
Function Secret Sharing Using Fourier Basis

Takuya Ohsawa1, Naruhiro Kurokawa2, and Takeshi Koshiba3(B)

1 Graduate School of Science and Engineering, Saitama University, Saitama, Japan
2 Information System Services Department, Bank of Japan, Tokyo, Japan

3 Faculty of Education and Integrated Arts and Sciences,
Waseda University, Tokyo, Japan

tkoshiba@waseda.jp

Abstract. Function secret sharing (FSS) scheme, formally introduced
by Boyle et al. at EUROCRYPT 2015, is a mechanism that calculates
a function f(x) for x ∈ {0, 1}n which is shared among p parties, by
using distributed functions fi : {0, 1}n → G (1 ≤ i ≤ p), where G is
an Abelian group, while the function f : {0, 1}n → G is kept secret to
the parties. We observe that any function f can be described as a linear
combination of the basis functions by regarding the function space as a
vector space of dimension 2n and give a new framework for FSS schemes
based on this observation. Based on the new framework, we introduce a
new FSS scheme using the Fourier basis. This method provides efficient
computation for a different class of functions (e.g., hard-core predicates
of one-way functions), which may be inefficient to compute if we use the
standard basis such as point functions. Our FSS scheme based on the
Fourier basis is quite simple due to the fact that the Fourier basis is
closed under the multiplication, while the previous constructions have to
incorporate some complex mechanisms to overcome the difficulty.

1 Introduction

The notion of secret sharing (SS) schemes was introduced by Blakley [3] and
Shamir [18]. In SS schemes, share information Si (0 ≤ i ≤ p), generated from the
secret information S, are distributed to p parties. In (n, p)-threshold SS scheme,
the secret information S can be recovered from n shares, but no information
on S is leaked from at most n − 1 shares. A simple (n, n)-threshold SS scheme
can be realized as follows: for a secret information S ∈ G, share information Si

(1 ≤ i ≤ p) are selected so as to satisfy S =
∑p

i=1 Si. (We will use this simple
SS scheme as an ingredient of our schemes.)

As an extension of SS schemes, an idea that functions would be secretly
distributed to several parties has been arisen. Gilboa et al. [11] consider dis-
tributed point function (DPF) to distribute point functions fa,b : {0, 1}n → G,
where fa,b(x) = b if x = a for some a ∈ {0, 1}n and fa,b(x) = 0 otherwise. In a
basic DPF scheme, the function f is partitioned into two keys f0, f1 and each

This article does not include the official view of Bank of Japan.

c© Springer International Publishing AG 2018
L. Barolli et al. (eds.), Advances in Network-based Information Systems,
Lecture Notes on Data Engineering and Communications Technologies 7,
DOI 10.1007/978-3-319-65521-5 78

866 T. Ohsawa et al.

key is distributed to the respective party of the two parties. Each party calcu-
lates the share yi = fi(x) for common input x by using the key fi. They can
recover the solution of the point function fa,b(x) by summing up two shares of
the two parties. Boyle et al. [6] study the efficiency in the key size and introduce
a DPF scheme in the multi-party setting. Moreover, they generalize the target
functions (i.e., point functions) to some class of functions, and propose an FSS
scheme for some function class F in which functions f : {0, 1}n → G can be
calculated efficiently. In the FSS scheme we partition a function f ∈ F into p
distributed functions (f1, . . . , fp). Like SS schemes mentioned above, an equa-
tion f(x) =

∑p
i=1 fi(x) is satisfied with respect to any x, and the information

about the secret function f (except the domain and the range) does not leak
out from at most p − 1 distributed functions. Moreover, distributed functions
fi can be described as short keys ki and it is required to be efficiently evalu-
ated. Boyle et al. constructs FSS schemes for interval functions and for partial
matching functions by the essential use of pseudo-random generators (PRG)
like the Goldreich-Goldwasser-Micali [12] construction of pseudo random func-
tions. They also show that FSS schemes for functions which can be calculated in
polynomial time are implemented by using some obfuscation techniques and one-
way functions. Furthermore, Boyle et al. [7] recently construct a two-party FSS
scheme for branching programs under the DDH assumption, which implies low-
communication two-party secure computation protocols. A p-party FSS scheme
for circuits was proposed in [10] under the LWE assumption, by using multi-key
fully-homomorphic encryption.

As an application of FSS schemes, we can consider private information
retrieval (PIR) [8,9,15]. For example, we can know how many times some key-
word w appears in a distributed database D without revealing the keyword w.
A client first distributes the point function fw,1 into k distributed functions
(f1, . . . , fk). Each distributed database calculates the share value

∑
wj∈D fi(wj)

and send it back to the client. After that, the client can obtain fw,1(w) from all
shares. If an FSS scheme can distribute arbitrary functions, it enables us to com-
pute the functional value without revealing any information on the algorithm to
evaluate the function to servers.

In this paper, we consider an FSS scheme for hard-core predicates of one-way
functions. A predicate b(x) is hard-core for a one-way function f(x) if b(x) is
computationally unpredictable given f(x). It is well known that there exists a
hard-core predicate for any one-way function [13]. From candidates of one-way
functions such as the RSA function and other number-theoretic functions, the
existence of hard-core bits are shown [2,4,5,14]. Akavia, Goldwasser and Safra
[1] consider a new framework for proving hard-core properties in terms of Fourier
analysis. Any predicates can be represented as a linear combination of Fourier
basis functions. Akavia et al. show that if the number of non-zero coefficients
in the Fourier representation of hard-core predicates is polynomially bounded
then the coefficients are efficiently approximable. This fact leads to the hard-
core properties. Actually, several hard-core predicates can be discussed in the
framework of Akavia et al. [1,16]. Hard-core predicates are useful not only in

Function Secret Sharing Using Fourier Basis 867

theory but in practice. By using hard-core predicate, pseudorandom generators
and many cryptographic protocols such as bit commitment and oblivious trans-
fer can be obtained. Besides hard-core predicates, it is known that low-degree
polynomials are Fourier-concentrated [17].

1.1 Our Contribution

We observe that any function f : {0, 1}n → {0, 1} can be described as a linear
combination of the basis functions by regarding the function space as a vector
space of dimension 2n and give a natural framework for FSS schemes based on
this observation. We see that an FSS scheme for point functions can be discussed
in this framework. Any point function corresponds with a 2n-dimensional vector
whose elements are all zero but one axis. Such a vector of the special form
has a succinct representation because its Kolmogorov complexity is quite small.
However, point functions are not so easy to partition into several distributed
functions while keeping the succinct representation. We can regard the scheme
by Gilboa et al. for point functions as such a realization.

Instead of the standard basis (point functions), we consider to use the Fourier
basis. Then we construct a new FSS scheme using the Fourier basis. This method
provides efficient computation for some classes of functions (e.g., hard-core pred-
icates of one-way functions) which may be inefficient to compute if we use the
standard basis (as point functions). As mentioned, many hard-core predicates
have succinct Fourier representation. Namely, the number of non-zero Fourier
coefficients for hard-core predicates is polynomially bounded. We will see that
our new FSS scheme is available for hard-core predicates.

Our FSS scheme based on the Fourier basis is simpler than the previous
schemes. This is because of the fact that the Fourier basis is closed under the
multiplication.

Finally, we would like to stress that our contribution is rather providing a
new framework that enables us simple constructions of FSS schemes. We believe
that our framework gives a new insight for FSS schemes.

2 Preliminaries

2.1 Definitions

We review a formal definition of FSS schemes, given in [6]. In an FSS scheme,
we partition a function f into keys ki (the succinct descriptions of fi) which the
corresponding parties Pi receive. Each party Pi calculates the share yi = fi(x).
The functional value f(x) is obtained from all shares y = (y1, y2, . . . , yp) of the
parties by using a decode function Dec. Each key ki does not leak any information
on function f except the domain and the range of f . We first define the decoding
process from shares.

Definition 1 (Output Decoder). An output decoder Dec from shares of p par-
ties is a tuple (S1, . . . , Sp, R,Dec), where Si (1 ≤ i ≤ p) is a share space of the

868 T. Ohsawa et al.

i-th party, R is the output space, and Dec : S1 × . . . × Sp → R is a decoding
function.

Next, we define FSS schemes. We denote, by [p], the set of integers
{1, 2, . . . , p}, which corresponds to p parties. We assume that T ⊆ [p] be a
set of corrupted parties.

Definition 2. For any p ∈ N, T ⊆ [p], a (p-party, T -secure) FSS scheme with
respect to a function class F is a pair of PPT algorithms (Gen,Eval) satisfying
the following.

• The key generation algorithm Gen(1λ, f), on input the security parameter 1λ

and a function f : D → R in F , outputs p keys (k1, . . . , kp).
• The evaluation algorithm Eval(i, ki, x), on input a party index i, a key ki,

and an element x ∈ D, outputs a value yi ∈ Si, corresponding to the i-th
party’s share of f(x).

Moreover, these algorithms must satisfy the following properties:

• Correctness: For all f ∈ F and x ∈ D,

Pr[Dec(Eval(1, k1, x), . . . ,Eval(p, kp, x)) = f(x) | (k1, . . . , kp) ← Gen(1λ, f)] = 1.

• Security : Consider the following indistinguishability challenge experiment for
corrupted parties T :
1. The adversary A outputs (f0, f1) ← A (1λ), where f0, f1 ∈ F .
2. The challenger chooses b ← {0, 1} and (k1, . . . , kp) ← Gen(1λ, fb).
3. A outputs a guess b′ ← A ((ki)i∈T), given the keys for corrupted parties T .

The advantage of the adversary A is defined as Adv(1λ,A) := Pr[b = b′] − 1/2.
We say the scheme (Gen,Eval) is T -secure if there exists a negligible function ν

such that for all non-uniform PPT adversaries A which corrupts parties in T ,
it holds that Adv(1λ,A) ≤ ν(λ).

FSS scheme for the point functions
We give the definition of point functions below.

Definition 3. For a, b ∈ {0, 1}n, the point function Pa,b : {0, 1}n → {0, 1}m is
defined by Pa,b(a) = b and Pa,b(a′) = 0m for all a′ �= a.

Gilboa et al. [11] propose a 2-party FSS scheme for point functions, and Boyle et
al. [6] improve the efficiency of key size for the 2-party FSS. Let (Gen•,Eval•)
be the FSS scheme in [6] for point functions.

Gen•(1λ, a, b) is an algorithm which distributes the point function Pa,b to two
keys k0, k1 for two parties. In their scheme, each key is a binary tree of depth n
where pseudo-random numbers (generated by a PRG) are assigned to all nodes.
Binary trees k0, k1 are made exactly the same structure with the exception of
the path from the root to the target point a = a1, . . . , an. With respect to the
path from the root to the target point a = a1, . . . , an, the corresponding paths
in both binary trees are completely independent.

Function Secret Sharing Using Fourier Basis 869

Eval•(β, kβ , x) is an algorithm which calculates the shares of Pa,b of kβ for
β ∈ {0, 1}. An input x determines the path in the binary tree kβ . The algorithm
repeats a recursive process from the root to obtain random numbers Sβ

xi
for all

i ∈ [n] by using the PRG G and finally outputs the share G(Sβ
xn

) · w, where
w = (G(S0

an
) + G(S1

an
))−1 · b. So, if x = a then the sum of the shares of the two

parties is equal to G(S0
an

) · w + G(S1
an

) · w = (G(S0
an

) + G(S1
an

)) · w = b, which
coincides with the output value b of the point function. This means that the
condition S0 �= S1 is required and if the event S0

an
= S1

an
occurs in the execution

of Gen• then another execution of Gen• is required.
Here we would like to stress that the above mentioned scheme by Boyle et al.

is quite complex. The other existing schemes are also complex. This complexity
comes from the hardness of compatibility between succinct representation of
point functions and secure partitioning of the point functions.

2.2 Basis Functions

The function space of functions f : {0, 1}n → C can be regarded as a vector space
of dimension 2n. Therefore, the basis vectors for the function space exist and we
call the basis function hi(x). Any function f in the function space is described as
a linear combination of the basis functions f(x) =

∑
j∈{0,1}n βjhj(x), where βj ’s

are coefficients in C. The point functions mentioned above can be considered as
basis functions, so we can describe any functions by a linear combination of the
point functions.

The Fourier basis
Let f : {0, 1}n → C. The Fourier transform of the function f is defined as

f̂(a) =
∑

x∈{0,1}n

f(x)e−πi〈a,x〉, (1)

where 〈a, x〉 is the inner product
∑n

j=1 ajxj . Then, f(x) can be described as a
linear combination of the basis functions χa(x) = eπi〈a,x〉, that is,

f(x) =
∑

a∈{0,1}n

f̂(a)χa(x).

In the above, f̂(a) is called Fourier coefficient of χa(x). As a consequence of
Euler’s formula eπi = −1 we have

χa(x) = (−1)〈a,x〉.

It is easy to see that the Fourier basis is orthonormal since

1
2n

∑

x∈{0,1}n

χa(x)χb(x) =

{
1 if a = b,

0 otherwise.
(2)

870 T. Ohsawa et al.

In this paper, we consider only Boolean functions and assume that the range of
the boolean function is {±1} instead of {0, 1} without loss of generality. That is,
we regard boolean functions as mappings from {0, 1}n to {±1}. Also, we have

χa+b(x) = χa(x)χb(x).

This multiplicative property plays an important role in this paper.
Let BP = {Pa,1 | a ∈ {0, 1}n} and BF = {χa | a ∈ {0, 1}n} be the sets of the

basis functions with respect to point functions and the Fourier basis respectively.
Finally note that the above form of Fourier transform is often called Walsh-
Hadamard transform.

3 Our Proposal

FSS schemes for some function classes such as point functions, interval function,
and partial pattern matching functions are proposed by Boyle et al. As men-
tioned, any function can be described as a linear combination of basis functions.
If the function is described as a linear combination of a super-polynomial number
of basis functions, then the computational cost for evaluating the function might
be inefficient. We say that a function has a succinct description (with respect
to the basis B) if the function f is described as f(x) =

∑
h∈B′ βhh(x) for some

B′ ⊂ B such that |B′| is polynomially bounded in n. If we can find a good basis
set B, some functions may have a succinct description with respect to B. We
consider to take the Fourier basis as such a good basis candidate.

We will provide an FSS scheme for some function class whose elements are
functions with succinct description with respect to the Fourier basis BF . Since
the Fourier basis has nice properties, our FSS scheme can be more simply realized
than the previous FSS schemes.

As mentioned in Sect. 1, Akavia et al. [1] show that many hard-core predi-
cates have succinct description with respect to the Fourier basis BF . Thus, our
proposal can be used as an FSS scheme for hard-core predicates.

3.1 General FSS Scheme for Succinct Functions

As mentioned, any function can be described as a linear combination of basis
functions. Before mentioning an FSS scheme with respect to the Fourier basis,
we give a general construction of a naive FSS scheme for some succinct func-
tion f with respect to some basis B from an FSS scheme for each basis func-
tion in B. That is, f(x) =

∑
hi∈B′ hi(x) for some B′ ⊂ B such that |B′| is

polynomially bounded in n. Let FB,� be a class of functions f which can be
represented as a linear combination of � basis functions (with respect to B)
at most, where � is a polynomial in n. Suppose that a p-party FSS scheme
(Genh

Multi,Eval
h
Multi,Dech

Multi) for a basis function h satisfies the following.

• Genh
Multi(1

λ, h) : On input the security parameter 1λ and a basis function h,
the key generation algorithm outputs p keys (k1, . . . , kp).

Function Secret Sharing Using Fourier Basis 871

Algorithm 1. Gen(1λ, f)
for i = 1 to � do

(ki
1, k

i
2, . . . , k

i
p) ←Genh

Multi(1
λ, hi)

end for
for j = 1 to p do

Set kj ← (k1
j , k2

j , . . . , k�
j)

end for
Return (k1,k2, . . . ,kp)

Algorithm 2. Eval(i,ki, x)
for j = 1 to � do

yi
j ←EvalhMulti(i, k

i
j , x)

end for
Return yi = (yi

1, y
i
2, . . . , y

i
�)

Algorithm 3. Dec(y1, . . . ,yp)
for i = 1 to � do

gi ←Dech
Multi(y

1
i , . . . , yp

i)
end for
Return g =

∑�
i=1 gi

• EvalhMulti(i, ki, x) : On input a party index i, a key ki, and an input string
x ∈ {0, 1}n, the evaluation algorithm outputs a value yi ∈ Si, corresponding
to i-th party’s share of h(x).

• Dech
Multi(y1, . . . , yp) : On input shares y1, . . . , yp of all the parties, the decryp-

tion algorithm outputs a solution h(x) of the basis function h for x.

By using the above FSS scheme (Genh
Multi,Eval

h
Multi,Dech

Multi) for basis
functions, we construct an FSS scheme (Gen,Eval ,Dec) for succinct functions
f ∈ FB,�: Algorithm 1 for Gen, Algorithm 2 for Eval and Algorithm 3 for Dec. In
this construction, we partition each basis function hi into p keys (ki

1, k
i
2, . . . , k

i
p)

and set a key of f for the j-th party Pj as kj = (k1
j , k2

j , . . . , ki
j). Each party

Pj which gets a key vector kj executes Eval on every component ki
j of kj and

obtains a vector yj = (y1
j , y2

j , . . . , yn
j), which is a share of the input x. We collect

all the share vectors (y1,y2, . . . ,yp) and execute Dec on all the i-th elements
over the share vectors for every i. Then, by summing up all resulting values from
Dec, we can obtain the solution f(x) for the input x of the function f . Since all
the basis functions hi of the target function f are hidden, f is also kept hidden.

The correctness of (Gen,Eval ,Dec) just comes from the correctness of each
FSS (Genh

Multi,Eval
h
Multi,Dech

Multi) for the basis function h. But some care
must be done. From the assumption, f ∈ FB,� has � terms at most. If we
represent f as a linear combination of exactly � terms, some coefficients for basis
functions must be zero. Since the 0-function which maps any element x ∈ D to
0 can be partitioned into several functions as the basis functions can be, we can
apply (Genh

Multi,Eval
h
Multi,Dech

Multi) as well.
The security of (Gen,Eval ,Dec) is also straightforward. Since basis functions

are linearly independent orthogonal vectors, any information on some basis func-
tion hi is independent to the information of the other basis function hj where
i �= j. Thus, a simple reduction to (Genh

Multi,Eval
h
Multi,Dech

Multi) guarantees
the security of (Gen,Eval ,Dec).

872 T. Ohsawa et al.

Note that if we do not care about the leakage of the number of terms with
non-zero coefficients for f , we can omit the partitioning of zero-functions, which
increases the efficiency of the scheme.

3.2 FSS Scheme for Succinct Linear Combinations of Point
Functions

Here, we give a slight generalization of Boyle et al’s FSS scheme for point func-
tions. In this generalization, we give an FSS scheme for functions which can be
described by linear combinations of poly(n) point functions Pa,b, that is, f(x) =
Pa1,b1 +Pa2,b2 + · · ·+Papoly(n),bpoly(n) . The generalization can be realized by using
Boyle et al’s scheme as (Genh

Multi,Eval
h
Multi,Dech

Multi) discussed in the previous
subsection.

3.3 FSS Scheme for the Fourier Basis

In this subsection, we give FSS schemes for the Fourier basis. As mentioned,
any boolean function is described as a linear combination of the Fourier basis
functions χa(x) = (−1)〈a,x〉. Since we do not know how to evaluate any function
efficiently, we limit ourselves to succinct functions with respect to the Fourier
basis BF . Note that succinct functions with respect to BF do not coincide
with succinct functions with respect to point functions BP . Simple periodic
functions are typical examples of succinct functions with respect to BF , which
might not be succinct functions with respect to BP . As mentioned, some hard-
core predicates of one-way functions are succinct functions with respect to BF .
Thus, our results extend the applicability of FSS schemes to a wider class of
functions. Our construction is much simpler than Boyle et al’s FSS for point
functions which essentially uses a pseudorandom generator. Moreover, the key
length of our scheme is O(λ) for the security parameter λ.

3.3.1 2-Party FSS Scheme for the Fourier Basis

First, we consider a 2-party FSS scheme for the Fourier basis. Our scheme
consists of three algorithms Gen2

F (Algorithm 4), Eval2F (Algorithm 5), and
Dec2F (Algorithm 6). Gen2

F is an algorithm that divides a into two random
strings a0 and a1 so as to satisfy that a = a0 + a1. Note that this division of
a is a (2, 2)-threshold SS scheme. Moreover, this implies that a Fourier basis
χa(x) = (−1)〈a,x〉 can be decomposed into the product of two Fourier basis
functions

χa(x) = (−1)〈a,x〉 = (−1)〈a0,x〉 · (−1)〈a1,x〉 = χa0(x) · χa1(x). (3)

By regarding (−1)〈a0,x〉 and (−1)〈a1,x〉 as keys k0, k1 respectively, we distribute
them to both parties P0, P1. In EvalF2 , each party obtains the share by feeding
x to the function distributed as the key. DecF

2 is invoked in order to obtain the

Function Secret Sharing Using Fourier Basis 873

Algorithm 4. GenF
2 (1λ, a = a1 · · ·

an)
Choose a bit string a0 ∈ {0, 1}n uni-
formly
a1 = a ⊕ a0

k0 = a0

k1 = a1

Return (k0, k1)

Algorithm 5. EvalF2 (i, ki, x = x1 · · ·
xn)

Parse ki as ki = (ai,1‖ai,2‖ . . . ‖ai,n)
wi =

⊕n
j=1 xjai,j .

Return wi.

Algorithm 6. DecF
2 (w1, w2)

Let ans = w0 ⊕ w1.
Return w = (−1)ans .

Fourier basis function χa(x) from the shares. Distributed keys k0, k1 do not leak
any information about the Fourier basis function χa(x) because a0 is uniformly
random. Unlike the scheme by Boyle et al., Gen does not err, since there is no
restriction on choosing random numbers.

Correctness:
Due to the construction, the correctness follows from Eq. (3).

Security:
We show the above scheme is (2-party, 1-secure) FSS scheme. We assume that
an adversary A chooses (f0, f1) where f0 = χa and f1 = χb. Then the chal-
lenger chooses a random bit c to select fc and invokes GenF

2 (1λ, a) if c = 0 and
GenF

2 (1λ, b) if c = 1. If c = 0 then a is divided into two random strings a0 and
a1 such that a = a0 ⊕ a1. If c = 1 then b is divided into two random strings b0
and b1 such that b = b0 ⊕ b1. In any case, the adversary A accesses one of four
Fourier basis functions χa0 , χa1 , χb0 and χb1 . Even if the adversary A knows
ai (resp., bi), A cannot guess a1−i (resp., b1−i) with probability more than 1/2.
Thus, A cannot guess the values a and b because they are randomly masked.
It implies that only A can do for guessing the random bit c selected by the
challenger is just a random guess. So, Adv(1λ,A) = 0.

3.3.2 Multi-party FSS for the Fourier Basis
It is easy to extend our 2-party FSS for the Fourier basis to a multi-party scheme.
(Note that it is difficult to extend 2-party FSS schemes for the point functions
to the multi-party case. Actually, Gilboa et al’s 2-party FSS scheme [11] for
point functions and Boyle et al’s multi-party FSS scheme [6] are quite different
in techniques.)

Since χa(x) can be decomposed into the product χa(x) =
∏p

i=1(−1)ai·x, we
send ai to the i-th party Pi. We similarly define the three algorithms GenF

Multi

(Algorithm 7), EvalFMulti (Algorithm 8), and DecF
Multi (Algorithm 9) as multi-

party FSS scheme for the Fourier basis.

874 T. Ohsawa et al.

Algorithm 7. GenF
Multi(1

λ, a)
for i = 1 to p − 1 do

Choose ai ∈ {0, 1}n uniformly
ki = ai

end for
ap = a ⊕ a1 ⊕ a2 ⊕ · · · ⊕ ap−1,

kp = ap

Return (k1, k2, . . . , kp)

Algorithm 8. EvalFMulti(i, ki, x)
Parse ki as ki = (ai,1‖ai,2‖ · · · ‖ai,n)
wi =

⊕n
j=1 xjai,j

Return wi

Algorithm 9. DecF
Multi(w1, w2, . . . , wp)

Let ans = w1 ⊕ w2 ⊕ · · · ⊕ wp.
Return (−1)ans

As in the two-party case, the correctness of the above multi-party FSS scheme
can be shown. Also the security follows from the perfect security of (p, p)-
threshold SS scheme. Actually, the above scheme is (p-party, (p − 1)-secure)
FSS scheme.

As mentioned, our multi-party FSS scheme is a straightforward generalization
of the two-party case. This heavily owes the multiplicative property of Fourier
basis functions, which can relate to a simple (p, p) threshold SS scheme.

3.4 FSS Scheme for Succinct Functions w.r.t. the Fourier Basis

As mentioned in Subsect. 2.2, any function is described by a linear combina-
tion of the Fourier basis functions. Let f be a succinct Boolean function with
respect to BF , that is f(x) =

∑
a∈A βaχa(x) for some A ⊂ {0, 1}n such

that |A| is a polynomially bounded in n. (Note that if f is a Boolean func-
tion then all coefficients βa are either 0 or 1.) By using (GenF

2 ,EvalF2 ,DecF
2)

or (GenF
Multi,Eval

F
Multi,DecF

Multi), we can construct a general FSS scheme
(Gen,Eval ,Dec) for succinct Boolean functions with respect to BF .

4 Conclusion

By observing that any function can be described as a linear combination of
the basis functions, we have provided simple FSS schemes for several classes of
functions. Especially for succinct functions with respect to the Fourier basis, our
scheme is much simpler than the previous FSS schemes. Since the class of succinct
functions with respect to the Fourier basis is different from point functions and
their variants, our results broaden functions for which FSS schemes are available.

Furthermore, to distribute a function, we have used a simple (n, n) threshold
SS scheme. That is, to divide a secret a, we randomly choose a1, . . . , an such
that a = a1 ⊕ · · · ⊕ an. An interesting open question is as follows: Can we use
instead Shamir’s (n, k) threshold scheme to construct (n-party, (k − 1)-secure)
FSS?

Function Secret Sharing Using Fourier Basis 875

Acknowledgements. The third author is supported in part by JSPS Grant-in-Aids
for Scientific Research (A) JP16H01705 and for Scientific Research (B) JP17H01695.

References

1. Akavia, A., Goldwasser, S., Safra, S.: Proving hard-core predicates using list decod-
ing. In: Proceedings of the 44th Symposium on Foundations of Computer Science
(FOCS 2003), pp. 146–157 (2003)

2. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.P.: RSA and Rabin functions: Cer-
tain parts are as hard as the whole. SIAM J. Comput. 17(2), 194–209 (1988)

3. Blakley, G.R.: Safeguarding cryptographic keys. In: American Federation of Infor-
mation Processing Societies: National Computer Conference, pp. 313–317 (1979)

4. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)

5. Blum, M., Micali, S.: How to generate cryptographically strong sequence of pseudo-
random bits. SIAM J. Comput. 13(4), 850–864 (1984)

6. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: EUROCRYPT 2015,
Part II. LNCS, vol. 9057, pp. 337–367 (2015)

7. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 509–539
(2016)

8. Chor, B., Gilboa, N.: Computationally private information retrieval. In: Proceed-
ings of the 29th Annual Symposium on Theory of Computing (STOC 1997), pp.
304–313 (1997)

9. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

10. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 93–122 (2016)

11. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 640–658 (2014)

12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

13. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: Pro-
ceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC
1989), pp. 25–32 (1989)

14. H̊astad, J., Näslund, M.: The security of all RSA and discrete log bits. J. ACM
51(2), 187–230 (2004)

15. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: Proceedings of the 38th IEEE
Symposium on Foundations of Computer Science (FOCS 1997), pp. 364–373 (1997)

16. Morillo, P., Ráfols, C.: The security of all bits using list decoding. In: PKC 2009.
LNCS, vol. 5443, pp. 15–33 (2009)

17. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press,
Cambridge (2014)

18. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

	Function Secret Sharing Using Fourier Basis
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Definitions
	2.2 Basis Functions

	3 Our Proposal
	3.1 General FSS Scheme for Succinct Functions
	3.2 FSS Scheme for Succinct Linear Combinations of Point Functions
	3.3 FSS Scheme for the Fourier Basis
	3.4 FSS Scheme for Succinct Functions w.r.t. the Fourier Basis

	4 Conclusion
	References

