
OpenMP Tools Interface: Synchronization
Information for Data Race Detection

Joachim Protze1,2, Jonas Hahnfeld1,2, Dong H. Ahn3(B), Martin Schulz3,
and Matthias S. Müller1,2

1 RWTH Aachen University, 52056 Aachen, Germany
{protze,hahnfeld,mueller}@itc.rwth-aachen.de

2 JARA – High-Performance Computing, 52062 Aachen, Germany
3 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

{ahn1,schulzm}@llnl.gov

Abstract. When it comes to data race detection, complete information
about synchronization, concurrency and memory accesses is needed. This
information might be gathered at various levels of abstraction. For best
results regarding accuracy this information should be collected at the
abstraction level of the parallel programming paradigm. With the lat-
est preview of the OpenMP specification, a tools interface (OMPT) was
added to OpenMP. In this paper we discuss whether the synchronization
information provided by OMPT is sufficient to apply accurate data race
analysis for OpenMP applications. We further present some implemen-
tation details and results for our data race detection tool called Archer
which derives the synchronization information from OMPT.

1 Introduction

OpenMP is the de facto standard for parallel programming on shared memory
machines. It is also becoming increasingly popular on extreme-scale systems as
it offers a portable way to harness the growing degree of parallelism available
on each node. However, porting large HPC applications to OpenMP often intro-
duces subtle errors. Of these, data races are particularly egregious, as well as
challenging to identify. Data races may remain undetected during testing, but
nevertheless manifest during production runs by often resulting in confusing
(and/or non-reproducible) executions that the programmer wastes considerable
amounts of time debugging. In extreme situations, data races may simply end up
silently corrupting user data. For all these reasons, data race detection remains
one of the central concerns in parallel programming, in particular for shared
memory programming models.

In previous papers [2,7], we presented the tool Archer [1], based on Thread-
Sanitizer (TSan) [8,9], which is able to find data races in OpenMP applications,
that are run with the LLVM/OpenMP runtime on x86 machines. The fact which
makes this tool unique from other approaches of available data race detection
tools for OpenMP applications is that we cover almost all host-side OpenMP
directives as provided in the OpenMP 4.5 specification. To make the tool portable
c© Springer International Publishing AG 2017
B.R. de Supinski et al. (Eds.): IWOMP 2017, LNCS 10468, pp. 249–265, 2017.
DOI: 10.1007/978-3-319-65578-9 17



250 J. Protze et al.

across OpenMP runtime implementations and hardware platforms, we want to
base the annotation of OpenMP synchronization on OMPT events.

In this paper we investigate whether the information provided by OMPT
is sufficient to derive all OpenMP synchronization semantics. We will describe
OMPT based annotations of OpenMP synchronization. The annotations are
provided as happened-before arcs, which can be understood by ThreadSanitizer,
but also by the Valgrind based data race detection tool Helgrind. This approach
is portable across OpenMP runtime implementations, as long as these implement
and provide the necessary OMPT callback function invocations.

In Sect. 2 we look at OpenMP directives with synchronization semantics from
a happened-before point of view. In Sect. 3 we describe the OMPT events, that
we use to annotate the synchronization and how we specify the happened-before
arcs. In Sect. 4 we discuss challenges we encountered on the way, implementing
the tool and discuss information missing in the OpenMP tools interface.

2 Synchronization in OpenMP

According to the OpenMP specification [3]: “... if at least one thread reads from
a memory unit and at least one thread writes without synchronization to that
same memory unit [...], then a data race occurs. If a data race occurs then the
result of the program is unspecified.”

To enable a data race detection tool to identify a data race, complete under-
standing of synchronization is needed. In this section we provide a summary of
the synchronization concepts in OpenMP, as they need to be understood by an
analysis tool, to identify synchronized memory accesses. In this paper we focus
on data races that happen between threads on a host device. Thus, we do not
consider constructs for offloading to an accelerator device.

2.1 The parallel Construct

When a thread encounters a parallel construct, the thread creates a team of
threads to execute the parallel region. Each thread of the team executes the
structured block of the parallel region within an implicit task.

Encountering the parallel construct happens before the execution of all
implicit tasks of the team.

There is an implicit barrier at the end of the parallel region, which happens
before the master thread continues execution.

2.2 The barrier Construct

The barrier in OpenMP applies for the innermost parallel team. On encountering
a barrier construct, a thread cannot continue executing the implicit task until
all threads in the team reached the barrier.

For all threads in the team, encountering the barrier construct happens before
they continue execution of the implicit task.



OpenMP Tools Interface: Synchronization Information 251

2.3 The reduction Clause

The reduction clause provides a mechanism to reduce results at the end of a
work-sharing region into a single value. The clause takes a reduction identifier to
specify the reduction operation, the synchronization of the reduction is provided
by the OpenMP implementation.

If no nowait clause is used on the same construct, the reduction happens
before the end of the region. Otherwise the reduction happens before the next
barrier.

2.4 The critical Construct

The critical construct provides mutual exclusion for the critical region. The
critical construct can have a name, that provides mutual exclusion only for
critical regions with the same name. The critical region is equivalent to getting
a lock at the begin of the region and releasing the lock at the end, with different
locks for different names and an extra lock for all unnamed critical regions. Thus,
the synchronization semantics are the same as for Locking routines.

2.5 Locking Routines

OpenMP provides routines to init, destroy, acquire and release locks and nested
locks. Locks provide mutual exclusion for code between acquiring and releasing
a lock.

As a strict measure, a lock-set algorithm can be used to express the synchro-
nization of critical region and locking routines. But lock-set is in general too
strict and can lead to false positives The reason is that an application might
implement happens before semantics in the locked sections. The alternative is
to express locks with a happens before relation: Releasing a lock happens before
acquiring the same lock.

This might over-estimate the synchronization semantics of the application
and lead to omission of actual data races. This is a point, where large numbers of
repetition and concurrency helps to stochastically execute the right interleaving
of locked regions, so that the race can still be observed.

2.6 The ordered Construct

The ordered construct provides mutual exclusion for the ordered region. Addi-
tionally, the ordered construct also provides an ordering for the execution.

Thus, when observing the execution of an OpenMP program, the end of an
ordered region happens before the begin of the next iteration of the same ordered
region.



252 J. Protze et al.

2.7 The task Construct

When a thread encounters a task construct, the thread generates a task from the
associated structured block. The thread might execute the thread immediately,
or defer the task for later execution.

Encountering the task construct happens before the execution of the task.
The end of a task region happens before the next barrier of the team finished
synchronization. Without further clauses or constructs, there is no more syn-
chronization at the end of a task.

2.8 The taskwait Construct

The taskwait construct lets the encountering task wait for completion of all
direct child tasks that this task created before encountering the taskwait.

Finishing all child tasks happens before the taskwait regions ends and the
task can continue execution.

2.9 The taskgroup Construct

The taskgroup construct lets the encountering task wait at the end of the task
group region for completion of all child tasks this task created in the taskgroup
region and their descendants.

Finishing all child and descendant tasks happens before the taskgroup regions
ends and the task can continue execution.

2.10 The depend Clause

The depend clause provides synchronization for task as the provided in, out,
and inout dependencies define constraints for the scheduling of tasks. A depend
clause can have a list of storage locations, which describe in or out dependen-
cies. The end of a task with an in dependency on a storage location x happens
before the start of any task with an out or inout dependency on the same storage
location x. The end of a task with an out or inout dependency on a storage loca-
tion x happens before the start of any task with an in, out, or inout dependency
on the same storage location x.

To summarize, only in dependencies with the same storage location x do not
synchronize. All other dependencies with the same storage location x synchro-
nize.

2.11 Untied Tasks

Deferring a task happens before scheduling the same task again. This is especially
important for untied tasks, that can migrate from one thread to another thread
after being deferred during execution.



OpenMP Tools Interface: Synchronization Information 253

2.12 The flush Construct

The flush construct makes a thread’s temporal view of memory consistent with
memory and enforces a specific ordering of memory operations. The flush con-
struct takes an optional list of variables, the flush-set. With the right combination
of loads, stores and flushes, an application programmer can achieve fine-grain
synchronization. Modeling the semantics of flushes with plain happened-before
relation introduces synchronization which possibly hides any data race. A better
approach for handling flushes is discussed by Lidbury and Donaldson [5]. They
extend ThreadSanitizer to understand and handle C++11 flush semantics.

3 OMPT Events for Synchronization

In this section we explain the synchronization events provided by the OpenMP
tools interface as it is integrated into the preview of the OpenMP specification
5.0 [4]. Since we implemented our prototype along with the LLVM/OpenMP
runtime implementation, we used the version of OMPT, that is implemented
there. The latest specification of OMPT describes events as points of interest
in the execution of a thread. Tool callback functions are implemented in a tool
and invoked by the runtime when a matching event happens. Multiple events
might trigger the same callback; the tool can differ the events by some kind and
endpoint arguments provided with the callback invocation. On tool initialization
the OpenMP runtime implementation provides information to the tool, whether
requested callback invocations are provided or not. For some groups of events
invocation is mandatory, for some it is optional.

3.1 Team Related OMPT Events

The following events mark the synchronization points for a team from the cre-
ation of the team to the end:

– parallel-begin
– implicit-task-begin
– barrier-begin
– barrier-end
– implicit-task-end
– parallel-end

On a parallel-begin event, we generate a new team information object and
start a happened-before arc for the team.

On an implicit-task-begin event, we generate a new task information object
and end the happened-before arc for the team. This synchronizes the team cre-
ation.

On a barrier-begin event, we start a happened-before arc on an address from
the team’s information object. This event is specified to happen before the actual
synchronization of the barrier.



254 J. Protze et al.

1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

parallel-begin

#pragma omp parallel

implicit-task-begin

barrier-begin

#pragma omp barrier

barrier-end

barrier-begin

// end of omp parallel

barrier-end

(a)

3 3 3

4

4

4

5

5

5

6 6 6

// omp barrier

// omp barrier

barrier-begin

barrier-end

barrier-begin

barrier-end

(b)

Fig. 1. (a) Happened-before arcs in a parallel region with explicit barrier and implied
barrier at the end. (b) If a thread returns late from the barrier code (red barrier-
end (4)), others might be already in the next barrier. In this case, we would add
wrong happened-before arcs, if all barriers use the same token for the happened-before
annotation (Color figure online)

On the barrier-end event, we end the happened-before arc on the same
address from the team’s information object. Since there is no synchronization
between the barrier end event and the next barrier begin event, it is possi-
ble as depicted in Fig. 1b, that a thread of the team reaches the next barrier
before another thread finished the previous barrier. Therefore, consecutive barri-
ers should use distinct synchronization tokens. The OpenMP specification states
that all threads in a team need to participate on each barrier, so we use two
addresses for barriers in the team information object and each implicit task
toggles between the two addresses.

The parallel region ends with an implicit-task-end event and a parallel-end
event where we free the task and team information objects. The synchronization
at the end of the region happens solely in the implied barrier at the end of the
region. This is the second barrier in Fig. 1a.

As a missing piece in OMPT we will discuss the OpenMP reduction clause
in Sect. 4.

3.2 Task Related OMPT Events

The following events mark the synchronization points for a task from the creation
of a task to the end:

– task-create
– task-dependences
– task-schedule



OpenMP Tools Interface: Synchronization Information 255

– taskwait-end
– taskgroup-begin
– taskgroup-end

On a task-create event, we generate a new task information object and start a
happened-before arc for the generated task. This synchronizes the task creation
with the execution of the task. If this event is invoked before all data are copied
to the task data structures, there might be some false data race alerts. Especially
the copying of first-private data, which is then accessed by the task, might be a
problem. See Fig. 2 for an illustration of the task-related events and happened-
before synchronization.

On a task-dependences event we save all dependences information into the
task information object for later use.

On the first task-schedule event for a new task, we end the happened-before
arc from the generation of the task. Further, we iterate over all task dependences
and end happened-before arcs for all dependences. If the dependency is an in
dependency, we only end happened-before arcs from out or inout dependencies
on this storage location. If the dependency is an out or inout dependency, we

1

2

3

4

#pragma omp task

task-create

task-schedule

task-schedule

#pragma omp taskwait

taskwait-end

Fig. 2. Execution of a task happens after the task was generated from the parent; in
case the parent task does a taskwait, the taskwait finishes after the generated task
finished; end of taskgroup is similar

1

2
out:x

1

2
in:x 1

2
in:x

1

2
out:x

#pragma omp task depend(out:x)

#pragma omp task depend(in:x)

#pragma omp task depend(in:x)

#pragma omp task depend(out:x)

Fig. 3. This is the dependency graph for a set of tasks which were created with out, in,
in, and out dependency on x; the end of a task with out dependency happens before
all task-begin of tasks with a dependency on the same address. Tasks with the same in
dependency run concurrently.



256 J. Protze et al.

end happened-before arcs from all dependencies on this storage location. See
Fig. 3 for an illustration of the dependencies-related events and happened-before
synchronization. This also highlights the necessity to store the dependency infor-
mation from task creation until task completion.

If the prior task status signals completion of the previous task, we start
happened-before arcs for the completed task:

– towards a potential taskwait of the parent task
– if the task is in a taskgroup towards the end of the taskgroup
– if the task has dependencies, an arc per dependency.

On a taskwait-end event, we end the happened-before arc from all child tasks.
We use a common token for all child tasks, so this is a single operation.

On a taskgroup-begin event, we push a taskgroup information object on the
taskgroup stack of the encountering task. The stack is necessary because multiple
taskgroup regions might be closely nested within a task. All child tasks inherit
the taskgroup stack on task generation, so they know about their enclosing
taskgroup.

On a taskgroup-end event, we end the happened-before arcs of all child tasks,
targeting to the taskgroup end. Then we pop the taskgroup from the stack of
taskgroups.

3.3 Locking Related OMPT Events

The following events mark the begin and end of mutual exclusion:

– acquired-lock
– acquired-nest-lock-first
– acquired-critical
– acquired-atomic
– acquired-ordered
– released-lock
– released-nest-lock-last
– released-critical
– released-atomic
– released-ordered

The latest OMPT specification consolidates all above events into a single call-
back for acquired and released with a kind argument for the kind of synchro-
nization. For the happened-before synchronization, we only use the wait-id
argument, so the handling of events is symmetric for all kind of mutex events.

On an acquired event, we end a happened-before arc, that starts on a previous
released event.

To represent the synchronization semantics of locks in a data race analysis,
it is important to start and end the happened-before arc inside of the locked
region. Otherwise, another thread might already enter a locked region, before
the released information is available. To reduce the potential overhead of an
OMPT tool, the released event is invoked after the lock was released and there
is no releasing event in OMPT. We discuss in Sect. 4.1 how we worked around
this issue.



OpenMP Tools Interface: Synchronization Information 257

3.4 OMPT Flush Event

The flush event doesn’t fit into the semantics of the previously discussed event
groups. As touched in Sect. 2.12, happened-before semantics are too strict. But
omitting the handling of flush, we experience false reports on data races in
applications that use flush for synchronization. Implementing the right semantics
for flush in our tool is subject of future work. But for now, we found that the
information provided by the flush event is not sufficient for data race analysis
as we will discuss in Sect. 4.6.

3.5 Team and Task Information Structures

We create an information object for each team and each task, which we store
in the runtime scope of this team or task using the parallel data and
task data fields provided by OMPT. In this section we detail on the nec-
essary members of these objects. Both kinds of objects contain tokens, that we
use to annotate different synchronization points.

A team object contains:

– two tokens for barriers, the tasks of the team use them alternating; we
also use one of the tokens for the fork of the team.

A task object contains:

– a token for the task, that is used for the annotation, task-create before
task-execution and task-deferring before rescheduling,

– a token for taskwait, which is used to annotate synchronization between
the end of all child tasks and the taskwait,

– a barrier index, that toggles between odd and even barrier count,
– a reference count for direct child tasks, the object is only freed when

the task and all child tasks finished execution,
– a reference to the parent task object,
– a reference to the implicit task object in the stack next to this task,
– a reference to the currently active taskgroup object,
– a copy of the list of dependencies and a dependency count.

A taskgroup object contains:

– a token for the taskgroup,
– a reference to the enclosing taskgroup.

4 Implementation Challenges and OMPT Shortcomings

In this section we discuss challenges, potential pitfalls and open issues which we
encountered implementing the synchronization annotations in an OMPT-based
tool.



258 J. Protze et al.

4.1 Annotation of Locking

For TSan a happened-before annotation consists of writing memory at the start
of the happened-before arc and reading the memory at the end of the arc. If the
memory access is not synchronized, expressing the happened-before arc fails,
since the read possibly happens before the write. For the annotation of locking
this means, that the annotation needs to take place, while the thread owns a
lock, that prevents the other thread from entering the locked region.

OMPT only provides the events acquiring (i.e. asking for the lock), acquired
(when the lock is acquired) and released (after the lock was released) of a lock.
OMPT does not provide a releasing event to safe the potential overhead in the
critical path of execution. As depicted in Fig. 4a we would need to describe a
happened-before arc from a releasing event to the next acquired event. And an
arc from a released event to the acquired event goes potentially backwards in
time.

As work-around for this issue we set an own mutex in each acquired event,
before we end the happened-before arc and release the mutex in the match-
ing released event after we started the happened-before arc. This approach is
depicted in Fig. 4. This way we can guarantee that we annotate the end of a
happened-before arc only after we annotated the begin of the happened-before
arc. Since the OpenMP runtime already acquired a lock, we don’t expect lock
contention. It just might be the case, that the previous locked region still holds
the mutex to finish the released event.

1 1

2

3

4

2

3

4

critical-acquiring

//omp critical

critical-acquired

critical-releasing

//end of omp critical

critical-released

(a)

3

4

4

4

4

4 2

runtime unlocks wait id runtime acquired lock wait id

TsanHappensBefore(wait id)

TsanHappensAfter(wait id)}
tool unlock(wait id)} tool lock(wait id)

critical-acquired{

//end of omp critical

critical-released{

(b)

Fig. 4. (a) OMPT doesn’t provide a releasing event. Using the released event to start
the happened-before arc potentially results in a happened-before arc backwards in
time. (b) We use an additional lock in the tool, to extend the exclusive region into the
released callback. This way we can express the proper happened-before semantics.

4.2 Annotation of Task Dependencies

As discussed in Sect. 3.2, the synchronization behavior is different for in and out
dependencies. The end of a task with an in dependency happens before a task
begins with the same out dependency. The end of a task with an out dependency



OpenMP Tools Interface: Synchronization Information 259

happens before a task begins with the same in or out dependency. That means,
at the task begin with an in dependency, we need to differ the happened-before
arcs that come from in or out dependencies.

So, we need two different tokens for starting the happened-before arc of in
dependencies and out dependencies. This token need to be common knowledge
of all task using the dependency and for TSan the requirement for a token is
that it needs to be a valid memory address of the process. For this reason, it
is natural to use the address of the dependency as the token to annotate the
happened-before arc. Since we need two tokens, we use the address provided as
dependency and the address next to this address, assuming that applications
will not use byte-sized variables as dependencies.

4.3 Ordered Construct with Depend Clause

For the online analysis that we apply in our data race detection tool, we rely
on the scheduling decision provided by the runtime. We simply annotate any
acquire of an ordered construct to happen after any release of the same ordered
construct. This might be an overestimation and potentially hide data races. Since
the depend clause allows the runtime to schedule multiple ordered regions at the
same time, our tool might detect races in these concurrently executed regions.
A tool which performs post-mortem analysis might not be able to observe this
runtime decision and would assume mutual exclusive execution of all ordered
regions in a loop. To improve precision of the analysis, we suggest to extend the
notion of OMPT dependences to cover also the ordered construct.

4.4 Taskwait Construct with Depend Clause

Similar as with the ordered construct, we currently overestimate the synchro-
nization effect of a taskwait construct with depend clause. In the analysis we
assume that all tasks that finished before the taskwait region ends are synchro-
nized by this taskwait region. With the additional information about the depend
clause, the analysis would be more precise.

4.5 OMPT Events of Reductions

The current specification of OMPT provides no events for a reduction. The
OpenMP specification does not require a specific point in the application execu-
tion, where the reduction needs to take place. Also an OpenMP implementation
has a lot of freedom to implement the reduction algorithm, which results in var-
ious scenarios of memory access patterns. Threads might accumulate the own
value to another thread’s reduction value, threads might fetch other thread’s
reduction value and accumulate at the own reduction value, a master thread
might collect all reduction values. The reduction might also be implemented
solely with atomic operations.



260 J. Protze et al.

We propose the following events for the implementation of reductions:

– release-reduction: thread will not touch reduction variable after this event
– reduction-begin: begin of reduction operations
– reduction-end: end of reduction operations

We think, that release-reduction and reduction-end can share the same call-
back function. The callback function needs to provide information about the
local copy of the reduction variable.

The LLVM/OpenMP runtime implements most reductions inside the syn-
chronization of the barrier. So as a temporary workaround, we ignore memory
accesses inside of OpenMP barriers. If a task is scheduled in the barrier, we turn
of ignoring memory accesses and turn it back on, when the barrier gets active
again. This works in most cases for this specific runtime, but we don’t expect
this to be a portable workaround.

4.6 Information on Flush-Set

The current specification of the flush event as of TR4 only provides information
on the source code of the flush (codeptr ra) and the current thread, but no
information on the provided list argument, which describes the flush-set of the
flush operation. To derive the right flush semantics for data race detection, this
information would be necessary.

We propose to extend the definition of ompt callback flush t by an
array of pointers, an array of length and a size argument:

1 typedef void (*ompt_callback_flush_t) (
2 ompt_data_t * thread_data,
3 const void * list_item,
4 size_t * list_item_length,
5 int list_length,
6 const void * codeptr_ra);

5 Implementation Results

To evaluate the overhead introduced by the TLC-aware data race analysis, we
run SPEC OMP 2012 [6,11] on a machine with Intel Xeon E5-2650 v4 CPUs
with 12 cores. We bind all threads to the same socket using OMP BIND=close
and OMP PLACES=cores. Since the tool introduces a runtime overhead of about
2–20x – in some cases up to 125x – we only use the train dataset, which is the
medium size for this SPEC benchmark.

ThreadSanitizer is optimized to run fast for race-free programs. If TSan
detects data races, handling the report introduces significant runtime overhead.
Printing the report happens under mutual exclusion to guarantee readable out-
put without interleaving from multiple threads printing at the same time. Fur-
thermore, TSan filters the output, so the report function also compares the lat-
est finding with previous reports. Because of the filtering, TSan typically prints



OpenMP Tools Interface: Synchronization Information 261

reports only in the first few iterations; later races would mainly be duplicates.
For actual debugging a user would typically interrupt the execution after some
reports were printed, fix the issue and restart execution.

For better comparison we measure the overhead for the plain analysis without
generating reports. Also ThreadSanitizer suggests this mode for benchmarking.
In this mode, TSan intercepts all memory accesses, logs the memory access,
analyses the memory access for potential data races. Also synchronization infor-
mation is processed. The only difference from the normal mode is that in case of
a detected data race TSan returns like there was no race instead of processing
the report.

We use the LLVM/clang compiler 4.0 for the C/C++ codes and gfortran 6.2.0
for the Fortran codes. Both compilers provide the flag -fsanitize=thread to
activate the compile time instrumentation for ThreadSanitizer. For the OpenMP
runtime we use the LLVM/OpenMP runtime of the OpenMP tools subcommittee
that implements the TR4 interface of OMPT.

5.1 Overhead Results

In Fig. 5 we plot the slowdown of the tool, which is runtime with tool divided by
runtime without tool. We set the x-axis to 1, which is the normalized runtime of
the application, i.e., the bar represents the tool overhead. As depicted, the overall
measured slowdown is in the 2–20x range as claimed in the ThreadSanitizer
documentation (“5–15x”[10]). But there are a some exceptions. Looking into
the specific applications, this increased overhead mainly comes from fine-grain
synchronization. In Table 1 we list some statistics important for the analysis
tool. The two benchmarks where the tool shows overall high runtime overhead
are 359.botsspar and 370.mgrid331. Both applications run for less than a second.

In this short time 359.botsspar already creates a large number of tasks. The
synchronization for tasks happens from task to task. Hence, most of the time
only one OS thread is involved. Another reason for a higher overhead is the use of
untied tasks in this application. Since the tasks have no further task scheduling
point, the tasks can only execute straight to the end. The code that the compiler

0

10

20

30

40

50

350 351 352 357 358 359 360 362 363 367 370 371 372 376

To
ol

 S
lo

w
do

w
n 

2 Threads

4 Threads

12 Threads

99.8 

Fig. 5. Runtime overhead for executing SPEC OMP 2012 with ThreadSanitizer and
synchronization annotations based on OMPT events



262 J. Protze et al.

Table 1. OMPT synchronization events during the execution of SPEC OMP 2012,
size train on 12 threads

generates for the untied task leads to a total of 4 task switches per task. This
creates double the synchronization cost as for tied tasks.

370.mgrid331 creates more than 6000 parallel regions in just 0.3 s. Each par-
allel region ends with an implicit barrier, according to the data, about every third
parallel region contains an additional barrier. For the happened-before analysis
a barrier means a store to the same synchronization clock from every participat-
ing thread and a load afterwards. The writes to the synchronization clock need
to be locked, so the synchronization cost for the barrier grows linearly with the
number of threads, additionally we can expect increasing lock contention for a
bigger number of threads. With less threads, chances are higher that a thread
already finished the store when another thread arrives at the barrier. This results
in the big increase of overhead for 12 threads.

For 352.nab we see another spike for 12 threads. This application also has
a lot of barriers, which lead to the same issue as discussed for 370.mgrid331.
For both applications the strong scaling contributes to the issue; with increasing
number of threads, the work per thread decreases. This means the frequency of
barriers also increases with number of threads. These two linear effects multiply
and lead to quadratic overhead.

376.kdtree is the only application in the benchmark that uses OpenMP tasks
in a recursive algorithm. This results in 1.5 billion of task in the train size. In an
average execution with 12 threads, this application has a maximum number of
about 550 concurrent tasks, counting tasks that are created, but not finished. For
recursive algorithms with OpenMP tasks, at some point task creation gets too
expensive compared to the workload; at this point, applications can use a serial
cut-off. The remaining recursion is executed in a serialized fashion. 376.kdtree
implements the cut-off by using #pragma omp task if with a dynamic con-
dition. This means the task cannot be deferred and executes immediately. Taking
this information into account, there are only 1.5 million tasks that are not unde-



OpenMP Tools Interface: Synchronization Information 263

ferred. By handling the undeferred tasks in a special way, we were able to reduce
the runtime for 376.kdtree with 12 threads and ThreadSanitizer from about 450 s
to 200 s. This reduced the overhead from 30x to 13x.

Finally, there is another spike for 350.md. This application is compute-bound
on this machine since the problem size fits into cache and hence even 12 threads
are not sufficient to exhaust the memory bandwidth. For smaller number of
threads, this leads to the low runtime overhead with the tool. The code bal-
ance changes with the additional memory accesses coming from ThreadSanitizer,
which adds about 4 times the memory foot print.

5.2 Data Race Results

Running the analysis, we were able to detect a data race in 367.imagick, which
is caused by a concurrent write to a shared variable inside of a parallel region in
magick decorate.c:492. Making this variable private for the parallel region
would resolve the data race.

Further, we could detect data races in 371.applu331. For this application
we had the problem, that it uses custom synchronization on the base of condi-
tional variables and flushes (in syncs.f90). The tool reports data races for the
accesses of the conditional variable. By annotating these parts of the code, we
were able to feed ThreadSanitizer with the synchronization information. With
this annotations in the code, ThreadSanitizer only reports actual data races:

– blts.f90:76 read after write in blts.f90:66, caused by the do nowait
and the access to v(1, i, j-1, k).

– buts.f90:77 read after write in buts.f90:243-247, caused by the
access to v(1, i, j+1, k), v(2, i, j+1, k), ...

372.smithwa is the other application that uses flushes to implement synchroniza-
tion with conditional variables. For this application we don’t see reported data
races after the annotation of the synchronization in the application. We reported
the identified data races to the SPEC group.

For some of the Fortran applications we see warnings about lock-order inver-
sion coming from libgfortran. Because the file accesses in the application only
happen in the serial part, the lock-order inversion is a benign issue. It is a known
issue with ThreadSanitizer, that it reports lock-order inversion, although only a
single thread accesses the lock.

6 Conclusions

In this paper we discussed whether OMPT provides sufficient information to
derive all synchronization semantics needed for data race detection. We based
the analysis on a happened-before based model. But we think, the observations
would also apply for a different analysis model, based on lock-set or plain analysis
of OpenMP flush semantics. We implemented a data race detection tool based
on OMPT. With OMPT based annotations, the tool passes most of the tests in



264 J. Protze et al.

our test suite. We pointed out three missing pieces of information in the OMPT
interface, that is information about reduction, information about depend clause
on taskwait and ordered constructs, and information on flush-set for flushes.
We provided guidance on how to apply on-the-fly analysis for OpenMP mutual
exclusion with the missing releasing event.

Further, we discussed the necessary OMPT events, to derive the synchro-
nization information for data race analysis. To enable data race analysis based
on these events, an OpenMP implementation needs to implement and provide
callback invocation for these events. The issue here is that some of these call-
back invocations are optional according to current specification. This affects
especially the events for taskwait, taskgroup, barrier and locks. If a data race
detection tool cannot rely on these events, the advantage of portability across
OpenMP implementations is gone. Therefore we suggest to make these callback
invocations mandatory in the OpenMP specification.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions to improve the paper.

Part of this work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. (LLNL-PROC-730143). Part of this work was possible under funding by
the German Research Foundation (DFG) through the German Priority Programme
1648 Software for Exascale Computing (SPPEXA).

References

1. Archer project and source code. https://github.com/PRUNERS/archer
2. Atzeni, S., Gopalakrishnan, G., Rakamaric, Z., Ahn, D.H., Laguna, I., Schulz, M.,

Lee, G.L., Protze, J., Müller, M.S.: ARCHER: effectively spotting data races in
large openmp applications. In: 2016 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2016, Chicago, IL, USA, 23–27 May 2016, pp. 53–
62 (2016)

3. OpenMP Architecture Review Board: OpenMP Application Program Interface.
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

4. OpenMP Architecture Review Board: TR4: OpenMP Version 5.0 Preview 1.
http://www.openmp.org/wp-content/uploads/openmp-tr4.pdf

5. Lidbury, C., Donaldson, A.F.: Dynamic race detection for C++11. In: Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, 18–20 January 2017, pp. 443–457 (2017)

6. Müller, M.S., et al.: SPEC OMP2012 — an application benchmark suite for parallel
systems using openMP. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M.
(eds.) IWOMP 2012. LNCS, vol. 7312, pp. 223–236. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-30961-8 17

7. Protze, J., Atzeni, S., Ahn, D.H., Schulz, M., Gopalakrishnan, G., Müller, M.S.,
Laguna, I., Rakamaric, Z., Lee, G.L.: Towards providing low-overhead data race
detection for large openMP applications. In: Proceedings of the 2014 LLVM Com-
piler Infrastructure in HPC, LLVM 2014, New Orleans, LA, USA, 17 November
2014, pp. 40–47 (2014)

https://github.com/PRUNERS/archer
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-tr4.pdf
http://dx.doi.org/10.1007/978-3-642-30961-8_17


OpenMP Tools Interface: Synchronization Information 265

8. Serebryany, K., Iskhodzhanov, T.: Threadsanitizer: data race detection in practice.
In: Proceedings of the Workshop on Binary Instrumentation and Applications,
WBIA 2009, pp. 62–71. ACM, New York (2009)

9. Serebryany, K., Potapenko, A., Iskhodzhanov, T., Vyukov, D.: Dynamic race detec-
tion with LLVM compiler. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol.
7186, pp. 110–114. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29860-8 9

10. The Clang Team: Clang 5 documentation: Threadsanitizer. https://clang.llvm.org/
docs/ThreadSanitizer.html

11. Brian Whitney: SPEC OMP2012 documentation. https://www.spec.org/
omp2012/Docs/

http://dx.doi.org/10.1007/978-3-642-29860-8_9
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://www.spec.org/omp2012/Docs/
https://www.spec.org/omp2012/Docs/

	OpenMP Tools Interface: Synchronization Information for Data Race Detection
	1 Introduction
	2 Synchronization in OpenMP
	2.1 The parallel Construct
	2.2 The barrier Construct
	2.3 The reduction Clause
	2.4 The critical Construct
	2.5 Locking Routines
	2.6 The ordered Construct
	2.7 The task Construct
	2.8 The taskwait Construct
	2.9 The taskgroup Construct
	2.10 The depend Clause
	2.11 Untied Tasks
	2.12 The flush Construct

	3 OMPT Events for Synchronization
	3.1 Team Related OMPT Events
	3.2 Task Related OMPT Events
	3.3 Locking Related OMPT Events
	3.4 OMPT Flush Event
	3.5 Team and Task Information Structures

	4 Implementation Challenges and OMPT Shortcomings
	4.1 Annotation of Locking
	4.2 Annotation of Task Dependencies
	4.3 Ordered Construct with Depend Clause
	4.4 Taskwait Construct with Depend Clause
	4.5 OMPT Events of Reductions
	4.6 Information on Flush-Set

	5 Implementation Results
	5.1 Overhead Results
	5.2 Data Race Results

	6 Conclusions
	References




