
A Pattern for Overlapping Communication
and Computation with OpenMP∗ Target

Directives

Jonas Hahnfeld1(B), Tim Cramer1, Michael Klemm2, Christian Terboven1,
and Matthias S. Müller1

1 Chair for High Performance Computing & IT Center, JARA–HPC,
RWTH Aachen University, 52074 Aachen, Germany

{hahnfeld,cramer,terboven,mueller}@itc.rwth-aachen.de
2 Intel Deutschland GmbH, 85622 Feldkirchen, Germany

michael.klemm@intel.com

Abstract. OpenMP∗ 4.0 introduced initial support for heterogeneous
devices. OpenMP 4.5 improved programmability and added capabilities
for asynchronous device kernel offload and data transfer management.
However, the programmers are still burdened to optimize data transfer
for improved performance and to deal with the limited amount of memory
on the target device. This work presents a pipelining concept to efficiently
overlap communication and computation using the OpenMP 4.5 target

directives. Our evaluation of two key HPC kernels shows performance
improvements of up to 24% and the ability to process data larger than
device memory.

1 Introduction

Accelerators and coprocessors of different kinds continue to impact the HPC
landscape: From the current Top500 list, a total of 97 systems are equipped with
GPU devices from NVIDIA and AMD or the Intel R© Xeon PhiTM coprocessor.

OpenMP∗ other strives to ease the burden for the programmer by providing a
rich set of compiler directives complemented by API routines to control runtime
behavior. OpenMP 4.0 introduced support for heterogeneous programming with
the target construct family. It allows to transfer the control flow from a host
thread to a thread on the target device and also provides means to direct the data
flow between host and device. Being vendor-neutral, a target device in OpenMP
may be a GPU, a coprocessor, or other heterogeneous devices like a DSP engine
or an FPGA. OpenMP 4.5 addresses some shortcomings and added support for
asynchronous offloading from the host to devices.

Nevertheless, achieving good application performance on heterogeneous clus-
ters still puts a burden on the programmer, who, for instance, has to lay out data
structures and compute kernels in appropriate ways. Today’s predominant con-
figuration is a host that is equipped with DDR memory and (multiple) devices
equipped with memory of much smaller capacity yet much higher memory band-
width. Effective slicing and management of the working set that is present on
c© Springer International Publishing AG 2017
B.R. de Supinski et al. (Eds.): IWOMP 2017, LNCS 10468, pp. 325–337, 2017.
DOI: 10.1007/978-3-319-65578-9 22

326 J. Hahnfeld et al.

the device is crucial for achieving high application performance. Well-explored
optimization techniques include the extension of device regions to enable data
to reside on the device memory for reuse.

In this work, we emphasize on the technique of overlapping communication and
computation to overcome bandwidth and latency bottlenecks in transfers between
host and devices, for instance with the PCIe bus. We describe the realization of
a pipeline concept based on features recently introduced with OpenMP 4.5 and
present a performance evaluation with two devices per host. Applying our pattern
may not only ease the implementation of complex applications exploiting accelera-
tor devices, we will also show that it can improve performance via the overlapping
and better use of the memory and bus capabilities. It can also enable the use of
devices for problems that are larger than the device memory.

2 Related Work

The concept of overlapping communication and computation for parallel appli-
cations is widely spread. It is considered a key technique to obtain performance
for architectures that rely on some form of message passing to transfer data to
the computational units of the executing system. To best of our knowledge, we
present a corresponding pipelining pattern to overlap communication with the
offload target with computation for the first time. Another study [11] applies the
concept to an Intel Xeon Phi coprocessor using the MPI programming model.

Several studies have shown that performance can be significantly increased
by overlapping communication and computation (e.g., [3,8]). LibNBC by Hoefler
et al. [8] is a portable library that provides support for non-blocking collective
operations. It laid the foundation for similar concepts that have been introduced
in the Message Passing Interface (MPI) version 3.0. Furthermore, their work refer-
ences to further studies dealing with the overlapping of communication and com-
putation in general. Extensions of MPI, such as the work of Aji et al. [1], address
the problem of accessing GPU memory during MPI communication. In contrast
to our work, these studies focus on applying non-blocking MPI primitives.

Beltran et al. [2] start multiple threads on each accelerator and achieve an
overlap by efficiently scheduling them. Liu et al. [9] present double buffering for
matrix multiplications and implement it with extensions to OpenMP. In contrast,
we will use standard-compliant features from OpenMP 4.5 which will result in
a reusable pattern across different accelerators and, thus, more portable code.

Miki et al. [10] propose language extensions for OpenACC∗ other that overlap
communication and computation for stencil-type kernels. Cui et al. [6] propose
pipelining directives to extend OpenMP. Our work uses the existing directives of
OpenMP 4.5 instead and does not restrict the pattern to stencil computations
that require the presence and exchange of halo cells. It is generally applica-
ble to any type of applications that allows for splitting computations into sub-
computation to overlap communication and computation.

Some OpenACC compilers employ double-buffering strategies to speed-up the
data transfer itself [4]. Itworksbypre-allocatingbuffers before starting a transfer to
the target device and thus physical allocation of buffers and the corresponding data

A Pattern for Overlapping Communication and Computation 327

transfers can be overlapped. Chen et al. [5] discuss different buffering schemes for
DMAand their latencies.However, theydonot investigate the overall improvement
in runtime when overlapping DMA transfers and computation. Our approach is
orthogonal to this, as we employ OpenMP pragmas to pipeline data transfers and
computation at the application level. If an OpenMP implementation would offer
such an underlying mechanism to improve low-level communication, our approach
could transparently make use of it and automatically apply the low-level double
buffering to further speed-up communication with the offload device.

3 OpenMP for Accelerators and Coprocessors

OpenMP’s accelerator model is based on structured blocks with target directives
to tag them for offload execution. A target region may be executed by OpenMP
threads on a different device in a distinct data environment. By using map clauses
a programmer can express which (non-scalar) variables have to be made available
on a device. In OpenMP terms, this is called mapped from the host to the device,
because the host may or may not share the memory with the device. In the case
of devices with separate memory this typically involves copy operations. The map
clause accepts, among others, the motion attributes to, from, and tofrom deter-
mining the point in time and the direction of copy operations.

The usage of target data regions allows to reduce data transfer in the case of
multiple consecutive target regions using the same variables, as the data environ-
ment on a device is persistent for the whole duration of the target data region.

It is important to know that the map clause creates a fixed association between
the host and the target device. In consequence, a re-mapping of a memory region
on a device with an address on the host is not possible, if it was mapped before.
In order to make the device data environment consistent between two target
regions encountered in the same target data region, the target update con-
struct can be used. The specified motion clause determines if the values from
the host or from the target device have to be updated.

Optimizing the data transfers was hard to realize in OpenMP 4.0. With all
data transfers defined as being synchronous, it was impossible to overlap the
computation and communication. OpenMP 4.5 defined the target region to

328 J. Hahnfeld et al.

be an implicit task, meaning it is executed as if it was surrounded by a task
construct. The execution of a target task may be deferred if the nowait clause
is added to the target construct to make the execution of the target code and
the corresponding data transfers asynchronous.

In order to have an asynchronous data transfer without executing user code
on the device, the stand-alone directive target enter data can be used to
map data to a device. Correspondingly, the target exit data will unmap the
specified variables from the device data environment and might copy back the
values from the target device to the host. Both of these directives also generate
a target task which might be deferred.

Finally, the depend clause can be added to all device directives to associate
dependencies with the generated target task. It supports the same dependency
types in, out, or inout introduced with the OpenMP tasking model. For the
use case of asynchronous data transfer and kernel execution, this feature allows
to defer the execution of a target region until the required data is transferred
to or from a device and thus bring the data transfers and compute regions into
a specific order as shown in Listing 1.1. After the target enter data directive
1© has executed, the dependency 2© is resolved and the computation 3© can
start. As the mapping is already present on the device, this will not result in
additional data transfer. The dependency 4© is satisfied when the kernel has
finished and the target exit data operation 5© finally executes.

4 Pipelining Concept for Overlapping Communication

Depending on the available hardware, the mapping and/or the data transfer to
or from a target device might be relatively slow compared to the available mem-
ory bandwidth on the host or the target device. Thus, the communication time
of an application using a large amount of data might become a significant over-
head factor and limit scalability and performance. To reduce this communication
overhead we present a pipelining concept.

The main idea of the pipelining concept is to divide a single operation into
smaller sub tasks. By interleaving these smaller sub tasks we can increase the
throughput of a system, because different kinds of sub tasks can use different
parts of the available hardware resources at the same time. In our case, a sub
task belongs to one of the two kinds: computation or communication.

transfer to
A

B

computation
A

B

transfer from
A

B

to A

to B comp. A

comp. B from A

from B

ti
m

e
to

so
u
lt

io
n

ti
m

e
to

so
u
lt

io
n

No Overlap Overlapping Communication

Fig. 1. Pipelining concept for overlapping computation and communication.

A Pattern for Overlapping Communication and Computation 329

Figure 1 exemplifies the concept. The white boxes represent the computation
and the gray boxes depict transfers. The example assumes that the computation
can be split into two parts. The data required for each computation is transferred
to a device and the result is transferred back to the host afterwards.

On the left hand side of Fig. 1, communication and computation are not
overlapped, but are executed in order. On the right hand side, each of the two
sub tasks are put into the pipeline stages. Thus, the computation on a target
device does not have to wait until the complete data block is transferred to the
device. As can be seen, this leads to an improved utilization of both the host
and the offload device.

We refer to the first transfer to at the beginning as wind-up phase and to the
last transfer from as the wind-down phase. In both of these phases, no computa-
tion can happen as the pipeline has to be filled with data transfers or the system
has to wait until all in-flight data transfers have been completed. It can be seen
that the time to solution using the pipelining concept decreases significantly in
this case.

4.1 Performance Projection of Pipelining Pattern

To estimate the potential gain of overlapping communication and computation
using the pipelining pattern, we conduct a very simple, yet effective performance
projection. We will also use this simple performance model in Sect. 5 to assess
the measured performance.

The total runtime texec of an offloaded kernel consists of

texec = tcomp + tcomm, (1)

where tcomp is the time for the computation on the device and tcomm the com-
munication time to transfer control and data. The latter can be predicted for a
given amount of data d by

tcomm =
d

B
+ toverhead. (2)

This assumes that d is sufficiently large so that the transfer of d saturates the
maximum bandwidth B available. toverhead is the time that the runtime needs for
preparational tasks. Depending on the data size d or the runtime implementation
this overhead time may be significant for the overall communication time tcomm,
as will be discussed below. In some cases, toverhead may also depend on data
size d.

Based on these characteristics, the maximum optimization omax is given as

omax =
min(tcomp, tcomm)

texec
. (3)

Thus, pipelining transfers and computation works best in cases where the com-
munication and computation time are equally balanced. The optimization poten-
tial approximates to a performance increase of up to omax = 0.5, not taking the
wind-up and wind-down phases into account.

330 J. Hahnfeld et al.

Typically, the available memory of target devices like the Intel Xeon Phi
coprocessor or GPUs is significantly smaller than the memory on the host. With
the pipelining concept, a device kernel can use more memory than available on
the device by transferring the necessary data chunk-wise and free any memory
chunk as soon as the partial result was transferred back to the host. This forms
a second promising application scenario for the concept in addition to the first
one, namely the speedup.

4.2 Implementation with OpenMP

The map clause in OpenMP creates fixed associations between device and host.
It is not possible to map a specific memory region from the host to a buffer on
the device which was previously associated with a different address on the host.

There are multiple possibilities to overcome this limitation: First one could
copy the needed data to a temporary buffer which is then transferred to the
device using a target update. As a second option, we can allocate a single
buffer for the whole array in a target data region. In a target update, we
can then specify the corresponding start index to transfer the needed part of
the array. Lastly, we can create a new buffer for each block of the array that
has to be transferred. Here, OpenMP 4.5 offers the above mentioned stand-alone
directives for mapping: target enter data and target exit data.

While the first solution would surely work, it doesn’t promise to give the best
performance due to the extra copy on the host. The second alternative fails to
allocate the buffer if it exceeds the device memory. Creating a new buffer for
each block solves this problem as memory can be freed on target exit data
after the computation has finished. This allows to process more memory than
available on the device at one moment.

Figure 2 shows the dependencies that have to be specified when working with
the stand-alone directives. The first of these dependencies are based on the data
usage: First, a specific block of data has to be allocated and transferred to the
device. Second, the computation on the device can be done. Finally, the used
data can be freed again.

Moreover, it has to be ensured that there are at most two buffers allocated
at the same time. Hence, we need an explicit dependency between, for example,
exit #0 and enter #2. If this connection was omitted, there would be no limi-
tation on how many enter tasks can start. This would be problematic because
all enter tasks could run before exit #0 frees the first part of the data, possibly
exceeding the device memory. There are also dependencies between each enter
and each compute. That is to avoid oversubscription which would negatively
impact performance.

Listing 1.2 shows the code snippet with the OpenMP directives and their
required dependencies. Each block of data is allocated on and transferred to the
device with a target enter data. The computation is afterwards done in a
target construct. After the computation has finished, target exit data will
free the data on the device.

We specify the dependencies for data usage with the corresponding array
section also given in the map clause. For mutual exclusion of the enter and

A Pattern for Overlapping Communication and Computation 331

enter #0

compute #0

exit #0

enter #1

compute #1

exit #1

enter #2

compute #2

exit #2

enter #3

...
...

Fig. 2. Graph of the dependencies between target tasks. Continuous lines visualize
dependencies based on the data usage, while dashed and dotted ones stand for the
mutual exclusion of enter and compute tasks, respectively.

compute tasks one can use two int variables. These dummy variables are used
to make the OpenMP implementation aware of the dependencies, but are not
used in the code apart from their presence in the depend clause.

For simplicity, the code snippet only shows the default case in the mid-
dle of the loop iteration space, but not the wind-up and wind-down phase. In
the first iteration of the loop with block = 0, we do not depend on the pre-
vious block having exited by omitting the dependence on A[(block - 1) *
LEN:LEN]. Additionally, when the end of the iteration space is reached, there is
no next block to transfer and therefore no enter task.

Listing 1.2. Declaring task dependencies with OpenMP for pipelining concept of mul-
tiple blocks with length LEN each. Special cases for target enter data are omitted
for better readability.

1 double A[BLOCKS * LEN];
2 int enter , compute;
3
4 #pragma omp target enter data nowait map(to: A[0:LEN]) \
5 depend(out: enter) depend(out: A[0:LEN])
6 for (int block = 0; block < BLOCKS; block ++) {
7 #pragma omp target enter data nowait depend(inout: enter) \
8 map(to: A[(block + 1) * LEN:LEN]) \
9 depend(out: A[(block + 1) * LEN:LEN]) \

10 depend(in: A[(block - 1) * LEN:LEN])
11 #pragma omp target nowait depend(inout: compute) \
12 map(to: A[block * LEN:LEN]) \
13 depend(inout: A[block * LEN:LEN])
14 {
15 // do computation here
16 }
17 #pragma omp target exit data nowait map(release: A[block*LEN:LEN])

\
18 depend(inout: A[block * LEN:LEN])
19 }

332 J. Hahnfeld et al.

Instead of creating a new buffer for each memory transfer, it would also be pos-
sible to use the device memory routines introduced with OpenMP 4.5. However,
these routines are not available for Fortran and are only defined for C and C++.
In addition, they do not support task dependencies and would thus have to be
wrapped in regular OpenMP tasks to model proper synchronization between
the different stages of the pipeline. They also require a developer to manage the
buffers explicitly and free them manually. Thus, the usage of the stand-alone
directives is more convenient and more productive compared to the usage of the
device memory routines. For these reasons, we concentrate on the investigation
of the directives in the following.

4.3 Applying the Concept for Multiple Target Devices

A natural desire is to extend the above approach to also cover multiple devices
and to extend the pipelining concept such that it can overlap communication and
computation across these devices. The target constructs support the device
clause to specify the device a target construct shall use at runtime. Thus, a
simple mechanism to start multiple concurrent target regions, e.g., by iterating
over all available devices is sufficient. Managing the corresponding device data
environment works in a similar way by using the stand-alone directives or target
update as discussed above. To ensure that all of operations have finished, the
taskwait construct is suitable.

Based on this scheme, we can apply our concept and specify dependencies
between tasks as described above. That way, we can for example allow unrelated
tasks to execute in parallel and overlap computation with a data transfer or
exchange that is only needed in the next step of the algorithm.

5 Evaluation

To show the applicability of our approach, we evaluated the concept with the
dgemm kernel. Therefore, we used the implementation given in the Intel R© Math
Kernel Library which delivers a good performance on Intel architectures. For
the evaluation of the presented pipelining concept for multiple target devices,
we use a sparse Conjugate Gradients (CG) [7] method as a representative real-
world compute kernel.

All presented kernels were measured on a 2-socket Intel R© Xeon R© E5-2650
system (codename “SandyBridge”), which is clocked at 2.00 GHz and has 16
physical cores in sum. The system includes two Intel Xeon Phi 5110p coprocessors
with 8 GB of main memory and 60 cores (clocked at 1.053 GHz) each, connected
via PCIe Gen2 with 16 lanes. In our setup, we measured approximately 6.7 GB/s
with target update constructs between device and host. For all kernels, we
used version 17.0 of the Intel compiler that already implements all required
OpenMP 4.5 features. We present the minimum runtime of 10 repetitions as
this will indicate the best performance that the system can deliver.

A Pattern for Overlapping Communication and Computation 333

5.1 Matrix-Matrix-Multiplication

This section will show how the pipelining concept can be used to compute a
problem whose memory requirements exceed the device memory. For this, we
use a matrix-matrix-multiplication A · B = C, where A,B,C ∈ R

n×n. The size
of each matrix is 245762 double elements, which requires 3 · 4.83 GB ≈ 14.5 GB
in total. We transpose the second matrix so that we can use rows instead of
columns for the sub tasks of the multiplication. This results in contiguous storage
in memory which is a requirement for the map clause.

Since the size of the matrices exceeds the available memory on the device,
A and C need to be split into N and B into M parts that can be transferred
separately. For the calculation of A · BT = C, the rows of A can be reused for
multiple blocks of B and the result is stored in the corresponding parts of C.
To minimize data movement the parts of A and C are transferred in target
data regions. Furthermore, we apply the pipelining concept to B to hide the
latency. In theory, we should also be able to apply the pipelining concept to A
and C. Unfortunately, this is currently not possible due to some issues in the
Intel compiler.

To minimize the data transfers, M has to be as small as possible because
matrix B has to be transferred multiple times. For our test, case we chose M =
N = 4 (i.e., four blocks for each matrix), which has shown to perform best. In
theory choosing N = 2 fits into the device memory and thus should be beneficial
in term of performance. However, this results in stability issues on the device.
B could be split into more parts but that does not result in a lower runtime.

In total, the maximum memory usage will be 4·4.83 GB
4 = 4.83 GB on the

device, because we need to store two parts of B simultaneously. For the transfer,
we expect (2 + 4) · 4.83GB as B has to be transferred 4 times. In addition,
measurements show that the coprocessor needs approximately 1.35 s to allocate
each matrix. Based on (2), this sums up to

tcomm =
(2 + 4) · 4.83GB

6.7GB/s
+ (2 + 4) · 1.35 s ≈ 4.33 s + 8.1 s = 12.43 s.

With the measured runtime of texec = 68.38 s on the device, this leaves

tcomp = 68.38 s − 12.43 s = 55.95 s

for the computation.
Based on (3), we should hence be able to obtain a maximum optimization of

omax =
min(55.95 s, 4.33 s + 8.1 s)

68.38 s
≈ 18.2%.

However, as we can currently only apply our concept to B and not yet to A and
C we are not able to save more than 4 · (0.72 s + 1.35 s) = 8.28 s which would
mean an optimization of

omax =
8.28 s
68.38 s

≈ 12.1%.

334 J. Hahnfeld et al.

Table 1. Minimum runtime on host and device of 10 repetitions with dgemm.

Device Time

Host device 125.83 s

Target device 68.38 s

w/pipelining concept 61.54 s

Table 1 lists the minimum runtimes on the host and target device. It can
be seen that the matrix-matrix-multiplication on the target device (68.38 s) is
significantly faster than the host (125.83 s) despite having to transfer the data.
Using the pipelining concept yields another improvement of approximately 10%
resulting in a runtime of 61.54 s. This is slightly below the estimation, because
the model does not account for additional overhead introduced by the pipelining.
However, it shows the applicability of the approach.

5.2 Conjugate Gradients Method on Multiple Target Devices

For the evaluation of the pipelining concept on multiple target devices, we imple-
mented a Conjugate Gradients (CG) method. This compute kernel represents a
popular and widely used iterative algorithm to approximate the solution for a
sparse linear equation system. The computation is dominated by a sparse matrix-
vector multiplication (SpMV). In general, the data transfer time for the execution
of such a method is low compared to the compute time on a target device, because
of the iterative nature of the CG algorithm. However, the amount of memory of
a target device is typically small compared to the amount of memory of the host.
In order to overcome the size limitation, our implementation of the CG solver can
use multiple Intel Xeon Phi coprocessors by distributing the data.

We use a symmetric matrix with a regular sparsity pattern of five non-zero
elements per row (except for the first and last few rows). Similar patterns emerge
from PDEs with regular discretization. Thus, the decomposition does not require
any complex partition algorithms for an adequate load balancing on the target
devices. The matrix contains 80 million rows (about 400 million non-zero ele-
ments), which results in a memory footprint of about 4.8 GB in a compressed
row storage (CRS) format. In addition to the right-hand side vector, the solution
vector and temporary vectors (640 MB each) are required by the algorithm. This
memory footprint exceeds the memory capacity of a single Xeon Phi coprocessor
as used in our setup.

To decompose the data for two devices, we divide the matrix and each vector
into two partitions. For all vector-vector operations, local results can be computed.
Thus, for the complete solving process no additional data of the matrix needs to
be exchanged between the two devices. However, the (partial) matrix-vector mul-
tiplication requires the complete intermediate result on each device for each single
iteration in order to compute the corresponding (partial) output. Therefore, we
need to exchange half a vector from each device in every solving step.

A Pattern for Overlapping Communication and Computation 335

input

local
other
device

other
device

local

o
u
tp

u
tdevice 0

device 1

Fig. 3. Partitioning of the matrix, marking parts that are multiplied with local parts
of the input vector and blocks that need data from the other device.

Nevertheless, the partial local computation of the SpMV result can be started
directly, because the corresponding half of the vector is already present on the
device. This enables us the apply our pipelining concept to overlap the trans-
fer of the intermediate result from the other device with the computation that
only needs the local part of the vector. After the transfer has completed, the
computation can then be finalized with the data received from the other device.

To keep the computation efficient, we already partition the matrix in CRS
format on the host: We create four sub-matrices and put each value into the
corresponding block as shown in Fig. 3. Thus, it is not necessary to determine
which part can be computed with the local part of the right-hand side vector in
each iteration.

For the evaluation, we use two different versions of our CG solver: one baseline
version that does not overlap the computation and communication, and one
improved version that does. In the baseline version, each iteration spends roughly
250 ms for the matrix-vector multiplication which includes exchanging the input
vector between the two devices. It first transfers the two parts to the host and
then back to the other target device. This can be done concurrently for both
devices and hence we assume a communication time t′comm for each iteration
based on (2):

t′comm = 2 ·
640
2 MB

6.7GB/s
≈ 96ms.

The remaining time is spent for the computation which amounts to

t′comp = 250ms − 96ms = 154ms.

Based on these expected timings and (3), the upper bound for the optimization
is determined by

omax =
min(154ms, 96ms)

250ms
≈ 38.4%.

In summary, the presented pipelining concept reduces the computation time of
the dominating matrix-vector multiplication by roughly 32%, from 254 s to 173 s.

336 J. Hahnfeld et al.

As in the previous section, the improvement is again lower than the estimated
maximum without additionally introduced overhead. Since our concept is only
applicable on this most time-consuming kernel, the overall improvement for the
total application is lower (about 24%).

6 Conclusion

We have shown how communication and computation can be overlapped when
using OpenMP 4.5 target directives for a contemporary coprocessor. Besides
simplifying programmability, the use of pipelining schemes can improve applica-
tion performance by effectively hiding communication latencies between the host
and the offload devices. It also provides an effective means to offload kernels that
require more memory than is available on the device. Our pipelining scheme is
portable and increases programmer productivity.

We have evaluated our implementation with two important kernels in HPC,
matrix-matrix multiplication, and a sparse Conjugate Gradients solver. Our
benchmarks show that overlapping communication and computation effectively
reduces the runtime of these kernels by up to 24% for the CG solver. This
achievement corresponds to a simple back-of-an-envelope performance model we
have presented. The speed-up encourages a deeper evaluation of the profitability
of our pattern with different codes.

As future work we plan to investigate the feasibility and profitability of the
pattern on current GPUs with, for instance, the OpenACC programming model.
We will also perform a performance comparison of the high-level OpenMP or
OpenACC implementation with direct low-level implementations like the Intel
Coprocessor Offload Infrastructure (COI) or NVIDIA CUDA. This will also
include the evaluation how the presented CG will profit from faster intercon-
nects such as NVLink introduced with NVIDIA Pascal.

Acknowledgment. Parts of this work were funded by the German Federal Ministry
of Research and Education (BMBF) under Grant Number 01IH13008A (ELP). Simu-
lations were performed with computing resources granted by JARA-HPC from RWTH
Aachen University under project jara0001.

Intel, Xeon, and Xeon Phi are trademarks or registered trademarks of Intel Corpo-
ration or its subsidiaries in the United States and other countries.

∗Other names and brands are the property of their respective owners.
Software and workloads used in performance tests may have been optimized for

performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more information go to http://www.intel.
com/performance.

Intel’s compilers may or may not optimize to the same degree for non-Intel micro-
processors for optimizations that are not unique to Intel microprocessors. These opti-
mizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.

http://www.intel.com/performance
http://www.intel.com/performance

A Pattern for Overlapping Communication and Computation 337

Intel does not guarantee the availability, functionality, or effectiveness of any optimiza-
tion on microprocessors not manufactured by Intel. Microprocessor-dependent opti-
mizations in this product are intended for use with Intel microprocessors. Certain opti-
mizations not specific to Intel microarchitecture are reserved for Intel microprocessors.
Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

References

1. Aji, A.M., Panwar, L.S., Ji, F., Murthy, K., Chabbi, M., Balaji, P., Bisset, K.R.,
Dinan, J.S., Feng, W.C., Mellor-Crummey, J., Ma, X., Thakur, R.S.: MPI-ACC:
accelerator-aware MPI for scientific applications. IEEE Trans. Parallel Distrib.
Syst. 27(5), 1401–1414 (2016)

2. Beltran, V., Carrera, D., Torres, J., Ayguadé, E.: CellMT: A cooperative mul-
tithreading library for the Cell/B.E. In: 2009 International Conference on High
Performance Computing (HiPC), pp. 245–253, December 2009

3. Brightwell, R., Riesen, R., Underwood, K.D.: Analyzing the impact of
overlap, offload, and independent progress for message passing interface
applications. Int. J. High Perform. Comput. Appl. 19(2), 103–117 (2005).
http://hpc.sagepub.com/content/19/2/103.abstract

4. Castelló, A., Peña, A.J., Mayo, R., Balaji, P., Quintana-Ort́ı, E.S.: Explor-
ing the suitability of remote GPGPU virtualization for the OpenACC pro-
gramming model using rCUDA. In: Proceedings of the 2015 IEEE Interna-
tional Conference on Cluster Computing, CLUSTER 2015, pp. 92–95 (2015).
http://dx.doi.org/10.1109/CLUSTER.2015.23

5. Chen, T., Sura, Z., O’Brien, K., O’Brien, J.K.: Optimizing the Use of Static Buffers
for DMA on a CELL Chip. In: Almási, G., Caşcaval, C., Wu, P. (eds.) LCPC
2006. LNCS, vol. 4382, pp. 314–329. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72521-3 23

6. Cui, X., Scogland, T.R., de Supinski, B.R., Feng, W.C.: Directive-based pipelining
extension for OpenMP. In: Proceedings of the 2016 IEEE International Conference
on Cluster Computing, pp. 481–484 (2016)

7. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear sys-
tems. J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952)

8. Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and performance analy-
sis of non-blocking collective operations for MPI. In: Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, SC 2007, pp. 52:1–52:10. ACM, New
York (2007). http://doi.acm.org/10.1145/1362622.1362692

9. Liu, F., Chaudhary, V.: Extending OpenMP for heterogeneous chip multiproces-
sors. In: 2003 International Conference on Parallel Processing, Proceedings, pp.
161–168, October 2003

10. Miki, N., Ino, F., Hagihara, K.: An extension of OpenACC directives for out-of-
core stencil computation with temporal blocking. In: Proceedings of the Third
International Workshop on Accelerator Programming Using Directives, WACCPD
2016, pp. 36–45. IEEE Press, Piscataway (2016)

11. Si, M., Ishikawa, Y., Tatagi, M.: Direct MPI library for Intel Xeon Phi co-
processors. In: 2013 IEEE International Parallel and Distributed Processing Sym-
posium Workshop and PhD Forum (IPDPSW), pp. 816–824. IEEE (2013)

http://hpc.sagepub.com/content/19/2/103.abstract
http://dx.doi.org/10.1109/CLUSTER.2015.23
http://dx.doi.org/10.1007/978-3-540-72521-3_23
http://dx.doi.org/10.1007/978-3-540-72521-3_23
http://doi.acm.org/10.1145/1362622.1362692

	A Pattern for Overlapping Communication and Computation with OpenMP* Target Directives
	1 Introduction
	2 Related Work
	3 OpenMP for Accelerators and Coprocessors
	4 Pipelining Concept for Overlapping Communication
	4.1 Performance Projection of Pipelining Pattern
	4.2 Implementation with OpenMP
	4.3 Applying the Concept for Multiple Target Devices

	5 Evaluation
	5.1 Matrix-Matrix-Multiplication
	5.2 Conjugate Gradients Method on Multiple Target Devices

	6 Conclusion
	References

