User Co-scheduling for MPI+OpenMP
Applications Using OpenMP Semantics

Antoine Capra!®) | Patrick Carribault®, Jean-Baptiste Besnard?,
Allen D. Malony?, Marc Pérache?, and Julien Jaeger®

! ParaTools SAS, Bruyeres-le-Chatel, France
{capra, jbbesnard}@paratools.com
2 ParaTools Inc., Eugene, USA
malony@paratools.com
3 CEA, DAM, DIF, 91297 Arpajon, France
{patrick.carribault,marc.perache,julien. jaeger}@cea.fr

Abstract. The evolution of parallel architectures towards machines
with many-core processors and high node-level concurrency is putting an
end to the pure-MPI programming model. Simulations codes must expose
multiple levels of parallelisms inside and between nodes, combining dif-
ferent programming models (e.g., MPI4+X), to productively use current
and future supercomputers. MPI4+OpenMP is a common hybridization
approach. However, recent evolutions in the OpenMP standard presents
options for how OpenMP tasking constructs might be used when mix-
ing fine-grained computation and communications. Various approaches
are discussed and compared in this context. Advantages and limita-
tions of the approaches are detailed, including potential improvements
to OpenMP in order ease both the integration and progress of MPI calls.
These methods are applied to a representative stencil code and demon-
strate improvements on the overall execution time as a result of more
efficient mixing of MPI and OpenMP.

1 Introduction

Parallel scientific applications are designed to take advantage of the resources
they are provided for execution. When considering current architectures, the
optimization spectrum is wide, ranging from vectorization at a core level to
distributed operations involving millions of cores. The present rise of many-core
processors is shaping the spectrum further with greater node-level concurrency,
resulting in less memory per thread of execution. Whereas a pure MPI model [5]
has been adequate before, memory replication within a node and communication
overhead across many threads is becoming problematic. Hybrid programming
methods that combine a shared-memory model with a distributed-memory one
are has now a compulsory avenue when it comes to writing efficient parallel
code. When considering MPI+X hybridization, X = OpenMP has become the
de-facto standard. In hybridizing legacy codes, it is most often the case that
OpenMP is applied at loop level for intra-node parallelism [6], with MPI for
© Springer International Publishing AG 2017

B.R. de Supinski et al. (Eds.): IWOMP 2017, LNCS 10468, pp. 203-216, 2017.
DOI: 10.1007/978-3-319-65578-9_14

204 A. Capra et al.

inter-node communication. However, by separating MPI and OpenMP phases,
parallelism is essentially bulk-synchronous, alternating between communication
and computation phases. In such a model, communications are done by a single
thread, creating a loss of parallelism combined with extra fork-join overheads.
Thus, despite being a practical approach, secluding MPI and OpenMP from each
other will expose performance factors that eventually prevent the program from
scaling.

We propose to rethink MPI4+X hybridization with respect to their runtime
requirements and flexibility for closer mixing of models. In particular, we are
interested in how a program written with MPI+X in mind can express fine-
grained parallelism and communication through OpenMP. Given the new fea-
tures introduced in the OpenMP standard for programs to invoke MPI func-
tions inside parallel regions, the opportunity is there for mitigating the bulk-
synchronous nature of most MPI4+OpenMP applications. Our work focuses on
OpenMP tasks and presents an approach for hybrid tasking patterns that can
be more performant. In this process, we observe some limitations in existing
OpenMP runtimes and propose extensions to OpenMP oriented towards run-
time stacking.

By considering a task-based model, the expression of both MPI and com-
putation phases is more natural. Iterations are seen as a directed graph mixing
MPI and compute tasks. Tasks are vertexes in the graphs and edges represent
dependencies between tasks. This leads to the expression of an MPI4+OpenMP
program as a Directed Acyclic Graph (DAG). One benefit of a DAG represen-
tation is that finer-grained parallelism is more exposed, as are the dependencies
and critical paths that constrain performance.

To demonstrate our approach, we focus on the critical path arising in DAGs
representing stencil-based computations, including spatial dependencies. In par-
ticular, our goal is to reduce the coupling arising from communications between
distributed memory regions, by identifying as soon as possible those parts of the
computation where dependencies were satisfied. In this formalism, MPI tasks
are the one leading to the highest parallel overhead, possibly delaying compu-
tation. From this starting point, it is shown how tasking patterns can mitigate
communication impact, giving a higher priority to MPI tasks and splitting com-
putational border into multiple regions — eventually moving communications
inside the parallel region.

In the rest of the paper, we first describe task support in the context of
OpenMP runtimes and discuss how it is beneficial to the expression of hybrid
computation. After exploring various alternatives, we present an approach lever-
aging OpenMP tasks with dependencies to mix MPI and computation. The
approach is validated using the stencil benchmark, demonstrating the impact of
communication progress on the overlaps. We then present potentials improve-
ments to the OpenMP standard for model mixing when applying the tasking
model. Other research have contributed to our ideas and we give an overview of
this related work. The paper concludes with future prospects to pursue.

User Co-scheduling for MPI4+OpenMP Applications 205

2 OpenMP Tasking

OpenMP’s origins began with loop-level parallelization, but over time an increas-
ing variety of parallel constructs have been proposed for adoption in the OpenMP
standard. One of the main drawbacks of parallel execution only in loops is that
it breaks the program (within a node) into sequential and parallel regions. There
is also the fact that not all loops are easily parallelized. Some may have com-
plex dependencies and others may rely on external sequential (not thread-safe)
libraries. Or it might simply be that time has not be taken to rewrite the loop
code properly to enable parallel execution. In any case, limiting parallelism
to just loop regions can constrain the performance gain in an OpenMP pro-
gram. The well-known Amdahl Law states that the sequential part of a parallel
code will bound its strong scaling speedup. For example, if 20% of the time an
OpenMP program executes in a sequential region, maximum speedup is 5, even
under the assumption of 100% efficiency in parallel loop execution. Thus, it is
crucial to consider how OpenMP can express parallelism beyond loops.

To this end, the concept of tasks is being considered by parallel programmers
to improve the scalability of their applications. OpenMP did not provide task
until Version 3. At this point, task and taskwait are defined and the barrier is
a scheduling point for tied tasks. OpenMP v4 introduced taskgroups to allows
more abstraction and hierarchy, with depend being used to express dependencies
and explicit scheduling points for untied tasks removed. The latest version of the
OpenMP standard (v4.5) adopted taskloop and priorities. With these tasks
constructs and their functional and runtime support, OpenMP now provides a
way of defining parallel execution at a fine-grained level.

OpenMP tasking will notably enhance the opportunities for shared-memory
parallelism and efficiency. Consequently, tasking capabilities also afford us a
path to develop hybrid (MPI4+OpenMP) codes with better performance than
previously obtained.

3 Hybrid Alternatives

When mixing MPI and OpenMP one crucial aspect is how runtimes are going
to interoperate. Because the MPI runtime is managing communications, it is by
definition not performing computational work. While MPI asynchronous com-
munication allows for the overlap of communication and computation, a main
interest of hybridization is to enable node-level parallelism in a manner whereby
the OpenMP runtime more efficiently interfaces with communication operations.
To better describe our approach, we present three different MPI scenarios and
reason about the performance costs involved.

In this Section we consider the MPI_Irecv and MPI_Isend calls. These func-
tions allow for the posting of an asynchronous message. Both functions create an
MPI Request which can be used to either wait for the communication comple-
tion with MPI_Wait or test for its completion with MPI_Test. Using these calls, it
is therefore possible to recover communications with computation, reducing the

206 A. Capra et al.

overall communication cost. This mechanism is similar to task usage in OpenMP.
Tasks can be delayed and the user can use synchronization (taskgroup/taskwait)
to ensure their completion.

The first scenario (/W) is where an MPI process does an asynchronous receive
(MPI_Irecv) and immediately waits (using MPI_Wait) for it to be satisfied. The
second scenario (ITCW) is where an MPI process does an MPI_Irecv immedi-
ately followed by the execution of an OpenMP parallel region. One thread of
the parallel region checks for the receive to be satisfied (using MPI_Test), while
the others do some minor computation followed by a wait at the end. The third
scenario (ICW) is the same as the first except MPI_Irecv is immediately fol-
lowed by 500 ps computation before waiting. In this last case, we made sure
that the overall computing had the same duration than in the second case — to
allow direct comparison.

Figure 1 shows results from measuring the time spent in MPI_Wait in the
three different MPI scenarios. The communication duration is the time from
when MPI_Irecv is called to when MPI_Wait returns (or MPI_Test returns true).
In our case, we focus on MPI Wait time in order to measure the time needed
to complete an MPI call relatively to the associated asynchronism construction.
If we consider the scenarios run on a single node where MPI is using shared
memory, it is clear that if MPI_Test is not called, the MPI runtime is less efficient
for some reason. Not directly waiting is worse for small messages, due likely to

Wait Time in Seconds (log)

Wait Time in Seconds (log)

S g & Q“‘ > s’”‘ 5
g S K
g‘?”’ & Q()Q‘
Message size in MB Message size in MB
W —+— ITCW ICW —¥— W —+— ITCW ICW —¥—
(a) OpenMPI 2.1.0 (SHM) (b) MPICH 3.3a2 (SHM)

Wait Time in Seconds (log)
Wait Time in Seconds (log)

Message size in MB Message size in MB

W —— ITCw ICW —¥— W —— ITcw ICW —%—

(c) OpenMPI 1.8.8 (IB) (d) Intel MPI 17 (IB)

Fig. 1. Comparing our progress scenarios on the receiver side when running over both
a shared memory segment and an Infiniband network (averaged 1000 times).

User Co-scheduling for MPI4+OpenMP Applications 207

the extra 500 ws processing, and comparable for larger ones. Of course, these
results are highly dependent on the underlying network. Maybe the results are
an anomaly of running in MPI shared memory. However, if we repeated the
experiments using InfiniBand in an dual-node configuration, the same pattern
appears in Fig. 1(c).

MPI runtimes have to make a decision about how to implement waiting for
asynchronous communication. The tradeoff has to do with how much overhead
is spent in checking for communication completion, versus latency between when
the communication actually completed and when it was detected by the MPI
runtime. In other words, it is a decision about how to implement progress in the
MPI runtime. What is seen in the graphs is the result of progress latency for the
IW and ICW cases. In the case of ITCW, the MPI_Test acts like an immediate
progress step. It should be able to take advantage of the overlap and that is
what is observed.

The ramifications of these experiments is that progress is needed to achieve
good performance in a heterogeneous computation context. More specifically,
testing MPI requests is important for communication progress, but it pushes the
responsibility for progress to the computational runtime (i.e., OpenMP), which
must fill up the asynchronous periods as much as possible with work to get high
performance.

How can we do this with OpenMP? Suppose we progressively insert MPI calls
inside the parallel region, this while accounting for the requirement of progressing
the MPI runtime. Our idea is to do this with our tasking patterns, iteratively
increasing the functionality they offer. The extension of the OpenMP standard
will then allow us to submit an increasingly complete DAG of execution and thus
to prioritize more effectively the tasks carrying out MPI actions. For a working
parallel example, we consider a 1D model (say a 10e6 double array) evenly split
between MPI ranks, where each rank has a core computation and ghost cells for
communication to neighbor cells. In this case, each ghost cell might consists of
4096 doubles for each side with a periodic condition on the borders.

1| while (! finished && mpi_comm_complete != MPI_COMM_NUM){
for(1 = 0; i < MPI_COMM_NUM; i++)
if(! Atomic_load_int(tab_flags[i])){
MPI_Test(&(tab_reqgs[i]), &mpiflag, <«
MPI_STATUS_IGNORE);
if (mpiflag && !Atomic_cas_int(&(tab_flag[i]), 0, 1 «
A
Atomic_incr_int (mpi_comm_complete);
7 compute_ghost_associated_part(i);

¥
9 }

finished = compute_core_part(); // yield
11 }

Listing 1.1. MPI AWARE Select (loop splitting)

208 A. Capra et al.

Suppose we had to using OpenMP 2.0 and we wanted to mix MPI calls in an
OpenMP parallel region. We could do something similar to what is illustrated in
Listing 1.1. In this case, the loop computing the core computations would be sep-
arated. Then border communications would be progressed using MPI_Test, and
associated border computation triggered on completion. Then if communications
have not competed yet, the core calculation can be used to recover communica-
tions. In order to extend this MPI query polling in the MPI_THREAD MULTIPLE
case, we have based our selection on the basis of an atomic value table. The
calculation phase ends when all the MPI communications and the associated
actions are realized (i.e., computation of the border and MPI_Isend, but also
the core part). The execution path is constrained according to MPI dependen-
cies. However, two computing functions are effectively parallelized internally at
the price of a critical section choosing the next action based on communication
completion. This reduces the potential overhead of MPI communications by con-
straining OpenMP behavior. Indeed, to be able to improve granularity, the core
compute function would have to be chunked, in order to regularly progress and
check communication dependencies. This code is, in fact, doing different kinds
of tasks, encouraging us to rely on OpenMP tasks.

1
#pragma omp parallel
[{
#pragma omp for nowait
for (i = 0; i < CORE_PART_NUM; i++)
#pragma omp task
7 compute_core_part (i);

o| #pragma omp single

{

11 while (mpi_comm_complete != MPI_COMM_NUM)
{

13 for(i = 0; i < MPI_COMM_NUM; i++)
if(! Atomic_load_int(tab_flags[i]))
15 #pragma omp task
__progress_mpi_comm(i);

17 #pragma omp taskyield

}

19 }

Listing 1.2. MPI AWARE Select (standard task)

Now, consider the use of OpenMP v3. Listing 1.2 shows multiple OpenMP
tasks being created to handle a certain number of computing cores and multiple
OpenMP tasks are dedicated to the progress of MPI communications. Moreover,
thanks to the taskyield, MPI-related tasks are at most the number of MPI
requests not completed. Dedicating a actual hardware core communications pro-
gression does not necessarily induce a penalty for the user code, especially when
considering architectures with a large number of cores such as the Intel KNL

User Co-scheduling for MPI4+OpenMP Applications 209

with 68 cores (272 hyper-threads). A hyper-thread, corresponds to 0.4% of a
KNL - a totally acceptable overhead.

As we can not modify the task scheduler, MPI progress will not be multi-
threaded or prioritized. In most OpenMP implementations, an OpenMP thread
performs its own tasks before stealing from other threads. In our scenario, steal-
ing of communication tasks will only occur when a thread will have completed
its own tasks — actually yielding the desired behavior. In this configuration
without priority, only the stealing mechanism can give us a form of priority.
For instance, when running this code, the GOMP runtime did not allow the
taskyield construct. As far as Intel OpenMP is concerned, it was not provid-
ing expected performance gains. When waiting for communication we expected
to schedule computing-related tasks. These runtime limitations required us to
explore another task approach presented below in order to correctly progress
communications.

1|#pragma omp for nowait
for (i = 0; i < CORE_PART_NUM; i+4+)
#pragma omp task priority (1)
compute_core_part(i);
#pragma omp single nowait
71 £
for(i = 0; i < MPI_COMM_NUM; i++){
o|#pragma omp task depend(inout: req.mpi ...) priority (100)
{
11 while(__mpi_request_not_match())
#pragma omp taskyield
13 }
if(i > MPI_COMM_SEND_NUM){ // RECV REQUEST
15| #pragma omp task depend(inout:req.mpi ...) priority (100)
{
17 __compute_associated_border(i)
}
10| #pragma omp task depend(inout: req-mpi ...) priority (100)
{
21 __send_ghost_associate(i);
}
23 }
}
25| }

Listing 1.3. MPI AWARE Select (standard task)

Our initial idea was to rely on priorities and dependencies to pre-post MPI
actions. To do so, valid and computable dependencies are required at compilation
time. This leads to a problem when considering communications, a given MPI
process may have a varying neighboring (mesh corners) while these dependen-
cies have to be known at compilation time (no dynamic dependencies). In our
example, MPI_Requests are static variables. Aware of taskyield limitations,

210 A. Capra et al.

we proposed in Listing 1.3 with OpenMP 4.x in mind. This is a version based
on single, allowing us to force a thread to poll MPI Request. We can use the
taskgroup ensures that all threads participate in the execution of the sets of
tasks, including the one testing for MPI communications. Eventually, the send
task has two dependencies, ensuring that the previous send is complete before
issuing the next.

(b) With high priority on MPI task

Fig. 2. Interest of task priority with heterogeneous task

If we consider an abstract time unit with a computing task that is worth
1 unit and an MPI task worth 6, then looking at Fig.2 observe that the choice
of scheduling can have an impact on the total execution time. We have illustrated
the execution time of four threads with 12 computational tasks and 1 MPI task
per time step. It is recognized that a greedy algorithm favoring the task taking
the most time generally allows to reach a relevant local minimum. The developer
can not make assumption about the behavior of the OpenMP support. For this
reason, OpenMP priorities are of interest to handle such heterogeneous tasks.

4 Evaluation

With the introduction of OpenMP tasks, it begs the question of how tasks would
compete with the traditional parallel loop approach. In one respect, by avoiding
successive fork-join, tasks are able to improve the overall scheduling. Returning
to our reference benchmark, in a loop-based version, Isend /Irecv are posted, the
core part is computed, communications waited on, and then borders processed.
In the task-based version, the tasks are pushed immediately when the progress
thread completes a test. Thus, only a single parallel region with a computation
split in tasks is required.

User Co-scheduling for MPI4+OpenMP Applications 211

1000 100

100 |- B

Average time (seconde)
Average time (seconde)

2 % S e
2, 2, e s
%o % 0,

S e e e e > %
Number of MPI Process (1 per node) Ghost number of double value
Bloc approach (loop) NN Mixed approach (task) HEEEEE Bloc approach (loop) I Mixed approach (task)
(a) Over MPI Processes (b) Over Ghost size (64 Processes)

Fig. 3. Comparison of our bulk-synchronous (loop parallelism) and our proposed task-
based approach over both process count and message size (fixed at 64 MPI processes).

We compared these two versions on an Intel Sandy-bridge machine up to
2048 cores. Each dual-socket node gathers 16 cores on which we ran 16 OpenMP
threads. In order to generate the results presented in Fig. 3, we ran the code for
1000 timesteps, conducted 10 experiments, and averaged the execution times.
We observe that in this first case the task approach is better than the loop one
when the number of nodes is higher than 16, this despite one core is used to
progress communications. We believe this performance difference is due to the
increasing noise in MPI messages, creating irregularities in the communication
scheme. Moreover, as the number of cores increases, the overall computation
decreases (strong scaling), due likely to increase communication jitter.

To get a sense of effective MPI overlap, we increased the ghost cell size to
increase the size of communication. We observed that MPI overlaps is almost
null with the runtime that we used on the target machine (OpenMPI 1.8.8), jus-
tifying our efforts to integrate progress inside our parallel OpenMP constructs.
Figure 3(b) shows the effects as we see performance gains with greater commu-
nications sizes, demonstrating the importance of progressing MPI messages.

5 Progress and OpenMP

MPI communication progress is a key factor in hybrid parallelism. Consequently,
in order to take advantage of asynchronous messages within an MPI4+OpenMP
program, communications must be explicitly progressed through MPI runtime
calls (MPI_Test, MPI_Probe). Not doing so shifts most of the message completion
responsibility to the actual MPI_Wait operation (at least in the configurations
we measured). This can all but eliminate any benefits in overlapped communi-
cation and communication. Our proposed remedy to overcoming this problem is
to utilize task-based constructions. However, additional constructs in OpenMP
may help solving this progress issue and more generally support better runtime
stacking.

212 A. Capra et al.

void idle(void xprequest) {
if (__mpi_request_match(prequest)){
omp_trigger (” ghost_-done”);
return 0;

}

return 1;

1}

o|#pragma omp parallel progress(idle, &request)

{

1 #pragma omp nNoprogess

{

13 MPI_Wait (request, MPI_STATUS_IGNORE);
omp_trigger (” ghost_-done”);

15 }

#pragma omp task depends(inout:” ghost_done”)
;| {/+ BORDER x/}

#pragma omp task

19 {/* CENTER #/}

Listing 1.4. Proposed implementation for a progress enabled OpenMP

In general, as presented in Listing 1.4, OpenMP could gain from a notion
of progress. Indeed, one could define what processing has to be done to satisfy
task dependencies, letting the runtime invoke the progress function to trigger
dependencies. In order to realize this idea, two things are needed. First, a progress
parameter would be included for parallel regions to define which function should
be called when the runtime is idle or switching between tasks. This should be
a function as it contains code which may not be executed if not compiled with
OpenMP support; if this function returns “0” it is not called further, if it is “1”
it continues to be called as there is work remaining. In this case, the otherwise
ignored noprogress code section is executed, replacing the non-blocking progress
calls with blocking ones.

Second, we need named dependencies between tasks. This is because we want
another runtime to satisfy a dependency which cannot be known at compilation
time as an address, for example, “ghost_done”. To do so, we define omp_trigger
which satisfies a named dependency. Using this simple construct, we are then
able to express in a compact manner, a communication dependency with a direct
fallback to a blocking version if OpenMP is not present. This abstraction seems
reasonable based on our experiments, and we are in the process of implementing
this feature to validate it further.

6 Related Work

Scalable, heterogeneous architectures are putting increasing pressure on the pure
MPI model [5]. Hybrid parallel programming is necessary to expose multiple

User Co-scheduling for MPI4+OpenMP Applications 213

levels of parallelism, inside and between nodes. However, in order to leverage
and mix our existing models, their runtime systems must interoperate more
efficiently.

Hybridization appeared with accelerators and programming languages such
as Cuda or OpenCL [18]. Here the host node retains its own cores and memory
for program execution, but off-loads computation and data to the accelerator
device. Accelerators such as GPUs are generally energy efficient and expose a
high level of stream oriented parallelism. One issue with their use is the need
for explicit transfers to and from the device, requiring important programming
efforts to manage data. Moreover, CPU resources might be underutilized if only
used to move data. This argues for another hybrid parallelism level. Pragma-
based models such as OpenMP target [3,4], OpenACC [20], Xkaapi [11] and
StarPU [2] proposed abstractions combining GPUs and CPUs in an efficient
manner, abstracting data-movements.

For the most part, MPI has not been integrated in shared-memory compu-
tations. Rather, an MPI process is primarily seen as a container for the shared
computation, and most programs evolved from MPI to handle new parallelism
models [6]. For these practical reasons, there were fewer efforts to embed MPI in
another model (e.g., X+MPI), versus expressing parallelism inside MPI processes
(MPI+X). The advent of many-core architectures, such as the Intel MIC [9]
and the Intel KNL enforced the use of larger shared-memory contexts, requir-
ing some form of hybridization. MPI4+OPenMP is nowadays accounting for a
large number of applications, nonetheless, neither MPI or OpenMP have col-
laborative behaviors. Both of them are distinct runtimes with their respective
ABI/API. However, there are several programming models aimed at providing an
unified view of heterogeneous or distributed architectures: Coarray Fortran [17],
Charm++ [13], HPF [15], Chapel [7], Fortress [1] and X10 [8]. Several of them
rage various communication models, including message passing (MPI) and (par-
titioned) global address space ((P)GAS).

A complementary approach is based on Domain Specific Languages [10] which
is aimed at abstracting parallelism expression [12] in order to “free” codes from
programming model constraints, for example by targeting multiple models [19].
There is a wide range of such specialized languages with clear advantages, how-
ever, they transpose the dependency from a model to a dedicated language with
its own constraints [14].

Our work is close to the idea developed by Marjanovic et al. [16], they pro-
posed a set of pragma to improve the processing of non-blocking MPI communi-
cations in a multithreaded context. The use of new pragmas requires a specific
compiler and results in a loss of portability. Our initial solutions based on tasks
differs in the sense that they are only based on the use of standard OpenMP
pragmas without any hypothesis of specific executive support mechanisms.

Model mixing and unified models, in general, is a very active research area
with a wide variety of approaches. In this paper, we focused on two common
building blocks, MPI and OpenMP, trying to see how MPI could be embedded

214 A. Capra et al.

inside OpenMP constructs in an efficient manner. In a way, this takes a reverse
approach when most efforts tend to embed OpenMP inside MPI.

7 Conclusion

In this paper, we first introduced the need for hybridization in parallel appli-
cations. Indeed, when scaling multiple nodes gathering hundreds of cores, the
MPI+X paradigm becomes compulsory to limit both memory and communi-
cation overhead. Unfortunately, most MPI+OpenMP codes rely on alternating
phases between communication and compute. This can constrain parallel perfor-
mance due to the fork-join nature of OpenMPI parallelism and the sequentiality
of MPI phases outside of a parallel region. Instead, we explored an alternative
approach relying on tasks and how they could help to maintain MPI progress
during OpenMP parallel computation. With the latest OpenMP version, multi-
ple approaches are possible to mix MPI with OpenMP.

Our hybridization ideas essentially advocate that the program become a
Directed Acyclic Graph (DAG) to be scheduled by the OpenMP runtime. The
DAG is made of tasks that combine processing from both OpenMP (computa-
tion) and MPI (communication). However, such combination is not natural in
OpenMP, particularly when considering MPI_Request handles which are gener-
ated dynamically during the execution. Indeed, OpenMP does not allow tasks
dependencies to be expressed on the fly, instead, they have to be resolvable
at compilation time. Consequently, in this paper, we propose three different
approaches to mixing OpenMP tasks and MPI despite this static dependency
resolution. Each approach is described and evaluated with a simple benchmark.
The measurements show that a task-based approach was beneficial to the over-
all execution, in particular, by allowing greater computation overlap. However,
a key issue is MPI progress. Efficient hybrid execution (MPI4+OpenMP) can
only be achieved if MPI calls are regularly invoked during parallel OpenMP
computation, as our task-based examples demonstrate.

8 Future Work

In general, effective runtime inter-operation and stacking for hybrid parallel
programming requires interactions to coordinate progress. It is important to
consider then the integration of this support in programming standards. For
instance, in our study of MPI+OpenMP, if the taskyield call could be defined
as an arbitrary function, it would be possible for the OpenMP runtime to notify
the MPI runtime that it may progress communications. With this progress issue
solved, dynamic (on request addresses) or label-based dependencies would be an
alternative to the jump-table we relied on in this paper. There can be side effects
when combining two runtimes that need some additional support to resolve.

User Co-scheduling for MPI4+OpenMP Applications 215

References

10.
11.

12.

13.

Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.W., Ryu, S., Steele,
G.L., Tobin-Hochstadt, S.: The Fortress language specification. Tech. report, Sun
Microsystems, Inc., version 1.0, March 2008

Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: STARPU: a unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863-874.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03869-3_80

Ayguade, E., et al.: A proposal to extend the OpenMP tasking model for het-
erogeneous architectures. In: Miiller, M.S., Supinski, B.R., Chapman, B.M. (eds.)
IWOMP 2009. LNCS, vol. 5568, pp. 154-167. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-02303-3_13

Bertolli, C., Antao, S.F., Eichenberger, A.E., O’Brien, K., Sura, Z., Jacob, A.C.,
Chen, T., Sallenave, O.: Coordinating GPU threads for OpenMP 4.0 in LLVM.
In: Proceedings of the 2014 LLVM Compiler Infrastructure in HPC, LLVM-
HPC 2014, pp. 12-21. IEEE Press, Piscataway (2014). http://dx.doi.org/10.1109/
LLVM-HPC.2014.10

Besnard, J.B., Malony, A., Shende, S., Pérache, M., Carribault, P., Jaeger, J.: An
MPI halo-cell implementation for zero-copy abstraction. In: Proceedings of the
22nd European MPI Users’ Group Meeting, EuroMPI 2015, NY, USA, pp. 3:1-3:9
(2015). http://doi.acm.org/10.1145/2802658.2802669

Brunst, H., Mohr, B.: Performance analysis of large-scale OpenMP and hybrid
MPI/OpenMP applications with Vampir NG. In: Mueller, M.S., Chapman, B.M.,
Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005. LNCS, vol. 4315, pp.
5-14. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68555-5_1
Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the
Chapel language. Int. J. High Perform. Comput. Appl. 21(3), 291-312 (2007).
http://dx.doi.org/10.1177/1094342007078442

Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu,
K., von Praun, C., Sarkar, V.. X10: an object-oriented approach to
non-uniform cluster computing. SIGPLAN Not. 40(10), 519-538 (2015).
http://doi.acm.org/10.1145/1103845.1094852

Duran, A., Klemm, M.: The intel many integrated core architecture. In: 2012
International Conference on High Performance Computing Simulation (HPCS),
pp. 365-366, July 2012

Fowler, M.: Domain-Specific Languages. Pearson Education, Boston (2010)
Gautier, T., Lima, J.V.F., Maillard, N., Raffin, B.: XKaapi: a runtime system for
data-flow task programming on heterogeneous architectures. In: 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing, pp. 1299-1308,
May 2013

Hamidouche, K., Falcou, J., Etiemble, D.: Hybrid bulk synchronous parallelism
library for clustered SMP architectures. In: Proceedings of the Fourth International
Workshop on High-level Parallel Programming and Applications, HLPP 2010, NY,
USA, pp. 55-62 (2010). http://doi.acm.org/10.1145/1863482.1863494

Kale, L.V., Krishnan, S.: Charm++: a portable concurrent object ori-
ented system based on c++. SIGPLAN Not. 28(10), 91-108 (1993).
http://doi.acm.org/10.1145/167962.165874

http://dx.doi.org/10.1007/978-3-642-03869-3_80
http://dx.doi.org/10.1007/978-3-642-02303-3_13
http://dx.doi.org/10.1007/978-3-642-02303-3_13
http://dx.doi.org/10.1109/LLVM-HPC.2014.10
http://dx.doi.org/10.1109/LLVM-HPC.2014.10
http://doi.acm.org/10.1145/2802658.2802669
http://dx.doi.org/10.1007/978-3-540-68555-5_1
http://dx.doi.org/10.1177/1094342007078442
http://doi.acm.org/10.1145/1103845.1094852
http://doi.acm.org/10.1145/1863482.1863494
http://doi.acm.org/10.1145/167962.165874

216

14.

15.

16.

17.

18.

19.

20.

A. Capra et al.

Karlin, I., Bhatele, A., Keasler, J., Chamberlain, B.L., Cohen, J., Devito, Z., Haque,
R., Laney, D., Luke, E., Wang, F., Richards, D., Schulz, M., Still, C.H.: Exploring
traditional and emerging parallel programming models using a proxy application.
In: 2013 IEEE 27th International Symposium on Parallel and Distributed Process-
ing, pp. 919-932, May 2013

Loveman, D.B.: High performance Fortran. IEEE Parallel Distrib. Technol. Syst.
Appl. 1(1), 25-42 (1993)

Marjanovié, V., Labarta, J., Ayguadé, E., Valero, M.: Overlapping communication
and computation by using a hybrid MPI/SMPSS approach. In: Proceedings of the
24th ACM International Conference on Supercomputing, ICS 2010, NY, USA, pp.
5-16 (2010). http://doi.acm.org/10.1145/1810085.1810091

Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. SIGPLAN
Fortran Forum 17(2), 1-31 (1998). http://doi.acm.org/10.1145/289918.289920
Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for
heterogeneous computing systems. Comput. Sci. Eng. 12(3), 6673 (2010)
Sujeeth, A.K., et al.: Composition and reuse with compiled domain-specific lan-
guages. In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp. 52-78. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39038-8_3

Wienke, S., Springer, P., Terboven, C., Mey, D.: OpenACC — first experiences
with real-world applications. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G.
(eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 859-870. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-32820-6_85

http://doi.acm.org/10.1145/1810085.1810091
http://doi.acm.org/10.1145/289918.289920
http://dx.doi.org/10.1007/978-3-642-39038-8_3
http://dx.doi.org/10.1007/978-3-642-32820-6_85

	User Co-scheduling for MPI+OpenMP Applications Using OpenMP Semantics
	1 Introduction
	2 OpenMP Tasking
	3 Hybrid Alternatives
	4 Evaluation
	5 Progress and OpenMP
	6 Related Work
	7 Conclusion
	8 Future Work
	References

