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Abstract Reactions of thiols in thio-click coupling processes with various reactive
systems (including carbohydrates) are compiled. A selection of simple and complex
thiols in stereoselective and non-stereoselective approaches recognizing their
reactivity is also reviewed. Solvents, employed in the discussed processes including
water, are briefly discussed as well.

1 Introduction

The coupling reaction forming C–S, C–C, or C–N bonds usually requires an
activation of the existing functional group. To control the steric outcome of the
coupling reaction, the reactive functionalities forming the new asymmetric center
should be easily accessible and kinetically favor the formation of only one
stereoisomer.

The addition of thiols to conjugated or nonconjugated multiple bonds belongs to
a few processes applicable to our coupling and decoupling (CAD) methodology [1].
The practical utility of our CAD methodology to many strategic targets is out-
standing. The strategy can be easily adopted for many complex reactive systems
provided that the activation step is strictly followed and the intermediate adducts
will be actively involved and be compatible with a specific protocol of activation.

The click reactions involving the addition of thiols have been reviewed.
Thiol-ene click chemistry, particularly applicable to polymer chemistry, was
reviewed by Hoyle and Bowman [2]. The Bowman team [3] also reviewed the
thio-Michael addition click reaction as another powerful tool in material chemistry.

Our laboratory reviewed [4] the synthesis of carbohydrate thiols as universal
coupling agents applicable in our CAD [1] methodology. The synthetic procedures
explored the versatility, stereochemical outcome of thio-click coupling reactions,
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and synthetic aspects of thiols as universal starting materials. Additionally, the thiol
activation under alkaline pH (8–9.5), polarity of the reaction solvent, and
thiol/acceptor ratio were discussed.

Two other review articles [5, 6] explore the sensitivity and specificity of organic
thiols recognition and detection in biological systems.

2 Thiol Recognition in Synthetic Approaches
in Thio-Click Addition Reactions

The thiol recognition in biological systems is a primary factor of efficacy of many
biologically important molecules containing –SH functionality. A rapidly devel-
oping area of synthetic organic and carbohydrate chemistry is exploring many
specific tools for biological ligation of natural thiols and their peptide and protein
systems.

It also utilizes a variety of other tools such as metalo-organic catalysts, effects of
polar solvents, and enzymatic systems to form stereoselectively non-hydrolyzable
C–S bonds. These sulfur bonds often are resistant to multiple enzymatic systems
widely present in living organisms. Consequently, the sulfur-linked derivatives may
escape any enzymatic intervention by scavenging the –SH group.

As already mentioned, Yoon and co-workers reviewed [6] fluorescent and col-
orimetric probes to detect three important thiols present in living organisms—
cysteine, (Cys) homocysteine (Hcy), and glutathione (GSH). Their similar chemical
character and structural composition derive from the presence of three reactive
functional groups, –SH, –COOH, and –NH2 capable of forming specifically labeled
molecules.

All these three biomolecules (Fig. 1) equipped with the mercapto group play a
crucial role in maintaining functionality of biological systems. Their low cellular
levels are linked or implicated in many diseases. Therefore, the development of
fluorescent and colorimetric probes for their detection is of utmost importance. Shiu
and co-workers reported [7] a highly selective FRET-based fluorescent probe to
detect cysteine (Cys) and homocysteine (Hcy).

Huo and co-workers reported [8] the chemistry of the functionalized chromene
moiety as a “lock”, the thiol as a “key”, and a mercury (II) ion as a “hand”, a single
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molecular automated recognition system. The simplified aspect of the thiols
recognition mechanism is shown in Scheme 1.

Clayden and MacLellan [9] reported the asymmetric synthesis of specifically
designated tertiary thiols and their functionalized thioethers. Selected strategic
coupling approaches are shown in Scheme 2.

Whereas tertiary thiols are important synthetic templates, their dominant reactive
character must be recognized during coupling reactions, including thiol-yne. In the
presence of metal catalysts, their reactivity increases and the reaction time is sig-
nificantly shortened as, compared to catalyst-free methodologies [10]. Among
many metal catalysts, the following primary catalysts were employed for con-
struction of C–S bonds during synthesis of S-thioglycosides: nano indium oxide
[11], iridium complex (Ir(COD)2BF4), [12], and palladium diacetate [Pd(OAc)2]
phosphine ligand system [13, 14]. The highly efficient palladium diacetate cat-
alyzed synthesis of thioglycosides is depicted in Scheme 3.

Misra and co-workers [15] reported a green chemistry approach toward synthesis
of 3-thio-2-deoxy and 3-dithiocarbamate sugar derivatives. This efficient method-
ology uses no catalyst and is performed in water as a polar solvent. The products
high yields and purities are impressive as compared to other methods. Examples are
shown in Scheme 4.

RSHChromene

Hg (II)
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Misra and co-workers [16] developed also an odorless methodology of preparing
1-thio-sugars and thio-Michael adducts of carbohydrate derivatives as intermediates
for the advanced syntheses of thio-sugars. Selected synthetic routes to these
intermediates are shown in Scheme 5.

O
OAc

AcO
AcO

S

OAc

OAcO

AcO OAc

O
OAcAcO

AcO O
OAc

O
OAc

AcO
S

OAc

Sugar SH +
I

R

Pd(OAc)2 (5 mol%)
xanphos (2.5 mol%)
Et3N (1  equiv)

Sugar S
RDioxane, 100o C, 1h

OMe

99%

O
OAc

AcO
AcO

S

OAc CF3

90%

O
OBnBnO

BnO
S

OBn

78%
O

O
OBn

BnO
BnO

S

OBn

O81%

O
OH

HO
HO

S

OH OMe
66%

OMe
75%

S

OMe

76%

Scheme 3 Synthesis of thioglycosides catalyzed by Pd(OAc)2/Xanphos system

O
OAc

AcO
AcO

OH
OAc

AcO

O
OAc

AcO

CHO

OH

H2O

RSH

H2O
O

OAc
AcO

RS

CS2, HNR

OH

Ac2O

Py
O

OAcAcO

RS
OAc

O
OAc

AcO

S
OH

Ac2O

Py
O

OAc
AcO

S
OAc

H2O

S NR
S NHR

R = Ph, 4-MePh, 3-MePh, 2-MePh,

Scheme 4 Catalyst-free green chemistry synthetic approach to 3-thio-2-deoxy, and
3-dithiocarbamate sugar derivatives

R-S-S-R
PPH3, conc HCl

Toluene, 70o C, 45 min
 2RSH

O
OAc

AcO
AcO

SH

O
OAc

AcO
RS

O

OAc

O
OAc

AcO
AcO

Br
AcO

O
OAc

AcO O

Na2CO3, TBAHS, rt 20-60 min

Na2CO3, TBAHS, rt 20-60 min

Scheme 5 Synthesis of carbohydrate thiols and 3-Thio-Michael adducts

158 Z.J. Witczak and R. Bielski



Krohn and co-workers [17] developed a successful methodology of Lewis
acid-catalyzed opening of 1,6-anhydro sugars with 1,3-propanedithiol to produce
open chain aldehydes protected as 1,3-dithianes. The methodology constitutes a
simple route to the complex macrolide building blocks, which are difficult to
synthesize. The primary example of this strategy is illustrated in Scheme 6.

Joshi and Anslyn [18] developed a novel approach to dynamic library of thiol
exchange with b-sulfido-a,b-unsaturated carbonyl compounds.

The equilibrium between thiols and b-sulfido a,b-unsaturated carbonyls is
observed within a few hours. These particular time scales make this system ideal for
creation of dynamic combinatorial library.

The team cleverly utilizes the previously well-established thio addition to
b-sulfido-conjugated system, as shown in Scheme 7.

Anslyn and co-workers [19] also recently developed a unique thio-click coupling
and decoupling approach, which utilizes a reversible amino and thiol coupling via a
conjugate acceptor. Scheme 8 illustrates this elegant methodology.

Interestingly, Shi and Greaney [20] reported earlier (in 2005) a similar reversible
Michael addition approach. The authors developed specific reaction conditions for
subsequent decoupling. The synthetic approach is shown in Scheme 9.

Among approaches used for the synthesis of macrolide thiols and disulfides,
Otto and co-workers [21] constructed a dynamic combinatorial library. Dynamic
libraries of macrocyclic disulfides form spontaneously upon stirring a mixture of
three selected dithiols at pH 7–9 in an open flask. Oxygen from the air is sufficient
to effectively oxidize thiols to disulfides. The simplified aspect of these thio
functionalization reactions is shown in Scheme 10.

Rim and co-workers [22] discovered a 1,3,5-triacryloylhexahydro-1,3,5-triazine
(TAT) system for an ionic thiol-ene click reaction with the formation of functional
tripodal thioethers. The authors continue to explore previously unknown chemistry
of the TAT moiety and its potential biological importance and applications.
According to the authors, thiol-ene reactions tolerate a wide range of functionalities
including amino, hydroxyl, carboxylate, and trimethoxysilyl groups. Commercially
available aliphatic and aromatic thiols efficiently reacted with TAT to produce thio
adducts in high yields (63–96%) and high purity. Some of the aspects of thiol-ene
click reactions are shown in Scheme 11.

Gothelf and co-workers [23] developed a cleavable amino-thiol linker for
reversible linking of amines to DNA. This discovery has a great practical potential
for the exploration of various protection techniques of functionalized DNA
derivatives. Some aspects of this new methodology are depicted in Scheme 12.
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Schumacher and co-workers [24] created a new approach to the protein
PEGylation utilizing maleimide bridging of disulfides. The highly reactive conju-
gate system of selected functionalized maleimides can be coupled with disulfides to
form C–S functionalized derivatives as shown in Scheme 13.

Campopiano and co-workers [25] discovered novel glutathione S-transferase
(GST) inhibitors using a dynamic, combinatorial chemistry approach. The synthetic
approach to this new class of inhibitors begins exploration of these fascinating and
medicinally important molecules. Some of the examples are depicted in Scheme 14.

Shiu and co-workers [26] developed cleavable reagents to modify
cysteine-containing peptides in an aqueous medium. Highly reactive alkynes were
used as starting materials, as depicted in Scheme 15.

Finally, Dondoni and co-workers [27] highlighted a critically important
approach in thio-click chemistry; thio-ene cluster formation, and thiol-yne click
reaction [28, 29]. Dondoni [30] further developed a thiol-yne strategy applied to
diagnostic aspects of serum albumin. Massi and Nani [31] reviewed previously
reported methods of thiol-yne click chemistry, creating an up-to-date chronology.
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3 Conclusion

The new strategical developments in the construction of protected diverse molec-
ular targets of biological importance are growing steadily. Among the important
areas, the glycoscience is one with particularly enormous growth. Other areas
including biomolecular and macromolecular chemistry are developing as well.
Among many strategic approaches, thiol directed functionalization and coupling
reactions are of great importance and applicability.

When applied to thiols the CAD methodology will always utilize the conve-
nience of four essential factors: the reacting system, catalysts, solvents, and thiol
reactivity. We hope that the CAD strategy of creation of sacrificial unit will be
further developed into conventionally applicable approach to many new targets of
biological importance.

Additionally, other multiple approaches were developed for forming C–S bonds
via methodologies utilizing thiol-ene and thiol-yne additions, providing the desired
coupling C–S products in a highly stereoselective manner. Moreover, specific
reaction conditions are compatible with the stability of the functionalized substrates
and products, so yields of desired coupling products are not compromised. The
demonstrated thiol-ene and thiol-yne sequences indicate the great potential of
functionalized organic and carbohydrate thiols in the synthesis of highly func-
tionalized biomimetic structure motifs by operationally simple protocols. It is worth
adding that some of the discussed processes became competitive to the addition of
thiols to conjugates multiple bonds such as the Michael addition. All of the new
strategies currently available or under development constitute a significant mile-
stone in the area of glycoscience. These new synthetic methodologies are of utmost
importance and will be closely followed, as many new biological targets will
constitute promising prospects for the future syntheses.
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