuity
(see Sect. 4.10.3.2 of Chap. 4).

The relation σ between R(w) and C(w) is therefore nothing like a simple map
between spaces. It results from the composition of at least four processes:

1. An objective application W → R, w �→ R(w).
2. An internal dynamical field σ : W → X, w �→ Xw, embedding the extension W

of the visual scene E in the (infinite-dimensional) function spaceX of the internal
dynamics X .

3. A selection process which, depending on the objective input R(w) and the general
selection rules, selects an attractor Aw of Xw.

4. A phenomenological presentation of Aw as a quality C(w).

We understand the sense in which these morphodynamical models bring together
computational objectivism and neurophysiological subjectivism. There is no conflict

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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between the thesis that the colour system detects the reflectance and the antithesis
that it constructs a specific response to the reflectance. As a control parameter, R(w)

selects an attractor C(w) and this is in fact a construction. However, insofar as C(w)

is causally controlled by R(w), C(w) is cued by R(w) and thus detects R(w). The
antinomy arises due to the confusion between the stimulus R(w) and the attractor
C(w) which it selects, that is, between the external control of the internal dynamics
Xw and the internal state Aw it determines.

5.10 Motion and the MT Area (V5)

Located in the superior temporal sulcus (STS) and investigated by Zeki and Dubner
in the 1970s, then Barlow and Albright in the 1980s, then Van Essen and Orban in the
1990s, the middle temporal (MT) area, also known as V 5, specializes in analyzing
motion. For example, Fig. 4.11 from Gur and Snodderly [61] in Sect. 4.2 of Chap. 4
shows three projections from V 1 to MT in the macaque. One goes from layer 4Cα

of V 1 (where the magnocellular pathways of the LGN are preferentially projected)
to the MT via the spin stellate neurons of layer 4B of V 1. Another goes from layer
6 of V 1 and another from layer 4Cm (m middle, located in V 1 between layers 4Cα

and 4Cβ) to MT via layer 3B of V 1 which projects onto the thick stripes of V 2,
which in turn project onto MT. The excellent review [62] by Richard Born and David
Bradley discusses the other pathways to MT through the superior colliculus and the
thalamic nucleus of the pulvinar.

For their part, the receptive profiles are larger than those of V 1, integrating more
information and processing five features of the stimuli: (1) retinal position (MT is
a retinotopic area), (2) direction of motion, (3) speed, (4) binocular disparity, (5)
size of the stimulus. The link with binocular disparity, i.e. the way the horizontal
shift between the two retinal images of a single object is an indication of depth, is
important. The study [63] by Gregory DeAngelis and William Newsome presents a
schematic view of the functional architecture of MT dealing with the direction of
motion and binocular disparity.

5.11 Models of Direction and Singularities of Functions

Before discussing the genetic control of neurogenesis, let us return for a moment to the
geometric feature of direction (of motion) which complements the geometric feature
of orientation already analyzed at length. During development, selective responses
to direction are established after selective responses to orientation and require a rich
visual experience. In carnivorous species like cat, there is a functional architecture
devoted to direction in V 1. It does not occur in the V 1 area of species like the
macaque where, as we saw in Sect. 5.8, it is found in V 2.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_4
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5.11.1 Projection of Singularity Lines from V2 to MT

For these primates, the reader may consult the paper [64], in which Shigeru Tanaka
and Hiroyuki Shinbata simulate the projection of singularity lines or fractures from
V 2 onto MT . They show that the directions vary continuously and that the responses
are unidirectional, except along the fractures, which act like lines of discontinuity
across which the direction jumps by π and where the responses are thus bidirectional.
Moreover, all directions are present at the ends of the fractures. These lines come
about because orientations are defined moduloπ , while directions are defined modulo
2π . Fractures result from balancing between these two geometrical features.

In their model, Tanaka and Shinbata considered MT as a network of neurons
with lateral connections U j, j ′ with synaptic weights in the form of Laplacians of
Gaussians joining neurons at positions j and j ′. These connexions are modulated by
synaptic inputs σ j,θ from V 1 and V 2, with σ j,θ = 1 if there is a connection between
the neuron j of MT and a neuron of V 1/V 2 coding the orientation θ . Let 
θ,θ ′ be
the correlation between the activities of two neurons of V 1/V 2 projecting onto j
and j ′, respectively, and coding the orientations θ and θ ′, respectively. A key feature
of the model is to take a sum of two Fourier components for 
, the first specified
modulo 2π (directions) and the second modulo π (orientations):


θ,θ ′ = c1 cos
(
θ − θ ′) + c2 cos

(
2

(
θ − θ ′)) .

Then by applying standard learning methods, we obtain direction and orientation
maps. The latter depend on the parameter r = c2/c1, which measures the strength
of the direction c1 with respect to that of the orientation c2. For r ∼ 0, the only
singularities are points. For r = 1, however, we obtain Fig. 5.35, in which arrows
indicate the preferred directions and the fractures along which the direction jumps by
π and reversals are clearly visible. For large enough r , the directions become random.
Figure 5.36 shows a 1D section of Fig. 5.35. We see the jumps in the direction across
these lines of discontinuity.

5.11.2 Swindale’s Model

Here we pause for a moment to consider the work by Nicholas Swindale, Amiram
Grinvald, and Amir Shmuel on area 18 of the cat [65]. The preference curves have
one peak for the orientation and two for the direction. Figure 5.37 from [65] shows the
orientation pinwheel map (Fig. 5.37a), the width and height of the preference peak
(Fig. 5.37c, e), the direction pinwheel map (Fig. 5.37b), the strength of selectivity
(Fig. 5.37d), and the relations between the fractures (black lines) of the direction
map and the singularities of the orientation pinwheels with their chiralities +/−
(green/red) (Fig. 5.37f).
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Fig. 5.35 Model of
preferred directions and
orientations in area MT
when these are balanced.
Arrows indicate the preferred
directions. The fractures
along which the direction
jumps by π are clearly
visible. From [64]

Fig. 5.36 1D section of
Fig. 5.35. The jumps in
direction across the lines of
discontinuity, i.e. the
fractures, are clearly visible.
From [64]

These results raise several interesting questions about how to model this. When
we gave a geometric treatment of the orientation maps in the geometrical framework
of fibre bundles, we considered the set S of pinwheels si , and with each point a of
R

2 − S, i.e. with each regular point, we associated the preferred orientation pa of the
orientation column corresponding retinotopically with this position. The orientation
map thus corresponds to a section σ : R

2 − S → V = R
2 × P

1 of the bundle
π : V = R

2 × P
1 → R

2 defined on R
2 − S. As we saw in Sect. 4.8.3 of Chap. 4,

the closure of the image σ
(
R

2 − S
)

of σ in V is defined on the whole of R
2, but

it is no longer a section because above the si there is not just one point of the fibre
P

1
si

, but the whole fibre P
1
si

. To see what is happening here, we have to blow up the
singularities si and lift each field line γ of the orientation field which leaves s1 at
angle θ1 to arrive at s2 at angle θ2 in the curve 
 of V starting at height θ1 in the fibre
P

1
s1

above s1 to arrive at height θ2 in the fibre P
1
s2

above s2. It is the continuous limit
of this model, in which all points become centres of infinitesimal pinwheels, that we
have used as an idealization of V 1.

However, let us remain in a discrete model with a finite and somewhat limited
number of pinwheels and consider the directions θ rather than orientations p. The
directions are organized according to a functional architecture made up of direction
columns. In the fibre bundle framework, we go from the fibre P

1 to the fibre S
1,

considering the bundle δ : R
2 × S

1 → R
2 and representing the direction field by a

section τ of δ above R
2 − S, where S is the singular locus of fractures and direction

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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Fig. 5.37 Area 18 of the cat. a Pinwheel orientation map. c and eWidth and height of the preference
peak. b Pinwheel direction map. d Strength of direction selectivity. f Relations between fractures
(black lines) of the direction map and singularities of the orientation pinwheels with their chiralities
+/− (green/red). M and P denote the medial and posterior axes of the cortex, respectively. Scale
bar 1 mm. From Swindale et al. [65]

pinwheels. But now we would like to take into account the fact that the preferred
direction θa at a ∈ R

2 − S is the maximum of a Gaussian function Fa (θ) defined
on the whole fibre S

1
a . The field is therefore now defined by the family of functions

Fa (θ) : S
1 → R, parametrized by R

2 − S. The section τ : R
2 − S → R

2 × S
1 is

then found by taking the maximum of Fa (θ) at each position a, i.e. the point where
dFa (θ)/dθ = 0, which is unique if Fa is Gaussian. These are called critical points
of Fa .

Let us suppose then, as in the paper by Swindale et al. [65], that the probability
functions Fa can be more complicated than Gaussians and can have several maxima,
for example, two. There will thus be competition between these two maxima, i.e.
two preferred directions θ1 and θ2, and when a varies, there could be a reversal of
dominance between θ1 and θ2. As the fibre is the compact manifold S

1 rather than R,
the two maxima are separated by two minima and if the critical points of Fa(θ) are
set above the regular points a, we obtain a surface with four sheets, two preferred in
the sense of having locally maximal selectivity, corresponding to the two maxima,
and the two others having locally minimal selectivity, corresponding to the minima.
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If one of the maxima collides with one of the minima and disappears, then there
remains only one preferred sheet.

5.11.3 Singularities and Universal Unfoldings

This brings us naturally to a mathematically well-known context, namely unfoldings
of singularities of differentiable functions, already discussed in Sect. 4.10.3.2 of
Chap. 4 in the context of binocular rivalry and in Sect. 5.9.2 when discussing the
objectivity and/or subjectivity of colours. This highly technical theory was developed
in the 1960s by great geometers like Hassler Whitney, René Thom, Vladimir Arnold,
Bernard Malgrange, and John Mather. For a review of these results, the reader is
referred to our 1982 compilation [66].

The general framework of the theory can be described in a little more detail as
follows. We wish to analyze the structure of differentiable functions f : M → R

defined on a differentiable manifold M which we call the internal space, in our
case M = S

1. Let F be their functional space. It is an infinite-dimensional vector
space over R, because there are an infinite number of degrees of freedom to slightly
deform f . We introduce a natural topology T on F, known as the Whitney topology.
When M is compact, which is our case, this is simply the uniform convergence of
functions and all their partial derivatives. When M is not compact, it controls in
addition the behaviour of functions at infinity. We consider the action on F of the
group G = Diff (M) × Diff (R) of diffeomorphisms of M and R, i.e., differentiable
coordinate changes of the source and target. This specifies an equivalence on the f ,
and we wish to study the structure of the f up to this equivalence. To begin with, we
introduce the key idea of structural stability: by definition f is structurally stable if
any function g close enough to f in F in the sense of the topology T is equivalent
to f , in other words if the differentiability type of f does not change under small
deformations. Two fundamental theorems can then be proven. First, Morse theorem,
which says that f is structurally stable if and only if:

1. All its critical points, i.e., points where the gradient of f vanishes, are non-
degenerate minima, saddle points, and maxima (non-degenerate means they do
not arise from the merging of several critical points).

2. All its values at critical points, called critical values, are distinct.

So according to Morse theorem, there are only two causes of instability: (i) degener-
acy of critical points, which leads to what are known as bifurcation catastrophes, and
(ii) equality of critical values, which leads to what are known as conflict catastrophes.

By recurrence, we can attribute a sort of degree of instability c to the functions
f : a structurally stable function will be of degree 0, the coincidence of two critical
values will increase c by 1, as will the merging of one critical point with a non-
degenerate critical point. For small values of c, it is easy to see what is happening.
But c can be infinite and lose all intuitive meaning. For example, a constant function
on an open set of M is infinitely unstable.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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The second fundamental theorem concerns universal unfolding of local singulari-
ties with finite codimension. The exact theory is highly technical, but fortunately it is
also fairly intuitive for small values of the degree of instability c. We assume that M
is reduced to a small neighbourhood U (and even to an infinitesimal neighbourhood)
of a point where f is singular. LetFU be the space of the g on U . We consider f ∈ FU

and let f̃ be its orbit under the action of the group GU = Diff (U )× Diff (R). If f is
structurally stable, f̃ contains an open neighbourhood of f , that is, all functions close
enough to f . However, if f is unstable, this is not the case and locally f̃ is a strict
subspace of FU whose ‘tangent space’ T f f̃ at f can be defined. When the degree
of instability is not too high, T f f̃ admits supplementary spaces W at f in FU (this
notion can be rigorously defined) and these have a finite dimension equal to c. The
difference in dimension between FU and f̃ is therefore c, even though both dimen-
sions are infinite, and this is why c is called the codimension of f . If we parametrize
the points a ∈ W by local coordinates (a1, . . . , ac) in such a way that (0, . . . , 0)

corresponds to f and the c basis vectors (1, 0, . . . , 0), (0, . . . , 1, . . . , 0) (with the 1
in the i th place), (0, 0, . . . , 1) correspond to the functions hi , i = 1, . . . , c, then all
functions g close enough to f in W can be written in the form

g = f +
c∑

i=1

ai hi .

This means that the hi form a minimal system of functions which are not equiva-
lent to f , which are linearly independent, and which can generate with f̃ a whole
neighbourhood of f in FU , in such a way that each function close enough to f can
be written in the form f ′ + ∑i=c

i=1 ai hi , with f ′ ∈ f̃ equivalent to f . We see that
such a W parametrizes a family fa of functions such that f0 = f . This family is
called a deformation or an unfolding of f . The space W is called the external space
of this unfolding. The universal unfolding theorem asserts that all the supplementary
spaces W constructed in this way are equivalent in a well-defined sense and that
they classify all the possibilities for stabilizing f by small deformations. They are
called universal unfoldings. When the codimension c is large enough, things get
more complicated and refinements are needed.

Returning to the global case, e.g. compact M , if f is structurally stable except at
an isolated singular point, we may then unfold this local singularity by deforming f
in one of its neighbourhoods U without changing it qualitatively elsewhere.

We shall use this notion of universal unfolding in the case of a 1D internal space
M = S

1, with codimension ≤ 2 since, in our case, the parameters a of the families
of functions Fa (θ) under consideration vary in the external space W = R

2, which
is 2D. In most applications, the functions f are a sort of energy function with the
form of a potential well with several minima at the bottom of the well. Our case is
analogous because the maximization of a tuning curve Fa (θ) with one or more peaks
is equivalent to the minimization of fa (θ) = 1/Fa (θ) or fa (θ) = − log (Fa (θ))

(as for the information associated with a probability distribution) which has the form
of a potential well as shown in Fig. 5.38.
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Fig. 5.38 Maximization of a tuning curve F (θ) is equivalent to minimization of an associated
potential well f (θ)

We shall use the best known of the universal unfoldings fw, that of the singularity
known as the cusp, corresponding to the merging of three non-degenerate critical
points, two minima and one maximum which separates them. We have already seen
this in Sect. 4.10.3.2 of Chap. 4. The codimension c of f0 is 2, so the external space
W is 2D. One of the parameters, called the splitting factor, controls the fact that the
potential has just one or three non-degenerate critical points. A second parameter,
called the bias factor, controls the dominance of one of the minima over the other in
the region of W where fw has three critical points. Figure 5.39 (repeat of Fig. 4.128
in Sect. 4.10.3.2) shows this universal unfolding. We see that W is partitioned into 3
regions by a cusp curve with two branches Kb,l and Kb,r and a symmetry axis Kc :

1. The exterior of the cusp, a region where fw has only one minimum, which is
non-degenerate.

2. The interior of the cusp where fw has two non-degenerate minima separated by a
non-degenerate maximum, this region being itself partitioned into two sub-regions
by the symmetry axis of the cusp:

2.1. In the left-hand region lying between Kb,l and Kc, it is the right-hand mini-
mum which dominates.

2.2. In the right-hand region lying between Kc and Kb,r , on the other hand, it is
the left-hand minimum which dominates.

Along Kc, the two minima are at the same height, and these special values of w there-
fore correspond to a conflict catastrophe (of codimension 1). Along the branches Kb,l

and Kb,r of the cusp, one of the minima merges with the maximum at a point of inflec-
tion and these special values of w therefore correspond to bifurcation catastrophes
(of codimension 1).

The decomposition of W into regions is called a stratification, and the sub-
manifolds Kb,l, Kb,r , Kc, and {0} of W are called strata. Note the relation between the
dimension dk of the strata Sk and the codimension ck of the associated singularities
fw for w ∈ Sk : indeed, we have ck = c− dk . The function f0 has codimension 2 and
corresponds to the cusp point which does indeed have dimension c − 2 = 0 and the
strata Kb,l, Kb,r , Kc corresponding to singularities of codimension 1 do indeed have
dimension c − 1 = 1.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_4
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Fig. 5.39 Repeat of Fig. 4.128 from Sect. 4.10.3.2 of Chap. 4. Universal unfolding of the cusp
singularity f0 (merging of three non-degenerate critical points, two minima and one maximum) of
codimension c = 2. The external space W is 2D. It is partitioned into 3 regions by a cusp curve
with two branches Kb,l and Kb,r and a symmetry axis Kc. Exterior to the cusp, fw has only one
non-degenerate minimum. In the interior of the cusp, fw has two non-degenerate minima separated
by a non-degenerate maximum. Between Kb,l and Kc, it is the right-hand minimum that dominates,
and between Kc and Kb,r , it is the left-hand minimum

A fundamental consequence of this formula is the ‘transitivity’ of the universal
unfoldings: if we consider a 1D section in W transverse to Kc, it is a universal
unfolding of the singularity of codimension 1 (conflict between the two minima)
that fw exhibits along Kc. Likewise for Kb,l and Kb,r (where the singularities of
codimension 1 are points of inflection). Figure 5.40 shows such a transverse section
transverse with the three singularities I , J , and I ′ corresponding to Kb,l, Kc, and
Kb,r , respectively.

http://dx.doi.org/10.1007/978-3-319-65591-8_4
http://dx.doi.org/10.1007/978-3-319-65591-8_4
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I J I'

Kb Kb

Kc

Fig. 5.40 Transitivity of universal unfoldings. We consider a 1D section T in W transverse to Kb,l,
Kc, and Kb,r at the points I, J, I ′. Locally at I, J, I ′ and for t ∈ T , (T, ft ) is a universal unfolding
of the singularity f I , f J , or f I ′ of codimension 1

Fig. 5.41 Universal unfolding of the conflict catastrophe in the vicinity of J (see Fig. 5.40) for the
probability distributions

Figure 5.41 shows the universal unfolding in the vicinity of J for the probability
distributions.

5.11.4 Swindale Model (Continued)

Let us come back to the results of Swindale et al. [65]. We consider tuning curves
Fa (θ) with one or two peaks parametrized by a ∈ R

2 − S. As the internal space is
the circle S

1, in addition to the minimum separating the maxima in the above images,
there is also a minimum corresponding to the joining of the tails of the distributions
Fa . Figure 5.42 shows the variation of the two-peak tuning curve Fa (θ) when a
follows a path transverse to a fracture. We see that the discontinuity in the preferred
direction does indeed correspond to a conflict catastrophe like the one described in
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Fig. 5.42 Variation of the two-peak direction tuning curve Fa (θ) when a follows a path transverse
to a fracture. The discontinuity in the preferred direction corresponds to a conflict catastrophe
like the one described in Fig. 5.41. The line of fracture (white) corresponds to the conflict stratum
between the two maxima. The x axis goes from 0 to 2π , and the vertical mark on the x axis indicates
the average of the two peaks. It is located on the direction given by the minimum when a is on the
conflict stratum. From Swindale et al. [65]
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Fig. 5.43 End point of a fracture in the direction map which falls on a pinwheel. The wheel of eight
directions is 0 (red), π/4 (violet), π/2 (blue), 3π/4 (blue-green), π (green), 5π/4 (green-yellow),
3π/2 (yellow), 7π/4 (orange), 2π (red). There is a discontinuity of π (green/red) in crossing the
fracture. At the pinwheel, the distribution F0 (θ) becomes flat. As we move around the pinwheel,
there is a continuum red → violet → blue → blue-green → green, and only half the direction wheel
(0, π/4, π/2, 3π/4, π ) is relevant. When a maximum occurs on the other half, it has no effect. This
would appear to be a cusp singularity in the orientation map. From [65]

Fig. 5.41, the fracture corresponding to the conflict stratum Kc. We also see that when
we follow the fracture towards the cusp, we move gradually from a red/green-yellow
gap to a red/green, then orange/green, then yellow/green gap, and that the maxima
thus shift towards the green while at the same time moving closer together, and this
does indeed conform qualitatively to the cusp geometry despite the lack of accurate
data.

Figure 5.43 is even more interesting. Indeed, it shows what happens when a frac-
ture in the direction map stops on a pinwheel of the orientation map. The wheel of
eight directions is 0 (red), π/4 (violet), π/2 (blue), 3π/4 (blue-green), π (green),
5π/4 (green-yellow), 3π/2 (yellow), 7π/4 (orange), and 2π (red). The discontinu-
ity of π (green/red) in crossing the fracture is clearly visible, and we also see that,
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Fig. 5.44 Superposition of the orientation pinwheel map and fractures in the direction map of
Fig. 5.37

when we go around the pinwheel, there is a continuum red → violet → blue →
blue-green → green. Note also that, at the pinwheel, the curve F0 (θ) becomes very
flat. The cusp model thus seems to be correct here. However, the curves Fa (θ) have
two maxima. But we made the assumption that only half of the direction wheel was
relevant, i.e. 0, π/4, π/2, 3π/4, π , and that the maximum on the other side was not
involved.

Let us say a little more about these data. Figure 5.44 shows a superposition of the
orientation pinwheel map and the fractures in the direction map of Fig. 5.37. When
we compare the two maps more carefully, we observe a certain number of things:

1. To begin with the singular points which are simultaneously orientation pinwheels
and the ends of fracture lines do indeed have the same chirality, as they should.
The chirality tells us whether, when we move round a singular point in a certain
sense, the orientations or the directions coded by colours rotate in the same sense
or not.

2. The second thing we observe is that the discontinuities are mainly red/green, i.e.
0, π , and when we go around the singular point we go through either blue (π/2)
or yellow (3π/2).

3. The singularities R/G(B) and R/G(Y) can have both chiralities.
4. There seem to be triple points, e.g. B/G/Y.

More accurate experimental data will be necessary, but it seems that what we have
here are cusp singularities in the direction map.
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5.12 Neural Morphogenesis and Its Genetic Control

In this first volume focusing on neurophysiology, we have brought together experi-
mental data relating to the visual system, and in particular the functional architecture
of its primary cortical areas (early vision), and above all V 1. We have begun to ex-
plain what geometric framework presents itself most naturally for modelling such
architectures by focusing on stabilized adults of species like the cat, the macaque,
or the human being. Even though we have at times mentioned the questions of de-
velopment and learning, we have said hardly anything about the morphogenesis of
these extraordinary neural systems. This is why, even though it goes beyond our
own area of expertise, we would like to say a word here about this morphogenesis
and its genetic control, and in particular about axon guidance (or axon pathfinding),
which allows special kinds of connectivities to set up through systems of ‘vertical’
retino-geniculo-cortical and ‘horizontal’ intracortical connections. These are fasci-
nating processes of great complexity, in which molecular factors and cell interactions
set up the functional geometry of the neural hardware, an internal and ‘immanent’
geometry on the basis of which, as explained in the Introduction, the external and
‘transcendent’ geometry of perceived space comes into being.

The sources for this section are studies by Tudor Badea, Lisa Baye, Keely
Bumsted-O’Brian, Alain Chedotal, David Feldheim, John Flanagan, Alex Kolod-
kin, Brian Link, Liqun Luo, Rodrigo Martins, Todd McLaughlin, Dennis O’Leary,
Alain Prochiantz [67], Benjamin Reese, Linda Richards, Dorothea Schulte, Gabriel
Scicolone, and Marc Tessier-Lavigne.

5.12.1 Guidance of Axon Connections

The establishment of axon connections is an intrinsically difficult and extremely
diverse problem because there is such a wide variety of different neurons and pro-
jections. What are the specific molecular mechanisms that guide axons? How do
axons find their way and carry out the series of connections allowing them to reach
their target? In the 1990s, our understanding of these processes developed consider-
ably. The purification of several proteins in the extracellular matrix and membranes
brought to light many molecules like the semaphorins (1993), the netrins (1994),
the ephrins (1995), and the slits. During development, axons are guided by these
membrane or diffusible proteins, accompanied by morphogens, growth factors, cell-
adhesion molecules (CAMS), and immunoglobulins, which stimulate or inhibit and
orient growth spatially. Since then, amazing progress has been made in our under-
standing of the way neural positioning and morphological differentiation of cells are
controlled within this system.

As noted by Chedotal and Richards [68, p. 2]:

[There is a] preferred growth of developing axons along preexisting axonal tracts.

There are pioneer axons which open up new paths to be followed later by other axons:



332 5 Functional Architectures II: Horizontal Connections and Contact Structure

The incredible complexity of the mammalian brain, and the targeting and growth of axons
over long distances, require a unique strategy for enabling brain wiring to occur during
development [68, p. 5].

Many mechanisms are involved: guidance of axons and dendrites, branching, target
recognition, synaptogenesis, degeneration (apoptosis) of neurons and their axons,
regeneration of axons, pruning of dendritic trees, etc. (see, e.g. the synopsis by
Kolodkin and Tessier-Lavigne [69]).

Axon guidance is based on the fact that the growth cone of the axons detects
molecular signals called guidance cues or guidance factors, either fixed or diffusible
in the extracellular environment. These provide directionality instructions by exerting
attractive or repulsive influences. In its membrane, the growth cone contains receptors
which recognize these guidance cues and interpret the signals chemotropically. The
activated receptors have effects on the cytoskeleton, and if the growth cone is sensitive
to concentration gradients of such morphogens, the effect will be asymmetric and
the growth of the axon will thus be redirected.

There are three main kinds of guidance cues:

1. Adhesion factors like laminin or fibronectin in the extracellular matrix, or the
cadherins and immunoglobulin factors.

2. Attractive and repulsive tropism factors transforming the cytoskeleton, like the
netrins and the semaphorins.

3. Modulation factors modifying the sensitivity of the growth cones to certain other
factors, like the neurotrophins.

5.12.2 Transcription Factors and Homeoboxes

Recall what was said very briefly in Sect. 3.2.3 of Chap. 3. On the genetic level,
development, differentiation, and regulation are controlled by a network of tran-
scription factors, i.e. proteins which bind to specific DNA sequences to control the
transcription of their genetic information into mRNA. They are key to the regula-
tion of gene expression. They can be activators or inhibitors, i.e. activate or inhibit
the recruitment of the RNA polymerase enzyme which carries out the transcription.
There are several thousand of these in a genome like the human genome. About 10%
of genes are involved in coding them. As it often happens that genes are flanked
by several binding sites for different transcription factors which work together, the
combinatoric effects are highly complex. Transcription factors contain DNA-binding
domains (DBD) attaching to specific DNA sequences of the genes whose expression
they regulate.

Homeoboxes are DNA sequences present in certain genes called hox genes, which
are involved in the regulation of morphogenetic processes. A homeobox encodes a
protein homeodomain which, once expressed, can bind to the DNA in a specific way.
The hox genes thus encode transcription factors which control the transcription of
cascades of other genes.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
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5.12.3 Some Guidance Factors

For the following sections, the interested reader may consult the GeneCards [70] of
the Human Gene Compendium at the Weizmann Institute (www.genecards.org). We
shall say a few words about certain guidance factors. Receptors bind in a specific
way to ligands, molecules they recognize:

1. The semaphorins are membrane proteins which act as guidance molecules on the
axon growth cone. In fact they act as short-range inhibitory signals through re-
ceptors like plexins, neuropilins, and integrins. Each semaphorin is characterized
by the expression of a specific region of about 500 amino acids (its sema domain).
There are eight classes. For example, in humans, their genes are SEMA3A/…/G,
SEMA4A/…/G, SEMA5A/B, SEMA6A/…/D, and SEMA7A. For example, the
integrins are receptors for SEMA7 which mediate the attachment of a cell to the
surrounding tissue by binding the cell surface to extracellular components like
fibronectin, vitronectin, collagen, or laminin.

2. The netrins are trophic axon guidance factors with the double function of at-
tracting or repelling axons. Their receptors are DCC for attraction and Unc5 for
repulsion. For example, Netrin-1 activates DCC receptors which open Ca++ chan-
nels, producing a CaCnLs calcium current, and triggering the cAMP signalling
pathway (depending on cyclic adenosine 3′,5′-monophosphate). When the Ca++
ions enter the endoplasmic reticulum of the cells, this induces an attraction of
the growth cone. On the other hand, activation of Unc5 activates cyclic guano-
sine monophosphate (cGMP), which decreases the CaCnLs current and induces
a repulsion of the growth cone.

3. The ephrins and their transmembrane receptors Eph form the largest family of re-
ceptor tyrosin kinases (RTK). Their extracellular domain interacts with the ephrin
ligands. Activation, through their ligands, of the Eph receptors located on the axon
growth cones, is essential for the signal transduction mechanisms via their kinase
domain. It deflects growth to regions of high ligand concentration. The ephrins-
A bind to the cell membrane by glycosylphosphatidylinositol (GPI) bonds. The
ephrins-B bind to the membrane by a transmembrane domain containing a small
cytoplasmic motif called PDZ. Humans have eight ephrins, including 5 ephrins-
A interacting with nine EphA receptors and three ephrins-B interacting with five
EphB receptors. Others are found in other vertebrates.

4. The slits are proteins repelling growth cones via their Robo (Roundabout) recep-
tors.

5. The cell-adhesion molecules (CAMS) are membrane proteins mediating adhesion
between axons. They are essential for the fasciculation of fibres and include two
subgroups, the IgSF-CAMS (Ig = immunoglobulins) and the cadherins.
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Fig. 5.45 a The cells are attached to the two membranes, viz., apical (retinal pigment epithelium
RPE, top) and basal (bottom), by junction and adhesion proteins, and their nuclei can be positioned
at different heights (or phases). The extracellular adenosine triphosphate (ATP, supplying energy)
produced by the RPE plays an important role in interkinetic nuclear migration. The Notch-Delta
signalling pathway is based on the Notch gene and its transmembrane receptors and ligands (Delta
among others). The Sonic Hedgehog Shh is a protein coded by the hh gene involved as ligand
in the Hedgehog signalling pathway. It is a morphogen diffusing along a concentration gradient
and whose concentration acts on the expression of certain genes. The glia-derived factor (GDF)
is secreted by the ganglion cells and plays an important role in synaptogenesis and controlling
the timing of progenitor competence. Lysophosphatidic acid (LPA) is an important extracellular
regulator for the motion of nuclei. b The cells position themselves with different phases M , S, G1,
G2. For example, some G2 cells (red) whose nuclei are close to the basal membrane will have a
specific cell fate. From Baye and Link [72]

5.12.4 Neurogenesis of the Retina

We begin with the transcription control of retinal neurogenesis. In this system, the
development of cell lines from their multipotent progenitors can be monitored very
closely. Two mechanisms are particularly important for movement between the apical
retinal pigment epithelium (RPE) and the basal membrane of the retina. One of these
is interkinetic nuclear migration (INM), which is an oscillating migration, first apical-
basal then basal-apical, of the neuroepithelial cell nuclei which are attached to these
two bounding surfaces of the retina, the different positions (or phases) corresponding
to the different cell types. The M-phase occurs at the apical positions near the RPE,
and the S-phase at the basal positions. The other mechanism is nuclear translocation
in which, at the end of the cell cycle, the nucleus of the progenitor migrates into an
appropriate laminar position, and the soma then retracts and detaches itself from the
bounding surfaces. An excellent review of genetic control can be found in the paper
Development of the retina and optic pathway by Reese [71]. Figure 5.45 due to Baye
and Link [72] shows how the cells are attached to the two membranes by junction
and adhesion proteins and how they position themselves with their different phases.

During neurogenesis, the ganglion cells first differentiate and develop the axons
which will form the optic nerve. Then come the horizontals, the cones, the amacrines,
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Fig. 5.46 General schematic of retinal neurogenesis. Left A multipotent progenitor attaches to
the apical (RPE) and basal retinal membranes. Lower horizontal arrows and oblique arrows from
bottom to top represent cell divisions increasing the number of progenitors. Lateral inhibition and
gene expression processes (thick vertical arrows from top to bottom) lead to cell differentiation
(small upper horizontal arrows). The different kinds of cells appear successively and gradually
modify the cell environment via signal pathways (thick coloured diagonal arrows from top to
bottom) which trigger the production of subsequent cell types. From Reese [71]

the rods, the bipolars, and the glials (Müller cells), while the plexiform layers are
layers of connections. These seven kinds of cell appear in a characteristic order.
Figure 5.46 due to Reese [71] gives a schematic view of the dynamics of cell pro-
duction.

The proliferation of progenitors is precisely controlled by the transcription fac-
tors (Sect. 5.12.2) Hes1 and Hes5 of bHLH-type (basic helix-loop-helix, for the
role of bHLH factors in the regulation of retinal cell fate specification, see [73]),
and neurotransmitters like acetylcholine, noradrenaline, dopamine, and serotonin
(or 5-hydroxytryptamine). The reader is referred, for example, to the paper by Mar-
tins and Pearson, R.A. [74]. More generally, the Hes genes in mammals code for
transcriptional repressors bHLH. There are seven classes.

Regarding the genetic control of retinal cell differentiation, we have already men-
tioned this in Sects. 3.2.4 and 3.2.5 of Chap. 3 when discussing the cone opsins
(the OPN1LW gene, or long-wave-sensitive opsin 1, etc.) and ganglion cells with
transcription factors (i) Brn3a for the dendritic tree (Brn3a = brain-specific home-
obox/POU domain protein 3A, coded in humans by the gene POU4F1 = POU do-
main, class 4, transcription factor 1, where the acronym POU comes from the three
transcription factors pituitary-specific Pit-1, Octamer, and Unc-86), (ii) Brn3b and
Isl1 (insulin gene enhancer) for differentiation into ganglions rather than amacrines
or horizontals, and (iii) Math5 for cell fate. Likewise, e.g. in mice (see Li et al. [75]),
Foxn4 (forkhead box protein N4) controls the amacrines and horizontals by activating
the expression of the Math3 factors (which encode a bHLH), NeuroD1 (bHLH factor
of neurogenic differentiation 1, i.e. β2 beta-cell E-box transactivator 2, regulating
the insulin gene), Prox1 (encoding the Prospero homeobox protein 1), and Ptf1a
(pancreas-specific transcription factor bHLH-type 1a), with Prox1 differentiating
between them.

http://dx.doi.org/10.1007/978-3-319-65591-8_3
http://dx.doi.org/10.1007/978-3-319-65591-8_3
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Fig. 5.47 Gene expression in the vertebrate retina during embryogenesis. a At the beginning of
embryogenesis, the future optic nerve (os, optic stalk) and the neural retina (nr) compartmentalize
by expressing, for the former, the transcription factor Pax2 and the homeodomain Vax1, and for
the latter, Pax6 (also expressed by the pigment epithelium PE and the optical vesicle lv), Pax6 and
Vax2 giving the ventral retina and Pax6 and Tbx giving the dorsal retina. b During formation of the
anterior–posterior axis, the anterior part a expresses Foxg1 and the posterior part p expresses Foxd1,
the medial line (white) expressing neither of these two genes. c At a later stage, after invagination
of the optic vesicle, the patterning of the a/p axis is brought about by expression of the homeotic
genes SOHo1 and Hmx1. d Formation of the dorsal–ventral axis d/v of the retina. The dorsal retina
expresses the transcription factors Tbx, COUP-TF11, GDF6, and RALDH1 (coding an enzyme
retinaldehyde dehydrogenase), while the ventral retina expresses the homeotic genes cVax/mVax2
and the gene of the enzyme RALDH3. e A horizontal band expresses the retinoic acid metabolizing
the enzyme CYP26A1. In chickens, the expression of BMP2 dominates and the expression of RPTPλ

is absent. f Photoreceptor and ganglion layers. From Schulte and Bumsted-O’Brien [76]

Likewise, the transcription factor Otx2 (orthodenticle homeobox) controls photo-
receptors, and Crx (cone-rod homeobox) is crucial for their differentiation. Rorβ
(retinoid-related orphan receptor-beta) leads to rods via Nrl (neural retina-specific
leucine zipper protein) and Nr2e3 (nuclear receptor subfamily 2, group E, member 3).
The M-cones express Trβ2 (in mice). For the bipolars, the genes are bHLH Mash1
and Math3, and the homeobox genes Chx10 and Isl1.

It is also important to study the genetic control of migration which allows cells
to reach their laminar destinations, but also the genetic control of the growth of
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dendritic trees which overlap more and more during development (the overlap factor
goes from 1 to 10). This control of the patterns of dendritic branching is crucial from
the functional point of view.

Figure 5.47 due to Dorothea Schulte and Keely Bumsted-O’Brien [76] is a
schematic view of gene expression in the retina of vertebrates during embryogenesis.
At the beginning of this process, the future optic nerve and the neural retina com-
partmentalize by expressing: (i) the former, the transcription factor Pax2 (paired box
homeotic gene) and the homeodomain Vax1 (ventral anterior homeobox); (ii) the
latter, Pax6 (also expressed by the pigment epithelium PE and the optic vesicle lv),
Pax6, and Vax2 giving the ventral retina and Pax6 and Tbx giving the dorsal retina.
During formation of the anterior–posterior axis, the anterior part a expresses Foxg1
(forkhead box G1) and the posterior part p expresses Foxd1 (forkhead box D1), the
medial line expressing neither of these two genes. At a later stage, following in-
vagination of the optical vesicle, the patterning of the a/p axis is brought about by
expression of the homeotic genes SOHo1 (sensory organ homeobox, especially in
chickens) and Hmx1. During formation of the dorsal–ventral axis d/v of the retina,
the dorsal retina expresses the transcription factors, Tbx, COUP-TF11 (COUP =
chicken ovalbumin upstream promoter, in chickens, and NR2F2 = nuclear receptor
subfamily 2, group F, member 2 in humans), GDF6 (growth differentiation factor),
RALDH1 (coding the enzyme retinaldehyde dehydrogenase), while the ventral retina
expresses the homeotic genes cVax/mVax2 (c = chicken, m = mouse) and the gene for
the enzyme RALDH3. In Fig. 5.47e, a horizontal band expresses the gene CYP26A1
encoding the monooxygenase protein Cytochrome P450 26A1 (Family 26, Subfam-
ily A, Member 1 of a superfamily of enzymes) which participates in metabolizing
the retinoic acid-4-hydroxylase. In chickens, the expression of BMP2, bone mor-
phogenetic protein, dominates, and the expression of RPTPλ (receptor-type protein
tyrosine phosphatase) is absent.

5.12.5 Retinotopy and Neurogenesis of Visual Pathways

We shall now say a few words about the development of the optical pathways, which
is very precise and has extremely tightly controlled geometry. The selective guidance
controlling the formation of the optic chiasm and the projections onto the superior
colliculus and the lateral geniculate nucleus (LGN) is particularly remarkable. It
is made possible by the presence along the optical tract of what David Feldheim
and Dennis O’Leary [77, p. 3] call a ‘graded distribution of topographic guidance
molecules along its two axes’, each ganglion cell having

[…] a unique profile of receptors for those molecules that would result in a position-
dependent, differential response to them by retinal ganglion cells axons.

We have seen that there are growth cones at the end of the axons. Through the
mechanisms for signalling spatial position information carried by attractive or repul-
sive proteins, these growth cones allow the axons to reach their targets and group to-
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gether into bundles. The function of molecular guidance control is to allow cells to
carry out transduction of extracellular signals through a series of changes in their
cell morphology and their cytoskeleton. The ganglion cells of the ventral–temporal
retina project onto the ipsilateral optic tract and so do not cross the optic chiasm.
The region of the chiasm exerts a repulsion through cells expressing the ephrin-B2
ligand decoded by the EphB1 receptors on the growth cones of the axons in the
temporal retina, these receptors being restricted for the ventral–temporal retina. This
expression is controlled (in the mouse) by the transcription factor Zic2, a gene which
is itself regulated by the Foxd1 gene.

But perhaps one of the most fascinating morphogenetic processes concerns the
control of spatial positioning in the retinotopic maps. This requires extremely accu-
rate targeting, and axon guidance is not enough here. A more precise genetic control
is needed, along with further refinement of this control through the activity arising
from interactions between axons that have become juxtaposed by guidance. The
spontaneous activity of neural networks turns out to be crucial, because it generates
waves that correlate neighbouring dendritic trees. This process exemplifies in a quite
spectacular way these links between positional information and genetic expression
which occurs during embryogenesis, and it has led to heated debate between geneti-
cists and proponents of a ‘structuralist’ approach such as Conrad Hal Waddington,
Alan Turing, René Thom, Brian Goodwin, and Lewis Wolpert.10

A key mechanism is axon chemotaxis, which occurs through gradients of chemo-
attractive and chemorepulsive molecules like the ephrins (see above) with their Eph
receptors, the semaphorins for the axons of the corpus callosum, Netrin 1 for the
thalamocortical pathways, slits for the optic chiasm and the corpus callosum. The
idea of chemoaffinity introduced by Roger Sperry in the 1950s asserts that there is
an address system, i.e. molecular tags, distributed in complementary gradients on
the axons and their targets, analogous to a lock and key, and which determine the
specificity of the axon connections in topographic maps. We only began to understand
the exact molecular nature of these gradients in the 1990s, with the discovery of
the Eph/ephrins which specify a refined coarse-grained topographic projection, as
already noted, through waves of spontaneous activity. The reader is referred to Todd
McLaughlin et al. [79].

The acronym Eph comes from erythropoietin-producing human hepatocellular
carcinoma cell line, and ephrin from Eph family receptor interacting proteins. There
are ten EphA and six EphB in vertebrates. The EphA bind with six ephrin-A ligands
and the EphB with three ephrin-B ligands. Figure 5.48 due to Scicolone et al. [80] is
a schematic representation of the structural domains of the EphA and the ephrin-A,
showing how these EphA and ephrin-A bind via the ligand-binding domain (LBD)
by interdigitating their end amine group, which produces the associated two-way
signalling. The interested reader is referred to the primer [69] (already cited) by
Alex Kolodkin and Marc Tessier-Lavigne entitled Mechanisms and Molecules of
Neuronal Wiring.

10For an introduction to structuralism in biology from Waddington to Thom, see [78].
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Fig. 5.48 a Schematic view of the structural domains of the EphA and ephrin-A. b Binding
EphA/ephrin-A. LBD = ligand-binding domain, CysRD = cysteine-rich domain, FLR = fibronectin-
like repeats, JD = juxtamembrane domain, TPhS = tyrosine phosphorylation sites, TyRK = tyrosine
kinase domain, SAM = sterile α motif, PDZ-BD = post-synaptic density protein/Drosophila disc
large tumour suppressor/zonula occludens-1 protein (PDZ)-binding domain, GPI = glycosylphos-
phatidylinositol, P = tyrosine phosphorylated sites. From Scicolone et al. [80]

The formation of positional identities has received much attention, for example,
in the optic tectum of non-mammalian vertebrates such as the chicken or the frog,
or the mammalian superior colliculus and LGN. ephrin-A ligands (ephrin-A2/A5/A6
in the chicken, ephrin-A6 in the mouse) have been found in the neural membrane.
These are expressed in an increasing rostro–caudal gradient and are detected via a
decreasing temporal–nasal counter-gradient (i.e. opposite gradient) of the associated
EphA receptors (EphA3 in the chicken, EphA5 in the mouse). ephrin-A and EphA act
bifunctionally (as both attractors and repellers) and bidirectionally. There are also
orthogonal tectal and retinal gradients mediated by ephrin-B1/B2 and their receptors
EphB1/B2, which control the geometry of the projection of the dorsal–ventral retina
on the lateromedial axis of the tectum. This defines the local address system of the
targets.

Figure 5.49 from Reese [71] shows this gradient-controlled dynamics in a
schematic way for the case of a retina → tectum projection (the retina → col-
liculus projection is similar). It shows how the increasing naso→temporal (N → T )
EphA and dorso→ventral (D → V ) EphB gradients of the ganglion cell layer, and
also the opposite retinal gradients of ephrin-A and -B, allow the axon growth cone
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Fig. 5.49 The projection retina → tectum. Increasing naso ↗ temporal (N ↗ T ) EphA and
dorso ↗ ventral (D ↗ V ) EphB gradients of the ganglion cell layer allows the axon growth
cone of these cells to reach a precise position in the tectum defined by increasing complementary
gradients of rostro–caudal (R ↗ C) ephrin-A and lateromedial (L ↗ M) ephrin-B. This leads to a
retinotopic map N → C , T → R, D → L , V → M . From Reese [71]

of these cells to reach a precise position in the tectum (or the colliculus) defined
by the increasing complementary gradients of rostro–caudal (R → C , or anterior–
posterior for the colliculus) ephrin-A and lateromedial (L → M , or ventral–dorsal
for the colliculus) ephrin-B with opposite EphA and EphB gradients. This establishes
a retinotopic map N → C , T → R, D → L , V → M . For example, ephrin-A2 will
be attracting at low concentration in R and repulsive at high concentration in C.

Figure 5.50 from Luo and Flanagan [81] gives further details concerning Fig. 5.49.
We find the previous ephrin map, but also the role of the Wnt3 (wingless-type MMTV
integration site family, member 3) gradient V ↗ D with its retinal receptors Ryk
(receptor tyrosine kinase) with gradient D ↗ V , a tyrosine kinase receptor mediating
repulsion, and Fz (frizzled) mediating attraction for low concentrations of Wnt3.
En-2 (engrailed) is a homeotic transcription factor for the guidance which attracts
nasal axons and repels temporal axons. Its retinal receptors have not yet been clearly
identified. The En proteins are expressed by an increasing A ↗ P gradient and
regulate cell fate. The figure also shows the mechanism whereby the retinotopic map
is produced by guidance. The region N of the retina projects onto the region P of
the tectum, while the region T projects onto region A, this map being defined very
precisely by the concentrations of ephrin-A and -B and Wnt3. Low concentrations
of ephrin-A induce attractive positive effects (in green), while high concentrations
induce repulsive negative effects (in red). If we consider a point on the axis N →
T , it will project onto the axis A → P , and it is the balance between these two
opposing effects that specifies the exact target position on A → P . Likewise for
the axis D → V . The EphA/B and ephrin-A/-B concentrations thus specify a map
(x, y) → ( f (x, y) , g (x, y)) from genuine coordinate axes.

Finally, the figure shows (for the mouse) how the projection N/T → A/P is
constituted from arborization of axons and transforms when the genetic control is
altered in some way. For the mutant ephrin-A2/-A3/-A5 knockout mice, the N and T
axons have an adequate arborization but project onto several positions. In knockout
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Fig. 5.50 a Map of the ephrins in Fig. 5.49. b Role of the Wnt3 V ↗ D gradient with its retinal
receptors Ryk D ↗ V and Fz. En-2 attracts the nasal axons and repels the temporal axons. In the
mechanism underlying the formation of the retinotopic map, region N of the retina projects onto
region P, and region T onto region A, this map being very precisely specified by the concentrations
of ephrin-A and -B and Wnt3. Low concentrations of ephrin-A induce attractive positive effects
(green), while high concentrations induce repulsive negative effects (red). A point on the N → T
axis projects onto the A → P axis, and it is the balance between these two opposing effects which
specifies the exact target position on A → P . Likewise for the D → V axis. c For the mouse,
the way the projection N/T → A/P is built up by arborization of the axons and transformed
when the genetic control is altered in some way. Line 1 Adequate natural projection (wild type).
Line 2 For ephrin-A2/-A3/-A5 knockout mutants, the axons N and T have adequate arborization
but project onto several positions. Line 3 In knockout mice for the β2 subunit of the acetylcholine
nicotinic receptor, activities of the ganglion cells become decorrelated and the arborizations are
well positioned, but more diffuse. Line 4 When there are mutations for both ephrin-A2/-A5 and β2,
diffusion is extreme and covers the whole axis. From Luo and Flanagan [81]

mice for the β-2 subunit of the acetylcholine nicotinic receptor, activities of the
ganglion cells become decorrelated and the arborizations are well positioned but
much more spread out. When there are mutations both for ephrin-A2/-A5 and β-2,
diffusion is extreme and covers the whole axis.

As summed up by Benjamin Reese [71, p. 624]:
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Complementary gradients across both retinal and tectal axes clearly participate in retinotopic
map formation by providing retinal growth cones with the means to decipher positional
identity upon the tectal surface.

David Feldheim and Dennis O’Leary also note [77, p. 18]:

Along each mapping axis dual gradients of axon guidance activity combined with axon
competition and correlated neural activity are used to specify axonal branch points, guide
the branches, and refine their terminations.

In a word, we may say once again that molecular addresses are able to realize a
coordinate system biochemically. Liqun Luo and John Flanagan stress this point [81,
p. 289]:

Positional information gradients provide coordinate systems that can be interpreted to reg-
ulate essentially any cell function, depending on the receptor systems used to decode this
positional information.

5.12.6 Dynamical Models of Neural Guidance

We have seen just how complex and precise the genetic control of cell motility and
directional guidance can be. On the basis of the available experimental results, we
can begin to build dynamical models. The first precise models of morphogenesis go
back to the famous paper by Alan Turing in 1952 entitled The Chemical Basis of
Morphogenesis [82], which introduced the reaction–diffusion equations. Since then,
these have seen considerable development. The central idea is that:

A system of chimical substances, called morphogens, reacting together and diffusing through
a tissue, is adequate to account for the main phenomena of morphogenesis.

The following year (1953), Turing formulated this in a striking way in his last paper:

It was suggested in Turing (1952) that this might be the main means by which the chemical
information contained in the genes was converted into a geometrical form.

As noted by one of Turing’s colleagues, the botanist Claude Wilson Wardlaw [83,
p. 40]:

A localized accumulation of gene-determined substances may be an essential prior condition
[for cell differentiation].

The guidance models discussed here are diffusion models, such as those of Anna Cai,
Kerry Landman, K. and Barry Hughes, B. [84]. To simplify, we assume that there is
only one spatial coordinate x . Let u (x, t) be the cell population density at x at time
t . The simplest equation is a pure diffusion equation ∂u/∂t = D∂2u/∂x2, where D
is a diffusion constant. If there are interactions between the cells, their motility will
depend on their density u and the coefficient D will depend on u. Then we have a
more subtle diffusion equation of the form
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If we add a concentration s (x, t) of morphogens with a signalling function, we must
then introduce assumptions about the way the cells detect the signal molecules. If
the cells detect s locally near their position x , the equation might take the form
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where the diffusion coefficient D now also depends on s. Another local model cor-
responds to the case where the cells detect s only at their exact position x , through
a function I (s) of the concentration s (x, t):
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u

]
.

A further refined model would include chemotaxis with the diffusion, whereby the
cells could detect changes in s in the vicinity of their position. We introduce a
chemotactic sensitivity χ (s) with the rule that if χ (s) < 0, the cells climb the
gradient ∇ (s) = ∂s/∂x (attraction), but if χ (s) > 0, the cells move down the
gradient ∇ (s) = ∂s/∂x (repulsion). A range of numerical simulations of these
different models can be found in [84].
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Chapter 6
Transition to Volume II

6.1 Introduction

In this first volume, we have focused on experimental data and the basics of neu-
rogeometric modelling. We have discussed receptive fields and profiles of visual
neurons in relation to wavelet theory, and we have interpreted them as a way of
optimizing the compression of natural images. We have also described the two com-
ponents of the functional architecture of the V 1 area and other retinotopic areas, and
in particular, the pinwheel structure of V 1. We have seen that this ‘vertical’ retino-
geniculo-cortical functional architecture of V 1 implements a discrete approximation
of the fibre bundle of 1-jets of curves in the visual plane. We have analyzed V 1 as
a 2D orientation field (orientation map) whose singularities are the centres of the
pinwheels. More precisely, we have shown how to treat it as a phase field which
is a superposition of solutions of the Helmholtz equation. Then, with reference to
the experimental data, we have presented the alternative model of blow-ups which
converge to the 1-jet bundle when the mesh of the pinwheel lattice tends to 0.

We have also discussed the relationship between the orientation maps and other
maps, such as those for direction, ocular dominance, phase, spatial frequency, and
colour. Their independence can be expressed in the form of a transversality principle.

We then investigated the second component of the functional architecture of V 1
and the other areas of the visual cortex, namely the ‘horizontal’ intracortical connec-
tions underlying the association field. It is this component that forms the basis for
our neurogeometric models. It implements the contact structure of the fibre bundle
VJ which is isomorphic to the polarized Heisenberg group and which is defined by
the field of kernel planes of the differential 1-form ω = dy − pdx invariant under
left translations. We use a sub-Riemannian metric on the contact structure to define
geodesics that can serve as models for long-range illusory contours.

Finally, we discussed some properties of the functional architecture of areas V 2,
V 4 (for colour), and V 5 orMT (for motion) and reviewed the genetic control of their
morphogenesis (neurogenesis and axon guidance).

© Springer International Publishing AG 2017
J. Petitot, Elements of Neurogeometry, Lecture Notes in Morphogenesis,
DOI 10.1007/978-3-319-65591-8_6
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To conclude this first volume, we shall now give a brief preview of the themes to be
covered in the second volume. This is just an outline and the necessary mathematics
will be developed there.

6.2 Geodesics of the VJ Model

We have seen in Sect. 5.5 of Chap.5 how to interpret illusory contours as sub-
Riemannian geodesics of the VJ model. Let us now give an idea of the computation
of such geodesics and emphasize that, as the metric is sub-Riemannian, they are very
different from Riemannian ones, even at the infinitesimal level.

As the distributionK of the contact planes Kv is bracket generating and satisfies
the Hörmander condition, a celebrated theorem due to Wei-Liang Chow tells us
that every pair of points

(
v, v′) of VJ can be connected by an integral curve of K .

If K is endowed with a sub-Riemannian metric, we can compute the length of
such integral curves and look for geodesics, which are integral curves of minimal
length. The problem of computing geodesics is quite difficult to solve. The study by
Roger Brockett [1] entitled Control Theory and Singular Riemannian Geometry is
a classic reference from 1981. Other excellent references are the books by Richard
Montgomery [2] and Robert Strichartz [3], and also the papers by Zhong Ge [4]
and Ursula Hammenstädt [5]. One of the main difficulties is that, in contrast to the
Riemannian case, there can exist ‘abnormal’ geodesics, that is, geodesics which
do not satisfy the differential equations canonically associated with the geodesic
variational problem. Fortunately, we shall not encounter this ‘abnormality’ since our
models, even though non-trivial, remain rather elementary.

Richard Beals, Bernard Gaveau, and Peter Greiner, who solved the geodesic prob-
lem for the (non-polarized) Heisenberg group with explicit formulas, emphasized [6,
p. 634] “how complicated a control problem can become, even in the simplest situa-
tion”. This was a newmathematical result since, in 1977, BernardGaveau claimed [7,
p. 114] that the variational problem of minimizing “the energy of a curve in the base
manifold under the Lagrange condition that its lifting is given in the fibre bundle”
seemed “not yet [to have been] studied”.

We will adapt Beals, Gaveau, and Greiner’s computations to the polarized
Heisenberg group VJ = J1(R, R) (see Sect. 5.4.4 of Chap.5) with coordinates
(x, y, p = tan (θ)), product (x, y, p) · (x′, y′, p′) = (x + x′, y + y′ + px′, p + p′),
and contact planes generated by

X1 = ∂

∂x
+ p

∂

∂y
= (1, p, 0) , X2 = ∂

∂p
= (0, 0, 1) ,

with Lie bracket [X1,X2] = −X3 = (0,−1, 0) = −∂/∂y. Following the approach
used by Agrachev and Sachkov [8], we formulate the geodesic problem as a control
problem. If� = v (s) is a smooth parametrized curve inVJ, to say that it is an integral
curveof the contact structure is to say that v̇ (s) = u1X1+u2X2 for appropriate controls

http://dx.doi.org/10.1007/978-3-319-65591-8_5
http://dx.doi.org/10.1007/978-3-319-65591-8_5
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u1 and u2, or in other words that ẋ = u1, ẏ = pu1, ṗ = u2, the integrability condition
ẏ/ẋ = p being automatically satisfied. To find the geodesics for the chosen sub-
Riemannian metric SR with scalar product 〈·, ·〉SR and norm ‖·‖SR, we minimize the
Lagrangian given by the kinetic energy L = ‖v̇‖2SR /2 along such curves. L is defined
on the tangent bundle TVJ. Using the Legendre transform, it can be transformed
into the Hamiltonian (where 〈 , 〉 is the natural pairing between 1-forms and tangent
vectors)

h (v,�) = 〈�, v̇〉 − 1

2
‖v̇‖2SR

= � (u1X1 + u2X2) − 1

2
‖u1X1 + u2X2‖2SR ,

defined on the cotangent bundle T∗
VJ. If � = ξ ∗dx + η∗dy + π∗dp = (ξ ∗, η∗, π∗)

is a 1-form on VJ, then

h (v, �) = ξ∗u1 + η∗u1p + π∗u2 − 1

2

(
u21 ‖X1‖2SR + 2u1u2 〈X1,X2〉SR + u22 ‖X2‖2SR

)
.

It is natural to choose a left-invariant metric, namely the sub-Riemannian metric
SRJ making {X1,X2} an orthonormal basis of the contact plane Kv, since {X1,X2}
is the left-invariant basis translating the standard Euclidean orthonormal basis of
K0. This invariant metric is not the Euclidean metric 〈·, ·〉E, ‖.‖E since, due to non-
holonomy, the Euclidean metric is not left-invariant. Incidentally, even if ‖X2‖E = 1
and 〈X1,X2〉E = 0, we have ‖X1‖E = 1 + p2 �= 1 if p �= 0: it is only on the (x, y)
plane p = 0 that the two metrics are the same. If we choose SRJ, then we have
‖X1‖SRJ

= ‖X2‖SRJ
= 1, 〈X1,X2〉SRJ

= 0, and

h (v,�) = ξ ∗u1 + η∗u1p + π∗u2 − 1

2

(
u21 + u22

)

= � (u1X1 + u2X2) − 1

2

(
u21 + u22

)
.

One can then apply a fundamental result of control theory called the Pontryagin
maximum principle. This generalizes the classical method of variational calculus
using the Euler–Lagrange equations and Lagrange multipliers (see Agrachev and
Gamkrelidze [9]) whichwe employed in our first synthesis [10]. It says that geodesics
are projections on VJ of the trajectories of the Hamiltonian H with maximizing
controls uj,max. The maximization conditions are

∂h

∂u1
= � (X1) − u1 = 0 ,

∂h

∂u2
= � (X2) − u2 = 0 ,

and therefore,
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H (v,�) = u1� (X1) + u2� (X2) − 1

2

(
u21 + u22

) = 1

2

(
u21 + u22

)

= 1

2

(〈�,X1〉2 + 〈�,X2〉2
)

,

and in terms of coordinates

H
(
x, y, p, ξ ∗, η∗, π∗) = 1

2

[(
ξ ∗ + pη∗)2 + π∗2

]
.

The geodesic structure implies that the sub-Riemannian sphere S (the ends of
geodesics starting at 0 and having unit sub-Riemannian length, which are global
minimizers) and the wave front W (the ends of geodesics starting at 0 and having
unit sub-Riemannian length, which are not necessarily global minimizers) are rather
strange. In particular, the cut locus of 0 (that is, the ends of geodesics when they
cease to be globally minimizing) and the conjugate locus or caustic of 0 (that is the
singular locus of the exponential map E integrating geodesics) are rather complex.

The Hamilton equations on T∗
VJ derived from the Hamiltonian H are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(s) = ∂H

∂ξ ∗ = ξ ∗ + pη∗ ,

ẏ(s) = ∂H

∂η∗ = p (ξ ∗ + pη∗) = pẋ(s) (i.e. p = ẏ/ẋ = dy/dx, integrability) ,

ṗ(s) = ∂H

∂π∗ = π∗ ,

ξ̇ ∗(s) = −∂H

∂x
= 0 ,

η̇∗(s) = −∂H

∂y
= 0 ,

π̇∗(s) = −∂H

∂p
= −η∗ (ξ ∗ + pη∗) = −η∗ẋ(s) .

Given that H is independent of x and y, the derivatives ξ̇ ∗(s) = −∂H/∂x and
η̇∗(s) = −∂H/∂y vanish, and the momenta ξ ∗ and η∗ are therefore constant along
any geodesic: ξ ∗ = ξ ∗

0 and η∗ = η∗
0. This fact simplifies the equations since

ẋ(s) = ξ ∗
0 + pη∗

0 , ẏ(s) = p
(
ξ ∗
0 + pη∗

0

)
, π̇∗(s) = −η∗

0

(
ξ ∗
0 + pη∗

0

)
.

We particularly draw attention to the relations p̈ = π̇∗ = −η∗ẋ and ẍ = η∗ṗ,
or (ẍ, p̈) = η∗ (ṗ,−ẋ), which mean that, in the (x, p) plane, the acceleration is
orthogonal to the velocity, and geodesics are circles whose radius increases when
η∗
0 decreases (in the limit η∗

0 = 0, the circle becomes a straight line). Incidentally,
H (x, y, p, ξ ∗, η∗, π∗) = (

ẋ2 + ṗ2
)
/2, since by construction, the Hamiltonian H is

the kinetic energy of the projection of the trajectories on the (x, p) plane.
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The (x, p) = z part of the geodesics from 0 to (x1 = x(τ ), y1 = y(τ ), p1 = p(τ ))

is given by the formulas:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x (s) =
sin

( s

2
η∗
0

)

sin
(τ

2
η∗
0

)
[
cos

(
τ − s

2
η∗
0

)
x1 − sin

(
τ − s

2
η∗
0

)
p1

]
,

p (s) =
sin

( s

2
η∗
0

)

sin
(τ

2
η∗
0

)
[
sin

(
τ − s

2
η∗
0

)
x1 + cos

(
τ − s

2
η∗
0

)
p1

]
,

which are effectively the equations of a circle

x2 + p2 − x

[
x1 + p1 cot

(
η∗
0τ

2

)]
− p

[
p1 − x1 cot

(
η∗
0τ

2

)]
= 0 ,

passing through 0 and (x1, p1), with center

xc = 1

2

[
x1 + p1 cot

(
η∗
0τ

2

)]
, yc = 1

2

[
p1 − x1 cot

(
η∗
0τ

2

)]
,

and radius

r2 = 1

4

(
x21 + p21

) [
1 + cot

(
η∗
0τ

2

)]
= 1

4 sin2
(
η∗
0τ/2

) |z1|2 .

We then check that the constant value of the Hamiltonian along a trajectory is

H0 = η∗2
0

8 sin2
(
η∗
0τ/2

) |z1|2 = η∗2
0

2
r2 .

For y(s), the calculations are more involved. We get

y (s) = 1

8
(
cos

(
η∗
0τ

) − 1
)
[

− 2η∗
0s

(
x21 + p21

)
− 4x1p1 cos

(
η∗
0 (s − τ)

)

+ 2
(
x21 − p21

)
sin

(
η∗
0 (s − τ)

)

+ 2x1p1 cos
(
η∗
0 (2s − τ)

) −
(
x21 − p21

)
sin

(
η∗
0 (2s − τ)

)

+ 2x1p1 cos
(
η∗
0τ

) +
(
x21 − p21

)
sin

(
η∗
0τ

)

+ 2
(
x21 + p21

)
sin

(
η∗
0s

) ]
.
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In terms of ξ ∗
0 , π

∗
0 , η

∗
0, and τ , this becomes

y (s) = ξ ∗2
0

2η∗
0s + sin

(
2η∗

0s
)

4η∗2
0

− ξ ∗2
0

sin
(
η∗
0s

)

η∗2
0

+ ξ ∗
0 π∗

0

sin2
(
η∗
0s

)

η∗2
0

−ξ ∗
0 π∗

0

1 − cos
(
η∗
0s

)

η∗2
0

+ π∗2
0

2η∗
0s − sin

(
2η∗

0s
)

4η∗2
0

.

The key point is that these equations explain the origin of the strikingmultiplicity
of sub-Riemannian geodesics connecting two points. Indeed, if we compute y1 =
y (τ ), we find

y1 = 1

2
x1p1 + x21 + p21

4

[
η∗
0τ/2

sin2
(
η∗
0τ/2

) − cos
(
η∗
0τ/2

)

sin
(
η∗
0τ/2

)

]

.

If we introduce the new variable ϕ = η∗
0τ/2, we see that we must solve the equation

4

(
y1 − 1

2
x1p1

)
= μ(ϕ) |z1|2 ,

where μ(ϕ) is the function

μ(ϕ) = ϕ

sin2(ϕ)
− cot(ϕ) .

The function μ(ϕ) is the key to the strange behaviour of sub-Riemannian geodesics.
It is an odd function that diverges for ϕ = kπ (k �= 0), i.e. η∗

0τ = 2kπ , and presents
critical points when ϕ = tan(ϕ). But when ϕ = tan(ϕ), we have

μ(ϕ) = tan(ϕ)

sin2(ϕ)
− cot(ϕ)

= 1 − cos2(ϕ)

cos(ϕ) sin(ϕ)
= tan(ϕ) = ϕ ,

and the minima of μ(ϕ) are on the diagonal. The graph of μ(ϕ) is represented in
Fig. 6.1.

Let us compute geodesic lengths. Let γ be a geodesic starting at 0 and ending
at time τ at (x1, y1, p1) = (z1, p1). If L is its length, we have L = ∫ τ

0 ds, with
2 = (ξ ∗ + pη∗)2 + π∗2 the squared norm of γ̇ in the contact plane endowed with
the orthonormal basis

{
X1 = ∂x + p∂y,X2 = ∂p

}
. But 2 = 2H = 2H0, since the

Hamiltonian is constant along its trajectories, and we know that

H0 = η∗2
0

8

1

sin2
(
η∗
0τ/2

) |z1|2 .
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Fig. 6.1 The function μ(ϕ)

arising in the construction of
sub-Riemannian geodesics
of the polarized Heisenberg
group VJ. The axes have
different scales

So, with η∗
0τ/2 = ϕ,

L = √
2

(
η∗
0τ

2

)
1

∣∣sin
(
η∗
0τ/2

)∣∣ |z1| = √
2

ϕ

|sin (ϕ)| |z1| .

In the sub-Riemannian geometry of VJ, the sphere S and the wave front W (with
radius

√
2) are given by the fundamental equation

|z1| = |sin (ϕ)|
ϕ

.

We thus obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = |sin (ϕ)|
ϕ

cos (θ) ,

p1 = |sin (ϕ)|
ϕ

sin (θ) ,

y1 = 1

2
x1p1 + ϕ − sin (ϕ) cos (ϕ)

4ϕ2

= 1

2

sin2 (ϕ)

ϕ2
cos (θ) sin (θ) + ϕ − cos (ϕ) sin (ϕ)

4ϕ2

= ϕ + 2 sin2 (ϕ) cos (θ) sin (θ) − cos (ϕ) sin (ϕ)

4ϕ2
.
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Fig. 6.2 A piece of the
sub-Riemannian wave front
W . The external surface is
the sub-Riemannian sphere
S. The internal part is W − S.
It presents smaller and
smaller circles of cusp
singularities which converge
to 0

Figure6.2 shows pieces of S and W . The external surface is the sub-Riemannian
sphere S. It has two singularities at the intersections with the y-axis. The internal part
isW −S. It presents smaller and smaller circles of cusp singularities which converge
to 0. Such a complex behaviour is impossible in Riemannian geometry.

6.3 The VS Model

The jet-spaceVJ model implies choosing a privileged x-axis.We saw in Sect. 4.3.8 of
Chap.4 that the group SE (2) naturally acts on themodel, but the asymmetry between
x and y in the base space R

2 was reflected in the ‘polarization’ of the Heisenberg
group. As in every case in which a group G acts on a fibre bundle, here G = SE (2)
on πJ : VJ = R

2 × R → R
2, it is relevant to consider the associated principal fibre

bundle, here

πS : G = SE(2) = R
2

� SO(2) ∼= VS = R
2 × S

1 → R
2 .

We developed this natural idea with Giovanna Citti and Alessandro Sarti (see their
paper [11]). In this case, the contact form is

ωS = − sin (θ) dx + cos (θ) dy ,

http://dx.doi.org/10.1007/978-3-319-65591-8_4
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that is, cos (θ) (dy−pdx) = cos (θ) ωJ. The contact planes are spanned by the tangent
vectors ⎧

⎪⎨

⎪⎩

X1 = cos (θ)
∂

∂x
+ sin (θ)

∂

∂y
,

X2 = ∂

∂θ
,

with Lie bracket

[X1,X2] = sin (θ)
∂

∂x
− cos (θ)

∂

∂y
= −X3 .

In contrast to the polarized Heisenberg case, the Xj constitute an Euclidean ortho-
normal basis and are therefore more natural. The distributionK of contact planes is
still bracket generating (Hörmander condition) and maximally non-integrable since
dωS = cos (θ) dx ∧ dθ + sin (θ) dy ∧ dθ , and ωS ∧ dωS = −dx ∧ dy ∧ dθ cannot
vanish because it is a volume form. The Frobenius condition ωS ∧ dωS = 0 is not
satisfied, and there exists no integral surface of K in VS (but there exist a lot of
integral curves of K , viz., all the Legendrian lifts � in VS of curves γ in the base
plane R

2). As for the characteristic vector field (or Reeb field) X3, it is orthogonal to
Kv for the Euclidean metric and defines a scale through

ωS (X3) = [ − sin (θ) dx + cos (θ) dy
]
(X3) = sin2 (θ) + cos2 (θ) = 1 .

When we work with VS, the natural sub-Riemannian metric is the one making
{X1,X2} an orthonormal basis of the contact plane Kv.

The two contact structures on VJ = R
2 × R and VS = R

2 × S
1 seem to be alike

but are nevertheless very different. Indeed, let us look at their respective Lie algebras.
For VJ, we have the algebra VJ generated by {t1, t2, t3}, where

t1 = ∂

∂x
+ p

∂

∂y
, t2 = ∂

∂p
, t3 = ∂

∂y
,

with [t1, t2] = −t3 and [t1, t3] = [t2, t3] = 0 (we denote these vectors by ti and
no longer by Xi to avoid any confusion). As we have seen, VJ is a nilpotent algebra
because the coefficients {1, p, 1} are polynomials whose derivatives vanish beyond
a certain rank (here 2).

In contrast, for VS, we have the algebra VS generated by {X1,X2,X3} where

X3 = − sin (θ)
∂

∂x
+ cos (θ)

∂

∂y
,

satisfying [X1,X2] = −X3 , [X1,X3] = 0 and [X2,X3] = −X1, which is therefore
not nilpotent. Nevertheless, we note that, for small θ , we have to first-order p ∼ θ ,
sin (θ) ∼ θ , and cos (θ) ∼ 1, soωS = − sin (θ) dx+cos (θ) dy can be approximated
by ω = −θdx + dy, which is nothing else than the 1-form ωJ = dy − pdx. VJ

is in some sense ‘tangent’ to VS. In fact, it is called the tangent cone of VS or its



356 6 Transition to Volume II

nilpotentization (see, e.g. Mitchell [12], Rothschild and Stein [13], Margulis and
Mostow [14], and Bellaïche [15]).

So we get two sub-Riemannian models VJ and VS. The former is defined on a
nilpotent group (a Carnot group) and the latter on a non-nilpotent group.Methods for
neurogeometry, that is for the modelling of neural functional architectures of vision,
thus become part of a sub-Riemannian geometry with its geodesics, Laplacians, heat
kernels, harmonic analysis, and so on.

As we will see, many great geometers have studied these very rich struc-
tures. We have been personally interested in the work by Misha Gromov, Andrei
Agrachev, Richard Beals, Bernard Gaveau, Peter Greiner, Luca Capogna, Vladimir
Gershkovich, John Mitchell, Richard Montgomery, Robert Strichartz, Anatoly Ver-
shik, Pierre Pansu, Jean-Michel Bismut, André Bellaïche, and Jean-Jacques Risler.

6.4 Geodesics of the VS Model

Andrei Agrachev has found the formulas of the geodesics for VS = SE (2) endowed
with the sub-Riemannian metric making {X1,X2} an orthonormal basis of Kv. The
formulation of the problem in terms of control theory yields the differential system{
ẋ = u1 cos (θ) , ẏ = u1 sin (θ) , θ̇ = u2

}
. Applying the Pontryagin maximum prin-

ciple, one gets the Hamiltonian on T∗
VS in the form

H(v,�) = 1

2

(
u21 + u22

) = 1

2

[〈�,X1(v)〉2 + 〈�,X2(v)〉2
]

= 1

2

(
� 2

1 + � 2
2

)

= 1

2

[[
ξ ∗ cos (θ) + η∗ sin (θ)

]2 + ϑ∗2
]

,

where {�1,�2,�3} are the components of the covector � in the dual basis of
{X1,X2,X3}, and {ξ ∗, η∗, ϑ∗} its components in the basis {dx, dy, dθ}. Hence, the
Hamilton equations are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = ∂H

∂ξ ∗ = ξ ∗ cos2 (θ) + η∗ cos (θ) sin (θ) ,

ẏ = ∂H

∂η∗ = η∗ sin2 (θ) + ξ ∗ cos (θ) sin (θ) ,

θ̇ = ∂H

∂ϑ∗ = ϑ∗ ,

ξ̇ ∗ = −∂H

∂x
= 0 ,

η̇∗ = −∂H

∂y
= 0 ,

ϑ̇∗ = −∂H

∂θ
= [

ξ ∗ cos (θ) + η∗ sin (θ)
][ − ξ ∗ sin (θ) + η∗ cos (θ)

]
.
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The sub-Riemannian geodesics are the projections of the solutions on VS. Since
ξ ∗ = ξ ∗

0 and η∗ = η∗
0 are constant, if we write them in the form

(
ξ ∗
0 , η∗

0

) = ρ0eiβ0 ,
then

ϑ̇∗ = 1

2
ρ2
0 sin

(
2 (θ − β0)

)
,

and the constant Hamiltonian

H = 1

2

[
ρ2
0 cos

2 (θ − β0) + ϑ∗2]

yields the energy first integral ρ2
0 cos

2 (θ − β0) + ϑ∗2 = c (with c = 1 if H = 1/2)
and the ODE for θ̇ (c, ρ0, and β0 are constants) θ̇2 = ϑ∗2 = c − ρ2

0 cos
2 (θ − β0).

For β0 = 0 (which is allowed by rotation invariance), the equations become:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = ρ0 cos2 (θ) ,

ẏ = ρ0 cos (θ) sin (θ) = 1

2
ρ0 sin (2θ) ,

θ̇ = ϑ∗ ,

θ̈ = ϑ̇∗ = 1

2
ρ2
0 sin (2θ) .

For ρ0 = 1, 2θ = π − μ, and μ = 2ϕ = π − 2θ , we get a pendulum equation, viz.,
μ̈ = − sin (μ) with first integral ϕ̇2 + sin2 (ϕ). As

dt = ± 1√
c

dϕ
√

1 − 1

c
sin2 (ϕ)

,

the system can be integrated explicitly using elliptic functions.
A fundamental property of these geodesics is that, under certain conditions, when

the deviation from coaxiality between the boundary conditions (a1, θ1) and (a2, θ2)
gets too great, they become singular and exhibit some cusps. At the level of the un-
derlying pendulum equation, this corresponds to oscillating solutions. Yuri Sachkov
and Igor Moiseev [16], then Remco Duits, studied these cusps and constructed the
sphere, the wave front, and the cut locus of the sub-Riemannian geometry of SE (2)
explicitly. Their complexity is remarkable (see Duits [17]).

These singularities are interesting and can perhaps explain an intriguing aspect of
illusory contours, namely their bistability. Consider for example the cross in Fig. 6.3.
With the cooperation of V 2 which induces orientations orthogonal to segments at
their end points, the segments induce an illusory contour which can be perceived as
a square or a circle. If we look at the image for a sufficiently long time, the percepts
spontaneously and periodically bifurcate from one case to the other.

In the context of a variational explanation of illusory contours, this shows how
two models can compete: a geodesic model where the curvature is maximally spread
out, and on the other hand, a piecewise linear model which concentrates all the
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Fig. 6.3 Segments induce
an illusory contour which
can be perceived as a square
or a circle. In general, the
initial perception is of a
circle, but it can bifurcate
after looking at the picture
for a certain time

curvature at some angular points (the curvature is null everywhere except at these
points, where it is infinite). In the case of an illusory contour between (a1, θ1) and
(a2, θ2), experimental data seem to show that, if the coaxiality defect exceeds a
certain threshold, the geodesic model is replaced by the piecewise linear model. We
can formulate the conjecture that this bifurcation of variational models occurs when
the geodesics become singular because of the emergence of cusps. In fact, a cusp
occurs when a geodesic has a ‘vertical’ tangent, i.e. is tangent to the fibre of the
bundle πS : VS = R

2 × S
1 → R

2. But in neurophysiological terms, this means
that some ‘horizontal’ excitatory connections between different hypercolumns must
be identified with ‘vertical’ inhibitory connections internal to a single hypercolumn,
which is not possible. Bimodality could then be caused by the fact that the period of
fixation ‘stresses’ the selected model and allows its bifurcation.

6.5 Elastica Revisited

In 1992, David Mumford proposed an ‘elastica’ variational model [18] for illusory
contours. This consists in minimizing an energy

E =
∫

γ

(ακ2 + β)ds ,

where γ is a curve in R
2 with element of arc length ds. For α = β = 1, its for-

mulation as a control problem on the group G = SE (2) = VS can be written{
ẋ = cos (θ) , ẏ = sin (θ) , θ̇ = κ

}
, where the derivatives are taken with respect to

the arc length s and where κ = dθ/ds is the curvature of γ . This model is defined in
the base planeR

2 with Euclidean metric, and not with respect to the sub-Riemannian
metric in G, because in G, ds is not the element of arc length. The element of arc
length in G is dt = √

1 + κ2 (s)ds, and the curvature

κG (s) = dθ (t (s))

dt
= dθ

ds

ds

dt
= κ (s)

√
1 + κ2 (s)
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satisfies the pendulum equation (with respect to s), viz., κ̈G (s) = κG (s). Yuri
Sachkov [19] investigated the elastica model curves and compared them to the sub-
Riemannian geodesics. The problem is difficult because of the cusps.He later pursued
this investigation with Ugo Boscain, Remco Duits, and Francesco Rossi in [20].

David Mumford gave a stochastic interpretation of his elastica model by suppos-
ing that the curvature κ(s) of γ inR

2 is white noise and that the angle θ(s) is therefore
Brownian motion.1 In terms of control theory, this is equivalent to considering the
stochastic process

{
ẋ = cos (θ) , ẏ = sin (θ) , θ̇ ∼ N

(
0, σ 2

)}
, where θ̇ is now a nor-

mal random Gaussian variable of mean 0 and variance σ 2. This process has been
studied by Gonzalo Sanguinetti (in his thesis [21] supervised by G. Citti and A. Sarti)
and also by Remco Duits and Markus van Almsick. It is no longer a simple diffusion
mechanism, but an advection–diffusion mechanism described by a Fokker–Planck
equation. The advection (the drift) occurs along the X1 direction, and the diffusion
of θ occurs along the X2 direction. The fundamental solution of the Fokker–Planck
equation being too complex in the VS model, the authors went back to the first-order
approximation of G = SE(2) (its tangent cone or nilpotentization), that is, to our VJ

model basedon the polarizedHeisenberg group.Let v0 = (x0, y0, θ0) = (a0, θ0)be an
initial point inG and let us follow a randomwalk starting at v0.Without noise, the tra-
jectory is of course deterministic and is a straight line satisfying the principle of strict
coaxiality (without any curvature): {θ = θ0, x = x0 + cos (θ0) t, y = y0 + sin (θ0) t}.
If v = (x, y, θ) = (a, θ) is a generic element of G and if P(v, t) is the probability
of finding the random walk at v at time t, the evolution equation for P with initial
condition P0 (v) = P (v, 0) is

∂P

∂t
(v, t) = −

[
cos (θ)

∂P

∂x
(v, t) + sin (θ)

∂P

∂y
(v, t)

]
+ σ 2

2

∂2P

∂θ2
(v, t) ,

whence
∂P

∂t
(v, t) = −X1

(
P (v, t)

) + σ 2

2
(X2)

2
(
P (v, t)

)
.

For theVJ model where θ is small, θ ∼ tan (θ) = p, and the Fokker–Planck equation
is therefore

∂P

∂t
(v, t) = −

[
∂P

∂x
(v, t) + p

∂P

∂y
(v, t)

]
+ σ 2

2

∂2P

∂p2
(v, t) .

The authors solve this equation and, to complete a contour with boundary conditions
v0 = (a0, θ0) and v1 = (a1, θ1), consider two direction processes, a forward process
starting at v0 and a backward process starting at v1. They compute the probability of
collision of these two random walks.

1Named after Robert Brown.
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6.6 Sub-Riemannian Diffusion, Heat Kernel,
and Non-commutative Harmonic Analysis

We have stressed the importance and the difficulties of sub-Riemannian diffusion
techniques, mentioning the work of some specialists and also the neurogeometrical
applications made by G. Citti and A. Sarti in this area. These techniques belong to
the general theory of heat kernels on Riemannian and sub-Riemannian manifolds.
The specialized literature on these subjects is enormous.

Building on earlier results by Hulanicki [22], A. Agrachev, J-P. Gauthier,
U. Boscain, and their Ph.D. student F. Rossi gave an ‘intrinsic’ formulation of the
sub-Riemannian Laplacian and in 2009 [23] proved a general theorem for the 3D
unimodular Lie groups (i.e. those whose left- and right-invariant Haar measures are
identical) endowed with a left-invariant sub-Riemannian geometry. They used the
non-commutative generalized Fourier transform (GFT) defined on the dual spaceG∗
of G (the set of irreducible unitary representations in Hilbert spaces) to compute
the heat kernel associated with the hypoelliptic Laplacian �K = X2

1 + X2
2 , i.e. the

sum of squares of the generators {X1,X2} of the distribution K . The Laplacian is
hypoelliptic due to the fact thatK is bracket generating, i.e. satisfies the Hörmander
condition.

The use of Fourier transform on groups to compute heat kernels and fundamental
solutions of diffusion equations has a long history. In the case of the polarizedHeisen-
berg Lie group VJ, according to the Stone–von Neumann theorem, the non-trivial
unitary irreducible representations (unirreps) are group morphisms πλ from VJ to
the group U (H ) of unitary automorphisms of the Hilbert space H = L2 (R, C),
morphisms parametrized by a real scalar λ �= 0. They are of the form:

πλ : VJ −→ U (H )

v �−→ πλ (v) : H −→ H
u (s) �−→ eiλ(y+xs)u(s + p) .

There exists a measure on the dual spaceV
∗
J , called the Plancherel measure, given by

dP(λ) = λdλ, which allows us to do integration. To compute the Fourier transform
of the sub-Riemannian Laplacian �K , we examine the action of the differential of
the unirreps on the left-invariant vector fields X on VJ, which are given by the left
translation of vectors X (0) of the Lie algebra VJ of VJ. By definition,

dπλ : X → dπλ (X) := d

dt

∣∣∣
∣
t=0

πλ

(
etX

)
,

and we obtain the Fourier transform X̂i
λ = dπλ (Xi). Carrying out the calculations,

we obtain X1 (0) = (1, 0, 0), etX1 = (t, 0, 0), πλ

(
etX1

)
u (s) = eiλtsu (s),
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X̂1
λ
u (s) = dπλ (X1) u (s) = d

dt

∣∣
∣∣
t=0

πλ

(
etX1

)
u (s)

= d

dt

∣∣∣∣
t=0

eiλtsu (s) = iλsu (s) ,

and X2 (0) = (0, 0, 1), etX2 = (0, 0, t), πλ

(
etX2

)
u (s) = u (s + t),

X̂2
λ
u (s) = dπλ (X2) u (s) = d

dt

∣
∣∣∣
t=0

πλ

(
etX2

)
u (s)

= d

dt

∣∣∣
∣
t=0

u (s + t) = du (s)

ds
.

The GFT of the sub-Riemannian Laplacian is therefore the Hilbert sum, i.e. the

integral on λ with the Plancherel measure dP(λ) = λdλ, of the �̂K

λ
with

�̂K

λ
u (s) =

[(
X̂1

λ
)2 +

(
X̂2

λ
)2

]
u (s) = d2u (s)

ds2
− λ2s2u (s) .

This equation is nothing else than the equation of the harmonic oscillator.
The heat kernel is then

P(v, t) =
∫

V
∗
J

Tr
[
et�̂K

λ

πλ (v)
]
dP (λ) , t ≥ 0 ,

where Tr denotes the trace. If the �̂K

λ
have discrete spectrum and a complete set

of normalized eigenfunctions
{
uλ
n

}
with eigenvalues

{
αλ
n

}
, then

P(v, t) =
∫

V
∗
J

[ ∑

n

eα λ
n t

〈
uλ
n, πλ (v)

(
uλ
n

)〉 ]
dP (λ) , t ≥ 0 .

This is the case that concerns us here. The eigenfunctions of the harmonic oscillator
are well known and satisfy

d2uλ
n (s)

ds2
− λ2s2uλ

n (s) = αλ
nu

λ
n (s) ,

with αλ
n = −(2n + 1)/λ. They are essentially the Hermite functions scaled by λ:

uλ
n (s) = (

2nn!√π
)−1/2

λ1/4e−λs2/2Hn
(√

λs
)

,

where Hn is the n th Hermite polynomial.
In the case of SE (2) = VS, the authors found explicit formulas for the heat kernel.

The dual V
∗
S of VS is now the set of unirreps in the Hilbert space H = L2

(
S
1, C

)
.
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These unirreps are parametrized by a positive real λ and are of the form:

X λ : VS −→ U (H )

v �−→ X λ (v) : H −→ H

ψ (θ) �−→ eiλ[x sin(θ)+y cos(θ)]ψ (θ + α) .

The Plancherel measure on V
∗
S is still dP(λ) = λdλ. As explained previously, we

get X λ
(
etX1

)
ψ (θ) = eiλt sin(θ)ψ (θ) and

X̂1
λ
ψ (θ) = dX λ (X1) ψ (θ) = d

dt

∣∣∣
∣
t=0

X λ
(
etX1

)
ψ (θ)

= d

dt

∣∣∣∣
t=0

eiλt sin(θ)ψ (θ) = iλ sin (θ) ψ (θ) ,

and X λ
(
etX2

)
ψ (θ) = ψ (θ + t) and

X̂2
λ
ψ (θ) = dX λ (X2) ψ (θ) = d

dt

∣∣
∣∣
t=0

X λ
(
etX2

)
ψ (θ)

= d

dt

∣∣∣∣
t=0

ψ (θ + t) = dψ (θ)

dθ
.

The GFT of the sub-Riemannian Laplacian is therefore the Hilbert sum of the �̂K

λ

with

�̂K

λ
ψ (θ) = [(

X̂1
λ
)
2 + (

X̂2
λ
)
2
]
ψ (θ) = d2ψ (θ)

dθ2
− λ2 sin2 (θ) ψ (θ) ,

which is nothing else than theMathieu equation. The heat kernel is

P(v, t) =
∫

V
∗
S

Tr
[
et�̂K

λ

X λ (v)
]
dP (λ) , t ≥ 0 .

The �̂K

λ
have a discrete spectrum and a complete set of normalized eigenfunctions{

ψλ
n

}
with eigenvalues

{
αλ
n

}
, and therefore,

P(v, t) =
∫

V
∗
S

∑

n

eαλ
n t

〈
ψλ

n ,X λ (v)
(
ψλ

n

)〉
dP (λ) , t ≥ 0 .

The 2π -periodic eigenfunctions of the Mathieu equation satisfy

d2ψ (θ)

dθ2
− λ2 sin2 (θ) ψ (θ) = Eψ (θ) ,
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and as sin2 (θ) = [1 − cos (2θ)]/2, this means

d2ψ (θ)

dθ2
− λ2

2
ψ (θ) − Eψ (θ) + λ2

2
cos (2θ)ψ (θ) = 0 ,

d2ψ (θ)

dθ2
+ [

a − 2q cos (2θ)
]
ψ (θ) = 0 ,

where a = − (
E + λ2/2

)
and q = −λ2/4. The normalized 2π -periodic eigenfunc-

tions are known: they are even or odd and denoted cen(θ, q) and sen(θ, q). The
associated an(q) and bn(q) are called characteristic values. There can be parametric
resonance phenomena (Arnold tongues) when a = − (

E + λ2/2
) = n2.

The authors also solved the problem for SU (2), SL (2), and SO (3).
Sub-Riemannian diffusion is highly anisotropic since it is restricted to an angular

diffusion of θ and a spatial diffusion only along the X1 direction. It is strongly
constrained by the good continuation Gestalt law and the difference with classical
(Euclidean) diffusion is spectacular.

6.7 Confluence Between VJ and VS Models

We analyzed two neurogeometrical models of V 1,VJ andVS. It is interesting to note
that one can easily construct an interpolation between the two models. Mohammed
Brahim Zahaf and Dominique Manchon [24] constructed just such an interpolation,
given by a family of models V

α , and studied the confluence of the corresponding
differential equations in the Fourier space. The model V

α is summarized in the
following:

Xα
1 = cos (θ)

∂

∂x
+ 1

α
sin (αθ)

∂

∂y
,

Xα
2 = ∂

∂θ
,

Xα
3 = −α sin (αθ)

∂

∂x
+ cos (θ)

∂

∂y
,

[
Xα
1 ,Xα

2

] = −Xα
3 ,

[
Xα
2 ,Xα

3

] = α2Xα
1 ,

[
Xα
1 ,Xα

3

] = 0 ,

V
α = SEα (2) , with S

1
α = R

2πα−1Z
,

H = L2
(
S
1
α, C

)
,

Xα
1 (ψ (θ)) = iλα−1 sin (αθ) ψ (θ) ,

Xα
2 (ψ (θ)) = ψ ′ (θ) ,
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operator �̂λ : ψ ′′ (θ) − λ2

α2
sin2 (αθ) ψ (θ) ,

equation : ψ ′′ (θ) +
[
μ − λ2

α2
sin2 (αθ)

]
ψ (θ) = 0 .

For α = 1, V
1 gives the model VS , and when α → 0, for small θ denoted by p, V

0

gives the model VJ .

6.8 Other Themes

All these technical points will be developed in detail in the second volume. As
discussed in thePreface, wewill also present the following themes, already addressed
in [25–28]:

1. Modal and amodal illusory contours (this is an ‘interpolation’ problem, see, e.g.
[29]).

2. Physical models of neural networks and their synchronization properties. Syn-
chronization is a key feature of brain processes. Indeed, as emphasized by Jan
Koenderink, their functional order is a simultaneous functional order (see Toet et
al. [30]).

3. The work of Bard Ermentrout, Jack Cowan, Paul Bressloff, and Martin Golu-
bitsky on Hopfield networks in which synaptic weights encodes the functional
architecture of V 1.

4. Our work with Alessandro Sarti and Giovanna Citti on the scale parameter and
the resulting symplectic structure (see also [31]).

5. Multiscale differential geometry and the Thom–Mather theory of singularities as
reworked in this framework by James Damon (see also [32]).

6. Image segmentation algorithms, including those where segmentation is achieved
by applying nonlinear anisotropic diffusion equations and those arising from
David Mumford and Jayant Shah’s variational models.

7. Epistemological problems ranging from the phenomenology of perception in the
sense of Husserl and Merleau-Ponty (see [33, 34]) to the Kantian problem of
transcendental aesthetics. Indeed, aswe have seenwithKoenderink [35], Dehaene
[36] or O’Keefe [37], Kant is vindicated by visual neurosciences.
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Lê Dũng Tráng, 12
Lee, H.Y., 26, 113, 204
Lee, T.S., 26, 41
Legendre, A.-D., 349
Leibniz, G.W., 12, 25, 35
Leopold, D., 257
Le Pennec, E., 309
Levi-Civita, T., 199
Lie, S., 23, 25, 30, 74
Link, B., 331, 334
Lipschitz, R., 199
Liu, G.B., 239, 241
Locke, J., 35
Logothetis, N., 257
Longo, G., 16
Lorenceau, J., 14, 16, 17, 290, 291
Lotka, A.J., 31
Lund, J.S., 124, 142, 279
Luo, L., 331, 340–342
Lyle, S., 19

M
Mézard, M., 17
MacPherson, R., 11, 199
Maffei, L., 17, 62
Malach, R., 278
Maldonado, P., 206, 208, 214, 217
Malgrange, B., 11, 219, 323
Mallat, S., 15



Author Index 371

Malsburg, C. von der, 16
Mamassian, P., 15
Manchon, D., 363
Margulis, G.A., 356
Mariño, J., 209, 211
Markram, H., 127
Marr, D., 26, 64, 82, 307
Marre, O., 33
Martinet, J., 219
Martinez, L.M., 66
Martins, R., 331
Mather, J., 11
Mathieu, É., 7
McCulloch, W., 36
McLaughlin, 66
McLaughlin, D., 208, 297
McLaughlin, T., 331, 338
McLoughlin, N., 144
McNaughton, B.L., 102
Merker, J., 23
Merleau-Ponty, M., 8
Meunier, C., 15
Meunier, J.-G., 18
Meyer, Y., 15, 85
Michor, P., 17
Miikkulainen, R., 203, 245
Milleret, C., 16, 261
Milnor, J., 11
Mingolla, E., 295
Mishkin, M., 49
Mitchell, J., 6, 356
Mitchison, G., 279
Moisan, L., 286
Moiseev, I., 7, 17, 357
Molden, S., 104
Montgomery, R., 5, 348
Morel, J.-M., 16, 17, 286
Morgan, A., 74
Morlet, J., 88
Morse, M., 10
Moser, E., 2, 103, 104
Moser, M.-B., 103
Mostow, G.D., 356
Mountcastle, V., 123
Mullen, K., 84, 113, 124
Muller, Bostock, Taube, 103
Muller, R., 103, 108
Mulligan, K., 18
Mumford, D., 6–8, 11, 12, 15, 16, 26, 41,

359

N
Nadal, J.-P., 15, 95, 97

Nadel, L., 24, 103
Nagumo, J., 52
Nathans, J., 59
Necker, L.-A., 251
Neitz, J., 59
Neitz, M., 60
Neumann, J. von, 36
Newsome, W., 319
Newton, I., 12, 30, 31, 36, 61
Nicolis, G., 12
Niebur, E., 145, 146
Ninio, J., 6
Nirenberg, S., 97
Nobel, A., 2, 103, 123

O
O’Reagan, K., 15
Obermayer, K., 243
Ogawa, S., 71
Ohki, K., 139, 162, 164, 212, 213
O’Keefe, J., 1, 2, 103
Olavarria, J., 261
O’Leary, D.D.M., 331, 337, 342
Olshausen, B., 99
Orban, G.A., 319

P
Pachoud, B., 17
Pakdaman, K., 15
Palacios, A., 317
Palmer, L., 73
Pansu, P., 5, 356
Parent, P., 295
Pauls, S., 17
Pearson, R.A., 335
Pennec, X., 17
Perry, V.H., 49
Peterhans, E. , 311
Petit, J.-L., 18
Petitot, J., 219
Pettigrew, J.D., 239
Peyré, G., 91, 309
Pham, F., 12
Pitts, W., 36
Plancherel, M., 7
Planck, M., 7, 359
Poincaré, H., 10, 199
Polat, U., 293
Poli, R., 17
Polimeni, J., 123, 206, 210
Pontryagin, L.S., 356



372 Author Index

Prigogine, I., 12, 15
Prochiantz, A., 14, 18, 331

R
Ramón y Cajal, S., 45
Ramis, J.-P., 219
Ranck, J., 107
Rangan, A., 297
Raymond, P., 57
Reeb, G., 355
Reed, T., 74
Reese, B., 331, 334, 335, 341
Reid, C., 139
Reimann, M., 17
Renault, B., 15
Ribot, J., 165, 229, 231
Rice, S.O., 197, 199
Richards, L., 331
Riemann, B., 10, 22, 23, 174
Rifford, L., 17
Ringach, D.L., 124
Risler, J.-J., 356
Rochefort, N., 261
Rockland, K.S., 279
Roe, A., 257, 310, 313
Romagnoni, A., 165
Rosenstiehl, P., 15
Rositi, F., 18
Rossi, F., 359, 360
Rothschild, L.P., 356
Roy, J.-M., 17, 18
Ruelle, D., 11, 12
Russell, B.A.W., 38
Ryckman, T., 18, 22

S
Sachkov, Y., 5, 7, 357
Sagi, D., 293
Sajda, P., 285
Salam, A., 12
Salama, G., 139, 140
Sanguinetti, G., 359
Sarti, A., 5, 6, 8, 16, 17, 173, 194, 359, 360
Sayag, D., 52
Schmidt, J.-P., 18
Schnabel, M., 203, 206
Schulte, S., 331, 337
Schummers, J., 144, 210, 211, 214
Schwartz, E.L, 12
Schwartz, L., 80
Scicolone, G., 331, 338

Seriès, P., 62, 290
Sethian, J., 16, 17
Shah, J., 8, 364
Shapley, R., 77, 266, 316
Shelley, M., 208
Sherrington, C., 45
Sheth, B.R., 315
Shinbata, H., 320
Shmuel, A., 158, 320
Shulz, D., 62
Sigalotti, M., 17
Sigman, M., 306
Simoncelli, E., 99
Singer, W., 17
Sirosh, J., 245
Sirovich, L., 224, 225
Sit, Y.F., 310
Smale, S., 11, 12
Smith, B., 18
Snippe, H.P., 124
Snodderly, D.M., 319
Somers, D.C.„ 65
Souriau, J.-M., 22
Sperry, R., 338
Spruck, J., 14
Stein, E.M., 6
Stengers, I., 12
Stone, M., 360
Strichartz, R., 5, 356
Stryker, M., 223
Stumpf, C., 22
Sutton Weeks, M., 19
Swindale, N., 6, 203, 246, 320

T
Tailor, D., 267
Tanaka, S., 320
Tani, T., 239
Tanigawa, H., 316
Taube, J., 107
Taylor, B., 133
Taylor, J., 199
Teissier, B., 12, 16, 18
Ter Haar Romeny, B.M., 74
Tessier-Lavigne, M., 331, 338
Thompson, E., 12, 317
Thom, R., 8, 10, 11, 13, 25, 28, 249, 263
Thorpe, S., 62
Toet, A., 364
Tondut, Y., 292, 293
Tootle, R., 119, 224
Toretti, R., 22



Author Index 373

Touboul, J., 165
Toulouse, G., 16
Trepel, C., 223
Tritsch, D., 14
Ts’o, D.Y., 278, 310
Turing, A., 10, 28, 338

U
Uglesich, R., 224
Ullman, S., 303
Ungerleider, L., 49, 117

V
Van Essen, D.C., 319
Van Hooser, S., 125, 221
Varela, F., 12, 14, 317
Veca, S., 18
Veltz, R., 17
Vershik, A., 6, 356
Violi, P. , 18
Volterra, V., 31
Von der Heydt, R., 311, 314
Von Neumann, J. , 360

W
Waddington, C.H. , 11, 338
Wall, C.T.C. , 12, 103
Wallet, G., 18
Wandell, B.A., 71
Wardlaw, C.W., 342
Weierstrass, K.T.W., 168
Weliky, M., 137

Westheimer, G., 293
Weyl, H., 22, 28
Whitney, H., 10, 199
Wickerhauser, M.V., 94
Wiener, N., 36
Wiesel, T., 65, 67, 123
Wilson, H., 8, 255
Winaver, J, 71
Winterer, C., 19
Witkin, A, 13
Wittgenstein, L., 317
Wolf, F., 4, 17, 173, 196, 203
Wolpert, L., 338
Wörgötter, F. , 65
Wu, S., 137

X
Xu, X., 147, 239

Y
Young, R.A., 75
Young, T. (Young-Helmholtz)., 60, 61, 264
Yu, H., 147, 149, 248, 259

Z
Zahaf, M.B., 363
Zariski, O., 12
Zeeman, C., 11
Zeki, S., 313, 316
Zhang, J., 137
Zhu, W., 226
Zucker, S., 17, 304



Subject Index

A
Abduction, 148–150, 286
Absorption peak, 59
Action potential, 7, 31, 51, 64, 194
Adhesion factor, 332
Age-related Macular Degeneration (AMD),

58
Alanine, 60
Amacrine, 51, 57, 58, 334, 335
Amino acid, 54, 60, 333
Angular momentum, 179
Angular sector, 146
Anterior fissure, 114
Aperture problem, 147
Apical, 334, 335
Apparent contour, 317
Association field, 288, 290–293, 295, 306,

347
Axon, 6, 46, 51, 55, 59, 203, 259, 261–263,

276, 331–333, 337, 338, 340, 341
Axon guidance, 342, 347

B
Basal, 334, 335
Ben-Yishai, R.„ 66
Bias factor, 325
Binocular disparity, 114, 252, 310, 319
Binocular rivalry, 253, 255, 323
Biocytin, 278, 279
Bipolar, 51, 56, 58, 335
Blow-up, 347
Brodmann areas, 115
Bundle, 4, 6, 132, 137, 165, 218, 219, 223,

259, 277, 310, 316, 321, 347

C
Cadherin, 332
Calcarine, 45, 115
Calcium, 51, 212, 213
Callosal, 119, 259–261
Carnot group, 5, 356
Cartan connection, 21
Caustic, 6
Checkerboard, 71, 94, 95
Chemotaxis, 343
Chemotrophic, 332
Coaxiality, 5, 357–359
Collagen, 333
Colour processing, 59, 264, 267
Cone, 53, 54, 58–60, 77, 332, 333, 337, 339,

342
Connection, 5, 7, 9, 22, 27, 30, 31, 66, 77,

101, 113, 114, 119, 133, 157, 158,
164, 198, 205, 209, 239, 260, 262,
275, 277–281, 289–291, 293, 295,
297, 331

Connection flagellum, 57
Contact element, 33, 131, 133, 280, 289, 293
Contact geometry, 5, 12, 304
Contact plane, 5, 299, 302, 303, 348, 355
Contact structure, 5, 6, 30, 193, 281, 292,

298, 299, 301, 302, 347
Contralateral, 46, 48
Convolution, 8, 76, 82
Corpus callosum, 259, 264, 338
Cortico-cortical, 78, 114, 298
Curl, 171, 177
Current, 35, 38, 180, 186, 192, 193, 253, 333
Curvature, 6, 17, 94, 102, 199, 292, 294,

303–305, 357
Cut locus, 6, 41

© Springer International Publishing AG 2017
J. Petitot, Elements of Neurogeometry, Lecture Notes in Morphogenesis,
DOI 10.1007/978-3-319-65591-8

375



376 Subject Index

Cyclic guanosine monophosphate (cGMP),
56

Cytochrome oxidase, 257, 258
Cytoskeleton, 332, 338

D
Dehydrogenase, 54
Dendritic tree, 45, 59, 332, 338
2-deoxyglucose, 139
(de)oxyhemoglobin, 139, 141
Dextro rotatory, 158, 164
Differentiable, 11, 129, 134, 135, 171, 249,

309, 323
Differential form, 30
Dipole, 4, 226, 228, 229, 231, 238, 295
Direction, 2, 4, 9, 16, 27, 65, 72, 103, 105–

108, 114, 126, 128, 129, 137, 221,
228, 240, 246, 250, 280, 281, 287,
289, 291, 309, 311, 319–321, 327,
328, 347

DNA, 58, 332
Double-opponent cell, 265, 266

E
Early vision, 331
Efficient coding, 95
Eigenvalue, 193, 205
Eigenvector, 86, 205
Elastica, 7, 358, 359
Engel structure, 6, 305
Engrafted, 128, 137, 221, 259
Entoptic, 40
Entorhinal, 102, 105
Ephrin, 331, 333
Equilibrium potential, 51
Equipotential, 150, 154, 226, 227, 244
Euclidean, 2, 5, 21–23, 26, 98
Excitatory, 62, 107, 209, 210, 275, 358
Expanding ring, 71, 72
External space, 22, 24, 253, 265, 325

F
Feedback, 26, 66, 113, 293
Feedforward, 66
Fibre bundle, 6, 129–131, 133, 134, 138,

215, 217, 275, 277, 321
Fibronectin, 333
Field line, 150
Figure (Gestalttheory), 40
Firing, 63, 97, 104, 105, 256, 293
Flavoprotein, 226

Fluorescein, 261
FMRI, 71–73, 105, 119, 254, 289
Foliation, 173
1-form, 219, 347
Format, 9, 101, 133
Fovea, 114, 117, 128, 142
Frame, 102
Functional architecture, 1, 3–9, 13, 27, 31,

33, 42, 74, 83, 101, 113, 114, 125,
128, 130, 132–134, 210, 250, 259,
275, 281, 295, 298, 303–305, 310,
311, 319, 321, 331, 347, 356

G
Gabor patch, 74, 282, 283, 290, 291, 293
Ganglion cell, 3, 49, 51, 57, 58, 61, 82, 83,

97, 98, 128, 307, 334, 337–341
Gauge, 9, 25, 200
Gaussian derivative, 72, 74
Gaussian field, 195, 196
Generalized symmetry axis, 41
Generic, 158, 232, 249, 286, 287
Geodesic, 6, 7, 16, 24, 303, 347–350, 356–

358
Gestalt, 6, 9, 12, 17, 26, 39, 42, 113, 284,

285, 289, 293, 295, 306, 309, 363
Glial cells, 45, 50
Good continuation, 38, 39, 284, 285, 306,

363
Granular, 120
Grid cell, 2, 102–106
Ground (Gestalttheory), 8
Ground state, 8
Growth factor, 331
Guidance factor, 332, 333

H
Heat equation, 13, 14, 90
Heat kernel, 7, 82, 356, 360, 361
Heisenberg group, 5, 6, 74, 300, 348, 354,

359
Helmholtz equation, 4, 144, 180, 187, 195,

347
Hemifield, 118, 260, 264
Hemiretina, 46, 48, 259
Hemitarget, 122
Hermitian, 7, 74
Hessian, 95, 193
Heterogeneous, 263, 264
Hippocampus, 24, 102, 103
Homogeneous, 103, 145, 204, 263, 264, 278,

316, 317



Subject Index 377

Horizontal cell, 51, 52, 58, 59
Hypercolumn, 123, 126–128, 130, 165, 229

I
Illusory contour, 6, 16, 39, 40, 114, 303, 304,

311, 348, 357, 358
Imaging, 25, 35, 41, 138–140, 143, 147, 151,

210, 212, 228, 229, 257, 291, 296
Immunoglobulin, 331
Impulse response, 79
Inhibitory, 107, 158, 203, 209, 276
Inner segment, 57
Integrability, 135, 289, 292, 298, 299, 303,

349
Integral curve, 160, 173, 299, 303, 348, 355
Integrin, 333
Interkinetic Nuclear Migration (INM), 334
Internal space, 253, 318, 323
Internal state, 7, 253, 318, 319
Inverse problem, 266, 286
Ion channels, 26
Ipsilateral, 46, 48, 49, 107, 242, 261, 338
Isoleucine, 60

J
Jacobian, 176, 177, 195, 197
Jet, 4–6, 11, 13, 17, 133–135, 137, 170, 303–

306

K
Kernel, 5, 7, 81, 211, 216, 299, 301, 306, 347
Koniocellular, 46, 265

L
Laminar, 125, 334, 336
Laminin, 332, 333
LateralGeniculateNucleus (LGN), 3, 15, 46,

48, 49, 62–64, 83, 121, 295, 337
Lattice, 4, 103–105, 138, 144, 147, 150, 157,

158, 162, 164, 165, 170, 180, 201,
215, 217, 218, 220, 222, 239, 244,
347

Layer, 4, 15, 27, 48–51, 61, 65, 101, 120–
122, 124, 126, 128, 141, 217, 242,
246, 250, 257, 262, 276, 278, 310,
319, 336, 340

Left translation, 360
Legendrian, 4, 135, 292, 298, 299, 355
Levo rotatory, 158, 164
Linear momentum, 31, 33, 59

Locally trivial, 147
Long range, 39, 275
Loop, 102, 120, 234
Low level vision, 26

M
Magnocellular, 46, 48, 49, 59, 120, 224, 265
Mammal, 46, 59, 124, 259, 335
Map, 2, 4, 11, 71, 104, 108, 122, 128, 129,

139, 144, 156, 171, 176, 194, 203,
211, 212, 220, 223, 232, 240, 247,
259, 261, 264, 277, 301, 315, 320,
322, 330, 338, 340, 341, 347

Medial fissure, 119, 322, 337
Mesh, 4, 103, 104, 144, 180, 218, 239, 347
Minimal Discharge Field (MDF), 62, 295,

296
Mitochondria, 226
Momentum, 180, 193, 194
Morphogen, 10, 332, 334, 342, 343
Motion, 6, 24, 33, 49, 63, 65, 72, 102, 106–

108, 128, 137, 147, 250, 291, 296,
311, 319, 334

MRNA, 58, 332
Multiscale, 8, 13, 80–82, 84, 87, 92, 95, 97,

128

N
Netrin, 331, 333
Neural coding, 50, 62, 97, 306
Neural network, 5, 26, 31, 35–37, 203, 338
Neuroepithelial, 334
Neurogenesis, 6, 319, 334, 335, 347
Neurogeometric, 5, 9, 28, 34, 40, 305, 310,

347
Neurogeometry, 1, 3, 5, 8, 9, 14, 16, 25–28,

32, 33, 38, 42, 170, 173, 303, 356
Neuropilin, 333
Neurotransmitter, 45
Noise, 62, 64, 82, 94, 95, 97, 141, 255, 359
Noradrenalin, 335
Normal form, 4, 173, 205
Nucleus, 51, 55

O
Occipital, 45, 115, 119
Ocular dominance, 4, 48, 123, 137, 152, 204,

240, 242, 245, 246, 250, 261, 310
Oculomotor field, 115, 117
Opponent cell, 60, 266
Opsin, 54, 57, 59, 335



378 Subject Index

Optic chiasm, 46, 337, 338
Optic tract, 338
Orientation (hyper)column, 3–5, 33, 41, 63,

65, 66, 68, 72, 79, 84, 102, 123, 124,
128, 134

Orientation selectivity, 4, 65, 69, 99, 125,
171, 201, 202, 208, 209, 261

Outer segment, 53, 56, 57

P
Pale stripe, 310, 311, 316
Parallel transport, 5, 278, 279
Partial Differential Equation (PDE), 14, 16,

205, 206
Parvocellular, 46, 48, 49, 79, 120, 224, 265
Pathway, 6, 45, 46, 48, 49, 62, 114, 117, 275,

319, 334, 337, 338
Peripherin, 57
Periphery, 54, 114, 142
Phase field, 4, 150, 170, 171, 173, 180, 181,

183, 193, 194, 201, 217, 347
Phenylalanine, 60
Phosphodiesterase, 54
Photon flux, 52, 77
Photoreceptor, 3, 27, 51–54, 56, 59, 77, 95,

101, 336
Pinwheel, 3, 4, 138, 145, 149–151, 156–159,

162, 164, 171, 173, 174, 180, 193–
195, 200, 201, 203, 204, 206, 207,
209, 210, 212, 215, 217, 218, 220,
222–226, 229, 239, 242, 257, 285,
311, 322, 329

Place cell, 2, 102, 103, 105, 125
Plane wave, 86, 144, 180, 200
Plexiform, 51, 335
Plexin, 333
Point processor, 133, 134, 283, 302, 304
Pontryagin’s maximum principle, 349, 356
Population coding, 33, 85, 103, 123, 138,

143, 201
Pulvinar, 46, 310, 319

Q
Qualitative discontinuity, 95, 266, 318

R
Radius, 144, 145, 230, 234, 307, 353
Receptive field, 3, 13, 27, 50, 51, 54, 59, 62,

73, 75, 79, 81, 120, 123, 147, 149,
247, 294, 313

Receptive profile, 3, 17, 42, 57, 62, 64, 66,
68, 70, 71, 95, 96, 266, 306, 319

Recording, 104, 119, 139, 143, 206, 208,
211, 303

Reeb, G., 301
Reproducing kernel, 89
Retina, 3, 15, 45–47, 49–51, 61, 62, 83, 98,

121, 264, 336, 341
Retinal, 3, 35, 50, 54, 60, 82, 97, 123, 131,

247, 280, 296, 317, 318, 334, 335,
337, 340, 342

Retinaldehyde, 54, 337
Retinal Pigment Epithelium (RPE), 334, 335
Retinotopy, 119, 120, 125, 204, 279
Rhodamine, 261
Rhodopsin, 53, 54, 58
Ridge, 249
RNA, 332
RNA polymerase, 332
Rod, 31

S
Saddle point, 147, 162, 171, 180, 193, 257,

277
Scale, 8, 13, 33, 74, 81, 87, 90, 94, 105, 123,

210, 220, 266, 292
Selection, 59, 67, 253
Semaphorin, 331, 333, 338
Serine, 60
Serotonin, 335
Short range, 66, 333
Signal decorrelation, 95
Simplexity, 302
Simply connected, 188
Single-opponent cell, 266
Singularity, 8, 10, 12, 94, 158, 161, 162, 166,

174, 193, 200, 232, 234, 235, 237,
239, 324, 326, 329

Skeleton, 8, 41, 194
Skew curve, 298, 303
Smooth, 14, 23, 129, 133, 135, 165, 166, 171,

231, 298, 348
Sparse, 97–99, 101, 158
Spatial frequency, 4, 62, 63, 74, 99, 119, 123,

125, 223, 231, 236, 240, 242, 246–
248, 282

Spike, 51, 57, 62, 63, 95, 208–210, 295, 297
Spike train, 62, 63, 68, 78, 223, 292
Splitting factor, 325
Stereopsis, 114, 254, 310
Stochastic resonance, 255
Stratified, 11, 199



Subject Index 379

Striate cortex, 45
Stripe, 248, 257, 310, 311
Subcortical, 46, 107
Subjective contour, 311, 315
Sub-Riemannian geometry, 5–7, 16, 17, 26,

30, 304, 353, 356, 357
Subthreshold, 62, 210, 214, 296, 297
Superior colliculus, 46, 319, 337, 339
Superior temporal sulcus, 319
Symmetry breaking, 10, 205, 263
Synaptic button, 262, 279, 281
Synaptic gap, 45
Synaptic Integration Field (SIF), 295, 296
Synaptic weight, 7, 8, 203

T
Target, 29, 58, 59, 118, 140, 173, 293, 294,

317, 323, 332, 337–341
Temporal frequency, 77
Thalamic, 46, 62, 66, 319
Thick stripe, 257, 310, 311, 316, 319
Thin stripe, 311, 316
Threonine, 60
Threshold, 26, 51, 62, 143, 210, 253–255,

287
Tonic, 47
Topological index, 149, 158, 174
Topological universality, 165, 166, 170, 231,

234
Transducin, 54
Transfert function, 62, 64
Transition zone, 259, 261, 262, 264
Transversality, 4, 11, 223, 239, 242, 244,

246, 248–250, 310, 347
Trichromat, 59–61, 264, 266
Triple point, 149, 161, 162, 166, 167, 171

Tropism factor, 332
Tuning, 67, 85, 124, 125, 171, 209, 242, 324,

327, 328
Tyrosine, 60, 340

U
Unfolding, 173, 323–325, 327
Universal unfolding, 11, 254, 323, 324, 326,

327

V
Vertical meridian, 119, 140, 264, 280, 281
Vesicle, 336, 337
Visual area, 5, 27, 33, 46, 107, 113–116, 119,

296
Visual system, 1, 6, 39, 46, 50, 62, 77, 80,

82, 83, 113, 133, 151, 165, 317, 331
Visuotopy, 223
Vitronectin, 333
Vorticity, 174, 176–179, 192, 193

W
Wavefront, 354
Wavelength, 59, 180, 195, 204, 205, 282,

293, 316
Wavelet, 3, 7, 15, 85, 87–89, 92, 94, 307,

309, 310
Wave number, 4, 77, 78, 144, 180, 181, 194,

205
Wave vector, 180, 181, 194, 196, 198, 205–

207
Weight, 158, 203, 295
Wiring, 4, 133, 244, 248, 332


	Of Interest for Neurogeometry by Jean Petitot
	Contents
	About the Author
	Keywords
	1 Preface
	1.1 The Goal of This Work 
	1.2 An Outline of This Work 
	1.2.1 Outline of the First Volume
	1.2.2 Some Remarks Concerning the Second Volume
	1.2.3 Limits of This Investigation

	1.3 History, Context, and Acknowledgements 
	References

	2 Introduction
	2.1 Origin of Space and Neurogeometry
	2.1.1 Geometric, Physical, and Sensorimotor Conceptions of Space
	2.1.2 The Neurogeometric Approach

	2.2 Perceptual Geometry, Neurogeometry, and Gestalt Geometry 
	2.3 Geometry's `Twofold Way'
	2.4 Idealities and Material Processes
	2.5 Mathematical Prerequisites and the Nature of Models
	2.6 Mathematical Structures and Biophysical Data
	2.7 Levels of Investigation: Micro, Meso, and Macro
	2.8 The Context of Cognitive Science
	2.9 Complex Systems and the Physics of the Mental
	2.10 The Philosophical Problem of Cognitive Science
	2.11 Some Examples 
	2.11.1 The Gestalt Concept of Good Continuation
	2.11.2 Kanizsa's Illusory Contours
	2.11.3 Entoptic Phenomena
	2.11.4 The Cut Locus

	References

	3 Receptive Fields and Profiles, and Wavelet Analysis
	3.1 Structure of the Retino-Geniculo-Cortical Visual Pathways
	3.2 Receptive Fields and Receptive Profiles
	3.2.1 Structure of the Retina
	3.2.2 Neurons and Action Potentials
	3.2.3 Structure of the Photoreceptors
	3.2.4 Ganglion Cells
	3.2.5 Retinal Colour Coding Circuitry
	3.2.6 General Receptive Fields and Neural Coding

	3.3 Visual Neurons as Filters
	3.3.1 Gabor Wavelets and Derivatives of Gaussians
	3.3.2 Steerable Filters
	3.3.3 Linearity Versus Nonlinearity
	3.3.4 Visual Neurons as Convolution Operators
	3.3.5 Fine Orientation Discrimination

	3.4 Vision and Wavelets
	3.4.1 Fourier, Gabor, and Wavelets
	3.4.2 Wavelets and Group Representation
	3.4.3 Wavelets and Discontinuities
	3.4.4 Redundancy of Wavelets
	3.4.5 Compression and Geometry
	3.4.6 Matching Pursuit and Rank Coding

	3.5 Feature Detectors
	3.6 Receptive Profiles and Information Theory
	3.6.1 Signal Decorrelation and Efficient Coding
	3.6.2 Receptive Profiles and Natural Images

	3.7 Signal Processing and Geometrical Formatting
	3.8 Grid Cells and Place Cells
	3.8.1 Spatial Navigation
	3.8.2 Place Cells
	3.8.3 Grid Cells
	3.8.4 Head Direction Cells
	3.8.5 Implementing the Tangent Bundle

	References

	4 Functional Architecture I: The Pinwheels  of V1
	4.1 The Areas of the Visual Cortex
	4.2 Hypercolumnar Structure of the V1 Area
	4.3 V1 as a Mesoscopic Fibration
	4.3.1 `Bridging Scales': The Mesoscopic Level
	4.3.2 Fibrations and Engrafted Variables
	4.3.3 Fibre Bundles
	4.3.4 V1 as a Geometric Fibre Bundle
	4.3.5 V1 as a 1-jet Fibre Bundle
	4.3.6 Legendrian Lifts
	4.3.7 Integrability Condition
	4.3.8 SE(2) Invariance of 1-jets
	4.3.9 Generalizing the Model
	4.3.10 Neurophysiology and Its Geometrical Idealization

	4.4 The Pinwheel Structure of V1
	4.4.1 Observation of Pinwheels
	4.4.2 Limitations of This Analysis
	4.4.3 Functional Maps as Fields
	4.4.4 Development of Pinwheels
	4.4.5 Pinwheels and Evolution
	4.4.6 End Points and Triple Points
	4.4.7 Distortions and Defects in the Neighbourhood  of the V1/V2 Boundary

	4.5 Topological Universality of Pinwheels
	4.6 Pinwheels as Phase Fields
	4.6.1 Fields and Coordinates
	4.6.2 Singularities of a Phase Field
	4.6.3 Orientation and Iso-orientation Fields
	4.6.4 Topological Charge and Index
	4.6.5 Current, Vorticity, and Divergence
	4.6.6 Helmholtz Equation
	4.6.7 Illustration
	4.6.8 Current Conservation
	4.6.9 Critical Points
	4.6.10 Mesogeometry and Microphysics
	4.6.11 Statistics of Pinwheels as Phase Singularities
	4.6.12 Pinwheels and Gaussian Fields
	4.6.13 Evolution of Pinwheels as Phase Singularities

	4.7 Pinwheel Singularities
	4.7.1 Structure in the Vicinity of Singularities
	4.7.2 The Problem of Resolution
	4.7.3 Two-Photon Confocal Microscopy

	4.8 Pinwheels and Blow-ups
	4.8.1 The Geometric Concept of Blow-up
	4.8.2 Blow-ups and Lines of Dislocations
	4.8.3 From Blow-up to Fibre Bundle
	4.8.4 Discrete Versus Continuous Models

	4.9 Different Aspects of Pinwheels
	4.9.1 Position--Orientation Independence and Local Triviality
	4.9.2 Other Engrafted Variables
	4.9.3 Spatial Frequency
	4.9.4 Generality of Pinwheels

	4.10 Retinotopic Maps and Their Transversality
	4.10.1 Pinwheels and Ocular Dominance
	4.10.2 Independent Maps and Transversality Principle
	4.10.3 Binocularity
	4.10.4 Blobs and Colour
	4.10.5 Functionality of Maps

	4.11 Hemispheres and Callosal Connections
	4.12 Homogeneous and Inhomogeneous Qualities
	4.12.1 Responses to Homogeneous Surfaces
	4.12.2 Colour Processing

	References

	5 Functional Architectures II: Horizontal Connections and Contact Structure
	5.1 From Pinwheels to Contact Geometry
	5.1.1 Horizontal Intracortical Connections
	5.1.2 Semi-local Structures
	5.1.3 Parallelism and Coaxiality

	5.2 Integration of Contours and Association Field
	5.2.1 Some Experimental Facts
	5.2.2 Pop-Out, Perceptual Salience, and the Helmholtz Principle
	5.2.3 Explanation in Terms of Association Fields
	5.2.4 Confirmation by fMRI
	5.2.5 Relationship with the Horizontal Connections
	5.2.6 Discretization of the Contact Structure
	5.2.7 Binding
	5.2.8 Comparison with Other Data

	5.3 Some Effects of the Horizontal Connections
	5.3.1 Contextuality of the Receptive Fields
	5.3.2 Line-Motion Illusion

	5.4 Contact Structure
	5.4.1 Integrability Condition and Contact Form
	5.4.2 Contact Structure as a Cartan Connection
	5.4.3 Non-integrability of the Contact Structure
	5.4.4 Polarized Heisenberg Group
	5.4.5 Scale and Characteristic Vectors
	5.4.6 Jets, Contact Geometry, and `Simplexity'

	5.5 Illusory Contours as Sub-Riemannian Geodesics
	5.6 Curvature Detectors and 2-Jets
	5.6.1 Data
	5.6.2 Curvature, 2-Jets, and Engel Structure
	5.6.3 `Good Continuation' and the Statistics of Natural Images

	5.7 Relationship with Wavelets
	5.8 Structure of the V2 Area
	5.9 Colour and Area V4
	5.9.1 Colour Constancy: Semir Zeki and René Thom
	5.9.2 Objectivism Versus Subjectivism

	5.10 Motion and the MT Area (V5)
	5.11 Models of Direction and Singularities of Functions
	5.11.1 Projection of Singularity Lines from V2 to MT
	5.11.2 Swindale's Model
	5.11.3 Singularities and Universal Unfoldings
	5.11.4 Swindale Model (Continued)

	5.12 Neural Morphogenesis and Its Genetic Control
	5.12.1 Guidance of Axon Connections
	5.12.2 Transcription Factors and Homeoboxes
	5.12.3 Some Guidance Factors
	5.12.4 Neurogenesis of the Retina
	5.12.5 Retinotopy and Neurogenesis of Visual Pathways
	5.12.6 Dynamical Models of Neural Guidance

	References

	6 Transition to Volume II
	6.1 Introduction
	6.2 Geodesics of the mathbbVJ Model
	6.3 The mathbbVS Model
	6.4 Geodesics of the mathbbVS Model
	6.5 Elastica Revisited
	6.6 Sub-Riemannian Diffusion, Heat Kernel,  and Non-commutative Harmonic Analysis
	6.7 Confluence Between mathbbVJ and mathbbVS Models
	6.8 Other Themes
	References

	Appendix  Author Index
	Author Index
	Appendix  Subject Index
	Index



