
Hands on with OpenMP4.5 and Unified
Memory: Developing Applications for IBM’s

Hybrid CPU+GPU Systems (Part II)

Leopold Grinberg1(B), Carlo Bertolli1, and Riyaz Haque2

1 IBM Research, Yorktown Heights, USA
{leopoldgrinberg,cbertol}@us.ibm.com

2 LLNL, Livermore, USA
haque1@llnl.gov

Abstract. Integration of multiple types of compute elements and mem-
ories in a single system requires proper support at a system-software level
including operating system (OS), compilers, drivers, etc. The OS helps
in scheduling work on different compute elements and manages memory
operations in multiple memory pools including page migration. Com-
pilers and programming languages provide tools for taking advantage of
advanced architectural features. In this paper we encourage code develop-
ers to work with experimental versions of compilers and OpenMP stan-
dard extensions designed for hybrid OpenPOWER nodes. Specifically,
we focus on nested parallelism and Unified Memory as key elements for
efficient system-wide programming of CPU and GPU resources of Open-
POWER. We give implementation details using code samples and we
discuss limitations of the presented approaches.

Keywords: OpenPOWER · HPC · Offloading · Directive based pro-
gramming · Nested parallelism

1 Introduction

Programming applications for specific hardware components as well as taking
advantage of specific system software typically have a two-fold effect: (a) achiev-
ing higher performance and productivity on a given class of systems; and (b)
adversely affecting the application portability and/or performance portability
to other systems. In addition to these considerations, taking advantage of hard-
ware and system software innovations available in a subset of emerging systems
sets a tone and directions for developing future systems for High Performance
Computing and Analytics. It also fuels advances in language features and stan-
dard evolution.

In the first part of this two-part paper (Hands on with OpenMP4.5 and
Unified Memory: Developing applications for IBM’s hybrid CPU+GPU systems
(Part I) [3] we discussed how node memory and application data can be managed

c© Springer International Publishing AG 2017
B.R. de Supinski et al. (Eds.): IWOMP 2017, LNCS 10468, pp. 17–29, 2017.
DOI: 10.1007/978-3-319-65578-9 2

18 L. Grinberg et al.

using OpenMP4.5 directives. In this Part II we introduce methodologies taking
advantage of hardware and software features which are more advanced and in
part not fully supported by the OpenMP4.5 standard. Specifically, we will discuss
three advanced topics: nested parallelism, use of Unified Memory and use of
GPU’s on-chip memory.

Our scope here is limited to programming IBM’s system containing multi-
ple POWERR©CPUs and NVIDIAR©GPUs with a directive based programming
model. Here we employ the OpenMP4.5 standard [5] and IBMR©extensions to
the standard (supported in the open source CLANGR©and IBM’s proprietary
XLR©compilers) to program CPUs (host) and GPUs (device) and manage on-
node memories. IBM’s current hybrid CPU-GPU nodes, such as two-socket
MinskyR©nodes containing two ten-core POWER8R©CPUs and four P-100 GPUs
interconnected with NVLink 1.0 provide many opportunities for nested par-
allelism and concurrent execution on all compute elements. These nodes also
support Unified Memory (UM) that provides a pool of memory accessible on the
CPU and the GPU using a single pointer. To take advantage of UM at the present
time, we rely on interoperability between OpenMP4.5 and CUDAR©, and use of
CUDA Managed Memory [7,8]. Use of UM substantially simplifies managing
application data on heterogeneous systems. However, whereas the OpenMP4.5
standard encompasses UM support, current implementations do not support it.
Pointers to buffers allocated using CUDA Managed Memory can be treated as
valid device pointers inside OpenMP4.5 target regions, but the OpenMP com-
piler and runtime implementations considered in this paper do not support the
concept of replacing the explicit data transfers between the host and device with
features provided by the UM. Consequently, porting codes based on UM and
OpenMP4.5 to systems not supporting UM may require some adaptations.

This paper makes the following contributions:

– In Sect. 2 we describe a scheme allowing nested parallelism and simultaneous
execution of codes on host and devices using OpenMP4.5 directives.

– In Sect. 3 we show how architecture-specific memory support can be inte-
grated in the codes programmed with OpenMP4.5. Specifically, we present
an example making use of a section of the GPU’s L1-cache which can be
explicitly managed by compilers in order to host application data.

– In Sect. 4 we describe ways to develop applications using OpenMP4.5 direc-
tives and UM on systems with adequate hardware and software support. We
also discuss the advantages and limitations of this approach.

To our knowledge, this is the first paper that exposes the integration of
advanced system-software and hardware features in codes programmed using
OpenMP4.5. Use of Unified Memory in conjunction with directive-based pro-
gramming of NVIDIA GPUs is not new. For example, the PGI compiler support-
ing OpenACC [6] can intercept all calls to host memory allocation/de-allocation,
replacing them with appropriate calls to the UM interface and rendering all
data mapping operations as no-ops. UM support is an optional feature of the
PGI compiler and is enabled through a compiler option. Use of UM within the

Hands on with OpenMP4.5 and Unified Memory 19

Kokkos programming framework has also been reported in [2]. Unlike these tech-
niques, in this paper we show how programmers can make explicit use of the UM
interface for memory management and still write correct code using OpenMP4.5
device constructs.

2 Concurrent Executions on CPUs and GPUs via
OpenMP Nested Regions

Multiple compute resources in IBM’s hybrid CPU + GPU nodes offer a range
of choices for execution policies. For example a single MPI task can perform
operations in parallel (using OpenMP) on the CPU cores (a model that has
been widely adopted on the multicore CPUs) and it can also offload work to one
or more GPUs. Each GPU can concurrently (or sequentially) support offloading
work from a number of MPI tasks. In another scenario, a subset of OpenMP
threads running on the host can offload work to one or more devices concurrently,
while another subset of OpenMP threads can start nested parallel regions on
the host.

2.1 Parallel Regions on device: Correspondence Between CUDA and
OpenMP4.5

Before diving into the topic of nested parallelism we would first like to explain
the correspondance between expressing parallelism using CUDA and using
OpenMP4.5 directives. The OpenMP4.5 implementation on GPU maps par-
allelism abstractions which are exposed to OpenMP users, to lower-level GPU
programming mechanisms. target regions are compiled into PTX (or GPU) ker-
nels when NVIDIA GPUs are selected as OpenMP device type. The OpenMP
runtime will invoke the kernels when encountering a target pragma. When a
target region contains a teams region, the GPU kernel is started with multiple
CUDA threadblocks and threads. Each OpenMP team is mapped to a single
CUDA threadblock and two teams cannot be mapped to the same threadblock.
OpenMP threads within each team are mapped to CUDA threads (one OpenMP
thread is one CUDA thread). When target does not contain a teams construct,
only one threadblock is started. The execution of a team (or threadblock) inside
a target and outside of parallel regions is sequential - a single thread (team
master) within each threadblock executes the region and all other threads are
waiting to be recruited for parallel work. When a parallel region is encountered
by the team master, all necessary threads within each threadblock are activated
and participate in the parallel region.

Control of CUDA grid and threadblock sizes is critical to performance tuning
in GPU kernels, whenever the OpenMP runtime chosen default values can be
improved. Control is exposed at the OpenMP level through clauses of the teams
construct. num teams can be used to instruct the OpenMP runtime to start
a specific number of teams (threadblocks). thread limit tells the OpenMP
runtime not to start more than the specified number of threads. To limit the

20 L. Grinberg et al.

amount of threads to be recruited to execute a parallel region, users can employ
the num threads clause of parallel. Note that the OpenMP4.5 constructs
num teams, thread limit and num threads are valid on both host and device.
In the following section we will make use of those constructs for execution on a
host and on a device.

2.2 OpenMP4.5 and Nested Parallelism Across a Node

In this section we discuss how a certain work load can be subdivided and executed
concurrently across CPU and GPU threads using all the compute resources of
a node. For this purpose we will use a schematic illustration provided in Fig. 1.
Here a parallel region with three OpenMP threads is created on the host, and
threads with IDs 0 and 1 will offload work to the devices 0 and 1 correspondingly,
while the third thread will create an inner parallel region of 4 threads on the host.

Fig. 1. Nested parallel regions with concurrent execution on host and devices. Outer
parallel region contains three CPU threads. CPU threads 0 and 1 launch kernels on
devices 0 and 1 correspondingly, while CPU thread 2 creates a parallel region with four
CPU threads on a host.

A more detailed and specific example is provided in Fig. 2. In this example
we first enable nested parallelism by calling OpenMP API omp set nested(1)
(line 9) and then acquire the number of visible devices (num devices) by calling
the OpenMP API omp get num devices() (line 11). In the next step a paral-
lel region with up to num devices+1 threads is created on the host. The first
num devices iterations of the main for loop will offload work to the devices
with IDs 0, ... , num devices-1, and in the last iteration a parallel region will
be created on the host and the remaining work will be executed in parallel
using at most (MAX(1,omp get max threads()-num devices)) threads. In this
example we require that 90% of the work be executed on the devices, while the
remaining work be executed on the host. In general, work distribution between
host and device(s) may be determined (at run time) by taking into account the

Hands on with OpenMP4.5 and Unified Memory 21

host and device hardware characteristics (e.g. ratio of device/host memory band-
width, FLOP rate, etc.), expected execution time and even the availability of
device memory.

1 int main () {
2 double ∗x , ∗y ;
3 int num devices , i , chunk , j s t a r t , N=1024∗1024∗10;
4 double DEVICE FRACTION = 0 ;
5 bool USE DEVICE;
6 x = (double ∗) mal loc (N∗ s izeof (double)) ;
7 y = (double ∗) mal loc (N∗ s izeof (double)) ;
8 // enable nested p a r a l l e l reg ions
9 omp set nested (1) ;

10 // get number of dev ices
11 num devices = omp get num devices () ;
12 //90% of work done on device (s)
13 i f (num devices > 0) DEVICE FRACTION = 0 . 9 ;
14 #pragma omp paral le l for num threads (num devices+1) \
15 private (chunk , j s t a r t ,USE DEVICE)
16 for (i = 0 ; i < (num devices+1) ; ++i){
17 // d iv ide work , s e t d e f au l t dev ice
18 i f (i < num devices){ //use device
19 omp se t d e f au l t d ev i c e (i) ;
20 chunk = DEVICE FRACTION∗N / num devices ;
21 j s t a r t = chunk∗ i ;
22 USE DEVICE = true ;
23 p r i n t f (” us ing DEVICE No %d , j s t a r t = %d , chunk = %d\n” , i , j s t a r t ,

chunk) ;
24 }
25 else { // use host
26 chunk = N; // de f au l t
27 j s t a r t = 0 ; // de f au l t
28 USE DEVICE = fa l se ;
29 i f (num devices > 0){
30 j s t a r t = (DEVICE FRACTION∗N / num devices) ∗ num devices ;
31 chunk = N − j s t a r t ;
32 }
33 p r i n t f (” us ing HOST: j s t a r t = %d , chunk = %d\n” , j s t a r t , chunk) ;
34 }
35 i n i t i a l i z e x a n d y (x+j s t a r t , y+j s t a r t , chunk , j s t a r t ,USE DEVICE) ;
36 }
37 f r e e (x) ; f r e e (y) ;
38 return 0 ;
39 }
40
41 void i n i t i a l i z e x a n d y (double ∗x , double ∗y , int N, int o f f s e t , bool

USE DEVICE)
42 {
43 #pragma omp target map(from : x [0 :N] , y [0 :N]) i f (USE DEVICE)
44 #pragma omp teams distribute paral le l for i f (target :USE DEVICE)
45 for (int i =0; i<N; ++i){
46 x [i] = (o f f s e t+i) ∗0 . 001 ;
47 y [i] = (o f f s e t+i) ∗0 . 003 ;
48 i f ((!USE DEVICE) && (i == 0))
49 p r i n t f (”num threads = %d , num teams=%d\n” , omp get num threads () ,

omp get num teams ()) ;
50 }
51 }

Fig. 2. Nested parallelism: concurrent execution on host and devices

22 L. Grinberg et al.

1 export OMPNUMTHREADS=20
2 export OMP PLACES={0;20;8}
3 . / a . out
4 using DEVICE No 0 , j s t a r t = 0 , chunk = 2359296
5 using DEVICE No 1 , j s t a r t = 2359296 , chunk = 2359296
6 using DEVICE No 2 , j s t a r t = 4718592 , chunk = 2359296
7 using DEVICE No 3 , j s t a r t = 7077888 , chunk = 2359296
8 dev i ce : CPU: j s t a r t = 9437184 , chunk = 1048576
9 num threads = 1 , num teams=16

Fig. 3. Concurrent execution on host and devices; nested parallelism: output of code
from Fig. 2.

3 Clang’s Extension for OpenMP4.5 for device On-chip
Memory Allocation

NVIDIA GPUs allow developers to take advantage of allocating relatively small
buffers in an “on-chip memory”, also referred to as the shared memory in CUDA
terminology. While there are multiple reasons for using shared memory, here we
skip the discussion on use cases and refer readers to NVIDIA’s programming
guide [4] and NVIDIA’s devblog describing using shared memory [1].

OpenMP4.5 standard does not provide developers with the means of specifi-
cally taking an advantage of the GPU’s shared memory. However, IBM’s exten-
sion to the OpenMP4.5 specification implemented for the Clang supports the
use of shared memory. It is expected that future versions of IBM’s XL compiler
will also support shared memory for NVIDIA GPUs. Furthermore, OpenMP is
also evolving towards incorporating special memory types as first-class citizens
in the standard.

In this section we illustrate (see Fig. 4) use of shared memory in a matrix-
transposition code that uses OpenMP4.5 directives. Currently, in order to allow
compiler to allocate buffers in the GPU’s shared memory, developers should use
static memory allocation and place the corresponding code after the directive
#pragma omp target teams but before the directive #pragma omp distribute
(see Fig. 4, line 29). If the compiler determines that the size of the requested
buffer (VAL[BLK SZ][BLK SZ+1]) is small enough to fit into the GPU’s shared
memory it places it there; otherwise the buffer is allocated in the global device
memory. Note the use of the if clause in the code presented in Fig. 4: setting
the value of the variable USE DEVICE to 1 or to 0 results in code execution on
the device or on the host respectively. Whether the target region is executed on
a device or on a host, the buffer VAL[BLK SZ][BLK SZ+1] is designated as team-
private, which eliminates race conditions between different teams. On the GPU
device each team will be mapped to a different CUDA threadblock, and on host
teams will be mapped to CPU threads.

At this stage of compiler development, IBM’s implementation limits the size
of the GPU’s shared memory available to application’s data to 800 bytes per
team, and consequently we set BLK SZ=8. In tests performed on IBM’s Minsky
nodes with offloading the matrix transposition to the P-100 GPU we observe
effective memory BW utilization of 243 GB/s, while the achievable memory BW

Hands on with OpenMP4.5 and Unified Memory 23

is in the 480–500 GB/s range. A simple (two-loop) kernel for matrix transposition
not using shared memory achieves only 83 GB/s, which is expected due to non-
coalesced memory access.

4 Use of Unified Memory and OpenMP4.5 Directives

The OpenMP4.5 memory model is based on the notion of heterogeneous mem-
ory address spaces (host and device) with directives for explicitly managing data
movement and coherence between them. Under this model, coding is complicated
by two factors. First, using OpenMP4.5 directives correctly in the presence of
class member pointers is non-trivial and may involve considerable code changes
to work (as illustrated in the first part of this paper). Secondly, explicitly man-
aging coherence between two address spaces can be highly error-prone except in
the simplest of cases.

Starting with the OpenMP4.5 standard, using native memory management
mechanism (e.g. CUDA memory allocators) is also supported by special clauses
to enable architecture-specific data allocation. For example, pointers to mem-
ory allocated using cudaHostAlloc, cudaMallocHost, cudaMallocManaged and
cudaMalloc can now be used inside OpenMP4.5 target regions. Here we focus
on the use of CUDA Managed Memory, and specifically on eliminating the need
for explicit data transfers between the host and devices. Currently implicit data
transfer between host and devices is not supported by the OpenMP standard,
and methodology required for such a support is a considered as a research topic.

Employing CUDA Managed Memory substantially reduces the complexity of
managing deep copies and also resolves the coherency issues. This is achieved by
allocating data in a Unified Memory space [7,8] which is accessible on both the
host and device using a single pointer.

Memory buffers associated with the Managed Memory automatically migrate
between the host and device when a memory fault is encountered. The exact
mechanism responsible for buffer migration is outside the scope of this paper.
In this section we illustrate how to work with arrays, classes and common data
structures like std::vector using UM and OpenMP4.5 directives. Consider-
ing that the OpenMP4.5 standard has been designed to also work with devices
not supporting UM, we also discuss concerns with the integration of UM and
OpenMP4.5 from the standpoint of code portability.

It is also important to note that for correct behavior of a code mixing
OpenMP directives and CUDA API, especially on nodes with multiple visible
devices, setting default device must be done twice: once using the OpenMP4.5
API omp set default device (device ID) and then using the CUDA API
cudaSetDevice (device ID).

4.1 Eliminating Explicit Deep Copies

In Fig. 5, we consider a UM-based version of code described in the first part of
this paper.

24 L. Grinberg et al.

1 #define MIN(a , b) (a < b ? a : b)
2 #define BLK SZ 32
3 int main () {
4
5 omp se t d e f au l t d ev i c e (0) ;
6
7 int Nr = 1024∗8 , Nc = 1024∗8;
8 double ∗U = new double [Nr∗Nc] ;
9 double ∗UT = new double [Nr∗Nc] ;

10 bool USE DEVICE=1;
11
12 // a l l o c a t e U and UT in device memory
13 #pragma omp target ente r data map(a l l o c :U[0 : Nr∗Nc] ,UT[0 : Nr∗Nc]) i f (

target :USE DEVICE)
14
15 // i n i t i a l i z e U
16 #pragma omp target teams distribute thread limit (512) i f (target :

USE DEVICE)
17 for (auto co l = 0 ; c o l < Nc ; ++co l){
18 #pragma omp paral le l for i f (USE DEVICE)
19 for (auto row = 0 ; row < Nr ; ++row){
20 U[row∗Nc+co l] = row ∗0.001 + co l ∗0 . 0003 ;
21 }
22 }
23 int nteams = (Nr∗Nc + BLK SZ∗BLK SZ − 1) /(BLK SZ∗BLK SZ) ;
24 int nthreads = BLK SZ ;
25 #pragma omp target teams num teams(nteams) thread limit (nthreads) i f (

target :USE DEVICE)
26 {
27 // s u f f i c i e n t l y smal l array VAL w i l l be a l l o ca t ed in GPU’ s shared

memory
28 // otherwise in device memory
29 double VAL[BLK SZ] [BLK SZ+1] ;
30
31 #pragma omp distribute c o l l a p s e (2)
32 for (auto r s t a r t = 0 ; r s t a r t < Nr ; r s t a r t += BLK SZ){
33 for (auto c s t a r t = 0 ; c s t a r t < Nc ; c s t a r t += BLK SZ){
34
35 auto rend = MIN(Nr , r s t a r t+BLK SZ) ;
36 auto cend = MIN(Nc , c s t a r t+BLK SZ) ;
37
38 // f i l l in temporary bu f f e r (shared memory)
39 #pragma omp paral le l i f (USE DEVICE)
40 {
41 #pragma omp for c o l l a p s e (2)
42 for (auto row=r s t a r t ; row < rend ; ++row){
43 for (auto c o l=c s t a r t ; c o l < cend ; ++co l)

wor[LAV44 −r s t a r t] [co l−c s t a r t] = U[row∗Nc + co l] ;
45 }
46 // transpose and wri te data from shared memory to device memory
47 #pragma omp for c o l l a p s e (2)
48 for (auto row=c s t a r t ; row < cend ; ++row){
49 for (auto c o l=r s t a r t ; c o l < rend ; ++co l)

wor[TU05 ∗Nr + co l] = VAL[col−r s t a r t] [row−c s t a r t] ;
51 }
52 }
53 }
54 }
55 }
56
57 // copy data from the device to host memory and dea l l o ca t e device

memory
58 #pragma omp target e x i t data map(from :U[0 : Nr∗Nc] ,UT[0 : Nr∗Nc]) i f (

USE DEVICE)
59 }

Fig. 4. Code illustrating use of NVIDIA’s GPU shared memory and OpenMP4.5 direc-
tives. Currently only IBM’s extensions to OpenMP4.5 spec implemented in CLANG
compiler allow use of GPU’s shared memory.

Hands on with OpenMP4.5 and Unified Memory 25

1 struct A {
2 int∗ y ;
3 int s i z e ;
4 A(const int∗ y , const long s i z e) : y (y) , s i z e (s i z e) {}
5 } ;
6
7 int n = 100 ;
8 int∗ y ; cudaMallocManaged(&y , n∗ s izeof (int)) ; // Al locate in UM
9 A∗ a = new A(y , n) ;

10
11 // Only map ob j ec t a to the device using the map c lause
12 #pragma omp target map(to : a [0 : 1])
13 {
14 // OK because a−>y holds the un i f i ed address
15 a−>y [3] += . . . ;
16 }

Fig. 5. Deep copy of a data structure using Managed Memory

Let us start by comparing this example to the codes presented in [3] (Figs. 7
and 9). First, the call to malloc on line 8 (Fig. 7 of [3]) is replaced with
cudaMallocManaged. Second, the operation map(to:y[0:n]) on line 12 (Fig. 7
of [3]) has been removed since UM automatically moves data between the two
address spaces. Most importantly, compared to the version of this example in
Fig. 7 in [3], our UM-based example in Fig. 5 works correctly. This is because
being allocated in Managed Memory, the host address referred by a.y is valid on
the device as well. This eliminates the need to update a’s device copy with the
correct address. Note however, that since object a itself is not UM-allocated, it
is still required to map it before use inside the target region (line 12, Fig. 5). In
the next Sect. 4.2 we show how to allocate objects like a in Managed Memory.

4.2 Mapping Classes Using UM

For mapping a class using UM, we follow the approach described in [7]. We first
define a class that overrides the new and delete operators as shown in Fig. 6.

Second, we further modify the code presented in Fig. 5 to make class A UM-
allocated as shown in Fig. 7. In this example, we extend class A with the class
UMMapper overriding the former’s default new and delete operators with the
latter’s. With this change, object a is now allocated in UM (line 9, Fig. 7).
Third, we correspondingly replace the map clause map(to:a[0:1]) with the
is device ptr(a) clause in Fig. 7 (line 12). Since a is allocated in the UM the
map clause is not required; at the same time, however, it is necessary to inform
the OpenMP4.5 runtime that a is a valid device pointer. If that is not done, the
OpenMP4.5 runtime will attempt (and fail) to find the device mapping for a.
Therefore the is device ptr clause is critical for correct execution. Note that the
is device ptr clause is not required for the member pointer a.y; member point-
ers are simply moved to the device as part of enclosing object and no attempt is
made to find their device address. If however, the pointer y is used directly inside a
target region, that region would have to be predicated with a is device ptr(y)

26 L. Grinberg et al.

1 class UMMapper {
2 public :
3 void∗ operator new(s i z e t l en) {
4 void∗ ptr ; cudaMallocManaged(&ptr , l en) ; return ptr ;
5 }
6 void∗ operator new [] (s i z e t l en) {
7 void∗ ptr ; cudaMallocManaged(&ptr , l en) ; return ptr ;
8 }
9 void operator delete (void∗ ptr) noexcept (true) {

10 cudaFree (ptr) ;
11 }
12 void operator delete [] (void∗ ptr) noexcept (true) {
13 cudaFree (ptr) ;
14 }
15 } ;

Fig. 6. Overriding new and delete operators: objects derived from UMMapper will be
allocated using Managed Memory

1 struct A : public UMMapper {
2 int∗ y ;
3 int s i z e ;
4 A(const int∗ y , const long s i z e) : y (y) , s i z e (s i z e) {}
5 } ;
6
7 int n = 100 ;
8 int∗ y ; cudaMallocManaged(&y , n∗ s izeof (int)) ; // Al locate y using UM
9 A∗ a = new A(y , n) ;

10
11 // ”a” i s a va l i d device pointer
12 #pragma omp target i s d e v i c e p t r (a)
13 {
14 // OK because a−>y holds the un i f i ed address
15 a−>y [3] += . . . ;
16 }

Fig. 7. Using unified memory: accessing class object and its members on host and
device

clause. Note that this strategy for creating UM-based classes does not work for
objects allocated outside the new operator, e.g. stack-allocated objects.

4.3 Working with std::vector, UM and OpenMP4.5

In this section let us consider a code section using std::vector (Fig. 8). Here
offloading the two code loops (lines 5 and 9, Fig. 8) to the device would require
mapping the vectors x and y to the device memory and deep-copying their data;
something not possible using OpenMP4.5 directives alone. A way to overcome
this limitation and to allow the use of std::vector inside target regions exe-
cuted on a device, is to allocate the data for these vectors using UM and avoiding
the deep-copy altogether. The std::vector can be made UM-based by spe-
cializing its memory allocator to use Managed Memory [7] as shown in Fig. 9.
Accordingly, we modify the example in Fig. 8 by specializing the allocators for
vectors x and y to use the UMAllocator as shown in Fig. 10.

The class UMAllocator ensures that the vector data is allocated in Managed
Memory and that the data will be migrated between the host and devices upon

Hands on with OpenMP4.5 and Unified Memory 27

1 double alpha = 2 . 0 ;
2 int N=1024∗1024∗10;
3 vector<double> x (N) ;
4 vector<double> y (N) ;
5 for (int i = 0 ; i < N; ++i) {
6 x [i] = i ∗0 . 0 1 ;
7 y [i] = i ∗0 . 0 3 ;
8 }
9 for (int i = 0 ; i < N; ++i) {

10 y [i] = alpha∗x [i] + y [i] ;
11 }

Fig. 8. Using std::vector in daxpy

1 template <class T>
2 class UMAllocator<T> {
3 public :
4 typedef T va lue type ;
5 typedef const T& con s t r e f e r e n c e ;
6 template <class U> UMAllocator (const UMAllocator<U>& other) ;
7 T∗ a l l o c a t e (std : : s i z e t n) {
8 T∗ ptr ;
9 cudaMallocManaged(&ptr , s izeof (T)∗n) ;

10 return ptr ;
11 }
12 void de a l l o c a t e (T∗ p , std : : s i z e t n) {
13 cudaFree (p) ;
14 }
15 } ;
16 template <class T, class U>
17 bool operator==(const UMAllocator<T>&, const UMAllocator<U>&) {
18 return true ;
19 }
20 template <class T, class U>
21 bool operator !=(const UMAllocator<T>&, const UMAllocator<U>&) {
22 return fa l se ;
23 }

Fig. 9. Specialized managed memory allocator for std::vector

1 double alpha = 2 . 0 ;
2 int N=1024∗1024∗10;
3 vector<double , UMAllocator<double> > x (N) ;
4 vector<double , UMAllocator<double> > y (N) ;
5 #pragma omp target teams distribute paral le l for map(to : x , y
6 for (int i = 0 ; i < N; ++i) {
7 x [i] = i ∗0 . 0 1 ;
8 y [i] = i ∗0 . 0 3 ;
9 }

10 #pragma omp target teams distribute paral le l for map(to : x , y)
11 for (int i = 0 ; i < N; ++i) {
12 y [i] = alpha∗x [i] + y [i] ;
13 }

Fig. 10. Using std::vector with specialized managed memory allocator

28 L. Grinberg et al.

encountering page faults. The map clauses on lines 5 and 10 perform a bitwise
copy of the structure of the vectors x and y to the device (including the data
pointer to UM) allowing both loops to work correctly on host and device.

Conceivably, one might similarly want to create an “OpenMP-mapped”
std::vector by using an allocator with additional enter/exit data clauses
for mapping the vector’s data to the device. This will, however, not work since
mapping the vector structure (e.g. lines 5 and 10, Fig. 10) would then additionally
require updating the underlying vector data pointer to the correct device address;
something not allowed directly for the vector class. We further emphasize that in
the code presented in the Fig. 10, although vectors x and y are used exclusively on
the device, their initial allocation will always be on the host. This is because the
C++ specification requires the vector data to be default constructed; there is no
way to circumvent this default initialization behavior. For the same reason, any
attempt at present to write a “device-only” allocator (e.g. one using cudaMalloc
instead of cudaMallocManaged) will also fail.

4.4 Limitations of Integrating UM and OpenMP4.5

Although the techniques described above for using UM within OpenMP4.5 target
regions are both convenient and elegant, it should be emphasized that mixing
OpenMP4.5 and CUDA Managed Memory would require specific hardware and
system-software support. For systems with NVIDIA GPUs this approach will
not work with devices prior to Pascal GPUs and with versions of CUDA prior
to CUDA 8.0.

5 Summary and Outlook

OpenMP is further evolving into version 5 with performance and usability crit-
ical changes. First, it will include an interface for performance profiling tools
(OMPT). This defines a set of events generated by the runtime that can be
intercepted by a profiling tool, and a set of hooks that can be used to inspect
the internal state of the library. Second, it includes the concept of implicit declare
target, which requires compilers to make function definitions available for devices
even if these were not explicitly marked by the user for device compilation. This
simplifies building existing host libraries for devices, including some basic STL
patterns that are extensively used in technical computing applications. Lastly,
the OpenMP committee is working on a set of memory-related constructs that
will enable users to express different kind of storage in their program and that
are currently under study as a vehicle to express non-volatile memory buffers on
CPU and shared memory buffers on GPUs.

Acknowledgement. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under contract DEAC52-
07NA27344 (LLNL-CONF-730616) and supported by Office of Science, Office of
Advanced Scientific Computing Research.

Hands on with OpenMP4.5 and Unified Memory 29

References

1. Using shared memory in CUDA C/C++, April 2017. https://devblogs.nvidia.com/
parallelforall/using-shared-memory-cuda-cc/

2. Edwards, H.C., Trott, C., Sunderland, D.: Kokkos, a manycore device
performance portability library for C++ HPC applications, March 2014.
http://on-demand.gputechconf.com/gtc/2014/presentations/S4213-kokkos-many
core-device-perf-portability-library-hpc-apps.pdf

3. Grinberg, L., Bertolli, C., Haque, R.: Hands on with openmp4.5 and unified memory:
developing applications for IBM’S hybrid CPU + GPU systems (part I). Submitted
for IWOMP 2017

4. CUDA C/C++ programming guide - shared memory section, April 2017. http://
docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory

5. OpenMP Language Committee: OpenMP Application Program Interface, version
4.5 edn., July 2013. http://www.openmp.org/mp-documents/openmp-4.5.pdf

6. Sakharnykh, N.: Combine OpenACC and unified memory for productivity
and performance, September 2015. https://devblogs.nvidia.com/parallelforall/
combine-openacc-unified-memory-productivity-performance/

7. Unified memory in CUDA 6, April 2017. https://devblogs.nvidia.com/parallelforall/
unified-memory-in-cuda-6/

8. Beyond GPU memory limits with unified memory on Pascal, April 2017.
https://devblogs.nvidia.com/parallelforall/beyond-gpu-memory-limits-unified-
memory-pascal/

https://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/
https://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/
http://on-demand.gputechconf.com/gtc/2014/presentations/S4213-kokkos-manycore-device-perf-portability-library-hpc-apps.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4213-kokkos-manycore-device-perf-portability-library-hpc-apps.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory
http://www.openmp.org/mp-documents/openmp-4.5.pdf
https://devblogs.nvidia.com/parallelforall/combine-openacc-unified-memory-productivity-performance/
https://devblogs.nvidia.com/parallelforall/combine-openacc-unified-memory-productivity-performance/
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/beyond-gpu-memory-limits-unified-memory-pascal/
https://devblogs.nvidia.com/parallelforall/beyond-gpu-memory-limits-unified-memory-pascal/

	Hands on with OpenMP4.5 and Unified Memory: Developing Applications for IBM's Hybrid CPU+GPU Systems (Part II)
	1 Introduction
	2 Concurrent Executions on CPUs and GPUs via OpenMP Nested Regions
	2.1 Parallel Regions on device: Correspondence Between CUDA and OpenMP4.5
	2.2 OpenMP4.5 and Nested Parallelism Across a Node

	3 Clang's Extension for OpenMP4.5 for device On-chip Memory Allocation
	4 Use of Unified Memory and OpenMP4.5 Directives
	4.1 Eliminating Explicit Deep Copies
	4.2 Mapping Classes Using UM
	4.3 Working with std::vector, UM and OpenMP4.5
	4.4 Limitations of Integrating UM and OpenMP4.5

	5 Summary and Outlook
	References

