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Abstract. Multicore clusters are widely used to solve combinatorial
optimization problems, which require high computing power and a large
amount of memory. In this sense, Hash Distributed A* (HDA*) paral-
lelizes A*, a combinatorial optimization algorithm, using the MPI library.
HDA* scales well on multicore clusters and on multicore machines. Addi-
tionally, there exist several versions of HDA* that were adapted for mul-
ticore machines, using the Pthreads library. In this paper, we present
Hybrid HDA* (HHDA*), a hybrid parallel search algorithm based on
HDA* that combines message-passing (MPI) with shared-memory pro-
gramming (Pthreads) to better exploit the computing power and memory
of multicore clusters. We evaluate the performance and memory con-
sumption of HHDA* on a multicore cluster, using the 15-puzzle as a
case study. The results reveal that HHDA* achieves a slightly higher
average performance and uses considerably less memory than HDA*.
These improvements allowed HHDA* to solve one of the hardest 15-
Puzzle instances.

Keywords: Parallel search algorithms ·Hybrid programming ·Multicore
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1 Introduction

Several search algorithms require high computing power and a large amount
of memory, thus, different parallel approaches have been proposed in order to
take advantage of the resources of multicore clusters. This is the case of the A*
algorithm, a variant of Best-First Search, which is used for solving combinatorial
optimization problems. These problems require finding a sequence of actions that
minimizes a goal function and allows transforming an initial configuration (i.e.,
the problem to be solved) into a final configuration (i.e., the solution).

A* [1,2] explores the graph that represents the state space of the prob-
lem using a cost function f̂ to value the nodes, which is defined as follows:

ˆf(n) = ˆg(n) + ˆh(n), where ˆg(n) is the known cost of the path from the initial
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node to the current node n and ˆh(n) is a heuristic estimate that represents the
unknown cost of the path from the current node n to the solution node. In
this algorithm the search tree is generated as the search progresses. During the
process, it keeps two data structures: one for the unexplored nodes sorted by f̂
(open list), and another for the already explored nodes (closed list) used to avoid
processing the same state multiple times. In each iteration, the most promising
node (according to f̂) available on the open list is removed, it is added to the
closed list, and legal actions are applied to it to generate successor nodes, that
will be added to the open list under certain conditions (verification known as
duplicate detection). The search process continues until the node that represents
the solution is removed from the open list.

Hash Distributed A* (HDA*) [3,4] is a parallel A* algorithm in which each
processor has its own open/closed lists and performs a quasi-independent search.
It uses a standard hash function to assign each state of the problem to a sin-
gle processor. This hash-based node distribution scheme allows balancing the
load and pruning duplicate nodes (i.e., nodes representing the same state) in
an absolute way, as they are always sent to the same processor. This version of
HDA* was implemented using the MPI library, thus, it can be run on distributed-
memory, shared-memory, or hybrid systems.

Other authors [5–7] adapted HDA* for multicore machines, using the
Pthreads library. In this way, it is possible to eliminate some inefficiencies that
arise when the original HDA* algorithm is run on a shared-memory machine.

Since current clusters are composed of shared-memory nodes, some applica-
tions may benefit from hybrid programming, i.e. by combining message-passing
(MPI) with shared-memory programming (Pthreads or OpenMP) [8,9]. To our
best knowledge, no hybrid version of HDA* has been proposed until now, to
better exploit the computing power and memory of multicore clusters.

In this paper, we present Hybrid HDA* (HHDA*), a hybrid MPI/Pthreads
parallel search algorithm based on HDA*. We evaluate the performance and
memory consumption of HHDA* on a multicore cluster, using the 15-puzzle as a
case study. The results reveal that HHDA* achieves a slightly higher average per-
formance and uses considerably less memory than HDA*. These improvements
allowed HHDA* to solve one of the hardest 15-Puzzle instances.

The rest of the paper is organized as follows. Section 2 discusses background
and related work. Section 3 introduces HDA* (HDA* MPI) and HDA* for
shared-memory architectures (HDA* Pthreads). Section 4 describes the Hybrid
HDA* algorithm. Section 5 shows our experimental evaluation. Finally, Sect. 6
presents the main conclusions and some ideas for future research.

2 Related Work

Today, many commodity clusters are composed of shared-memory machines.
Applications to be run on these systems can be developed by using only message-
passing or by combining message-passing with shared-memory programming
(hybrid programming). While the former approach requires less programming
effort, the latter may improve performance and reduce the memory used [10].
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The most common and efficient way to parallelize A* is to use a decen-
tralized strategy [11]: each process/thread (processor) is equipped with its own
local open and closed lists and performs a quasi-independent search. This strat-
egy is suitable both for shared-memory and distributed-memory architectures.
However, communication among the processors is needed due to the following
reasons: the workload should be distributed dynamically; duplicate nodes can
be generated by different processors and should be pruned in order to prevent
processors from performing duplicated work; the termination criterion should be
modified because if the search is ended when the first solution is found, there
will be no guarantee that such solution is the best one; the costs of the partial
solutions found so far should be communicated in order to use them to prune
the paths that lead to suboptimal cost solutions.

Hash Distributed A* (HDA*) [3] parallelizes A* by applying a decentralized
strategy. It was implemented using only MPI and asynchronous communication.
It uses a standard hash function to assign states to processors. This hash-based
node distribution scheme allows balancing the load and pruning duplicate nodes
in an absolute way, as the nodes representing the same state are always sent
to the same processor, which performs the duplicate detection procedure. The
algorithm works as follows. Periodically, each process P performs the following
steps until a global optimal solution is reached: (1) P checks if a message with
nodes has arrived. (2) If so, for each node, P determines if the node must be
added to the open list or if it should be discarded. (3) If no messages were
received, P selects a node from its open list (the one with the lowest f̂ -value).
Then, P expands the node and, for each successor, it calculates the hash value
to identify the owner process. If the node belongs to another process Q, P sends
a message with the node to Q. To reduce the communication overhead, a given
number of nodes whose recipient is the same are packed into a single message.

On the other hand, in [5] the authors adapted HDA* for multicore machines.
This version does not have the extra overhead of message-passing between
processors (threads) on a shared-memory architecture. Also, it uses less memory
as threads share common data structures. The algorithm works as follows. Each
thread is given an input queue, where the rest of the threads will deposit nodes
that must be processed by this thread, and a local output queue for each peer
thread. When a thread ti generates a node that belongs to another thread tj , ti
tries to acquire the lock associated with tj ’s input queue. If the lock is obtained
immediately, the node is transferred and the lock is released. Otherwise, the
node is added to the local output queue for tj . After ti carries out a certain
number of node expansions from its open list: (1) It tries to communicate the
nodes stored in each non-empty output queue to the respective thread, but it is
never forced to wait on a lock (2) It tries to consume nodes from its input queue
(it is only forced to wait when its open list is empty).

We developed our own versions of HDA* (HDA* MPI) and HDA* for mul-
ticore machines (HDA* Pthreads), which are summarized in Sect. 3. Implemen-
tation details can be found in [4,6] respectively. The former differs from the
original version in that it includes a parameter which indicates the maximum
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number of nodes to be processed per algorithm iteration. We noted that perfor-
mance does not improve by processing one node per algorithm iteration, as done
in the original version. The latter includes a technique to group several nodes
before transferring them to the corresponding thread. We observed that this
technique reduces the amount of node transfers and mitigates communication
and contention.

From the above it can be concluded that significant efforts were made to
parallelize the A* algorithm on different parallel architectures. However, nei-
ther of the known algorithms considers hybrid programming to better utilize
the resources of multicore clusters. It should be noted that, although in [12] a
hybrid parallel algorithm is presented for solving combinatorial problems, the
parallelization is based on the Weighted A* algorithm (a suboptimal version of
A* that trades-off solution quality for search time). However, Hybrid HDA* is
based on the A* algorithm and it aims to find optimal solutions.

3 Implementation of the HDA* Algorithms

3.1 HDA* (HDA* MPI)

Each process carries out an A* search locally and communicates with its peers
for sending/receiving messages containing nodes, the costs of solutions found
and messages that allow detecting termination.

Each process maintains its own open/closed lists, the cost of the best global
solution known so far (best solution cost), the best solution found by the process
(best solution), among others. In order to pack several nodes into a single mes-
sage, the process is equipped with a buffer (send buffer) for each peer process.

Each process P performs the following stages until a global optimal solution
is reached:

1. Work message reception stage: P checks if work messages containing nodes
have arrived. If so, P receives each message and, for each node with
f̂ < best solution cost, it performs the duplicate detection and adds the node
to the open list as appropriate.

2. Cost message reception stage: P checks if cost messages containing the
cost of a solution have arrived. If so, P receives the messages and updates
best solution cost as appropriate.

3. Processing stage: P extracts nodes from its open list, discarding those with
f̂ >= best solution cost. When the extracted node represents a solution, P
updates best solution and best solution cost and sends the solution cost to
the other processes. Otherwise, P adds the node to its closed list and expands
the node. Then, for each successor, P calculates the hash value to determine
the owner process. When the successor belongs to P, it adds the node to
its open list as appropriate. Otherwise, P adds the node to the send buffer
for the destination process and, if the buffer became full, it sends the work
message asynchronously.
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4. Idle stage: P enters this stage when its open list is empty. Firstly, it sends
work messages to those destination processes whose send buffer is non-empty.
Then, it remains waiting for: (1) work messages, (2) cost messages, (3) mes-
sages that allow detecting termination. P ends this stage when its open list
is non-empty, as a result of having received a work message, or when it
receives the termination notification message. Messages of types (1) and (2)
are processed in a similar way as described above; messages of type (3) are
processed based on Dijkstra’s termination detection algorithm [13].

When computation ends, the optimal solution (i.e. the sequence of actions
that allows transforming the initial state into the final state) is retrieved in a
distributed manner.

3.2 HDA* for Multicore Machines (HDA* Pthreads)

Each thread has its own open/closed lists. The node communication strategy
is based on the use of input/output queues. All threads share the best global
solution found so far (best solution), its cost (best solution cost), among others.

Each thread ti performs the following stages until a global optimal solution
is reached:

1. Work reception stage: ti tries to consume nodes from its input queue. If
it obtains the lock immediately, it takes all the nodes stored in the queue,
releases the lock, and then for each node with f̂ < best solution cost, ti per-
forms the duplicate detection procedure adding the node to the open list as
appropriate.

2. Processing stage: the main difference with HDA* MPI is the way in which
nodes are communicated between threads. When ti generates a node that
belongs to another thread tj , it stores the node in the local output queue
for tj ; when the amount of stored nodes reaches a certain limit, ti tries to
acquire the lock associated with tj ’s input queue and, if it obtains the lock
immediately, it transfers the stored nodes.

3. Idle stage: ti enters this stage when its open list is empty. Firstly, it transfers
the nodes stored in each non-empty output queue. Then, it remains waiting
until it receives work or it receives a termination notification from the master
thread (to this end, we adapted Dijkstra’s termination detection algorithm
for shared-memory machines [6]).

When computation ends, the optimal solution is retrieved by the master
thread.

4 Hybrid HDA* (HHDA*)

Hybrid HDA* (HHDA*) is based on the HDA* algorithm and its version for
multicore machines. HHDA* assigns only one process per machine. Each process
(master thread) creates threads that will perform the search procedure, along
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with the master thread. The proposed algorithm uses communication via shared-
variables, among threads on the same machine, and communication via message-
passing, among processes on different machines.

All threads on the same machine share the best solution found locally by
these threads (best solution), the cost of the best global solution known so far
(best solution cost), among others.

Each thread has: its own open/closed lists, a global input queue, an output
queue for each peer thread on the machine, message buffers for inter-process
communication, among others.

Each thread ti performs the following stages until a global optimal solution
is reached:

1. Message reception stage: any thread on the machine can receive messages
addressed to its process, containing either (1) nodes or (2) the cost of a
solution found. In the first case, for each received node, ti identifies the owner
thread and, depending on whether the node belongs to ti or not (a) it carries
out the duplicate detection and adds the node to its open list (as appropriate)
or (b) it stores the node in the local output queue for the destination thread.
In the second case, ti updates best solution cost, as appropriate.

2. Work reception stage (from the input queue): the thread checks the state of
its input queue, in order to consume the nodes left by other threads, as in
HDA* Pthreads.

3. Processing stage: the main difference with HDA* MPI and HDA* Pthreads is
the way in which nodes are communicated among threads. When a generated
node belongs to another thread on the same machine, the node is communi-
cated via shared-memory, using input/output queues, as in HDA* Pthreads.
When a generated node belongs to a thread running on a different machine,
the node is communicated via message-passing. In the last case, each thread
has a send buffer for each process in the system, where nodes that must be
communicated are stored, as in HDA* MPI.

4. Idle stage: ti enters this stage when its open list is empty. Firstly, it transfers
the nodes stored in each non-empty output queue and each non-empty send
buffer to its owner thread/process, via shared-memory or message-passing,
respectively. Then, ti remains waiting until it receives nodes in its input queue
or it receives a termination notification from the master thread. The mas-
ter thread behaves differently: when it detects local termination (i.e., on the
machine, using Dijkstra’s termination detection algorithm for shared-memory
machines [6]), it will wait for: (1) work messages (2) cost messages (3) mes-
sages that allow detecting global termination. Messages of types (1) and (2)
are processed in a similar way as described above; messages of type (3) are
processed based on Dijkstra’s termination detection algorithm [13].

When computation ends, the master thread on each machine remains active.
Together, they will retrieve the optimal solution in a distributed manner.
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5 Experimental Results

Experimental tests were carried out on a cluster composed of 7 machines con-
nected through 1 GB Ethernet. Each machine has two Intel Xeon E5620 proces-
sors and 32 GB RAM. Each processor has four 2.4 Ghz physical cores.

The tests considered sixteen 15-Puzzle instances presented in [14] (numbered
3, 15, 17, 21, 26, 32, 33, 49, 53, 56, 59, 60, 66, 82, 88, 100) and six of the
10 configurations proposed by [15] (numbered 101–106 in this paper). These
configurations present different levels of complexity.

A* was run on a single machine of the previous cluster. HDA* MPI and
HHDA* were run on the cluster, varying the number of machines used between
2 and 7. In HDA* MPI, 4 processes/workers were assigned to each machine. In
HHDA*, 1 process (master thread) was assigned to each machine, each one will
create 3 threads (4 threads/workers per machine).

In this section, we compare the performance achieved (speedup and effi-
ciency1) and the amount of memory consumed by HDA* MPI and HHDA*.

5.1 Performance Analysis

Figures 1a and b illustrate the average Speedup and the average Efficiency
achieved by HDA* MPI and HHDA*, for different number of workers. The results
reveal that, on average, the speedup of HHDA* is similar for 8 and 12 workers,
and slightly better for 16, 20, 24 and 28 workers, compared to HDA* MPI. Also,
HHDA* exhibits an almost constant average Efficiency, which ranges between
0.71 and 0.73, whereas HDA* MPI shows a decreasing average Efficiency, with
values ranging between 0.64 and 0.74.

To clarify the improvement in the performance of HHDA*, Figs. 2a and b
show the average Search Overhead (SO) and the average Load Balance (LB)

Fig. 1. Performance of HDA* MPI and HHDA*

1 Efficiency is defined as Sp/N, where Sp is the speedup of the parallel algorithm over
the sequential algorithm and N is the number of workers/cores used.
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Fig. 2. Search Overhead and Load Balance of HDA* MPI and HHDA*

Fig. 3. Speedup of HDA* MPI and HHDA*, sorted by problem complexity

achieved by HDA* MPI and HHDA*, for different number of workers. The defin-
itions of SO and LB can be found in [3]. In general, the results show that HDA*
MPI exhibits a higher average SO, compared to HHDA*, which augments as
the number of workers increases, and ranges between 29% and 44%. However,
HHDA* presents an almost constant average SO, which varies between 23% and
27%. SO arises as a side effect of using multiple inconsistent open lists in a paral-
lel A* algorithm. Since each worker performs a local A*, the nodes expanded by
a worker do not necessary represent a global best selection. This occurs because
the access to global knowledge is restricted. This, however, has less impact on
HHDA*, because threads on the same machine share best solution cost. When a
thread finds a solution or receives a cost message, it updates best solution cost,
so threads on the same machine immediately know this information and use
it to prune nodes. Consequently, in HHDA*, the last iterations of the search
explore less nodes, compared to HDA* MPI. On the other hand, the average LB
is similar for both algorithms.
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Fig. 4. Reduction in memory consumption: HHDA* vs HDA* MPI

In order to determine the improvement in the performance of HHDA* by
problem complexity, Figs. 3a and b illustrate the Speedup obtained by both
algorithms, for different number of workers and instances (sorted by complex-
ity). As it can be observed, when the problem scales up and the number of
workers remains constant, similar values of speedup are obtained for 8 and 12
workers. However, for 16, 20, 24, and 28 workers, HHDA* performs better for
some instances. Furthermore, as the number of workers increases, the number of
instances which are solved more efficiently by HHDA* increases. Similar conclu-
sions for Efficiency were reached. We observed that a lower SO is obtained by
HHDA* for these instances and workers.

5.2 Memory Consumption Analysis

Figure 4a shows the average reduction in memory usage for HHDA*, with respect
to HDA* MPI. We observe that the average reduction ranges between 46% and
62%, and it augments as the number of workers increases. Figure 4b illustrates
the reduction in memory usage for each instance (sorted by complexity). As it can
be seen, when the number of workers is constant, a higher reduction is achieved
for the easier instances, and the reduction decreases as the problem scales up.
In general, for hard instances, the reduction ranges between 20% and 40%.

The reduction in memory requirements for HHDA* over HDA* MPI allowed
solving one of the hardest 15-Puzzle instances2, presented in [16]. HHDA* solved
this instance using 7 machines (224 GB RAM) and 28 workers. A* (1 machine,
32 GB RAM) and HDA* MPI (7 machines, 224 GB RAM, 28 workers) did not
solve this instance since both algorithms ran out of memory.

6 Conclusions and Future Work

In this paper we presented HHDA*, a hybrid MPI/Pthread version of the HDA*
algorithm for solving combinatorial problems. We compared the performance
2 15 14 13 12 10 11 8 9 2 6 5 1 3 7 4 0.
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achieved and the amount of memory consumed by HDA* (pure MPI) and
HHDA* (MPI/Pthreads). The results revealed that HHDA* achieves a slightly
higher performance and consumes less memory, compared to HDA* (pure MPI).
These improvements allowed HHDA* to solve one of the hardest 15-Puzzle
instances.

As for future work, we plan to parallelize suboptimal search algorithms using
our hybrid parallelization strategy.
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