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Abstract. Fast (k, n)-threshold secret sharing schemes with XOR oper-
ations have proposed by Kurihara et al. and Fujii et al. independently.
Their method are ideal that share size is equal to the size of the data to
be distributed with the benefits that can be handled very fast for using
the only XOR operations at distribution and reconstruction processes.
In these cases for the number of shares n, target data must be equally
divided into individual np−1 pieces where np is a prime more than n. The
existing methods described above are configured using the cyclic matri-
ces with prime order. On the other hand, a new method in WAIS2013
has proposed, this leads to general constructions of (2, p + 1)-threshold
secret sharing schemes. Moreover, we use m-dimensional vector spaces
over Z2 on having bases that meet certain conditions in order to con-
struct proposed methods. Moreover, existences of (2, 2m)-threshold secret
sharing schemes are published (in NBiS2013) by using a new notion “2-
propagation bases set” as a bases set in m-dimensional vector spaces
over Z2. However this construction for all parameter m is wrong, in other
words, it constitutes just only (2,m(m+1)/2)-SSS, not (2, 2m)-SSS. This
paper corrects mistakes of construction and also proposes an accurate
construction by using Galois field GF (2m) that elements are represented
in the ring Fp[X]/f(X) where f(X) is an irreducible polynomial, these
functionalities lead to general constructions of (2, 2m)-threshold secret
sharing schemes.

1 Introduction

This paper describes new constructions of (2, n)-threshold secret sharing schemes
using exclusive-OR operations and also shows their advantages. To indicate that
proposed methods are suitable for use in cloud computing, this section introduces
security challenges in the cloud environment.

1.1 Requirements in Use of Clouds

Many organizations are currently discussing the definition and standardization
of cloud computing [1–5]. For example, the Open Cloud Manifesto states the key
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characteristics of the cloud as the ability to scale and provision computing power
dynamically in a cost efficient way and the ability of the consumer to make the
most of that power without having to manage the underlying complexity of the
technology [6].

By type of use cases, clouds can be classified into private or public cloud.
Public cloud provided in open network has been recognized as an evolution
version of the hosting services. On the other hand, there is also use in a closed
network within companies/organizations, called private cloud. In the private
cloud, customers can place under the control of servers, network devices and
their own data. This means that customers have to design configurations of
secure network and care various attacks and vulnerabilities of their own servers,
so they also need server management costs. These types of clouds are used in
accordance with the importance of the data to be treated. Here a lot of customers
have a big concern: can we use various cloud services securely?

Using public cloud means entrusting the cloud providers with the manage-
ment and processing of various business data. SAS 70 type II [7] is one of
endorsement system for “cloud service provider’s reliability”. The Cloud Security
Alliance also launched an initiative to encourage transparency of security prac-
tices within cloud providers [8]. Cloud Computing Use Case Discussion Group
published a useful whitepaper related to SLA(Service Level Agreement) [9].
These activities give us a sense of safety when using public clouds, however
operators in information systems department can not be relieved because tech-
nical components used in clouds are unclear. In particular, requirements for the
confidentiality should be clear. For example one of suspicious questions is “what
kind of cryptographic algorithms are used in this cloud environment?”.

In this paper, we discuss about enterprise/system requirements in case of
deployments of security/cryptographic technologies, especially cloud storage
solutions with secret sharing schemes. Needs of secret sharing schemes are
derived from privacy concerns by private/enterprise use cases, for example we
feel skeptical to deposit our sensitive/private data to may-be-untrusted cloud
services. Note that this paper does not describe other than CIA (confidentiality,
integrity, availability) requirements, there are some other issues on the cloud
environment, for example topics related to boundaries and digital forensics [10].

1.1.1 Secret Sharing Schemes
Secret sharing schemes [11,12] has been recognized as a technology that has a
good balance confidentiality and availability requirements. As simplest example
is (k, n)-threshold secret sharing scheme: A dealer gives a set of n shares from
a secret, only when any group of t shares are gathered a secret would be recon-
structed, but from k − 1 pieces of shares they can not obtain any information
about the secret.

The effects of the application of SSS are balancing of risk for leakage (Not
all are exposed even if some leakage) and diversification of risk for loss (can be
restored even if some are lose), SSS has flexibility that can be selected parameters
n and k depending on the applications and the use cases.
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1.1.2 Business Requirements in Use of SSS
Movements to provide secret sharing services in cloud environment are actually
seen, however we can not see technical background and promise in the service
from public press releases. Because of vulnerable system configurations and ille-
gal cloud suppliers, there’s a possibility that the customer information can be
restored. So, in deployments of secret sharing schemes in cloud storage, we have
to consider new proprietary system requirements: confidentiality in the data
flow and lightweight processing in the distribution/recovery phases.

When a cloud provider replicates customer’s data into different cloud
providers (in Fig. 1), one of providers MAY obtain the qualified sets unintention-
ally. So we require transparency of data flow (details in next section) and also
confidentiality of distributed data, that is we need fast secret sharing schemes.

(1) One Request

(3) Asymmetric Responses

(2) Cooperative Processing

Fig. 1. Asymmetric cloud services

It assumes the case where the cloud providers archive data from the customer
and process the data according to customer’s requests, especially such as backup
systems with low frequency of use. This paper propose secret sharing schemes
“that coexist with the encryption process” suitable for use in the clouds.

1.2 Challenges to Be Solved

Let us consider the phase that replication, encryption and recovery of multiple
pieces of customer data are repeated. It is considered generally that performing
“recovery and decryption” by going back to the above-described data flow dia-
gram. However a service may not be symmetric such as Fig. 1, that is a receiver
and a responder may be different. Providing business model that gives the user
a best option is desired, for example, in order to select preferentially from cloud
services in view of the network topology, the route more efficient to transfer and
lowest charging.
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Fig. 2. The recovery process in Type-E, Type-F

This integrated services, we need common standard API and data format
and also “commutative property of distributed processing and data encryption
secret” as a new requirements in processing level such as Fig. 2. This paper
has been investigated whether can be realized by using homomorphic functions,
however we consider the prior to processing speed, so studied the fast method
using exclusive-OR operations.

In this case, we know that encryption process and secret sharing distribution
process are commutative by using stream cipher or block cipher encryption with
the CTR mode as the encryption phase. So now we focus on previous secret
sharing schemes using exclusive-OR operations.

1.3 Secret Sharing Schemes Using Exclusive-OR Operations

The (k, n)-threshold secret sharing schemes using exclusive-OR operations
(XOR-(k, n)-SSS) are proposed by Fujii et al. [13,14] and Kurihara et al. [15–
17] independently. A simple example XOR-(2, 3)-SSS described in [13] is as
follows: Let a secret M be M = M1||M2 (M1,M2 ∈ {0, 1}d), M0 ∈ {0}d (a
d-bit zero binary) and we generate d-bit binaries R0, R1 randomly. Let shares
Wi(i = 0, 1, 2) be

• W0 = (M0 ⊕ R0) || (M2 ⊕ R1)
• W1 = (M1 ⊕ R0) || (M0 ⊕ R1)
• W2 = (M2 ⊕ R0) || (M1 ⊕ R1)

where || denotes a concatenation of binary data, ⊕ denotes a bit-wise exclusive-
OR operation.

For general (k, n)-threshold secret sharing scheme, a secret M ∈ {0, 1}d(np−1)

needs to be divided into n
′
:= np − 1 blocks M1, . . . ,Mnp−1 ∈ {0, 1}d where np

is a prime such that np ≥ n, and d is the bit-size of every divided block of the
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secret. In the above example, it satisfies that n = np = 3, the number of pieces
of block is n

′
= np − 1 = 2.

In order to describe above equations simply, we introduce a notation as fol-
lows:

W0 W00 . . . W0n′′

W1 W10 . . . W1n′′

. . . . . . . . . . . .
Wi Wi0 . . . Win′′

. . . . . . . . . . . .
Wn Wn0 . . . Wnn′′

where the number of pieces of blocks n
′

:= np − 1, n
′′

:= n
′ − 1 and Wi =

Wi0 || . . . || Win′′ for any i(i = 0, . . . , n
′
),.

The previous XOR-(2, 3)-SSS can be also described as follows:

W0 M0 ⊕ R0 M2 ⊕ R1

W1 M1 ⊕ R0 M0 ⊕ R1

W2 M2 ⊕ R0 M1 ⊕ R1

where n = np = 3, the number of pieces of blocks n
′
:= np − 1 = 2.

Note that these schemes are ideal secret sharing schemes similar to Shamir’s
SSS that every bit-size of shares equals bit-size of a secret. Kurihara et al.
reported that their scheme performs the operations 900-hold faster than Shamir’s
SSS for the parameters (k, n) = (3, 11) [16].

1.4 The Contrubutions of This Paper

In this section thgis paper shows that the existing secret sharing scheme using
exclusive OR operations (XOR-SSS) is suitable for use in the clouds and intro-
duces previous 2-out-of-n secret schemes by only using XOR operations. In next
section, this paper proposes new methods of XOR-SSS and corrects mistakes of
construction and also proposes an accurate construction by using Galois field
GF (2m) that elements are represented in the ring Fp[X]/f(X) where f(X) is
an irreducible polynomial, these functionalities lead to general constructions of
(2, 2m)-threshold secret sharing schemes.

2 Reconsideration of XOR-(2, n)-SSS

2.1 Existing Examples of XOR-(2, n)-SSS as a Starting Point

In this subsection, constructions of XOR-(2, n)-SSS with circulant permutation
matrices are explained.

For given prime np, the following is a set of shares {Wi} of XOR-
(2,n)-SSS with n

′
= np − 1 such that n = np. Wi(i = 0, . . . , n − 1) =
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Wi0 || . . . || Wij || . . . || Win′′ (j = 0, . . . , n
′′

:= n
′ − 1). Let a secret be

M = M1|| . . . || Mn′ where M1, . . . ,Mn′ ∈ {0, 1}d, M0 ∈ {0}d and d-bit binaries
R0, . . . , Rn′′ be generated randomly. And let Wij be Mj ⊕ R(j−i) mod np

. For
np = 3, a concrete construction of XOR-(2, 3)-SSS with n

′
= 2 is as follows:

Example 1 (XOR-(2, 3)-SSS [15]). M = M1|| M2 (n
′
= 2),M0 ∈ {0}d

W0 M0 ⊕ R0 M1 ⊕ R1

W1 M2 ⊕ R0 M0 ⊕ R1

W2 M1 ⊕ R0 M2 ⊕ R1

Moreover for np = 5, a concrete construction of XOR-(2, 5)-SSS with n
′
= 4

is as follows:

Example 2 (XOR-(2, 5)-SSS [15])

W0 M0 ⊕ R0 M1 ⊕ R1 M2 ⊕ R2 M3 ⊕ R3

W1 M4 ⊕ R0 M0 ⊕ R1 M1 ⊕ R2 M2 ⊕ R3

W2 M3 ⊕ R0 M4 ⊕ R1 M0 ⊕ R2 M1 ⊕ R3

W3 M2 ⊕ R0 M3 ⊕ R1 M4 ⊕ R2 M0 ⊕ R3

W4 M1 ⊕ R0 M2 ⊕ R1 M3 ⊕ R2 M4 ⊕ R3

2.2 A New Method Proposed in WAIS2013

In WAIS2013, a new method have proposed, this leads to general constructions
of (2, p+1)-threshold secret sharing schemes using only exclusive-OR operations
with the same assumption of previous XOR-(k,n)-SSS. Let n

′
be the number

of pieces of blocks, previous schemes [14,16] have a restriction about n
′
, that is

n
′
must equal np − 1 for a certain prime np. For example, XOR-(2,4)-SSS with

n
′
= 3 must be used part of shares from XOR-(2,5)-SSS with n

′
= 4.

For given prime np, the following is a set of shares {Wi} of XOR-(2,n)-
SSS with n

′
= np − 1 such that n = np + 1. Wi(i = 0, . . . , n − 1) =

Wi0 || . . . || Wij || . . . || Win′′ (j = 0, . . . , n
′′

:= n
′ − 1). Let a secret be

M = M1 || . . . || Mn′ where M1, . . . ,Mn′ ∈ {0, 1}d, M0 ∈ {0}d and d-bit
binaries R0, . . . , Rn′′ be generated randomly.

• W00 = R0

• W0j = M1 ⊕ Mj+1 ⊕ Rj (j = 1, . . . , n
′ − 1)

• W10 = M1 ⊕ R0

• W1j = W0,j−1 ⊕ Rj−1 ⊕ Rj

(j = 1, . . . , n
′ − 1)

• Wij = Wi−1,j−1 ⊕ Rj−1 ⊕ Rj

(i = 2, . . . , n
′ − 1, j = 1, . . . , n

′ − 1)
• Wn′ ,j = M2 ⊕, . . . ,⊕ Mn′ ⊕ Rj

(j = 1, . . . , n
′ − 1)
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The following new concrete distribution method proposed in WAIS2013 is
XOR-(2, 4)-SSS with n

′
= 2 �= n − 1 = 3.

Example 3 (XOR-(2, 4)-SSS [18]). M = M1|| M2 (n
′
= 2),M0 ∈ {0}d

W0 M0 ⊕ R0 M1 ⊕ M2 ⊕ R1

W1 M1 ⊕ M2 ⊕ R0 M1 ⊕ R1

W2 M1 ⊕ R0 M0 ⊕ R1

W3 M2 ⊕ R0 M2 ⊕ R1

Now we consider a not-strictly-defined function F (). When we input distinct
two shares, F () outputs the data to be recovered in each part. For example,
F ({W0,W1}) = {W00 ⊕ W10,W01 ⊕ W11} = {M1 ⊕ M2,M2} in the above XOR-
(2, 4)-SSS, so we can obtain both M1 and M2 finally. Similarly,

• F ({W0,W2}) = {M1,M1 ⊕ M2},
• F ({W0,W3}) = {M2,M1},
• F ({W1,W2}) = {M2,M1},
• F ({W1,W3}) = {M1,M1 ⊕ M2},
• F ({W2,W3}) = {M1 ⊕ M2,M2}.

In any combinations of shares, we can observe obtaining both M1 and M2.
Moreover for np = 5, a concrete construction of XOR-(2, 6)-SSS with n

′
= 4

is as follows:

Example 4 (XOR-(2, 6)-SSS [18])

W0 M0 ⊕ R0 M1 ⊕ M2 ⊕ R1 M1 ⊕ M3 ⊕ R2 M1 ⊕ M4 ⊕ R3

W1 M1 ⊕ R0 M0 ⊕ R1 M1 ⊕ M2 ⊕ R2 M1 ⊕ M3 ⊕ R3

W2 M1 ⊕ M4 ⊕ R0 M1 ⊕ R1 M0 ⊕ R2 M1 ⊕ M2 ⊕ R3

W3 M1 ⊕ M3 ⊕ R0 M1 ⊕ M4 ⊕ R1 M1 ⊕ R2 M0 ⊕ R3

W4 M1 ⊕ M2 ⊕ R0 M1 ⊕ M3 ⊕ R1 M1 ⊕ M4 ⊕ R2 M1 ⊕ R3

W5 M234 ⊕ R0 M234 ⊕ R1 M234 ⊕ R2 M234 ⊕ R3

where M234 := M2 ⊕ M3 ⊕ M4.

2.3 Introduction of a Concept “isomorphism” in XOR-(2, n)-SSS

For a matrix representation {Wij}, we define the isomorphism in XOR-(2, n)-SSS
as follows:

Definition 5 (Isomorphism in XOR-(2, n)-SSS). For an XOR-(2, n)-SSS
Ψ with matrix-representation of Wij , an XOR-(2, n)-SSS generated from the
following operations is isomorphic to Ψ .

1. Replace a line with some other line.
2. Replace a column with some other column.
3. For all sub-shares of a column, add same data with XOR-operations.
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From Example 1 we can obtain the next modified XOR-SSS.

Example 6 (A modification of Example 1)

W0 M0 ⊕ R0 M0 ⊕ R1

W1 M2 ⊕ R0 M1 ⊕ R1

W2 M1 ⊕ R0 M1 ⊕ M2 ⊕ R1

In order to observe relevances to Example 1, we modify Example 3.

Example 7 (A modification of Example 3)

W0 M0 ⊕ R0 M0 ⊕ R1

W1 M1 ⊕ M2 ⊕ R0 M2 ⊕ R1

W2 M1 ⊕ R0 M1 ⊕ M2 ⊕ R1

W3 M2 ⊕ R0 M1 ⊕ R1

Now we compare Examples 6 and 7, Example 7 is a extension of Example 6
because W1 is added in Example 7.

Next we introduce another representation of XOR-(2, n)-SSS instead of
matrix-representation. Wij is represented by an element of Z

n
′

2 , that is, when

Wij =
⊕n′

t=1 αtMt, set wijbe(α1, . . . , αn′) ∈ Z
n

′

2 .
The following case is a vector-representation of Example 6.

Example 8 (a vector-representation of Example 7)

W0 (0, 0) (0, 0)
W1 (1, 1) (0, 1)
W2 (1, 0) (1, 1)
W3 (0, 1) (1, 0)

2.4 Definition of 2-Propagation Bases Set and Constructions of
XOR-(2,m(m + 1)/2)-SSS

In a vector-representation Example 8, we can see that column vectors construct
an n

′
-dimension vector space, for example it satisfies that w10 = w20 + w30,

w11 = w21 + w31 where + is add operation over Z
m
2 .

Definition 9 (2-propagation bases set). 2-propagation bases set {bi}(i =
1, . . . , l) is a set of bases over Z

m
2 satisfies the following properties: b1 is a set of

m zero-vectors and for all distinct two bases bi, bj , bi+bj is also a basis over Zm
2 .

Lemma 10. The order of 2-propagation bases set {bi} over Z
m
2 is presented as

2t (optimal case: 2m). A set {bi} has t generator bases {ci}(i = 1, . . . , t), for all
bi it satisfies that bi =

∑t
j=1 αjcj.

Theorem 11. When an optimal 2-propagation bases set {bi} (i = 1, . . . , 2m)
over Z

m
2 , these exists an XOR-(2,m(m + 1)/2)-SSS with vector-representation

{wij = bji} (i = 1, . . . , 2m, i = 1, . . . ,m).
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Proof. From the definition of 2-propagation bases set, for distinct u, v, bu + bv
is a basis, so w∗

1 = wu1 +wv1, . . . , w
∗
m = wum +wvm are bases over Zm

2 . The l-th
element of Wu ⊕ Wv equals

⊕m
s=1 w∗

l
(s)Ms. In this case, these exist m linearly

independent simultaneous equations for Ms(s = 1, . . . ,m), so we can reconstruct
all Ms. ��

Theorem 11 indicates the existence of 2-propagation bases sets is important,
so the following program was implemented in order to show the existence of
XOR-(2, 2m)-SSS for small m.

Program.

1. set m > 1.
2. set b1 := {(0, . . . , 0), . . . , (0, . . . , 0)}.
3. set b2 := {(1, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 1)}.
4. set c:= 3
5. bc

R∈(Zm
2 )m, check rank(Bc + Bi) =?=m for all i = 1, . . . , c − 1

6. if YES then add bc into {bi}, set c = c + 1
7. if NO then return (5)

Here are some concrete examples of 2-propagation bases sets for small order.
Note that W0 corresponds to the zero vector bases and W1, . . . ,Wm are gener-
ator bases cirelated to Lemma 10. All shares are constructed by

⊕m
s=1 w∗

l
(s)Ms

mentioned in Theorem 11.

Example 12 (m = 4: XOR-(2, 4 · 5/2)-SSS [19])

W0 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
W1 (1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)
W2 (1, 1, 0, 0) (1, 0, 0, 0) (0, 0, 1, 1) (0, 0, 1, 0)
W3 (0, 0, 1, 1) (1, 0, 0, 1) (0, 1, 1, 0) (0, 1, 0, 0)
W4 (0, 1, 0, 1) (0, 1, 1, 0) (1, 1, 0, 0) (1, 0, 0, 0)
W1 + W2

W1 + W3

W1 + W4

W2 + W3

W2 + W4

2.5 New Construction of XOR-(2,m2)-SSS

The following example is a starting point of this subsection, this is leaded by
previous work in a empirical program for parameter m = 3. This example is
unexpectedly generated because a share W1 +W2 +W3 is “the eighth” share. So
this paper analyze the algerbraic interpretation of this example and as a result
we could find construction for any parameters m > 4.



944 Y. Suga

Example 13 (m = 3: XOR-(2, 23)-SSS [19])

W0 (0, 0, 0) (0, 0, 0) (0, 0, 0)
W1 (1, 0, 0) (0, 1, 0) (0, 0, 1)
W2 (0, 1, 1) (1, 0, 0) (0, 1, 0)
W3 (1, 1, 0) (0, 1, 1) (1, 0, 0)
W1 + W2

W1 + W3

W2 + W3

W1 + W2 + W3 (0, 0, 1) (1, 0, 1) (1, 1, 1)

Each m-dimension vectors can be expressed by a element of Galois field
GF (2m), so we attempt the previous example could be rewritten:

Let an irreducible polynomial f(X) in GF (23) be X3 +X +1, so we consider
the field of 8 elements defined by F23 = F2[X]/f(X). In this field, there are 8
elements: 0, 1, α, α2, . . . , α7 where alpha is a primitive element in F23 . All non-
zero elements are follows:

• α1 = α2 · 0 + α · 1 + 1 · 0
• α2 = α2 · 1 + α · 0 + 1 · 0
• α3 = α2 · 0 + α · 1 + 1 · 1 (due to α3 = α + 1)
• α4 = α2 · 1 + α · 1 + 1 · 0
• α5 = α2 · 1 + α · 1 + 1 · 1
• α6 = α2 · 1 + α · 0 + 1 · 1
• α7 = α2 · 0 + α · 0 + 1 · 1

So we archeive and rewrite the previous example as follows:

Example 14 (m = 3: XOR-(2, 23)-SSS by using expression of a primitive
element alpha)

W0 0 0 0
W1 α2 α1 α0

W2 α3 α2 α1

W3 α4 α3 α2

W1 + W2 α5 α4 α3

W1 + W3 α6 α5 α4

W2 + W3 α0 α6 α5

W1 + W2 + W3 α1 α0 α6

This expression is caused by the equation: αi + αi+1 = αi+3 because the left
hand is αi(α + 1), so we can apply α3 = α + 1.

In the general case for parameter m > 3, there exists an irreducible polyno-
mial formd by Xm + X + 1 in F2m , so this fact implies gurantee of existense of
XOR-(2, 2m)-SSS for some parameters m (for instance, m = 2, 3, 4, 6, 7, 9, 15).
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3 Conclusions and Future Work

For a set of basis over Z
m
2 , this paper introduces a concept “2-propagation

bases set” and previous constructions of (2,m(m+1)/2)-threshold secret sharing
schemes using exclusive-OR operations. This paper corrects mistakes of construc-
tion and also proposes an accurate construction by using Galois field GF (2m)
that elements are represented in the ring Fp[X]/f(X) where f(X) is an irre-
ducible polynomial, these functionalities lead to general constructions of (2, 2m)-
threshold secret sharing schemes. In the future we need to extend proposals to
the cases with k ≥ 3 with estimation of calculation costs.
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