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Abstract. In this paper, a comparative analysis of two heuristic algo-
rithms, i.e., enhanced differential evolution (EDE) and tabu search (TS)
with unschedule load approach for its optimality is proposed. This paper
aims to achieve minimum electricity bill and maximum peak to average
ratio (PAR) reduction while considering the factor of user satisfaction. In
order to achieve our aim, an objective function of electricity cost reduc-
tion is made based upon the scheduling strategies. A combined model of
pricing schemes, i.e., time of use (ToU) and critical peak pricing (CPP)
is used to calculate electricity bill and to tackle the instability. We imple-
mented a state of art user-defined taxonomy of appliances in our paper
to deal with the user comfort appropriately in a residential area. Simula-
tion results shows that our proposed strategy works better to encourage
the users for intelligent power consumption.

Keywords: Smart grid · Demand side management · Time of use tariff ·
Critical peak pricing · Home energy management

1 Introduction

Nowadays, the scope of smart grid (SG) as an efficient power network is increas-
ing day by day. It adopts the demand side management (DSM), which provides
energy management for reducing load, created by peak formations. In order to
increase effectiveness, SG smartly distributes the power by monitoring advanced
technologies and modified methodologies with reliable communication. Everyday
the load waves highlight the high electricity demand of user. For the purpose
of optimal scheduling of this load, the utility takes information about 24-hours
schedule from the user. Due to this, it effectively increase user demand manage-
ment. In this regard, different optimal and beneficial options are also provided
to the users by utility to consume power efficiently.

Meanwhile, in a working system of DSM within SG shown in Fig. 1, the
daily load is managed between off-peak hours (OPHs) and on-peak hours (PHs)
via load shifting. However, if there is an excessive demand from the user-side,
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load is managed via distributed energy resources (DERs) [2]. The ability of
self-healing in SG let it notify automatically when there is any error or failure
during transmission. Applications of SG are not only limited to the efficient
transmission, but it also provides better options of integration with renewable
energy sources (RESs), hydraulic power generation, photo-voltaic etc. These
types of integrated infrastructures successfully lead towards load shaving, load
distribution and load reduction, however, the cost of mounting these is very high.

The desire for the efficient implementation of such system reflects benefits
related to consumer satisfaction, maximum cost reduction, minimum PAR and
a great revolution in a power sector. This thing also tackles the security issues
and maintains a proper two way communication within the network topology. So,
the extension of the useful life of smart grid depends on the way of keeping it.

While undertaking the state of art analysis, it is observed that there are
so many techniques of DSM that are dealing with the optimization strategies.
Such strategies hold the uncertainties while taking into account the reduction
of electricity bills, minimization of PAR and integration of natural resources.
For achieving these objectives, user satisfaction is completely ignored, e.g., in
[1], Zhang, Di. et al used mixed integer linear programming (MILP) to cut the
carbon footprint extensively and to make the cost reduction high. Along with the
ε-constraint method, the appliances were scheduled under three different pricing
mechanisms, i.e., real time pricing (RTP), CPP with peak demand charge and
CPP with demand charge whereas the authors in [3] used binary particle swarm
optimization (BPSO) to manage the load scheduling and reduction in electricity
cost while ignoring the users waiting time aspect. In this paper, the authors
addressed the maximum demand from the user and performed load shifting to
minimize the demand and electricity cost. Similarly, in [4], deficiency lies in
aspect of inconsideration of user satisfaction and PAR reduction. As, integer
linear programming (ILP) is used to minimize the load on PHs. So, regarding its
practical consideration, the authors divided the appliances with flexible power
and flexible time in order to demonstrate the effectiveness of scheduling. In this
paper, the authors worked upon increasing efficiency of the utility while limiting
the factor of user satisfaction.

A decentralized framework in area of SG is presented in [5], to manage
the load profiles of multiple consumers without affecting their preferences. The
authors introduced pre-announced tariffs and load profiles, but if any issue
occurs, the feedback is sent from the consumers to let the utility provide respec-
tive solutions. The load profiles of consumers modified on each iteration but
limit the high demand of minimum cost and user satisfaction with inconsider-
ation of PAR. In [6], to enhance the efficiency of electricity consumption, Ma,
J. et al presented a concept of cost-efficiency. Different household appliances
settings within the scope of multiple homes were applied to schedule the load
and consumption of electricity. For its implementation, the authors used frac-
tional programming (FP). This particular implementation is limited for DSM
day-ahead bidding process. The integration of DERs along with cost-effective
process was achieved to increase the performance of proposed framework and
cost reduction while ignoring the user satisfaction factor.
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Fig. 1. SG communication architecture

Therefore, to tackle the aforementioned objectives, we have proposed a sched-
uler for home energy management system (HEMS). In this paper, a heuris-
tic optimization approach is followed. Two of the optimization techniques, i.e.,
EDE and TS are implemented while taking into account the user satisfaction.
Section 2 of this paper comprise of brief related work, Sect. 3 contains system
model, Sect. 4 deals with the simulation results and Sect. 5 describes conclusion.

2 Literature Review and Motivation

In this section, we discussed the state of art analysis of techniques which have
been used to resolve the scheduling issues as well as to attain the purpose of cost
minimization.

In [2,5], and [11], hybrid pricing schemes are used to avoid the instability of
the system. The combination of RTP and inclined block rate (IBR) in [5], and
[11] enhanced the efficiency for both consumer-side and utility-side. In above
mentioned three papers the combination of pricing schemes proved to be more
reliable as compared to their separate performance. As, in [2], RTP is used
with the combination of ToU tariff to avoid the data loss and peak formations
which occurs due to using RTP single-handedly. Moreover, using RTP alone the
electrical appliances work when the prices are low and causes excessive load on
the grid.

In [1], authors achieved the trade-off between the electricity payments and
user comfort. A model was designed using a mathematical function called
Taguchi loss function to find discomfort cost. The power scheduling strategies
were proposed under three operational modes while taking in account the day
ahead price signals. The main deficiency in this study is inconsideration of the
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PAR reduction. In [2], there is also an achievement of trade-off between delay
time and cost reduction while reducing the PAR at optimal level. Zhang, Di. et al
[3], also achieved the trade-off between the factors of CO2 emission and electricity
cost while ignoring the consideration of PAR reduction. In [4], trade-off between
payments and comfort is achieved but the excessive computational period, lim-
its the confirmation for the optimal solution. Moreover, RTP used in this paper
causes data loss and uncomfortable environment between suppliers and buyers.
In [5], trade-off between delay time and bill reduction is achieved. An architec-
ture of energy management system including home gateways, smart meters and
RESs is proposed. In this paper, the increased PAR reduction is also achieved due
to using the combination of RTP with IBR pricing mechanisms. [8], proposed a
mathematical framework in order to achieve dual reduction, i.e., electricity cost
reduction and power consumption reduction. The trade-off between user satisfac-
tion and payments is also mentioned in this paper. In [6], authors addressed the
problem of high electricity cost and user comfort. In order to resolve this issue,
a multiple knapsack problem is introduced while considering the wind driven
optimization (WDO) algorithm. The main focus in its implementation was the
integration of knapsack problem with the optimization technique, i.e., K-WDO.
In this study authors aim to lower the amount of bills, however, used standalone
price signal, which most of the times creates uncertainty.Similarly, Khan, M.A.
et al in [7], presented a general system framework to minimize the electricity
cost and to achieve consumers satisfaction. For this purpose, GA is used while
taking into account RTP pricing. They focused on minimizing PAR and cost
with consideration of user comfort but the deficiency occurs where standalone
pricing scheme is followed. [4], worked upon achievement of above mentioned
objectives and claimed about the problem of high user demand and high elec-
tricity bills. Ha, L.D et al introduced an automated home energy system while
focusing on tabu search (TS) algorithm in [9]. Similarly, in [10], and [12], authors
used TS to optimize scheduling related tasks. The forthcoming section contains
the proposed system in order to present the use of taxonomy of appliances taken
from the base paper [2], of this research.

3 Proposed System

In our proposed system, we implemented two heuristic techniques, i.e. enhanced
differential evolution (EDE) and tabu search (TS). To enable the calculation
of electricity bill without creating instability of the system, a combined model
of price signal CPP and ToU is used. We performed simulations in MATLAB
to get the results in minimum computational time. Our proposed system is
limited for the residential area. Moreover, the implementation is based upon the
single home which consists of smart meters (SM) plugged inside the home. An
electronic management controller (EMC) display is also connected with SM for
the purpose of user involvement. There is a bi-directional relationship between
utility and smart home shown in Fig. 2, in order to present the communication
link between them. The energy reaches to our home from the smart grid through
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distribution lines and utility. The schedular designed for this paper is based on
the time slots of 24 complete hours of one day. The appliances distribution are
shown in Tables 1, 2 and 3. Pseudo codes for TS and EDE are given in Algorithms
1 and 2.

In this paper, we categorized appliances to ease the way of scheduling under-
standing. The main division of appliances consists of three categories, i.e.,
(i) category A comprises of daily use items, (ii) category B of shiftable items and
(iii) category C of interruptible appliances. Our simulations are implemented on
13 appliances, with length of operation time (LOT) in hours, power rating in
kilo watt hours and time slots α to β, are given. α represent the starting running
time of appliance and β represent the ending running time of appliances. The
detail of assumed categorization include explanation given below.

Category A consists of the appliances, which can be operated at any time
interval of the day. The running time of this type of appliances cannot be updated

Table 1. Category A: burstload daily appliances

Daily appliances PowerRating (kWh) LOT α to β

Lights 0.6 12 [02:00–24:00]

Fan 0.75 16 [01:00–24:00]

Iron 1.5 6 [14:00–23:00]

Oven 0.18 7 [06:00–22:00]

Toaster 0.5 2 [06:00–10:00]

Coffee-Maker 0.8 2 [06:00–22:00]
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Table 2. Category B: burstload shiftable appliances

Shiftable appliances PowerRating (kWh) LOT α to β

Washing machine 0.78 5 [08:00–16:00]

Dryer 4.40 4 [06:00–18:00]

Dish washer 3.6 3 [07:00–12:00]

Table 3. Category C: interruptible appliances

Interruptible appliances PowerRating (kWh) LOT α to β

Air condition 1.44 15 [06:00–24:00]

Refrigerator 0.73 14 [06:00–24:00]

Water heater 1.5 6 [06:00–24:00]

Space heater 1.50 12 [06:00–24:00]

Algorithm 1. TS
1: Initialize all parameter
2: x’=best solution among trails
3: S(x) sample of neighborhood S(x)εN(x)
4: Current solution x′εX
5: Set tabu list TL=150
6: Set aspiration criteria =0
7: Set iteration counter = 0
8: Randomly generate initial solution
9: Randomly generate trail solutions S(x)εN(x) and sort them in ascending order

to obtain SS(X)
10: Let x’ be the best trail solution in SS(X)
11: ifx′ > x
12: X ′′ = x
13: else
14: X”=x’
15: end while k<= number of iterations
16: For i=1:TL
17: Perform tabu search
18: If X ′′ > X ′

19: Update X” in tabu list
20: Else X” not present in tabu list
21: update X” in aspiration criteria
22: end end end
23: If stopping criteria is satisfied
24: perform termination
25: else k=k+1
26: end
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Algorithm 2. EDE
1: Initialize all parameter pop size, D, MaxItr, xl, xu, f, vi
2: Initialize population
3: for j = 1:MaxItr
4: for j = 1:D
5: while termination criteria not satisfied
6: perform mutation
7: for each vector Xi randomly
8: select three vectors
9: Xr1, Xr2, Xr3

10: r11, r21, r31
11: end for mutant vector
12: V i = Xr1 + f(Xr2 − Xr3)
13: end if (G <= 100) then
14: for i=1:D
15: if randb<=CR1 do
16: Y11=Xr1
17: end if
18: randb<=CR2 do
19: Y21=Xr21
20: end if
21: randb<=CR3 do
22: Y31=Xr31
23: end if
24: randb*xj
25: randb*vj+(1-randb(j)*xj)<- X51
26: end end
27: if
28: f(u) is better than f(xi) then
29: replace xi with u
30: end if
31: set G=g+1
32: end while

as they run according to the user’s habit, e.g., Toaster, Fan, Television, Oven,
Lights, Iron,etc. The details are mentioned in Table 1.

The category B consists of the appliances which can be shifted to any other
hour of the day w.r.t user’s demand. While shifting their running time, load
profile cannot be change as LOT is pre-announced from user-side. Such type of
appliances includes: Dryer, Washing Machine, etc which are shown in Table 2.
According to user demand, AC, Refrigerator, Water Heater etc. are the appli-
ances with interruptible interval even during the running position. Such appli-
ances belong to category C as shown in Table 3. The major contribution in
our simulation result is the combined use of price signal CPP and ToU, which
increases the reliability of communication between utility and customer. The
graph of combined ToU and CPP price signal is shown in the Fig. 3 below. In
order to perform simulation experiments, 13 appliances from [2] of a single home
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Fig. 3. Combined ToU and CPP

are considered. Its scope is limited to the residential users. After explaining the
categorization criteria, simulation results will be discussed in the former section
to analyze the performance of our optimization techniques.

4 Simulation Results and Discussion

In this section, the overall performance of our system model is discussed. The
results show that how the variations are meeting our objective function related to
minimizing cost and maximizing user comfort. According to Fig. 4, there is a flow
of load shedding which can be easily observed. The unscheduled load is creating
peak where the prices are high while our optimization techniques are transferring
load to OPHs. EDE reduces the load more efficiently during the high price hours
of the day than TS. The waved like distribution of load among the 24-hours is
shown in the graph captioned as load demand of one day. The total load shown
in this graph is distributed among 24-hours per day. In Fig. 5, the unscheduled
cost during the hours (11–17) is creating the peak because of the CPP tariff as
its values are high during this time interval of the day. Figure 3 show the peak
in the middle of the graph that represent the high price. According to Fig. 6,
the total cost of TS is 4825 cents which is 41.42% better in comparison to the
unscheduled cost and 14.26% to the EDE. Here, the trade-off between the delay
time and electricity cost reduction occurs because when delay time increases, the
cost decreases and vice versa. The electricity cost before scheduling of control
parameters is much more, i.e., 8238 cents per day which eventually decreased
to 6000 cents per day in case of EDE while 4825 cents per day in case of TS.
The percentage increase and decrease is a calculated affect of parameters with
respect to unscheduled parameter.

The PAR reduction is shown in Fig. 7, according to it, TS reduces the peak
ratio more than that of EDE. The unscheduled PAR is approximately equal to
2.17 which is reduced to 1.97 in case of EDE and 1.87 in case of TS. When we
analyze Fig. 8, the delay time is 2 h and 24 min in case of EDE, which is less in
comparison with the delay time caused by TS. As, the TS delay time is 3 h and
34 min approximately. It shows that EDE is achieving more reliable waiting time
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as compared to that of TS. In our paper, we have successfully achieved our aim
of minimizing electricity cost as well as maximizing user’s satisfaction and PAR
reduction. However, there is a trade-off between these two objectives. In order
to reduce electricity bills, somehow user has to compromise on his comfort, on
the other side, to achieve high relaxation for using appliances freely, one has to
pay high value for it.

5 Conclusion

DSM is considered to be very suitable for both utility-side and consumer-side.
The simulations are performed in order to evaluate the system. Our results are
based on the performance of heuristic techniques. The trade-off is also attained
between user comfort and electricity bill reduction. Another trade-off that we
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have observed is between PAR and total reduced cost. In our study, we used
combined pricing tariff in order to deal with the instability of system. As, CPP
tariff generates the high cost value and increases cost rapidly in some particular
hours of day, so combination with RTP proved the stability and reliability.
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