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Abstract Polyphenols are natural molecular entities exhibiting a wide variety of
bioactivities including anticholinergic and/or antiamyloidogenic activities. Their
low solubility is recognized as a key factor for bioavailability and their glycosy-
lation is indeed relevant to improve the bioaccess to these molecules. In this
chapter, chemical and enzymatic syntheses of glycosylated flavonoids, stilbenoids,
phenylethanoids and phenylpropanoids are illustrated, covering examples that
demonstrate the impact of coupling sugars to bioactive aglycones in their
bioavailability and in their pharmacological activity. The chapter is focused par-
ticularly on glycosyl polyphenols with promising activities against neurodegener-
ative impairments, given their potential to intervene in biological processes that
cause catastrophic diseases, namely the Alzheimer’s disease.

1 Introduction

Polyphenols are plant secondary metabolites present in the common human diet and
known to play important roles in human health. They are poorly absorbed, resulting
in a very low concentration in the circulatory streams [69]. The modification of their
physicochemical properties such as solubility and partition coefficient by glyco-
sylation seems to exert a positive influence on the entry of polyphenols into
enterocytes [69]. The low solubility of most of the polyphenol aglycones may also
result from their tendency to form aggregates via hydrophobic interactions with
aromatic rings, and hydrogen bonding by the hydroxy groups [3]. In nature,
polyphenols occur often as glycosylated derivatives. The sugar moiety of
polyphenol glycosides plays a major role in their absorption [69] but polyphenol
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glycosylation may also exert other benefits by improving bioavailability or pre-
venting oxidation by masking phenolic groups. In this chapter, synthetic strategies
via chemical or enzymatic methodologies to access biologically active glycosyl
polyphenols are illustrated, covering flavonoids, stilbenoids, phenylpropanoids and
phenylethanoids. Natural occurrence and compound bioactivities are also reviewed
for the promising polyphenol molecular entities described that exhibit neuropro-
tective activities.

2 Glycosylated Flavonoids

Flavonoids are polyphenolic secondary metabolites in the plant kingdom whose
structural feature is based on derivatives of a phenyl-substituted 1-phenylpropane
possessing a C15 skeleton. In this chapter, the given examples focus particularly on
flavones, whose structure is that of a 1-benzopyran (chromene), in which the aro-
matic ring is designated as ring A and the pyran as ring C, along with the (substi-
tuted) phenyl group (ring B) on ring C at position 2 (flavone) or position 3
(isoflavone). Thousands of different scaffolds have been isolated and structurally
identified over the past decades, and many have been reported due to their
wide-range bioactive profiles often associated with very potent antioxidant and
anti-inflammatory effects [70]. They may occur as aglycones or as the corresponding
glycosylated forms, either as O-glycosides or C-glycosyl derivatives; yet, the
advantages of glycosyl flavones over the corresponding aglycones have been
highlighted in the context of Alzheimer’s disease with respect to their ability to
remodel and inactivate neurotoxic amyloid b (Ab) aggregates [36], again reinforcing
the importance of the sugar moiety for optimized anti-neurodegenerative activity.

The growing interest in the therapeutic potential of glycosyl flavonoids has
motivated organic and medicinal chemists to develop efficient synthetic and bioen-
zymatic routes involving a diverse collection of sugar coupling reactions. By
describing the synthesis of some of the most promising molecular entities with
neuroprotective activities, we will provide an overview of the most useful method-
ologies for the generation of flavones bearing in their structure O-linked or C-linked
sugars, covering both chemical and enzymatic synthesis reported in the literature.

2.1 Flavone Glycosides

The 7-O-b-glucuronide of baicalein, baicalin (1), is one of the most abundant
compounds in Scutellaria baicalensis Georgi, a plant extensively used in traditional
Chinese medicine for the treatment of inflammatory disorders, bacterial infections,
among others [6]. Baicalin (1) itself was recently found to improve Ab-induced
learning and memory deficits in rats by attenuating hippocampal injury and neuron
apoptosis [11]. Its anti-inflammatory activity has actually been proposed as a
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paramount mechanism underlying these neuroprotective effects [6], namely by
inhibiting microglial activation and inflammatory cytokine secretion [83].
Moreover, baicalin (1) could also upregulate antioxidant enzymes such as super-
oxide dismutase, catalase and glutathione peroxidase, thus contributing to
decreased oxidative injury in the brain of diseased animals [11].

Based on its promising therapeutic potential, Li and co-workers described an
efficient route for baicalin (Scheme 1) starting from the selectively acetylated
aglycone 3, which was accessed after a series of simple protection–deprotection
reactions [45], and using the first type of sugar donor ever applied in the synthesis
of flavonoid glycosides: a glycosyl bromide [62]. In this method, 6-OTBDPS
protected bromide 2 was coupled to the aglycone in an Ag2O-promoted reaction
that afforded only the b-glucoside in 92% yield due to acyl neighbouring group
participation, thus overpowering the otherwise dominant anomeric effect that would
have given the a-anomer as the major product. After deprotection with TBAF,
position 6″ was then submitted to Widlanski oxidation using TEMPO and BAIB to
give the glucuronic acid derivative 4, followed by a deacylation reaction that led to
the desired product, baicalin (1).

The 4′-hydroxy analogue of baicalin (1), scutellarin (5), is the major component
of the Erigeron breviscapus Hand-Mazz flavonoid extract, also used in traditional
Chinese medicine for the treatment of cerebral infarction and other cardiovascular
diseases [54]. Similarly, this compound was found to attenuate neuroinflammation
through the suppression of microglial activation [15], and was indeed associated
with major improvements in neuronal injury and behaviour of rats with cerebral
ischemia [14, 68]. Moreover, it is able to inhibit Ab aggregation in vitro, while
preventing Ab-mediated neuronal cell death [91].

Nonetheless, pharmacokinetic studies have revealed that scutellarin (5) displays
a rather poor bioavailability due to the action of endogenous b-glucuronidase
enzymes that readily hydrolyze the glycosidic bond [5, 17, 23]. To surpass this
problem, Li and co-workers designed and synthesized the scutellarin b-O-glucosyl
analogue 6 with improved physicochemical properties and an even more
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Scheme 1 Reagents and conditions: a Ag2O, 4 ÅMS, quinoline, r.t. (92%); b TBAF, AcOH,
THF, 4 h (86%); c TEMPO, BAIB, DCM/H2O, r.t. (87%), d Mg(OMe)2, MeOH, r.t. (85%) [45]
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pronounced attenuation of H2O2-induced neuronal damage when compared to
scutellarin (5) [40]. Using scutellarin itself as the aglycone source, the authors
coupled compound 7 to the glucosyl bromide 8 with Ag2O and CuSO4 as pro-
motors; yet, the b-O-glucoside 6 was achieved in only moderate yield (40%)
(Scheme 2).

Among the most promisingO-glucosyl flavonoid leads against neurodegenerative
diseases is quercetin 3-b-O-glucoside (10) (trivial name: isoquercetin), which has
been isolated from a variety of sources, including mangos or medicinal plants such
Serjania erecta Radlk (Sapindaceae) orPsidium guajavaL. [18, 46, 48]. In addition to
its antioxidant and anti-inflammatory activities, this compound is able to prevent
hippocampal neuronal apoptosis after cerebral ischemia and reperfusion injury [76,
77], and displays protective effects against Ab-induced cytotoxicity. Importantly, it
was also found to inhibit both BACE-1 and AChE with IC50 values of 41.2 and
66.9 µM, respectively [26, 27]. Furthermore, a comparative study between
polyphenolic glycosides and their respective aglycones has shown that whilst quer-
cetin (11) acts by remodelling Ab toxic oligomers into large aggregates, isoquercetin
(10) rapidly disaggregates the amyloid structures into soluble polypeptides as a result
of a synergistic action between the sugar and the aglycone [36].

Isoquercetin (10) can be obtained from quercetin (11) by the action of UGT78D1, a
flavonoid-specific uridine diphosphate glycosyltransferase (Scheme 3) that catalyzes
the in vitro regioselective transfer of a glucose or a rhamnose unit from UDP-glucose
or UDP-rhamnose, respectively, to flavonoid glycosyl acceptors containing a
hydroxyl group in position 3, as reported by Ren and co-workers [59]. This study was
able to clarify the substrate specificity of this enzyme in detail, showing that only
flavones hydroxylated in both rings A and B are recognized by UGT78D1, high-
lighting 2′-OH flavones as exceptions to this rule.

Tiliroside (12) is a kaempferol 3-b-O-glycoside that can be found in Agrimonia
pilosa or Potentilla chinesis for instance, and displayed stronger AChE inhibitory
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Scheme 2 Reagents and conditions: a 6 N HCl, EtOH, 120 °∁ (17%); b pyridine, Ac2O, DMAP,
25 °∁ (79%); c BnBr, K2CO3, KI, acetone, reflux (70%); d Pd/C, H2, DCM/EtOH, 25 °∁ (95%);
e CuSO4, AgO, quinoline, 25 °∁ (40%); f NaOH, CHCl3, 0 °∁ (41%) [40]

170 C. Dias et al.



activity when compared to isoquercetin (10), with an IC50 value of 25.5 lM [27,
57]. It was also found to inhibit neuroinflammation in activated microglial cells by
modulating pro-inflammatory intracellular pathways, which was at least in part
attributed to its antioxidant properties [71].

The synthesis of tiliroside (12) was described in 1981 by Vermes and co-workers
(Scheme 4) [72]. In the first step of this route, glucosyl bromide 13 and 4’,7-O-
dibenzyl kaempferol (14) were coupled in a reaction promoted by Ag2CO3 to afford
the b-anomer in 54% yield. After debenzylation followed by acetylation and
selective removal of the 6″-O-chloroacetyl protecting group, intermediate 15 was
generated and subsequently esterified by p-coumaroyl chloride in pyridine. Further
deprotection directly afforded tiliroside (12) in good yield. Many other phenyl-
propanoid glycosides with neuroprotective activities such as this one will be pre-
sented and their synthetic routes described in detail in Sect. 3.
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UDP-Glucose, 30 °∁ [59]
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2.2 C-Glycosyl Flavones and Isoflavones

In spite of the remarkable neuroprotective effects associated with the flavone
O-glycosides described above, C-glycosyl flavonoids have been receiving growing
attention for their insusceptibility to in vivo hydrolysis by glucosidases, allowing
them to remain intact in the blood circulation following oral administration [9].
Even though the synthesis of the C–C bond usually requires stronger conditions
when compared to the formation of the C–O bond in O-glycosides, a variety of
methods have been reported in the literature over the past few decades, offering a
wide range of options for regio- and stereoselective reactions using different gly-
cosyl donors and acceptors when the time comes to design a synthetic route for the
target compound [64].

Vitexin (17) and isovitexin (18), the 8-b-C- and 6-b-C-glucosyl derivatives of
apigenin, respectively, are good examples of the potential of natural C-glycosyl
flavonoid derivatives against neurodegenerative disorders. These compounds can be
found in Serjania erecta Radlk (Sapindaceae) [18] or the flour from the Prosopis
alba seed [4], for instance, and both were able to inhibit AChE and BChE with IC50

values ranging from 6.2 to 12.2 µM, although vitexin was substantially more
effective as a BACE-1 inhibitor than isovitexin (IC50 = 51.1 µM vs. >100 µM),
thus indicating a preference for the sugar moiety to be in position 8 for improved
affinity towards the enzyme [7, 8]. Vitexin (17) has also been described to exert
neuroprotective effects in cerebral ischemia and reperfusion injury by positively and
negatively modulating cell proliferation and apoptosis pathways, respectively [79].
In addition, vitexin (17) was found to have a more pronounced impact in reversing
Ab-induced cytotoxicity not only when compared to isovitexin (18), but also when
put alongside with the earlier presented isoquercetin (10) [18].

Back in 1995, Mahling and co-workers developed a synthetic route for both
vitexin (17) and isovitexin (18) by taking advantage of the Fries-type rearrangement,
described to occur in O-aryl glycosides with high regio- and stereoselectivity to
afford the corresponding ortho-hydroxy C-glycosyl phenolic derivative [32, 47, 64].
Hence, in the first step of this synthesis (Scheme 5), the reaction of the glycosyl
trichloroacetimidate 19 with the silyl-protected acetophenone 20 was catalyzed by
TMSOTf at-30 °∁ and afforded the a-O-glycoside 21 in 85% yield. After cleavage of
the remaining TBS group followed by regioselective benzylation in position 4, a
Fries-type rearrangement took place in another TMSOTf-catalyzed reaction, this
time at room temperature, to afford the corresponding b-C-glycosyl derivative in
57% yield. Subsequent acylation converted this derivative into intermediate 17 and,
at this point, the Baker–Venkataraman rearrangement was carried out and resulted in
a mixture of compounds 23 and 24, which were both cyclized and further
deprotected after separation to give vitexin (17) and isovitexin (18).

Vitexin (17) and isovitexin (18) were also obtained as protected intermediates in
a more recent and concise synthesis developed by Furuta and co-workers [16] with
the ultimate goal of accessing compound 25, an anti-inflammatory glycosyl flavone

172 C. Dias et al.



isolated from oolong tea extract [24]. In this route (Scheme 6), trichloroacetimidate
19 was directly coupled with the monobenzyl-protected acetophenone 26 to afford
the desired b-C-glucosyl derivative in 69% yield, which was further acylated to
give intermediate 27. In contrast with the previous work by Mahling et al., this
procedure involves the initial formation of a glycoside at low temperature, which
then undergoes, by warming up, the O ! C Fries-type rearrangement in situ [64].

In another one-pot reaction using potassium carbonate in pyridine under reflux,
intermediate 27 was converted into both protected isovitexin (28) and protected
vitexin (29); yet, to accomplish the synthesis of the target compound, only 28
proceeded in this route. After debenzylation, it was submitted to an intramolecular
Mitsunobu reaction using modified experimental conditions in which inversion of
the configuration of carbon 2″ led to the transformation of the gluco derivative into
the desired manno derivative in tandem with the formation of a fused tetracyclic
system with the aglycone. Further deprotection afforded the target compound 25,
but it is still interesting to note that this was the major product of Mitsunobu
reaction regardless of the presence of a primary alcohol and another phenolic group
in its precursor, thus highlighting reaction regiospecificity.

Orientin (31) and isoorientin (32) are another pair of C-glucosyl flavonoid
derivatives extensively studied for their potential against neurodegenerative
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processes and can both be found, for instance, in buckwheat bran [92], Glochidion
hypoleucum (Miq.) Boerl leaves, or Stellaria holostea [1]. Orientin (31) was able to
alleviate cognitive deficits in mice with Alzheimer’s disease, while attenuating
mitochondrial dysfunction induced by Ab [84]. Moreover, it exerted neuroprotec-
tive effects by inhibiting the activity of three members of the caspase family,
including caspase 3, which is directly involved in synaptic loss and cognitive
dysfunction in Alzheimer’s disease [37, 10]. Both orientin (31) and isoorientin (32)
are BACE-1 inhibitors with IC50 values of 16.0 and 20.9 µM, respectively,
showing that the presence of the additional hydroxy group in position 3′ when
compared to vitexin (17) and isovitexin (18) positively affects the affinity towards
the enzyme, especially in the case of 6-b-C-glucosyl derivatives. Furthermore, they
are also AChE and BChE inhibitors and seem to be slightly selective towards the
later, with similar IC50 values of roughly 11 µM [7, 8].

In contrast to the described synthetic approaches for vitexin (17) and isovitexin
(18), each of these luteolin C-glucosyl derivatives has been accessed individually in
more effective, regioselective routes. Kumazawa and co-workers reported, on the
one hand, the synthesis of orientin (Scheme 7) in which the glucosyl fluoride 33
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was coupled with acetophenone 34 in a BF3�Et2O-promoted reaction to afford the
b-C-glucosyl derivative 35 in 96% yield [33]. Subsequently, an aldol condensation
led to chalcone 37 which, after cyclization and deprotection, gave orientin (31) in
very good yield.

On the other hand, these authors were able to develop a synthetic path towards
isoorientin (Scheme 8) using the same coupling methodology but taking advantage
of differences in hydrogenolysis rates between benzyl and 2-methylbenzyl pro-
tecting groups [34]. Indeed, after a series of protection-deprotection reactions, the
free hydroxy group was para to the sugar moiety in intermediate 40, and after aldol
condensation, cyclization and deprotection, isoorientin (32) were successfully
generated. It is noteworthy that, in this route, the C-glycosylation step was sig-
nificantly less effective (75% yield) than the one described in the synthesis of
orientin (31, 95% yield), even though the coupling method applied was the same in
both cases. Given that the only difference between the two glycosyl acceptors was
the 2-methylbenzyl group in compound 39, this result highlights the impact of
protecting groups on the efficiency of this type of coupling reactions.

More recently, the biosynthesis of vitexin (17), isovitexin (18), orientin (31) and
isoorientin (32) was accomplished by Hao and co-workers using Desmodium
incanum root proteins, starting from the corresponding 2-hydroxyflavanones, the
required substrates of C-glycosyltransferases existent in Desmodium spp. [21, 22].
As clarified in a previous report [29], Wessely–Moser isomerization is responsible
for the interconversion between the corresponding 8-b-C- (45 and 46) and 6-b-C-
glucosyl derivatives (49 and 50), as 2-hydroxyflavanones may exist in solution in
either open chain or cyclized structures (Scheme 9). In spite of the consequent lack
of regioselectivity, these intermediates afforded the respective flavones in overall
excellent yields after acid-promoted chemical dehydration.

Puerarin (51), the major component of Puerariae Lobatae Radix [82], is another
C-glucosyl flavonoid with potential against neurodegenerative disorders and has
received particular attention in regard to its ability to act against diabetes-induced
cognitive dysfunction, complementing its known antidiabetic activity [44, 82, 84].

OOH

BnO OBn

OBnO
BnO

F
BnO

OBn

a
O

OBnBnO

O
BnO

BnO
OHBnO

OBn

b

OBnBnO
O

BnO
BnO

OH
BnO

OBn

O

OHO

OH O

OHO

OHHO

HO OH

c,d
OHC

OBn
OBn

OBn

OBn

OH

31

33 34 35

36

37

Scheme 7 Reagents and conditions: a BF3�Et2O, MS4Å, DCM, −78 °∁ ! r.t. (96%);
b 1,4-dioxane, aq. NaOH 50%, r.t. (84%); c I2, DMSO, reflux (84%); d Pd/C, H2, EtOH, r.t.
(quantitative yield) [33]

Chemical Approaches Towards Neurodegenerative Disease … 175



This is of particular importance due to the well-established relationship between type
2 diabetes and Alzheimer’s disease [31] and, in fact, puerarin (51) was found to have
neuroprotective activity in STZ-induced diabetic rodents with learning and memory
deficits by exerting antioxidant, anti-inflammatory and anti-apoptotic effects [42, 89].
In addition, this C-glucosyl isoflavone was able to attenuate Ab-induced oxidative
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stress, cell injury and resulting cognitive impairment [39, 41, 78, 86, 90], and could
also improve learning and memory functions in rats with vascular dementia by
activating cellular antioxidant defense mechanisms [87].

The total synthesis of puerarin (51) was firstly reported by Lee and co-workers in
2003 [38] (Scheme 10). In this approach, the benzyl protected glycopyranolactone
52 was coupled to the lithiated glycosyl acceptor 53 at low temperature, followed
by reduction with triethylsilane and BF3�Et2O to give the b-anomer in 56%. After a
couple of protection-deprotection reactions, a Friedel-Crafts reaction catalyzed by
AlCl3 and subsequent deacetylation gave intermediate 55, which then underwent
aldol condensation with p-methoxybenzaldehyde (56) to afford chalcone 57. After
acetylation, TTN-promoted oxidative rearrangement of ring B followed by closure
of ring C and demethylation gave puerarin (51) in moderate overall yield.

The trihydroxyisoflavone analogue of puerarin (51) is the 8-b-D-glucosylgenis-
tein (58), the main component of the ethyl acetate extract of Genista tenera, a plant
found in Madeira island and used in folk medicine to treat diabetes [25]. In addition
to its potent antidiabetic activity, 8-b-D-glucosylgenistein (58) was found to interact
with Ab1-42 polypeptides, suggesting potential neuroprotective effects as well. In
this study, the binding epitope of 8-b-D-glucosylgenistein (58) with Ab was dis-
closed, confirming the already expected key role of both aromatic rings in the
resulting interaction, and reinforcing the importance of the sugar moiety in the
antiamyloidogenic activity of this compound.

The synthesis of 8-b-D-glucosylgenistein (58) (Scheme 11) was accomplished
by coupling the commercially available glucopyranoside 59 and acetophenone 60
catalyzed by TMSOTf, to give the desired C-glycosylation product in 56% yield,
which was selectively benzylated to afford intermediate 61 [25]. Then aldol con-
densation with p-benzyloxybenzaldehyde followed by acetylation led to the for-
mation of chalcone 63 and subsequent TTN-promoted oxidative rearrangement,
ring closure and deprotection afforded the target compound, 58.
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In a nutshell, the coupling of sugars with polyphenols to generate bioactive
glycosyl flavonoids may involve a variety of different strategies and experimental
conditions which primarily depend upon the available starting materials, reaction
promoters or catalysts, and the nature of the pursued C–C or C–O bond. Regio- and
stereoselectivity can be achieved with the use of the appropriate sugar protecting
groups and glycosyl acceptor, while temperature is a key factor in the formation of
either O- or C-glycosyl derivatives, particularly when a Fries-type rearrangement is
involved in the reaction mechanism. Also, by covering the synthesis of structurally
complex compounds such as the presented bioactive glycosyl flavones and iso-
flavones, this section enclosed a number of useful protection–deprotection strate-
gies, interesting rearrangement reactions and cyclization approaches, which may be
convenient for the synthesis of new nature-inspired glycosylated molecules towards
neurodegenerative disease prevention.

3 Stilbenoid Glycosides

Stilbenoids are natural compounds occurring in a number of plant families, particu-
larly in grapevine [2]. Amongst them, the most well known is resveratrol (E)-
3,4′,5-trihydroxystilbene, (64), possessing anti-inflammatory, antioxidant and
chemopreventive activities. This powerful compound is present in wine and has been
speculated to be responsible for so-called French paradox, where the saturated fat rich
French diet correlates with a low mortality from coronary heart disease [60, 81].
Resveratrol also occurs ubiquitously in nature as resveratrol 3-b-glucoside (piceid,
67) (Fig. 1). Other stilbenes include pterostilbene (E)-4′-hydroxy-3,5-
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dimethoxystilbene, (65), piceantannol (E)-3,3′,4′,5-tetrahydroxystilbene, (66)
(Fig. 1) and astringine (68) which biological activities have been reviewed [63].

Much attention has also been paid to stilbenes potential ability to protect from
neurodegeneration. In fact, research points resveratrol as neuroprotective, not only
due to the already mentioned antioxidant and anti-inflammatory activities, but also
due to its ability to inhibit Ab oligomeric cytotoxicity and to reduce neuronal cell
death [58]. In a comparative study, the inhibitory activity of a series of stilbenes
against Ab (25–35) fibril formation was assessed. Both resveratrol 64 and piceid 67
effectively and dose dependently inhibited Abmore extensively than curcumin [61].

Despite the promising activities of resveratrol and its glycoside piceid, their
bioavailability in humans is quite poor [73, 81]. Indeed, the oral bioavailability of
resveratrol is less than 1% as a consequence of quick and extensive metabolism,
mainly through glucuronidation and sulfation, although it is not known whether
resveratrol metabolites have a positive biological impact. The water-insolubility of
stilbenes such as resveratrol, pterostilbene and piceatannol limits their further
pharmacological exploitation. Literature shows a number of efforts to develop new
stilbene analogues with higher solubility and bioavailability, and glycochemistry
has definitely played a very relevant role. Glycosylation allows water-insoluble and
unstable organic compounds to be converted into the corresponding water-soluble
and stable compounds.

The synthesis of piceid itself was first described by Orsini and co-workers, in an
attempt to obtain this natural product more efficiently (Scheme 12) [53]. The
synthetic strategy aimed at building the stilbene skeleton first, by Wittig reaction of
the aldehyde 69 and phosphonium ylide 70, followed by desilylation. Methyl
protected intermediary 71 was then glycosylated in the aqueous base under the
phase transfer catalyst benzyltriethylammonium bromide (BTEAB) which afforded
glucoside 73 in 32%. The diglucoside was also formed and isolated in 13% yield.
Further deprotection (2 steps) afforded piceid [66] in 60% yield (13% overall yield)
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[53]. This methodology was also employed to the synthesis of other stilbene gly-
cosides such as combretastatin analogues.

More recent efforts towards glycosylation of resveratrol take advantage of bio-
transformation for a simpler and more efficient synthesis. Glucosyltransferase
PaGT3 from Phytolacca americana expressed in Bacillus subtilis was used to
convert resveratrol into its 3- and 4′-b-glucosides (67 and 74), as well as pteros-
tilbene and piceatannol into their 4′-b-glucosides 75 and 76, respectively,
(Scheme 13). Glucosylation reactions were performed at 37 °∁, in potassium
phosphate buffer supplemented with UDP-glucose and enzyme. Although the
procedure was not very effective towards piceid (12% yield), it afforded the 4′-
b-glucosides in yields ranging from 50 to 76% [20].

Glycosylation of stilbenes was also performed using cultured cells from
P. Americana and glucosyltransferase (PaGT). This biocatalytic glycosylation
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using cultured cells, in opposition to the direct use of the extracted enzyme,
afforded resveratrol glucosides 67 and 74 in 35 and 22% yield, respectively, [65],
favouring the formation of piceid, and 77% of piceatannol glucoside 76, which
proved to be the best substrate for this enzyme. Pterostilbene was only slightly
converted into 75.

In addition, resveratrol 3- and 4′-b-glucosides were further glycosylated using
cyclodextrin glucanotransferase (CGTase) to afford resveratrol 3- and 4′-
b-maltosides (77 and 78), respectively, with yields of 17 and 27%. The phospho-
diesterase (PDE) inhibitory activity or resveratrol and pterostilbene was enhanced
by glycosylation, since resveratrol 3- and 4′-b-glucosides, resveratrol 4′-
b-maltoside and pterostilbene 4′-b-glucoside were better PDE inhibitors than their
corresponding aglycone. This is particularly relevant as PDE inhibitors could be
used in the treatment of neurodegenerative disorders such as Alzheimer’s disease as
they show potential to exert a neuroprotective role. Interestingly, piceatannol 4′-
b-glucoside revealed also potent histamine release inhibitory activity (anti-allergic
activity) [20, 65].

Enzymatic synthesis has also been employed in further glycosylation of the
natural piceid, generating more soluble piceid glycosides such as 79, which was
obtained after incubation of piceid with maltosyltransferase from
Caldicellulosiruptor bescii and maltotriose at 70 °∁, in 18% yield. The water sol-
ubility of maltosyl piceid 79 is 8540 and 1860 times greater than that of resveratrol
and piceid, respectively [55]. Since the a-1,4-glycosidic linkages present in 79 can
be easily hydrolyzed in vivo by a-glucosidase, this piceid glycoside could poten-
tially be a resveratrol prodrug, with increased bioavailability and delayed meta-
bolism [55]. Several piceid glucosides have also been obtained using cyclodextrin
glucanotransferase from Bacillus macerans [49].

More recently, a sucrose phosphorylate from Thermoanaerobacterium ther-
mosaccharolyticum (TtSPP) was engineered envisioning quantitative glycosylation
of resveratrol in aqueous media (Scheme 14). Desmet and co-workers were able to
identify a residue particularly important in the active site of TtSPP, which normally
does not have a pocket deep enough for the binding resveratrol. Such residue, R134,
was replaced by a smaller residue aiming at leaving an opening in the enzyme’s closed
conformation, enabling the accommodation of larger substrates. Indeed, the variant
R134A, where arginine 134 was replaced by alanine, proved to have a reasonable
affinity for resveratrol and to be very effective in the glycosylation of resveratrol at
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gram scale, allowing the quantitative production of resveratrol 3-a-glucoside in an
aqueous system, using sucrose as a cheap glycosyl donor [12].

Cyclodextrin glucanotransferase was also used to convert resveratrol and starch
to a-glucosylated resveratrol products at 3-OH, at 4′-OH and at both 3-OH and 4′-
OH, with increased water solubility when compared to that of resveratrol [69].
Interestingly, while the water solubility of piceid is 0.37 g/L, its alpha anomer
presented solubility higher than 2 g/L [69]. Nevertheless, it would be interesting to
compare the bioactivity of 82 with its anomer piceid, as configuration may play an
important role in bioactivity and bioavailability, as demosntarted for the solubility.
To the best of our knowledge, no bioactivity studies were conducted on resveratrol
3-a-glucoside so far.

Keeping in mind the challenge of resveratrol low water solubility, a new
resveratrol analogue was developed, where glucosyl units were added to a
resveratrol core with a succinate linker. It was speculated that the presence of
glycosyl groups may also improve bioavailability by influencing phenomena taking
place upstream of entry into erythrocytes, as occurs for quercetin 3-O-glucoside [3].
For the construction of the resveratrol analogue, a succinyl linker was firstly
attached to the 3-hydroxy group of diacetoneglucose (83) (Scheme 15). The
resulting succinyl ester (85) was used for the transesterification with resveratrol
hydroxy groups using EDC. Hydrolysis of the isopropylidene protecting groups
afforded the resveratrol derivative 87 in a 57% overall yield. This compound is
relatively stable in acidic conditions but can be converted into resveratrol by blood
esterases. Pharmacokinetics parameters were also improved, as its administration
resulted in a blood concentration versus time curve shifted to longer times in
comparison to resveratrol. This chemical transformation is particularly attractive as
it may be employed in other bioactive polyphenols with poor water solubility. In
addition, coating the hydroxy groups with sugar moieties can even make them more
palatable [3]. Thus, it would be interesting to study this kind of modification in
other polyphenols and, in addition to pharmacokinetics properties, study its influ-
ence in their organoleptic characteristics.

In summary, selected examples of glycosyl stilbenoids chemical and enzymatic
synthesis were presented and described the reported benefits of stilbene
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glycosylation for the usefulness of such biomolecular entities towards prevention of
neurodegenerative impairments and related diseases.

4 Phenylethanoid and Phenylpropanoid Glycosides

A number of phenylethanoid and phenylpropanoid glycosides, either of natural or
synthetic origin, have been described to possess neuroprotective activities, tackling
both the amyloid cascade and the cholinergic system.

Acteoside (95) is a natural phenylpropanoid glycoside, also known as verbas-
coside, first isolated from the plant Verbascum sinuatum in the 1960s [28].
Meanwhile, a number of relevant bioactivities have been described, including its
neuroprotective properties. Acteoside, isolated from Orobanche minor, strongly
inhibits the aggregation of Ab1-42, with an IC50 of 8.9 µM [35] and protects
against Ab-induced cell injury by attenuation of reactive oxygen species produc-
tion, by modulation of the apoptotic signal pathway through Bcl-2 family [75] and
by upregulation of heme oxygenase-1 [74]. However, even before the mechanisms
of neuroprotection were unravelled, the unsatisfactory extraction of this natural
product from plant sources, prompted Sakuno and co-workers to develop the total
synthesis of acteoside [28]. The synthetic strategy involves reaction of glucosyl
chloride 88 (which was prepared from the peracetylated corresponding sugar) with
the phenyletyl derivative 89 by the Koenigs-Knorr method in the presence of silver
carbonate (Scheme 16). The presence of an acetyl group at position 2 directs to the
formation of the 1,2-trans glycosidic bond through a neighbouring group partici-
pation mechanism [28]. A series of protection and deprotection steps to afford
glycoside 91 is followed by the introduction of the caffeoyl moiety by esterification.
Oxidative cleavage of the 3-O-allyl group and rhamnosylation, performed with
2,3,4-tri-O-acetyl-a-L-rhamnopyranosyl trichloroacetimidate in the presence of
boron trifluoride diethyl etherate gives the expected a-rhamnoside 94 in 73% yield.
Finally, two considerable challenges lie on both the selective deacetylation over the
cleavage of caffeoyl ester, and the selective removal of benzyl groups while keeping
the double bond. Acetyl cleavage was consummate with methylamine in methanol
(MeNH2–MeOH), after which catalytic transfer hydrogenation of benzyl ethers
using 1,4-cyclohexadiene as a hydrogen source afforded acteoside (95) success-
fully, in an overall yield of 3.5% [28].

More recently, an alternative and more efficient route towards phenylethanoid
glycosides, such as acteoside, has been described [51], using a low substrate
concentration and N-formylmorpholine modulated glycosylation for the construc-
tion of b- and a-glycosidic bonds. Interestingly, contrary to what was reported by
Kawada and co-workers, the coupling of the b-glucoside 98 with the protected
caffeic acid furnished not only the (E)-isomer of 99, but also trace amounts of the
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(Z)-isomer. Nevertheless, acteoside was obtained in an overall yield of 10.8% (E/Z
12:1) (Scheme 17) [51].

It is well-established that enhancing cholinergic transmission by blocking the
activity of acetylcholinesterase (AChE) slows down the AD-associated decline in
behaviour and cognition. The natural phenylpropanoid diglycoside rosavin (107)
and its analogues (E)-3-phenylprop-2-en-1-yl b-D-xylopyranosyl-(1!6)-b-D-
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glucopyranoside (115), (E)-3-(4-methoxyphenyl)prop-2-en-1-yl a-L-arabinopyr-
anosyl-(1!6)-b-D-glucopyranoside (116) and (E)-3-phenylprop-2-en-1-yl a-L-
rhamnopyranosyl-(1!6)-b-D-glucopyranoside (117) (Scheme 19) displayed a
remarkable anti-AChE with IC50 values of 1.72, 3.71, 4.23, 2.05 µM, respectively
[43]. Indeed, rosavin displayed the most potent AChE inhibition out of the natural
compounds described so far. This natural product was firstly synthesized as shown
in Scheme 18. The disaccharide 104 was first constructed by reaction of the gly-
cosyl bromide 102 with the isopropylidene protected glucose 103. After cleavage of
the isopropylidene groups, acetylation and the introduction of the anomeric sulfanyl
group, the glycosyl donor 105 was obtained. Activated by iodine, this donor reacted
with the cinnamyl alcohol to afford the acetylated precursor 106, which further
deprotection gave rosavin (107).

Rosavin, along with its natural analogues 115–117, was also synthesized by an
alternative methodology, where the phenylpropanoid monoglycosides 113a and
113b were first synthesized, and then coupled with the appropriate glycosyl
trichloroacetimidate (118, 119 or 120), promoted by TMSOTf. Further deprotection
afforded the natural rosavin analogues (Scheme 20). The same procedure was
employed for the synthesis of a small library of phenylpropanoid glycosides, with
derivatives incorporating substituted phenyl groups with F, Cl and Br, and varying
the methoxy and hydroxy substitution patterns. However, none of the synthesized
derivatives was as active as the natural diglycosides 107, 115–117 [43]. Other
methodologies for the synthesis of rosavin and its counterparts can be found in the
literature, including the use of Mizoroki–Heck type reaction, involving the coupling
of phenylboronic acid and allyl glycosides [30].

Other examples of powerful anti-AChE glycosides are the derivatives of the
natural antidepressant helicid, synthesized starting from 4-hydroxybenzaldehyde,
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followed by glycosylation, deprotection and condensation with amines, as depicted
in Scheme 21 [80]. These transformations afforded noteworthy AChE inhibitors
with IC50 under 10 µM, three of them even under 0.55 µM. The synthetic approach
was based on the reaction of glycosyl bromides with 4-hydroxybenzaldehyde in the
presence of TBAB to afford the corresponding protected phenyl glycosides.
Subsequent Zemplén deacetylation yielded the sugar-linked helicid analogues 122
and 124. Schiff base derivative 127 was synthesized by reaction of 126 with
methoxyamine (Scheme 21) [80]. Although an extensive library of helicid
derivatives was obtained by this method, only the most active ones are depicted in
Scheme 21. Interestingly, while helicid was not active up to 500 µM, its epimer at
C-3 (122) presented an IC50 of 0.45 µM. However, the most potent inhibitor is the
4-formylphenyl b-D-ribopyranoside (124). It exhibits the same configuration of
carbons 2, 3 and 4 as helicid but its hydroxymethyl group is replaced by a hydrogen
atom, presenting an IC50 value of 0.20 µM on electric eel AChE, twice more active
than galantamine. Also the Shiff base 127 has an IC50 value of 0.49 µM. These
results highlight the close correlation of the bioactivity with the sugar structure [80].

Structurally similar to the compounds discussed so far is also salidroside (132)
(Scheme 22), a phenylpropanoid glycoside isolated from Rhodiola species that is
one of the active principles responsible for plant antidepressant and anxiolytic
activities. The low content of salidroside in Rhodiola sachalinensis, the unsus-
tainable overexploitation of this species, and the need to fully exploit its potential
clinical applications, have encouraged chemists to the develop a synthetic approach
towards 2-(4-hydroxyphenyl)ethyl b-glucopyranoside. Various examples in the
literature show the preference for the silver carbonate promoted glycosylation of
tyrosol (128), which aromatic hydroxy group can be protected or unprotected, using
peracetylated glucosyl bromide as a glycosyl donor [19, 66, 67]. In 2011, a
multi-kilogram scale-up of salidroside was reported, featuring the selective acety-
lation of tyrosol aromatic hydroxy group in aqueous media, and affording the target
natural glycoside in 72% yield (Scheme 22) [66].

Outstandingly, this natural glucoside protects neurons from glutamate-induced
oxidative stress and apoptosis and was shown to be therapeutically effective against
cognitive decline during ageing. Salidroside also intervenes in the amyloid cascade
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events, as it protects against Ab25–35-induced oxidative stress. In fact, pretreat-
ment with salidroside noticeably attenuated Ab25–35-induced loss of cell viability
and apoptosis in a dose-dependent manner [88]. A fairly recent study also supports
these findings and further attests the activity of this tyrosol glycoside by showing
that it protects four different Drosophila models of AD against Ab-induced neu-
rotoxicity. The study also reveals that salidroside decreased Ab levels and Ab
deposition in the fly’s brain and ameliorated toxicity in Ab-treated primary neuronal
culture [85].

However, perhaps one of the most well-known phenylpropanoid derivatives
with well-documented neuroprotective activities is curcumin (133, Scheme 22), an
active ingredient in the spice turmeric consisting of two cinnamoyl units linked by a
methylene group. Curcumin has been reported to act on several biochemical
pathways associated with the onset and progression of AD. It disrupts amyloid-b
and tau peptide aggregation, inhibits inflammation and protects against oxidative
stress [50, 52]. However, its pharmaceutical use is restricted due to its poor water
and plasma solubility and consequent low bioavailability [52, 56]. Considering that
the addition of a sugar moiety would significantly increase the water/plasma sol-
ubility of the molecule while retaining all the characteristics of the curcumin
pharmacophore, a clicked galactose–curcumin conjugate was developed using
click-chemistry [13].

Such soluble “clicked” sugar conjugate of curcumin (SC) was synthesized as
depicted in Scheme 22. The curcumin monoalkyne 134 was coupled with an
acetyl-protected galactoside bearing an azide and, after removal of acetyl groups, a
galactose-curcumin conjugate possessing a triazole-based linker was obtained. This
non-toxic curcumin derivative is ca. 1000 times more soluble than curcumin in
water, and exhibits enhanced ability to inhibit both amyloid-b and tau aggregation,
at concentrations as low as 8 and 0.1 nM, respectively [13] (Scheme 23).
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5 Conclusion

This chapter is devoted to highlight the biological importance of linking sugars to
polyphenols and to the methodologies described for this purpose. Examples of
polyphenol glycosides, that exhibit an increased neurodegenerative protective effect
when compared to their aglycones, are given in this chapter. The role of sugar
binding to improve polyphenol solubility and ameliorating its bioavailability is also
clearly illustrated with examples. Chemical and enzymatic approaches to glycoside
synthesis are described for various families of polyphenols, namely stilbenoids that
include the well-known resveratrol, phenylethanoids and propanoids covering also
the “dimeric analogue” curcumin and the flavonoids, covering only flavone gly-
cosides. To flavone and isoflavone C-glycosylation is given a particular attention,
given the relevance of the C–C bond, that is not hydrolytically cleaved, allowing C-
glycosyl flavonoids to remain intact in the blood circulation following oral
administration.

We really hope that this chapter will encourage chemists and biochemists to
further investigate the role of sugar binding to polyphenols, not only to diversify
and optimize coupling conditions but also to discover new biomolecular entities to
effectively prevent neurodegenerative impairments with clinical applications.
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