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Abstract. Computation on a large-scale graph is to propagate and update the vertex
values systematically. Efficient graph computing depends on techniques compatible
with the algorithm’s value propagating pattern. Graph traversing is a value propa‐
gating pattern used by representative graph applications. This paper presents an effi‐
cient value propagating framework for large-scale graph traversing applications. By
partitioning the input graph based on the topology, it allows values for different source
vertices to be propagated together, so as to reduce value propagating overhead. A
locality-based vertex partitioning strategy is proposed to improve locality on
processors. To improve parallel efficiency of graph traversals, a novel task sched‐
uling mechanism has been devised. The mechanism allows the framework to improve
load balance without loss of locality. A prototype for the framework has been imple‐
mented. On four large real graphs and a synthetic graph, the work was evaluated with
two typical graph applications. By comparing with the owner-computing rule, exper‐
imental results show that this work has an overall speedup from 1.28 to 2.67. The
speedup to Ligra is more than 5 in most cases.

Keywords: Graph traversing · Graph partitioning · Computation decomposing ·
Dynamic scheduling · Work stealing

1 Introduction

In the domain of data and network science, information is often linked to form large-
scale graphs that may consist of billions of edges. Such a connected data tends to be
scale-free that the degree distribution follows a power law, and its effective diameter is
also low. The Computation on a connected data is vertex-centric and data-driven. During
the computation, values of the vertices are propagated along the edges concurrently,
according to value propagating pattern specified by the graph algorithm. For example,
breadth-first search (BFS) specifies that every vertex can receive at most one propagated
value; and PageRank [3] specifies that a vertex should propagate its newly updated value
to every outgoing neighbor. On every vertex, the local value is updated according to the
received data, and the new value is propagated in turn except the local value has gotten
stable.

Although graph computing technology has been studied extensively in recent years
[5, 7, 8, 9–13, 15, 17–21], efficiently processing large-scale graphs remains a grand
challenge, due to three factors. First, the computation involves value propagations along
billions of edges, resulting in that a large amount of data is accessed randomly and
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intensively. The locality optimizing strategies vary from one application to another.
Second, a vertex and its neighbors are to be updated in an order compatible with the
value propagating trace. The parallelism often varies from time to time during the
computation. Third, the workload on each vertex depends heavily on both the algo‐
rithm’s propagating pattern and the input graph’s degree distribution. The load balancing
strategies are algorithm sensitive and data sensitive. To meet the performance require‐
ments of most large-scale graph applications, a feasible solution is to develop techniques
specialized for typical propagating patterns. Each technique optimizes one pattern
exhaustively, and enables a class of applications to achieve acceptable performance for
most input graphs.

Graph traversing is a typical vertex value propagating pattern. It is used by repre‐
sentative graph applications like BFS, connected-component detection [16], graph-
diameter estimation [1, 2, 4, 6, 14], and etc. According to this pattern, values are only
allowed to be propagated from visited vertices to those yet unvisited, and a vertex is
marked as visited immediately after it has received a propagated value. A graph
traversing algorithm starts by propagating values from some source vertex, which is
initially marked as visited. Every vertex can receive data from at most one neighbor.
The overall value propagating trace is a traversing tree, which covers all vertices reach‐
able from the source. Vertices on the tree are updated systematically. There is often more
than one source vertex in applications like connected-component detection and graph-
diameter estimation. Different sources can be processed in any order.

This paper presents a parallel graph traversing framework that improves application
efficiency with topology-adaptive techniques. The framework elaborately divides
vertices of the input graph into a relatively small number of vertex blocks, according to
the graph topology and memory distribution of these vertices. Every block is a task
scheduling unit during the computation, and is ready for task assignment when at least
one of its vertices is ready to be updated. A double-queue task scheduling mechanism
has been devised to process these blocks concurrently. This mechanism enables a
processor to dynamically select tasks according to both distances from the accessed data
and sizes of the tasks, so as to improve both load balance and locality. Furthermore, two
strategies are exploited to improve value propagating efficiency. One is to allow every
subgraph to select the most appropriate value propagating mechanism. Another is to
enable different vertex sources to share value propagating overheads by propagating
values simultaneously for these sources. We have implemented a prototype for this
framework, and evaluated it with both real and synthetic graphs.

2 Problem Statement and Analysis

In this work, a graph traversing application is represented as a quadruple <V, E, S, f>,
where V is the input graph’s vertex set and E is its edge set, S ⊆ V is the source vertex
set, and f is the function updating values on every vertex. The graph<V, E> is either
directed or undirected. Every edge in E serves as a channel with unlimited bandwidth
for exchanging data between the two connected vertices. If <V, E> is undirected, the
channels are bidirectional; otherwise, the channels are unidirectional. It always costs
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one time unit for an edge to transfer data from its original vertex to the terminal. Every
vertex in V has an initial value, and computes a new value for every received value with
f. When a vertex receives multiple values at the same time, it processes these values
independently and simultaneously. On every vertex, the time cost by f to process the
received values is ignored. The application is to propagate every source’s value on the
graph non-cyclically. On the propagating trace, every vertex will use f to replace the
received value with a new one before it is propagated further. Every vertex is allowed
to receive at most one value for every source. When multiple values for the same source
arrive at the same time, the vertex selects one value randomly.

Obviously, the value-propagating trace for every s ∈ S is a BFS tree rooted from s
on the graph <V, E>. The value-propagating trees for different sources are independent.
The application is to construct the value-propagating for every s ∈ S, and perform the
required value update with f on every reached vertex. Therefore, this application model
covers any graph-traversing applications based on BFS.

For the graph traversing application <V, E, S, f>, the complexity mainly originates
from the intensive and random accesses to the edges and vertices. This section first
analyzes the chances for the application to reduce the amount of data accesses. The
issues of data access efficiency are discussed later. To be convenient, the following terms
are defined.

• Dot. A dot is a vertex that has no neighbors, and hence is not reachable by other
vertices.

• Terminal. If <V, E> is undirected, a terminal is a vertex that has only one neighbor.
If <V, E> is directed, a terminal is a vertex that has only either outgoing neighbors
or ingoing neighbors.

• Linear segment. A linear segment is a path from vertex vs ∈ V to ve ∈ V, where: (a)
either vs or ve is a terminal; (b) except vs and ve, other vertices have exactly two
neighbors.

• Linear path. A linear path is a path from vertex vs ∈ V to ve ∈ V, where: (a) neither
vs nor ve is a terminal; (b) both vs and ve have more than two neighbors, and other
vertices have exactly two neighbors.

• Netlike graph. Given a graph <V, E>, its netlike graph consists of all linear paths
on it, and is denoted as NG(V, E). A vertex on NG(V, E) is called as a hub vertex
when it is also on some linear segments.

2.1 Complexity Analysis

Given a source s ∈ S, the traversing tree often consists of a large amount of vertices,
and is constructed by systematically propagating values from previously visited vertices.
Initially, s is the only vertex on the traversing tree. The traversing tree is then extended
iteratively by propagating values along edges outgoing from its vertices to those unvis‐
ited. The newly added vertices are found with either the pushing- or pulling-mechanism.
If the pulling-mechanism is selected, every unvisited vertex is a candidate for visiting
next, and its ingoing neighbors are inspected one after another. When an ingoing
neighbor is found to be visited, the neighbor’s value is fetched back and the rest
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neighbors are ignored. If the pushing-mechanism is selected, candidates for visiting next
are limited to outgoing neighbors of the visited vertices. For every visited vertex, its
outgoing neighbors are inspected in some order, and its value is sent to the unvisited
ones. Therefore, it is very complex to construct the traversing tree, due to the intensive
edge accesses and random vertex accesses.

It is possible for different sources to propagate values together, so as to share the prop‐
agating overhead caused by edge accesses and vertex inspections. Let vg(s1, s2) be a
subgraph where every vertex is reachable to both s1 ∈ S and s2 ∈ S. On vg(s1, s2), if it is
compatible with the value propagating pattern to start value propagating from the same
vertex for both s1 and s2, then these two sources can share the same value propagating trace
on vg(s1, s2). For example, let vg(s1, s2) be a linear segment that is reachable to both s1 and
s2, then s1 and s2 must share the same value propagating trace on vg(s1, s2). In a typical
social network graph like Twitter and Friendster, the linear segments cover more than 15%
vertices. When s1 and s2 reach NG(V, E) via the same hub vertex, they also can share the
same value propagating trace on NG(V, E).

2.2 Efficiency Analysis

As discussed in Sect. 2.1, constructing the traversing trees for different sources simultane‐
ously can make chances for reducing complexity of applications. In this case, values for
different sources may reach a vertex via different edges concurrently; and every vertex needs
a vector to indicate its visiting statuses. The vector’s i-th element designates whether current
vertex has been visited from the i-th source. A vertex is said to be active when it is still
unvisited for at least one source vertex. A vertex v ∈ V is de-noted as a frontier when there
is at least one source s ∈ S that: (a) v has been visited by s; (b) it is not sure whether v’s
every outgoing neighbor has been visited by s.

Given a graph traversing algorithm, its computation on the linear segments is relatively
simple. Without loss of generality, we can assume that there is at most one frontier on every
linear segment. Hence, the vertex to be updated next is always the frontier’s outgoing
neighbor. However, the computation on NG(V, E) is much more complex, since every active
vertex is a candidate for updating next and the update may require more than one frontier’s
value. To maximize the parallelism, the computation is divided into a sequence of super-
steps. For two reasons, the pulling-mechanism is selected to propagate values from fron‐
tiers to their active neighbors. One is that most active vertices on a super-step are to be
updated, since the input graph tends to be scale free and neighbors of a few frontiers often
cover most vertices. Another is that the pushing-mechanism requires writing to a vertex’s
neighbors frequently and randomly.

To improve efficiency for the computation on NG(V, E), two key issues are to be
addressed for each super-step. One is load balance. Different active vertices can be inde‐
pendently processed. On every active vertex, the computation is to inspect its ingoing neigh‐
bors and update local value with these included in current frontiers. Hence the workload on
an active vertex tends to be proportional to its degree. Another key issue is locality. The
active vertices on each super-step are random, and number of active vertices varies greatly
from one super-step to another. The value-propagating efficiency will be significantly cut
down if neighbors of a large amount of active vertices are randomly accessed.
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3 A Topology-Aware Value-Propagating Framework

This section presents a topology-aware framework to propagate values for graph traver‐
sals. We assume that a computer consists of n computing nodes, and each node has m
processors and a local memory. The distance from a processor to its local memory is
shorter than that to any remote memory. The input graph’s vertices are equally divided
into n blocks. Each block and edges associated with these vertices are saved in one
computing node. It is also assumed that a vertex can buffer an initial value and all the
updates on it. When the initial value is propagated, the buffered updates are to be propa‐
gated together.

Given a graph traversing application <V, E, S, f>, the framework schedules its
computation on different vertices carefully with three strategies. The first strategy is to
partition the input graph’s edges according to the graph topology. It enables the frame‐
work to reduce edge accesses by selecting value propagating mechanism for every
subgraph independently. It also enables the framework to find the chances for sharing
value propagating overhead between different source vertices. The second strategy is to
partition the input graph’s vertices according to both their memory distribution and graph
topology. This strategy enables the framework to efficiently filter out vertices that are
unreachable to current frontiers, and to improve locality on each processor. The third
strategy is to schedule computation partitions greedily and dynamically. The framework
carefully selects a processor for every computation partition, according to both every
processor’s workload and the partition’s data accessing efficiency on different
processors.

Before the application starts its graph traversals, the framework first partitions the
input graph’s edges, resulting in a netlike graph and a set of linear segments. Then
it partitions the vertex block on each computing node into a relatively small number
of vertex chunks. With these subgraphs and chunks, the framework partitions the
computation into three kinds of tasks. Every source on some linear segment repre‐
sents a type-I task, which is to traverse on the linear segment from the source. Every
chunk and current frontiers represents a type-II task, which is to (a) propagate values
along edges outgoing from current frontiers to the chunk and (b) update the chunk’s
vertices with the propagated values. Every updated hub vertex and a linear segment
outgoing from the hub represents a type-III task, which is to propagate the hub’s new
value on the linear segment.

By concurrently executing the computations on different subgraphs, the framework
constructs the traversing trees for different source vertices simultaneously. At the begin‐
ning, every type-I task is assigned to a processor and is executed independently. The
framework will not propagate values on the netlike graph, until all type-I tasks have
been completed. Value propagating procedure on the netlike graph is divided into a
sequence of super-steps. The computation on each super-step is partitioned into a set of
type-II tasks. These type-II tasks are greedily scheduled to improve both data accessing
efficiency on each processors and load balance between different processors. After
computation on the netlike graph has been completed, the type-III tasks are scheduled
to be executed on different processors concurrently.
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To reduce edge accesses in constructing the traversing trees, the framework inde‐
pendently selects propagating mechanism for every subgraph. If the subgraph is a linear
segment, the pushing mechanism is selected; otherwise, the pulling mechanism is
selected.

3.1 A Topology-Based Edge Partitioning Strategy

By partitioning the input graph’s edges according to the graph topology, our graph
traversing framework partitions the input graph into dots, linear segments and a net-like
graph. Dots are ignorable, since they are always unreachable. Based on the net-like graph
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and linear segments, computation on the input graph can be described with a three-
phased algorithm. The algorithm constructs the traversing trees for different source
vertices simultaneously, and enables different sources to share value propagating over‐
head automatically.

Algorithm 1 is the three-phased algorithm. The first phase of the three-phased algo‐
rithm is to propagate values on linear segments with the pushing mechanism. Computation
of this phase is decomposed into a set of independent type-I tasks. Every task processes one
source that is on some linear segment, and creates the source’s value propagating trace on
the linear segment. If a hub vertex is visited by some type-I task, then the hub is included
in ihub(S). The second phase is to propagate values on NG(V, E) with the pulling mecha‐
nism, consisting of a sequence of super-steps. Sources on NG(V, E) and vertices in ihub(S)
are the first super-step’s frontiers. On each super-step, every active vertex independently
tries to update its value by finding its ingoing neighbors from current frontiers and
comparing its visiting status with those found. A vertex is a frontier of the next super-step
when its value is updated. If a hub vertex is updated, then the hub is included in ohub(S).
The last phase is to propagate values on linear segments outgoing from hub vertices in
ohub(S). The computation consists of a set of independent type-III tasks. For every line
segment that is reachable to hv ∈ ohub(S), a type-III task is executed. The task propagates
value of hv on the line segment, using the pushing mechanism.

3.2 A Locality-Based Vertex Partitioning Strategy

This strategy aims at improving locality on each processor when vertex values are
propagated with the pulling-mechanism. The vertices on each computing node are parti‐
tioned into a relatively small number of vertex chunks carefully, according to both their
memory distribution and graph topology. Every chunk consists of a set of vertices that
are continuously saved. It can be used to represent a type-II task, which is to propagate
values from current frontiers to vertices included the chunk. And the task’s workload is
estimated with the graph’s topology information. Different chunks can be processed
concurrently to make use of parallel processors.

We estimate the workload on vertex v with Eq. (1), where cs is a constant denoting
the overhead for inspecting the vertex’s visiting status, ce is a constant denoting the
overhead for inspecting one ingoing neighbor. If the input graph is undirected, ideg(v)
is the vertex’s degree; otherwise, ideg(v) is either the ingoing degree or outgoing degree,
depending on the value propagating direction. When there are enough chunks with
carefully selected upper bound workload, dynamic task scheduling mechanism can be
used to improve load balance without loss of locality.

workload(v) = cs + ideg(v) × ce (1)

In our topology-aware framework, the pulling-mechanism is used on the netlike
graph only. When all vertices in a chunk are outside of the netlike graph, the chunk is
denoted as a vacancy, and can be filtered out for computation on the netlike graph. To
enable this kind of vertex filtering and to make full use of parallel processors, the frame‐
work divides vertices on every computing node into about m × 𝛼 non-vacancy chunks
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independently, where m is processor number of the computing node and 𝛼 is an exper‐
imental constant. Let niv be the number of local vertices that are outside of the netlike
graph. We first search the vacancies, and each one must consist of at least niv ÷ (m × 𝛼)

vertices. These vacancies divide the rest vertices into a set of initial non-vacancy chunks.
Let twb be the total workload of these initial non-vacancy chunks. Each initial non-
vacancy chunk is further divided into a minimum of chunks, where each one’s workload
should be no more than twb ÷ (m × 𝛼).

3.3 A Double-Queue Task Scheduling Strategy

As discussed above, computation on the netlike graph is divided into a sequence of
super-steps, and each super-step consists of a set of independent type-II tasks. Every
type-II task processes one non-vacancy chunk. To improve each super-step’s parallel
efficiency, we have devised a two-level queue to schedule its tasks dynamically. This
task scheduling mechanism synthesizes three typical task scheduling techniques. The
first is the owner-computing rule, aiming at improving locality on processors. The
second is the dynamic task scheduling technique, aiming at improving load balance
between processors in a computing node. The last is the work stealing technique, aiming
at improving load balance between computing nodes.

Our topology-aware framework maintains two queues on every computing node. Let
cpn be a computing node, tque(cpn) and dque(cpn) denote these two local queues sepa‐
rately. The tque(cpn) consists of non-vacancy vertex chunks local to cpn. It automati‐
cally computes average workload of these chunks, and sorts them according to both their
workloads and memory addresses. A chunk is denoted as heavy if its workload is greater
than the average; otherwise, it is denoted as light. A heavy chunk is in front of any light
chunk, so as to enable load balance between processors. Chunks of the same kind are
further sorted according to their memory addresses, so as to improve locality on
processors. Every element in dque(cpn) represents one computing node. It sorts the
elements according distances from local processors to the corresponding computing
nodes. Local memory of dque(cpn)[i] is not farer way from cpn’s local processors than
that of dque(cpn)[i + 1].

When a super-step is executed, each computing node schedules tasks in its local tque
independently, and complex tasks are first assigned to processors. Different tasks are
executed concurrently. When a processor is free, it submits first submits a task apply to
dque(cpn)[0], attempting to get a task from tque(cpn). If the processor fails in getting
tasks from dque(cpn)[i], it then submits task applies to dque(cpn)[i + 1], trying to steal
tasks from the remote computing node specified by dque(cpn)[i + 1].

4 Implementation

We have developed a prototype with C/C++ for the topology-aware value propagating
framework. The prototype is for NUMA architecture and uses Pthreads to execute
parallel computations. The prototype consists of an edge slicer, a vertex slicer and a
value propagator (Fig. 1). The edge slicer partitions a graph’s edges according to the
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topology, and divides the graph into a netlike graph and a set of linear segments. The
vertex slicer partitions a graph’s vertices according to both their memory distribution
and graph topology. One each computing node, it divides the local vertices into a set of
vacancies and non-vacancy chunks. The vertex slicer sets α required by the locality-
based computation decomposing mechanism to be 16. The value propagator automati‐
cally propagates values on a graph traversing application’s input graph, and calls its
vertex updating function to compute new vertex values. The value propagator can
perform graph traversals simultaneously for a list of source vertices.

Edge slicer Value propagator

Vertex slicer
E

dge-list

V
array[]

com
pact

slist[]

vf(u,v,tag)

Fig. 1. Prototype of the topology-aware value propagating framework.

In a large-scale graph traversing application <V, E, S, f>, the framework is initialized
by providing the input graph’s edge list to the edge slicer. The application then can call
the value propagator to perform graph traversals for a list of sources. It is required to
provide four arguments to the value propagator: slist[], compact, varray[], and vf(u, v,
tag). “slist[]” is the list of sources, and its length cannot be more then 64. “varray[]” is
an array for storing the input graph’s vertex values. If “compact” is true, varray[i] is
the value of the i-th vertex; otherwise, “varray[]” saves 64 elements for every vertex,
varray[i*64 + j] is the j-th element of the i-th vertex. “vf(u, v, tag)” is the vertex updating
function, which is called by the framework to update value on the v-th vertex when value
of the u-th vertex is propagated to the v-th vertex. If “compact” is true, “tag” is always
zero when “vf(u, v, tag)” is called; otherwise, it is a bitmap to indicate which elements
are to be updated on the v-th vertex. If there are more than 64 sources in S, the application
is required to divide its sources into groups. Each group contains at most 64 sources,
and requires one call to the value propagator.

In the prototype, the input graph is represented as a vertex list and an adjacent list.
In the vertex list, every element represents one vertex, and includes a type flag, a triplet
(offset, ideg, odeg), and a visiting status vector. The type flag is to distinguish between
dots, terminals, hub vertices, vertices on the path between a terminal and the hub vertex,
and the netlike graph’s vertices except the hub vertices. The vertex saves identifiers of
its neighbors in the adjacent list; and the triplet (offset, ideg, odeg) describes addresses
of these identifiers in the adjacent list, where offset is the first identifier’s address, ideg
is number of its ingoing neighbors and odeg is number of its outgoing neighbors. If the
input graph is undirected, then ideg and odeg are equal. The visiting status vector consists
of 64 bits, where the i-th bit denotes whether the vertex has been visited by the source
specified by “slist[i]”.
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When the framework is initialized with the input graph’s edge list, the edge slicer
and vertex slicer cooperate automatically to initialize the vertex list and the adjacent list.
When the value propagator is called, it first resets the visiting status vector of every
vertex, then automatically propagates values on the input graph and calls the vertex
updating function to update values in “varray[]”.

5 Experimental Evaluation

This section presents the experimental results for various real-world and synthetic
graphs. The platform for the experiments is a Dell R820 server. The server has 4 Intel(R)
Xeon(R) E5-4640 CPUs and 256 GB memory. Each CPU has 8 physical cores sharing
20 M LLC, and can support 16 parallel threads with hyper-thread. In the experiments,
the server is configured as a NUMA with 4 nodes.

We used four real graphs and one synthetic graph, as shown in Table 1. The synthetic
graph is denoted as Kro_26_16. It was generated with the Kronecker model implemented
in Graph500. When the graph was created, the scale parameter was set to be 26 and the
edge-factor was 16. All the five graphs are assumed to be undirected. For each graph,
we have also counted the vertices and edges of its netlike graph, denoted as NG’s vertices
and NG’s edges respectively.

Table 1. Graphs used in the experiments.

Vertices Edges NG’s vertices NG’s edges
wikipedia 27,154,800 601,038,301 4,751,326 4,680,898
com-friendster 65,608,368 1,806,067,136 13,867,424 13,867,424
socfb-konect 59,216,216 92,522,017 20,959,355 54,348,978
twitter_rv 61,578,416 1,468,365,182 39,724,449 1,465,994,803
Kro_26_16 67,108,862 1,073,741,824 42,663,341 8,345,041

We developed two typical applications to evaluate the prototype and these three
strategies presented in Sect. 3. One application is to estimate diameter of the input graph,
requiring that every vertex saves one value to indicate its longest distance to other
vertices. Another is to construct the BFS trees for a set of source vertices, requiring that
every vertex saves one value for each source vertex. For each application, we have tested
performance of five versions independently. One version is provided by the Ligra [15].
We denote it as the Ligra version. This version is implemented with OpenMP. It divides
the input graph’s vertices into equal chunks, and schedules these chunks dynamically
to balance workload between processors. Other four versions were self-developed.

• OCL version. This version uses the owner-computing rule to partition the compu‐
tation. Every computing node equally divides its local vertices into 16 chunks, and
every chunk is statically assigned to one processor. When the application is executed,
every processor propagates values from current frontiers to its chunk with the pulling
mechanism, and updates these vertices accordingly.
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• EP version. This version enhances the OCL version with the topology-based edge
partitioning strategy. The input graph is partitioned into a netlike graph and a set of
linear segments. Accordingly, computation on the input graph is divided into three
phases. The first phase is to execute type-I tasks, and the last phase to execute type-
III tasks. In the second phase, computation on the netlike graph is executed just as
the OCL version does.

• VP version. This version enhances the EP version with the locality-based vertex
partitioning strategy. It decomposes computation on the input graph into type-II tasks,
and schedules these tasks dynamically. However, tasks in tque(cpn) can be assigned
only to local processors of the computing node cpn.

• ST version. This version enhances the VP version with the work stealing technique.
After all tasks in tque(cpn) have been assigned, it allows processors on the computing
node cpn to steal tasks from other computing node.

On each graph, we randomly selected 192 vertices as the source vertices. Every
implementation was repeated 10 times to traverse from these 192 source vertices on the
input graph. The average time cost is the experimental result of the implementation for
the input graph. We failed to run the Ligra versions of these two applications on soc-
friendster, because this graph is too large for Ligra.

5.1 Experimental Results for Estimating Graph Diameter

In this experiment, every implementation equally divides the 192 source vertices into 3
groups, the traversing trees for all 64 sources of the same group are constructed simul‐
taneously. Table 2 is the time costs of different versions, where the time unit is second.

Table 2. Time costs for estimating diameters of different graphs.

Socfb Web-wiki KRO_26_16 Twitter_rv Soc-friendster
Ligra 9.63 44.79 55.8 140.79 –
OCL 5.64 17.88 16.11 42.3 88.17
EP 5.34 15.63 12.93 31.8 82.65
VP 5.01 11.64 10.68 27.81 84.45
ST 4.38 8.34 10.38 18.57 69.45

Although the Ligra version exploits the dynamic scheduling technique to balance
workload, the OCL version has achieved significant better performance for all the first
four graphs. On twitter_rv, speedup of the OCL version to the Ligra version is up to
3.46. The performance improvement tends to increase as the input graph’s size increases.
This results show that the performance bottleneck for most graph traversals is data
accessing efficiency instead of load balance.

We evaluate the strategies presented in Sect. 3 with speedups to the OCL version.
Figure 2(a) illustrates the results. Our topology-aware framework has achieved an
overall speedup from 1.28 to 2.28. The edge partitioning strategy and work stealing
strategy are effective for all the five graphs. The locality-based vertex partitioning
strategy is ineffective for the synthetic graph. This is because that the OCL version
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partitions computation almost equally between processors of the same computing node.
We believe this case only occurs by chance. Result of the ST version shows that the
owner-computing rule cannot balance workload between computing nodes.

(a) Estimating diameters. (b) BFS.

Fig. 2. Speedups to the OCL version.

5.2 Experimental Results for BFS

In this experiment, the Ligra BFS can process only one source vertex every time. To
process 192 sources for every input graph, we have inserted a loop in the source code.
Each of the four self-developed versions equally divides the 192 source vertices into 3
groups, the traversing trees for all 64 sources of the same group are constructed simul‐
taneously. Table 3 is the time costs of different versions, where the time unit is second.

Table 3. Time costs for BFS of different graphs.

Socfb Web-wiki KRO_26_16 Twitter_rv Soc-friendster
Ligra 75.6 126.99 96 307.71 –
OCL 13.8 53.1 29.76 118.29 225.21
EP 12.51 42 24.87 97.41 211.89
VP 11.64 27.21 22.74 73.62 189.15
ST 8.91 20.52 22.47 44.34 156.78

The OCL version’s performance is significantly better than that of the Ligra version,
due to two factors. One is that Ligra version’s locality is too poor, as shown in the
previous subsection. Another is that the OCL version constructs 64 BFS trees simulta‐
neously, resulting that value propagating overhead are shared between different sources.

We evaluate the strategies presented in Sect. 3 with speedups to the OCL version.
Figure 2(b) illustrates the results. Our topology-aware framework has achieved an
overall speedup from 1.32 to 2.67. All the three strategies are effective for all the five
graphs.
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6 Related Work

In recent years, many graph processing frameworks have been developed, including
Pregel [11], Pregel+ [19], Giraph [5], Giraph++ [17], GraphLab [9], GraphX [18], and
PowerGraph [7]. Although these systems are general enough to support different kinds
of graph algorithms, there is no single system that has superior performance in all cases,
two phenomena widely exists [10, 12]. One is that a general framework often shows
different performance for different graph algorithms. Another is that an application’s
performance also often varies on different graphs. These phenomena are among the
motivations behind this paper’s work.

Data accessing efficiency and load balance are two key factors that hinder
performance of graph applications, and are widely studied. Pregel introduced the
message combining mechanism to reduce data-exchanging overhead between
machines. Pre-gel+ introduced the vertex mirroring mechanism to reduce accesses
to remote data. These two works give us beneficial hints for sharing value propa‐
gating overhead be-tween different sources. The difference is that our work focuses
on data exchanging between vertices instead of machines. In GPS [13], the authors
developed the large adjacency-list partitioning schema and dynamic repartitioning
scheme to improve load balance. However, these two schemas often sacrifice
locality, and in turn de-creases the performance, as shown by the Ligra’s results in
this paper. Giraph uses the multithreading method to maximize resource utilization.
Experiments results in [20] disclose that sequential remote accesses can be faster
than random local accesses. Our work exploits the vertex partitioning strategy to
reduce random accesses, and improves load balance with the double-queue task
scheduling strategy.

Different graph partitioning techniques have also been proposed to partition graph
computation. PowerGraph has proposed the vertex-cut partitioning technique to
improve load balance between tasks. GraphLego [21] replaces the traditional vertex-
centric or edge-centric graph partitioning with a 3D cube model, so as to partition graph
at the granularity of subgraphs. In [8], a graph transformation is proposed to reduce a
large input graph into a small graph, so as to decompose computation on the original
input graph. Our work combines the edge partitioning strategy and vertex partitioning
strategy to partition graph computation.

7 Conclusion

Graph traversing is a value propagating pattern used by representative graph applica‐
tions. This paper presents an efficient value propagating framework for large-scale graph
traversing applications. It enables a graph computation to be partitioned according to
both topology of the input graph and memory distribution of the graph’s vertices. In this
work, we propose to partition graph computation by combining edge partitioning and
vertex partitioning. The proposed edge partitioning strategy is beneficial to reduce value
propagating overhead. The proposed vertex partitioning strategy is beneficial to improve
locality on each processor. To balance workload between processors and improve data
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accessing efficiency, a greedy task scheduling strategy was devised. We have developed
a prototype for the topology-aware graph traversing framework. The prototype was
evaluated with two typical graph applications and five graphs. The experimental results
show that this prototype has obvious better performance than Ligra. We also have eval‐
uated the effectiveness of the strategies presented in this paper. Comparing with the
owner-computing rule, the framework presented in this paper has an overall speedup
from 1.28 to 2.67.
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