
Studies in Computational Intelligence 728

Krassimir Georgiev
Michail Todorov
Ivan Georgiev    Editors 

Advanced Computing 
in Industrial 
Mathematics
11th Annual Meeting of the Bulgarian 
Section of SIAM December 20–22, 
2016, Sofia, Bulgaria. Revised Selected 
Papers



Studies in Computational Intelligence

Volume 728

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl



About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the worldwide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092


Krassimir Georgiev ⋅Michail Todorov
Ivan Georgiev
Editors

Advanced Computing
in Industrial Mathematics
11th Annual Meeting of the Bulgarian
Section of SIAM December 20–22, 2016,
Sofia, Bulgaria. Revised Selected Papers

123



Editors
Krassimir Georgiev
Institute of Information and Communication
Technologies

Bulgarian Academy of Science
Sofia
Bulgaria

Michail Todorov
Faculty of Applied Mathematics and
Informatics

Technical University of Sofia
Sofia
Bulgaria

Ivan Georgiev
Institute of Information and Communication
Technologies

Bulgarian Academy of Sciences
Sofia
Bulgaria

and

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Sofia
Bulgaria

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-65529-1 ISBN 978-3-319-65530-7 (eBook)
https://doi.org/10.1007/978-3-319-65530-7

Library of Congress Control Number: 2017948228

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

The 11th Annual Meeting of the Bulgarian Section of the Society for Industrial and
Applied Mathematics (BGSIAM) was held in Sofia, December 20–22, 2016. The
Section was formed in 2007 with the purpose to promote and support the appli-
cation of mathematics to science, engineering, and technology in Bulgaria.

The goals of BGSIAM follow and creatively develop the general goals of SIAM:

• To advance the application of mathematics and computational science to
engineering, industry, science, and society;

• To promote research that will lead to effective new mathematical and compu-
tational methods and techniques for science, engineering, industry, and society;

• To provide media for the exchange of information and ideas among mathe-
maticians, engineers, and scientists.

During the BGSIAM’16 conference, a wide range of problems concerning recent
achievements in the field of industrial and applied mathematics were presented and
discussed. The meeting provided a forum for exchange of ideas between scientists,
who develop and study mathematical methods and algorithms, and researchers, who
apply them for solving real-life problems.

The topics of interest include: industrial mathematics; scientific computing;
numerical methods and algorithms; hierarchical and multilevel methods;
high-performance computing; partial differential equations and their applications;
control and uncertain systems; Monte Carlo and quasi-Monte Carlo methods; neural
networks, metaheuristics, and genetic algorithms.

The list of invited speakers include:

• Vassil Alexandrov (Barcelona Supercomputing Center, Spain), Data and
Computational Science Methods Applied to Social Media

• Krassimir Danov (Sofia University, Bulgaria), Modeling of Membranes with
Complex Rheology: Computational Aspects

• Oleg Iliev (Fraunhofer ITWM, Germany), Toward MLMC Based Exascale
Computations for Uncertainty Quantification for Flow in Porous Media

v



• Ivan Markovsky (Vrije Universiteit Brussel, Belgium), A Low-rank Matrix
Completion Approach to Data-driven Signal Processing

We would like to thank all the referees for the constructive remarks and criti-
cism, which furthered considerable improvements of the quality of the papers in this
book.

Sofia, Bulgaria Krassimir Georgiev
Michail Todorov

Ivan Georgiev
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Local Perturbation Analysis of the Stochastic
Matrix Riccati Equation with Applications
in Finance

Vera Angelova

Abstract In this paper a local perturbation analysis of the stochastic matrix Ric-

cati equation /SMRE/ with applications in linear quadratic optimization of stochas-

tic finance models is made. Rewriting the SMRE in equivalent form of affine linear

operators and applying the techniques of Fréchet derivatives, absolute and relative

norm-wise condition numbers are derived and local (first order) perturbation bounds

for the error in the computed solution are formulated. The condition numbers and

the perturbation bounds allow to estimate the conditioning of the SMRE and the

accuracy of its computed by a numerical stable algorithm solution.

1 Introduction

The stochastic linear quadratic /SLQ/ control approach proves to give effective and

appropriate solutions to investment problems in finance [1]. When applying the gen-

eral SLQ control approach to study the problem of tracking a financial benchmark

via trading a portfolio of a small number of assets, the homogeneous canonical form

of the SLQ control model is used [1, 2] with objective

min E
[
∫

∞

0
[x(t)⊤Qx(t) + u(t)⊤Ru(t)]𝑑t

]
(1)

subject to the portfolio model

⎧⎪⎨⎪⎩
𝑑x(t) = [Ax(t) + Bu(t)]𝑑t +

k∑
j=1

[
Cjx(t) + Dju(t)

]
𝑑Wj(t),

x(0) = x0,
(2)
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2 V. Angelova

where the market index is represented as a weighted sum of the constituents, each

of which is modeled by a geometric Brownian motion Wj(t) and A,Cj ∈ ℝn×n
,

B,Dj ∈ ℝn×m
for j = 1, k. The vectors u(t) and x(t) are the control and the state vec-

tors, respectively, and E denotes the mathematical expectation. The SLQ problem

consists in to identify an appropriate Riccati-type equation (see [3–6] and the refer-

ences therein). Then, the solvability of the SLQ problem is equivalent to the solv-

ability of the Riccati equation.

The matrix Riccati equation subject to the SLQ problem (1), (2) is the stochastic

matrix Riccati equation /SMRE/

F(X,P) ∶= A⊤X + XA + Q +
k∑

j=1
C⊤

j XCj −

(
XB +

k∑
j=1

C⊤

j XDj

)(
R +

k∑
j=1

D⊤

j XDj

)−1 (
XB +

k∑
j=1

C⊤

j XDj

)⊤

, (3)

for an unknown real symmetric matrix X ∈ ℝn×n
, which satisfies the inequality

R +
k∑

j=1
DT

j XDj > 0,

and data collection P ⊂ P ∶= {A,B,Q,R,C1,D1,C2,D2,… ,Ck,Dk}.

If the state weighting matrix Q is a positive semi-definite and the control weight-

ing matrix R is a positive definite, the solution to (3) can be obtained by Newton

iteration, Lyapunov iteration, LMI approach, as in the LMI approach the problem

to solve the SMRE (3) is avoided by solving the associated with SMRE (3) convex

optimization problem called semidefinite programming problem, see [1, 7, 8] and

the references therein. Then, an optimal control, based on the solution to SMRE (3)

is:

u(t) = −

(
R +

k∑
j=1

D⊤

j XDj

)−1 (
B⊤X +

k∑
j=1

D⊤

j XCj

)
x(t).

The problem of existence and uniqueness of the solution to SMRE (3) is con-

sidered by Rami and Zhou in [9] and then extended by Ivanov and Lomev in [8],

where two numerically effective iterations are proposed and compared with the LMI

approach.

In order to accurately and effectively solve Eq. (3) on a computer, a numerically

stable algorithm, as well as the knowledge of the sensitivity and the conditioning of

the equation to perturbations in the data are needed. A measure of the conditioning

of a computational problem are its condition numbers given by the ratio of the rel-

ative changes in the solution to the relative changes in the argument. The condition
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numbers are involved in the formulation of perturbation upper bounds of the error in

the computed solution. In turn, the perturbation error bounds estimate the sensitivity

of the computational problem and are one of the elements of the high-performance

computations.

Perturbation analysis for the algebraic Riccati equations, arising in stochastic con-

trol problems are made by many authors [10–13] and the references therein, while

from the best of our knowledge the sensitivity of the SMRE (3) is still not analyzed.

In this paper, the conditioning and the sensitivity of the stochastic matrix Ric-

cati Eq. (3) are studied. Norm-wise absolute and relative condition numbers are pro-

posed. For this purpose, Eq. (3) is rewritten in equivalent form using affine linear

operators. Then the techniques of Fréchet derivatives are applied. Local perturba-

tion bounds, based on the condition numbers and neglecting terms of second and

higher order are formulated as well. The local bounds are only asymptotically valid

and they work even then the perturbed equation has not a unique solution in a neigh-

borhood of the unperturbed solution.

The following notations are used later on: ℝn×m
is the set of n × m matrices over

the field of real numbers ℝ; In is the identity n × n matrix; A⊤
stands for the transpose

ofA; vec(A) =
[
a⊤1 , a

⊤

2 , … , a⊤n
]⊤ ∈ ℝn2

is the column-wise vector representation of

the matrix A =
[
a1, a2, … , an

]
∈ ℝn×n

, aj ∈ ℝn
, where ℝn = ℝn×1

; 𝛱n2 ∈ ℝn2×n2

is the so called vec-permutation matrix such that for each Y ∈ ℝn×n
it is fulfilled

vec(Y⊤) = 𝛱n2vec(Y); A⊗ B = [A(k, l)B] is the Kronecker product of the matrices

A = [A(k, l)] and B; ‖ ⋅ ‖ is the induced norm in the space of linear operators; ‖ ⋅ ‖2
is the Euclidean vector or the spectral matrix norm; ‖ ⋅ ‖F is the Frobenius norm;

The notation ‘∶=’ stands for ‘equal by definition’.

The paper is organized as follows. The problem is stated in Sect. 2. In Sect. 3

condition numbers and local perturbation bounds are derived. The paper terminates

with concluding remarks in Sect. 4.

2 Statement of the Problem

When we solve a well conditioned problem F(X,P) with a numerically stable iter-

ative algorithm in finite precision arithmetic with machine precision 𝜀, the calcu-

lated solution X̂ = X + 𝛿X is the right solution to a problem in the neighborhood

F(X + 𝛿X,P + 𝛿P) of the problem solved F(X,P).
The term 𝛿X, ‖𝛿X‖F ≤ 𝜀‖X‖2 reflects the presence of round-off errors and errors

of approximation in the solution X̂ computed in environment with machine preci-

sion 𝜀. The round-off errors, the errors of approximation or data uncertainties are

represented as perturbations 𝛿Zi in the matrices Ẑi = Zi + 𝛿Zi from the perturbed

data collection P̂ = P + 𝛿P ∈ P∗ ∶= {Z1,Z2,… ,Zr} ⊂ P—the set of all matrices

from P , each of which is perturbed. If some of the above matrices are note per-

turbed, then the corresponding perturbations are assumed to be zero.

The local perturbation problem for SMRE (3) is to estimate norm-wisely the con-

ditioning of (3) and to formulate a first order local bound
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𝛿X = ‖𝛿X‖F ≤ f (𝛿) + O(‖𝛿‖2), 𝛿 → 0

for the error 𝛿X in the computed solution X̂ in terms of the perturbations 𝛿Zi in the

data matrices Ẑi = Zi + 𝛿Zi

𝛿 = [𝛿Z1 , 𝛿Z2 ,… 𝛿Zr ]
⊤ = [‖𝛿Z1‖F, ‖𝛿Z2‖F,… ‖𝛿Zr‖F]⊤

Zi ∈ P∗ = {Z1,Z2,… ,Zr} ⊂ P = {A,B,Q,R,C1,D1,C2,D2,… ,Ck,Dk}

3 Local Perturbation Analysis

3.1 Equivalent Operator Form to SMRE (3)

Rewrite the considered SMRE (3) in equivalent form, using affine linear operators

F(X,P) ∶= F1(X,P1) − F2(X,P2)F3(X,P3)−1F2(X,P2)⊤ = 0,

where the symmetric fractional affine matrix operators Fi(X,Pi) are defined from

Fi(X,Pi) = Si + V⊤

i X + XVi +
k∑

j=1
Y⊤

ij XYij, i = 1, 3

with

S1 = Q, V1 = A, Y1j = Cj

S3 = R, V3 = 0, Y3j = Dj,

and

F2(X,P2) = XB +
k∑

j=1
C⊤

j XDj.

The fractional affine matrix operators Fi(X,Pi), i = 1, 3 depend on the matrix col-

lections

P ∶= {P1,P2,P3}
P1 ∶= {A,Q,C1,C2,… ,Ck}
P2 ∶= {B,C1,D1,C2,D2,… ,Ck,Dk}
P3 ∶= {R, 0,D1,D2,… ,Dk}.
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3.2 Perturbed SMRE

Let the matrices Z from the data collection P = {A,B,Q,R,C1, D1, C2,D2,… ,

Ck,Dk} be perturbed with some perturbation 𝛿Z. The perturbation 𝛿Z reflects round-

off errors, errors of approximation or data uncertainties.

Denote byP + 𝛿P the perturbed data collection P̂, in which each matrix Z ∈ P be

replaced by Z + 𝛿Z. Denote by P∗ ∶= {Z1,Z2,… ,Zr} ⊂ P the set of all matrices

from P , which are perturbed.

The perturbed SMRE is

F(X + 𝛿X,P + 𝛿P) = 0. (4)

The perturbation 𝛿X in the solution X + 𝛿X of the perturbed SMRE (4) is due to the

perturbations 𝛿P in the matrix coefficients from the perturbed data collection P∗
.

3.3 Condition Numbers

Having in mind that F(X,P) = 0, the perturbed Eq. (4) may be written as

F(X + 𝛿X,P + 𝛿P) ∶= FX(𝛿X) +
∑

Z∈P∗

FZ(𝛿Z) + G(𝛿X, 𝛿P) = 0,

where the term G(𝛿X, 𝛿P) contains second and higher order terms in 𝛿X, 𝛿P and

FZ(𝛿Z) ∶= FZ(X,P)(𝛿Z) are the Fréchet derivatives of F(X,P) in the corresponding

matrix argument Z ∈ P∗
or Z = X, computed at the point (X,P):

FX(Z) = A⊤Z + ZA +
k∑

j=1
C⊤

j ZCj −

(
ZB +

k∑
j=1

C⊤

j ZDj

)
N

−M

(
B⊤Z +

k∑
j=1

D⊤

j ZCj

)
+M

( k∑
j=1

D⊤

j ZDj

)
N,

and

FQ(Z) ∶= Z
FR(Z) ∶= −MZN
FA(Z) ∶= Z⊤X + XZ
FB(Z) ∶= −XZN −MZ⊤X
FCj

(Z) ∶= Z⊤XCj + C⊤

j XZ − Z⊤XDjN −MD⊤

j XZ, j = 1,… ,m

FDj
(Z) ∶= −C⊤

j XZN −MZ⊤XCj +M
(
Z⊤XDj + D⊤

j XZ
)
N, j = 1,… ,m,
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with

N ∶= F3(X,P2)−1F2(X,P2)⊤; M ∶= F2(X,P2)F3(X,P3)−1

The matrix representation LZ of the operator FZ(.) is:

LX ∶= I ⊗ A⊤ + A⊤
⊗ I +

k∑
j=1

C⊤

j ⊗ C⊤

j − (BN)⊤ ⊗ I −
k∑

j=1
(DjN)⊤ ⊗ C⊤

j (5)

−I ⊗MB⊤ −
k∑

j=1
C⊤

j ⊗MD⊤

j +
k∑

j=1
(DjN)⊤ ⊗MD⊤

j

= I ⊗ A⊤ + A⊤
⊗ I − (BN)⊤ ⊗ I − I ⊗MB⊤

+
k∑

j=1

(
C⊤

j ⊗ C⊤

j − (DjN)⊤ ⊗ C⊤

j − C⊤

j ⊗MD⊤

j + (DjN)⊤ ⊗MD⊤

j

)
,

when Z = X and

LQ = In2 (6)

LR = −N⊤
⊗M

LA = (X⊤
⊗ I)𝛱n2 + I ⊗ X

LB = −N⊤
⊗ X − (X⊤

⊗M)𝛱nm

LCj
=

(
(XCj)⊤ ⊗ I

)
𝛱n2 + I ⊗ C⊤

j X −
(
(XDjN)⊤ ⊗ I

)
𝛱n2 − I ⊗MD⊤

j X

LDj
= −N⊤

⊗ C⊤

j X −
(
(XCj)⊤ ⊗M

)
𝛱nm +

(
(XDj)⊤ ⊗M

)
𝛱nm + N⊤

⊗MD⊤

j X,

when Z ∈ P∗
.

Assume that the SMRE (3) has a solution X, such that the linear operator FX(X,P)
is invertible. This leads to the statements:

∙ The perturbed SMRE (4) has an unique isolated solution X̂ = X + 𝛿X in the neigh-

borhood of X for sufficiently small perturbations 𝛿P in data collection P;

∙ the elements of 𝛿X are analytic functions of the data perturbations 𝛿P.

Since the operator FX(.) is invertible we get

𝛿X = −
∑

Z∈P∗

F−1
X ◦FZ(𝛿Z) − F−1

X (G(𝛿X, 𝛿P)),

or in vector form

vec(𝛿X) = −
∑

Z∈P∗

L−1X LZvec(𝛿Z) − L−1X vec(G(𝛿X, 𝛿P)) (7)



Local Perturbation Analysis of the Stochastic Matrix Riccati Equation . . . 7

Hence, for the Frobenius norm of the perturbation 𝛿X in the solution X of (3) we get

an absolute estimate

𝛿X ∶= ‖𝛿X‖F ≤ ∑
Z∈P∗

KZ𝛿Z + O(‖𝛿‖2), 𝛿 → 0, (8)

where 𝛿 ∶=
[
𝛿Z1 𝛿Z2 … 𝛿Zr

]⊤ ∈ ℝr
+ is the vector of non-zero absolute norm pertur-

bations 𝛿Zi = ‖𝛿Zi‖F of the perturbed data matrices Zi ∈ P∗
and

KZ = ‖F−1
X ◦FZ‖, Z ∈ P∗

(9)

are the absolute individual condition numbers of SMRE (3) with respect to pertur-

bations in the matrix coefficients Z ∈ P∗
.

The absolute condition numbers KZ (9) are calculated from the expression of the

matrix representation LX (5) and LZ (6) of the operators FX(.) and FZ(.), respectively

KZ = ‖L−1X LZ‖2, Z ∈ P∗

When X ≠ 0, a relative estimate, based on the relative condition numbers

kZ = KZ
‖Z‖F‖X‖F , Z ∈ P∗

with respect to perturbations in the data matrices Z ∈ P∗
is

‖𝛿X‖F‖X‖F ≤ ∑
Z∈P∗

kZ
𝛿Z‖Z‖F + O(‖𝛿‖2), 𝛿 → 0 (10)

3.4 Non-linear First Order Homogeneous Local Bound

Local estimates as (8) and (10), based on condition numbers may produce pes-

simistic results. For this purpose we define the following local first-order homoge-

neous norm-wise estimate, derived on the base of the vector form (7) of the perturbed

Eq. (4)

𝛿X ≤ est(𝛿) + O(‖𝛿‖2), 𝛿 → 0 (11)

est(𝛿) = min{est1(𝛿), est2(𝛿)}

est1(𝛿) = ‖[L−1X LZ1 ,L
−1
X LZ2 ,… ,L−1X LZr ]‖2‖𝛿‖2, Zi ∈ P∗

(12)
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est2(𝛿) =
√
𝛿⊤T 𝛿, (13)

T - r × r matrix with elements ‖(L−1X LZi)
⊤(L−1X LZj )‖2

A possible disadvantage of the bound proposed may be the high dimensions of the

involved matrices LX and LZ .

3.5 Local Component-Wise Bound

The norm-wise perturbation bounds, formulated in Sect. 3.4 are maximally com-

pressed, neglecting the influence of particular elements of the perturbations in the

matrix coefficients on the elements of 𝛿X. The norm-wise perturbation bounds may

not be a good measure for the sensitivity of the solution if there are large differ-

ences in the perturbations of different elements in the data and/or the solution. To

avoid this, one may use the so called component-wise bounds. The component-wise

bounds estimate the influence of the perturbations in individual elements of the data

on the perturbations in the elements of the solution. Such a local component-wise

bound follows directly from the vector representation (7) of the relation for the per-

turbation 𝛿X in the solution:

|vec(𝛿X)| ⪯ ∑
Z∈P∗

|L−1X LZ| |vec(𝛿Z)| + O(‖𝛿‖2), 𝛿 → 0

The implementation of a component-wise estimate needs information about the per-

turbations in the components of the data, e.g. |vec(Z)| ⪯ ΔZ , Z ∈ P∗
, where ΔZ ⪰ 0

are given vectors.

4 Concluding Remarks

In this paper, using the techniques of Fréchet derivatives, a local first-order pertur-

bation analysis is made to the stochastic matrix Riccati Eq. (3) with applications

in SLQ control of financial problems. Absolute and relative condition numbers, as

well as local bounds neglecting terms of order O(‖𝛿‖2) are formulated. The condi-

tion numbers and the perturbation bounds allow to estimate the conditioning of the

SMRE and the accuracy of its computed by a numerical stable algorithm solution.

The local bounds are valid only asymptotically, for 𝛿 → 0. Unfortunately, it is usually

impossible to say, having a small but a finite perturbation 𝛿, whether the neglected

terms are indeed negligible. Moreover, for some critical values of the perturbations

in the data coefficients the solution may not exist (or may go to infinity when these

critical values are approached), but the local estimates will still produce a ‘bound’

for a very large or even for a non-existing solution. The disadvantages of the local

estimates may be overcome using the techniques of non-local perturbation analysis.
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An Embedded Compact Scheme
for Biharmonic Problems in Irregular
Domains

Matania Ben-Artzi, Jean-Pierre Croisille and Dalia Fishelov

Abstract In Ben-Artzi et al. (SIAM J Numer Anal 47:3087–3108 (2009), [1]) a

Cartesian embedded finite difference scheme for biharmonic problems has been

introduced. The design of the scheme relies on a 19-dimensional polynomial space.

In this paper, we show how to simplify the implementation by introducing a direc-

tional decomposition of this space. The boundary is handled via a level-set approach.

Numerical results for non convex domains demonstrate the fourth order accuracy of

the scheme.

1 Introduction

Let 𝛺 ⊆ ℝ2
be a convex domain. The problem considered here is the biharmonic

problem subject to Dirichlet boundary conditions:

{
𝛥
2
𝜓(𝐱) = f , 𝐱 ∈ 𝛺,

𝜓 = 𝜕𝜓

𝜕n
= 0, 𝐱 ∈ 𝜕𝛺.

(1)

Our purpose is to calculate a high order accurate approximation to (1), by embedding

𝛺 in a Cartesian grid. The main idea of the scheme was described in [1]. Here we

extend and elaborate on the presentation in [3, Chap. 11].

M. Ben-Artzi

Institute of Mathematics, The Hebrew University, 91904 Jerusalem, Israel

e-mail: mbartzi@math.huji.ac.il

J.-P. Croisille (✉)

Department of Mathematics, IECL, UMR CNRS 7502,

Université de Lorraine, 57045 Metz, France

e-mail: jean-pierre.croisille@univ-lorraine.fr

D. Fishelov

Afeka Tel Aviv Academic College of Engineering, 218 Bnei-Efraim St.,

69107 Tel-Aviv, Israel

e-mail: daliaf@afeka.ac.il

© Springer International Publishing AG 2018

K. Georgiev et al. (eds.), Advanced Computing in Industrial
Mathematics, Studies in Computational Intelligence 728,

https://doi.org/10.1007/978-3-319-65530-7_2

11



12 M. Ben-Artzi et al.

We consider the convex domain 𝛺 as embedded in a large uniform grid of mesh

size h. A grid point is a point Qi,j = (ih, jh) for i, j ∈ ℤ. Following common terminol-

ogy, we use the term interior nodes for the grid points that lie inside𝛺. We denote

by 𝛺h the ensemble of these nodes, namely:

𝛺h =
{
Qi,j ∈ 𝛺, i, j ∈ ℤ

}
. (2)

We split the set 𝛺h into two sets, 𝛺h = 𝛺
calc
h ∪𝛺

edge
h , as follows:

∙ 𝛺
calc
h = the set of calculated nodes.

This set consists of those nodes that are located “well within” 𝛺, namely suffi-

ciently far from the boundary 𝜕𝛺. In particular, if all diagonally neighboring nodes

Qi±1,j±1 are in 𝛺h then Qi,j ∈ 𝛺
calc
h . Remark that by convexity all eight neighbor-

ing nodes are then in 𝛺h. However, it should be emphasized that even if not all its

neighboring nodes are in 𝛺h, a node Qi,j can still be considered as “calculated” if

it is not “too close” to the boundary, as we explain below.

The approximate values at the calculated nodes are obtained by the proposed
scheme.

∙ 𝛺
edge
h = the set of edge nodes.

This set consists of those nodes (interior to 𝛺) that are located “too close” to the

boundary 𝜕𝛺. They differ from the calculated nodes in the sense that there are no

approximate values associated with them. Their role is “geometric”; they serve in

the determination of a set 𝛺
bdry
h of boundary nodes that are actually located on

the boundary 𝜕𝛺, and carry the assigned boundary values.

∙ Observe that the set 𝛺
bdry
h consists of selected points on the boundary, and in gen-

eral is not included in the underlying global grid Qi,j, i, j ∈ ℤ.

In Fig. 1 we designate the calculated nodes with black circles, whereas the edge

nodes are designated by white circles.

The proposed scheme is a compact scheme, i.e. all approximate values of high

order derivatives are related to values of a function 𝜓 and its derivatives 𝜓x, 𝜓y at

immediate neighbors. More specifically, given a node 𝐌0 = Qi,j ∈ 𝛺h, we consider

the eight surrounding nodes in the grid:

Fig. 1 Embedding of an

elliptical domain in a

Cartesian grid. Calculated

nodes are represented by

black circles. Exterior points

are represented by black
squares. The points labelled

with white circles represent

edge points, i.e. interior

points close to the boundary
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Fig. 2 Zoom on the neighborhood of point M0 in Fig. 1. The coordinates have been moved such

that M0 is the coordinates center. The 8 neighbors points of M0 are the points 𝐌1, 𝐌2, 𝐌3, 𝐌4,

𝐌𝟓, 𝐌𝟔, 𝐌𝟕 and 𝐌8. The points 𝐌1, 𝐌4, 𝐌6 and 𝐌7 belong to the Cartesian grid. The points 𝐌2,

𝐌3, 𝐌5 and 𝐌8 belong to the boundary of the domain. They are obtained as the intersection of

rays emanating from 𝐌0 and directed towards 𝐌2, 𝐌3, 𝐌5 and 𝐌8 respectively. The points 𝐌3,

𝐌5 and 𝐌8 are outside the domain. The edge point above 𝐌0 is marked with an open circle

𝐌̃1 = Qi−1,j+1, 𝐌̃2 = Qi,j+1, 𝐌̃3 = Qi+1,j+1, 𝐌̃4 = Qi−1,j,

𝐌̃5 = Qi+1,j, 𝐌̃6 = Qi−1,j−1, 𝐌̃7 = Qi,j−1, 𝐌̃8 = Qi+1,j−1.

If all the nine nodes 𝐌̃i are calculated nodes, namely, in 𝛺
calc
h , or coincide with a

boundary point, which is part of the grid, we set 𝐌i = 𝐌̃i, i = 0,… , 8, and continue

with this regular stencil centered at 𝐌0. Otherwise, our goal is to replace the 𝐌̃′
i s

that are not in 𝛺
calc
h by suitable 𝐌′

i s that are boundary points, namely, in 𝛺
bdry
h . The

values of 𝜓,𝜓x, 𝜓y at these points are all that is needed in order to calculate the

various approximate derivatives at 𝐌0.

To describe this construction, suppose that 𝐌0 ∈ 𝛺
calc
h is a calculated node, while

for some 1 ≤ i ≤ 8, the neighboring node 𝐌̃i is either an edge node or an exterior

node. Consider the calculated node designated by 𝐌𝟎 in Fig. 1. A zoom is shown

on Fig. 2. The 8 points 𝐌̃i are the points in the square (4 corner points and 4 mid-

edge points). Take the ray that emanates from 𝐌0 and goes through 𝐌̃i. This ray

must cross the boundary 𝜕𝛺 at exactly one point since 𝛺 is convex. We define the

intersection point as 𝐌𝐢.
The calculation of the approximate value to 𝛥

2
𝜓(𝐌𝟎) relies on the data at 𝐌𝐢

rather than 𝐌̃i.
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∙ The four neighbors 𝐌̃1, 𝐌̃4, 𝐌̃6 and 𝐌̃7 are other calculated nodes so we keep

them, i.e. 𝐌̃i = 𝐌i, i = 1, 4, 6, 7. In particular, if we shift the coordinates of 𝐌0 to

(0, 0), we have for the coordinates of 𝐌i, i = 1, 4, 6, 7, the values h1 = h4 = h6 =
h7 = h.

∙ The other four neighbors 𝐌̃2, 𝐌̃3, 𝐌̃5 and 𝐌̃8 are either edge or exterior nodes so

they are replaced by points on the boundary as described above.

We thus obtain 𝐌i, the actual points used in the calculation.

Once the 8 points 𝐌i are determined and approximate values 𝜓 , 𝜓x and 𝜓y are

assigned to them, we can proceed to evaluate an approximate value for 𝛥
2
𝜓 at the

point 𝐌0. This is described in Sect. 2.

2 The Discrete Biharmonic 𝜟𝟐
𝐡𝝍 Operator

In this section we present our finite-difference scheme for the approximation of the

biharmonic operator. Figure 2 shows the stencil used for the approximation of 𝛥
2
𝜓 at

𝐌0 = (0, 0). The 8 points𝐌k, 1 ≤ k ≤ 8 form an irregular stencil around𝐌0. Each of

the nine grid points 𝐌k carries three values: 𝜓,𝜓x, 𝜓y. These are calculated values if

𝐌k ∈ 𝛺
calc
h is a calculated node. If 𝐌k ∈ 𝛺

bdry
h , then this point carries boundary data

given by the boundary conditions. In order to approximate 𝛥
2
𝜓 of a given smooth

function 𝜓 at 𝐌𝟎 we interpolate the data 𝜓,𝜓x, 𝜓y on the stencil {𝐌0,… ,𝐌8} by a

certain polynomial P𝐌0
of degree 6. The detailed construction of P𝐌0

(x, y) is carried

out in Sect. 3. To handle the irregular stencil around 𝐌0 we denote by 𝐡 the vector

of the step-sizes around 𝐌0, as in Fig. 2:

𝐡 = [h1,… , h8]T . (3)

Once the polynomial P𝐌0
(x, y) is constructed, we replace the smooth function 𝜓 by

a discrete function 𝜓̃ , defined only on the set of nodes 𝛺
calc
h ∪𝛺

bdry
h . The discrete

biharmonic operator𝛥
2
𝐡𝜓 for the approximation of𝛥

2
𝜓 at𝐌0 = (0, 0) is then defined

by

𝛥
2
𝐡𝜓̃(𝐌𝟎) = 𝛥

2P𝐌0
(0, 0), (4)

3 Calculating the Interpolation Polynomial P𝐌𝟎
(x, y)

As mentioned above, our compact scheme for the biharmonic problem relies on an

interpolation polynomial of degree six. Such a polynomial is constructed for every

calculated point 𝐌i,j ∈ 𝛺
calc
h . This sixth-order polynomial is called P𝐌𝟎

(x, y). It is of

the form (where here and below the subscript 𝐌0 is omitted),
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P(x, y) =
19∑
i=1

aili(x, y), (5)

where the polynomials li(x, y) are (x, y) are shifted so that 𝐌0 = (0, 0):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l1(x, y) = 1, l2(x, y) = x, l3(x, y) = x2, l4(x, y) = x3,
l5(x, y) = x4, l6(x, y) = x5, l7(x, y) = y, l8(x, y) = y2, l9(x, y) = y3,

l10(x, y) = y4, l11(x, y) = y5, l12(x, y) = xy,
l13(x, y) = xy(x + y), l14(x, y) = xy(x − y),
l15(x, y) = xy(x + y)2, l16(x, y) = xy(x − y)2,
l17(x, y) = xy(x + y)3, l18(x, y) = xy(x − y)3,

l19(x, y) = x2y2(x2 + y2).

(6)

The 19 coefficients ai are obtained as follows. We consider the discrete values

depending on 𝜓̃ located at the eight points 𝐌k, 1 ≤ k ≤ 8, around the point 𝐌0,

(see Fig. 2). From the discrete data at these points we determine 19 values to be

interpolated by P(x, y) and its derivatives:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛤1(𝜓) = 𝜓̃(𝐌1), 𝛤2(𝜓) = 𝜓̃(𝐌2), 𝛤3(𝜓) = 𝜓̃(𝐌3),

𝛤4(𝜓) = 𝜓̃(𝐌4), 𝛤5(𝜓) = 𝜓̃(𝐌0), 𝛤6(𝜓) = 𝜓̃(𝐌5),

𝛤7(𝜓) = 𝜓̃(𝐌6), 𝛤8(𝜓) = 𝜓̃(𝐌7), 𝛤9(𝜓) = 𝜓̃(𝐌8),

𝛤10(𝜓) = (−𝜕x + 𝜕y)𝜓̃(𝐌1), 𝛤11(𝜓) = 𝜕y𝜓̃(𝐌2),

𝛤12(𝜓) = (𝜕x + 𝜕y)𝜓̃(𝐌3), 𝛤13(𝜓) = −𝜕x𝜓̃(𝐌4),

𝛤14(𝜓) = 𝜕x𝜓̃(𝐌0), 𝛤15(𝜓) = 𝜕y𝜓̃(𝐌0),

𝛤16(𝜓) = 𝜕x𝜓̃(𝐌5), 𝛤17(𝜓) = (−𝜕x − 𝜕y)𝜓̃(𝐌6),

𝛤18(𝜓) = −𝜕y𝜓̃(𝐌7), 𝛤19(𝜓) = (𝜕x − 𝜕y)𝜓̃(𝐌8).

(7)

Note that the derivatives at any point are taken in the direction of 𝐌0 except that the

full gradient is given at the point 𝐌0.

There is a one-to-one correspondence between the polynomial (5) and the above

set of 19 data. More explicitly, the 19 coefficients ai in (5) are uniquely determined

by the data (7). For the proof of this linear algebraic fact, see [1].

In (5), the coefficients ai depend linearly on the data 𝛤k(𝜓), 1 ≤ k ≤ 19. There-

fore, P(x, y) can be rewritten as
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P(x, y) =
19∑
i=1

( 19∑
j=1

Ai,j𝛤j(𝜓)

)
li(x, y). (8)

We need to calculate the geometric coefficients Ai,j, 1 ≤ i, j ≤ 19 in terms of the

vector 𝐡 = [h1, h2, h3, h4, h5, h6, h7, h8]. For this purpose, it is useful to decompose

the polynomial P(x, y) into the sum of four terms

P(x, y) = P(0, 0) + P1(x) + P2(y) + xyQ(x, y). (9)

Looking at (5) and (6), these four terms are expressed as:

a1 = P(0, 0) = 𝜓(𝐌0) (given value), (10)

{P1(x) = a2x + a3x2 + a4x3 + a5x4 + a6x5,

P2(y) = a7y + a8y2 + a9y3 + a10y4 + a11y5.
(11)

The polynomial Q(x, y) in (9) is then defined as

Q(x, y) =
P(x, y) − P(0, 0) − P1(x) − P2(y)

xy
= a12 + a13(x + y) + a14(x − y) + a15(x + y)2 + a16(x − y)2 (12)

+ a17(x + y)3 + a18(x − y)3 + a19xy(x2 + y2). (13)

This decomposition is directional in the following sense:

∙ The polynomial P1(x) ∈ Span{x, x2, x3, x4, x5} corresponds to the “horizontal

data”. It is determined by the 5 data (see Fig. 2):

𝜓(𝐌4), 𝜓(𝐌5), 𝜕x𝜓(𝐌4), 𝜕x𝜓(𝐌0), 𝜕x𝜓(𝐌5). (14)

∙ Similarly, P2(y) ∈ Span{y, y2, y3, y4, y5} corresponds to the “vertical data”. It is

specified by the 5 data

𝜓(𝐌7), 𝜓(𝐌2), 𝜕y𝜓(𝐌7), 𝜕y𝜓(𝐌0), 𝜕y𝜓(𝐌2). (15)

∙ Finally, it can be shown that the polynomial Q(x, y) is determined by the 8 “diag-

onal data” in (7). These data are:

⎧⎪⎨⎪⎩
𝛤1(𝜓) = 𝜓(𝐌𝟏), 𝛤3(𝜓) = 𝜓(𝐌𝟑), 𝛤7(𝜓) = 𝜓(𝐌𝟔), 𝛤9(𝜓) = 𝜓(𝐌𝟖),

𝛤10(𝜓) = (−𝜕x + 𝜕y)𝜓(𝐌𝟏), 𝛤12(𝜓) = (𝜕x + 𝜕y)𝜓(𝐌𝟑),

𝛤17(𝜓) = (−𝜕x − 𝜕y)𝜓(𝐌𝟔), 𝛤19(𝜓) = (𝜕x − 𝜕y)𝜓(𝐌𝟖).
(16)
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4 The Numerical Scheme

4.1 The Embedded Discrete Biharmonic Operator

In this section, we assume given for each point of the Cartesian grid the polyno-

mial P(x, y) (5) in terms of the data 𝛤k(𝜓). As explained in Sect. 3, the polynomial

P𝐌0
(x, y) in (5) is explicitly known by the coefficients ai, given as the analytical

functions: [
𝐡, [𝛤j(𝜓)]

]
j=1,…,19

↦ 𝐚 =
[
a1, a2,… , a18, a19

]T
. (17)

The discrete biharmonic at 𝐌𝟎(𝐱𝟎, 𝐲𝟎) is obtained by:

𝛥
2
𝐡𝜓̃(𝐌0) =

19∑
k=1

ak𝛥2lk(x0, y0). (18)

There are four nonvanishing terms in the right-hand-side of (18) which are:

{
𝛥
2l5(x0, y0) = 24, 𝛥

2l10(x0, y0) = 24,
𝛥
2l15(x0, y0) = 16, 𝛥

2l16(x0, y0) = −16.
(19)

Therefore the discrete biharmonic at 𝐌0 is given in terms of the coefficients

ak
[
𝐡, [𝛤j(𝜓)]

]
by

𝛥
2
𝐡𝜓(M0) ≜24

(
a5(𝐡, [𝛤k(𝜓)]) + a10(𝐡, [𝛤k(𝜓)])

)
(20)

+ 16
(
a15(𝐡, [𝛤k(𝜓)]) − a16(𝐡, [𝛤k(𝜓)])

)
. (21)

The discrete equation at point 𝐌0 is therefore (see (4)):

𝛥
2
𝐡𝜓̃(𝐌𝟎) = f (𝐌𝟎). (22)

Equation (22) has to be supplemented by some additional relation connecting the

derivatives 𝜓x,i,j, 𝜓y,i,j and the values 𝜓i,j. Our choice [1, 3] is to use an Hermitian
relation in the x- and the y-direction. In the x-direction we have:

𝛼1,i𝜓x,i−1,j + 𝜓x,i,j + 𝛼2,i𝜓x,i+1,j = 𝛽1,i𝜓i−1,j + 𝛽2,i𝜓i,j + 𝛽3,i𝜓i+1,j. (23)

The five coefficients 𝛼1,i, 𝛼2,i, 𝛽1,i, 𝛽2,i and 𝛽3,i are defined as follows. Let 𝐌𝟎 =
Qi,j(xi, yj) and let the two neighbor points 𝐌𝟒 and 𝐌𝟓 be (see Fig. 2):

𝐌𝟒(xi − hi, yj), 𝐌𝟓(xi + hi+1, yj). (24)
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Then

⎧⎪⎨⎪⎩
𝛼1,i =

h2i+1
(hi+1+hi)2

, 𝛼2,i =
h2i

(hi+1+hi)2
, 𝛽2,i =

2h4i+1+4h
3
i+1hi−4hi+1h

3
i −2h

4
i

hi+1(hi+1+hi)3hi
,

𝛽1,i = − 2h4i+1+4h
3
i+1hi

hi+1(hi+1+hi)3hi
, 𝛽3,i =

2h4i +4hi+1h
3
i

hi+1(hi+1+hi)3hi
.

(25)

In the y-direction we have

𝛾1,j𝜓y,i,j−1 + 𝜓y,i,j + 𝛾2,j𝜓y,i,j+1 = 𝛿1,j𝜓i,j−1 + 𝛿2,j𝜓i,j + 𝛿3,j𝜓i,j+1. (26)

with values of the five coefficients 𝛾1,j, 𝛾2,j, 𝛿1,j, 𝛿2,j and 𝛿3,j deduced from the points

𝐌𝟕 and𝐌𝟐 in a way similar to (25). We refer to [1, 3] for an analysis of the Hermitian

relations (23) and (26).

4.2 Assembling the Global Linear System

To each point (i, j) corresponds the discrete biharmonic relation (22) together with

the horizontal and vertical Hermitian relations for the discrete gradient (23) and (26).

All these relations form a linear system

A𝛹 = F. (27)

Assembling the matrix A using the relations (22), (23), (26) is analogous to assem-

bling the global matrix in the finite element method.

According to Sect. 1, each point 𝐌i,j of the Cartesian grid belongs to one of the

five categories:

1. interior regular calculated point

2. interior irregular calculated point

3. interior edge point

4. boundary point

5. exterior point.

In our computation, this classification is performed using a so-called level set model

for the boundary 𝜕𝛺. Assume that (x, y) ↦ 𝜑(x, y) is a smooth function such that, at

least locally

𝜑(x, y)
⎧⎪⎨⎪⎩
< 0 if (x, y) ∈ 𝛺, (interior point),

> 0 if (x, y) ∈ 𝛺
c
, (exterior point),

= 0 if (x, y) ∈ 𝜕𝛺, (boundary point).

(28)
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Following [4], the interior point𝐌0 = 𝐌i,j is declared close to 𝜕𝛺 if𝜑min,i,j𝜑max,i,j <

0 where {
𝜑min,i,j = min(𝜑i−1,j, 𝜑i+1,j, 𝜑i,j+1, 𝜑i,j−1, 𝜑i,j),
𝜑max,i,j = max(𝜑i−1,j, 𝜑i+1,j, 𝜑i,j+1, 𝜑i,j−1, 𝜑i,j).

(29)

In this case, the following quadratic model for 𝜑 is defined around 𝐌0 by:

𝜑(𝐱) = 𝜑0 + (∇𝜑0)T .(𝐱 − 𝐱0) +
1
2
(𝐱 − 𝐱0)T (D2

𝜑0)(𝐱 − 𝐱0). (30)

In (30), ∇𝜑0 and D2
𝜑0 stand for approximate values of the gradient and the Hessian

of 𝜑(𝐱) at 𝐌0. In the computations, centered differences for ∇𝜑0 and D2
𝜑0 are used.

Using the model (30) allows to determine the approximate projection 𝐌∗
0 of the

interior point 𝐌0 on 𝜕𝛺, [4]. This gives

𝐌0 =

{
calculated point if dist(𝐌0,𝐌∗

0) ≥ 𝜀edge,

edge point if dist(𝐌0,𝐌∗
0) < 𝜀edge.

(31)

where 𝜀edge is a fixed parameter. For each calculated point 𝐌0, the length vector

𝐡 ∈ ℝ8
and the elementary matrix Ai,j(𝐡) ∈ 𝕄19(ℝ) are evaluated according to the

preceding classification into regular/irregular calculated points. Finally the elements

of each matrix Ai,j(𝐡) are collected in the global matrix A. In a second step, for each

point 𝐌i,j, the submatrix of A corresponding to the Hermitian relations for the deriv-

atives 𝜓x and 𝜓y in (23) is calculated. The global linear system A𝜓 = b is the discrete

version of the problem (1). Note that it is solved by a direct solver. Fast solvers issues

in the fashion of [2, 4] will be addressed in a future work.

5 Numerical Results

We present several numerical results for the biharmonic problem with additional

Laplacian term: {
𝛼𝛥

2
𝜓(𝐱) − 𝛽𝛥𝜓(𝐱) = f , 𝐱 ∈ 𝛺,

𝜓 = g1(𝐱),
𝜕𝜓

𝜕n
= g2(𝐱), 𝐱 ∈ 𝜕𝛺.

(32)

In each case, the domain 𝛺 and the solution 𝜓(𝐱) are specified. The right-hand side

f (𝐱) and the two boundary functions g1(𝐱) and g2(𝐱) are determined accordingly.

The numerical scheme is then used to obtain an approximation for 𝜓 based on the

discrete values of f .
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Table 1 Compact scheme for 𝛥
2
𝜓 = f . The solution is 𝜓(x, y) = (1 − x2)2(1 − y2)2 in the ellipse

x2∕12 + y2∕22 ≤ 1. The ellipse parameters are (a = 1, b = 2, r = 1). The ellipse is embedded in the

square [−2, 2] × [−2, 2]. We present e and ex, the l2 errors for the stream function and for 𝜕x𝜓 . The

parameter for points labelled as edge points is 𝜀edge = 5.10−3h
mesh 9 × 9 Rate 17 × 17 Rate 33 × 33 Rate 65 × 65
e∞ 1.1175(−2) 4.40 5.3108(−4) 3.94 3.4538(−5) 3.45 3.1596(−6)
(ex)∞ 2.3270(−2) 4.35 1.1419(−3) 3.61 9.3285(−5) 4.24 4.9262(−6)
e2 1.7466(−2) 4.85 6.0551(−4) 4.08 3.5825(−5) 3.59 2.9702(−6)
(ex)2 3.1922(−2) 4.81 1.1402(−3) 3.79 8.2220(−5) 3.81 5.8612(−6)

Table 2 Compact scheme for ( 1
2
𝛥 − 𝛥

2)𝜓 = f . The solution is 𝜓(x, y) = 100(x3 ln(1 + y)) +
y

1+x
in the ellipse (x − 0.5)2∕(0.5)2 + (y − 0.5)2∕0.32 ≤ 1. The ellipse parameters are (a = 0.5,

b = 0.3, r = 1) with center (xc, yc) = (0.5, 0.5). The ellipse is embedded in the square [0, 1] × [0, 1].
We present e and ex, the l2 errors for the stream function and for 𝜕x𝜓 . The parameter for points

labelled as edge points is 𝜀edge = 5.10−3h
mesh 17 × 17 Rate 33 × 33 Rate 65 × 65 Rate 129 × 129
e∞ 6.9555(−6) 3.53 6.0000(−7) 4.43 2.7790(−8) 3.29 2.8334(-9)

(ex)∞ 4.0042(−4) 3.64 3.2033(−5) 4.07 1.9102(−6) 2.98 2.4215(−7)
e2 1.1759(−6) 3.15 1.3240(−7) 4.26 6.9034(−9) 3.44 6.3715(−10)
(ex)2 7.4850(−5) 3.79 5.3933(−6) 3.98 3.4163(−7) 3.90 2.2865(−8)

5.1 Test Cases in an Ellipse

We first consider two test cases where the computational domain is an ellipse. A

similar test case has already been considered in [1]. The observed accuracy is very

good. The order of convergence is located approximately in the interval I = [3, 4]
(Tables 1 and 2).

5.2 Test Cases in Non Convex Domains

5.2.1 Star Shaped Domains

We consider first the biharmonic problem (see Example 4.3 in [4])

{
𝛥
2
𝜓(𝐱) = 0 𝐱 ∈ 𝛺,

𝜓 = g1(𝐱),
𝜕𝜓

𝜕n
= g2(𝐱), 𝐱 ∈ 𝜕𝛺.

(33)
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Fig. 3 Seven branches star shaped domain embedded in a 33 × 33 grid. ∙ Left domain and grid.

The boundary points are marked with black triangles. The edge points are marked with open circles.
∙ Right approximate solution corresponding to 𝜓ex(x, y) = x2 + y2 + ex cos(y)

Fig. 4 Star shaped domain: linear regression of the convergence rate for ‖𝛹 − (̃𝜓ex)‖∞ and‖𝛹x − (̃𝜓x,ex)‖∞ where the exact solution is 𝜓ex(x, y) = x2 + y2 + ex cos(y). ∙ Left domain with 7
branches, (kp = 7). ∙ Right domain with 9 branches, (kp = 9). On each regression line, the six points

correspond to the six grids 10 × 10, 20 × 20, 30 × 30, 40 × 40, 50 × 50 and 60 × 60

The boundary of the domain is given in polar coordinates by

x(𝜃) = R(𝜃) cos(𝜃), y(𝜃) = R(𝜃) sin(𝜃), 0 ≤ 𝜃 < 2𝜋, (34)

with R(𝜃) = 0.6 + 0.25 sin(kp𝜃). The domain is represented in Fig. 3 for kp = 7,

(seven branches case). The exact solution is𝜓(x, y) = x2 + y2 + ex cos(y). The numer-

ical results are reported in Fig. 4 where the least square slope is represented, based

on six grids. They show excellent accuracy, even for very coarse grids. Observe in

addition the low error level for 𝜓 and 𝜕x𝜓 .
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5.2.2 A Double Circle Shaped Domain

Finally we consider the domain which consists of the interior of two disks partially

overlapping. The boundary is given in polar coordinates by

x(𝜃) = R(𝜃) cos(𝜃), y(𝜃) = R(𝜃) sin(𝜃), 0 ≤ 𝜃 < 2𝜋. (35)

with R(𝜃) = d| cos(𝜃)| +√
R2 − d2 sin(𝜃)2. We consider the case R = 0.5 and

d = 0.4. The domain is represented in Fig. 5. The exact solution is 𝜓(x, y) = exp(x +
y). The numerical results are reported in Fig. 6. Again, the accuracy is very good.

But the levels of error are higher than in the flower case. This can be attributed to

the non regular boundary.

Fig. 5 Double circle shaped domain embedded in a 41 × 41 grid. Left domain and grid. The bound-

ary points are marked with black triangles. The edge points are marked with open cicles. Right
approximate solution 𝜓(x, y) = exp(x + y)

Fig. 6 Double circle shaped domain: linear regression and convergence rate for ‖𝛹 − (̃𝜓ex)‖∞ and‖𝛹x − (̃𝜓x,ex)‖∞ with ∙ Left 𝜓ex(x, y) = exp(x + y) ∙ Right 𝜓ex(x, y) = 10(x5 sin(4𝜋y) + y4

1+x2
). For

each regression line, the six points correspond to the six grids 10 × 10, 20 × 20, 30 × 30, 40 × 40,

50 × 50 and 60 × 60
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Ant Colony Optimization Algorithm
for 1D Cutting Stock Problem

Georgi Evtimov and Stefka Fidanova

Abstract Every day different companies in industry have to solve many

optimization problems. One of them is cutting out of linear materials, like steel or

aluminum profiles, steel or wood beams and so on. It is so called cutting stocks

problem (CSP). It is well known NP-hard combinatorial optimization problem. The

accurate and fast cutting out is very important element from the working process.

The aim in CSP is to cut items from stocks of certain length, minimizing the total

number of stocks (waste). The computational time increases exponentially when the

number of items increase. Finding the optimal solution for large-sized problems for a

reasonable time is impossible. Therefore, exact algorithms and traditional numerical

methods can be apply of only on very small problems. Mostly appropriate meth-

ods for this kind of problems are methods based on stochastic search or so called

metaheuristic methods. We propose a variant of Ant Colony Optimization (ACO)

algorithm to solve linear cutting stocks problem.

1 Introduction

The 1D cutting stocks problem (CSP) is an important industrial problem. It appears

in paper industry with cutting paper roles, in building construction cutting steel bars

and cables. More precisely it is multiple stocks size cutting stocks problem. The aim

is to reduce the waste and thus to minimize the expense of the producers, by cutting

plan considering that the objects have different size.

Various methods have been proposed to solve this problem, from exact methods

to metaheuristics. As an exact algorithms are applied linear programming [7] and

branch and bound [10]. These methods can be applied only for small problems. When

the number of profiles and bars increases the calculation time increases very fast,
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therefore the exact methods are impractical for industrial use. So the scientists try to

apply metaheuristic methods, which find close to optimal solutions using reasonable

computational resources like time and memory. A number of metaheuristics have

been applied on CSP. Some authors apply evolutionary algorithms including Genetic

algorithm [2, 5, 8, 12], others apply Tabu search and Simulated annealing [6]. On

this work we will propose a variant of Ant Colony Optimization (ACO) algorithm

to solve CSP.

The first ACO algorithm was developed by Dorigo in his PhD thesis in 1992. Dur-

ing the years it has been improved several times and were created different variants

of ACO algorithm. ACO was successfully applied on various combinatorial opti-

mization problems. It is constructive method which does not need initial solution.

ACO is very competitive method and outperforms other methods, especially when

it is applied on combinatorial optimization problems with strong constraints [1].

The rest of the paper is organized as follows. In Sect. 2 the CSP problem is for-

mulated. In Sect. 3 we describe the ACO algorithm and its application on CSP. In

Sect. 4 we show experimental results and comparison with other algorithms is done.

In Sect. 5 is a conclusion and some directions for future work are proposed.

2 Problem Formulation

One dimensional CSP (1D-CSP) has many applications in industry. The problem

is NP-complete [4]. In this problem all used stocks length must be cut as much as

possible. The remaining is as cutting waste and need to be minimized. Reduction

of the cutting waste is a main goal of the 1D-CSP. Let there are n demands and m
stocks. The stocks length is dj, j = 1,… ,m, si, i = 1,… , n, is a order length, ni is a

required number of orders, with length si. The 1D CSP can be defined as follows:

min
n∑

i=1

m∑

j=1
(dj − xijsi) (1)

m∑

j=1
xij = ni, i = 1,… , n (2)

where xij is the number of orders with a length si, that are cut from the stocks j.
Minimization of the waste is the objective function of the problem. The constraint

guarantee the cutting needs to be satisfied. When the all stocks have the same length,

than the cutting with minimal waste is equal to the cutting with minimal stocks.

Because the problem is NP-complete the computational time increase exponen-

tially, and finding the optimal solution with some exact method or traditional numer-

ical method is unpractical. Even finding feasible area of solutions is hard. Therefore
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on this type of problems normally are applied metaheuristic methods to compute

near optimal solutions for a reasonable time. We propose a variant of Ant Colony

Optimization algorithm to solve 1D cutting stocks problem.

3 Ant Colony Optimization

ACO is one of the most used and most successful metaheuristics [1]. It is applied

on various combinatorial optimization problems coming from real life and industry.

Examples of optimization problems are Traveling Salesman Problem [11], Vehicle

Routing [13], Minimum Spanning Tree [9], Multiple Knapsack Problem [3], etc.

ACO is nature inspired methodology, which uses ideas from real ants behavior.

When the ants look for a food they deposit a chemical substance, called pheromone,

on their way back. After, they follow the path with stronger pheromone concentra-

tion. Thus the ants can find the shorter path between the nest and the food.

ACO represents a team of intelligent agents, which simulate ants behavior. The

problem is represented by graph and the agents walk around it to solve the problem,

using mechanisms of cooperation and adaptation. ACO is constructive method and

it does not need initial solution. It is very appropriate for problems with strong con-

straints. The algorithm is iterative. Every ant constructs its solution starting from

random position in a graph of the problem. After, it applies probabilistic rule, called

transition probability to include next nodes in the solution till the solution is com-

pleted. At the end of every iteration the pheromone quantity is updated. The structure

of the ACO algorithm is shown by the pseudo-code below (Fig. 1).

The transition probability pi,j, to choose the node j when the current node is i, is

based on the heuristic information 𝜂i,j and the pheromone trail level 𝜏i,j of the move,

where i, j = 1,… , n. The heuristic information represents the a priory knowledge of

the problem and the pheromone corresponds to the ants experience from previous

iterations to solve the problem:

Fig. 1 Pseudocode for ACO
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pi,j =
𝜏

a
i,j𝜂

b
i,j

∑
k∈allowed 𝜏

a
i,k𝜂

b
i,k

, (3)

The higher the value of the pheromone and the heuristic information, the more

profitable it is to select this move and resume the search. In the beginning, the initial

pheromone level is set to a small positive constant value 𝜏0; later, the ants update

this value after completing the construction stage. ACO algorithms adopt different

criteria to update the pheromone level.

The pheromone trail update rule is given by:

𝜏i,j ← 𝜌𝜏i,j + 𝛥𝜏i,j, (4)

where 𝜌 models evaporation in the nature and 𝛥𝜏i,j is a new added pheromone which

is proportional to the quality of the solution. First the quantity of the pheromone

is decreased to decrease the influence of the old information (history of the ants

to construct solutions). After is added new pheromone, which intensify the search

around the good so far solutions.

In our implementation on every iteration every ant choses a stock and an order

in a random way. After is applied transition probability rule till the rest from the

stock is shorter than the shortest order (no more possibility to cut), it is the waste.

After that the ant chooses in a random way the next stock and order and continues

applying the transition probability for the next cuts on the same stock. The ant does

this, till no more orders are. The orders corresponds to the nodes of the graph of

the problem and the arcs fully connect the nodes. We deposit the pheromone on the

arcs, to show the sequence of the cutting orders. At the end of every iteration we

update the pheromone. The new added pheromone is inversely proportional to the

quantity of the waste. Thus the elements of the solution with less waste will receive

more pheromone than others and will be more desirable in the next iteration. The

random choose of the stocks and the first cutted order on every stock is a kind of

diversification of the search in a search space. The pheromone updating is a kind of

intensification of the search around the best so far solution. The heuristic informa-

tion, which we apply in our application is equal to the length of the order. Thus the

algorithm prefer the longest possible order which can be cutted from the rest of the

stock. On the first iteration the quantity of the pheromone is the same for all edges

and the algorithm works in a greedy way. From the second iteration the algorithm

start to take in to account the ants experience, because the pheromone is different

after the updating.

4 Experimental Results

We test our algorithm on real data coming from steel structure, composed from steel

profiles and steel plates. The test example of the task are the profiles from the struc-

ture (Fig. 2).
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Fig. 2 Steel Structure, composed from steel profiles and steel plates

Table 1 ACO algorithm

parameters
Parameter Value

Number of ants 2

Initial pheromone 0.5

Number of iterations 100

Evaporation 0.1

The profiles are 924 pieces and 37 types. The orders to cut are from 2 to 672

pieces from the profiles of different types (length), from 50 to 6443 mm. The stocks

are 12 m bars. In this case the minimum waste is equal to find a solution with minimal

used bars. The algorithm parameters of our application are shown on Table 1. The

algorithm is run on desktop computer with 2.8 GHz CPU.

We run 30 times our ACO algorithm and greedy algorithm and compare them

with results achieved by one commercial software used by professionals. Regarding

the Table 2 we observe that ACO algorithm achieves better result than the two other

algorithms. We report the number of used bars. The ACO achieves solution with two

bars less, but for producers one bar is more than thousand dollars. Thus even one

Table 2 Results comparison

Properties Greedy Commercial ACO

Time in minutes 2 20 10

Used bars 234 234 232
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bar is important difference. It is not surprising that the greedy algorithm is fastest.

The commercial software is slow and gives worse results comparing with ACO. The

number of bars (waste) is more important in this problem, than computational time.

Thus we can conclude that the ACO algorithm performs better than two others.

5 Conclusion

In this paper we propose ACO algorithm for solving linear cutting stock problem. It is

very important industrial problem which is NP-hard. We compare our algorithm with

greedy algorithm and one commercial software product. We apply the algorithms on

real data from real steel structure. We show that our ACO algorithm achieves better

results than the two others. For a future work we plan to improve proposed algorithm

and to propose an heuristic algorithm for 2D cutting stock problem.
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2D Optimal Cutting Problem

Georgi Evtimov and Stefka Fidanova

Abstract Good management of industrial processes lead to optimization problems.

Some of them are NP-hard and needs special algorithms to be solved. One such

problem is cutting stock problem (CSP). The accurate and fast cutting out with less

possible waste is very important element from the working process. The aim is to

cut 2D items from rectangular stock, minimizing the waste. The problem is very

difficult and the most of the authors solve the simplified version of the problem when

the items are rectangular. The computational time increases exponentially when the

number of items increase. Finding the optimal solution for large-sized problems for a

reasonable time is impossible. Therefore exact algorithms and traditional numerical

methods can be apply only on very small problems, less than 100 items. We propose

an approximate algorithm which solve the problem when the items are polygons.

1 Introduction

The 2D CSP is an important industrial problem. Most popular is 2D CSP where the

stocks and the items are rectangular. This problem appear in paper industry and in

glass industry [6], container loading, Very Large Scale Integration (VLSI) design,

and various scheduling tasks [7]. The problem becomes more complicate when the

items are not rectangular. They can be any polygon, convex or concave. This problem

arises in clothes production, plates in building constructions, shoes production and

so on. In some applications the rotation is not possible, while in other it is possible

and can be used for minimizing the waste.
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In [6] the main topic is a two-dimensional orthogonal packing problem, where a

fixed group of small rectangles must be fitted into a large rectangle so that, most of

the material is used, and the unused area of the large rectangle is minimized. The

algorithm combines a replacement method with a genetic algorithm. In [1] a num-

ber of heuristic algorithms for two-dimensional cutting problems (on large scales)

are developed. In this study, there is a large primary stock that has to be cut into

smaller pieces, so as to maximize the number of the pieces. They developed a greedy

randomized adaptive search procedure. Cintra et al. [3] propose an exact algorithm

based on dynamic programming. This kind of algorithms are appropriate for small

problems, because the problem is NP-hard. For these problems are more appropriate

to apply some method based on stochastic search. Stochastic search do not guaran-

tee finding optimal solution, but they find quickly acceptable for the practitioners

solution. Dusberger and Raidl [4, 5] propose two metaheuristic algorithms based on

variable neighborhood search.

All this mentioned algorithms solve the problem, when the items are rectangular.

In this paper we propose an algorithm, which is more realistic. It finds a solution

when the items are polygons and their shape may be different from rectangular. We

test our algorithm on real data. Our algorithm is compared with one commercial

software and show that ours finds better solution.

The rest of the paper is organized as follows. In Sect. 2 the CSP problem is for-

mulated. In Sect. 3 we describe our algorithm for solving CSP. In Sect. 4 we show

experimental results and comparison with other algorithms are done. Section 5 is a

conclusion and some directions for future work are proposed.

2 Problem Formulation

Most of the authors solve simplified variant of the cutting stock problem where the

items are rectangular. This problem arise in paper and glass industries. Others com-

plete the ordered items to rectangles, but it is not effective [2]. When some shape is

completed to rectangular, the surface of the received rectangular can be more than

two times larger than the surface of the initial item. In some of commercial products

is possible after completing the large half of the items to rectangular, to verify if some

of the smaller items can be included in some of the rectangular without crossing. It

improves the algorithm, but it continue to be effective.

In this paper we expect that is given rectangular sheet with fixed width and infi-

nite length. The set E = {i1, i2,… , in} of ordered items are polygons, which can be

convex and concave. Examples of ordered items are shown on Fig. 1. The left bottom

corner of the sheet has coordinates (0, 0).
The elements are specified by their nodes and demands di, for i = 1,… , n. The

elements can be rotated.

The objective is to find a cutting pattern P, the arrangement of the elements in E
on the stock sheet, without overlap with a minimal waste. Let the width of the sheet

is fixed to be x and the cutting height in P to be y. The area of ordered items is fixed,
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Fig. 1 The polygons which will be cut

thus the cutting pattern with a minimal waste is a cutting pattern, with a minimal

cutting height. So the objective function C(P) is:

C(P) = min(y). (1)

The solution, cutting patternP, is represented by cutting sequence and coordinates

of the nodes of the cutting items.

3 Proposed Algorithm

The two dimensional cutting stock problem is an important optimization problem

which arises in many industries. Even the simplified problem, where the cutting

items are rectangular is NP-hard [2, 8]. In this paper we propose an algorithm which

finds solutions, when the cutting items are polygons. At the beginning our algorithm

verifies for every polygon:

∙ if the polygon is self-crossing;

∙ if the polygon is a line;

∙ are there redundant points.

The cutting items is not necessary to be convex, it must be non self-crossing.

Each edge is linear, and the polygon is described by its vertexes. The sheet, from

which we will cut the item is rectangular with fixed width and infinity length. The

algorithm chooses a random item from the set E of items and puts one of its nodes

on the point with minimal high (y) in the sheet. Let the number of the nodes of the

chosen item are m. We will translate the item m times and will rotate it as it is shown

on Fig. 2. The number of combinations without mirroring is m2
. The algorithm

accept the positioning where all points inside the polygon are in the sheet of cutting

and where the cutting hight (y) is minimal. Regarding Fig. 2 in seven of the cases

the cutting item is outside the stock sheet. Thus these positioning are not eligible.
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Fig. 2 Translations and rotations of a polygon

Fig. 3 Best positioning of

the cutting item

There are two acceptable positioning and the algorithm chose the one with smaller

cutting hight (y).

In our example the cutting with minimal y is shown on Fig. 3.

On the next steps we again chose in a random way a polygon from the set E of

items and try to fix it on the point (node) with a minimal y from the stock sheet.

If there are more than one points with minimal y, the algorithm chooses one of

them in a random way. If it is impossible to position chosen item on this point

we chose the next one with minimal y. We do this till no more items in the set E.
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Fig. 4 Algorithm performance

Figure 4 illustrates the algorithm performance. Proposed algorithm can be applied

when the bottom part of the stock sheet is not a straight line. This situation arise when

cutting of some order is finished and later the producer is prepared to cut a new order.

With vary small changes our algorithms can solve the variant of the problem, where

there are several stock sheets with fixed length.

4 Experimental Results

We test our algorithm on real data coming from steel structure, composed from steel

profiles and steel plates, Fig. 5. The test example of the task are the plates from the

structure. Some of them are convex and others are concave polygons. The plates are

1958 pieces and 242 types. The overall area of the plates is 129,053,789 mm
2
. We

cut the plates from steel sheet with fixed width equal to 1500 mm. In this case the

minimum waste is equal to find a solution with minimal y and respectively minimal

filling factor. The filling factor is the ratio between the sum of the area of the all

plates and the cutting area (x × y). We take in to account that the cut width is 5 mm.

Before running the optimization procedure we process the input data. The input data

are polygons, described by points. Very often a plate is described with more points

than is the number of their nodes. We verify the input data and we remove needless

points. At the end the plates are described only with their nodes. The algorithm is

run on desktop computer with 2.8 GHz CPU.
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Fig. 5 Steel structure, composed of steel profiles and steel plates

Table 1 Results comparison
Properties Commercial

algorithm

Proposed

algorithm

Cutted hight 200,014 mm 170,273 mm

Filling factor 0.43 0.505

We run the proposed algorithm 30 times and we compare achieved best results

with results achieved by one commercial software used by professionals. We chose

a professional software, which do not complete the items to rectangular. We report

the value of cutted hight (y) and filling factor. Regarding the Table 1 we observe

that proposed algorithm achieves better result than the commercial one. Our algo-

rithm achieves solution with smaller hight and respectively less filling factor, which

is equal to solution with less waste. We can conclude that our algorithm receives

very encouraging results.

5 Conclusion

In this paper we propose an algorithm for solving 2D cutting stock problem. It is

very important industrial problem which is NP-hard. The cutting items are convex

and concave polygons. We compare our algorithm with one commercial software

product. We apply the algorithms on real data from real steel structure. We show
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that our algorithm achieves better results than the other. For a future work we plane

to improve proposed algorithm and to propose an heuristic algorithm for 2D cutting

stock problem.
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Error Estimate in the Iterative Numerical
Method for Two-Dimensional Nonlinear
Hammerstein-Fredholm Fuzzy Functional
Integral Equations

Atanaska Georgieva, Albena Pavlova and Iva Naydenova

Abstract In this paper, we prove the convergence of the method of successive

approximations used to approximate the solution of two-dimensional nonlinear

Hammerstein-Fredholm fuzzy functional integral equations. We present an iterative

procedure based on quadrature rectangles to solve such equations. The error esti-

mation of the proposed method is given in terms of uniform and partial modulus

of continuity. Finally, an illustrative numerical experiment confirms the theoretical

results and demonstrates the accuracy of the method.

1 Introduction

The concepts of fuzzy integral and differential equations have been studied by many

mathematicians and authors. The study of fuzzy integral equations begins with the

investigations performed by of Kaleva [9], Seikkala [13], Goetshel and Voxman [8]

and others. The interest in fuzzy Fredholm integral equations is based primarily on

its applications in fuzzy financial and economic systems [4]. Banach’s fixed point

theorem and method of successive approximation are applied in the problem of the

existence and uniqueness of the solution(see [2, 6, 10]).

The numerical methods for solving fuzzy integral equations involve various tech-

niques. The method of successive approximations and other iterative techniques are
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applied in [6, 7]. Since many problems in engineering and applied sciences can

be put in the form of two-dimensional fuzzy integral equations, it is important to

develop numerical methods for solving such integral equations. In this paper, we

investigate the two-dimensional nonlinear Hammerstein-Fredholm fuzzy functional

integral equation

F(s, t) = g(s, t)⊕ f (s, t,F(s, t))⊕

⊕ (FR)
d
∫
c
(FR)

b
∫
a
K(s, t, x, y)⊙ H(x, y,F(x, y))dxdy, (1)

where K(s, t, x, y) is an arbitrary positive kernel on [a, b] × [c, d] × [a, b] × [c, d],
g ∶ [a, b] × [c, d] → 𝐑F , f , H ∶ [a, b] × [c, d] × 𝐑F → 𝐑F are continuous fuzzy-

number valued functions.

The existence and uniqueness of the solution is proven by Banach’s fixed point

theorem. We approximate the solution of the equation using the quadrature formula

of rectangles and the method of successive approximations. The error estimation of

the iterative method is obtained in terms of uniform and partial modulus of continu-

ity, proving the convergence of the method. The error estimate obtained in this paper

is expressed in terms of the modulus of continuity for g and K. We illustrate the iter-

ative method of numerical experiment by testing the convergence and the numerical

stability with respect to the choice of the first iterations. A numerical example is

included in order to confirm the theoretical results of the test.

2 Preliminaries

Firstly, we present some notions and results about fuzzy numbers and fuzzy-number-

valued functions.

Definition 1 [5, 8] A fuzzy number is a function u ∶ R → [0, 1] satisfying the fol-

lowing properties:

1. u is upper semi-continuous on R,

2. u(x) = 0 outside of some interval [c, d],
3. there are the real numbers a and b with c ≤ a ≤ b ≤ d, such that u is increasing

on [c, a], decreasing on [b, d], and u(x) = 1 for each x ∈ [a, b],
4. u is fuzzy convex set ( that is u(𝜆x + (1 − 𝜆)y) ≥ min{u(x), u(y)}, for all x, y ∈

R, 𝜆 ∈ [0, 1] ) and possess compact support [u]0 = {x ∈ R ∶ u(x) > 0}, where A
denotes the closure of A.

The set of all fuzzy numbers is denoted by 𝐑F . Any real number a ∈ R can be

interpreted as a fuzzy number ã = 𝜒(a) and therefore R ⊂ 𝐑F . The neutral element

with respect to ⊕ in 𝐑F is denoted by ̃0 = 𝜒{0}. For any 0 < r ≤ 1 we point out

the r-level set [u]r = {x ∈ R ∶ u(x) ≥ r},that is a closed interval, and [u]r = [ur−, u
r
+]

for any r ∈ [0, 1]. These r-level sets lead to the usual LU representation of a fuzzy
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number: [u]r = [ur−, u
r
+] for any r ∈ [0, 1], where u−, u+ can be consider as functions

u−, u+ ∶ [0, 1] → 𝐑, such that u− is increasing and u+ is decreasing.

For u, v ∈ 𝐑F , k ∈ R, the addition and the scalar multiplication are defined by

[u⊕ v]r = [u]r + [v]r, and [k ⊙ u]r = k.[u]r for all r ∈ [0, 1]. In [1, 13] are given

algebraic properties for any u, v,w ∈ 𝐑F .

Definition 2 [1] For arbitrary fuzzy numbers u = (ur−, u
r
+) and v = (vr−, v

r
+) the quan-

tity D(u, v) = sup
r∈[0,1]

max{|ur− − vr−|, |u
r
+ − vr+|} is the distance between u and v.

Theorem 1 [14] The following properties of the above distance hold:

1. (𝐑F ,D) is a complete metric space,
2. D(u⊕ w, v⊕ w) = D(u, v), for all u, v,w ∈ 𝐑F ,
3. D(k ⊙ u, k ⊙ v) = |k|D(u, v), for all u, v ∈ 𝐑F , for all k ∈ R,
4. D(u⊕ v,w⊕ e) = D(u,w) + D(v, e), for all u, v,w, e ∈ 𝐑F ,
5. D(u⊕ v, ̃0) ≤ D(u, ̃0) + D(v, ̃0), for all u, v ∈ 𝐑F ,
6. D(k1 ⊙ u, k2 ⊙ u) = |k1 − k2|D(u, ̃0), for all k1, k2 ∈ R with k1k2 ≥ 0 and

u ∈ 𝐑F .

Guided by the property 5 from Theorem 1, in [3] Bede and Gal it is defined a

function ‖.‖F ∶ 𝐑F → R by ‖u‖F = D(u, ̃0) that has the properties of usual norms:

1. ‖u‖F ≥ 0, for all u ∈ 𝐑F and ‖u‖F = 0 iff u = ̃0,

2. ‖𝜆 ⊙ u‖F = |𝜆|⊙ ‖u‖F and ‖u⊕ v‖F ≤ ‖u‖F + ‖v‖F for all u, v ∈ 𝐑F , for

all 𝜆 ∈ R,

3. | ‖u‖F − ‖v‖F | ≤ D(u, v) and D(u, v) ≤ ‖u‖F + ‖v‖F , for all u, v ∈ 𝐑F .

For any fuzzy-number-valued function f ∶ A = [a, b] × [c, d] → 𝐑F we

can define the functions f (., ., r), f (., ., r) ∶ A → R, r ∈ [0, 1] by f (s, t, r) = f (s, t, r)r−,

f (s, t, r) = f (s, t, r)r+ for all (s, t) ∈ A, for all r ∈ [0, 1]. These functions are called the

left and right r-level functions of f .

Definition 3 [12] A fuzzy-number-valued function f ∶ A × [c, d] → 𝐑F is said to

be continuous at (s0, t0) ∈ A if for each 𝜀 > 0 there is 𝛿 > 0 such that D(f (s, t),
f (s0, t0)) < 𝜀 whenever

√
(s − s0)2 + (t − t0)2 ≤ 𝛿. If f be continuous for each (s, t) ∈

A, then we say that f is continuous on A.

On the set C(A,𝐑F ) = {f ∶ A → 𝐑F ∶ f is continuous} it is defined the metric

D∗(f , g) = sup
(s,t)∈A

D(f (s, t), g(s, t)), for all f , g ∈ C(A,𝐑F ). This metric is called the

uniform distance between fuzzy-number-valued functions and (X,D∗) is a com-

plete metric space.

Definition 4 A fuzzy-number-valued function f ∶ A → 𝐑F is called bounded

iff there is M ≥ 0 such that D(f (s, t), ̃0) ≤ M for all (s, t) ∈ A.
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Definition 5 [14] Let f ∶ A → 𝐑F , for 𝛥

n
x ∶ a = x0 < x1 < ⋯ < xn = b and 𝛥

n
y ∶

c = y0 < y1 < ⋯ < yn = d, be two partitions of the intervals [a, b] and [c, d], respec-

tively. Let one consider the intermediate points 𝜉i ∈ [xi−1, xi] and 𝜂j ∈ [yj−1, yj],
i = 1, ..., n; j = 1, ..., n, and 𝛿 ∶ [a, b] → R+ and 𝜎 ∶ [c, d] → R+. The divisions Px =
([xi−1, xi]; 𝜉i), i = 1, ..., n, andPy = ([yj−1, yi]; 𝜂j), j = 1, ..., n, denoted shortly byPx =
(𝛥n

, 𝜉) and Py = (𝛥n
, 𝜂) are said to be 𝛿-fine and 𝜎-fine, respectively, if [xi−1, xi] ⊆

(𝜉i − 𝛿(𝜉i), 𝜉i + 𝛿(𝜉i)) and [yj−1, yj] ⊆ (𝜂j − 𝜎(𝜂j), 𝜂j + 𝜎(𝜂j)).

The function f is said to be two-dimensional Henstock integrable to I ∈ 𝐑F if for

every 𝜀 > 0 there are functions 𝛿 ∶ [a, b] → 𝐑F and 𝜎 ∶ [c, d] → 𝐑F such that for

any 𝛿-fine and 𝜎-fine divisions we have D(
n∑

j=1

n∑

i=1
(xi − xi−1)(yj − yj−1)⊙ f (𝜉i, 𝜂j), I) <

𝜀, where
∑

denotes the fuzzy summation. Then, I is called the two-dimensional

Henstock integral of f and is denoted by I(f ) = (FH)
d
∫
c
(FH)

b
∫
a
f (s, t)dsdt.

If the above 𝛿 and 𝜎 are constant functions, then one recaptures the concept of

Riemann integral. In this case, I ∈ 𝐑F will be called two-dimensional integral of f

on A and will be denoted by (FR)
d
∫
c
(FR)

b
∫
a
f (s, t)dsdt.

In [14], the authors introduced and concept of the Henstock integral for a fuzzy

number-valued function.

Lemma 1 [11] If f ∶ A → 𝐑F is a fuzzy-Henstock integrable bounded mapping
then for any fixed u ∈ [a, b] and v ∈ [c, d] the function 𝜑u,v ∶ A → R+ defined by

𝜑u,v(s, t) = D(f (u, v), f (s, t)) is Lebesgue integrable on A and D

(

(FH)
d
∫
c
(FH)

b
∫
a

f (s, t)dsdt, (FH)
d
∫
c
(FH)

b
∫
a
g(s, t)dsdt

)

≤ (L)
d
∫
c
(L)

b
∫
a
D(f (s, t), g(s, t))dsdt.

Definition 6 [11] Let f ∶ A → 𝐑F , be a bounded mapping, then the function

𝜔A(f , .) ∶ R+ ∪ 0 → R+ defined by 𝜔A(f , 𝛿) = sup{D(f (x, y), f (s, t)) ∶ (x, y), (s, t) ∈
A;

√
(x − s)2 + (y − t)2 ≤ 𝛿} is called the modulus of oscillation of f on A. In addi-

tion if f ∈ C(A,𝐑F ), then 𝜔A(f , 𝛿) is called uniform modulus of continuity of f .

According to [11] the following properties hold

1. D(f (x, y), f (s, t)) ≤ 𝜔A(f ,
√
(x − s)2 + (y − t)2) for any (x, y), (s, t) ∈ A,

2. 𝜔A(f , 𝛿) is a non-decreasing mapping in 𝛿,

3. 𝜔A(f , 0) = 0,

4. 𝜔A(f , 𝛿1 + 𝛿2) ≤ 𝜔A(f , 𝛿1) + 𝜔A(f , 𝛿2) for any 𝛿1, 𝛿2 ≥ 0,

5. 𝜔A(f , n𝛿) ≤ n𝜔A(f , 𝛿) for any 𝛿 ≥ 0 and n ∈ N,

6. 𝜔A(f , 𝜆𝛿) ≤ (𝜆 + 1)𝜔A(f , 𝛿) for any 𝛿, 𝜆 ≥ 0,

7. If [a1, b1] × [c1, d1] ⊆ A, then 𝜔[a1,b1]×[c1,d1](f , 𝛿) ≤ 𝜔A(f , 𝛿) for all 𝛿 ≥ 0.
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Lemma 2 [11] Let f ∶ A → 𝐑F , be two-dimensional Henstock integrable, bounded

mapping. Then the following inequality holdsD((FR)
d
∫
c
(FR)

b
∫
a
f (s, t)dsdt, (b − a)(d −

c)⊙ f ( a+b
2
,

c+d
2
)) ≤ (b − a)(d − c)𝜔A(f ,

b−a
2

⋅ d−c
2
).

Theorem 2 [12] Let f ∈ C(A × A,𝐑F ), g ∈ C(A,𝐑F ) and h ∈ C(A,R+), then the
functions h.g ∶ A → 𝐑F and P ∶ A → 𝐑F given by (h.g)(s, t) = h(s, t)⊙ g(s, t), for

all (s, t) ∈ A and P(s, t) = (FH)
d
∫
c
(FH)

b
∫
a
f (s, t, x, y)dxdy are continuous.

3 Successive Approximations and the Iterative Algorithm

We denote by X = C(A,𝐑F ) = {f ∶ A → 𝐑F ∶ f is continuous }. The following

conditions are imposed:

(i) g ∈ C(A,𝐑F ), f ,H ∈ C(A × 𝐑F ,𝐑F ) and K ∈ C(A × A,R+),
(ii) there exists 𝛼1 ≥ 0, such that D(f (s, t, u), f (s, t, v)) ≤ 𝛼1D(u, v) for all (s, t) ∈ A,

(iii) there exists 𝛼2 ≥ 0, such thatD(H(s, t, u),H(s, t, v)) ≤ 𝛼2D(u, v) for all (s, t) ∈ A,

(iv) B = 𝛼1 + NK𝛥𝛼2 < 1, where 𝛥 = (b − a)(d − c) and NK ≥ 0 is such that

|K(s, t, x, y)| ≤ NK , for all (s, t), (x, y) ∈ A, according to the continuity of K.

We define the operator T ∶ X → X by

T(F)(s, t) = g(s, t)⊕ f (s, t,F(s, t))⊕

⊕ (FR)
d
∫
c
(FR)

b
∫
a
K(s, t, x, y)⊙ H(x, y,F(x, y))dxdy, for all (s, t) ∈ A, F ∈ X.

(2)

Theorem 3 Under the conditions (i)–(iv) the integral Eq. (1) has unique solution
F ∈ C(A,𝐑F ) and the sequence of successive approximations {Fm}m∈N ⊂ X

Fm(s, t) = g(s, t)⊕ f (s, t,Fm−1(s, t))⊕

⊕ (FR)
d
∫
c
(FR)

b
∫
a
K(s, t, x, y)⊙ H(x, y,Fm−1(x, y))dxdy

(3)

converges to F in X for any choice of F0 ∈ X and the following error estimates hold:

D(F(s, t),Fm(s, t)) ≤
Bm

1 − B
D(F1(s, t),F0(s, t)), for all (s, t) ∈ A,m ∈ N (4)

D(F(s, t),Fm(s, t)) ≤
B

1 − B
D(Fm(s, t),Fm−1(s, t)), for all (s, t) ∈ A,m ∈ N. (5)

If F0 = g then the estimate (4) becomes

D(F(s, t),Fm(s, t)) ≤
Bm

1 − B
(B‖g‖F + ‖f‖F + NK𝛥‖H‖F ), (6)



46 A. Georgieva et al.

where ‖f‖F = sup
(s,t)∈A

D(f (s, t, ̃0), ̃0), ‖H‖F = sup
(s,t)∈A

D(H(s, t, ̃0), ̃0).

Moreover, the sequence of successive approximations (3) is uniformly bounded
and the solution F is bounded too.

Proof First, we prove that T(X) ⊂ X. For this purpose, let arbitrary F ∈ X, (s0, t0) ∈
A and 𝜀 > 0. Since F is continuous and A is compact set, we infer that F is uniformly

continuous, and according to the uniform continuity of H with respect to the first

and second argument, it follows that there exists 𝛿(𝜀) > 0 such that for any (s, t) ∈
A with

√
(s − s0)2 + (t − t0)2 < 𝛿(𝜀) we have D(H(s, t,F(s, t)),H(s0, t0,F(s, t))) ≤

𝜀

2
and D(F(s, t),F(s0, t0)) <

𝜀

2𝛼
. Then, D(H(s, t,F(s, t)),H(s0, t0,F(s0, t0))) ≤

D(H(s, t,F(s, t)),H(s0, t0,F(s, t))) + D(H(s0, t0,F(s, t)),H(s0, t0,F(s0, t0))) ≤
𝜀

2
+ 𝛼2

D(F(s, t),F(s0, t0)) ≤
𝜀

2
+ 𝛼2

𝜀

2𝛼2
≤ 𝜀 and the function UF ∶ A → 𝐑F defined by

UF(s, t) = H(s, t,F(s, t)) is continuous in (s0, t0). We infer that UF is continuous on

A for any F ∈ X. Analogously, the function WF ∶ A → 𝐑F defined by WF(s, t) =
f (s, t,F(s, t)) is continuous on A for any F ∈ X. Applying Theorem 2 it follows that

the functionK(s, t, ., .)⊙ UF(., .) ∶ A → 𝐑F is continuous onA for anyF ∈ X. Using

the same Theorem 2 we see that the function VF ∶ A → 𝐑F , defined by VF(s, t) =

(FR)
d
∫
c
(FR)

b
∫
a
K(s, t, x, y)⊙ UF(x, y)dxdy is continuous on A for any F ∈ X. Since

g ∈ X, we conclude that T(F) is continuous on A for any F ∈ X. Now we prove that

the operator T is a contraction. Let arbitrary F,G ∈ X. From Definition 3, condition

3 of Theorem 1, Lemma 1 and conditions (ii)-(iv) we have

D(T(F)(s, t),T(G)(s, t)) ≤ D(g(s, t), g(s, t)) + D(f (s, t,F(s, t)), f (s, t,G(s, t)))+

+ D((FR)
d

∫
c

(FR)
b

∫
a

K(s, t, x, y)⊙ H(x, y,F(x, y))dxdy,

(FR)
d

∫
c

(FR)
b

∫
a

K(s, t, x, y)⊙ H(x, y,G(x, y))dxdy) ≤ 𝛼1D(F(s, t)),G(s, t))+

+
d

∫
c

b

∫
a

|K(s, t, x, y)|D(H(x, y,F(x, y)),H(x, y,G(x, y)))dxdy ≤

≤ 𝛼1D(F(s, t)),G(s, t)) + Nk𝛼2

d

∫
c

b

∫
a

D(F(x, y),G(x, y))dxdy ≤

≤ 𝛼1D∗(F,G) + NK𝛥𝛼2D∗(F,G) ≤ BD∗(F,G).

Therefore D∗(T(F),T(G)) ≤ BD∗(F,G) for all F,G ∈ X. Since B < 1, T is con-

traction. Applying the Banach’s fixed point principle we obtain the existence of the
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uniqueness of the solutionF ∈ X, of (1) and the uniform convergence of the sequence

of successive approximations (3) to this solution in X, for any choice of the initial

term of F0 ∈ X. The inequality (4) and (5) we obtain from Banach’s fixed point prin-

ciple.

Choosing F0 = g. For all (s, t) ∈ A and the functions f ,H ∈ C(A × 𝐑F ,𝐑F ),
g ∈ X we obtain

D(f (s, t, g(s, t)), ̃0) ≤ D(f (s, t, g(s, t)), f (s, t, ̃0)) + D(f (s, t, ̃0), ̃0) ≤ 𝛼1‖g‖F + ‖f‖F
and D(H(s, t, g(s, t)), ̃0) ≤ 𝛼2‖g‖F + ‖H‖F . So,

D(F1(s, t),F0(s, t)) ≤

≤ D(f (s, t, g(s, t)), ̃0) + D((FR)
d

∫
c

(FR)
b

∫
a

K(s, t, x, y)⊙ H(x, y, g(x, y))dxdy, ̃0) ≤

≤ B‖g‖F + ‖f‖F + NK𝛥‖H‖F i.e.

D(F1(s, t),F0(s, t)) ≤ B‖g‖F + ‖f‖F + NK𝛥‖H‖F . (7)

and condition (4) we obtain the inequality (6).

For arbitrary (s, t) ∈ A and m ∈ N, we have D(Fm(s, t),Fm−1(s, t)) ≤ BD∗(Fm−1,

Fm−2) by induction we obtain

D(Fm(s, t),Fm−1(s, t)) ≤ Bm−1D∗(F1,F0). (8)

Then from (7) and (8) we obtain

D(Fm(s, t),F0(s, t)) ≤ D(Fm(s, t),Fm−1(s, t)) + D(Fm−1(s, t),Fm−2(s, t))+
+⋯ + D(F1(s, t),F0(s, t)) ≤ (Bm−1 + Bm−2 +⋯ + 1)D∗(F1,F0) ≤

≤
1

1 − B
D∗(F1,F0) ≤

1
1 − B

(B‖g‖F + ‖f‖F + NK𝛥‖H‖F ).

Consequently for all (s, t) ∈ A and m ∈ N we have

D(Fm(s, t), ̃0) ≤ D(Fm(s, t), g(s, t)) + D(g(s, t), ̃0) ≤
≤ 1

1−B
(B‖g‖F + ‖f‖F + NK𝛥‖H‖F ) + ‖g‖F .

(9)

That is the uniformly bounded of sequence {Fm}m∈N in X.
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For m ∈ N, let Um ∶ A → 𝐑F , Um(s, t) = H(s, t,Fm(s, t)). Then

D(Um(s, t), ̃0) ≤ D(H(s, t,Fm(s, t)),H(s, t, g(s, t))) + D(H(s, t, g(s, t)), ̃0) ≤
≤ 𝛼2D(Fm(s, t), g(s, t)) + 𝛼2‖g‖F + ‖H‖F .

Hence the sequence {Um}m∈N is uniformly bounded in X. In addition, for any

(s, t) ∈ A and conditions (6) and (9) we have

D(F(s, t), ̃0) ≤ D(F(s, t),Fm(s, t)) + D(Fm(s, t), ̃0) ≤

≤
1

1 − B
(B‖g‖F + ‖f‖F + NK𝛥‖H‖F ) + ‖g‖F .

We conclude that the solution of (1) is bounded. □

4 The Error Estimation

We present a numerical method to solve the Eq. (1) and define uniform partitions

a = a0 < a1 < ⋯ < an = b and c = c0 < c1 < ⋯ < cn = d, with intermediates

points 𝜉i ∈ [ai−1, ai] and 𝜂j ∈ [cj−1, cj] , i = 1, n ;j = 1, n, h = b−a
n

, h′ = d−c
n

. Then

the following iterative procedure given the approximate solution of Eq. (1) in point

(s, t) ∈ A, m = 1, 2, ...,

̃F0(s, t) = g(s, t), ̃Fm(s, t) = g(s, t)⊕ f (s, t, ̃Fm−1(s, t))⊕

⊕ hh′
n∑

j=1

n∑

i=1
K(s, t, 𝜉i, 𝜂j)⊙ H(𝜉i, 𝜂j, ̃Fm−1(𝜉i, 𝜂j)).

(10)

Lemma 3 Under the conditions (i)-(iv) we have

𝜔A(Fm, hh′) ≤
1

1 − 𝛼1
𝜔A(g, hh′) +

𝛾1
1 − 𝛼1

(h + h′) +
𝛥(𝛼2Γ + ‖H‖F )

1 − 𝛼1
𝜔1,

where Γ = max
0≤i≤m−1

‖Fi‖F and for all 𝛿 > 0, 𝜔1 = 𝜔A(K, 𝛿) =

= sup
(si,ti)∈A;i=1,2

{|K(s1, t1, x, y) − K(s2, t2, x, y)| ∶
√
(s1 − s2)2 + (t1 − t2)2 ≤ 𝛿}.

Proof Under for (x1, y1), (x2, y2) ∈ A with

√
(x1 − x2)2 + (y1 − y2)2 ≤ hh′, by using

Lemmas 1, 2 and (9) it obtains

D(Fm(x1, y1),Fm(x2, y2)) ≤ D(g(x1, y1), g(x2, y2))+
+ D(f (x1, y1,Fm−1(x1, y1)), f (x2, y2,Fm−1(x2, y2))+
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+ D((FR)
d

∫
c

(FR)
b

∫
a

K(x1, y1, x, y)⊙ H(x, y,Fm−1(x, y))dxdy,

(FR)
d

∫
c

(FR)
b

∫
a

K(x2, y2, x, y)⊙ H(x, y,Fm−1(x, y))dxdy)) ≤

≤ 𝜔A(g, hh′) + 𝛾1(h + h′) + 𝛼1D(Fm−1(x1, y1),Fm−1(x2, y2))+

+
d

∫
c

b

∫
a

|K(x1, y1, x, y) − K(x2, y2, x, y)|D(H(x, y,Fm−1(x, y)), ̃0)dxdy ≤

≤ 𝜔A(g, hh′) + 𝛾1(h + h′) + 𝛼1D(Fm−1(x1, y1),Fm−1(x2, y2))+

+ 𝜔1

d

∫
c

b

∫
a

(𝛼2D(Fm−1(x, y), ̃0) + D(H(x, y, ̃0), ̃0))dxdy ≤

≤ 𝜔A(g, hh′) + 𝛾1(h + h′) + 𝛼1D(Fm−1(x1, y1),Fm−1(x2, y2))+
+ 𝜔1𝛥(𝛼2‖Fm−1‖F + ‖H‖F ) ≤ P + 𝛼1D(Fm−1(x1, y1),Fm−1(x2, y2)) + 𝜔1𝛥𝛼2‖Fm−1‖F ,

where P = 𝜔A(g, hh′) + 𝛾1(h + h′) + 𝜔1𝛥‖H‖F .

So, we have

D(Fm(x1, y1),Fm(x2, y2)) ≤ P + 𝛼1D(Fm−1(x1, y1),Fm−1(x2, y2)) + 𝜔1𝛥𝛼2‖Fm−1‖F ,

D(Fm−1(x1, y1),Fm−1(x2, y2)) ≤ P + 𝛼1D(Fm−2(x1, y1),Fm−2(x2, y2)) + 𝜔1𝛥𝛼2‖Fm−2‖F ,

...

D(F1(x1, y1),F1(x2, y2)) ≤ P + 𝛼1D(F0(x1, y1),F0(x2, y2)) + 𝜔1𝛥𝛼2‖F0‖F .

Multiplying these inequalities by 1, 𝛼1, ..., 𝛼m−1
1 , respectively, and summing them we

have

D(Fm(x1, y1),Fm(x2, y2)) ≤ (1 + 𝛼1 +⋯ + 𝛼

m−1
1 )P + 𝛼

m
1 𝜔A(g, hh′)+

+ 𝜔1𝛥𝛼2(‖Fm−1‖F + 𝛼1‖Fm−2‖F +⋯ + 𝛼

m−1
1 ‖F0‖F ) ≤

≤
1

1 − 𝛼1
𝜔A(g, hh′) +

1
1 − 𝛼1

(𝛾1(h + h′) + 𝜔1𝛥‖H‖F ) + 1
1 − 𝛼1

𝜔1𝛥𝛼2Γ.

□

Theorem 4 Under the conditions (i)-(iv) the iterative method (10) converges to the
unique solution F of (1) and its error estimate is as follows

D∗(F, ̃Fm) ≤
Bm

1 − B
(B‖F0‖F + ‖f‖F + NK𝛥‖H‖F )+

+
5𝛥NK

4(1 − B)
(𝛾2 +

𝛼2𝛾1
1 − 𝛼1

)(h + h′) +
5𝛥NK𝛼2

4(1 − 𝛼1)(1 − B)
𝜔A(g, hh′)+
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+
5𝛥2NK𝛼2(𝛼2Γ + ‖H‖F )

4(1 − 𝛼1)(1 − B)
𝜔1 +

3𝛥(𝛼2𝜇 + ‖H‖F )
2(1 − B)

𝜔2,

where Γ, 𝜔1 are of Lemma 2, 𝜇 = max
0≤i≤m−1

‖ ̃Fi‖F and for all 𝛿 > 0, 𝜔2 = 𝜔A(K, 𝛿) =

= sup
(xi,yi)∈A,i=1,2

{|K(s, t, x1, y1) − K(s, t, x2, y2)| ∶
√
(x1 − x2)2 + (y1 − y2)2 ≤ 𝛿}.

Proof Considering iterative procedure (10), for all (s, t) ∈ A we have

D(Fm(s, t), ̃Fm(s, t)) = D(g(s, t), g(s, t)) + D(f (s, t,Fm−1(s, t)), f (s, t, ̃Fm−1(s, t)))+

+ D((FR)
d

∫
c

(FR)
b

∫
a

K(s, t, x, y)⊙ H(x, y,Fm−1(x, y))dxdy,

hh′
n∑

j=1

n∑

i=1
K(s, t, 𝜉i, 𝜂j)⊙ H(𝜉i, 𝜂j, ̃Fm−1(𝜉i, 𝜂j))) ≤

≤ 𝛼1D∗(Fm−1, ̃Fm−1)+

+
n∑

j=1

n∑

i=1
D((FR)

cj

∫
cj−1

(FR)

ai

∫
ai−1

K(s, t, x, y)⊙ H(x, y,Fm−1(x, y))dxdy,

hh′K(s, t, x, y)⊙ H(𝜉i, 𝜂j,Fm−1(𝜉i, 𝜂j)))+

+
n∑

j=1

n∑

i=1
D(hh′K(s, t, x, y)⊙ H(𝜉i, 𝜂j,Fm−1(𝜉i, 𝜂j)),

hh′K(s, t, x, y)⊙ H(𝜉i, 𝜂j, ̃Fm−1(𝜉i, 𝜂j)))+

+
n∑

j=1

n∑

i=1
D(hh′K(s, t, x, y)⊙ H(𝜉i, 𝜂j, ̃Fm−1(𝜉i, 𝜂j)),

hh′K(s, t, 𝜉i, 𝜂j)⊙ H(𝜉i, 𝜂j, ̃Fm−1(𝜉i, 𝜂j))) ≤

≤ 𝛼1D∗(Fm−1, ̃Fm−1) +
5
4
𝛥NK𝜔A(H(x, y,Fm−1(x, y)), hh′) + 𝛥NK𝛼2D∗(Fm−1, ̃Fm−1)+

+ 3
2
hh′𝜔2

n∑

j=1

n∑

i=1
(D(H(𝜉i, 𝜂j, ̃Fm−1(𝜉i, 𝜂j)),H(𝜉i, 𝜂j, ̃0)) + D(H(𝜉i, 𝜂j, ̃0), ̃0)) ≤

≤ BD∗(Fm−1, ̃Fm−1) +
5𝛥NK

4
𝜔A(H(x, y,Fm−1(x, y)), hh′) +

3𝛥𝜔2(𝛼2‖ ̃Fm−1‖F + ‖H‖F )
2

.

For 𝜔A(H(x, y,Fm−1(x, y)), hh′) we obtain

D(H(x1, y1,Fm−1(x1, y1)),H(x2, y2,Fm−1(x2, y2))) ≤
≤ 𝛾2(h + h′) + 𝛼2D(Fm−1(x1, y1),Fm−1(x2, y2)) ≤ 𝛾2(h + h′) + 𝛼2𝜔A(Fm−1, hh′).

From Lemma 3 we obtain
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D∗(Fm,
̃Fm) ≤ BD∗(Fm−1, ̃Fm−1) +

5𝛥NK𝛾2
4

(h + h′) +
5𝛥NK𝛼2
4(1 − 𝛼1)

𝜔A(g, hh′)+

+
5𝛥NK𝛼2𝛾1
4(1 − 𝛼1)

(h + h′) +
5𝛥2NK𝛼2(𝛼2Γ + ‖H‖F )

4(1 − 𝛼1)
𝜔1 +

3
2
𝛥𝜔2𝛼2‖ ̃Fm−1‖F +

3𝛥‖H‖F

2
𝜔2.

We denote

Q =
5𝛥NK

4
(𝛾2 +

𝛼2𝛾1
1 − 𝛼1

)(h + h′) +
5𝛥NK𝛼2
4(1 − 𝛼1)

𝜔A(g, hh′) +

+
5𝛥2NK𝛼2(𝛼2Γ + ‖H‖F )

4(1 − 𝛼1)
𝜔1 +

3𝛥‖H‖F

2
𝜔2.

Hence we conclude

D∗(Fm,
̃Fm) ≤ BD∗(Fm−1, ̃Fm−1) +

3
2
𝛥𝜔2𝛼2‖ ̃Fm−1‖F + Q

D∗(Fm−1, ̃Fm−1) ≤ BD∗(Fm−2, ̃Fm−2) +
3
2
𝛥𝜔2𝛼2‖ ̃Fm−2‖F + Q

...

D∗(F1, ̃F1) ≤ BD∗(F0, ̃F0) +
3
2
𝛥𝜔2𝛼2‖ ̃F0‖F + Q.

Multiplying these inequalities by 1, B, ..., Bm−1
respectively and summing them

obtain

D∗(Fm,
̃Fm) ≤

3
2
𝛥𝜔2𝛼2(‖ ̃Fm−1‖F + B‖ ̃Fm−2‖F +⋯ } + Bm−1‖ ̃F0‖F )+

+ Q(1 + B +⋯ + Bm−1) ≤ 3
2(1 − B)

𝛥𝜔2𝛼2𝜇 + Q 1
1 − B

.

Hence we obtain

D∗(Fm,
̃Fm) ≤

5𝛥NK
4(1−B)

(𝛾2 +
𝛼2𝛾1
1−𝛼1

)(h + h′) + 5𝛥NK𝛼2
4(1−𝛼1)(1−B)

𝜔A(g, hh′)+

+5𝛥2NK𝛼2(𝛼2Γ+‖H‖F )
4(1−𝛼1)(1−B)

𝜔1 +
3𝛥(𝛼2𝜇+‖H‖F )

2(1−B)
𝜔2.

(11)
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From condition (6) of Theorem 3 we obtained

D∗(F, ̃Fm) ≤ D∗(F,Fm) + D∗(Fm,
̃Fm) ≤

Bm

1 − B
(B‖g‖F + 𝛼1‖f‖F + NK𝛥‖H‖F )+

+
5𝛥NK

4(1 − B)
(𝛾2 +

𝛼2𝛾1
1 − 𝛼1

)(h + h′) +
5𝛥NK𝛼2

4(1 − 𝛼1)(1 − B)
𝜔A(g, hh′)+

+
5𝛥2NK𝛼2(𝛼2Γ + ‖H‖F )

4(1 − 𝛼1)(1 − B)
𝜔1 +

3𝛥(𝛼2𝜇 + ‖H‖F )
2(1 − B)

𝜔2.

□

Remark 1 Since B < 1, lim
h,h′→0

𝜔A(g, hh′) = 0, lim
h,h′→0

𝜔A(K, hh′) = 0 and

lim
h,h′→0

𝜔A(K, h + h′) = 0, is to prove that lim
m→∞,h,h′→0

D∗(F, ̃Fm) = 0 that shows the con-

vergence of the method.

5 Numerical Stability Analysis

We study the numerical stability of the iterative algorithm (4) with respect to small

changes in the starting approximation. We consider F0 = g and another starting

approximation G0 = g∗ ∈ C(A,𝐑F ) such that exists 𝜀 > 0 for which D(F0(s, t),
G0(s, t)) < 𝜀, for all (s, t) ∈ A. The obtained sequence of successive approxima-

tions is:

G0(s, t) = g∗(s, t),
Gm(s, t) = g(s, t)⊕ f (s, t,Gm−1(s, t))⊕

⊕ (FR)
d

∫
c

(FR)
b

∫
a

K(s, t, x, y)⊙ H(x, y,Gm−1(x, y))dxdy,m = 1, 2, ...,

and using the iterative method, the term of produced sequence are:

̃G0(s, t) = g∗(s, t),
̃Gm(s, t) = g(s, t)⊕ f (s, t, ̃Gm−1(s, t))⊕

⊕ hh′
n∑

j=1

n∑

i=1
K(s, t, 𝜉i, 𝜂j)⊙ H(𝜉i, 𝜂j, ̃Gm−1(𝜉i, 𝜂j)), m = 1, 2, ...
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Definition 7 The method of successive approximations applied to the integral

Eq. (1) is said to be numerically stable with respect to the choice of the first iteration

if for all (s, t) ∈ A there exist constants k1, k2, k3, k4, k5, k6 > 0which are independent

by h = b−a
n

and h′ = d−c
n

such that

D( ̃Fm(s, t), ̃Gm(s, t)) < k1𝜀 + k2(h + h′) + k3𝜔A(g, hh′) + k4𝜔A(g∗, hh′) + k5𝜔1 + k6𝜔2.

Theorem 5 Under the conditions (i)-(iv) the iterative method is numerically stable
with respect to the choice of the first iteration.

Proof First, we observe that

D∗( ̃Fm,
̃Gm) ≤ D∗( ̃Fm,Fm) + D∗(Fm,Gm) + D∗(Gm,

̃Gm).
From inequality (11) of Theorem 3 we have

D∗(Gm,
̃Gm) ≤

5𝛥NK
4(1−B)

(𝛾2 +
𝛼2𝛾1
1−𝛼1

)(h + h′) + 5𝛥NK𝛼2
4(1−𝛼1)(1−B)

𝜔A(g∗, hh′)+

+5𝛥2NK𝛼2(𝛼2Γ∗+‖H‖F )
4(1−𝛼1)(1−B)

𝜔1 +
3𝛥(𝛼2𝜇∗+‖H‖F )

2(1−B)
𝜔2,

where Γ∗ = max
0≤i≤m−1

‖Gi‖F , 𝜇

∗ = max
0≤i≤m−1

‖ ̃Gi‖F .

By hypothesis, D(F0(s, t),G0(s, t)) < 𝜀, for all (s, t) ∈ A and thus

D(Fm(s, t),Gm(s, t)) ≤ D(g(s, t), g(s, t)) + D(f (s, t,Fm−1(s, t)), f (s, t,Gm−1(s, t)))+

+ D((FR)
d

∫
c

(FR)
b

∫
a

K(s, t, x, y)⊙ H(x, y,Fm−1(x, y))dxdy,

(FR)
d

∫
c

(FR)
b

∫
a

K(s, t, x, y)⊙ H(x, y,Gm−1(x, y))dxdy) ≤ 𝛼1D∗(Fm−1,Gm−1)+

+ (FR)
d

∫
c

(FR)
b

∫
a

|K(s, t, x, y)|D(H(x, y,Fm−1(x, y)),H(x, y,Gm−1(x, y)))dxdy) ≤

≤ 𝛼1D∗(Fm−1,Gm−1) + NK𝛥𝛼2D∗(Fm−1,Gm−1) = BD∗(Fm−1,Gm−1).

Then D∗(Fm,Gm) ≤ BmD∗(F0,G0) ≤ Bm
𝜀 for all (s, t) ∈ A,m ≥ 1 and

D∗( ̃Fm,
̃Gm) ≤ k1𝜀 + k2(h + h′) + k3𝜔A(g, hh′) + k4𝜔A(g∗, hh′) + k5𝜔1 + k6𝜔2,

were k1 = Bm
, k2 =

5𝛥NK
2(1−B)

(𝛾2 +
𝛼2𝛾1
1−𝛼1

), k3 = k4 =
5𝛥NK𝛼2

4(1−𝛼1)(1−B)
,

k5 =
5𝛥2NK𝛼2(𝛼2(Γ+Γ∗)+2‖H‖F )

4(1−𝛼1)(1−B)
, k6 =

3𝛥(𝛼2(𝜇+𝜇∗)+2‖H‖F )
2(1−B)

. □
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6 Numerical Experiments

In this section, we intent to illustrate the obtained theoretical results on some numer-

ical example testing the convergence of the method and the numerical stability with

respect to the choice of the first iteration. The algorithm was implemented using C♯.

The program can be found on the following web address: http://math.asm32.info/r/

fuzzy.

Example Let A = [0, 1] × [0, 1]. For the integral equation

F(s, t) = g(s, t)⊕ f (s, t,F(s, t))⊕ (FR)
d
∫
c
(FR)

b
∫
a
stxy⊙ F2(x, y)dxdy, (s, t) ∈ A

the exact solution is F(s, t, r) = (2 + r)st and ̄F(s, t, r) = (4 − r)st.
Here g(s, t, r) = 3

4
(2 + r)st − 1

8
(2 + r)2st, ḡ(s, t, r) = 3

4
(4 − r)st − 1

8
(4 − r)2st,

f (s, t,F(s, t, r), r) = F(s,t,r)
4

+ 1
16
(2 + r)2st, ̄f (s, t, ̄F(s, t, r), r) = ̄F(s,t,r)

4
+ 1

16
(4 − r)2st.

Applying the iterative algorithm for various m, n, ri = ihr, i = 0 ÷ 10, hr =
1
10

we

obtain the computational errors Em(ri) = Em(s0, t0, ri) = | ̃Fm(s0, t0, ri) − F(s0, t0, ri)|
and Em(ri) = Em(s0, t0, ri) = | ̃Fm(s0, t0, ri) − F(s0, t0, ri)| in the point (s0, t0) =
(0.5, 0.5). We get that for any 0 ≤ r ≤ 1, the norm of the errors tend to zero as m, n →
∞we present these results in Table 1. The numerical stability is tested by considering

𝜀 = 0.1, and for various m, n. The results are expressed by Dm(ri) = Dm(s0, t0, ri) =
| ̃Fm(s0, t0, ri) − ̃Gm(s0, t0, ri)| and Dm(ri) = Dm(s0, t0, ri) = | ̃Fm(s0, t0, ri) − ̃Gm(s0,
t0, ri)| in the point (s0, t0) = (0.5, 0.5) in Table 2.

Table 1 Numerical errors in (0.5, 0.5)

m = 10 n = 10 m = 20 n = 10 m = 10 n = 30 m = 20 n = 30

ri Em(ri) Em(ri) Em(ri) Em(ri) Em(ri) Em(ri) Em(ri) Em(ri)
0 1,43E-03 2,77E-02 1,25E-03 2,11E-02 3,29E-04 1,06E-02 1,39E-04 2,19E-03

0,1 1,66E-03 2,39E-02 1,42E-03 9,50E-03 4,15E-04 1,78E-02 1,57E-04 1,77E-03

0,2 1,92E-03 2,07E-02 1,59E-03 8,51E-03 5,23E-04 1,49E-02 1,77E-04 1,45E-03

0,3 2,22E-03 1,78E-02 1,79E-03 7,64E-03 6,59E-04 1,24E-02 1,99E-04 1,21E-03

0,4 2,57E-03 1,54E-02 2,00E-03 6,88E-03 8,28E-04 1,03E-02 2,24E-04 1,01E-03

0,5 2,97E-03 1,32E-02 2,23E-03 6,21E-03 1,04E-03 8,56E-03 2,50E-04 8,62E-04

0,6 3,44E-03 1,14E-02 2,48E-03 5,61E-03 1,30E-03 7,06E-03 2,80E-04 7,41E-04

0,7 3,99E-03 9,80E-03 2,76E-03 5,07E-03 1,63E-03 5,80E-03 3,13E-04 6,44E-04

0,8 4,62E-03 8,42E-03 3,06E-03 4,59E-03 2,03E-03 4,74E-03 3,50E-04 5,64E-04

0,9 5,37E-03 7,24E-03 3,39E-03 4,15E-03 2,53E-03 3,86E-03 3,92E-04 4,97E-04

1 6,23E-03 6,23E-03 3,75E-03 3,75E-03 3,13E-03 3,13E-03 4,41E-04 4,41E-04

http://math.asm32.info/r/fuzzy
http://math.asm32.info/r/fuzzy
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Table 2 Numerical errors in (0.5, 0.5)

m = 10 n = 10 m = 20 n = 10 m = 10 n = 30 m = 20 n = 30

ri Dm(ri) Dm(ri) Dm(ri) Dm(ri) Dm(ri) Dm(ri) Dm(ri) Dm(ri)
0 2,63E-05 4,77E-04 2,40E-08 2,26E-05 2,75E-05 5,12E-04 2,70E-08 2,70E-05

0,1 3,24E-05 4,38E-04 3,80E-08 1,77E-05 3,39E-05 4,69E-04 4,20E-08 2,11E-05

0,2 3,96E-05 3,99E-04 5,90E-08 1,38E-05 4,15E-05 4,27E-04 6,50E-08 1,64E-05

0,3 4,80E-05 3,62E-04 9,00E-08 1,06E-05 5,04E-05 3,87E-04 1,00E-07 1,25E-05

0,4 5,78E-05 3,26E-04 1,36E-07 8,07E-06 6,08E-05 3,48E-04 1,52E-07 9,50E-06

0,5 6,91E-05 2,92E-04 2,03E-07 6,08E-06 7,28E-05 3,11E-04 2,28E-07 7,13E-06

0,6 8,21E-05 2,60E-04 2,99E-07 4,54E-06 8,66E-05 2,77E-04 3,38E-07 5,30E-06

0,7 9,70E-05 2,30E-04 4,37E-07 3,35E-06 1,02E-04 2,45E-04 4,96E-07 3,90E-06

0,8 1,14E-04 2,02E-04 6,30E-07 2,45E-06 1,20E-04 2,15E-04 7,18E-07 2,84E-06

0,9 1,33E-04 1,77E-04 8,99E-07 1,77E-06 1,40E-04 1,88E-04 1,03E-06 2,04E-06

1 1,53E-04 1,53E-04 1,27E-06 1,27E-06 1,63E-04 1,63E-04 1,46E-06 1,46E-06

Acknowledgements Research was partially supported by Fund FP17-FMI-008, Fund Scientific

Research, University of Plovdiv Paisii Hilendarski.
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Noise Removal and Feature Extraction of 2D
CT Radiographic Images

Stanislav Harizanov, Jaume de Dios Pont, Sebastian Ståhl
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Abstract 2D CT radiographic images are widely used in industrial as well as med-

ical applications to examine different types of objects whenever non-destructive

measurements of quality are necessary. To extract meaningful structural information

for the scanned object from a low-dose input without increasing the radiation level

of the scanner, we propose and experimentally investigate a novel two-step process.

Firstly, the image is denoised by a regularization method in order to remove unwanted

disturbances which affect its quality. Secondly, the difference images between the

outputs of different regularization methods are used for feature localization and

extraction. The theory as well as the numerical results of the application of several

methods on real-life industrial CT data are presented and compared herein.
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1 Introduction

Image noise is a common problem in many applications. In this context noise is

defined to be a disturbance in the observed signal, leading to an inaccurate mea-

surement of the observed quantity and thus to a loss of information. There are var-

ious denoising techniques known and their effectiveness depends on how well the

underlying processes of noise generation are investigated. An essential part in find-

ing an appropriate denoising algorithm is the ability to accurately model and char-

acterize the statistical parameters of the image noise distribution. This problem is

addressed and solved for a single-frame series of 2D CT data. We provide numerical

evidence that scaled Poisson-Gaussian noise model seems to be the right one for this

setting.

The paper investigates different methods for 2D radiographic image denoising,

based on regularization and convex optimization techniques. Those approaches typ-

ically give rise to over-smoothened results, since one chooses the most regular solu-

tion in a class of admissible images, containing the true noise-free reconstruction.

We turn this drawback into an advantage and study the possibility to extract struc-

tural information for the scanned object from the segmented difference image of

two differently denoised outputs. Since the noise part of the image is assumed to

be the least regular one, as long as the noise-free image remains admissible, all

the various outputs are expected to be noise-free and only their edge sharpness

to be affected. Hence, the set of pixels that substantially change their gray-scale

intensity level between two such outputs most likely belongs to the image edges

and can be visualized in high-contrast via direct segmentation of their difference

image.

One way of dealing with Poisson-dominated noise is to apply a variance-

stabilizing transformation (VST). In this work the Anscombe transform is consid-

ered. It is developed in [1], transforms Poisson noise into a Gaussian one with zero

mean and unit variance, and has been used to denoise photographs and digital images

in [2, 3]. An alternative denoising approach is to directly solve the convex optimiza-

tion problem of regularization while using the Maximum A Posteriori (MAP) esti-

mate of the underlying noise as data fidelity measurement. The I-divergence func-

tional is the neg-log likelihood estimator of the Poisson distribution and it can be

effectively incorporated as constraint in the optimization [4].

The paper is organized as follows. Section 2 contains detailed statistical analysis

on the parameters of the noise distribution for CT data. In Sect. 3 various denoising

methods are introduced and summarized. In Sect. 4 the proposed procedure of using

oversmoothing for feature extraction is explained. In Sect. 5 we perform numeri-

cal experiments on two real-world industrial examples. Conclusions are drawn in

Sect. 6.
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2 Statistical Analysis on Noise Characteristics

2.1 Estimation of Noise Parameters

In order to design efficient denoising algorithms we first need to understand and prop-

erly model the underlying process of noise generation. CT-scanners work by count-

ing photons, so the usual assumption is that the dominant component of the gener-

ated noise is Poisson distributed. There is also an additive Gaussian noise, which is

related to the data acquisition device and is supposed to describe the thermodynamic

fluctuations. We assume that it is of zero mean and spatially uncorrelated, thus in this

paper we investigate the mixed Poisson-Gaussian model

F = 𝛼Poiss(𝛼−1F̄) + (0, 𝜎2). (1)

The observed (noisy) image F ∈ ℝm×n
is a realization of the right-hand-side dis-

tribution, F̄ is the true (noise-free) image, while 𝛼 and 𝜎 are assumed to be global

parameters, independent of the pixel’s position. All notations are to be understood

componentwise. We have included the normalization constant 𝛼 to compensate for

the fact that commercial CT-scanners often use some type of scaling, i.e. the F gray-

scale intensity values are not equal to the exact number of counted photons, but are

only proportional to them.

Our goal is to derive reliable approximations of 𝛼 and 𝜎, which will be further

used in the denoising process. We apply statistical tools, based on the relationship

between the mean value F̄ and the variance 𝜎
2

in the images. For this purpose, we

study series {F(k)}L
k=1 of radiographic images of the same object, generated in a nar-

row time frame under the same scanning conditions. Furthermore, we assume that

each F(k)
is an independent realization of (1), so we compute pixel-wise sample mean

and variance via

𝜇̂ = 1
L

L∑

k=1
F(k)

and 𝜎̂
2 = 1

L

L∑

k=1
(F(k) − 𝜇̂)2,

where we have that:

𝜇̂ ∼ 

(
F, 𝜎

2

L

)
and 𝜎̂

2 ∼ 𝜎
2𝜒

2
L−1
L

.

We can then use this information to perform an MLE estimation for the parameters

𝜇̂ and 𝜎̂, under the constraint 𝜎̂
2 = 𝜎

2 + 𝛼𝜇̂, implied by (1). In order to do so, it is

suitable to perform the approximation Poiss(k) ≈  (k, k), which is reliable for large

enough k (e.g., k ≥ 20).

However, the variance and mean estimators we formulated so far are the ones

observed at each point. They do not exactly satisfy the above constraint.
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Therefore, we define two new estimators, 𝜇̃ and 𝜎̃
2
, which we obtain from a maxi-

mum likelihood estimation over all the points, imposing equation (1) as a condition

between 𝜇̃ and 𝜎̃
2
. We write the likelihood function as:

l(𝜇̃, 𝜎̃2) = −N
2

(
∑

i,j

𝜎̂
2
i,j + (𝜇̂i,j − 𝜇̃i,j)2

𝜎̃
2
i,j

− log 𝜎̃2
i,j

)
.

While there is no closed form for the global minimizer of l, it can be shown that

l(𝜇̃, 𝜎̃2) is convex, thus, for example, gradient-descent-type methods will converge to

it, under the relation 𝜎̃
2 = 𝜎

2 + 𝛼𝜇̃. A good seed for the gradient descent method can

be obtained by initializing (𝜇̃, 𝜎̃) = (𝜇̂, 𝜎̂), and then solving the equation analytically.

This leads to the best least squares fit

(
⟨𝟏N , 𝟏N⟩ ⟨𝜇̃, 𝟏N⟩
⟨𝟏N , 𝜇̃⟩ ⟨𝜇̃, 𝜇̃⟩

)(
𝜎
2

𝛼

)
=
(
⟨𝜎̃2

, 𝟏N⟩
⟨𝜎̃2

, 𝜇̃⟩

)
. (2)

Once 𝛼 and 𝜎 are estimated, 𝜇̃ can be updated by equating the respective partial

derivatives of l to 0 and solving the corresponding second degree equation, or by

applying Newton’s method. This gives rise to an efficient iterative method for the

computation of the noise parameters, by sequentially updating the values of 𝜇̃ and

(𝛼, 𝜎). The convexity of the log-likelihood guarantees the convergence of the method.

Numerical experiments show convergence in 2 to 3 iterations of the method for series

{F(k)}L
k=1 of size L = 8, 16.

The estimates for the first experimental dataset used in the paper are shown

in Fig. 1. The orange line (moving average of the variance as a function of the

mean value) shows a clear dependence between the variance and the mean value,

Fig. 1 Observed mean and variance for the 3D printed object. Green (straight line): estimate from

the Poisson-Gaussian noise mixture. Orange (line with non-constant derivative): moving average

for the noise
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as hypothesized. At the two ends of the intensity interval, we observe larger devia-

tions between the two lines, which is due to the restrictions on the gray-scale values

to remain within the 8-bit bitmap format, thus the corresponding noise distributions

there are “trimmed” and do not follow exactly (1). To avoid that, in practice we

perform the statistical analysis only on the set of pixels whose gray-scale values lie

inside of the intensity interval for all frames F(k)
, k = 1,… ,L. In addition, we com-

pute 𝜇̂ from another, much larger series {F̃(k)}L
k=1, L = 2048. Therefore, we assume

that 𝜇̂ is a trustful approximation of the noise-free image F̄, denote it by avgF and

solve the system (2) just once with (𝜇̃, 𝜎̃) = (avgF, 𝜎̂).

2.2 Variance Stabilizing Transformation

Once the noise parameters have been reliably estimated, we want to incorporate this

information in our denoising process. Applying a proper Variance Stabilizing Trans-

formation (VST) to the noisy data removes the mean-variance relation in the Poisson

component and transforms the mixed Poisson-Gaussian noise into a purely Gaussian

one. The Generalized Anscombe Transform is an example of a VST, for which the

transformed noise is white (zero mean and variance one). It is given by (see Eq. 2.8

in [5])

TG(F) =
2
𝛼

√
𝛼F + 3𝛼2

8
+ 𝜎

2 (3)

and

TG ∶ 𝛼Poiss(𝛼−1F̄) + (0, 𝜎2) ↦  (F̄, 1).

Note that 𝛼 = 1, 𝜎 = 0 implies purely Poisson noise and is referred to as the regular

Anscombe transform T .

The classical denoising approach for images, corrupted by mixed Poisson-

Gaussian noise consists of: applying TG and then removing the white noise from

the transformed image. Hence, we also need the inverse transform which transforms

the (denoised) image back to the original intensity domain. In this paper the exact

unbiased inverse of the Generalized Anscombe transform (proposed in [6, (8)], and

used by e.g. [2]) is used, which is defined as

T−1
G = T−1

G (F, F̄) =
∞

∫
−∞

2
√

𝛼F + 3𝛼2

8
+ 𝜎

2
∞∑

k=0

(
F̄ke−F̄

k!
√
2𝜋𝜎2

e−
(F−k𝛼)2

2𝜎2

)
dF.

Here, F and 𝜎 are again the observed pixel intensity and the variance of the Gaussian

part respectively while F̄ is the true noise-free image we want to recover. Note that F̄
is not known a priori, therefore in our denoising procedures we replace it by the 2048-

frame-averaged approximation avgF of F̄, discussed in the previous subsection.
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3 Summary of the Used Denoising Techniques

This section is devoted to the introduction of the different denoising models we com-

pared. In this paper we follow the regularization approach, meaning that we derive

the denoised result as a solution of a certain convex optimization problem, involving

a regularization term R and a data fidelity term DF. We restrict ourselves to discrete

gradient regularizations, where ∇ ∶ ℝN ↦ ℝ2N
consists of the forward finite differ-

ences between spatially neighboring pixels in horizontal and vertical direction. For

the regularization term we consider either the 𝓁2
norm ‖∇ ⋅ ‖2 of the gradient or

the mixed 𝓁2,1
norm of the gradient ‖ |∇ ⋅ | ‖1, also known as the Total Variation

(TV) semi-norm. For the data fidelity term, we use the I-divergence operator, when

working directly with the initial Poisson-dominated noise, and the 𝓁2
norm, when

applying a VST to the input and working with pure Gaussian noise.

There are two main types of optimization problems, namely constrained and

penalized. The constrained problems are of the form

F̂ = argminR(∇F) subject to DF(F, F̄) ≤ 𝜏, 𝜏 > 0, (4)

and search for the most-regular image within a (convex!) constrained set. The penal-

ized problems are of the form

F̂ = argminR(∇F) + 𝜆DF(F, F̄), 𝜆 > 0, (5)

and here the data fidelity term is directly incorporated in the cost function via a

penalizer 𝜆. For the problems we consider, the above two classes are equivalent,

meaning that there is a one-to-one correspondence between 𝜏 and 𝜆, such that the

solutions of (4) and (5) coincide.

∙ Continuous L2 model

The particular continuous case where both the data fidelity and the regularization

term are taken to be their respective L2
norms is analytically solvable. For this we

assume that our image is represented by a function f ∈ L2(I) where I ⊂ ℝ2
is a rec-

tangle of size m × n. We are looking for a smoothened image that is smooth enough

to be in the Sobolev space H2(I):

F̂L2 = argmin
f∈H2(I)

{𝛬
𝜆

f }, 𝛬
𝜆

f = ‖ f − F‖22 + 𝜆‖∇f‖22 (6)

Minimization over all directional derivatives yields

0 = d
dt
𝛬

𝜆
(F̂L2 + th)

||||t=0
= ⟨F̂L2 − F, h⟩ + 𝜆⟨∇F̂L2,∇h⟩, ∀h ∈ L2(I).
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It is reasonable to consider Dirichlet or Neumann boundary conditions, so we can

invoke ⟨∇F̂L2,∇h⟩ = −⟨𝛥F̂L2, h⟩. As the above identity should hold for every h we

conclude

F̂L2 − 𝜆𝛥F̂L2 = F (7)

This equation can be solved in the Fourier domain, where the above operator can be

written as −(k2x + k2y ):

(F̂L2)̂ = F̂ 1
1 + 𝜆(k2x + k2y )

.

Now, by the convolution theorem, we can recover F̂L2 as

F̂L2 = F ∗ K, K =
√

1
8𝜋𝜆3

K0

(
r√
4𝜋𝜆

)
,

where K is the inverse Fourier transform of
1

1+𝜆(k2x+k2y )
, r =

√
(x2 + y2) and K0 is the

first modified Bessel function of the second kind.

The derived solution, however, is numerically unstable since the derived kernel

is singular at the origin. Therefore, it is not discretizable in a trivial way. Instead of

this discretization two alternatives might be considered: either solve the discretized

problem in the Fourier space, where there are no singularities to be discretized, or

solve the differential equation (7) in its discretized version.

∙ VST + BM3D filtering

Let us consider the denoising model

F̂BM3D,TG
= T−1

G (𝛷(TG(F))) (8)

where TG is the Generalized Anscombe Transform and 𝛷 represents some AWGN

algorithm. We use Sect. 2.1 to approximate the noise parameters 𝛼 and 𝜎 for the given

numerical examples. For the AWGN denoising there exist many different algorithms,

see e.g. [7–9]. The AWGN filter 𝛷 we use is the so called BM3D denoising algo-

rithm found in [7], which performs collaborative filtering on 3D arrays of similar

2D fragments of TG(F). The denoising technique (8) is studied in [2] and in our tests

we use the BM3D implementation provided there.
1

For grouping the 2D fragments, the pointwise𝓁2
-distance between blocks of iden-

tical size is used as a measure of dissimilarity. Thus, one can think of this approach

as a regularization method, based on a non-local gradient ‖∇NLTGF‖2, related to the

fragment grouping. We have run several numerical experiments on the model (6)

in the transformed domain TG f and observed that there is no significant difference

1
Available at http://www.cs.tut.fi/~foi/invansc/.

http://www.cs.tut.fi/~foi/invansc/
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(both quantitatively and qualitatively) between the output of (6) and the minimizer

of argmin{T−1
G (𝛬

𝜆
(TG(f )))}, meaning that ‖∇TGF‖2 is practically proportional to

‖∇F‖2. With this in mind, we consider the model (8) as a non-local, constrained

analogue of (6), where the constrained 𝜏
ht
match is the maximal distance for which two

blocks are considered similar (see [7] for details).

∙ I-divergence constrained TV-minimization

Consider the constrained problem:

F̂I−div = argmin
f∈ℝm×n

‖ |∇f | ‖1 subject to D(F, f ) ≤ 𝜏. (9)

We choose the regularization term to be the TV-norm and the data fidelity term to

be the Kullback-Leibler divergence:

D(F, f ) =
⎧
⎪
⎨
⎪⎩

∑
i,j

Fi,j log
(Fi,j

fi,j

)
− Fi,j + fi,j if fi,j > 0

∞ otherwise

It is well known that the Kullback-Leibler divergence (or I-divergence) is the nega-

tive logarithmic likelihood estimator of the Poisson distribution and thus it is a priori

clear that this approach should work best with Poisson dominated noise. Denote by

N = mn the size of the image. In the case of pure Poisson noise, statistical argu-

ments suggest that 𝜏 = N∕2 is the optimal choice for the constrained parameter, as

D(F, F̄) ≈ N∕2 and we choose the smallest constrained set, containing F̄ with high

probability. For mixed Poisson-Gaussian noise, there is no a priori estimation of 𝜏,

so in our numerical experiments, we take 𝜏 = D(F, avgF) as a straightforward gener-

alization of the above argument. In order to assure positivity of the input, we denoise

the image max(F, 𝟏).
For F > 0, D(F, ⋅) is convex and the constraint {f ∶ D(F, f ) ≤ 𝜏} is convex and

non-empty for all 𝜏 ≥ 0. As the TV-norm is convex as well, problem (9) is a convex

optimization problem, for which strong duality holds. Therefore, we can apply a suit-

able Primal Dual Splitting algorithm to it. In this paper, following [4], we deal with

the Alternating Direction Method of Multipliers (ADMM). The algorithm uses three

different primal-dual variable pairs to ensure the three key properties regularization,
data fidelity and non-negativity.

∙ Anscombe-constrained TV-minimization

Denote by 𝜈 the maximal allowed gray-scale intensity (it is either 255 for 8-bit

images, or 65535 for the 16-bit ones). Consider the optimization problem

F̂TV = argmin
f∈[0,𝜈]N

‖ |∇f | ‖1 subject to ‖TG(F) − TG(f )‖22 ≤ 𝜏. (10)
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Due to (1), TG(F) − TG(F̄) should be a realization of  (0, 1), thus 𝜏 = N is the

optimal choice for the constrained parameter. When we apply the pure Anscombe

transform T instead of its generalization TG, we use 𝜏 = ‖T(F) − T(avgF)‖22. The

pure Anscombe-constrained denoising model has been studied in [3]. We apply a

modified version of the algorithm there, adapted to the TG framework.

4 Feature Extraction via Denoising

When using regularization techniques for image denoising, typically we oversmooth

the result. Indeed we are looking for the most regular solution within a class C of

admissible images and in order to assure high level of noise removal we need the true

noise-free image F̄ to belong to this class. The image F̄ is not known a priori and, as a

result, the class C has to be quite broad. However, apart from the noise component, F̄
contains edges and singularities that capture most of the structural information of the

scanned object. Therefore, in practice there is always a more regular member F̃ of C
and we cannot hope to completely reconstruct F̄ from the input image F. Instead, we

want to turn this drawback into an advantage and we propose a simple procedure for

localization of the image details, based on the oversmoothing phenomenon. Consider

two different classes C1 and C2 of images, such as with high probability F̄ ∈ C1 ∩ C2.

Denote by F̃1 and F̃2 the outputs of the regularization algorithms with respect to C1
and C2. Both of them are more regular than F̄ (since we have an optimization process

and F̄ is admissible), thus practically noise-free. The main difference between them

should be the level of smoothing the image details, e.g., the contrast of the image

edges should be smaller than the one for F̄ and may vary between F̃1 and F̃2.

Thus, taking the segmented difference image |F̃1 − F̃2| > c with a proper threshold

c > 0, should help us visualize and localize image regions, where important struc-

tural information is kept.

5 Numerical Results

We perform the proposed denoising methods on two different datasets of real-life

radiographic images. The first one Ex1 is a series of 16 images of size 723 × 920
pixels, 8-bit single-frame CT images of a 3D printed object. The second one Ex2 is

a series of 8 images of size 1446 × 1840 pixels, 16-bit single-frame CT images of

a metal welding. For both datasets a 2048-frame-averaged image avgF is available,

which we use as an approximation of F̄. Especially Ex2 shows the need of effective

denoising algorithms as in this work piece there are small air bubbles included along

the weld seam, possibly causing stability problems. In the original noisy image those

bubbles are strongly overlaid by the noise which makes them almost invisible. Due

to the large original size of the second example, we consider a cropped 500 × 600
version of it that covers the welding part.
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Fig. 2 Statistical analysis on noise characteristics. For each moment (x-axis), N(0, 1) (left bar in

each pair, blue color) is compared to TG(F) − TG(avgF) (right bar in each pair, red color). Results

for Ex1 are found in the left figure whilst results for Ex2 are found in the right figure

Applying the statistical analysis from Sect. 2.1 we estimate (𝛼1, 𝜎2
1) = (0.1708,

86.6697) for Ex1 and (𝛼2, 𝜎2
2) = (7.0961, 9523.12) for Ex2 in (1). As a numerical

evidence for the reliability of the computed noise parameters, in Fig. 2 we compare

the first six moments of {E((TG(F) − TG(avgF))p)}6p=1 with those of  (0, 1), which

are zero for all odd p and are equal to (p − 1)!! ∶= 1 ⋅ 3 ⋅ 5… (p − 1) for even p. We

observe that those theoretical values are very well approximated by the numerically

computed ones, which is a strong indicator that TG(F) − TG(avgF) ∼  (0, 1). For

large odd p we experience larger negative deviations from zero, which is related to the

discussed earlier trimming of the distribution, due to the intensity range restriction

[0, 𝜈] (see Fig. 1).

As quantitative measurement of the denoising results we will use both the peak

signal to noise ratio PSNR(avgF, F̂) = 10 log10
|max avgF−min avgF|2

1
N
‖avgF−F̂‖22

and the mean

absolute error MAE(avgF, F̂) = 1
N𝜈
‖avgF − F̂‖1. Note that good denoising quality

is indicated by high PSNR and low MAE.

Experimental results are summarized in Table 1 and visualized in Figs. 3 and 4.

Only the continuous L2 model (6) gives rise to penalized optimization, where there

is no statistical estimation of a good choice for 𝜆. However, since the correspond-

ing algorithm is direct and extremely fast, we run it for a large enough uniformly

sampled discrete set of 𝜆’s and record the output with the highest PSNR (denoted by

F̂L2,maxPSNR) and the output with the lowest MAE (denoted by F̂L2,minMAE). The other

models (8), (9), (10) involve constrained optimization and the considered choices for

the constraint parameter 𝜏 were already discussed in Sect. 3. Finally, we measure the

TV-ratio TV(avgF)∕TV(F̂) as an indicator of the level of oversmoothing.

The first dataset Ex1 covers the full 8-bit intensity range. Due to the mean-

variance relation for the Poisson distribution, noise is very well visualized on the

light background (see Fig. 3) where the gray-scale intensities are close to 255. The

variety in the sharpness of the image edges is also huge—we have high-contrast
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Table 1 Quantitative results for the two data sets. For approximation of the true noise-free image

F̄ we use a 2048-frame-averaged image avgF
Image 3D printed object Welding

PSNR MAE

(10−2)

TV-ratio PSNR MAE

(10−2)

TV-ratio

F 26.5684 3.7023 6.2919 18.8539 3.6360 9.6743

F̂L2,minMAE 34.9932 1.1018 0.4919 32.8695 0.6650 0.1849

F̂L2,maxPSNR 35.5518 1.1578 0.6360 32.9135 0.6687 0.1951

F̂BM3D,T 31.2623 2.2428 0.3580 28.1649 1.3191 0.2041

F̂BM3D,TG
33.0929 1.8195 0.3646 32.4835 0.7647 0.2371

F̂I−div 38.9435 0.8000 0.3465 34.5687 0.5946 0.1188

F̂TV,T 38.4642 0.7737 0.3241 32.5944 0.7447 0.1140

F̂TV,TG
39.3334 0.7586 0.3463 32.5472 0.7406 0.1131

F avgF F̂L2,maxPSNR F̂L2,minMAE

F̂I−div F̂TV,T F̂TV,TG
F̂BM3D,TG

|diffF̂L2| > 3 |F̂I−div − F̂TV,TG
| > 2 |diffF̂TV | > 4 |diffF̂BM3D| > 0.015

Fig. 3 3D printed object image. Comparison of various outputs for denoising and feature extraction

edges as well as low-contrast ones. Analyzing the numbers in Table 1 we observe that

𝓁2
-regularization methods (6), (8) are clearly outperformed by the TV-regularization

ones (9), (10). This is due to the fact that the mixed 𝓁2,1
norm gives rise to sparser

output gradients, so applying TV-regularization we first remove the noise, which

is the least structured part of the image, and we start to smoothen the edges after-

wards. This is not the case in 𝓁2
-regularization, where high-contrast edges might be
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F avgF F̂L2,maxPSNR F̂L2,minMAE

F̂I−div F̂TV,T F̂TV,TG
F̂BM3D,TG

|diffF̂L2| > 8 |F̂I−div − F̂TV,TG
| > 35 |diffF̂TV | > 11 |diffF̂BM3D| > 0.02

Fig. 4 Welding image. Comparison of various outputs for denoising and feature extraction

affected even before noise removal. An indicator for the latter is the relatively high

TV-ratio for the optimal results of (6) and their difference image, where only the

pixels around the high-contrast edges change substantially their gray-scale values

between F̂L2,maxPSNR and F̂L2,minMAE. For the BM3D filtering, the TV-ratio is com-

parable to the others, since a similar type of constrained optimization is performed

and 𝜏 is carefully chosen, but the PSNR and MAE values are the worst. This is

another confirmation that sharp edges are smoothed before the full noise removal.

Here, there is also an artificial problem, since before and after the denoising process,

current images are normalized to [0, 1]. As seen on their difference image, normal-

ization sometimes leads to misalignment of the intensity ranges and false positive

localization of structural information.

The TV-based methods (9), (10) behave similarly to each other. The TG-

constrained minimizer of (10) has better characteristics than the pure T-constrained

one and preserves more structural information, as can be seen by their corresponding

images and their difference image. It seems that optimal edge detection is achieved

when comparing F̂TV,TG
to F̂I−div.

Unlike Ex1, the second dataset Ex2 has a very narrow intensity range—all the

gray-scale values of the pixels of avgF are in the interval [2487, 4144], which length

is less than 1∕3 of the admissible length 65535. There are no sharp edges and, as

a result, all the four algorithms behave similarly. Since 𝜎2 ≫ 0, the Gaussian noise

component is not negligible and affects the quality of F̂BM3D,T . Indeed, we apply
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an AWGN filter to the non-Gaussian distribution T(F) − T(avgF). Nevertheless the

difference image diff F̂BM3D can still be used for void detection, which is not true

for the corresponding diff F̂L2, where, again, only the sharpest edges at the welding

boundary are localized.

Knowing the correct noise parameters is not an advantage here for the quality of

the TG-constrained minimizer of (10). This information plays a role only for deter-

mining a meaningful 𝜏, and if we can achieve the latter without the help of statistics

(as is the case for the T-constrained minimizer, where 𝜏 = ‖TG(F) − TG(avgF)‖22),

the level of oversmoothing depends predominantly on the size of the constrained

set. It is evident from the TV-ratio numbers, that the TG-constrained set is larger, the

result is more regular thus more structural information is lost, and the characteristics

of the output are worse. This does not affect much the feature extraction procedure

and, like for Ex1, the difference image F̂TV,TG
− F̂I−div is the most useful one.

6 Conclusion

In this paper we experimentally compared various regularization-based denoising

methods on real industrial CT radiographic data. Apart from noise removal, we man-

aged to localize and extract important structural information about the scanned object

only from the segmented difference image of denoised outputs. Which is the most

suitable method for a given input image depends on the noise characteristics, that

needs to be a priori examined, and on the level of contrast of the image features.

However, I-divergence constrained TV-minimization (9) seems to be the most reli-

able one, provided the constrained parameter 𝜏 is optimally chosen. To the best of

our knowledge, there is no theoretical result on a trustful estimation of 𝜏 for the case

of mixed Poisson-Gaussian noise. On the other hand, the 𝜏 parameter of the General-

ized Anscombe-constrained TV-minimization (10) is completely determined, once

the noise is characterized, thus it seems a good practical choice. In any case, TV-

regularization seems more robust with respect to noise removal than the correspond-

ing 𝓁2
-regularization techniques, and the difference image between the minimizers

of (9) and (10) seems to capture the largest amount of structural information, thus it

seems the best candidate for performing a feature extraction on.
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Representation of Civilians and Police
Officers by Generalized Nets for Describing
Software Agents in the Case of Protest

Shpend Ismaili and Stefka Fidanova

Abstract Agent-based modeling and simulation to solve difficult problems,

becomes very popular last years. Predicting and preventing conflict situations are

very actual now days. Therefore various mathematical techniques are used. One of

them is application of multi-agent systems. The main element of the multi-agent

systems is the software agent, which is an autonomous subject with a possibility to

work together with other agents and environment. In our application the software

agents represent civilians and police officers in protests. In this work we propose a

model of the software agents with Generalized Nets. The Generalized Net is a very

powerful tool for modeling processes and different situations. They are expandable

and can represent a process in details. In this work we propose a model of the soft-

ware agents with Generalized Net. Our agents model the behavior of the civilian and

police officers in case of the protest.

1 Introduction

During some protest very important is the possibilities for crowd control and pre-

venting and elimination of conflict situations. Very often there are factors which are

difficult to predict, even when we expect that the crowd is well managed. In this case

can appear conflict situations. It can cause mess and casualties. Crowd simulation is a

very important research topic. Various approaches are applied for researching crowd

behavior, fuzzy-theory-based method [9], bandit strategy [5], cellular automata [13],

crowd motion simulation [12].

One of the simulation methods which is applied on modeling crowd behavior is

agent-based. Multi-agent system consists of different kind of agents and environ-

S. Ismaili

University of Tetovo, Tetovo, Macedonia

e-mail: shpend.ismaili@unite.edu.mk

S. Fidanova (✉)

Institute of Information and Communication Technology,

Bulgarian Academy of Science, Sofia, Bulgaria

e-mail: stefka@parallel.bas.bg

© Springer International Publishing AG 2018

K. Georgiev et al. (eds.), Advanced Computing in Industrial
Mathematics, Studies in Computational Intelligence 728,

https://doi.org/10.1007/978-3-319-65530-7_7

71



72 S. Ismaili and S. Fidanova

ments. The interaction between the agents and change of the environment affect the

individual agent and it can change his behavior. The agents can be passive or active

and can react in different manner according the situation [18].

Generalized Nets (GN) [1–3] are an efficient tool for modeling of various real

processes. They are extension of Petri nets. The apparatus of the GN is very powerful

and can be used for modeling in different areas like medicine and biology, economics,

industry, description of algorithms and many others [16, 19–21].

In this paper GN are used as a tool for modeling of software agents in multi agent

system with application in simulation of conflicting situations in the case of protest.

The rest of the paper is organized as follows. In Sect. 2, we give short description

of the main elements from GN-theory. In Sect. 3 the problem is defined. In Sect. 4

the software agents are describe with a GN. At the end we give some conclusions.

2 Short Description of the GN

The GN was proposed for a first time in 1991 [2]. Later they was applied for descrip-

tion of different processes and algorithms [8, 11, 15, 17]. They are powerful tool for

description of complex systems with not homogeneous components. Its static struc-

ture consists of objects called transitions, which have input and output places. Two

transitions can share a place, but every place can be an input of at most one transition

and can be an output of at most one transition.

The dynamic structure consists of tokens, which act as information carriers and

can occupy a single place at every moment of the GN execution. The tokens pass

through the transition from one input to another output place; such an ordered pair

of places is called transition arc. The tokens’ movement is governed by conditions

(predicates), contained in the predicate matrix of the transition.

The information carried by a token is contained in its characteristics, which can

be viewed as an associative array of characteristic names and values. The values of

the token characteristics change in time according to specific rules, called charac-
teristic functions. Every place possesses at most one characteristic function, which

assigns new characteristics to the incoming tokens. Apart from movement in the net

and change of the characteristics, tokens can also split and merge in the places. A

transition can contain m input and n output places where n,m ≥ 1.

The GN can be expanded. The places can be replaced with other GN. In this case

the GN can be developed in steps, including new details. Thus we can see possibili-

ties for other development and can better understand the processes.

Formally, every transition is described by a seven-tuple (Fig. 1):

Z = ⟨L′,L′′, t1, t2, r,M, ⟩,
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Fig. 1 The form of one

transition l′1 �

l′i �

l′m �

r
�

l′′1�

l′′j�

l′′n�

where:

(a) L′ and L′′ are finite, non-empty sets of places (the transition’s input and output

places, respectively); for the transition in Fig. 1 these are L′ = {l′1, l
′
2,… , l′m} and

L′′ = {l′′1 , l
′′
2 ,… , l′′n };

(b) t1 is the current time-moment of the transition’s firing;

(c) t2 is the current value of the duration of its active state;

(d) r is the transition’s condition determining which tokens will pass (or transfer)
from the transition’s inputs to its outputs; it has the form of an Index Matrix (IM;

see [4]):

r =

l′′1 … l′′j … l′′n
l′1
⋮ ri,j
l′m

;

ri,j is the predicate that corresponds to the i-th input and j-th output place (1 ≤

i ≤ m, 1 ≤ j ≤ n). When its truth value is “true”, a token from the i-th input place

transfers to the j-th output place; otherwise, this is not possible;

(e) M is an IM of the capacities mi,j of transition’s arcs, where mi,j ≥ 0 is a natural

number:

M =

l′′1 … l′′j … l′′n
l′1
⋮ mi,j
l′m

;

(f) is the transition type, it is an object of a form similar to a Boolean expression.

It contains as variables the symbols that serve as labels for a transition’s input

places, and is an expression built up from variables and the Boolean connec-

tives ∧ and ∨. When the value of a type (calculated as a Boolean expression) is

“true”, the transition can become active, otherwise it cannot.
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3 Problem Formulation

A conflict is a situation where minimum two persons, strive to achieve their goals.

It is a dynamic process. In this paper we try to understand the human behavior and

its variations according the situation. We try to represent different groups in a con-

flict and will simulate collective behavior. We focus on development of multi agent

system to learn the behavior caused by the interaction between the agents. There

are exist in a literature some computer models of concrete protests: model of trade

protest [10]; the model of violence in London [6]; model of revolution [14].

We create more individuals which interact between them, to model civil violence.

The structure consists of individuals, environment and empirical rules. Our software

agents model polis officers and civilians. Accurate modeling of their attributes is cru-

cial to the description which is as much as possible closer to human life and behavior

in situations of unrest. Peaceful civilians are neutral participant, but they can react to

external or internal stimulus. Police officers retain the order by the insertion of the

activists in jail and through strategies that choose depends on the success of the man-

agement and control of violence. The police officers perform two tasks in a direct

way: active arrest protesters and move in space.

Civilians are much more complex individuals, than the police officers. Civilian

agent decides whether to be active or not. Typical of civilian agents is communica-

tion. The civilian agents can change from active to passive and from passive to active.

The functioning of the system depends of the empirical rules. Empirical rules guide

the interactions of agents and ensure the functioning of the system.

4 GN for Software Agents

In this section we propose representation logic of civilians agents and police agents

by GN in the case of protest. First we establish the status of civilian.

∙ Status of civilian, prisoner or free;

∙ If he is prisoner, whether he served a term of prison or not;

∙ If he is free, continue to move and take independent decisions whether to partici-

pate in the protest or not.

We will introduce the terms active and peaceful and level of discontent (NAI)

and threshold (Athreshold) for danger [7], where NAI = Rev − N; Rev-tendency to

revolt and N is a net risk (the risk of imprisonment).

According the relation betweenNAI andAthreshold, it will be the following cases:

∙ If the civilian is peaceful and NAI > Athreshold, he will become active;

∙ If the civilian is active and NAI > Athreshold, he will stay active;

∙ If the civilian is peaceful and NAI < Athreshold, he will stay peaceful;

∙ If the civilian is active and NAI < Athreshold, he will become peaceful.
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l1

Z1

l2

l3

Z2

l6

l5

l4
Z3

l9

l8

l7

Z4

l10

l11

l12

Fig. 2 GN for agents representation in the case of protest

After that is activated the police officers logic:

∙ If the police officer encounters peaceful civilian, he track him in his zone of mon-

itoring;

∙ If the police officer encounter active civilian, he closes him;

∙ If there are not persons in the police officer zone of monitoring, he moves in the

random way.

We use GN with 4 transitions (Z1,Z2,Z3,Z4) and 12 places (l1,… , l12) to represent

different kind of agents.

The meaning of the indications on the Fig. 2 are:

l1 − civilian without a certain position

l2 − civilian is detained

l3 − civilian is free

l4 − the term of imprisonment has not expired

l5 − the term of imprisonment has expired

l6 − active civilian

l7 − will be peaceful civilian

l8 − will be active civilian

l9 − police officer

l10 − peaceful civilian

l11 − prisoner

l12 − random movement of the police in his area of monitoring
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There are four transition in our GN representation of the software agents in the

case of protest:

Transition Z1: is described with set of input places L′, set of output places L′′,
index matrix r1 and the operator .

Z1 = ⟨L′,L′′, r1,∨(l1, l4, l11)⟩,

L′ = {l1, l4, , l11} and L′′ = {l2, l3}

r1 =

l2 l3
l1 W1,2 W1,3
l4 W4,3 falce

l11 W11,2 falce

;

where

W1,2 = W4,2 = W11,2 there is a prisoner

W1,3 civilian is free

Transition Z2: Statute of prisoner.

Z2 = ⟨{l2}, {l4, l5}, r2,∨(l4, l5)⟩,

r2 =
l4 l5

l2 W2,4 W2,5
;

where

W2,4 the term of imprisonment has not expired

W2,5 the term of imprisonment has expired

Transition Z3: Statute of civilians.

Z3 = ⟨{l3, l5, l6, l10}, {l7, l8}, r2,∨(l7, l8)⟩,

r3 =

l7 l8
l3 W3,7 W3,8
l5 W5,7 W5,8
l6 W6,7 W6,8
l10 W10,7 W10,8

;
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where

W3,7 = W5,7 NAI < Athreshold => peaceful

W3,8 = W5,8 NAI > Athreshold => active

W6,7 NAI < Athreshold => peaceful

W6,8 NAI > Athreshold => active

W10,7 NAI < Athreshold => peaceful

W10,8 NAI > Athreshold => active

Transition Z4: Police officer logic.

Z4 = ⟨{l7, l8, l9, l12}, {l10, l11, l12}, r2,∨(l10, l11, l12)⟩,

r4 =

l10 l11 l12
l7 true false false
l8 false W8,11 false
l9 false W9,11 true
l12 false W12,11 W12,12

;

where

W8,11 = W9,11 = W12,11 the agent to be arested/stay in the prison

W10,8 random movement

5 Conclusion

The constructed model can be used for simulation of the behavior of the participants

of a case of protest. It can be expanded including more possibilities. By this kind of

models various situations can be play in advance and can be predicted and prevented

serious conflicts. Including more details some specific protests can be modeled and

the acts of the police officers can be decided and trained before the protest.
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Comparison of NDT Techniques
for Elastic Modulus Determination
of Laminated Composites

Yonka Ivanova, Todor Partalin and Ivan Georgiev

Abstract The study of dependence of elasticity modulus on the type, shape and
structure of the fillers in the composites is an important task. By theoretical point of
view, different models are developed to describe the relation between geometrical,
mechanical and physical parameters of the fillers and matrix with the macroscopic
effective properties of composites. It is reasonably the Young’s modulus of the
composites to be determined both experimentally and theoretically.In the present
study non-destructive techniques are used for characterization of elastic modulus.
NDT methods, static and dynamic ultrasonic and vibration methods are applied to
find the relations between internal structure of composites and their elastic prop-
erties.For investigating of the elastic properties in different directions of composites
are used a methodology based on combination of different kind of vibrations. The
bar shaped specimens are examined by free longitudinal, flexural and torsional
vibrations.
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1 Introduction

In this paper the engineering constants of laminated composites plates are deter-
mined by non-destructive methods and techniques based on static and dynamic
approaches. A glass fabric laminated composite with thickness of 4 mm (GFC4)
was chosen for the study. The plate was manufactured by hot pressing the glass
cloth layers, impregnated with thermo-reactive phenolic and epoxy type resins
(Electra LTD, Ruse, Bulgaria).

The glass fiber volume fraction was obtained as 45%. The density was deter-
mined by measuring the mass and computing the volume (mass was measured with
high precision electronic balance, volume was computed by measuring the
dimensions with a digital caliper). The material anisotropy was investigated by
cutting the samples upon 0°, 30°, 45° and 90° on the length. The scheme of
preparation of the samples is shown in Fig. 1, where the axis x is oriented collinear
to weft and the axis z is oriented collinear to warp of the fabric. The geometry,
stacking sequence, and density of each test specimen are given in Table 1.

2 Non-destructive Evaluation of Elastic Properties:
Static Approach

A non-destructive static approach based on the four-point-bending test principle [1–
3] is applied using beam like samples in order to determine their elastic properties
(Fig. 2). A simply supported beam is loaded with two equal and equidistant point
forces P on either side of the two rollers. In the middle span between the two
supports the bending moment M is constant, i.e. middle span has “pure” bending.
The beam segment bends in the shape of a circular arc of radius “ρ”. The curvature
k= 1

ρ is related to the bending moment M with the relation [1]:

k=
1
ρ
=

M
EI

ð1Þ

where E is the Young’s modulus and I is the area moment of inertia of the cross‐
section of the beam. Since the beam has a rectangular cross section of width “b” and
thickness “h”, the area moment of inertia I is I = bh3 ̸12 [1].

In a four point bending configuration, the magnitude of the constant bending
moment M in middle span is:

M =P ⋅ a, ð2Þ
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Fig. 1 Glass fabric composite: a micro CT image of the structure of the composite, b specimens
preparation
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where P is loading force and a is expressed as:

a=
L− d
2

. ð3Þ

where L, d are support and loading span.
The radius of the curvature can be derived using Sagitta’s expression chord

theorem:

ρ=
d2
4 + δ2

2δ
≈
d2

8δ
ð4Þ

where d is the loading span and δ is a maximal deflection of beam. If δ is small
relative to d and ρ, then δ2 is very small and can be neglected.

In this case, the deflection of a beam with a rectangular cross section can be
expressed by:

δ=
Md2

8EI
=

3Md2

2bh3
1
E

ð5Þ

Table 1 Type of materials, density, geometry, orientation

Type
material

Glass
content (%)

Density
(kg/m3)

Specimens Stacking
sequence

Thickness
(m)

Width
(m)

Length
(m)

GFC4 45 1820 Beam
1,2,3

0° 0.00378 0.02 0.15

Beam
4,5,6

30° 0.00378 0.02 0.16

Beam
7,8,9

45° 0.00378 0.02 0.12

Beam
10,11,12

90° 0.00378 0.02 0.10

Fig. 2 Schematic of the setup for four-point bending test
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The elasticity modulus is given by Eq. 6

E=
Mρ

I
=

3Pd2ðL− dÞ
4δbh3

ð6Þ

The experimental setup consists of two roller supports for a rectangular beam,
two weight hangers located at distance “a” from the load supports, and digital
indicator, which is placed in the middle of the beam length and measures the
maximal beam deflection.

Figure 3 presents dependencies of bending moment Mmax and deflection of the
beams. Using Eq. (6), the Young’s moduli of each beam have been calculated and
listed in Table 2.
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Table 2 Elasticity modulus E (GPa)

Orientation Static
method

Dynamic methods

Flexural
mode

Longitudinal
mode

Ultrasonic method

E S E S E S E S Poisson ratio
(ν)

0° Beams 1,2,3 21.5 0.215 21.4 1.61 22.4 1.51

13.5 0.347 0.33
30° Beams 4,5,6 16.3 0.997 16.3 0.475 16.4 0.593

45° Beams 7,8,9 13.2 0.743 15.1 0.652 15.4 0.581

90° Beams
10,11,12

21.2 0.751 21.3 1.96 23.0 3.67
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3 Non-destructive Evaluation of Elastic Properties:
Dynamic Methods

Dynamic methods provide an advantage over static methods because of wide
variety of specimen shapes and sizes and great precision [4–8]. They are classified
into impulse (ultrasonic) and resonance methods.

Determination of the dynamic elastic moduli by ultrasound is based on the
relation between ultrasonic longitudinal (CL) and shear waves (CS), propagating in
materials and density (ρ), Young’s modulus (E), Shear modulus (G) and Poisson’s
ratio ν [4]:

E=4ρC2
S

3
4 −

CS
CL

� �2
1− CS

CL

� �2
2
64

3
75 ð7Þ

G= ρC2
S ð8Þ

ν=
1
2 −

CS
CL

� �2
1− CS

CL

� �2 ð9Þ

The experimental setup for the measurement of the velocities consisted of two
types piezoelectric transducers (with x-cut and y-cut crystals for longitudinal and
shear wave generation) operating in through transmission mode [4] and ultrasonic
system with USB Interface (Fig. 4). The ultrasonic frequency used was in the range
of 1.5 MHz, so that the wavelength of ultrasonic waves was much larger than the
glass fiber diameters.

Fig. 4 Scheme of ultrasonic measurement
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Measured values of longitudinal and shear wave velocities are used in Eqs. (7)–(9)
to calculate the elastic (E) and shear (G) moduli in transversal direction offiber-glass
plates. The obtained values of moduli refer to the whole material and are listed in the
Tables 2 and 3.

The resonance vibration method and techniques are well established and widely
used techniques for the determination of the dynamic elastic properties of a large
diversity of materials (glass, ceramic, concrete, composites, steels, etc.). They are
covered by several ASTM standards [5–7]. The techniques consist in exciting a
vibration by drivers having continuously variable frequencies output or by impact
[5–14].

Knowing the vibrational mode, frequency, dimensions and mass or density of
the samples it is possible to calculate the effective elastic modulus of the materials
[5–7, 9, 10] by substituting in the appropriate frequency equation which is derived
from the equation of motion for the specimen [9, 10]. The use of an effective
modulus in composites is based on the assumption that the wavelength associated
with the particular vibrational mode is much greater than the scale of the inho-
mogeneity in the composite.

In free vibration method the impulse excitation is produced by striking the object
with a suitable hammer. As a pickup transducer is used acoustic microphone which
signal is addressed to personal computer with a sound card and processed by signal
processing methods (Fourier transform algorithm) in order to identify the values of
the natural frequencies of vibration.

Table 3 Shear modulus G (GPa)

Orientation Dynamic vibration
torsional mode

Dynamic ultrasonic
method

G S G S

0° Beams 1,2,3 5.36 0.147 5.09 2.53
30° Beams 4,5,6 8.55 0.0763
45° Beams 7,8,9 9.52 0.0246
90° Beams 10,11,12 5.63 0.230

Fig. 5 Schematic of support setup for impulse excitation technique: a flexural mode, b longitu-
dinal mode, c torsional mode of vibration
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The schematic depiction of experimental set-up for flexural mode of vibration is
shown in Fig. 5a. The sample was put onto two fulcrums at 0.224 times the total
length from the ends of the sample [5, 6, 13, 16]. To induce a vibration in the
rectangular shaped specimens, a rubber hammer is used to impact at the center of
the sample. The sound produced by the vibration of the specimen is detected by
means of a microphone and processed to make modal frequencies analyses. The
Young’s modulus of a beam is calculated following [5, 6, 8, 13, 16]:

E=0.9465ρ ⋅ f 2f , 1 ⋅ L
2
x

L2x
L2z

� �
T

Lz
Lx

, ν
� �

ð10Þ

where m, Ly, Lx and Lz are the mass, width, length and thickness of the sample,
respectively, ff , 1 is the first resonance frequency in bending (Hz), T is a correction
factor depending on the Poisson’s ratio (ν) and the dimensions of the sample [13].
The correction factor can be calculated by using the Eq. 11, see [5, 13, 15–17].

T
Lz
Lx

, ν
� �

=1+6.585 1+ 0.0752ν+0.8109ν2
� � Lz

Lx

� �2

− 0.868
Lz
Lx

� �4

−
8.340 1+ 0.2023ν+2.173ν2ð Þ Lz ̸Lxð Þ4

1 + 6.338 1+ 0.1408ν+1.536ν2ð Þ Lz ̸Lxð Þ2
" #

ð11Þ

The numerical analysis [16] shows that the error of formulas (11) is smaller than
1% when the Poisson ratio is smaller than 0.35, and the length-to-width ratio of the
sample is larger than about 2.

The setup for free longitudinal vibration test is shown in Fig. 6b. Each specimen
is hold from its center and is hit by a plastic hammer at the end of specimen. To
analyze the acoustic response of the specimen, a microphone is positioned in the
other side of sample. The recorded signals are analyzed by the means of Fourier
Transform. The standing waves are formed in the specimens as the results of
longitudinal vibration of the sample. Generally, sound velocity in a specimen could
be determined from Eq. 12 [13–15, 18]:

λ=C ̸fl ð12Þ

where C is sound velocity in a specimen, and fl is the first mode of vibration
resonance frequencies. The wave length λ is calculated from Eq. 13:

λ=2Lx ̸n ð13Þ

where Lx is the length of specimen and n is the number of resonance mode.
According to the positions of the node and two antinodes corresponding to the first
mode of vibration, the wave length is equal to the twice of the specimen length.
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Fig. 6 Orientation of determined Young’s (a) and Shear moduli (b)
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Longitudinal elastic modulus E is determined according to Eq. 14 [6]:

E= ρC2 ⋅ 1 ̸KðνÞ, ð14Þ

where K is correction factor depending on Poisson’s ratio ν and dimensions of the
composite [16]

KðνÞ=1−
π2ν2D2

8L2x
ð15Þ

D2 =
2
3

L2y + L2z
� �

ð16Þ

The shear modulus G is determined by torsional vibration mode. The schema for
torsional free vibration test is shown in Fig. 5c. The expression recommended in [5,
6] is based on Spinner and Tefft [14]

G=4ρL2x f
2
t R ð17Þ

R=
1+ Ly

Lz

� �2
4− 2.521 Lz

Ly
1− 1.991

e
π
Ly
Lz +1

� � 1+
0.00851L2y

L2x

 !
− 0.06

Ly
Lx

� �3 ̸2 Ly
Lz

− 1
� �2

ð18Þ

The fundamental resonance frequencies in flexural, longitudinal and torsional
mode are identified, and values of Young’s and Shear moduli are calculated and
listed in the Tables 2 and 3. The measurements are performed several times on a set
of several different replicas of composite specimens. The tables contains average
values (E or G) calculated from measurements and standard deviation S.

The results from experimental investigations are presented in Fig. 6 in polar
plots. The missing data for specimens oriented at 60° are approximated. The
Young’s modulus is highest in 0° and 90° and smallest in 45° (Fig. 6a). The small
difference between values obtained at 0° and 90° is caused probably by technology
production feature. The values of shear modulus are highest at 45° and smaller at
directions 0° and 90° as can be seen in the Fig. 6b.

4 Conclusion

The results obtained from ultrasonic methods are referred to the properties mea-
sured through the thicknesses of the specimens. They do not depend on the ori-
entation of the fiber cloth. The results obtained by static and dynamic impulse
excitation methods are in a good agreement for the examined composite beams. The
elastic moduli depend on the orientation of fiber cloth warp. The used NDT
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methods allow identification of anisotropy of material as shown in the Fig. 6. The
applied techniques demonstrate convenient, fast and accurate estimation of elastic
properties.
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Integer Codes for Flash Memories

Hristo Kostadinov and Nikolai L. Manev

Abstract This paper demonstrates the flexibility of integer codes with regard to

various type of applications. New constructions of integer codes correcting asym-

metric type of errors are proposed in the paper and how to apply the constructed

codes to flash memories is discussed.

1 Introduction

Nonvolatile memory is computer memory that maintains stored information without

a power supply. For example, the now ancient punch card is a type of nonvolatile

memory because, thought it requires power to punch, it does not require power to

remain punched. With the rise of portable electronic devices like cell phones, mp3

players, digital cameras, and PDAs, nonvolatile memory is increasingly important.

Flash memory is currently the dominant nonvolatile memory because it is cheap

and, unlike punch cards and other more recent kinds of nonvolatile memory, can be

electrically programmed and erased with relative ease.

A chip of flash memory contains an array of tens of thousands of cells, and we

assume that each chip stores a bit string. Each cell on a chip of flash memory can

be thought of as a container of electrons. In binary flash each cell has two states: if

there are electrons in the container then the cell is in the state 1, and if there are no

electrons in the container, the cell is in state 0. Until recently, binary flash was the

only kind of flash available, but now a new kind of flash memory has been developed,

multilevel flash, that many see as the future of flash memory. In a multilevel cell, it is

possible to distinguish between several different ranges of charge, allowing for more

than two states.
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To transition between the states, it is necessary to add and remove electrons to

and from the container. While it is easy to add electrons (i.e. to increase the state of

the cell), it is impossible to remove electrons (i.e. to decrease the state of the cell)

without first emptying the electrons from all the containers in a large selection of the

chip. This process, called reset operation, is slow and, after many repetitions, wears

out the chip. In multilevel flash, there are two types of mistakes that can occur when

programming a cell: errors in which too many electrons are added (“overshoots”) and

errors in which too few electrons are added (“undershoots”). Because of the difficulty

of removing electrons, overshoots are much bigger problem than undershoots. To

avoid overshoots, the level of a cell is increased over multiple iterations by carefully

adding small number of electrons at a time.

Flash devices exhibit a multitude of complex error types and behaviors, but com-

mon to all flavors of flash storage is the inherent asymmetry between cell program-

ming (charge replacement) and cell erasing (charge removal). This asymmetry causes

significant error sources to change cell levels in one dominant direction. Moreover,

many reported common flash error mechanisms induce errors whose magnitudes (the

number of error changes) are small, and independent of the alphabet size, which may

be significantly larger than the typical error magnitude. In addition to the (uncon-

trolled) errors that challenge flash memory design and operation, codes for asymmet-

ric limited-magnitude errors can be used to speed-up the memory access by allowing

less-precise programming schemes that introduce errors in a controlled way. While

not a panacea for all flash issues, the potential error migration and performance boost

by asymmetric limited-magnitude codes, justify their addition, alongside other cod-

ing innovations, to the menu of flash coding solutions.

The most well-studied model for error-correcting codes is the model for sym-

metric errors. According to this model, a symbol, taken from the code alphabet, is

changed to another symbol from the same alphabet, and all such are equally likely.

The popularity of this model stems from both its applicability to a broad set of appli-

cations, and from the powerful construction techniques that were found to address it.

In addition to the symmetric model, many other models, variations and generaliza-

tions were studied, each motivated by a behavior of practical systems or applications.

The asymmetric limited-magnitude error correcting codes can be used to speed

up the writing process to flash devices (memory write is referred to as programming

in the flash literature). This is done by relaxing the programming accuracy require-

ments, and using the codes to correct the resulting programming errors. Since the

flash programming mechanism is inherently probabilistic, the introduction of “inten-

tional” programming errors in a controlled way can significantly reduce the average

programming time and improve the write performance. Such an outcome would be

highly desirable given the inferiority of flash devices in write performance compared

to their read performance, and to the sequential write performance of the hard-disk

devices.

Asymmetric limited-magnitude error-correcting codes were proposed in [1]. The

codes, proposed in that paper, were for the special case of correcting all asymmetric

limited-magnitude errors within the codeword. These codes turn out to be a special

case of the general construction method provided by Cassuto et al. [2].
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In 2011, Klove and Bose [3] proposed systematic codes that correct single limited-

magnitude systematic asymmetric errors and achieve higher rate than the ones given

in [2]. They also showed how their code construction can be slightly modified to

gives codes correcting symmetric errors of limited magnitude. Later Klove et al. [4]

extended their result and gave a necessary and sufficient condition for existing a code

over GF(p) correcting a single asymmetric error.

As it has been already mentioned, asymmetric errors in flash memories are very

common. However, there are cases in which the possible error type includes both a

symmetric and an asymmetric error. For example, let us have a flash memory with n
voltage levels and have to increase the voltage level of a cell with current level t − 1
by one (which is an usual situation when programming a flash memory). In such a

case the most common error observed is overcharging the cell (increasing the level

with at least 2, or to charge it less than is needed, i.e. after charging the cell stays at

level t − 1. Hence, that kind of error is a combination of the symmetric error (±1)
and the asymmetric error (2, 3,… , n).

The next of the paper is organized as follows. The necessary notations and def-

initions which are used in this paper are given in Sect. 2.1. In Sect. 2.2 we briefly

discuss some existing results. New construction of integer codes for flash memory

are presented in Sect. 3. Conclusion remarks and some open problems are discussed

in Sect. 4.

2 Preliminaries

2.1 Integer Codes

Asymmetric error correcting codes were introduced by Varshamov and Tenegolz [5]

in the middle of 60s. In that work they also gave the definition of integer code. For

many years these codes have been almost forgotten. The appearance of multilevel

flash memories renewed the interest in codes correcting asymmetric errors.

Integer codes are codes defined over finite rings of integers. Han Vinck and Morita

[6] investigated integer codes with a view to magnetic recording and frame synchro-

nization. A class of integer codes correcting specific types of errors and their appli-

cation to coded modulation has been proposed by Kostadinov et al. [7]. Because

of their flexibility integer codes are very suitable for application in multilevel flash

memory.

Definition 1 Let ℤA be the ring of integers modulo A. An integer code of length n
with parity-check matrix 𝐇 ∈ ℤm×n

A , is referred to be a subset of ℤn
A, defined by

C (𝐇,𝐝) = {𝐜 ∈ ℤn
A | 𝐜𝐇

T = 𝐝 mod A}

where 𝐝 ∈ ℤm
A .
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If d = 0 the code is a linear [n, n−m] code over ℤA. Without loss of generality, we

can assume d = 0 in this paper. We write C (𝐇), or only C if there is no possibility

for ambiguity.

In this paper we consider codes with m = 1 (one check symbol only). Then 𝐇 =
(h1, h2,… , hn), 0 ≠ hi ∈ ℤA and

C (𝐇) = {𝐜 ∈ ℤA |

n∑

i=1
cihi = 0 mod A}

Integer codes are designed to correct specific type of errors instead of correcting

number of errors in a codeword as it is the case with conventional codes. Thus, we

need the following definition.

Definition 2 Let lj and ei be positive integers, j = 1,… ,m, i = 1,… , s. The code

C (𝐇, d) is said to be a single (l1, l2,… , lm,±e1,±e2,… ,±es)-error correctable if it

can correct any single error with value lj or ±ei.
Obviously, C (𝐇, d) is a single (l1, l2,… , lm,±e1,±e2,… ,±es)-error correct-able

code if and only if the subsets {hj l1, hj l2,… , hj lm,±hj e1,±hj e2,… ,

±hj es} ⊂ ℤA, are pairwise disjoint and of the same cardinality 2s + l, for any

j = 1, 2,… , n. Thus, we have

A ≥ (2s + l)n + 1.

Definition 3 A single (l1, l2,… , lm,±e1,±e2,… ,±es)-error correctable codeC (𝐇, d)
of block length n is called perfect, when A = (2s + l)n + 1.

In most of the cases perfect integer codes do not exist. We shall say that a sin-

gle (l1, l2,… , lm,±e1,±e2,… ,±es)-error correctable integer code C (𝐇, d) of block

length n over ℤA is optimal if A is the minimum value for which the code C (𝐇, d)
exists.

Remark One side effect, however, is that part of the power of the integer codes is

used to correct wrap-around errors (i.e. errors modulo A), which does not appear in

the flash memories. More precisely, we assume that a codeword c may be changed

into c+e (mod A). If c+e < 0 or c+e ≥ A, these are wraparound errors. However,

such errors usually constitute a minor part of the correctable errors. We can estimate

this effect by a heuristic argument and show that when A is large compared to the

maximum value of the set {li,±ej}, where i = 1,… ,m and j = 1,… , s, the main

power of the code can be used to correct errors in flash memories.

2.2 Several Proposed q-ary Codes

In [2] Cassuto et al. describe a general method of constructing t-asymmetric

𝜆-limited-magnitude error correcting codes from codes correcting symmetric errors.



Integer Codes for Flash Memories 95

Recently Klove et al. in [3] and [4] have done thorough study of t-asymmetric

𝜆-limited-magnitude error correcting codes over ℤA. Their study is based on the fact

that the discussed coding problems can be reformulated and solve as problems in

number theory.

Definition 4 An error vector 𝐞 = (e1, e2,… , en) is called a t-asymmetric 𝜆-limited-
magnitude error if wt(𝐞) = |{i ∶ ei ≠ 0}| ≤ t and 0 ≤ ei ≤ 𝜆, for all i = 1, 2,… , n.
A code C is called a t-asymmetric 𝜆-limited-magnitude error correcting code if it

can correct all t-asymmetric 𝜆-limited-magnitude errors.

LetE(𝜆, n, t) denote the set of all possible t asymmetric 𝜆-limited-magnitude error

vectors of length n over A.

In the cited papers the notation Bt[𝜆](A) is used, or just Bt[𝜆] when A is known

from the context. Namely, Bt[𝜆](A) is defined as a set Bt[𝜆](A) = {b1, b2,… , bn}
such that the set

𝐞Bt[𝜆](A) =
{
e1b1 + e2b2 +⋯ + enbn ∣ 𝐞 ∈ E(𝜆, n, t)

}

consists of distinct elements of ℤA, i.e., modulo A. In these papers classes of codes

correcting t = n and t = n−1 asymmetric 𝜆-limited-magnitude errors are proposed.

But the most attention was paid to the case t = 1, i.e., the set B1[𝜆](A). The Hamming

bound for such codes gives A ≥ 1 + 𝜆n.
Define M

𝜆

(A) to be the maximal size of a B1[𝜆](A) set. In [3] it has been shown

that for odd values of A we have

M
𝜆

(A) = A − 1
2

−
𝜔A

2

where𝜔A is the number of the cyclotomic cosets of odd size. In [4]M2(A) and bounds

for M3(A) and M4(A) are determined.

In [4] a perfect B1[𝜆](p) sets for a class of primes p is described. Also some results

about B1[𝜆](A), 𝜆 = 3, 4, are obtained. Unfortunately theoretical results gives good

codes for very large values of A. Optimal for codes over reasonable large alphabets

are found by computer search in the case t = 2 and t = n − 2 for small n.

3 New Constructions of Integer Codes Correcting Single
Type of Errors

In this Section we propose two constructions of integer codes correcting single

errors. The next theorem gives the exact form of the check matrix of an integer code

correcting a single asymmetric 2-limited-magnitude error.

Theorem 1 A 1-asymmetric 2-limited-magnitude error correctable codeC of length
n over ZA has the following parity-check matrix 𝐇
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∙ 𝐇 = (1, 3, 5,… , n − 1, n + 3, n + 5,… , 2n + 1), where A = 2n + 2 and n is even
∙ 𝐇 = (1, 3, 5,… , n − 2, n + 4, n + 6,… , 2n + 3), where A = 2n + 4 and n is odd

Remark In the case when n is even the code is “almost” perfect—the exceeding is

1.

Proof Here we are going to prove the case when n is even and A = 2n+2. The proof

when n is odd is analogous.

To show that a code C with parity-check matrix

𝐇 = (1, 3, 5,… , n − 1, n + 3, n + 5,… , 2n + 1)

is 1-asymmetric 2-limited-magnitude error correctable it is enough to prove that all

elements of 𝐇1 = 2𝐇 (mod 2n + 2) are distinct and 𝐇 ∩𝐇1 = ∅. We have

2H = (2, 6, 10,… , 2n − 10, 2n − 6, 2n − 2, 2n + 6, 2n + 10,… , 4n − 2, 4n + 2)

and

H1 = (2, 6, 10,… , 2n − 6, 2n − 2, 4, 8,… , 2n − 4, 2n).

It is not so difficult one to see that all the elements in 𝐇1 are distinct. Moreover,

the elements of𝐇1 are even, while the elements of𝐇 are odd. So we have𝐇∩𝐇1 = ∅.
With that the proof is completed.

Let Po be the set of odd primes p such that ordp(2) is odd. And let A = 2n + 2
and p|(A − 1) where p ∈ Po. According to Theorem 2 [4], it does not exist a 1-

asymmetric 2-limited-magnitude error correctable code of length n over ZA−1. So, we

can construct a 1-asymmetric 2-limited-magnitude error correctable code of length

n over ZA using Theorem 1, which is quasi-perfect. In such a way, we improve the

result given in [4] in case of the length of the code n such that p|(2n + 1), p ∈ Po.

Now we shall investigate how to construct an integer codeC (𝐇) capable to correct

a single error of type (±1, 2). Because the code will be single error correctable, its

check matrix 𝐇 has to consist of a single row.

First, let us consider the set of integers

B = B(m) = {4kl < m ∣ k, l,m ∈ ℕ, m ≥ 6 is even, and l is odd}.

Let us divide the set B into two subsets—B0 and B1, where

B0 = {a ∈ B ∣ ∃ b ∈ B ∶ 2a + b ≡ 0 (mod 2m)} and B1 = B ⧵ B0. (1)

Remark Since 0 < a, b < m then 2a + b ≡ 0 (mod 2m) is equivalent to

2a + b = 2m. Hence 2a = 2m − b ≤ 2m − 4, i.e., a ≤ m − 2. On the other hand

2m − 2a = b < m gives a > m∕2. Therefore,
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m
2

< a ≤ m − 2.

But not all integers in the above interval belongs to B0. It is not difficult to prove

that for m = 2k we have B0 = ∅.

Example 1 Let m = 82. Following the definition of B, B0 and B1 we obtain

B = {4, 12, 16, 20, 28, 36, 44, 48, 52, 60, 64, 68, 76, 80}

B0 = {44, 48, 52, 60, 64, 68, 76, 80}

and

B1 = {4, 12, 16, 20, 28, 36}.

We have the following construction for a single (±1, 2) error correctable integer

code.

Theorem 2 Let m ≥ 6 is a given integer and m is even. Let us consider the sets
B(m),B0 and B1. The integer code C (𝐇) over Z2m with the check matrix

𝐇 = (1, 3, 5, 7,… ,m − 1 |B1)

is a single (±1, 2) error-correctable.

Proof The integer code C (𝐇) is a single (±1, 2) error-correctable if all its syndrome

values are different. Hence, to prove the theorem will be enough to show that

𝐇 ∩ (−𝐇) ∩ (2𝐇) = ∅, (2)

where all the operation are taken into Z2m.

For convenience, let us divide 𝐇 into 2 subsets A1 = (1, 3, 5, 7,… ,m−1) and B1.

So, the Eq. (2) is equivalent to

A1 ∩ (−A1) ∩ (2A1) ∩ B1 ∩ (−B1) ∩ (2B1) = ∅. (3)

One can easily see that −A = (m+1,m+3,m+5,⋯ , 2m−1), and A1 ∩ (−A1) ∩
(2A1) = ∅. Moreover,

A1 ∪ (−A1) = {2n + 1|n = 0, 1, 2, 3 … ,m − 1} (4)

and

2A1 = {4n + 2|n = 0, 1, 2, 3 … ,m∕2 − 1} (5)
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On the other side, 2m is divisible by 4. Hence, all the elements of the sets

B1,−B1 = {2m − b|b ∈ B1} and 2B1 are divisible by 4. So, using (4) and (5) we

have

(A1 ∪ (−A1) ∪ (2A1)) ∩ (B1 ∪ (−B1) ∪ (2B1)) = ∅. (6)

The only thing that we have to show is that

B1 ∪ (−B1) ∪ (2B1) = ∅. (7)

It is obvious that B1 ∪ (2B1) = ∅, because all the elements of B1 are not divisible

by 8, while all the elements of 2B1 are divisible by 8. We have that B1 ∪ (−B1) = ∅,

since 2m − bi > bj, where bi, bj ∈ B1.

To prove that (−B1) ∪ (2B1) = ∅ we should show that 2a + b ≠ 0 (mod 2m),
where a, b ∈ B1. But that follows from (1) and the definition of the set B1. Hence,

using (6) and (7) we complete the proof of the theorem.

Example 2 Let m = 64. For the sets B, B0 and B1 we have

Bm = {4, 12, 16, 20, 28, 36, 44, 48, 52, 60}, B0 = ∅,

B1 = {4, 12, 16, 20, 28, 36, 44, 48, 52, 60}.

So, the integer code C (𝐇) over Z128 with the check matrix

𝐇 = (1, 3, 5, 7,… , 63, 4, 12, 16, 20, 28, 36, 44, 48, 52, 60)

is a single (±1, 2) error-correctable. The length of the code is 42 and it is optimal.

We can say that the code is “almost” perfect, because the exceeding is only 1.

Let a ∈ B0, b ∈ B1 and 2a + b ≡ 0 (mod 2m). It is easy to see that if we change

the elements b with a in 𝐇 the theorem still holds.

4 Conclusion

In this work we have presented two new constructions of single error correctable

integer codes designed for an application in a flash memory. Moreover, we gave the

exact form of the check matrix for those codes. For some parameters, the obtained

codes are optimal. The decoding complexity is linear, regarding to the code length,

and can be used a look-up table to decode them. All these advantages of integer codes

makes them very suitable for their usage in the practice. One can see that we only

consider the case of single error and small magnitude. Actually, it is very difficult to

obtain theoretical results for multiple errors and higher magnitude. On that we will

focus for our future research [8].
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On the Strong Asymptotics of Rows
of the Padé Table

Ralitza K. Kovacheva

Abstract In the present paper, results on the strong asymptotics of row sequences

{𝜋n,m}, n → ∞, m-fixed of classical Padé approximants are provided.

Keywords Padé approximation ⋅ Strong convergence

MSC: 41A21 ⋅ 41A25 ⋅ 30E10

1 Introduction

Let f (z) ∶=
∑∞

j=0 fjz
j

be a function holomorphic (single valued or a single valued

branch of an analytic function) at the origin. Suppose that the radius of holomorphy

R0 is finite and set

(f (z))(n) ∶= Sn(z) =
n∑

j=0
fjzj.

As it is known (see, for instance [10] and [21]),

lim sup
n→∞

|Sn(z)|1∕n =
|z|
R0

for |z| > R0

The formula above refers to the weak asymptotics of the sequence {Sn}n→∞.

Furthermore, a strong asymptotics takes place. More exactly, there exists an infi-

nite sequence 𝛬 of positive integers such that

Sn(z)
fnzn

→ 𝜒(z), n → ∞, n ∈ 𝛬
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uniformly in the max-norm on compact subsets of Dc
R0
, where 𝜒(z) is a function

analytic in Dc
R0

and 𝜒 ≢ 0. ([12]); DR0
∶= {z, |z| < R0}.

In what follows, we will write “uniformly inside” Dc
R0

.

Given a pair of integers (n,m), let 𝜋n,m be the classical Padé approximant of f
of order (n,m). Recall that 𝜋n,m = p∕q, where p, q are polynomials of degree ≤ n,m
respectively and such that

(fq − p)(z) = 0(zn+m+1).

As it is well known (see [15]), the Padé approximant 𝜋n,m always exists and is

uniquely determined by the condition above.

For the sake of accuracy, we recall that the sequence {𝜋n,m}, n → ∞,m-fixed, is

called the “mth row of the Padé table, associated with the power series f .”
In the present paper, we pose the question about the strong asymptotics of rows

of classical Padé approximants.

2 Statement of the Results

In the forthcoming consideration, the integer m is fixed.

Set

𝜋n,m ∶= 𝜋n =
Pn

Qn
,

where (Pn,Qn) = 1 and Qn is monic.

Let

f (z) − 𝜋n(z) = 0(zn+m+1−𝜏n ), 𝜏n ≥ 0.

Apparently, degPn ≤ n − 𝜏n, degQn ≤ m − 𝜏n. Denote by An the leading coefficient

of the polynomial Pn, that is:

Pn(z) = AnzdegPn +⋯ .

Before continuing, we introduce the notation Mm(⋅). Given a point set B in the

complex plane 𝐂, Mm(B) will stand for the class of functions, meromorphic and hav-

ing no more than m poles in B (poles are counted with regard to their multiplicities).

Further, we adopt the notation A (B) for functions, holomorphic in B.
Set Rm(f ) ∶= Rm for the radius of m-meromorphy of the function f , that is:

Rm ∶= sup
R
{f ∈ Mm(DR)}.

Apparently, Rm ≥ R0. Furthermore, Rm > 0 ensures that R0 > 0 ([7]).
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Our main result is

Theorem 1 Given a power series f (z) ∶=
∑∞

j=0 fjz
j and m a fixed integer, suppose

that 0 < Rm < ∞. Assume that f is analytic on the circle CRm
, except for a single pole

at the point a, |a| = Rm.

Then there is an infinite sequence 𝛬 and a function 𝜒 ∈ A (Dc
Rm
), 𝜒 ≢ 0 such

that
Pn(z)
Anzn

→ 𝜒(z), n ∈ 𝛬

uniformly inside Dc
Rm
.

A natural consequence of Theorem 1 is a result of Jentzsch-Szegö type about

the asymptotic distribution of the zeros of the polynomial sequence {Pn} as n ∈
𝛬. Before formulating it, we introduce the term of the “counting measure” 𝜇P of a

polynomial P, that is:

𝜇P(K) ∶=
𝜈P(K)
degP,

where 𝜈P(K) stands for the number of the zeros of P on the set K. Further, a sequence

of measures {𝜇n} supported by a set S converges weakly to the measure 𝜇 iff

∫
g d𝜇n → ∫

gd𝜇

for every continuous function in the complex plane (for details, the reader is referred

to [14]).

Corollary 2 Under the conditions of Theorem 1,

𝜇Pn
⟶∗

𝜇Rm
as n ∈ 𝛬.

Here “⟶∗
” stands for the weak convergence of the counting measures 𝜇Pn

as n ∈
𝛬 and 𝜇Rm

is the equilibrium measure for the disk DRm
; in the case being considered,

𝜇Rm
= 1

2𝜋Rm
dsRm

, look at [17]).

3 Proofs

The proofs will be preceded by auxiliary lemmas.

Lemma 1 (Kakehashi’s Regularization Lemma), [11] Let {cn} be an infinite
sequence of complex numbers such that

lim sup
n→∞

|cn|1∕n = c ∈ (0,∞).
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Then there exists a monotone sequence {𝜆n} such that

(1) limn→∞ 𝜆n+1∕𝜆n → 1 as n → ∞;
(2) setting c∗n ∶= 𝜆ncn, we have

{
c∗n ≥ |cn| for every n
|cn| = c∗n for a subsequence𝛬,

Of fundamental importance for the coming considerations is the classical theorem

of Montessus de Ballore, which we present as

Lemma 2 (Montessus de Ballore), [6] Let f be a power series holomorphic at the
zero and m be fixed. Assume that Rm < ∞ and that f has exactly m poles in DRm

say,
at the points a1, ..., am. Then the sequence {𝜋n,m} converges uniformly to f inside
DRm

− −{aj}mj=1 and each pole of f attracts, as n → ∞, as many free poles of Qn as
its multiplicity.

The classical Montessus de Ballores theorem provoked a new approach to the

research on meromorphic continuation of functions and characterization of their sin-

gularities (see [4, 5, 7, 9, 13, 18–20]), as well as to investigations connected with

the rate of approximation with rational functions and asymptotic distribution of the

zeros of the approximating sequences (see [1, 2, 8]).

Lemma 3 (Blatt-Saff-Simkani), [3] Let E be a compact set in the complex plane
with positive Green’s capacity capE and let 𝜇E be the equilibrium measure for E. Let
𝛬 be a sequence of positive integers and {pn} be monic polynomials of respective
degrees precisely n. Assume that

(a) lim supn∈𝛬 ||pn||
1∕n
E ≤ capE and

(b) limn∈𝛬 𝜇n(A) = 0 for every closed set A contained in the union of the bounded
components of the complement of the set E in the extended complex plane.

Then 𝜇n ⟶∗
𝜇E as n ∈ 𝛬.

3.1 Proof of Theorem 1

Proof Under the conditions of the theorem, the function f has exactly m poles in

DRm
, say 𝛼1, ..., 𝛼m, 0 ≤ |𝛼k| ≤ |𝛼k+1| < Rm, k = 1, ...,m − 1 and a single pole at the

point a ∈ CRm
. In view of Lemma 2,

Qn(z) → Q(z) ∶= (z − 𝛼1)...(z − 𝛼m), n → ∞, degQn = m, n ≥ n0.
and

(f − 𝜋n)(z) = O(zn+m+1).
(1)

Set F ∶= fQ. Clearly, F ∈ A (DRm
) and has a single pole at a ∈ CRm

∶= 𝜕DRm
.
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By (1),

(QPn) = (FQn)(n+m). (2)

Set

Qn(z) ∶= an,mzm + an,m−1zm−1 +⋯ + an,0, an,m = 1.

Under the conditions of the theorem,

|an,k| ≤ C1, k = 0,… ,m, n ≥ n1 ≥ n0. (3)

In what follows, we denote by Cj, j = 1, 2, ... positive constants not depending on n.

We have

(FQn)(n+m)(z) =
m∑

l=0
zl(

l∑

k=0
Fl−kan,k) +

m+n∑

l=m+1
zl(

m∑

k=0
Fl−kan,k). (4)

Set

(FQn)(n+m)(z) ∶=
n+m∑

l=0
Bn,lzl.

Let {F∗
n} be Kakehashi’s regularization of the sequence {Fn}, F∗

n = 𝜆n∕Rn
m, and the

infinite sequence 𝛬 be such that |Fn+m| = F∗
n+m, n ∈ 𝛬. In the sequel, we shall be

dealing with n ∈ 𝛬.

Notice, that by Lemma 2,

lim
n∈𝛬

|Fn+m|
1∕n = 1∕Rm. (5)

Combining (2) and (3), we get

|Bn,lzl|
F∗
n+m|zn+m|

≤

C1

l∑

k=0
|
F∗
l−k

Fn+m
||z|l−m−n = C1

min(l,m+1)∑

k=0

𝜆l−k
𝜆n+m

Rn+m−l+k
m |z|l−m−n. (6)

Fix now an arbitrary positive number 𝜀. The monotony of the sequence {𝜆j}
ensures that

𝜆j

𝜆j+1
≤ 1 + 𝜀

for every j great enough, say j ≥ j0. Without losing the generality, we suppose that

j0 > m.
The last inequality yields, together with (6)
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|
Bn,lzl

Fn+mzn+m
| ≤ C2

(1 + 𝜀)Rm)n+m−l

|z|n+m−l
(7)

which in turn leads to

|
(FQn)(n+m)(z)
Fn+mzn+m

| ≤ C2

n+m∑

l=0
(
(1 + 𝜀)Rm

|z|

n+m−l
, (8)

where C2 = C2(𝜀).
The sequence of the rational functions {(FQ)(n+m)(z)∕Fn+mzn+m}n∈𝛬 is uniformly

bounded inside Dc
Rm(1+𝜀)

. By the compactness principle, (FQ)(n+m)(z)∕Fn+m
zn+m converges, as n ∈ 𝛬, uniformly inside Dc

Rm(1+𝜀)
to an analytic function. Taking

into account (2), as well as the arbitrariness of 𝜀, we obtain

Q(z)Pn(z)
Fn+mzn+m

→ 𝜒(z) as n → ∞, n ∈ 𝛬

uniformly inside Dc
Rm

, with 𝜒 ∈ A (Dc
Rm
). From here, we easily get (see Lemma 2)

that

{
Pn

Fn+mzn
} → 𝜒 as n ∈ 𝛬

uniformly inside Dc
Rm

.

In what follows, we show that 𝜒 ≢ 0. Indeed, by construction,

An

Fn+m
= (an,m

Fn

Fn+m
+ an,m−1

Fn+1

Fn+m
+ ... + an,m).

Now, we take notice that the function F has a single pole at a ∈ CRm
, hence (see

Lemma 2)

Fj

Fj+1
→ a, as j → ∞.

Consequently,

lim
n→∞,n∈𝛬

An

Fn+m
= Q(a) ≠ 0. (9)

On the other hand,

𝜒(∞) = lim
n→∞,n∈𝛬

An

Fn+m
.

Therefore,

𝜒(∞) = Q(a) ≠ 0,
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which ensures that

𝜒(∞) ≢ 0.

On this, Theorem 1 is proved. □

3.2 Proof of Corollary 2

Proof The proof is based on Lemma 3. We first remind that cap(DR) = R (see [17]).

Set 𝜇n for the counting measures associated with the polynomials Pn, n ∈ 𝛬.

Combining (5) and (9), we obtain

lim sup
n→∞,n∈𝛬

|An|
1∕n = 1∕Rm (10)

Then the application of Lemma 2 to the polynomials {Pn} yields

||Pn||
1∕n
DRm

≤ 1

which, by (10) leads to

lim sup
n∈𝛬

||
Pn

An
||
1∕n
DRm

≤ Rm.

On the other hand, by Hurwitz theorem

lim
n→∞

𝜇n(K) = 0

on each compact subset K of DRm
.

Herewith conditions (a) and (b) of Lemma 3 are fulfilled and the statement of the

corollary is proven. □

4 Conclusions

Given a power series f (z) ∶=
∑∞

n=0 fnz
n
, holomorphic at the origin, suppose that

f admits a continuation as a meromorphic function with exacty m + 1 poles at

𝛼1,… , 𝛼m, 𝛼m+1, where 0 < |𝛼1| ≤ ⋯ ≤ |𝛼m| < |𝛼m+1| (poles are counted with regard

to multiplicities). Under this assumption, the Padé approximants {𝜋n,m}, m-fixed,

behave outside {z, |z| > |𝛼m+1|} asymptotically through an infinite sequence of nat-

ural numbers like the Taylor sums of the function fQ, where Q(z) ∶=
∏m

j=1
(z − 𝛼j).
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Abstract A numerical simulation concerning Total Phosphorus (TP) removal in
Horizontal Subsurface Flow Constructed Wetlands (HSF CWs) is presented. For
the phenomenon of absorption, a comparison between the results of a linear and a
non-linear model is realized. The purpose is to investigate which one of these two
adsorption models is the optimal one for the computational simulation of TP
removal. The simulations concern five pilot-scale HSF CWs units, which were
constructed and operated in the facilities of the Laboratory of Ecological Engi-
neering and Technology (LEET), Department of Environmental Engineering,
Democritus University of Thrace (DUTh), Xanthi, Greece. Concerning the
numerical simulation, the Visual MODFLOW computer code is used, which is
based on the finite difference method. Finally, a comparison between computational
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1 Introduction

The use of Constructed Wetlands (CWs) is considered recently as a popular eco-
logical and economical solution for the wastewater treatment, see e.g.[1–3]. The
ability of these systems to remove pollutants is a very important factor during the
optimal construction and operation of HSF CWs. The Total Phosphorus (TP) is one
of the most common essential municipal pollutants, for which the phenomenon of
adsorption requires special attention.

Many studies concerning the removal of TP in HSF CWs have been realized,
especially in the previous decade. Most of them are experimental and the results
describe the ability of various types of porous materials to remove TP in HSF CWs,
see e.g. [4–14]. A few studies consider vertical flow (VF) CWs [15–17] or Free
Water Surface (FWS) CWs [18, 19]. Relevant review studies, concerning the TP
removal by using CWs, have been presented in [20, 21].

Recently, many computer codes for simulating the TP removal in CWs have
been developed and successfully used. Especially for HSF CWs, some of the most
representative models are CW2D [22, 23], CWM1 [24, 25] and BIO_PORE [26].
Similar computer codes have been developed for other types of CWs, e.g. FITO-
VERT [27] for VF CWs and DMSTA2 [28, 29] for FWS CWs. A detailed review
for the available computer codes concerning the numerical modeling in CWs is
given in [30–33].

The Artificial Neural Networks (ANN) procedure has been also successfully
used for the prediction of the performance of HSF CWs for TP removal [34, 35].
More recently, a fuzzy logic model was used for describing the TP removal in FWS
CWs [36].

In the present study, a numerical simulation concerning TP removal in HSF CW
is presented. Emphasis is given to select the optimal adsorption model, by com-
paring computed results of procedures based either on the Freundlich (linear) or on
the Langmuir (non-linear) isotherms. The Visual MODFLOW computer code [37],
based on the Finite Difference Method (FDM), is used for the numerical simula-
tions. The optimal values for the Langmuir parameters are estimated by using
inverse problem procedures [38]. Finally, the computational results are compared
with available experimental data, obtained from five pilot-scale HSF CWs, which
were constructed and operated in LEET, DUTh, Xanthi, Greece.

2 The Mathematical Formulation of the Problem

The system of partial differential equations (PDE), which describes the advection,
dispersion and removal of a solute in the three-dimensional (3-D) space, consid-
ering sources/sinks, equilibrated adsorption and first-order irreversible kinetic
reactions, is in tensorial notation (i, j = 1, 2, 3) [39]:
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∂

∂xi
Kij

∂h
∂xj

� �
+qv = Sy

∂h
∂t

ð1Þ

vi = −
Kij

θ

∂h
∂xj

ð2Þ

θRd
∂C
∂t

=
∂

∂xi
θDij

∂C
∂xj

� �
−

∂

∂xi
qiCð Þ+ qvCs − λ1θC− λ2ρbS ð3Þ

The Eq. (1) concerns the groundwater flow and the Eq. (2) concerns the Darcy
law in porous media.

In the above PDE, Kij is a component of the hydraulic conductivity tensor, in
[LT−1]; h is the hydraulic head, in [L]; qv is the volumetric flow rate per unit
volume of aquifer, representing fluid sources (positive) or sinks (negative), in [T−1];
Sy is the specific yield of the porous materials [dimensionless]; vi is the seepage or
linear pore water velocity, in [LT−1], which is related to Darcy velocity qi, in
[LT−1], through the relationship: qi = vi θ; θ is the porosity [dimensionless]; Rd is
the retardation factor [dimensionless]; C is the aqueous solute concentration, in
[ML−3]; Dij is the hydrodynamic dispersion coefficient tensor, in [L2T−1]; Cs is the
concentration of the source or sink flux, in [ML−3]; ρb is the dry bulk density of the
soil, in [ML−3]; S is the concentration adsorbed by the solid phase of the porous
medium, in [M pollutant/M solid]; λ1 and λ2 are the removal coefficients for the
dissolved and adsorbed phases respectively, both in [T−1]; Here, as usually in
environmental engineering praxis, it is assumed: λ1 = λ2 = λ.

In Eq. (3), the retardation factor Rd depends on C and S, Rd = Rd (C, S), and is
given by the next equation:

Rd =1+
ρb
θ

∂S
∂C

ð4Þ

The values of bulk density ρb are calculated by the equation:

ρb = ð1− θÞρr ð5Þ

where ρr is the density of solid grains of the porous material. Usually it is:
ρr = 2.65 g/cm3.

Regarding the dependence of S on C, i.e. S = f(C), the most frequently used
sorption isotherms are the Freundlich and Langmuir ones [39].

For a non-absorbable pollutant, e.g. Biochemical Oxygen Demand (BOD), it is
S = 0 and Rd = 1. In this case, the Eq. (3) is a linear one.
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On the contrary, for an absorbable pollutant, like TP, it is S≠ 0 and Rd > 1. In
this case, the Eq. (3) can be a linear or a non-linear one, according to the depen-
dence of S on C. The following cases are usually considered.

1. The non-linear Freundlich isotherm is expressed by the equation:

S=KFCα ð6Þ

where the constant KF, in [L3M−1], and the exponent α [dimensionless] are
experimentally estimated according to the type of pollutant and the porous
medium. When a≠ 1, the Eq. (3) becomes non-linear.

2. For some pollutants, which have initial low concentrations, the phenomenon of
adsorption is often described by the linear isotherm of Freundlich, where α = 1.
In this case, it is KF = Kd and the non-linear Freundlich isotherm is expressed
by the equations:

S=KdC ð7Þ

Rd =1+
ρb
θ
Kd ð8Þ

The parameter Kd is the distribution coefficient, in [L3M−1], which expresses the
distribution of the pollutant concentrations between solid and liquid phases,
S and C, respectively. For the case of the linear isotherm of Freundlich, Eq. (3)
is a linear one.

3. The non-linear Langmuir isotherm is described by the equation:

S= Smax
KLC

1+KLC
ð9Þ

where Smax is the maximum adsorption capacity, in [M pollutant/M solid]; and
KL is the Langmuir constant, in [L3M−1]. Thus, for this case Eq. (3) is a high
non-linear one.
Taking into account Eqs. (6), (7) or (9), the above Eqs. (1)–(3), combined with
appropriate boundary and initial conditions, formulate a system of Partial Dif-
ferential Equations (PDE). The solution of this system provides the six main
space-time functions of hydraulic head (h), Darcy velocities field (qi) solute
concentration (C) and adsorbed solid concentration (S): h = h (xi, t), qi = qi
(xi, t), where i = 1, 2, 3, C = C (xi, t) and S = S (xi, t).
The purpose of the present study is to investigate computationally which of the
two adsorption models, the linear Freundlich isotherm of Eq. (7) or the
non-linear Langmuir isotherm of Eq. (9), simulates better the experimental
operation of the pilot-scale HSF CWs, described in [4, 40].
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3 Numerical Simulation

For the numerical simulation of TP removal in the pilot-scale HSF CWs, the
Visual MODFLOW family code [37], combined with the MT3DMS package [41],
were used. MODFLOW is based on the Finite Difference Method (FDM) and is one
of the most widely used computer codes for groundwater flow investigations.
MT3DMS offers the possibility to simulate the removal of TP using both isotherm
for adsorption, the Freundlich linear or the Langmuir non-linear one.

The values of the parameters λ and Kd of the Freundlich linear isotherm, see
Eq. (7), have been determined and presented in [42]. The optimal values of the
removal coefficient λ were assumed by adopting a trial-and-error procedure, similar
to that described in [40]. The proper values for the distribution coefficient Kd were
obtained according to the proposed range in the literature [39].

In this study, the simulation of the HSF CW’s operation by using the non-linear
Langmuir isotherm is presented. For this case, the values of the parameters KL and
Smax, see Eq. (9), should be estimated. First-order decay for TP removal was
assumed and the same values of λ which were determined in [42] have been used,
as the numerical simulation concerns the same facilities in both studies. The values
for KL and Smax were determined by using inverse problems procedures [38].

The computed TP concentration values were matched with the corresponding
available experimental values. For verification, the model was run using the KL and
Smax values obtained in calibration, and a comparison was made between the
computed and the experimental results of TP concentration at distances 1/3 and 2/3
of the CW unit length. As mentioned, concerning the linear case of the Freundlich
isotherm, the results have already been presented in [42] and are used for the
comparison and selection of the optimal adsorption model.

4 The Experimental Procedure

The experimental data, used for the calibration of the model and for the comparison
between experimental and computational results, were collected from five
pilot-scale HSF CWs. These units were constructed and operated for 2 years
(2004–2006) in LEET, DUTh, Xanthi, Greece. A detailed description of these
facilities has already been presented in [4, 40].

Briefly, the CW units had a rectangular scheme and contained various types of
porous materials (i.e., medium gravel—MG, fine gravel—FG and cobbles—CO),
and vegetation species (i.e., reed—R and cattails—C). One CW unit, denoted as Z,
was kept unplanted for comparison reasons. The dimension of each tank was 3 m
length, 0.75 m width and 1 m height, while the depth of porous material was
0.45 m.
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5 Results and Discussion

5.1 Model Calibration—Determination of the Langmuir
Parameters

As reported, available experimental data for five pilot-scale HSF CWs have been
used for the values of the TP concentration at the inlet (Cin) and at the outlet (Cout)
of the HSF CWs. The numerical simulation by using the Freundlich linear isotherm
has been presented in [42], where the optimal values for λ and Kd have been
estimated.

In the present study, where the simulation of TP removal by using the Langmuir
non-linear isotherm is realized, the unknown parameters are the Langmuir constant
KL and the maximum adsorption capacity Smax, see Eq. (9). Considering λ, the
values presented by [42] were reliable, as the experiments have been realized in the
same facilities.

Based on the CW literature for similar porous media, see [6, 11], the range of the
values for the unknowns parameters are: KL = 0.01–0.10 L/mg and Smax = 0.05–
0.20 mg TP/g soil. In order to determine the exact values of KL, a trial and error
procedure was adopted. The value of KL, for which the computed values of the TP
concentrations at the outlet were almost the same with the experimental ones, was
KL = 0.01 L/mg. By using this optimal value of KL, inverse problems procedures
were adopted [38] and more simulation tests were realized, in order to determine the
values of Smax.

The simulation results, for each one of the five pilot-scale HSF CWs and for
Hydraulic Residence Time (HRT) of 6, 8, 14 and 20 days, are presented in Table 1.
This table provides, for KL = 0.01 L/mg, representative values of the average
temperature Tav [°C], the porosity θ [–], the bulk density ρb [g/cm

3], the inlet and
outlet TP concentrations, Cin and Cout respectively [mg/L], the removal coefficient λ
[d−1] and the maximum adsorption capacity Smax [mg TP/g soil]. As these results
show, the range of Smax was between 0.009 and 0.012 mg TP/g soil, also it is inside
the range of other studies with similar operational and climatic conditions.

5.2 Verification of the Model—Comparison
with Experimental Data

The next step, after the simulation, was to verify the model in order to check its
accuracy. For this reason, a comparison between the computed and the experi-
mental concentration values of TP was realized. These values concerned the con-
centration of TP among the length of HSF CWs, i.e. at distances 1/3 (1 m) and 2/3
(2 m) from the inlet of the pollutant, and were computationally estimated by using
the λ, KL and Smax values of Table 1.
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Two mathematical criteria were used. First, linear regression lines of the form
y = γx. Second, the coefficient of determination (R2). Both criteria show the con-
nection between computed (y) and experimental (x) values. For best fit, both
parameters, the slope γ and R2, should be as close to 1.0 as possible. The results, for
each one of the five HSF CW pilot-scale units, are presented in Figs. 1, 2, 3, 4 and 5.

According to the first criterion, the slope γ is slightly higher than 1.0 for the
MG-R and MG-Z units. This shows that the model overestimates the TP concen-
tration values for these tanks. For the other three HSF CW units (MG-C, FG-R and
CO-R) the values of slope γ are lower than 1.0. Generally, all the γ values are close
enough to 1.0 and this indicates that the model describes satisfactory the phe-
nomenon. Regarding the coefficient of determination R2, its values were higher than
0.50 for most HSF CW units, and in most cases are satisfactorily close to 1.0,
especially in comparison with other similar studies. These results show that the
model can describe with good accuracy the physical phenomenon of TP removal in
HSF CWs.

Table 1 Estimated values of λ and Smax, for TP removal in the pilot-scale HSF CWs

HSF
CW

HRT
(days)

Tav
(°C)

θ
(−)

ρb
(g/cm3)

Cin

(mg/L)
Cout

(mg/L)
λ
(d−1)

Smax
(mg/g)

MG-R 6 15.7 0.35 1.723 9.2 9.2 0.000 0.009
8 12.1 0.36 1.709 9.2 7.5 0.015 0.012
14 16.2 0.38 1.643 9.7 5.8 0.023 0.011
20 15.2 0.35 1.723 8.8 5.7 0.012 0.010

MG-C 6 15.7 0.33 1.776 9.2 7.0 0.026 0.011
8 12.1 0.34 1.762 9.2 3.9 0.062 0.011
14 16.2 0.34 1.749 9.7 2.3 0.061 0.010
20 15.2 0.33 1.776 8.8 1.8 0.046 0.011

MG-Z 6 15.7 0.37 1.670 9.2 5.8 0.047 0.010
8 12.1 0.37 1.670 9.2 5.9 0.034 0.011

14 16.2 0.37 1.670 9.7 5.5 0.025 0.011
20 15.2 0.37 1.670 8.8 4.5 0.020 0.011

FG-R 6 15.7 0.29 1.882 9.2 2.8 0.107 0.010
8 12.1 0.29 1.882 9.2 1.4 0.128 0.011
14 16.2 0.31 1.829 9.7 1.1 0.090 0.010
20 15.2 0.29 1.882 8.8 1.1 0.056 0.010

CO-R 6 15.7 0.28 1.908 9.2 6.9 0.025 0.012
8 12.1 0.28 1.908 9.2 5.5 0.025 0.011
14 16.2 0.28 1.908 9.7 1.6 0.069 0.010
20 15.2 0.28 1.908 8.8 2.5 0.034 0.010
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6 Selection of the Optimal Adsorption Model: Linear
or Non-linear?

The main purpose of this study was to decide which one of the two most
well-known adsorption models, the linear Freundlich or the non-linear Langmuir,
was the optimal one for the numerical simulation of the TP removal in the DUTh
pilot-scale HSF CWs.

In the previous Section, the verification of the model concerning the Langmuir
isotherm was presented and values for the slope γ, of the linear regression lines of
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Fig. 1 Verification of the Langmuir adsorption model for the MG-R unit
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Fig. 2 Verification of the Langmuir adsorption model for the MG-C unit
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the form y = γx, and for the coefficient of determination (R2) were determined. In
order to select the optimal adsorption model, a comparison of these values (γ and
R2) which were determined in the present study for Langmuir isotherm and in [42]
for Freundlich isotherm, has been realized. The results are presented in next
Table 2.

As the results of Table 2 show, the Freundlich linear adsorption model describes
slightly better the removal of TP in the pilot-scale HSF CWs, comparing with the
Langmuir non-linear one.
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Fig. 3 Verification of the Langmuir adsorption model for the MG-Z unit
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Fig. 4 Verification of the Langmuir adsorption model for the FG-R unit
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7 Conclusions

A numerical simulation of flow and TP transport and removal in porous media has
been presented. Emphasis was given to select the optimal adsorption model, con-
cerning the available experimental results of five pilot-scale HSF CW units. For this
purpose, a computational investigation was realized, by using the
Visual MODFLOW computer code. For the Langmuir non-isotherm adsorption
model, the main unknown parameters λ, Smax and KL were estimated, by using
inverse methods. The results show that the linear Freundlich isotherm describes
slightly better the operation for the pilot-scale HSF CW units, in comparison to the
non-linear Langmuir isotherm. The proposed values of the parameters for both
adsorption models (λ, Kd, KL and Smax) can be used effectively for the optimum
design of HSF CWs, both pilot-scale or full-scale, which have operation similarities
with the DUTh units. Moreover, for such new facilities, their construction and
operation could be realized in the best ecological and economical way.
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Fig. 5 Verification of the Langmuir adsorption model for the CO-R unit

Table 2 Comparison between Langmuir and Freundlich adsorption models, by using the
correlation of experimental and computational results

HSF CW γ R2

Langmuir Freundlich Langmuir Freundlich

MG-R 1.0940 1.0562 0.2065 0.2166
MG-C 0.8292 0.9024 0.6371 0.6435
MG-Z 1.1406 1.1188 0.2434 0.2612
FG-R 0.7065 0.7494 0.5134 0.5592
CO-R 0.8349 0.9369 0.6457 0.6597
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Some Results Involving Euler-Type Integrals
and Dilogarithm Values

Lubomir Markov

Abstract The claim that Li2
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and use it to obtain several for-

mulas for 𝜋
2

in terms of dilogarithm values at the “golden relatives”
1
𝜙
2 ,

1
𝜙

, − 1
𝜙

,

−𝜙 of 𝜙 =
√
5 + 1
2

. We also sum the series

∞∑
n=0

GN(n)
(2n + 1)3

and

∞∑
n=1

HN(n)
n3

in

terms of Euler-type integrals ∫
𝜋

2

0
xM log(sin x) dx, where GN(n) and HN(n) are the

quantities appearing in the Borwein-Chamberland expansions of arcsin2N+1(z) and
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1 Introduction

Let 𝜁 (z) be the Riemann zeta function and Li2(z) be the dilogarithm. Both functions

occupy a prominent place in mathematics, and have increasingly appeared in modern

physics (see for example [6, 9, 12]).

At present, the evaluation of the dilogarithm in closed form is known to be pos-

sible only at eight values for z, the first four being the rational numbers 0, 1,−1
and

1
2
. The remaining four are the irrational numbers

1
𝜙
2 ,

1
𝜙

, − 1
𝜙

and −𝜙, where

𝜙 =
√
5+1
2

is the golden ratio. The evaluation of Li2 at the first seven numbers has

been performed by Landen [4] and is sometimes called “Landen’s list”. We turn

our attention to Li2(−𝜙). It seems inconceivable that the value for it circulating in

the literature (see [5, 6, 8, 10, 12]) since at least 1958, namely Li2

(
−

√
5 + 1
2

)
=

− 𝜋
2

10
+ 1

2
log2

(√5 + 1
2

)
, is wrong. The correct formula is Li2

(
−

√
5 + 1
2

)
=

− 𝜋
2

10
− log2

(√
5 + 1
2

)
, which we derive below. (We do so without claim to pri-

ority; see Sect. 4.) With regard to this astonishingly resilient error, one might find

refreshing the following quotation from Zagier [12] (who also gives the incorrect

value):

First defined by Euler, it [the dilogarithm] has been studied by some of the great mathe-

maticians of the past - Abel, Lobachevsky, Kummer, and Ramanujan ... Almost all of its

appearances in mathematics, and almost all the formulas relating to it, have something of

the fantastical in them, as if this function alone among all others possessed a sense of humor.

As concerns the evaluation of 𝜁 (z), it is well-known that 𝜁 (2) = 𝜋
2

6
, 𝜁 (4) = 𝜋

4

90
,

and in general 𝜁 (2n) =
(−1)n+1B2n
2(2n)!

(2𝜋)2n, where B2n are the Bernoulli numbers. No

such formula is known for the values of the zeta function at odd integers, and it is

an open problem of the first importance whether 𝜁 (2n + 1) is expressible in terms of

known constants.

In a classical paper [3], Euler derives the following representation for 𝜁 (3) which

he obviously considers of significant interest:

𝜁 (3) = 2𝜋2

7
log 2 + 16

7 ∫
𝜋

2

0
x log(sin x)dx (1)

His proof uses intricate manipulations of divergent and convergent series and

takes up 16 pages. Our aim is to give a very simple proof (we believe the simplest

so far) of this formula, obtained as a special case of a more general result (Theorem

1 below). Another interesting representation implied by Theorem 1 is
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𝜁 (3) = 2𝜋2

9
log 2 + 16

3𝜋 ∫
𝜋

2

0
x2 log(sin x)dx. (2)

The integrals in the last two formulas may be termed Euler-type integrals. For-

mulas involving 𝜁 (3) in terms of similar integrals have recently been found to be of

importance in physics (see [10]).

2 Li𝟐(−𝝓) and Some Related Formulas

For the correct calculation of Li2(−𝜙) (cf. [5, pp. 1–7]), recall that one first estab-

lishes Li2
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Let us call
1
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, −𝜙 the “golden relatives” of 𝜙. The second half

of the expanded Landen’s list (cf. [5]) becomes:

Li2

(
3 −

√
5

2

)
= Li2

( 1
𝜙
2

)
= 𝜋

2

15
− log2(𝜙),

Li2

(√
5 − 1
2

)
= Li2

( 1
𝜙

)
= 𝜋

2

10
− log2(𝜙),

Li2

(
1 −

√
5

2

)
= Li2

(
− 1

𝜙

)
= − 𝜋

2

15
+ 1

2
log2(𝜙),

Li2

(
−

√
5 + 1
2

)
= Li2(−𝜙) = − 𝜋

2

10
− log2(𝜙).
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Some interesting formulas for 𝜋
2

in terms of dilogarithm values at the golden

relatives follow easily from the above; the following three relations:

Li2

( 1
𝜙
2

)
+ Li2

( 1
𝜙

)
+ 2Li2

(
− 1

𝜙

)
− Li2

(
− 𝜙

)
= 2𝜋2

15
,

Li2

( 1
𝜙
2

)
− Li2

( 1
𝜙

)
− 2Li2

(
− 1

𝜙

)
− Li2

(
− 𝜙

)
= 3𝜋2

15
= 𝜋

2

5
,

−Li2

( 1
𝜙
2

)
+ Li2

( 1
𝜙

)
− 2Li2

(
− 1

𝜙

)
− Li2

(
− 𝜙

)
= 4𝜋2

15
,

together with the especially pleasing formula:

2Li2

( 1
𝜙
2

)
− 2Li2

( 1
𝜙

)
− 2Li2

(
− 1

𝜙

)
− Li2

(
− 𝜙

)
= 𝜋

2

6
= Li2(1),

are directly verified.

On the other hand, upon eliminating 𝜋
2− terms, one obtains:

2Li2

( 1
𝜙
2

)
− Li2

( 1
𝜙

)
+ 2Li2

(
− 1

𝜙

)
− Li2

(
− 𝜙

)
= log2(𝜙).

3 Two Series in Terms of Euler-Type Integrals

In this section, we sum two interesting series in terms of Euler-type integrals ∫
𝜋

2

0
xM ⋅

log(sin x) dx, M = 0, 1, 2,… . Recall that ∫
𝜋

2

0
log(sin x) dx = − 𝜋

2
log 2. For

M ≥ 1, the integrals ∫
𝜋

2

0
xM log(sin x) dx have not been evaluated, at present, in

terms of known constants.

Our result depends on the series expansions of integer powers of arcsin(z), which

were discovered recently by Borwein and Chamberland [1]. We observe that the

coefficients in these expansions involve quantities that are reciprocals of values of

Wallis integrals (cf. [2]).

For odd powers of f (z) = arcsin(z), one has:

arcsin(z) =
∞∑
n=0

(2n
n

)

(2n + 1)4n
z2n+1,

arcsin3(z) = 6
∞∑
n=0

{ n−1∑
m=0

1
(2m + 1)2

} (2n
n

)

(2n + 1)4n
z2n+1,

arcsin5(z) = 120
∞∑
n=0

{n−1∑
m=0

1
(2m + 1)2

m−1∑
p=0

1
(2p + 1)2

} (2n
n

)

(2n + 1)4n
z2n+1.

The general formula is
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arcsin2N+1(z) = (2N + 1)!
∞∑
n=0

GN(n)
(2n
n

)

(2n + 1)4n
z2n+1, (4)

where G0(n) = 1, and

GN(n) =
n−1∑
m1=0

1
(2m1 + 1)2

m1−1∑
m2=0

1
(2m2 + 1)2

…
mN−1−1∑
mN=0

1
(2mN + 1)2

.

The expansions for the even powers are:

arcsin2(z) = 1
2

∞∑
n=1

4n

n2
(2n
n

) z2n,

arcsin4(z) = 3
2

∞∑
n=1

{ n−1∑
m=1

1
m2

}
4n

n2
(2n
n

) z2n,

arcsin6(z) = 45
4

∞∑
n=1

{ n−1∑
m=1

1
m2

m−1∑
p=1

1
p2

}
4n

n2
(2n
n

) z2n.

In general,

arcsin2N(z) = (2N)!
∞∑
n=1

HN(n) 4n

n2
(2n
n

) z2n, (5)

where H1(n) =
1
4
, and

HN+1(n) = 1
4

n−1∑
m1=1

1
(2m1)2

m1−1∑
m2=1

1
(2m2)2

⋯
mN−1−1∑
mN=1

1
(2mN)2

.

Theorem 1 There hold the relations

(A)
∞∑
n=0

GN(n)
(2n + 1)3

= − 𝜋

2(2N)! ∫
𝜋

2

0
x2N log(sin x) dx + 2N + 2

(2N + 1)! ∫
𝜋

2

0
x2N+1 log(sin x) dx,

(B)
∞∑
n=1

HN(n)
n3

= − 2
(2N − 1)! ∫

𝜋

2

0
x2N−1 log(sin x) dx + 4(2N + 1)

𝜋(2N)! ∫
𝜋

2

0
x2N log(sin x) dx,

for N = 0, 1, 2,… in (A) and N = 1, 2, 3,… in (B).

Setting N = 0 in (A) yields Euler’s formula (1). Setting N = 1 in (B) and combining

with (1) gives Eq. (2).

Proof (A): Take Eq. (4), divide both sides by z, and integrate from 0 to x:

∫
x

0

arcsin2N+1(z)
z

dz = (2N + 1)!
∞∑
n=0

GN(n)
(2n + 1)2

(2n
n

)

4n
x2n+1;

put x = sin 𝜃 and integrate from 0 to
𝜋

2
:
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∫
𝜋

2

0 ∫
sin 𝜃

0

arcsin2N+1(z)
z

dz d𝜃 = (2N + 1)!
∞∑
n=0

GN(n)
(2n + 1)2

(2n
n

)

4n ∫
𝜋

2

0
(sin 𝜃)2n+1 d𝜃.

(The interchanging of summation and integration is justified by uniform conver-

gence.)

On the left-hand side we have:

∫
𝜋

2

0 ∫
sin 𝜃

0

arcsin2N+1(z)
z

dz d𝜃 = ∫
1

0 ∫
𝜋

2

arcsin z

arcsin2N+1(z)
z

d𝜃 dz

= ∫
1

0

arcsin2N+1(z)
z

[
𝜋

2
− arcsin z

]
dz = 𝜋

2 ∫
1

0

arcsin2N+1(z)
z

dz

−∫
1

0

arcsin2N+2(z)
z

dz

= −𝜋

2
(2N + 1)∫

𝜋

2

0
x2N log(sin x) dx + (2N + 2)∫

𝜋

2

0
x2N+1 log(sin x) dx.

On the right-hand side, the Wallis integral ∫
𝜋

2

0
(sin 𝜃)2n+1 d𝜃 equals

(2n)!!
(2n + 1)!!

,

and we obtain

(2N + 1)!
∞∑
n=0

GN(n)
(2n + 1)2

(2n
n

)

4n ∫
𝜋

2

0
(sin 𝜃)2n+1 d𝜃 =

(2N + 1)!
∞∑
n=0

GN(n)
(2n + 1)2

(2n
n

)

4n
(2n)!!

(2n + 1)!!
= (2N + 1)!

∞∑
n=0

GN(n)
(2n + 1)3

.

This proves (A).

For the proof of (B), begin with Eq. (5) and repeat the same procedure as above.

This time one needs the Wallis integral ∫
𝜋

2

0
(sin 𝜃)2n d𝜃 = 𝜋

2
(2n − 1)!!
(2n)!!

, where

(−1)!! is defined to be 1. All steps are similar and we leave their verification to the

reader.

4 Conclusions and Final Remarks

In this work we proved that the correct value for Li2(−𝜙) is Li2

(
−

√
5 + 1
2

)
=

− 𝜋
2

10
− log2

(√
5 + 1
2

)
. We then derived some formulas for 𝜋

2
and log2(𝜙) in

terms of dilogarithm values at the “golden relatives” of the golden number 𝜙 =√
5 + 1
2

. A very simple derivation of Euler’s equation



Some Results Involving Euler-Type Integrals and Dilogarithm Values 129

𝜁 (3) = 2𝜋2

7
log 2 + 16

7 ∫
𝜋

2

0
x log(sin x)dx

and of the similar representation

𝜁 (3) = 2𝜋2

9
log 2 + 16

3𝜋 ∫
𝜋

2

0
x2 log(sin x)dx

was introduced. The method applies in fact to a more general case, giving us for

example the formulas

∞∑
n=0

{ n−1∑
m=0

1
(2m + 1)2

}
1

(2n + 1)3
= − 𝜋

4 ∫
𝜋

2

0
x2 log(sin x)dx + 2

3 ∫
𝜋

2

0
x3 log(sin x)dx

and

∞∑
n=1

{ n−1∑
m=1

1
m2

}
1
n3

= − 16
3 ∫

𝜋

2

0
x3 log(sin x)dx + 40

3𝜋 ∫
𝜋

2

0
x4 log(sin x)dx.

Combinations of the above formulas may produce further interesting equations,

for example

∞∑
n=0

{ n−1∑
m=0

1
(2m + 1)2

}
1

(2n + 1)3
= 𝜋

4

96
log 2 − 3𝜋2

64
𝜁 (3) + 2

3 ∫
𝜋

2

0
x3 log(sin x)dx.

Finally, we wish to set the record straight by stating that we make no claim to

first discovery of the correct value of Li2(−𝜙). We found this value on October 6,

2016, while investigating why a formula works for seven of the known dilogarithm

values but fails at the eighth. Believing the result to be new, we presented it at the

BG-SIAM Meeting in December 2016 (see [7]). A referee brought to our attention

the fact that the value exists on the Internet (see [11]). The web-article [11] simply

lists the eight dilogarithm values, and then refers the reader to Lewin’s second book

[6] and to the following two papers:

[A] D.H. Bailey, P.B. Borwein and S. Plouffe, On the Rapid Computation of Various

Polylogarithmic Constants, Math. Comput. 66 (1997), 903–913,

[B] J.M. Borwein, D.M. Bradley, D.J. Broadhurst and P. Lisonek, Special Values of

Multidimentional Polylogarithms, Trans. Amer. Math. Soc. 353 (2000), 907–941.

But in [6] the value for Li2(−𝜙) is wrong, and the papers [A] and [B] have no

mention of any of the numbers Li2
( 1
𝜙
2

)
,Li2

( 1
𝜙

)
,Li2

(
− 1

𝜙

)
or Li2

(
− 𝜙

)
. To the

best of our knowledge, a discussion of the error and a proof of the correct equation

Li2

(
−

√
5 + 1
2

)
= − 𝜋

2

10
− log2

(√
5 + 1
2

)
do not exist in the printed literature.
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Nonlinear Evolution Equation for
Propagation of Waves in an Artery with an
Aneurysm: An Exact Solution Obtained by
the Modified Method of Simplest Equation

Elena V. Nikolova, Ivan P. Jordanov, Zlatinka I. Dimitrova
and Nikolay K. Vitanov

Abstract We study propagation of traveling waves in a blood filled elastic artery

with an axially symmetric dilatation (an idealized aneurysm) in long-wave approxi-

mation.The processes in the injured artery are modelled by equations for the motion

of the wall of the artery and by equation for the motion of the fluid (the blood). For

the case when balance of nonlinearity, dispersion and dissipation in such a medium

holds the model equations are reduced to a version of the Korteweg-deVries-Burgers

equation with variable coefficients. Exact travelling-wave solution of this equation

is obtained by the modified method of simplest equation where the differential equa-

tion of Riccati is used as a simplest equation. Effects of the dilatation geometry on

the travelling-wave profile are studied.

1 Introduction

The theoretical investigation of pulse wave propagation in human arteries has a long

history. Over the past decade the scientific efforts have been concentrated on theoret-

ical investigations of nonlinear wave propagation through the blood in arteries with

a variable radius. Clearing how local imperfections appeared in an artery can disturb

the blood flow can help in predicting the nature and main features of various cardio-

vascular diseases, such as stenoses and aneurysms. In order to study propagation of

nonlinear waves in a stenosed artery, Tay and co-authors treated the artery as a homo-
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geneous, isotropic and thin-walled elastic tube with an axially symmetric stenosis.

The blood was modeled as an incompressible inviscid fluid [1], Newtonian fluid with

constant viscosity [2], and Newtonian fluid with variable viscosity [3]. Using a spe-

cific perturbation method, in a long-wave approximation the authors obtained the

forced Korteweg-de Vries (KdV) equation with variable coefficients [1], forced per-

turbed KdV equation with variable coefficients [2], and forced Korteweg-de Vries-

Burgers (KdVB) equation with variable coefficients as evolution equations [3]. The

same theoretical frame was used in [4, 5] to examine nonlinear wave propagation in

an artery with a variable radius. Considering the artery as a long inhomogeneous pre-

stretched thin elastic tube with an imperfection (presented at large by an unspecified

function f (z)), and the blood as an incompressible inviscid fluid the authors obtained

again the forced KdV equation with variable coefficients. Apart from solitary prop-

agation waves in such a system, in [5], possibility of periodic waves was discussed

at appropriate initial conditions. In this text we shall focus on consideration of the

blood flow through an artery with a local dilatation (an aneurysm). The aneurysm is

a localized, blood-filled balloon-like bulge in the wall of a blood vessel [6]. In many

cases, its rupture causes massive bleeding with associated high mortality. Motivated

by investigations in [1–5], the main goal of this paper is to investigate effects of the

aneurismal geometry and the blood characteristics on the propagation of nonlinear

waves through an injured artery. For that purpose, we use a reductive perturbation

method to obtain the nonlinear evolution equation. Exact solution of this equation is

obtained by using the modified method of simplest equation. Recently, this method

has been widely used to obtain general and particular solutions of economic, biolog-

ical and physical models, represented by partial differential equations. The paper is

organized as follows. A brief description about the derivation of equations governing

the blood flow trough a dilated artery is presented in Sect. 2. In Sect. 3 we derive a

basic evolution equation in long-wave approximation. A traveling wave solution of

this equation is obtained in Sect. 4. Numerical simulations of the solution are pre-

sented in Sect. 5. The main conclusions based on the obtained results are summarized

in Sect. 6 of the paper.

2 Mathematical Formulation of the Basic Model

It is well-known that the pulsate motion of blood causes wave propagation in arter-

ies. In order to model the interaction of the blood with its container we shall con-

sider two types equations which represent (i) the motion of the arterial wall and

(ii) the motion of the blood. To model such a medium we shall treat the artery as

a thin-walled incompressible prestretched hyperelastic tube with a localized axially

symmetric dilatation. We shall assume the blood to be an incompressible viscous

fluid. A brief formulation of the above-mentioned equations follows in the next two

subsections.
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2.1 Equation of the Wall

It is well-known, that for a healthy human, the systolic pressure is about 120 mm

Hg and the diastolic pressure is 80 mm Hg. Thus, the arteries are initially subjected

to a mean pressure, which is about 100 mm Hg. Moreover, the elastic arteries are

initially prestretched in an axial direction. This feature minimizes its axial defor-

mations during the pressure cycle. Experimental studies show that the longitudinal

motion of arteries is very small [7], and it is due mainly to strong vascular tethering

and partly to the predominantly circumferential orientation of the elastin and colla-

gen fibers. Taking into account these observations, and following the methodology

applied in [1–4], we consider the artery as a circularly cylindrical tube with radius

R0. We assume that such a tube is subjected to an initial axial stretch 𝜆z and a uni-

form (mean) inner pressure P∗
0(Z) which cause relatively high circumferential and

axial initial stresses. On the other hand, the pressure deviation in the course of peri-

odic motion of heart is about ±20 mm Hg. Then the dynamical deformation due to

this pressure deviation can be assumed to be smaller than the initial deformation.

Therefore, the theory of small deformations superimposed on initial static deforma-

tion can be used in studying the wave propagation in such a complex medium. Under

the action of such a variable pressure the position vector of a generic point on the

tube can be described by

𝐫𝟎 = [r0 + f ∗(z∗)]𝐞𝐫 + z∗𝐞𝐳, z∗ = 𝜆zZ∗
(1)

where 𝐞𝐫 and 𝐞𝐳 are the unit basic vectors in the cylindrical polar coordinates, 𝐫𝟎 is the

deformed radius at the origin of the coordinate system, Z∗
is axial coordinate before

the deformation, z∗ is the axial coordinate after static deformation and f ∗(z∗) is a

function describing the dilatation geometry. We shall specify the concrete form of

f ∗(z∗) later. Upon the initial static deformation, we shall superimpose only a dynam-

ical radial displacement u∗(z∗, t∗), neglecting the contribution of axial displacement

because of the experimental observations, given above. Then, the position vector 𝐫
of a generic point on the tube is

𝐫 = [r0 + f ∗(z∗) + u∗]𝐞𝐫 + z∗𝐞𝐳 (2)

The arc-lengths along meridional and circumferential curves respectively, are:

dsz = [1 + (f ∗′ + 𝜕u∗
𝜕z∗

)2]1∕2dz∗, ds
𝜃
= [r0 + f ∗ + u∗]d𝜃 (3)

In this way, the stretch ratios in the longitudinal and circumferential directions in

final configuration are

𝜆1 = 𝜆z𝛬, 𝜆2 =
1
R0

(r0 + f ∗ + u∗) (4)
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where

𝛬 = [1 + (f ∗′ + 𝜕u∗
𝜕z∗

)2]1∕2 (5)

The notation ‘′’ denotes the differentiation of f ∗ with respect to z∗. Then, the unit

tangent vector 𝐭 along the deformed meridional curve and the unit exterior normal

vector 𝐧 to the deformed tube are

𝐭 =
(f ∗′ + 𝜕u∗

𝜕z∗
)𝐞𝐫 + 𝐞𝐳

𝛬
, 𝐧 =

𝐞𝐫 − (f ∗′ + 𝜕u∗

𝜕z∗
)𝐞𝐳

𝛬
(6)

According to the assumption made about material incompressibility the following

restriction holds:

h∗ = H
𝜆1𝜆2

(7)

where H and h∗ are the wall thicknesses before and after deformation, respectively,

and 𝜆1 and 𝜆2 are the current stretch ratios in longitudinal and circumferential direc-

tions, respectively. For hyperelastic materials, the tensions in longitudinal and cir-

cumferential directions have the form:

T1 =
𝜇
∗H
𝜆2

𝜕𝛱

𝜕𝜆1
, T2 =

𝜇
∗H
𝜆1

𝜕𝛱

𝜕𝜆2
(8)

where 𝜇
∗
𝛱 is the strain energy density function of wall material as 𝜇

∗
is the mate-

rial shear modulus. Although the elastic properties of an injured wall section differ

from those of the healthy part, here, we assume that the wall is homogeneous, i.e.

𝜇
∗

is a constant through the axis z. A detailed analysis of the forces acting on an ele-

ment of the artery including a free-body diagram can be found in [8, 9]. Finally,

according to the second Newton’s law, the equation of radial motion of a small

tube element placed between the planes z∗ = const, z∗ + dz∗ = const, 𝜃 = const and

𝜃 + d𝜃 = const obtains the form:

− 𝜇
∗

𝜆z

𝜕𝛱

𝜕𝜆2
+ 𝜇

∗R0
𝜕

𝜕z∗

{
(f ∗′ + 𝜕u∗∕𝜕z∗)

𝛬

𝜕𝛱

𝜕𝜆1

}
+ P∗

H
(r0 + f ∗ + u∗)𝛬 = 𝜌0

R0

𝜆z

𝜕
2u∗
𝜕t∗2

(9)

where t∗ is the time parameter, P∗
is the inner blood pressure and 𝜌0 is the mass

density of the tube material.

2.2 Equation of the Fluid

Experimental studies over many years demonstrated that blood behaves as an incom-

pressible non-Newtonian fluid because it consists of a suspension of cell formed

elements in a liquid well-known as blood plasma. However, in the larger arteries
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(with a vessel radius larger than 1 mm) it is plausible to assume that the blood has an

approximately constant viscosity, because the vessel diameters are essentially larger

than the individual cell diameters. Thus, in such vessels the non-Newtonian behavior

becomes insignificant and the blood can be considered as a Newtonian fluid. Here,

for our convenience we assume a ‘hydraulic approximation’ and apply an averaging

procedure with respect to the cross-sectional area to the Navier-Stokes equations.

Then, we obtain

𝜕A∗

𝜕t∗
+ 𝜕

𝜕z∗
(A∗

𝜔
∗) = 0 (10)

𝜕𝜔
∗

𝜕t∗
+ 𝜔

∗ 𝜕𝜔
∗

𝜕z∗
+ 1

𝜌f

𝜕P∗

𝜕z∗
=

𝜇f

𝜌f

𝜕
2
𝜔
∗

𝜕z∗2
+

2𝜇f

r2f 𝜌f
(r
𝜕V∗

z

𝜕r
) ∣r=rf (11)

where A∗
denotes the inner cross-sectional area, i.e., A∗ = 𝜋r2f as rf = r∗0 + f ∗ + u∗ is

the final radius of the tube after deformation, 𝜔
∗

is the averaged axial fluid velocity,

V∗
z is the velocity component in the axial direction, 𝜌f is the fluid density and 𝜇f is

the dynamical viscosity of the fluid. The substitution of A∗
in Eq. (10) leads to

2𝜕u
∗

𝜕t∗
+ 2𝜔∗[f ∗′ + 𝜕u∗

𝜕z∗
] + [r0 + f ∗(z∗) + u∗]𝜕𝜔

∗

𝜕z∗
= 0 (12)

We introduce the following non-dimensional quantities

t∗ = (
R0

c0
)t, z∗ = R0z, u∗ = R0u, f ∗ = R0f , 𝜔

∗ = c0𝜔, 𝜇f = c0R0𝜌f 𝜈, (13)

P∗ = 𝜌f c20p, r0 = R0𝜆𝜃, c20 =
𝜇
∗H

𝜌f R0
, m =

𝜌0H
𝜌f R0

,V∗
z = c0Vz, r = R0x

where c0 is the Moens-Korteweg velocity, 𝜈 is the kinematic viscosity of the fluid

and 𝜆
𝜃

is the initial stretch ratio in a circumferential direction. We put (13) in Eqs.

(12), (11) and (9), respectively. Thus the final model takes the form:

2𝜕u
𝜕t

+ 2𝜔[f ′ + 𝜕u
𝜕z

] + [𝜆
𝜃
+ f (z) + u]𝜕𝜔

𝜕z
= 0 (14)

𝜕𝜔

𝜕t
+ 𝜔

𝜕𝜔

𝜕z
+

𝜕p
𝜕z

= 𝜈
𝜕
2
𝜔

𝜕z2
+ 2𝜈

(𝜆
𝜃
+ f + u)2

(
𝜕Vz

𝜕x
) ∣x=𝜆

𝜃
+f+u (15)

p = m
𝜆z(𝜆𝜃 + f (z) + u)

𝜕
2u
𝜕t2

+ 1
𝜆z(𝜆𝜃 + f (z) + u)

𝜕𝛱

𝜕𝜆2

− 1
(𝜆

𝜃
+ f (z) + u)

𝜕

𝜕z
(
f ′ + 𝜕u∕𝜕z

𝛬
)𝜕𝛱
𝜕𝜆1

+ 𝜈
(f ′ + 𝜕u∕𝜕z)𝜔
𝜆
𝜃
+ f + u

(16)
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3 Derivation of the Evolution Equation in a Long-wave
Approximation

In this section we shall use the long-wave approximation to study the propagation

of waves in a fluid-solid structure system, presented by Eqs. (14)–(16). In the long-

wave limit, it is assumed that the variation of radius along the axial coordinate is

small compared with the wave length. As this condition is valid for large arter-

ies, the reductive perturbation method [10] can be applied to study the asymptotic

behaviour of dispersive waves in the medium. According to this method an appro-

priate scale transformation with a perturbation expansion of the dependent variables

is introduced. The choice of coordinate transformation (known also as stretching)

depends on the dispersion relationship. The dispersion relationship for such systems

is derived, e.g., in [8, 9]. According to this relationship the following stretched coor-

dinates are introduced

𝜉 = 𝜖
1∕2(z − ct), 𝜏 = 𝜀

3∕2z (17)

where 𝜀 appears in the dispersion relationship. It is a small parameter (𝜀 = r∕l ≺ 1,

where l is the characteristic wavelength) measuring the weakness of dispersion. In

Eq. (17) c is the phase velocity of the harmonic wave propagation in the medium in

the long-wave limit. Then, z = 𝜀
−3∕2

𝜏, and f (𝜀−3∕2𝜏) = 𝜒(𝜉, 𝜏). Thus, the variables

u, 𝜔 and p are functions of the variables (𝜉, 𝜏) and the small parameter 𝜀. Taking into

account the effect of dilatation, we assume f to be of order of 5/2, i.e.

𝜒(𝜉, 𝜏) = 𝜀h(𝜏) (18)

In addition, taking into account the effect of viscosity, the order of viscosity is

assumed to be O(1∕2), i.e.

𝜈 = 𝜀
1∕2

𝜈 (19)

The last assumption ensures balance of nonlinearity, dispersion and dissipation in

the system. We introduce also the following perturbation expansions of the variables

u, 𝜔 and p in term of 𝜀

u = 𝜀u1 + 𝜀
2u2 + … , 𝜔 = 𝜀𝜔1 + 𝜀

2
𝜔2 + … ,

Vz = 𝜀Vz1 + 𝜀
2Vz2 + … , p = p0 + 𝜀p1 + 𝜀

2p2 + … , (20)

where u1 … p2 are some unknown functions of the stretched coordinate (𝜉, 𝜏). To

close the system (14)–(16) p must be presented as a function of u. Therefore we

expand the other quantities in Eq. (16) in asymptotic series as follows:
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𝜆1 ≅ 𝜆z, 𝜆2 = 𝜆
𝜃
+ 𝜀(u1 + h) + 𝜀

2(u2 + (u1 + h)2) + … ,

1
𝜆
𝜃
𝜆z

𝜕𝛱

𝜕𝜆1
= 1

𝜆
𝜃
𝜆z

𝜕𝛱

𝜕𝜆z
= 𝛾0 (21)

1
𝜆
𝜃
𝜆z

𝜕𝛱

𝜕𝜆2
= 𝛽0 + 𝛽1(u1 + h)𝜀 + (𝛽1u2 + 𝛽2(u1 + h)2)𝜀2 + …

where

𝛽0 =
1

𝜆
𝜃
𝜆z

𝜕𝛱

𝜕𝜆
𝜃

, 𝛽1 =
1

𝜆
𝜃
𝜆z

𝜕
2
𝛱

𝜕𝜆
2
𝜃

, 𝛽2 =
1

2𝜆
𝜃
𝜆z

𝜕
3
𝛱

𝜕𝜆
3
𝜃

(22)

Substituting (17)–(21) into Eqs. (14)–(16), we obtain the following differential sets:

O (𝜀) equations

− 2c
𝜕u1
𝜕𝜉

+ 𝜆
𝜃

𝜕𝜔1
𝜕𝜉

= 0, −c
𝜕𝜔1
𝜕𝜉

+
𝜕p1
𝜕𝜉

= 0, p1 = 𝛾1(u1 + h) (23)

O (𝜀
2
) equations

− 2c
𝜕u2
𝜕𝜉

+ 2𝜔1
𝜕u1
𝜕𝜉

+ 𝜆
𝜃

𝜕𝜔2
𝜕𝜉

+ [u1 + h]
𝜕𝜔1
𝜕𝜉

+ 𝜆
𝜃

𝜕𝜔1
𝜕𝜏

= 0

−c
𝜕𝜔2
𝜕𝜉

+ 𝜔1
𝜕𝜔1
𝜕𝜉

+
𝜕p2
𝜕𝜉

+
𝜕p1
𝜕𝜏

− 𝜈
𝜕
2
𝜔1

𝜕𝜉2
= 0 (24)

p2 = ( mc
2

𝜆
𝜃
𝜆z

− 𝛾0)
𝜕
2u1
𝜕𝜉2

+ 𝛾1u2 + 𝛾2(u1 + h)2

From the solution of Eqs. (23), we obtain

u1 = U(𝜉, 𝜏), 𝜔1 =
2c
𝜆
𝜃

U, p1 =
2c2
𝜆
𝜃

U + 𝛾1h (25)

where U(𝜉, 𝜏) is an unknown function whose governing equation will be obtained

later. The averaged axial velocity 𝜔1 in Eq. (25) is determined also by a function

depending on 𝜏. However if we consider the process in infinity content this function

can be removed. Comparing p1 in Eqs. (23) and (25) leads to the following relation-

ship 𝛾1 =
2c2

𝜆
𝜃

. We introduce (25) in Eqs. (24), and obtain

− 2c
𝜕u2
𝜕𝜉

+ 4c
𝜆
𝜃

U 𝜕U
𝜕𝜉

+ 𝜆
𝜃

𝜕𝜔2
𝜕𝜉

+ 2c𝜕U
𝜕𝜏

+ 2c
𝜆
𝜃

(U + h)𝜕U
𝜕𝜉

= 0 (26)
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− c
𝜕𝜔2
𝜕𝜉

+ 4c2

𝜆
2
𝜃

U 𝜕U
𝜕𝜉

+ 2c2
𝜆
𝜃

𝜕U
𝜕𝜏

+ 𝛾1h′ +
𝜕p2
𝜕𝜉

− 4c2

𝜆
2
𝜃

𝜈
𝜕
2U
𝜕𝜉2

= 0 (27)

p2 = ( mc
2

𝜆
𝜃
𝜆z

− 𝛾0)
𝜕
2U
𝜕𝜉2

+ 𝛾1u2 + 𝛾2U2 + 𝛾2h(𝜏)U + 𝛾2h(𝜏)2 (28)

Replacing Eq. (28) into Eq. (27), and eliminating 𝜔2 between Eqs. (26) and (27), the

final evolution equation takes the form:

𝜕U
𝜕𝜏

+ 𝜇1U
𝜕U
𝜕𝜉

− 𝜇2
𝜕
2U
𝜕𝜉2

+ 𝜇3
𝜕
3U
𝜕𝜉3

+ 𝜇4(𝜏)
𝜕U
𝜕𝜉

+ 𝜇(𝜏) = 0 (29)

where

𝜇1 =
5
2𝜆

𝜃

+
𝛾2
𝛾1
, 𝜇2 =

𝜈

𝜆
𝜃

, 𝜇3 =
m
4𝜆z

−
𝛾0
2𝛾1

, (30)

𝜇4(𝜏) = h(𝜏)( 1
2𝜆

𝜃

+
𝛾2
𝛾1
), 𝜇(𝜏) = 1

2
h′(𝜏)

and

𝛾1 = 𝛽1 −
𝛽0
𝜆
𝜃

, 𝛾2 = 𝛽2 −
𝛽1
𝜆
𝜃

(31)

Finally we have to objectify the idealized aneurysm shape. For an idealized abdom-

inal aortic aneurysm (AAA), h(𝜏) = 𝛿exp(−𝜏
2

2L2
), where 𝛿 is the aneurysm height, i.e.

𝛿 = rmax − r0, and L is the aneurysm length [11]. In order to normalize these geomet-

ric quantities, we non-dimensionalize 𝛿 by the inlet radius (diameter). Then, the non-

dimensional coefficient can be presented by 𝛿
′ = DI − 1, where DI = 2rmax∕2r0 =

Dmax∕D0 is a geometric measure of AAA, which is known as a diameter index or

a dilatation index [12]. In the same manner, the aneurysm length L is normalized

by the maximum aneurysm diameter (Dmax), i.e. l′ = L∕Dmax = 1∕SI, where SI is a

ratio, which is known as a sacular index of AAA [12]. For AAAs, Dmax varies from

3 to 8.5 cm, and L varies from 5 to 10–12 cm.

4 Analytical Solution for the Nonlinear Evolution
Equation: Application of the Modified Method of
Simplest Equation

In this section we shall derive a travelling wave solution for the variable coefficients

evolution equation, presented by Eq. (29). We shall make change of the function and

the variables in the the evolution equation with variable coefficients as follows:
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Let us introduce a new dependent variable such as U(𝜉, 𝜏) = V(𝜉, 𝜏) − ∫ 𝜇(𝜏)d𝜏.

Then Eq. (29) reduces to:

𝜕V
𝜕𝜏

+ 𝜇1V
𝜕V
𝜕𝜉

− 𝜇2
𝜕
2V
𝜕𝜉2

+ 𝜇3
𝜕
3V
𝜕𝜉3

+ [𝜇4(𝜏) − 𝜇1 ∫
𝜇(𝜏)d𝜏]𝜕V

𝜕𝜉
= 0. (32)

Now, we introduce the coordinate transformation

𝜏
′ = 𝜏, 𝜉

′ = 𝜉 −
∫

[𝜇4(𝜏) − 𝜇1 ∫
𝜇(𝜏)d𝜏]d𝜏

Then, Eq. (29) is reduced to the generalized KdVB equation:

𝜕V
𝜕𝜏′

+ 𝜇1V
𝜕V
𝜕𝜉′

− 𝜇2
𝜕
2V

𝜕𝜉′2
+ 𝜇3

𝜕
3V

𝜕𝜉′3
= 0. (33)

Next, we shall find an analytical solution of Eq. (33) applying the modified method of

simplest equation [13–16]. The short description of the modified method of simplest

equation is as follows. First of all by means of an appropriate ansatz (for an example

the traveling-wave ansatz) the solved of nonlinear partial differential equation for

the unknown function 𝜂 is reduced to a nonlinear ordinary differential equation that

includes 𝜂 and its derivatives with respect to the traveling wave coordinate 𝜁

𝛷
(
𝜂, 𝜂

𝜁
, 𝜂

𝜁𝜁
,…

)
= 0 (34)

Then the finite-series solution

𝜂(𝜁 ) =
𝜅1∑

𝜇=−𝜅
a
𝜇
[g(𝜁 )]𝜇 (35)

is substituted in (34). a
𝜇

are coefficients and g(𝜁 ) is solution of simpler ordinary

differential equation called simplest equation. Let the result of this substitution be

a polynomial of g(𝜁 ). Equation (35) is a solution of Eq. (34) if all coefficients of

the obtained polynomial of g(𝜁 ) are equal to 0. This condition leads to a system of

nonlinear algebraic equations. Each nontrivial solution of the last system leads to a

solution of the studied nonlinear partial differential equation. In addition, in order

to obtain the solution of Eq. (34) by the above method we have to ensure that each

coefficient of the obtained polynomial of g(𝜁 ) contains at least two terms. To do this

within the scope of the modified method of the simplest equation we have to balance

the highest powers of g(𝜁 ) that are obtained from the different terms of the solved

equation of kind (34). As a result of this we obtain an additional equation between

some of the parameters of the equation and the solution. This equation is called a

balance equation.

We introduce transformation of a traveling-wave type, i.e. 𝜁 = 𝜉
′ − v∗𝜏′, where

v∗ is the velocity of the traveling wave. We substitute the last expression in Eq. (33)
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and obtain:

− v∗ dV
d𝜁

+ 𝜇1V
dV
d𝜁

− 𝜇2
d2V
d𝜁2

+ 𝜇3
d3V
d𝜁3

= 0. (36)

Now we search for solution of Eq. (36) of kind V = V(𝜁 ) =
q∑

r=0
arg′, where g

𝜁
=

m∑
j=0

bjgj. Here ar and bj are parameters, and g(𝜁 ) is a solution of some ordinary

differential equation, referred to as the simplest equation. The balance equation is

q = 2m − 2. We assume that m = 2, i.e. the equation of Riccati will play the role of

simplest equation. Then

V = a0 + a1g + a2g2,
dg
d𝜁

= b0 + b1g + b2g2 (37)

The differential equation of Riccati can be written as

(
dg
d𝜁

)2

= c0 + c1g + c2g2 + c3g3 + c4g4 (38)

where

c0 = b20; c1 = 2b0b1; c2 = 2b0b2 + b21; c3 = 2b1b2; c4 = b22 (39)

and its solutions are given in [14]. The relationships among the coefficients of the

solution and the coefficients of the model are derived by solving a system of five

algebraic equations, and they are

a0 = − 1
25

−3𝜇2
2 − 30𝜇2𝜇3b1 + 75𝜇2

3b
2
1 + 25v𝜇3

𝜇1𝜇3
;

a1 = −12
5
b2(5𝜇3b1 − 𝜇2)

𝜇1
; a2 = −12

𝜇3b22
𝜇1

; b0 =
1
100

25𝜇2
3b

2
1 − 𝜇

2
2

b2𝜇2
3

(40)

Here b1, b2 are free parameters. Then substituting (40) in the first equation of (37)

the solution of the evolution equation with constant coefficients (Eq. (33)) is

V(𝜁 ) = − 1
25

−3𝜇2
2 − 30𝜇2𝜇3b1 + 75𝜇2

3b
2
1 + 25v𝜇3

𝜇1𝜇3
− (41)

−12
5
b2(5𝜇3b1 − 𝜇2)

𝜇1
g(𝜁 ) − 12

𝜇3b22
𝜇1

g(𝜁 )2

where
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g(𝜁 ) = −
b1
2b2

− Δ
2b2

tanh (
Δ(𝜁 + 𝜁0)

2
) + (42)

+
exp (Δ(𝜁+𝜁0)

2
)

2 cosh(Δ(𝜁+𝜁0)
2

) b2
Δ
+ 2C∗ exp(Δ(𝜁+𝜁0)

2
) cosh(Δ(𝜁+𝜁0)

2
)

In Eq. (42) Δ =
√

b21 − 4b0b2 > 0, and 𝜉0 and C∗
are constants of integration. The

solution of the evolution equation with variable coefficients (Eq. (29)) is

U(𝜉, 𝜏) = V(𝜁 ) −
∫

𝜇(𝜏)d𝜏 (43)

where

𝜁 = 𝜉 − v∗𝜏 −
∫

[−𝜇1 ∫
𝜇(𝜏)d𝜏 + 𝜇4(𝜏)]d𝜏 (44)

5 Numerical Findings and Discussions

It is obvious that the wave profile of the radial displacement U (Eq. (43)) depends

on the material properties of the arterial wall, on the initial deformations and on the

arterial geometry. In order to see their effect on the wave profile of U we need the

values of coefficients 𝛽0, 𝛽1, 𝛽2, 𝛾0, 𝛾1, 𝛾2, 𝜇1, 𝜇2, 𝜇3, 𝜇4(𝜏) and 𝜇(𝜏). For that purpose,

the constitutive relation for tube material must be specified. Here, unlike [1–5], we

assume that the arterial wall is an incompressible, anisotropic and hyperelastic mate-

rial. The mechanical behaviour of such a material can be defined by the strain energy

function of Fung for arteries [17]:

𝛱 = C(eQ − 1), Q = C1E2
QQ + C2E2

ZZ + 2C3EQQEZZ (45)

where EQQ and EZZ are the Green-Lagrange strains in the circumferential and axial

directions, respectively, andC,C1,C2,C3 are material constants. Taking into account

that EQQ = 1∕2(𝜆2
𝜃
− 1) and EZZ = 1∕2(𝜆2z − 1), we substitute (45) in (22), (30) and

(31), and obtain:

𝛽0 =
1
𝜆z
(
C1
2

+ C3(𝜆2z − 1))F(𝜆
𝜃
𝜆z)

𝛽1 =
1

𝜆z𝜆𝜃
(
C1
2

+ C3(𝜆2z − 1))(1 + 𝜆
2
𝜃
(
C1
2

+ C3(𝜆2z − 1)))F(𝜆
𝜃
𝜆z)

𝛽2 =
1
2𝜆z

(
C1
2

+ C3(𝜆2z − 1))2(3 + 𝜆
2
𝜃
(
C1
2

+ C3(𝜆2z − 1)))F(𝜆
𝜃
𝜆z) (46)

𝛾0 =
1
𝜆
𝜃

(
C2
2

+ C3(𝜆2𝜃 − 1))F(𝜆
𝜃
𝜆z), 𝛾1 =

1
𝜆z
(
C1
2

+ C3(𝜆2z − 1))2F(𝜆
𝜃
𝜆z),
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Fig. 1 Variations of the

radial displacement for

different values of 𝛿
′

and l′:
for 𝛿

′ = 0.5, l′ = 1.66
(Dmax = 3 cm) (the green
line in the figure); for

𝛿
′ = 1.5, l′ = 1

(Dmax = 5 cm) (the red line
in the figure); for

𝛿
′ = 2.5, l′ = 0.7

(Dmax = 7 cm) (the blue line
in the figure) (L = 5 cm)

0

-0.2

-0.4

-0.6

-0.8
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-1.2

-5 0 5 10

𝛾2 =
1
𝜆z
(
C1
2

+ C3(𝜆2z − 1))(
𝜆
2
𝜃

2
(
C1
2

+ C3(𝜆2z − 1))2 + 5
2
(
C1
2

+ C3(𝜆2z − 1))

− 1
𝜆
2
𝜃

)F(𝜆
𝜃
𝜆z)

where

F(𝜆
𝜃
𝜆z) = C exp(

C1
4
(𝜆2

𝜃
− 1) +

C2
4
(𝜆2z − 1) +

C3
2
(𝜆2

𝜃
− 1)(𝜆2z − 1)) (47)

The numerical values of material coefficients in (45) are as follows: C = 2.5 kPa,
C1 = 14.5,C2 = 7,C3 = 0.1. They were derived in [18] from experimental data

of human aortic wall segments applying a specific inverse technique. Assuming

the initial deformation 𝜆z = 1.5, 𝜆
𝜃
= 1.2, we obtain the following values for the

coefficients: 𝛽0 = 554.97, 𝛽1 = 5374, 𝛽2 = 27872.89, 𝛾0 = 333.36, 𝛾1 = 4911.52,
𝛾2 = 23394.55. Then, the numerical values of the coefficients in Eq. (29) are:

𝜇1 = 6.85; 𝜇2 = 2.73.10−5m2∕s; 𝜇3 = −0.017; (48)

𝜇4(𝜏) = 5.36𝛿′ exp(−𝜏2∕2l′2), ; 𝜇(𝜏) = −𝛿′𝜏 exp(−𝜏2∕2l′2)∕2l′2.

We take into account that 𝜈 = 3.28.10−6 m2∕s when calculating 𝜇2. Using these

numerical values, the travelling-wave solution of Eq. (29) for 𝜉 = 1 is plotted in

Fig. (1). In all simulations v∗ = 1,m = 0.1 and b1 = 1, b2 = 1, which are defined by

the symmetry condition at 𝜏 = 0 and 𝜏 = ±∞. In more detail Fig. 1 demonstrates the

effect of aneurysm geometrical characteristics such as the maximal aneurysm diam-

eter and in particular the aneurysmal length (DI and SI indexes of AAA defined in

the end of Sect. 3) on the wave profile of wall displacement. Taking into account that

the healthy aortic diameter is about 2 cm, various wave profiles of U are obtained for

various values of the maximal aneurysm diameter Dmax (in particular 𝛿
′

or DI). In

all these cases, a constant aneurysm length L is assumed, but l′ (in particular SI)
also varies, because Dmax involves in this ratio. As it is seen from Fig. (1) wave
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elastic drop, followed by a prompt wave elastic jump is observed in presence of arte-

rial dilatation. The graph also demonstrates that the wave amplitude increases but

wave length decreases when the maximal aneurysm diameter increases. (in particu-

lar when DI and SI of AAA increase). The increasing wave amplitude of the wall dis-

placement can lead to aneurysm rupture. Thus the obtained results are conformable

with observations in the medical practice.

6 Conclusions

Modelling the injured artery as a thin-walled prestetched, anisotropic and hypere-

lastic tube with a local imperfection (an aneurysm), and the blood as a Newtonian

fluid we have derived an evolution equation for propagation of nonlinear waves in

this complex medium. Numerical values of the model parameters are determined for

specific mechanical characteristics of the arterial wall and specific aneurismal geom-

etry. We have obtained a traveling wave analytical solution of the model evolution

equation. The numerical simulations of this solution demonstrate that solitary waves

are observed when a local arterial dilatation appears.
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Modelling of Light Mg and Al Based Alloys
as “in situ” Composites

Ludmila Parashkevova and Pedro Egizabal

Abstract The present paper is aimed to further elucidate the microstructure prop-

erties relationship of light alloys containing additional hard particles. The materials

studded are magnesium alloys from the system AZ (Mg–Al–Mn–Zn) and mechan-

ically alloyed aluminum reinforced with carbide and oxide particles. Strengthen-

ing and hardening phenomena in Metal Matrix Multiphase heterogeneous Materials

(MMMM) are considered in this study from the view point of mechanics of nano-

and micro-composites. A semi-analytical approach is adopted taking into account

the manufacturing processing and microstructure features. Multilevel homogeniza-

tion procedure is performed, accounting for size effects. In the model applied the

metal matrix is considered as an elastic–plastic micropolar media and the hard phases

(precipitations Mg17Al12, TiC, Al4C3, Al2O3) are treated as conventional elastic

Cauchy materials. Experimentally observed dependence of the characteristic matrix

length on the volume fraction of the hardening phases is modeled and numerically

simulated in the case of ball-milled Al alloyed with Al4C3 and Al2O3. For AZ alloys

the impact of intermetallic phase Mg17Al12 is discussed in the frame of presented

composite model and the strengthening effect of the addition of small amount of TiC

is estimated.

1 Introduction

In recent years, the development of enhanced technologies for preparing metal matrix

composites with unique properties shows a significant increase. The resulting new

materials exhibit high mechanical properties and remarkable thermal and structural

stability in operation conditions, [14]. This paper is aimed to elucidate some prob-

lems of metal material strengthening caused by an additional hard phase appear-
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ance. Two of the physical—chemical processes connected to hardening in metals

and alloys, are:

∙ release of precipitations from the parent melt during solidification;

∙ synthesis of metal carbides/oxides/silicides during mechanical alloying.

We apply herein a non-standard approach to estimate the impact of the mentioned

phenomena regarding the metals and alloys as natural “in situ” composites. These

heterogeneous materials are considered as multiphase metal matrix composites. The

basic elastic–plastic properties of such materials are predicted and valuated by means

of a modified variant of homogenization theory coupled with phenomenological

relations describing micro- macro-structure.

The approach is applied for analysis of two types of light alloys. The first type

are magnesium (Mg) based AZ alloys with aluminum (Al) content (1–10 wt%). The

main representative of the AZ family is the AZ91 alloy. It contains a higher per-

centage of aluminium (around 9 wt% Al) than the AM-alloys and about 0.7 wt%

zinc. The major advantage, which keeps “awake” the interest in Mg alloys is their

lower density directly connected to a weight saving of about 40% compared to steel

and cast iron and 20% compared to aluminum for the same component performance,

[18].

The second type of light alloys are mechanically alloyed pure Al containing

carbides Al4C3 and oxcides Al2O3 (0–10 vol. %). Al-based alloys have a high

strength/weight ratio, good formability, excellent combination of castability and

mechanical properties which together with an excellent corrosion resistance make

them very appropriate for a large variety of applications, [18]. Various possible

hardening—strengthening effects in both types of light alloys are presented and dis-

cussed.

2 Microstructure and Experimental Observations

For Mg cast alloys of the system AZ 𝛼 Mg matrix is the predominate phase and the

main precipitate phase is Mg17Al12 (𝛾 phase). The phase 𝛾 is thermally rather unsta-

ble but is much harder than the matrix Mg phase, [7], Young’s moduli ratio ranges

the interval (1.5–1.85). The bulk moduli of both phases, however, are very close.

This feature of two-phase Mg–Al alloy considered as a “in situ” composite leads

to almost equal volume changes under elastic deformation on microstructural level

and slight discrepancy and low crack potential on macro level. It was revealed that

discontinuous and continuous precipitates can occur independently, simultaneously

or competitively, dependently on the ageing (cooling) regime, [3]. Discontinuous

precipitates mainly locate at the grain boundaries, the continuous precipitate phase

appears in various growth directions on the interface and the inner of grains as well.

It is proved that continuous precipitation tends to be favoured at high temperatures

(i.e. close to the solvus curve) whereas at low temperatures of ageing, discontinu-
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ous precipitation prevails. Spherical shape of 𝛾 precipitates can be obtained due to

correlate precipitation and magnesium matrix deformation processes, [3].

Each real solidification path depends on temperature decreasing rate, on the mass

diffusivities of the solutes in liquid and back into the primary solid phase as well.

It lies between two limiting cases. The first one is a solidification path at global

equilibrium conditions, represented by the levers rule. The second one corresponds

to the process with no diffusion in the solid phase and is described by Scheil-Gulliver

model, [10]. For Mg–Al casting alloys in solid state the contribution of intermetallic

phase to strength not only depends on its fraction but also on its morphology. The

strengthening effect is higher when the intermetallic phase is interconnected rather

than being lamellar and discontinuous, [7]. The supersaturation of solution due to

high diffusion rate of Al in Mg change the balance between solid phases and could

account for another strengthening of the AZ alloys.

Mechanical Alloying (MA) is a solid-state powder manufacturing technique,

developed to combine oxide strengthening, precipitation and dispersion hardening.

Starting from a set of specially blended compounds, the powder mixture is subjected

to severe mechanical collision treatment like ball-milling or hot pressing followed by

consolidation processing up to bulk homogeneous state. In comparison to other tech-

nologies mechanical alloying is a relatively simple process leading to considerable

advantages such as fine final microstructure and high volume fraction of reinforce-

ment phase introduced into the composite.

The methods of MA are very effective for obtaining ultra fine microstructure up to

nano size leading to higher strengthening, better ductility, fracture toughness and

high temperature resistance. After MA the reinforcement phases are spread both

inside the grains and along the grain boundaries in a manner similar to that of con-

tinuous precipitating in aged cast alloys.

As other nanocomposites MA composites demonstrate significant size sensitiv-

ity, depending on the processing technology and on the working conditions. Some

recent investigations on MA report that a clear relationship exists between hardening

phase parameters (size and volume fraction) and microstructure characteristics of the

matrix, [4, 9]. In particular [4] shows that the microstructure evolution of the alu-

minum matrix is manifested by changes of the mean crystallite size and dislocation

density depending on the volume fraction of the strengthening particles.

3 Modelling

Different theoretical models accounting for hardening of particle enforced alloys

have been proposed during last decades [12, 14]. They are based on thermodynamic,

kinetic and dislocation mechanisms. The particles of the dispersed or precipitated

second phase, integrated into the matrix in different physical-chemical ways (coher-

ent or non-coherent) are considered as obstacles for dislocation transportation. This

classical approach presumes that the overall yield strength of the alloy is described

by an additive function:
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𝜎YS = 𝜎m + 𝜎SS + 𝜎GS + 𝜎d + 𝜎p , (1)

where 𝜎m, 𝜎SS, 𝜎GS, 𝜎d, 𝜎p are the corresponding contributions of the matrix itself,

of the solid solution, of the grain size hardening, of the dislocation hardening and of

the hardening due to precipitations or inclusions. Relation (1) can be presented in the

form 𝜎YS = 𝜎0 +M𝛥𝜏 where 𝜎0 = 𝜎m + 𝜎SS + 𝜎GS + 𝜎d, M is Taylors factor, M = 3
is reference value for metals; 𝛥𝜏 is the increase of the shear stress of the material.

By means of the term 𝜎GS these expressions include also Hall-Petch type relations

in which hardening effect depends on grain size Dg:

𝜎YS ∼ 𝜎m + A(Dg)−1∕2 A = const . (2)

To extend the classical Cauchy continuum mechanics theory to a higher-order

medium, it is assumed that any material point is endowed with an internal microstruc-

ture, [8]. The Cosserat continuum belongs to the larger class of generalized continua

which introduce intrinsic length scales into continuum mechanics via higher order

gradients and additional degrees of freedom of fully non local constitutive equations,

[11, 15]. Three displacements are employed in the usual way to characterize the

macroscopic motion of the material point, and three additional microrotation angles

are introduced to describe the rotation of the microstructure within the material point.

The recent renewal of Cosserat mechanics is due to the dramatic increase of compu-

tational capabilities, to the development of local strain field measurement methods

and to the enormous interest in size effects in modern micro- and nano-structure

materials. The dependence of the effective properties of metal matrix composites on

the size of the particles or fibers can be accounted for by treating the matrix as a

Cosserat or a generalized medium.

A mechanical model, appropriate for nano–micro composites should account for

two kinds of size effects: (a) size effects due to particles themselves (b) size effects

due to particles matrix mutual influence.

On micro level the hardening phases in a composite alloy are assumed uniformly

dispersed spheres (equivalent inclusions) with diameter Di and given mechanical

properties. They can be grouped in a finite number n of sets, according to their size

and mechanical properties. The volume fraction of each set in the RVE (Representa-

tive Volume Element) isCi. The total volume fraction of the hardening phases (equiv-

alent inclusions) is Csum =
∑n

i=1 Ci. The material of the inclusions is Cauchy-type

elastic isotropic one with mechanical characteristics: Young’s modulus Ei, Poisson’s

ratio 𝜈i, shear modulus Gi and bulk modulus Ki. The matrix of the multiphase com-

posite is considered as centro-symmetric micropolar elastic–plastic work-hardening

continuum. The stress and strain measures are the stress tensor 𝜎ij = 𝜎(ij) + 𝜎⟨ij⟩, the

couple stress tensor mij = m(ij) + m⟨ij⟩, the strain tensor 𝜀ij = 𝜀(ij) + 𝜀⟨ij⟩ and the cur-

vature tensor kij = k(ij) + k⟨ij⟩. Symbols (…) and ⟨…⟩ in the subscript denote the sym-

metric and anti-symmetric parts of a tensor respectively.

The elastic behaviour of the matrix on micro level is described with the well

known relations which can be found in [15, 17]. According to micropolar elasticity
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the model parameters are: 𝛼, 𝛽, 𝛾 and 𝜅 are the Cosserat material constants. K0 and N
are Cauchy and Cosserat bulk moduli respectively, E0 is Young’s modulus and 𝜈0 is

Poisson’s ratio. G0 is Cauchy shear modulus. The matrix characteristic length para-

meter lm is defined in accordance with the structure of the constitutive relations as:

l2m = 𝛼∕𝜆0 = 𝛽∕G0 = 𝛾∕𝜅 . Usually the length parameter lm is associated with grain

size or crystallite size in metals and alloys. Everywhere in the paper (…)′ means

deviator. We assume the following equivalent stress 𝜎e [6] for describing the transi-

tion from elastic to plastic state

𝜎
2
e =

3
2
𝜎
′
(ij)𝜎

′
(ij) +

3
2l2m

m′
(ij)m

′
(ij) +

3
2l2m

m⟨ij⟩m⟨ij⟩ (3)

and corresponding yield condition for the matrix on micro level:

𝜎e = 𝜎p0
(
𝜀p
)
= 𝜎

0
p0 + h0𝜀p

m
, (4)

where 𝜎p0 is the yield stress of the matrix, 𝜎
0
p0 is its initial value, h0 and m are

hardening parameters. 𝜀p is the equivalent plastic strain on microlevel. According

to the decomposition approach [19] the multiphase RVE, consisting of matrix and

nf phases, is equivalent to a RVE, consisting of n pseudograins, n ≥ nf . Each pseudo-

grain is a two-phase composite, built of part of the matrix and all inclusions with a

particular size and elastic properties. The volume of matrix is distributed among

pseudo grains proportionally to the volume of each hardening phase. As a result the

volume fractions of inclusions are equal to Csum for all pseudo grains. The volume

fraction of the pseudograin i with respect to RVE is C̃i = Ci∕Csum.

Two–steps homogenization procedure is performed as a key to proceed from

micro to macro level. On the first step the material of each pseudo grain should be

homogenized as a two-phase composite following a proper scheme which depends

on the total volume fraction of the inclusions. On the second step the RVE’s agglom-

erate of the already homogeneous Cauchy—type pseudo-grains has to be subjected

to the final homogenization. In the case of low volume fraction, not exceeding 20–

30%, the hypothesis of dilute inclusions is valid for each pseudo-grain and updated

size sensitive Mori–Tanaka homogenization could be applied. For the RVE of the

metal composites considered the moduli of i-th pseudo-grain are obtained by means

of equations:

Kci = K0

[

1 +
Csum

(
Ki − K0

)

C0a0
(
Ki − K0

)
+ K0

]

, Gci = G0

[

1 +
Csum

(
Gi − G0

)

C0b0i
(
Gi − G0

)
+ G0

]

,

(5)

where a0 = a0(G0,K0) , b0i = b0i(G0,K0,Di, lm), [6]. The size sensitivity of the

model depends on the dimensionless parameter Di∕lm through the average Eshelby

tensor component b0i, [17]. It is important to emphasize that when 0 ≤ Di∕lm ≤ 1
the strengthening effects are the most pronounced, but limited.
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For the second homogenization we chose the self-consistent theory for polycrys-

talls insofar as all pseudo-grains must be treated in a similar way and only a sym-

metric homogenization scheme is suitable. The overall moduli of composite are cal-

culated numerically as a solution of the non-linear equation system:

n∑

i=1

C̃i

1 − 3K
3K+4G

(
1 − Kci

K

) − 1 = 0,
n∑

i=1

C̃i

1 −
2
(
3K+6G

)

5
(
3K+4G

)

(
1 − Gci

G

)
− 1 = 0 . (6)

We assume that the plastic stage of the composite is reached if the yield condition

for the matrix material is satisfied in a averaged manner, as far as the inclusions are

considered pure elastic and do not undergo plastic deformation. The following yield

condition on macro level is proposed:

⟨𝜎e
2⟩0 = 𝜎

2
p0
(
⟨𝜀p⟩0

)
. (7)

The variation technique of Hu et al. [6], described in [16], is used to evaluate the aver-

aged equivalent stress ⟨𝜎e
2⟩0. The concept of the secant moduli method is applied in

the inelastic state. According to it at each deformation step the real nonlinear material

is compared with an elastic one, having diminishing elastic properties.

Es
0 =

(
1
E0

+
𝜀p

𝜎p0

)−1

, 𝜈
s
0 =

1
2
−
(1
2
− 𝜈0

) Es
0

E0
, (8)

Keeping in mind (7) the yield condition of the overall composite material is rewritten

in the form:

F ≡
3
2
Σ′
ijΣ

′
ij +

Ac
2

9Bc
2 Σ

2
kk − 𝜎

2
pc = 0 (9)

𝜎pc = Ac𝜎p0
(
⟨𝜀p⟩0

)
= Ac

[
𝜎
0
p0 + h0

(
Ep∕C0

)m]
(10)

where the yield limit of the composite 𝜎pc depends on the relation between equivalent

plastic strain measures on micro and macro levels. Equation (10) is valid until the

inelastic deformations of harder phases could by neglected. The coefficients Ac and

Bc are given with:

1

Ac
2 = 1

C0

(
G0

2

G
2

𝜕G
𝜕G0

+ 1
l2m

𝛽
2

G
2
𝜕G
𝜕𝛽

+ 1
l2m

𝛾
2

G
2
𝜕G
𝜕𝛾

)

,

1

9Bc
2 = 1

3C0

(
G0

2

K
2

𝜕K
𝜕G0

+ 1
l2m

𝛽
2

K
2
𝜕K
𝜕𝛽

+ 1
l2m

𝛾
2

K
2
𝜕K
𝜕𝛾

)

.

(11)
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The derivatives appearing in (11) can be found in [17] in details. At transition from

elastic to plastic state the elastic moduli of the matrix in (5), (6), (9) and (11) should

be replaced by the matrix secant ones, described by (8).

If the bulk moduli of the composite constituents are equal (K0 = Ki, i = 1,… , n)

than 1∕Bc
2
= 0 and the overall material obeys von Mises yield condition, see (9).

4 Numerical Simulations and Results

In classical micromechanics of composites the characteristic parameters of the matrix

and additional phases are considered constant and independent of each other. In

this study we test the presented methodology at different conditions. Using the

microstructural observations and phenomena mentioned in Sect. 2 special relation-

ships among model parameters are suggested and their influence on mechanical prop-

erties on macro level is investigated.

4.1 Properties of Mg Alloys from AZ System

As a first task we are modelling Mg alloy of type AZ with matrix 𝛼Mg phase and

continuously precipitated 𝛾 Mg17Al12 phase as a two-phase composite. According

to mass conservation low one can derive the following relation among fractions of

the AZ alloy in solid state, regarding Al redistribution:

Cwt𝛼
Al = Cwt𝛾

Al −
Cwt𝛾
Al − CwtAZ

Al
[
1 −

(
1 − 𝜌

𝛼Mg

𝜌
AZ

)
CvolAZ
𝛾

] (
1 − CvolAZ

𝛾

) , (12)

where 𝜌
(.)

stays for density, Cwt
(..)

(.)
,Cvol

(..)
(.)

stays for mass (volume) fraction of the

component (..) in (.). In (12) 𝜌
𝛼Mg

, CvolAZ
𝛾

are unknown, because nominal amount

of Al could be distributed between both phases of AZ alloy in different ways. To

overcome this uncertainty we suggest the following additional relationships:

𝜌
𝛼Mg = 𝜌

AZ
(
1 − CvolAZ

𝛾

)
+ 𝜌

MgCvolAZ
𝛾

(13)

CvolAZ
𝛾

≅ CvolAZ
𝛾 max (Al)

Tsolvus − T
Tsolidus − T

= CvolAZ
𝛾 max

(

1 −
Tsolidus − Tsolvus
Tsolidus − T

)

(14)

Relation (14) expresses the assumption that the higher is the content of Al in AZ

alloy, the higher is the temperature of decomposition of solid solution, the lower

is the potential of 𝛼 phase to keep the saturated Al. All this contributes to possi-

ble increase of precipitation phase. The Mg—rich part of Mg–Al phase equilibrium
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diagram is used herein with T = Troom as a reference temperature. It is clear that Eq.

(14) should be modified if any data about the 𝛾 phase volume fraction is available

from a particular solidification path or additional thermal treatments. The maximum

volume fraction of 𝛾 phase can be distinguished if there is no trace of Al rest in the

𝛼 phase, i.e. from (12) one gets:

0 = Cwt𝛾
Al −

Cwt𝛾
Al − CwtAZ

Al
[
1 −

(
1 − 𝜌

Mg

𝜌
AZ

)
CvolAZ
𝛾 max

] (
1 − CvolAZ

𝛾 max

) (15)

CvolAZ
𝛾 max =

1 + a1 −
√(

1 + a1
)2 − 4a1a2

2a1
, a1 = 1 − 𝜌

Mg∕𝜌AZ , a2 = CwtAZ
Al ∕Cwt𝛾

Al

(16)

Analyzing experimental data for tensile behavior of different AZ alloys presented in

[1, 5] it is supposed that the yield strength of 𝛼 phase depends on Al content through

the relation:

𝜎p0 = 𝜎
𝛼Mg
02 = S0

(
1 + S Cwt𝛼

Al
)
, (17)

where S0 = 56 MPa, S = 17. The elastic moduli data from [7] are incorporated into

the model and we calculate the input parameters needed for two-steps homogeniza-

tion varying the Al content from zero to 12.5 wt%, see Table 1. The predictions from

Eqs. (12) and (14) are illustrated on Fig. 1 and are used to estimate the influence of

Al redistribution on the initial yielding of matrix phase and the impact of harder 𝛾

phase on yield stress of AZ alloys, which contain only one precipitated phase, see

Fig. 2.

The next example we consider is a composite consisting of AZ91 D alloy die-

cast with addition of small amount of TiC particles. Data presented in Table 2 for

AZ91 alloy (as matrix material) and for TiC (as a second hard phase) are experi-

mentally obtained. On Fig. 3 the numerically simulated elastic–plastic behavior of

the composite on macro structural level is shown. We studded two variants account-

ing for TiC particles size: one is by average diameter, given in the Table 2, and other

one introducing (by means of size distribution density function) full range of mea-

sured diameters of TiC. As far as for all observed sizes the size sensitivity parameter

Di∕lm ≪ 1 , the hardening effect in both cases is numerically identical (Fig. 3).

Table 1 Input parameters for simulation of AZ alloy as a composite

Material E (GPa) 𝜈 𝜅 (GPa) 𝜎p0 (MPa) lm (µm) D
𝛾

(µm)

𝛼Mg 44 0.33 16.5 Equation (17) 100 –

Mg17Al12 71.94 0.23 – – – 10
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4.2 Properties of Mechanically Alloyed Al Hardened by
Al4C3 and Al2O3

The material under consideration is powder mixture of Al and carbon C subjected to

ball-milling followed by hot extrusion. In modelling the end bulk material is regarded

as a three-phase composite consisting of micropolar elastic–plastic Al matrix and

two Cauchy elastic phases Al4C3 and Al2O3. It is supposed that during manufac-

turing the matrix has been forced to accommodate with the presence of inclusions

of different nature by forming fine crystallites among particles. Roughly speaking

Al matrix “builds” its crystallites in accordance to the interparticle distances. Let

remember that Cosserat length parameter is related to matrix microstructure so the

following relation is adopted:

lm = ⟨L⟩, (18)

Fig. 1 Influence of Al

content in AZ alloy on its

compounds
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Table 2 Input parameters for (AZ91 + TiC) composite

Material E (GPa) 𝜈 𝜅 (GPa) 𝜎
0
p0

(MPa)

h0 (MPa) m power lm (µm)

(DTiC)

Fraction

vol. (%)

AZ91 45 0.35 16.67 99 450 0.5 22 99.43

TiC 440 0.189 – – – – 0.93 0.57

Fig. 3 Overall

elastic–plastic behviour of

AZ91 alloy composite with

and without 0.0057% TiC

particles
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where ⟨L⟩ is average surface to surface interparticle distance. In conformity with

experimental observation of a round inclusions shape we approximate the interpar-

ticle distance by the expression, presented in [13] for the case of spherical inclusions:

⟨L⟩ =

(
CAl4C3

0.68d3Al4C3
+

CAl2O3

0.68d3Al2O3

)−1∕3

(19)

Thus, the internal length of the Al matrix is conjugated with other phases sizes and

volume fractions. In (19) C(.), d(.) are corresponding phase volume fraction and

diameter, respectively. For the aims of homogenization and mechanical properties

assessment we introduce a new variant of Hall–Petch equation (2) involving two

microstructure parameters of the matrix Cosserat internal length lm and Burger’s

vector b:

𝜎
0
p0 = 𝜎0Al = 𝜎

p
0 + Kb

√
b∕

√
lm (20)

It is important to note that unlike the original form of Hall–Petch, equation (2), the

constant Kb in (20) has stress dimension. This could be important if (20) is experi-

mentally validated. For pure Al, [2], 𝜎
p
0 = 9.8MPa,Kb = 3662MPa, b = 0.2865 nm.

The strengthening of multiphase Al–Al4C3–Al2O3 composite is modeled and

simulated applying the processing and compounds parameters, given in [4] and

Table 3. On Fig. 4 is demonstrated that the relations (18) and (19) adopted in the
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Table 3 Properties of Al based composite

Properties Al matrix Inclusions

Al4C3 Al2O3
Young’s modulus

(GPa)

71 411 393

Poisson’s ratio 0.34 0.24 0.22

Vol. fraction (%) 89–98 1–10 1

𝜅 (GPa) 26.0 ** –

lm; part. diameter (nm) lm = ⟨L⟩ 40 500

Fig. 4 Dependence of

crystallites size in Al matrix

and average interparticle

distance on Al carbide

inclusions volume fraction
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present model, rather well describe the experimental observations of the crystallite

size dependence on hardening phase volume fraction. Using the relation

Hv [kG∕mm2] = 2.9 × 9.8 𝜎pc [MPa], verified for aluminum alloys, and hardening

measurement data, presented in [4] one could see that model predicted elastic and
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Fig. 6 Hardening of end

composite (Al + Al4C3 +

Al2O3). Influence of Al4C3

particle size: curve (1)
30 nm, curve (2) 40 nm,

curve (3) 50 nm, curve (4)
100 nm, curve (5) 250 nm,

curve (6) 500 nm
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hardening behavior corresponds to the real one, (Figs. 5 and 6), even though the

hardness yield stress relationships varies in a wide range.

5 Conclusions

Special formulae have been presented which estimate the amount of the Al kept in

the alpha-phase depending on the intermetallic phase precipitated. Such a “resid-

ual” Al affects the properties of the matrix phase and of the AZ alloy as a whole.

For the case of continuous precipitations the chosen homogenization approach has

been transformed into corresponding numerical routines. The elastic moduli and the

initial yield limit of the three-phase MMMM based on AZ91D alloy modified by

TiC particles have been obtained.

The general approach presented in Sect. 3 is modified to take into account the

change of the matrix internal length properties depending on the precipitations size

and volume fractions. The results of the numerical simulations are in accordance

with experimental observations for Al based mechanically alloyed composites pub-

lished in [4, 9], for example. The model predictions outline some new areas where the

desired improvement of mechanical properties of the end materials can be achieved

by a proper combination of size, volume fraction and properties of hardening phases.
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Asymptotic Study of the Nonlinear Velocity
Problem for the Oscillatory Non-Newtonian
Flow in a Straight Channel

Stefan Radev, Sonia Tabakova and Nikolay Kutev

Abstract The studies of non-Newtonian flows, such as blood flows in arteries and

polymer flows in channels have very important applications. The non-Newtonian

fluid viscosity is modelled by the Carreau model (nonlinear with respect to the vis-

cosity dependence on the shear rate). In the present paper the oscillatory flow of

Newtonian and non-Newtonian fluids in a straight channel is studied analytically

and numerically. The flow in an infinite straight channel is considered, which leads

to a parabolic non-linear equation for the longitudinal velocity. The Newtonian flow

velocity is found analytically, while the non-Newtonian velocity is found numeri-

cally by the finite-difference Crank-Nicolson method. In parallel, the non-Newtonian

(Carreau) velocity is developed in an asymptotic expansion with respect to a small

parameter. The zero-th order term of this expansion is exactly the Newtonian veloc-

ity solution. The first order term of the velocity expansion is found analytically in

terms of higher order harmonics in time. As an example, the polymer solution HEC

0.5% is considered. It is shown that the obtained asymptotic solution and the numer-

ical solution for the non-Newtonian (Carreau) velocity are close for different values

of the small parameter.

1 Introduction

The research connected with flows in tubes or channels is very important for medi-

cine, biology, chemical industry, etc. Usually these are flows of blood or some poly-

mer solutions (for example aqueous solution of 0.5% hydroxyethylcellulose, HEC

0.5%), which are considered as shear thinning non-Newtonian fluids. There exist

different non-Newtonian rheological models describing the rheology of these fluids.
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The Carreau model [1–6] is one of the most appropriate models for shear thinning

fluids, whose viscosities gradually decrease or increase with the shear rate increase

or decrease reaching two different plateau values: upper and lower viscosity limits

correspondent to small and high shear rates, respectively. If as a reference viscosity

the upper limit is considered, then it is possible for some special fluids (for example,

some polymer and biological solutions) to construct a small parameter entering in

the nonlinear Carreau model function of viscosity.

Often, the flows in tubes or channels have oscillatory or pulsatile character, which

complicates significantly the velocity solution search. Only for Newtonian oscilla-

tory flow in straight channels or tubes there exist analytical solutions, respectively

for the channel [4–7] and for the tube (the well known solution of Womersley [3, 8]).

However, the velocity of the non-Newtonian flow is found only numerically. For the

channel it is found by the lattice Boltzman method in [7] and in our previous papers

[4–6]—by the finite-difference Crank-Nicolson method. In the last papers we have

proved that the solutions, as well as their gradients, are bounded from below and

above. We have also proved that the differences between the Newtonian and non-

Newtonian (Carreau) velocity and between their gradients on the channel wall are

bounded from below and above by constants dependent only on the problem parame-

ters. For some example fluids (blood and HEC 0.5%) it has been shown numerically

that the velocity gradient differences on the channel wall between the obtained New-

tonian and non-Newtonian (Carreau) solutions are within the theoretically predicted

estimates. It occurs that the velocity and the WSS (wall shear stress) of the blood

flow, when the blood is considered as Carreau fluid, are close to the velocity and

the WSS of the blood when considered as Newtonian fluid with the lower (shear-

thinning) viscosity, while for the polymer solution (HEC 0.5%) the velocity and the

WSS of the Carreau fluid are close to the velocity and the WSS of the Newtonian

fluid with the upper limit viscosity. This fact leads us to the idea to search the veloc-

ity solution in an asymptotic expansion about a small parameter that is connected

with the physical properties of the considered fluid.

The aim of the present work is to study the non-Newtonian oscillatory flow

in a channel, using the Carreau viscosity model: numerically by means of finite-

difference Crank-Nicolson method; asymptotically by solution expansion in a small

parameter. The zero-th term of this expansion is the Newtonian velocity solution,

the first order term is found analytically in terms of higher order harmonics in time.

The disposal of this asymptotic solution will be very useful for further theoretical

estimates of the difference between the non-Newtonian and Newtonian solutions.

2 Problem Statement

The fluid is assumed with constant density 𝜌 and apparent viscosity 𝜇app, which is

constant for the Newtonian model and given by non-linear function of shear rate for

the non-Newtonian model. The infinite straight channel is considered in (x, y) space

with width y = H, where x is the axial coordinate. The pressure p changes only in
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axial direction with constant gradient, depending only on time:
𝜕p
𝜕x

= −A cos(nt),
where A is the oscillation amplitude and n is the angular frequency. These assump-

tions lead to a single non-zero velocity projection in x direction, namely vx, which

depends only on time t and transverse coordinate y. The equations of motion and

continuity [4–6] lead to one single equation for vx:

𝜌
𝜕vx
𝜕t

= A cos nt + 𝜕

𝜕y
(𝜇app

𝜕vx
𝜕y

) (1)

The boundary conditions are vx = 0 at y = 0 and y = H.

The Carreau viscosity model for 𝜇app, cf. [1] and further denoted as 𝜇c, is given

by:

𝜇c = 𝜇∞ + (𝜇0 − 𝜇∞)[1 + 𝜆
2(
𝜕vx
𝜕y

)2](nc−1)∕2, (2)

where 𝜇0, 𝜇∞ are the upper and lower limits of the viscosity corresponding to the

low and high shear rates, and 𝜆 and nc are empirically determined for each fluid.

If the following characteristic scales are applied to Eq. (1): H for characteristic

length (y = HY), 1∕n for characteristic time (t = T∕n) and B = AH2

𝜇0
for character-

istic velocity (vx = Bu), the dimensionless velocity equation becomes:

𝛼
2
0
𝜕u
𝜕T

− 𝜕

𝜕Y
(𝜇̄app

𝜕u
𝜕Y

) − cos(T) = 0, (3)

where 𝛼0 = H
√

𝜌n
𝜇0

is the Womersley number [8], 𝜇̄app = 𝜇app∕𝜇0 and 𝜇0 is the fluid

viscosity for the fluid assumed as a Newtonian fluid. The dimensionless boundary

conditions become:

u(T , 0) = u(T , 1) = 0 (4)

If the flow is supposed periodic in time T , no initial conditions are prescribed. For the

Newtonian flow (𝜇̄app = 1) the velocity is expected to be a function only of cos(T)
and sin(T) that will be seen in the next chapter. In the general case of Carreau model,

the velocity periodic assumption in time will be discussed further at the numerical

solution construction.

3 Results and Discussion

3.1 Newtonian Flow

The solution of the Newtonian fluid flow is denoted by v(T ,Y) and Eq. (3) takes the

form:
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8𝛽20vT − vYY − cos T = 0 in R × (0, 1) (5)

v(T , 0) = v(T , 1) = 0 for T ∈ R

where 𝛽0 =

√
2𝛼0
4

The solution of Eq. (5) is given explicitly by [4]

v(T ,Y) = 1
8𝛽20

[E(Y) sin T + D(Y) cos T] (6)

where

E(Y) = 1 +
S1(Y)S2 + C1(Y)C2

S22 + C2
2

(7)

D(Y) =
S1(Y)C2 − C1(Y)S2

S22 + C2
2

(8)

with

S1(Y) = sin 2𝛽0(Y − 1∕2) sinh 2𝛽0(Y − 1∕2),

C1(Y) = cos 2𝛽0(Y − 1∕2) cosh 2𝛽0(Y − 1∕2),

S2 = sin 𝛽0 sinh 𝛽0,C2 = cos 𝛽0 cosh 𝛽0.

The first and second derivative of velocity v(T ,Y) with respect to Y are

respectively:

vY (T ,Y) =
1

4𝛽0(S22 + C2
2)
{sin(T)[CS1(Y)(C2 + S2) − SC1(Y)(C2 − S2)] (9)

+cos(T)[CS1(Y)(C2 − S2) + SC1(Y)(C2 + S2)]},

vYY (T ,Y) =
1

S22 + C2
2

{sin(T)[C1(Y)S2 − S1(Y)C2] + cos(T)[C1(Y)C2 + S1(Y)S2]}

(10)

with

CS1(Y) = cos 2𝛽0(Y − 1∕2) sinh 2𝛽0(Y − 1∕2),

SC1(Y) = sin 2𝛽0(Y − 1∕2) cosh 2𝛽0(Y − 1∕2).
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Table 1 Parameters for aqueous solution of 0.5% hydroxyethylcellulose (HEC 0.5%)

𝜆 𝜇0 𝜇∞ 𝜌 nc
units s−1 Pas Pas kg∕m3 −
HEC 0.5% 0.066 0.22 0.001* 1000 0.5088

∗ viscosity of water

3.2 Carreau Flow

The Eq. (3) for the Carreau viscosity model in dimensionless form is written as:

8𝛽20uT − (𝜇̄cuY )Y − cos T = 0 (11)

where 𝜇̄c = 𝜇̄∞ + (1 − 𝜇̄∞)(1 + 𝜆̄
2u2Y )

nc−1
2 , 𝜇̄∞ =

𝜇∞
𝜇0

, 𝜆̄ = 𝜆B
H

. Together with the

conditions (4), Eq. (11) is solved numerically by the Crank-Nicholson method in

finite-differences. The Newtonian velocity profile v(0,Y) given by Eq. (6) at T = 0
has been chosen as initial condition. The time and space steps are O(10−3), ensuring

an relative error of O(10−5) for the velocity. The calculations have been performed

at least for 5 cycles in time (T = 10𝜋) for achieving convergence to a time-periodic

state. Here we can note that the velocity solution does not change, if another initial

condition has been used, for example the zero velocity u(0,Y) = 0. Then only the

convergence time has to be increased, for example up to 10 cycles (T = 20𝜋).

As an example, the non-Newtonian liquid aqueous solution of 0.5% hydroxyethyl-

cellulose (HEC 0.5%) has been considered, whose physical parameters are summa-

rized in Table 1 [1, 9]. The velocity profiles for different values of 𝜆̄ are presented

in Fig. 1 at T = 10𝜋 and 𝛼0 = 0.9256 (𝛽0 = 0.3273). The Newtonian velocity profile

corresponds to 𝜆̄ = 0. For small enough values of 𝜆̄ the Carreau velocity is close to

the Newtonian velocity with viscosity 𝜇0. Similar behaviour of the HEC 0.5% flow

velocity has been observed in [6], as well as for the WSS. On contrary, in the case of

a blood flow it has been shown in [6] that the Carreau velocity and WSS are closer

to the Newtonian velocity and WSS with viscosity 𝜇∞. This result is very important

if one wants to approximate the non-Newtonian fluid flow by a Newtonian flow, i.e.,

which one of the plateau viscosities to be chosen for the Newtonian fluid flow.

3.3 Asymptotic Analysis of the Carreau Flow

If the parameter 𝜆̄ ≪ 1, then it can be chosen as a small parameter 𝜀 = 𝜆2 in the

expression for 𝜇̄c and Eq. (11) becomes:

8𝛽20uT −
[(
𝜇̄∞ + c(1 + 𝜀u2Y )

(nc−1)∕2
)
uY
]
Y − cos T = 0 (12)

where c = 1 − 𝜇̄∞.
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Fig. 1 Comparison between the Newtonian (𝜆̄ = 0) and Carreau model velocity (𝜆̄ = 90; 10; 1)

for HEC 0.5% at T = 10𝜋, 𝛼0 = 0.9256 (𝛽0 = 0.3273)

Next, we shall search the Carreau velocity solution as an asymptotic expansion

in 𝜀, i.e.:

u(T ,Y) = u0(T ,Y) + 𝜀u1(T ,Y)… (13)

For ui(T ,Y) with i = 0, 1,…, the Eq. (12) reduces to a linear system of non-

homogeneous parabolic differential equations:

8𝛽20uiT − uiYY = fi (14)

where f0 = cos T , f1 = 1.5c(nc − 1)u20Yu0YY , …
The solution of Eq. (14) at i = 0 is the same as for v(T ,Y) given by Eq. (6). Thus,

u0(T ,Y) ≡ v(T ,Y) and u0Y , u0YY are given respectively by Eqs. (9) and (10).

At i = 1, the solution of Eq. (14) is found in the form:

u1(T ,Y) = V1s(Y) sin (T) + V1c(Y) cos (T) + V3s(Y) sin (3T) + V3c(Y) cos (3T) ,
(15)

where

V1s(Y) = b4 C1(Y) + b1 S1(Y) +
𝛿

10
(
S22 + C2

2) [(−4 S2 + 3C2
)
SS13(Y)

+
(
4 S2 + 3C2

)
SS31(Y) +

(
−3 S2 − 4C2

)
CC13(Y) +

(
−3 S2 + 4C2

)
CC31(Y)],

V1c(Y) =
𝛿

10
(
S22 + C2

2) [−20 S2 S1(Y) + (
−3 S2 − 4C2

)
SS13(Y)
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+
(
−3 S2 + 4C2

)
SS31(Y) + 20C2 C1(Y) +

(
−4 S2 − 3C2

)
CC31(Y)

+
(
4 S2 − 3C2

)
CC13(Y)] − b1 C1(Y) + b4 S1(Y),

V3s = d4 CC03(Y) + d1 SS03(Y) +
𝛿

6
[C2

(
3 S22 − C2

2) (SS33(Y) + 3 S1(Y))

+S2
(
3C2

2 − S22
) (

3C1(Y) + CC33(Y)
)
],

V3c(Y) = −𝛿

6
[
(
−9 S2 C2

2 + 3 S23
)
S1(Y) +

(
−3 S2 C2

2 + S23
)
SS33(Y)

+
(
9C2 S2

2 − 3C2
3)C1(Y) +

(
3C2 S2

2 − C2
3)CC33(Y)] − d1 CC03(Y) + d4 SS03(Y),

b1 = −G2C2 + G1S2, b4 = G1C2 + G2S2,

d1 =
H1 SS03(1) − H2 CC03(1)

CC2
03(1) + SS203(1)

, d4 =
H2 SS03(1) + H1 CC03(1)

CC2
03(1) + SS203(1)

,

H1 = −𝛿

6
[C2

(
−C2

2 + 3 S22
) (

SS33(1) + 3 S2
)
+ S2

(
3C2

2 − S2
2) (3C2 + CC33(1)

)
],

H2 =
𝛿

6
[
(
−9 S2 C2

2 + 3 S23
)
S2 +

(
−3 S2 C2

2 + S23
)
SS33(1)

+
(
−3C2

3 + 9C2 S22
)
C2 +

(
−C2

3 + 3C2 S22
)
CC33(1)],

G1 = − 𝛿

10
[
(
−4 S2 + 3C2

)
SS13(1) +

(
4 S2 + 3C2

)
SS31(1)

+
(
−3 S2 − 4C2

)
CC13(1) +

(
−3 S2 + 4C2

)
CC31(1)],

G2 = − 𝛿

10
[−20 S2 S1(1) +

(
−3 S2 − 4C2

)
SS13(1) +

(
−3 S2 + 4C2

)
SS31(1) + 20C2 C1(1)

+
(
−4 S2 − 3C2

)
CC31(1) +

(
4 S2 − 3C2

)
CC13(1)],

𝛿 = − 3
2048

c
(
nc − 1

)
𝛽0

4 (S22 + C2
2)3 ,

SS31(Y) = sin 6𝛽0(Y − 1∕2) sinh 2𝛽0(Y − 1∕2),

CC31(Y) = cos 6𝛽0(Y − 1∕2) cosh 2𝛽0(Y − 1∕2),
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SS13(Y) = sin 2𝛽0(Y − 1∕2) sinh 6𝛽0(Y − 1∕2),

CC13(Y) = cos 2𝛽0(Y − 1∕2) cosh 6𝛽0(Y − 1∕2),

SS03(Y) = sin 2
√
3𝛽0(Y − 1∕2) sinh 2

√
3𝛽0(Y − 1∕2),

CC03(Y) = cos 2
√
3𝛽0(Y − 1∕2) cosh 2

√
3𝛽0(Y − 1∕2),

SC03(Y) = sin 2
√
3𝛽0(Y − 1∕2) cosh 2

√
3𝛽0(Y − 1∕2),

CS03(Y) = cos 2
√
3𝛽0(Y − 1∕2) sinh 2

√
3𝛽0(Y − 1∕2),

SS33(Y) = sin 6𝛽0(Y − 1∕2) sinh 6𝛽0(Y − 1∕2),

CC33(Y) = cos 6𝛽0(Y − 1∕2) cosh 6𝛽0(Y − 1∕2).

At i > 1, the solutions of Eq. (14) contain higher order harmonics in time, but always

odd with respect to time, i.e., cos ((2n + 1)T) and sin ((2n + 1)T), where n > 1. Thus

the velocity solution u(T ,Y) will contain an infinite number of odd harmonics in

time. This result has been also confirmed after applying the Fourier analysis to a

great number of numerical solutions of Eq. (11) for different values of the parameters

𝛽0, 𝜆̄, nc and c. The obtained form of the velocity as a periodic function in T confirms

our assumption for velocity periodicity.

In order to compare the zero-th order velocity u0 (Newtonian velocity given by Eq.

(6)) with the first order velocity u1 (Eq. (15)), it is convenient to take the function
u1

c(1 − nc)
, as it depends only on 𝛼0 (or 𝛽0) as well as the velocity u0 itself. Since

the coefficient 0 < c(1 − nc) < 1 the function
u1

c(1 − nc)
is bounded from below by

the correspondent values of u1. In Fig. 2 the maximum values (with respect to time

and length) of u0 and
u1

c(1 − nc)
are plotted versus 𝛼0. A non-negligible contribution

of u1 to u can be expected only for small 𝛼0 independently on the fluid properties.

In all other cases, the higher order terms in the asymptotic expansion will have no

contribution. Therefore we confine ourselves only up to the first order term u1.

The first order velocity u1 of the HEC 0.5% oscillatory flow is plotted in Fig. 3 for

different values of 𝛼0 at time T = 10𝜋. These velocity profiles are similar in shape

with the profiles of the Newtonian velocity u0, but much smaller in absolute values.

With the increase of 𝛼0 the maximum values of u1 decrease rapidly.

Additionally, we have found that the numerical results for the Carreau velocity of

the HEC 0.5% oscillatory flow are very close with the obtained asymptotic solution

for different values of the small parameter 𝜀 and of 𝛼0. Since their difference is in

the range of the numerical method error, we shall not present it.
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4 Conclusion

The oscillatory flow of Newtonian and non-Newtonian fluids in a straight channel,

assumed infinitely long, has been studied theoretically and numerically. The non-

Newtonian fluid has been modelled by the Carreau viscosity function. As an exam-

ple, a polymer solution (HEC 0.5%) is considered, for which the non-Newtonian

(Carreau) velocities are found numerically by the finite-difference Crank-Nicholson

method. It is shown that the velocity of the polymer solution (HEC 0.5 %) has the

same profile as the velocity of the Newtonian fluid with reference viscosity the upper

limit one, 𝜇0.

The Carreau velocity solution is sought as an asymptotic expansion in a small

parameter connected with the physical properties of the problem. The zero-th term

of this expansion is the Newtonian velocity for the fluid flow with the highest viscos-

ity 𝜇0. The first order term of the expansion contains first and third order harmonics.

The convergence of this asymptotic expansion will be later proved theoretically. The

residual cut after the first order term will be estimated in terms of the problem para-

meters (constants).
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Competition for Resources and Space
Contributes to the Emergence of Drug
Resistance in Cancer

Peter Rashkov

Abstract Recent experiments reveal targeted therapy of tumours promotes the

spread of drug-resistant cancer cells in mixed sensitive-resistant tumours. The

hypothesis is that drug-stressed sensitive cells produce diffusible growth factors that

stimulate the expansion of drug-resistant cells. A mathematical model employing

simple ecological competition and a nonlinear motility law is able to reproduce

the magnitude of observed expansion of the resistant populations volume without

invoking production of diffusible growth factors. The model shows how the therapy-

induced removal of the sensitive population alleviates the competitive pressure on

the resistant for resources and space and confirms the in vivo experimental findings,

and sheds light onto mechanisms behind the large increase of the drug-resistant can-

cer cells in the treated tumour.

1 Introduction

The in vivo response of tumours with different composition (drug-sensitive cells,

drug-resistant cells, and mixed sensitive and resistant cells) to targeted therapy with

a variety of kinase inhibitors has recently been studied using wild-type and pre-

cultured drug-resistant cell lines of human and mouse melanoma and human lung

adenocarcinoma [1]. The effect of therapy on the drug-resistant cells is compared to

the control group of vehicle treatment with zero inhibitor dose. In [1] it is reported

that across all cell lines, targeted therapy of mixed tumours leads to an accelerated

proliferation of resistant cells compared to vehicle treatment and proposed that this

ensues from a stress response of the drug-sensitive population which release sig-

nalling macromolecules (therapy-induced secretome) into the tumour microenviron-

ment that support and stimulate the expansion of the drug-resistant population.

Cancer cells respond to stress by releasing diffusible signalling and growth fac-

tors into their microenvironment that can potentially stimulate their own or their
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neighbours’ ability to proliferate or acquire resistance [2, 3]. However, there is grow-

ing consensus in oncology that cancer growth must be understood from the perspec-

tive of the ecosystem interactions within the tumour as well as between the tumour

and its microenvironment [4]. In particular, it is quite difficult to quantify the mag-

nitude of a particular factor in vivo among multiple others because of the tumour

microenvironment complexity. There is little knowledge of “fundamental population

biology parameters” in vivo [5], and even less of the implicit and explicit environ-

mental factors present inside a tumour. While production of diffusible signalling and

growth factors can be measured explicitly in vitro, intercellular interactions inside

the tumour are difficult to quantify in vivo.

The ecosystem characteristics present in vivo may be concealed, downplayed, dis-

torted or removed, which could lead to an incomplete understanding of the spatio-

temporal dynamics inside the tumour, and to misestimation of the role of implicit and

explicit factors. An in vivo setting may be characterised by higher interdependence of

the different species because of cell-to-cell interaction inside the tissue, competition

for resources or space, or cooperation between cells. Furthermore, the in vivo spatial

organisation may not be fully reproducible in vitro, but is often omitted from exper-

imental and evolutionary models of cancer [4]. Cells in vitro, for example, may be

less restricted in their movement because of the lack of mechanistic obstacles inside

the tissue. It is a challenge for a computational model to include the implicit factors’

effect on tumour evolution, and development of therapy.

Phenotypes abound in ecosystems due to various metabolic and physiological

trade-offs [6], and cancer is no exception. Drug resistance may lead to various trade-

offs: metabolism and decreased proliferation rate [5], or higher vulnerability in com-

petition for resources. Thus, the fitness cost of drug resistance should be considered

in models of tumour evolution.

In an ecosystem where populations with various characteristics compete for lim-

ited resources, a reduction in one of the populations may trigger great changes in

the abundance of competitors. Such an implicit proliferative advantage could be

quite substantial, as the mixed tumours used by [1] contain pre-cultured resistant

cells which are immune to therapy. By eliminating the drug-sensitive population,

the therapy could in effect liberate the drug-resistant population from the competi-

tive pressure for resources and space and create a more favourable environment for

its expansion.

In order to understand the scale of environmental factors behind the promotion of

drug resistance under therapy of a tumour a mathematical model based on ecologi-

cal principles of competition is proposed to simulate in silico the experiment of [1]

and compare the model predictions to the experimental observations. The model

addresses the questions about

∙ the growth advantage of the resistant population in mixed tumours caused by

reduced competition for space and resources,

∙ the dynamics of volume of resistant tumours in mixed tumours subject to therapy

or vehicle treatment,
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∙ the effect of the density-dependent cell motility in the evolution of tumour com-

position.

The model demonstrates that therapy can accelerate growth of the drug-resistant

population even when any effect of therapy-induced secretomes is neglected. Under

certain conditions the model predicts that in a treated mixed tumour the volume of

resistant population increases faster compared to an identical vehicle-treated tumour,

and suggests a substantial therapy-induced colonisation effect, even when the resis-

tant population is at a proliferative disadvantage compared to the sensitive due to

costs of resistance. The model predictions are in accordance with preliminary in

vitro data on growth of drug-resistant lung carcinoma cells in mixed tumours [7],

where the growth of the resistant cells is suppressed in presence of sensitive cells.

The model raises awareness of the importance of implicit ecosystem interactions

which might be difficult to measure or reproduce explicitly in vitro.

2 Mathematical Model

The model uses a continuous approach describing the spatio-temporal evolution of

cell population densities and concentrations of chemicals. The spatial domain 𝛺

describes the tumour and its vicinity, and in this study 𝛺 will be either ℝ or a convex

domain 𝛺 ⊂ ℝ2
with piecewise smooth boundary. The index i = 0, 1, 2 refers to the

population of healthy, drug-sensitive and drug-resistant cells. ui(t, x) denotes the i-th
population density at time t > 0 at point x ∈ 𝛺.

Cancer cells upregulate the glycolitic metabolic pathway which leads to increased

production of lactic acid [8], the excess of which is then secreted into the extracellular

space. Increased pH of the tumour microenvironment above the homeostatic level

decreases the viability of the surrounding healthy tissue via acidosis [9–11]. Lactic

acid v(t, x) is secreted proportionally to total cancer cell density u1 + u2 at rate r > 0
and reabsorbed via the tissue at rate 𝜅v > 0. The free acid diffuses in 𝛺 with diffusion

rate Dv.

For simplicity the drug w(t, x) is administered at a constant rate W0 > 0, which is

a good approximation to the experiment [1] (drugs administered once or twice daily).

Drug uptake by the cancer population i is modelled by Michaelis-Menten terms with

maximal uptake rates Vi and Michaelis constants kMi , i = 1, 2. The drug diffuses in

𝛺 with a rate Dw > 0 and is reabsorbed at a rate 𝜅w. Metabolism with Michaelis-

Menten kinetics is used in other models of tumour growth [12–14], which, however,

employ agent-based modelling for the cells.

Cell population i follows a logistic growth law with proliferation rate gi > 0, car-

rying capacity K and Lotka-Volterra parameters 𝜎ij for the competition from popula-

tion j. In addition, there is an excess death term for the healthy cells due to acidosis,

which is linear in v with parameter d0 > 0. Furthermore, the drug’s pro-apoptotic

effect is modelled by an excess death term for the cancer populations, equal to the

respective uptake rate of the drug. In other words, no drug is lost during the uptake
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into the cell and the drug’s pro-apoptotic efficiency amounts to 100%. Resistant cells

normally survive higher inhibitor doses, so the model assumesV1 ≫ V2 and k1 ≪ k2.

The drug does not affect the surrounding healthy tissue.

Both types of cancer cells are assumed to have a proliferative advantage over the

healthy cells [15], so the intrinsic population proliferation rates satisfy g0 < g1, g2.

The fitness cost of resistance [16, 17] is encoded in gi and the Lotka-Volterra compe-

tition parameters 𝜎ij, so g1 > g2 [18, 19]. A value 𝜎10 = 0means that the healthy cells

do not affect the proliferation of the sensitive cancer cells, while 𝜎20 > 0 amounts

to a competition effect of the healthy cells on the resistant cells (stemming from a

physiological trade-off between resistance and vulnerability in the resistant cells).

Values 𝜎12, 𝜎21 > 0 account for competition for resource between the both cancer

population types.

Tumours exhibit heterogeneous growth possibly due to mechanistic effects (such

as crowding) at the interface between tissues of different composition [20]. The com-

petition for space between the cells at the tumour-healthy tissue as well as inside the

tumour interface is captured by a nonlinear term for cell motility. Cell motility is

modelled following [21, 22], where in the presence of multiple competing cell pop-

ulations ui, i = 0, 1, 2 at the same point in 𝛺, the flux for the i-th population 𝕁i is

proportional to the total flux −∇(u0 + u1 + u2). The contribution of i-th population

to the overall cell flux is density-dependent according to the fraction of the popula-

tion ui inside the total population,

𝕁i(u0, u1, u2) = −
ui

u0 + u1 + u2
(∇u0 + ∇u1 + ∇u2). (1)

The motility term for population i is the divergence of the flux, ∇ ⋅ 𝕁i.
Combining these considerations gives the governing equations for the population

densities and chemical concentrations

𝜕u0
𝜕t

= ∇ ⋅ 𝕁0 + g0u0
(
1 −

u0
K

− 𝜎01u1 − 𝜎02u2
)
− d0vu0, (2)

𝜕u1
𝜕t

= ∇ ⋅ 𝕁1 + g1u1
(
1 −

u1
K

− 𝜎12u2
)
−

V1w
kM1 + w

u1, (3)

𝜕u2
𝜕t

= ∇ ⋅ 𝕁2 + g2u2
(
1 − 𝜎20u0 − 𝜎21u1 −

u2
K

)
−

V2w
kM2 + w

u2, (4)

𝜕v
𝜕t

= Dv∇2v + r(u1 + u2) − 𝜅vv, (5)

𝜕w
𝜕t

= Dw∇2w +W0 −
V1w

kM1 + w
u1 −

V2w
kM2 + w

u2 − 𝜅ww. (6)

Setting ui = ui∕K,w = w∕K, cij = K𝜎ij, 𝜌 = Kr,w0 = W0∕K, ki = kMi ∕K the above

system becomes non-dimensionalised,
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𝜕u0
𝜕t

= ∇ ⋅ 𝕁0 + g0u0(1 − u0 − c01u1 − c02u2) − d0vu0, (7)

𝜕u1
𝜕t

= ∇ ⋅ 𝕁1 + g1u1(1 − u1 − c12u2) −
V1w
k1 + w

u1, (8)

𝜕u2
𝜕t

= ∇ ⋅ 𝕁2 + g2u2(1 − c20u0 − c21u1 − u2) −
V2w
k2 + w

u2, (9)

𝜕v
𝜕t

= Dv∇2v + 𝜌(u1 + u2) − 𝜅vv, (10)

𝜕w
𝜕t

= Dw∇2w + w0 −
V1w
k1 + w

u1 −
V2w
k2 + w

u2 − 𝜅ww. (11)

In Eqs. 7–11 the unknowns ui, v,w are subject to homogeneous Neumann bound-

ary conditions on 𝜕𝛺.

Reductions of this model employing only cell populations allow for abundance

of solutions, not only travelling waves of cells, but also stable gradients between the

competing cell populations instead of perfect mixing [21, 23–25].

3 Results

Equations 7–11 form a strongly coupled parabolic system with nonlinear diffusion

terms. To shed light onto the speed of the propagating wave front of drug-resistant

cells, and hence onto the increase in volume of the drug-resistant population inside

the tumour, two subproblems of pairwise interactions will be considered over ℝ:

P1. resistant versus sensitive cancer populations with therapy and vehicle treatment

(u0 ≡ 0, v ≡ 0 for all x ∈ ℝ, t > 0). This case describes the dynamics of compe-

tition inside the tumour.

P2. cancer against healthy tissue (either u1 ≡ 0 or u2 ≡ 0 for all x ∈ ℝ, t > 0). This

case describes the dynamics at the interface between healthy tissue and invasive

(either sensitive or resistant) cancer.

P1 and P2 are analysed for multistationarity and existence of travelling wave solu-

tions, whose their wave speed is computed numerically to elucidate the dynamics of

the full problem.

With regard to P1, if w0 > 0 is large enough so that the sensitive cancer cells

become extinct (in other words, lim supt→∞ u1(t, x) = 0), the wave front of u2 con-

verges to a wave front whose profile and speed are approximated by the Fisher-

KPP equation. Also for w0 ≡ 0 the reaction part of Eqs. 8–9 allows several equi-

libria (û1, û2): a full extinction state E0 = (0, 0), two mutually exclusive states E1 =
(0, 1),E2 = (1, 0), and for appropriately chosen competition parameters cij, a coex-

istence state exists, E3 = ( 1−c12
1−c12c21

,
1−c21

1−c12c21
) [26]. Furthermore, E0 is unconditionally

unstable, and the local stability of E1,E2 depends on the parameters as follows: if

c21 < 1, E1 is a saddle, if c12 < 1, E2 is a saddle, and if c12, c21 < 1, E3 exists and is
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locally stable. In a physiologically relevant range, the competitions parameters have

to satisfy c12, c21 < 1, to ensure the coexistence of both types of cancer cells inside

the tumour, and the coexistence state E3 is locally stable.

P2 describes the wave of invasive cancer uj against healthy cells u0. If w0 > 0 is

large enough so that lim supt→∞ uj(t, x) = 0 (the cancer population becomes extinct),

the wave front of u0 converges to a wave front whose profile and speed are again

approximated by the Fisher-KPP equation. The local stability of spatially homo-

geneous equilibria (û0, ûj, v̂) of P2 for w0 ≡ 0 is easily determined. The following

equilibria are physiologically relevant, E1 = (1, 0, 0) corresponding to homeostasis

(prevalence of healthy tissue) and E2 = (0, 1, 𝜌

𝜅v
) corresponding to tumour. Analy-

sis of the eigenvalues of the Jacobians in E1 and E2 gives the following: whenever

cj0 < 1, E1 is locally unstable. If g0(1 − c0j) − d0
𝜌

𝜅v
< 0, E2 is locally stable. This

is consistent with the choice of values c10, c20 < 1 and c01, c02 > 1, so that on one

hand, E1 is locally unstable to perturbations due to the presence of cancer cells, and

on other hand, E2 is locally stable if either the secretion rate of lactic acid 𝜌 or the

excess acidification death rate d0 are large enough. Furthermore, such values pre-

clude coexistence between either type of cancer and healthy cells.

3.1 Travelling Wave Solutions

Numerical simulations over a finite one-dimensional domain help estimate the pro-

file of the travelling wave front and the wave speed of P1 and P2 for vehicle treat-

ment (w0 = 0). Model parameters are listed in Table 1 unless indicated otherwise.

Initial data is chosen with separated populations of the two cell types on the interval

(−100, 100). Without loss of generality it is assumed henceforth that c12 = c21 ∶= c
(values in Table 1). The initial conditions for P1 are

u1(0, x) = 1 − c
1 + c

(1 + e𝜉x)−1, u2(0, x) =
(1 + e𝜉x)−1

1 + c
(12)

to give two overlapping cancer cell populations for x < 0, and rapid convergence

u1(0, x) → 1, u2(0, x) → 0 for x → +∞. The initial conditions for P2 are

u0(0, x) = (1 + e𝜉(x0−x))−1, uj(0, x) = (1 + e𝜉(x−x∗))−1, v(0, x) = 0. (13)

with x0 > x∗ to give two separated populations which overlap at the interface between

the cancer population uj and the healthy tissue u0. Larger values of 𝜉 > 0 correspond

to faster decay of the initial conditions, and highly localised initial cell populations.

The following observations describe qualitatively the behaviour of the propagat-

ing wave fronts. It is expected that the decay of the travelling wave solution will

depend on the decay of the initial data, 𝜉. For lower 𝜉 (corresponding to faster

decay of initial data), the wave speed a will be higher [21]. The numerical analy-

sis of travelling wave solutions for P1 confirms this: a ranges between 0.012 and
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Table 1 Parameter values used in the simulations

Parameter Meaning Value Reference

g0 Intrinsic proliferation rate

healthy cells

0.025 h
−1

[27] Lotka-Volterra

competition matrix

cij 0 1 2
0 − 0.9 0.9
1 0 − 0.9
2 0.9 0.9 −

g1 Intrinsic proliferation rate

drug-sensitive cancer cells

0.050 h
−1

[18]

g2 Intrinsic proliferation rate

drug-resistant cancer cells

0.030 h
−1

[18]

K Carrying capacity all cells 5 ⋅ 104mm
−3

[28]

V1 Maximum uptake drug

drug-sensitive cancer cells

0.75 h
−1

Estimate

k1 Michaelis constant

drug-sensitive cancer cells

3 µMmm
3

Estimate

V2 Maximum uptake drug

drug-resistant cancer cells

0.375 h
−1

Estimate

k2 Michaelis constant

drug-resistant cancer cells

200 µMmm
3

Estimate

d0 Death rate due to acidity 0.04 µM−1
h
−1

[28]

𝜌 Lactic acid production rate 4 µMh
−1

[28]

𝜅v Reabsorption rate lactic acid 0.396 h
−1

[28]

𝜅w Reabsorption rate drug 0.07 h
−1

Estimate

w0 Administration rate drug As shown

Dv Diffusion rate lactic acid 2 mm
2
h
−1

[28]

Dw Diffusion rate drug 1.2 mm
2
h
−1

Estimate

0.006 as 𝜉 ranges between 0.3 and 1.5. In P1, if the sensitive population were

removed by administering at dose w0 > 0 so that lim supt→∞ u1(x, t) = 0, the dynam-

ics of u2 is approximated by the Fisher-KPP equation with minimal wave speed

amin = 2
√
g2 ≈ 0.3464. Thus, the nonlinear motility law (Eq. 1) significantly reduces

the travelling wave speed.

Furthermore, for a fixed 𝜉 the wave speed a in P2 will depend on the secretion

rate of lactic acid 𝜌: the higher 𝜌, the higher the excess acidification effect on the

healthy tissue. Hence, at the interface between cancer and healthy cells, the latter will

be removed faster, opening up space for colonisation. Figure 1a plots the computed

wave speed a in the range 𝜌 ∈ (0, 0.2) for the invading wave of cancer (data is plotted

for both sensitive and resistant populations).

Considering the sensitive population in P2 (u2 ≡ 0) the reaction term in Eq. 8

depends only on u1. Hence, if cell motility were modelled by linear diffusion, Eq. 8

would be approximated by the Fisher-KPP equation with proliferation rate g1.

As u1 is effectively decoupled from u0, the minimal wave speed can be computed
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Fig. 1 a Computed wave speed a for the invasive cancer wave (P2) as function of 𝜌, with 𝜉 = 1.5.

b Computed wave speed a for the invasive cancer wave P2 as function of w0 (the decay parameter

of initial data 𝜉 = 1.5 in Eqs. 12 and 13

directly [29], and equals amin = 2
√
g1 ≈ 0.4472which exceeds the numerically com-

puted values when w0 = 0 (Fig. 1).

Figure 1b plots the computed travelling wave wave speed in P2 as a function of

the drug administration rate w0. The simulations show that the invasive spread of

cancer slows down in the case of sensitive population, because the net growth rate

is reduced by the therapy. The speed of spread for resistant population is basically

unchanged because they are less responsive to the drug.

The results from this numerical study of the pairwise dynamics of the speed of

a propagating wave of drug-resistant cancer cells inside the tumour and against the

healthy cells in one spatial dimension reveal fundamental differences in dynamics.

The resistant cells expand at a significantly lower speed inside the tumour compared

to the healthy tissue (or a free edge of no cells). In a higher dimensional setting,

thus, it is expected that the growth of the resistant population will be suppressed if it

doesn’t have a boundary towards the healthy tissue or towards a free edge. If therapy

creates a free edge by removing the sensitive population in a vicinity of the resistant,

the latter will grow in this direction.

3.2 Tumour Volume Expansion

Knowledge of the qualitative behaviour from the one-dimensional analysis and sim-

ulations can give insight into the behaviour of the dynamical system in higher dimen-

sions. The temporal evolution of the volume of the sensitive and resistant populations

in mixed tumours is studied for vehicle and therapy. For a given two-dimensional

domain 𝛺, the volumes at time t > 0 are given by

Vsen(t) =
∫
𝛺

u1(t, ⋅), Vres(t) =
∫
𝛺

u2(t, ⋅). (14)
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Simulations are performed on a square domain 𝛺 = (0, 90)2 with three sets of ini-

tial conditions of cancer cell distributions, denoted by Roman numerals. The initial

conditions u1(0, ⋅), u2(0, ⋅) are smooth and rapidly decaying functions over 𝛺, with

maxima over compact sets of different area and localisation in𝛺. For the simulations

the bulk of tumour cells is localised at the interior of 𝛺 sufficiently far from 𝜕𝛺 and

surrounded by healthy tissue. In more detail, the initial conditions are

I. u1(x, y) = [(1 + e𝜉(40−x))(1 + e𝜉(x−65))(1 + e𝜉(y−55))(1 + e𝜉(30−y))]−1,
u2(x, y) = [(1 + e𝜉(35−x))(1 + e𝜉(x−45))(1 + e𝜉(y−50))(1 + e𝜉(40−y))]−1,
u0 = (1 − u1)(1 − u2).

II. u1(x, y) = 0.9[(1 + e𝜉(35−x))(1 + e𝜉(x−45))(1 + e𝜉(y−45))(1 + e𝜉(35−y))]−1, u2 = u1,
u0 = 1 − u1∕0.9.

III. u1(x, y) = [(1 + e𝜉(25−x))(1 + e𝜉(x−55))(1 + e𝜉(y−55))(1 + e𝜉(25−y))]−1, u2(x, y) =
[(1 + e𝜉(35−x))(1 + e𝜉(x−45))(1 + e𝜉(y−45))(1 + e𝜉(35−y))]−1, u0 = 1 − u1.

The parameter 𝜉 determines the rate of decay of the initial conditions, and for the

simulations 𝜉 = 1.5 is chosen to localise the tumour at t = 0.

Observe that in the simulation the ratio Vres(0)∕Vsen(0) at the start of therapy

varies from 0.1 (set I) to 1 (set II). In the experimental setup [1] the mice are inocu-

lated with much lower ratio ( Vres∕Vsen ≈ 0.0005), but then the tumours are allowed

to establish before the start of therapy, so the actual ratio Vres(0)∕Vsen(0) is unknown.

The simulation is performed over a time interval such that the peak of the can-

cer cell densities remains strictly separated from 𝛺 in order to avoid any refractory

waves of u1, u2, v,w which might arise due to the homogeneous Neumann boundary

conditions on 𝜕𝛺. The simulations of vehicle treatment are run with value w0 = 0.

Figure 2a displays histograms of the relative change Vres(100)∕Vres(0) for vehicle

and for therapies with different w0. Figure 2b displays the results for the increase in

Vres(100|therapy) for case III normalised so that Vres(100|vehicle) ≡ 1.
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Fig. 2 a Relative change in the volume of resistant population (Vres(100)∕Vres(0)) inside a mixed

tumour for vehicle and therapy with different administration rates w0 for the three sets of initial

conditions. b Changes in volume of Vres(100|therapy) relative to Vres(100|vehicle) for two tumours

with equal Vres(0) but of different initial composition: a mixed (sensitive + resistant) tumour (left)
and a fully resistant tumour (right). Simulations for the mixed tumour use set III of initial conditions
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4 Discussion

A major obstacle for cancer therapy is the emergence of cell clones inside the tumour

which are resistant to therapy, eventually leading to tumour relapse in the medium or

long term. Cancer development involves a multitude of physiological, environmen-

tal and evolutionary factors whose interaction must be well understood in order to

develop successful strategies for control and cure of the disease [15].

Proliferation rates of cells used in the experiment in [1] were surveyed to set the

model parameters in a biologically relevant range. Evidence in support of trade-

offs between resistance and proliferation rate was gathered from published data [18,

19]. Quantitative data on trade-offs between viability in resource competition and

resistance could not be found. The experiments of [1] are done with several cancer

cell lines whose proliferation rates could be characterised only approximately using

available data [18, 27, 30]. Healthy cells are modelled with a lower proliferation

rate compared to the cancer cells, g0 < g2 < g1. Furthermore, the proliferation rate

of the resistant population used in the model is assumed lower than the estimate for

the resistant PC-9/ER3 cell line [18, Fig. 1C].

To study the effect of therapy on an idealised tumour microenvironment consist-

ing of sensitive and resistant cells, let us discuss the two subproblems that have been

studied numerically to obtain understanding of the full model.

The model accounts for the aggressiveness/invasiveness of the cancer popula-

tion via the production rate of lactic acid 𝜌, as a relation between lactate levels in

a tumour and its metastatic potential is postulated [31]. Since the model assumes a

physiological trade-off for the resistant population leading to a lower proliferation

rate than sensitive (g2 < g1), the wave speed of the sensitive cell wave front against

the healthy cells is greater than that of the resistant cell front for each 𝜌 > 0. Numer-

ical computations of the wave speed for invasive cancer over ℝ confirm these obser-

vations because that the wave speed of invading cancer increases monotonically with

𝜌 (Fig. 1b). The numerical analysis shows the resistant population exhibits a slower

wave speed a than the sensitive. For 𝜌 = 0, the wave speed is at a minimum: 0.005
for the resistant, and 0.036 for the sensitive population (Fig. 1b).

The effect of therapy on the wave speed of cancer cells is studied numerically.

The wave speed of both cancer populations advancing against the healthy cells is

plotted as a function of the inhibitor administration rate w0 (Fig. 1b). The computed

wave speed for sensitive cancer cells is a monotone decreasing function of w0. The

wave speed for the resistant cells remains more or less constant due to the lesser

pro-apoptotic effect.

The spread of resistant cells in a tumour under vehicle treatment and therapy has

been simulated over a two-dimensional domain 𝛺 for three sets of initial conditions,

with different localisation of the sensitive and resistant cells. The simulations reveal

that the dynamics of Vres(t) are quite different across the three cases and depend

strongly on the initial conditions. For initial data III the resistant cells are initially

surrounded by sensitive cells within the tumour. When treated with vehicle (w0 ≡

0), their spatial spread is highly inhibited by the presence of sensitive cells. This
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outcome is corroborated by the computed wave speed of the resistant population in

the one-dimensional simulation (Fig. 1) and experimental data on suppressed growth

of the resistant population inside a mixed sensitive-resistant cancer cell culture [7].

The travelling wave solutions of P1 are characterised by low wave speed. In the

two-dimensional simulation Vres increases by 4% between t = 0 and t = 100 hours

for vehicle treatment (Column III in Fig. 2). Under therapy the sensitive population

declines (limt→∞ Vsen(t) = 0), alleviating the competition pressure on the resistant

population, leading to a four-fold increase in Vres over the same period.

For mixed tumours with initial data in cases I and II, the maxima of u2(0, ⋅) border

initially partially or fully onto healthy cells, and, therefore, the resistant population

is able to expand in that direction at a rate which is very weakly dependent of the

application of therapy (compare the computed wave speed in Fig. 1b) and is con-

firmed by the simulation results For case I, the ratio 2.7 < Vres(100)∕Vres(0) < 3.5
for therapy is not much different from that for vehicle treatment (≈ 2.5) (Column I

in Fig. 2a). For case II, the resistant population initially has its entire free boundary

towards the healthy cells, so the ratios Vres(100)∕Vres(0) for therapy and for vehicle

are of the same magnitude (Column II in Fig. 2a).

The model is able to reproduce qualitatively in silico the in vivo observations,

but it has certain limitations. The computational model and the experimental setup

assume that resistant cells are intrinsically present inside the rumour, and so are

immune to therapy. To what extent this phenomenon occurs in in situ tumours is a

matter of debate [32, 33]. The model assumes for simplicity continuous infusion of

inhibitor which is an idealised approach for computational simplicity. Finally, the

organism’s immune response is neglected. Nevertheless, the model strives to focus

attention that an ecosystem model of a spatially-distributed tumour microenviron-

ment is able to reproduce qualitatively experimental results, and bring experimen-

talists’ attention to physiological trade-offs and the cost of resistance which are often

neglected in cancer studies.

5 Conclusion

This study considers an ecosystem model of a spatially-distributed tumour microen-

vironment subject to therapy with a proapoptotic drug. The growth of three cell pop-

ulations (healthy cells, drug-sensitive and drug-resistant cancer cells) is based on a

logistic model with Lotka-Volterra-type competition, supplemented by two types of

interaction due to presence of diffusible chemicals (drug administered during treat-

ment, and lactic acid secreted by the cancer cells). Physiological trade-offs and the

cost of resistance are incorporated into the model parameters. The cell movement is

based on the assumption that cells are restricted mechanistically by other cells in their

vicinity, leading to a crowding effect [20], and represented by a density-dependent

diffusion term [21, 22].

The model strives to answer the question whether a therapy-induced alleviation

of environmental competition and a density-dependent cell motility can explain the
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magnitude of experimentally observed growth of the resistant population in mixed

sensitive-resistant tumours, without invoking production of growth factors as a stress

response. Numerical simulations show that environmental competition in a mixed

tumour can deter the spread and proliferation of a resistant population which exhibits

a proliferative disadvantage due to costs of resistance, and agree with preliminary

experimental data on co-cultured sensitive and resistant cells [7]. Administration

of drugs targeting sensitive cells, in fact, can alleviate intratumour environmental

competition and cause significant growth advantage for drug-resistant cells in mixed

tumours. Their volume can grow substantially inside a treated mixed tumour com-

pared to an identical untreated tumour, and the relative difference resembles quali-

tatively that in experimental data [1, Suppl. Fig. 1g, i, j, k].

Furthermore, density-dependent cell motility is an important factor for the changes

of volume of sensitive or resistant populations in a mixed tumour. The simulation

results across different initial data demonstrate that the spatial structure of the tumour

plays an important role in the outcome. Tumours with similar ratios of sensitive to

resistant cells may exhibit different response to treatment because of different spatial

structure. Unfortunately the role of tumour spatial structure and organisation remain

underestimated in experimental and evolutionary models of cancer [4]. The simple

model proposed here shows how the environmental factors present in vivo may com-

bine with density-dependent cell motility to influence the dynamics of tumour vol-

umes. More experimental data on interaction between sensitive and resistant cancer

cell lines in vitro could bring insights for therapy design, especially for containment

of resistance.
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Appendix

Here is a brief summary of the numerical method used to solve Eqs. 7–11. The main

challenge is the treatment of the non-linear flux term. For the 1D problems P1 and

P2, the flux term is to rewritten as in [21]

𝜕

𝜕x

( u
u + v

𝜕

𝜕x
(u + v)

)
= u

u + v
⋅
𝜕
2

𝜕x2
(u + v) + 𝜕

𝜕x
(u + v) ⋅ 𝜕

𝜕x

( u
u + v

)
(15)

and then the equations are integrated in time using the ROWMAP solver [34].

For the 2D problem, a variational formulation scheme is used to discretise the

equations in space with Lagrangian P2 finite elements. The non-linear system is

integrated in the software environment FreeFem++ [35] by a fully implicit Euler

scheme, and the equations are solved iteratively at every time step by Newton’s

method. For this purpose, the non-linear diffusion term is approximated as follows
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for a test function 𝜓 ∈ H1(𝛺). The divergence theorem employing the homogeneous

Neumann boundary conditions for uj gives

∫
𝛺

𝜓∇ ⋅

(
uj(

∑2
i=0 ∇ui)∑2
i=0 ui

)
dx = −

∫
𝛺

uj(
∑2

i=0 ∇ui)∑2
i=0 ui

∇𝜓 dx ∶= −
∫
𝛺

Fj∇𝜓 dx.

(16)

In order to use Newton’s method for the solution of Eqs. 7–11, Fj in Eq. 16 is

expanded in a Taylor series. For a small perturbation ũi in ui, F0, for example, is

F0(u0 + ũ0, u1 + ũ1, u2 + ũ2) ≈
(u1 + u2)(

∑2
i=0 ∇ui)ũ0

(
∑2

i=0 ui)2
−

u0(
∑2

i=0 ∇ui)ũ1
(
∑2

i=0 ui)2

−
u0(

∑2
i=0 ∇ui)ũ2

(
∑2

i=0 ui)2
+

u0(
∑2

i=0 ∇ũi)∑2
i=0 ui

+ higher order terms.

A similar approximation is made for the other two terms F1,F2.
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Efficient Error Based Metrics
for Fuzzy-Neural Network
Performance Evaluation

Margarita Terziyska, Yancho Todorov and Maria Dobreva

Abstract In this paper the effectiveness of different error metrics for assessment

of the capabilities of an advanced fuzzy-neural architecture are studied. The pro-

posed structure combines the potentials of the Intuitionistic Fuzzy Logic with the

simplicity of the Neo-Fuzzy Neuron theory for implementation of robust modeling

mechanisms, able to capture uncertain variations in the data space. A major concern

when evaluating the performance of such kind of models is the selection of appropri-

ate error metrics in order to assess their potential to capture a wide range of system

behaviours. Therefore, different error metrics to evaluate the functional properties of

a proposed Intuitionistic Neo-fuzzy network are studied and a comparative analysis

in modeling of chaotic time series is made.

1 Introduction

Predictive modeling is an essential approach in various application fields where sig-

nal and data processing are used to assess interesting data features needed for many

up to date engineering tasks. The classification algorithms, the regression models

and the factor analysis are well-known as predictive modelling techniques. Recently,

such algorithms have been transformed in the framework of machine learning, where

the potentials of fuzzy logic and neural networks led to more simple and transparent

implementations. Both techniques have a proven advantage over the traditional sta-

tistical estimation due to their possibility to deal with uncertain, imprecise and noisy
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data streams. They can estimate or classify any function without the need of pre-

cise mathematical description between the input and the target data. A special class

within this models are the fuzzy-neural structures. The fusion of the fuzzy logic

with the neural networks allow to combine the learning and computational ability

of neural networks with the human like IF-THEN thinking and reasoning of a fuzzy

system.

A lot of architectures have been proposed in the literature that combine fuzzy

logic and neural network. Some of the most popular based on “if-then” notations are

described in [12–14]. In principle, the number of fuzzy rules depends exponentially

on the number of inputs and membership functions. It derives their main drawback—

the huge number of parameters that need to be updated on-line at each sampling

period. Another disadvantage of the classical neuro-fuzzy systems, especially when

they operate in on-line mode is the slow convergence of the conventional gradient-

based learning procedures and the computational complexity of second-order ones.

As well, such classical structures cannot handle major process uncertainties in many

complex situations.

The idea for a Neo-Fuzzy Neuron (NFN) has been introduced in the early 90s by

the works of Uchino and Yamakawa as potential simpler approach for modelling of

highly nonlinear systems. The most important properties of the NFNs are their com-

putational simplicity, the proven high approximation properties and the possibility

of finding the global minimum of the learning criterion in real time [25, 26].

During the last years, different applications of the NFN concept are reported in

the literature. For instance, in [4, 5] the authors propose an approach for on-line lin-

ear system parameter estimation using a NFN algorithm and universal approximator

employing NFNs. In [6–8] different NFN topologies are presented, while in [5, 16]

respective learning approaches are reported. Practical applications to flux observa-

tion in induction motors, bearing condition prediction, stock exchange forecasting

and bacteria foraging optimization are shown in [15, 18, 22, 29]. An approach to

classification task is discussed in [20], as well as an evolving NFN structures are

proposed in [21].

In order to be able to handle uncertainties, fuzzy-neural networks are usually

equipped with Type-2 fuzzy sets instead of Type-1. Type-2 fuzzy logic was proposed

by Zadeh [28] in response to continuing criticism that Type-1 fuzzy sets cant deal

with uncertaint data variations. A Type-2 fuzzy set is characterized by a fuzzy mem-

bership function, unlike a Type-1 set where the membership grade is a crisp number

in [0, 1]. The idea behind Type-2 fuzzy logic is well accepted by the academics and

nowadays a lot of scientific papers dedicated to Type-2 Fuzzy Neural Networks can

be identified [1, 2, 13, 23, 24]. In the early 80s Atanasov [3] presented its Intuition-

istic fuzzy sets theory which is alternative of Type-2 fuzzy logic, as a tool to deal

with the vagueness in date space by introducing an additional arbitrary parameter

[9].

On the other hand, many fuzzy-neural networks are proposed in the literature, but

often is hard to assess their functional properties due to the great number of error

metrics used for any particular case. Along with the well-known Root Squared Error

(RSE) and Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE),
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the Mean Absolute Percentage Error (MAPE), the Root Mean Square Percentage

Error (RMSPE) and the Mean Relative Absolute Error (MRAE) metrics are rarely

discussed. A comprehensive survey of the most common used forecast error mea-

surements is presented in [19], where the authors proposed an Integral Normalized

Mean Square Error as a mean to reduce the impact of outliers. Is RMSE or MAE is

the better error metric? There is no clear answer to this question, as it depends mostly

on the studied case. Usually, it is suggested that the RMSE is not a good indicator

of the average model performance and might be a misleading of the average error

variations, such that the MAE should be employed [27]. Arguments against avoiding

RMSE in the literature are discussed in [10]. Different percentage error metrics are

also commented in [11, 17].

Although, many papers discuss different errors such as metrics for evaluating the

models, there are no studies which are suitable for neural-fuzzy models. In this paper

an Intuitionistic Neo-fuzzy network is proposed and three groups of errors (absolute,

relative and percentage) are studied in order to determine their effectiveness in model

evaluation. To investigate the functional properties of the proposed network, numer-

ical experiments in modelling of Mackey-Glass chaotic time series are made.

2 Intuitionistic Neo-fuzzy Network

The structure of a Neo-fuzzy neuron is shown in Fig. 1. The Neo-fuzzy neuron func-

tionality is similar to a zero order Sugeno fuzzy system where only one input is

included in each fuzzy rule, and to a radial basis function network (RBFN) with

scalar arguments of the basis functions [11].

The Neo-fuzzy neuron has a nonlinear synaptic transfer characteristic realized as

a set of fuzzy implication rules [26]. Therefore, the output of the neuron is obtained

by the following equation:

f (x) =
m∑

j=1
𝜇j(x(k))wj (1)

where x(k) is the input, wj is the weight coefficient and j for j = 1 ∶ m is a defined

set of Gaussian membership functions:

Fig. 1 Structure of a single

Neo-fuzzy neuron
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Fig. 2 Structure of

Neo-fuzzy network

𝜇
(n)
Xp,m = exp

−(xp − cXp,m)2

2𝜎2
Xp,m

(2)

and c represent its centres, while 𝜎 (mean) defines their width (standard deviation).

Each nonlinear synapse is expressed by a fuzzy rule matching to singleton rule con-

sequents:

If xj is Aij then the output is f (xj) (3)

Using the basic concept for a Neo-fuzzy neuron it can be easily designed a net-

work of such neurons capturing the dynamics of a set of multiple inputs and out-

puts. The typical NFN structure is presented in Fig. 2, where the system output is

expressed as:

ym(k) = f (x(k)) (4)

and x(k) is an input vector of the states in terms of different time instants. Thus, the

output is determined by the membership functions 𝜇ji and the weight coefficients

wji(k):

ym(k) =
p∑

i=1
fi(xi(k)) =

p∑

i=1

m∑

j=1
𝜇ij(xi(k))wij(k) (5)

Atanassov [3] defines an Intuitionistic Fuzzy Set (IFS) A in over a finite universal

set E as an object with the following form:

A = {(x, 𝜇A(x), vA(x))|x ∈ X} (6)
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Fig. 3 Representation of an

intuitionistic fuzzy set

where 𝜇A ∶ X[0, 1] and 𝜈A ∶ X[0, 1] are such that 0 ≤ 𝜇A + 𝜈A ≤ 1, 𝜇A denote a

degree of membership of x ∈ A, 𝜈A(x) denote a degree of non-membership of x ∈ A.

For each intuitionistic fuzzy set in X, we call 𝜋A(x) = 1 − 𝜇A − vA the degree on

non-determinacy (uncertainty) or hesitation of x ∈ A. This parameter expresses the

hesitation degree of whether x ∈ A or not and it is obviously 0 ≤ 𝜋A ≤ 1 for each

x ∈ X. On Fig. 3 is shown the representation of an Intuitionistic fuzzy set.

Combining the advantages of the both AI paradigms, an Intuitionistic neo-fuzzy

network (INFN) can be designed as a simpler structure able to operate with uncertain

data variations in a computationally effective manner. The structure of the proposed

network is shown on Fig. 4.

Fig. 4 Structure of the intuitionistic Neo-fuzzy network
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The INFN is five-layer multiple input single output (MISO) structure that consists

a number of simple Neo-fuzzy neurons. The first layer of the INFN is the input layer.

The nodes in this layer only accept the input variables and then transmit them to the

next layer directly. The second layer is the so-called fuzzification layer, where the

degrees of membership 𝜇A and non-membership vA, using Gaussian functions are

being determined as:

𝜇ij(xi) =
(
exp

−(xp − ci)2

2𝜎2
i

)
(7)

𝜈ij(xi) =
(
1 − exp

(−(xp − ci)2

2𝜎2
i

))k

, k ≥ 1 (8)

where xi is the input value, i = 1 ∶ p is the number of the inputs of the IFNF, cij and

𝜎ij are the center and the standard deviation of the Gaussian membership function,

j = 1 ∶ m where m is the number of used membership functions, k is parameter that

must be designed. If the k = 0, then obviously 𝜇A + vA = 1 and the hesitation degree

𝜋A (which is also computed on this layer) also is zero. The neurons of the third layer

calculate the following expression:

fi(xi(k)) = (1 − 𝜋ij(xi(k)))𝜇ij(xi(k))aij(xi(k)) + 𝜋ij(xi(k))vij(xi(k))bij(xi(k)) (9)

According to Fig. 4 in the fourth layer the output of every single NFN is obtained.

The number of the used NFNs is set to be equal to the number of the inputs p. There-

fore, the output of a neuron is defined as:

yi(k) =
m∑

i=1
fi(xi(k)) (10)

while the output of the network is generated as:

yM(k) =
p∑

i=1

m∑

j=1
(1 − 𝜋ij(xi(k)))𝜇ij(xi(k))aij(xi(k)) (11)

+𝜋ij(xi(k))vij(xi(k))bij(xi(k))

As a learning algorithm of the proposed INFN structure is used simple gradient

procedure, based on minimization of an instant error measurement function between

the real output y(k) and the INFN output yM(k):

E(k) =
(y(k) − yM(k))2

2
= 1

2
e2(k) (12)

During the learning procedure only the aji and bij parameters are adjusted while

the membership 𝜇A and non-membership vA functions are not trained. The adaptation
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of the membership and non-membership functions will be discussed in our future

works. From (11) it could be easily derived the updating rules:

a(k + 1) = a(k) + 𝜂

(
𝜕E(k)
𝜕a(k)

)
(13)

b(k + 1) = b(k) + 𝜂

(
𝜕E(k)
𝜕b(k)

)
(14)

where 𝜂 is the learning rate, a and b are the vectors of the trained parameters (the

synaptic links in the consequent part of the zero order Sugeno rules associated with

the membership and non-membership functions respectively). Finally, after calcu-

lating the partial derivatives in (13) and (14), the recurrent learning rules can be

expressed as:

a(k + 1) = a(k) + 𝜂e(k)(1 − 𝜋(k))𝜇(k) (15)

b(k + 1) = b(k) + 𝜂e(k)𝜋(k)𝜈(k) (16)

3 Metrics for Evaluation of the Intuitionistic Neo-fuzzy
Network Performance

The proposed Intuitionistic Neo-fuzzy network performances were evaluated using

coefficient of determination (R2) and three groups of errors—absolute errors, relative

errors and percentage errors.

3.1 Coefficient of Determination

A classical way to summarize how well a model fits the data is via the coefficient

of determination or R2
. If the estimations are close to the actual values, we would

expect R2
to be closer to 1. On the other hand, if the estimations are unrelated to the

actual values, then R2 = 0. In all cases, R2
lies between 0 and 1. The coefficient of

determination can be calculated as the square of the correlation between the observed

y values and the estimated ŷ values:

R2 =
(
1 − SSE

SSyy

)
(17)

where

SSE =
n∑

i=1
(yi − ŷi)2 (18)
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SSyy =
n∑

i=1
(yi − ȳ)2 =

n∑

i=1
y2i −

(∑n
i=1 yi

)2

n
(19)

Alternatively, it can be calculated also as:

R2 =
∑
(ŷi − ȳ)2

∑
(yi − ȳ)2

(20)

where the summations are over all observations. Thus, it is also the proportion of

variation in the forecast variable that is accounted for (or explained) by the Intu-

itionistic Neo-fuzzy model.

3.2 Absolute Errors

This group of errors is based on the absolute error calculation. It includes estimates

based on the calculation of the value ei:

ei = (yi − ŷi) (21)

The most popular absolute errors are Mean Absolute Error (MAE), Mean Square

Error (MSE) and Root Mean Square Error (RMSE):

MAE = 1
n

n∑

i=1
|ei| (22)

MSE = 1
n

n∑

i=1

(
e2i
)

(23)

RMSE =

√√√√1
n

n∑

i=1
(e2i ) (24)

These errors are widely used in various domains, because they are simple and

easy to compute. MAE and RMSE are scale-dependent measures which is their main

drawback. MAE has the same units as the original data, and it can only be compared

between models whose errors are measured in the same units. Usually, it is similar in

magnitude to RMSE, but slightly smaller. The high influence of outliers is another

disadvantage of the absolute errors. MAE is more robust to outliers than is MSE.

MAE assigns equal weight to the data whereas MSE emphasizes the extremes—

the square of a very small number is even smaller, and the square of a big number

is even bigger. RMSE basically tells you to avoid models that give you occasional
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large errors. RMSE can only be compared between models whose errors are mea-

sured in the same units. Mean Squared Error (MSE) is the most common measure of

numerical model performance. It simply represents the average of the squares of the

differences between the predicted and actual values. It is a reasonably good measure

of performance, though it could be argued that it overemphasizes the importance of

larger errors. Many modeling procedures directly minimize the MSE.

3.3 Relative Errors

Relative errors are another valuable metric of performance evaluation of the pro-

posed Intuitionistic Neo-fuzzy model. The basis for calculation of errors in this group

is the relative error, which is the absolute error divided by the actual measurement.

Since, the actual measurement is unknown, the measured value is used. In this paper

from the group of relative errors, the Relative Squared Error (RSE) and the Root Rel-

ative Squared Error (RRSE) are considered. RSE can be compared between models

whose errors are measured in the different units. It can be computed easily using the

following equation:

RSE =
∑n

i=1(ŷi − yi)2∑n
i=1(yi − ȳ)2

(25)

RRSE has a scale from 0 to 1 and when is multiplied by 100 it gets similarly in

0–100 scale (i.e. percentage). Therefore, smaller values are preferred.

RRSE =

√√√√
∑n

i=1(ŷi − yi)2
∑2

i=1(yi − ȳ)2
(26)

3.4 Percentage Errors

The third group of error metrics for model evaluation is the group of percentage

errors. The percentage error is the relative error shown as a percentage (27). This kind

of errors have the advantage of being scale-independent, and so they are frequently

used to compare forecast performance between different data sets.

pi =
100ei
yi

(27)

Measures based on the percentage errors have the disadvantage of being infinite

or undefined if yi = 0 for any i in the period of interest, and having extreme values

when any yi is close to zero. Another problem with percentage errors that outliers

have significant impact on the result and that the error measures are biased. The
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most popular percentage errors are Mean Percentage Error (MPE), Mean Absolute

Percentage Error (MAPE) and Root Mean Square Percentage Error (RMSPE):

MPE = 100
n

n∑

i=1

yi − ŷi
yi

(28)

MAPE = 1
n

n∑

i=1

|ei|
yi

∗ 100 (29)

RMSPE =

√√√√
(
1
n

n∑

i=1

|ei|
yi

∗ 100
)2

(30)

4 Numerical Experiments

To investigate the modelling potentials of the proposed Intuitionistic Neo-fuzzy

model, the Mackey-Glass (MG) chaotic times series benchmark have been used. The

MG time series is described by the following time-delay differential equation:

x(i + 1) = x(i) + ax(i − s)
(1 + xc(i − s)) − bx(i)

(31)

where a = 0.2; b = 0.1;C = 10; initial conditions x(0) = 0.1 and s = 17 s. Results on

Intuitionistic Neo-fuzzy model validation by using Mackey-Glass chaotic time series

are shown in Fig. 5. The evolution of adopted error metrics in time in their natural

scale—in Figs. 6, 8 and 10, and in logarithmic scale—Figs. 7, 9 and 11 is presented.

The values of the studied metrics are show in Tables 1, 2 and 3. According to (17)–

(19), the coefficient of determination is calculated. In this particular case it has a

value of R2 = 94, 15%, that proves the good generalization properties of the studied

modeling structure.

The conducted experiments show that the proposed modeling structure perform

well in estimating the oscillating times series data, and the error between the refer-

ence and the modeled outputs is successfully minimized. The adopted logarithmic

scale show in a more clearer manner the tendency of decrease, as well as the similar

dynamical nature of the studied error terms. The achieved results are not surprising,

since a simple instant error measurement is taken as reference point for calculation

of all of the proposed metrics. Therefore, the specifics of every metric is focused

mostly to assess the impact caused by certain data phenomena, e.g. outliers. On the

other hand, it should be mentioned that choosing an appropriate error metrics will

strongly depend on the purpose of the fuzzy-neural network. If the modeling is being

performed off-line and the data has unknown features, the application of the three

different groups of metrics will give a valuable information on the impact of those
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Fig. 5 Intuitionistic Neo-fuzzy model validation by using Mackey-Glass chaotic time series

Fig. 6 Absolute errors
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Fig. 7 Absolute errors in logarithmic scale

Fig. 8 Relative errors
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Fig. 9 Relative errors in logarithmic scale

Fig. 10 Percentage errors
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Fig. 11 Percentage errors in logarithmic scale

Table 1 Absolute errors estimation in case of Mackey-Glass time series

Time steps MAEe−2 MSEe−5 RMSEe−5

50 4.33 15.2 12.3

100 3.27 7.92 8.9

150 2.83 5.50 7.4

200 2.72 4.31 6.6

250 2.60 3.58 6.0

300 2.59 3.11 5.6

on the modeling accuracy. In contrast, during on-line dynamical modeling case the

application of all metrics is meaningless, since the scope of the modeling task will

be to provide a sufficient estimation accuracy of the model in uncertain environment

of operation. Thus, the absolute squared errors are more informative in this case, for

the purpose of correcting on-the-go of the model performance parameters, e.g. the

learning rate. Therefore, there is no systematic approach how select a particular set of

error metrics when using artificial intelligence modeling tools and a targeted selec-

tion of such should be performed beforehand, depending on the concrete application

area.
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Table 2 Relative errors estimation in case of Mackey-Glass time series

Time steps RSEe−3 RRSEe−3

50 641 253

100 0.428 2.1

150 0.0946 9.7

200 0.0452 6.7

250 0.0259 5.1

300 0.0173 4.2

Table 3 Percentage errors estimation in case of Mackey-Glass time series

Time steps MPE % MAPE % RMSPE %

0 71.680 71.680 8.471

50 0.026 0.098 0.312

100 0.0045 0.035 0.187

150 0.0033 0.021 0.143

200 0.0013 0.015 0.121

250 8.54e−4 0.011 0.106

5 Conclusions

It was presented in this paper a comparative study on the properties of different error

metrics when modeling a typical fuzzy-neural network. The scope of the study was

tailored to assess different measures deriving from the three of the most commonly

used groups: the absolute, relative and percentage errors. The performed experi-

ments and the collected results shown that, no matter of the chosen metric the stud-

ied error terms have a similar nature and tendency to decrease, where the typical

values depend on the units of the modeled system. If an uncertain variation of the

data space is experienced, that is expected to lead of increased variations in all of the

studied metrics. On the other hand, most of the recent AI based modeling structures

are applied for on-line estimation of data with unknown properties, that persistently

stimulates the works on handling uncertain data space variations. In that sense, the

application for on-line purposes of relative and percentage errors will be meaning-

less, while the metrics based on absolute error estimation will be more informative

for evaluation of the model performances on the go.
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Box Model of Migration in Channels
of Migration Networks

Nikolay K. Vitanov, Kaloyan N. Vitanov and Tsvetelina Ivanova

Abstract We discuss a box model of migration in channels of networks with possi-

ble application for modelling motion of migrants in migration networks. The chan-

nel consists of nodes of the network (nodes may be considered as boxes representing

countries) and edges that connect these nodes and represent possible ways for motion

of migrants. The nodes of the migration channel have different “leakage”, i.e. the

probability of change of the status of a migrant (from migrant to non-migrant) may

be different in the different countries along the channel. In addition the nodes far

from the entry node of the channel may be more attractive for migrants in compar-

ison to the nodes around the entry node of the channel. We discuss below channels

containing infinite number of nodes. Two regimes of functioning of these channels

are studied: stationary regime and non-stationary regime. In the stationary regime

of the functioning of the channel the distribution of migrants in the countries of the

channel is described by a distribution that contains as particular case the Waring dis-

tribution. In the non-stationary regime of functioning of the channel one observes

exponential increase or exponential decrease of the number of migrants in the coun-

tries of the channel. It depends on the situation in the entry country of the channel

for which scenario will be realized. Despite the non-stationary regime of the func-

tioning of the channel the asymptotic distribution of the migrants in the nodes of

the channel is stationary. From the point of view of the characteristic features of the

migrants we discuss the cases of (i) migrants having the same characteristics and (ii)

two classes of migrants that have differences in some characteristic (e.g., different

religions).
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1 Introduction

Flows in complex networks are important for existence and functioning of the sys-

tems containing such networks. Human migration (the permanent or semipermanent

change of residence that involves e.g., the relocation of individuals, households or

moving groups between geographical locations [16]) is one example of such a flow

[8, 10]. Large external migration flows reached Europe in the last years and this

makes the study of migration very actual topic. In addition the internal migration

studies are important for taking decisions about economic development of regions

of a country [1–4, 7, 9, 11, 22, 23]. Examples for results from such studies is e.g.,

the Heckscher–Ohlin theorem for economic use of a country relative abundant fac-

tors such as labor as well as the factor-price equalization theorem [2]. Migrant flows

may be modelled by deterministic or stochastic tools [12, 15, 17–19, 32] and the

corresponding migration models can be classified as probability models [33, 34]

or deterministic models with respect to their mathematical features. Examples for

probability models are the exponential model, multinomial model or Markov chain

models of migration. One of the most famous deterministic models of migration is

the gravity model of migration [9]. The gravity model may be extended in different

ways, e.g., to include the income and unemployment in the two regions.

Human migration is closely connected to ideological struggles [27, 28] and waves

and statistical distributions in population systems [25, 29–31]. In this article we shall

consider a box model of a flow of migrants in a channel (sequence of countries)

of a migration network. The nodes (countries) will be considered as boxes (cells)

where the following processes happen: inflow and outflow of migrants and “leakage”

(change of the status of migrant). Migrants enter the channel from the entry coun-

try and move through the channel. The different nodes of the channel (the different

countries) are assumed to have different rate of “leakage” (i.e. different probabilities

of change of the status of a person form the migrant to non-migrant).

The paper is organized as follows. In Sect. 2 the model for moving of substance in

a channel containing an infinite number of nodes is discussed. Two regimes of func-

tioning of the channel: stationary regime (the amount of the substance in the entry

box of the channel doesn’t change) and non-stationary regime (amount of substance

in the entry box of the channel decreases or increases exponentially) are described.

Statistical distributions of the amount of substance in the nodes of the channel are

obtained. A particular case of the distribution for the stationary regime of function-

ing of the channel is the Waring distribution. Section 3 is devoted to the case of two

immiscible substances moving through the channel. In Sect. 4 we relate the obtained

mathematical results to the movement of migrants through a migration channel.
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2 Channel Containing Infinite Number of Nodes

Inspired by the models in [20, 24, 26] we consider a model of moving of a substance

through a channel as follows. The channel contains infinite number of nodes and each

node can be considered as a cell. The cells are indexed in succession by non-negative

integers. The first cell has index 0. We assume that an amount x of some substance

is distributed among the cells and this substance can move from one cell to another

cell. Let xi be the amount of the substance in the i-th cell. Then

x =
∞∑

i=0
xi (1)

The fractions yi = xi∕x can be considered as probability values of distribution of a

discrete random variable 𝜁

yi = p(𝜁 = i), i = 0, 1,… (2)

The content xi of any cell can change because of the following 3 processes:

1. Some amount s of the substance x enters the channel from the external environ-

ment through the 0-th cell;

2. Rate fi from xi is transferred from the i-th cell into the i + 1-th cell;

3. Rate gi from xi leaks out the i-th cell into the external environment.

The above processes can be modeled mathematically by the system of ordinary dif-

ferential equations:

dx0
dt

= s − f0 − g0;

dxi
dt

= fi−1 − fi − gi, i = 1, 2,… . (3)

The following forms of the amount of the moving substances may be assumed

(𝛼, 𝛽, 𝛾i, 𝜎 are constants)

s = 𝜎x0; 𝜎 > 0
fi = (𝛼 + 𝛽i)xi; 𝛼 > 0, 𝛽 ≥ 0 → cumulative advantage of higher cells

gi = 𝛾ixi; 𝛾i ≥ 0 → non-uniform leakage over the cells (4)

The rules (4) differ from the rules in [20] as follows:

1. s is proportional to the amount of the substance x0 in the 0-th node. In [20] s is

proportional to the amount x of the substance in the entire channel;

2. Leakage rates 𝛾i are different for the different nodes. In [20, 26] the leakage rate is

constant and equal to 𝛾 for all nodes of the channel (i.e., there is uniform leakage

over the cells).
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Substitution of Eq. (4) in Eq. (3) leads to the relationships

dx0
dt

= 𝜎x0 − 𝛼x0 − 𝛾0x0;

dxi
dt

= [𝛼 + 𝛽(i − 1)]xi−1 − (𝛼 + 𝛽i + 𝛾i)xi; i = 1, 2,… (5)

There are two regimes of functioning of the channel and realization of one of them

depends on the situation in the 0-th node (the entry cell). The regimes are stationary

regime and non-stationary regime.

2.1 Stationary Regime of Functioning of the Channel

In the stationary regime of the functioning of the channel 𝜎 = 𝛼 + 𝛾0 which means

that x0 (the amount of the substance in the 0-th cell of the channel) is free parameter.

In this case the solution of Eq. (5) is

xi = x∗i +
i∑

j=0
bij exp[−(𝛼 + 𝛽j + 𝛾j)t] (6)

where x∗i is the stationary part of the solution. For x∗i one obtains the relationship

x∗i =
𝛼 + 𝛽(i − 1)
𝛼 + 𝛽i + 𝛾i

x∗i−1 (7)

The corresponding relationships for the coefficients bij are

bij =
𝛼 + 𝛽(i − 1)

𝛾i − 𝛾j + 𝛽(i − j)
bi−1,j, j = 0, 1,… , i − 1 (8)

From Eq. (7) one obtains

x∗i =
[k + (i − 1)]!

(k − 1)!
i∏

j=1
(k + j + aj)

x∗0 (9)

where k = 𝛼∕𝛽 and aj = 𝛾j∕𝛽. The form of the corresponding stationary distribution

y∗i = x∗i ∕x
∗

(where x∗ is the amount of the substance in all of the cells of the channel)

is

y∗i =
[k + (i − 1)]!

(k − 1)!
i∏

j=1
(k + j + aj)

y∗0 (10)
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Let us consider the particular case where a0 = a1 = ⋯ = a. In this case the distrib-

ution from Eq. (10) is reduced to the distribution:

P(𝜁 = i) = P(𝜁 = 0) (k − 1)[i]

(a + k)[i]
; k[i] = (k + i)!

k!
; i = 1, 2,… (11)

P(𝜁 = 0) = y∗0 = x∗0∕x
∗

is the percentage of substance that is located in the first cell

of the channel. Let this percentage be

y∗0 =
a

a + k
(12)

The case described by Eq. (11) corresponds to the situation where the amount of

substance in the first cell is proportional of the amount of substance in the entire

channel (self-reproduction property of the substance). In this case Eq. (10) is reduced

to the distribution:

P(𝜁 = i) = a
a + k

(k − 1)[i]

(a + k)[i]
; k[i] = (k + i)!

k!
; i = 1, 2,… (13)

Let us denote 𝜌 = a and k = l. The distribution (13) is exactly the Waring distribution

(probability distribution of non-negative integers named after Edward Waring—a

Lucasian professor of Mathematics in Cambridge in the 18th century) [6, 13, 14]

pl = 𝜌
𝛼(l)

(𝜌 + 𝛼)(l+1)
; 𝛼(l) = 𝛼(𝛼 + 1)… (𝛼 + l − 1) (14)

Waring distribution may be written also as follows

p0 = 𝜌
𝛼(0)

(𝜌 + 𝛼)(1)
= 𝜌

𝛼 + 𝜌

pl =
𝛼 + (l − 1)
𝛼 + 𝜌 + l

pl−1. (15)

The mean 𝜇 (the expected value) of the Waring distribution is

𝜇 = 𝛼

𝜌 − 1
if 𝜌 > 1 (16)

The variance of the Waring distribution is

V = 𝛼𝜌(𝛼 + 𝜌 − 1)
(𝜌 − 1)2(𝜌 − 2)

if 𝜌 > 2 (17)
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𝜌 is called the tail parameter as it controls the tail of the Waring distribution. Waring

distribution contains various distributions as particular cases. Let i → ∞ Then the

Waring distribution is reduced to

pl ≈
1

l(1+𝜌)
. (18)

which is the frequency form of the Zipf distribution [5]. If 𝛼 → 0 the Waring distri-

bution is reduced to the Yule–Simon distribution [21]

p(𝜁 = l ∣ 𝜁 > 0) = 𝜌B(𝜌 + 1, l) (19)

where B is the beta-function.

2.2 Non-stationary Regime of Functioning of the Channel

In the nonstationary case dx0∕dt ≠ 0. In this case the solution of the first equation of

the system of equation (5) is

x0 = b00 exp[(𝜎 − 𝛼 − 𝛾0)t] (20)

where b00 is a constant of integration. xi must be obtained by solution of the corre-

sponding Eq. (5). The form of xi is

xi =
i∑

j=0
bij exp[−(𝛼 + 𝛽j + 𝛾j − 𝜎j)t] (21)

The solution of the system of equation (5) is (21) where 𝜎i = 0, i = 1,… ,:

bij =
𝛼 + 𝛽(i − 1)

𝛾i − 𝛾j + 𝛽(i − j)
bi−1,j; i = 1,… , (22)

and bii are determined from the initial conditions in the cells of the channel. The

asymptotic solution (t → ∞) is

xai = bi0 exp[(𝜎 − 𝛼 − 𝛾0)t] (23)

This means that the asymptotic distribution yai = xai ∕x
a

is stationary

yai =
bi0

∞∑
j=0

bj0

(24)
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regardless of the fact that the amount of substance in the two cells may increase or

decrease exponentially. The explicit form of this distribution is

ya0 =
1

1 +
∞∑
i=1

i∏
k=1

𝛼+𝛽(k−1)
𝛾k−𝛾0+𝛽k

, yai =

i∏
k=1

𝛼+𝛽(k−1)
𝛾k−𝛾0+𝛽k

∞∑
i=0

i∏
k=1

𝛼+𝛽(k−1)
𝛾k−𝛾0+𝛽k

, i = 1,… (25)

3 The Model of Two Substances

Let us discuss now a model of moving of two immiscible substances through a chan-

nel containing infinite number of cells. The substances enter the channel through the

entry cell and in general the following three processes are allowed: the substances

may enter the cells one after the another and the substances may be used for some

purposes in the corresponding cell. From the point of view of migration flows this

model corresponds to migration of migrants with two different values of some char-

acteristics (e.g. different religions).

Let us denote the amount of substance of the two types in the i-th cell of the

channel as x1i and x2i . The model equations for the movement of the two kings of

substance are

dx10
dt

= 𝜎1x10 − 𝛼1x10 − 𝛾10x
1
0;

dx1i
dt

= [𝛼1 + 𝛽1(i − 1)]x1i−1 − (𝛼1 + 𝛽1i + 𝛾1i )x
1
i ; i = 1, 2,… (26)

dx20
dt

= 𝜎2x20 − 𝛼2x20 − 𝛾20x
2
0;

dx2i
dt

= [𝛼2 + 𝛽2(i − 1)]x2i−1 − (𝛼2 + 𝛽2i + 𝛾2i )x
2
i ; i = 1, 2,… (27)

For the stationary regime of functioning of the channel the amount of the substances

and the stationary distributions of the substances in for the two kinds of substances

are

x1,∗i = [k1 + (i − 1)]!

(k1 − 1)!
i∏

j=1
(k1 + j + a1j )

x1,∗0 (28)
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y1,∗i = [k1 + (i − 1)]!

(k1 − 1)!
i∏

j=1
(k1 + j + a1j )

y1,∗0 (29)

x2,∗i = [k2 + (i − 1)]!

(k2 − 1)!
i∏

j=1
(k2 + j + a2j )

x2,∗0 (30)

y2,∗i = [k2 + (i − 1)]!

(k2 − 1)!
i∏

j=1
(k2 + j + a2j )

y2,∗0 (31)

where k1 = 𝛼1∕𝛽1; k2 = 𝛼2∕𝛽2; a1j = 𝛾1j ∕𝛽
1
; a2j = 𝛾2j ∕𝛽

2
; y1,∗i = x1,∗i ∕x1,∗; y2,∗i = x2,∗i ∕

x2,∗ and x1,∗ and x2,∗ are the total amounts of the two substances in all cells of the

channel.

For the case of non-stationary regime of functioning of the channel the forms of

the asymptotic distribution for the two kinds of substances are

y1,a0 = 1

1 +
∞∑
i=1

i∏
k=1

𝛼1+𝛽1(k−1)
𝛾1k−𝛾

1
0+𝛽1k

, y1,ai =

i∏
k=1

𝛼1+𝛽1(k−1)
𝛾1k−𝛾

1
0+𝛽1k

∞∑
i=0

i∏
k=1

𝛼1+𝛽1(k−1)
𝛾1k−𝛾

1
0+𝛽1k

, i = 1,… (32)

y2,a0 = 1

1 +
∞∑
i=1

i∏
k=1

𝛼2+𝛽2(k−1)
𝛾2k−𝛾

2
0+𝛽2k

, y2,ai =

i∏
k=1

𝛼2+𝛽2(k−1)
𝛾2k−𝛾

2
0+𝛽2k

∞∑
i=0

i∏
k=1

𝛼2+𝛽2(k−1)
𝛾2k−𝛾

2
0+𝛽2k

, i = 1,… (33)

4 Discussion

We have mentioned above that the discussed model can be used for study of move-

ment and distribution of migrants in a sequence of countries that form a migration

channel. Migration channel of such kind was clearly visible in 2015 when a large

influx of migrants in Europe was observed along a channel with Greece as the entry

country. The parameters of the models discussed above can be interpreted as follows

from the point of view of the application of the models to the migration channels.

𝜎 can be considered as a “gate” parameter as it regulates the number of migrants

that enter the channel. 𝜎 is a parameter that is specific for the entry country of the

channel. A small value of 𝜎 can decrease significantly the number of migrants that
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enter the channel. Large value of 𝜎 may lead to large migration flows. The value of

the parameter 𝜎 can be regulated by the authorities of the entry country and by some

over-national authorities if such authorities exist and they are allowed to act on the

territory of the entry country. Thus if the state structures of the entry country are

weak because of some kind of crisis or as a consequences of other reasons then the

value of the parameter 𝜎 may be large. Thus large number of migrants may enter the

channel and this will lead to large problems in the entry country and in all countries

along the channel, especially to the countries that are close the entry country and are

part of the migration channel.

Another kind of “gate” parameter is the parameter 𝛼 that regulates the number of

migrants that move from one country to the next country in the sequence of countries

that form the migration channel. Large value of 𝛼 means that the movement between

the countries is large and the migrants easily cross the state borders. Small value of

𝛼 means that the the crossing of the borders is more difficult. What was observed

for the case of the migration flows in 2015 in Europe was that at some moments the

borders have been practically open and for some time the value of the parameter 𝛼

was large and almost the same for all countries that have been part of the channel.

Such kind of situation is modelled by the models presented above.

The parameter 𝛽 accounts for the attractiveness of the countries of the channel that

are distant from the entry country of the channel. The large values of this parameter

lead to a tendency for leaving the countries around the beginning of the migration

channel and attempts to settle in much more attractive countries along the channel.

Parameter 𝛾i accounts for the number of migrants that enter the i-th country of the

channel but do not leave it. The reasons for this may be different, e.g. some migrants

may obtain permission to stay in the country. Small values of the parameters 𝛾i cor-

respond to a large traffic of migrants through the countries of the channel. If in some

country the value of the corresponding parameter 𝛾 is large then significant number

of migrants may stay in this country and the number of the migrant moving further

through the channel may decrease.

For the case of two kinds of migrants the number of parameters increase which

leads to increasing number of possible situations. For an example the entry country

may prefer one of the kinds of migrants and then the values of the “gate” parame-

ters g1 and g2 may have quite different values. The countries along the channel may

impose different level of difficulty of crossing the borders which may lead in differ-

ences in the values of the parameters 𝛼1
and 𝛼2

. The countries along the channel may

have different level of attractiveness which will lead to different values of the para-

meters 𝛽1 and 𝛽2. Finally different countries may have different preferences about

the numbers and about the kind of migrants they allow to stay in the country. This

will lead to different values of the parameters 𝛾1i and 𝛾2i .

Let us discuss the above remarks in more detail by means of the obtained mathe-

matical results. Let us first consider the case of one kind of migrants and stationary

regime of functioning of the channel. From Eq. (10) we obtain
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y∗i
y∗i+1

= 1 +
𝛽 + 𝛾i+1

𝛼 + 𝛽i
(34)

Equation (34) shows us that for the case of infinite channel the number of migrants

has to decrease with increasing value of i, i.e., in the countries that are away from the

entry country of the channel the number of migrants in any country is smaller than

the number of migrants in the previous country of the channel. Then for the case of

infinite channel the effect of concentration of migrants in countries that are far from

the entry country is not observed even if these countries are very attractive to the

migrants. Let us note here that the models considered above can be extended to the

case of a channel containing finite number of cells (finite number of countries for the

vase of migrant flows). Then a new effect will be observed: concentration of migrants

in the last cell of the channel (the final destination country). If the attractiveness of

the final destination country is large then the concentration of the migrants will be

observed in the entry country of the channel and in the final destination country. Such

possible developments of the situation in the migration channels will be discussed

elsewhere.

Equation (34) shows additional details about the influence of the parameters of

the channel on the migrant flow. The increase of 𝛼 leads to decreasing of the ratio

y∗i ∕y
∗
i+1. This means that the larger value of the gate parameter 𝛼 leads to a smoothing

of the distribution of the number of migrants along the countries of the channel. Thus

if the countries that are far from the entry country of the channel want to decrease

the number of migrants on its own territory the have to take measures to decrease the

value of the parameter 𝛼. The increasing of the value of the parameter 𝛽 has more

complicated influence on the ratio y∗i ∕y
∗
i+1 but in principle the effect is the same as the

increasing of the value of parameter 𝛼. If the countries that are attractive for migrants

have a policy to decrease their attractiveness then smaller number of migrants will

reach their territory. If such countries have “open doors” politics towards migrants

then larger number of migrants will leave the countries around the entry country

of the channel and will move towards the attractive countries. In combination with

large value of 𝜎 this may lead to floods of migrants in the attractive countries. But

this will lead also to even larger flood of migrants in the countries that are around the

entry country of the channel. This was observed indeed for the case of the massive

migration in Europe in 2015. Finally the increasing value of the “leakage” parameter

𝛾i+1 will lead to decreasing of the ratio y∗i ∕y
∗
i+1. The reason for this is obvious: when

more migrants change their migrant status (e.g. obtain permission to stay) in the the

i + 1-th country then the number of migrants without status will decrease and this

will lead to decreasing ratio y∗i ∕y
∗
i+1.

Let us now discuss further the case of two kinds of migrants for the stationary

regime of the functioning of the channel. In this case the ratio of the numbers of

migrants in a cell of the channel is



Box Model of Migration in Channels of Migration Networks 213

x1,∗i

x2,∗i

=
x1,∗0

x2,∗0

[k1 + (i − 1)]!
[k2 + (i − 1)]!

(k2 − 1)!
(k1 − 1)!

i∏
j=1

(k2 + j + a2j )

i∏
j=1

(k1 + j + a1j )
(35)

Equation (35) leads to the following conclusions. First of all the mix of the

migrants in any country of the channel depends on the ratio x1,∗0 ∕x2,∗0 at the entry

country of the channel. Thus the politics in the entry country of the channel towards

the different categories of migrants is extremely important for the distribution of

migrants in the entire channel. If there are migrants with unfavorable characteristics

from the point of view of countries from the the channel then one of most effective

ways to reduce the number of such migrants is to reduce their possibility to enter the

channel. The influence of the other parameters of the channel is more complicated.

Large values of 𝛾2i with respect to the values of 𝛾1i (this corresponds, e.g., for much

larger acceptance of the migrants of class 2 in comparison to the migrants of class

1 in all countries of the channel up to the i-th country of the channel) when the other

parameters of the channel are equal for the two classes of migrants lead to larger

value of the ratio x1,∗0 ∕x2,∗0 . This means that the mix of migrants without status in

the i-th country of the channel depends on the politics of previous countries of the

channel towards different categories of migrants. Finally the ratio of the migrants

depends on the parameters k1 and k2 that are ratios 𝛼1∕𝛽1 and 𝛼2∕𝛽2, i.e. the ratios

between corresponding possibility for mobility of the class of migrants (the parame-

ters 𝛼1
and 𝛼2

) and the attractiveness of the countries far away from the entry country

of the channel (the parameters 𝛽1 and 𝛽2). This dependence is the most complicated

one. If the ratios k1 and k2 are the same then the influence of k1 and k2 adds nothing

to the influence of parameters a1 and a2 on the mix of migrants in the countries of

the channel. In order to obtain more information about the influence of k1,2 (respec-

tively about the influence of the parameters 𝛼1,2
and 𝛽1,2 we can use the recurrence

relationships for the numbers of migrants in the i-th country of the channel. These

relationships may be written as

x1,∗i = 1

1 + 𝛽1+𝛾1i
𝛼1+𝛽1(i−1)

x1,∗i−1, x
2,∗
i = 1

1 + 𝛽2+𝛾2i
𝛼2+𝛽2(i−1)

x2,∗i−1 (36)

Then the vary large values of the parameter 𝛽 increase the traffic of migrants

through the channel and the decrease of the number of migrants in the i in compari-

son to the number of migrants in i − 1-th country will be approximately 1 − 1∕i as a

proportion. The influence of the very large values of the parameters 𝛼 is larger. When

the value of the parameter 𝛼 is much large that the values of the corresponding para-

meters 𝛽 and 𝛾i then the number of migrants in the i-th country of the channel will

be approximately equal to the number of migrants in the i-th country of the channel.

Thus the decreasing permeability of the borders between the neighbouring states

from the migration channel is more effective that decreasing of the attractiveness of

the countries far from the entry country of the channel.
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Modified Coordinates in Dynamics
Simulation of Multibody Systems
with Elastic Bodies

Evtim V. Zahariev

Abstract In the paper, modified coordinates are applied for simulation of large
flexible deflections of elastic multibody systems. Absolute finite element and joint
coordinates are proposed. The joint coordinate positions are defined solving non-
linear programming problem for which the general function is the quadratic form of
the minimal node deviations of the beam model with respect to the real large
deviations. So, with minimal number of coordinates the nonlinear effects in case of
large elastic deflections could be approximated. The novelty in the paper is an
approach to optimization and effective application of the broadly applied absolute
and joint coordinates in dynamics simulation of flexible structures. These coordi-
nates are called modified since differs in location and computation of the kinematic
parameters and corresponding stiff and mass properties of the links. Both coordi-
nates significantly simplifies the computer code generation of the dynamic equa-
tions and diminish the computations. Examples of flexible deflection of large
flexible beam and a four stroke flexible structure are presented.

1 Introduction

Theoretical basis of the Finite Element Theory (FET) for definition of deflection
coordinates and deriving the mass and material properties of the discretized elastic
bodies has been applied in many commercial software packages. It was proven [4]
that using the FET approach the dynamic equations are free of centrifugal and
Coriolis accelerations and the corresponding inertia forces. Using the classical FET
approach the so called stiffening effects in non-isoparametric elements is difficult to
be taken into account.

To illustrate the problem the simple non-isoparametric beam element with two
degree of freedom of each node is discussed. In Fig. 1 the beam element is presented
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with its possible deflections along the coordinate system axes Y and Z. In the figure,
with dotted line, the idealized FET deflections are depicted where only transversal
Δy and the angular w deflections are used. Actually, this assumption is valid for small
deflections only. With dashed line the actual deflections are shown where, because of
the transversal and angular deflections, node 2 experience additional deflection
Δx=Δx ðΔy,wÞ. That is the so-called stiffening effect that is not taken into account in
case of classical FET and some of the commercially available software.

Regarding the velocity dependent terms in the dynamic equations (centrifugal
forces and Coriolis’ accelerations) the inertia forces defined by the FET are as
follows [1]:

F=M ⋅Δ ̈ ð1Þ

where F is n × 1 matrix vector of the inertia forces, M is n × n global mass
matrix and Δ̈ is n × 1 matrix vector of the flexible node deflections. Although the
flexible elements are more complex elastic bodies than the rigid bodies, no velocity
dependent terms are taken into account.

Recently a novel method of ANCF has been developed [8]. It is based on the
theory of the curvilinear coordinates. The slopes of the nodes in the tangential line
or plane of the space curve or shell are applied as coordinates. The method proposes
important advantages mainly in large rotation simulation and mass matrices for-
mulation. Review on the ANCF method for large deformation dynamics simulation
of flexible multibody systems was presented by Gerstmayr et al. [3]. The paper
provided a comprehensive review of the advantages and further developments of
the ANCF method.

Khan and Anderson [5] proposed the most recent classification of the methods
for MBS dynamics. They applied the Floating Frame of Reference (FFR) and
Absolute Nodal Coordinate Formulation (ANCF) approaches for realization of their
numerical procedure. The FFR [4] approach was developed and successfully
applied for dynamics simulation of spatial motion and rotation of flexible multibody
systems. This approach is also used for application of the modal coordinates and
significant decreasing of the flexible coordinates.

Meijard [6] derived generalized Newton—Euler dynamic equations for the case
of FFR formulation. The equations represent the inertia forces as function of the
velocities and accelerations of the global and flexible coordinates. Zahariev [9]
derived generalized Newton-Euler dynamics equations for the rigid and flexible

Node 1
Y Node 2

Z

Fig. 1 Flexible node
deflections in FET and the
real deflections
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bodies for which the kinetic energy is quadratic form of the velocities. The equa-
tions are applicable for the flexible elements of the FET. The inertia forces are with
respect to the quasi velocities and accelerations and are invariant to the kind of the
coordinates.

In [10] a method of Finite Elements in Relative Coordinates (FERC) based on
the FET was proposed for dynamic simulation of large flexible structures. Using the
generalized Newton-Euler dynamic equations nonlinear effects and velocity
dependent terms are successfully simulated. But using this approach for complex
structures with many mutually connected adjacent flexible bodies one could
experience a lot of difficulties that mainly consists in its program system realization
and complex pre-processor procedures.

A method of Finite Elements in Absolute Coordinates (FEAC) is discussed in
the paper. It was presented in [10] and further developed for different applications.
FEAC with application of modified absolute nodal coordinates is proposed here for
simulation of structures subject to seismic excitations.

For taking into account the stiffening effects in elastic beam elements modified
joint coordinates are discussed and the possible flexible deflections of the beam are
presented by two rotational joint coordinates. The problem for selection of the
modified joint coordinates and their position is defined as an optimization problem
minimizing the node deviations of the beam model with respect to the real large
scale deviations.

2 Large Spatial Rotations of Flexible Elements
and Modified Absolute Nodal Coordinates

To understand the difference between the classical FET and the method of the finite
elements in absolute nodal coordinates using multibody system methodology some
explanations about the kinematics of flexible nodes will be presented here.

In Fig. 2 a non-isoparametric space beam element (with index i) is presented.
This finite element is relatively simple for explanation but, at the same time, presents
the six degree of freedom (dof) space deflections of the nodes. In the figure the beam

and small translations and rotations, respectively Δi, k = Δxi, k Δyi, k Δzi, k½ �\ ,
θi, k = θxi, k θyi, k θzi, k½ �\ , k=1, 2 of its nodes (indices i, 1 and i, 2—the first and
second nodes of element i) with respect to the initial not deformable element
coordinate system XiYiZi are depicted. With the superscript “\” a matrix transpose is
denoted. The underlined notations denote initial configurations. The matrices are
pointed out by bold characters. For scalars and objects (for example points, bodies,
coordinate systems) italic notations are used.

It should be said that in FET these deflections are with respect to the element
reference frame in its initial position (not deformed position) and no rotation of the
element coordinate system is taken into account. Of course, coordinate system
transformation with respect to the absolute reference frame X0Y0Z0 of mass and
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stiffness matrices is considered but for the structure initial configuration only. As a
result of the node deflections the element coordinate system XiYiZi, respectively the
node i, 1 coordinate system Xi, 1Yi, 1Zi, 1, moves to a new position defined by the
radius—vector ρi, 1 that could be easily estimated adding the initial position of
element coordinate system origin, radius—vector ρ

i
≡ ρ

i, 1
, and the node i, 1

deflections Δi, 1. The same holds for the radius–vector ρi, 2 taking into account the
initial position of node i, 2 coordinate system origin, radius–vector ρ

i, 2
, and the

node i, 2 deflections Δi, 2. The node deflections of the i-th beam element are set in a

12 × 1 matrix—column Θi = Θ\

i, 1 Θ\

i, 2

h i\

= Δ\
i, 1 θ\i, 1 Δ\

i, 2 θ\i, 2
� �\

.

In Fig. 3 the beam element in the configuration as this of Fig. 2 is depicted
including the length Li of the beam (along axis X) and the small deflections Δi, 2⟩i of
node i, 2 relative to the beam coordinate system i. In the right subscript Δi, 2⟩i the
symbol “⟩” serves as an arrow pointing out that the coordinate system with index i,
2 is with respect to coordinate system i.

The right symbol of the subscript could be omitted if it points the absolute
reference frame with index “0”—zero. Obviously, the beam configuration is quite
the same and the fact that the flexible deflections are read relative to the moving

element inode 1
node 2 

Fig. 2 Small flexible node
deflections of space
non-isoparametric beam finite
element

element i

Fig. 3 Finite beam element
in relative coordinates

220 E.V. Zahariev



element coordinate system does not change the regulations for FET discretization
and for computation of the mass and stiffness matrices. The position of node i, 2
coordinate system relative to the coordinate system of the moving beam is pre-
sented by 4× 4 homogeneous transformation matrix Ti, 2⟩i, i.e.:

Ti, 2⟩i =
3.3τi, 2⟩i 3, 1ρi, 2⟩i
1, 30 1

" #

=

1 − θzi, 2⟩i θyi, 2⟩i Li +Δxi, 2⟩i
θzi, 2⟩i 1 − θxi, 2⟩i Δyi, 2⟩i
− θyi, 2⟩i θxi, 2⟩i 1 Δzi, 2⟩i

0 0 0 1

2
6664

3
7775

=

1 − qi6 qi5 L+ qi1
qi6 1 − qi4 qi2
− qi5 qi4 1 qi3
0 0 0 1

2
6664

3
7775

ð2Þ

which for small rotational deflections does not include trigonometric functions.
With this assumption that the homogeneous transformation matrix is linear for the
relative coordinates qij , j=1, 2 , . . . , 6 of element i that include the small trans-
lational and rotational flexible deflections. 3, 3τi, 2⟩i is 3 × 3 rotational matrix; the
left superscripts point out (used if needed) the matrix dimensions (rows, columns).

In Fig. 4, similar to Fig. 2, the coordinate systems of nodes i, 1 and i, 2,
Xi, kYi, kZi, k; i=1, 2, are located in their final configuration. The initial positions of
the node coordinate systems are presented by the same but underlined notations.
FET claims for the small deflections to be read with respect to the system initial
configuration.

The homogeneous transformation matrices Ti, 1⟩0, Ti, 2⟩0 of the absolute position
of the node coordinate systems i, 1 and i, 2, respectively, are expressed by the
matrices Ti, 1⟩0 and Ti, 2⟩0 of their initial configuration and the transformation matrix
because of the small node deflections.

Fig. 4 Nodes as free
coordinate systems and
corresponding motion
coordinates
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Ti, k⟩0 =
τΔi, k⟩0 ⋅ τi, k ρ

i, k
+Δi, k

1, 30 1

" #
=

ρx
i, k

+ qi, k1
τΔi, k⟩0 ⋅ τi, k ρy

i, k
+ qi, k2

ρz
i, k

+ qi, k3
0 0 0 1

2
6664

3
7775;

Δ\

i, k⟩0 = qi, k1 qi, k2 qi, k3½ �\ ;

τΔi, k⟩0 =

1 − θzi, k⟩0 θyi, k⟩0
θzi, k⟩0 1 − θxi, k⟩0
− θyi, k⟩0 θxi, k⟩0 1

2
64

3
75, k=1, 2,

ð3Þ

where qi, k = Δ\
i, k⟩0 θ\i, k⟩0

h i\

= qi, k1 qi, k2 , . . . , qi, k6½ �\, k=1, 2 are the deflections

of node k from element i with respect to the absolute reference frame (index 0),
which are also the coordinates of the free moving nodes. To apply Eq. (2) the
deflections are to be small although they do not present the flexible deformations
only. The deflections qi, kn , k=1, 2; n=1, 6 include also the global motion of the
nodes of element i. To define the relative flexible deformations of the element i the
relative position of node i, 2 with respect to node i, 1 that coincides with the
element coordinate system i, should be defined, i.e.:

Ti, 2⟩i, 1 =T
− 1

i, 1⟩0 ⋅Ti, 2⟩0 = Ti, 1⟩0 ⋅TΔi, 1
� �− 1

⋅Ti, 2⟩0 ⋅TΔi, 2

=TΔ− 1
i, 1 T

− 1
i, 1⟩0 ⋅Ti, 2⟩0 ⋅TΔi, 2

ð4Þ

The matrix elements Ti, 2⟩i, 1 =Ti, 2⟩i are actually the flexible deformations (ro-
tations and translations) and, since they are to be small, the rotations could be
presented without trigonometric functions, i.e.:

Ti, 2⟩i =

1 − θzi, 2⟩i θyi, 2⟩i Li +Δxi, 2⟩i
θzi, 2⟩i 1 − θxi, 2⟩i Δyi, 2⟩i
− θyi, 2⟩i θxi, 2⟩i 1 Δzi, 2⟩i

0 0 0 1

2
664

3
775 ð5Þ

Taking into account that the relative deformations of node 1 are zero, the flexible
deformations of the element i relative to its own reference frame are as follows

Θi⟩i = Δ\
i, 2⟩i θ\i, 2⟩i

h i\

and appear explicitly in matrix Ti, 2⟩i without trigonometric

functions.
To realize the numerical algorithm with the proposed coordinates the integration

process should be realized with small increments of time, respectively, with small
increments of the nodal coordinates. For this purpose on every step of the time
increments the new configuration of the system is the initial configuration for the
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next iteration and the absolute nodal coordinates start again with zero values. That
process is not disadvantage since during the numerical integration of the dynamic
equations the new positions of the coordinate systems are to be recalculated and the
new mass and stiffness properties of the bodies are to be computed. Detailed
statements of the procedures are presented in [11].

3 Modified Joint Coordinates of Beam Flexible Deflections

In Fig. 5 the beam element that experiences small deflections in XY plane is divided
into three smaller insubstantial beam segments connected by two rotational joints.
In the joints linear springs are set up that cause torque in case of motion (bending).
The sum of the segment lengths is equal to the beam element length. The trans-
formation between rotations q1, q2 in the joints and deflections in node 2 is derived
assuming small rotations q1, q2, i.e.:

q1 + q2 = θz2; l1 + l2ð Þ.q1 + l2.q2 =Δy2 ð6Þ

which results to a new matrix of the elasticity that should be equal to the stiffness
matrix L2

xy in FET, i.e.:

L2
xy =

L3
3.E.Iz

L2
2.E.Iz

L2
2.E.Iz

L
E.Iz

" #
= c1 . l1 + l2ð Þ2 + c2 . l22 c1 . l1 + l2ð Þ+ c2 . l2

c1 . l1 + l2ð Þ+ c2 . l2 c1 + c2

� �
ð7Þ

Equation 7 is transformed to equations system of three nonlinear equations with
respect to four un known—l1, l2, q1, q2, i.e.:

l1 =
L2 ̸3+ l22 −L.l2

L ̸2− l2
ð8Þ

c1 =
1

E.Iz
.
L2 ̸2− L.l2

l1
ð9Þ

Fig. 5 Kinematic model of
bending beam element
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c2 =
L
E.Iz

− c1 ð10Þ

The boundary solutions, for which the joints are set up between the two nodes,
are in the interval 0≤ l2 ≤ 1 ̸3.L. For these values of l2 the values of l1 are in the
interval 0.57735.L ≤ l1 ≤ 2 ̸3.L.

The boundary solutions, for which the joints are set up between the two nodes, are
in the interval 0≤ l2 ≤ 1 ̸3.L. For these values of l2 the values of l1 are in the interval
0.57735.L ≤ l1 ≤ 2 ̸3.L. It is seen that if l2 = L− l1

2 = L− ð0.57735Þ.L
2 = ð0.211325Þ.L so

c1 = c2 = L
2.E.Iz

and there is no possible solution c1 = c2 = L
2.E.Iz

. It could be seen that
there is no possible solution l1 = 2.l2 or l1 = l2 as it is discussed in [11]. In Fig. 6 the
cases when c1 = c2 and another practical solution with fractions (Fig. 6) are shown.

An example of large flexible beam in its different positions of deformation is
shown in Fig. 7. The size and stiffness properties are depicted in the figure. This
example is a comparison to the results obtained in [7] and is presented here to proof
the approach proposed here. Using 10 element discretization and the modified joint
coordinates, excellent agreement with the experimental results of the deformations
are obtained (the dotted lines). For loading torque of 2226.504 Nm the beam
implements deformation as a pure circle. For comparison the same example is
solved using the classical FET. With dense line the results of deformations are
presented for which significant deviations from the experiments are obtained. It
could be seen that if the same torque is applied the results does not correspond to
the experiments.

In Fig. 8 another example is presented that demonstrate the possibility for
successive application of the modified joint coordinates. One element flexible beam
is presented which deflections are computed using only two modified joint coor-
dinates and the extremely large flexible deflections (dashed lines) are compared to

iz

i
i I.E.

Lc
2

=0 537751 .= 2 0.211325kk =

Element i Element j
Node 1 Node 2 Node 3

Element i Element j
Node 1 Node 2 Node 3

Fig. 6 Recommended
kinematic models of elastic
beam elements
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the results obtained in [2] using nonlinear theory. The beam is loaded by vertical
forces which values are depicted in the figure. It could be seen that even for large
deformations the method prosed in the paper could be applied obtaining admissible
results. This could significantly decrease the number of the system coordinates
which leads to successive solutions. For extremely high forces (44.48 kN, Fig. 8)
the method could not be applied.

In Fig. 9 an example of space flexible structure compiled of rigidly connected
beams that build many closed contours is presented. The structure is mounted on a
basement imposed on external excitation—one dimensional translationalmotion q1 in
the horizontal plane and one dimensional rotational excitation q2 along the vertical
axis. Because of the external excitations the basement implements two dimensional
motion which functions of the accelerations are q1̈ = a1 ⋅ b1 ⋅ cos b1 ⋅ tð Þ;
q2̈ = a2 ⋅ b2 ⋅ cos b2 ⋅ tð Þ. The nodes of the beams are shown as moving coordinate
systems which origins are pointed out as Oi, i=1, 2, . . . , 16, while their axes are
parallel to the absolute reference frame.Modified absolute nodal coordinates (Sect. 2)
are applied. The nodes 1–4 are connected to the basement and are considered part of a
rigid body, i.e.: their motion characteristics coincidewith that of the basement. For the
following values of the coefficients a1 = 0.2 ⋅G; b1 = π; a2 = 0.04 ⋅G; b2 = 1.5 ⋅ π,

Beam length L = 2.4 m

M=2226,604 Nm

1
2

3

4

5

 6 

 7 

Fig. 7 Large flexible
deflections of slender beam

0

5
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15 

20

25

20

4.448 kN

44.48 kN
13.344 kN

15 105 25

Fig. 8 Large flexible
deflections of single flexible
element. Beam length
L = 2.4 m;
EI = 516.54 × 103 N m2
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whereG is the earth acceleration, the structure deflections do not cause collapse of the
building for 20 s operational time. The time histories of the deformations of node 16
are also depicted in the figure (Fig. 9).

4 Conclusion

Methods of modified absolute nodal coordinates and of modified joint coordinates
for flexible elements is proposed and successfully applied for static and dynamic
simulation of beam structures. The methods enable significant decreasing of
coordinates and simplification of static and dynamic equations.

Acknowledgements The author acknowledges the financial support of Ministry of Education and
Science, contract No. DUNC 01/3—2009.
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