Extending OpenMP SIMD Support for Target
Specific Code and Application to ARM SVE

Jinpil Lee!®™) | Francesco Petrogalli?, Graham Hunter?, and Mitsuhisa Sato’

I RIKEN Advanced Institute for Computational Science, Kobe, Japan
{jinpil.lee,msato}@riken. jp
2 ARM Ltd., Cambridge, UK

{Francesco.Petrogalli,Graham.Hunter }@arm.com

Abstract. Recent trends in processor design accommodate wide vec-
tor extensions. SIMD vectorization is more important than before to
exploit the potential performance of the target architecture. The lat-
est OpenMP specification provides new directives which help compilers
produce better code for SIMD auto-vectorization. However, it is hard
to optimize the SIMD code performance in OpenMP since the target
SIMD code generation mostly relies on the compiler implementation. In
this paper, we propose a new directive that specifies user-defined SIMD
variants of functions used in SIMD loops. The compiler can then use the
user-defined SIMD variants when it encounters OpenMP loops instead
of auto-vectorized SIMD variants. The user can optimize the SIMD per-
formance by implementing highly-optimized SIMD code with intrinsic
functions. The performance evaluation using a image composition kernel
shows that the user can optimize SIMD code generation in an explicit way
by using our approach. The user-defined function reduces the number of
instructions by 70% compared with the auto-vectorized code generated
from the serial code.

Keywords: OpenMP - SIMD vectorization - VLA programming - Vec-
tor Length Agnostic programming

1 Introduction

Recent trends in processor design accommodate wide vector extensions and
many-core architectures. We expect that these trends will continue to improve
the flops per watt ratio. Current Intel Xeon Phi processors have the 512-bit
vector instruction set, Advanced Vector eXtensions (AVX-512), and more than
60 cores. ARM released a new vector instruction set for high performance com-
puting, named Scalable Vector Extension (SVE) [2], which allows up to 2048-bit
wide vector registers. Parallel programming is getting more important when
using these architectures to exploit the potential performance. OpenMP (OMP)
is widely used to describe node-level parallelism on shared-memory architectures.
The directives such as parallel and for can describe thread-level parallelism on
many-core architectures.

© Springer International Publishing AG 2017
B.R. de Supinski et al. (Eds.): IWOMP 2017, LNCS 10468, pp. 62-74, 2017.
DOI: 10.1007/978-3-319-65578-9_5

Extending OpenMP SIMD Support for Target Specific Code and Application 63

On the other hand, SIMD vectorization has been done automatically by
compilers. Compilers analyze code structures such as loop statements and find
parallelism. When the target structures are safe to be vectorized, the compiler
generates SIMD instructions. The latest OMP specifications provide new direc-
tives which help this auto-vectorization process. The simd directive specifies
vectorizable loops (SIMD loops) in the serial code. The declare simd directive
can be given to function definitions in the serial code to specify that the target
functions are vectorizable in the SIMD loop. These directives ensure that target
constructs are safe to be vectorized so that compilers can skip some hard analy-
sis such as pointer alias analysis and avoid generating runtime checks to prevent
aliasing.

The OMP directives reduce the burden of compiler analysis for SIMD vec-
torization. However, it is hard to optimize the SIMD code performance in OMP
since the target SIMD code generation mostly relies on the compiler implementa-
tion. In this paper, we propose a programming interface connecting user-defined
SIMD functions and SIMD loops. To this end, we introduce the alias simd direc-
tive which specifies the user-defined SIMD variant of the target function. The
compiler uses the specified function in the SIMD loop instead of vectorizing the
target function. By using this interface, we can split the loop iteration translation
and the SIMD code generation for the loop body. Code translation for control-
ling loop iterations remains architecture-independent by using the OMP simd
directive. The user can write highly optimized SIMD code with architecture-
dependent programming methods such as intrinsic functions.

The main target architecture of our proposal is ARM SVE. SVE is a vector
length agnostic instruction set. Most instructions use a predicate mask. Our
proposal includes a way of handling predicate masks and optimization in the
SVE instruction set. We also consider fixed-length vector instruction sets such
as Intel AVX to make the proposal to cover traditional SIMD extensions. The
user-defined SIMD function can be implemented in the various ways since our
proposal only relies on the function declaration and the vector ABI. In this
paper, we use intrinsic functions provided by processor vendors to implement
SIMD variant functions.

The rest of the paper is organized as follows: Sect.2 shows related works
proposing explicit SIMD programming models. In Sect. 3, we briefly introduce
the new ARM vector instruction set, SVE, and its intrinsic functions as prelim-
inary knowledge. In Sect. 4, we introduce the alias simd directive in OpenMP,
which allows explicit SIMD implementations in OMP SIMD loops. In Sect. 5,
some sample code and preliminary results of the performance evaluation are
given to show the effectiveness of our proposal. Finally, we discuss the future
work and conclude the paper in Sect. 6.

2 Related Work

There have been many attempts to establish an explicit SIMD programming
model [11]. ARM C Language Extensions (ACLE) [1], which is only available

64 J. Lee et al.

on ARM architecture, provides a type-generic interface to program ARM SVE
instructions. Thanks to its vector-length agnostic design, the iteration of the
SIMD loop can be controlled without considering target architecture’s vector
length. ispc (Intel SPMD Program Compiler) [10] defines new programming lan-
guage to describe SIMD-level parallelism. It covers various Intel SIMD instruc-
tion sets such as SSE, AVX, and AVX-512 in the Xeon Phi architecture. The
language-based approach such as ispc, Intel array notation [7], Sierra [8], and
Terra [3] require a dedicated implementation in compilers. [4] takes compiler-
independent approach using C++ template. Cyme [5] and Ve [6] are imple-
mented as a library. While these models provide high-level interface for SIMD
programming, they assume a fixed vector length so that the SIMD loop iteration
step should be modified manually when targeting an extension with a different
vector register size.

3 Overview of ARM Scalable Vector Extension

SVE is a new vector extension to the A64 instruction set of the ARMv8-A archi-
tecture designed to exploit increases in hardware capability without requiring
software recompilation.

The vector length in SVE can be configured dynamically in the range from
128 to 2048 bits, in multiples of 128. Although the value can be obtained through
system registers, the SIMD instruction set is designed to be Vector Length Agnos-
tic (VLA).

Most instructions take a predicate register to mask available elements in the
operand vector registers.

The following are some of the key features of SVE.

— 32 vector registers (Z0-Z31).

16 predicate registers (P0-P15).

— Configurable vector length: 128 to 2048-bit (maximum is processor-
dependent).

Enables the VLA programming model — the same program can run
on machines with different vector register length, without requiring re-
compilation.

3.1 The Vector Length Agnostic Programming Model

Listing 1 shows an example of a vector addition in C and its equivalent SVE
assembly code. The operand pO is a predicate register which is used to mask
active and inactive lanes of the vector registers z0 and z1.

Extending OpenMP SIMD Support for Target Specific Code and Application 65

1 ; for (¢ = 0; % < N; <++) { C[t] = A[i] + B[<]; }

2 ; 9, 10, x11 and xi2 hold N, A, B, and C, respectively

3 mov x8, xzr

4 b .Lcond

6 1d1d z0.d, p0/z, [x10, x8, 1sl #3]

7 1d1d z1.d, p0/z, [x11, x8, 1sl #3]

8 fadd z0.d, z0.d, z1.d

9 stid z0.d, p0, [x12, x8, 1sl #3]

10 incd x8 ; increase 1%

11

12 whilelo p0.d, x8, x9 ; set p0.d[t] = (¢ < N)

13 b.first .loop ; execute the loop iteration
14 ; of the first lane s active

Listing 1: Vector Add Example in SVE

Figure 1l shows how SVE instructions modify register values in Listing 1.
Here, we assume that the data type of A, B, and C is double *, and the data
type of i and N is unsigned long int.

After setting the loop induction variable (i, carried by x8) to zero, the code
branches directly to the instruction whilelo, which compares the current iter-
ation value i and the last iteration value (N in this case, carried by x9). The
instruction sets the loop predicate register, p0, as p0.d[i] = (i < N) 7 1
0, for each one of the logical lanes implied by a SIMD loop iteration.

If at least the first logical lane of the predicate vector is active (b.first),
the branch is taken back to the start of the loop.

The predicate register is then used in the loop body to mask out the inactive
lanes. In Listing 1, the loads (1d1d), and the store (st1d) instruction use the
predicate register to process only the active lanes, effectively removing the need

256-bit SVE
Iter|x8 (i)|whilelo p0.d, x8, x9 (i < N)
0 0 1111111
1 4 111111
2 8 111111
384-bit SVE
Iter|x8 (i)|whilelo p0.d, x8, x9 (i < N)
0 0 11111111111
1 6 11111111111
512-bit SVE
Iter|x8 (i)|whilelo p0.d, x8, x9 (i < N)
0 0 111111111111
1 8 il1111110lololo

Fig. 1. Vector loop control using the predicate generated by the whilelo instruction,
for different SVE implementations. N is 12. Notice that the same code in Listing 1 works
independently on the vector size thanks to the incd x8 instruction. In the predicate
representation, logical lane numbering is intended left-to-right.

66 J. Lee et al.

of introducing a scalar loop tail to fix up the last elements of the computation
that do no fill a full vector register length.

The logical iteration of the loop is then advanced using the incd instruction,
which is used to increase the iteration variable i by the number of double
elements a scalable vector register can hold.

The, another whilelo instruction is issued and the branch condition in
.Lcond is checked again.

For the interested reader, other examples showing how to use SVE for VLA
programming are available in the white paper [9].

3.2 Intrinsic Programming Interface

Like most SIMD instruction sets, SVE has an intrinsic programming interface
which can be used in high-level programming languages such as C and C++.
ARM C Language Extensions (ACLE) has been extended to support SVE. List-
ing 2 shows the ACLE version of the vector addition given in Listing 1. Because
of its VLA approach, the loop is written using the while construct. svbool_t is the
data type for predicate registers. svfloat6/_t is the data type for double precision
FP registers.

1 unsigned long i = 0;

2 svbool_t p = svwhilelt_b64_s64(i, N);

3 svbool_t tp = svptrue_b64();

4+ while (svptest_first(tp, p)) {

5 svfloat64_t vec_a = svldi(p, &(A[il));

6 svfloat64_t vec_b = svldil(p, &(B[i]));

7 svfloat64_t vec_c = svadd(p, vec_a, vec_b);
8 svstl(p, &(C[il), vec_c);

9 i += sventd();

10 p = svwhilelt_b64_s64(i, N);

Listing 2: Vector Add Example in ACLE

The predicate variable is created by svwhilelt_b64_s64() which do the same
process in Listing 1. suptrue_b6/() generates a predicate in which all elements
are active. At the beginning of every iteration, suptest_first() checks the head of
the predicate register to see if the next iteration has an active predicate element
to process. The load and store instructions in Listing 1 are equivalent to svid1()
and svstl(). svadd() calculates SIMD addition of the double data type. sventd()
returns the number of 64-bit elements in a vector register. It is then used to
increase the loop iteration variable for the next SIMD execution.

Extending OpenMP SIMD Support for Target Specific Code and Application 67

Note that many routines in Listing 2 are given without specifying the element
data type. It is because ACLE provides a type generic programming interface
implemented using templates in C++, or _Generic in C11.

4 Explicit Programming Interface for Vectorizing
Functions

As discussed in Sect. 1, the current OMP specification cannot specify the SIMD
implementation of functions used in SIMD loops. Although the directives can
help the compiler check that the target code can be vectorized, the SIMD code
generation is a transparent part to the user. In this section, we propose an
explicit programming interface to expose user-defined SIMD functions available
in OMP SIMD loops.

4.1 Overview of the Proposed Programming Model

The basic concept of our proposal is that we provide SIMD variants of existing
functions instead of using auto-generated SIMD functions. To this end, we add
a new directive, named alias simd, in the OpenMP specification. Listing 3 shows
an example code of the alias simd directive. Vector data types (int_t, int8-t)
and intrinsic functions (e.g. intrinsic_addj) in the listing are pseudo code.

1 #pragma omp declare simd notinbranch // A
2 int add(int a, int b) {

3 return a + b;

4}

5 #pragma omp alias simd to(add) simdlen(4) // B
6 int4_t add_vec4(int4_t a, int4_t b) {

7 return intrinsic_add4(a, b);

s}

o #pragma omp alias simd to(add) simdlen(8) // C
10 int8_t add_vec8(int8_t a, int8_t b) {

11 return intrinsic_add8(a, b);

12 }

14 #pragma omp simd simdlen(VL) // VL is 4 or 8
15 for (i = 0; i < n; i++) {

16 z[i] = add(x[i], y[il);

17 }

Listing 3: Explicit SIMD Variant in OMP SIMD Loop

68 J. Lee et al.

: compiler can generate:

E> int4_t add_l4141(int4_t a, int b);
int8_t add_I8I8I(int8_t a, int b); ...

I:> target name + type inference:
match with <int add(int a, int b)>

for(i=0;i<n;i+=8){
) yli:8] = add_vec8(x[i:8], S)
}

Fig. 2. Code Translation OverviewCode Translation Overview

The purpose of the alias simd directive is mapping SIMD variant functions
defined by the user to the original functions in the serial code. In B and C' in
Listing 3, the function name or declaration is given by the to clause for the
mapping process. We need the full declaration when functions with different
argument types have the same name by using template (in C++) or _Generic
(in C11). alias simd has the simdlen clause to distinguish SIMD variants by the
vector length. These variants can be defined at the same time. We do not expect
that Intel AVX and ARM SVE SIMD variants are available at the same time
since we assume that portability among vendors is maintained by using some
guard macros (e.g. __AVX_ _ARM_NEON_.).

The mapping process is independent from declare simd so that the SIMD
function is generated from the scalar function even if SIMD variants are given.
SIMD variants have priority over the compiler-generated SIMD function when
translating the OMP simd directive. The compiler will select a SIMD variant
by the proper vector length (or the vector length can be given explicitly by the
simdlen clause). We may need the scalar function definition and the declare simd
directive in case that the loop is not vectorizable, or no proper SIMD variant
is given.

Figure 2 shows how the compiler translates a OMP loop and replace functions
with the SIMD variant by the alias simd directive. The simd directive specifies
that the following loop should be vectorized and the vector length is 8. Function
add() is used in the loop body. To vectorize the loop, the compiler needs to
generates the SIMD code of add().

The declare simd directive is given with the scalar code of add(). Since
simdlen is not given, SIMD functions with any vector length can be gener-
ated from the compiler. In this example, the SIMD function with vector length
8 (add_I8181()) can be generated for the loop body.

On the other hand, a user-defined SIMD function is given with the alias simd
directive. add_vec8() is implemented by using (pseudo) SIMD intrinsic functions.
The function adds a scalar value to a vector register. On most architectures, each
SIMD intrinsic function is specific to a vector length. The simdlen clause is given
in the alias simd to tell the compiler that the following function can be used

Extending OpenMP SIMD Support for Target Specific Code and Application 69

to execute 8 iterations of int operations in parallel. The to clause specifies the
original scalar function. It tells the compiler that add_vec8() is a SIMD variant
of add(). The compiler infers data types of arguments in (add()) to complete
the function declaration. The process follows the architecture’s vector ABI. In
this example, the compiler infer int from int8_t.

When the compiler translates the OMP loop in Fig. 2, two SIMD functions
are available, compiler-generated add_I8I8I() and user-defined add_vec8(). In our
proposal, user-defined functions have higher priority to allow the user to optimize
the SIMD performance by implementing fast SIMD algorithms.

4.2 Syntax of the Alias Simd Directive

Figure3 shows the syntax of the alias simd directive. The directive is given
along with the complete definition of a SIMD variant. We do not assume any
specific programming model for the implementation. Therefore, any kind of pro-
gramming model can be used to implement SIMD variants if they adhere to the
proper argument types and vector length. At first, we explain the syntax for the
fixed-length SIMD architecture, and then extend it for SVE’s VLA approach.

#pragma omp alias simd to(name_or _decl) [clause list]
function_definition

name_or _decl := function_name
| function_declaration
clause := simdlen(integer _expr)
| inbranch
| notinbranch
| linear(/inear _list [: linear _step])

Fig. 3. Definition of Alias Simd Directive

The to clause comes with either the name or declaration of the target func-
tion. When a function name is given, the compiler would infer the scalar type
of each vector/scalar argument in the SIMD variant. The type reference follows
target architectures’s vector ABI. Multiple types can be mapped to the same
vector type (e.g. generic programming model). In that case, the complete dec-
laration should be given to choose the correct target function. The to clause
cannot be omitted.

70 J. Lee et al.

The simdlen clause specifies the SIMD length used in the SIMD variant.
By the simdlen clause given in the simd directive, the SIMD loop may require
several SIMD variants for the same function. The simdlen clause in alias simd
is used to link the correct SIMD variant to a function call in the SIMD loop.
The compiler registers the SIMD variant as the default SIMD implementation
for the architecture when simdlen is omitted. When the target instruction set is
SVE, simdlen is omitted by default. However, we can still use simdlen for SVE.
This can be useful when there are highly-optimized SVE SIMD functions for a
specific vector length.

The inbranch/notinbranch clause specifies whether the target function is
called in a conditional statement or not. For example, the SIMD variant have
additional arguments when inbranch is given. This clause is used to choose the
correct SIMD variant, and infer the scalar types of the target argument (with
inbranch, mask/predicate argument will be excluded in type inference).

The linear clause specifies the linear step of the target scalar variable
increased in SIMD lanes. Regardless of the step value, the corresponding argu-
ment would have the original (scalar) data type. Since the privatization and
linear increment should be implemented inside the SIMD function, multiple vari-
ants with different steps look the same from the compiler. The linear clause in
alias simd should be given to distinguish the multiple SIMD intrinsic variants
in the source code so that the compiler can choose the correct one. The syntax
of linear_list and linear_step is the same as for the already existing OpenMP
constructs.

5 Preliminary Evaluation

In this section, we introduce a use case of our proposal and perform a preliminary
evaluation. We use the alias simd directive to optimize a simple image composi-
tion code. ALCE intrinsic functions are used to implement a SIMD function in
SVE. Since the proposal has not been implemented yet, we compare the auto-
vectorized code, which is equivalent to OMP SIMD vectorization in the current
LLVM implementation, and the hand-written SIMD code simulating the behav-
iour of the alias simd directive. Both the serial and ACLE code are compiled
by the SVE LLVM compiler and the binaries are executed on the instruction
simulator, which has been provided by ARM.

5.1 Vectorization of Image Composition Kernel

Listing 4 shows the serial implementation of the composition code and the main
loop. All color values are stores in the unsigned char type which has a range from
0 to 255. Each image has four channels, red, green, blue, and alpha. The image
composition is done by a loop statement. In each iteration, function add_filter()
is called for the red, green, and blue channel.

Extending OpenMP SIMD Support for Target Specific Code and Application

typedef unsigned char uchar;
typedef unsigned short ushort;

#pragma omp declare simd
uchar add_filter(uchar a2, uchar inl, uchar in2) {
if (a2 > 0) {
ushort temp = (ushort)inl + (ushort)in2;
if (temp > 255) return 255;
else return (uchar)temp;
}
else return inil;

}

uchar out_r[N]; uchar out_g[N]; uchar out_b[N];
uchar inl_a[N]; uchar inl_r[N]; uchar inil_g[N]; uchar ini_b[N];
uchar in2_a[N]; uchar in2_r[N]; uchar in2_g[N]; uchar in2_b[N];

void loop() {
#pragma omp simd
for (int i = 0; i < N; i++) {

out_r[i] = add_filter(in2_ali], inil_r[i], in2_r[il);
out_g[i] = add_filter(in2_al[i], ini_g[i], in2_g[il);
out_b[i] = add_filter(in2_a[i], ini_b[i], in2_b[il); }}

Listing 4: Image Composition Code

add_filter() returns the sum of the two input images when the alpha mask
value of the second image is not 0. When the value is 0, it returns the color value

71

of the first image. Since the summation may overflow the maximum value (255),

the code stores the temporary data in the unsigned short type, and checks the

value range. Therefore, the serial code contains type conversion and branching.

Listing 5 shows the ACLE implementation of the composition code. Note that

the function has additional argument p. It is because the compiler generates a

predicate value to process the remainder loop as shown in Sect.3. We assume

that SVE vector functions always have a predicate variable as a first argument.
It is not used in type inference shown in Sect. 4.

#pragma omp alias simd to(add_filter)
svuint8_t add_filter_acle(svbool_t p, svuint8_t a2,
svuint8_t inl, svuint8_t in2) {
svuint8_t zero = svdup_n_u8_x(p, 0);
svbool_t alpha_mask = svcmpgt_u8(p, a2, zero); // a2 > zero
svuint8_t temp = svand_u8_z(alpha_mask, in2, in2);
return svqadd_u8(inl, temp);

Listing 5: Vectorization of Image Composition Code using Alias Simd

The ACLE version uses svgadd_u8(), saturating integer addition, to calculate
the summation. When the summation is outside the range, svqgadd_u8() ensures

72 J. Lee et al.

that the value will be the maximum (255). This can avoid type conversion shown
in the serial version and therefore increase performance. In SVE, branches can be
replaced by SIMD instructions with predicate registers. The alpha mask values
are checked in parallel by svempgt_u8(), which generates a predicate value. It can
be used to generate the second operand of the summation to avoid the branch.
The values are set to zero when the corresponding predicate value is inactive.
As a result, the ACLE implementation can exploit the SIMD-level parallelism
for unsigned char (8-bits) on the target hardware.

Listing 6 shows the main loop code written in ACLE. Even though ACLE pro-
vides a generic programming interface, porting to ACLE requires manual trans-
formation including rewriting loops, generating predicates, and adding vector
load/store instructions. As shown in Listing 4, this transformation is transparent
and portable in our approach since it is programmed by the OMP simd directive.

1 void loop() {

2 int i = 0;

3 svbool_t p = svwhilelt_b8_s32(i, N);
4 svbool_t tp = svptrue_b32();

5 while (svptest_first(tp, p)) {

6 svuint8_t vinl_r = svldl_u8(p, inl_r+i);

7 // loads for wini_{g, b}, vin2_{a, T, g, b}

8 svuint8_t vout_r = add_filter_acle(p,vin2_a,vinl_r,vin2_r);
9 svuint8_t vout_g = add_filter_acle(p,vin2_a,vinl_g,vin2_g);

10 svuint8_t vout_b = add_filter_acle(p,vin2_a,vinl_b,vin2_b);
11 svstl_u8(p, out_r+i, vout_r);

12 // stores for wout_{g, b}

13

14 i += sventb();

15 p = svwhilelt_b8_s32(i, N); }}

Listing 6: Main Loop in ACLE

5.2 Evaluation Results

Figure 4 shows the performance of the auto-vectorized serial code and the hand-
written ACLE code. Since we do not assume any specific hardware implementa-
tion, the performance is measured by counting the number of instructions issued
during the execution of the loop. We have evaluated the performance with two
dataset sizes, 32 x 32 and 320 x 320 pixels, using two simulated hardware imple-
mentations, with 256-bit and 1024-bit wide vectors.

The results show that the hand-written code simulating alias simd executes
less instructions compared with the auto-vectorized code. In most cases, the
auto-vectorized code executes 3.7 ~ 3.8 times more instructions than the hand-
written code. When increasing the vector length in the small data set (32 x 32
with 1024-bit SIMD), the ratio is decreased to 3.4 because the total instruction
number is small and instructions for loop control becomes significant.

Extending OpenMP SIMD Support for Target Specific Code and Application 73

3500 350000
£ 3000 300000
S 2500 250000
@ 2000 200000
5 1500 150000
S 1000 100000
£ 500 . 50000 .
=
0 0
256 1024 256 1024
Vector Length (bits, N = 32 x 32) Vector Length (bits, N = 320 x 320)

Fig. 4. Performance of Image Composition Kernel, as number of total instructions
issued when executing the loop

The serial version includes the type conversion from wnsigned char to
unsigned short to calculate summation of two pixels. In auto-vectorization, the
compiler generates SIMD addition instructions for unsigned short, which dou-
bles the number of SIMD add instructions per iteration compared to the intrinsic
code. Before the calculation, the compiler generates type conversion instructions.
It also adds extra calculations which do not exist in the intrinsic code.

The branch used for color clamping to the maximum value is translated to
SIMD compare and selection instructions in auto-vectorization. There are type
conversion to unsigned short since the calculated values are stored in the unsigned
short type. After the calculation, the data type is converted into unsigned char.
The check for alpha mask is translated in the same way.

On the other hand, the intrinsic version calculates the summation using
unsigned char type instructions. Since it uses the saturating addition instruc-
tion, svgadd_u8(), the range check and clamping is unnecessary. The optimization
is intended to avoid the unnecessary type conversion to reduce the number of
instruction executed, and improve the instruction throughput by using unsigned
char type SIMD instructions.

It should be emphasized that our approach provides an explicit way of pro-
gramming SIMD instructions. The performance result shows that our approach
can successfully change the way how the code uses the SIMD instructions, which
cannot be done with existing OMP SIMD directives. This is important even for
a product-level compiler since it cannot always generate the optimal SIMD code.
And there may be a gap between high-level languages and hardware instruction
sets which make it difficult to describe the optimal SIMD code. We have used
the saturating addition instruction in SVE, which cannot be described directly
in the C language without using a wider type.

Our proposal is designed to be independent from instruction sets. If we imple-
ment the code transformation of alias simd for a specific SIMD instruction set
and the vector ABI, we can describe user-defined SIMD functions to optimize
the SIMD performance on the target architecture. For example, we can optimize
the SIMD performance using Intel AVX intrinsic functions on Intel processors
(e.g. generating a histogram using Intel AVX512-CD).

74 J. Lee et al.

6 Conclusion

In this paper, we proposed a new OMP directive, alias simd. It specifies user-
defined SIMD variants of functions called in SIMD loops. The compiler uses
the SIMD variant when translating OMP loops instead of auto-vectorized SIMD
variants. The user can optimize the SIMD performance by implementing highly-
optimized SIMD variants with intrinsic functions. Even for a product-level com-
piler, it is difficult to generate optimal SIMD code for every case. Our proposal
provide an explicit way to program SIMD-level parallelism while keeping com-
mon and trivial parts (e.g. loop iteration transformation) portable. For the next
step, we will implement our proposal in the LLVM compiler so that we can try
various examples and instruction sets.

References

1. ARM C Language Extensions for SVE. https://developer.arm.com/docs/100987/
latest/arm-c-language-extensions-for-sve
2. ARM Scalable Vector Extension. https://developer.arm.com/products/
architecture/a-profile/docs
3. DeVito, Z., Hegarty, J., Aiken, A., Hanrahan, P., Vitek, J.: Terra: a multi-stage
language for high-performance computing. In: Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2013, NY, USA, pp. 105-116 (2013). http://doi.acm.org/10.1145/2491956.2462166
4. Estérie, P., Gaunard, M., Falcou, J., Lapresté, J.T., Rozoy, B.: Boost.simd: generic
programming for portable simdization. In: Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques, PACT 2012,
NY, USA, pp. 431-432 (2012). http://doi.acm.org/10.1145/2370816.2370881
5. Ewart, T., Delalondre, F., Schiirmann, F.: Cyme: a library maximizing SIMD com-
putation on user-defined containers. In: Kunkel, J.M., Ludwig, T., Meuer, H.W.
(eds.) ISC 2014. LNCS, vol. 8488, pp. 440-449. Springer, Cham (2014). doi:10.
1007/978-3-319-07518-1_29
6. Kretz, M., Lindenstruth, V.: VC: A C++ library for explicit vectorization. Softw.
Pract. Exper. 42(11), 1409-1430 (2012). http://dx.doi.org/10.1002/spe.1149
7. Krzikalla, O., Zitzlsberger, G.: Code vectorization using intel array notation.
In: Proceedings of the 3rd Workshop on Programming Models for SIMD/Vector
Processing, WPMVP 2016, NY, USA, p. 6:1-6:8 (2016). http://doi.acm.org/10.
1145/2870650.2870655
8. Leissa, R., Haffner, 1., Hack, S.: Sierra: a SIMD extension for C++. In: Proceed-
ings of the 2014 Workshop on Programming Models for SIMD/Vector Processing,
WPMVP 2014, NY, USA, pp. 17-24 (2014). http://doi.acm.org/10.1145/2568058.
2568062
9. Petrogalli, F.: A sneak peek into SVE and VLA programming. https://developer.
arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming
10. Pharr, M., Mark, W.R.: ispc: a SPMD compiler for high-performance CPU pro-
gramming. In: 2012 Innovative Parallel Computing (InPar), pp. 1-13, May 2012
11. Pohl, A., Cosenza, B., Mesa, M.A., Chi, C.C., Juurlink, B.: An evaluation of current
SIMD programming models for C++. In: Proceedings of the 3rd Workshop on
Programming Models for SIMD /Vector Processing, WPMVP 2016, NY, USA, pp.
3:1-3:8 (2016). http://doi.acm.org/10.1145/2870650.2870653

https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve
https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve
https://developer.arm.com/products/architecture/a-profile/docs
https://developer.arm.com/products/architecture/a-profile/docs
http://doi.acm.org/10.1145/2491956.2462166
http://doi.acm.org/10.1145/2370816.2370881
http://dx.doi.org/10.1007/978-3-319-07518-1_29
http://dx.doi.org/10.1007/978-3-319-07518-1_29
http://dx.doi.org/10.1002/spe.1149
http://doi.acm.org/10.1145/2870650.2870655
http://doi.acm.org/10.1145/2870650.2870655
http://doi.acm.org/10.1145/2568058.2568062
http://doi.acm.org/10.1145/2568058.2568062
https://developer.arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming
http://doi.acm.org/10.1145/2870650.2870653

	Extending OpenMP SIMD Support for Target Specific Code and Application to ARM SVE
	1 Introduction
	2 Related Work
	3 Overview of ARM Scalable Vector Extension
	3.1 The Vector Length Agnostic Programming Model
	3.2 Intrinsic Programming Interface

	4 Explicit Programming Interface for Vectorizing Functions
	4.1 Overview of the Proposed Programming Model
	4.2 Syntax of the Alias Simd Directive

	5 Preliminary Evaluation
	5.1 Vectorization of Image Composition Kernel
	5.2 Evaluation Results

	6 Conclusion
	References

