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Abstract We study propagation of traveling waves in a blood filled elastic artery

with an axially symmetric dilatation (an idealized aneurysm) in long-wave approxi-

mation.The processes in the injured artery are modelled by equations for the motion

of the wall of the artery and by equation for the motion of the fluid (the blood). For

the case when balance of nonlinearity, dispersion and dissipation in such a medium

holds the model equations are reduced to a version of the Korteweg-deVries-Burgers

equation with variable coefficients. Exact travelling-wave solution of this equation

is obtained by the modified method of simplest equation where the differential equa-

tion of Riccati is used as a simplest equation. Effects of the dilatation geometry on

the travelling-wave profile are studied.

1 Introduction

The theoretical investigation of pulse wave propagation in human arteries has a long

history. Over the past decade the scientific efforts have been concentrated on theoret-

ical investigations of nonlinear wave propagation through the blood in arteries with

a variable radius. Clearing how local imperfections appeared in an artery can disturb

the blood flow can help in predicting the nature and main features of various cardio-

vascular diseases, such as stenoses and aneurysms. In order to study propagation of

nonlinear waves in a stenosed artery, Tay and co-authors treated the artery as a homo-
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geneous, isotropic and thin-walled elastic tube with an axially symmetric stenosis.

The blood was modeled as an incompressible inviscid fluid [1], Newtonian fluid with

constant viscosity [2], and Newtonian fluid with variable viscosity [3]. Using a spe-

cific perturbation method, in a long-wave approximation the authors obtained the

forced Korteweg-de Vries (KdV) equation with variable coefficients [1], forced per-

turbed KdV equation with variable coefficients [2], and forced Korteweg-de Vries-

Burgers (KdVB) equation with variable coefficients as evolution equations [3]. The

same theoretical frame was used in [4, 5] to examine nonlinear wave propagation in

an artery with a variable radius. Considering the artery as a long inhomogeneous pre-

stretched thin elastic tube with an imperfection (presented at large by an unspecified

function f (z)), and the blood as an incompressible inviscid fluid the authors obtained

again the forced KdV equation with variable coefficients. Apart from solitary prop-

agation waves in such a system, in [5], possibility of periodic waves was discussed

at appropriate initial conditions. In this text we shall focus on consideration of the

blood flow through an artery with a local dilatation (an aneurysm). The aneurysm is

a localized, blood-filled balloon-like bulge in the wall of a blood vessel [6]. In many

cases, its rupture causes massive bleeding with associated high mortality. Motivated

by investigations in [1–5], the main goal of this paper is to investigate effects of the

aneurismal geometry and the blood characteristics on the propagation of nonlinear

waves through an injured artery. For that purpose, we use a reductive perturbation

method to obtain the nonlinear evolution equation. Exact solution of this equation is

obtained by using the modified method of simplest equation. Recently, this method

has been widely used to obtain general and particular solutions of economic, biolog-

ical and physical models, represented by partial differential equations. The paper is

organized as follows. A brief description about the derivation of equations governing

the blood flow trough a dilated artery is presented in Sect. 2. In Sect. 3 we derive a

basic evolution equation in long-wave approximation. A traveling wave solution of

this equation is obtained in Sect. 4. Numerical simulations of the solution are pre-

sented in Sect. 5. The main conclusions based on the obtained results are summarized

in Sect. 6 of the paper.

2 Mathematical Formulation of the Basic Model

It is well-known that the pulsate motion of blood causes wave propagation in arter-

ies. In order to model the interaction of the blood with its container we shall con-

sider two types equations which represent (i) the motion of the arterial wall and

(ii) the motion of the blood. To model such a medium we shall treat the artery as

a thin-walled incompressible prestretched hyperelastic tube with a localized axially

symmetric dilatation. We shall assume the blood to be an incompressible viscous

fluid. A brief formulation of the above-mentioned equations follows in the next two

subsections.
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2.1 Equation of the Wall

It is well-known, that for a healthy human, the systolic pressure is about 120 mm

Hg and the diastolic pressure is 80 mm Hg. Thus, the arteries are initially subjected

to a mean pressure, which is about 100 mm Hg. Moreover, the elastic arteries are

initially prestretched in an axial direction. This feature minimizes its axial defor-

mations during the pressure cycle. Experimental studies show that the longitudinal

motion of arteries is very small [7], and it is due mainly to strong vascular tethering

and partly to the predominantly circumferential orientation of the elastin and colla-

gen fibers. Taking into account these observations, and following the methodology

applied in [1–4], we consider the artery as a circularly cylindrical tube with radius

R0. We assume that such a tube is subjected to an initial axial stretch 𝜆z and a uni-

form (mean) inner pressure P∗
0(Z) which cause relatively high circumferential and

axial initial stresses. On the other hand, the pressure deviation in the course of peri-

odic motion of heart is about ±20 mm Hg. Then the dynamical deformation due to

this pressure deviation can be assumed to be smaller than the initial deformation.

Therefore, the theory of small deformations superimposed on initial static deforma-

tion can be used in studying the wave propagation in such a complex medium. Under

the action of such a variable pressure the position vector of a generic point on the

tube can be described by

𝐫𝟎 = [r0 + f ∗(z∗)]𝐞𝐫 + z∗𝐞𝐳, z∗ = 𝜆zZ∗
(1)

where 𝐞𝐫 and 𝐞𝐳 are the unit basic vectors in the cylindrical polar coordinates, 𝐫𝟎 is the

deformed radius at the origin of the coordinate system, Z∗
is axial coordinate before

the deformation, z∗ is the axial coordinate after static deformation and f ∗(z∗) is a

function describing the dilatation geometry. We shall specify the concrete form of

f ∗(z∗) later. Upon the initial static deformation, we shall superimpose only a dynam-

ical radial displacement u∗(z∗, t∗), neglecting the contribution of axial displacement

because of the experimental observations, given above. Then, the position vector 𝐫
of a generic point on the tube is

𝐫 = [r0 + f ∗(z∗) + u∗]𝐞𝐫 + z∗𝐞𝐳 (2)

The arc-lengths along meridional and circumferential curves respectively, are:

dsz = [1 + (f ∗′ + 𝜕u∗
𝜕z∗

)2]1∕2dz∗, ds
𝜃
= [r0 + f ∗ + u∗]d𝜃 (3)

In this way, the stretch ratios in the longitudinal and circumferential directions in

final configuration are

𝜆1 = 𝜆z𝛬, 𝜆2 =
1
R0

(r0 + f ∗ + u∗) (4)
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where

𝛬 = [1 + (f ∗′ + 𝜕u∗
𝜕z∗

)2]1∕2 (5)

The notation ‘′’ denotes the differentiation of f ∗ with respect to z∗. Then, the unit

tangent vector 𝐭 along the deformed meridional curve and the unit exterior normal

vector 𝐧 to the deformed tube are

𝐭 =
(f ∗′ + 𝜕u∗

𝜕z∗
)𝐞𝐫 + 𝐞𝐳

𝛬
, 𝐧 =

𝐞𝐫 − (f ∗′ + 𝜕u∗

𝜕z∗
)𝐞𝐳

𝛬
(6)

According to the assumption made about material incompressibility the following

restriction holds:

h∗ = H
𝜆1𝜆2

(7)

where H and h∗ are the wall thicknesses before and after deformation, respectively,

and 𝜆1 and 𝜆2 are the current stretch ratios in longitudinal and circumferential direc-

tions, respectively. For hyperelastic materials, the tensions in longitudinal and cir-

cumferential directions have the form:

T1 =
𝜇
∗H
𝜆2

𝜕𝛱

𝜕𝜆1
, T2 =

𝜇
∗H
𝜆1

𝜕𝛱

𝜕𝜆2
(8)

where 𝜇
∗
𝛱 is the strain energy density function of wall material as 𝜇

∗
is the mate-

rial shear modulus. Although the elastic properties of an injured wall section differ

from those of the healthy part, here, we assume that the wall is homogeneous, i.e.

𝜇
∗

is a constant through the axis z. A detailed analysis of the forces acting on an ele-

ment of the artery including a free-body diagram can be found in [8, 9]. Finally,

according to the second Newton’s law, the equation of radial motion of a small

tube element placed between the planes z∗ = const, z∗ + dz∗ = const, 𝜃 = const and

𝜃 + d𝜃 = const obtains the form:

− 𝜇
∗

𝜆z

𝜕𝛱

𝜕𝜆2
+ 𝜇

∗R0
𝜕

𝜕z∗

{
(f ∗′ + 𝜕u∗∕𝜕z∗)

𝛬

𝜕𝛱

𝜕𝜆1

}
+ P∗

H
(r0 + f ∗ + u∗)𝛬 = 𝜌0

R0

𝜆z

𝜕
2u∗
𝜕t∗2

(9)

where t∗ is the time parameter, P∗
is the inner blood pressure and 𝜌0 is the mass

density of the tube material.

2.2 Equation of the Fluid

Experimental studies over many years demonstrated that blood behaves as an incom-

pressible non-Newtonian fluid because it consists of a suspension of cell formed

elements in a liquid well-known as blood plasma. However, in the larger arteries
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(with a vessel radius larger than 1 mm) it is plausible to assume that the blood has an

approximately constant viscosity, because the vessel diameters are essentially larger

than the individual cell diameters. Thus, in such vessels the non-Newtonian behavior

becomes insignificant and the blood can be considered as a Newtonian fluid. Here,

for our convenience we assume a ‘hydraulic approximation’ and apply an averaging

procedure with respect to the cross-sectional area to the Navier-Stokes equations.

Then, we obtain

𝜕A∗

𝜕t∗
+ 𝜕

𝜕z∗
(A∗

𝜔
∗) = 0 (10)

𝜕𝜔
∗

𝜕t∗
+ 𝜔

∗ 𝜕𝜔
∗

𝜕z∗
+ 1

𝜌f

𝜕P∗

𝜕z∗
=

𝜇f

𝜌f

𝜕
2
𝜔
∗

𝜕z∗2
+

2𝜇f

r2f 𝜌f
(r
𝜕V∗

z

𝜕r
) ∣r=rf (11)

where A∗
denotes the inner cross-sectional area, i.e., A∗ = 𝜋r2f as rf = r∗0 + f ∗ + u∗ is

the final radius of the tube after deformation, 𝜔
∗

is the averaged axial fluid velocity,

V∗
z is the velocity component in the axial direction, 𝜌f is the fluid density and 𝜇f is

the dynamical viscosity of the fluid. The substitution of A∗
in Eq. (10) leads to

2𝜕u
∗

𝜕t∗
+ 2𝜔∗[f ∗′ + 𝜕u∗

𝜕z∗
] + [r0 + f ∗(z∗) + u∗]𝜕𝜔

∗

𝜕z∗
= 0 (12)

We introduce the following non-dimensional quantities

t∗ = (
R0

c0
)t, z∗ = R0z, u∗ = R0u, f ∗ = R0f , 𝜔

∗ = c0𝜔, 𝜇f = c0R0𝜌f 𝜈, (13)

P∗ = 𝜌f c20p, r0 = R0𝜆𝜃, c20 =
𝜇
∗H

𝜌f R0
, m =

𝜌0H
𝜌f R0

,V∗
z = c0Vz, r = R0x

where c0 is the Moens-Korteweg velocity, 𝜈 is the kinematic viscosity of the fluid

and 𝜆
𝜃

is the initial stretch ratio in a circumferential direction. We put (13) in Eqs.

(12), (11) and (9), respectively. Thus the final model takes the form:

2𝜕u
𝜕t

+ 2𝜔[f ′ + 𝜕u
𝜕z

] + [𝜆
𝜃
+ f (z) + u]𝜕𝜔

𝜕z
= 0 (14)

𝜕𝜔

𝜕t
+ 𝜔

𝜕𝜔

𝜕z
+

𝜕p
𝜕z

= 𝜈
𝜕
2
𝜔

𝜕z2
+ 2𝜈

(𝜆
𝜃
+ f + u)2

(
𝜕Vz

𝜕x
) ∣x=𝜆

𝜃
+f+u (15)

p = m
𝜆z(𝜆𝜃 + f (z) + u)

𝜕
2u
𝜕t2

+ 1
𝜆z(𝜆𝜃 + f (z) + u)

𝜕𝛱

𝜕𝜆2

− 1
(𝜆

𝜃
+ f (z) + u)

𝜕

𝜕z
(
f ′ + 𝜕u∕𝜕z

𝛬
)𝜕𝛱
𝜕𝜆1

+ 𝜈
(f ′ + 𝜕u∕𝜕z)𝜔
𝜆
𝜃
+ f + u

(16)
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3 Derivation of the Evolution Equation in a Long-wave
Approximation

In this section we shall use the long-wave approximation to study the propagation

of waves in a fluid-solid structure system, presented by Eqs. (14)–(16). In the long-

wave limit, it is assumed that the variation of radius along the axial coordinate is

small compared with the wave length. As this condition is valid for large arter-

ies, the reductive perturbation method [10] can be applied to study the asymptotic

behaviour of dispersive waves in the medium. According to this method an appro-

priate scale transformation with a perturbation expansion of the dependent variables

is introduced. The choice of coordinate transformation (known also as stretching)

depends on the dispersion relationship. The dispersion relationship for such systems

is derived, e.g., in [8, 9]. According to this relationship the following stretched coor-

dinates are introduced

𝜉 = 𝜖
1∕2(z − ct), 𝜏 = 𝜀

3∕2z (17)

where 𝜀 appears in the dispersion relationship. It is a small parameter (𝜀 = r∕l ≺ 1,

where l is the characteristic wavelength) measuring the weakness of dispersion. In

Eq. (17) c is the phase velocity of the harmonic wave propagation in the medium in

the long-wave limit. Then, z = 𝜀
−3∕2

𝜏, and f (𝜀−3∕2𝜏) = 𝜒(𝜉, 𝜏). Thus, the variables

u, 𝜔 and p are functions of the variables (𝜉, 𝜏) and the small parameter 𝜀. Taking into

account the effect of dilatation, we assume f to be of order of 5/2, i.e.

𝜒(𝜉, 𝜏) = 𝜀h(𝜏) (18)

In addition, taking into account the effect of viscosity, the order of viscosity is

assumed to be O(1∕2), i.e.

𝜈 = 𝜀
1∕2

𝜈 (19)

The last assumption ensures balance of nonlinearity, dispersion and dissipation in

the system. We introduce also the following perturbation expansions of the variables

u, 𝜔 and p in term of 𝜀

u = 𝜀u1 + 𝜀
2u2 + … , 𝜔 = 𝜀𝜔1 + 𝜀

2
𝜔2 + … ,

Vz = 𝜀Vz1 + 𝜀
2Vz2 + … , p = p0 + 𝜀p1 + 𝜀

2p2 + … , (20)

where u1 … p2 are some unknown functions of the stretched coordinate (𝜉, 𝜏). To

close the system (14)–(16) p must be presented as a function of u. Therefore we

expand the other quantities in Eq. (16) in asymptotic series as follows:
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𝜆1 ≅ 𝜆z, 𝜆2 = 𝜆
𝜃
+ 𝜀(u1 + h) + 𝜀

2(u2 + (u1 + h)2) + … ,

1
𝜆
𝜃
𝜆z

𝜕𝛱

𝜕𝜆1
= 1

𝜆
𝜃
𝜆z

𝜕𝛱

𝜕𝜆z
= 𝛾0 (21)

1
𝜆
𝜃
𝜆z

𝜕𝛱

𝜕𝜆2
= 𝛽0 + 𝛽1(u1 + h)𝜀 + (𝛽1u2 + 𝛽2(u1 + h)2)𝜀2 + …

where

𝛽0 =
1

𝜆
𝜃
𝜆z

𝜕𝛱

𝜕𝜆
𝜃

, 𝛽1 =
1

𝜆
𝜃
𝜆z

𝜕
2
𝛱

𝜕𝜆
2
𝜃

, 𝛽2 =
1

2𝜆
𝜃
𝜆z

𝜕
3
𝛱

𝜕𝜆
3
𝜃

(22)

Substituting (17)–(21) into Eqs. (14)–(16), we obtain the following differential sets:

O (𝜀) equations

− 2c
𝜕u1
𝜕𝜉

+ 𝜆
𝜃

𝜕𝜔1
𝜕𝜉

= 0, −c
𝜕𝜔1
𝜕𝜉

+
𝜕p1
𝜕𝜉

= 0, p1 = 𝛾1(u1 + h) (23)

O (𝜀
2
) equations

− 2c
𝜕u2
𝜕𝜉

+ 2𝜔1
𝜕u1
𝜕𝜉

+ 𝜆
𝜃

𝜕𝜔2
𝜕𝜉

+ [u1 + h]
𝜕𝜔1
𝜕𝜉

+ 𝜆
𝜃

𝜕𝜔1
𝜕𝜏

= 0

−c
𝜕𝜔2
𝜕𝜉

+ 𝜔1
𝜕𝜔1
𝜕𝜉

+
𝜕p2
𝜕𝜉

+
𝜕p1
𝜕𝜏

− 𝜈
𝜕
2
𝜔1

𝜕𝜉2
= 0 (24)

p2 = ( mc
2

𝜆
𝜃
𝜆z

− 𝛾0)
𝜕
2u1
𝜕𝜉2

+ 𝛾1u2 + 𝛾2(u1 + h)2

From the solution of Eqs. (23), we obtain

u1 = U(𝜉, 𝜏), 𝜔1 =
2c
𝜆
𝜃

U, p1 =
2c2
𝜆
𝜃

U + 𝛾1h (25)

where U(𝜉, 𝜏) is an unknown function whose governing equation will be obtained

later. The averaged axial velocity 𝜔1 in Eq. (25) is determined also by a function

depending on 𝜏. However if we consider the process in infinity content this function

can be removed. Comparing p1 in Eqs. (23) and (25) leads to the following relation-

ship 𝛾1 =
2c2

𝜆
𝜃

. We introduce (25) in Eqs. (24), and obtain

− 2c
𝜕u2
𝜕𝜉

+ 4c
𝜆
𝜃

U 𝜕U
𝜕𝜉

+ 𝜆
𝜃

𝜕𝜔2
𝜕𝜉

+ 2c𝜕U
𝜕𝜏

+ 2c
𝜆
𝜃

(U + h)𝜕U
𝜕𝜉

= 0 (26)
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− c
𝜕𝜔2
𝜕𝜉

+ 4c2

𝜆
2
𝜃

U 𝜕U
𝜕𝜉

+ 2c2
𝜆
𝜃

𝜕U
𝜕𝜏

+ 𝛾1h′ +
𝜕p2
𝜕𝜉

− 4c2

𝜆
2
𝜃

𝜈
𝜕
2U
𝜕𝜉2

= 0 (27)

p2 = ( mc
2

𝜆
𝜃
𝜆z

− 𝛾0)
𝜕
2U
𝜕𝜉2

+ 𝛾1u2 + 𝛾2U2 + 𝛾2h(𝜏)U + 𝛾2h(𝜏)2 (28)

Replacing Eq. (28) into Eq. (27), and eliminating 𝜔2 between Eqs. (26) and (27), the

final evolution equation takes the form:

𝜕U
𝜕𝜏

+ 𝜇1U
𝜕U
𝜕𝜉

− 𝜇2
𝜕
2U
𝜕𝜉2

+ 𝜇3
𝜕
3U
𝜕𝜉3

+ 𝜇4(𝜏)
𝜕U
𝜕𝜉

+ 𝜇(𝜏) = 0 (29)

where

𝜇1 =
5
2𝜆

𝜃

+
𝛾2
𝛾1
, 𝜇2 =

𝜈

𝜆
𝜃

, 𝜇3 =
m
4𝜆z

−
𝛾0
2𝛾1

, (30)

𝜇4(𝜏) = h(𝜏)( 1
2𝜆

𝜃

+
𝛾2
𝛾1
), 𝜇(𝜏) = 1

2
h′(𝜏)

and

𝛾1 = 𝛽1 −
𝛽0
𝜆
𝜃

, 𝛾2 = 𝛽2 −
𝛽1
𝜆
𝜃

(31)

Finally we have to objectify the idealized aneurysm shape. For an idealized abdom-

inal aortic aneurysm (AAA), h(𝜏) = 𝛿exp(−𝜏
2

2L2
), where 𝛿 is the aneurysm height, i.e.

𝛿 = rmax − r0, and L is the aneurysm length [11]. In order to normalize these geomet-

ric quantities, we non-dimensionalize 𝛿 by the inlet radius (diameter). Then, the non-

dimensional coefficient can be presented by 𝛿
′ = DI − 1, where DI = 2rmax∕2r0 =

Dmax∕D0 is a geometric measure of AAA, which is known as a diameter index or

a dilatation index [12]. In the same manner, the aneurysm length L is normalized

by the maximum aneurysm diameter (Dmax), i.e. l′ = L∕Dmax = 1∕SI, where SI is a

ratio, which is known as a sacular index of AAA [12]. For AAAs, Dmax varies from

3 to 8.5 cm, and L varies from 5 to 10–12 cm.

4 Analytical Solution for the Nonlinear Evolution
Equation: Application of the Modified Method of
Simplest Equation

In this section we shall derive a travelling wave solution for the variable coefficients

evolution equation, presented by Eq. (29). We shall make change of the function and

the variables in the the evolution equation with variable coefficients as follows:
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Let us introduce a new dependent variable such as U(𝜉, 𝜏) = V(𝜉, 𝜏) − ∫ 𝜇(𝜏)d𝜏.

Then Eq. (29) reduces to:

𝜕V
𝜕𝜏

+ 𝜇1V
𝜕V
𝜕𝜉

− 𝜇2
𝜕
2V
𝜕𝜉2

+ 𝜇3
𝜕
3V
𝜕𝜉3

+ [𝜇4(𝜏) − 𝜇1 ∫
𝜇(𝜏)d𝜏]𝜕V

𝜕𝜉
= 0. (32)

Now, we introduce the coordinate transformation

𝜏
′ = 𝜏, 𝜉

′ = 𝜉 −
∫

[𝜇4(𝜏) − 𝜇1 ∫
𝜇(𝜏)d𝜏]d𝜏

Then, Eq. (29) is reduced to the generalized KdVB equation:

𝜕V
𝜕𝜏′

+ 𝜇1V
𝜕V
𝜕𝜉′

− 𝜇2
𝜕
2V

𝜕𝜉′2
+ 𝜇3

𝜕
3V

𝜕𝜉′3
= 0. (33)

Next, we shall find an analytical solution of Eq. (33) applying the modified method of

simplest equation [13–16]. The short description of the modified method of simplest

equation is as follows. First of all by means of an appropriate ansatz (for an example

the traveling-wave ansatz) the solved of nonlinear partial differential equation for

the unknown function 𝜂 is reduced to a nonlinear ordinary differential equation that

includes 𝜂 and its derivatives with respect to the traveling wave coordinate 𝜁

𝛷
(
𝜂, 𝜂

𝜁
, 𝜂

𝜁𝜁
,…

)
= 0 (34)

Then the finite-series solution

𝜂(𝜁 ) =
𝜅1∑

𝜇=−𝜅
a
𝜇
[g(𝜁 )]𝜇 (35)

is substituted in (34). a
𝜇

are coefficients and g(𝜁 ) is solution of simpler ordinary

differential equation called simplest equation. Let the result of this substitution be

a polynomial of g(𝜁 ). Equation (35) is a solution of Eq. (34) if all coefficients of

the obtained polynomial of g(𝜁 ) are equal to 0. This condition leads to a system of

nonlinear algebraic equations. Each nontrivial solution of the last system leads to a

solution of the studied nonlinear partial differential equation. In addition, in order

to obtain the solution of Eq. (34) by the above method we have to ensure that each

coefficient of the obtained polynomial of g(𝜁 ) contains at least two terms. To do this

within the scope of the modified method of the simplest equation we have to balance

the highest powers of g(𝜁 ) that are obtained from the different terms of the solved

equation of kind (34). As a result of this we obtain an additional equation between

some of the parameters of the equation and the solution. This equation is called a

balance equation.

We introduce transformation of a traveling-wave type, i.e. 𝜁 = 𝜉
′ − v∗𝜏′, where

v∗ is the velocity of the traveling wave. We substitute the last expression in Eq. (33)
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and obtain:

− v∗ dV
d𝜁

+ 𝜇1V
dV
d𝜁

− 𝜇2
d2V
d𝜁2

+ 𝜇3
d3V
d𝜁3

= 0. (36)

Now we search for solution of Eq. (36) of kind V = V(𝜁 ) =
q∑

r=0
arg′, where g

𝜁
=

m∑
j=0

bjgj. Here ar and bj are parameters, and g(𝜁 ) is a solution of some ordinary

differential equation, referred to as the simplest equation. The balance equation is

q = 2m − 2. We assume that m = 2, i.e. the equation of Riccati will play the role of

simplest equation. Then

V = a0 + a1g + a2g2,
dg
d𝜁

= b0 + b1g + b2g2 (37)

The differential equation of Riccati can be written as

(
dg
d𝜁

)2

= c0 + c1g + c2g2 + c3g3 + c4g4 (38)

where

c0 = b20; c1 = 2b0b1; c2 = 2b0b2 + b21; c3 = 2b1b2; c4 = b22 (39)

and its solutions are given in [14]. The relationships among the coefficients of the

solution and the coefficients of the model are derived by solving a system of five

algebraic equations, and they are

a0 = − 1
25

−3𝜇2
2 − 30𝜇2𝜇3b1 + 75𝜇2

3b
2
1 + 25v𝜇3

𝜇1𝜇3
;

a1 = −12
5
b2(5𝜇3b1 − 𝜇2)

𝜇1
; a2 = −12

𝜇3b22
𝜇1

; b0 =
1
100

25𝜇2
3b

2
1 − 𝜇

2
2

b2𝜇2
3

(40)

Here b1, b2 are free parameters. Then substituting (40) in the first equation of (37)

the solution of the evolution equation with constant coefficients (Eq. (33)) is

V(𝜁 ) = − 1
25

−3𝜇2
2 − 30𝜇2𝜇3b1 + 75𝜇2

3b
2
1 + 25v𝜇3

𝜇1𝜇3
− (41)

−12
5
b2(5𝜇3b1 − 𝜇2)

𝜇1
g(𝜁 ) − 12

𝜇3b22
𝜇1

g(𝜁 )2

where
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g(𝜁 ) = −
b1
2b2

− Δ
2b2

tanh (
Δ(𝜁 + 𝜁0)

2
) + (42)

+
exp (Δ(𝜁+𝜁0)

2
)

2 cosh(Δ(𝜁+𝜁0)
2

) b2
Δ
+ 2C∗ exp(Δ(𝜁+𝜁0)

2
) cosh(Δ(𝜁+𝜁0)

2
)

In Eq. (42) Δ =
√

b21 − 4b0b2 > 0, and 𝜉0 and C∗
are constants of integration. The

solution of the evolution equation with variable coefficients (Eq. (29)) is

U(𝜉, 𝜏) = V(𝜁 ) −
∫

𝜇(𝜏)d𝜏 (43)

where

𝜁 = 𝜉 − v∗𝜏 −
∫

[−𝜇1 ∫
𝜇(𝜏)d𝜏 + 𝜇4(𝜏)]d𝜏 (44)

5 Numerical Findings and Discussions

It is obvious that the wave profile of the radial displacement U (Eq. (43)) depends

on the material properties of the arterial wall, on the initial deformations and on the

arterial geometry. In order to see their effect on the wave profile of U we need the

values of coefficients 𝛽0, 𝛽1, 𝛽2, 𝛾0, 𝛾1, 𝛾2, 𝜇1, 𝜇2, 𝜇3, 𝜇4(𝜏) and 𝜇(𝜏). For that purpose,

the constitutive relation for tube material must be specified. Here, unlike [1–5], we

assume that the arterial wall is an incompressible, anisotropic and hyperelastic mate-

rial. The mechanical behaviour of such a material can be defined by the strain energy

function of Fung for arteries [17]:

𝛱 = C(eQ − 1), Q = C1E2
QQ + C2E2

ZZ + 2C3EQQEZZ (45)

where EQQ and EZZ are the Green-Lagrange strains in the circumferential and axial

directions, respectively, andC,C1,C2,C3 are material constants. Taking into account

that EQQ = 1∕2(𝜆2
𝜃
− 1) and EZZ = 1∕2(𝜆2z − 1), we substitute (45) in (22), (30) and

(31), and obtain:

𝛽0 =
1
𝜆z
(
C1
2

+ C3(𝜆2z − 1))F(𝜆
𝜃
𝜆z)

𝛽1 =
1

𝜆z𝜆𝜃
(
C1
2

+ C3(𝜆2z − 1))(1 + 𝜆
2
𝜃
(
C1
2

+ C3(𝜆2z − 1)))F(𝜆
𝜃
𝜆z)

𝛽2 =
1
2𝜆z

(
C1
2

+ C3(𝜆2z − 1))2(3 + 𝜆
2
𝜃
(
C1
2

+ C3(𝜆2z − 1)))F(𝜆
𝜃
𝜆z) (46)

𝛾0 =
1
𝜆
𝜃

(
C2
2

+ C3(𝜆2𝜃 − 1))F(𝜆
𝜃
𝜆z), 𝛾1 =

1
𝜆z
(
C1
2

+ C3(𝜆2z − 1))2F(𝜆
𝜃
𝜆z),
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Fig. 1 Variations of the

radial displacement for

different values of 𝛿
′

and l′:
for 𝛿

′ = 0.5, l′ = 1.66
(Dmax = 3 cm) (the green
line in the figure); for

𝛿
′ = 1.5, l′ = 1

(Dmax = 5 cm) (the red line
in the figure); for

𝛿
′ = 2.5, l′ = 0.7

(Dmax = 7 cm) (the blue line
in the figure) (L = 5 cm)

0
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𝛾2 =
1
𝜆z
(
C1
2

+ C3(𝜆2z − 1))(
𝜆
2
𝜃

2
(
C1
2

+ C3(𝜆2z − 1))2 + 5
2
(
C1
2

+ C3(𝜆2z − 1))

− 1
𝜆
2
𝜃

)F(𝜆
𝜃
𝜆z)

where

F(𝜆
𝜃
𝜆z) = C exp(

C1
4
(𝜆2

𝜃
− 1) +

C2
4
(𝜆2z − 1) +

C3
2
(𝜆2

𝜃
− 1)(𝜆2z − 1)) (47)

The numerical values of material coefficients in (45) are as follows: C = 2.5 kPa,
C1 = 14.5,C2 = 7,C3 = 0.1. They were derived in [18] from experimental data

of human aortic wall segments applying a specific inverse technique. Assuming

the initial deformation 𝜆z = 1.5, 𝜆
𝜃
= 1.2, we obtain the following values for the

coefficients: 𝛽0 = 554.97, 𝛽1 = 5374, 𝛽2 = 27872.89, 𝛾0 = 333.36, 𝛾1 = 4911.52,
𝛾2 = 23394.55. Then, the numerical values of the coefficients in Eq. (29) are:

𝜇1 = 6.85; 𝜇2 = 2.73.10−5m2∕s; 𝜇3 = −0.017; (48)

𝜇4(𝜏) = 5.36𝛿′ exp(−𝜏2∕2l′2), ; 𝜇(𝜏) = −𝛿′𝜏 exp(−𝜏2∕2l′2)∕2l′2.

We take into account that 𝜈 = 3.28.10−6 m2∕s when calculating 𝜇2. Using these

numerical values, the travelling-wave solution of Eq. (29) for 𝜉 = 1 is plotted in

Fig. (1). In all simulations v∗ = 1,m = 0.1 and b1 = 1, b2 = 1, which are defined by

the symmetry condition at 𝜏 = 0 and 𝜏 = ±∞. In more detail Fig. 1 demonstrates the

effect of aneurysm geometrical characteristics such as the maximal aneurysm diam-

eter and in particular the aneurysmal length (DI and SI indexes of AAA defined in

the end of Sect. 3) on the wave profile of wall displacement. Taking into account that

the healthy aortic diameter is about 2 cm, various wave profiles of U are obtained for

various values of the maximal aneurysm diameter Dmax (in particular 𝛿
′

or DI). In

all these cases, a constant aneurysm length L is assumed, but l′ (in particular SI)
also varies, because Dmax involves in this ratio. As it is seen from Fig. (1) wave
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elastic drop, followed by a prompt wave elastic jump is observed in presence of arte-

rial dilatation. The graph also demonstrates that the wave amplitude increases but

wave length decreases when the maximal aneurysm diameter increases. (in particu-

lar when DI and SI of AAA increase). The increasing wave amplitude of the wall dis-

placement can lead to aneurysm rupture. Thus the obtained results are conformable

with observations in the medical practice.

6 Conclusions

Modelling the injured artery as a thin-walled prestetched, anisotropic and hypere-

lastic tube with a local imperfection (an aneurysm), and the blood as a Newtonian

fluid we have derived an evolution equation for propagation of nonlinear waves in

this complex medium. Numerical values of the model parameters are determined for

specific mechanical characteristics of the arterial wall and specific aneurismal geom-

etry. We have obtained a traveling wave analytical solution of the model evolution

equation. The numerical simulations of this solution demonstrate that solitary waves

are observed when a local arterial dilatation appears.
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