
The Productivity, Portability and Performance
of OpenMP 4.5 for Scientific Applications

Targeting Intel CPUs, IBM CPUs,
and NVIDIA GPUs

Matt Martineau(B) and Simon McIntosh-Smith

HPC Group, University of Bristol, Merchant Venturers Building,
Woodland Road, Bristol BS81UB, UK

{m.martineau,cssnmis}@bristol.ac.uk

Abstract. This research considers the productivity, portability, and
performance offered by the OpenMP parallel programming model, from
the perspective of scientific applications. We discuss important con-
siderations for scientific application developers tackling large software
projects with OpenMP, including straightforward code mechanisms to
improve productivity and portability. Performance results are presented
across multiple modern HPC devices, including Intel Xeon, and Xeon
Phi CPUs, POWER8 CPUs, and NVIDIA GPUs. The results are col-
lected for three exemplar applications: hydrodynamics, heat conduction
and neutral particle transport, using modern compilers with OpenMP
support. The results show that while current OpenMP implementations
are able to achieve good performance on the breadth of modern hardware
for memory bandwidth bound applications, our memory latency bound
application performs less consistently.

Keywords: OpenMP-4 · High-performance-computing · Mini-apps

1 Introduction

The diversification of modern architecture has lead to increasing demand for
parallel programming models that improve the productivity and future porta-
bility of large scientific applications. An implicit expectation is that parallel
programming models will provide the features that are necessary to achieve near
optimal performance, with some understanding that there is a trade-off between
improved productivity and portability, and absolute performance.

OpenMP provides an extensive feature set that allows application developers
to tune their applications for performance, while providing an intuitive interface
that enables relatively un-intrusive parallelisation of applications. The perfor-
mance achieved in practice is dependent not only on the features provided by
the specification, and the developer’s use of those features, but by the imple-
mentation provided by the compiler vendors.
c© Springer International Publishing AG 2017
B.R. de Supinski et al. (Eds.): IWOMP 2017, LNCS 10468, pp. 185–200, 2017.
DOI: 10.1007/978-3-319-65578-9 13

186 M. Martineau and S. McIntosh-Smith

It is essential that both computer scientists and domain scientists are able
to effectively explore the potential programming environments without the con-
straints of porting large scientific applications. Mini-apps are widely accepted as
a powerful tool for evaluating the performance of parallel programming models,
but it is essential that a broad range of performance profiles are assessed to
observe the edge cases of performance exposed by production applications [1].

In this research we will be using a suite of mini-apps that fall under the
arch project1, developed at the University of Bristol. Each of the mini-apps
has been developed to provide research tools for computer scientists to support
applications scientists in porting real codes. Although an understanding of the
core Physics of each package is not required in this paper, we will discuss the
performance profile of each application as we present results.

2 Contributions

It is expected that the results of this research will be of use to domain scientists
and application architects looking to determine if OpenMP is a good fit for
their project, and may offer support to developers already using OpenMP for
their software projects. Through evaluating a range of proxy applications on
cutting edge hardware, we provide insights into the differences between available
OpenMP implementations that can feed into future optimisation.

This research specifically contributes the following:

– Specific code suggestions for improving productivity and portability of large
scientific applications, based on real porting experience.

– A discussion of limitations of the specification, and important differences
between OpenMP implementations.

– An extensive performance analysis of OpenMP 4 ports of three distinct appli-
cation classes: explicit hydrodynamics, sparse linear algebra, and Monte Carlo
neutral particle transport, on modern HPC hardware: Intel Xeon and Xeon
Phi CPUs, IBM POWER8 CPUs, and NVIDIA K20X and P100 GPUs.

3 Productivity

The authors have encountered issues with productivity that we expect will be
encountered by developers using OpenMP 4 for non-trivial applications.

3.1 Structured and Unstructured Data Regions

Maintaining data resident on a device is generally one of the most important
considerations for offloading to accelerators. We previously discussed the dif-
ficulties that are encountered when attempting to copy data to and from the
device using the structured target enter data directive [2].

1 https://github.com/uob-hpc/arch.

https://github.com/uob-hpc/arch

OpenMP 4.5 Productivity, Portability, Performance 187

Listing 1.1. OpenMP 4.0 approach to copying data for an application.

double* density0 = (double*)malloc(sizeof(double)*nx);

#pragma omp target enter data map(to: density0[:nx])
{

for(int tt = 0; tt < ntimesteps; ++tt) {
// Do work

}
}

With OpenMP 4.0, the initial copying of resident data into the device data
environment would be approached as shown in Listing 1.1. When the number of
arrays increases, this approach becomes less readable and maintainable. As the
structured data regions only operate upon a structured block, the application
structure will be limited if developers want to avoid redundant data movement.

Listing 1.2. OpenMP 4.5 approach to copying data for an application.

void allocate_data(double** array, size_t len) {
(*array) = (double*)malloc(sizeof(double)*len);

double* local_arr = *array;
#pragma omp target enter data map(to: local_arr[:len])

}

allocate_data(&density, nx);

for(int tt = 0; tt < ntimesteps; ++tt) {
// Do work

}

The unstructured data mapping introduced in OpenMP 4.5 allowed us to
combine the allocation and mapping into a method, as seen in Listing 1.2. This
significantly reduced the code duplication, and improved the productivity of our
porting efforts by abstracting OpenMP data allocations from the core of the
codes. Another benefit is that when arrays were resized during development it
was only necessary to propagate the change to a single location.

3.2 Copying Members of Structures

The OpenMP specification does not handle the copying of pointer members
of a structure into the device data environment. In many codes, pointer data is
exclusively passed around in structures, and developers generally want to be able
to access that data in the manner demonstrated in Listing 1.3. Unfortunately,
the specification does not state how the pointer members of the structure should
be copied onto the device. The Cray compiler implementation of OpenMP 4
currently emits a compile-time error, whereas the Clang compiler supports the
form of Listing 1.3, in spite of the limitation in the specification.

188 M. Martineau and S. McIntosh-Smith

Listing 1.3. Mapping an array section that is a member of a structure.

#pragma omp target teams distribute parallel for \
map(some_struct.a[:len])

for(int ii = 0; ii < n; ++ii) {
some_struct.a[ii] = 0.0;

}

The consequence of this missing functionality is that codes currently attempt-
ing to achieve portability between compilers with OpenMP 4.5 will have to dese-
rialise the pointer members of structures before they are mapped, and change
all kernel accesses to reference the private variables, as seen in Listing 1.4. This
significantly limits productivity for large applications, especially where Structure
of Arrays style data structures have been adopted.

Listing 1.4. Privatising an array section that is a member of a structure and then
mapping it.

double* a = some_struct.a;
#pragma omp target teams distribute parallel for map(a[:len])
for(int ii = 0; ii < n; ++ii) {

a[ii] = 0.0;
}

All of the applications we have ported, including the mini-apps investigated
in this research, pass their pointer variables through the kernel interfaces, rather
than copying them into private variables before each kernel invocation. This app-
roach still requires a significant refactoring when porting codes, but minimises
the resulting overhead in terms of new lines of code.

3.3 Tools

Access to high quality tooling is one of the most significant influences on produc-
tivity. While porting the suite of mini-apps presented in this research, the process
was supported by the compiler vendors’ tool suite. For the CPU, tools such as
VTune and CrayPat are all compatible with OpenMP, and provide detailed
OpenMP-specific insights. The NVIDIA CUDA toolkit, which includes nvprof,
also works with the OpenMP 4 implementations discussed in this paper. Appli-
cation developers can expect this tool support to improve even further with
future releases of the OpenMP specification as a new tools interface is set to be
included in version 5.0 of the specification [3].

4 Portability

OpenMP 4.5 is becoming increasingly accepted within the community, and
the implementations that can target heterogeneous architectures are constantly
improving. Intel, Cray Inc., IBM, and GNU, are all actively developing OpenMP

OpenMP 4.5 Productivity, Portability, Performance 189

support for the newest features of OpenMP. The thread parallelism features of
OpenMP 3.0 are mature and well supported, whereas the offloading features were
added more recently, and introduced new challenges to implement in a compiler.

4.1 OpenMP Compilers

There are many OpenMP compilers available, and we discuss and evaluate a
cross section of the most popular.

The Intel Compilers provided the first vendor-supported OpenMP 4 imple-
mentation, targeting the Intel Xeon Phi Knights Corner architecture, but Intel
has since moved away from the offloading models for their future architectures.
In spite of this, Intel’s OpenMP 4.5 compliant compiler (version 17.0+) can be
used to target the Intel Xeon and Intel Xeon Phi processors.

The Cray Compilers provided the first vendor-supported implementation
of OpenMP 4 that allowed developers to target NVIDIA GPUs. Cray subse-
quently ceased development of their OpenACC implementation, suggesting that
they see OpenMP as the future parallel programming model for targeting their
heterogeneous supercomputers. The Cray compiler (version 8.5.7) is not yet
OpenMP 4.5 compliant, although it is fully OpenMP 4.0 compliant and sup-
ports a number of OpenMP 4.5 features.

The Clang/LLVM Compiler Infrastructure was recently forked to
develop OpenMP 4.5 support for targeting NVIDIA GPUs by IBM Research.
The fork of the compiler2 is now OpenMP 4.5 compliant, and the support is
being actively patched into the main trunk of the Clang front-end [4]. Although
the implementation was developed from the perspective of running on the
POWER8/POWER9 and NVIDIA GPU nodes, such as those being installed in
Sierra and Summit [5], the compiler will also allow users to compile for NVIDIA
GPUs hosted on X86 platforms. One limitation for scientific application devel-
opers is that Clang is a C/C++ front-end for LLVM. A team at the Portland
Group are currently implementing an open source Fortran front-end, codenamed
Flang, which will eventually support OpenMP 4.5.

The PGI Compilers do not yet support any OpenMP 4.0 features, but
provide full support for OpenMP 3.0. The compilers support an alternative to
OpenMP, OpenACC, which is similar except for some additional features and
limitations, but allows users to offload to both CPUs and GPUs.

The XL Compilers are a closed-source compiler suite developed by IBM,
and deployed with the POWER architecture, that will support OpenMP 4.5 in
time for the installation of the Summit and Sierra supercomputers. The Clang
effort for targeting NVIDIA GPUs is more advanced at this stage, and the
research is being fed directly into XL. A subset of OpenMP 4.5 features are
supported in the version 13.1.5, which we had access to, however support was
not available for the reduction clause on target regions, or atomic opera-
tions, making it impossible to collect results for XL targeting NVIDIA GPUs in
this research.

2 https://github.com/clang-ykt.

https://github.com/clang-ykt

190 M. Martineau and S. McIntosh-Smith

The GNU Compiler Collection has officially supported OpenMP 4
offloading since version 5.0, but feature-rich implementations that target spe-
cific architecture such as GPUs are still not available. Offloading support exists
for AMD GPUs via HSA, but the support is limited to a single combined con-
struct with no clauses. The compiler is capable of targeting Intel Xeon Phi
KNLs with OpenMP 4.5, and GNU are currently working on an OpenMP 4.5
implementation that can target NVIDIA GPUs, as mentioned in the in progress
documentation for GCC 7.1.

4.2 Homogeneous Directives

We have previously shown that it is not yet possible to write a single homoge-
neous line of directives to achieve performance portability with OpenMP [2,6].
Standardisation of the compiler implementations is important for future perfor-
mance portability, for instance, the newest Clang implementation automatically
chooses optimal team and thread counts, so that the developer does not have to
list architecture-specific values. This is one of many issues with standardisation:

– The impact of the simd directive will vary significantly between architectures.
For instance, on CPUs it will generally command the compiler to generate
SIMD instructions, whereas on the GPU it might tell the compiler to spread
the iterations of a loop across the threads in a team.

– Setting a thread limit and num teams for one architecture means you
cannot choose the default compiler behaviour for other architectures.

– As seen with the porting exercises, there can be significant performance impli-
cations when using the collapse statement on different architecture.

Achieving performance portability with a single codebase requires the pre-
processor, or abstractions above OpenMP. We are hopeful that future versions
of the specification will introduce conditional capabilities to make it possible for
developers to write a homogeneous set of directives at the loop-level.

4.3 OpenMP 4.0 to OpenMP 4.5

The authors of this paper strongly believe that OpenMP implementations need
to support some key features of version 4.5 to avoid future portability issues.
Having ported scientific codes to use OpenMP 4.0 and OpenMP 4.5, we have
come across some compatibility issues between the versions. Developers who are
using compilers that target OpenMP 4.0 compliant implementations should be
aware that these pitfalls can lead to subtle bugs caused by implicit behaviour.

In OpenMP 4.0, the default copying behaviour of scalar variables was to copy
them to and from the device, when entering and leaving a target region. This
implicit behaviour was as if the map(tofrom:scalar-variable) clause had
been included on the target region. In OpenMP 4.5 the default behaviour is that
variables are declared firstprivate, and so the scalar variable will not be
copied back from the device. Developers who have written their applications to
rely upon the scalar variables being returned at the end of the target region
will encounter potentially difficult to diagnose application bugs.

OpenMP 4.5 Productivity, Portability, Performance 191

5 Mini-app Studies

No algorithmic changes are present between versions of the mini-apps, which
ensures that they resolve to within tolerance of a single result having executed
the same computational workload, regardless of the OpenMP implementation
or target device. The purpose of this section is not to compare the different
architectures or the algorithms, for which discussions can be found in other
literature [2]. This section is instead intended to consider the differences in
performance achieved by the different OpenMP compilers targeting the same
architecture. Developers familiar with OpenMP may expect there to be minor
variations between compiler implementations, but we aim to expose some cases
where more significant variance can be observed.

5.1 HPC Devices

The performance evaluation in this paper considers five modern HPC devices,
which feature, or will feature, in some of the largest supercomputers in the world.

Where possible, we compare OpenMP to optimised MPI and CUDA ports
of the mini-apps, allowing an objective assessment of the performance of the
OpenMP implementations compared to the best performance achievable. Sub-
sequent performance evaluation is conducted with the compilers in Table 1.

5.2 Hot and Flow

The flow mini-app3 is a 2d structured Lagrangian-Eulerian hydrodynamics
code, that explicitly solves the Euler equations using a chain of threaded kernels
executed across the computational mesh. The application contains little branch-
ing, and a minor load imbalance with the artificial viscous terms, but this does

Table 1. The HPC devices used in this performance evaluation, where Intel Xeon
Broadwell means dual socketed 22 core CPUs, POWER8 means dual socketed 10 core
CPUs, and Mem BW is the maximum benchmarked memory bandwidth [7]. The clang-
ykt compiler was built with all commits up to date 30th May 2017.

Device name Mem BW Compiler

Intel Xeon Broadwell
E5-2699 v4

120 GB/s ICC 17.0.2, GCC 6.1.0, PGI 17.3.0, CCE 8.5.7

NVIDIA K20X 180 GB/s CUDA 8.0 + GCC 4.9.3, CCE 8.5.7, clang-ykt

IBM POWER8 298 GB/s XL 13.1.5, GCC 6.1.0, PGI 17.3.0

Intel Xeon Phi Knights
Landing 7210

440 GB/s ICC 17.0.2, GCC 6.1.0

NVIDIA P100 500 GB/s CUDA 8.0 + GCC 4.9.3, CCE 8.5.7, clang-ykt

3 https://github.com/uob-hpc/flow.

https://github.com/uob-hpc/flow

192 M. Martineau and S. McIntosh-Smith

not generally affect performance. Due to the low computational intensity and
regular mesh access, flow is memory bandwidth bound.

The hot mini-app4 is a 2d heat diffusion code, that uses the Conjugate
Gradient method to implicitly solve the sparse linear system. The application is
memory bandwidth bound, and comprised of short linear algebra kernels, includ-
ing a sparse matrix-vector multiplication and several reductions. The kernels are
highly data parallel, with low register usage and no branching.

Both applications are optimised to achieve roughly 70–80% of achievable
memory bandwidth in the best case on the target architecture.

Porting: Both applications are comprised of multiple simple kernels, and
parallelisation of those kernels was achieved with #pragma omp parallel
for, or #pragma omp target teams distribute parallel for for
offloading. Data allocations are handled by the arch project’s data alloca-
tion wrappers, so a simple overload of the wrappers for OpenMP 4 meant data
could be mapped into the device data environment at allocation, as described
in Sect. 3.1. The reduction clause was required in both applications, and,
due to the specification implicitly mapping the scalar reduction variable as
firstprivate, it was necessary to explicitly map the reduction variable as
tofrom to copy the results back from the device. Also, vectorisation was forced
on the CPUs and KNL using the #pragma omp simd clause on the inner loops.

A major limitation with the current specification is that it was not yet pos-
sible to express CPU and GPU parallelism at the same time for our mini-apps,
meaning that multiple instances of the directives were required, as discussed in
Sect. 4.2. For the GPU ports, we noted that using collapse on the outer loops
of the applications’ kernels resulted in significantly reduced performance when
compiling with CCE, for instance hot’s runtime worsened from 44 s to 49 s on
the P100. This is due to the way that CCE maps the iteration space to the
GPU’s threads, but serves as a case where the collapse clause can have unex-
pected negative influences on performance. The effort to port both applications
was minimal, and amounted to roughly two additional lines of code per kernel.

Problem Specification: The mesh size for both applications is 40002, a large
but realistic mesh size, and each application starts with a timestep of 1.0×10−2s
for the two test cases. The hot test case sets up a high density, high temperature
region next to a low density, low temperature region. The flow test case sets up
a two-dimensional interpretation of the sod shock problem, where an immobile
square of high density, high energy fluid is surrounded by low density material.

Intel CPU and KNL Results: The Intel Xeon Broadwell (BW) results in
Figs. 1 and 2 were highly consistent between compilers. Intel and flat MPI per-
formed the best, and the largest performance difference was seen with GCC,
which required 1.03x the runtime compared to the Intel compiler.
4 https://github.com/uob-hpc/hot.

https://github.com/uob-hpc/hot

OpenMP 4.5 Productivity, Portability, Performance 193

Fig. 1. The results of running hot on the target HPC devices. Devices are ordered
from least to greatest achievable memory bandwidth.

On the KNL, application data was placed in MCDRAM, improving the run-
time by roughly 5.0x compared to DRAM, as both applications are memory
bandwidth bound. The MPI results are shown for running 128 ranks, whereas the
OpenMP implementations performed better when using all four hyperthreads for
256 threads total. OpenMP hot experienced a 1.11x performance penalty com-
pared to flat MPI, due to improved decomposition of the problem into cache
seen with the MPI implementation. For flow, the difference was not significant.

OpenMP hot compiled with GCC suffered a 1.21x performance penalty com-
pared to Intel, while OpenMP flow compiled with GCC suffered a penalty
of 4.28x. Disabling vectorisation with the Intel compiler resulted in a runtime
equivalent to GCC, suggesting that a lack of vectorisation accounts for the per-
formance difference, in spite of the use of the simd directive.

POWER8 Results: On the POWER8 CPU we found 160 threads, or 8 Simul-
taneous Multi-Threads (SMT) per core, was optimal, and OpenMP compiled
with XL was fastest for hot, while flat MPI was fastest for flow. GCC expe-
riences a significant performance penalty of roughly 1.25x compared to XL for
both hot and flow, which is significantly more than seen with the Intel CPU.

NVIDIA GPU Results: The CUDA results included for the NVIDIA GPUs
represent an upper bound on performance for each mini-app. On the K20X, CCE

194 M. Martineau and S. McIntosh-Smith

Fig. 2. The results of running flow on the target HPC devices. Devices are ordered
from least to greatest achievable memory bandwidth.

achieved impressive performance for flow, requiring only 1.10x the runtime of
CUDA, while hot was slightly less efficient at 1.20x compared to CUDA. When
compiled with Clang, flow and hot both required 1.17x the runtime of CUDA.
The performance penalty for OpenMP compared to CUDA was at worst 1.20x,
which is an impressive result and would be tolerable for the improvements to
portability and productivity offered by the programming model.

We observed a larger performance difference on the newer P100 GPUs, with
the worst case being flow at 1.63x, but we feel that this is likely a perfor-
mance bug given the results with other combinations, and continue to investigate
the root cause. Apart from this result, the performance difference increased to
around 1.25x to 1.30x, a significantly higher variation than seen on the CPU.

5.3 Neutral

The neutral mini-app5 is a new Monte Carlo Neutral Particle Transport appli-
cation that tracks particle histories across a 2d structured mesh [8,9]. The appli-
cation has high register utilisation, and inherently suffers from load imbalance at
the intra and inter node level. The algorithm parallelises over the list of particle
histories, each of which is in principal independent. Particle histories exhibit a
dependency on the computational mesh, to store tallies of the energy deposited

5 https://github.com/uob-hpc/neutral.

https://github.com/uob-hpc/neutral

OpenMP 4.5 Productivity, Portability, Performance 195

throughout the space, which means the application suffers from random memory
access and sensitivity to memory latency. At this stage in the mini-app’s devel-
opment, there is not an optimal MPI implementation, and so results for MPI
are excluded.

Porting: Given that there is a single computational kernel, the porting process
was straightforward and fast for all target architectures, following the same app-
roach as for flow and hot. The only challenge when porting the application
was that it depends upon a library, Random123 [10], for random number gener-
ation (RNG), which meant it was necessary to persuade the implementations to
compile that code correctly. A load imbalance between threads is caused by the
varying amounts of work for each history, and so we used schedule(guided)
to optimise this, generally achieving a 5–10% improvement.

When targeting NVIDIA GPUs, adding simd to the combined construct, as
#pragma omp target teams distribute parallel for simd, was essen-
tial to achieve good performance with CCE, improving the result from 211 s to 11 s
on the P100. The reason that this directive is required is that CCE relies upon the
kernel being vectorisable, and this particular kernel was so complex it needed the
simd directive as a guarantee that there were no dependencies.

Problem Specification: The test case chosen for the neutral mini-app is
the center square problem, where there is a region of high density material in the
center of a low density space. A square neutron source is placed in the bottom
left of the space, with all particles having a starting energy of 1 MeV, considering
particle histories for 10 timesteps of length 1.0 × 10−7s.

Intel CPU and KNL Results: The results shown in Fig. 3 are significantly
less consistent between the compiler vendors than seen with either flow or hot.
CCE required 1.18x the runtime of Intel and GCC required 1.98x the runtime,
on the Intel Xeon Broadwell, which is significantly less optimal than we would
have expected. The PGI compiler achieved worse than serial performance and,
through the use of the Minfo flag, we determined it was transforming the atomic
operations into critical regions. The application invokes billions of atomic
operations, and so this serialisation is highly inefficient. We tested the issue
further by removing the atomic operation, and the PGI result improved.

On the KNL we observed a 1.43x performance penalty for using GCC com-
pared to the Intel compilers. We know that vectorisation is not the cause in this
instance, and hypothesise that this is due to the way that registers are allocated
by the compilers, which we know the application is sensitive too.

196 M. Martineau and S. McIntosh-Smith

Fig. 3. The results of running neutral on the target HPC devices. Devices are ordered
from least to greatest achievable memory bandwidth.

POWER8 Results: As with the other mini-apps, we observed a significant per-
formance penalty for compiling with GCC on the POWER8, of 1.29x compared
to the XL compiler. Interestingly, the compiler has achieved a better relative
result on the POWER8 than it did on the Intel hardware when compared to the
Intel compiler. It will be important future work to understand the root cause of
this difference, and determine whether it can be easily optimised.

NVIDIA GPU Results: On the K20X, CCE suffered a 1.92x performance
penalty compared to CUDA, while Clang suffered a 2.30x performance penalty,
which is significantly less efficient than for the other mini-apps. As previously
discussed, the neutral mini-app uses a single large computational kernel that
requires many registers. When compiling CUDA for the P100, ptxas recognised
79 registers for CUDA, and when executing the OpenMP 4 code compiled with
Clang, nvprof showed that 224 registers were used during the execution of the
main computational kernel. This means that CUDA was 2.9x more efficient
allocating registers, which is a considerable difference that we expect would be
even worse for production applications with extensive Physics capabilities.

We could see that the occupancy achieved by CUDA was on average 37%,
which is an acceptable level when targeting the P100 with this application. When
compiled with Clang, the occupancy drops to 12%, demonstrating that CUDA is
achieving 3.08x the occupancy on the P100, which likely explains the majority of

OpenMP 4.5 Productivity, Portability, Performance 197

the 3.19x difference in overall runtime. The best performance that we achieved
with Clang was with the number of registers restricted to 128 for both GPUs,
which was the default behaviour for CCE.

5.4 Performance Discussion

The productivity and portability of OpenMP were highly consistent between
the mini-apps, however, the performance was not. By far the most consistent
was hot, which is intuitive as it is the simplest application, and hides many
implementation inefficiencies behind long streaming data accesses. The flow
mini-app exposed increased complexity, which meant that there was greater
variation in the performance between the implementations. Also, it demonstrated
that if you are not able to achieve vectorisation on the KNL, you may encounter
significant performance issues, and the standard techniques failed for GCC in
this case. The CCE and Clang compilers achieved impressive consistency for
both applications on the NVIDIA GPUs, and we expect maturity to improve
this even further in the future.

Although neutral has fewer kernels than the other two mini-apps, that
kernel is long and complex, and the implementations performed significantly less
consistently as a consequence. All architectures suffered from high variations in
performance, and some did not emit hardware atomics correctly. On the GPU the
primary issue was register pressure, which is actually quite a positive outcome,
as we feel that this issue should be resolvable in the long term, and we expect
that the implementations will be able to deliver significantly better performance
relative to CUDA in the near future.

6 Future Work

It will be important to continue this research in the future to include new
OpenMP 4 compilers, as well as tracking improvements to the existing implemen-
tations. As the arch project expands it will be insightful to extend the research
to consider diverse applications, for instance stressing the task parallel features
of the specification.

7 Related Work

An annual hackathon event for the improvement of OpenMP is hosted by IBM,
where a live porting exercise is performed involving multiple US labs [11]. As
an outcome of the 2015 hackathon, Karlin et al. [12] ported the applications
Kripke, Cardioid, and LULESH to OpenMP, demonstrating some issues with
the interoperability with some features of C++, and achieving performance with
LULESH within 10% of an equivalent CUDA port.

198 M. Martineau and S. McIntosh-Smith

There are many examples of studies that have looked at performance, porta-
bility and productivity of OpenMP with one or more applications [2,13–16],
generally demonstrating that OpenMP is capable of highly productive applica-
tion porting and high performance tuning. Other important studies have looked
at the differences between OpenMP and other parallel programming models
[6,17]. Lopez et al. [18], for instance, explored the ability for OpenMP 4.5 and
OpenACC to achieve performance portability, and demonstrated success with
multiple test cases, showing only minor performance differences between the
two directive-based models.

8 Conclusion

The OpenMP specification has been designed to provide performance and porta-
bility, with some productivity enhancements compared to other models. Through
this research we have discovered that performance and portability are certainly
possible to an extent, but some aspects are limited by the specification and dif-
ferences between compiler implementations. For instance, there have been few
improvements to the standardisation of compiler implementations, which contin-
ues to preclude the writing of a single homogeneous directive to target multiple
heterogeneous devices.

While porting a number of applications, we found that coupling data alloca-
tion with moving data onto the device reduces the amount of duplicate code, and
ensures that data sizes are kept consistent, reducing bugs and increasing produc-
tivity. Also, relying on the implicit behaviour of OpenMP 4.0 for mapping scalar
variables into a target region, as map(tofrom: scalar-variable), can
result in bugs when moving to OpenMP 4.5 compliant compilers.

Application developers who are used to the consistent performance deliv-
ered by the mature OpenMP implementations targeting CPU need to be aware
that the implementations targeting other architectures are less mature. We even
demonstrated that performance on the IBM POWER8 CPU is not necessarily
consistent between implementations, likely due to maturity as well. This does not
mean that the specification is not capable of enabling high performance on those
architectures, but that the compiler implementations need time to improve.

The performance results we observed on modern HPC devices showed that,
for applications with memory bandwidth bound kernels, OpenMP could gener-
ally achieve within 20–30% of the best possible performance. For the latency-
bound application, the overheads introduced by the OpenMP implementations
had a significant impact when offloading, and more variance was seen between
compilers. Register pressure posed a significant issue for the neutral mini-
app, which is something we expected from previous research efforts. It is not yet
clear how to resolve the register issues, but it will be an important step towards
achieving optimal OpenMP implementations.

OpenMP 4.5 Productivity, Portability, Performance 199

Acknowledgements. The authors would like to thank the EPSRC for funding this
research. We would also like to thank the Intel Parallel Computing Center (IPCC) at
the University of Bristol for access to Intel hardware, and the EPSRC GW4 Tier 2
Isambard service for access to phase 1 of the Isambard supercomputer.

References

1. Heroux, M., Doerfler. D., et al.: Improving performance via mini-applications, San-
dia National Laboratories, Technical report SAND2009-5574 (2009)

2. Martineau, M., McIntosh-Smith, S., Gaudin, W.: Evaluating OpenMP 4.0’s effec-
tiveness as a heterogeneous parallel programming model. In: Proceedings of 21st
International Workship on High-Level Parallel Programming Models and Support-
ive Environments, HIPS 2016 (2016)

3. Eichenberger, A.E., et al.: OMPT: An OpenMP tools application programming
interface for performance analysis. In: Rendell, A.P., Chapman, B.M., Müller, M.S.
(eds.) IWOMP 2013. LNCS, vol. 8122, pp. 171–185. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40698-0 13

4. Antao, S.F., Bataev, A., Jacob, A.C., Bercea, G.T., Eichenberger, A.E., Rokos,
G., Martineau, M., Jin, T., Ozen, G., Sura, Z., Chen, T., Sung, H., Bertolli, C.,
O’Brien, K.: Offloading support for OpenMP in Clang and LLVM. In: Proceedings
of the Third Workshop on LLVM Compiler Infrastructure in HPC, LLVM-HPC
2016, Piscataway, NJ, USA, pp. 1–11. IEEE Press (2016). https://doi.org/10.1109/
LLVM-HPC.2016.6

5. Mellor-Crummey, J., Missing pieces in the OpenMP ecosystem. In: Keynote at
International Workshop on OpenMP (2015)

6. Martineau, M., McIntosh-Smith, S., Boulton, M., Gaudin, W.: An evaluation of
emerging many-core parallel programming models. In: Proceedings of the 7th Inter-
national Workshop on Programming Models and Applications for Multicores and
Manycores, PMAM 2016 (2016)

7. Deakin, T., Price, J., et al.: BabelStream (UoB HPC Group) (2017). https://
github.com/UoB-HPC/BabelStream

8. Lewis, E., Miller, W.: Computational Methods of Neutron Transport. Wiley,
New York (1984)

9. Gentile, N.: Monte Carlo Particle Transport: Algorithm and Performance
Overview. Lawrence Livermore, Livermore (2005)

10. Salmon, J.K., Moraes, M.A., Dror, R.O., Shaw, D.E.: Parallel randomnumbers: as
easy as 1, 2, 3. In: 2011 International Conference for High Performance Computing,
Networking, Storageand Analysis (SC), pp. 1–12. IEEE (2011)

11. Draeger, E.W., Karlin, I., Scogland, T., Richards, D., Glosli, J., Jones, H., Poliakoff,
D., Kunen, A.: OpenMP 4.5 IBM November 2015 Hackathon: current status and
lessons learned, Technical report LLNL-TR-680824, Lawrence Livermore National
Laboratory, Technical report (2016)

12. Karlin, I., et al.: Early experiences porting three applications to OpenMP 4.5. In:
Maruyama, N., Supinski, B.R., Wahib, M. (eds.) IWOMP 2016. LNCS, vol. 9903,
pp. 281–292. Springer, Cham (2016). doi:10.1007/978-3-319-45550-1 20

13. Bercea, G., Bertolli, C., Antao, S., Jacob, A., et al.: Performance analysis of
OpenMP on a GPU using a coral proxy application. In: Proceedings of the 6th
International Workshop on Performance Modeling, Benchmarking, and Simulation
of High Performance Computing Systems, p. 2. ACM (2015)

http://dx.doi.org/10.1007/978-3-642-40698-0_13
https://doi.org/10.1109/LLVM-HPC.2016.6
https://doi.org/10.1109/LLVM-HPC.2016.6
https://github.com/UoB-HPC/BabelStream
https://github.com/UoB-HPC/BabelStream
http://dx.doi.org/10.1007/978-3-319-45550-1_20

200 M. Martineau and S. McIntosh-Smith

14. Lin, P.-H., Liao, C., Quinlan, D.J., Guzik, S.: Experiences of using the OpenMP
accelerator model to Port DOE stencil applications. In: Terboven, C., Supinski,
B.R., Reble, P., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2015. LNCS, vol.
9342, pp. 45–59. Springer, Cham (2015). doi:10.1007/978-3-319-24595-9 4

15. Bertolli, C., Antao, S., Bercea, G.-T., et al.: Integrating GPU support for OpenMP
offloading Directives into Clang. In: Proceedings of the Second Workshop on the
LLVM Compiler Infrastructure in HPC, LLVM 2015 (2015)

16. Hart, A.: First experiences porting a parallel application to a hybrid supercomputer
with OpenMP4.0 device constructs. In: Terboven, C., Supinski, B.R., Reble, P.,
Chapman, B.M., Müller, M.S. (eds.) IWOMP 2015. LNCS, vol. 9342, pp. 73–85.
Springer, Cham (2015). doi:10.1007/978-3-319-24595-9 6

17. Wienke, S., Terboven, C., Beyer, J.C., Müller, M.S.: A pattern-based comparison of
OpenACC and OpenMP for accelerator computing. In: Silva, F., Dutra, I., Santos
Costa, V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 812–823. Springer, Cham
(2014). doi:10.1007/978-3-319-09873-9 68

18. Lopez, M.G., Larrea, V.V., Joubert, W., Hernandez, O., Haidar, A., Tomov, S.,
Dongarra, J.: Towards achieving performance portability using directives for accel-
erators. In: Proceedings of the Third International Workshop on Accelerator Pro-
gramming Using Directives, WACCPD, 162016 (2016)

http://dx.doi.org/10.1007/978-3-319-24595-9_4
http://dx.doi.org/10.1007/978-3-319-24595-9_6
http://dx.doi.org/10.1007/978-3-319-09873-9_68

	The Productivity, Portability and Performance of OpenMP 4.5 for Scientific Applications Targeting Intel CPUs, IBM CPUs, and NVIDIA GPUs
	1 Introduction
	2 Contributions
	3 Productivity
	3.1 Structured and Unstructured Data Regions
	3.2 Copying Members of Structures
	3.3 Tools

	4 Portability
	4.1 OpenMP Compilers
	4.2 Homogeneous Directives
	4.3 OpenMP 4.0 to OpenMP 4.5

	5 Mini-app Studies
	5.1 HPC Devices
	5.2 Hot and Flow
	5.3 Neutral
	5.4 Performance Discussion

	6 Future Work
	7 Related Work
	8 Conclusion
	References

