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Abstract Glycans and their conjugates form the largest and most diverse class of
biological molecules found in nature. These glycosides are vital for numerous
cellular functions including recognition events, protein stabilisation and energy
storage. Additionally, abnormalities within these structures are associated with a
wide range of disease states. As a result, robust analytical techniques capable of in
depth characterisation of carbohydrates and their binding partners are required. This
chapter provides an overview of currently used analytical techniques, focussing on
chromatographic and mass spectrometry-based methods.

1 Introduction

Glycosylation involves the enzymatic transfer of a carbohydrate from a donor
molecule to a substrate such as a protein, lipid or another carbohydrate, forming
elongated and often branched glycoconjugate structures. Diverse varieties of these
glycoconjugates coat the surface of all cells and act as receptors for glycan-binding
species such as lectins, antibodies or pathogens [1, 2]. Glycosylation is the most
prevalent post-translational modification (PTM) observed within nature; in fact, it is
thought that greater than half of all known proteins are glycosylated [3]. It is widely
reported that these glycans are vital for regulation of many biological interactions
such as cell–cell recognition, [4] cell adhesion [5], immune response [6], infection
[7, 8] and fertilisation [9–11]. It has also been shown that aberrant glycosylation is
related to several diseases including cancer [12–17], muscular dystrophy [5] and
pancreatitis [18, 19]. Even subtle changes in carbohydrate structure can result in
vastly different interactions, make them susceptible to proteolysis or alter glyco-
conjugate tertiary structures and thus affects the observed biological response [5,
15, 17, 20–25]. It remains unclear a priori how changes within a glycan structure
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will affect the resultant biological function [26]. Knowledge of these structure–
function relationships could enable the development of novel therapeutics or
diagnostics [27–29]. Additionally, carbohydrates are foreseen as routes to novel
fuels and materials [30–32], providing further requirement for rigorous analytical
approaches to characterise them.

However, there are inherent difficulties in analysing the ‘glycome’, the entire
complement of glycans and their glycoconjugates produced by an organism under
specified conditions of time, space and environment [2], compared to the widely
researched genome and proteome. Firstly, glycan structures are not directly encoded
from genetic information. Moreover, glycosylated macromolecules tend to exist in
multiple glycoforms and are often low abundant compared to their
non-glycosylated counterparts, thus requiring enrichment prior to analysis. These
glycoforms vary depending on conditions, such as disease state [18], age [33], and
gender [9, 34] further increasing the complexity of glycome analysis. Finally, the
elucidation of glycan chemical structures using most analytical techniques is
extremely challenging. Glycans can be composed of a far greater number of natural
monosaccharide building blocks (several hundred) compared to the 4 nucleotides
and 20 essential amino acids found in DNA and proteins, respectively [2], although
there is a core of 10 major monosaccharide units found within vertebrates (Fig. 1).

These monosaccharide building blocks are often stereo- or regio-isomers of one
another (unlike nucleotides or amino acids) making their characterisation more

Fig. 1 The common monosaccharides found in vertebrates including the shorthand used by the
Consortium for Functional Glycomics. Glc = Glucose, Gal = Galactose, Man = Mannose,
Fuc = Fucose, GlcNAc = N-Acetylglucosamine, GalNAc = N-Acetylgalactosamine,
Xyl = Xylose, GlcA = Glucuronic acid, IdA = Iduronic acid and Neu5Ac = N-acetylneuraminic
acid. Glc, Gal and Man isomers form the hexoses (Hex), GlcNAc and GalNAc isomers the N-
acetylhexosamines and GlcA and IdA isomers the hexuronic acids
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analytically challenging [35]. Additionally, the glycosidic bond formed between
monosaccharides can adopt two different configurations, namely a- and b-, where
the binding monosaccharide lies either above the plane of ring, or planar to the ring,
respectively (Fig. 2). This linkage can also form at several positions resulting in the
formation of branched structures, which are primarily linear combinations of amino
acids and nucleotides, respectively [2, 36, 37]. Finally, these carbohydrate rings can
potentially exist as furanose or pyranose forms.

There are two common types of protein glycosylation, (not to be confused with
the chemically similar process glycation which occurs non-enzymatically): N-gly-
cosylation and O-glycosylation. Typical eukaryotic N-glycosylation involves
enzymatic en bloc transfer of the glycan Glc3Man9GlcNAc2 from dolichol phos-
phate to asparagine residues within in the consensus peptide sequence
Asn-Xxx-Ser/Thr (where Xxx is any amino acid except proline) [2, 38, 39]

Fig. 2 Scheme depicting two a-/b-stereoisomers (red), two regioisomers (green) and two
pyranose/furanose isomers (blue)
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although this is not always the case [3]. The Glc3Man9GlcNAc2 modification is
synthesised first on the cytoplasmic face of the endoplasmic reticulum
(ER) membrane in a stepwise manner from dolichol phosphate to Man5GlcNAc2,
This is then ‘flipped’ so that it faces into the ER lumen, where additional glycosyl
transferases modify this species producing Glc3Man9GlcNAc2 that is then trans-
ferred in a co-translational event en bloc, mediated by an oligosaccharyltransferase,
to the asparagine acceptor of the forming polypeptide chain [2, 40]. Various gly-
cosidases and glycosyltransferases further modify this glycoconjugate within the
Golgi apparatus, generating a structure that can be classed as one of three classes
(Fig. 3): high mannose, where the N-glycan core (Man3GlcNAc2) is comprised of
only branched Man and GlcNAc residues; complex where the cores antennae are
functionalised with other saccharides including galactose, fucose and sialic acid;
and hybrid where a single antennae from the core structure is functionalised with
mannose residues (a1–6 arm) and the others with complex structures. N-glycosy-
lation primarily occurs on secreted or membrane-bound proteins within eukaryotes
or archaea [41] and was later shown to occur on proteins within the Gram-negative
bacterium Campylobacter jejuni [42]. Unlike N-glycosylation in eukaryotes, there
is no conserved carbohydrate sequence transferred en bloc to proteins (i.e.
Glc3Man9GlcNAc2 for eukaryotes), although certain motifs seem to be important
such as the presence of a reducing acetamido group for bacterial N-oligosaccharide
transferases [40]. Also archaea and bacterial N-glycans are structurally different
compared to eukaryotic N-glycans possessing, for example, hexuronic acids or
bacilosamine residues, respectively [40].

O-glycosylation occurs post-translationally onto the –OHgroup of typically serine
or threonine residues within proteins. Unlike N-glycans, O-glycans are synthesised
stepwiseonglycoproteins and tend tobemuch shorter than theirN-glycancounterparts
consistingof just a single residue in somecases [38].WithinEukaryotes, initial transfer
of a-GalNAc, which is the most common addition, and a-Fuc to proteins occurs in the
Golgi, whereas O-mannosylation is initiated in the ER and O-GlcNAcylation and
glucosylation occurs in the cytosol (and nucleus for O-GlcNAc) [2, 38, 43]. These
carbohydrates may then be extended by a series of glycosyltransferases in the Golgi.
For the most common type of O-glycosylation, O-GalNAc, a series of eight common
core structures exist (Fig. 4). UnlikeN-glycosylation no consensusmotif has yet been
identified for O-glycosylation, making O-glycosylation site identification more
challenging [44]. For specific classes of O-glycosylation though, protein sequence
preferences have been identified allowingprediction of potentialO-glycosylation sites
[45]. Certain proteins, known as mucins, are heavily O-glycosylated with GalNAc:
these will be the focus of Chap. “[3,3]-Sigmatropic Rearrangement as a Powerful
Synthetic Tool on Skeletal Modification of Unsaturated Sugars”.

Glycan structures are routinely assigned using minimal analytical information,
based on the assumption that their biosynthetic pathways are highly conserved,
which is not necessarily always the case [19, 46, 47]. Alternatively, structures can
be directly elucidated to varying degrees by NMR, tandem mass spectrometry or
sequential glycosidase treatment followed by chromatographic separation [15, 46,
48–50]. However, these approaches are limited by either sensitivity or specificity.
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Fig. 3 The biosynthetic pathway by which the oligomannose structure transferred to proteins
forming N-glycans is generated (a). Various glycosidases and glycosyltransferases then act on this
glycan to produce the different types of N-glycans observed within eukaryotic organisms (b).
Figures are taken from Varki et al. [2]
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Consequently, high-throughput analytical methodologies capable of sequencing
glycan structures and further identifying protein binding partners are highly sought
after. Mass spectrometry (MS)-based techniques offer the capability of elucidating
structural information on a wide range of biological analytes including peptides,
proteins and glycans in a high-throughput manner. However, they are often unable
to unambiguously assign carbohydrate structures given that most monomeric
building blocks are simple epimers of one another. Integration of ion mobility
spectrometry, a technique that separates ions by their rotationally averaged collision
cross section, with (tandem) mass spectrometry offers the potential capability to
separate these isomeric precursors and product ions, which would greatly aid glycan
characterisation. Of particular interest is the ability to separate and determine the
cross section of isomeric mono-/disaccharide product ions, which crucially could be
indicative of the stereochemistry of the residue, the anomeric configuration, ring
size and regiochemistry. Therefore, IM-MS has the potential to fill a gap in the
Glycomics community, namely a high-throughput carbohydrate sequencing
strategy.

High-throughput strategies to identify proteins that bind to glycans are also of
great interest. Most high-throughput strategies involve arraying thousands of gly-
cans to a solid support, incubating them with purified proteins, washing and then
visualisation by fluorescence or radiation. However, these approaches rely on
purified material and incorporation of a fluorescent or radioactive tag. (Tandem)
Mass spectrometry of proteins adhered to the arrays, or peptides resulting from
on-chip proteolysis, offers a rapid and direct means to unambiguously characterise
unlabelled bound proteins, even from endogenous mixtures.

Multiple MS-based strategies underpin the ability to characterise glycans and
their binding partners. Glycans and their conjugates are initially ionised, principally
by matrix-assisted laser desorption ionisation (MALDI) or electrospray ionisation
(ESI), as either cation or anion adducts and then can be made dissociate if required
[51]. These precursor or product ions are then separated based on their
mass-to-charge (m/z) ratio mass and subsequently detected.

Fig. 4 Basic core O-
GalNAcylated structures [44]
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2 Mass Spectrometry Techniques Applied
to Glycoconjugate Analysis

2.1 Ionisation Techniques

2.1.1 Electrospray Ionisation (ESI)

Electrospray ionisation (ESI), or nanospray ESI (nESI) for nanoflow, is a soft
ionisation technique, i.e. it causes little to no fragmentation of the molecules during
ionisation, including large molecules such as proteins [52] and protein assemblies
[53, 54]. It is also the most commonly used ionisation strategy in biomolecule
analysis as it can be operated at atmospheric pressure and can be easy coupled to
liquid chromatography meaning that a mixture of analytes can be separated on-line
prior to ESI-MS analysis. However, samples can be directly infused by syringe
pumps or static nESI tips. ESI and nESI operate at µL min−1 and nL min−1 flow
rates, respectively, permitting analysis of low amounts of analyte suitable for
biological samples. (n)ESI emitters are subjected to a high potential electric field
(1–5 kV) [55]. At the capillary tip a large electric field is formed (*106 V m−1)
resulting in the charged analyte solution being polarised, i.e. in positive ion mode a
negative potential is applied across the capillary therefore positively charged
molecules are drawn to the end of the tip. This field also causes the meniscus at the
capillary nozzle to be perturbed forming a cone (Taylor cone) as shown in stage 1
Fig. 5.

When the force the electric field exerts is high enough, the tip of the Taylor cone
is destabilised resulting in the formation of a jet of charged droplets that repel one
another, causing them to spread out orthogonally and accelerate towards the counter
electrode by electrostatic attraction [52, 57, 58]. These droplets evaporate, which
may be aided by an inert drying gas such as nitrogen and elevated temperatures,
until the point where the Coulombic repulsive forces of the charged analyte
destabilise the droplet. This occurs slightly below the Rayleigh limit where
repulsion equals the surface tension. At this point, the droplets ‘explode’ forming
even smaller droplets. The precise mechanisms of ion formation from these droplets
are not clear and are thought to be dependent on the nature of the analyte ion. Three
postulated mechanisms are the ion evaporation model (IEM) [59], the charged
residue model (CRM) [60] and the chain ejection model (CEM) [56, 61]. The IEM,
believed to be prevalent for small molecules (e.g. glycans), involves ejection of a
small analyte ion from the surface of a small (nm radius) charged droplet when the
Rayleigh limit is sufficiently high. This process is kinetically disfavored for large
molecule ions, which are thought to form by the CRM [56]. In the CRM, solvent
continually evaporates from the droplet containing the analyte. As the final solvent
shell evaporates, the remaining charge within the droplet is transferred to the
analyte. During this process, analytes are charge reduced so they maintain the
Rayleigh limit by IEM ejection of solvated protons and small ions [56]. Finally the
CEM, which suggests unfolded ‘chains’ migrate to the droplet surface when the
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Fig. 5 Schematic depicting the ESI ionisation mechanism (a) and schemes depicting ion
formation models for the ion evaporation model (IEM), charged residue model (CRM) and the
chain ejection model (CEM) (b) (redrafted version of figure from Ref. [56])
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Rayleigh limit is reached. This charged chain is then liable to be ejected from the
surface of the droplet. Sequentially, more and more of the charged chain is ejected
from the droplet until the remainder of the droplet evaporates or the entire analyte is
ejected [62]. This mechanism is believed to occur for large disordered analytes,
such as polymers or disordered proteins and accounts for the observed higher
analyte charge states than the CRM would predict [56]. Regardless of the ion
formation mechanism, the composition of the sprayed solution will impact the
formed ions and as a result can perturb the measured mass spectrum. ESI solutions
often contain organic solvents such as methanol or acetonitrile to lower the surface
tension of electrospray droplets improving desolvation and thus ionisation.
Furthermore, these solutions tend to contain volatile acids, such as formic acid, for
positive ion mode or bases, such as ammonia, for negative ion mode providing a
source of protons or a proton sink, respectively. Conversely, molecules can be
promoted to form metal adducts by doping the solution with salts such as sodium
formate or lithium chloride. Structured proteins can also be stabilised through
buffering with volatile salts such as ammonium acetate [53].

ESI is advantageous as it can produce large (kDa to MDa) ions, even from
non-volatile, thermally labile compounds and is typically compatible with con-
ventional liquid chromatography techniques [52]. Also given that these ionised
species are typically multiply charged, their m/z values tend to fall within the
operating range of most mass spectrometers [58]. However, ESI, like most ioni-
sation techniques, suffers from a low tolerance towards salts, therefore, samples
must be desalted prior to analysis. Finally, as the technique is very sensitive, the
spray chamber must be kept very clean to avoid contamination and signal sup-
pression [63].

2.1.2 MALDI

Matrix-assisted laser desorption ionisation (MALDI) is, like ESI, a soft ionisation
technique, although involves desorption of analyte ions from the solid phase induced
by irradiation with a pulsed UV laser at 337 or 355 nm for 1–10 ns [58, 64, 65].
Interestingly, unlike ESI, analyte ions generated tend to only be singly charged,
greatly simplifying mass spectra. Analytes are co-crystallised with an excess of a UV
absorbing organic acid matrix (1:5000), on an inert metal (typically a stainless steel
or gold) target, forming ideally homogenous crystals. The matrix has two main
purposes, firstly it separates analyte molecules preventing analyte–analyte interac-
tions that may hinder desorption and ionisation, and secondly and more importantly,
it absorbs most of the UV radiation from the laser pulse protecting the analyte
(Fig. 6). The matrix may also act as proton sources or sinks depending on the
operation mode [66]. Different matrices work better for ionisation of different classes
of analytes, so the choice of the matrix depends on the analyte being studied. For
example sinapinic acid (SA) works well with proteins, a-cyano-4-hydroxycinnamic
acid (CHCA) is good for small proteins and peptides, 2,4,6-trihydroxyacetophenone
(THAP) is good for glycans and 2,5-dihydroxybenzoic acid (DHB) is commonly
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used for all organic molecules and is particularly useful for those analytes which are
labile for example, covalently modified peptides. Upon UV absorption the matrix
sublimes in vacuo causing rapid expansion, which results in analyte and pho-
toionised matrix molecules being ejected into the gas phase, although most remain
uncharged (primary ionisation) [58, 67]. There are several models for ionisation with
none being completely accepted. The two most accepted are the cluster ‘(refined)
Lucky Survivors’ and the gas-phase proton transfer [64, 68–72]. The ‘Lucky
Survivors’ model states that the singly and multiply charged analyte ions are pre-
formed in the matrix solution and retain their solution charge during
co-crystallisation. Following a UV laser pulse, the matrix and analyte sublime and
the multiply charged analyte ions undergo secondary neutralisation reactions with
free electrons until they become singly charged [73]. The gas-phase protonation
model suggests secondary collisions, within the MALDI plume, between the neutral
analyte and charged UV matrix molecules in the gas plume results in ionisation of
the analyte (secondary ionisation). The matrix charge is either preformed in solution
or resulting from the laser energy being absorbed by the matrix (pooling—Coupled
Chemical and Physical Dynamics model) [70, 74]. Recently, it has been reported
that it is highly likely that both ionisation mechanisms are involved [73]. This
ionisation technique is advantageous as it is quick and produces little fragmentation
of analyte ions. However, ions produced by MALDI are metastable, and therefore
are liable to dissociating during traversing the field-free region of the Time-of-Flight
(ToF) mass analyser that is typically coupled with a MALDI source. Metastable

Fig. 6 Schematic of MALDI ionisation of positively charged analytes (red) co-crystallised with
an excess of UV-absorbing matrix (blue)
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decay is more prominent for larger species whose time-of-flight is greater. This
causes a loss in sensitivity due to a reduction in the number of intact analyte ions
reaching the detector [55]. Nevertheless, this post-source decay can be exploited in
MS2 studies. Another disadvantage of MALDI is the limitation of analysing ions
below m/z of 500 due to the excess number of matrix-derived ions that can saturate
the signal. Salts and other buffers also hinder MALDI, although to a lesser extent
compared to ESI [58, 63].

2.2 Mass Analysers

2.2.1 Quadrupole

Quadrupoles are composed of four parallel rods, ideally with a hyperbolic cross
section, arranged in a diamond shape. Each opposing rod is electrically connected
to one another and has the opposite polarity to the pair of rods perpendicular to
them (Fig. 7). Both pairs possess a direct current (DC) potential and are overlaid
with an alternating radio-frequency (RF) potential. In the case where the analyte
ions are positive, when the RF and DC potential in the x–z plane is positive the
analyte ions are focussed into the centre of the quadrupole.

Fig. 7 Scheme depicting transmission though a quadrupole mass analyser and the respective
potentials applied to the rods at a certain point in time. Depending on the magnitude and polarity of
the applied potentials, certain ions of a given m/z posses stable trajectories and are transmitted
through the quadrupole (blue) unlike others that collide with the rods and annihilate (red)
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When the RF polarity switches to negative (more than the DC positivity), the
ions are accelerated towards the x–z plane rods. Ions of low mass and higher charge
will be accelerated more than heavier ions of lower charge and may collide with the
electrodes at which point they will be discharged and pumped off as neutral species.
As a result, only ions with high m/z are transferred (referred to as the high pass mass
filter). The y–z plane rods operate at an opposite DC potential to those in the x–
z plane (for this example negative). In this case, ions of large m/z are more likely to
collide with the rods as they are less likely to respond to the focussing that occurs
when the alternating RF potential becomes positive unlike ions with lower m/z.
Therefore, only ions with a low m/z are transferred (the low pass mass filter). The
net effect of these two filters is that only a narrow range of ions will have a stable
trajectory and thus pass through the quadrupole [75]. If the DC and RF voltage is
increased whilst keeping the DC to RF ratio constant, new stable trajectories will be
created for ions with an increasing m/z value, allowing a range of ions of different
m/z values to be scanned [58]. Controlling the DC and RF ratio plays a significant
role in the resolution of this mass analyser with a lower DC to RF ratio producing a
lower mass resolution. The stability of ions passing through a (hyperbolic) quad-
rupole field possessing both DC and RF potential can also be expressed in terms of
the Mathieu equations (Eqs. 1 and 2) [75].

ax ¼ �ay ¼ 4eU
mr20x

2
ð1Þ

qx ¼ �qy ¼ 2eV
mr20x

2
ð2Þ

where U and V are the DC and alternating RF potential, respectively, x is angular
frequency of the applied RF, e is the electronic charge, m is the mass, r0 is this
distance from the z-axis (i.e. centre of the four rods) and a and q represent points in
space. Plotting solutions of a and q against one another generates a graph defining
the a and q values at which ions possess a stable trajectory through the quadrupole
(Fig. 8).

Quadrupole mass analysers are advantageous as they are small, inexpensive,
have a high scanning speed and when three are coupled together (triple quadrupole
instrument) they are capable of selective reaction monitoring experiments (SRM).
In a SRM experiment, Q1 and Q3 only allow transmission of a specified precursor
and product ion, respectively, improving detection of a specific ion. On the other
hand, they have a limited mass resolution and have a finite mass range unlike linear
ToFs (Sect. 1.2.2.3) [76].

2.2.2 Quadrupole Ion Trap

Unlike quadrupole (and the later discussed ToF) mass analysers, quadrupole ion
traps enable trapping and storage of gaseous ions that can be ejected after a defined
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period of time. For 3D quadrupole ion traps (Paul trap), ions are gated into the trap
to prevent ion escape [65]. The trap itself consists of three hyperboloidal electrodes,
two end-cap electrodes and a ring electrode between them (Fig. 9) [78]. DC and RF
potentials are applied to the end-cap and ring electrodes, respectively, resulting in
the formation of a parabolic potential well (shaped like a saddle in 3D), which ions

Fig. 8 Plot of solutions to the Mathieu equations for a given m/z (a). Regions highlighted as A, B,
C and D are trajectories with both x and y stability. The majority of quadrupoles operate in
stability region A (lower voltages) [77]. Also shown is a zoomed in diagram of region A for three
ions with different m/z, (m1, m2 and m3) (b). The dashed line indicates the scan line for which
trajectories for m1, m2 then m3 become stable as the magnitude of U:V is increased
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become trapped in [79]. Stable m/z ion trajectories are dictated by the Mathieu
equations akin to quadrupoles (Fig. 8). An inert gas (*1 mTorr helium) is added to
the trap to dampen the kinetic energy of the ions in the trap through collisions and
as a result stabilises the ions trajectory and confines it to the centre of the trap. Ions
can be ejected from the trap by linearly increasing the RF amplitude causing the ion
trajectories to eventually become unstable, with low m/z becoming unstable first
then higher m/z-ions, when the voltage reaches the resonant frequency of the ion, at
which point the ions are ejected from the trap and are detected externally.
Therefore, ions are not discarded prior to detection unlike beam type instruments
[65]. RF voltages can also be applied to the end-cap electrodes in resonance with
the periodicity for specific or multiple m/z ion(s), resulting in these trapped ions
gaining kinetic energy and moving away from the centre of the trap. When this
energy is high enough ions are ejected from the trap [78, 80]. This enables ejection
of larger ions which would otherwise require impractically high voltages by raising
the RF amplitude of the ring electrode alone [80]. Crucially, for tandem MS
experiments, ions of a given m/z can also be isolated by this method. This resonance
can also be exploited to raise the trapped ions kinetic energy enough so that they
undergo CID without being ejected from the trap. This enables multiple ion dis-
sociation stages to be performed (MSn) [65, 80].

The main disadvantage of 3D ion traps is poor resolving power since small
changes in the RF potential ramp can result in ejection of a 1 m/z window—under
normal operating conditions 3D quadrupole ion traps can identify singly charged
ions from m/z 500–2500 with a resolution of 0.2–0.5 Da [78]. They also have
longer ion detection times given they trap ions for MS, as opposed to the µs
required for ions to reach the detector from the source of beam type instruments.

Ions can also be trapped in linear quadrupole ion traps, which function in a similar
manner to the 3D quadrupole ion traps except with elongation of all electrodes
(additionally a buffer gas is not always essential for trapping). As a result, a greater
number of ions can be trapped compared to the 3D ion traps. Furthermore, the
ejection efficiency of linear quadrupole ion traps is much greater and therefore the
sensitivity is improved [81]. However, the mass resolution is also much poorer and is
typically limited to studying species m/z < 2000 [58]. It is also important for both
types of ion traps to not overfill the trap, otherwise, space charge effects can become
apparent, which will further reduce the resolving power and mass accuracy [81].

2.2.3 ToF

Linear and reflectron time-of-flight (ToF) mass analysers are capable of determining
the m/z ratio of an ion from the time it takes that ion to travel through a field-free
region in a vacuum after being accelerated by an electrical potential. Ions with
lower m/z values reach the detector before those of high m/z values as they are
accelerated to a greater velocity (v) [65]. This can be easily represented through
equations for linear ToFs (linear drift region). The kinetic energy (½mv2) gained by
the ion is equal to the accelerating potential energy (eV where e is the charge of an
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electron and V is the accelerating potential) (Eq. 3) and the time-of-flight (ToF) is
related the length of the flight tube (L) (Eq. 4), the m/z value can thus be determined
using Eq. 5 below:

zeV ¼ 1
2
mv2 ð3Þ

TOF ¼ L
v

ð4Þ

TOF ¼ L
m

2zeV

� �1
2

ð5Þ

where z is the ion charge [58].
Reflectrons work around the same principle except that ions are reflected by an

‘ion mirror’ (a series of electrostatic ion guides with increasing potential) angled to
reflect these ions towards a secondary detector preventing them from being reflected

Fig. 9 Photograph of a transverse section of a 3D quadrupole ion trap with the electrodes
labelled. Ions are trapped within the volume between the electrodes. Amended from March [78]
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back to the source (Fig. 10) or colliding with other ions coming from the source.
The purpose of the reflectron is to correct for differences in kinetic energy of ions of
the same m/z value which would otherwise result in slight differences in computed
mass and thus loss of resolution [82]. Ions of greater velocities penetrate into the
reflectron ‘mirror’ more than those of a lower velocity. These ions are then
accelerated towards the detector by the ‘mirror’. The ions that had penetrated the
mirror the most (higher kinetic energy) spends more time under an accelerating
potential than the lower penetrating ions. This results in focussing the ions as the
ones with a higher velocity have had to travel a longer distance. This v-optic
reflectron is shown schematically in Fig. 10. A second reflection (w-optic) can
increase the resolution even further, although this comes at the expense of sensi-
tivity (factor of 3 compared to v-optic) as the longer drift-times increases the
likelihood of metastable decomposition [58].

ToFs are advantageous as they can have a high resolving power and linear ToFs
theoretically have no upper mass limit, as all that is required is the ion to be capable
of travelling intact through the drift tube. Also spectra can be acquired rapidly,
which allows for spectral averaging. However, reflectrons require a higher vacuum
than quadrupole analyzers and the ambient temperature needs to be controlled very
carefully so that the thermal energy of the ions is not increased [58]. MALDI
ionisation is usually used in combination with a ToF mass analyser as they com-
plement one another, since MALDI produces a defined pulse of ions allowing the
packets time-of-flight to be measured. Also MALDI and the ToF analyser can be
placed in-line reducing ion loss.

Fig. 10 Diagram depicting the reflectron mode ion trajectory for three ions, with identical m/z but
different velocities, through a time-of-flight mass analyser
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2.3 Tandem Mass Spectrometry for the Analysis
of Glycopeptides

Fragmentation of (glyco)peptides can be used to determine the sequence of the
peptide and also possibly the site that is glycosylated. There are three methods for
fragmentation that shall be discussed, firstly collision-induced dissociation (CID),
secondly electron transfer dissociation (ETD) and finally infrared multiphoton
dissociation (IRMPD). There is a nomenclature for naming the ions produced by
peptide and glycan fragmentation known as the Domon–Costello nomenclature (A-,
B-, C-, X-, Y- and Z-ions) and the Roepstorff–Fohlmann–Biemann (a-, b-, c-, x-, y-
and z-ions), respectively (Fig. 11) [51, 83].

2.3.1 CID

Collision-induced dissociation (CID) (previously referred to as collisionally activated
dissociation or CAD) is the most common method used for fragmentation of glycans
and peptides for sequence elucidation. For peptides, CID often generates b- and
y-product ions derived from the N- and C-terminus, respectively, as a result of the
amide bond dissociation (Fig. 11). CID of glycans (approximately 0.1–1 eV or 10–
100 eV in ion trap or beam type analysers, respectively [84]) commonly results in
fragmentation either side of the glycosidic bond generating B/C- and Z/Y-ions from
the non-reducing and reducing termini, respectively. At higher energies, fragmenta-
tion across the ring is also observed. During CID, analyte ions are accelerated through

Fig. 11 Domon-Costello nomenclature for glycan fragmentation (a) [51] and
Roepstorff-Fohlmann-Biemann nomenclature for peptide backbone fragmentation (b). [83]
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an inert neutral gas such as helium or argon. The energy the analyte ion gains from
colliding with the gas is converted into internal energy that is distributed throughout
the structure. It results in dissociation of typically labile bonds although charge
directed mechanisms may result in dissociation of thermodynamically more stable
moieties. For protonated peptides, this charge directed cleavage is best described by
the mobile protonmodel [85, 86]. Themobile protonmodel states that at high internal
energy mobile protons are able to protonate less thermodynamically favourable
positions, such as the amide nitrogen in the peptide backbone compared to when the
internal energy is lower and protonates only basic residues. Protonation of the amide
nitrogen weakens the bond and thus allows the peptide backbone to fragment [87].
Protonated glycoconjugates often fragment to yield primarily glycosidic product ions
[88], whereas deprotonated species also generate cross-ring fragments [88–90].
However, since free-carbohydrates typically lack any basic groups (proton sinks),
they often preferentially form metal adducts with sodium or potassium without an
additional metal dopant. Doping carbohydrate samples with other metals such as
lithium, silver [91], or manganese [92] greatly affects the propensity of specific
product ions, which has been proposed to be a result of differential metal binding sites
facilitating dissociation by differing pathways [92]. Typically, large ions with low
charge densities, such as potassium and rubidium, tend to dissociate to lose the metal
adduct over fragmenting the carbohydrate structure, whereas for small highly charged
ions like lithium extensive fragmentation is observed [93–95]. At higher energies,
cross-ring fragmentation also becomes prevalent compared to glycosidic fragmen-
tation. Also the nature of glycosidic fragmentation depends on themetal adduct. It has
been reported for example that [M + Mg]2+ adducted carbohydrates dissociate to
yield more cross-ring fragments compared to the [M + 2Li]2+ equivalent, whilst
[M + Ag]+ adducts produce almost no cross-ring fragments [95]. Therefore, studying
glycans and glycoconjugates with different adducts can produce complementary
structural information [88, 96]. Additionally, chemical derivatization such as
permethylation/acetylation appears to favour formation of glycosidic fragment ions
[97]. Finally, the presence of other product ions depends on the identity of the glycan
and its regiochemistry [98]. The stereochemistry of the glycosidic bond often results
in different ion yields rather than the formation of different product ions. Currently,
there is little knowledge of these product ion structures [51, 94, 99] and, unlike for
peptides, no definitive mechanisms for glycan dissociation have been elucidated [85–
87, 100, 101].

CID of glycoconjugates commonly yields diagnostic product ions losses such as
m/z 162, 164, 180, 203 and 221 corresponding to dehydrated hexose, deoxy hexose,
hexose, dehydrated N-acetylhexosamine and N-acetylhexosamine respectively. As a
result, neutral loss scanning of these diagnostic species facilitates the identification
of precursor glycoconjugates. Conversely, product ions analysis of glycan fragment
ions (e.g. m/z 204 for [HexNAc–H2O + H]+) can also facilitate glycan precursor
identification.

There are issues using CID fragmentation when studying glycans and their
conjugates. Firstly, CID typically fragments the most labile bonds which for gly-
copeptides tend to be the glycosidic linkages between the peptide and the glycan
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(although for high mannose containing N-glycans the glycosidic bond can remain
intact). Loss of the glycan from O-glycopeptides goes via a mechanism that
regenerates the alcohol group on the serine/threonine residues [102], preventing
characterisation of the glycosylation site. This loss of the labile glycan moiety is
elevated for beam instruments like quadrupole-ToFs [103]. Furthermore, this
fragmentation pathway often comes at the expense of backbone fragmentation,
therefore higher collisional energies are often required to fragment the peptide
backbone [103]. In addition, the glycan chains themselves also fragment by CID
typically producing B/Z- and C/Y-ions in positive ion mode, but A/X-ions can also
be observed where the ring itself fragments greatly complicating tandem mass
spectra [51]. CID-induced migrations of Fuc [104–106], hexose [107] and sulphate
[108] groups have been observed for protonated and deprotonated carbohydrates,
further complicating analysis [105, 107, 109, 110], although this has not yet been
reported for metal adducted analytes [109, 111].

2.3.2 ETD

Electron transfer dissociation (ETD), not to be mistaken with electron capture
dissociation (ECD), is a less widespread fragmentation technique compared to CID.
Dissociation is achieved by an electron transfer reaction between a gaseous radical
such as fluoranthene or anthracene and the analyte ions of interest. For peptides, the
resultant radical ion is unstable and results in the fragmentation of the bond with the
lowest barrier of dissociation, which tends to be the N–Ca backbone bond gener-
ating c- and z-ions (also fragmentation of the amine within proline has been
reported) [112, 113]. ETD fragmentation is much more efficient for peptides with a
high charge density as lower charge allows for the possibility of non-covalent
intrapeptide interactions that could contain the extra electron, thus preventing
dissociation [114]. Although overall fragmentation of smaller peptides by ETD is
less efficient than CID, ETD has a major advantage as the glycosidic linkage does
not preferentially undergo fragmentation thereby enabling the observation of
fragment peptide ions with the glycan still attached [103]. Application of ETD,
therefore, increases the likelihood of being able to pinpoint the site of glycosylation.
However, for highly charged free glycans (such as glycosaminoglycans or high
valency metal cations), ETD (and electron detachment dissociation) has been
shown to be capable of causing primarily cross-ring fragmentation whereas CID
produces primarily glycosidic dissociation [115–119].

2.3.3 IRMPD

Infrared multiphoton dissociation (IRMPD), first reported by Beauchamp and
co-workers [120], involves irradiation of trapped mass-selected ions, typically
achieved in quadrupole ion traps or Penning traps, with infrared radiation from a
tunable infrared laser (Fig. 12). The wavelength of the laser is ramped over a period
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of time causing unimolecular fragmentation (for carbohydrates this dissociation
produces CID like product ions [121, 122]) of the trapped ions only when they
possess resonant vibrational modes [123]. Therefore a plot of the wavelength
against the fragmentation yield, /, normalised to the respective laser power at each
given frequency, generates an action IR spectrum of the gas-phase ion. Additional

Fig. 12 Scheme depicting the typical orientation of the tuneable IR laser as it passes through the
ion cloud in a Paul (3D-quadrupole ion) trap and Penning trap (a). Schematic of the IRMPD
mechanism, the internal energy the ion gains resulting from photon absorption at the fundamental
vibrational frequency is dissipated by sequential intramolecular vibrational re-distribution
(IVR) events (b). Also depicted are cartoon bending and stretching modes for a region within
hexose isomers Glc and Gal and the action IR spectra of these two molecules (c). Figure parts
a and c are taken from Polfer [123]
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molecular dynamic (MD) simulations can yield key atomistic or conformation
information for small molecules or secondary structural features for peptides or
proteins that would be unobtainable by convention MS-based methods alone [121–
126]. Therefore IRMPD-MS could be an extremely powerful technique to aid
characterisation of often isomeric carbohydrates [124, 126], though this approach is
limited by the availability of bench top IR lasers that cover a wide and tunable range
[123]. To achieve action IR spectroscopy spanning the majority of the IR range,
free electron laser facilities are required [127]. Theoretical and experimental
comparisons are also extremely challenging since theoretical calculations typically
assume harmonic vibrational spectra, whereas experimental spectra are anharmonic.
Also the absorption of IR radiation is not necessarily linearly scaled with the
imparted energy, therefore experimental intensities may vary as compared to the
theoretical spectra. Finally intramolecular vibrational re-distribution results in band
broadening and red-shifting, which needs to be accounted for the experimental
spectrum [123]. Generation of reasonable gas-phase candidate structures, from
which theoretical IR spectra may be determined, is also not trivial given the typical
inherent conformational diversity within molecules.

3 Glycan Sequencing Strategies

Glycan characterisation can be achieved to various degrees by a number of tech-
niques. Most of these techniques are limited to studying solely glycan moieties that
have been removed from their conjugates prior to characterisation, although
methods exist that are capable of characterising the glycan constituents of intact
glycoproteins [128], glycopeptides [46] or other glycosides [37, 129]. For N-gly-
cans, glycan release is normally achieved enzymatically using one of three
enzymes-peptide-N-glycosidase F (PNGase F), which selectively cleaves the bond
between the reducing GlcNAc residue and the Asn residue (preferably without a
core a1-3 Fuc moiety); endoglycosidase F (Endo F) that cleaves between the
chitobiose core; or endoglycosidase H (Endo H), which also cleaves between the
chitobiose unit of only high mannose or hybrid N-glycans (Fig. 13) [2, 50]. As
Endo F/H cleavage leaves a glycan unit attached to the protein/peptide, sites of
glycosylation can also be characterised using typical proteomic strategies (e.g.
proteolysis followed by LC-MS2).

In comparison, the glycan moiety is completely removed when using PNGase F,
also converting the Asn residue to Asp, making glycosite characterisation more
challenging. This can be overcome by performing the transformation in 18O-water
which results in the formation of an 18O-Asp residue [130]. No similar enzymes are
known for O-glycan deglycosylation making them more challenging to process. As
a result, O-glycans are typically cleaved chemically using either reductive
b-elimination [48, 50, 131, 132] (Fig. 14) or hydrazinolysis (Fig. 15) [133–135].
However, hydrazinolysis may result in sequential loss of the reducing-terminal
residues (peeling), inhibiting complete sequence elucidation [133, 134]. After
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release, the glycans can be enriched and purified using either lectin affinity [136–
138], porous graphitised carbon (PGC) [139–141] or size exclusion columns [142]
and/or tagged with a fluorescent label [49, 143, 144]. Since these glycans normally
exist in multiple glycoforms, the released glycans are typically fractionated by
chromatography prior to their characterisation [15, 145–149]. Conversely, glycans
can be hydrolysed into their constituent monosaccharides by TFA or sulphuric acid
treatment [150, 151] followed by re-N-acetylation [152]. The relative abundances
and composition of these monosaccharides are then elucidated.

Fig. 13 Representative structure for a hybrid type N-glycan and the potential endoglycosidases
(orange) and example exoglycosidases (red) that can act on it

Fig. 14 Proposed mechanism for sodium borohydride induced reductive b-elimination of O-
glycans [50]
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Fig. 15 Potential reaction mechanism for hydrazinolysis of an O-glycan including the ‘Peeling’
side reactions [135]
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3.1 Glycosidase Treatment

Treatment of unknown glycans with cocktails of glycosidases, whose specificity
and activity are well characterised, is one of the most routinely employed strategies
to facilitate elucidating monosaccharide sequence and glycosidic linkage informa-
tion [49, 50, 153]. Glycosidases fall into two groups, endoglycosidases that cleave
non-terminal monosaccharides or glycosidic bonds to aglycons (such as proteins
and lipids) and exoglycosidases that cleave monosaccharides from the non-reducing
terminus in a stepwise manner. Both types are typically extremely specific for a
given monosaccharide and linkage type. Therefore, sequential treatment of
unknown glycans with specific exoglycosidases enables deduction of both the
monosaccharide sequence and the linkage information. A wide variety of exogly-
cosidases have been characterised that cleave Galb (Bovine testes) [154], Galb1-4
(Streptococcus pneumoniae) [155], GlcNAcb (Streptococcus pneumoniae) [156],
Neu5Aca (Streptococcus pneumoniae) [157], Mana1-2/3 (Xanthomonas maniho-
tis) [158], Mana1-6 (Xanthomonas manihotis) [158] and Fuca1-2 (Xanthomonas
manihotis) [158] to name a few (Fig. 13). Detection of enzymatic hydrolysis
products is facilitated by other analytical techniques (usually MS and/or LC) [15].
This approach is routinely employed in N-glycan sequencing. N-glycans consist of
well-characterised core oligosaccharide structures and the enzymatic transforma-
tions that act on them all relatively well characterised (at least for mammalian
systems) [15, 26, 153]. To enable characterisation, however, glycans must be
purified prior to hydrolysis so that changes resulting from the enzymatic action can
be monitored. Therefore, a priori fractionation techniques are required which can be
challenging for oligosaccharides since they are often chemically similar.
Additionally, glycosides capable of cleaving all potential glycosidic linkages have
yet to be elucidated limiting this approach. Finally, the sequential enzymatic pro-
cesses involved are low-throughput and often tedious [88].

3.2 Glycan-Binding Probes (GBPs)

One of the earliest approaches to identify carbohydrate structures was to employ
well-characterised glycan-binding proteins (GBPs), such as lectins or antibodies, as
affinity probes (Fig. 16) [138, 159–162]. A wide variety of GBP specificities has
been characterised that recognise a diverse range of glycan moieties [20, 163–168].
This enables elucidation of a range of divergent carbohydrate functionalities. For
example, the lectin Concanavalin A (ConA) preferably binds high mannose N-
glycans (a-Man specific), whereas Lotus tetragonolobus lectin (LTL) binds to
fucosylated glycans [163]. The difference in structural specificities of two GBPs can
also be more subtle. For example, Sambucus nigra (SNA) only binds to
a-2,6-sialylated carbohydrates [20], whereas Maackia amurensis II (MAL II) binds
preferentially to terminal a-2,3-sialylated N-glycans [164]. Unlike most other
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Fig. 16 Scheme depicting incubation of fluorescently tagged MAL I (sialic acid specific lectin)
and ConA (high mannose N-glycan specific) with an array of O- and N-glycans and their resultant
fluorescent response after washing
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sequencing strategies, the use of GBPs allows for glycan profiling at the macro-
scopic level in the form of tissue staining [169, 170] and microscopic in the form of
a cell [171, 172], as well as being capable of characterising glycoconjugates or free
glycans [173–177]. These GBPs are typically labelled with a fluorescent or
radioactive tags to facilitate detection of binding [138, 174, 178], which is disad-
vantageous compared to other label-free strategies, although label-free detections
techniques are also viable in certain situations such as MALDI-ToF MS [161, 162]
and surface plasmon resonance (SPR) spectroscopy [179, 180] can also be arrayed
enabling high-throughput glycan profiling of glycoconjugates [36, 161, 162, 181–
183] or even cells [172] and bacteria [184, 185]. Similarly, lectins can be attached
to supports, enabling selective enrichment of glycosides with a given structural
motif (lectin affinity chromatography) [186]. Unlike other profiling strategies,
however, lectin arrays yield few molecular structural features and because of
promiscuous lectin binding specificities, are liable to produce misleading
information.

3.3 Liquid Chromatography

For carbohydrate analysis, liquid chromatography (LC) is exploited primarily as a
separation and to a lesser extent as a characterisation tool [49, 50, 147, 187–190].
LC separates analytes based on their differing affinity towards a defined stationary
phase. Analytes that display poor retention (or are highly soluble in the mobile
phase) are sequentially eluted before those that have higher retention. Detection of
eluted molecules is normally achieved by spectroscopic means if the analyte pos-
sess a chromophore or by MS when the LC is placed in-line with the mass spec-
trometer. Confirmation of an analytes identity can be facilitated through comparing
its retention time to a known standard [188, 189]. This strategy has been greatly
facilitated by the development of a database (GlycoBase) consisting of experi-
mental chromatograms (and mass spectra) for various separation techniques (e.g.
HPLC, capillary electrophoresis etc.) under a specified set of standard conditions
[188, 189]. For glycans, monitoring alterations in glycan retention times (often
described in ‘glucose units’ (GU) with reference to a ladder of dextran polymers
[145]) after incubation with various glycosidase ‘cocktails’, whose specific activi-
ties are well characterised, can enable comprehensive elucidation of stereochemical
sequences [15, 26, 37, 145]. This approach relies heavily on access to glycosidases
capable of removing all natural glycosidic linkages, which currently is not
achievable. Characterising unknown glycans with a series of glycosidases would
also be time-consuming. LC techniques to separate carbohydrates have lagged
behind other biomolecules, primarily because carbohydrates lack a distinct chro-
maphore to facilitate their detection [148]. Additionally, they display poor retention
and separation on classical C18 reversed-phase (RP) columns given their highly
hydrophilic nature [147, 191]. Recently, it has been reported though that separation
of underivatized carbohydrates on RP columns can be improved through
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incorporation of an orthogonal separation tools such as ion mobility-mass spec-
trometry (IM-MS) [147]. As a result of poor separation on RP columns, carbohy-
drates are typically derivatised prior to LC analysis to add a chromaphore and
increase hydrophobicity. This is typically achieved through coupling of an ami-
nated chromophore, such as 2-aminobenzamide, 2-aminobenzoic acid or
2-aminopyridine, to the reducing aldehyde functionality of carbohydrate moieties
(reductive amination) [144, 192]. Permethylation of carbohydrates also improves
retention on C18 RP-LC supports and facilitates MS-based detection [193, 194],
although this relies on quantitative derivatization which can be challenging for
larger sterically more hindered structures. Despite the application of these strate-
gies, separation of glycan isomers remains challenging by C18 RP-LC methodology
alone [148, 191, 195]. As a result several other LC approaches consisting of novel
stationary phases have been developed, such as high pH (also referred to as
high-performance) anion-exchange chromatography (HPAEC) [196], hydrophilic
interaction chromatography (HILIC) [15, 197] and porous graphitic carbon
(PGC) [140, 198, 199], which do not rely on derivatization strategies (Fig. 17).

HPAEC is well established for the high resolution separation of underivatized
carbohydrates [196, 200, 201]. HPAEC columns typically consist of an agglom-
eration of non-porous polystyrene-divinylbenzene and smaller polystyrene-
divinylbenzene beads possessing quaternary amine groups [200]. Carbohydrate
samples are deprotonated with high pH mobile phases (pH > 12, linear gradi-
ent *10–100 mM sodium hydroxide to sodium acetate) resulting in separation by
anion-exchange with the quaternary amine stationary phase [200]. Classically
glycans eluted from HPAEC columns are quantitatively detected by pulsed
amperometric detection (PAD), since carbohydrate possess no chromophore.

Fig. 17 Examples of common stationary phases for RP (C18) (a), HPAEC (CarboPac, dionex)
(b), HILIC (ZIC-HILIC SeQuant®) (c) and PGC (d)
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Conveniently, most of the eluted analyte can be recovered after detection.
Unfortunately, HPAEC is often limited to small oligosaccharides (trisaccharides or
less) and is thus typically used for monosaccharide composition analysis. Also due
to the high-levels of salt, HPAEC is not amenable to MS-based analytical tech-
niques without carbohydrate desalting [139]. HPAEC-PAD also requires a rela-
tively large amount of analyte (*mg).

The separation mechanisms of HILIC chromatography are much more complex
compared to RP and HPAEC [202] and are still not fully understood. The specific
details of these mechanisms are beyond the scope of this chapter. HILIC employs
polar stationary phases to which polar substrates are retained preferentially com-
pared to the less-polar mobile phase (typically composed of acetonitrile). Polar
carbohydrates are eluted by increasing the concentration of water within the mobile
phase. This enables separation of a wide range of potentially isomeric carbohy-
drates including small oligosaccharides [203], N-glycans [15, 204] and glycopep-
tides [197]. Also unlike HPAEC, the mobile phase employed is compatible with
label-free analytical techniques such as MS [204] and UV/Vis absorbance for
oligosaccharides labelled with a chromaphore [15]. As a result, the use of HILIC
separation within research science is rapidly growing [202].

PGC stationary phases are increasingly being employed for the desalting and
separating underivatized carbohydrate samples [139, 140, 199, 204–206]. As sep-
aration of aqueous analytes occurs by both hydrophobic and electronic interactions
with the PGC stationary phase, PGC chromatography is amenable to studying both
polar and non-polar substrates [141]. The precise mechanisms associated with this
separation behaviour are also poorly understood similar to HILIC [205]. Unlike
most stationary phases, PGC is extraordinarily resilient to extreme operating con-
ditions including pH 0–14, allowing separation of acidic and basic analytes in their
neutral forms, respectively; and high temperatures (200 °C) that result in improved
peak symmetry and potentially improved separation [207] and additionally
accommodate for larger flow rates with little increase in back-pressure given the
loss in viscosity associated with the mobile phase [205]. Like HILIC, PGC chro-
matography has been reported to be capable of separating branched and linear
glycan regio- and stereoisomers [140, 198, 199, 208]. Few studies have been
undertaken comparing PGC and HILIC, although a large study comparing 141
unique metabolites found HILIC (aminopropyl column at pH 9.45) provided the
greatest separation of these species [209]. Estimation of PGC retention times from
the glycan structure is also more challenging compared to HILIC and RP [204].

An issue for LC approaches for carbohydrate identification is that an internal
standard is required to validate detected carbohydrates, although this requires a
priori characterisation of that given structure for full structural elucidation [199].
Conversely, the retention times of a purified known reference library whose
structures have been characterised can be compared to unknown structures.
However, the isolation or synthesis of such a vast library would be extremely
challenging given the challenges associated with their chemical synthesis [210,
211] and the huge number of potential structures glycans that can be formed from
only a small subset of monosaccharide residues [212]. Finally, even with all these
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LC methodologies, separation of certain glycan isomers remains a significant
challenge [213], although this may be alleviated by using orthogonal tandem LC
strategies [208].

3.4 Mass Spectrometry and Hyphenated Mass
Spectrometry Methods

MS and tandem MS techniques are the most commonly employed approach to
structurally characterise glycans or glycopeptides given their speed and sensitivity
[88, 214, 215]. Additionally, unlike most of the other characterisation tools, mass
spectrometry enables direct glycosite characterisation at the glycopeptide level.

However, the primary limitation associated with studying glycans by conven-
tional MS approaches is that most of the common natural monosaccharide building
blocks are simple epimers of one another and therefore possess identical m/z
(Figs. 1 and 18). Therefore, MS alone, is limited to characterising the monosac-
charide class (i.e. hexose, N-acetylhexosamine, deoxy hexose, etc.) and is insuffi-
cient to directly identify these monosaccharide units without the use of an
orthogonal sequencing approach, and are (???) often achieved through character-
ising the glycan processing pathways [46]. Glycan regiochemistry and branching
can be elucidated either from diagnostic fragment ions [98, 215, 216] or though
analysis of tandem mass spectra of permethylated or peracetylated glycans, since
glycosidic fragments will have a number methyl/acetyl groups equal to the number
of branches from that residue [194]. However, incomplete peralkylation or per-
acetylation complicates identification of branching and they (????) often require an
additional purification step c.f. their underivatized equivalents; although, as previ-
ously mentioned, peralkylation or peracetylation strategies are also advantageous as
they improve chromatographic retention on classical RP columns and increases MS
response [190, 194]. Peralkylation and peracetylation also increase the volatility
and thermal stability of monosaccharides allowing their analysis by
gas-chromatography MS [217]. Stereochemical assignment of the monosaccharide
units and of the glycosidic bond linking them is much more challenging. As dis-
cussed previously in Sect. 1.3.1, shifts in m/z after application of specific
well-characterised exoglycosidases allows for certain moieties to be elucidated
depending on the availability of the exoglycosidase [218]. Spectral matching glycan
[88, 98, 219–223] or glycopeptide [220, 224] experimental tandem mass spectra to
those of synthesised reference standards have also shown promise in being able to
discern stereochemical (and regiochemical) information. A drawback of spectral
matching is the requirement of a characterised synthetic standard, which is not
feasible for large oligosaccharides given the number of potential isomers and
challenges associated with synthesising these standards. Although it is not clear
how well spectral similarities observed for small oligosaccharide standards will
extend to larger structures. Konda et al. have reported that MS3 (???) of a diagnostic
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fragment ion (m/z 221) corresponding to deprotonated Hex-glycolaldehyde pro-
duces a tandem mass spectrum that is diagnostic of the stereochemistry of the
monosaccharide and anomeric configuration [215, 225]. This approach would
require of a relatively small reference library to allow identification of all species,
although the approach has currently only been developed on a relatively small
reference library of Glc, Gal and Man. It also requires the formation of specific
fragments that produce these MSn structurally rich spectra, which may be chal-
lenging for larger structures. Further recent strategies include energy-resolved mass
spectrometry (ER-MS), where the product ion yields are recorded against the
specific collision energy imparted since different diastereoisomers may require
different activation energies [226–230]. For carbohydrates, these approaches often
require purification of glycan mixtures prior to analysis otherwise you are liable to
record chimeric ER-MS of iso-bars/mers that cannot be readily deconvoluted.
Using a variation of ER-MS, Nagy et al. reported the first separation of all natural
aldohexose, ketohexose and pentose monosaccharide stereoisomers including
enantiomers. This was achieved by initially forming diastereomeric complexes with
the monosaccharide of interest, a chiral reference molecule (e.g. L-serine) and Cu2+,
fragmenting them by collision-induced dissociation (CID) at a specific energy and
comparing the relative intensities of the product ions associated with loss of the
chiral reference and the glycan (Rfixed) [228, 230]. However, this strategy cannot
generate regio-/stereochemical information in regards to the glycosidic linkages and
requires glycan hydrolysis to the monosaccharide species prior to analysis; the
sequence in which the monosaccharides appear in the glycan cannot thus be
determined directly. Combining ion mobility spectrometry, an orthogonal
gas-phase separation technique, to ER-MS further improves discrimination of
isomeric carbohydrates [229].

Ion mobility (IM) spectrometry is a growing technique to characterise or sepa-
rate carbohydrates and is especially powerful when coupled to conventional MS
and LC strategies. This recent surge in ion mobility analysis of glycans is primarily
a result of the recent commercialisation of hybrid IM-MS instrumentation (2006).

Fig. 18 Example of the spectral similarity within the tandem mass spectrum of two disaccharide
isomers that have been fragmented by collision-induced dissociation (CID). Resulting product ions
of these isomeric species are also isomers of one another. CID corresponds to collision-induced
dissociation
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IM separates species based on their rotationally averaged cross-sectional
area-to-charge (X/z) ratio, a parameter that is intrinsic to a given molecule under
a defined set of experimental conditions. Therefore, this technique possesses the
capability of separating isomeric and isobaric glycan and glycoconjugates precur-
sors and product ions, indistinguishable by MS alone and crucially when combined
with molecular dynamics may facilitate elucidation of structural and conformational
information [46, 129, 213, 229, 231–233].

Another drawback to using MS as an approach to characterise glycans is the
reported rearrangement of glycan during CID of protonated carbohydrates, as
previously mentioned in Sect. 1.2.3.1, making structure elucidation ambiguous
[104, 109]. Although this migration has never been observed for metal cationised
carbohydrates [109].

3.5 Alternative Approaches to Characterise Glycan
Structures

NMR spectroscopy is currently the only analytical technique that can directly yield
full three-dimensional structure and conformation elucidation of completely novel
carbohydrates in solution [5, 234, 235]. Given the typical biological complexity of
carbohydrates, 2D NMR experiments are normally acquired which improves
spectral dispersion and can also yield important conformational information such as
bond distances through-space between different or identical atoms for (Hetero)
Nuclear Overhauser Effect spectroscopy (H/NOESY), respectively, and connec-
tivity and stereochemical information for Heteronuclear Multiple-Quantum
Correlation spectroscopy (HMQC) [5, 235], Correlation spectroscopy (COSY)
[236] and Total Correlation spectroscopy (TOCSY) [46, 234]. The main disad-
vantages of NMR are that it is low-throughput, requires a relatively large amount of
material which is typically not-amenable to biological samples and due to the
spectra complexity of carbohydrates, samples need to be purified and isolated
which is challenging for similar glycoforms. Additionally, spectra are normally
extremely challenging to interpret and thus require computer assisted assignments
[234].

X-ray crystallography also possesses the ability to give atomistic information on
crystallised glycan and glycoconjugates structures [237, 238]. This technique like
NMR is low-throughput and additionally requires regular crystals or carbohydrate
structures, which underivatized carbohydrates rarely produce presumably due to
their inherent flexibility. Additionally, due to their flexibility, carbohydrates tend to
give poorly resolved crystal structures [237, 239].

Methods for the High Resolution Analysis … 255



4 Characterisation of Glycan-Binding Proteins

(Micro)array approaches are eminently suited for the elucidation of
glycan-glycan-binding protein (GBP) partners as they can potentially offer the
ability to screen >1000 reactions in a high-throughput manner [174] and require
sub µL amounts of material. The application of array technology within both basic
and applied (e.g. clinical) research science is highly diverse and has previously been
used to study antigen binding [240], enzymatic transformations [175, 241, 242],
bacterial binding [243] and glycan-GBP binding partners [138, 159, 174] to name a
few. It is therefore unsurprising that there is a plethora of both array technologies
and analytical techniques employed. A comprehensive list of array technologies and
the analytical techniques used to screen them have been reviewed by us very
recently [244]. Whilst this review focuses on the applications of array technologies
to screen enzymatic transformations, the principles described in the review extend
to studying substrate–ligand binding partners.

For applications immobilising glycans or GBPs to self-assembled monolayers
(SAMs) on gold offer an ideal platform to study glycan–GBP partners. SAMs are
relatively thermally and chemically stable and, to some extent, mimic the fluidity of
the lipid bilayer motif present at the cell surface membrane [245]. These arrays can
be screened directly by matrix-assisted laser desorption/ionisation (MALDI)
time-of-flight (ToF) mass spectrometry (MS), a rapid label-free technique that
reveals structural information on the bound analyte. When combined with routine
bottom-up proteomics strategies, namely proteolytic digestion followed by MS
and/or MS/MS of the generated peptides and subsequent database screening [246],
the identity of unknown proteins can be determined [162, 179, 183]. Such arrays
can, therefore, be utilised to characterise glycan-GBP partners directly from com-
plex biofluids, without the need for a challenging labelling step as is often required
for other common visualisation techniques such as fluorescence or radiation
[138, 247].

5 Conclusions

Mass spectrometry-based methodologies have become key analytical tools both for
carbohydrate sequencing and the characterisation of glycan-binding proteins. The
key limitation of classical mass spectrometry as a ‘two-dimensional technique’ has
been the lack of stereochemical information of glycan structure. Such shortcomings
can be overcome by combining mass spectrometry with enzymatic digestion
protocols and chromatographic techniques. Some very exciting recent develop-
ments are the adding of ion mobility spectrometry and IR spectroscopy in-line with
mass spectrometry, used as hyphenated analytical techniques that give very high
structural resolution.
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