
Shadi Ibrahim
Kim-Kwang Raymond Choo
Zheng Yan
Witold Pedrycz (Eds.)

 123

LN
CS

 1
03

93

17th International Conference, ICA3PP 2017
Helsinki, Finland, August 21–23, 2017
Proceedings

Algorithms and Architectures
for Parallel Processing

Lecture Notes in Computer Science 10393

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Shadi Ibrahim • Kim-Kwang Raymond Choo
Zheng Yan • Witold Pedrycz (Eds.)

Algorithms and Architectures
for Parallel Processing
17th International Conference, ICA3PP 2017
Helsinki, Finland, August 21–23, 2017
Proceedings

123

Editors
Shadi Ibrahim
Inria
Rennes
France

Kim-Kwang Raymond Choo
University of Texas at San Antonio
San Antonio, TX
USA

Zheng Yan
Aalto University
Espoo
Finland

Witold Pedrycz
University of Alberta
Edmonton, AB
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-65481-2 ISBN 978-3-319-65482-9 (eBook)
DOI 10.1007/978-3-319-65482-9

Library of Congress Control Number: 2017948181

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Welcome to the proceedings of the 17th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP 2017), held in Helsinki, Finland, during
August 21–23, 2017. ICA3PP 2017 was hosted by Aalto University and co-hosted by
Xidian University, ISN – State Key Laboratory of Integrated Services Networks of
Xidian University, Federation of Finnish Learned Societies, TEKES – the Finnish
Funding Agency for Innovation, and the National 111 Project on Mobile Internet
Security of China (Xidian University). The conference would not have been possible
without the support of the hosts, Nokia for their Gold Patron support, the research
community, and many other stakeholders.

ICA3PP 2017 was in its 17th year, which started out as a conference devoted to
research on algorithms and architectures for parallel processing. Previous iterations of
this conference include ICA3PP 2016 (Granada, Spain, December 2016), ICA3PP
2015 (Zhangjiajie, China, November 2015), ICA3PP 2014 (Dalian, China, August
2014), ICA3PP 2013 (Vietri sul Mare, Italy, December 2013), ICA3PP 2012 (Fukuoka,
Japan, September 2012), ICA3PP 2011 (Melbourne, Australia, October 2011), ICA3PP
2010 (Busan, Korea, May 2010), ICA3PP 2009 (Taipei, Taiwan, June 2009),
ICA3PP 2008 (Cyprus, June 2008), ICA3PP 2007 (Hangzhou, China, June 2007),
ICA3PP 2005 (Melbourne, Australia, October 2005), ICA3PP 2002 (Beijing, China,
October 2002), ICA3PP 2000 (Hong Kong, China, December 2000), ICA3PP 1997
(Melbourne, Australia, December 1997), ICA3PP 1996 (Singapore, June 1996), and
ICA3PP 1995 (Brisbane, Australia, April 1995).

ICA3PP is now recognized as a mainstream event covering the many dimensions of
parallel algorithms and architectures, encompassing fundamental theoretical approa-
ches, practical experimental projects, and commercial/industry applications. As com-
puting systems and applications permeate every aspect of our daily life, the role of
computing systems and the underlying components (e.g., applications) will be
increasingly critical in ensuring the stability of our society. This conference provides a
forum for academics and practitioners from different countries and (sub) disciplines to
exchange ideas for improving the efficiency, performance, reliability, security, and
interoperability of computing systems and applications.

This year, the conference received 93 submissions. Each submission was reviewed
by three or more experts in the relevant areas for each paper, on the basis of their
significance, novelty, technical quality, presentation, and practical impact. After an
intense post-review discussion by the Program Committee, 25 papers were selected for
presentation at the conference and included in this Springer volume (i.e., acceptance
rate of 26.8%). In addition to the regular paper presentations, the program of the
conference included eight keynote speeches from, esteemed scholars in the area,
namely: Prof. Elisa Bertino, Purdue University, USA; Prof. Francisco Herrera,
University of Granada, Spain; Dr. Anand Prasad, NEC Corporation, Japan;
Prof. Laurence T. Yang, St. Francis Xavier University, Canada; Prof. Shiwen Mao,

Auburn University, Auburn AL, USA; Prof. Jinjun Chen, Swinburne University of
Technology, Australia; Mr. Tatu Ylönen, SSH Communications Security, USA and
Lauri Oksanen, Vice President of Research and Technology, Nokia Bell Labs, Finland.
We were extremely honored to have them as the conference keynote speakers.

The ICA3PP 2017 program also included four workshops, namely: the 4th Inter-
national Workshop on Data, Text, Web, and Social Network Mining (DTWSM 2017),
the 5th International Workshop on Parallelism in Bioinformatics (PBio 2017), the First
International Workshop on Distributed Autonomous Computing in Smart City
(DACSC 2017), and the Second International Workshop on Ultrascale Computing for
Early Researchers (UCER 2017). We would like to express our sincere appreciation to
the workshop chairs: Prof. Jun Liu, Prof. Zheng Yan, Dr. Miguel A. Vega-Rodríguez,
Dr. José M. Granado-Criado, Dr. Alvaro Rubio-Largo, Dr. Sergio Santander-Jiménez,
Prof. Wendong Wang, Dr. Yan Chen, Prof. Riku Jäntti, Dr. Yu Xiao, Prof. Jesus
Carretero, Prof. Pedro Alonso, Dr. Juan Durillo, and Dr. Fabrizio Marozzo.

ICA3PP 2017 was also made possible by the behind-the-scene effort of selfless
individuals and organizations who volunteered their time and energy to ensure the
success of this conference. We would like to acknowledge the track chairs of the
conference for their hard and excellent work in organizing the Program Committee. We
are grateful to all Program Committee members for their great efforts in reading,
reviewing, discussing, and finally selecting the papers. We also thank all external
reviewers for assisting the Program Committee in their particular areas of expertise.

We also thank the honorary chair, Prof. Xinbo Gao, Xidian University, China, for
his support in the conference organization. We would like to emphasize our gratitude to
the general chairs, Prof. Zheng Yan, Prof. Witold Pedrycz, and Prof. Geoffrey Fox; and
the program chairs, Dr. Shadi Ibrahim, Prof. Kim-Kwang Raymond Choo, and
Prof. Florin Pop, for their generous support and leadership that ensured the success
of the conference. We also appreciate Miss Wenxiu Ding’s assistance with the con-
ference organization. Thanks also go to the: panel chair, Yan Zhang; publicity chair,
Prof. Raimo Kantola; Steering Committee, Prof. Yang Xiang, Prof. Weijia Jia,
Prof. Yi Pan, Prof. Laurence T. Yang, and Prof. Wanlei Zhou; Web chairs,
Mr. Mingjun Wang and Mr. Mohsin Muhammad.

Lastly, the conference would not have been possible without the contributing
authors and all conference attendees, as well as the staff at Springer, who assisted in
producing the conference proceedings, and the developers and maintainers of
EasyChair.

August 2017 Shadi Ibrahim
Kim-Kwang Raymond Choo

Zheng Yan
Witold Pedrycz

VI Preface

ICA3PP 2017 Organization

Honorary Chair

Xinbo Gao Xidian University, China

General Chairs

Zheng Yan Xidian University, China
Witold Pedrycz Alberta University, Canada
Geoffrey Fox Indiana University, USA

Program Chairs

Shadi Ibrahim Inria, France
Kim-Kwang Raymond

Choo
University of Texas at San Antonio, USA

Florin Pop University Politehnica of Bucharest, Romania

Panel Chair

Yan Zhang University of Oslo, Norway

Workshop Chairs

Jun Liu Xi’an Jiaotong University, China
KP Lam Keele University, UK

Publication Chair

Peng Zhang Zalando, Finland

Publicity Chair

Wenxiu Ding Xidian University, China

Local and Finance Chair

Raimo Kantola Aalto University, Finland

Steering Committee

Yang Xiang Deakin University, Australia (Chair)
Weijia Jia Shanghai Jiaotong University, China
Yi Pan Georgia State University, USA
Laurence T. Yang St. Francis Xavier University, Canada
Wanlei Zhou Deakin University, Australia

Web Chairs

Mingjun Wang Xidian University, China
Mohsin Muhammad Aalto University, Finland

Track Chairs

Guillaume Aupy Inria, France
Jing Chen Wuhan University, China
Gene Cooperman Northeastern University, USA
Marc Frîncu West University of Timisoara, Romania
Javier Garcia-Blas University Carlos III of Madrid, Spain
Julian Kunkel German Climate Computing Center, Germany
Laurent Lefèvre Inria, France
Haikun Liu Huazhong University of Science and Technology,

China
Ting Liu Xi’an Jiaotong University, China
Yining Liu Guilin University of Electronic Technology, China
Anne-Cécile Orgerie CNRS, France
Zhonghong Ou BUPT, China
Etienne Rivière Université de Neuchâtel, Switzerland
Domenico Talia University of Calabria, Italy
Xueyan Tang Nanyang Technological University, Singapore
Tomoaki Tsumura Nagoya Institute of Technology, Japan
Yu Xiao Aalto University, Finland
Yanjiang Yang Huawei Research Center, Singapore

Technical Program Committee

Marco Aldinucci University of Torino, Italy
Cosimo Anglano Universitá del Piemonte Orientale, Italy
Kapil Arya Mesosphere Inc., USA
Marcos Assuncao Inria - ENS Lyon, France
Man Ho Au Hong Kong Polytechnic University, SAR China
Joonsang Baek Khalifa University of Science, Technology and

Research, UAE
Jorge Barbosa FEUP, Portugal
Anirban Basu KDDI Research, Japan

VIII ICA3PP 2017 Organization

Leonardo Bautista-Gomez Barcelona Supercomputing Center, Spain
Sourav Bhattacharya Nokia Bell Labs, Ireland
Vicente Blanco La Laguna University, Spain
Javier Garcia Blas Carlos III University, Spain
Thomas Bönisch High Performance Computing Center Stuttgart,

Germany
George Bosilca University of Tennessee, USA
Pascal Bouvry University of Luxembourg, Luxembourg
Andre Brinkmann Johannes Gutenberg-Universität Mainz, Germany
Lei Bu Nanjing University, China
Massimo Cafaro University of Salento, Italy
Philip Carns Argonne National Laboratory, USA
Alexandra Carpen-Amarie Vienna University of Technology, Austria
Eugenio Cesario ICAR-CNR, Italy
Wei Chang Saint Joseph’s university, USA
Jerry H. Chang National Center for High-performance Computing,

Taiwan
Jinfu Chen Jiangsu University, China
Min Chen Huazhong University of Science and Technology,

China
Taolue Chen Middlesex University London, UK
Wei Chen Institute of Software Chinese Academy of Sciences,

China
Yu Chen State University of New York - Binghamton, USA
Feng Chen Louisiana State University, USA
Yueqiang Cheng Acetti Software Inc., USA
Houssem Chihoub Grenoble Institute of Technology (Grenoble INP),

France
Johanne Cohen LRI-CNRS, France
Gene Cooperman Northeastern University, USA
Jose Alfredo Ferreira Costa Federal University - UFRN, Brazil
Raphaël Couturier University Bourgogne Franche-Comté, France
Felix Cuadrado Queen Mary University of London, UK
Bogusław Cyganek AGH University of Science and Technology, Poland
Gregoire Danoy University of Luxembourg, Luxembourg
Frederic Desprez Inria, France
Aaron Yi Ding Technical University of Munich, Germany
Matthieu Dorier Argonne National Laboratory, USA
Yucong Duan Hainan University, China
Fanny Dufossé Inria, France
Avgoustinos Filippoupolitis University of Greenwich, UK
Holger Fröning University of Heidelberg, Germany
Ana Gainaru Mellanox Inc., USA
Paolo Gasti New York Institute of Technology, USA
Stéphane Genaud Inria, France
Vladimir Getov University of Westminster, UK

ICA3PP 2017 Organization IX

Olivier Gluck Université de Lyon, France
Jing Gong KTH Royal Institute of Technology, Sweden
Daniel Grosu Wayne State University, USA
Amina Guermouche Telecom Sud-Paris, France
Yanfei Guo Argonne National Laboratory, USA
Jeff Hammond Intel, USA
Jinguang Han Nanjing University of Finance and Economics, China
Junwei Han Northwestern Polytechnical University, China
Houcine Hassan Universitat Politecnica de Valencia, Spain
Daojing He East China Normal University, China
Weimin He University of Wisconsin-Stevens Point, USA
Judith Hill Oak Ridge National Laboratory, USA
Liting Hu Florida International University, USA
Zhiyi Huang University of Otago, New Zealand
Yasuaki Ito Hiroshima University, Japan
Mathias Jacquelin Lawrence Berkeley National Laboratory, USA
Shouling Ji Zhejiang University, China
Rongrong Ji Xiamen University, China
Yu Jiang University of Illinois at Urbana-Champaign, USA
Krzysztof Kaczmarski Warsaw University of Technology, Poland
Helen Karatza Aristotle University of Thessaloniki, Greece
Gabor Kecskemeti Liverpool John Moores University, UK
Michael Kluge ZIH - TU Dresden, Germany
Sokol Kosta Aalborg University, Denmark
Dieter Kranzlmüller Ludwig-Maximilians-Universität München, Germany
Atsushi Kubota Hiroshima City University, Japan
Michael Kuhn University of Hamburg, Germany
Pierre Kuonen University of Applied Sciences of Western

Switzerland, Switzerland
Sebastien Lafond Åbo Akademi University, Finland
Junzuo Lai Jinan University, China
Algirdas Lančinskas Vilnius University, Lithuania
Ken Laskey The MITRE Corporation (McLean, VA), USA
Artur Lasoń AGH University of Science and Technology, Poland
Che-Rung Lee National Tsing Hua University, Taiwan
Arnaud Legrand CNRS, France
Peng Li The University of Aizu, Japan
Chuanyou Li Nanyang Technological University, Singapore
Dingding Li South China Normal University, China
Guoqiang Li Shanghai Jiao Tong University, China
Kaitai Liang Manchester Metropolitan University, UK
Ruixuan Li Huazhong University of Science and Technology,

China
Yusen Li Nankai University, China
Meiyu Liang Beijing University of Posts and Telecommunications,

China

X ICA3PP 2017 Organization

Fang-Pang Lin National Center for High-Performance Computing,
Taiwan

Zhen Ling Southeast University, China
Joseph Liu Monash University, USA
Wu Liu Beijing University of Posts and Telecommunications,

China
Jaime Lloret Universidad Politécnica de Valencia, Spain
Jay Lofstead Sandia National Laboratories, USA
Jiqiang Lu Institute for Infocomm Research, Singapore
Haibing Lu Santa Clara University, USA
Xiaoqiang Lu Chinese Academy of Sciences, China
Amit Majumdar University of California San Diego - San Diego

Supercomputer Center, USA
Manolis Marazakis Institute of Computer Science - FORTH, Greece
Stefano Markidis KTH Royal Institute of Technology, Sweden
Weizhi Meng Technical University of Denmark, Denmark
Qiguang Miao Xidian University, China
Sonia Ben Mokhtar CNRS, France
Sébastien Monnet University Savoie Mont Blanc, France
Raffaele Montella University of Naples Parthenope and Computation

Institute, Italy
Miguel Cárdenas Montes CIEMAT, Spain
Sai Narasimhamurthy Seagate, UK
Pablo Neira Ayuso Universidad de Sevilla, Spain
Esmond Ng Lawrence Berkeley National Laboratory, USA
Edith C.H. Ngai Uppsala University, Sweden
Bogdan Nicolae Huawei Research Germany, Germany
Petteri Nurmi University of Helsinki, Finland
Kazuhiko Ohno Mie University, Japan
Shaoliang Peng National University of Defense Technology, China
Yanwei Pang Tianji University, China
Swann Perarnau Argonne National Laboratory, USA
Hector Perez Universidad de Cantabria, Spain
Maria S. Perez Universidad Politecnica de Madrid, Spain
Dana Petcu West University of Timisoara, Romania
Riccardo Petrolo Rice University, USA
Florin Pop University Politehnica of Bucharest, Romania
Radu Prodan University of Innsbruck, Austria
Lingjun Pu Nankai University, China
Ying Qian East China Normal University, China
Ioan Raicu Illinois Institute of Technology, USA
Weixiong Rao Tongji University, China
Thomas Rauber University of Bayreuth, Germany
Seungmin (Charlie) Rho Sungkyul University, Korea
Suzanne Rivoire Sonoma State University, USA
Ivan Rodero Rutgers - The State University of New Jersey, USA

ICA3PP 2017 Organization XI

Gabriel Rodríguez Universidade da Coruña, Spain
Paul Roe QUT, Australia
Romain Rouvoy University of Lille/Inria/IUF, France
Françoise Sailhan CNAM, France
Sherif Sakr The University of New South Wales, Australia
Bertie Schmidt University of Mainz, Germany
Manu Shantharam San Diego Supercomputer Center, USA
Jun Shao Zhejiang Gongshang University, China
Pieter Simoens Ghent University - imec, Belgium
Ben Smyth Huawei, France
Patricia Stolf IRIT, France
John Stone University of Illinois at Urbana-Champaign, USA
Aaron Striegel University of Notre Dame, USA
Chunhua Su Osaka University, Japan
Hari Subramoni The Ohio State University, USA
Hongyang Sun Vanderbilt University, USA
Frederic Suter CNRS, France
Shanjiang Tang Tianjin University, China
Dan Tao Beijing Jiaotong University, China
Zhenzhou Tian Xi’an University of Posts and Telecommunications,

China
Jerry Trahan Louisiana State University, Baton Rouge, USA
Paolo Trunfio DEIS, University of Calabria, Italy
Yuichi Tsujita RIKEN AICS, Japan
Radu Tudoran HUAWEI ERC, Germany
Geoffroy Vallee ORNL, USA
Sebastien Varrette University of Luxembourg, Luxembourg
Vladimir Vlassov Royal Institute of Technology (KTH), Sweden
Chongjun Wang Nanjing University, China
Haijun Wang Chinese Academy of Sciences, China
Li Wang Beijing University of Posts and Telecommunications,

China
Liang Wang University of Cambridge, UK
Ren Wang Intel Corp, USA
Wendong Wang Beijing University of Posts and Telecommunications,

China
Yipeng Wang Intel labs, USA
Yunsheng Wang Kettering University, USA
Zeke Wang National University of Singapore, Singapore
Zheng Wei Northwest Polytechnic University, China
Roman Wyrzykowski Czestochowa University of Technology, Poland
Yinglong Xia Huawei Research America, USA
Xiaolan Xie Guilin University of Technology, China
Quanqing Xu Data Storage Institute - A*STAR, Singapore
Wei Xu Tsinghua University, China
Ramin Yahyapour GWDG - University of Göttingen, Germany

XII ICA3PP 2017 Organization

Hayato Yamaki University of Electro-Communications, Japan
Da Yan The University of Alabama at Birmingham, USA
Shoumeng Yan Intel, China
Qiliang Yang PLA University of Science and Technology, China
Qing Yang Montana State University, USA
Wun-She Yap Universiti Tunku Abdul Rahman, Malaysia
Peter Yoon Trinity College, USA
Masato Yoshimi University of Electro-Communications, Japan
Yong Yu Shaanxi Normal University, China
Yue Yu National University of Defense Technology, China
Quan Yuan University of Texas-Permian Basin, USA
Tsz Hon Yuen Huawei Singapore, Singapore
Haitao Zhang Lanzhou University, China
Tao Zhang Harbin Engineering University, China
Xinpeng Zhang Shanghai University, China
Zhaoxiang Zhang Chinese Academy of Sciences, China
Dong Zhao Beijing University of Posts and Telecommunications,

China
Yunhui Zheng IBM T.J. Watson Research Center, USA
Jianlong Zhong GRAPHSQL Inc., USA
Amelie Chi Zhou Inria, France
Anfu Zhou Beijing University of Posts and Telecommunications,

China

External Reviewers

Yutong Ai
Mohamad Al Hajj Hassan
Abbas Arghavani
Tayebeh Bahreini
Fu Cai
Jin Cao
Daniele De Sensi
Mathieu Faverge
Laleh Ghalami
Tobias Guggemos
Cheng Guo
Ye Guodong
Jinguang Han
Matthias Hauck
Xiaoying Jia
Yichen Jia
Rubao Lee

Xiang Ling
Ximeng Liu
Roland Mathà
Gabriele Mencagli
Maxime Meyer
Claudia Misale
Nader Mohamed
Pablo Neira
Kazumasa Omote
Tien-Dat Phan
Nicholas Rodofile
Nishant Saurabh
Dong Su
Cong Tian
Wufeng Tian
Zheng Wang
Zhe Xia

ICA3PP 2017 Organization XIII

Tao Xiang
Xiaolan Xie
Jianxin Xue
Anjia Yang
Chung-Huang Yang
Orcun Yildiz
Xie Yong

Pengfei Zhang
Xiaojian Zhang
Xinpeng Zhang
Zijian Zhang
Jieyi Zhao
Amelie Chi Zhou

DTWSM2017 Organization

Workshop Organizers

Jun Liu Xi’an Jiaotong University, China
Zheng Yan Xidian University, China/Aalto University, Finland

Technical Program Committee

Ari Visa Tampere University of Technology, Finland
Bifan Wei Xi’an Jiaotong University, China
Garimella Rama Murthy The International Institute of Information Technology,

Hyderabad (IIIT-H), India
Haifei Max Li Union University, USA
Hao Chen Xi’an Jiaotong University, China
Jiang Zheng ABB US Corporate Research Center, USA
József Mezei Åbo Akademi University, Finland
Qingtang Liu Central China Normal University, China
Susanna Pirttikangas University of Oulu, Finland
Tianrui Li Southwest Jiaotong University, China
Wei Zhang Amazon Inc., USA
Weizhan Zhang Xi’an Jiaotong University, China
Xia Sun Northwest University, China
Xiaohua Tony Hu Drexel University, USA
Ye Tian China Internet Network Information Center (CNNIC),

China
Yoan Miche Nokia Inc., Finland
Zhe Guo Huawei Inc., China

PBio 2017 Organization

Workshop Organizers

Miguel A. Vega-Rodríguez University of Extremadura, Spain
José M. Granado-Criado University of Extremadura, Spain
Alvaro Rubio-Largo University Nova of Lisbon, Portugal
Sergio Santander-Jiménez University of Extremadura, Spain

XIV ICA3PP 2017 Organization

Technical Program Committee

Antonio Gómez-Iglesias Texas Advanced Computing Center, USA
Beatriz Paniagua Kitware, USA
César Gómez-Martín University of Extremadura, Spain
David L. González-Álvarez University of Extremadura, Spain
Francisco Prieto-Castrillo MIT (Massachusetts Institute of Technology), USA
María Arsuaga-Ríos CERN, Switzerland
María Botón-Fernández Institute Suarez de Figueroa, Spain
Marisa da Silva Maximiano Polytechnic Institute of Leiria, Portugal
Miguel Cárdenas-Montes CIEMAT, Spain
Sónia M. Almeida-Luz Polytechnic Institute of Leiria, Portugal
Víctor Berrocal-Plaza AOIFES, Spain

DACSC 2017 Organization

Workshop Organizers

Wendong Wang Beijing University of Posts and Telecommunications,
China

Yan Chen Beijing University of Posts and Telecommunications,
China

Riku Jäntti Aalto University, Finland
Yu Xiao Aalto University, Finland

Technical Program Committee

Edith C.H. Ngai Uppsala University, Sweden
Hengshu Zhu Baidu, China
Jiujun Cheng Tongji University, China
Sigg Stephan Aalto University, Finland
Themistoklis Charalambous Aalto University, Finland
Xiangyang Gong Beijing University of Posts and Telecommunications,

China
Yang Chen Fudan University, China
Yannan Hu IBM, China
Ye Tian Beijing University of Posts and Telecommunications,

China
Yong Li Tsinghua University, China

ICA3PP 2017 Organization XV

UCER 2017 Organization

Workshop Organizers

Jesus Carretero University Carlos III of Madrid, Spain
Pedro Alonso UP Valencia, Spain
Juan Durillo University of Innsbruck, Austria
Fabrizio Marozzo University of Calabria, Italy

Technical Program Committee

Eugenio Cesario ICAR-CNR, Italy
Biagio Cosenza TU Berlin, Germany
Grégoire Danoy University of Luxembourg, Luxembourg
Manuel F. Dolz University Carlos III of Madrid, Spain
Gábor Kecskeméti Liverpool John Moores University, UK
Daniele Lezzi BSC, Spain
Hugo Daniel Meyer BSC, Spain
Sergio Nesmachnow Universidad de la Republica, Uruguay
José Ranilla University of Oviedo, Spain
Juan Antonio Rico University of Extremadura, Spain
Krzysztof Rojek Czestochowa University of Technology, Poland

XVI ICA3PP 2017 Organization

Contents

Parallel and Distributed Architectures

Workload Type-Aware Scheduling on big.LITTLE Platforms 3
Simon Holmbacka and Jörg Keller

Pipelining Computation and Optimization Strategies for Scaling
GROMACS on the Sunway Many-Core Processor 18

Yang Yu, Hong An, Junshi Chen, Weihao Liang, Qingqing Xu,
and Yong Chen

Exploring FPGA-GPU Heterogeneous Architecture for ADAS:
Towards Performance and Energy . 33

Xiebing Wang, Linlin Liu, Kai Huang, and Alois Knoll

Software Systems and Programming Models

Hzmem: New Huge Page Allocator with Main Memory Compression 51
Guoxi Li, Wenzhi Chen, Kui Su, Zhongyong Lu, and Zonghui Wang

An FPGA-Based Real-Time Moving Object Tracking Approach 65
Wenjie Chen, Yangyang Ma, Zhilei Chai, Mingsong Chen,
and Daojing He

Automatic Acceleration of Stencil Codes in Android Devices 81
Sergio Afonso, Alejandro Acosta, and Francisco Almeida

Distributed and Network-based Computing

Optimizing Concurrent Evacuation Transfers for Geo-Distributed
Datacenters in SDN. 99

Xiaole Li, Hua Wang, Shanwen Yi, Xibo Yao, Fangjin Zhu,
and Linbo Zhai

Energy-Balanced and Depth-Controlled Routing Protocol for Underwater
Wireless Sensor Networks . 115

Hao Qin, Zhiyong Zhang, Rui Wang, Xiaojun Cai, and Zhiping Jia

On the Energy Efficiency of Sleeping and Rate Adaptation
for Network Devices . 132

Timothée Haudebourg and Anne-Cécile Orgerie

http://dx.doi.org/10.1007/978-3-319-65482-9_1
http://dx.doi.org/10.1007/978-3-319-65482-9_2
http://dx.doi.org/10.1007/978-3-319-65482-9_2
http://dx.doi.org/10.1007/978-3-319-65482-9_3
http://dx.doi.org/10.1007/978-3-319-65482-9_3
http://dx.doi.org/10.1007/978-3-319-65482-9_4
http://dx.doi.org/10.1007/978-3-319-65482-9_5
http://dx.doi.org/10.1007/978-3-319-65482-9_6
http://dx.doi.org/10.1007/978-3-319-65482-9_7
http://dx.doi.org/10.1007/978-3-319-65482-9_7
http://dx.doi.org/10.1007/978-3-319-65482-9_8
http://dx.doi.org/10.1007/978-3-319-65482-9_8
http://dx.doi.org/10.1007/978-3-319-65482-9_9
http://dx.doi.org/10.1007/978-3-319-65482-9_9

Big Data and its Applications

Private and Efficient Set Intersection Protocol for Big Data Analytics 149
Zakaria Gheid and Yacine Challal

A Topology-Aware Framework for Graph Traversals. 165
Jia Meng, Liang Cao, and Huashan Yu

Adaptive Traffic Signal Control with Network-Wide Coordination 180
Yong Chen, Juncheng Yao, Chunjiang He, Hanhua Chen, and Hai Jin

Parallel and Distributed Algorithms

A Novel Parallel Dual-Character String Matching Algorithm on Graphical
Processing Units . 197

Chung-Yu Liao and Cheng-Hung Lin

Distributed Nonnegative Matrix Factorization with HALS
Algorithm on MapReduce . 211

Rafał Zdunek and Krzysztof Fonal

Applications of Parallel and Distributed Computing

GPU-Accelerated Block-Max Query Processing . 225
Haibing Huang, Mingming Ren, Yue Zhao, Rebecca J. Stones,
Rui Zhang, Gang Wang, and Xiaoguang Liu

KD-Tree and HEALPix-Based Distributed Cone Search Indexing System
for Multi-Band Astronomical Catalogs . 239

Chen Li, Ce Yu, Jian Xiao, Xiaoteng Hu, Hao Fu, Kun Li,
and Yanyan Huang

An Out-of-Core Branch and Bound Method for Solving the 0-1 Knapsack
Problem on a GPU . 254

Jingcheng Shen, Kentaro Shigeoka, Fumihiko Ino,
and Kenichi Hagihara

The Curve Boundary Design and Performance Analysis for DGM
Based on OpenFOAM . 268

Yongquan Feng, Xinhai Xu, Yuhua Tang, Liyang Xu,
and Yongjun Zhang

Service Dependability and Security in Distributed and Parallel Systems

Leakage-Resilient Password-Based Authenticated Key Exchange. 285
Ou Ruan, Mingwu Zhang, and Jing Chen

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-65482-9_10
http://dx.doi.org/10.1007/978-3-319-65482-9_11
http://dx.doi.org/10.1007/978-3-319-65482-9_12
http://dx.doi.org/10.1007/978-3-319-65482-9_13
http://dx.doi.org/10.1007/978-3-319-65482-9_13
http://dx.doi.org/10.1007/978-3-319-65482-9_14
http://dx.doi.org/10.1007/978-3-319-65482-9_14
http://dx.doi.org/10.1007/978-3-319-65482-9_15
http://dx.doi.org/10.1007/978-3-319-65482-9_16
http://dx.doi.org/10.1007/978-3-319-65482-9_16
http://dx.doi.org/10.1007/978-3-319-65482-9_17
http://dx.doi.org/10.1007/978-3-319-65482-9_17
http://dx.doi.org/10.1007/978-3-319-65482-9_18
http://dx.doi.org/10.1007/978-3-319-65482-9_18
http://dx.doi.org/10.1007/978-3-319-65482-9_19

Secure Encrypted Data Deduplication with Ownership Proof
and User Revocation . 297

Wenxiu Ding, Zheng Yan, and Robert H. Deng

Optimally Selecting the Timing of Zero-Day Attack via Spatial
Evolutionary Game . 313

Yanwei Sun, Lihua Yin, Yunchuan Guo, Fenghua Li, and Binxing Fang

Performance Modeling and Evaluation

Performance Analysis of a Ternary Optical Computer Based
on M/M/1 Queueing System. 331

XianChao Wang, Sulan Zhang, Mian Zhang, Jia Zhao,
and Xiangyang Niu

Efficient Computation Offloading for Various Tasks of Multiple Users in
Mobile Edge Clouds . 345

Weiyu Liu, Xiangming Wen, Zhaoming Lu, Luning Liu, and Xin Chen

A CNN-Based Supermarket Auto-Counting System. 359
Zhonghong Ou, Changwei Lin, Meina Song, and Haihong E

Research and Implementation of Question Classification Model
in Q&A System . 372

Haihong E, Yingxi Hu, Meina Song, Zhonghong Ou, and Xinrui Wang

The 4th International Workshop on Data, Text, Web, and Social
Network Mining (DTWSM 2017)

An Android Malware Detection System Based on Behavior
Comparison Analysis. 387

Jing Tao, Yan Zhang, Pengfei Cao, Zheng Wang, and Qiqi Zhao

Stream-Based Live Probabilistic Topic Computing and Matching 397
Kun Ma, Ziqiang Yu, Ke Ji, and Bo Yang

Experiment for Analysing the Impact of Financial Events on Twitter 407
Ana Fernández-Vilas, Lewis Evans, Majdi Owda,
Rebeca P. Díaz Redondo, and Keeley Crockett

APK-DFS: An Automatic Interaction System Based on Depth-First-Search
for APK. 420

Jing Tao, Qiqi Zhao, Pengfei Cao, Zheng Wang, and Yan Zhang

Contents XIX

http://dx.doi.org/10.1007/978-3-319-65482-9_20
http://dx.doi.org/10.1007/978-3-319-65482-9_20
http://dx.doi.org/10.1007/978-3-319-65482-9_21
http://dx.doi.org/10.1007/978-3-319-65482-9_21
http://dx.doi.org/10.1007/978-3-319-65482-9_22
http://dx.doi.org/10.1007/978-3-319-65482-9_22
http://dx.doi.org/10.1007/978-3-319-65482-9_23
http://dx.doi.org/10.1007/978-3-319-65482-9_23
http://dx.doi.org/10.1007/978-3-319-65482-9_24
http://dx.doi.org/10.1007/978-3-319-65482-9_25
http://dx.doi.org/10.1007/978-3-319-65482-9_25
http://dx.doi.org/10.1007/978-3-319-65482-9_26
http://dx.doi.org/10.1007/978-3-319-65482-9_26
http://dx.doi.org/10.1007/978-3-319-65482-9_27
http://dx.doi.org/10.1007/978-3-319-65482-9_28
http://dx.doi.org/10.1007/978-3-319-65482-9_29
http://dx.doi.org/10.1007/978-3-319-65482-9_29

Optimized Data Layout for Spatio-temporal Data in Time
Domain Astronomy . 431

Jie Yan, Ce Yu, Chao Sun, Zhaohui Shang, Yi Hu, Jinghua Feng,
Jizhou Sun, and Jian Xiao

Cloud Multimedia Files Assured Deletion Based on Bit Stream
Transformation with Chaos Sequence . 441

Wenbin Yao, Yijie Chen, and Dongbin Wang

Interval Merging Binary Tree . 452
István Finta, Lóránt Farkas, Sándor Szénási, and Szabolcs Sergyán

Mining Suspicious Tax Evasion Groups in a Corporate
Governance Network . 465

Wenda Wei, Zheng Yan, Jianfei Ruan, Qinghua Zheng, and Bo Dong

PerRec: A Permission Configuration Recommender System
for Mobile Apps . 476

Yanxiao Cheng and Zheng Yan

The 5th International Workshop on Parallelism in Bioinformatics (PBio 2017)

A Resource Manager for Maximizing the Performance of Bioinformatics
Workflows in Shared Clusters. 489

Ferran Badosa, César Acevedo, Antonio Espinosa, Gonzalo Vera,
and Ana Ripoll

Massively Parallel Sequence Alignment with BLAST Through Work
Distribution Implemented Using PCJ Library . 503

Marek Nowicki, Davit Bzhalava, and Piotr Bała

On the Use of Binary Trees for DNA Hydroxymethylation Analysis 513
César González, Mariano Pérez, Juan M. Orduña, Javier Chaves,
and Ana-Bárbara García

Parallel Multi-objective Optimization for High-Order Epistasis Detection 523
Daniel Gallego-Sánchez, José M. Granado-Criado,
Sergio Santander-Jiménez, Álvaro Rubio-Largo,
and Miguel A. Vega-Rodríguez

Configuring Concurrent Computation of Phylogenetic Partial Likelihoods:
Accelerating Analyses Using the BEAGLE Library 533

Daniel L. Ayres and Michael P. Cummings

Accelerating FaST-LMM for Epistasis Tests . 548
Héctor Martínez, Sergio Barrachina, Maribel Castillo,
Enrique S. Quintana-Ortí, Jordi Rambla De Argila, Xavier Farré,
and Arcadi Navarro

XX Contents

http://dx.doi.org/10.1007/978-3-319-65482-9_30
http://dx.doi.org/10.1007/978-3-319-65482-9_30
http://dx.doi.org/10.1007/978-3-319-65482-9_31
http://dx.doi.org/10.1007/978-3-319-65482-9_31
http://dx.doi.org/10.1007/978-3-319-65482-9_32
http://dx.doi.org/10.1007/978-3-319-65482-9_33
http://dx.doi.org/10.1007/978-3-319-65482-9_33
http://dx.doi.org/10.1007/978-3-319-65482-9_34
http://dx.doi.org/10.1007/978-3-319-65482-9_34
http://dx.doi.org/10.1007/978-3-319-65482-9_35
http://dx.doi.org/10.1007/978-3-319-65482-9_35
http://dx.doi.org/10.1007/978-3-319-65482-9_36
http://dx.doi.org/10.1007/978-3-319-65482-9_36
http://dx.doi.org/10.1007/978-3-319-65482-9_37
http://dx.doi.org/10.1007/978-3-319-65482-9_38
http://dx.doi.org/10.1007/978-3-319-65482-9_39
http://dx.doi.org/10.1007/978-3-319-65482-9_39
http://dx.doi.org/10.1007/978-3-319-65482-9_40

Pipelined Multi-FPGA Genomic Data Clustering. 558
Rick Wertenbroek, Enrico Petraglio, and Yann Thoma

First Experiences Accelerating Smith-Waterman on Intel’s Knights
Landing Processor. 569

Enzo Rucci, Carlos Garcia, Guillermo Botella, Armando De Giusti,
Marcelo Naiouf, and Manuel Prieto-Matias

Power-Performance Evaluation of Parallel Multi-objective EEG Feature
Selection on CPU-GPU Platforms . 580

Juan José Escobar, Julio Ortega, Antonio Francisco Díaz,
Jesús González, and Miguel Damas

Using Spark and GraphX to Parallelize Large-Scale Simulations
of Bacterial Populations over Host Contact Networks 591

Andreia Sofia Teixeira, Pedro T. Monteiro, João A. Carriço,
Francisco C. Santos, and Alexandre P. Francisco

PPCAS: Implementation of a Probabilistic Pairwise Model for
Consistency-Based Multiple Alignment in Apache Spark 601

Jordi Lladós, Fernando Guirado, and Fernando Cores

Accelerating Exhaustive Pairwise Metagenomic Comparisons 611
Esteban Pérez-Wohlfeil, Oscar Torreno, and Oswaldo Trelles

The First International Workshop on Distributed Autonomous
Computing in Smart City (DACSC 2017)

The Impact of International Inter-City Investment on Enterprises
Performance: Pluralistic Interpretation of Geographical Death 623

Yanghao Zhan, Yan Chen, and Ruirui Zhai

Energy Efficient Manycast Routing, Modulation Level and Spectrum
Assignment in Elastic Optical Networks for Smart City Applications. 633

Xiao Luo, Xue Chen, and Lei Wang

An Advanced Random Forest Algorithm Targeting the Big Data with
Redundant Features . 642

Ying Zhang, Bin Song, Yue Zhang, and Sijia Chen

En-Eye: A Cooperative Video Fusion Framework for Traffic Safety in
Intelligent Transportation Systems . 652

Tianhao Wu and Lin Zhang

Comparing Electricity Consumer Categories Based on Load Pattern
Clustering with Their Natural Types . 658

Zigui Jiang, Rongheng Lin, Fangchun Yang, Zhihan Liu,
and Qiqi Zhang

Contents XXI

http://dx.doi.org/10.1007/978-3-319-65482-9_41
http://dx.doi.org/10.1007/978-3-319-65482-9_42
http://dx.doi.org/10.1007/978-3-319-65482-9_42
http://dx.doi.org/10.1007/978-3-319-65482-9_43
http://dx.doi.org/10.1007/978-3-319-65482-9_43
http://dx.doi.org/10.1007/978-3-319-65482-9_44
http://dx.doi.org/10.1007/978-3-319-65482-9_44
http://dx.doi.org/10.1007/978-3-319-65482-9_45
http://dx.doi.org/10.1007/978-3-319-65482-9_45
http://dx.doi.org/10.1007/978-3-319-65482-9_46
http://dx.doi.org/10.1007/978-3-319-65482-9_47
http://dx.doi.org/10.1007/978-3-319-65482-9_47
http://dx.doi.org/10.1007/978-3-319-65482-9_48
http://dx.doi.org/10.1007/978-3-319-65482-9_48
http://dx.doi.org/10.1007/978-3-319-65482-9_49
http://dx.doi.org/10.1007/978-3-319-65482-9_49
http://dx.doi.org/10.1007/978-3-319-65482-9_50
http://dx.doi.org/10.1007/978-3-319-65482-9_50
http://dx.doi.org/10.1007/978-3-319-65482-9_51
http://dx.doi.org/10.1007/978-3-319-65482-9_51

When Clutter Reduction Meets Machine Learning for People Counting
Using IR-UWB Radar . 668

Xiuzhu Yang and Lin Zhang

Fine-Grained Infer PM2:5 Using Images from Crowdsourcing 678
Shuai Li, Teng Xi, Xirong Que, and Wendong Wang

Security/Reliability-Aware Relay Selection with Connection Duration
Constraints for Vehicular Networks . 687

Zhenyu Liu and Lin Zhang

Smart City Environmental Perception from Ambient Cellular Signals 695
Isha Singh and Stephan Sigg

A Multi-task Oriented Selection Strategy for Efficient Cooperation of
Collocated Mobile Devices. 705

Hui Gao, Jun Feng, Ruidong Wang, and Wendong Wang

Research on Properties of Nodes Distribution on Internet of Vehicles 715
Cheng Jiujun, Shang Zheng, Mi Hao, Cheng Cheng,
and Huang Zhenhua

Application of Batch and Stream Collaborative Computing in Urban
Traffic Data Processing . 725

Tao Zhang and Shuai Zhao

ESD-WSN: An Efficient SDN-Based Wireless Sensor Network
Architecture for IoT Applications . 735

Zhiwei Zhang, Zhiyong Zhang, Rui Wang, Zhiping Jia, Haijun Lei,
and Xiaojun Cai

The 2nd International Workshop on Ultrascale Computing for Early
Researchers (UCER 2017)

Probabilistic-Based Selection of Alternate Implementations for
Heterogeneous Platforms . 749

Javier Fernández, Andrés Sánchez Cuadrado, David del Rio Astorga,
Manuel F. Dolz, and J. Daniel García

Accelerating Processing of Scale-Free Graphs
on Massively-Parallel Architectures . 759

Mikhail Chernoskutov

A Hybrid Parallel Search Algorithm for Solving Combinatorial
Optimization Problems on Multicore Clusters . 766

Victoria Sanz, Armando De Giusti, and Marcelo Naiouf

XXII Contents

http://dx.doi.org/10.1007/978-3-319-65482-9_52
http://dx.doi.org/10.1007/978-3-319-65482-9_52
http://dx.doi.org/10.1007/978-3-319-65482-9_53
http://dx.doi.org/10.1007/978-3-319-65482-9_53
http://dx.doi.org/10.1007/978-3-319-65482-9_54
http://dx.doi.org/10.1007/978-3-319-65482-9_54
http://dx.doi.org/10.1007/978-3-319-65482-9_55
http://dx.doi.org/10.1007/978-3-319-65482-9_56
http://dx.doi.org/10.1007/978-3-319-65482-9_56
http://dx.doi.org/10.1007/978-3-319-65482-9_57
http://dx.doi.org/10.1007/978-3-319-65482-9_58
http://dx.doi.org/10.1007/978-3-319-65482-9_58
http://dx.doi.org/10.1007/978-3-319-65482-9_59
http://dx.doi.org/10.1007/978-3-319-65482-9_59
http://dx.doi.org/10.1007/978-3-319-65482-9_60
http://dx.doi.org/10.1007/978-3-319-65482-9_60
http://dx.doi.org/10.1007/978-3-319-65482-9_61
http://dx.doi.org/10.1007/978-3-319-65482-9_61
http://dx.doi.org/10.1007/978-3-319-65482-9_62
http://dx.doi.org/10.1007/978-3-319-65482-9_62

Concurrent Treaps . 776
Praveen Alapati, Swamy Saranam, and Madhu Mutyam

Survey on Energy-Saving Technologies for Disk-Based Storage Systems 791
Ce Yu, Jianmei Wang, Chao Sun, Xiaoxiao Lu, Jian Xiao,
and Jizhou Sun

The Open Community Runtime on the Intel Knights Landing Architecture 801
Jiri Dokulil, Siegfried Benkner, and Jakub Yaghob

High-Performance Graphics in Racket with DirectX 814
Antoine Bossard

Author Index . 827

Contents XXIII

http://dx.doi.org/10.1007/978-3-319-65482-9_63
http://dx.doi.org/10.1007/978-3-319-65482-9_64
http://dx.doi.org/10.1007/978-3-319-65482-9_65
http://dx.doi.org/10.1007/978-3-319-65482-9_66

Parallel and Distributed Architectures

Workload Type-Aware Scheduling
on big.LITTLE Platforms

Simon Holmbacka1,2(B) and Jörg Keller2(B)

1 Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
sholmbac@abo.fi

2 Faculty of Mathematics and Computer Science, FernUniversität in Hagen,
Hagen, Germany

joerg.keller@fernuni-hagen.de

Abstract. Optimizing energy efficiency in execution strategies has tra-
ditionally been heavily influenced by hardware mechanisms such as fre-
quency scaling and core sleep states. With such facilities, the system
can be scaled dynamically and on-demand to trade power dissipation for
clock speed or parallelism. Determining the most efficient execution con-
figuration has been described in much related work, but few efforts have
been put on including the workload type into the calculation. The type of
the workload affects both the performance and the power of the proces-
sor, and is especially important when considering heterogeneous systems
like the big.LITTLE, since different cores handle the workload with dif-
ferent efficiency. In this paper, we demonstrate the influence of the work-
load type when choosing an optimal execution strategy on a big.LITTLE
platform. We implement schedulers capable of including workload type,
and we provide a runtime system capable of executing the schedules on a
real-world platform. Results demonstrate that including workload types
into the scheduler saves between 7.1% and 31.3% of energy in our best/-
worst corner case studies, a result that should be considered in future
implementations of big.LITTLE schedulers.

1 Introduction

The debate about energy efficiency in computer systems is a phenomenon of
argumentation related to execution strategies in all sizes of platforms from
desktop- to cloud-, mobile- and IoT systems. Different strategies in executing the
workload will affect the power dissipation and the performance of the processor,
and it will hence affect the energy consumption. It is therefore of essence to find
the most important parameters for making intelligent execution choices using
scheduling and resource allocation.

Indeed, the primary driver in the debate around execution time vs. power
dissipation has been clock frequency scaling. High or low clock frequency will
consume different amounts of energy because of a difference in the execution
time and power dissipation, which the application causes. This has led to the
discussion about whether an application should execute fastly [2,16] (Race-to-
Idle) to save execution time at the cost of increased power, or execute slowly
[1,7,13,22] to save power at the cost of increased execution time.
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-65482-9 1

4 S. Holmbacka and J. Keller

While the debate focuses mostly on the hardware, less focus has been on
tracing the causes of the power dissipation and the performance to the soft-
ware executing on the hardware. In fact, different types of software utilize the
hardware microarchitecture differently, thus giving cause to a varying power
dissipation [23]. In modern heterogeneous multi-core systems, a new parame-
ter is included in this energy optimization: the core type. Both core types are
completely binary compatible, but the microarchitectures differ. The big core is
equipped with out-of-order execution, deep pipelines and advanced instruction
level parallelism, while the LITTLE core is in-order, has short pipelines and
has very limited instruction level parallelism. Because the core types execute
the workload in different ways, it leads to situations where applications execute
at different relative performance levels depending on how well the core type
is able to execute the stream of dispatched instructions. Different instructions
and instruction sequences will stress different engines inside the processor, and
hence the power dissipation and the performance is directly dependent on the
dispatched instruction stream and the core type.

Although progress has been made in determining the significant parame-
ters for efficient execution, the workload type has not, to our best knowledge,
been included in the execution on big.LITTLE systems. The official reference is
the Global Task Scheduling (GTS)1 support for the ARM big.LITTLE devices.
Using this scheduler, “High performance threads” are scheduled to the big cores
and “Low performance threads” are scheduled to LITTLE cores based on the
workload activity of the threads. The current implementation uses a fixed para-
meter SCHED CAPACITY SCALE to set the relative performance difference between a
big and a LITTLE core. It currently relies on a fixed constant; e.g. a big core
is 2x faster than a LITTLE. Even though this is an early attempt of cate-
gorizing workload type to a core type, the practical results are poor. In other
words, the scheduler often schedules a thread on the wrong core. This results not
only in poor energy efficiency, but also in poor performance of the applications
and poor user experience.

In this paper, we include the workload type when finding the most energy
efficient execution, rather than performance, using an off-the-shelf big.LITTLE
platform. We evaluate a worst case, an average case and a best case scenario and
we demonstrate the energy savings when taking workload types into account.

2 Related Work

Much related work has been presented on energy efficient execution, and the
primary findings are tunables like clock frequency, multi-cores and scheduling.
The work presented in both [2,16] argues for a Race-to-Idle (RTI) algorithm to
reduce energy consumption in real-time systems. The power model is directly
created by integrating the power values of a single-core CPU into a system sim-
ulator. Rather than a predictable real-time system, our work focus on general

1 https://developer.arm.com/technologies/big-little.

https://developer.arm.com/technologies/big-little

Workload Type-Aware Scheduling on big.LITTLE Platforms 5

applications, and modern general purpose multi-core systems with more com-
plex power characteristics. We also account for different types of workloads that
exercise parts of the CPU differently, and hence influence the power dissipation
and the execution schedule significantly. In a similar way, workload consolidation
in cloud systems [3] implicitly promote RTI, since packing jobs requires fewer
servers, and the unused servers can be shut down. This work also ignored the
workload type, and the difference in power and performance it gives cause to.

In other systems [12,15,21], an intermediate clock frequency was considered
optimal for energy efficiency. Again, the work in [15] compared RTI to several
algorithms capable of adapting the clock frequency of the CPU according to what
was predicted to be optimal. The schedulers were implemented in SystemC, and
the power values were extracted from an existing Intel processor. The authors
did not further discuss the impact of the hardware platform and its capabil-
ity to pipeline instructions, which is one of the most important factors when
choosing execution strategy in heterogeneous systems. Further, the authors in
[1] presented several task mapping strategies on a multi-core system running in
the SIMICS simulator. Mapping strategies included algorithms to keep over-used
cores idle in order to even out the mean time to failure because of aging. In this
work, different workload patterns were used, but not in the context of having
different power characteristics or different performance. Little attention was put
on the platform executing the tasks and pre-mature conclusions regarding the
energy model were drawn as a results from the experiments. In our work, we
acknowledge the impact of the power dissipation characteristics using different
core types and all experimental results are generated from real hardware rather
than from simulators.

Scheduling of multi-core systems has been covered in other work, and an
important aspect affecting the execution has been the level of software scalabil-
ity based on the selected processor [11]. Trading clock frequency for parallelism
has also been a technique to increase the efficiency [10] of computer systems
since the power invested in driving several cores usually is less than the power
saved by lower their clock frequency. The work in [11] presented a power manager
capable of spotting parallel paths in a program, and scale the clock frequency on
a multi-core ARM platform to obtain sufficient QoS from an application. The
results were, however, valid only for similar types of platforms with the same
type of power dissipation characteristics. More focus was put on the hardware
platform in [13]. The authors compared execution strategies using two server
platforms, one desktop platform and one mobile ARM platform. Further dis-
cussions regarding the power dissipation caused by hardware influence on the
software or the measurement methods were not made, nor were motivations for
creating a power- or energy model made in the work.

Thermal dissipation was considered as a significant factor for choosing execu-
tion strategy in [8]. Hot and cold ambient temperature was used for investigating
the effect on load consolidation or fair mapping. Similarly to this work, we con-
sider the impact of the ambient temperature by creating the power models based
on real execution. We furthermore include the effect of the workload types on
the ambient temperature and the related power dissipation.

6 S. Holmbacka and J. Keller

The authors in [25] use Heartbeats to identify performance characteristics of
the big and the LITTLE to optimize scheduling decisions. This includes a profil-
ing stage of the application to measure the relative speed-up between the cores.
In contrast, our work aims to identify the power and performance offline so no
overhead is required to identify the application. Other work included workload
types [19,26,27] on homogeneous HPC systems, and the focus has been put on
high CPU vs. high I/O loads. On big.LITTLE systems, the authors in [6] pre-
sented a scheduler, which included knowledge about co-running applications and
performance degradation. The work in [23] showed how the energy consumption
on a big.LITTLE system was affected by the workload applied on the processor,
but the presented work was more of an analysis than a discussion into what
causes the power dissipation. On a more fundamental level, we focus on how
the very microarchitecture is able to efficiently dispatch the workload onto the
execution stages in the processor, and how this information can be exploited to
determine the most energy efficient execution.

3 Power Breakdown

The power dissipation of the CPU is the single most important parameter when
determining the efficiency of the execution. Dynamic power is being dissipated
whenever the CPU is performing operations, but not otherwise. The dynamic
power dissipation Pd is linearly dependent on the clock frequency and quadrati-
cally on the core voltage as Pd = f ·V 2

dd . As the core cannot operate on arbitrarily
low voltage levels when the clock frequency is increased, the core voltage must
be dynamically adjusted as the clock frequency is increased. This often leads to
a cubic increase in dynamic power as a function of clock frequency. Moreover,
the static power caused by transistor leakage is becoming more and more dom-
inant as the transistors shrink in size [14]. The static power is always present
even if a processor is not executing any workload; this means that the processor
is wasting energy always when being connected to a power source. The static
power is dependent on the temperature because of the increased leakage cur-
rent [8], therefore it is also dependent on the voltage and clock frequency, which
affect the temperature. The relation between leakage current and temperature
is found in [14]. Therefore the optimal balance between using dynamic power for
setting the clock frequency and the static power present as long as the platform
is powered should be found.

4 Influence of Workload Type

Software is broken down into CPU instructions that exercise parts of the CPU
when being executed. First and foremost, the type of workload impacts on which
part of the microarchitecture is stressed – this in turn impacts on the power dis-
sipation because a different amount of transistors are used depending on the
type of instruction being executed. For example an ALU operation dissipates
a different amount of power than a memory operation because they use very

Workload Type-Aware Scheduling on big.LITTLE Platforms 7

different parts of the CPU. The microarchitecture also influences the power dis-
sipation because of its capabilities to pipeline the stream of instructions, poten-
tially using instruction level parallelism or out-of-order execution. Power models
usually omit this fact [4,5,20,24], and rely on the assumption that software is a
monolith that dissipates a single amount of power independently of what parts
of the CPU are being exercised.

We therefore investigated the impact of the workload itself on the power dis-
sipation by selecting six different benchmarks from the stress-ng suite2. These
benchmarks were chosen because they were designed to stress different parts of
the processor. The chosen benchmarks were: ackermann, cdouble, fibonacci,
float, callfunc and fnv1a compiled with the default build flags on an ARM
device. The complete instruction sequence was then traced by a gdb script3, and
the instructions were categorized based on their functionality as seen in Fig. 1.

Fig. 1. Instruction break-down of all six benchmarks. A: ackermann B: cdouble

C: fibonacci D: float E: callfunc F: fnv1a

We categorized the instructions into 6 categories: ALU (Arithmetic-logic
operations), Memory (off-chip memory operations), Branch (Conditional- and
non-conditional branches), Int multiply (Integer multiplication/divisions), SIMD
(All single instruction multiple data operations), Register (Load/Store instruc-
tions using CPU registers). As seen in the figure, the ackermann benchmark
consists of a relatively even balance between ALU, memory and branch instruc-
tions, cdouble contains mostly SIMD instructions, fibonacci uses many ALU
instructions and register operations (mostly the mov instruction). float con-
tains a balanced amount of all instruction types except the integer multiplica-
tions, while callfunc uses mostly memory instructions to the external memory.
Finally, fnv1a contains a balanced amount of instructions but it uses integer
multiplications rather than SIMD instructions.
2 http://kernel.ubuntu.com/∼cking/stress-ng/.
3 https://git.it.abo.fi/simon.holmbacka/GDBInstructionScanner/.

http://kernel.ubuntu.com/~cking/stress-ng/
https://git.it.abo.fi/simon.holmbacka/GDBInstructionScanner/

8 S. Holmbacka and J. Keller

The average power dissipation was measured for all benchmarks using an
Odroid-XU4 board with the Exynos 5422 SoC. The board contains four ARM
Cortex-A7 cores and four Cortex-A15 cores. Four benchmark threads were exe-
cuted in all experiments, and the threads were mapped to the Cortex-A15 cores.
For each benchmark, the clock frequency was scaled from 800 MHz to 1600 MHz
in steps of 200 MHz. An external Raspberry Pi device was used to measure and
log the power of the complete board with a sampling interval of 10 ms. Table 1
shows the average power dissipation from the benchmarks as a function of clock
frequency. It is clear that some workloads cause significantly higher power dissi-
pation than others. For example the callfunc workload is causing up to 13 W
of power dissipation using the highest clock frequency while executing fnv1a,
barely 8 W of power is being dissipated. From the table we can see that the
increase in power dissipation is not equally fast for all tasks, hence highlighting
the need for including workload specific power-awareness in the scheduler. By
studying the results from these experiments, we confirm that the workload type
executed affects the power dissipation – almost by 40% in this experiment.

Table 1. Power dissipation [W] caused by different workload types on an Exynos 5422
board using different clock frequency settings

800MHz 1000 MHz 1200MHz 1400MHz 1600 MHz

ackermann 4.354 5.206 6.190 7.931 10.382

cdouble 3.968 5.492 6.038 7.643 10.403

fibonacci 3.588 4.753 5.168 6.274 8.886

float 3.995 5.526 5.913 7.687 10.393

callfunc 4.697 6.193 6.801 9.201 13.369

fnv1a 3.415 4.588 4.734 5.880 8.009

5 Type Based Schedule Optimization

The hypothesis in this paper is that types of workload will affect the energy
efficiency if included in the scheduling. We have shown in Sect. 4 that types of
workload indeed affect the power dissipation significantly, and in this section
we investigate the benefits of workload type-aware scheduling. Since energy con-
sumption is dependent on the execution time as well as the power, we measure
both values for each workload on each core type. We then create schedules using
an optimizer with different levels of accuracy in terms of power and performance
awareness, and we execute the resulting schedule on real hardware.

5.1 Workload Types

Rather than using complex benchmark kernels, we chose to evaluate workload
types consisting of mostly one type of instruction in order to cover the extreme

Workload Type-Aware Scheduling on big.LITTLE Platforms 9

case for power and performance difference between the types. Four simple bench-
mark kernels shown in Table 2 were extracted from the epEBench suite4. These
benchmarks consist of a small kernel which is looped over a given number of iter-
ations, after which the thread is terminated. We also included a generic matrix
multiplication benchmark without any code optimization implemented as a fifth
benchmark. All benchmarks were compiled with the -O0 flag using gcc on the
ARM device.

Table 2. Benchmark kernels with different workload type

Power consumption. The power dissipation was measured for all benchmarks on
the Odroid-XU4 device using 1 to 4 available cores and clock frequencies 600 MHz
to 1600 MHz on the big A15 core and clock frequencies 600 MHz to 1400 MHz on
the LITTLE A7 core. The power was measured with an external power meter,
and hence no performance overhead was introduced. The performance was simply
measured by the timestamps for executing a set of instructions so no additional
code was inserted in the benchmark kernel. The results from the SIMD (4)
benchmark is shown in Table 3, and the results from all the other benchmarks
are found at https://zenodo.org/record/290651 due to space limitations.

4 https://gitlab.com/MuellerRobert/epEBench.

https://zenodo.org/record/290651
https://gitlab.com/MuellerRobert/epEBench

10 S. Holmbacka and J. Keller

Table 3. Power dissipation [W] caused by the SIMD workload type on an Odroid-XU4
board using different clock frequency settings and number of cores

big 600MHz 800MHz 1000 MHz 1200MHz 1400MHz 1600 MHz

1 core 2.81 2.99 3.28 3.44 3.91 5.38

2 cores 3.15 3.45 3.96 4.39 5.21 7.57

3 cores 3.50 3.91 4.71 5.29 6.55 10.00

4 core 3.81 4.27 5.62 6.09 8.21 12.40

LITTLE 600MHz 800MHz 1000 MHz 1200MHz 1400MHz 1600 MHz

1 core 2.71 2.77 2.88 2.95 3.01 n/a

2 core 2.77 2.87 2.95 3.14 3.21 n/a

3 core 2.83 2.99 3.07 3.32 3.43 n/a

4 core 2.89 3.07 3.17 3.51 3.65 n/a

Performance. The performance was measured as the relative execution time
with respect to the LITTLE core type. For example a performance value of 0.5
on the big core indicates a 2x speedup compared to the LITTLE core using the
same clock frequency. It was measured by executing a fixed number of loops,
while calculating the elapsed time for completing all loop iterations. Both core
types were operating at a clock frequency of 1000 MHz and one thread was
used for each experiment. The performance (execution time) of executing the
kernels was normalized to the performance of the LITTLE A7 core, and the
relative performance of the big A15 is shown in Table 4. As seen in the table, the
performance of the A15 core is usually higher due to its out-of-order execution,
its deep pipeline and more advanced instruction level parallelism. For example
when executing SIMD instructions, the A15 core is more than 3.5x faster than
the A7 core because of its 10 stage SIMD pipeline and two completely parallel
SIMD engines. On the other hand, when executing branch instructions, the A7
is seemingly faster because the A15 cannot use any of its deep pipelines as every
instruction is a branch.

Table 4. Relative performance of the A7 and A15 core executing various benchmark
kernels (Lower is better)

Memory Branch Fmult SIMD Matmul

Cortex-A15 0.676 1.376 0.264 0.277 0.746

Cortex-A7 1.0 1.0 1.0 1.0 1.0

5.2 Schedule Generation

Clearly, the type of workload executed on the processor affects both the power
dissipation of the core and the performance of the application depending on the

Workload Type-Aware Scheduling on big.LITTLE Platforms 11

core type used. To determine the impact of the execution strategy, we imple-
mented a scheduler capable of including workload type when optimizing the
runtime. Including the workload type means creating a power and performance
model for each workload type, and selecting the relevant power and performance
model when calculating the energy consumption for a schedule. Using an igno-
rant scheduler, the power and performance values of a task is the average value
of all task types, i.e. all task types “look” the same to the ignorant scheduler.

We consider 4 scheduler variants each with different levels of accuracy with
regard to the workload type:

(1) Completely ignorant. This scheduler ignores both task specific power and
performance values. The scheduler considers average power and performance
values over all task types used.

(2) Power-aware. This scheduler considers task specific power values but
ignores performance values.

(3) Performance-aware. This scheduler considers task specific performance
values but ignores power values.

(4) Power-performance-aware. This scheduler considers task specific power
and performance values. It is hence the most accurate schedule compared to
the real-world execution by definition.

All of the four schedulers always select the clock frequency and the core type
which results in the lowest energy consumption based on the performance and
the power information available.

6 Evaluation

Our evaluation was aimed at showing how much energy can be saved by using
increased levels of awareness in the scheduler compared to an ignorant scheduler.

6.1 Case Studies

We selected two important corner cases using static schedulers and furthermore
two average cases using dynamic schedulers with all task types. The corner cases
are intended to represent the best and worst cases as power and performance
values are taken into account or ignored.

Corner case 1. Based on the results in Sect. 5, we chose to include four tasks of
type Branch and four tasks of type SIMD. These were chosen because: (1) Branch
has the worst performance on the big, but also the lowest power dissipation on the
big. This indicates that Branch is poorly utilizing the big microarchitecture. (2)
SIMD has the highest power dissipation on the big and a very high performance
on the big. This indicates that SIMD is utilizing the big microarchitecture well.

To schedule sets of tasks of different task types onto a heterogeneous multi-
core machine, we first perform bin packing-based distributions of each set for 1
to p cores, if there are p cores per core type. Then we proceed similarly to [9]:

12 S. Holmbacka and J. Keller

we enumerate all possible mappings, and among the feasible mappings, i.e. those
where the predicted runtime is smaller than the deadline, we choose the one
where the prediction for energy consumption is lowest. In other words, the opti-
mizer performs an exhaustive search and the optimum is hence guaranteed.

Corner case 2. The second corner case was choosing four tasks of type Memory
and four tasks of type Matmul. These types were chosen because both types
obtain a performance close to the average performance, and the power dissipa-
tion is close to the average power dissipation of all task types. The mapping is
performed using the same optimization method as in Corner case 1.

RM CFS case. A multi-core Rate-Monotonic (RM) Completely-Fair (CF) sched-
uler was implemented5 in the SimSo6 framework. The scheduler supported the
declaration of workload types and the level of Power/Performance awareness
when deciding a schedule. The RM scheduler is a dynamic scheduler using the
following rules:

– Schedule the task on the core with the cheapest cost (Power*Performance).
– Use as much parallelism as possible within the core type.
– The priority is determined by the task period (shorter period = higher prior-

ity).
– A core is over-utilized if the utilization U > n · (21/n− 1) where n is the total

number of tasks scheduled on the core, according to [17].

EDF CFS case. A multi-core Earliest-Deadline-First (EDF) Completely-Fair
(CF) scheduler was also implemented (See footnote 5) in the SimSo framework.
The scheduler supported the declaration of workload types and the level of Pow-
er/Performance awareness when deciding a schedule similarly to the RM sched-
uler. The EDF scheduler is a dynamic scheduler using the following rules:

– Schedule the task on the core with the cheapest cost (Power*Performance).
– Use as much parallelism as possible within the core type.
– The priority is determined by the deadline (earlier deadline = higher priority).
– A core is over-utilized if the utilization U > 1, according to [18].

Hence, Corner case 1 represents the worst case deviation between an ignorant
scheduler and a P&P-aware scheduler and Corner case 2 represents the best case.
The RM CFS case and the EDF CFS case represent a more realistic average case
by using many types of workloads and popular dynamic scheduling methods.

6.2 Experimental Results

Corner case 1 and 2 was fed to the optimizer for all four types of awareness levels
(defined in Sect. 5). The mapping order is decided by the order of which the tasks

5 https://zenodo.org/record/290651.
6 http://projects.laas.fr/simso/.

https://zenodo.org/record/290651
http://projects.laas.fr/simso/

Workload Type-Aware Scheduling on big.LITTLE Platforms 13

are sent to the optimizer. Since the ignorant scheduler is unable to distinguish
between task types, the tasks are mapped first to the big core since it is deemed
to be more efficient based on the average power and performance values. As
the big core is fully utilized, the remaining tasks are mapped to the LITTLE
cores. The schedule determined by the optimizer was then fully replicated on
real hardware using our runtime framework7. The two later cases are using a
dynamic scheduler rather than the optimizer. This means that the scheduling
algorithms will determine the mapping during runtime. The resulting dynamic
schedule was also replicated on our runtime framework.

Table 5 shows the results as two parts: the first part is the model created by
the optimizer of the dynamic scheduler upon which scheduling decisions are being
made. The second part is the energy measurements data from real hardware
execution. Gantt charts of all tasks and schedules are externally available (See
footnote 5).

Table 5. Energy consumption model/data [J] for various schedulers with various levels
of awareness on an Exynos 5422 board.

Model Corner case 1 Corner case 2 RM CFS EDF CFS

(1) Completely ignorant 161.50 161.50 423.03 475.67

(2) Power-aware 186.62 203.85 470.71 525.85

(3) Performance-aware 145.77 202.27 405.25 455.15

(4) P&P-aware 145.92 164.71 391.44 462.25

Data Corner case 1 Corner case 2 RM CFS EDF CFS

(1) Completely ignorant 206.15 173.41 475.99 638.64

(2) Power-aware 206.15 161.08 514.94 596.43

(3) Performance-aware 141.71 161.08 409.46 496.28

(4) P&P-aware 141.71 161.08 409.46 496.28

Energy savings (1) vs. (4) 31.3% 7.1% 14.0% 23.3%

Corner case 1. Since the ignorant scheduler (1) is unable to distinguish between
the task types, Branch tasks are being scheduled on the big core and SIMD tasks
are being scheduled on the LITTLE cores. This is the worst possible mapping
for all task types and the difference in energy consumption between (1) and (4)
is significant both for the model and for the data. The model in (1) predicts a
lower energy consumption than what is measured because (1) cannot accurately
predict the execution time nor the power. By mapping the extreme case tasks
on the wrong core, the execution time is significantly extended, and the real
energy consumption is higher than the model predicts. This is clearly visible as
the energy consumption for the performance-aware scheduler is lower than the
power-aware scheduler. On the other hand, by including power and performance
7 https://git.it.abo.fi/simon.holmbacka/SchedulingTemplate.git.

https://git.it.abo.fi/simon.holmbacka/SchedulingTemplate.git

14 S. Holmbacka and J. Keller

into the model, the scheduler is not only able to map the tasks onto the correct
cores, but the model is also able to predict the outcome more accurately. The PP-
aware and the performance-aware scheduler has an equal energy consumption
in practice because the real schedule is identical. This is because including only
the performance parameter (in these cases) is enough to predict the optimal
schedule. The results from the extreme corner case shows that a maximum of
31.3% can be saved by using workload type-aware scheduling.

Corner case 2. The second case is a best case study for using an ignorant
scheduler (1), because the power and the performance of the workload types
(Memory and Matmul) are close to the average case which the ignorant scheduler
is based upon. As seen in Table 5, the model is more accurately able to predict
the energy consumption than in Corner case 1. This is because the average
power and performance is an approximation fairly close to the measured data.
Nevertheless, the P&P-aware scheduler (4) still outperforms (1, 2, 3) because of
the slight additional accuracy. The results from the best case corner case shows
that a 7.1% of energy can be saved by using workload type-aware scheduling.

RM CFS. In the use case of the dynamic RM CF scheduler, a larger set of tasks
(See footnote 5) were used and a mixture of all five task types were furthermore
included. The accuracy of the model is fairly high for all four scheduler types,
but the energy consumption of the P&P-aware scheduler is clearly lower than (1)
and (2). In all use cases, the Performance-aware scheduler (3) achieves an iden-
tical energy consumption as (4). This is because the schedule created predicted
based on only the performance model is identical to the schedule created pre-
dicted both based on power and performance. It suggests that the link between
workload performance and energy consumption is stronger than between power
dissipation and energy consumption for the chosen workloads executing on the
chosen platform.

EDF CFS. The energy savings are even larger when comparing (1) to (4) using
the EDF scheduler, because a slightly larger task set was used (See footnote 5).
Since the scheduler more often is capable of mapping right-task-to-right-core,
the difference is larger. In both the EDF case and in the RM case, the prediction
for (1) is much lower than the actual energy consumption. This is because an
ignorant scheduler assumes that the tasks are mapped on the right core, and
the execution time of the tasks are hence assumed to be shorter than the actual
execution time. This means that not only is a P&P-aware scheduler desired to
decrease the energy consumption, it is also needed for accurate model prediction.

7 Conclusions

Workload type has previously been omitted in most research work on energy
efficient execution to our best knowledge. Schedule and runtime optimizations
have been done purely based on hardware parameters such as clock frequency

Workload Type-Aware Scheduling on big.LITTLE Platforms 15

or core number, and the software has been considered mainly a näıve “user” of
the CPU. This paper has demonstrated that the workload type is an important
factor for determining the execution strategy on big.LITTLE platforms. We have
evaluated the workload type based on the most fundamental building blocks –
the instruction stream. We have shown that both the power dissipation and the
performance of the software is highly dependent on the type of the instructions
in the stream. Our conclusions are that workload type should be a parameter
in big.LITTLE schedulers rather than relying on indirect metrics such as the
workload level, as currently used.

Although not part of this paper, to apply this discovery in practice our future
work includes how to analyze and monitor applications to determine the instruc-
tion stream of applications. With a given instruction stream, methods such as
neural networks can be used to categorize the instruction stream and a core
type “Fitness” of an application can hence be determined. Then use this knowl-
edge in the scheduler of for example the Linux kernel to make workload-aware
scheduling decisions.

References

1. Allred, J.M., Roy, S., Chakraborty, K.: Long term sustainability of differentially
reliable systems in the dark silicon era. In: 2013 IEEE 31st International Conference
on Computer Design (ICCD), pp. 70–77, October 2013

2. Awan, M.A., Petters, S.M.: Enhanced race-to-halt: a leakage-aware energy manage-
ment approach for dynamic priority systems. In: 2011 23rd Euromicro Conference
on Real-Time Systems, pp. 92–101, July 2011

3. Chen, K., Lenhardt, J., Schiffmann, W.: Improving energy efficiency of web servers
by using a load distribution algorithm and shutting down idle nodes. In: 2015
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pp. 745–748, May 2015

4. Cho, S., Melhem, R.: On the interplay of parallelization, program performance, and
energy consumption. IEEE Trans. Parallel Distrib. Syst. 21(3), 342–353 (2010)

5. Cupertino, L., Da Costa, G., Pierson, J.M.: Towards a generic power estima-
tor. Comput. Sci. - Res. Dev. 30(2), 1–9 (2014). http://dx.doi.org/10.1007/
s00450-014-0264-x

6. Fan, X., Sui, Y., Xue, J.: Contention-aware scheduling for asymmetric multicore
processors. In: 2015 IEEE 21st International Conference on Parallel and Distrib-
uted Systems (ICPADS), pp. 742–751, December 2015

7. Fu, C., Li, M., Xue, C.J.: Race to idle or not: balancing the memory sleep time
with dvs for energy minimization. In: 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 13–18, March 2015

8. Hällis, F., Holmbacka, S., Lund, W., Slotte, R., Lafond, S., Lilius, J.: Thermal
influence on the energy efficiency of workload consolidation in many-core archi-
tecture. In: Bolla, R., Davoli, F., Tran-Gia, P., Anh, T.T. (eds.) Proceedings of
the 24th Tyrrhenian International Workshop on Digital Communications, pp. 1–6.
IEEE (2013)

9. Holmbacka, S., Keller, J., Eitschberger, P., Lilius, J.: Accurate energy modeling for
many-core static schedules with streaming applications. Microprocess. Microsyst.
43(C), 14–25 (2016)

http://dx.doi.org/10.1007/s00450-014-0264-x
http://dx.doi.org/10.1007/s00450-014-0264-x

16 S. Holmbacka and J. Keller

10. Holmbacka, S., Nogues, E., Pelcat, M., Lafond, S., Menard, D., Lilius, J.: Energy-
awareness and performance management with parallel dataflow applications. J.
Sig. Process. Syst., 1–16 (2015). http://dx.doi.org/10.1007/s11265-015-1059-4

11. Holmbacka, S., Nogues, E., Pelcat, M., Lafond, S., Lilius, J.: Energy efficiency
and performance management of parallel dataflow applications. In: Pinzari, A.,
Morawiec, A. (eds.) The 2014 Conference on Design & Architectures for Signal
& Image Processing, pp. 1–8. ECDI Electronic Chips & Systems Design Initiative
(2014)

12. Jejurikar, R., Gupta, R.: Procrastination scheduling in fixed priority real-time sys-
tems. In: Proceedings of the 2004 ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, LCTES 2004, NY, USA, pp.
57–66 (2004). http://doi.acm.org/10.1145/997163.997173

13. Kim, D.H.K., Imes, C., Hoffmann, H.: Racing and pacing to idle: theoretical
and empirical analysis of energy optimization heuristics. In: 2015 IEEE 3rd
International Conference on Cyber-Physical Systems, Networks, and Applications
(CPSNA), pp. 78–85, August 2015

14. Kim, N., Austin, T., Baauw, D., Mudge, T., Flautner, K., Hu, J., Irwin, M., Kan-
demir, M., Narayanan, V.: Leakage current: Moore’s law meets static power. Com-
puter 36(12), 68–75 (2003)

15. Kluge, F., Uhrig, S., Mische, J., Satzger, B., Ungerer, T.: Dynamic workload pre-
diction for soft real-time applications. In: 2010 IEEE 10th International Conference
on Computer and Information Technology (CIT), pp. 1841–1848, June 2010

16. Lee, Y.H., Reddy, K.P., Krishna, C.M.: Scheduling techniques for reducing leakage
power in hard real-time systems. In: Proceedings of the 15th Euromicro Conference
on Real-Time Systems, pp. 105–112, July 2003

17. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM 20(1), 46–61 (1973).
http://doi.acm.org/10.1145/321738.321743

18. Liu, J.W.S.: Real-Time Systems, 1st edn. Prentice Hall PTR, Upper Saddle River
(2000)

19. Lucanin, D., Pietri, I., Holmbacka, S., Brandic, I., Lilius, J., Sakellariou, R.:
Performance-based pricing in multi-core geo-distributed cloud computing. IEEE
Trans. Cloud Comput. PP(99), 1 (2016)

20. Mesa-Martinez, F.J., Ardestani, E.K., Renau, J.: Characterizing
processor thermal behavior. SIGPLAN Not. 45(3), 193–204 (2010).
http://doi.acm.org/10.1145/1735971.1736043

21. Niu, L., Quan, G.: Reducing both dynamic and leakage energy consumption for
hard real-time systems. In: Proceedings of the 2004 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, CASES 2004, NY,
USA, pp. 140–148 (2004). http://doi.acm.org/10.1145/1023833.1023854

22. Rountree, B., Lownenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W.,
Bletsch, T.: Adagio: making DVS practical for complex HPC applications. In:
Proceedings of the 23rd International Conference on Supercomputing, ICS 2009,
NY, USA, pp. 460–469 (2009). http://doi.acm.org/10.1145/1542275.1542340

23. Seo, W., Im, D., Choi, J., Huh, J.: Big or little: a study of mobile interactive
applications on an asymmetric multi-core platform. In: 2015 IEEE International
Symposium on Workload Characterization, pp. 1–11, October 2015

24. Shen, H., Lu, J., Qiu, Q.: Learning based DVFS for simultaneous temperature,
performance and energy management. In: 2012 13th International Symposium on
Quality Electronic Design (ISQED), pp. 747–754, March 2012

http://dx.doi.org/10.1007/s11265-015-1059-4
http://doi.acm.org/10.1145/997163.997173
http://doi.acm.org/10.1145/321738.321743
http://doi.acm.org/10.1145/1735971.1736043
http://doi.acm.org/10.1145/1023833.1023854
http://doi.acm.org/10.1145/1542275.1542340

Workload Type-Aware Scheduling on big.LITTLE Platforms 17

25. Sozzo, E.D., Durelli, G.C., Trainiti, E.M.G., Miele, A., Santambrogio, M.D., Bol-
chini, C.: Workload-aware power optimization strategy for asymmetric multiproces-
sors. In: 2016 Design, Automation Test in Europe Conference Exhibition (DATE),
pp. 531–534, March 2016

26. Spiliopoulos, V., Kaxiras, S., Keramidas, G.: Green governors: a framework for
continuously adaptive DVFS. In: 2011 International Green Computing Conference
and Workshops, pp. 1–8, July 2011

27. Tiwari, N., Bellur, U., Sarkar, S., Indrawan, M.: CPU frequency tuning to improve
energy efficiency of mapreduce systems. In: 2016 IEEE 22nd International Con-
ference on Parallel and Distributed Systems (ICPADS), pp. 1015–1022, December
2016

Pipelining Computation and Optimization Strategies
for Scaling GROMACS on the Sunway

Many-Core Processor

Yang Yu1(✉), Hong An1(✉), Junshi Chen1, Weihao Liang1, Qingqing Xu1,
and Yong Chen2

1 University of Science and Technology of China, Hefei, Anhui, China
{yy130611,cjuns,lwh,tsqua}@mail.ustc.edu.cn,

han@ustc.edu.cn
2 Department of Computer Science, Texas Tech University, Lubbock, TX, USA

yong.chen@ttu.edu

Abstract. The increasing gap between plentiful computing elements and limited
memory bandwidth makes it increasingly difficult and sometimes even infeasible
for HPC community to port more applications onto many-core processor archi‐
tectures. The Sunway many-core processor SW26010 used to build the Sunway
TaihuLight System contains a total of 260 heterogeneous cores. All these cores
can be divided into 4 core groups (CGs). Each CG includes a Management
Processing Element (MPE) core and 64 Computing Processing Elements (CPEs)
cores. In this paper, we refactor an important molecular dynamics (MD) appli‐
cation GROMACS on the Sunway Taihulight system. By rewriting the compute-
intensive kernel of GROMACS, we exploit a suitable parallelism for CPE cluster
and implement pipelining computation between MPE and CPE cluster. Optimi‐
zation strategies including the efficient use of scratchpad, the software-emulated
cache and a hybrid parallel algorithm are adopted to solve the challenging memory
bandwidth limitation. When comparing the refactored version using MPE and 64
CPEs with the original ported version using only MPE, we achieve a 16x speedup
for the compute-intensive kernel. For simulating a molecule with 3 million atoms,
we currently have managed to scale to 798,720 cores. Moreover, we analyze the
adaptability of our mapping and optimization strategies for solving the memory
bandwidth limitation when refactoring a real-world application on the Sunway
heterogeneous many-core processor system.

Keywords: Sunway TaihuLight system · GROMACS · Parallel model ·
Performance optimization · Bandwidth competition · Adaptability

1 Introduction

The Sunway TaihuLight System, developed by the National Research Center of Parallel
Computer Engineering and Technology (NRCPC) of China, with a Linpack score of 93
petaflops, captured the number-one spot on the latest Top 500 list of supercomputers
released at the conference SC16. As the only 100-PFLOPS system in the world, it

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 18–32, 2017.
DOI: 10.1007/978-3-319-65482-9_2

contains about ten million heterogeneous cores in total. 40,960 computing nodes, each
of which has an extremely high peak performance of 3 TFLOPS. However, given the
specific heterogeneous many-core architecture, it is challenging to utilize such plentiful
computing resource effectively to achieve high performance.

Molecular Dynamics (MD) simulation [1] plays an important role in theoretical
studies of biomolecular systems. The fundamental algorithm includes computing the
interactions between particles and updating the coordinates and velocities via Newton’s
second law [2] in finite time. GROMACS is a widely-used software package for MD
simulation. It is computationally intensive but highly efficient at calculating the
nonbonded interactions. In recent years, several research efforts have focused on refac‐
toring GROMACS for heterogeneous system architectures and analyzing its scalability.
Typical examples include refactoring GROMACS for the Cell processor [3] and to GPU
accelerators [4]. Recently, a study focusing on the challenges for exascale simulation
[5] was performed by the official GROMACS developers.

The main contributions of this paper are as follows.

• We exploit a suitable parallelism to refactor GROMACS onto the Sunway Taihu‐
Light System. By adopting a task-level pipeline, we solve the load imbalance and
data dependency problems that were exposed during parallelization of the compute-
intensive kernel without introducing additional execution time.

• We introduce effective optimization strategies to reuse data and reduce memory-
access delays, thus solving the challenging bandwidth limitation problem on the
Sunway TaihuLight System. A detailed analysis is presented concerning the imple‐
mentation and benefits of each optimization strategy.

• We compare the refactored GROMACS code using both MPE and CPE clusters to
the serial official GROMACS code on MPE. We achieve up to a 16x speed improve‐
ment for the main compute-intensive kernel.

• We discuss the adaptability of our parallel model and optimization strategies that are
not only suitable for GROMACS but also potentially apply to other HPC applications
and benchmarks as they are refactored onto the Sunway heterogeneous many-core
architecture.

2 The Sunway TaihuLight System

2.1 Overview

As the fastest supercomputer in the world, The Sunway TaihuLight System [8] has a
theoretical peak performance of 125.4 PFLOPS. The full system adopts a multilevel tree
topology composed of 40 cabinets, each of which contains 4 supernodes. Every super‐
node contains 256 nodes, each of which has 260 heterogeneous cores and 32 GB of main
memory. In total, this system includes 10,649,600 heterogeneous cores and 1.31 PB of
main memory.

The software environment includes a customized 64-bit Linux operating system and
compiler components that support C/C++ and Fortran. In addition, a targeted thread

Pipelining Computation and Optimization Strategies for Scaling GROMACS 19

library called Athread and some other parallel programming libraries, including MPI
and OpenACC, are also provided.

2.2 The SW26010 Processor

The processor chip of the Sunway Taihulight System is the SW26010, manufactured by
the Shanghai High Performance IC Design Center, running at a frequency of 1.45 GHz.
The SW26010 is composed of four core groups (CGs) which are connected via the
network on chip (NoC). Each CG includes one management processing element (MPE),
one computing processing element (CPE) cluster, and one memory controller (MC). The
MPE—a 64-bit RISC core with 256-bit vector instructions—includes a 32 KB L1
instruction cache, a 32 KB L1 data cache and a 256 KB L2 cache. The CPE cluster
contains 64 CPEs which are integrated in an 8 × 8 mesh structure. Each CPE includes
a 16 KB L1 instruction cache and a 64 KB Scratch Pad Memory (SPM), and also supports
256-bit vectorization. Each CG has its own memory space, which can be accessed by
the MPE and the CPE cluster through the MC (Fig. 1).

Fig. 1. The general architecture of the SW26010 processor

Some features of the SW26010 chip that serve as the prerequisites of our optimiza‐
tion strategies should be explained. In one core group, the MPE can continue to run after
offloading compute tasks to the CPE cluster. Unlike commercial hardware accelerators
like Xeon phi and Graphic Processing Unit, the CPE cluster has no shared memory.
Each CPE can access main memory and its own SPM. Continuous data blocks in the
main memory can be transferred to the SPM efficiently by Direct Memory Access
(DMA). Given the limited size and the low access latency of the SPM, like an L1 cache,
it can be configured as a software-emulated cache for data reuse or as a read-only buffer
for resident data. Moreover, data transmission is supported among the CPEs in one CPE
cluster. Each CPE can transfer data at the register level to the other CPEs located in the
same row or column. This capability is significant in fostering cooperative computing
and CPE synchronization.

20 Y. Yu et al.

3 GROMACS

3.1 Application Introduction

As one of the mainstream MD applications, the GROMACS package has been substan‐
tially optimized from the MD algorithm and computing platform aspects. It supports all
the usual algorithms of modern molecular-dynamics implementations and employs effi‐
cient parallel models for different task-granularity levels [6, 7]. Both single-and double-
precision floating point operations are supported in GROMACS. However, GROMACS
has not yet provided effective support on unique many-core architectures such as the
Sunway architecture. As a baseline, we adopted the official GROMACS 5.0.3 release,
which supports coarse-grained parallelism using interfaces such as MPI and OpenMP
and fined-grained parallelism for use with platforms such as Compute Unified Device
Architecture (CUDA) and Single Instruction Multiple Data (SIMD).

The entire simulation work can be divided into two procedures: calculating interac‐
tions between atoms and updating spatial information. The interactions consist of both
bonded forces between bonded atoms and nonbonded forces such as electrostatic and
Van der Waals forces. The spatial information consists of coordinates and velocities.
Through numerous iterations of these two procedures, GROMACS can simulate the
physical motions of molecules in finite time. In addition to these two procedures, the
software calculates some other molecular features such as temperature and energy. It
can output the results of all the calculations to files.

3.2 The Nonbonded Kernel

Calculating the nonbonded interactions is the most time-consuming part of GROMACS;
consuming more than eighty-five percent of the total simulation time. Several dozen
modules, distinguished by different methods for calculating electrostatic and Van der
Waals forces, are integrated in the nonbonded kernel. We chose this kernel as the target
for execution on the CPEs. The code framework of this hotspot can be simplified into
the two nested loops shown in Algorithm 1.

Algorithm 1 The nonbonded kernel
1: for every atomic cluster i in the pair list
2: data preprocessing
3: for every atomic cluster j in i s neighbor list
4: calculate nonbonded forces between i and j
5: update force array via accumulate
6: end for
7: end for

The inner loop body that calculates the nonbonded forces will be executed numerous
times in this kernel. Figure 2 shows the data-access feature requirements and the execu‐
tion order of the inner loop body in a molecule with 17,089 atoms. The X-axis indicates
the atomic cluster id of each outer iteration, and the Y-axis indicates the atomic cluster

Pipelining Computation and Optimization Strategies for Scaling GROMACS 21

id in the neighbor list required by the given outer iteration. Each point represents the
interaction between two atomic clusters. Given that the data of atomic cluster are stored
in id sequence, the coordinates of each point correspond to the data required by the two
atomic clusters during one execution of the inner loop body. Therefore, the distribution
of the scattered points in Fig. 2 reflects the memory-access behavior of the nonbonded
kernel to some degree. We notice that adjacent atomic clusters are accessed in adjacent
outer iterations or inner iterations and almost all the data of each atomic cluster are
reused several times during the full iterative process. These two features inspire us to
focus on data locality and reuse, which are the key factors affecting the design of our
optimization strategies.

Fig. 2. The memory-access requirements and execution order of the inner loop body in the
nonbonded kernel

4 Refactoring GROMACS for the Sunway System

The MPE can be used as a general-purpose CPU. To begin, we refactor the official
GROMACS 5.0.3 code for the Sunway system with all the CPEs inoperative. This
procedure is similar to compilation and installation on a commercial server running a
Linux OS. Then, we use the CPEs to accelerate the nonbonded kernel.

4.1 Parallelization Using CPEs

Considering the task granularity, we choose to split the outer loop for parallelization.
This partition of tasks leads to two deficiencies. First, the neighbor lists of different
atomic clusters potentially have common members, which causes concurrency problem
when writing data. Second, the neighbor lists of the different atomic clusters vary in
length, which usually leads to load imbalances among the CPEs. Two methods are
proposed to solve these two problems. Before initializing the CPE threads, the
computing tasks should be partitioned evenly. The results must be stored redundantly
and updated serially after the 64 CPE threads complete. However, implementing these
two methods would necessarily increase the execution time. Thus, we introduce the

22 Y. Yu et al.

targeted pipeline strategy, shown in Fig. 3. The three components in our pipeline are as
follows.

• Task partitioning: By accumulating the neighbor lists in the serial outer iterations
until their lengths reach a finite threshold, this component specifies the computing
task for each CPE thread. The total length and iteration id of each task are recorded
when accessing the data array of atomic cluster and allocating the result array.

• Calculating: This component is responsible for the main computing load of the
nonbonded kernel according to the given task. It is also responsible for recording
intermediate outputs to the newly allocated result array in the form of index and value.

• Data updating: This component use the intermediate results obtained from different
CPE threads to update the force array serially, which avoids concurrency problem of
writing data.

Fig. 3. A pipeline with three components: task partitioning, calculating and data updating

These three components are dispatched in phases. In each phase, the task partitioning
component and the data updating component are executed serially on the MPE, and the
calculating component is executed on the CPEs in parallel. The computing tasks are
partitioned evenly in the task partitioning component, and the force array is updated
serially in the data updating component. The execution time of the task partitioning
component and the data updating component are almost entirely hidden. In summary,
we handle the load imbalance and data dependency problems successfully without
introducing additional execution time. Moreover, the task partitioning component is
useful for data reuse, as will be explained in Sect. 4.3.

4.2 The Efficient Use of SPM

By introducing the pipeline strategy, we solve the above problems without increasing
the time overhead. However, the memory bandwidth competition among 64 CPEs is
extremely intense because of the frequent main-memory accesses. Consequently, the
execution time of the nonbonded kernel running on the CPEs is much longer than
running on the MPE. Therefore, we consider moving the repeatedly accessed data on
SPM to reduce the main-memory access frequency of each CPE thread. The SPM is a
64 KB memory that is not large enough to completely store the data required by the
nonbonded kernel. For example, storing three-dimensional coordinates for 10,000 atoms
in single-precision floating point form requires at least 120 KB of memory. Therefore,

Pipelining Computation and Optimization Strategies for Scaling GROMACS 23

to use the SPM efficiently, we need to analyze the data-access characteristics in the
nonbonded kernel and evaluate the advantages that could accrue from transferring data
into the SPM in different ways.

In our work, we move some frequently reused data such as the constants and small
arrays into the SPM, which serve as resident data until the CPE threads finish. For large
arrays such as the coordinate and force arrays, we choose to transfer the data that are useful
for the current iteration to the SPM and then replace them during the next iteration to avoid
address-space overflow. Therefore, we just have to transfer several small data blocks into
the SPM in each iteration instead of buffering all these large arrays. All these data move‐
ments mentioned above are implemented through DMA. By doing this, we make almost
all the required data available as either resident or temporary data in the local SPM. Each
CPE can fetch most of its data from the local SPM instead of the main memory, which
reduces the main memory access frequency. Consequently, the execution time of the
nonbonded kernel is shortened obviously through the efficient use of SPM.

4.3 The Software-Emulated Cache

After implementing efficient SPM use, we notice that the performance of the nonbonded
kernel is still dominated by the data-transmission time, indicating that the bandwidth
competition is still intense. In the pipeline’s task partitioning component described in
Sect. 4.1, the outer iterations are partitioned successively and the intrinsic data features
are maintained. Therefore, we can capitalize on the locality and reuse of the atomic
clusters analyzed above to further reduce the frequency of main-memory accesses.
Moreover, the SPM is not that limited after efficient use described in Sect. 4.2 and there
is still some free memory space in the SPM. To implement more intensive data reuse,
it is necessary to design a software-emulated cache.

In our work, we implement a cache with a software-controlled cache size and cache
line size. Continuous data block can be prefetched in a cache line and we adopt a FIFO
algorithm as a cache replacement policy. Considering the memory-access behavior
revealed in Fig. 2, we exchange the outer loop and inner loop for a new iterative sequence
to utilize data locality sufficiently. As shown in Fig. 4, the reuse distance of some atomic
cluster data is shortened and adjacent atomic cluster data can be accessed in adjacent
loop iterations. This means that the prefetched data are more likely to be used before
replacement, which is highly beneficial for the cache hit rate. We then set various cache
sizes to discover the most suitable value for optimal performance. Moreover, we imple‐
ment an output buffer to store intermediate results. Some intermediate results can be
accumulated in the local SPM instead of in the main memory. By doing this, we further
decrease the main-memory access frequency.

As shown in Fig. 5, the cache size is determined by the number of atomic clusters it
contains. A larger cache size always leads to a higher cache hit rate and a longer execution
time for maintaining the cache mechanism. When the overhead of maintaining a large cache
eclipses the benefits gained by the high hit rate, the performance of the nonbonded kernel
will decline. We obtain the maximum performance when the cache is set to contain thirty
atomic cluster, which yields a sixty-percent cache hit rate, saving approximately sixty

24 Y. Yu et al.

percent of the data transmissions in the nonbonded kernel. By implementing the software-
emulated cache, we exploit the data locality and reuse that are implicit in the memory-access
behavior, achieving a noticeable performance improvement.

Fig. 5. The influence of cache size on execution time and hit rate. The best performance is
achieved with a soft-emulated cache where 30 atomic clusters can be stored

4.4 A Hybrid Parallel Algorithm for Computing and Scheduling

The strategies presented in Sects. 4.2 and 4.3 speed up the nonbonded kernel by
decreasing the main-memory access frequency. However, the bandwidth competition
introduced by 64 CPE threads is still intense; consequently, the performance improve‐
ment achieved by using 64 CPE threads is no better than that from using only 32 CPE
threads. Given this result, the other 32 CPE threads can be freed from the main computing
load to act as helpers, performing data-transmission tasks and supportive computations.
Our strategies are illustrated below.

We divide the 64 CPEs into two blocks: 32 CPEs for computing and 32 CPEs for
scheduling. As shown in Fig. 6, one computing CPE thread collaborates with one sched‐
uling CPE thread to undertake the tasks that is previously assigned to one CPE thread.
The scheduling CPE thread is responsible for maintaining a software-emulated cache
and transmitting required data to the corresponding computing CPE thread at the register

Fig. 4. Alteration of the iterative sequence according to the locality of memory access

Pipelining Computation and Optimization Strategies for Scaling GROMACS 25

level after scheduling. The scheduling process includes a query algorithm that finds all
the reusable records in the given data through array traversal—regardless of the data
locality. The computing CPE thread is responsible for the main computing load of the
nonbonded kernel after receiving the required data and for updating the intermediate
results in the output buffer before sending them to main memory. Moreover, data trans‐
mitted earlier will always be received earlier, which guarantees the sequence of the
cooperation operations between the computing thread and scheduling thread.

Fig. 6. A logical mapping of the hybrid parallel algorithm between a scheduling CPE and a
computing CPE. The arrowheads indicate the data transmission directions

This approach mitigates the bandwidth competition by halving the number of threads
attempting to access main memory. The cooperation between the computing thread and
scheduling thread can be regarded as a two-level pipeline. One level includes the trans‐
mission of the required data from main memory and a scheduling algorithm; the other
level includes computing the nonbonded kernel and sending the intermediate results to
main memory. As a computing thread executes one iteration, the data required for the
next iteration is prepared by the corresponding scheduling thread in parallel. By doing
this, the required data have already been transmitted into local registers when the
computing thread begins to execute a new iteration. The execution time of data-trans‐
mission, the software-emulated cache and the query algorithm in the scheduling thread
are effectively hidden by the computing thread.

5 Results and Analysis

In this section, we provide data showing the performance of the nonbonded kernel after
implementing our parallel model and optimization strategies on the Sunway TaihuLight
System. We adopt a membrane protein sample with 70,960 atoms as the benchmark for
the single CG performance test. This simulation spans 2,000 time steps. Moreover, we
test the scalability and parallel efficiency using a large benchmark with 3 million atoms.

26 Y. Yu et al.

5.1 Single CG Performance

In Table 1, the parallel model and optimization strategies are combined into five config‐
urations. The specific data illustrate the speedup contribution by each strategy appear in
Fig. 7. In Config 1, the data required for the CPE task have to be fetched from main
memory frequently which leads to extremely intense bandwidth competition. conse‐
quently, the execution time of the pipeline framework is much longer than the baseline.
The efficient use of SPM in Config 2 utilizes explicit data reuse based on the code
structure, which significantly reduces the main-memory access frequency. In contrast,
the software-emulated cache in Config 3 capitalizes on the implicit data reuse of the
nonbonded kernel, which is hidden in the data-access feature. A high cache hit rate leads
to substantial reductions in main-memory accesses. After implementing the strategies
described above, the bandwidth competition is still intense; the performance achieved
by 64 CPEs is no better than that of 32 CPEs. Therefore, we choose to use 32 CPEs as
assistant cores. These 32 CPEs analyze data reuse to lower main memory access and
feed data to the 32 computing CPEs. By doing this, we manage to exploit the computing
power of the 32 computing CPEs efficiently and achieve higher performance.

Table 1. Different configurations using different optimization strategies

Name Description
Baseline Execution of serial GROMACS code on MPE
Config 1 Parallelization of the nonbonded kernel using the pipeline strategy on an

MPE + 64CPEs
Config 2 Config 1 + The efficient use of SPM
Config 3 Config 2 + The software-emulated cache
Config 4 Config 3 + Hybrid parallelism among CPEs

In Fig. 7, the hotspot refers to the Algorithm 1—the nonbonded kernel that we use
64 CPEs to accelerate. After implementing our parallel model and optimization

0.125

0.25

0.5

1

2

4

8

16

32

baseline config1 config2 config3 config4

tim
e/

se
c

hotspot time total time

Fig. 7. Performance of GROMACS under various configurations

Pipelining Computation and Optimization Strategies for Scaling GROMACS 27

strategies, the execution time of the nonbonded kernel decreases from 2.56 s to 0.16 s,
which means that our 64-CPE implementation achieves a 16X speedup compared to the
baseline. Specifically, through efficient use of the SPM, we achieve a 26.62X speedup
compared to Config 1. A software-emulated cache tuned for a sixty-percent hit rate
speeds up the nonbonded kernel by 1.41X compared to Config 2. Introducing the coop‐
erative computing among the CPEs brings about a 2.83X speedup compared to
Config 3. After that, the overall time of our optimized code in config 4 has a 5x speedup
compared to the baseline due to the restriction of Amdahl’s law. Given that further
optimizations of the main compute kernel could bring only limited speedup of the overall
time, we plan to focus on parallelizing other computational functions in future work.

The execution time and speed improvement for each configuration obtained by
increasing the number of CPEs are shown in Fig. 8. In Config 1, the bandwidth compe‐
tition is extremely intense; consequently, we cannot obtain an obvious speedup in
hotspot performance using more than 8 CPEs. In Config 2 and Config 3, the bandwidth
competition is mitigated by decreasing the main-memory access frequency. Obvious
performance improvements can be achieved in these two configs when we use no more
than 32 CPEs and the performance decreases in Config 3 when we use 64 CPEs due to
the saturation of parallelism. Owing to the implementation of a software-emulated
cache, the performance in Config 3 is always higher than that in Config 2. In Config 4,
we always halve the number of CPEs for computing and scheduling no matter how many
CPEs are used. A higher performance can be achieved compared to Config 3 when we
use more than 32 CPEs. Overall, we solve the challenging bandwidth-constrained
problem on the Sunway architecture and achieve a near-linear growth in hotspot
performance, which means that the bandwidth competition is effectively mitigated and
data-transmission operations no longer dominates the nonbonded kernel.

1

2

4

8

16

32

0.125

0.25

0.5

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64

sp
ee

du
p

ho
ts

po
t ti

m
e/

se
c

config1 config2 config3 config4

config1 config2 config3 config4

hotspot time:

speedup:

Fig. 8. The execution time and speedup of the nonbonded kernel using different numbers of CPEs
in different configs;

28 Y. Yu et al.

5.2 Strong Scaling

We test the scalability and parallel efficiency of our code using a large benchmark with
3 million atoms. Each node of the Sunway TaihuLight System includes 4 core groups,
with 260 heterogeneous cores in total. Each core group corresponds to one process,
which means that a task undertaken by one core in the Intel architecture is undertaken
by 65 heterogeneous cores in the Sunway architecture. In this way, scalability is signif‐
icantly improved. Thus far, GROMACS on the Sunway TaihuLight System has been
scaled to 798,720 heterogeneous cores.

Simulation performance and parallel efficiency are shown below. In general,
GROMACS, when executed on MPEs and CPEs, has higher performance than using
only MPEs at any scale. In small node scale (1, 2, 4, 8 nodes), 5x speedup can be
achieved. In large node scale (3072 nodes), roughly 2.5x speedup can be achieved.
Although the total execution time when using MPE + CPEs is better, the parallel effi‐
ciency using MPE + CPEs saturates faster than that using only MPE. In view of this
behavior, we think that higher performance on single node always increases the portion
of communication among nodes and therefore leads to the faster saturation in parallel
efficiency (Fig. 9).

Fig. 9. Performance and parallel efficiency of GROMACS in strong scaling test. We demonstrate
both the results for running on only MPE and the results for running on MPE + CPEs.

5.3 Analysis

In this paper, we present a parallel pipeline model to solve data dependency and load
imbalance problems without increasing the execution time. This pipeline, which can be
considered as cooperative computing, is implemented based on parallelism between the
MPE and the CPE clusters. This approach is efficient not only in the Sunway architecture
but also for other master-slave architectures such as the “Xeon CPU + Xeon Phi”
combination. Given the 8 GB of shared memory and the high bandwidth of the Xeon
Phi [9], our pipeline can be extended to multi-level configurations based on the

Pipelining Computation and Optimization Strategies for Scaling GROMACS 29

requirements, and the main computing load can be distributed over multiple levels,
instead of concentrating the computing component implementation as is done in this
case on the Sunway architecture.

Among our optimization strategies, the efficient use of SPM serves as a conventional
optimization step for the memory bandwidth limitation. Many works on application
optimization on the Sunway TaihuLight System adopt this strategy to handle bandwidth
competition, which always leads to high performance improvements. However, this
approach is not enough for some applications which requires high memory bandwidth,
such as GROMACS. Even after this optimization step, bandwidth competition might
still be intense. To address this situation, we introduce the strategies of the software-
emulated cache and cooperative computing among the CPEs, which are the main inno‐
vation points in this paper. The hit rate of the software cache is based on the locality of
memory access. For the memory-access feature of GROMACS, optimal performance
is achieved with a sixty-percent hit rate. This strategy is suitable for applications with
good data locality. Using the hybrid parallel algorithm among CPEs, the bandwidth
competition is mitigated by using 32 CPEs solely to access memory. We actualize a
scheduling algorithm that schedules CPEs for data reuse regardless of locality. This
strategy is widely suitable for applications with good data reuse and—unlike the strategy
of software-emulated cache—it has no requirement for data locality. Moreover, the
computing load can be distributed by the scheduling CPEs to best use the available
computing power under the condition of maintaining the original computation sequence.

6 Related Work

GROMACS is a classical software package in the MD field that supports multi-level
parallelism. From version 4.6 onward, GROMACS has supported efficient GPU accel‐
eration [6]. In the GPU version code, the nonbonded kernel is offloaded to a GPU device;
meanwhile, the CPU calculates bonded forces and lattices. Moreover, GROMACS can
be executed on MIC in a native and symmetric model.

In recent years, we have started to see projects that refactor GROMACS for heteroge‐
neous many-core architectures such as refactoring GROMACS on the Cell architecture
[3]. The Cell processor contains 1 Power Processor Element (PPE) and 8 Synergistic
Processing Elements (SPE) and the memory bandwidth seemed not to be a bottleneck in
their optimization procedure. Compared to their work, we explore the new challenge—the
memory bandwidth limitation when using much more on-chip computing elements to
accelerate GROMACS and gave multiple optimization steps to overcome this challenge.
Moreover, we use a different way to solve the data dependencies. When compared to other
MD packages such as AMBER [10], NAMD [11], CHARMM [12] and LAMMPS [13],
GROMACS has good support for the x86 vector instruction sets. By grouping 4 or 8 atoms
into one cluster, the nonbonded kernel is quite suitable for execution in the SIMD model
[6]. The current scalability is not very ideal compared to NAMD. Using the same bench‐
mark, NAMD can scale to more computing nodes. An extremely large benchmark is
needed for possible utilization of the entire computing nodes on the Sunway TaihuLight
System.

30 Y. Yu et al.

Before our work on the Sunway Taihulight architecture, the idea of using multiple
cores in a heterogeneous way has already been applied in some other multiple/many
core architectures. A technique named Speculative Precomputation aiming to improve
single-thread performance on a multi-threaded architecture was explored in Jamison D.
Collins et al.’s work [14]. This technique utilized otherwise idle hardware thread
contexts to execute speculative threads on behalf of the non-speculative thread. These
speculative threads attempted to trigger future cache miss events far enough in advance
of access by the non-speculative thread that the memory miss latency was avoided
entirely. Besides, Daniele Buono et al. [15] investigated message-passing supports on
many-core architecture (notably Intel Xeon Phi). In their work, part of threads were used
to execute support activities like point-to-point communications so as to overlap
communications with calculation. Moreover, the idea of exploiting register-to-register
communications between cores has also be used in Daniele Buono’s another work [16].
In this work, efficient run-time mechanisms for inter-thread synchronization/communi‐
cation were developed for fine-grained parallelism on network processors.

7 Conclusions and Future Work

GROMACS is a typical scientific application for high performance computing. It is
highly optimized to use fined-grained parallelism such as SIMD and SIMT and exhibits
irregular data-access features in hotspots. These characteristics form large challenges
when migrating applications to the Sunway TaihuLight System architecture. In this
paper, we present an up-to-date parallel pipeline model and several optimization strat‐
egies, including efficient use of the SPM, a software-emulated cache, a hybrid parallel
algorithm among CPEs to remove the bottlenecks in the source code and to better utilize
the hardware architecture in the parallelization procedure. All these strategies play well
for solving the challenging bandwidth-constrained problem on the Sunway architecture.
In one CG, we achieve a 16X speed improvement in the nonbonded kernel using 64
CPEs. The performance and scalability of this simulation are also significantly improved
in strong scaling tests.

To further discuss the adaptability, we also plan to undertake the task of refactoring
GROMACS for the Xeon Phi using an offload model. Furthermore, the performance of
GROMACS on the Sunway TaihuLight System has the potential to be improved through
further vectorization.

References

1. Allen, M.: Introduction to molecular dynamics simulation. Comput. Soft Matter-From
Synthet. Polym. Prot. 23, 1–28 (2004)

2. Haile, J.M.: Molecular Dynamics Simulation: Elementary Methods. Wiley, New York (1992)
3. Olivier, S., Prins, J., Derby, J., Vu, K.: Porting the gromacs molecular dynamics code to the cell

processor. In: 21st International Parallel and Distributed Processing Symposium, pp. 1–8. IEEE,
California (2007)

Pipelining Computation and Optimization Strategies for Scaling GROMACS 31

4. Elsen, E., Houston, M., Vishal, V., Darve, E., Hanrahan, P., Pande, V.S.: N-Body simulation
on GPUs. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, p. 188.
ACM, New York (2006)

5. Páll, S., Abraham, M.J., Kutzner, C., Hess, B., Lindahl, E.: Tackling exascale software
challenges in molecular dynamics simulations with GROMACS. In: Markidis, S., Laure, E.
(eds.) EASC 2014. LNCS, vol. 8759, pp. 3–27. Springer, Cham (2015). doi:
10.1007/978-3-319-15976-8_1

6. Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E.: Gromacs:
high performance molecular simulations through multi-level parallelism from laptops to
supercomputers. SoftwareX 1, 19–25 (2015)

7. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly
efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3),
435–447 (2008)

8. Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang, X., Zhao, W.: The Sunway TaihuLight
supercomputer: system and applications. Sci. China Inf. Sci. 59(7), 1–16 (2016)

9. Chrysos, G.: Intel® Xeon Phi™ coprocessor-the architecture. Intel Whitepaper (2014)
10. Pearlman, D., Case, D., Caldwell, J., Ross, W., Cheatham III, T., DeBolt, S., Ferguson, D.,

Seibel, G., Kollman, P.: AMBER, a package of computer programs for applying molecular
mechanics, normal mode analysis, molecular dynamics and free energy calculations to
simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91,
1–41 (1995)

11. Nelson, M.T., Humphrey, W., Gursoy, A., Dalke, A., Kale, L.V., Skeel, R.D., Schulten, K.:
NAMD: a parallel, object oriented molecular dynamics program. Int. J. High Perform.
Comput. Appl. 10(4), 251–268 (1996)

12. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.:
CHARMM—a program for macromolecular energy, minimization, and dynamics
calculations. J. Comput. Chem. 4(2), 187–217 (1983)

13. Plimpton, S., Crozier, P., Thompson, A.: LAMMPS-Large-Scale Atomic/Molecular
Massively Parallel Simulator, vol. 18. Sandia National Laboratories (2007)

14. Collins, J.D., Wang, H., Tullsen, D.M., Hughes, C., Lee, Y.F., Lavery, D., Shen, J.P.:
Speculative precomputation: long-range prefetching of delinquent loads. In: 28th Annual
International Symposium on Computer Architecture, pp. 14–25. ACM, Göteborg (2001)

15. Buono, D., De Matteis, T., Mencagli, G., Vanneschi, M.: Optimizing message-passing on
multicore architectures using hardware multi-threading. In: 22nd Euromicro International
Conference on Parallel, Distributed and Network-Based Processing, pp. 262–270. IEEE,
Torino (2014)

16. Buono, D., Mencagli, G.: Run-time mechanisms for fine-grained parallelism on network
processors: the tilepro64 experience. In: International Conference on High Performance
Computing Simulation, pp. 55–64. IEEE, Bologna (2014)

32 Y. Yu et al.

http://dx.doi.org/10.1007/978-3-319-15976-8_1

Exploring FPGA-GPU Heterogeneous
Architecture for ADAS:

Towards Performance and Energy

Xiebing Wang1(B), Linlin Liu2, Kai Huang2, and Alois Knoll1

1 Technische Universität München, 85748 Garching bei München, Germany
{wangxie,knoll}@in.tum.de

2 Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
liull28@mail2.sysu.edu.cn, huangk36@mail.sysu.edu.cn

Abstract. This paper investigates the feasibility of using heterogeneous
computing for future advanced driver assistance systems (ADAS) appli-
cations. In particular, we take lane detection algorithm (LDA) as a test
case. The algorithm is customized into FPGA-GPU heterogeneous imple-
mentations which can be executed in either workload constant or bal-
anced scheme. Then the heterogeneous executions are evaluated in view
of performance and energy consumption, and further compared with the
single-accelerator run. Experiments show that the heterogeneous exe-
cution alleviates both the performance and energy bottlenecks caused
when only using a single accelerator. Moreover, compared with the sin-
gle FPGA execution, the workload balance scheme increases the perfor-
mance by 236.9% and 42.9% on our two tested platforms respectively,
while ensuring the low energy cost.

Keywords: Advanced Driver Assistance Systems (ADAS) · OpenCL ·
FPGA · GPU

1 Introduction

For the automotive industry, advanced driver assistance systems (ADAS) are
born to take full advantage of massive multi-sensor information so as to improve
in-car and on-road safety. However, the input database space for ADAS appli-
cations is so large that it poses a big challenge for software developers to design
both real-time and highly efficient algorithms. For these applications, time con-
straint and reliability guarantee are vital, due to the critical personal and prop-
erty safety.

To flatten the real-time bound, commercial-off-the-shelf (COTS) hardware
accelerators are used to precipitously shorten the execution time of the on-vehicle
applications. For instance, since 2014 Nvidia has launched Jetson series [14] for
GPU-accelerated parallel processing in the mobile embedded system market.
Nevertheless, together with the high performance benefited from GPU also comes
the inevitable significant energy consumption. Meanwhile, due to the low energy
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 33–48, 2017.
DOI: 10.1007/978-3-319-65482-9 3

34 X. Wang et al.

cost, FPGA as another mainstream accelerator, is widely used in integrated
embedded systems.

Aiming at high performance computing (HPC) applications in embedded
systems, heterogeneous computing emerges as it leverages different accelera-
tors, such as FPGAs and GPUs, to strengthen the advantages of the individual
counterpart. Moreover, this type of reconfigurable computing framework is very
compatible with portable platforms because of its high flexibility and scalability.
From 2008, open computing language (OpenCL) arises and turns out to be an
ideal heterogeneous programming framework as it enables to scale computations
among CPUs, GPUs and FPGAs without changing the source code. However,
the performance portability on different COTS components cannot be guaran-
teed due to the diverse OpenCL implementations by respective board vendors.
Moreover, to our best knowledge, it is still unknown to what extent the hetero-
geneous context could be used for the automotive applications.

This paper uses typical lane detection as case study to probe the feasibil-
ity of using FPGA-GPU heterogenous architecture for ADAS applications. Lane
detection algorithm (LDA) is a well-tested technique and commonly used on con-
ventional electronic control units (ECUs) to assist better driving. We adopted
the algorithms developed by [10]. In [10], the authors proposed a particle-filter
based algorithm that can detect and track on-road lane markings real-timely.
However, the algorithm was only tested in view of performance, while using a
single FPGA or GPU. We customized this algorithm into a data-level parallel
program to enable its execution in heterogeneous context. Afterwards the pro-
gram was deployed and executed on two heterogeneous platforms which were
equipped with different COTS hardware accelerators. Furthermore, based on
the workload constant scenario, we developed a lightweight workload balance
scheme that could dynamically identify and adjust the workloads on FPGA and
GPU. Experiments showed that the heterogeneous execution resolved both the
performance and energy bottlenecks caused when only using a single FPGA or
GPU. The workload balance scheme could further reduce the time cost to a
large extent, while ensuring the low energy cost. Besides, the proposed scheme
can robustly adjust and stabilize the workload according to the computation
capacity of each computation device. The main contribution of this paper lies in:

– We use a real-life LDA as the test case and propose a time and energy efficient
heterogeneous implementation of this widely-used automotive application.

– Based on the heterogeneous design, we give a lightweight workload balance
scheme that can increase the performance by 236.9% and 42.9% on our two
test platforms respectively, while ensuring the low energy cost. What’s more,
the scheme can robustly adjust the workload in diverse road scenarios, based
on the computation capacity of each accelerator in use.

– Taking real-life road scenarios as input, we conduct a series of experiments on
two heterogeneous platforms, on which different pairs of FPGA and GPU are
equipped. Experimental results demonstrate the necessity of utilizing FPGA-
GPU combined heterogeneous architecture for future ADAS.

Exploring FPGA-GPU Heterogeneous Architecture for ADAS 35

The rest of this paper is organized as follows: Sect. 2 is related work and
Sect. 3 overviews the procedure of the tested LDA. Section 4 presents the het-
erogeneous design and the workload balance scheme. Section 5 gives experimental
analysis and Sect. 6 concludes the paper.

2 Related Work

Lots of previous research has compared the performance of using FPGA and
GPU in different areas, like deep learning [13], information security [5] and
image processing [3,6,7]. These studies present the distinct characteristics that
FPGA and GPU show in their computing competence. Generally, FPGA is adept
at floating-point arithmetic operations and GPU shows better performance on
matrix manipulations. Due to these features, researchers attempt to explore het-
erogenous architecture to accelerate scientific computing applications. Authors
in [1] proposed a heterogenous FPGA-GPU-CPU platform for a sport real-time
locating system. The platform is task-level parallel as FPGA is used for data
acquisition and GPU is mainly for object tracking. In their design, FPGA is used
more as a data gathering processor than a computation accelerating device. Sim-
ilarly, authors in [12] used the combined FPGA-GPU architecture to perform
cardiac physiological optical mapping. In this system, the FPGA is responsible
for camera data capture and the GPU mainly disposes fast fourier transform
(FFT), inverse fast fourier transform (IFFT) and filtering operations.

Among the aforementioned research, GPU always handles the major com-
putation workload and the performance of FPGA and GPU cannot be directly
compared since the task granularity on each device is apparently different.

Several other research is also emerging to compare the performance of FPGA
and GPU in the field of real-time processing. Authors in [7] presented a system-
atic approach to compare FPGA and GPU with five case study algorithms.
Their work focused on the algorithmic, data and hardware characteristics of the
applications and finally gave a throughput performance of the target devices. In
[8], the authors used the roofline model [16] to identify the appropriate accel-
erator for candidate applications and then performed the comparison based on
a pedestrian recognition application called fastHOG. Their work concentrated
on the task distribution between different accelerators. Both of the studies in
[7,8] do not involve the energy evaluation. Authors in [15] gave a thorough com-
parison of FPGA and GPU for computer vision algorithms, using a case study
of threaded isle detection. Their evaluations are rather comprehensive, includ-
ing performance, hardware cost, power efficiency and integratability. However,
their work cannot reveal the impact of OpenCL on FPGA and GPU, since the
algorithms are individually implemented using different programming languages.
The most related work to this paper is [4]. In [4], pedestrian detection applica-
tions are implemented on a heterogeneous FPGA-GPU-CPU platform and then
the authors compared the power, speed and accuracy of several different sce-
narios, where either FPGA, GPU or both are used for the computation. The
difference to our work is that they also used the task-level parallelism like [1]
and [12], among the accelerators.

36 X. Wang et al.

Different to all the work mentioned above, we adopt the data-level paral-
lelism for FPGA and GPU devices so that their performance characteristics can
be directly and intuitively compared. Thereupon the heterogeneous designs are
evaluated in consideration of time and energy consumption to demonstrate the
advantage of using heterogeneous architecture for ADAS applications.

3 Particle-Filter Based LDA

3.1 Algorithm Overview

This section briefly describes the naive design of the LDA and the procedure
is shown in Fig. 1. The algorithm mainly consists of three modules (the slash
boxes in Fig. 1), namely pre-processing, lane detection and lane tracking. The
algorithm analyzes the video stream captured by a moving vehicle and attempts
to extract the exact positions of the lane markings highlighted in the output
stream.

Input Stream Frame end? Pre-processing Redetection?

Lane Detection

Lane Tracking

Position of
lane markingsOutput Stream

N

N

Y
Y

Fig. 1. Flow chart of LDA.

Pre-processing module includes four steps successively applied to the orig-
inal image. First a region of interest (ROI) is cropped from the raw image and
only this ROI is further processed. Then the ROI is transformed into grayscale
space where each pixel reflects the intensity of the pixel in original image. After
grayscaling, the edges of the lane markings are slightly obvious since they are
substantially brighter than the streets and roads around. To enhance this con-
trast of pixel intensity, a Sobel filter is applied to the grayscaled image to detect
pixel variations and extract edges. Finally, a threshold is used to tune the inten-
sity of all pixels in the image to avoid noise influence.

Lane detection module generates a set of candidate lines via assigning
random values from a normal distribution to form the candidate line set. For
each candidate line, a weight is calculated to reveal how close the line is located
to the real lane. Given this weight set, the line with the highest weight is chosen
as the best line and certain number of candidate lines are reserved as good lines,
which would be further used in the lane tracking module.

Lane tracking module adopts a particle filter to predict the positions of the
lane markings, using both the ROI of the current frame and the best line and
good lines of the previous frame. The particle filter consists of three steps:

Exploring FPGA-GPU Heterogeneous Architecture for ADAS 37

1. The prediction update step amends previous good lines with a normal distrib-
ution N(μ, σ2), with mean μ = 0 and standard deviation σ > 0. μ = 0 means
no shift is expected in optimal case, while σ > 0 reveals a deviation in real
scenarios. The updated lines are seen as prior probability distribution of the
lane markings in current frame.

2. The importance weight update step recalculates the weights of the particles
via Gaussian function

ωi =
1

σf

√
2π

e−(Xi−μf)
2/2σ2

f , i = 1, 2, · · · , N (1)

where N is the particle number, μf indicates the best line in previous frame
and σf expresses the noise that accounts for a possible error in case the
position of the lane marking does not change within two frames. Then the
importance weight of each particle is normalized to obtain the updated weight

ωupdated
i =

ωi
∑N

i=1 ωi

. (2)

3. Based on the importance weights, the resampling step selects particles from
the newly updated set to prevent a degeneration of the particle set.

Finally the redetection checking step verifies whether the detected positions
reasonably conform to the physical properties of the lane markings. If not, addi-
tional detection step is triggered to seek the lane markings again. The criteria of
redetection is as follows: (i) Lane markings do not cross. (ii) There exists a mini-
mum distance between each two detected lane markings. This value is adjustable
and can be small when lots of lanes have to be detected. (iii) There should be
a minimum percentage of the lane marking within the ROI. This parameter is
flexible and can be user-defined.

3.2 Initial Design

In the basic version, each of the modules depicted in Sect. 3.1 is programmed
as an OpenCL kernel which will be executed on the hardware accelerator. For
simplicity, KERNEL PRE, KERNEL LD and KERNEL PF are used as their individual
kernel names. Note that both lane detection and tracking require normally dis-
tributed random numbers to process their following tasks. Hence these numbers
should be generated by a random number generator. Therefore another kernel
called KERNEL RNG is required. With above four kernels, the flow chart in Fig. 1
is abstracted as the pseudo-code shown in Algorithm 1, where the red lines (lines
2, 4, 6, 9 in Algorithm 1) represent the kernel tasks.

4 Heterogeneous Design

4.1 Data-Level Parallelism

The heterogeneous version of the application tries to distribute the kernel tasks
among different accelerators. From Algorithm 1 it is seen that for each input

38 X. Wang et al.

Algorithm 1. LDA (basic version)

Input: raw camera-captured video stream
Output: video stream with lanes marked
1: initialization
2: random number generation //KERNEL RNG

3: while not the end frame do
4: ROI image pre-processing //KERNEL PRE

5: if redetection then
6: lane detection //KERNEL LD

7: candidate line generation
8: else
9: lane tracking //KERNEL PF

10: good line resampling
11: end if
12: best line extraction and mark lanes in current frame
13: end while

video stream, random number generation (KERNEL RNG) is run only once and the
other three kernels are executed repeatedly inner the frame loop. For this reason,
KERNEL RNG can be performed on every accelerator since its time cost is rather
small, while the other kernels should be scattered across the accelerators as they
are the main tasks.

Meanwhile, it is worth noting that two layers of data dependencies exist
here: (i) both the executions of KERNEL LD and KERNEL PF use the output of
KERNEL RNG and KERNEL PRE, and (ii) if the current frame is the first tracking
frame, then it will need the detected positions of lane markings in the previous
frame, in this case the execution of KERNEL PF relies on the output of KERNEL LD.
Consequently, task-level parallelism for these three kernels is not desirable as it
requires the indirect Device→Host→Device data transfer, which is considerably
time-consuming due to the lack of state-of-the-art commercial direct FPGA-
GPU data communication mechanism.

From the above, data-level parallelism of the basic LDA is used for the hetero-
geneous context and Fig. 2 gives the overall processing procedure. In general, the
host utilizes an installable client driver (ICD) loader to coordinate the tasks exe-
cuting on FPGA and GPU. When invoking OpenCL API functions, the program
runtime passes kernel parameters to the ICD loader and then the ICD loader
calls FPGA- and GPU-specific functions with fpga- and gpu-specific parameters
respectively.

The host side is responsible for (i) kernel parameters initialization and raw
image I/O when the program begins, and (ii) result collection, weight updating
and line resampling during the frame loop. On each hardware accelerator, the
ROI of the image is preprocessed and then the detection kernel (KERNEL LD) sam-
ples a set of candidate lines and calculates their intensity weights individually.
As shown in Fig. 2, KERNEL LD processes n lines on the FPGA and m lines on the
GPU, and subsequently returns the intensity weights to the host. On the host,

Exploring FPGA-GPU Heterogeneous Architecture for ADAS 39

Host
Initialization & setup
Raw image data I/O

ICD loader

Data collection Lines extraction
Particles resampling

kernel parameters

FPGA GPU

KERNEL RNG: 240 numbers
KERNEL PRE: ROI image

KERNEL LD: n lines
KERNEL PF: n′ particles

KERNEL RNG: 240 numbers
KERNEL PRE: ROI image

KERNEL LD: m lines
KERNEL PF: m′ particles

Intensity weight
Intensity weightImportance weight

Importance weight

fpga kernel parameters gpu kernel parameters

Fig. 2. Execution of LDA in heterogeneous context overview. Red and blue items
are distributed tasks on the FPGA and GPU. The italic items show the transfer of
parameters. (Color figure online)

after extracting a series of good lines and one best line, the lane detection opera-
tion outputs the position of the lane markings as the form of best line. Similarly
for lane tracking kernel (KERNEL PF), a group of particles are extracted from the
output data of KERNEL LD. Again these particles are scattered and processed on
the two accelerators. Here n′ and m′ particles are respectively disposed on the
FPGA and GPU. When the importance weights of the particles are finished cal-
culating, they are returned back to the host side and new particles are resampled
based on the aggregated results to step into the new iteration.

4.2 Workload Balance

To get the optimal execution, the workload of KERNEL LD and KERNEL PF on GPU
and FPGA needs to be dynamically assigned since GPU and FPGA show distinct
computation capacities in consideration of different types of data manipulations.
This is especially important when the application is intended to be scaled across
different platforms, where different FPGA and GPU boards are used. Since time
and energy costs are two of the most important indicators when monitoring
ADAS applications, this paper gives a time optimization based workload balance
scheme for the heterogeneous LDA and the energy cost is afterwards investigated.

Algorithm 2 briefs the workload balance scheme. Here funcRNG, funcPRE,
funcLD and funcPF are corresponding kernel functions, from which the timing
information can be profiled. The details of function funcAdjustWL are shown in
Algorithm 3. Assume that the input is the initial task load for FPGA and GPU
devices (i.e., m, n, m′, n′ in Fig. 2), and the output is the time-optimal executions

40 X. Wang et al.

Algorithm 2. Workload balance scheme

Input: m, n, m′, n′

Output: tkernel

1: trngf ← funcRNG(m + n), trngg ← funcRNG(m + n)
2: tkernel ← max(trngf , trngg)
3: while not the end frame do
4: tpreg ← funcPRE(m), tpref ← funcPRE(n)
5: tpre ← tpref + tpreg
6: tkernel ← tkernel + tpre
7: if redetection then
8: tldg ← funcLD(m), tldf ← funcLD(n)
9: tkernel ← tkernel + max(tldf , tldg)

10: m, n ← funcAdjustWL(tldf , tldg ,m, n)
11: else
12: tpfg ← funcPF(m′), tpff ← funcPF(n′)
13: tkernel ← tkernel + max(tpff , tpfg)
14: m′, n′ ← funcAdjustWL(tpff , tpfg ,m

′, n′)
15: end if
16: end while

Algorithm 3. Function funcAdjustWL in Algorithm 2

Input: tf , tg, Wf , Wg

Output: Wf , Wg

1: cf ← Wf

tf
, cg ← Wg

tg

2: Wf ← cf
cf+cg

(Wf + Wg), Wg ← cg
cf+cg

(Wf + Wg)

of the program (indicated as kernel execution time tkernel). The idea is that
the workload for a device should be proportional to its computation capacity,
i.e., its throughput. Hence, after each frame is processed complete, the kernel
execution time on each device is recorded (lines 1, 4, 8, 12 in Algorithm 2) and
the throughput is calculated. Then the total work load is re-assigned based on
the current throughputs of the computing devices (lines 10, 14 in Algorithm2).
This scheme assumes that for each frame, the execution times of KERNEL LD and
KERNEL PF are proportional to their current task load.

4.3 Performance and Energy Evaluation

In our context, totally four scenarios are involved, namely, single FPGA execu-
tion (singleFPGA), single GPU execution (singleGPU), work-load-constant
(heteroConstant) and work-load-balanced (heteroBalanced) heterogeneous
execution. In work-load-constant scenario, the whole task is partitioned in
advance and then fed to FPGA and GPU devices. Thus the task proportions
on FPGA and GPU are always constant. While in work-load-balanced scenario,
with given partitioned task, the workload balance scheme tunes the task pro-
portions on FPGA and GPU during the processing of each frame.

Exploring FPGA-GPU Heterogeneous Architecture for ADAS 41

To reveal the tradeoffs between these situations, we record the execution time
of all the four implementations to evaluate their real-time performance over the
energy cost. In order to calculate the energy cost, we construct the runtime envi-
ronment where both FPGA and GPU cards are working in full load mode, so
that the peak power consumption can be reached. To fulfill this, we use extremely
large computation task load since the particle filter is highly scalable and con-
sequently the larger the particle number is, the more the computation task load
would be. During the evaluation, the execution time of each run is measured to
calculate the real-time performance. We use the same power estimation method
as [9] and Altera PowerPlay power analyzer [11] is used to estimate the power
consumption of running each OpenCL kernel on FPGA. As for the power esti-
mation of GPU and CPU, we use data from official specifications of the COTS
components.

5 Experiment and Analysis

5.1 Experimental Setup

The applications are run in two different heterogeneous contexts listed in Table 1.
Both platforms contain one FPGA and one GPU board. For contrast, they are
equipped with two groups of boards which show rather different computation
capacities. Platform #1 is deployed with a Terasic Arria 10 FPGA and an AMD
W7100 GPU, while a Nallatech pcie385n FPGA and an Nvidia Quadro K600
are used on platform #2. Note that the computation capacities of the FPGA
and GPU boards on each platform are rather different. AMD W7100 presents
an obviously superior performance than Arria 10, while Nallatech pcie385n and
Quadro K600 have comparable computing capacities. The purpose of this is to
demonstrate the robustness of our applications in heterogeneous contexts where
accelerators have unbalanced computation competence.

Table 1. Detailed specification of the hardware platforms

Platform #1 #2

Host CPU Intel Xeon E31225 @ 3.10GHz Intel Core 2 Quad Q9300 @ 2.50GHz

Thermal Design

Power

95W 95W

Device FPGA GPU FPGA GPU

Model Terasic Arria 10 AMD W7100 Nallatech 385 Quadro K600

Architecture Arria 10 AX FirePro Stratix V GS Kepler GK

OpenCL SDK

version

Intel FPGA SDK 16.0 AMD APP SDK 3.0 Intel FPGA SDK 13.1 CUDA 8.0

Peak GFLOPS 1366 3379.2 294.7 336.4

Peak board

power (W)

95 150 25 40

42 X. Wang et al.

To demonstrate the high availability of using the tested LDA for real-life
driving conditions, we use video streams from different data sets with differ-
ent scenarios. The detailed information of these videos is listed in Table 2, of
which cordova1, cordova2, washington1 and washington2 are from Caltech
lanes dataset [2], while the others are self-recorded. These videos are captured
in different resolutions and the frame numbers have a great range from 232
(washington2) to 4992 (night land car). Moreover, these videos represent var-
ious road situations including in day and night, with heavy traffic, with blurred
and broken lines, in street and highway, in urban and rural areas, etc. The pur-
pose of this is to obtain as actual results as possible.

Table 2. Detailed information of the test videos

Videos Name Total frames Resolution Scenario

1 cordova1 250 640 × 480 bus view

2 cordova2 406 640 × 480 blur lane

3 washington1 337 640 × 480 street shade

4 washington2 232 640 × 480 blur lane

5 street 3056 640 × 480 street road

6 day highway 1718 640 × 480 high way

7 Frontfacingobstacle 4601 480 × 360 crossing lane

8 HighSpeedDrivingShort 1871 1920 × 1080 high way

9 clip2 1289 640 × 360 rural

10 clip4 899 640 × 360 dark

11 night land car 4992 640 × 480 night

12 night traffic 2654 640 × 480 heavy traffic

13 oli 4 2287 480 × 320 broken lane

14 night 4 2799 640 × 480 night highway

15 night brokenlanes 1897 640 × 480 broken lane

16 Weilerhemmen 4944 640 × 480 light disturbance

During the experiments each video is run 10 times per platform and the
overall results are collected and averaged. To construct the large task load, we use
rather large numbers of particles to iterate over each generation of the line sets.
In details, during each run we use 212 good lines and 213 candidate lines to detect
2 best lines. As for the heterogeneous executions, the initial task proportion on
FPGA is set as the range from 1% to 99% and the rest part is executed on GPU.
When using the workload balance scheme, an initial task proportion is given and
afterwards both the task proportions of FPGA and GPU are recorded frame by
frame to present the real-time work load distribution.

Exploring FPGA-GPU Heterogeneous Architecture for ADAS 43

Note that for singleFPGA and singleGPU scenarios, the task proportions on
FPGA are constant 100% and 0%, respectively. Hence the results of singleFPGA
and singleGPU are used as reference for evaluating the heterogenous executions.

5.2 Results and Analysis

Workload Balance Scheme. The objective of the workload balance scheme is
to minimize the kernel execution time (tkernel in Algorithm 2). To validate the
correctness and robustness of this scheme, (i) the kernel execution times of the
four designs are recorded and (ii) during the heteroBalanced run, the real-time
task rates on both FPGA and GPU devices are monitored. Figure 3 summarizes
the experimental results. Due to the page limit, Fig. 3(c) and (d) only show the
real-time task rates of washington2 and night land car as they are the two
videos with the smallest and largest frame numbers.

Fig. 3. Validity and robust test results of the workload balance scheme.

Figure 3(a) and (b) indicate that when compared with singleFPGA, both of
the heteroConstant and heteroBalanced implementations can shorten the ker-
nel execution time to a large degree. The kernel time cost of heteroBalanced
is 26.94% and 51.96% of singleFPGA, 177.76% and 59.49% of singleGPU on

44 X. Wang et al.

platform #1 and #2, respectively. It’s seen that the time costs of the heteroge-
neous executions on platform #1 are larger than the singleGPU case. This is
because the time cost of singleFPGA is an order of magnitude larger than that
of singleGPU. Therefore simply shifting the task a little from GPU to FPGA
would incur considerable latency. As can be oberserved, on both platforms the
kernel execution time of heteroConstant always surpasses heteroBalanced, which
verifies the validity of the workload balance scheme. In Fig. 3(c) and (d), it is
seen that the real-time task proportions of both videos converge within 5 frames
and then keep relatively constant with minor fluctuations. What’s more, the
workload balance scheme can identify the optimal task distributions on FPGA
and GPU, regardless of the input video. To be specific, the optimal task rates on
the FPGA of platform #1 and #2 are around 2% and 41%, respectively. This
demonstrates the robustness of the workload balance scheme.

Performance. Figure 4 depicts the performance of the four implementations
running on the two test platforms. From the figure we observe that on both plat-
forms the performance of singleGPU outperforms singleFPGA and this is reason-
able due to the lower computation capacity of FPGA (refer to the peak GFLOPS
in Table 1). Both of the heterogeneous runs gain a performance increase than
singleFPGA, which without doubt benefits from the high performance GPU.

Fig. 4. Performance results overview.

Exploring FPGA-GPU Heterogeneous Architecture for ADAS 45

The heteroConstant execution displays a considerable fluctuation. This is
because when gradually increasing the task rate, due to the OpenCL specifi-
cation, the task load on FPGA shows a discrete step change, which greatly
influences the CPU↔FPGA data transfer latency since direct memory access
(DMA) requires data alignment of the transmitted data. Intuitively, the perfor-
mance declines when more and more tasks are shifted to FPGA. As for heter-
oBalanced scenario, the performance turns out very stable since the task load is
dynamically allocated and the heterogeneous execution would rapidly converges
to equilibrium after several frames, which is verified in Sect. 5.2. Moreover, on
platform #1 the balanced run could achieve a comparative performance over the
singleGPU run.

On the whole, using heterogeneous architecture improves the performance
when compared with the singleFPGA lower bound. The workload balance scheme
reconciles the heterogeneous system and during all task rates, heteroBalanced
increases the performance by 236.9% and 42.9% on platform #1 and #2 respec-
tively, when compared with singleFPGA.

Energy. Figure 5 shows the overall energy cost for the four different designs.
Figure 5(a) and (b) present the energy cost of the overall system, while Fig. 5(c)
and (d) give the results of the accelerator energy consumption.

Fig. 5. Energy consumption overview.

46 X. Wang et al.

As indicated by Fig. 5(a) and (b), the system energy is much larger when
using a single FPGA, compared with the energy cost of singleGPU. This is
mainly because the overall execution time of singleFPGA is much longer than
singleGPU, which poses a huge increment of the CPU energy cost. However,
on both platforms our heterogeneous designs are able to consume almost as
less energy as singleGPU. The heteroBalanced implementation utilizes the least
energy on platform #1 and increases the energy by only 10.98% when compared
with singleGPU on platform #2.

With regards to the on-device energy cost (Fig. 5(c) and (d)), the two plat-
forms exhibit different features. On platform #1, using a single GPU costs the
least device energy and we owe this to the huge speedup of the AMD W7100
card. The energy cost of FPGA is not able to outperform the GPU because the
low-power advantage of FPGA over GPU simply cannot compensate for the far-
behind performance gap. As the consequence, the device energy increases linearly
when tasks are migrated on FPGA, which is clearly observed via the heteroCon-
stant curve. Nevertheless, the heteroBalanced design commendably suppresses
the energy cost, as it manages to identify the power-performance tradeoff of
FPGA and GPU and subsequently always distributes more task load on GPU.
As for platform #2, the performance gap between Stratix V 385 and Quadro
K600 is much narrower and in this case FPGA fully displays its low-power char-
acteristic, when comparing the result of the singleFPGA and singleGPU curves.
Compared with the singleGPU upper bound, heteroConstant reduces the energy
cost to 89.49%.

In summary, the heterogeneous executions consume less energy, when com-
pared with the most-energy-cost single accelerator (i.e., singleFPGA in Fig. 5(a),
(b) and (c), singleGPU in Fig. 5(d)). Using the workload balanced scheme not
only “smoothes” the heterogeneous execution, but also shortens the energy cost
regardless of the initial task rates. On both platforms, when using the hetero-
geneous architecture, the performance can be boosted while ensuring the low
energy cost.

6 Conclusion and Future Work

Heterogeneous computing is a promising solution for future ADAS since it is
able to regulate the performance and energy tradeoff in the system. This paper
used typical lane detection as case study to probe the feasibility of using FPGA-
GPU combined heterogenous architecture for ADAS applications. The perfor-
mance and energy costs were carefully evaluated among the heterogeneous and
single-accelerator executions. We demonstrated that the heterogeneous imple-
mentations could solve both the performance and energy bottlenecks caused
when only using a single accelerator. Moreover, the proposed workload balance
scheme can further boost the performance, while ensuring the low energy cost.

Our future work is to use more ADAS applications to verify the pros and
cons of the heterogeneous computing.

Exploring FPGA-GPU Heterogeneous Architecture for ADAS 47

Acknowledgments. This work is supported in part by the scholarship from China
Scholarship Council (CSC) under the Grant No. 201506270152.

References

1. Alawieh, M., Kasparek, M., Franke, N., Hupfer, J.: A high performance FPGA-
GPU-CPU platform for a real-time locating system. In: 23rd European Signal
Processing Conference (EUSIPCO), pp. 1576–1580. IEEE (2015)

2. Aly, M.: Caltech lanes. http://www.vision.caltech.edu/malaa/datasets/
caltech-lanes. Accessed 10 Mar 2017

3. Asano, S., Maruyama, T., Yamaguchi, Y.: Performance comparison of FPGa, GPU
and CPU in image processing. In: 19th International Conference on Field Program-
mable Logic and Applications (FPL), pp. 126–131. IEEE (2009)

4. Blair, C., Robertson, N.M., Hume, D.: Characterizing a heterogeneous system for
person detection in video using histograms of oriented gradients: power versus
speed versus accuracy. IEEE J. Emerg. Sel. Top. Circ. Syst. 3(2), 236–247 (2013)

5. Che, S., Li, J., Sheaffer, J.W., Skadron, K., Lach, J.: Accelerating compute-
intensive applications with GPUs and FPGAs. In: Proceedings of the 6th IEEE
Symposium on Application Specific Processors (SASP), pp. 101–107. IEEE (2008)

6. Chen, D., Singh, D.: Fractal video compression in OpenCL: an evaluation of CPUs,
GPUs, and FPGAs as acceleration platforms. In: 18th Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 297–304. IEEE (2013)

7. Cope, B., Cheung, P.Y., Luk, W., Howes, L.: Performance comparison of graphics
processors to reconfigurable logic: a case study. IEEE Trans. Comput. 59(4), 433–
448 (2010)

8. Da Silva, B., Braeken, A., D’Hollander, E.H., Touhafi, A., Cornelis, J.G., Lemeire,
J.: Comparing and combining GPU and FPGA accelerators in an image process-
ing context. In: 23rd International Conference on Field Programmable Logic and
Applications (FPL), pp. 1–4. IEEE (2013)

9. Fowers, J., Brown, G., Cooke, P., Stitt, G.: A performance and energy comparison
of FPGAs, GPUs, and multicores for sliding-window applications. In: Proceedings
of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(FPGA), pp. 47–56. ACM (2012)

10. Huang, K., Hu, B., Botsch, J., Madduri, N., Knoll, A.: A scalable lane detection
algorithm on COTSs with OpenCL. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 229–232. IEEE (2016)

11. Intel: Powerplay early power estimators and power analyzer. https://www.altera.
com/support/support-resources/operation-and-testing/power/pow-powerplay.
html. Accessed 10 Mar 2017

12. Meng, P., Jacobsen, M., Kastner, R.: FPGA-GPU-CPU heterogenous architecture
for real-time cardiac physiological optical mapping. In: International Conference
on Field-Programmable Technology (ICFPT), pp. 37–42. IEEE (2012)

13. Nurvitadhi, E., Sheffield, D., Sim, J., Mishra, A., Venkatesh, G., Marr, D.: Acceler-
ating binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC. In:
International Conference on Field-Programmable Technology (ICFPT), pp. 37–42.
IEEE (2016)

14. Nvidia: Nvidia R© jetsonTM: the embedded platform for autonomous every-
thing. http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html.
Accessed 10 Mar 2017

http://www.vision.caltech.edu/malaa/datasets/caltech-lanes
http://www.vision.caltech.edu/malaa/datasets/caltech-lanes
https://www.altera.com/support/support-resources/operation-and-testing/power/pow-powerplay.html
https://www.altera.com/support/support-resources/operation-and-testing/power/pow-powerplay.html
https://www.altera.com/support/support-resources/operation-and-testing/power/pow-powerplay.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html

48 X. Wang et al.

15. Struyf, L., De Beugher, S., Van Uytsel, D.H., Kanters, F., Goedemé, T.: The battle
of the giants: a case study of GPU vs FPGA optimisation for real-time image
processing. In: Proceedings of the 4th International Conference on Pervasive and
Embedded Computing and Communication Systems (PECCS), vol. 1, pp. 112–119.
VISIGRAPP (2014)

16. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

Software Systems and Programming
Models

Hzmem: New Huge Page Allocator
with Main Memory Compression

Guoxi Li(B), Wenzhi Chen, Kui Su, Zhongyong Lu, and Zonghui Wang

College of Computer Science, Zhejiang University, Hangzhou 310027, China
{guoxili,chenwz,sukuias12,lzy6032,zhwang}@zju.edu.cn

Abstract. Today, applications that require large memory footprint pre-
vail in cloud computing fields from both industry and academia. They
impose great stress on the memory management of operating system,
spend quite a substantial proportion of time dealing with TLB misses
and excessively reduce consolidation ratio in term of server consolidation
and virtualization. There are two methods to address these problems:
main memory compression and large page support. However, to the best
of our knowledge, there is no existing practical research on combination
of these two methods since the combination in commodity operating sys-
tem requires lots of low-level design modifications.

We propose a new memory management framework that is decoupled
and flexible for easy developments and is able to run simultaneously
with the original memory management. On top of the new framework,
we implement Hzmem, a completely new large page memory manage-
ment redesign with features of main memory compression to address the
aforementioned problems once for all but requires only minor modifica-
tions to the other subsystems of the underlying operating system. Our
method achieves competitive performance compared with native large
page support, increases effective memory size and impacts little on other
subsystems of operating system.

Keywords: Large page · Main memory compression · Linux

1 Introduction

Nowadays, with more and more applying of cloud computing both in business
area and research community, workloads are very likely to consume more memory
than a single physical machine can offer. These memory-hungry workloads often
require large memory footprint but show poor temporal locality [2,6,13]. They
often involve relational databases, key-value stores and huge gateway machines
handling huge routing data.

All above workloads require memory overcommitment to fulfill tasks in such
situations. One kind of memory overcommitment like swapping can swap out
memory presumably not to be used in the recent future onto disks. However, disk
accesses are far slower than memory accesses, bringing lots of overheads. Thus
developers and researchers resort to another practical memory overcommitment
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 51–64, 2017.
DOI: 10.1007/978-3-319-65482-9 4

52 G. Li et al.

technique—main memory compression. Main memory compression compresses
memory and stores compressed data in reserved memory regions, enormously
increasing effective memory size and avoiding disk access latencies.

In the meantime, traditional physical memory management with granularity
of constant size lacks its meaningfulness and efficiency. Current commodity oper-
ating systems, like Linux and FreeBSD, have introduced their own large page
(memory page size larger than base page) supports. They are not self-contained
mechanisms, but are heavily dependent on the traditional memory management
on base pages.

We consider such problems in the context of modern commodity operating
system like Linux, but the ideas are not specific to the Linux. Currently, the
Linux hugepage (Linux terms for large page) mechanism demands 4 KB base
pages from the famous Buddy System and merges them to form a larger size
(2 MB on x86-64 platforms), which is complicated and time-consuming. Since
hugepage mechanism stems from traditional base page managements, frequent
and heavy hugepage allocations would fail in most cases due to the lack of enough
physically continuous memory especially after a long time of running. Moreover,
hugepage in Linux does not support main memory compression and it is difficult
to add main memory compression feature since that needs heavy modifications
to low level design of memory management which brings considerable effort.

Therefore, it has motivated us to redesign a completely new memory man-
agement framework that is decoupled and flexible for convenient development.
Based on the new memory management framework, we implement Hzmem that
includes a self-contained hugepage allocator which is decoupled from the normal
page allocator in the environment of frequent and heavy hugepage allocations
and easily equips the new hugepage allocator with main memory compression
feature. It achieves competitive performance over native large page supports,
increases effective memory size and impacts little on other subsystems of oper-
ating system.

Hzmem’s benefits are (1) the new hugepage allocator has competitive perfor-
mance compared with native hugepage implementations; (2) performance isola-
tion, which means new allocator brings no or little performance punishment to
other parts of system utilizing normal physical memory management; (3) increas-
ing effective memory capacity, which increases consolidation ratio and improves
performance when applications require memory beyond the capacity.

2 Related Work

We briefly discuss some works related to our work.

Memory mangement architecture: Recently, with trends of workloads using
memory quite differently from the time when memory management was designed,
lots of researches [2,3,7,9] are focused on modern memory management.

Basu et al. [2] propose mapping part of a process’s virtual memory address
with Direct Segment, removing TLB miss penalty. Direct Segment maps a con-
tiguous virtual memory directly to a contiguous physical memory using simple

Hzmem: New Huge Page Allocator with Main Memory Compression 53

hardware requirements. However, Direct Segment needs both software and hard-
ware supports, making it not suitable for commodity hardware.

Clements et al. [3] propose a new virtual memory system design called
RadixVM that removes serial operations on virtual memory and enables fully
concurrent operations by ensuring non-overlapping memory regions. RadixVM
need so many modifications to a commodity operating system that it is only
implemented on a Unix-like teaching operating system.

Huang et al. [9] conduct a comprehensive and quantitative survey on the
development of the Linux memory management over five years (2009–2015).
The study shows the changes and bugs are highly centralized around the key
functionalities, like memory allocator and page fault handler.

These studies give many insights and lessons that modifications to commodity
operating system’s key functionalities are very challenging and our work manages
to avoid the challenges by using a decoupled and flexible framework.

Huge page support: Navarro et al. [12] implement OS support for large pages
in FreeBSD. They focus on reservation-based allocation and fragmentation con-
trol. Hzmem is built on a decoupled and flexible memory framework which is
detached from the normal base page allocator. Therefore, fragmentations of base
pages impact little on Hzmem.

Kwon et al. [10] propose Ingens, a framework for transparent huge page
support through tracking utilization and access frequency of memory pages.
In contrast to Ingens, Hzmem’s focused on adding main memory compression
feature in order to increase effective memory size and improve consolidation ratio
in terms of server consolidation and virtualization.

Main memory compression: Ekman et al. [5] propose a main memory com-
pression framework that eliminates performance losses by exploiting simple and
yet effective compression scheme, a highly-efficient compressed data locating and
a hierarchical memory layout. Pekhimenko et al. [14] propose Linearly Com-
pressed Pages (LCP) that avoids the performance degradation problem without
requiring costly or energy-inefficient hardware. Like these two work, Hzmem also
makes optimizations on zeroed pages yet with no need of any hardware modifi-
cations.

Tuduce et al. [15] propose a main memory compression solution that adapts
the allocation of real memory between uncompressed and compressed pages. It
allows to shrink or grow the size of the compressed area without user involve-
ment and it is implemented in Linux over commodity hardware. In contrast to
this work, Hzmem is focused on the compression of large pages and stores the
compressed data in base pages. This will lead to negligible wasting space at a
percentage of no more than 1/512.

3 Motivation

Most modern commodity operating systems support large pages. For example,
Linux allows applications to use specific API (it is called hugetlbfs in Linux) to

54 G. Li et al.

allocate memory based on large pages (hugepage in Linux). These large pages are
allocated from memory pools that are preserved in advance by administrators.
Moreover, these memory pools are in turn allocated from Linux Buddy System.

What leads to this lengthy detour on implementation of large page memory
management? It is that the memory management design in Linux inherently
bases on the fact that the page size is constant (4 KB in Linux). Linux uses
the macro PAGE SIZE to represent this base page size, which is used throughout
almost all the Linux subsystems, like virtual memory management, physical
memory management, I/O subsystem, page reclaiming, etc. For example, I/O
subsystem assumes a fixed page size as 4 KB and this goes well with the 4 KB
block size that is multiples of a sector size. As for large page support, it is
around in Linux since 2003 [4] when it has been long after Linux was designed
and developed and some assumptions of design cannot be modified easily.

Consequently, Linux resigns itself to adding large page feature upon the base
page memory management though overheads and maintainability problems will
be caused. For example, a large page is treated as 512 contiguous base pages
in an aligned 2 MB region and still uses the same page descriptors (struct
page in Linux which holds meta informations for one page). However the page
descriptors for large pages are page descriptors for base pages linked together as
compound pages with heads in linked lists holding useful information, which is a
great waste of memory space. As one of the most used data structures in kernel,
the page descriptor in Linux has to meet requirements from many subsystems
and thus this largely increases its size. Since there are so many page descriptors
that a single byte increase will lay much stress on kernel memory use.

Linux has already had supports for main memory compression like zram,
zswap and zcache, but currently these supports are highly dependent on page
reclaiming subsystem. Page reclaiming subsystem is an important part in Linux
which also assumes a fixed page size. It mainly contains two reclaiming pro-
cedures that are (1) writing back pages that are backed up by files and (2)
swapping out pages that are not backed up by any persistent storage devices.
Both these two processes involve the aforementioned I/O subsystems that also
assume a fixed page size. For example, zram treats itself as a block device that
is used as destination for swapping.

Equipping large page support with data compression feature based on these
compression techniques will cost non-trivial efforts to modify Linux and even
question some assumptions Linux has long held. Moreover, large page supported
through hugetlbfs has no backing up storage devices and there is no need for
swapping or writing back to persistent storage devices. Thus it is not practical to
enhance Linux with data compression feature using current compression supports
and may bring instability to Linux base code. Therefore, in order to meet our
requirements, we need to redesign the physical memory management.

4 Architecture and Implementation

We implement Hzmem based on the decoupled and flexible memory manage-
ment framework with a completely new hugepage allocator, a feature of main

Hzmem: New Huge Page Allocator with Main Memory Compression 55

Fig. 1. Architecture of decoupled and flexible memory management framework

memory compression and hugetlbfs API compatibility. The decoupled and flex-
ible memory management framework is shown in Fig. 1. The new framework
contains a placeholder for a physical memory manager that can be implemented
according to academic or industrial requirements and run with the original one at
the same time, thus making it decoupled and flexible. Figure 1 only takes Hzmem
for example in that placeholder. Applications in user space using normal API or
hugetlbfs API to create virtual memories which will be translated into different
physical memories managed by different manager respectively. Hzmem contains
four components: physical hugepage memory management, page fault handler
for hugepages, page reclaiming for compressing hugepages and hugepage com-
pression data management. Figure 2 shows workflow among four components. A
daemon in page reclaiming module checks allocated huge pages in every NUMA
node, selects the cold ones and invokes compression interfaces in compression
data management. It also changes the page table accordingly, which makes it
possible to retrieve the compressed huge pages. When an application accesses
the compressed data, a page fault is triggered. The page handler identifies the
compressed huge page, invokes decompression interfaces and restores the page
table entries. Finally the application can resume and access the data. In a word,
page reclaiming and page fault handling work in reverse ways. Their cooperation
makes the framework function properly.

We implement 4148 lines of C code (LoC). It runs over Linux with kernel 3.10,
functioning simultaneously well with the original Linux memory management
subsystem.

56 G. Li et al.

Fig. 2. Workflow of Hzmem

4.1 Hugepage Physical Memory Allocator

We take a clean-slate approach to implement the hugepage physical memory
allocator from the ground up.

New Page Descriptors. The new memory management is specialized for
2 MB huge pages in x86-64 architecture (currently we do not support 1 GB large
pages) and only used by user level applications through hugetlbfs API. In the
new framework, we drop the original method or workaround that combines 512
contiguous page descriptors into a compound page descriptor for a huge page.
Instead, we use customized page descriptors specific only to huge pages that
are simple and without any “compound” and space-wasting problems. This will
significantly save memory space used for storing page descriptors since both the
number and the size are decreasing. For example, a modern commodity server
with memory capacity of over 256 GB using the new page descriptors can save
several GBs which is 1%-2% percent of the memory and the situation worsens
when larger memory available.

Without any need of concerns on other subsystems, our new page descriptor
struct hugepage only deals with the specific use cases for huge pages used
through hugetlbfs by use level applications. This makes the new descriptor
deprive itself of the fields of structure related to slab, compound page, etc.,
which is very suitable for use cases where memory is under severe pressure that
it is resigned to main memory compression.

Free and Allocated Page Management. With large memory capacity, each
node in NUMA system can reach tens of GBs. To maintain such large mem-
ory, one node cannot be managed like that of Linux: except the first node, a
node contains only one zone called ZONE NORMAL. In our memory management
framework, memory of one node is divided into several sections according to its
size. Currently, we set size of one section to be 4 GB heuristically. It enables

Hzmem: New Huge Page Allocator with Main Memory Compression 57

us manage memory in a smaller granularity and achieve better scalability and
parallelism.

In Linux Buddy System, the highest order of contiguous memory is 10. It is
contiguous memory of up to 4 MB that Linux is designed to manage. A huge page
is 2 MB of order 9 that is almost the highest. Therefore, maintaining free huge
pages in higher order will not bring much benefits and thus we keep free huge
pages in a linked list in each section one by one. It deprives us of splitting and
coalescing neighboring memory, thus accelerating allocation and deallocation
speed.

During allocation, the allocator moves one free huge page from the free list
into a new linked list called lru list. Every node has two lru lists that are
used for holding allocated pages: one active list for hot pages and the other for
cold pages, which makes it convenient for page reclaiming described in Sect. 4.3.
During deallocation, the allocator can get information of node and section from
the new page descriptor which helps put the huge page back to the proper free
list.

Initialization. Our hugepage physical memory allocator should be initialized at
the same time of other unmodified memory management subsystems like Buddy
System.

First, we reserve a range of contiguous physical memories that are to be
detached from the management from Buddy System. After operating system fin-
ishes booting, we have (1) Buddy System manage memory of base pages mainly
for kernel memory and user level applications’ sections of base pages; (2) the
new hugepage physical memory allocator manage the reserved memory for huge
pages that are used by applications through hugetlbfs API.

We make minor modifications to Linux code base. We add hooks to the
architecture-specific memory detect during booting and mark a range of memo-
ries as reserved, making them invisible to Buddy System.

Finally, as is ignored by operating system, we set up the direct mapping for
the specific range of memories on our own, making it convenient to access the
memory without triggering page faults in kernel mode.

4.2 Page Fault Handler

A page fault is called “soft” page fault when it merely allocates a new page and
sets up a new page table entry, without reading contents from backing physical
store devices like disks. Huge pages are not backed up by persistent storage.
Therefore, what we focus on is the soft page faults triggered by huge pages.

A user level application allocates huge pages from our new memory manage-
ment through compatible hugetlbfs API. After mounting hugetlbfs filesystem,
creating a file at the mount point and calling mmap system call on the file, an
application is able to take advantage of our new huge page memory manage-
ment by accessing the mapped memory. It is the mmap system call that marks
the range of virtual memory as “MAP HUGETLB” which enables us identify what

58 G. Li et al.

needs to be allocated through the new hugepage memory allocator in page fault
handler.

We replace the old hugepage code path in page fault handler with our new
code path based on the new hugepage memory allocator. Since the page fault
related to huge pages is the soft page fault and has the feature of compression,
there are two situations:

1. Normal page fault case where the physical page is accessed for the first time.
Since the huge page fault is a soft page fault, the page fault handler just allo-
cates a zeroed huge page from the new hugepage physical memory allocator.

2. Page fault case where the physical page is protection violation. It is either a
shared page that can be retrieved from page cache or a compressed page that
can be decompressed and reclaimed from the compression data mangement
subsystem described in Sect. 4.4.

4.3 Page Reclaiming

Page reclaiming monitors and identifies the allocated huge pages as cold or hot
pages. Cold pages are isolated to be ready for reclaiming. In every node of operat-
ing system, there is one daemon called hp kscannerd that does periodical checks
on the usage of huge pages. We take lessons from Linux Buddy System that every
node has a watermark indicating whether the memory usage of the node is under
pressure. If the number of free huge pages is below the watermark, the daemon
on the corresponding node wakes up and starts reclaiming pages identified as
cold through compressing interface of compression data management described
in Sect. 4.4 and changes the page table entries accordingly.

We use the second chance algorithm taken from original Linux page reclaim-
ing mechanism to identify an allocated page as cold or hot. There are two states
involved in page descriptor: active and referenced in the page descriptor; and
one state in page table: page accessed bit in page table entry. Referenced state
indicates whether the page is accessed and active state indicates whether the
page is in active list. Whenever the physical page is accessed the bit in page
table entry is set by hardware without any operating system interferences. Soft-
ware is responsible for clearing the bit periodically and setting referenced state
accordingly in page descriptors. The waked daemon scans lru lists and checks
the referenced state to determine whether the page should be reclaimed: (1) only
two consecutive referenced state sets or clears can cause the page to be trans-
ferred between the active list and the inactive list; (2) the pages in inactive list
are ready for reclaiming.

4.4 Hugepage Compression Data Management

Hugepage compression data management participates in controls of compres-
sion/decompression and compressed data management. It is the lowest level part
as it provides compression/decompression interfaces for other parts to invoke. It
is also important part as the speed of compression/decompression and efficiency
of compressed data management impact greatly on performance of the whole
system.

Hzmem: New Huge Page Allocator with Main Memory Compression 59

Compression Algorithms. There are various kinds of lossless data compres-
sion algorithms. We choose LZO and LZ4 algorithms (the insight of choosing is
out of scope of this paper). LZO algorithm appears since Linux kernel 3.10 and
LZ4 algorithm since Kernel 3.15. We port both algorithms to our system. LZO is
better than LZ4 in compression ratio and compressing speed, but LZ4 is better
in decompressing [16] which we believe more important in memory management
framework.

Optimization on Zeroed Huge Pages. As mentioned before, when first
accessed, the allocator just allocates zeroed huge pages, which account for sub-
stantial proportions of memory. When zeroed huge pages get compressed, they
still occupy a good amount of memory. Thus, we optimize zeroed huge page
compression through setting its size to 0 in compressed data region. This opti-
mization, we believe, will achieve good improvements both in space and time
when zeored huge pages are pervasive.

Compressed Data Management. Compressed data cannot be stored in mem-
ory backed up by huge pages. Since one compressed huge page is usually smaller
than 2 MB, storing in huge page memory will waste a lot of space and make it
difficult to manage the compressed data. The new allocator runs simultaneously
with the Buddy System, which means there are two memory management mech-
anisms taking charge of memory of different granularities in one machine. Taking
advantage of this, we split the compressed data and store them in multiples of
4 KB blocks in physical memory space backed up by base pages.

In Linux we use the mature vmalloc to allocate memory from base pages.
There are two reasons: (1) simple, robust and virtual space for vmalloc is large
enough in x86-64 architecture; (2) one compressed huge page will at most waste
1/512 space which is small and acceptable. Thus we create a red black tree and
use the hugetlbfs file along with index of huge pages as key for retrieving when
decompressing is triggered in page fault handler.

5 Evaluation

We evaluate Hzmem using a variety of user applications and benchmarks, com-
paring against the performance of Linux’s hugetlbfs support which is state-of-
the-art. Experiments are performed on one machine with 16 Intel Xeon E7520
1.87 GHz CPUs and 64 GB memory. We use Linux 3.10 and Centos 7 for the
host environment and use 4 KB for base pages and 2 MB for large pages.

We first use SPEC CPU2006 [8] and STREAM [11] benchmarks to evaluate
overheads and throughput of Hzmem when compression is disabled. Then we use
datasets from Yelp Dataset Challenge [1] to measure effective memory increasing
introduced by Hzmem when compression is enabled. Finally we conduct a series
of benchmarks to test the new page fault overhead in order to show performance
isolations guaranteed by Hzmem. We use consistent parameters for hot and cold
pages detecting: watermark is 80% and detecting period is 10 s.

60 G. Li et al.

Fig. 3. Overhead of Hzmem relative to unmodified Linux

5.1 Overheads of Hzmem

Figure 3 shows the overheads introduced by Hzmem from SPEC CPU2006
benchmarks. To evaluate the overall overheads of Hzmem physical memory
management, we utilize hugectl from libhugetlbfs to run the benchmarks.
libhugetlbfs is a set of user tools making use of Linux hugetlbfs, which
requires only re-linking binaries without modifications to source codes. Hugectl
can remap the text and data segments of programs into memories backed up by
large pages and hook libc memory allocation functions malloc with mappings
of large pages.

From the results, we can find that Hzmem slows down 3.25% in the worst
case and 0.7% in average. The performance loss is mainly from the extra code
path dealing with decompression/compression. Hzmem is not showing advantage
but achieving comparative performance when memory is not under pressure.

5.2 Throughputs of Hzmem

Table 1 shows the throughput of Hzmem using STREAM benchmark against
unmodified Linux. STREAM is a synthetic memory bandwidth benchmark that
measures the performance of four long vector operations: Copy, Scale, Add, and
Triad. We configure STREAM to use different array sizes. From the results, we
see that in small sizes from 10 million to 40 million the throughput is almost
the same with the difference lower than 1%. On the contrary, with size from
80 million on, the difference gets larger. Hzmem has 7% larger throughput than
unmodified Linux in the best case and 5% in average.

The reason is that Hzmem is based on our decoupled and flexible memory
framework which uses new page descriptor for each large page without splitting
or coalescing neighboring memory. When memory is under pressure and frag-
mented after long running, unmodified Linux tends to split or coalesce tremen-
dous amounts of memory to meet large page memory allocation from user appli-
cations, thus bringing overheads and reducing throughput.

Hzmem: New Huge Page Allocator with Main Memory Compression 61

Table 1. Throughput (MB/s) of benchmark STREAM when different sizes are applied.

Size(m) COPY SCALE ADD TRIAD

Hzmem Unmod Hzmem Unmod Hzmem Unmod Hzmem Unmod

10 3035.7 3043.0 2594.3 2595.8 3244.0 3226.5 2930.7 2928.4

20 2318.0 2321.6 1970.0 1968.6 2298.3 2278.1 1839.0 1838.9

30 2315.5 2317.7 1973.2 1970.6 2395.9 2397.8 2214.7 2216.7

40 2319.0 2325.0 1972.2 1976.0 2294.5 2295.7 1825.9 1829.9

80 2503.4 2324.0 2131.7 1978.2 2440.6 2299.9 1956.0 1828.2

100 2383.6 2324.2 2029.5 1978.1 2327.5 2278.8 1875.9 1836.7

5.3 Effective Memory Increasing

By compressing large pages, Hzmem makes larger effective memory available
to applications and avoids disk accesses or being killed due to OOM killer.
Effective memory size increasing by compressing is dependent on the compres-
sion ratio. We measure an average compression ratio of 0.23 tested on dataset
of Yelp Dataset using LZ4 algorithm. To evaluate the actual effective memory
increasing introduced by Hzmem, we configure the same size of large memory
in advance both in Hzmem and unmodified Linux. We run an application that
keeps allocating memory using hugetlbfs API and writing memory until it fails.
The largest memory it can obtain is the effective memory size.

Figure 4 shows effective memory increasing introduced by Hzmem against
unmodified Linux using hugetlbfs API in different large memory size config-
urations in advance. We can see that unmodified Linux cannot increase effec-
tive memory size at all and the largest size available is the same as configured
in advance. Hzmem can increase the effective memory size by 4465% but the
gap is narrowing as the memory size configured in advance gets larger. This
stems from the fact that Hzmem stores the compressed data in base page space.

Fig. 4. Effective memory of Hzmem relative to unmodified Linux

62 G. Li et al.

The smaller large page memory size is configured in advance the larger base page
space can be used to store the compressed data from large page space. However,
data compressing brings overheads and trade off between effective memory size
and performance should be taken into consideration by system administrators.

5.4 Overhead of Page Fault and Performance Isolation

Page faults in Hzmem involve data decompressing and lie in critical path of mem-
ory accesses. Thus performance of the new page fault handler of large pages is
important. To evaluate the performance of the new page fault handling, we run
an application that stresses heavily on the page faults. It first uses hugetlbfs
API to allocate certain amounts of large pages and writes pages to trigger page
faults. The amounts of large page to be allocated from user applications are
divided into two groups dependent on whether beyond size of large pages config-
ured in advance: non-overcommitted and overcommitted. To eliminate overheads
of data compressing from page reclaiming, we configure size of large pages to be
4 GB in advance and let the application sleep for 30 s in the case of overcom-
mitted and we subtract this period of time from running time for fairness when
evaluating throughput. Another reason why we let the application sleep is that
it can make the allocated pages as cold as possible, which stresses more heavily
on the new page fault handler.

Figure 5a shows throughput of page faults stress test against unmodified
Linux when not overcommitted. We can see that Hzmem has larger through-
put than unmodified Linux but the difference is not larger than 9 MB/s, which
means 4% in the best case.

Figure 5b shows throughput of page faults stress test against unmodified
Linux when overcommitted. Since 4 GB of large pages are configured in advance,
when allocating not over 4 GB the throughput are almost the same. When allo-
cating over 4 GB large pages, the throughput of unmodified Linux becomes zero
since it cannot increase effective memory size. However, when over 4 GB through-
put of Hzmem are decreasing no more than 27%, which is apparently quite better
than swapping involved in disk accesses which are much slower.

In the meantime, we also measure the CPU utilization caused by compressing
daemons: 16.6% in the worst case and 11.0% in average. In our case, we have

(a) when not overcommitted (b) when overcommitted

Fig. 5. Throughput of page fault stress test

Hzmem: New Huge Page Allocator with Main Memory Compression 63

compressing daemons work on two nodes. If more daemons operate on more
nodes, compressing overhead will be amortized and become much smaller on
each CPU.

6 Conclusion

With trends towards running workloads that require big-memory, large page
support and main memory compression are the techniques that developers often
rely on to improve performance. However, applying the two techniques is beyond
a matter of engineering. Combination of the two techniques is related to the low
level design modifications and considerable effort. This motivates us to propose
a completely new memory management framework that is decoupled and flexible
for easy development and able to run simultaneously with the original memory
manager. On top of the new memory management framework, Hzmem is large
page memory management redesign with compression features independent from
the base page memory management. It achieves competitive performance with
native large page supports, increases effective memory size and impacts little on
other subsystems of operating system.

Acknowledgments. Many thanks to members of ARC Lab of Zhejiang University
for their constructive comments and helps during the project. We would like to thank
the anonymous reviewers for their feedbacks. This research is funded by National Key
Technologies R&D Program of Ministry of Science and Technology of the People’s
Republic of China under Grant NO. 2016YFB0800201.

References

1. Yelp Dataset Challenge. https://www.yelp.com/dataset challenge/
2. Basu, A., Gandhi, J., Chang, J., Hill, M.D., Swift, M.M.: Efficient virtual mem-

ory for big memory servers. In: Proceedings of the International Symposium on
Computer Architecture, pp. 237–248 (2013)

3. Clements, A.T., Kaashoek, M.F., Zeldovich, N.: RadixVM: scalable address spaces
for multithreaded applications. In: EuroSys, pp. 211–224 (2013)

4. Corbet, J.: Huge pages part 1 (Introduction) (2010). https://lwn.net/Articles/
374424/

5. Ekman, M., Stenstrom, P.: A robust main-memory compression scheme. In: Pro-
ceedings of the International Symposium on Computer Architecture 00(C), pp.
74–85 (2005)

6. Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D.,
Kaynak, C., Popescu, A.D., Ailamaki, A., Falsafi, B.: Clearing the clouds: a study
of emerging scale-out workloads on modern hardware. ACM SIGPLAN Not. 47,
37–48 (2012). ACM

7. Gerber, S., Zellweger, G., Achermann, R., Kourtis, K., Roscoe, T., Milojicic, D.:
Not your parents’ physical address space. In: HotOS (2015)

8. Henning, J.L.: Spec cpu2006 benchmark descriptions. ACM SIGARCH Comput.
Archit. News 34(4), 1–17 (2006)

https://www.yelp.com/dataset_challenge/
https://lwn.net/Articles/374424/
https://lwn.net/Articles/374424/

64 G. Li et al.

9. Huang, J., Qureshi, M.K., Schwan, K.: An evolutionary study of linux memory
management for fun and profit methodology. In: Review-ATC 2016 (2016)

10. Kwon, Y., Yu, H., Peter, S., Rossbach, C.J., Witchel, E.: Coordinated and efficient
huge page management with ingens. In: 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2016), pp. 705–721 (2016)

11. McCalpin: STREAM benchmark (2002). http://www.cs.virginia.edu/stream/
12. Navarro, J., Iyer, S., Druschel, P., Cox, A.: Practical, transparent operating system

support for superpages. ACM SIGOPS Oper. Syst. Rev. 36, 89 (2002)
13. Ousterhout, J., Agrawal, P., Erickson, D., Kozyrakis, C., Leverich, J., Mazières, D.,

Mitra, S., Narayanan, A., Ongaro, D., Parulkar, G., et al.: The case for RAMCloud.
Commun. ACM 54(7), 121–130 (2011)

14. Pekhimenko, G., Mowry, T.C., Mutlu, O.: Linearly compressed pages: a low-
complexity, low-latency main memory compression framework. In: MICRO-46 Pro-
ceedings of the 46th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), p. 489 (2013)

15. Tuduce, I.C., Gross, T.R.: Adaptive main memory compression. In: USENIX
Annual Technical Conference, General Track, pp. 237–250 (2005)

16. Zaitsev, P., Tkachenko, V.: Evaluating Database Compression Methods:
Update (2016). https://www.percona.com/blog/2016/04/13/evaluating-database-
compression-methods-update/

http://www.cs.virginia.edu/stream/
https://www.percona.com/blog/2016/04/13/evaluating-database-compression-methods-update/
https://www.percona.com/blog/2016/04/13/evaluating-database-compression-methods-update/

An FPGA-Based Real-Time Moving Object
Tracking Approach

Wenjie Chen1,2, Yangyang Ma1, Zhilei Chai3,4(B), Mingsong Chen1,2,
and Daojing He2

1 MoE Engineering Research Center for Software/Hardware Co-Design,
East China Normal University, Shanghai, China

wjchen@sei.ecnu.edu.cn
2 Shanghai Key Laboratory of Trustworthy Computing, Shanghai, China

3 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Wuxi 214125, China

4 School of IoT Engineering, Jiangnan University, Wuxi, China
zlchai@jiangnan.edu.cn

Abstract. Due to high complexity on matching computation, real-time
object tracking is generally a very challenging task for practical applica-
tions. This paper proposes a new algorithm for moving object tracking,
which improves the traditional KLT algorithm by using the motion infor-
mation for feature points selection to avoid the irrelevant feature points
residing in the background area. Moreover, this paper designs the hard-
ware architecture of the FPGA part to accelerate the computation by
optimizing the inherent parallelism of the algorithm. The proposed algo-
rithm is able to significantly reduce the computation time. Experimen-
tal results show that our algorithm implemented in an FPGA-SoC (Zynq
7020, 667 MHz) requires only 0.030 s to handle a VGA resolution frame,
which is suitable for real-time tracking. This achieves up to 30× perfor-
mance improvement compared with the desktop PC (i3, 3.4 GHz), or 370×
compared with the ARM (Cortex-A8, 1 GHz). The experiment also shows
that our approach consumes less energy significantly than PC and ARM
for the same workload, which indicates that it is suitable for energy-critical
system.

Keywords: FPGA · Object tracking · KLT · MKLT · ZYNQ

1 Introduction

With the rapid progress on emerging industries such as driverless car, robot-
ics, UAV(unmanned aerial vehicle), object detection and tracking technology
becomes more and more important. It is widely applied in real-life applications,
such as visual surveillance [9], traffic detection (e.g., traffic accident detection
[14], vehicle detection [2], and pedestrian detection [11]) and human gesture
recognition [13]. Essentially, object tracking is to robustly estimate the motion

c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 65–80, 2017.
DOI: 10.1007/978-3-319-65482-9 5

66 W. Chen et al.

state (e.g., location, orientation, size) of a target object in each frame of an input
image sequence [6].

Up to now, many object tracking approaches have been developed, such as
PF (Particle Filter) [15], MS (Mean Shift) [4], and KLT (Kanade-Lucas-Tomasi)
[8,19]. KLT is faster than traditional techniques for examining far fewer potential
matches between the images, because that only some special points (feature
points) are used for matching. Shi-Tomasi corners [18] are selected as feature
points used in KLT. In this paper, we use KLT as the basis of our algorithm.

“Real time” is an inherent requirement for image tracking applications. How-
ever, KLT still require a large amount of computation due to the high complexity
of the feature descriptor. Fortunately, the parallel acceleration techniques, such
as Multi-core, GPU (Graphics Processing Unit) and FPGA (Field-Programmable
Gate Array), have rapidly developed in industry.

The emerging technology of “FPGA-SoC” give us more supports. An FPGA-
SoC is a chip encapsulated both FPGA and a processor (such as an ARM core). Liu
et al. [7] proposed a moving object detection system based on FPGA-Soc (ZYNQ
7000). Sajjanar et al. [17] and Rohilla et al. [16] reported the similar work inde-
pendently with ZYNQ 7020. All these three systems use “background subtraction”
as the object detection algorithm. Background subtraction is very fast on object
detection for fixed camera, since only subtraction operation are invoke for each
pixel. However, background subtraction is often not quite robust in real environ-
ments, where reflections, rain or illumination change breaks up the static back-
ground hypothesis.

In this paper, we also propose an object tracking system with an FPGA-SoC
(ZYNQ 7020). But our system is based on KLT, which tracks the obvious feature
points only. Therefore, it is immune for small change in background. What’s
more, each feature point’s movement (moving direction and velocity) can be
visualized. Our contributions are: (1) improve the traditional KLT algorithm by
exploiting the moving information to avoid selecting the inferior feature points
that are on the static background; (2) design the hardware architecture of the
FPGA part to accelerate the computation by optimizing the inherent parallelism
of the algorithm; and (3) develop this system with a high-level language (C
language) instead of HDL (Hardware Description Language, such as VHDL,
Verilog), which can further improve flexibility, scalability and portability.

For the sake of comparison and evaluation, the algorithm is also implemented
on a normal desktop PC and on an independent ARM system. The experimen-
tal results show that our algorithm implemented on the FPGA-SoC takes only
0.030 s to capture the moving object and visualize it for two sequential frames
of an image with a resolution of 640× 480. It is approximately 34 times faster
than the normal PC and 370 times faster than the ARM system.

The remainder of this paper is organized as follows. Section 2 introduces
the basic conception of feature points and KLT algorithm and proposes our
improvement on KLT algorithm. Section 3 proposes the hardware architecture
for our parallel optimization technique to improve computational performance on

An FPGA-Based Real-Time Moving Object Tracking Approach 67

an FPGA. Section 4 describes the implementation and the experimental results,
and Sect. 5 concludes this paper.

2 Methodology

In this section, we briefly review the conception of feature points and the fea-
ture points based object tracking algorithm, i.e., the KLT algorithm. Then, by
analyzing the deficiency of KLT for moving object tracking, we propose our
improvement.

2.1 Feature Points

Feature points (a.k.a. interest points) are the key points on object detection
and tracking. Typical features include corners (interest points), edges (curves),
blobs (regions of interest points) and ridges. Feature detection is the method
to calculate abstractions of image information and decide whether there is an
image feature around each pixel of the image. Since a majority of computer vision
algorithms start from features detection, the performance of feature detectors is
essential to the entire algorithm.

Corners and edges are frequently used as feature points for object detection
and tracking. Edges are points where there is a boundary (or an edge) between
two image regions. And corner is the intersection of two edges. Harris et al. [5]
took corners as the regions in the image with large variation in intensity in all the
directions.

Let E(x, y) be the difference in intensity for a displacement of (u, v) in all
directions:

E(x, y) =
∑

u,v

w(u, v) [I(x + u, y + v) − I(u, v)]2 (1)

where I(x, y) is the intensity of point (x, y), and w(u, v) is the weighted window.
To detect feature points, the basic idea is to maximize this E(x, y). After Taylor
Expansion to Eq. (1), we get

E(x, y) ≈ [
x y

]
M

[
x
y

]
(2)

where

M =
∑

u,v

w(u, v)
[
IxIx, IxIy

IxIy, IyIy

]
. (3)

Here, Ix and Iy are image derivatives in x and y directions respectively.
An interest point (includes corner and edge) is characterized by a large vari-

ation of E, in all directions of the vector (x, y). By analyzing the eigenvalues of
M , this characterization can be expressed in the following way: M should have
two large eigenvalues (λ1 and λ2) for an interest point, where the eigenvalues
(λ) can be computed by

λ = (
∑

u,v

I2
x +
∑

u,v

I2
y ±
√

(
∑

u,v

I2
x −
∑

u,v

I2
y)2 + 4 ∗ (Ix ∗ Iy)2)/2 (4)

68 W. Chen et al.

In [18], Shi and Tomasi proposed the following conditions to decide the fea-
ture points (corners and edges) for object tracking.

⎧
⎪⎨

⎪⎩

max(λ1, λ2) < λth0 ⇒ flat

λ1 < λth0 and λ2 > λth1 or λ2 < λth0 and λ1 > λth1 ⇒ edge

min(λ1, λ2) > λth1 ⇒ corner

(5)

where λth0 and λth1 is the low threshold and the high threshold respectively that
could be set by user.

2.2 The KLT Approach

Object tracking is an special image registration problem between two sequential
image frames. The KLT algorithm utilizes spatial intensity information to search
for the position that yields the best match. it is based on the following three
assumptions.

1. Intensity conservation. The intensity of the special point keeps unchanged
after a small time period, i.e., I(x + dx, y + dy, t + dt) = I(x, y, t).

2. Limited displacement. The displacement for a small time period is limited,
i.e., dt < εt ⇒ d2x + d2y < εd, where εt and εd are limited values.

3. Approximate neighbor. In a small neighborhood of the target point, all
points have similar motion direction and speed. It is called a “window”.

Let I, J denote the two sequential image frames. Each point x(x, y) in win-
dow W moves through the same displacement d(dx, dy) from I to J . Then, the
request of KLT algorithm is: Given I, J , find the best reasonable d(dx, dy) to
satisfy the above three assumptions. It can also be expressed as to find a solution
to minimize the dissimilarity:

ε(d) = ε(dx, dy) =
ux+wx∑

x=ux−wx

uy+wy∑

y=uy−wy

(J(x + dx, y + dy) − I(x, y))2. (6)

or, it can be expressed as the integral format:

ε =
∫∫

W

[J(x + d/2) − I(x − d/2)]2w(x)dx (7)

here ε means the difference between image I and J on the window W . W is the
window with a radius of w/2 and centered in (x − d/2) for I and (x + d/2) for
J accordingly.

To minimize ε, let ∂ε
∂d = 0. Finally, it could be deduced to:

Zd = e (8)

where Z is a 2× 2 matrix, and e is a 2× 1 vector:

Z =
∫∫

W

g(x)gT (x)w(x)dx (9)

An FPGA-Based Real-Time Moving Object Tracking Approach 69

e =
∫∫

W

[I(x) − J(x)]g(x)w(x)dx (10)

where
g = [

∂

∂x
(
I + J

2
)

∂

∂y
(
I + J

2
)]T . (11)

Then,
d = Z−1 · e, if Z is invertible (12)

For feature points, the condition that Z is invertible is satisfied. Then we get
d, the best match of two feature points between two images. It is faster than
traditional techniques because it examines feature points only, which are far
fewer potential matches between the images.

2.3 The KLT Procedure and Its Deficiency

At first, the feature points (KLT use Shi-Tomasi corners) are selected in the
initial frame. (The number of feature points is set by user.) Then, these fea-
ture points will be tracked in the next frame. If some feature points cannot be
found in the next frame (lost), they should be discarded and new feature points
will be re-selected by returning to the previous frame. For large displacement
point tracking, the image pyramid operation is involved. Unfortunately, these
operations bring feedbacks or loops, which result in destruction of the pipeline.
These will decrease the performance and the efficiency of the algorithm when
implemented on an FPGA.

Let us consider the problem of moving object detection on a static back-
ground. Many Shi-Tomasi corners fall on the background rather than on the
object. As an example shown in Fig. 1, for the first detected four Shi-Tomasi
corners (points marked in red), three points (‘A’, ‘B’, and ‘C’) fall on the back-
ground, and only one point (‘D’) falls on the moving object (“the pedestrians”).
Therefore, when we perform the object tracking, the three feature points with
no movement should be replaced.

2.4 Our Improvement of KLT–MKLT

New approach to select feature points. KLT selects the corner feature
points following Eqs. 3, 4, and 5. During the procedure, no motion information
is involved. Therefore, the corner points can be located in the static background
as well as in the moving object, which leads to the aforementioned problems.

In this paper, we improve the KLT algorithm by introducing the motion
information into the feature matrix to filter out the static corner points. This
improved algorithm is named motion-enhanced KLT(MKLT). The feature matrix
is illustrated in Eq. 13.

F=

⎡

⎢⎣

∑
W

(Ix1+Ix2)
2,

∑
W

(Ix1+Ix2)(Iy1+Iy2),
∑
W

(Ix1+Ix2)(It1−It2)

∑
W

(Ix1+Ix2)(Iy1+Iy2),
∑
W

(Iy1+Iy2)
2,

∑
W

(Iy1+Iy2)(It1−It2)

⎤

⎥⎦ (13)

70 W. Chen et al.

Fig. 1. An example of Shi-Tomasi corners using KLT. Source image: [12]. (Color figure
online)

Ix1, Ix2 means the horizontal gradient; Iy1, Iy2 means the vertical gradient;
and It1, It2 refers to the intensity of two continuous frames.

In the case of a fixed-camera scene, let Mxx, Mxy, Myy, M1, and M2 denote
the larger values and μ1 and μ2 denote the smaller values. The feature matrix
can be classified into 4 categories by the point status (static/moving) and the
background type (weak/strong texture region).

As shown in Eq. 14, only the moving points on the strong texture region
have larger elements. Therefore, we distinguish the moving points with a strong
texture from other points.

F →

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 0 0
0 0 0

]
, static points on weak texture region

[
0 0 μ1

0 0 μ2

]
, moving points on weak texture region

[
Mxx Mxy 0
Mxy Myy 0

]
, corner points

[
Mxx Mxy M1

Mxy Myy M2

]
, moving points on strong texture region

(14)

An overview of MKLT. In the traditional KLT algorithm, multi-layer pyra-
mid operations are introduced to calculate the image motion tensor iteratively
from coarse to fine. These operations cause FPGA to access DDR memory during
each iteration. Frequent access to DDR extends the computing time. Moreover,
iterative operations decrease the efficiency of the pipeline. In some cases, we are
not concerned with real-time tracking on a specific target but concerned with

An FPGA-Based Real-Time Moving Object Tracking Approach 71

Fig. 2. An Overview of our MKLT algorithm

whether any moving object appears in the target scene. In this situation, we can
omit the multi-layer pyramid operation and iterations.

Figure 2 presents an overview of the MKLT procedure. The objective is to
find the moving points between two adjacent frames, calculate the motion tensor
of these points, and mark the moving velocity and direction. In the traditional
KLT algorithm, the points in Frame0 are tracked in Frame1, the points in Frame1
are tracked in Frame2, and so on. However, in MKLT, points in even frames are
tracked in odd frames, but points in odd frames will not be tracked in even
frames. For example, points in Frame0 are tracked in Frame1 and points in
Frame2 are tracked in Frame3, but points in Frame1 will not be tracked in
Frame2. The advantage of this scheme is that when the hardware accesses the
image data, the starting addresses of all the odd frames are the same, and it is
the same as the even frames.

3 Hardware Design of MKLT

3.1 Workflow of MKLT

As shown in Fig. 2, MKLT object tracking is a circular procedure. For each
iteration between two frames, there are four stages, as shown in Fig. 3.

– S1: smoothing. This stage is to smooth the image sequence to reduce the
image noise and external influence. Generally, this stage is realized by convo-
lution.

– S2: gradient calculation. This is to calculate the gradient of the image
that has been smoothed. The gradient includes 3 dimensions: the horizontal
gradient (Ix), the vertical gradient (Iy) and the time gradient (It).

– S3: motion tensor calculation. This stage calculates the cumulative accu-
mulation of the gradient in the rectangular feature window. This accumulating
operation can be perform row by row first and then column by column, which
is suitable for the pipeline.

– S4: visualization. The motion tensors are visualized using the Munsell color
system [1] according to the moving velocity and direction.

72 W. Chen et al.

Fig. 3. Workflow of an iteration of MKLT

3.2 Parallelism Analysis

Similar with the parallelism analysis we have discussed in [3], there are three
types of parallelism in MKLT work flow. We can exploit these parallelism features
for parallel optimization in FPGA.

– Task parallelism. As shown in Fig. 3, data dependency exists in the opera-
tions of adjacent stages. The result of one stage is used as the input for the
next stage. Thus, operations belonging to different stages have to compute
one after the other. Fortunately, multiple operations belonging to the same
stage can be computed independently. As shown in Fig. 3, smoothing of two
input images (Frame2t and Frame2t+1) can be processed simultaneously
to obtain two smoothed images (SFrame2t and SFrame2t+1), respectively).
Furthermore, the first derivatives (Ix, Iy) are computed based on the average
of the two smoothed images ((SFrame2t + SFrame2t+1)/2). It can be com-
puted by (SFrame2t - SFrame2t+1). All of the derivatives can be computed
independently and simultaneously. Finally, the Feature matrix can also be
computed simultaneously. Thus, it is straightforward to accelerate operations
within each stage by computing them as parallel tasks.

– Data parallelism.The operations of the first three stages can be mapped to
the convolution calculation, and the convolution is separable, which contains
a typical type of data parallelism.

– Pipeline parallelism. Although data dependency exists in different stages,
as mentioned above, and operations in different stages have to be computed
one after the other, it is not necessary to wait for all results from the previous
stages to be available to start the next stages. For each stage, only the pixels
of the beginning rows and columns should be available to start the operation.
Thus, when suitable hardware is available, all stages of MKLT can work
simultaneously in a pipeline fashion.

3.3 Hardware Architecture Design for MKLT

As mentioned above, we choose a separable kernel for the convolution, i.e., we
calculate the horizontal and vertical convolution separately. Then, the hardware

An FPGA-Based Real-Time Moving Object Tracking Approach 73

for image smoothing (S1) and gradient calculation (S2) can be implemented as
the hardware of horizontal and vertical convolution. To calculate the motion
tensor, it is necessary to construct the feature matrix. The feature matrix com-
putation involves the square of the horizontal gradient, the product value of the
horizontal gradient and vertical gradient, and the accumulation of the vertical
gradient on the detection window. Therefore, the computation can be trans-
formed as the accumulation on rows and columns sequentially. It is similar with
the convolution operation.

Hardware Design for Horizontal Convolution. As shown in Fig. 4(a),
assume that the kernel length is 5; then, in the window, 5 pixel data (P1, P2,
P3, P4, and P5) will pass into the Line buffer sequentially. After P5 enters, the
convolution will be calculated as the new value of middle pixel P3 (P3’). i.e.,

Pixel OUT = Pixel(P3′) =
5∑

i=1

Pi ∗ Ki (15)

Hardware design for vertical convolution. There is a difference between
vertical convolution and horizontal convolution. In the vertical convolution, the
data enter row by row. So multiple line buffers are needed to temporarily store
the data. As the example shown in Fig. 4(b) (with a kernel length of 3), only
when the input data fill the first column of the third row (P31), the calculation
of the vertical convolution of P21 (the middle point of the first column) can be
started.

Pixel OUT = Pixel(P ′
21) =

3∑

i=1

Pi1 ∗ Ki (16)

Fig. 4. (a) Data path of horizontal convolution. (b) Data path of vertical convolution.

74 W. Chen et al.

Data Path and Hardware Architecture of MKLT. After analyzing the
flow chart of the hardware module, the hardware data path diagram for the
entire MKLT algorithm can be constructed as shown in Fig. 5.

There are four stages in this data path, corresponding to the workflow
of Fig. 3. In S1, horizonal and vertical convolution are used consequently for
smoothing. In S2, horizonal and vertical convolution are used independently for
horizonal and vertical gradient computation. Horizonal and vertical accumula-
tion are used for feature matrix in S3. Then in S4, motion vector visualization
are called.

4 Evaluation

4.1 Implementation

In this paper, we implement the MKLT in “Flyx”, which is a ZYNQ-based board
for the further computer vision research made by our team [10]. Figure 6(a) shows
the picture of Flyx. The camera board with dual CMOS cameras are connected
to the main board via a GigE Vision interface.

ZYNQ integrates an ARM-based application processor (PS part) and FPGA
(PL part) in a single chip. We use Xilinx Vivado HLS [20] as the development
tools. The MKLT is realized as a customized IP module that resides in the PL
part. As shown in Fig. 6(b), it was connected to the PS part and other necessary
modules. In addition to the input image data and output data, there are several
control signals, such as ap start to start the MKLT-IP, ap done to indicate
completion of the work, and so on.

For the sake of fair comparison between different resolutions, the images are
not captured from cameras, but read from the files stored in the SD card. The
file-reading time is not counted in the experiments. All the images are from
the pedestrian data set of PETS2009 [12]. All test images have standard VGA
resolution (640× 480).

4.2 Comparison Between KLT and MKLT

The experiment compares the effect of MKLT and KLT on moving object detec-
tion. Figure 7 shows the feature points selected by KLT and by MKLT respec-
tively. Subfigure (a) shows that KLT selects many Shi-Tomasi corner points as
the feature points, which fall on the static background. In contrast, as shown in
(b), almost all of the feature points selected by MKLT fall on the pedestrian,
which are moving points. The experimental results show that for the first selected
100 feature points, only 75 points fall on the moving objects for KLT, while all
100 points for MKLT. This results demonstrate that MKLT can separate the
moving points from the static points with different feature values.

Figure 8 shows the result of MKLT for 3 samples. The left two columns are the
original sequential frames, and the third column show the result of the visualized
motion tensor (u, v), which indicates the moving direction and displacement

An FPGA-Based Real-Time Moving Object Tracking Approach 75

Fig. 5. Data path of MKLT

76 W. Chen et al.

Fig. 6. (a) Flyx. (b) The interconnection of the MKLT module with other modules in
the Zynq

Fig. 7. Feature points (in red) selection using (a) KLT (b) MKLT (Color figure online)

of every pixel. From the figure, the moving pedestrians are well distinguished
from the static background. Moreover, the moving direction and speed of every
pedestrian are well indicated by the hue and saturation of Munsell color system,
as the last subfigure (j) indicated. For example, red color means moving right
and cyan color means moving left, and the higher saturation means the higher
moving speed. Remarkablely, in subfigure (g), the man under the arrow is going
right, that is, in the opposite direction of all the other people. This situation
could be noticed obviously since it displays quite a different color with others
in subfigure (i). This is useful for further operation such as to distinguish the
suspicious person from a large number of people.

An FPGA-Based Real-Time Moving Object Tracking Approach 77

Fig. 8. Moving object detection using MKLT (Color figure online)

4.3 Performance and Energy Consumption Comparison

To evaluate the acceleration effect of FPGA, the MKLT algorithm was imple-
mented on an FPGA, PC and ARM. Table 1 lists the configuration of each
platform.

Table 1. Configurations of platforms

PC Flyx ARM

Chip type Intel Core i3-3240 FPGA: xc7z020clg4841
ARM : dual Cortex-A9

Samsung S5PV210,
Cortex-A8

Frequency 3.40 GHz 667MHz 1GHz

Memory 4 GB 512 MB 512 MB

IDE VS2012 Vivado HLS Vim

OS Windows 7 Linux 3.0.8 Linux 3.0.8

Figure 9 compares the performance (run-time per frame), power and energy
consumption per frame. The experimental results show that The FPGA takes
only 0.030 s to compute and visualize, and it is approximately 34 times faster

78 W. Chen et al.

Fig. 9. Performance and energy consumption of MKLT for different platforms

than the PC and 370 times faster than the ARM. In other words, FPGA can
handle video with 30 FPS (Frame Per Second), which means that it is suitable
for object tracking in real time.

With the Vivado tool, we can evaluate the power consumption of ZYNQ,
which is 1.82 W totally. (device static: 0.156 W; PS: 1.308 W; PL: 0.356 W).
This is a little higher than ARM processor (1.308 W), and much lower than
PC-CPU (38 W) However, since FPGA is much more faster than ARM and PC-
CPU, the energy consumed per frame (0.0546 J) is quite less than both ARM
(14.5188 J) and PC-CPU (39.482 J). In other words, the FPGA have the best
energy efficiency.

5 Conclusion

In this paper, we proposed a FPGA-based approach to optimize the computation
of the object tracking algorithm. The proposed algorithm improves the KLT
algorithm by using the motion information of the feature points. Moreover, we
designed a FPGA-based hardware architecture that can efficiently exploit the
advantages of the heterogeneous architecture of FPGA while fully exploiting the
parallelism of the algorithm. Experimental results show that our approach can
drastically improve the performance and energy efficiency.

Acknowledgments. This paper is supported by the National High Technology
Research and Development Program of China (2015AA015304), Natural Science Foun-
dation of China (61672230), the Shanghai Natural Science Foundation (15ZR1410000)
and the Open Project Program of the State Key Laboratory of Mathematical Engi-
neering and Advanced Computing.

An FPGA-Based Real-Time Moving Object Tracking Approach 79

References

1. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database
and evaluation methodology for optical flow. Int. J. Comput. Vision 92(1), 1–31
(2011)

2. Cao, L., Ji, R., Wang, C., Li, J.: Towards domain adaptive vehicle detection in
satellite image by supervised super-resolution transfer. In: 30th AAAI Conference
on Artificial Intelligence, pp. 1138–1144 (2016)

3. Chen, W., Wang, Z., Wu, Q., Liang, J., Chai, Z.: Implementing dense optical flow
computation on a heterogeneous FPGA SOC in C. ACM Trans. Architect. Code
Optim. (TACO) 13(3), 25:1–25:25 (2016)

4. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analy-
sis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

5. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision
Conference, vol. 15, p. 50. Citeseer (1988)

6. Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.V.D.: A survey of appear-
ance models in visual object tracking. ACM Trans. Intell. Syst. Technol. (TIST)
4(4), 58–105 (2013)

7. Liu, W., Chen, H., Ma, L.: Moving object detection and tracking based on ZYNQ
FPGA and ARM SOC. In: IET International Radar Conference, pp. 1–4, October
2015

8. Lucas, B.D., Kanade, T.: An iterative image registration technique with an appli-
cation to stereo vision. IJCAI 81, 674–679 (1981)

9. Ojha, S., Sakhare, S.: Image processing techniques for object tracking in video
surveillance-a survey. In: International Conference on Pervasive Computing
(ICPC), pp. 1–6. IEEE (2015)

10. OpenHEC: Flyx (2017). http://www.iopenhec.com/#/hardware/
000020160607000000000002. Retrieved 6 Jan 2017

11. Paisitkriangkrai, S., Shen, C., van den Hengel, A.: Pedestrian detection with spa-
tially pooled features and structured ensemble learning. IEEE Trans. Pattern Anal.
Mach. Intell. 38(6), 1243–1257 (2016)

12. PETS2009: Pets 2009 benchmark data (2009). http://www.cvg.reading.ac.uk/
PETS2009/. Retrieved 6 Jan 2017

13. Rautaray, S.S., Agrawal, A.: Vision based hand gesture recognition for human
computer interaction: a survey. Artif. Intell. Rev. 43(1), 1–54 (2015)

14. Ren, J., Chen, Y., Xin, L., Shi, J., Li, B., Liu, Y.: Detecting and positioning of
traffic incidents via video-based analysis of traffic states in a road segment. IET
Intel. Transport Syst. 10(6), 428–437 (2016)

15. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the kalman filter-particle filters
for tracking applications. IEEE Trans. Aerosp. Electron. Syst. 19(7), 37–38 (2004)

16. Rohilla, R., Raj, A., Kejriwal, S., Kapoor, R.: FPGA accelerated abandoned object
detection. In: 2016 International Conference on Computational Techniques in Infor-
mation and Communication Technologies (ICCTICT), pp. 302–306 (2016)

17. Sajjanar, S., Mankani, S.K., Dongrekar, P.R., Kumar, N.S., Mohana, Aradhya,
H.V.R.: Implementation of real time moving object detection and tracking on
FPGA for video surveillance applications. In: IEEE Distributed Computing, VLSI,
Electrical Circuits and Robotics (DISCOVER), pp. 289–295 (2016)

http://www.iopenhec.com/#/hardware/000020160607000000000002
http://www.iopenhec.com/#/hardware/000020160607000000000002
http://www.cvg.reading.ac.uk/PETS2009/
http://www.cvg.reading.ac.uk/PETS2009/

80 W. Chen et al.

18. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of the CVPR 1994,
pp. 593–600. IEEE (1994)

19. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography:
a factorization method. Int. J. Comput. Vision 9(2), 137–154 (1992)

20. Vivado: Vivado design suite - hlx editions (2015). http://www.xilinx.com/
products/design-tools/vivado/. Retrieved 6 Jan 2017

http://www.xilinx.com/products/design-tools/vivado/
http://www.xilinx.com/products/design-tools/vivado/

Automatic Acceleration of Stencil Codes
in Android Devices

Sergio Afonso(B), Alejandro Acosta, and Francisco Almeida

Universidad de La Laguna, San Cristóbal de La Laguna, Spain
{safonsof,aacostad,falmeida}@ull.es

Abstract. The increase of performance in handheld devices due to their
widespread adoption has required the integration of several distinct kinds
of processor in a single chip. These technologies have turned current Sys-
tems on Chip into heterogeneous platforms. Stencil codes are a family of
algorithms that appear in many relevant scientific and image processing
codes. In order to improve the performance of these algorithms in het-
erogeneous platforms, the usage of accelerators is very important but, for
a mobile applications developer, the development cost is very high. We
propose a methodology, based in our framework Paralldroid, for auto-
matically generating accelerated implementations of several well-known
representative stencil codes. The performance of these codes has also
been measured in order to demonstrate how Paralldroid is able to accel-
erate code without extensive or complex modifications. Results show
great performance improvements for few code modifications.

Keywords: Android · OpenCL · Stencil code · Source-to-source trans-
lation · Parallelizing compiler · Renderscript

1 Introduction

The architecture of embedded systems has seen a revolution in recent years trans-
forming it from low-power and low-performance specific purpose hardware to
current Systems on Chip (SoC). These new architectures provide very high per-
formance whilst maintaining a low level of power consumption, and have been the
basis of the new era of mobile computing. Conceptually, modern SoCs are hetero-
geneous platforms where one or more multi-core CPUs, a Graphics Processing
Unit (GPU) and possibly Digital Signal Processors (DSP) share access to a
unified memory system.

Although different vendors develop these platforms, the vast majority are
currently based on ARM technology. Some of the best known such platforms are
Qualcomm Snapdragon [13], Samsung Exynos [15], Apple Ax [9] and NVIDIA
Tegra [10]. Nevertheless, we can find alternatives, such as Intel Atom [8], not
based on ARM. The heterogeneity present between platforms and processors
makes difficult to write code that performs well in all cases. Because of this
reason, it is generally a good idea to find ways to automate code optimization
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 81–95, 2017.
DOI: 10.1007/978-3-319-65482-9 6

82 S. Afonso et al.

so that developers can focus on the business logic of applications instead. This
has the potential of improving performance across a wider variety of platforms
and improving their programmability, reducing development costs.

Stencil codes are involved in many important applications, partly because
very efficient methods exist for numerically solving partial differential equa-
tions using stencil codes [17]. Several scientific simulations and image and video
processing algorithms are based on stencil codes, so methods for improving their
performance have already been worked on by many authors [7,16,20]. Further-
more, implementing complex image processing methods that run in real time
is becoming increasingly more important especially for mobile and embedded
applications. As the need for performance in stencil codes and the difficulties
associated to developing efficient code for heterogeneous platforms are clear,
we consider that an automated tool to reduce the cost of developing such high
performance applications would be a very important step forward.

One such tool that has been developed for the purpose of simplifying writing
highly efficient stencil codes is PATUS [5]. This is an auto-tuning framework
that is able to generate code for stencils from an specification of the stencil
operation and a description of the parallelization and optimization methods
to apply. However, PATUS still requires the application programmer to know
about code optimization techniques and about the hardware that will execute
the application. This is often not the case for general purpose mobile applications
developers. In addition, it requires the usage of a domain specific language (DSL)
for writing stencil kernels that is not easy to integrate in a Java application
developed by an Android programmer.

Alternatively, we propose using Paralldroid [1–3] so that we can reduce the
development cost at the expense of some overhead due to the increased level of
abstraction. However, because it is a source-to-source compiler, it allows more
experienced developers to use it to generate a first implementation that they
can tweak and improve afterwards. This significantly reduces development time.
Mint [18] is also a source-to-source translator capable of generating high per-
formance parallel CUDA code for NVIDIA GPUs from standard C code with
annotations. Although it is similar to Paralldroid in this regard, the only notable
Android platform that supports CUDA is NVIDIA Tegra. Moreover, as anno-
tations are still applied to C code, it requires some extra work to be executed
by a Java application, making it less suitable for Android development. Most
OpenACC implementations, such as PGI’s [12] or Cray’s [6], are not designed to
be used in this context. They are targeted towards other type of hardware, and
other OpenACC compilers like accULL [14], which can generate OpenCL code,
still need native code as input.

As a contribution of this paper we propose a methodology for the rapid pro-
totyping and acceleration of sequential stencils in Android, based on a generic
tool named Paralldroid. This methodology allows for the automatic generation
of Renderscript and OpenCL codes. In this regard, we also contribute by char-
acterizing the performance of the Renderscript and OpenCL codes generated for
various different stencil patterns. This performance is characterized in terms of

Automatic Acceleration of Stencil Codes in Android Devices 83

several parameters such as the input size and computational load per element.
We analyzed strengths and weaknesses inherent to each programming model, and
determined features of an algorithm that make it run better using one language
or the other. The stencil examples used for testing are widely representative of
patterns appearing in many scientific and multimedia applications. We conclude
that Paralldroid is a useful tool to accelerate stencils, since the development time
is significantly reduced and it also provides different backend options. Generated
code could indeed be manually optimized if required, but results show that, in
many cases, it provides similar performance to handwritten code.

This paper is structured as follows: In Sect. 2 we give an overview of the
features of Paralldroid that allow us to accelerate stencil codes, Sect. 3 introduces
the general definition of a stencil code and describe the set of examples that we
have implemented in order to validate our methodology. We describe the new
methodology that allows a developer to accelerate stencil codes in Android using
Paralldroid in Sect. 4. In Sect. 5 we show and discuss the results we obtained on
different platforms, and we finish with conclusions and future work in Sect. 6.

2 Paralldroid

Paralldroid is a development framework designed to simplify the development
of parallel applications on the Android platform. It achieves this by defining
a set of high-level Java annotations, which provide the information it needs
in order to be able to generate accelerated code. Paralldroid introduces a new
stage in the compilation process, in which the annotated Java code written by
the developer gets translated into one of the target languages of Paralldroid.
The goal of Paralldroid is to also unify the different development models there
are on Android (Java, Renderscript and C/C++), so the set of target languages
were selected according to this. The integration of Paralldroid in the Android
development model is shown in Fig. 1. The target languages Paralldroid can
generate are:

– Renderscript: It is a programming language designed for computationally
intensive tasks in Android. Based on C, it allows to define Single Program
Multiple Data (SPMD) tasks and runs code asynchronously. Renderscript
supports CPU code execution and GPU acceleration. However, the device
where the code is run cannot be controlled by the programmer, but only by
the Android runtime. It provides a high level way to accelerate code, but it
still requires the mobile developer to learn a new language and introduces the
need to maintain multiple source files for a single class.

– Native C: It is possible to run native code from an Android application by
using the Java Native Interface (JNI) and the Android Native Development
Kit (NDK). Many algorithms can benefit from running natively, due to the
reduced overhead as opposed to running managed code. However, this option
is not recommended for performance, but for accessing third-party native
libraries in the device and for reusing code instead. Calling native code from

84 S. Afonso et al.

Fig. 1. Paralldroid development model

Java sometimes improves performance, but it always results in a higher pro-
gram complexity.

– OpenCL: It is a well known standard for cross-platform access to accelera-
tor devices. It provides a mechanism for parallel programming and a low-level
API for communicating data and handling the different computing devices
present in the hardware platform. A typical OpenCL application has code
running in the host processor and computing kernels running on accelerator
devices (multicore CPUs, GPUs, DSPs...). Unlike Renderscript, the amount
of platforms that support OpenCL is very extensive. However, as it is a low
level interface over the hardware, it usually increases development cost con-
siderably. If the hardware architecture is taken into account, it can be made
to produce very highly optimized code, but this is a very difficult task con-
sidering how heterogeneous the SoC market is in this regard.

In order to allow transparent execution of generated code, Paralldroid needs
to also generate Java code. While maintaining the interface of the original Java
classes, the translated classes are modified in order to forward the execution
to the generated code. They also synchronize the memory in the Java and tar-
get contexts, hiding this complexity to the caller code. This allows different
Paralldroid-generated classes to interoperate seamlessly.

One main advantage of using Paralldroid is that it allows quick testing of
the various parallelism options in Android. Some algorithms, or code sections,
may be better suited to running on Renderscript while others may benefit from
lower level access to the hardware through OpenCL, or it might be interesting to
have multiple implementations for different devices. As OpenCL is not officially
supported in Android, but available in many mainstream platforms, it would be
necessary to provide a fallback implementation for devices that do not support

Automatic Acceleration of Stencil Codes in Android Devices 85

it. Furthermore, because the Paralldroid code generation is an independent pre-
liminary compiler stage, an expert developer could improve the generated code
without having to implement it in full.

3 Stencil Codes

The class of algorithms commonly known as stencil codes have very important
applications, and tend to become important bottlenecks for many scientific appli-
cations. Their most important feature is that a stencil has an n-dimensional grid
with an element per cell that must be computed according to the values of neigh-
bor elements. The shape of the neighborhood is called the stencil, and its size
and shape are usually fixed on each problem. Many stencil codes are iterative,
so they are applied repeatedly over the complete mesh, in which case the value
of each element depends on the values of the neighborhood of that element on
the previous iteration.

The most commonly used stencil shapes are those based on a Von Neumann
neighborhood or a Moore neighborhood [11]. The Von Neumann neighborhood
contains the element at hand and its direct neighbors in the cardinal directions,
although it can be generalized to contain all elements within a Manhattan dis-
tance of r. The Moore neighborhood, on the other hand, also includes diagonally
adjacent elements, hence being defined as the set of elements within a maximum
Chebyshev distance of r. Graphical representations of these are shown in Fig. 2.

Fig. 2. 2D Von Neumann and Moore neighborhoods with a range of 2

It is clear that stencil codes are easily parallelizable, because the calculation
of each element is independent of every other, as long as there are two separate
buffers for reading and writing the mesh. However, the memory access patterns
imposed by the stencil can be problematic regarding memory locality and coa-
lescing. These problems are especially important because stencil codes are very
frequently memory bound, and these traits are detrimental towards memory
access performance in modern CPU and GPU architectures.

86 S. Afonso et al.

In order to evaluate the suitability of our proposal for automatic acceleration
of stencils, we have implemented several stencil codes that are widely represen-
tative of stencils appearing in scientific applications. These codes are the Heat
and Poisson equations, the Gaussian Blur, the Discrete Laplacian and a Pattern
Thinning algorithm.

The main features of these stencils are summarized in Table 1. In that table,
we use the notation uk

i,j to refer to the value of the input cell located in the row
i and the column j, on the time step k. We can use this notation because we
discretize space as well as time in these examples. On the examples for which
the concept of time is not relevant, k is to be interpreted as an iteration index.
The Discrete Laplacian stencil is applied to an image only once, so its equation
in Table 1 indicates how each output pixel is calculated from the inputs, and it
is not iteratively executed. The Pattern Thinning and Gaussian Blur stencils,
on the other hand, have to run repeatedly and they both have one equation for
even and odd iterations. The Pattern Thinning stencil will run until there are no

Table 1. Stencil examples

Algorithm Stencil equation Shape

Discrete Laplacian uk+1
i,j = uk

i−1,j + uk
i,j−1 + uk

i+1,j + uk
i,j+1 − 4uk

i,j

Pattern Thinning

uk+1
i,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if uk
i,j = 0

0, if A(i, j) = 1 ∧ 2 ≤ B(i, j) ≤ 6 ∧
uk
i−1,ju

k
i,j+1u

k
i+1,j = 0 ∧

uk
i,j+1u

k
i+1,ju

k
i,j−1 = 0

1, otherwise

uk+1
i,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if uk
i,j = 0

0, if A(i, j) = 1 ∧ 2 ≤ B(i, j) ≤ 6 ∧
uk
i−1,ju

k
i,j+1u

k
i,j−1 = 0 ∧

uk
i−1,ju

k
i+1,ju

k
i,j−1 = 0

1, otherwise

Gaussian Blur

uk+1
i,j = uk

i,j−2 G(0) + uk
i,j−1 G(1) + uk

i,j G(2) +

uk
i,j+1 G(3) + uk

i,j+2 G(4)

uk+1
i,j = uk

i−2,j G(0) + uk
i−1,j G(1) + uk

i,j G(2) +

uk
i+1,j G(3) + uk

i+2,j G(4)

2D Heat equation uk+1
i,j =

1

4
(uk

i−1,j + uk
i,j−1 + uk

i+1,j + uk
i,j+1)

2D Poisson equation uk+1
i,j =

1

4

(
uk
i−1,j + uk

i,j−1 + uk
i+1,j + uk

i,j+1 +
ρ(i, j)h2

ε0

)

Automatic Acceleration of Stencil Codes in Android Devices 87

further modifications to the inputs, but the Gaussian Blur algorithm will only
apply each stencil once.

In the Pattern Thinning stencil equations, A(i, j) is the amount of times
the sequence 01, representing a white pixel followed by a black one, is found
among the neighbors of the current pixel whilst going through them in clockwise
order. B(i, j) is the amount of black neighbor pixels. In the Gaussian Blur stencil
equations we use G(x) to refer to the value of the gaussian function in the position
x, normalized inside the range [0, 4] so that the sum of all values is equal to 1.
In the Poisson equation, we use h to refer to the width and height of each cell,
ρ(i, j) is the charge density function of the input material and ε0 is the vacuum
permittivity.

4 Methodology

With our approach, the development workflow of a mobile applications developer
is slightly modified. In Fig. 3, this new workflow is outlined. Firstly, the developer
identifies the stencil to accelerate. Once this is done, it is necessary to adapt the
class to the limitations of the tool, which are roughly the impossibility of creating
new objects anywhere outside of the constructor and using complex objects
inside of the class to translate. Adapting the original Java class should not be a
very complex task because it is possible to create another class responsible for
preparing the input and output data or acting as a simpler interface between the

"

Fig. 3. Stencil development methodology

88 S. Afonso et al.

accelerated algorithm and the rest of the application. If a section of code is known
to be compute-intensive and eligible for parallelization beforehand, the easiest
approach would be to directly design the application with these constraints in
mind.

When the code is expressed in a simpler form supported by Paralldroid, the
next step is to annotate this Java class so that the compiler knows the required
memory synchronizations and parallel methods to generate in order to offload
execution to Renderscript or OpenCL, as well as the target language to use.
Then, the Paralldroid compiler is run on the whole project. It will find all classes
having @Target annotations and it will try to translate them. The original files
are preserved, so that they can be iteratively improved until the generated code
is correct. An example implementation of an stencil can be seen in Listing 1.1.

1 @Target(OPENCL)
2 public class DiscreteLaplacian {
3 @Map(TO) private int width;
4 @Map(TO) private int height;
5
6 public DiscreteLaplacian (Activity act, int width, int height) {
7 this.width = width;
8 this.height = height;
9 }

10
11 @Parallel
12 public void run (@Map(TO) Bitmap srcPxs, @NumThreads @Map(FROM) Bitmap outPxs,
13 @Index int x, @Index int y) {
14 int current = srcPxs.getPixel(x, y);
15 int neighbourN = y > 0? srcPxs.getPixel(x, y - 1) : current;
16 int neighbourE = x < (width - 1)? srcPxs.getPixel(x + 1, y) : current;
17 int neighbourS = y < (height - 1)? srcPxs.getPixel(x, y + 1) : current;
18 int neighbourW = x > 0? srcPxs.getPixel(x - 1, y) : current;
19
20 // Assume input is already in grayscale format, so all channels have the same value
21 int output = Color.red(neighbourN) + Color.red(neighbourE) + Color.red(neighbourS)+
22 Color.red(neighbourW) - 4 * Color.red(current);
23
24 if (output < 0) output = 0;
25 outPxs.setPixel(x, y, Color.argb(255, output, output, output));
26 }
27 }

Listing 1.1. Discrete Laplacian stencil in Paralldroid

For each translated class with OpenCL as the target language, the Paralldroid
compiler will generate a Java file intended to be the interface to the generated
code, and a C file with the OpenCL host code and JNI code that allow the
interaction between the Java and OpenCL contexts. In that file there is the
source code of the kernels that implement the methods annotated as @Parallel
in the original Java class. That code is compiled at runtime in the target device
the first time an instance of the class is created. The first time an OpenCL
version of a class is generated, the developer has to integrate it into the native
build scripts (ndk-build or CMake, for example) so that it gets compiled into a
shared library and included in the application package. These libraries have to
be linked to the Paralldroid runtime libraries, which have to also be manually
included in the application together with its associated header files.

Automatic Acceleration of Stencil Codes in Android Devices 89

For Renderscript, the process is simpler. The Android compilers and tools
will automatically process new Renderscript source files and generate wrapper
classes as part of the build process. These classes are used by Paralldroid’s
own generated classes in order to transparently offload the execution to the
Renderscript runtime.

Triggering an application build using the Android development tools would
be all left to do in order to get the whole application, using the accelerated code,
in a package that can be installed and run in an Android device. If performance
was still not sufficient, the developer could then revise the Paralldroid implemen-
tation or try another supported target language and generate again and profile
the application. If, however, this developer knows about these languages and
performance optimization techniques, and needs more performance, they could
modify the generated code as much as needed. This is much faster to do than
starting the implementation from scratch, especially in OpenCL. This method-
ology has the added advantage of allowing to quickly test the behavior of each
implementation before spending time optimizing the code by hand.

5 Computational Results

5.1 Hardware Testbed

The two devices we used as testbed platform, represent two of the major SoC
architectures that are most widely used in modern handheld devices, which are
Qualcomm Snapdragon and Samsung Exynos. Therefore, the results we obtained
are applicable to a large portion of devices currently in use.

– Sony Xperia Z (SXZ): Based on a Qualcomm APQ8064 Snapdragon S4
Pro SoC with a Quad-core Krait CPU @ 1.5 GHz and an Adreno 320 GPU
with 4 OpenCL compute units and 2 GB of shared RAM. Its GPU supports
OpenCL 1.1 embedded profile. Its OpenCL driver reports 32 KB of cache
memory and 8 KB of local memory.

– Odroid-XU3 (XU3): Based on a Samsung Exynos 5422 Octa SoC with dual
ARM CPUs (Cortex-A15 @ 2 GHz and Cortex-A7 @ 1.3 GHz) and a 6-core
ARM Mali-T628 MP6 GPU with 2 GB of shared RAM. Its GPU supports
OpenCL 1.1 full profile and it reports 128 KB of cache memory and 32 KB of
local memory.

5.2 Testing Methodology

We have implemented several versions of the stencil codes mentioned in Table 1.
For each stencil, we have implemented a reference serial Java version and another
one annotated using Paralldroid directives. We have automatically generated
Renderscript and OpenCL implementations from the annotated Java class using
Paralldroid, and we have used these implementations as a starting point for
manually developing optimized Renderscript and OpenCL versions. We have
restricted our optimizations to these that maintain the same interface as the

90 S. Afonso et al.

original Java code (i.e. the inputs come from the Java context and the outputs
have to be transferred back to it). This way the results demonstrate the gap that
exists between automatically generated code and its handwritten counterpart in
equal conditions.

Each stencil has been applied to different inputs varying in size and com-
plexity. For the image processing stencils, we have used different image standard
sizes ranging from VGA (640× 480) to UHD (3840× 2160). For the Heat and
Poisson equations we used smaller input sizes, ranging from 32× 32 to 256× 256,
but we also varied the number of iterations computed. Sizes were chosen in order
to prevent the Android operating system from killing the application and to run
in a reasonable time.

In order to avoid thermal throttling that would skew results favoring sooner
executions, each stencil code was executed separately, as well as each of its
implementations. Running very demanding GPU workloads for extended periods
of time would very often make the operating system kill the application or even
completely freeze the device. Each of the executions was repeated several times
and averaged to reduce the impact of other processes and the garbage collector
running at the same time. There was also a single warm-up run before measuring
execution times in order to get the average behaviour and not be affected by one-
off overheads.

Both the generated and handwritten OpenCL codes use the first available
GPU device found in the platform, so in the case of the Odroid-XU3, which
features 4 + 2 GPU cores reported as different devices, we only use four of the
six. Using all of the GPU cores would need code similar to what would be needed
for multi-GPU systems and tackling load balancing problems that are still not
considered. On the other hand, Renderscript execution cannot be set to run in
a specific processor, but it is the driver that selects the most suitable one.

5.3 Benchmarks

Each of our performance illustrations show the speedup we obtain for every
stencil code and input parameter in each device, in relation to the reference
Java sequential implementation. Because of that, we can obtain in many cases
superlinear speedups, which happens due to the overhead of running Java serial
code. Hence, this situations are not unusual in the figures we are presenting and
are not to be taken into special consideration.

As a guide to interpreting the figures, there are four columns representing
the speedup of each implementation of the stencil code that refer to each device.
The implementations labelled SXZ, which go first, were obtained in the Sony
Xperia Z, and the implementations labelled XU3 relate to the Odroid-XU3.
The first two columns of each set of four are OpenCL implementations, and the
second two are Renderscript implementations. Of these two columns, the first is
generated and the second is handwritten.

For the discrete Laplacian stencil, we obtained speedups of up to almost
5x. These are shown in Fig. 4(a). In this case, we observe that Renderscript
implementations perform better than OpenCL implementations, and that the

Automatic Acceleration of Stencil Codes in Android Devices 91

Fig. 4. Discrete Laplacian and Gaussian Blur speedups

speedups are not very high. It is only on the smallest image size that we obtain
better results using OpenCL. There is also a very noticeable trend on the SXZ
device that shows how performance of OpenCL code degrades as the image size
increases. This behaviour seems counter-intuitive, but by taking a closer look at
the OpenCL execution trace, we observe that this problem is due to the over-
head of copying images between the native and OpenCL contexts. If we consider
this when interpreting the results for the smallest image size we realize that this
overhead is the reason why OpenCL kernels are running slower than Render-
script’s. Conversely, Renderscript performance improves as the image dimensions
increase, implying it does not suffer from this problem.

The only way these platforms allow to allocate shared memory between CPU
and GPU in OpenCL is by using the CL MEM ALLOC HOST PTR flag when creating
an OpenCL buffer, and then mapping and unmapping the memory to and from
the host in order to use its content in the CPU or the GPU. The problem that
prevents us from being able to allocate memory this way is that memory has
already been allocated by the Java context, and we can only try to pin it for
access from native code. Even the possibility of accessing a Java array from native
code without copying it is not guaranteed. The OpenCL 1.1 specification con-
siders the case of host-allocated memory and provides the CL MEM USE HOST PTR
flag to allow using this memory as an OpenCL memory buffer in unified mem-
ory architectures. However, in platforms like the ones we are analyzing, this
still triggers a memory copy operation [4]. However, in Renderscript creating an
allocation from a Bitmap and using it in a kernel can avoid memory copies.

The effect of this situation is less visible on the XU3, which experiences very
low OpenCL performance in this application. Possibly the reason why we do not
observe an even further reduction of OpenCL performance when increasing the
image size in this case is a higher computation to memory copy time ratio, either
because of faster memory speeds or slower relative GPU execution of kernels.

For the Gaussian Blur stencil, we have obtained speedups of up to 11x for
generated code, which are better overall than any other stencil we tried in this

92 S. Afonso et al.

work. These are shown in Fig. 4(b). In this ocassion the performance difference
between Renderscript and OpenCL executions is much smaller, though Render-
script performs better on average. The memory copy overhead of OpenCL tipped
the scales on favor of Renderscript.

Hand coded optimizations to the Renderscript code were only effective on the
SXZ, and even reduced the performance of the generated code on the XU3. Even
on the SXZ, the performance improvements were minimal. In this case, hand
coded optimizations to the kernels did not have any real effect on performance.
On the other hand, the handwritten OpenCL code is a substantial improvement
over the generated code, but also required a considerable amount of extra work.

The runtime of the Pattern Thinning algorithm we have implemented [19] is
dependent on the size of the image and on the complexity of the pattern we want
to process. For this reason, we present two figures in Fig. 5. Figure 5(a) contains
the results for a simple text in an image, and Fig. 5(b) contains the results for a
more complex image of a fingerprint. We obtained speedups of up to about 10x
for this stencil, while the generated code reached an almost 8x speedup.

In this example we observe how increasing the amount of processing to be
made on each image also increases the obtained speedup. This is clear by compar-
ing the two figures, showing that when the image is more complex the speedups
are better. On the XU3, it takes much larger images until OpenCL is faster
than Renderscript code, due to the greater performance achieved by the CPU
on smaller images and the smaller overhead of processing larger images by avoid-
ing memory copies. In the SXZ, Renderscript obtained similar speedups to the
Laplacian stencil, which unlike all other implementations did not benefit from
the increased computation to memory ratio.

It is interesting to note how much faster is OpenCL execution in the SXZ,
even when it is dealing with expensive memory copies from host to device and
vice versa. This gives us a hint of the possibilities that this programming model
could provide when removed the software limitations that currently prevent from
making use of the unified memory architecture we have in current SoCs.

Fig. 5. Pattern Thinning speedups

Automatic Acceleration of Stencil Codes in Android Devices 93

Fig. 6. Heat and Poisson speedups

The Heat and Poisson equations are very similar, so they have achieved
similar speedups (Fig. 6). However, speedups in the case of the Poisson equation
are slightly higher due to the few extra operations that it requires. In this case
we observed how the overhead of setting up parallel execution made it perform
worse than Java for sizes smaller than 128× 128. Smaller sizes require too low
computation time to finish for offloading to be effective.

In the SXZ tests, there is a noticeable improvement when using OpenCL over
Renderscript. In the case of Renderscript, it barely improves Java performance
when running on the largest problems, especially for the Heat equation. This
drop in performance compared to the other algorithms we tried is due to the
parameter types used. Input and output are not Bitmaps, but arrays, so copying
them from and to the Java context cannot be avoided. This fact, and the low
processing done for each element, cause this drop in performance. In the XU3, the
effect is smaller because of the higher performance of its CPU in comparison to its
GPU. This gets clearer as the problem size is increased. We notice that increasing
the number of computed iterations or steps has not as much of an impact on
performance as the increase of the problem size has. This was expected, since
iterations run sequentially unlike the elements inside the input matrix.

In Android, if a Java application needs some part of the code to be accel-
erated, the main alternatives are Renderscript and OpenCL. Due to differences
in the hardware features they can make use of when interacting with the Java
context, each of the programming models provides the best performance in dif-
ferent situations. In our stencil codes we have observed that the stencils that
get better improvements from OpenCL execution are those that require a sig-
nificant amount of processing per item, use Bitmaps of smaller sizes or work
with regular arrays. Renderscript is better suited to image processing due to its
ability to avoid memory copies, but since it tends to produce slower code, when
the amount of processing to be done for each pixel is high enough, OpenCL is
able to compensate for the memory transfer overhead. On the other hand, it is
possible to run Renderscript on every Android device, and it would always be
possible to resort to it if an OpenCL driver was not found.

94 S. Afonso et al.

6 Conclusion and Future Work

We have presented a methodology to automatically accelerate stencil codes on
the Android platform. It takes advantage of current SoC architectures that fea-
ture GPUs and multicore processors. Our approach involves using a general pur-
pose source-to-source translation framework (Paralldroid), specifically designed
to allow easy parallelization of Android Java applications, to obtain implemen-
tations of several stencil codes in the OpenCL and Renderscript languages.

We validated our approach with five different stencil codes representing a
wide range of stencil patterns, and running them in two devices based on different
SoCs. Results show, in most of the cases, improvements of the generated code
over a hand optimized Java version of each stencil, both in Renderscript and
OpenCL. The generated code appeared slower for some of the smaller problem
sizes, which happened for handwritten code as well. Handwritten versions of
the code performed better than the generated versions, but the difference in
performance is negligible if compared to the difference in development time.

Software limitations regarding memory sharing between the CPU and accel-
erators on the Android platform lead to the best programming model for acceler-
ating each algorithm to be a different one. We observed that, in current versions,
it is not possible to share a memory buffer between an OpenCL device and the
Java application, even if we are working in a unified memory system. OpenCL
would perform better than Renderscript without these memory sharing limi-
tations in the vast majority of situations. This situation makes the ability of
automatically generating both OpenCL and Renderscript very useful, because
it allows developers to quickly determine the best performing implementation
language for an algorithm in Android.

Simpler stencil codes do not perform as well as the more complex ones in
Paralldroid-generated implementations, due to the overhead of offloading to
accelerator devices and launching threads. Optimization techniques such as tiling
could be integrated into Paralldroid for these cases. Further testing should be
done to measure the energy impact and memory footprint of the generated code.

Acknowledgement. This work was supported by the EC (ERDF), the NESUS
IC1315 COST Action, the Spanish Ministry of Economy, Industry and Competitiveness
through the TIN2016-78919-R project, and the CAPAP-H network.

References

1. Acosta, A., Almeida, F.: Parallel implementations of the particle filter algorithm
for android mobile devices. In: 2015 23rd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, pp. 244–247, March 2015

2. Acosta, A., Afonso, S., Almeida, F.: Extending paralldroid with object ori-
ented annotations. Parallel Comput. 57, 25–36 (2016). http://www.sciencedirect.
com/science/article/pii/S0167819116300126

3. Acosta, A., Almeida, F.: Towards a unified heterogeneous development model in
android. In: Eleventh International Workshop HeteroPar 2013: Algorithms, Models
and Tools for Parallel Computing on Heterogeneous Platforms (2013)

http://www.sciencedirect.com/science/article/pii/S0167819116300126
http://www.sciencedirect.com/science/article/pii/S0167819116300126

Automatic Acceleration of Stencil Codes in Android Devices 95

4. ARM: ARMR©Mali
TM

GPU OpenCL developer guide. http://malideveloper.arm.
com/documentation/developer-guides/arm-guide-opencl/

5. Christen, M., Schenk, O., Burkhart, H.: Patus: a code generation and autotuning
framework for parallel iterative stencil computations on modern microarchitec-
tures. In: 2011 IEEE International Parallel & Distributed Processing Symposium
(IPDPS), pp. 676–687. IEEE (2011)

6. Cray Inc.: CrayR©XC
TM

series software environment. http://www.cray.com/sites/
default/files/resources/CrayXC40 SoftwareEnvironment.pdf

7. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson,
D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures. In: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC 2008, pp. 4:1–4:12. IEEE Press, Piscataway
(2008). http://dl.acm.org/citation.cfm?id=1413370.1413375

8. Intel: IntelR© Atom
TM

Processor for Smartphone and Tablet. https://ark.intel.com/
products/family/70095/Intel-Atom-Processor-for-Smartphone-and-Tablet

9. Notebook Check: Apple A10 Fusion. https://www.notebookcheck.net/
Apple-A10-Fusion-SoC.173824.0.html

10. NVIDIA: Tegra mobile processors: Tegra 2, Tegra 3 and Tegra 4. http://www.
nvidia.com/object/tegra-superchip.html

11. Packard, N.H., Wolfram, S.: Two-dimensional cellular automata. J. Stat. Phys.
38(5), 901–946 (1985). http://dx.doi.org/10.1007/BF01010423

12. PGI: PGI Accelerator compilers with OpenACC directives. https://www.pgroup.
com/resources/accel.htm

13. Qualcomm: Snapdragon mobile processors. http://www.qualcomm.com/
snapdragon

14. Reyes, R., López-Rodŕıguez, I., Fumero, J.J., Sande, F.: accULL: an OpenACC
implementation with CUDA and OpenCL support. In: Kaklamanis, C., Pap-
atheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 871–882.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32820-6 86

15. Samsung: Exynos mobile processors. http://www.samsung.com/global/business/
semiconductor/minisite/Exynos/

16. Shimokawabe, T., Aoki, T., Onodera, N.: High-productivity framework for large-
scale GPU/CPU stencil applications. Procedia Comput. Sci. 80, 1646–1657 (2016).
http://www.sciencedirect.com/science/article/pii/S1877050916309863

17. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference
Methods. Oxford University Press, New York (1985)

18. Unat, D., Cai, X., Baden, S.B.: Mint: realizing cuda performance in 3d stencil
methods with annotated c. In: Proceedings of the International Conference on
Supercomputing, pp. 214–224. ACM (2011)

19. Zhang, T., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns.
Commun. ACM 27(3), 236–239 (1984)

20. Zhang, Y., Mueller, F.: Auto-generation and auto-tuning of 3d stencil codes on
GPU clusters. In: Proceedings of the Tenth International Symposium on Code
Generation and Optimization, CGO 2012, NY, USA, pp. 155–164 (2012). http://
doi.acm.org/10.1145/2259016.2259037

http://malideveloper.arm.com/documentation/developer-guides/arm-guide-opencl/
http://malideveloper.arm.com/documentation/developer-guides/arm-guide-opencl/
http://www.cray.com/sites/default/files/resources/CrayXC40_SoftwareEnvironment.pdf
http://www.cray.com/sites/default/files/resources/CrayXC40_SoftwareEnvironment.pdf
http://dl.acm.org/citation.cfm?id=1413370.1413375
https://ark.intel.com/products/family/70095/Intel-Atom-Processor-for-Smartphone-and-Tablet
https://ark.intel.com/products/family/70095/Intel-Atom-Processor-for-Smartphone-and-Tablet
https://www.notebookcheck.net/Apple-A10-Fusion-SoC.173824.0.html
https://www.notebookcheck.net/Apple-A10-Fusion-SoC.173824.0.html
http://www.nvidia.com/object/tegra-superchip.html
http://www.nvidia.com/object/tegra-superchip.html
http://dx.doi.org/10.1007/BF01010423
https://www.pgroup.com/resources/accel.htm
https://www.pgroup.com/resources/accel.htm
http://www.qualcomm.com/snapdragon
http://www.qualcomm.com/snapdragon
http://dx.doi.org/10.1007/978-3-642-32820-6_86
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/
http://www.sciencedirect.com/science/article/pii/S1877050916309863
http://doi.acm.org/10.1145/2259016.2259037
http://doi.acm.org/10.1145/2259016.2259037

Distributed and Network-based
Computing

Optimizing Concurrent Evacuation Transfers
for Geo-Distributed Datacenters in SDN

Xiaole Li1, Hua Wang1(&), Shanwen Yi1, Xibo Yao1, Fangjin Zhu1,
and Linbo Zhai1,2

1 School of Computer Science and Technology, Shandong University,
Jinan 250101, China

leo0539@163.com, wanghua@sdu.edu.cn
2 School of Information Science and Engineering,
Shandong Normal University, Jinan 250014, China

Abstract. Disaster evacuation assigns bulk endangered data to geographically
distributed datacenters out of disaster zone within acceptable duration. However,
previous works overlooked the bandwidth allocation proportion problem and
multi-path routing problem for multiple concurrent evacuation transfers (espe-
cially with shared links). Therefore they could not guarantee full utilization of
network transmission capability in disaster evacuation. In this paper, with
flexible traffic scheduling in the Software Defined Network scenarios, we pro-
pose a new optimal bandwidth proportion allocation strategy for concurrent
evacuation transfers. To maximize disaster evacuation capability, we formulate
the bandwidth allocation problem as a new Bandwidth-Proportion-Constrained
Multi-Commodity Flow (BPC-MCF) problem. To obtain optimal solution for
practical networks of large scale, we propose a Bandwidth-Proportion-Aware
Ant Colony Optimization (BPA-ACO) algorithm to achieve maximum evacu-
ation flow matching data amount proportion of concurrent evacuation transfers.
We introduce available evacuation capability, bandwidth proportion offset and
link sharing degree to guide optimal solution searching. We adjust bandwidth
proportion by rearranging flows in shared links and alternate paths. Through
extensive simulations we demonstrate that our algorithm has better performance
with less total evacuation time and higher network utilization.

Keywords: Disaster evacuation � Concurrent evacuation transfers �
Bandwidth-Proportion-Constrained � Bandwidth-Proportion-Aware � Software
Defined Network

1 Introduction

Due to the increasing demand of cloud services, more and more large enterprises such
as Google, Amazon and Microsoft, use multiple geographically distributed
(geo-distributed) datacenters to improve the end-to-end service performance [1].
Meanwhile, datacenters consisting of massive amount of content are vulnerable to
various disasters. For example, in 2008, the Great Sichuan earthquake in China dis-
rupted over 60 enterprise datacenters [2]; in 2012, cascading failures caused by

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 99–114, 2017.
DOI: 10.1007/978-3-319-65482-9_7

Hurricane Sandy damaged many datacenters and communication services in the
Northeastern US [3].

And fortunately, uninterruptible power supplies (UPSs) and power generators still
can keep servers and network devices operational for tens of minutes [4], maintaining
Internet connectivity after disasters. In that case, disaster evacuation means that
endangered data should be transferred from the datacenters in disaster zones to other
datacenters in safe zones within evacuation deadline (e.g., before the depletion of
UPSs). So it is crucial to minimize total evacuation time of concurrent bulk data
transfers by optimal bandwidth allocation with limited available network resources.

Ultimately, how to evacuate endangered data efficiently with maximum utilization
of limited residual bandwidth is actually a typical traffic engineering problem for
concurrent evacuation transfers. The disaster-aware bulk transfer problem among
geo-distributed datacenters has attracted more and more attentions [2, 5–7]. Previous
works mainly focused on data distribution and priority control problems, such as
providing largest data-transfer throughput for disaster backup pairs one by one [2], fair
load distribution among destination datacenters in case of disaster [5], selection of
optimal single path with least delay for every evacuation transfer one by one [6], and
reasonable evacuation order with maximum benefit for prioritized data [7].

However, we notice that the research on bandwidth allocation and routing selection
in data transmission process is still not sufficient. On the one hand, because traditional
network paradigm can hardly support flow splitting of arbitrary proportions, specified
bandwidth amount cannot be flexibly allocated for concurrent transfers according to
their data amount. So previous works had to schedule the transmission order or
bandwidth allocation order for evacuation transfers one by one to reduce total evac-
uation time [2, 5–7]. But there is a strong possibility that this evacuation pattern will
cause transmission capability underutilization and some available links lying idle. This
will result in more evacuation time than concurrent characterized bandwidth cus-
tomization pattern, especially with shared links. On the other hand, based on
single-path routing that is usually used in most traditional networks, previous works
mainly searched for a single shortest path [2] or least-delay path [6] for every evac-
uation transfer one by one to reduce completion time or maximize total network flow in
evacuation transmission. Although single-path routing is simple, obviously this will
cause some available paths lying idle in evacuation process. Multi-path routing pro-
vides more residual bandwidth and has higher network transmission capacity utilization
[8]. (Due to space limitation here, we will illustrate the benefit of bandwidth proportion
allocation and multi-path routing by an example at the beginning of Sect. 2.) It is
necessary to add bandwidth proportion constraint (BPC) into concurrent transfer
optimization with multi-path routing for more efficient disaster evacuation solution.

Furthermore, to properly solve the two traffic engineering problems above, we still
need a new network paradigm supporting flexible flow splitting and multi-path routing
for better traffic control and management. Fortunately, the Software Defined Network
(SDN) matches our requirement well. SDN is becoming leading technology behind
many traffic engineering solutions both for backbone network and datacenter network
[9]. Many large enterprises such as Google and Microsoft have used SDN to inter-
connect their geo-distributed datacenters due to the ease, efficiency and flexibility in

100 X. Li et al.

performing traffic engineering functions, expecting its architecture to result in better
network capacity utilization and improve delay and loss performance [10].

In this paper, we investigate concurrent evacuation transfer optimization problem in
the SDN scenarios. Different from previous works, we control bandwidth allocation
proportion for multiple concurrent transfers to maximize network evacuation capabil-
ity. Especially, we allow evacuation transmission via multiple routing paths instead of
single path, meaning that each evacuation transfer can be routed through multiple paths
to improve network utilization. Our objective is to propose an optimal bandwidth
allocation strategy for multiple concurrent evacuation transfers to achieve full use of
network transmission capability. Our contributions are as follows:

• We propose a new idea of scheduling bandwidth proportion for concurrent evac-
uation transfers from data amount proportion’s perspective in SDN to achieve more
efficient use of network transmission capability for disaster evacuation.

• We add BPC into Multi-Commodity Flow (MCF) problem, and propose a new
Bandwidth-Proportion-Constrained Multi-Commodity Flow (BPC-MCF) problem
to maximize feasible traffic for concurrent evacuation transfers with multi-path
routing.

• We design a Bandwidth-Proportion-Aware Ant Colony Optimization (BPA-ACO)
algorithm to solve the BPC-MCF problem. We introduce available evacuation
capability, bandwidth proportion offset and link sharing degree to guide optimal
solution searching. We adjust bandwidth proportion by rearranging flows in shared
links and alternate paths.

• By extensive simulations, our algorithm achieves good performance in terms of
reducing total evacuation time and achieving higher network utilization compared
with the state-of-the-art algorithms.

The rest of the paper is organized as follows. In Sect. 2, we give a high-level
overview of disaster evacuation process, and formulate the problem of maximizing
total evacuation traffic with BPC. In Sect. 3, we design BPA-ACO algorithm to solve
the BPC-MCF problem. In Sect. 4, we evaluate the performance of our solution
through extensive simulations. At last, we draw our conclusion in Sect. 5.

2 Problem Formulation

As mentioned in Sect. 1, we notice that none of existing works jointly considered
bandwidth allocation proportion problem and multi-path routing problem for concur-
rent evacuation transfers. But the two factors significantly affects data transmission
efficiency in the disaster evacuation scenarios, and we illustrate this by an example.

We assume that there are two evacuation transfers et1 and et2 to destination dat-
acenter dc1 or dc2 respectively. Considering data integrity and limited storage, the data
in the same evacuation transfer can be evacuated to only one datacenter. Here we
suppose that et1 and et2 own different data amounts (200 GB for et1 and 100 GB for
et2) and different importance factors (et2’s is higher than et1’s). Previous works
scheduled transmission order of evacuation transfers according to data amount [2, 7] or

Optimizing Concurrent Evacuation Transfers 101

importance factor [6]. As in Fig. 1(a) and (c), we can obtain two bandwidth allocation
strategies in traditional network paradigm.

In traditional network paradigm, bandwidth allocation for multiple evacuation
transfers in shared links is preemptive. In Fig. 1(b), et1 obtains whole bandwidth
available (150 Gbps) in shared link ðu; vÞ and evacuates 200 GB data to destination dc1
spending 10.67 s, and then et2 evacuates 100 GB data to destination dc2 spending 8 s,
so the total evacuation time is 18.67 s. In Fig. 1(d), et2 obtains whole bandwidth
available (150 Gbps) in shared link ðu; vÞ and evacuates 100 GB data to destination dc1
spending 5.33 s, and then et1 evacuates 200 GB data to destination dc2 spending 16 s,
so the total evacuation time is 21.33 s. In both cases, although the evacuation with
larger data amount or higher importance factor is completed firstly, the total evacuation
completion time is not the shortest because the bandwidth in shared link ðu; vÞ has not
yet been fully utilized during the whole evacuation process, especially in step 2 of
Fig. 1(a) and (c).

Fig. 1. Comparison of different bandwidth allocation strategies in disaster evacuation scenarios.

102 X. Li et al.

Fortunately we can do better if we control allocation proportion of bandwidth to et1
and et2 in shared link ðu; vÞ according to the proportion of their data amount as shown
in Fig. 1(e). In that case, we transfer et1 and et2 concurrently. We allocate bandwidth in
ðu; vÞ according to data amount in evacuation transfers respectively. So et1 obtains
100 Gbps bandwidth while et2 obtains 50 Gbps bandwidth in ðu; vÞ, and they evacuate
data concurrently to destination dc1 or dc2 respectively. As shown in Fig. 1(f), the two
evacuation transfers will be completed at the same time using 16 s. We omit the case of
data transmission for et1 to dc2 and et2 to dc1, because the evacuation time in that case
is equal to the result in Fig. 1(f). As shown above, by scheduling bandwidth proportion
for concurrent evacuation transfers from data amount proportion’s perspective, we can
make full use of network transmission capacity and consequently obtain more efficient
evacuation solution, meaning shorter total evacuation completion time or more data to
be evacuated in limited time.

As a result, we add BPC into the MCF problem for more efficient disaster evac-
uation solution. Because SDN can arbitrarily split traffic across multiple paths and is
highly flexible for routing optimization purposes, we will investigate such concurrent
evacuation transfer optimization problem in the SDN scenarios. On the other hand,
compared with single-path routing, multi-path routing provides more residual band-
width and has higher network transmission capacity utilization, so we allow evacuation
transmission via multiple routing paths.

2.1 Topology Description

In the disaster evacuation process among geo-distributed datacenters, we evacuate bulk
data from endangered datacenters in disaster zones to destination datacenters in safe
zones by multiple transfers concurrently. Because of no alternate network dedicated to
evacuation, we can only make use of residual network bandwidth.

Our network topology includes datacenters and links. We consider routing prob-
lems on a network with a symmetric directed graph G ¼ ðV ;EÞ, where V is node set,
and E is link set. We denote the link from node u to node v as ðu; vÞ. We assume that
each link ðu; vÞ has a maximum capacity cðu; vÞ and the total traffic amount through it
cannot exceed this limit. In [6], they divided endangered data to be multiple evacuated
contents. Hence we use a transfer to denote the transmission of a content. We define
ET ¼ fet1; et2; . . .; etng as the set of evacuation transfers. We also denote eti by a
source-sink pair \si; di [. Note that the di means an evacuation destination rather
than a datacenter, because multiple different destinations may be in the same one
datacenter. Considering data integrity, the data in the same evacuation transfer can be
evacuated to only one datacenter while a datacenter can receive data from multiple
evacuation transfers if its storage space is enough. Due to space limitations in this
paper, we omit the construction process of eti which allocates the evacuated data sets to
destination datacenters with enough available storage resource, and we mainly aim at
bandwidth allocation for multiple concurrent transfers via multi-path routing. We use

dmi to denote the data amount of eti. We define ai ¼ dmi

�Pn
i¼1

dmi as the proportion of

Optimizing Concurrent Evacuation Transfers 103

data amount for eti in total data amount for all evacuation transfers. We define bi ¼
ami=dli as the lower bound of total bandwidth allocated to eti for successfully com-
pleting evacuation within deadline dli.

Some notations used in this paper are listed in Table 1.

2.2 Mathematical Model

We formulate the BPC-MCF problem as follows:
Maximize:

Xn
i¼1

X
p2Pi

f ðpÞ ð1Þ

Subject to:

Xn
i¼1

X
p2Pi

xpuvf ðpÞ� cðu; vÞ; 8ðu; vÞ 2 E; xpuv 2 f0; 1g ð2Þ

X
v2V

f iuv �
X
v2V

f ivu ¼
� P

p2Pi

f ðPÞ u ¼ di

0 otherwiseP
p2Pi

f ðPÞ u ¼ si

8>><
>>: ð3Þ

X
p2Pi

f ðpÞ
 !, Xn

i¼1

X
p2Pi

f ðpÞ
 ! !

� ai

�����
������ r; 8i 2 N ð4Þ

X
p2¼Pi

f ðpÞ� bi; 8i 2 N ð5Þ

f ðpÞ� 0; 8p 2 Pi; i 2 N ð6Þ

Table 1. Parameters and variables.

Notation Description

p a path for data evacuation in the network
Pi the set of the paths for eti
f ðpÞ the flow in path p
xpuv ¼ 1 if the link ðu; vÞ belongs to path p

¼ 0 otherwise
fuv the flow in link ðu; vÞ
f iuv the flow that can be allocated to eti in link ðu; vÞ
pti the path for eti in the tth iteration
pathti the set of candidate paths for eti after the tth iteration

104 X. Li et al.

The objective function is to maximize the sum of the available network flows. For
all evacuation pairs, we calculate total amount of flows in the set of paths for them.

Link capacity constraint (2) ensures that total traffic through link ðu; vÞ should not
exceed maximum capacity. Flow conservation constraint (3) means that for each flow,
the input traffic equals to the output traffic at any intermediate node on the paths to
destinations. To achieving more efficient use of bandwidth, for all i 2 N, the proportion
of the bandwidth allocated to eti in total bandwidth allocated to all evacuation transfers
should be as close as possible to ai. So flow proportion constraint (4) ensures that the
proportion of total flows for eti in the sum of evacuation flows should be as close as
possible to ai. The r is a very small non negative decimal. Flow constraint (5) ensures
that total flows for eti must be greater than or equal to bi so as to guarantee the
transmission completion of every eti. The constraint (6) denotes that the flow value
should be positive.

It is noticed that whether we can find optimal solution is of great significance in the
disaster evacuation scenarios. Because the solution quality determines the evacuation
efficiency to avoid disaster loss. Owing to computational impracticality of exact
algorithms to produce optimal solutions for practical networks of large scale, we
consider ant colony optimization (ACO) [11]. In ACO, solution component is asso-
ciated with pheromone trail. Artificial ants probabilistically add solution component to
partial solution until they generate a completely feasible solution. During these itera-
tions, pheromone values are dynamically updated based on the information derived
from some high quality solutions to force the search to concentrate on regions con-
taining high quality solutions in solution space. ACO is widely used to solve discrete
optimization problems and is effective method to solve MCF problem [12]. In next
section, we design BPA-ACO algorithm for scheduling multiple concurrent evacuation
transfers with flow splitting and multi-path routing to solve the BPC-MCF problem.

3 Algorithm Design

To solve the BPC-MCF problem, we propose a BPA-ACO algorithm to achieve
maximum evacuation flow matching data amount proportion of concurrent evacuation
transfers. We introduce available evacuation capability, bandwidth proportion offset
and link sharing degree to guide optimal solution searching. We adjust bandwidth
proportion by rearranging flows in shared links and alternate paths.

3.1 Basic Idea

The main process of BPA-ACO algorithm can be divided into four stages. At first, we
reorder evacuation transfers in descending order of the value equaling to bi minus the
current total bandwidth of eti. The evacuation transfer with the widest gap between its
owning bandwidth and its lower bound should be severed with the highest priority.
And then in every iteration, for every eti, an ant searches path following a probabilistic
model. If the ant finds a path pti, then we add it to pathti. If every eti has flow path(s),
then the proportion of the bandwidth allocated to eti in the total bandwidth allocated to

Optimizing Concurrent Evacuation Transfers 105

all evacuation transfers should be as close as possible to ai by adjusting bandwidth
proportion. Based on experience and experiments, we set r = 0.012. Next we check
whether the solution satisfies lower bound constraint in (5). If not, we continue to
increase bandwidth allocation by another path searching round. When there is a better
solution with larger total feasible flow than best-so-far solution, we replace best-so-far
solution with the better one. At last, we update the pheromone and the algorithm runs
multiple iterations until the termination condition is met.

3.2 Transition Probability

While constructing evacuation path, an ant moves from current node u to next node
until it reaches destination. The choice of next node v depends on pheromone intensity
suvðtÞ and heuristic information guvðtÞ in ðu; vÞ. The transition probability is:

RuvðtÞ ¼ ðsuvðtÞÞb � ðguvðtÞÞcP
w2NðuÞ

ðsuwðtÞÞb � ðguwðtÞÞc
ð7Þ

The b and c express the influence of pheromone trail and heuristic factors in
transition probability respectively, and NðuÞ defines the neighborhood set of node u.

3.3 Pheromone Trail and Heuristic Information

During multiple iterations, pheromone values are dynamically updated based on the
information derived from some high-quality solutions. In BPA-ACO algorithm, after
each iteration, the pheromones are updated as follows:

suvðtþ 1Þ ¼ qsuvðtÞþ ð1� qÞðDsðtÞlb þDsðtÞgbÞ ð8Þ

q represents evaporating parameter to control the evaporating speed of pheromone.
DsðtÞlb and DsðtÞgb denote pheromone increment calculated by the evaluation value of
current best solution and best-so-far solution respectively:

DsðtÞlb ¼ jlb � f ðtÞlb ð9Þ

DsðtÞgb ¼ jgb � f ðtÞgb ð10Þ

jlb and jgb are coefficients to control pheromone increment related to current best
solution evaluation value f ðtÞlb and best-so-far solution evaluation value f ðtÞgb.

f ðtÞlb ¼ xcuuv � k � cu aec
up aec

þ l
dðtÞþ 1

� �
ð11Þ

106 X. Li et al.

xcuuv ¼
1 if link ðu; vÞ belongs to the path(s) for cu aec
0 otherwise

�
ð12Þ

f ðtÞgb ¼ ybsfuv � k � bsf aec
up aec

þ l
eðtÞþ 1

� �
ð13Þ

ybsfuv ¼ 1 if link ðu; vÞ belongs to the path(s) for bsf aec
0 otherwise

�
ð14Þ

up aec ¼ minf
Xn
i¼1

X
u2V

cðsi; uÞ;
Xn
i¼1

X
v2V

cðv; diÞg ð15Þ

cu aec and bsf aec denote available evacuation capability in current best solution
and best-so-far solution respectively. For a solution, available evacuation capability is
defined as the sum of available flows in all evacuation paths. Under the precondition of
satisfying bandwidth proportion constraint, the strategy with larger available evacua-
tion capability realizes more efficient evacuation. up aec represents upper bound of
maximum evacuation traffic and is greater than or equals to available evacuation
capability in all solutions. k and l express influence of available evacuation capability
and bandwidth proportion offset on evaluation values respectively.

dðtÞ ¼
ffi
1
n

Xn
i¼1

cu eti
cu aec

� ai

� �2
vuut ð16Þ

eðtÞ ¼
ffi
1
n

Xn
i¼1

cu eti
bsf aec

� ai

� �2
vuut ð17Þ

cu eti denotes the bandwidth allocated to eti in the tth iteration. We compute the
difference between the ratio of cu eti to cu aec and ai, and then use dðtÞ and eðtÞ to
denote bandwidth proportion offset of eti in current best solution and best-so-far
solution. Obviously smaller bandwidth proportion offset means more reasonable
bandwidth allocation for eti and the strategy with it can realize more efficient evacu-
ation under the precondition of owning the same available evacuation capability.

On the other hand, heuristic information presents the desirability to transfer data
through the link in a path to destination. Heuristic information guvðtÞ is as follows:

guvðtÞ ¼ x � ciuv � ð/ðtÞþ 1Þw ð18Þ

/ðtÞ ¼
Xn
i¼1

ztiuv ð19Þ

Optimizing Concurrent Evacuation Transfers 107

ztiuv ¼
1 if link ðu; vÞ belongs to the path(s) for eti in the tth

iteration
0 otherwise

8<
: ð20Þ

For eti, heuristic information in link ðu; vÞ depends on residual bandwidth capacity
ciuv in link ðu; vÞ and sharing degree of link ðu; vÞ. x is used to adjust the value of guvðtÞ.
Sharing degree /ðtÞ of link ðu; vÞ is calculated by the number of evacuation transfers in
(19). If /ðtÞ is larger, link ðu; vÞ is shared by more evacuation transfers. So it can
provide larger scope to adjust bandwidth allocation in algorithm implementation.
Therefore, the proportion of total flows for eti in total flows for evacuation would be
closer to ai. w is a coefficient to weigh the relative importance of /ðtÞ.

3.4 Bandwidth Proportion Adjustment Rules

In bandwidth allocation process for concurrent evacuation transfers, there is a strong
possibility that the bandwidth allocation proportion for eti does not meet ai in a
solution. But as shown in the example of Sect. 2, bandwidth allocation according to
data amount of evacuation transfers is a critical factor to maximize network evacuation
capability and improve evacuation efficiency. So it is necessary to modify the solution
by bandwidth proportion adjustment if bandwidth proportion offset exceeds r. In this
paper, we adjust bandwidth proportion by rearranging flows in shared links and
alternate paths. Due to space limit here, we only describe the rules as follows:

• rearranging flows in shared links. In the links shared by multiple evacuation
transfers, we adjust bandwidth allocation proportion according to their data amount.

• rearranging flows in alternate paths. If et0js destination dj is an intermediate node of a
certain path for eti, we can abandon this et0is path, construct a new path with
destination dj and use it to allocate more bandwidth for etj if necessary.

We use the two rules above to adjust bandwidth allocation proportion of multiple
evacuation transfers if necessary. The adjustment process terminates if the convergence
condition is satisfied, for example that the bandwidth proportion offset is less than r or
the number of adjustment iterations reaches a specified value.

108 X. Li et al.

3.5 Algorithm Implementation

The pseudo code of BPA-ACO algorithm is as follows:

BPA-ACO algorithm for solving BPC-MCF

Input:
Output: evacuation solutions.

1. Set parameters, initialize pheromone trails, transition probability, etc.
2. while termination condition not met do
3. for j =1 to m (the number of ants) do

4. Reorder ET in descending order based on the value equaling to ib minus the current total

 bandwidth of ie t

In BPA-ACO algorithm, path set construction for every eti may be solved by
multiple ants. For every evacuation transfers, at most m paths are generated, so the time
complexity of this algorithm is approximately OðnmjV jÞ. Through extensive simula-
tions, we get reasonable values of simulation parameters. We let the initial intensity of
pheromone s0 = 7 and set q = 0.3, jlb = 0.4, jgb = 0.6, k = 7, l = 5, x = 0.03,
w = 0.5, b = 0.8, c = 0.4 on the basis of experience and experiment.

Optimizing Concurrent Evacuation Transfers 109

4 Performance Evaluation

4.1 Environment and Configuration

BPA-ACO algorithm is written with C++ in Visual Studio 2015, and runs on a machine
equipped with Inter Core i7 8-Core processors and 8.00 GB RAM. We compare
BPA-ACO algorithm with two representative algorithms suitable for disaster evacua-
tion in [2, 6] on the same platform aiming at transmission process. In [2], we choose
OneStep-MDF algorithm. OneStep-MDF algorithm handles the backup pair with the
most data to be backed up first one after another and chooses the destination that can
provide the largest data-transfer throughput for it. To make it more suitable for disaster
evacuation, we release the constraint about one to one correspondence between source
datacenter and destination datacenter. So we call the modified algorithm as
Modified-OneStep-MDF (M-OS-MDF) algorithm. In [6], they proposed a rapid data
evacuation (RDE) heuristic algorithm through least-delay path not considering
multi-path routing. Here we also choose RDE algorithm for comparison.

We perform our experiments over two types of network topologies.

• The Waxman model [13]: Here we set the amount of data for evacuation as 1 PB
and the number of evacuation transfers as 50.

• The US-Backbone topology [6]: As in Fig. 2, it has 24 nodes and 10 datacenters.
The nodes with thick black circles represent datacenter nodes. We consider areas
covered by the red shade including datacenters at nodes 9 and 12 as disaster zone to
evacuate data. We set the size of contents ranges from 2 TB to 25 TB.

4.2 Evacuation Time Comparison

(1) Comparison in Waxman model: Fig. 3 represents comparison of evacuation time
with increase of node (including intermediate nodes, application datacenters and
endangered datacenters) number. As node number increases, the gaps between
evacuation times become larger. RDE algorithm searches a single least-delay path

Fig. 2. US-Backbone topology with disaster zone.

110 X. Li et al.

while other available paths lying idle. M-OS-MDF algorithm allows multiple
paths for every evacuation transfer one by one, so evacuation time decreases much
faster. But it does not consider bandwidth allocation proportion problem to make
full use of network transmission capability. With multi-path routing, BPA-ACO
algorithm schedules multiple concurrent transfers from entire topology according
to proportion of data amount in evacuation transfers, so it performs better than
others obviously.

(2) Comparison in US-Backbone topology: Fig. 4 represents comparison of evacu-
ation time with the increase of data amount. The evacuation time of RDE algo-
rithm grows faster than others and ultimately exceeds 70 min. M-OS-MDF
algorithm has better performance because it searches maximum flow to transfer
data through multiple available paths for every evacuation transfer one by one.
BPA-ACO algorithm performs even better by scheduling bandwidth allocation
according to proportion of data amount in evacuation transfers and spends less
than 60 min ultimately.

Fig. 3. Comparison of evacuation time with the increase of node number.

Fig. 4. Comparison of evacuation time with the increase of data amount.

Optimizing Concurrent Evacuation Transfers 111

4.3 Network Utilization Comparison

To compute network utilization, we first compute maximum network flow called
MaxFlow from endangered datacenters to other datacenters in safe zone. And then, we
run M-OS-MDF, RDE and BPA-ACO algorithm respectively to get their throughput as
ThroughputMDF , ThroughputRDE and ThroughputBPA. The Normalized Throughput
(NT) [8] for M-OS-MDF, RDE and BPA-ACO are defined as follows:

NTMDF ¼ ThroughputMDF=MaxFlow ð21Þ

NTRDE ¼ ThroughputRDE=MaxFlow ð22Þ

NTBPA ¼ ThroughputBPA=MaxFlow ð23Þ

(1) Comparison in Waxman model: Fig. 5 represents comparison of NTs with
increase of node number. RDE algorithm selects one best path for every evacu-
ation transfer. Although the increasing of node number may raise the possibility of
better single path selection for multiple transfers one by one, there will still be
more and more transmission capacity lying idle. So its NT gradually decreases.
M-OS-MDF algorithm searches maximum network flow for every evacuation
transfer sequentially, so its NT keeps steady and rises slightly. BPA-ACO algo-
rithm further considers proportion of data amount in concurrent evacuation
transfers avoiding transmission capacity lying idle, so its NT is even higher than
others.

(2) Comparison in US-Backbone topology: Fig. 6 represents comparison of NT
between M-OS-MDF, RDE and BPA-ACO with the increase of data amount.
Because the network topology is fixed, the fluctuation of NT is relatively small.

Fig. 5. Comparison of NT with the increase of node number.

112 X. Li et al.

But the gap between their NT still can be observed. RDE algorithm uses single
path. Although its NT will be improved with increase number of evacuation
transfers, the average value is still relatively low, ranging from 48.69% to 64.07%.
M-OS-MDF algorithm obtains relatively higher NT because it searches maximum
network flow through multi-routing, ranging from 78.80% to 82.23%. BPA-ACO
obtains even higher NT, ranging from 81.04% to 86.24% by more reasonable
allocation strategy according to data amount in concurrent evacuation transfers.

5 Conclusion

Nowadays, datacenters holding massive services and data are faced to increasing risks.
To reduce loss in disasters, efficient evacuation requires appropriate allocation strategy
of residual network bandwidth for multiple concurrent evacuation transfers. Hence, in
the SDN scenarios with traffic scheduling, we propose an optimal bandwidth propor-
tion allocation strategy for multiple concurrent evacuation transfers according to pro-
portion of their transmission data amount via multi-path routing and then design a
BPA-ACO algorithm to realize it. Through extensive simulations, we demonstrate that
our algorithm has better performance with less total evacuation time and higher net-
work utilization compared with state-of-the-art algorithms.

Acknowledgment. The study is supported by the National Natural Science Foundation of China
(NSFC No. 61672323), the Natural Science Foundation of Shandong Province (Grant
No. ZR2015FM008, BS2015DX003), and the Fundamental Research Funds of Shandong
University (Grant No. 2017JC043).

Fig. 6. Comparison of NT with the increase of data amount.

Optimizing Concurrent Evacuation Transfers 113

References

1. Greenberg, A., Hamilton, J., Maltz, D., Patel, P.: The cost of a cloud: research problems in
datacenter networks. ACM SIGCOMM Comput. Commun. Rev. 39, 68–73 (2009)

2. Yao, J., Lu, P., Gong, L., Zhu, Z.: On fast and coordinated data backup in geo-distributed
optical inter-datacenter networks. J. Lightwave Technol. 33, 3005–3015 (2015)

3. Henderson, N.: Noise filter: Hurricane Sandy floods NYC data center, impacts hosts,
colocation providers. http://www.thewhir.com/web-hosting-news/noise-filter-hurricane-
sandy-floods-nyc-data-center-impacts-hosts

4. Guerrero, J.M., Vasquez, J.C., Matas, J., Castilla, M.: Control strategy for flexible microgrid
based on parallel line-interactive UPS systems. IEEE Trans. Industr. Electron. 56, 726–736
(2009)

5. Bianco, A., Giraudo, L., Hay, D.: Optimal resource allocation for disaster recovery. In: IEEE
Global Telecommunications Conference (GLOBECOM), pp. 1–5 (2010)

6. Ferdousi, S., Tornatore, M., Habib, M.F., et al.: Rapid data evacuation for large-scale
disasters in optical cloud networks. J. Opt. Commun. Netw. 7, B163–B172 (2015)

7. Lu, P., Ling, Q., Zhu, Z.: Maximizing utility of time-constrained emergency backup in
inter-datacenter networks. IEEE Commun. Lett. 20, 890–893 (2016)

8. Cho, S., Elhourani, T., Ramasubramanian, S.: Independent directed acyclic graphs for
resilient multipath routing. IEEE/ACM Trans. Networking 20, 153–162 (2012)

9. Jain, S., Kumar, A., Mandal, S., et al.: B4: experience with a globally-deployed software
defined wan. ACM SIGCOMM Comput. Commun. Rev. 43(4), 3–14 (2013)

10. Hong, C.Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M., Wattenhofer, R.:
Achieving high utilization with software-driven WAN. In: ACM SIGCOMM 2013
Conference, pp. 15–26 (2013)

11. Dorigo, M., Stützle, T.: Handbook of Metaheuristics. Springer, USA (2010)
12. Masri, H., Krichen, S., Guitouni, A.: An ant colony optimization metaheuristic for solving

bi-objective multi-sources multicommodity communication flow problem. In: 4th IFIP
Wireless and Mobile Networking Conference (WMNC), pp. 1–8 (2011)

13. Naldi, M.: Connectivity of Waxman topology models. Comput. Commun. 29, 24–31 (2005)

114 X. Li et al.

http://www.thewhir.com/web-hosting-news/noise-filter-hurricane-sandy-floods-nyc-data-center-impacts-hosts
http://www.thewhir.com/web-hosting-news/noise-filter-hurricane-sandy-floods-nyc-data-center-impacts-hosts

Energy-Balanced and Depth-Controlled
Routing Protocol for Underwater Wireless

Sensor Networks

Hao Qin, Zhiyong Zhang, Rui Wang, Xiaojun Cai, and Zhiping Jia(B)

School of Computer Science and Technology, Shandong University, Jinan, China
jzp@sdu.edu.cn

Abstract. As the ocean exploration becomes more and more popular,
the Underwater Wireless Sensor Network (UWSN) has recently received
extensively attentions. In UWSN, a large number of nodes are deployed
at different depths, which means once deployed, it will be difficult to
replace or recharge due to the complex underwater environment. There-
fore, improving the lifetime of the UWSN network is one of critical issue
to be studied. Since the sensor nodes are distributed at different depths,
the energy of the nodes near to the horizontal plane which have more data
to forward will be exhausted more quickly. The unbalanced energy con-
sumption leads to a decline in network lifetime. To address this problem,
we propose an Energy-Balanced and Depth-Controlled Routing Protocol
for Underwater Wireless Sensor Networks in this paper. The proposed
protocol replaces the low-energy nodes with the high-energy nodes by
adjusting their depths to achieve balanced energy consumption among
the whole network. Experimental results show our scheme effectively
improves the lifetime of the whole network.

1 Introduction

In recent years, UWSN has gained increasing popularity in both academia and
industry area because people are interested in exploring the vast underwater
environment. UWSN has a large number of applications such as tactical surveil-
lance, seismic monitoring, assisted navigations, pollution monitoring and many
more scientific based applications [1,2,17].

Although there are many routing protocols that are proposed for terrestrial
Wireless Sensor Networks (WSNs), these existing routing protocols may not be
suitable for underwater environment [3,18]. Radio signals have rapid attenuation
in the water, which means UWSN has to use acoustic channels for communica-
tion. In the harsh underwater environment, the acoustic signals have unique
characteristics such as long propagation delay (five orders of magnitudes slower
than radio), high signal to noise ratio, low bandwidth etc. So designing routing
protocol for UWSNs is very challenging [4].

In UWSN, the sensor nodes have limited battery power and replacing the
batteries of all the nodes is very expensive and difficult. Hence, improving the
network lifetime is one of the most important issues. In UWSN, the sensor nodes
are distributed at different depths and have different number of data to forward.
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 115–131, 2017.
DOI: 10.1007/978-3-319-65482-9 8

116 H. Qin et al.

There is a problem that each node has different energy consumption. Due to
the unbalanced energy consumption, some nodes with high load die earlier than
other nodes, which influences the lifetime of UWSN. Therefore, the energy con-
sumption balance among the sensor nodes is one major method to improve the
network lifetime.

Some protocols are proposed to address this issue (e.g. EEDBR [6]). Although
these protocols consider balancing the energy consumption and prolonging the
network lifetime, they don’t consider the energy balance between the nodes near
the sink nodes and the nodes far from the sink nodes. The nodes close to the sink
nodes have unbalanced load and forward more packets than the nodes far from
the sink nodes. This results that the nodes close to the sink nodes die earlier.
Due to the unbalanced energy consumption, the nodes far from the sink still
have energy to work when the overall network is dead.

To address this problem, we propose Energy-Balanced and Depth-Controlled
Routing Protocol (EBDCR) to improve the network lifetime. In EBDCR, we
replace the low-energy nodes near the sink nodes by the high-energy nodes far
from the sink nodes through depth adjustment. We decline the low-energy nodes
and float up the high-energy nodes to make the high-energy nodes closer to the
sink nodes. Doing like this, we ensure the nodes now near the sink nodes have
more energy to forward data. Hence, the lifetime of the network can be prolonged.

The major contributions of this paper can be summarized as follows:

– We propose a strategy to prolong the lifetime of the network through depth
adjustment. We decline the low-energy nodes and float up the high-energy
nodes to achieve the balance of the energy consumption between the nodes
near the sink nodes and the nodes far from the sink nodes.

– We put forward an algorithm to identify the time when the nodes should be
replaced. And then we determine a strategy to ensure the data transmission
thereby improving the network lifetime.

The remainder of this paper is organized as follows. Section 2 describes the
related work. The proposed protocol is presented in Sect. 3. In Sect. 4, we present
simulations results that we have conducted in order to evaluate the proposed
protocol. Finally, Sect. 5 concludes this paper.

2 Related Work

Recently, a number of routing protocols have been proposed for UWSNs. In this
section, we present some related routing protocols as follows.

In [7], the authors propose the VBF routing protocol which uses the dis-
tance between the node and the routing vector to determine whether it should
forwards the data packet. The forwarding process of VBF can be seen as to
build a routing pipe between the source node and the destination node so that
packets are delivered through the nodes in the pipe. Moreover, VBF uses a
self-adaption algorithm in order to reduce the number of forwarding nodes and
conserve energy. In [19], CVBF divides all nodes into the number of predefined

Energy-Balanced and Depth-Controlled Routing Protocol 117

clusters, and selects one node at the top of each cluster as a virtual sink. The
rest of nodes transmit the data packets to their respective cluster virtual sink
following the methodology of VBF routing protocol. The cluster virtual sink
node forwards the aggregated data to the main sink node deployed on water
surface through single-hop mechanism.

In Depth-based routing (DBR) protocol [4], the decision of forwarding the
packet is based on the node depth and the depth of the previous sender. If
the node can forward the packet, it will wait a holding time. During the holding
time, the node discards the packet when it receives the same packet. For efficient
energy consumption, EEDBR [6] computes holding time on the bases of residual
energy of sensor nodes to enhance the network lifetime. And in [15], DSEEDBR
provides enhanced network lifetime along with delay sensitivity to EEDBR by
implementing Delay-Sensitive Holding time (DSHt) and adaptive variations in
dth for sensor nodes. AMCTD [13] encourages the deployment of courier nodes
and devises efficient weight functions to increase the stability period of the net-
work.

Depth-Controlled Routing protocol (DCR) [5] adjusts the depths of some
nodes in order to organize the network topology and forward data when the
problem of communication void arises. DCR provides a centralized algorithm
to identify the nodes which are disconnected and the nodes which are the void
nodes, and then calculates the new depths of these nodes to improve both the
network connectivity and rate data delivery.

Amara et al. [14] propose DEADS to improve reliability and efficiency. In
DEADS, the authors propose DS (the Dominating Set) based cooperative routing
algorithm with sink mobility. They discuss two mobility pattern of mobile sink:
elliptical mobility pattern and linear mobility pattern. And DEADS works in
three phases: neighbor selection, DS and CC set formation, and threshold based
data sensing and routing.

In [16], EBECRP avoids depth base routing and uses mobile sinks to balance
load on all nodes. It uses the concept of clustering to reduce multi hoping which
results in more energy consumption. The selected Cluster Heads (CHs) collect
data from one hope neighbor nodes to reduce global communication into locally
compressed communication.

These routing protocols don’t consider the energy balance between the nodes
near the sink nodes and the nodes far from the sink nodes. Hence, the nodes near
the sink nodes will die earlier because they have more data to forward. Inspired
by the idea of adjusting the depth to improve the network connectivity and
forwarding data, which is proposed in DCR [5], we propose Energy-Balanced and
Depth-Controlled Routing Protocol (EBDCR) to improve the network lifetime
by adjusting the depth of the sensor nodes.

3 Energy-Balanced and Depth-Controlled Routing
Protocol

In this section, we present our Energy-Balanced and Depth-Controlled Routing
Protocol in detail. Firstly we introduce the network architecture of EDBCR.

118 H. Qin et al.

Secondly, we explain the phases of network initialization and data forwarding.
And then we introduce our node replacement strategy to prolong the lifetime
of the network and explain how our algorithm identifies which nodes should be
replaced and which nodes can replace the low-energy nodes. At the end of the
algorithm, we calculate their respective new depths and adjust them to new
depths to continue forwarding data thereby prolonging the network lifetime.

3.1 Network Architecture

As shown in Fig. 1, UWSN consists of one or more sink nodes and lots of sensor
nodes. The sink nodes are deployed on the surface of water with the help of the
floating buoy or the anchor. The sink nodes are equipped with both acoustic
and radio (e.g., Wi-Fi or Satellites) transceivers. These sink nodes use acoustic
modem for communication with the sensor nodes to receive the data packets,
while they can communicate with each other by radio links to forward the data
packets collected from sensor nodes to the onshore data center or the research
ship. We assume that all the sink nodes have enough energy because they can
exchange the batteries expediently or they can utilize solar energy. So we don’t
consider the energy consumption of the sink nodes.

The sensor nodes are deployed underwater from the top to the bottom of
the deployment region. They are equipped with a variety of sensors to sense the
surrounding environment and they use acoustic modem to send the collected
data towards the sink nodes. In this communication, the sensor node sends the
data packet to its neighbor node which is selected as next-hop and then this
neighbor node repeats this step. So the data packet is delivered to one of the
sink nodes by multi-hops. Because the radio communication is much faster than

Fig. 1. Architecture of UWSN.

Energy-Balanced and Depth-Controlled Routing Protocol 119

the acoustic communication, we assume that a packet is delivered successfully
as long as it is received by one of the sink nodes.

In addition, all the sensor nodes can be fixed at a specific depth by the
anchor, and we can adjust their depths by adjusting the length of the anchor
chain (using winch-based module) [5]. We assume each sensor node has unique
ID and has the same communication range which defined as R.

In this paper, we denote the sink node as Si and the sensor nodes as Ni. The
residual energy of the sensor node Ni is defined as Ei.

3.2 Network Initialization Phase

After the deployment of all the nodes, the network initialization phase begins.
At first, all of the sink nodes obtain their locations by means of a positioning
system like GPS. The coordinate of the sink node Si is defined as (Xsi , Ysi , Zsi).
And then the sensor nodes use the AUV aided localization system [8] and the
on-board pressure sensor to obtain their respective locations. During the AUV
aided localization, the AUV broadcasts the locations of all the sink nodes which
have been sent to the AUV before the localization. So each sensor node has its
own coordinate denoted as (Xi, Yi, Zi) and all coordinates of the sink nodes. And
then each sensor node uses the Algorithm 1 to calculate the Euclidean distance
between itself and its nearest sink node. We define this distance as Ds. After
that, the sensor node broadcasts its self-information packet to its neighbors peri-
odically. The information packet contains the ID, coordinate, residual energy,
and Ds. The format of the information packet is shown in Fig. 2a.

Algorithm 1. Ds Calculation
1: (Xi, Yi, Zi) the coordinate of the sensor node Ni

2: (Xsi , Ysi , Zsi) the coordinate of the sink node Si

3: Ds = infinite
4: for all sink node Si do
5: Dsi =

√
(Xi − Xsi)

2 + (Yi − Ysi)
2 + (Zi − Zsi)

2

6: if Dsi < Ds then
7: Ds = Dsi

8: end if
9: end for

10: return Ds

When the sensor node receives the information packet from one of its neigh-
bors, it compares its Ds with the neighbor’s Ds. If the neighbor’s Ds is smaller, it
means that this neighbor is closer to the sink nodes than the sensor node, and the
sensor node can forward the data packets to this neighbor to deliver the packets
to the sink nodes. The sensor node will record this neighbor’s information (such
as ID, coordinate, residual energy) into the forwarding node candidate list. The
format of the forwarding node candidate list is shown as Table 1. At the last of

120 H. Qin et al.

Fig. 2. The format of packet

this phase, the sensor node sorts the forwarding node candidate list and selects
the neighbor node which has smallest Ds from the forwarding node candidate
list as the forwarding node(the next-hop node).

Table 1. The forwarding node candidate list.

Node ID Coordinate Ds Residual energy (J)

1 (10, 5, 7) 7 90

18 (10, 15, 27) 30 80

3.3 Data Forwarding Phase

After network initialization, all the sensor nodes sense the surrounding environ-
ment and collect data of interest from the environment. Then it comes to data
forwarding phase and sensor nodes start to send data packets. In network ini-
tialization phase, each sensor node uses greedy forwarding strategy to select the
neighbor node which has smallest Ds from the forwarding node candidate list
as the forwarding node (the next-hop node). After that, in order to balance the
energy consumption of the neighbor nodes in the forwarding node candidate list,
each sensor node periodically checks the residual energy of the neighbor nodes
in the forwarding node candidate list and selects the node which has largest
residual energy as its forwarding node. When the sensor node needs to send a
data packet towards sink nodes, it just sends the packet to its forwarding node.
The forwarding node (the next-hop node) receives the data packet and sends to
its forwarding node. Finally the data packet will be delivered to one of the sink
nodes by multi-hops.

As shown in Fig. 2b, the data packet includes five parts: sender ID, forwarder
ID, sender’s coordinate, sender’s residual energy and the data. When a sensor
node sends a data packet, all its neighbors can receive the packet in UWSN. In
order to avoid redundant packets and save energy, the sensor node checks the
forwarder ID when it receives a packet. If its ID is same with the forwarder ID,
it will forward this packet. At the same time, the sensor node adds the sender’s
information into the child node list. The format of the child node candidate list is
shown as Table 2. The sender ID, coordinate and the residual energy can obtain

Energy-Balanced and Depth-Controlled Routing Protocol 121

Table 2. The child node candidate list.

Sender ID Coordinate Ps Residual energy (J)

3 (12, 20, 7) 7 90

10 (10, 15, 27) 10 80

from the data packet directly. And the packet flow sent by the sender (defined as
Ps) can be obtained by counting the number of packets received from the sender
per unit time.

3.4 Node Replacement Strategy and Algorithm

Because during data forwarding phase each sensor node needs to send its col-
lected data and the data that its child nodes send to it, the sensor nodes close to
the sink nodes have more load than other sensor nodes far from the sink nodes.
So the sensor nodes close to the sink nodes die earlier, which results that the
sensor nodes far from the sink nodes still have energy to work when the network
is dead. In order to overcome this problem and make full use of these residual
energy to prolong the lifetime of the network, we propose our node replacement
strategy.

The main idea of our proposed node replacement strategy is using the high-
energy nodes which are far from the sink nodes to replace the low-energy nodes
which are close to the sink nodes. Because each sensor node is equipped with
the anchor and the length of the anchor chain can be adjusted, we can adjust
the depths of the sensor nodes to achieve the node replacement. As shown in
Fig. 3, the node replacement means that one sensor node (named B) replaces
the function of another sensor node (named A) through depth adjustment. In
other words, the child nodes of node A can send the data packets to node B,
and then node B can forward these data packets to node A’s forwarding node.

Fig. 3. The node replacement.

122 H. Qin et al.

The node replacement strategy is divided into the following steps:

1. One of the sensor nodes meets node replacement condition which means its
energy consumption is larger than a defined threshold.

2. The sensor node selects one of its child nodes that have more energy as the
replacement node.

3. The replacement node adjusts its depth to replace the function of the sensor
node. At the same time the sensor node adjusts its depth to replace the
function of the replacement node.

Because the sink nodes are deployed on the water surface, the low-depth
sensor nodes have more energy consumption than the high-depth sensor nodes.
Through the node replacement, we decline the low-energy nodes and float up
the high-energy nodes. So the high-energy nodes currently are closer to the sink
nodes and forward more data packets than the low-energy nodes, this achieves
the balance of the energy consumption between the nodes close to the sink nodes
and the nodes far from the sink nodes. Hence, the lifetime of the network can
be prolonged.

Node Replacement Condition. Since each sensor node is deployed at dif-
ferent locations and has different number of child nodes, each sensor node has
different load. So each sensor node has different residual energy as time increases.
In order to balance the energy of each sensor node quickly, the node replacement
condition should meet the following requirements:

1. In the similar depth, the sensor node which has low energy should be replaced
earlier than the node which has high energy.

2. In the similar depth, the sensor node which has large packet flow should be
replaced earlier than the node which has small packet flow.

3. Since the sensor node which has high depth has fewer load, the energy con-
sumption of high-depth sensor node is slow. If the node replacement condition
is independent of the location of sensor node, the node with high depth will
be replaced slower than the node with low depth. In order to balance the
energy between the high-depth sensor nodes and the low-depth sensor nodes
effectively and quickly, the sensor node with high depth should be replaced
earlier than the node with low depth.

Therefore, the node replacement condition is that the energy consumption
of the sensor node Ni is larger than threshold Ti. Ti is calculated as follows:

Ti =
1

x · Li
· Ei (1)

Li = �Ds

R
� (2)

Ei is current residual energy of node Ni when Ti is calculated. Once the sensor
node Ni adjusts its depth, Ti should be updated. x is a pre-defined positive

Energy-Balanced and Depth-Controlled Routing Protocol 123

constant and Li is the ideal minimum number of hops for node Ni sending data
to sink nodes. (Li represents how far the node is from sink nodes.) It can be seen
that the farther away from the sink nodes (the larger Ds), the larger Li will be.
So when two sensor nodes have same Ei and packet flow, the node with higher
depth has smaller Ti, causing replacement earlier.

For example, we set x = 2, the sensor node A has 100 J initial energy, and
its Ds < R. so LA = Ds/R = 1 and its threshold TA = 1/(2 ∗ 1) ∗ 100 J = 50 J.
So when node A consumes 50 J of energy, it selects one of its child nodes as the
replacement node and adjusts to new depth. After node replacement, we assume
that the sensor node A consumes 10 J to adjust depth and its new Ds ∈ (R, 2R).
Ei is the current residual energy which is 50 J−10 J = 40 J and now its threshold
T ′
A = 1/(2∗2)∗40 J = 10 J. Hence, the next replacement of node A occurs when

it consumes 10 J.

Fig. 4. The node replacement between node A and node B.

Replacement Node Selection. When the sensor node meets its node replace-
ment condition, this means the energy consumption is large enough and the
sensor node should select one of its child nodes as replacement node. Then the
sensor node and the replacement node replace each other. As shown in Fig. 4,
the node B is the replacement node of the node A. The sensor node A drops to
an appropriate depth in order to receive the data packets from the child nodes
of the replacement node B and forward them to the replacement node B. The
replacement node B floats up to receive the data packets from the sensor node
A’s child nodes (except the replacement node B) and the data packets from the
sensor node A. And then the replacement node B forwards them to the sensor
node A’s forwarding node.

Due to only the depth of the sensor node can be adjusted and the sensor
nodes are different in horizontal position, it is difficult for the sensor node to
find a child node which can reach the sensor node’s position. When a child node
is selected as the replacement node and adjusts its depth to replace the function
of the sensor node, it is possible that some child nodes of the sensor node cannot
communicate with the replacement node (the distance between the replacement

124 H. Qin et al.

node and the child node is larger R). As shown in Fig. 5, node F is the forwarding
node of node A, node B,C,D are child nodes of A and node E,F are child nodes
of B. The node communication radius is R. When node A selects node B as
the replacement node, node B floats up to replace the function of node A. But
node D is so far from node B that node B cannot communicate with node D.
Similarly, the sensor node A needs drop to an appropriate depth to forward the
data packets from the child nodes of node B to node B, but node A doesn’t
guarantee to communicate with all of node B’s child nodes (node A cannot
communicate with node E). After node replacement, node B only receives the
packets from node A’s child nodes which can communicate with node B and
the packets that node A forwards. And the packets that node A forwards are
from the child nodes of B that can communicate with A. Therefore, the number
of packets forwarded by node B after the replacement is not more than the
number of the packets forwarded by node A before the replacement. We define
the number of packets forwarded by the replacement node (node B) per unit
time after the replacement as reserved packet flow (Pr). In order to minimize
the influence of node replacement on the other parts of the network, we should
consider selecting the child node which can make the reserved packet flow (Pr)
as large as possible as the replacement node.

Fig. 5. The communication problem after node replacement.

In order to calculate the (Pr), the sensor node needs to know the information
of its child nodes’ child nodes, such as the coordinate and the packet flow (Ps).
At the beginning of node selection, the sensor node sends request packet to all
its child nodes and child nodes send the information recorded in their child node
lists to the sensor node. After that the sensor node calculates the (Pr) of all
child nodes which have more energy than it. Then it selects the replacement
node according to the Pr and the residual energy. And during the calculation,
the new depths of the sensor node and the replacement node are also calculated.

The Replacement Node Selection Algorithm: The notations used in our
replacement node selection are shown in Table 3. As illustrated in Algorithm2,

Energy-Balanced and Depth-Controlled Routing Protocol 125

Algorithm 2. Replacement node selection.
1: for all c ∈ Child(n) do
2: if E(c) > E(n) then
3: Pr(c) = Pc(c)

4: D(c) ← S(c, f) ←
{
z|√(Xf − Xc)2 + (Yf − Yc)2 + (Zf − z)2 ≤ R

}

5: sort Child(n) according the nodes’ packet flow in descending order.
6: for all k ∈ Child(n) − {c} do

7: S(c, k) ←
{
z|√(Xk − Xc)2 + (Yk − Yc)2 + (Zk − z)2 ≤ R

}

8: if D(c) ∩ S(c, k) �= ∅ then
9: D(c) ← D(c) ∩ S(c, k)

10: Pr(c) = Pr(c) + Ps(k)
11: end if
12: end for
13: Z′

c = z (min|z − Zc| and z ∈ D(c))
14: Pr(n) = Pc(n)

15: D(n) ← S(n, c′) ←
{
z|√(Xc − Xn)2 + (Yc − Yn)2 + (Z′

c − z)2 ≤ R
}

16: sort Child(c) according the nodes’ packet flow in descending order.
17: for all j ∈ Child(c) do

18: S(n, j) ←
{
z|√(Xj − Xn)2 + (Yj − Yn)2 + (Zj − z)2 ≤ R

}

19: if D(n) ∩ S(n, j) �= ∅ then
20: D(n) ← D(n) ∩ S(n, j)
21: Pr(n) = Pr(n) + Ps(j)
22: end if
23: end for
24: Z′

n = z (min|z − Zn| and z ∈ D(n))
25: Pr(c) = Pr(c) + Pr(n)
26: E′(c) = E(c) − |Zc − Zc′| · Ea

27: E′(n) = E(n) − |Zn − Zn′| · Ea

28: if E′(c) > E(n) and E′(n)
Pr(n)·Ef

≥ E(n)
Ps(n)·Ef

then
29: add c into Candidates
30: end if
31: end if
32: end for
33: select the child node whose Pr is largest as the replacement node from Candidates.

the sensor node n checks each its child node at first (line 1). If its child node c
has smaller energy than node n, node n will check next child node because node
c reduces the network lifetime if it replaces node n. Otherwise, node n initializes
the Pr of node c as its created packet flow (Pc(c)) and calculates the depth range
(defined as S(c, f) for convenience) where node c can communicate directly with
the forwarding node f of node n. Simultaneously, the optimal depth range of
node c (defined as D(c)) is initialized as S(c, f) (lines 3–4). Then node n sorts
its child nodes according the nodes’ packet flow Ps (in descending order) (line
5), it checks each one (defined as k for convenience) in the set of node n’s child
nodes in descending order and calculates the depth range (defined as S(c, k) for

126 H. Qin et al.

Table 3. Notations in replacement node selection.

Notation Definition

Child(i) the set of child nodes of sensor node i

f the forwarding node of the sensor node

E(i) the energy of sensor node i

Ea the energy consumption of adjusting depth per meter

Ef the energy consumption of forwarding per packet

D(i) the optimal depth range of node i

S(i, j) the depth range of node i in which node i can communicate directly with j

Pr(i) the reserved packet flow of sensor node i

Ps(i) the packet flow sent by the sensor node i before the node replacement

Pc(i) the packet flow created by the sensor node i

Z′(i) the new depth of node i

(Xi, Yi, Zi) the coordinate of sensor node i

Candidates The set of candidate replacement nodes

convenience) where node c can communicate with the node k (line 6). If the
range D(c) and S(c, k) have an intersection, it means that node c can forward
the packets from node k to the forwarding node of node n. Then the range D(c)
and the Pr of node c are updated (lines 8–11). After traversing all child nodes
of node n except node c, D(c) is the proper range where node c can forward
the packets from node n’s child nodes as more as possible. Then the new depth
of node c is determined which minimizes the node c moving distance (line 13).
According to the new depth of node c, node n calculates the optimal depth range
for itself where node n forwards the packets from node c’s child nodes to node c
as more as possible (lines 14–23). The new depth of node n is determined (line
24) and the Pr of node c is updated (line 25). And then the residual energy that
node n and node c have after replacement can be calculated (lines 26–27). If the
residual energy of node c after replacement is larger than the energy of node
n before the replacement and the lifetime of node n is prolonged through the
replacement, node n adds node c into the set of Candidates (lines 28–30). At
last, node n selects the child node whose Pr is largest as the replacement node
from Candidates.

Depth Adjustment. After the replacement node is selected, the sensor node
(named A for easy explanation) broadcasts the new depth of the replacement
node (named B for easy explanation) and the ID of the replacement node B.
Each child node except the replacement node B checks whether the replacement
node B can communicate with it at the new depth. If the replacement node
B can forward the packets sent from the child node, the child node will use
the replacement node B as its new forwarding node and delete the original for-
warding node (node A) from the forwarding node candidate list. Otherwise, the
child node will delete the original forwarding node (node A) from the forwarding

Energy-Balanced and Depth-Controlled Routing Protocol 127

node candidate list and then it will select the neighbor node which has largest
residual energy from the forwarding node candidate list as its new forwarding
node. Similarly, the replacement node B broadcasts the new depth of the sensor
node A to its child nodes. The replacement node B’s child nodes select their
new forwarding nodes according whether they can communicate with the sensor
node A.

After that, the sensor node A and the replacement node B adjust to their
new depths. They update their forwarding node, coordinate, residual energy and
Ds, and they broadcast their information (ID, coordinate, residual energy and
Ds) to their new neighbors. Then they continue to work to forward packets and
the network lifetime can be prolonged.

4 Experiments

4.1 Experimental Setup

In this section, we evaluate the performance of our proposed protocol EBDCR
and compare it with DCR [5] and EEDBR [6]. We perform the simulations using
Network Simulator (NS-2) [9]. In order to simulate the impairment of acoustic
communication we use Aqua-Sim. Aqua-Sim is developed on NS-2 and can effec-
tively simulate acoustic signal attenuation and packet collisions in underwater
sensor networks [10]. In our simulations, sensor nodes are randomly deployed in
a 1500m × 1500m × 1500m 3-D area. One or multiple sink nodes are deployed
at the water surface, and we assume that all the sink nodes are stationary once
deployed. All the sensor nodes have same communication range of 250m, data
rate of 50Kbps, and CSMA MAC protocol, as in [11]. The packet generation
rate for each sensor node is one packet per second. We consider that the data
packet has size of 50 bytes, as [4]. Because the values of consumption in idling
mode for all nodes are same, we don’t consider the idling mode consumption for
simplicity. The values of consumption in sending and receiving mode are 2W
and 0.1W, respectively. And each node has initial energy of 60WHr and con-
sumes 15 J/m through vertical movement [12]. And the variable x in Formula 1
is set as 2. Simulation parameters are given in Table 4.

We used the following metrics for evaluating the performance of our proposed
routing protocol:

– Network lifetime: The network lifetime is the time when the first node dies
in the network because of the energy exhaustion.

– Average end-to-end delay: The average end-to-end delay is the average delay
for the delivered packets.

– Average energy consumption: The average energy consumption is the energy
consumption for every delivered packet.

4.2 Experimental Results

In Fig. 6a, b and c, the number of sink nodes is set as 9. We first compare
the network lifetime of three schemes with different number of sensor nodes.

128 H. Qin et al.

Table 4. Simulation parameters.

Parameter Value

Network size 1500 m × 1500m × 1500m

Communication range 250 m

Data rate 50 Kbps

Data packet size 50 bytes

Initial energy 60 WHr

Transmission power 2 W

Reception power 0.1 W

Idle power 10 mW

Vertical movement consumption 15 J/m

The result is shown as Fig. 6a. In DCR, each node forwards the packets to its
neighbor which has smallest Ds all the time, it results that this neighbor will die
earlier than the other neighbor nodes. So the lifetime of DCR is the smallest in
three schemes. In EEDBR, each node selects the node with high residual energy
in its neighbor as next forwarder and balances the energy consumption between
its neighbors. Simulation shows that the lifetime of EEDBR is 50% higher than
the lifetime of DCR. Our proposed EBDCR not only considers the balance of
energy between each node’s neighbors, but also balance the energy consumption
between the nodes that have different depths. Hence, compared by the EEDBR,
the lifetime of EBDCR is extended by 10% to 20%. And as the number of sensor
nodes increases, the lifetime of three schemes decrease a little because the load
of nodes near the sink nodes increases.

300 350 400 450 500 550
0

500

1000

1500

N
et

w
or

k
lif

et
im

e(
h)

Number of sensor nodes

DCR
EEDBR
EBDCR

(a) Network lifetime

300 350 400 450 500 550

0.5

0.52

0.54

0.56

La
te

nc
y(

s)

Number of sensor nodes

DCR
EEDBR
EBDCR

(b) Average end-to-end delay

300 350 400 450 500 550
0

0.002

0.004

0.006

0.008

0.01

0.012

En
er

gy
 p

er
 re

ce
iv

ed
 p

ac
ke

t(J
)

Number of sensor nodes

DCR
EEDBR
EBDCR

(c) Average energy consumption

Fig. 6. Results with 9 sink nodes

Figure 6b shows the average end-to-end delay for all delivered packets with
different number of sensor nodes. DCR and EEDBR have almost the same
latency because the data packets are transmitted immediately when it arrives
in a sensor node. The latency of our scheme increases by 1% to 2%. This is
because the node replacement will affect the delivery of the data packets which
are sent from the replaced node, the replacement node and their child nodes.

Energy-Balanced and Depth-Controlled Routing Protocol 129

Furthermore, all the delays in three schemes decrease due to sensor nodes have
greater selection to forward data as the number of nodes increases.

The energy consumption per delivered packet with different number of sensor
nodes is shown in Fig. 6c. Because DCR and EEDBR don’t adjust the depths
of all sensor nodes, their energy consumption per delivered packet is almost
same. In our scheme, sensor nodes need to adjust their depths to balance the
energy. The energy consumption per delivered packet increases by 20% to 30%.
Although our scheme needs a part of the energy to adjust, we take full advantage
of the energy of the sensor nodes far from the sink nodes, thereby prolonging
the network lifetime.

1 3 5 7 9
0

200

400

600

800

1000

1200

N
et

w
or

k
lif

et
im

e(
h)

Number of sink nodes

DCR
EEDBR
EBDCR

(a) Network lifetime

1 3 5 7 9
0.4

0.5

0.6

0.7

0.8

La
te

nc
y(

s)

Number of sink nodes

DCR
EEDBR
EBDCR

(b) Average end-to-end delay

1 3 5 7 9
0

0.005

0.01

0.015

0.02

0.025

En
er

gy
 p

er
 re

ce
iv

ed
 p

ac
ke

t(J
)

Number of sink nodes

DCR
EEDBR
EBDCR

(c) Average energy consumption

Fig. 7. Results with 300 sensor nodes

In Fig. 7a, b and c, the number of sensor nodes is set as 300. Figure 7a shows
the lifetime with different number of sink nodes. As the number of sink nodes
increases, the number of sensor nodes which can communicate with sink nodes
directly increases. So the lifetime of three schemes also increases, and our scheme
performs better than DCR and EEDBR. The average end-to-end delay with
different number of sink nodes is shown in Fig. 7b. The fewer sink nodes we
have, the more load the sensor nodes near the sink nodes have, the more data
packets will be influenced when the nodes near the sink nodes are involved in
node replacement. Hence, the latency of our scheme increases by 10% compared
to DCR and EEDBR when the number of sink nodes is 1. As the sink nodes
increase, the difference between our scheme and other two schemes decreases.
Finally, we compare the energy consumption with different number of sink nodes
in Fig. 7c. The sensor nodes near the sink nodes have more load when there is
only one sink node. This caused that the sensor nodes around the sink node will
be involved in node replacement more frequently. So the energy consumption
per delivered packet in our scheme is higher. The difference between our scheme
and other two schemes decreases as the sink nodes increase.

5 Conclusion

In this paper, we propose EBDCR, an energy-balanced and depth-controlled
routing protocol for UWSN. In order to balance the energy consumption between

130 H. Qin et al.

the nodes near the sink nodes and the nodes far from the sink nodes, we decline
the low-energy nodes and float up the high-energy nodes through the node
replacement strategy we proposed. Moreover, we provide an algorithm to select
a appropriate node to replace the node which has low energy. After that, we
adjust them to their new depths to continue working. Finally, the experimental
results demonstrate that our proposed routing protocol effectively prolongs the
network lifetime.

Acknowledgement. This research is sponsored by National Key R&D Program of
China No. 2017YFB0902602, the State Key Program of National Natural Science Foun-
dation of China No. 61533011, Shandong Provincial Natural Science Foundation under
Grant No. ZR2015FM001 and the Fundamental Research Funds of Shandong Univer-
sity No. 2015JC030.

References

1. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks:
research challenges. Ad Hoc Netw. 3(3), 257–279 (2005)

2. Partan, J., Kurose, J., Levine, B.N.: A survey of practical issues in underwater net-
works. In: The Workshop on Underwater Networks, WUWNET 2006, Los Angeles,
CA, USA, September, pp. 17–24. DBLP (2006)

3. Davis, A., Chang, H.: Underwater wireless sensor networks. In: Oceans, pp. 1–5.
IEEE (2012)

4. Yan, H., Shi, Z.J., Cui, J.-H.: DBR: depth-based routing for underwater sensor
networks. In: Das, A., Pung, H.K., Lee, F.B.S., Wong, L.W.C. (eds.) NETWORK-
ING 2008. LNCS, vol. 4982, pp. 72–86. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-79549-0 7

5. Coutinho, R.W.L., Vieira, L.F.M., Loureiro, A.A.F.: DCR: depth-controlled rout-
ing protocol for underwater sensor networks. In: Proceedings - International Sym-
posium on Computers and Communications, pp. 000453–000458 (2013)

6. Wahid, A., Lee, S., Jeong, H.-J., Kim, D.: EEDBR: energy-efficient depth-based
routing protocol for underwater wireless sensor networks. In: Kim, T., Adeli, H.,
Robles, R.J., Balitanas, M. (eds.) AST 2011. CCIS, vol. 195, pp. 223–234. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24267-0 27

7. Xie, P., Cui, J.-H., Lao, L.: VBF: vector-based forwarding protocol for under-
water sensor networks. In: Boavida, F., Plagemann, T., Stiller, B., Westphal,
C., Monteiro, E. (eds.) NETWORKING 2006. LNCS, vol. 3976, pp. 1216–1221.
Springer, Heidelberg (2006). doi:10.1007/11753810 111

8. Erol, M., Vieira, L.F.M., Gerla, M.: AUV-aided localization for underwater sen-
sor networks. In: International Conference on Wireless Algorithms, Systems and
Applications, pp. 44–54. IEEE Xplore (2007)

9. The ns mannual. http://www.isi.edu/nsnam/ns/doc/index.html
10. Xie, P., Zhou, Z., Peng, Z., Yan, H.: Aqua-Sim: an NS-2 based simulator for under-

water sensor networks, pp. 1–7. IEEE (2009)
11. Lee, U., Wang, P., Noh, Y., Vieira, L.F.M., Gerla, M., Cui, J.H.: Pressure routing

for underwater sensor networks. In: Conference on Information Communications,
pp. 1676–1684. IEEE Press (2016)

http://dx.doi.org/10.1007/978-3-540-79549-0_7
http://dx.doi.org/10.1007/978-3-540-79549-0_7
http://dx.doi.org/10.1007/978-3-642-24267-0_27
http://dx.doi.org/10.1007/11753810_111
http://www.isi.edu/nsnam/ns/doc/index.html

Energy-Balanced and Depth-Controlled Routing Protocol 131

12. O’Rourke, M., Basha, E., Detweiler, C.: Multi-modal communications in underwa-
ter sensor networks using depth adjustment. In: ACM International Conference on
Underwater Networks and Systems, pp. 1–5. ACM (2012)

13. Jafri, M.R., Ahmed, S., Javaid, N., Ahmad, Z., Qureshi, R.J.: AMCTD: adaptive
mobility of courier nodes in threshold-optimized DBR protocol for underwater
wireless sensor networks. Int. J. Distrib. Sens. Netw. 2, 218–222 (2014)

14. Umar, A., Javaid, N., Ahmad, A., et al.: DEADS: depth and energy aware dom-
inating set based algorithm for cooperative routing along with sink mobility in
underwater WSNs. Sensors 15(6), 14458–14486 (2015)

15. Javaid, N., Jafri, M.R., Ahmed, S., et al.: Delay-sensitive routing schemes for under-
water acoustic sensor networks. Int. J. Distr. Sensor Netw. 11, 532676 (2015)

16. Majid, A., Azam, I., Waheed, A., et al.: An energy efficient and balanced energy
consumption cluster based routing protocol for underwater wireless sensor net-
works. J. Intell. Rob. Syst. 27(4), 324–333 (2016)

17. Ahmed, M., Salleh, M., Channa, M.I.: Routing protocols based on node mobility
for Underwater Wireless Sensor Network (UWSN): a survey. J. Netw. Comput.
Appl. 78, 242–252 (2016)

18. Li, N., Mart́ınez, J.F., Chaus, J.M.M., Eckert, M.: A survey on underwater acoustic
sensor network routing protocols. Sensors 16(3), 414 (2016)

19. Ibrahim, D.M., Eltobely, T.E., Fahmy, M.M., et al.: Enhancing the vector-based
forwarding routing protocol for underwater wireless sensor networks: a clustering
approach. In: The Tenth International Conference on Wireless and Mobile Com-
munications, ICWMC 2014, pp. 98–104 (2014)

On the Energy Efficiency of Sleeping and Rate
Adaptation for Network Devices

Timothée Haudebourg1 and Anne-Cécile Orgerie2(B)

1 ENS Rennes - University of Rennes 1, Rennes, France
timothee.haudebourg@ens-rennes.fr

2 CNRS - IRISA, Rennes, France
anne-cecile.orgerie@irisa.fr

Abstract. The ever-growing appetite of Internet applications for net-
work resources has led to an unprecedented electricity bill for these
telecommunication infrastructures. Several techniques have been devel-
oped to improve the energy consumption of network devices. As their
utilization highly varies over time, the two main techniques for saving
energy, namely sleeping and rate adaptation, exploits the lower work-
load periods to either put to sleep some hardware elements or adapt the
network rate to the actual traffic level. In this paper, we compare two
emblematic approaches of these energy-efficient techniques: Low Power
Idle and Adaptive Link Rate. Our simulation-based study quantifies the
reachable energy savings of these two approaches depending on the traffic
characteristics. We show that, with little impact on the Quality of Service
and consequent energy savings, Low Power Idle has a clear advantage.
On the contrary, ALR is almost always consuming more than LPI and
can reach unacceptable QoS levels. We also show that they can be com-
bined to achieve better energy-efficiency, but at the cost of important
QoS degradation.

Keywords: Energy efficiency · Wired networks · Sleeping · Adaptive
Link Rate · Low Power Idle

1 Introduction

Information and Communications Technologies (ICT) currently consume around
5% of global electricity with one third of this consumption that is imputed to
communication networks [19]. The multiplication of end-user devices leads to a
rapid growth of the traffic. A recent study made by Cisco estimates that annual
global IP traffic will pass the zettabyte threshold by the end of 2016 [13]. This
ever-growing appetite of Internet applications for network resources has led to
an unprecedented electricity bill for these telecommunication infrastructures.

Yet, it has been shown that network infrastructures are not used at their
full capacity and present high redundancy for fault-tolerance and security pur-
poses [11,22,25]. Moreover, network devices such as routers and switches are
power-hungry even when they are little or not used [7,16,23]. The energy con-
sumption of networks is not only incurred by powering networking equipment
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 132–146, 2017.
DOI: 10.1007/978-3-319-65482-9 9

On the Energy Efficiency of Sleeping and Rate Adaptation 133

(routers, switches, links, hubs, etc.), but also by end-hosts that demand high
availability and full-time connectivity even if the network is not used [18].

The ideal power-proportionality has still not been reached by device manu-
facturers [4]. These observations have led to the proposition of various solutions
to save energy in wired networks. Approaches found in literature can be cate-
gorized into two categories, both exploiting the lower charge periods to either
put to sleep some hardware elements (sleeping) or adapt the network rate to the
actual traffic level (rate adaptation).

The emblematic sleeping solution proposes a standardized Low Power Idle
(LPI) mode [12] (norm IEEE 802.3az). The basic idea of this Energy-Efficient
Ethernet (EEE) standard consists in sending packets as fast as possible and
entering a low-power idle state when there is no data to transmit. The first
network devices implementing this capability have appeared on mass market in
2013. Packet coalescing can be used to improve LPI performances at the cost of
a slight latency increase [9,14].

As for rate adaptation, the most famous implementation is Adaptive Link
Rate (ALR) which has been proposed in 2005 [16–18]. It follows the idea of the
Dynamic Voltage Frequency Scaling (DVFS) for CPUs adapted to the network
device port rates. When full speed is not needed, a lower rate is negotiated
between the network ports sharing a common link, thus incurring less power
consumption [5]. Two buffer thresholds are employed to decide when to switch
to a lower or a higher rate. Several policies have been proposed to adjust these
buffer threshold with the aim of reducing oscillations between rates [5,17].

While these two techniques pursue a common goal, they adopt radically dif-
ferent approaches. Moreover, while LPI is standardized and deployed for several
years, ALR is still looking for a viable implementation resolving its oscillation
issues. One can wonder which approach can provide the larger energy savings,
at what cost for the Quality-of-Service, and whether they can be combined for
a better result or not. The only study comparing both approaches that can be
found in literature proposes a theoretical comparison based on models of sleep-
ing and rate adaptation general techniques [20]. In particular, as this study was
published in 2008, before the adoption of IEEE 802.3az, the employed sleeping
model is using values differing by an order of magnitude from the one imple-
mented in Low Power Idle (for the switching time for instance). This study does
not try to combine both approaches.

In this paper, we propose a simulation-based comparison relying on an imple-
mentation of the two existing protocols (LPI and ALR) under various traffic
conditions, and we provide a quantified study of both approaches separately
and combined. This evaluation of the practical implementations of the two main
energy-efficient techniques found in literature – namely sleeping and rate adap-
tation – quantifies the impacts of both techniques combined and separately, on
energy consumption and quality of service (QoS).

Contrarily to previous work, we show that LPI has a clear advantage in
terms of energy savings compared to ALR, and an even larger advantage on
QoS for most of the traffic scenarios. Our results also indicate that combining

134 Ti. Haudebourg and A. Orgerie

both protocols, LPI and ALR, reduces the energy saving dependence to packet
coalescing. But, at the same time, it hugely impacts QoS, thus making LPI alone
more suitable.

Section 2 introduces the context, shows the different solutions proposed in
literature and presents a comparative study of these solutions. Section 3 describes
our experimentation conditions. The validation simulations are conducted using
our ECOFEN module implemented within the ns3 network simulator. Simulation
results are provided in Sect. 4 along with considerations on how to improve these
solutions. Section 5 concludes and presents future work.

2 State of the Art

Internet traffic presents a high dynamicity and variability [11,22]. Typically, the
Amsterdam Internet Exchange point [2] handles three times more traffic during
its peak periods than during its low periods on a daily basis. This fluctua-
tion leads to infrastructure over-provisioning and energy waste for QoS purpose.
Indeed, networks usually stay fully operational at any time even during low
periods.

2.1 Rate Adaptation: Adaptive Link Rate (ALR)

ALR exploits low-traffic periods to downgrade the negotiated link rate and to
save energy [16]. Practically, for backward compatibility reasons, 10 Gbps ports
can operate at 1 Gbps, 100 Mbps or 10 Mbps, and consume less under lower
rates. For instance, a port operating at 1 Gbps consumes 9 times more power
than when operating at 100 Mbps [29]. However, switching between rates can
be costly in terms of time and energy. For instance, switching from 100 Mbps
to 10 Mbps requires 575.8 ms and consumes 0.8 W on average, while the port
consumes 0.4 W at 100 Mbps and 0.1 W at 10 Mbps [29].

ALR [5] is relying on a MAC handshake protocol to negotiate the rate
between the ports sharing the same link and requires the physical layers of
both ports to be resynchronized [18]. This process explains the lengthy switch-
ing times. The policy for switching between rates is based on a dual threshold on
the buffer occupancy: a lower threshold and an upper one [17]. When the upper
threshold is reached, ALR initiates a switching to an upper rate, and symmetri-
cally, when the buffer occupancy goes under the lower threshold, ALR switches
to a lower rate. These two thresholds have to be carefully tuned in order to avoid
oscillations [17].

2.2 Sleeping: Low Power Idle (LPI)

LPI also relies on low-traffic periods to save energy, but with a different approach:
it puts the device in a low-power mode at the Ethernet physical layer level
when there is no traffic for a short period of time. A refresh signal is then sent
periodically to avoid renegotiating link parameters when coming back to normal

On the Energy Efficiency of Sleeping and Rate Adaptation 135

Fig. 1. Packet service times and power consumption in the following cases: (a) no
power-aware optimizations, (b) sleeping, (c) rate adaptation, (d) sleeping and rate
adaptation (from [8]).

mode [12]. Typically, the energy consumption when the device is in low power
mode can be as low as 10% that of the active mode [12].

As stated in the IEEE 802.3az standard, the length of the transitions to
and from the LPI mode are not negligible and these transitions also consume
energy [1]. For instance, according to the standard [1], from 100 Mbps it takes
200µs to go to LPI mode, and 30µs to wake up, while the transmission time for
a 1500 byte frame is 120µs. These values are three orders of magnitude lower
than the rate switching times of ALR. In order to increase LPI energy savings,
coalescing strategies have been developed to buffer incoming packets and to send
them in burst, thus increasing sleeping duration [9]. A typical coalescing strategy
consists of combining a timer and a buffer size threshold to trigger the sending
burst [12].

Figure 1 summarizes the different options for using sleeping and rate adap-
tation techniques and the corresponding impact on power consumption.

3 Experimentation Conditions

We evaluate the energy savings-QoS trade-off achieved by ALR, LPI, and ALR
and LPI combined, and the impact of traffic characteristics on this trade-off. For
comparing sleeping and rate adaptation techniques, we have implemented ALR
and LPI protocols within the network simulator ns3 [21]. For the simulations, a
single link between two nodes is considered with a 100 Mbps bandwidth and a
latency of 5 ms. The injected traffic is described in the next section.

3.1 Energy Consumption

The energy consumption for the network devices has been computed using the
models provided in [24]. These models include per-byte and per-packet energy
costs for Ethernet ports as measured on real hardware [28].

136 Ti. Haudebourg and A. Orgerie

Table 1. Time and power costs per network port utilized for the simulations

Category State Time (s) Power (W)

Idle consumption 100Mbps - 0.4

ALR 10Mbps → 100Mbps 72.4 × 10−3 0.8

100Mbps → 10Mbps 574.8 × 10−3 0.8

at 10 Mbps - 0.1

LPI Time to awake Tw 30 × 10−6 0.8

Time to sleep Ts 200 × 10−6 0.8

in LPI mode - 0.04

Concerning the energy consumption of ALR and LPI operations (switching),
we have used real measurements from the literature: [26] for LPI (made on a
RTL8111E Realtek NIC implementing draft 3.2 of the LPI standard) and [29]
for ALR (using a Xilinx Virtex-II Pro NetFPGA). Concerning ALR, we have
used the dual threshold policy described in [17]. For LPI, we have implemented
the coalescing strategy with a fixed timer as described in [12]. Table 1 summarizes
the main time and power costs per network port as utilized in our simulations
for ALR and LPI.

3.2 Traffic Characteristics

Our experiments target a quantification of the energy consumption and the QoS
parameters (latency and jitter) of ALR and LPI over a single link connecting
two nodes. A single flow is injected from one node to the other one. We vary
three main characteristics of this flow:

– αd: the flow density, the ratio of sent bits per second over the link capacity.
From the buffer threshold policy analysis, this utility ratio seems to be the
main parameter influencing ALR.

– αr: the flow regularity, it characterizes the delay variance between each sent
packet. This parameter characterizes the time gap between consecutive pack-
ets, and thus may influence the ability of both approaches to save energy.

– αc: the flow coalescence, the probability of packets to be sent by bursts. As
explained in the description of LPI, coalescence can greatly help LPI to reach
larger energy savings.

Each parameter is normalized (belongs to [0, 1]). Then, flows are generated
according to these parameters as follows. The density parameter αd allows to
compute the mean delay between each packet: Tdelay = Psize

Clink×αd
.

With Clink the link capacity and Psize the packet size. The regularity
parameter αr determines the random variable Y used to define the delay
between two consecutive packets. Following previous traffic studies [6,15], we
set: Y = αr × Tdelay + (1 − αr) × X.

On the Energy Efficiency of Sleeping and Rate Adaptation 137

With X a random variable following an exponential law of parameter
λ = 1

Tdelay
. When αr goes to 1, this guarantees that the density parameter

is respected, without having a perfectly (non realistic) regular flow. Finally, the
coalescing parameter αc determines the probability for a packet to be delayed
and sent with the next one (if the next one is also delayed, they are both sent
with the packet after the next one, and so on).

The graphs presented in this paper result from more than 30,000 simulations
overall (with varying the three parameters). The link capacity is set to 100 Mbps
for simulation duration constraints (a 1 Gbps link produces much longer simu-
lations). ALR can reduce this rate to 10 Mbps if the utility ratio is under 0.1
following its buffer threshold policy. For each given triplet (αd, αr, αc), the same
flow is simulated with ALR, LPI, and ALR and LPI combined (thanks to the
deterministic pseudo-random generator of ns3). The simulation is also run with-
out any energy saving techniques to norm the energy consumption results of
the different experiments (i.e. the 100% in energy on the graphs represents this
scenario). We observe that the energy consumption of the two ports without
energy saving techniques is independent from the three parameters (αd, αr, αc).
Then the same experiments are repeated with a different seed for the random
variables. Each point on the figures is thus the average value of 10 different runs.

4 Energy Savings and Performance Degradation
of Sleeping and Rate Adaptation Techniques

4.1 Energy Consumption

Figure 2 shows the energy consumption of the two connected ports with ALR as
a function of the coalescence parameter αc and the density parameter αd. The
energy is shown in percentage of the consumption without energy saving tech-
nique. As expected, energy savings occur only below 10% of link utilization (i.e.
αd < 0.1). The observed results for energy saved are similar to those observed
in literature [3,29].

In the best case, when the utilization is really low (αd close to 0), the over-
all energy consumption reduces to 25%. Unfortunately, such a low bandwidth
utilization is not frequent in all kinds of network. While it can often happen in
access networks, it rarely occurs in core networks for instance. It can also be
observed that, for beneficial traffic for ALR (traffic below 10% of link capacity),
packet coalescence increases the energy savings by less than 10%.

Figure 3 presents the same experiment using LPI instead of ALR. As
expected, the energy consumption in this case highly depends on the packet
coalescence: it diminishes with the coalescence increase. These results are in
line with previous estimations from the literature [12,14]. This coalescence can
be reached either by traffic engineering at the application level or by utilizing
coalescing buffers within the ports.

138 Ti. Haudebourg and A. Orgerie

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Coalescence 0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Density

0

20

40

60

80

100

Energy

20
30
40
50
60
70
80
90
100

Fig. 2. Energy consumption when using ALR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Coalescence 0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Density

0

20

40

60

80

100

Energy

10

20

30

40

50

60

70

Fig. 3. Energy consumption when using LPI

Similarly to ALR, LPI is sensitive to the link utilization. The lower αd is, the
higher energy savings are. In the worst scenario for LPI, it can still reach 40%
of energy savings, and 80% in the best case.

In both cases ALR and LPI, we observe that the flow regularity has low
impact on energy consumption, although it slightly improves the savings when
the flow is less regular (αr small). More generally, it appears that, from a pure
energy saving point of view, LPI behaves better than ALR in most of the cases.
Only under 10% of utilization and without packet coalescence, ALR allows for
slightly greater energy savings than LPI. However, as shown in [29], with ALR,
the link has to stay several seconds in the lower rate to amortize the switching
energy cost.

Concerning ALR, it would probably perform better if more rates were avail-
able from a hardware point of view, as it is the case for the CPU frequencies and
DVFS (Dynamic Voltage Frequency Scaling) [27]. However, the availability of
these rates in current network ports results from a side effect of the heterogene-
ity and backward compatibility principle that is essential in today’s networks.

On the Energy Efficiency of Sleeping and Rate Adaptation 139

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Coalescence 0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Density

0

20

40

60

80

100

Energy

10
15
20
25
30
35
40
45
50
55

Fig. 4. Energy consumption while combining ALR and LPI

Indeed, the lower frequencies of a network port are used if the port of the cor-
responding device to which it is connected is not able to operate at this speed.
Introducing intermediate rates without any compatibility requirement coming
from previous Ethernet norms will need an important standardization effort
from the manufacturers to offer identical rates for all new devices. Furthermore,
it would need a thorough analysis on real hardware to measure the potential
energy-related benefits of new rates.

Figure 4 shows the results with ALR and LPI combined. Although, higher
energy savings are reached (more than 80%), the dependency to packet coales-
cence (parameter αc) has disappeared. In this scenario, savings are bigger on
average than the LPI-only case and packets coalescence is not useful any more.
Indeed, when switching to lower rates, ALR increases per-packet transmission
time and thus, naturally coalesces packets.

These experiments allow us to confirm that our implementations behave
according to the literature for the ALR and LPI alone scenarios. Combining both
approaches, we have found original results not previously studied in related work.
Moreover, from a technical point of view, combining ALR and LPI required the
design of a new algorithm to prioritize actions done by the two protocols. For
instance, when the link utilization is low, if we use ALR first, idle periods are
reduced because the rate is lower, and thus, LPI switches to low power mode for
smaller periods although it could lead to better savings than ALR.

4.2 Quality of Service

In the three scenarios (ALR, LPI and ALR+LPI), the energy-efficient protocols
are impacting the packet delivery, and thus the QoS experienced by the users.
These impacts concern:

– the bandwidth, when ALR is reducing the link rate;
– the latency, when LPI is in low power mode (this adds the time to wake up

the port), or when ALR is reducing the link rate;
– the jitter, when using packet coalescence to improve LPI performances for

instance.

140 Ti. Haudebourg and A. Orgerie

Here we will quantify these impacts on the QoS for the experiments performed
in the previous section. For the simulations, the link latency was set to 5 ms
(typical LAN network). For LPI alone, the measured latency increase is negligible
in most cases. Indeed, the time parameters of LPI (Ts, Tr and Tw) are in the
order of microseconds, and thus have little impact on the end-to-end packet
latency. In the worst case, which is for heavy and highly irregular traffic, the
latency does not exceed 6.5 ms. In this case, LPI has more chances to switch to
low power mode while receiving new packets. The port needs then to completely
switch to low power mode before waking up and sending the packets.

Fig. 5 shows the latency (in milliseconds) induced by ALR depending on flow
density and flow regularity. In the worst case, when ALR is energy-efficient (link
utilization under 10% = αd ≈ 0.1), the latency can go up to almost 50 ms,
against 5 ms usually. This result comes from ALR which reduces the link rate,
and this automatically increases the reception delays. The jitter is particularly
high when the link utilization is around 10% because this is when ALR tends
to oscillate between high and low rate, thus inducing substantial oscillations on
the latency. Under this threshold, latency is stabilized around 50 ms, and over
this threshold, it is stabilized around 5 ms, thus keeping the jitter stable in these
two regions.

In ALR and LPI cases, this QoS degradation comes from the switching times
between states (rates for ALR and sleep/aware for LPI). ALR, with its switching
time three orders of magnitude higher than LPI, performs poorly in compari-
son. Moreover, while LPI’s switching times depends mostly on hardware, ALR’s
switching times result mainly from network protocol costs (physical layer resyn-
chronization) [29]. Switching times are thus more complex to reduce for ALR
than for LPI.

If the combined use of ALR and LPI seems promising in terms or energy
savings, its effects on QoS are less pleasing. Figure 6 shows the QoS provided
when combining ALR and LPI. When flow density is small, latency and jitter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Density 0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

Regularity

10

20

30

40

50

60

70

Latency (ms)

10

20

30

40

50

60

70

(a) Latency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Density 0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

Regularity

0

500

1000

1500

2000

2500

3000

Jitter

0

500

1000

1500

2000

2500

3000

(b) Jitter

Fig. 5. Latency and jitter with ALR

On the Energy Efficiency of Sleeping and Rate Adaptation 141

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Density 0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

Regularity

0
100
200
300
400
500
600
700

Latency (ms)

0
100
200
300
400
500
600
700

(a) Latency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Density 0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

Regularity

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Jitter

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

(b) Jitter

Fig. 6. Latency and jitter with ALR and LPI combined

are high. The worst case is still around αd = 0.1, but the latency is ten times
worse than in the case of ALR alone, while the latency is three times worse. ALR
rate adaptation mechanisms are even less reactive when combined with sleeping
periods due to LPI switching to low power mode. On a small network, such a
poor QoS is not bearable for latency-critical applications like voice over IP. On
a larger network, latency may accumulate at each device and results could even
be worse from a QoS point of view.

4.3 Heterogeneous Network

Our second scenario considers a realistic network based on the description of an
Italian Internet Service Provider (ISP) given in [10]. This scenario aims at eval-
uating the performances of ALR and LPI on an heterogeneous network, where
links do not present the same throughput. While the authors of [10] consider
switching off entire nodes (i.e. routers or switches), here, we only act on the
links and associated ports through ALR and LPI. Our approach is thus less dis-
ruptive and easier to apply in practice (no re-routing protocol needed). As we
do not consider switching off entire network nodes, in the following experiments,
we do not take into account the static energy consumption of these devices (it
remains the same values for all the experiments).

The original network is hierarchical and presented in [10]; it consists of 8
core nodes, 52 backbone nodes, 52 metro nodes and 260 feeders. Due to long
simulation duration and for symmetry reasons, we accurately simulate only a
quarter of this network, the rest is aggregated into several nodes. The simulated
network is presented in Fig. 7.

142 Ti. Haudebourg and A. Orgerie

core-0

core-1

core-0

internet

city-1

backbone-0

backbone-1

backbone-2

core-1

metro

backbone-0

metro

feeder-0

feeder-1

feeder-2

backbone-1

backbone-2

Fig. 7. Simulated representative section of the ISP network

The network has a hierarchical design, it is composed of:

– core nodes: they are connected among themselves through 50 Gbps links, each
link being redundant for failure protection. They represent points of presence
in a major city (4 core nodes per city). The second city is aggregated in one
node called city-1 in our scenario.

– backbone nodes : they are connected to the core nodes through 20 Gbps links,
each backbone node being connected to two different core nodes. They are
spread across the city.

– metro nodes: they are connected to two backbone nodes each through 20 Gbps
links.

– feeders: they are connected to metro nodes through 10 Gbps links. They are
responsible for bringing connectivity to the DSLAMs to which users are con-
nected, so each feeder aggregates traffic from users in the same neighborhood
or small town.

– Internet node: two central core nodes are connected to an Internet node by
means of a 100 Gbps link, representing the gateway to access the Internet and
the other networks (like an Internet exchange point).

In this scenario, only feeders and the Internet nodes are able to generate
traffic, the other nodes only route the traffic. On Fig. 7, the nodes aggregat-
ing the traffic from nodes of the original network design presented in [10] are
backbone-1, backbone-2, core-0, core-1 and city-1. For simulation reasons also,
we have divided all the link throughputs by 1,000; so the smaller links have a
10 Mbps bandwidth instead of a 10 Gbps. Our experiment simulates one hour
of real traffic, and in spite of our simplifications for reducing the simulation
duration, it still lasts more than 40 h on average (for 1 simulated hour).

On the Energy Efficiency of Sleeping and Rate Adaptation 143

Fig. 8. Energy consumption ratio between the different energy saving options and the
case where no energy saving technique is applied

Connections are distributed according to a normal law centered on 30 min, in
order to show a peak of use in the middle of the simulation. Hence, the behaviors
of ALR and LPI can be studied under different traffic loads. For a realistic traffic
distribution, we consider that 70% of the connections are between the Internet
node (outside the ISP) and one of the feeders, and 30% are between two feeders
of the ISP [10].

In an heterogeneous network, ALR and LPI may present different behav-
ior depending on the considered network part. Figure 8 compares the energy
consumed by the different network parts during the simulation with ALR, LPI
and ALR+LPI combined. The energy is expressed as the ratio between the con-
sidered consumption and the network consumption without any energy saving
method (represented by 1).

One can see that the largest energy savings are realized on the most con-
suming links: at the core of the network between core nodes. For these devices,
whatever the considered techniques, it leads to at least 60% of the energy saved
compared to no energy reduction technique. However, unlike in the first sce-
nario, LPI allows for the largest energy savings among the 3 considered options.
Combining ALR and LPI allows for better energy savings at the edge of the
networks for links between metro nodes and feeders. In this case, ALR+LPI can
save up to 40% of the energy on average, against 25% with LPI only and 5%
with ALR only.

Although overall energy savings are smaller on edge links, they are largely
more numerous than core links. Indeed, considering the entire original network
presented in [10], one can estimate that the energy consumed by the network
ports at the edge (feeders) represent 36% of the overall energy consumed by all
the ports of the network. One should notice that this value is different from the
one presented in [10] as we only consider the dynamic energy consumption of
the network devices (consumption of the ports) which are the only elements on
which one can act when not considering to switch off entire devices (contrary to

144 Ti. Haudebourg and A. Orgerie

Fig. 9. Energy consumption of the network ports by category of network

what is done in [10]). Figure 9 presents the energy consumption proportion for
the network ports by network category.

The largest energy consumption part resides in the network between the
metro network and the feeders. For this part, the ALR+LPI option reaches
the lowest energy consumption. Yet, as outlined by the first scenario, ALR and
ALR+LPI are leading to unacceptable QoS degradation that make them unsuit-
able for users. In this scenario, we consider only ISP point of view: residential
and access networks (last mile) are not taken into account in the overall picture.

5 Conclusion

In this article, we provide a quantified comparison of ALR and LPI, two protocols
implementing the two main energy-efficient approaches of the literature. This
simulation-based study has been conducted in terms of energy savings and QoS.
It appears that in the majority of the cases, LPI allows for more savings than
ALR, independently from the network topology. Indeed, the limited number of
available rates for current network ports (10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps)
constrains the energy efficiency of ALR to operate only under 10% of link usage.
However, under this 10% limit, some rare cases show better savings for ALR
than for LPI, in particular when the coalescence of the traffic is low.

The previous literature study comparing these two generic approaches was
notably more to the benefit of rate adaptation than sleeping [20]. This study
from 2008 was considering much higher switching costs for sleeping technique
than the one achieved in practice with LPI, and switching costs between states
(rates for rate adaptation and sleep/awake for sleeping) constitute the most
influencing factor on energy savings and QoS.

This study also shows that combining LPI and ALR provides better energy
savings than with LPI only. In particular, combining ALR with LPI would reduce
the impact of coalescing on the reached energy savings. However, these energy
savings come at the cost of significantly higher latency and jitter which are not
acceptable for end-users. LPI alone would then be a more suitable option to save

On the Energy Efficiency of Sleeping and Rate Adaptation 145

energy while keeping expected QoS levels. Consequently, with the current state-
of-the-art hardware, ALR should stop being considered as a suitable solution by
the community. Our future work include exploring future hardware architecture
achieving a relative low static power dissipation compared to the dynamic part,
and studying from which ratio ALR would start to be more beneficial.

Acknowledgments. Experiments presented in this paper were carried out using the
Grid’5000 experimental test-bed, being developed under the Inria ALADDIN develop-
ment action with support from CNRS, RENATER and several Universities as well as
other funding bodies (see https://www.grid5000.fr).

The authors would like to thank the reviewers for their valuable comments.

References

1. IEEE Standard for Information technology- Local and metropolitan area networks-
Specific requirements- Part 3: CSMA/CD Access Method and Physical Layer Spec-
ifications Amendment 5: Media Access Control Parameters, Physical Layers, and
Management Parameters for Energy-Efficient Ethernet. IEEE Std 802.3az-2010
(Amendment to IEEE Std 802.3-2008), pp. 1–302, October 2010

2. Amsterdam internet exchange. https://ams-ix.net/technical/statistics. Accessed
October 2016

3. Anand, H., Reardon, C., Subramaniyan, R., George, A.: Ethernet adaptive link
rate (ALR): analysis of a MAC handshake protocol. In: 31st IEEE Conference on
Local Computer Networks, pp. 533–534 (2006)

4. Barroso, L., Holzle, U.: The case for energy-proportional computing. Computer
40(12), 33–37 (2007)

5. Bennett, M., Christensen, K., Nordman, B.: Improving The Energy Efficiency Of
Ethernet: Adaptive Link Rate Proposal. Ethernet Alliance White Paper (2006)

6. Benson, T., Akella, A., Maltz, D.: Network traffic characteristics of data centers
in the wild. In: Conference on Internet measurement (IMC), pp. 267–280 (2010)

7. Bolla, R., Bruschi, R., Christensen, K., Cucchietti, F., Davoli, F., Singh, S.: The
potential impact of green technologies in next generation wireline networks - is
there room for energy savings optimization? IEEE Commun. 49(8), 80–86 (2011)

8. Bolla, R., Bruschi, R., Davoli, F., Cucchietti, F.: Energy efficiency in the future
internet: a survey of existing approaches and trends in energy-aware fixed network
infrastructures. IEEE Commun. Surv. Tutor. 13(2), 223–244 (2011)

9. Chatzipapas, A., Mancuso, V.: Measurement-based coalescing control for 802.3az.
In: IFIP Networking Conference (Networking) and Workshops, pp. 270–278 (2016)

10. Chiaraviglio, L., Mellia, M., Neri, F.: Energy-aware backbone networks: a case
study. In: IEEE International Conference on Communications (ICC) Workshops,
pp. 1–5 (2009)

11. Christensen, K., Gunaratne, C., Nordman, B., George, A.: The next frontier for
communications networks: power management. Comput. Commun. 27(18), 1758–
1770 (2004)

12. Christensen, K., Reviriego, P., Nordman, B., Bennett, M., Mostowfi, M., Mae-
stro, J.: IEEE 802.3az: the road to energy efficient ethernet. IEEE Commun. Mag.
48(11), 50–56 (2010)

13. The zettabyte era: trends and analysis. Technical report, Cisco (2016)

https://www.grid5000.fr
https://ams-ix.net/technical/statistics

146 Ti. Haudebourg and A. Orgerie

14. De La Oliva, A., Hernández, T.R.V., Guerri, J.C., Hernández, J.A., Reviriego,
P.: Performance analysis of energy efficient ethernet on video streaming servers.
Comput. Netw. 57(3), 599–608 (2013)

15. Ersoz, D., Yousif, M., Das, C.: Characterizing network traffic in a cluster-based,
multi-tier data center. In: International Conference on Distributed Computing Sys-
tems (ICDCS) (2007)

16. Gunaratne, C., Christensen, K., Nordman, B.: Managing energy consumption costs
in desktop PCs and LAN switches with proxying, split TCP connections, and
scaling of link speed. Int. J. Netw. Manage. 15(5), 297–310 (2005)

17. Gunaratne, C., Christensen, K., Suen, S.: Ethernet adaptative link rate (ALR):
analysis of a buffer threshold policy. In: IEEE Global Telecommunications Confer-
ence (GLOBECOM 2006), pp. 1–6 (2006)

18. Gunaratne, C., Christensen, K., Nordman, B., Suen, S.: Reducing the energy con-
sumption of ethernet with adaptive link rate (ALR). IEEE Trans. Comput. 57(4),
448–461 (2008)

19. Impact of ICT on the energy consumption around the world. Technical report.
National Academy of Technologies of France (2014)

20. Nedevschi, S., Popa, L., Iannaccone, G., Ratnasamy, S., Wetherall, D.: Reducing
network energy consumption via sleeping and rate-adaptation. In: USENIX Sym-
posim on Network Systems Design & Implementation (NSDI), pp. 323–336 (2008)

21. ns3 network simulator. http://www.nsnam.org
22. Odlyzko, A.: Data networks are lightly utilized, and will stay that way. Rev. Netw.

Econ. 2, 210–237 (2003)
23. Orgerie, A.C., Dias de Assunção, M., Lefèvre, L.: A survey on techniques for

improving the energy efficiency of large-scale distributed systems. ACM Comput.
Surv. 46(4), 47 (2014)

24. Orgerie, A.C., Lefèvre, L., Guérin-Lassous, I., Lopez Pacheco, D.: ECOFEN: an
end-to-end energy cost model and simulator for evaluating power consumption in
large-scale networks. In: SustaInet: Workshop on Sustainable Internet and Internet
for Sustainability (2011)

25. Patel-Predd, P.: Energy-efficient ethernet: ethernet connections waste lots of watts.
It need not be so. IEEE Spectr. Mag. 45(5), 13 (2008)

26. Reviriego, P., Christensen, K., Rabanillo, J., Maestro, J.: An initial evaluation of
energy efficient ethernet. IEEE Commun. Lett. 15(5), 578–580 (2011)

27. Shang, L., Peh, L.S., Jha, N.: Dynamic voltage scaling with links for power
optimization of interconnection networks. In: International Symposium on High-
Performance Computer Architecture (HPCA) (2003)

28. Sivaraman, V., Vishwanath, A., Zhao, Z., Russell, C.: Profiling per-packet and per-
byte energy consumption in the NetFPGA Gigabit router. In: IEEE INFOCOM
Workshops, pp. 331–336 (2011)

29. Zhang, B., Sabhanatarajan, K., Gordon-Ross, A., George, A.: Real-time perfor-
mance analysis of adaptive link rate. In: IEEE Conference on Local Computer
Networks (LCN), pp. 282–288 (2008)

http://www.nsnam.org

Big Data and its Applications

Private and Efficient Set Intersection Protocol
for Big Data Analytics

Zakaria Gheid1(B) and Yacine Challal1,2,3

1 Laboratoire des Méthodes de Conception des Systèmes,
Ecole Nationale Supérieure d’informatique, Algiers, Algeria

{z gheid,y challal}@esi.dz
2 Centre de Recherche sur l’Information Scientifique et Technique, Algiers, Algeria

3 Université de Technologie de Compiègne,
Heudiasyc UMR CNRS 7253, Compiègne Cedex, France

Abstract. Private Set Intersection (PSI) is a fundamental multi-party
computation primitive used to secure many political, commercial, and
social applications. PSI allows mistrustful parties to compute the inter-
section of their private sets without leaking additional information. PSI
protocols have been largely proposed for both the semi-honest and the
malicious settings. Nevertheless, the semi-honest setting does not suf-
fice in many realistic scenarios and security in the malicious setting is
built upon cryptographic schemes, which require hard assumptions and
induce a high computational cost. In this work, we propose a novel two-
party PSI protocol secure under the mixed model, where the server may
be semi-honest and the client may be malicious. We build our protocol
upon matrix algebra without using any cryptographic schemes or non-
standard assumptions and we provide simulation-based security proof.
Our protocol achieves a linear asymptotic complexity of O(kv + kc) for
communications and server computations, where kv and kc are sizes of
the server and the client sets. Besides, we compare empirical performance
of our solution to the insecure hashing solution used in practice. Exper-
imental results reveal the efficiency and the scalability of our new PSI
protocol, which makes it adequate for Big Data analytics.

Keywords: Multi-party computation · Private set intersection · Big
Data Analytics

1 Introduction

Private set intersection (PSI) protocol allows a client and a server to jointly
compute the intersection of their private input sets without leaking any addi-
tional information. The client should only learn the intersection and the server
should learn nothing. PSI functionality is a core building-block for a variety
of privacy-preserving Big Data applications such as relationship path discovery
in social networks [1], online recommendation systems [2], medical studies of
human genomes [3], suspects detection by government agencies [4] and other
applications [5,6].
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 149–164, 2017.
DOI: 10.1007/978-3-319-65482-9 10

150 Z. Gheid and Y. Challal

As a very active research field, PSI problem has been largely studied and
several protocols have been proposed for both the semi-honest setting (meaning
that the adversary follows the protocol specifications) and the malicious setting
(meaning that the adversary may deviate arbitrarily from the protocol) [6,7].
However, there has been a poor adoption of PSI protocols in real applications
due to several reasons [7]. The semi-honest assumption provides weak security
guarantees and does not suffice for many realistic scenarios [8]. On the other
hand, PSI protocols that are secure against malicious adversaries achieve an
excessive overhead in communication and computation costs [7]. This is mainly
due to the strong assumptions that require to be satisfied.

Recently, there has been a great interest in improving the efficiency of
malicious-resistant PSI protocols [6,9,10]. Several works [5,11] have achieved
linear communication and computation complexities under non-standard secu-
rity models as the Oracle [12] and the Common Reference String [13] models.
Other works [6] proposed efficient PSI protocols with linear cost under the stan-
dard model, but relying heavily on strong security assumptions and Homomor-
phic public key cryptosystems [14]. Despite an efficient asymptotic complexity,
homomorphic encryption induces a high computational overhead and so, does
not meet Big Data requirements [15].

Our Contribution. Facing the need for more efficient PSI schemes under real-
istic security models, we propose a novel PSI protocol that is secure under the
mixed model of adversaries [16], where the client may be corrupted by a mali-
cious adversary and the server may be corrupted by a semi-honest adversary.
This model is more realistic than semi-honest one, since server entities are mostly
governed by laws requiring data privacy and security. We give a simulation-based
security proof for both cases where the client is corrupted and where the server
is corrupted. We build our protocol only upon matrix algebra without any cryp-
tographic scheme to cope with Big Data requirements in terms of computation
efficiency. We achieve a linear complexity in communication and server compu-
tation costs, thereby, we provide a better support for a high velocity stream
and a high server set volume. We confirm the efficiency of our protocol through
experimental evaluations.

In Sect. 2, we provide a short survey on literature works in PSI field and we
discuss them. Section 3 is devoted to preliminaries and standard notations used
throughout this work. In Sect. 4, we present our methodology to build a novel
PSI protocol and we describe its design. In Sect. 5, we give a simulation-based
security proof using Real/Ideal paradigm [17]. In Sect. 6, we analyse asymp-
totic complexities of communications and computations involved in our protocol.
Then, we make experimental performance evaluations in Sect. 7 and we end up
this work by a final conclusion.

2 Related Work

Private set intersection (PSI) problem is a fundamental functionality that has
been largely studied due to its important applications. In this section, we review

Private and Efficient Set Intersection Protocol for Big Data Analytics 151

important PSI protocols working in the standard (plain) model, where security
is based only on complexity assumptions.

Assume a client (C) and a server (V) having private sets X and Y of sizes kc

and kv respectively. Two main approaches were used to solve PSI(X,Y), namely
Oblivious Polynomial Evaluation (OPE) [18] and Oblivious Pseudo-Random
Functions (OPRF) evaluation [19].

OPE Based-PSI. In this approach, C defines a polynomial P (.) such that
P (x) = 0 for each x ∈ X, and sends to V homomorphic encryptions of the coef-
ficients of P (.). Then, V computes the encryption of (r.P (y)+y) for each y ∈ Y ,
using homomorphic properties of the encryption system and a fresh random r.
Finally, C decrypts the received cyphertexts and gets either elements of the
intersection (if plaintexts match an element of X) or random values. Following
this approach, Freedman et al. [2] proposed two PSI protocols for semi-honest
and mixed models using balanced allocations. They incur linear communica-
tions and linear client computations besides quadratic server computations that
can be reduced to O(kc + kv log log kc). Kissner and Song [20] proposed two
OPE-based protocols for semi-honest and malicious settings. The former incurs
a quadratic complexity and the latter relies on expensive generic zero knowl-
edge proofs to achieve correctness [5,10]. Later, Dachman-Soled et al. [21] pro-
posed a PSI protocol based on [20]. Their construction incurs communication of
O(kv.k2 log2kc +k.kc) and computation of O(kv.kc.k logkc +kv.k2log2kc), where
k is a security parameter. Recently, [6] proposed a more efficient OPE-based PSI
protocol for malicious settings. Their protocol incurs O(kv + kc) communica-
tions and implies O(kc +kv log log kc) computations under the strong Decisional
Diffie-Hellman assumption (strong DDH).

OPRF-Based PSI. They rely on a secure computation of a pseudo random
function (PRF) fk(x) on key (k) introduced by the server (V) and input (x)
introduced by the client (C), such that C should only learn fk(x), whereas V
should not learn x. PSI functionality was implemented using OPRF as follows:
V defines a random key (k) for a PRF fk(.) and computes the set fky = {fk(y) :
y ∈ Y }. Then, V and C executes an OPRF protocol where V inputs fk(.) and
C inputs the set X and gets the set fkx = {fk(x) : x ∈ X}. At the end, V
sends the set fky to C that evaluates fkx ∩ fky. OPRF was used by Hazay
and Lindell [22] to develop a maliciously-secure protocol with simulation-proof
for one corruption case (the client only). Besides, they proposed another PSI
protocol secure under the covert model of adversaries, which is a non-standard
model between semi-honest and malicious [21]. Their protocols incur O(kv.p(n)+
kc) communications and computations, where elements of the sets are taken
from {0, 1}p(n). Jarecki and Liu [11] improved the protocol of [22] to propose
a more efficient PSI protocol secure in the presence of both malicious parties
in the Common Reference String Model [13]. Their protocol incurs O(kv + kc)
communication and computation costs, but it requires a trusted third party for
a safe RSA generation [5]. Later, Hazay and Nissim [9] improved the work of
[2] for malicious settings. Their protocol incurs O(kv + kc) communications and
O(kc + kv log log kc) computations, but it is fairly complicated and uses both

152 Z. Gheid and Y. Challal

OPE and OPRF approaches [6]. Recently, [6] introduced more efficient OPRF-
based PSI protocols with O(kv + kc) costs under the strong-DDH assumption
and O((kv + kc) log (kv + kc)) communication and computation costs under the
DDH assumption.

In this work, we propose a novel PSI protocol approach based on matrix
representation of the private sets. We use efficient matrix algebra without any
cryptographic operations and we provide security under the mixed model of
adversaries. Our protocol incurs O(kv + kc) communication and server compu-
tation costs while maintaining fairness. We provide a detailed discussion about
efficiency of our work in Sects. 6.2 and 7.2.

3 Preliminaries

In this section, we present preliminaries and standard security notations used in
this work. More specific notations will be described later.

3.1 Private Set Intersection

In what follows, we give a formal definition of the Private Set Intersection (PSI)
computation. Let C and V denote respectively a client and a server. A private set
intersection (PSI) scheme is a two-party computation protocol between C and V ,
where C holds a set of private inputs of size kc, drawn from some domain of size
n, and V holds a set of private inputs of size kv drawn from the same domain.
At the end of the protocol, C should learn which specific inputs are shared by
both C and V , whereas, V should learn nothing. Let X = {x1, ..., xkc} and
Y = {y1, ..., ykv} denote respectively C’s and V ’s sets of inputs, then, C learns
PSI(X,Y) = X ∩ Y �−→ {xi | ∃j : xi = yj}. This is a branch of multi-party
computation (MPC) problems [23].

3.2 Multi-Party Computation

Let us consider a set of participants that want to jointly compute the value
of a public function f relying on their private data. Let P1,...,Pn denote the
participants and v1,...,vn their private data respectively. We call Multi-Party
Computation (MPC) model the running process of f(v1, ..., vn). Let Π denote a
multi-party protocol executed by n participants (P1,...,Pn) in order to evaluate
the function f . Let v denote the set of inputs (v1, ..., vn) and sec denote the set
of security parameters.

Notation 1. Let viewΠ
E (w,sec)i denote the set of messages received by the party

Pi∈{1,...,n} along with its inputs and outputs during the execution E of Π on the
set of inputs w and security parameters sec.

Notation 2. Let outΠE (w,sec)i denote the output of the party Pi∈{1,...,n} by the
execution E of the protocol Π on the set of inputs w and security parameters

Private and Efficient Set Intersection Protocol for Big Data Analytics 153

sec. Let outΠE (v,sec) denote the global output of all collaborating parties from the
same execution of Π, where

outΠE (w, sec) = ∪n
i=1outΠE (w, sec)i (1)

In next section, we introduce a novel MPC protocol for private set intersection.
Later, we will use these MPC notations to prove the security of our proposal.

3.3 Privacy Threat Model

In MPC protocols, the possible security threat raising from a corrupted party
that participates to the execution of the protocol can be classified according to
the corrupting adversary’s model.

Passive Model (Semi-honest). In this model, the corrupted parties are sup-
posed following the protocol’s specifications, yet they are allowed to analyse all
information gathered during the execution of the protocol.

Active Model (Malicious). In this model, the corrupted parties may ran-
domly deviate from the protocol specifications. The two common behaviors in
such a model are (a) aborting the protocol untimely or (b) injecting fake inputs.

Mixed Model. This is an extension of the above assumed behavioral models,
in which the adversary can either corrupt some parties actively, and other parties
passively. Thus, allowing each party to behave according to its corruption model
(active or passive).

4 A Novel Private and Efficient Set Intersection Protocol

In this section, we present our novel private set intersection protocol and we
describe its design.

4.1 Overview and Motivation

In many real-world applications, set intersection functionality is secured across
hash-based schemes, in which, they use a commutative one-way hash function
to encrypt all items [24]. Each party encrypts its items with its own key, then,
each set is passed to the other party to be encrypted. Since, encryption is com-
mutative, encrypted values will be equal if and only if the original values were
the same. This hash-based scheme is very efficient, but provides weak security
guarantees if the input domain is not large or does not have a high entropy [7].
One party could run a brute force attack by applying all items that can be in
the input domain to the hash function and compare the results to the received
hashes.

154 Z. Gheid and Y. Challal

In this work, we introduce a novel matrix model that is secure against such
brute force attacks. To do this, we represent the private input sets as row-
matrices (each matrix corresponds to a private set and each row within it cor-
responds to an element in the set). Then, each party obfuscates its matrix by
performing a product with a random matrix chosen independently from the
input domain. Next, each party sends its resultant matrix to the other party to
be multiplied by the other random matrix. Since, matrix product is not com-
mutative, which is required for the correctness of the scheme, the two parties
will interchange the side of the matrix product (left multiplication and right
multiplication). At the end, the two resultant matrices will be checked for rows
equality as each row corresponds to an original element in the set.

4.2 Notational Conventions

In this work, we use a special typographical style to denote matrix tools that we
use to build our proposal. The used notational conventions are as follows.

– We represent matrices by capital letters in bold with one-underline, e.g. M.
– The set of all m-by-n matrices is denoted M(m,n).
– Elements of matrix are indexed between brackets, e.g. M[2, 5]. An asterisk is

used to refer to a whole row or column, e.g. M[1, ∗].
– The multiplication operator between two matrices is denoted ⊗.

4.3 Protocol Design

To introduce our novel private set intersection protocol (Π-SI), we consider a
client denoted C and a server denoted V having respectively X = {x1, ..., xk}
and Y = {y1, ..., yk} sets of private data and want to securely get the intersection
between their sets (Sect. 3.1). Assume for 1 ≤ i ≤ k and 1 ≤ j ≤ k: xi and yj

∈ R
n. Let M1 and M2 denote random invertible matrices used by C and V

respectively to obfuscate their sets, where M1 ∈ M(k, k) and M2 ∈ M(n, n).
Let MX and MY denote the private sets X and Y respectively, represented
as row matrices, where MX ∈ M(k, n) and MY ∈ M(k, n). Without loss of
generality, we consider the case where the sets X and Y have the same size (k)
and we present the detail of Π-SI protocol in Algorithm 1. Later, we describe
the more general case.

4.4 Generalization

In a more general case, we consider the client (C) having kc elements and the
server (V) having kv elements. Then, V can simply creates several matrices
MYi ∈ M(k, n), where i > 1 (Instruction b. Algorithm 1) and distributes its
kv elements on them. Thus, V will repeat instruction 6 for each MYi and will
send

⋃
i>1 MYi instead of MY during instruction 7. At the reception, C will

perform instruction 8 and instruction 9 for each received MYi.

Private and Efficient Set Intersection Protocol for Big Data Analytics 155

5 Security Analysis

In this section, we present a simulation-based security proof for our protocol
using the Real/Ideal model [17].

5.1 Real/Ideal Model

Let Π denote a multi-party protocol executed by m participants (P1,...,Pm) in
order to evaluate a function f . Let B denote the class of adversary that may

156 Z. Gheid and Y. Challal

corrupt participants in Π. Let R and D denote respectively the real and the
ideal executions of Π on the set of inputs w and the set of security parameters
sec.

During a real execution (R) we consider the presence of an adversary
denoted A that behaves according to the class B while corrupting a set of par-
ticipants Pi(1≤i≤m). At the end of R, uncorrupted parties output whatever was
specified in Π and the corrupted Pi outputs any random functions of their
viewΠ

R (w,sec)i.
During an ideal execution (D) we consider the presence of a trusted incor-

ruptible party denoted T , which receives the set of inputs w from all participants
in order to evaluate the function f in the presence of an adversary denoted S.
We assume S corrupts the same Pi as the correspondent adversary A of real
execution, and behaves according to the same class B before sending inputs to
T . By the end of D, uncorrupted participants output what was received from T
and the corrupted Pi output any random functions of their viewΠ

D (w,sec)i.

Definition 1. Let Π and f be as above. We consider Π a secure multi-party
protocol if for any real adversary A having a class B and attacks the protocol Π
during its execution on the set of inputs w and the set of security parameters sec,
there exists an adversary S in the ideal execution having the same class B and

that can emulate any effect achieved by A. Let
d≡ denote the distribution equality.

We formalize the definition of a secure multi-party protocol Π as follows

{outΠR (w, sec)} d≡ {outΠD(w, sec)} (2)

5.2 Security Proof

In what follows, we give security simulations of Π-SI protocol using Real/Ideal
paradigm. The allowed behavioural class of adversary is the mixed one (Sect. 3.3),
where the client (C) is actively corrupted and the server (V) is passively cor-
rupted.

Let A, S and T denote respectively a real adversary, an ideal adversary and
a trusted third party, where A and S have the same class. Let Π denote the
Π-SI protocol (Algorithm 1), w denote the set of inputs {MX,MY}, sec denote
security parameters that will be presented below and PSI(X,Y) denote the
private set intersection between X and Y , which are the private sets of C and
V respectively. For simplicity, we give a simulation for the specific case where
the sets X and Y have the same size (k). Next, we show how to generalize the
proof.

Theorem 1. Given a set of security parameters (sec) defined as sec = {(n, k) ∈
N

2 : 0 < k < n}. Under these conditions, the protocol Π-SI defined in Algo-
rithm 1 is a secure multi-party protocol against an active corruption of C.

Proof. Assume C is actively corrupted by A. Then, it can only inject fake inputs
(MX) since aborting the protocol untimely will have no meaning. Assume C

Private and Efficient Set Intersection Protocol for Big Data Analytics 157

sends a fake MX. In this case, S can emulate A by just handling the fake MX
and sends it to T , which performs the required computation and sends back
PSI(X,Y) to C. Thereby, completing the simulation. At the end, the views of
C in Ideal and Real executions will be as follows

viewΠ
D (w, sec)C = {MX, PSI(X,Y)} (3)

viewΠ
R (w, sec)C = {MX,M1X2,MY2, PSI(X,Y)} (4)

Otherwise, M1X2 = M1X ⊗ M2, where M1X ∈ M(k, n) and M2 ∈ M(n, n).
According to security parameters (sec), we have k < n. This, preserves well the
privacy of M2. Thereby, M1X2 that contains (k × n) equations opposite to
(n × n) unknowns for C, will not involve meaningful information for it and can
be reduced from its view. Likewise, MY2 = MY ⊗ M2, where MY ∈ M(k, n)
and M2 ∈ M(n, n). Then, MY2 will contain (k × n) equations opposite to
((k×n)+(n×n)) unknowns for C, which does not involve meaningful information
for it and can be so, reduced from its view. After these reductions, the view of
C in real execution could be described as follows

viewΠ
R (w, sec)C = {MX, PSI(X,Y)} (5)

Thus, relying on (3) and (5) we get

{outΠR (w, sec)C} d≡ {outΠD(w, sec)C} (6)

On the other hand, the uncorrupted V can not be affected by the corruption of
C since V does not require any output in real execution. Thus, T will simply
not send it any output during ideal execution. This, means that

{outΠR (w, sec)V } d≡ {outΠD(w, sec)V } (7)

Through (6) and (7), we proved by simulation that all effects achieved by a
real active adversary corrupting C can also be achieved in an ideal execution.
Then, Π-SI is a secure multi-party protocol against active corruption of C
(Definition 1).

Theorem 2. Given a set of security parameters (sec) defined as sec = {(n, k) ∈
N

2 : 0 < k < n}. Under these conditions, the protocol Π-SI defined in
Algorithm1 is a secure multi-party protocol against a passive corruption of V .

Proof. Assume V is passively corrupted. In this case, V should follow the specifi-
cation of the protocol Π-SI, yet, it is allowed to analyse all data gathered during
the execution. Then, S will just handle V ’s input and sends it to T , which
performs the required computation and sends PSI(X,Y) to C while sending
nothing to V . Thereby, completing the simulation. At the end, the views of V
in Ideal and Real executions will be as follows

viewΠ
D (w, sec)V = {MY} (8)

viewΠ
R (w, sec)V = {MY,M1X} (9)

158 Z. Gheid and Y. Challal

Moreover, M1X = M1 ⊗ MX, where, M1 ∈ M(k, k) and MX ∈ M(k, n).
Then, since we defined 0 < k as security parameter (sec), we get (k × n)<
((k × n) + (k × k)). Thus, M1X that contains (k × n) equations opposite to
((k × n) + (k × k)) unknowns for V , will not involve meaningful information for
it and can be so, reduced from its view. After reduction, we obtain

viewΠ
R (w, sec)V = {MY} (10)

Thus, relying on (8) and (10) we get

{outΠR (w, sec)V } d≡ {outΠD(w, sec)V } (11)

On the other hand, the uncorrupted C outputs what was received from T in
ideal execution, which is PSI(X,Y) according to the simulation given above
and outputs what was specified int the protocol Π-SI in real execution, which is
PSI(X,Y) (Algorithm 1, Output section). Then, we have

{outΠR (w, sec)C} d≡ {outΠD(w, sec)C} (12)

Through (11) and (12) we proved by simulation that all effects achieved by a
real passive adversary corrupting V can also be achieved in an ideal execution.
Then, Π-SI is a secure multi-party protocol against passive corruption of V
(Definition 1).

Corollary 1. Given a set of security parameters (sec) defined as sec = {(n, k) ∈
N

2 : 0 < k < n}. Under these conditions, the protocol Π-SI defined in
Algorithm1 is a secure multi-party protocol in the mixed model of adversary,
where C is actively corrupted and V is passively corrupted.

Proof. Corollary 1 relies heavily on the Theorems 1 and 2 proved above, while
considering separately the case when the client (C) is corrupted and the case
when the server (V) is corrupted. We assume that if both parties are corrupted
we are not required to provide security guarantees.

Note 1. To generalize the proof (Sect. 4.4), assume the client (C) has kc ele-
ments and the server (V) has kv elements. This, will affect the view of C in real
execution when it is corrupted (Eq. (4)), which will be defined as follows

viewΠ
R (w, sec)C = {MX,M1X2,

⋃

i>1

MYi2, PSI(X,Y)} (13)

Where MYi2 = MYi⊗ M2 for i > 1. According to security parameters (sec),
M2 is unknown for C (Proof Theorem1), then, each MYi remains private and
does not involve meaningful information for C and can be so, reduced from
its view. Likewise, M1X2 can be reduced from the view of C in Real execu-
tion (Proof Theorem 1). Thus, Theorem 1 remains valid in the general case. On
the other hand, the views of V when it is corrupted will be augmented with⋃

i>1 MYi instead of MY. However, this will affect the views of V in both ideal
and real executions. Thus, Theorem 2 remains valid in the general case.

Private and Efficient Set Intersection Protocol for Big Data Analytics 159

6 Complexity Analysis

In this section, we analyse asymptotic complexities of communications and com-
putations involved in our protocol (Π-SI: Algorithm 1, Sect. 4.3). We make com-
parison with existing protocols and we highlight our improvements.

6.1 Analysis

Let C and V denote a client and a server and kc and kv denote respectively the
number of elements in their sets (General case, Sect. 4.4), where each element
is assumed to be in R

n. As off-line operations do not affect significantly the
running time, we do not consider complexities of random matrices generation
(Algorithm 1: Instruction1, Instruction4).

In step 1, getting M1X requires O(k2
cn) computations and sending M1X

costs O(kcn). In step 2, the server (V) performs O(kcn
2) operations to get

M1X2, then, it performs at most ((kv/kc) + 1) O(kcn
2) to get the set⋃

i>1 MYi2. This, results in O((kv + kc)n2). Moreover, sending M1X2 costs
O(kcn) and sending

⋃
i>1 MYi2 is bounded by O((kv + kc)n). In step 3, C

should compute M1Yi2 for each MYi2 received (i > 1), which requires at
most O((kv.kc)n).

As a the length of elements (n) is assumed to be fixed for each application, we
can reduce the complexities formulas to get a communication cost of O(kv+kc), a
server computation cost of O(kv +kc) and a client computation cost of O(kv.kc).

6.2 Discussion

In communication cost, we have achieved a linear complexity of O(kv+kc). As far
as we know, this is the most efficient complexity achieved by protocols working
under standard assumptions and secure against malicious clients. The client com-
putation cost is quadratic, bounded by O(kv.kc), which is the minimum required
for the native set intersection verification. Moreover, our protocol brings a signif-
icant improvement on the server side computations, costing a linear complexity
of O(kv +kc) without requiring any hard or non-standard assumption. This effi-
cient cost will ensure the scalability of our protocol for multi-client contexts. To
the best of our knowledge, the most efficient set intersection protocol, which is
secure against malicious client and that reached O(kv +kc) computations on the
server side without requiring non-standard assumption is [6]. The latter protocol
is proven to be secure under the strong Decisional Diffie-Hellman assumption.
In contrast, our protocol does not require any cryptographic assumption, which
makes it more practical.

7 Empirical Evaluation

In this section, we evaluate the computational performance of our proposed Π-SI
protocol and we make comparison with the efficient and insecure hashing scheme
used in practice.

160 Z. Gheid and Y. Challal

7.1 Experimental Environment and Scenarios

In order to prove the efficiency of Π-SI protocol in practical scenarios, we evalu-
ate the computational time required by a server (V) and a client (C) while exe-
cuting Π-SI protocol in a real environment. We make two experiments denoted
E1 and E2 to simulate respectively the case of equal and unequal dataset sizes.
Let kv and kc denote the sizes of the set of V and the set of C respectively, where
each element within a set is assumed to be in R

n. Let mult and add denote one
multiplication and one addition respectively. We evaluate the computational
costs involved in Π-SI protocol (Algorithm 1) as follows

Cost
(Π−SI)
V = n2(kv + kc) mult + n(n − 1)(kv + kc) add

Cost
(Π−SI)
C = nkc(kv + 2kc) mult + n(kc − 1)(kv + 2kc) add

For more realistic results, we compare the performance of our solution to the
hashing PSI scheme used in practice. We chose a simple and efficient commuta-
tive hash function H, such as Hk(x) = xk mod p, where k is a 32-bit security
parameter and p is a 32-bit random prime. Let exp and mod denote respectively
one exponentiation and one modulo. We evaluate the hashing scheme as follows

Cost
(hashing)
V = Cost

(hashing)
C = n(kv + kc) exp + n(kv + kc) mod

We make evaluations on the same elements using a custom simulator built
in Python and an Intel i5-2557M CPU running at 1.70 GHz and having a 4 GB
of RAM.

7.2 Results and Discussion

E1 Expriment. In E1, we evaluated the running time of Π-SI and hashing pro-
tocols over server and client sets having equal sizes (kv = kc). We varied the size
of the sets in the range {26, 27, 28, 29, 210} of elements belonging to R

n (n = 27)
and we sketch results in Table 1 and Fig. 1. Regarding server computation cost,
Π-SI protocol has a short efficiency distance (0.x s) lower than the hashing
scheme for small sets (26,27). Then, Π-SI execution revealed a slower increas-
ing rate than the hashing scheme, which makes its more efficient for big sets

Table 1. E1. Running time of Π-SI and the insecure hash solution over equal set sizes
(set elements ∈ R

n, n = 27)

kv (kc = kv) 26 27 28 29 210

Server computation cost(s) Π-SI 0.72 1.33 2.62 5.38 10.77

Hashing 0.50 1.28 2.76 5.64 11.40

Client computation cost(s) Π-SI 0.50 2.06 8.04 32.53 129.35

Hashing 0.50 1.28 2.76 5.64 11.40

Private and Efficient Set Intersection Protocol for Big Data Analytics 161

Fig. 1. Running time of Π-SI and the insecure hash solution over equal set sizes (set
elements ∈ R

n, n = 27)

Table 2. E2. Running time of Π-SI and the insecure hash solution over unequal set
sizes (set elements ∈ R

n, n = 27)

kv (kc = 26) 26 27 28 29 210

Server computation cost(s) Π-SI 0.72 1.01 1.67 3.03 5.70

Hashing 0.50 0.97 1.72 3.18 6.08

Client computation cost(s) Π-SI 0.50 0.69 1.01 1.69 3.04

Hashing 0.50 0.97 1.72 3.18 6.08

(28,29). This efficient increasing rate presented by Π-SI is due to the use of effi-
cient arithmetic operations (addition, multiplication) compared to the expensive
operations involved in the hashing solution (modulo, exponentiation). Regard-
ing the client computation cost, the hashing solution outperforms Π-SI with at
most one order of magnitude (×10), which is very efficient compared to existing
solutions [7].

E2 Expriment. In E2, we simulated the case of unequal set sizes, which is more
realistic. For this, we fixed the size of the client set to kc = 26 elements of Rn

(n = 27) and we varied the size of the server sets in the range {26, 27, 28, 29, 210}.
Results presented in Table 2 and Fig. 2 reveal a very efficient level of Π-SI that
outperforms the hashing solution on the server side for big sets (28,29). Regarding
the client computational cost, Π-SI presented a slow increasing rate that makes
it more efficient than the hashing solution. This efficiency presented by Π-SI
on the client side contrary to E1 is due to the linear dependability of the client
computational cost on the server set size. These results, confirm the adequacy
of Π-SI protocol to be implemented on servers having Big Data sets.

162 Z. Gheid and Y. Challal

Fig. 2. Running time of Π-SI and the insecure hash solution over unequal set sizes
with (kc = 26) and (set elements ∈ R

n, n = 27)

8 Conclusion

In this paper, we have proposed a novel two-party Private Set Intersection pro-
tocol named (Π-SI). We have built this protocol upon efficient matrix algebra
without any cryptographic scheme to cope with Big Data sets. Through security
analysis conducted with the standard Real/Ideal paradigm, we have proved the
privacy protection ensured by (Π-SI) against a semi-honest server and a mali-
cious client. Asymptotic analysis has revealed linear complexities for both com-
munications and server computations. Across empirical evaluations performed
on large Data sets, we have confirmed the efficiency level provided by (Π-SI)
protocol compared to the insecure hashing solution used in real applications.

References

1. Mezzour, G., Perrig, A., Gligor, V., Papadimitratos, P.: Privacy-preserving rela-
tionship path discovery in social networks. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 189–208. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-10433-6 13

2. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 1

3. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering gattaca:
efficient and secure testing of fully-sequenced human genomes. In: Proceedings of
the 18th ACM Conference on Computer and Communications Security, CCS 2011,
pp. 691–702. ACM, New York (2011)

4. Fischlin, M., Pinkas, B., Sadeghi, A.-R., Schneider, T., Visconti, I.: Secure set inter-
section with untrusted hardware tokens. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS,
vol. 6558, pp. 1–16. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19074-2 1

http://dx.doi.org/10.1007/978-3-642-10433-6_13
http://dx.doi.org/10.1007/978-3-540-24676-3_1
http://dx.doi.org/10.1007/978-3-642-19074-2_1

Private and Efficient Set Intersection Protocol for Big Data Analytics 163

5. Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection pro-
tocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 213–231. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8 13

6. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from alge-
braic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
90–120. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 4

7. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension (2016)

8. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for
realistic adversaries. J. Cryptol. 23(2), 281–343 (2010)

9. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adver-
saries. J. Cryptol. 25(3), 383–433 (2012)

10. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg
(2017). doi:10.1007/978-3-662-54365-8 8

11. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00457-5 34

12. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, CCS 1993, pp. 62–73. ACM, New York (1993)

13. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 2

14. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

15. Lu, R., Zhu, H., Liu, X., Liu, J.K., Shao, J.: Toward efficient and privacy-preserving
computing in big data era. IEEE Network 28(4), 46–50 (2014)

16. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with
guaranteed output delivery in secure multiparty computation. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006). doi:10.
1007/11818175 29

17. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

18. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings
of the Thirty-first Annual ACM Symposium on Theory of Computing, STOC 1999,
pp. 245–254. ACM, New York (1999)

19. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30576-7 17

20. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005). doi:10.
1007/11535218 15

21. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set
intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-01957-9 8

http://dx.doi.org/10.1007/978-3-642-17373-8_13
http://dx.doi.org/10.1007/978-3-662-46497-7_4
http://dx.doi.org/10.1007/978-3-662-54365-8_8
http://dx.doi.org/10.1007/978-3-642-00457-5_34
http://dx.doi.org/10.1007/978-3-642-00457-5_34
http://dx.doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/11818175_29
http://dx.doi.org/10.1007/11818175_29
http://dx.doi.org/10.1007/978-3-540-30576-7_17
http://dx.doi.org/10.1007/11535218_15
http://dx.doi.org/10.1007/11535218_15
http://dx.doi.org/10.1007/978-3-642-01957-9_8
http://dx.doi.org/10.1007/978-3-642-01957-9_8

164 Z. Gheid and Y. Challal

22. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. J. Cryptol. 23(3), 422–456
(2010)

23. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data
mining. J. Priv. Confid. 1(1), 5 (2009)

24. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to asso-
ciation rule mining. J. Comput. Secur. 13(4), 593–622 (2005)

A Topology-Aware Framework for Graph Traversals

Jia Meng, Liang Cao, and Huashan Yu(✉)

School of Electronics Engineering and Computer Science, Peking University,
Beijing 100871, China

{mengjiajia,1300012902,yuhs}@pku.edu.cn

Abstract. Computation on a large-scale graph is to propagate and update the vertex
values systematically. Efficient graph computing depends on techniques compatible
with the algorithm’s value propagating pattern. Graph traversing is a value propa‐
gating pattern used by representative graph applications. This paper presents an effi‐
cient value propagating framework for large-scale graph traversing applications. By
partitioning the input graph based on the topology, it allows values for different source
vertices to be propagated together, so as to reduce value propagating overhead. A
locality-based vertex partitioning strategy is proposed to improve locality on
processors. To improve parallel efficiency of graph traversals, a novel task sched‐
uling mechanism has been devised. The mechanism allows the framework to improve
load balance without loss of locality. A prototype for the framework has been imple‐
mented. On four large real graphs and a synthetic graph, the work was evaluated with
two typical graph applications. By comparing with the owner-computing rule, exper‐
imental results show that this work has an overall speedup from 1.28 to 2.67. The
speedup to Ligra is more than 5 in most cases.

Keywords: Graph traversing · Graph partitioning · Computation decomposing ·
Dynamic scheduling · Work stealing

1 Introduction

In the domain of data and network science, information is often linked to form large-
scale graphs that may consist of billions of edges. Such a connected data tends to be
scale-free that the degree distribution follows a power law, and its effective diameter is
also low. The Computation on a connected data is vertex-centric and data-driven. During
the computation, values of the vertices are propagated along the edges concurrently,
according to value propagating pattern specified by the graph algorithm. For example,
breadth-first search (BFS) specifies that every vertex can receive at most one propagated
value; and PageRank [3] specifies that a vertex should propagate its newly updated value
to every outgoing neighbor. On every vertex, the local value is updated according to the
received data, and the new value is propagated in turn except the local value has gotten
stable.

Although graph computing technology has been studied extensively in recent years
[5, 7, 8, 9–13, 15, 17–21], efficiently processing large-scale graphs remains a grand
challenge, due to three factors. First, the computation involves value propagations along
billions of edges, resulting in that a large amount of data is accessed randomly and

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 165–179, 2017.
DOI: 10.1007/978-3-319-65482-9_11

intensively. The locality optimizing strategies vary from one application to another.
Second, a vertex and its neighbors are to be updated in an order compatible with the
value propagating trace. The parallelism often varies from time to time during the
computation. Third, the workload on each vertex depends heavily on both the algo‐
rithm’s propagating pattern and the input graph’s degree distribution. The load balancing
strategies are algorithm sensitive and data sensitive. To meet the performance require‐
ments of most large-scale graph applications, a feasible solution is to develop techniques
specialized for typical propagating patterns. Each technique optimizes one pattern
exhaustively, and enables a class of applications to achieve acceptable performance for
most input graphs.

Graph traversing is a typical vertex value propagating pattern. It is used by repre‐
sentative graph applications like BFS, connected-component detection [16], graph-
diameter estimation [1, 2, 4, 6, 14], and etc. According to this pattern, values are only
allowed to be propagated from visited vertices to those yet unvisited, and a vertex is
marked as visited immediately after it has received a propagated value. A graph
traversing algorithm starts by propagating values from some source vertex, which is
initially marked as visited. Every vertex can receive data from at most one neighbor.
The overall value propagating trace is a traversing tree, which covers all vertices reach‐
able from the source. Vertices on the tree are updated systematically. There is often more
than one source vertex in applications like connected-component detection and graph-
diameter estimation. Different sources can be processed in any order.

This paper presents a parallel graph traversing framework that improves application
efficiency with topology-adaptive techniques. The framework elaborately divides
vertices of the input graph into a relatively small number of vertex blocks, according to
the graph topology and memory distribution of these vertices. Every block is a task
scheduling unit during the computation, and is ready for task assignment when at least
one of its vertices is ready to be updated. A double-queue task scheduling mechanism
has been devised to process these blocks concurrently. This mechanism enables a
processor to dynamically select tasks according to both distances from the accessed data
and sizes of the tasks, so as to improve both load balance and locality. Furthermore, two
strategies are exploited to improve value propagating efficiency. One is to allow every
subgraph to select the most appropriate value propagating mechanism. Another is to
enable different vertex sources to share value propagating overheads by propagating
values simultaneously for these sources. We have implemented a prototype for this
framework, and evaluated it with both real and synthetic graphs.

2 Problem Statement and Analysis

In this work, a graph traversing application is represented as a quadruple <V, E, S, f>,
where V is the input graph’s vertex set and E is its edge set, S ⊆ V is the source vertex
set, and f is the function updating values on every vertex. The graph<V, E> is either
directed or undirected. Every edge in E serves as a channel with unlimited bandwidth
for exchanging data between the two connected vertices. If <V, E> is undirected, the
channels are bidirectional; otherwise, the channels are unidirectional. It always costs

166 J. Meng et al.

one time unit for an edge to transfer data from its original vertex to the terminal. Every
vertex in V has an initial value, and computes a new value for every received value with
f. When a vertex receives multiple values at the same time, it processes these values
independently and simultaneously. On every vertex, the time cost by f to process the
received values is ignored. The application is to propagate every source’s value on the
graph non-cyclically. On the propagating trace, every vertex will use f to replace the
received value with a new one before it is propagated further. Every vertex is allowed
to receive at most one value for every source. When multiple values for the same source
arrive at the same time, the vertex selects one value randomly.

Obviously, the value-propagating trace for every s ∈ S is a BFS tree rooted from s
on the graph <V, E>. The value-propagating trees for different sources are independent.
The application is to construct the value-propagating for every s ∈ S, and perform the
required value update with f on every reached vertex. Therefore, this application model
covers any graph-traversing applications based on BFS.

For the graph traversing application <V, E, S, f>, the complexity mainly originates
from the intensive and random accesses to the edges and vertices. This section first
analyzes the chances for the application to reduce the amount of data accesses. The
issues of data access efficiency are discussed later. To be convenient, the following terms
are defined.

• Dot. A dot is a vertex that has no neighbors, and hence is not reachable by other
vertices.

• Terminal. If <V, E> is undirected, a terminal is a vertex that has only one neighbor.
If <V, E> is directed, a terminal is a vertex that has only either outgoing neighbors
or ingoing neighbors.

• Linear segment. A linear segment is a path from vertex vs ∈ V to ve ∈ V, where: (a)
either vs or ve is a terminal; (b) except vs and ve, other vertices have exactly two
neighbors.

• Linear path. A linear path is a path from vertex vs ∈ V to ve ∈ V, where: (a) neither
vs nor ve is a terminal; (b) both vs and ve have more than two neighbors, and other
vertices have exactly two neighbors.

• Netlike graph. Given a graph <V, E>, its netlike graph consists of all linear paths
on it, and is denoted as NG(V, E). A vertex on NG(V, E) is called as a hub vertex
when it is also on some linear segments.

2.1 Complexity Analysis

Given a source s ∈ S, the traversing tree often consists of a large amount of vertices,
and is constructed by systematically propagating values from previously visited vertices.
Initially, s is the only vertex on the traversing tree. The traversing tree is then extended
iteratively by propagating values along edges outgoing from its vertices to those unvis‐
ited. The newly added vertices are found with either the pushing- or pulling-mechanism.
If the pulling-mechanism is selected, every unvisited vertex is a candidate for visiting
next, and its ingoing neighbors are inspected one after another. When an ingoing
neighbor is found to be visited, the neighbor’s value is fetched back and the rest

A Topology-Aware Framework for Graph Traversals 167

neighbors are ignored. If the pushing-mechanism is selected, candidates for visiting next
are limited to outgoing neighbors of the visited vertices. For every visited vertex, its
outgoing neighbors are inspected in some order, and its value is sent to the unvisited
ones. Therefore, it is very complex to construct the traversing tree, due to the intensive
edge accesses and random vertex accesses.

It is possible for different sources to propagate values together, so as to share the prop‐
agating overhead caused by edge accesses and vertex inspections. Let vg(s1, s2) be a
subgraph where every vertex is reachable to both s1 ∈ S and s2 ∈ S. On vg(s1, s2), if it is
compatible with the value propagating pattern to start value propagating from the same
vertex for both s1 and s2, then these two sources can share the same value propagating trace
on vg(s1, s2). For example, let vg(s1, s2) be a linear segment that is reachable to both s1 and
s2, then s1 and s2 must share the same value propagating trace on vg(s1, s2). In a typical
social network graph like Twitter and Friendster, the linear segments cover more than 15%
vertices. When s1 and s2 reach NG(V, E) via the same hub vertex, they also can share the
same value propagating trace on NG(V, E).

2.2 Efficiency Analysis

As discussed in Sect. 2.1, constructing the traversing trees for different sources simultane‐
ously can make chances for reducing complexity of applications. In this case, values for
different sources may reach a vertex via different edges concurrently; and every vertex needs
a vector to indicate its visiting statuses. The vector’s i-th element designates whether current
vertex has been visited from the i-th source. A vertex is said to be active when it is still
unvisited for at least one source vertex. A vertex v ∈ V is de-noted as a frontier when there
is at least one source s ∈ S that: (a) v has been visited by s; (b) it is not sure whether v’s
every outgoing neighbor has been visited by s.

Given a graph traversing algorithm, its computation on the linear segments is relatively
simple. Without loss of generality, we can assume that there is at most one frontier on every
linear segment. Hence, the vertex to be updated next is always the frontier’s outgoing
neighbor. However, the computation on NG(V, E) is much more complex, since every active
vertex is a candidate for updating next and the update may require more than one frontier’s
value. To maximize the parallelism, the computation is divided into a sequence of super-
steps. For two reasons, the pulling-mechanism is selected to propagate values from fron‐
tiers to their active neighbors. One is that most active vertices on a super-step are to be
updated, since the input graph tends to be scale free and neighbors of a few frontiers often
cover most vertices. Another is that the pushing-mechanism requires writing to a vertex’s
neighbors frequently and randomly.

To improve efficiency for the computation on NG(V, E), two key issues are to be
addressed for each super-step. One is load balance. Different active vertices can be inde‐
pendently processed. On every active vertex, the computation is to inspect its ingoing neigh‐
bors and update local value with these included in current frontiers. Hence the workload on
an active vertex tends to be proportional to its degree. Another key issue is locality. The
active vertices on each super-step are random, and number of active vertices varies greatly
from one super-step to another. The value-propagating efficiency will be significantly cut
down if neighbors of a large amount of active vertices are randomly accessed.

168 J. Meng et al.

3 A Topology-Aware Value-Propagating Framework

This section presents a topology-aware framework to propagate values for graph traver‐
sals. We assume that a computer consists of n computing nodes, and each node has m
processors and a local memory. The distance from a processor to its local memory is
shorter than that to any remote memory. The input graph’s vertices are equally divided
into n blocks. Each block and edges associated with these vertices are saved in one
computing node. It is also assumed that a vertex can buffer an initial value and all the
updates on it. When the initial value is propagated, the buffered updates are to be propa‐
gated together.

Given a graph traversing application <V, E, S, f>, the framework schedules its
computation on different vertices carefully with three strategies. The first strategy is to
partition the input graph’s edges according to the graph topology. It enables the frame‐
work to reduce edge accesses by selecting value propagating mechanism for every
subgraph independently. It also enables the framework to find the chances for sharing
value propagating overhead between different source vertices. The second strategy is to
partition the input graph’s vertices according to both their memory distribution and graph
topology. This strategy enables the framework to efficiently filter out vertices that are
unreachable to current frontiers, and to improve locality on each processor. The third
strategy is to schedule computation partitions greedily and dynamically. The framework
carefully selects a processor for every computation partition, according to both every
processor’s workload and the partition’s data accessing efficiency on different
processors.

Before the application starts its graph traversals, the framework first partitions the
input graph’s edges, resulting in a netlike graph and a set of linear segments. Then
it partitions the vertex block on each computing node into a relatively small number
of vertex chunks. With these subgraphs and chunks, the framework partitions the
computation into three kinds of tasks. Every source on some linear segment repre‐
sents a type-I task, which is to traverse on the linear segment from the source. Every
chunk and current frontiers represents a type-II task, which is to (a) propagate values
along edges outgoing from current frontiers to the chunk and (b) update the chunk’s
vertices with the propagated values. Every updated hub vertex and a linear segment
outgoing from the hub represents a type-III task, which is to propagate the hub’s new
value on the linear segment.

By concurrently executing the computations on different subgraphs, the framework
constructs the traversing trees for different source vertices simultaneously. At the begin‐
ning, every type-I task is assigned to a processor and is executed independently. The
framework will not propagate values on the netlike graph, until all type-I tasks have
been completed. Value propagating procedure on the netlike graph is divided into a
sequence of super-steps. The computation on each super-step is partitioned into a set of
type-II tasks. These type-II tasks are greedily scheduled to improve both data accessing
efficiency on each processors and load balance between different processors. After
computation on the netlike graph has been completed, the type-III tasks are scheduled
to be executed on different processors concurrently.

A Topology-Aware Framework for Graph Traversals 169

To reduce edge accesses in constructing the traversing trees, the framework inde‐
pendently selects propagating mechanism for every subgraph. If the subgraph is a linear
segment, the pushing mechanism is selected; otherwise, the pulling mechanism is
selected.

3.1 A Topology-Based Edge Partitioning Strategy

By partitioning the input graph’s edges according to the graph topology, our graph
traversing framework partitions the input graph into dots, linear segments and a net-like
graph. Dots are ignorable, since they are always unreachable. Based on the net-like graph

170 J. Meng et al.

and linear segments, computation on the input graph can be described with a three-
phased algorithm. The algorithm constructs the traversing trees for different source
vertices simultaneously, and enables different sources to share value propagating over‐
head automatically.

Algorithm 1 is the three-phased algorithm. The first phase of the three-phased algo‐
rithm is to propagate values on linear segments with the pushing mechanism. Computation
of this phase is decomposed into a set of independent type-I tasks. Every task processes one
source that is on some linear segment, and creates the source’s value propagating trace on
the linear segment. If a hub vertex is visited by some type-I task, then the hub is included
in ihub(S). The second phase is to propagate values on NG(V, E) with the pulling mecha‐
nism, consisting of a sequence of super-steps. Sources on NG(V, E) and vertices in ihub(S)
are the first super-step’s frontiers. On each super-step, every active vertex independently
tries to update its value by finding its ingoing neighbors from current frontiers and
comparing its visiting status with those found. A vertex is a frontier of the next super-step
when its value is updated. If a hub vertex is updated, then the hub is included in ohub(S).
The last phase is to propagate values on linear segments outgoing from hub vertices in
ohub(S). The computation consists of a set of independent type-III tasks. For every line
segment that is reachable to hv ∈ ohub(S), a type-III task is executed. The task propagates
value of hv on the line segment, using the pushing mechanism.

3.2 A Locality-Based Vertex Partitioning Strategy

This strategy aims at improving locality on each processor when vertex values are
propagated with the pulling-mechanism. The vertices on each computing node are parti‐
tioned into a relatively small number of vertex chunks carefully, according to both their
memory distribution and graph topology. Every chunk consists of a set of vertices that
are continuously saved. It can be used to represent a type-II task, which is to propagate
values from current frontiers to vertices included the chunk. And the task’s workload is
estimated with the graph’s topology information. Different chunks can be processed
concurrently to make use of parallel processors.

We estimate the workload on vertex v with Eq. (1), where cs is a constant denoting
the overhead for inspecting the vertex’s visiting status, ce is a constant denoting the
overhead for inspecting one ingoing neighbor. If the input graph is undirected, ideg(v)
is the vertex’s degree; otherwise, ideg(v) is either the ingoing degree or outgoing degree,
depending on the value propagating direction. When there are enough chunks with
carefully selected upper bound workload, dynamic task scheduling mechanism can be
used to improve load balance without loss of locality.

workload(v) = cs + ideg(v) × ce (1)

In our topology-aware framework, the pulling-mechanism is used on the netlike
graph only. When all vertices in a chunk are outside of the netlike graph, the chunk is
denoted as a vacancy, and can be filtered out for computation on the netlike graph. To
enable this kind of vertex filtering and to make full use of parallel processors, the frame‐
work divides vertices on every computing node into about m × 𝛼 non-vacancy chunks

A Topology-Aware Framework for Graph Traversals 171

independently, where m is processor number of the computing node and 𝛼 is an exper‐
imental constant. Let niv be the number of local vertices that are outside of the netlike
graph. We first search the vacancies, and each one must consist of at least niv ÷ (m × 𝛼)

vertices. These vacancies divide the rest vertices into a set of initial non-vacancy chunks.
Let twb be the total workload of these initial non-vacancy chunks. Each initial non-
vacancy chunk is further divided into a minimum of chunks, where each one’s workload
should be no more than twb ÷ (m × 𝛼).

3.3 A Double-Queue Task Scheduling Strategy

As discussed above, computation on the netlike graph is divided into a sequence of
super-steps, and each super-step consists of a set of independent type-II tasks. Every
type-II task processes one non-vacancy chunk. To improve each super-step’s parallel
efficiency, we have devised a two-level queue to schedule its tasks dynamically. This
task scheduling mechanism synthesizes three typical task scheduling techniques. The
first is the owner-computing rule, aiming at improving locality on processors. The
second is the dynamic task scheduling technique, aiming at improving load balance
between processors in a computing node. The last is the work stealing technique, aiming
at improving load balance between computing nodes.

Our topology-aware framework maintains two queues on every computing node. Let
cpn be a computing node, tque(cpn) and dque(cpn) denote these two local queues sepa‐
rately. The tque(cpn) consists of non-vacancy vertex chunks local to cpn. It automati‐
cally computes average workload of these chunks, and sorts them according to both their
workloads and memory addresses. A chunk is denoted as heavy if its workload is greater
than the average; otherwise, it is denoted as light. A heavy chunk is in front of any light
chunk, so as to enable load balance between processors. Chunks of the same kind are
further sorted according to their memory addresses, so as to improve locality on
processors. Every element in dque(cpn) represents one computing node. It sorts the
elements according distances from local processors to the corresponding computing
nodes. Local memory of dque(cpn)[i] is not farer way from cpn’s local processors than
that of dque(cpn)[i + 1].

When a super-step is executed, each computing node schedules tasks in its local tque
independently, and complex tasks are first assigned to processors. Different tasks are
executed concurrently. When a processor is free, it submits first submits a task apply to
dque(cpn)[0], attempting to get a task from tque(cpn). If the processor fails in getting
tasks from dque(cpn)[i], it then submits task applies to dque(cpn)[i + 1], trying to steal
tasks from the remote computing node specified by dque(cpn)[i + 1].

4 Implementation

We have developed a prototype with C/C++ for the topology-aware value propagating
framework. The prototype is for NUMA architecture and uses Pthreads to execute
parallel computations. The prototype consists of an edge slicer, a vertex slicer and a
value propagator (Fig. 1). The edge slicer partitions a graph’s edges according to the

172 J. Meng et al.

topology, and divides the graph into a netlike graph and a set of linear segments. The
vertex slicer partitions a graph’s vertices according to both their memory distribution
and graph topology. One each computing node, it divides the local vertices into a set of
vacancies and non-vacancy chunks. The vertex slicer sets α required by the locality-
based computation decomposing mechanism to be 16. The value propagator automati‐
cally propagates values on a graph traversing application’s input graph, and calls its
vertex updating function to compute new vertex values. The value propagator can
perform graph traversals simultaneously for a list of source vertices.

Edge slicer Value propagator

Vertex slicer
E

dge-list

V
array[]

com
pact

slist[]

vf(u,v,tag)

Fig. 1. Prototype of the topology-aware value propagating framework.

In a large-scale graph traversing application <V, E, S, f>, the framework is initialized
by providing the input graph’s edge list to the edge slicer. The application then can call
the value propagator to perform graph traversals for a list of sources. It is required to
provide four arguments to the value propagator: slist[], compact, varray[], and vf(u, v,
tag). “slist[]” is the list of sources, and its length cannot be more then 64. “varray[]” is
an array for storing the input graph’s vertex values. If “compact” is true, varray[i] is
the value of the i-th vertex; otherwise, “varray[]” saves 64 elements for every vertex,
varray[i*64 + j] is the j-th element of the i-th vertex. “vf(u, v, tag)” is the vertex updating
function, which is called by the framework to update value on the v-th vertex when value
of the u-th vertex is propagated to the v-th vertex. If “compact” is true, “tag” is always
zero when “vf(u, v, tag)” is called; otherwise, it is a bitmap to indicate which elements
are to be updated on the v-th vertex. If there are more than 64 sources in S, the application
is required to divide its sources into groups. Each group contains at most 64 sources,
and requires one call to the value propagator.

In the prototype, the input graph is represented as a vertex list and an adjacent list.
In the vertex list, every element represents one vertex, and includes a type flag, a triplet
(offset, ideg, odeg), and a visiting status vector. The type flag is to distinguish between
dots, terminals, hub vertices, vertices on the path between a terminal and the hub vertex,
and the netlike graph’s vertices except the hub vertices. The vertex saves identifiers of
its neighbors in the adjacent list; and the triplet (offset, ideg, odeg) describes addresses
of these identifiers in the adjacent list, where offset is the first identifier’s address, ideg
is number of its ingoing neighbors and odeg is number of its outgoing neighbors. If the
input graph is undirected, then ideg and odeg are equal. The visiting status vector consists
of 64 bits, where the i-th bit denotes whether the vertex has been visited by the source
specified by “slist[i]”.

A Topology-Aware Framework for Graph Traversals 173

When the framework is initialized with the input graph’s edge list, the edge slicer
and vertex slicer cooperate automatically to initialize the vertex list and the adjacent list.
When the value propagator is called, it first resets the visiting status vector of every
vertex, then automatically propagates values on the input graph and calls the vertex
updating function to update values in “varray[]”.

5 Experimental Evaluation

This section presents the experimental results for various real-world and synthetic
graphs. The platform for the experiments is a Dell R820 server. The server has 4 Intel(R)
Xeon(R) E5-4640 CPUs and 256 GB memory. Each CPU has 8 physical cores sharing
20 M LLC, and can support 16 parallel threads with hyper-thread. In the experiments,
the server is configured as a NUMA with 4 nodes.

We used four real graphs and one synthetic graph, as shown in Table 1. The synthetic
graph is denoted as Kro_26_16. It was generated with the Kronecker model implemented
in Graph500. When the graph was created, the scale parameter was set to be 26 and the
edge-factor was 16. All the five graphs are assumed to be undirected. For each graph,
we have also counted the vertices and edges of its netlike graph, denoted as NG’s vertices
and NG’s edges respectively.

Table 1. Graphs used in the experiments.

Vertices Edges NG’s vertices NG’s edges
wikipedia 27,154,800 601,038,301 4,751,326 4,680,898
com-friendster 65,608,368 1,806,067,136 13,867,424 13,867,424
socfb-konect 59,216,216 92,522,017 20,959,355 54,348,978
twitter_rv 61,578,416 1,468,365,182 39,724,449 1,465,994,803
Kro_26_16 67,108,862 1,073,741,824 42,663,341 8,345,041

We developed two typical applications to evaluate the prototype and these three
strategies presented in Sect. 3. One application is to estimate diameter of the input graph,
requiring that every vertex saves one value to indicate its longest distance to other
vertices. Another is to construct the BFS trees for a set of source vertices, requiring that
every vertex saves one value for each source vertex. For each application, we have tested
performance of five versions independently. One version is provided by the Ligra [15].
We denote it as the Ligra version. This version is implemented with OpenMP. It divides
the input graph’s vertices into equal chunks, and schedules these chunks dynamically
to balance workload between processors. Other four versions were self-developed.

• OCL version. This version uses the owner-computing rule to partition the compu‐
tation. Every computing node equally divides its local vertices into 16 chunks, and
every chunk is statically assigned to one processor. When the application is executed,
every processor propagates values from current frontiers to its chunk with the pulling
mechanism, and updates these vertices accordingly.

174 J. Meng et al.

• EP version. This version enhances the OCL version with the topology-based edge
partitioning strategy. The input graph is partitioned into a netlike graph and a set of
linear segments. Accordingly, computation on the input graph is divided into three
phases. The first phase is to execute type-I tasks, and the last phase to execute type-
III tasks. In the second phase, computation on the netlike graph is executed just as
the OCL version does.

• VP version. This version enhances the EP version with the locality-based vertex
partitioning strategy. It decomposes computation on the input graph into type-II tasks,
and schedules these tasks dynamically. However, tasks in tque(cpn) can be assigned
only to local processors of the computing node cpn.

• ST version. This version enhances the VP version with the work stealing technique.
After all tasks in tque(cpn) have been assigned, it allows processors on the computing
node cpn to steal tasks from other computing node.

On each graph, we randomly selected 192 vertices as the source vertices. Every
implementation was repeated 10 times to traverse from these 192 source vertices on the
input graph. The average time cost is the experimental result of the implementation for
the input graph. We failed to run the Ligra versions of these two applications on soc-
friendster, because this graph is too large for Ligra.

5.1 Experimental Results for Estimating Graph Diameter

In this experiment, every implementation equally divides the 192 source vertices into 3
groups, the traversing trees for all 64 sources of the same group are constructed simul‐
taneously. Table 2 is the time costs of different versions, where the time unit is second.

Table 2. Time costs for estimating diameters of different graphs.

Socfb Web-wiki KRO_26_16 Twitter_rv Soc-friendster
Ligra 9.63 44.79 55.8 140.79 –
OCL 5.64 17.88 16.11 42.3 88.17
EP 5.34 15.63 12.93 31.8 82.65
VP 5.01 11.64 10.68 27.81 84.45
ST 4.38 8.34 10.38 18.57 69.45

Although the Ligra version exploits the dynamic scheduling technique to balance
workload, the OCL version has achieved significant better performance for all the first
four graphs. On twitter_rv, speedup of the OCL version to the Ligra version is up to
3.46. The performance improvement tends to increase as the input graph’s size increases.
This results show that the performance bottleneck for most graph traversals is data
accessing efficiency instead of load balance.

We evaluate the strategies presented in Sect. 3 with speedups to the OCL version.
Figure 2(a) illustrates the results. Our topology-aware framework has achieved an
overall speedup from 1.28 to 2.28. The edge partitioning strategy and work stealing
strategy are effective for all the five graphs. The locality-based vertex partitioning
strategy is ineffective for the synthetic graph. This is because that the OCL version

A Topology-Aware Framework for Graph Traversals 175

partitions computation almost equally between processors of the same computing node.
We believe this case only occurs by chance. Result of the ST version shows that the
owner-computing rule cannot balance workload between computing nodes.

(a) Estimating diameters. (b) BFS.

Fig. 2. Speedups to the OCL version.

5.2 Experimental Results for BFS

In this experiment, the Ligra BFS can process only one source vertex every time. To
process 192 sources for every input graph, we have inserted a loop in the source code.
Each of the four self-developed versions equally divides the 192 source vertices into 3
groups, the traversing trees for all 64 sources of the same group are constructed simul‐
taneously. Table 3 is the time costs of different versions, where the time unit is second.

Table 3. Time costs for BFS of different graphs.

Socfb Web-wiki KRO_26_16 Twitter_rv Soc-friendster
Ligra 75.6 126.99 96 307.71 –
OCL 13.8 53.1 29.76 118.29 225.21
EP 12.51 42 24.87 97.41 211.89
VP 11.64 27.21 22.74 73.62 189.15
ST 8.91 20.52 22.47 44.34 156.78

The OCL version’s performance is significantly better than that of the Ligra version,
due to two factors. One is that Ligra version’s locality is too poor, as shown in the
previous subsection. Another is that the OCL version constructs 64 BFS trees simulta‐
neously, resulting that value propagating overhead are shared between different sources.

We evaluate the strategies presented in Sect. 3 with speedups to the OCL version.
Figure 2(b) illustrates the results. Our topology-aware framework has achieved an
overall speedup from 1.32 to 2.67. All the three strategies are effective for all the five
graphs.

176 J. Meng et al.

6 Related Work

In recent years, many graph processing frameworks have been developed, including
Pregel [11], Pregel+ [19], Giraph [5], Giraph++ [17], GraphLab [9], GraphX [18], and
PowerGraph [7]. Although these systems are general enough to support different kinds
of graph algorithms, there is no single system that has superior performance in all cases,
two phenomena widely exists [10, 12]. One is that a general framework often shows
different performance for different graph algorithms. Another is that an application’s
performance also often varies on different graphs. These phenomena are among the
motivations behind this paper’s work.

Data accessing efficiency and load balance are two key factors that hinder
performance of graph applications, and are widely studied. Pregel introduced the
message combining mechanism to reduce data-exchanging overhead between
machines. Pre-gel+ introduced the vertex mirroring mechanism to reduce accesses
to remote data. These two works give us beneficial hints for sharing value propa‐
gating overhead be-tween different sources. The difference is that our work focuses
on data exchanging between vertices instead of machines. In GPS [13], the authors
developed the large adjacency-list partitioning schema and dynamic repartitioning
scheme to improve load balance. However, these two schemas often sacrifice
locality, and in turn de-creases the performance, as shown by the Ligra’s results in
this paper. Giraph uses the multithreading method to maximize resource utilization.
Experiments results in [20] disclose that sequential remote accesses can be faster
than random local accesses. Our work exploits the vertex partitioning strategy to
reduce random accesses, and improves load balance with the double-queue task
scheduling strategy.

Different graph partitioning techniques have also been proposed to partition graph
computation. PowerGraph has proposed the vertex-cut partitioning technique to
improve load balance between tasks. GraphLego [21] replaces the traditional vertex-
centric or edge-centric graph partitioning with a 3D cube model, so as to partition graph
at the granularity of subgraphs. In [8], a graph transformation is proposed to reduce a
large input graph into a small graph, so as to decompose computation on the original
input graph. Our work combines the edge partitioning strategy and vertex partitioning
strategy to partition graph computation.

7 Conclusion

Graph traversing is a value propagating pattern used by representative graph applica‐
tions. This paper presents an efficient value propagating framework for large-scale graph
traversing applications. It enables a graph computation to be partitioned according to
both topology of the input graph and memory distribution of the graph’s vertices. In this
work, we propose to partition graph computation by combining edge partitioning and
vertex partitioning. The proposed edge partitioning strategy is beneficial to reduce value
propagating overhead. The proposed vertex partitioning strategy is beneficial to improve
locality on each processor. To balance workload between processors and improve data

A Topology-Aware Framework for Graph Traversals 177

accessing efficiency, a greedy task scheduling strategy was devised. We have developed
a prototype for the topology-aware graph traversing framework. The prototype was
evaluated with two typical graph applications and five graphs. The experimental results
show that this prototype has obvious better performance than Ligra. We also have eval‐
uated the effectiveness of the strategies presented in this paper. Comparing with the
owner-computing rule, the framework presented in this paper has an overall speedup
from 1.28 to 2.67.

Acknowledgements. This work was supported by the National Key Research and Development
Program of China (2016YFB0201900), and the National High Technology Research and
Development Program (“863” Program) of China (Grant No. 2015AA015305).

References

1. Aingworth, D., Chekuri, C., Motwani, R.: Fast estimation of diameter and shortest paths
(without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1996)

2. Borassi, M., Crescenzi, P., Habib, M., Kosters, W.A., Marino, A., Takes, F.W.: Fast diameter
and radius bfs-based computation in (weakly connected) real-world graphs. Theor. Comput.
Sci. 586(C), 59–80 (2015)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput.
Netw. ISDN Syst. 30(1–7), 107–117 (1998)

4. Chechik, S., Larkin, D.H., Roditty, L., Schoenebeck, G., Tarjan, R.E., Williams, V.V.: Better
approximation algorithms for the graph diameter. In: Proceedings of the twenty-fifth annual
ACM-SIAM symposium on Discrete algorithms, pp. 1041–1052. Society for Industrial and
Applied Mathematics, Philadelphia (2014)

5. Ching, A., Edunov, S., Kabiljo, M., Logothetis, D., Muthukrishnan, S.: One trillion edges:
Graph processing at facebook-scale. Proc. VLDB Endow. 8(12), 1804–1815 (2015)

6. Crescenzi, P., Grossi, R., Lanzi, L., Marino, A.: On computing the diameter of real-world
directed (weighted) graphs. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 99–110.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-30850-5_10

7. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: distributed graph-
parallel computation on natural graphs. In: Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation, pp. 17–30. USENIX Association, Berkeley
(2012)

8. Kusum, A., Vora, K., Gupta, R., Neamtiu, I.: Efficient processing of large graphs via input
reduction. In: Proceedings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing, pp. 245–257. ACM, New York (2016)

9. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Distributed
graphlab: A framework for machine learning and data mining in the cloud. Proc. VLDB
Endow. 5(8), 716–727 (2012)

10. Lu, Y., Cheng, J., Yan, D., Wu, H.: Large-scale distributed graph computing systems: an
experimental evaluation. Proc. VLDB Endow. 8(3), 281–292 (2014)

11. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:
Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, pp. 135–146. ACM, New York (2010)

178 J. Meng et al.

http://dx.doi.org/10.1007/978-3-642-30850-5_10

12. Nai, L., Xia, Y., Tanase, I.G., Kim, H., Lin, C.Y.: GraphBIG: understanding graph computing
in the context of industrial solutions. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, p. 69. ACM, New York (2015)

13. Salihoglu, S., Widom, J.: GPS: A graph processing system. In: Proceedings of the 25th
International Conference on Scientific and Statistical Database Management, p. 22. ACM,
New York (2013)

14. Shun, J.: An evaluation of parallel eccentricity estimation algorithms on undirected real-world
graphs. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1095–1104. ACM, New York (2015)

15. Shun, J., Blelloch, G.E.: Ligra: A lightweight graph processing framework for shared memory.
ACM Sigplan Not. 48(8), 135–146 (2013)

16. Skeina, B.S.: The Algorithm Design Manual, 2nd edn. Springer, Heidelbergz (2008)
17. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., Mcpherson, J.: From think like a vertex to

think like a graph. Proc. VLDB Endow. 7(3), 193–204 (2013)
18. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX: a resilient distributed graph

system on Spark. In: First International Workshop on Graph Data Management Experiences
and Systems, p. 2. ACM, New York (2013)

19. Yan, D., Cheng, J., Lu, Y., Ng, W.: Effective techniques for message reduction and load
balancing in distributed graph computation. In: Proceedings of the 24th International
Conference on World Wide Web, pp. 1307–1317. ACM, New York (2015)

20. Zhang, K., Chen, R., Chen, H.: NUMA-aware graph-structured analytics. In: Proceedings of
the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 183–193. ACM, New York (2015)

21. Zhou, Y., Liu, L., Lee, K., Pu, C., Zhang, Q.: Fast iterative graph computation with resource
aware graph parallel abstractions. In: Proceedings of the 24th ACM International Symposium
on High-Performance Parallel and Distributed Computing, pp. 179–190. ACM, New York
(2015)

A Topology-Aware Framework for Graph Traversals 179

Adaptive Traffic Signal Control
with Network-Wide Coordination

Yong Chen1,2, Juncheng Yao1(B), Chunjiang He2, Hanhua Chen1, and Hai Jin1

1 Big Data Technology and System Lab,
Services Computing Technology and System Lab,

Cluster and Grid Computing Lab,
School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan 430074, China
{yaojc,chen,hjin}@hust.edu.cn

2 China Electric Power Research Institute, Beijing 100192, China
{ychen,cjhe}@epri.sgcc.com.cn

Abstract. Today, Traffic congestion has become an increasingly serious
problem. Efficient adaptive traffic signal control (ATSC) is a challeng-
ing issue in the road network. The existing multi-agent reinforcement
learning (MARL) schemes do not have satisfactory performance due to
the difficulty of coordination between agents and the delay consequence
of reward function. In this paper, we present an novel adaptive traffic
signal control scheme in the urban road network based on MARL. In
the scheme, we adopt a delay time estimation model with network-wide
coordination to estimate the total delay time of vehicles for each road
link, and control traffic signals adaptively based on the estimated delay
time with traffic flow data. We conduct comprehensive simulations using
large-scale data collected from real world systems to evaluate the perfor-
mance of our design, especially under heavy traffic pressure. The results
show that our scheme can significantly alleviate the road congestion as
well as improving the road network throughput and reducing the vehicles
delay time.

Keywords: Network-wide coordination · Multi-agent systems · Traffic
signal control · Delay time estimation · Reinforcement learning

1 Introduction

Urban road traffic congestion has generated many inconveniences to people’s
lives. It not only increases the travel cost, but also adversely affects the urban
air environment. With continuous increase in the number of vehicles, the problem
is becoming increasingly more serious. There are many causes of urban traffic
congestion, among which, unreasonable traffic signal control is one of the major
issues. As a fixed signal timing plan, traffic signal control tends to cause low
traffic efficiency since it is difficult to stipulate effective control policy according
to traffic flow variations.
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 180–194, 2017.
DOI: 10.1007/978-3-319-65482-9 12

Adaptive Traffic Signal Control with Network-Wide Coordination 181

By using the adaptive traffic signal control (ATSC) scheme, we can control
traffic signals dynamically based on real-time traffic flow data to achieve a spe-
cific objective. In order to reduce traffic congestion, we generally minimize the
total delay time of all vehicles in the network as the optimization target. By
adopting dynamic programming approach, the optimal control strategy can be
realized in stable condition at a single intersection. However, as the number
of intersections increases, the state space will become extremely large, which
will cause this scheme to fall into the predicament of computational complexity.
Function approximation method can be used to estimate the delay time of each
state for dynamic programming, but it is difficult to estimate the total delay time
accurately, and the parameters are also difficult to train. Heuristic optimization
models can be used to optimize traffic signal control in a straightforward man-
ner, but these schemes often require a long training process. Moreover, it will
affect the adaptability in real control. Reinforcement learning is an efficient way
to solve the ATSC problem. Multi-agent reinforcement learning (MARL) uses
many agents to control traffic signals for each intersection. The agents control
traffic signals for each intersection separately, but how to implement efficient
coordination between agents is a big challenge. The actual delay time of vehi-
cles is hard to obtain immediately. This will lead to the delayed consequence
of reward value. How to estimate the state reward function accurately for each
action is another challenge.

In this paper, we present an adaptive traffic signal control scheme based on
MARL. We implement a delay time estimation model with network-wide coordi-
nation between agents. We estimate the delay time of vehicles in each road link
first, and then amend the delay time in accordance with the daily flow fluctuat-
ing prediction. Through traffic flow network iteration, we estimate vehicles’ delay
time in the road network. With this delay time estimation method, we can train
a state action reward function for MARL model. Thus, the traffic controllers
can select control policy to minimize the reward function efficiently. Through
network-wide coordination between agents [1], the local flow information can
be delivered to the entire road network. Thus, the agents could simultaneously
control congestion situation. We conduct comprehensive simulations to evalu-
ate the performance of our design, especially under heavy traffic pressure. The
results show that the average link delay can be reduced by 36% under heavy traf-
fic. Our scheme can alleviate severe road congestion, improve the road network
throughput, and significantly reduce delay time of vehicles.

The rest of this paper consists of the following sections. Section 2 describes
related work. Section 3 describes the scheme of delay time estimation model in
details. Section 4 describes the experiment with simulated urban traffic data.
Section 5 summarizes the work.

2 Related Work

A direct way to solve the traffic signal control problem is to use a dynamic
programming approach. Dynamic programming explores the reward value for

182 Y. Chen et al.

each control strategy in stable condition. Excessive system state can lead to high
complexity, which will make the algorithm impractical. In order to simplify the
state complexity, Yin et al. [2] divide the state of a single intersection into several
classes. They solve the optimal control problem efficiently through decomposition
of Markov decision process method. Yin et al. [3] use a fair strategy to stabilize
the length of the waiting queue. Li et al. [4] present a signal control method based
on adaptive dynamic programming. Dynamic programming methods work well
in a single intersection. However, as the number of intersections increases, the
system states will also increase significantly, causing this method to fall into
the predicament of computational complexity. Cai et al. [5] present an adaptive
traffic signal control scheme by using approximate dynamic programming. Yin
et al. [6,7] estimate the delay time of each state with the function approximation
method for dynamic programming. However, it is difficult to accurately estimate
the total delay time, while the parameters of value function are also difficult to
train.

Heuristic optimization models can be used to optimize traffic signal control
in a straightforward manner. Vallati et al. [8] try to quickly solve the traffic con-
gestion problem caused by accidents by using heuristic forward search method.
Kwatirayo et al. [9] use a heuristic algorithm to control the traffic signal in
accordance with the system state of the last time period. These schemes cannot
achieve ideal results due to strict conditional constraints. Renfrew et al. [10]
heuristically control traffic signal with an ant colony algorithm. Oliveira et al.
[11] observe the environment of traffic network by using multiple neural networks
[12,13], and then make decisions to control traffic signals. The convergence speed
of this method is slow, and the adaptability will be affected in real control.

Reinforcement learning is an efficient approach to solve the ATSC problem.
The Q-Learning schemes can be used to solve the traffic control problem at sin-
gle intersection after a quick training process. But as the number of intersections
increases, such a method with single agent will face the state space explosion.
Multi-agent reinforcement learning can be used to address this situation [14–
16]. However, the coordination between agents is difficult to control. Wiering
[17] try to solve the traffic control problem with a multi-agent reinforcement
learning method. Arel et al. [18] let each agent make decision to reduce the time
cost locally. However, it is difficult to reach the global optimum since there is
no interaction between each agent. Kuyer et al. [19] use MARL to control traffic
signal through coordination between neighboring agents. Prashanth et al. [20]
try a function approximation and policy iteration method for multi-agent rein-
forcement learning method. Tantawy et al. [21] apply an adaptive traffic signal
controller method in downtown Toronto, and they try to coordinate controllers in
an integrated network with multi-agent reinforcement learning. Xie et al. [22,23]
try to control the traffic flow in Pittsburg with a schedule-driven method from
the microscopic view. These methods also involve certain difficulties [24,25]. For
example, it is difficult to use the reward function to obtain result immediately
due to the delayed consequences. It is also difficult for multiple agents to achieve
coordinated control.

Adaptive Traffic Signal Control with Network-Wide Coordination 183

Fig. 1. An example intersection Fig. 2. 43-intersection traffic network

3 Methodology

3.1 Problem Description

In this paper, we aim to realize optimal control of traffic signals in an urban area.
In order to address this issue, the optimization target is to minimize the total
delay time of all vehicles moving in the urban area. Specifically, a road network
is composed of many road links, while each intersection is connected with four
incoming links and four outgoing links. Figure 1 shows an example of intersection.
Each road link has three directions: leftward, rightward, and forward. The signal
controller (agent) controls four incoming links at each intersection, indicating
the permit of vehicles in three directions for each incoming link. Figure 2 shows
a 43-intersection traffic network. When the controller allows vehicles to pass
in a specific direction, the vehicles could go through the intersection toward
corresponding outgoing links respectively. We set a slot time for signal control.
The signal controller at each intersection needs to make a decision for 12 signals
in total during each slot time. We calculate the delay time penalty p(l, t) as the
number of vehicles in incoming link l which cannot leave the link during each
slot time t. The optimization target of all vehicles passed through the area is∑

t∈T

∑
l∈L p(l, t), where T is the number of time slots set in a day; L denotes

the links set in the road network.
The traffic signals at each intersection are generally controlled by a signal

timing plan. The timing plan changes the roads permit according to a fixed phase
schedule, and ensures that vehicles in different directions at the intersection have
equal opportunities to pass through the intersection. Due to the uneven distrib-
ution of traffic flow within the whole road network and the different traffic flow
during different time periods, some busy intersections have a higher probability
of congestion.

ATSC can be used to control traffic signals dynamically based on real-time
traffic flow data. In this way, it can achieve a certain objective. It is an efficient
way to alleviate traffic congestion by changing traffic signals according to the
fluctuations of traffic flow. We can get real-time traffic flow data from sensors
deployed in the road network. The data includes traffic flow in each road link

184 Y. Chen et al.

and the vehicle passing rate at each intersection. We assume that the maximum
passing rate at each intersection is a fixed value, the distribution of traffic flow is
subject to a certain fluctuating law, and the local traffic flow could be partially
changed by the traffic signal controllers. Under the assumption, the problem is
how to control each traffic signal so that the total delay time for all vehicles
passing through the area can be minimized.

3.2 The MARL Approach

Reinforcement learning is a learning process in which a single agent interacts
with the environment to find the maximum long-term reward. The environ-
ment is generally stationary and modeled as a Markov decision process. A tuple
〈S,A, T,R〉 can be used to represent this learning process, where S is the state
set of the agent; A is the action set; T (s, a, s′) is the transition function which
represents the transition probability of the agent from state s to a new state s′

under action a; R(s, a, s′) is the reward function of different transitions. When
an agent needs to make an action, the agent checks its optimal policy in the
current state with a Q-value which represents the expected long-term reward
for the state-action pair (s, a). Agent learns from the value function to make an
action, and continues to explore the value function during its interaction with
the environment. The Q-values are updated according to the following equation
in Q-learning method, where α is the learning rate which controls how many
Q-values are updated at each time step t, γ is the discount factor controlling
how the agent regards future rewards, rt is the immediate reward.

Qt+1(st, at) = Qt(st, at) + α(rt + γQmaxa
(st+1, a) − Qt(st, at)) (1)

MARL uses multiple agents to control complex systems, and each agent inter-
acts with the environment and tries to learn policies to optimize the target value.
In terms of ATSC issues, each agent controls signals at each intersection inde-
pendently. The traffic flow data around an intersection is the agent’s state. The
control schedule made by an agent at some time slot is the agent’s action. The
state transition is the probability distribution of the state transitioning to the
next state under this action. The reward is the total expected waiting time.

MARL can simplify the problem by improving the computational efficiency
through distributed agents. However, this method has the following defects: (1)
The immediate short-term reward of the agent is not representative due to the
delayed consequences; the target optimization object is the total delay time; and
the agents that only care about local reward may affect reward during other
time period and the surrounding agents, thereby affecting the global optimiza-
tion target. (2) Since each agent can only observe the surrounding environment,
agents cannot make an accurate prediction of reward value. (3) The environment
is constantly changing. It is hard to flexibly respond to unexpected situations;
while fluctuating flow over time is not considered.

Adaptive Traffic Signal Control with Network-Wide Coordination 185

Table 1. Notations in delay estimation model

Notation Description

Inflow(i, l, t) In flow number of vehicles for agent i in link l at time slot t

Outflow(i, l, t) Out flow number of vehicles for agent i in link l at time slot t

InR(i, l, t) In flow rate of vehicles for agent i in link l at time slot t

OutR(i, l, t) Out flow rate of vehicles for agent i in link l at time slot t

Qlen(i, l, t0) Current queue length for agent i in link l

IncR(i, l, t) Increase rate of vehicles for agent i in link l at time slot t

F lowEst(i, l, t) Estimated traffic flow for each agent i in link l

F lucflow(i, l, t) Fluctuating flow for each agent i in link l at time slot t

F lowEstF luc(i, l, t) Estimated traffic flow with fluctuation for each agent i in link l at
time slot t

turnL(i, l, t) Left turn vehicle number for agent i in link l at time slot t

turnR(i, l, t) Right turn vehicle number for agent i in link l at time slot t

turnS(i, l, t) Straight going vehicle number for agent i in link l at time slot t

TpL(i, l, t) Estimated turn left probability of vehicles for agent i in link l at
time slot t

TpR(i, l, t) Estimated turn right probability of vehicles for agent i in link l at
time slot t

TpS(i, l, t) Estimated straight going probability of vehicles for agent i in link l
at time slot t

LDest(i, l, t) Estimated local delay time for agent i in link l at time slot t

GDest(i, l, t) Estimated global delay time for agent i in link l at time slot t

3.3 Delay Estimation Model

Through analysis of historical traffic flow, we find that the traffic congestion of
a few road links has seriously affected the efficiency of entire road network. The
effect of coordination control for nearby traffic signals is not obvious. Coordi-
nation between agents in a large area can alleviate congestion effectively. By
controlling the traffic signal through network-wide coordination, it can change
the distribution of traffic flow at busy intersections. Thus changing the flow dis-
tribution of the traffic in the network makes it possible to alleviate the congestion
situation in the network.

The main idea of our adaptive traffic signal control method is to control
traffic signals in the network-wide area in a coordinative way and use a delay
estimation model to help agents get an accurate reward function. The model
estimates the expected global delay time for each road link with the flow iterative
propagation. The global reward function can guide vehicles out of a busy road
and make efficient use of each road, and then, it can also reduce traffic of busy
road to avoid congestion. By combining it with the fluctuating flow prediction
method, we can determine the expected delay time more accurately. These value
functions can help agents find the optimal action efficiently.

186 Y. Chen et al.

The delay estimation model needs to estimate the total delay time for a
vehicle in each road link from the time it enters the road link until it leaves the
entire area. In this method, it first updates the vehicle outflow speed and inflow
speed at each road link. Then it calculates the expected delay time of vehicles in
corresponding road link, and estimates the probability of vehicles at current link
entering the next outgoing links through the moving average method. The global
delay time of vehicles in current road link is estimated by iteratively updating
the global delay time in the network. Table 1 shows the notations in this section.

Algorithm 1. Traffic Flow Estimate
Input: Inflow(i, l, t), Outflow(i, l, t), Qlen(i, l, t) at current time slot t
Output: FlowEst(i, l, t)

1 for each agent i do
2 for each ingoing link l do
3 InR(i, l, t) ← αInR(i, l, t − 1) + (1 − α)Inflow(i, l, t)
4 OutR(i, l, t) ← αOutR(i, l, t − 1) + (1 − α)Outflow(i, l, t)
5 FlowEst(i, l, t) ← Qlen(i, l, t) + (InR(i, l, t) − OutR(i, l, t))d

6 return FlowEst(i, l, t)

Algorithm 1 estimates the traffic flow in each road link for time slots in the
future. Agents need to observe the number of inflow vehicles and outflow vehicles
for the links around each intersection, and then update the inflow rate and
outflow rate with the moving average of recent data. The future flow of vehicles
for each road link is estimated in the end. In the algorithm, α is the moving
average update constant of inflow and outflow rate; while d is the delay time of
this estimation. The algorithm will be invoked for each decision time slot first.

The actual distribution of vehicle flow has a high correlation with the his-
torical traffic flow distribution. Since the actual traffic flow will be affected by
the traffic fluctuations, there will be a difference between the estimated traffic
flow and actual traffic flow, which will result in deviation in the estimation of
delay time. In order to avoid these deviations, we design a method of traffic flow

Algorithm 2. Traffic Flow Estimate Amend
Input: Histflow(i, l, t), FlowEst(i, l, t) at current time slot t
Output: FlowEstF luc(i, l, t)

1 for each agent i do
2 for each ingoing link l do
3 Flucflow(i, l, t) ← 1/|Nrec|∑t∈Trec

Histflow(i, l, t)

4 Flucflow(i, l, t) ←∑t∈Ta
(Flow(i, l, t)/F lucflow(i, l, t))Flucflow(i, l, t)

5 FlowEstF luc(i, l, t) ← αFlowEst(i, l, t) + (1 − α)Flucflow(i, l, t)

6 return FlowEstF luc(i, l, t)

Adaptive Traffic Signal Control with Network-Wide Coordination 187

estimation amend based on the fluctuation of historic traffic flow growth. This
method divides the historical data into different classes according to the date
feature (e.g., workday and holiday), and amends the estimated link flow data by
using the historical data with similar features.

Algorithm 2 amends the traffic flow with historic flow fluctuation. The fluc-
tuating flow is updated with the average similar link flow in similar days first.
Nrec is the number of similar records; Trec is the record time set. After getting
the fluctuating flow volume, we adjust the fluctuating flow to fit the current
traffic pressure. Ta is the time set for average fitting. Finally, the average of
estimated traffic flow and fluctuating flow is used as the final value of estimated
traffic flow. α is the average parameter. This algorithm will be invoked for each
decision time slot after the traffic flow estimation.

Algorithm 3 estimates the vehicles’ accumulative delay time for each link.
Agents need to observe the outflow rate and the number of vehicles turning left,
turning left, and going straight forward respectively in the current time slot.
Then, efforts will be made to estimate the probabilities of turning left, turning
right, and going straight forward based on the moving average of recent data.
Agents will estimate the local delay time of vehicles that have entered each
road link. Finally, agents in this network will estimate the global delay time
through iterative value update until the global delay time converges. The agent
will receive the value of global delay time of surrounding outgoing links from the
neighboring agents, then update the global delay time by ingoing links around

Algorithm 3. Accumulate Delay Time Estimate
Input: Outflow(i, l, t), turnL(i, l, t), turnR(i, l, t), turnS(i, l, t) at current time

slot t
Output: GDest(i, l, t)

1 for each agent i do
2 for each ingoing link l do
3 /* Update turning probability for outgoing links: */
4 if Outflow(i, l, t) > 0 then
5 TpL(i, l, t) ← αTpL(t − 1, l) + (1 − α)turnL(i, l, t)/Outflow(i, l, t)
6 TpR(i, l, t) ← αTpR(t − 1, l) + (1 − α)turnR(i, l, t)/Outflow(i, l, t)
7 TpS(i, l, t) ← αTpS(t − 1, l) + (1 − α)turnS(i, l, t)/Outflow(i, l, t)

8 /* Update estimated local delay time: */
9 LDest(i, l, t) ← FlowEstF luc(i, l, t)/OutR(i, l, t)

10 /* Update estimated global delay time iteratively until convergence: */
11 while ‖ΔGDest(i, l, t)‖ > ε do
12 for each agent i do
13 for each ingoing link l do
14 GDest(i, l, t) ← LDest(i, l, t) + TpL(i, l, t)GDest(i, ll, t) +

TpR(i, l, t)GDest(i, lr, t) + TpS(i, l, t)GDest(i, ls, t)

15 return GDest(i, l, t)

188 Y. Chen et al.

the agent and send the value to neighboring agents in the end. This algorithm will
be invoked for each time slot before agents make decisions. The iterative value
update process is similar to solving a linear system of equations iteratively. Since
traffic flow only changes slightly during one slot time, the estimated global delay
time variables will converge quickly during the iteration.

Through the above method, we can see that agents will estimate the traffic
flow and local delay time by ingoing links to corresponding intersection based
on local observation. Then, agents will estimate the accumulative delay time
through iterative propagation between agents. After obtaining the total delay
time for each link of the vehicle until it leaves the entire area, we can use the
optimization method to set the control status of each traffic signal in a real-time
manner. The optimization method is based on each intersection as an agent.
Among the four directions of road at each intersection, three directions (left-
ward, rightward, and forward) of each road are controlled by the agent of this
intersection. The control method is to enumerate all the traffic signal plans that
meet the traffic rules of the intersection and calculate the total expected delay
time of vehicles in the four routes under the scheme, and the shortest total
expected delay time will be selected as the target scheme. Otherwise, we can
treat the value of the accumulative delay time as a state value, and train the
reinforcement model with other states which the agents can observe. We try
to add agents’ last action state and neighboring agents’ last action state. The
model performance will benefit from more information used by us.

In this model, the vehicles’ delay time is estimated in a real-time manner.
The agents can estimate the global total delay time for each road link under
different actions. Agents will choose the action that can minimize the estimated
total delay time. This method is very adaptive to traffic congestion. When road
congestion occurs, the agent will quickly respond by increasing vehicles’ flow
out time in the congested link, and try to alleviate congestion. The iteration
between agents can quickly propagate the estimated delay time of the congested
link to surrounding agents, and the surrounding agents will minimize traffic flow
to the congested road link according to estimated delay time and guide traffic
flow to other paths. Since this method considers the influence of traffic trends, it
can predict the tendency of periodic traffic flow, and control the traffic of road
susceptible to congestion ahead of peak period to achieve minimum total delay
time during the whole day.

4 Experiment

We evaluate the proposed scheme with traffic flow simulation with real flow data.
In the evaluation, we use the traffic flow data in Nanming District of Guiyang
City. Figure 3 shows the road map of this area. There are 43 intersections with
155 road links in this area. We set the schedule slot time to 30 s. The control
time is from 6 a.m. to 8 p.m. There are 1,680 time slots in a day. Agents will
make a control decision in each time slot.

We collect the traffic flow data from sensors deployed in each road links. The
average amount of data records is 3.045 million each day. We can get traffic

Adaptive Traffic Signal Control with Network-Wide Coordination 189

Fig. 3. Road map of nanming district

Table 2. Average queue length comparison between models

Avg. queue

length @200 flow

rate (veh)

Avg. queue

length @400 flow

rate (veh)

Avg. queue

length @600 flow

rate (veh)

MARL with local info 12.7 35.7 79.3

MARL with neighbors info 12.1 32.8 72.1

Delay estimation heuristic

search

14.4 29.1 52.3

Delay estimation MARL 12.9 25.3 48.9

Delay estimation MARL with

flow amend

13.1 23.1 45.8

flow data for each road link in each slot time with these data records. The
performance is verified by simulating the distribution of vehicles in the historical
traffic environment. Figure 4 shows a historical traffic flow data for one day in
this area. From this chart, we can see the traffic pressure is varying over time.
Predicting flow trends in advance can help traffic control during the peak periods.

We employ the MARL model with local information and the MARL model
with additional neighboring information for the comparison of this experiment.
The agents in the MARL model with local information can only get the link’s flow
data around the corresponding intersection. The agents in the MARL model with
additional neighboring information can get both action states of its neighboring
agents and the flow information. In the MARL model with local information,
there is no coordination between the agents. In the MARL model with additional
neighboring information, there is coordination between adjacent agents. Three
models are tested in the experiment, and these models all use network-wide
coordination for delay time estimation. The first model uses the estimated delay
value as the reward function, and selects the optimal control policy heuristically.

190 Y. Chen et al.

Table 3. Average link delay comparison between models

Avg. link delay
@200 flow rate
(sec)

Avg. link delay
@400 flow rate
(sec)

Avg. link delay
@600 flow rate
(sec)

MARL with local info 36.3 119.1 297.3

MARL with
neighbors info

34.5 109.2 270.3

Delay estimation
heuristic search

41.1 96.9 195.9

Delay estimation
MARL

36.6 84.3 183.3

Delay estimation
MARL with flow
amend

37.5 76.8 171.9

The second model utilizes MARL with delay time estimation for agents train-
ing. The additional states include the local information and the information of
neighboring agents. The traffic flow estimation amend is not implemented in this
model. The last model uses MARL with delay time estimation, where the traffic
flow amend is implemented with the flow fluctuation effect.

The comparison of the average queue length between models is shown in
Table 2. The comparison of average link delay of vehicles which have entered
this link between models is shown in Table 3. The average link delay represents
the average delay time of the vehicles in each road link. We test the models at
different flow rates in the road network. When the network traffic flow is at a
low level, the difference between these models is not obvious. As the network
traffic flow increase the congestion occurred in the road network, the advantage
of delay estimation model becomes quite obvious. Compared with the MARL
model with neighboring information, the delay estimation of the MARL model
with flow amendment can reduce the average link delay time by 36% under
high traffic pressure. In the experiment, since the traffic flow in the network is
relatively stable, the network iteration between agents requires only a few rounds
to converge in the delay estimation model.

We employ the throughput observation at different flow rate. The inflow rate
of the network increases from zero to 600 vehicles per minute. Figure 5 shows
the result of throughput at different flow rates. The results show that the delay
estimation model will increase the network throughput in advance to alleviate
congestion. Compared with the MARL model with neighboring information, the
delay estimation of MARL model with flow amend can increase throughput by
52% under heavy traffic flow.

In order to demonstrate the performance of the method in controlling traffic
congestion, a road link with high traffic pressure is chosen to observe the queue
length variation when these models are employed respectively. We start to observe
when there is no traffic in the road network. Then, we inject the traffic flow into

Adaptive Traffic Signal Control with Network-Wide Coordination 191

Fig. 4. Historical traffic
flow

Fig. 5. Throughput at
different flow rate

Fig. 6. Queue length of a
busy road link

Fig. 7. Queue length dis-
tribution @ 200 flow rate

Fig. 8. Queue length dis-
tribution @ 400 flow rate

Fig. 9. Queue length dis-
tribution @ 600 flow rate

the network at a rate of 600 vehicles per minute, and observe the change of waiting
queue length in 5 models in a busy road link. Figure 6 shows the queue length varia-
tion in a busy road link during the rushing hours when these models are employed.
We can see that as the traffic pressure increases, our method is very effective for
the control of stranded vehicle number. Compared with the MARL model with
neighboring information, the delay estimation of MARL model with flow amend
can reduce the queen length by 54% in a busy road link.

To reveal the queue length distribution under different flow rates, we intercept
the same time slot into the road network of each model. Figures 7, 8 and 9 show
the sorted queue length distribution, respectively. From this experiment, we can
see our delay estimation model can significantly reduce the queue length in road
links with heavy traffic.

5 Conclusion

In this paper, we propose an MARL-based scheme to address the ATSC problem.
We design an adaptive traffic signal control method based on th network-wide
coordination. By designing a delay estimation model with network-wide coordi-
nation, our scheme offers an accurate reward function for each agent’s decision
making. This reward function takes all agents’ reward and feature delayed conse-
quences into consideration, and uses the overall reward to determine the actions
of agents to the maximum extent to guarantee the global reward optimization.

192 Y. Chen et al.

In addition, we adopt a forward-looking traffic flow amend measure to ensure
the accuracy of delay prediction. With this model, we can enable agents to find a
near optimal action model to address the ATSC problem. Experimental results
with large-scale real data show the advantages of our design, especially under
heavy traffic pressure. The result shows that our scheme can effectively alleviate
the traffic congestion, improve the road network throughput, and significantly
reduce the vehicle delay time. The results also show that our scheme can be
realized conveniently by self-organizing network and extended easily with guar-
anteed efficiency.

Acknowledgements. This research is supported in part by the National Key
Research and Development Program of China under grant No. 2016QY02D0202, NSFC
under grants Nos. 61370233, 61422202, Foundation for the Author of National Excel-
lent Doctoral Dissertation of PR China under grant No. 201345, and Research Fund
of Guangdong Province under grant No. 2015B010131001.

References

1. Chen, J., Yuan, Q., Du, R., Wu, J.: Mucar: A greedy multi-flow-based coding-aware
routing in wireless networks. In: Proceedings of the 12th Annual IEEE Interna-
tional Conference on Sensing, Communication, and Networking (SECON), Seattle,
USA, 22–25 June, pp. 310–318 (2015)

2. Yin, B., Dridi, M., El Moudni, A.: Traffic control model and algorithm based
on decomposition of mdp. In: Proceedings of the 2014 International Conference
on Control, Decision and Information Technologies (CoDIT), Metz, France, 3–5
November, pp. 78–89. IEEE (2014)

3. Yin, B., Dridi, M., El Moudni, A.: Markov decision process for traffic control
at an isolated intersection. In: Proceedings of the 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence (ICTAI), Washington DC, USA,
4–6 November, pp. 789–794. IEEE (2013)

4. Li, T., Zhao, D., Yi, J.: Adaptive dynamic programming for multi-intersections
traffic signal intelligent control. In: Proceedings of the 2008 11th International
IEEE Conference on Intelligent Transportation Systems (ITSC), Beijing, China,
12–15 October. pp. 286–291. IEEE (2008)

5. Cai, C., Wong, C.K., Heydecker, B.G.: Adaptive traffic signal control using approx-
imate dynamic programming. Transport. Res. Part C: Emerg. Technol. 17(5), 456–
474 (2009)

6. Yin, B., Dridi, M., El Moudni, A.: Adaptive traffic signal control for multi-
intersection based on microscopic model. In: Proceedings of the 2015 IEEE 27th
International Conference on Tools with Artificial Intelligence (ICTAI), Vietri sul
Mare, Italy, 9–11 November, pp. 49–55. IEEE (2015)

7. Yin, B., Dridi, M., El Moudni, A.: Approximate dynamic programming with recur-
sive least-squares temporal difference learning for adaptive traffic signal control.
In: Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC),
Osaka, Japan, 15–18 December, pp. 3463–3468. IEEE (2015)

8. Vallati, M., Magazzeni, D., De Schutter, B., Chrpa, L., McCluskey, T.L.: Effi-
cient macroscopic urban traffic models for reducing congestion: a pddl+ planning
approach. In: Proceedings of the 2016 30th Conference on Artificial Intelligence
(AAAI), Phoenix, Arizona USA, 12–17 February, pp. 3188–3194. AAAI (2016)

Adaptive Traffic Signal Control with Network-Wide Coordination 193

9. Kwatirayo, S., Almhana, J., Liu, Z., Siblini, J.: Optimizing road intersection traf-
fic flow using stochastic and heuristic algorithms. In: Proceedings of the 2014
IEEE International Conference on Communications (ICC), Sydney, Australia, 10–
14 June, pp. 586–591. IEEE (2014)

10. Renfrew, D., Yu, X.H.: Traffic signal optimization using ant colony algorithm.
In: Proceedings of the 2012 International Joint Conference on Neural Networks
(IJCNN), Brisbane, Australia, 10–15 June, pp. 1–7. IEEE (2012)

11. De Oliveira, M.B., Neto, A.D.A.: Optimization of traffic lights timing based on
multiple neural networks. In: Proceedings of the 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence (ICTAI), Washington DC, USA,
4–6 November, pp. 825–832. IEEE (2013)

12. Ezugwu, A.E., Fr̂ıncu, M., Adewumi, A.O., Buhari, S.M., Junaidu, S.B.: Neural
network-based multi-agent approach for scheduling in distributed systems. Con-
curr. Comput. Prac. Exper. 29(1), e3887 (2017)

13. Cai, Y., Ji, R., Li, S.: Dynamic programming based optimized product quantization
for approximate nearest neighbor search. Neurocomputing 217, 110–118 (2016)

14. Mannion, P., Duggan, J., Howley, E.: An experimental review of reinforcement
learning algorithms for adaptive traffic signal control. In: McCluskey, T.L., Kot-
sialos, A., Müller, J.P., Klügl, F., Rana, O., Schumann, R. (eds.) Autonomic Road
Transport Support Systems. AS, pp. 47–66. Springer, Cham (2016). doi:10.1007/
978-3-319-25808-9 4

15. Bazzan, A.L.C.: Opportunities for multiagent systems and multiagent reinforce-
ment learning in traffic control. Auton. Agents Multi-Agent Syst. 18(3), 342–375
(2009)

16. Xu, L.H., Xia, X.H., Luo, Q.: The study of reinforcement learning for traffic self-
adaptive control under multiagent markov game environment. Math. Prob. Eng.
2013, 10p (2013). Article ID 962869

17. Wiering, M.: Multi-agent reinforcement learning for traffic light control. In: Pro-
ceedings of the 17th International Conference on Machine Learning (ICML),
Stanford, USA, 29 June–2 July, JMLR.org, pp. 1151–1158 (2000)

18. Arel, I., Liu, C., Urbanik, T., Kohls, A.G.: Reinforcement learning-based multi-
agent system for network traffic signal control. IET Intell. Transp. Syst. 4(2),
128–135 (2010)

19. Kuyer, L., Whiteson, S., Bakker, B., Vlassis, N.: Multiagent reinforcement learning
for urban traffic control using coordination graphs. In: Daelemans, W., Goethals,
B., Morik, K. (eds.) ECML PKDD 2008. LNCS, vol. 5211, pp. 656–671. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-87479-9 61

20. Prashanth, L.A., Bhatnagar, S.: Reinforcement learning with average cost for
adaptive control of traffic lights at intersections. In: Proceedings of the 2011
14th International IEEE Conference on Intelligent Transportation Systems (ITSC),
Washington, DC, USA, 5–7 October, pp. 1640–1645. IEEE (2011)

21. El-Tantawy, S., Abdulhai, B., Abdelgawad, H.: Multiagent reinforcement learning
for integrated network of adaptive traffic signal controllers (marlin-atsc): method-
ology and large-scale application on downtown toronto. IEEE Trans. Intell. Transp.
Syst. 14(3), 1140–1150 (2013)

22. Xie, X.F., Smith, S.F., Barlow, G.J.: Schedule-driven coordination for real-time
traffic network control. In: Proceedings of the International Conference on Auto-
mated Planning and Scheduling (ICAPS), Atibaia, Brazil, 25–19 June. AAAI
(2012)

http://dx.doi.org/10.1007/978-3-319-25808-9_4
http://dx.doi.org/10.1007/978-3-319-25808-9_4
http://dx.doi.org/10.1007/978-3-540-87479-9_61

194 Y. Chen et al.

23. Smith, S.F., Barlow, G.J., Xie, X.F., Rubinstein, Z.B.: Smart urban signal net-
works: Initial application of the surtrac adaptive traffic signal control system. In:
Proceedings of the International Conference on Automated Planning and Schedul-
ing (ICAPS), Rome, Italy, 10–14 June. AAAI (2013)

24. Jia, S.Y., Wang, G.H., Zhang, Y., Zhang, L.: Resolution and parameters estima-
tions for multiple maneuvering targets. Sci. Chin. Inf. Sci. 57(8), 1–13 (2014)

25. Tong, S., Li, Y.: Robust adaptive fuzzy backstepping output feedback tracking
control for nonlinear system with dynamic uncertainties. Sci. Chin. Inf. Sci. 53(2),
307–324 (2010)

Parallel and Distributed Algorithms

A Novel Parallel Dual-Character String
Matching Algorithm on Graphical

Processing Units

Chung-Yu Liao and Cheng-Hung Lin(B)

Deptartment of Electrical Engineering, National Taiwan Normal University,
162, Section 1, Heping E. Rd., Taipei city 106, Taiwan

cbsghost@gmail.com, brucelin@ntnu.edu.tw

Abstract. Aho-Corasick algorithm has been widely used in network
intrusion detection system to inspect network packets against thou-
sands of attack patterns. To improve the performance of network intru-
sion detection systems, many variations of Aho-Corasick algorithm are
proposed to accelerate multiple string matching on GPUs or dedicated
hardware. One of the proposed variations is to increase the number of
characters that are processed per cycle. However, increasing the number
of characters processed per cycle will encounter two major problems. The
first problem is the input alignment problem while the second problem
is the large increase of memory required for storing the state transition
table. The two problems cause the multi-character approach become
less feasible. In this paper, we propose a novel parallel dual-character
string matching algorithm on graphical processing units. In order to
solve the two major problems, the proposed algorithm presents a new
state machine to solve the input alignment problem, and compresses the
state transition table using perfect hashing to solve the memory explosion
problem. The experimental results show that the proposed algorithm is
superior to the state-of-the-art approaches in terms of performance and
memory requirements.

Keywords: Aho-Corasick algorithm · Multiple string matching ·
Graphical processing units · Perfect hashing

1 Introduction

Aho-Corasick algorithm has been widely used in network intrusion detection
system to inspect network packets against thousands of attack patterns. To
improve the performance of network intrusion detection systems, many hard-
ware and software variations of Aho-Corasick algorithm are proposed to accel-
erate multiple string matching on GPUs or dedicated hardware. Among the
proposed approaches, a specific class of multi-character approaches [1,3,5,6,8–
12,19] are proposed to improve performance by increasing the number of char-
acters processed in a cycle. However, the multi-character approach encounters
two major problems. The first problem is called input alignment problem while
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 197–210, 2017.
DOI: 10.1007/978-3-319-65482-9 13

198 C.-Y. Liao and C.-H. Lin

the second problem is the large increase in the width of the state transition table
which causes memory explosion. These two problems make the multi-character
approach become less feasible. The input alignment problem indicates that when
a pattern does not appear in even positions, it will be missed. Consider to match
the three patterns, “hey”, “ho”, and “error”, Fig. 1 shows the trie built by Aho-
Corasick algorithm. In order to process two characters in a cycle, we can sim-
ply merge two adjacent transitions to form a new state machine as shown in
Fig. 2 where “?” denotes any character. And then, we can traverse the new state
machine by reading two characters at a time. Given an input string “xheyho”,
the dual-character sequences of “xh”, “ey”, and “ho” are read to traverse the
new state machine. We find that only the pattern “ho” is found and the pat-
tern “hey” is missed because “hey” is divided into two blocks. The problem
is so-called “input alignment problem.” To solve the input alignment problem,
we can read two more characters from odd positions. Consider the same input
string, the dual-character sequences from the second position is “he”, “yh”,
“o?”, and then the pattern “hey” can be found. However, reading two charac-
ters from odd positions will encounter another problem which is so-called data
structure alignment [18]. Data structure alignment is the way data is arranged
and accessed in computer memory. Modern computers access a memory address
in fixed sized chunks (e.g. one byte, two bytes, four bytes, or larger). Reading
an input string from an odd address violates data structure alignment, which
generates an alignment fault and degrades system performance.

1

2

3

0

4h

6

e

o

5e

7r

y

8
r

9o r

Fig. 1. A single-character finite state machine

1

2

3

0

ho

4he

5

er

y?

6
ro r?

Fig. 2. A dual-character finite state machine

A Novel Parallel Dual-Character String Matching Algorithm 199

On the other hand, the memory required to store the state transition table for
multi-character approaches will be significantly increased. The state transition
table of a single-character method contains 256 columns for storing the next
status information for each ASCII alphabet. Instead, the state transition table
of a dual-character approach will need 65,536 columns for storing the next state
information for each pair of ASCII alphabets. In contrast, the state transition
table of a four-character approach will need 4,294,967,296 (4G) columns to store
the next state information for each group of four ASCII alphabets. The memory
explosion makes four-character approaches become not feasible and impractical.
In the middle of a single character and a four-character method, a dual-character
method becomes more feasible for implementation.

In this paper, we propose a novel parallel dual-character string matching
algorithm on graphical processing units. The proposed algorithm presents a new
state machine to solve the input alignment problem, and compresses the state
transition table using perfect hashing to solve the memory explosion problem.
The experimental results show that the proposed algorithm is superior to the
state-of-the-art approaches in terms of performance and memory requirements.

2 Related Works

In this section, we first review the traditional Aho-Corasick algorithm, which
is a well-known algorithm for parallel matching multiple patterns. And then,
we will review the Parallel Failureless Aho-Corasick (PFAC) algorithm, a highly
parallel extension of the Aho-Corasick algorithm. Finally, we will introduce a
perfect hashing algorithm which is suitable for compressing a state transition
table.

2.1 Review of Aho-Corasick Algorithm

The Aho-Corasick algorithm [2] has been widely used to match multiple patterns.
The Aho-Corasick algorithm compiles multiple string patterns into a single state
machine. By traversing the state machine, the Aho-Corasick algorithm can search
multiple string patterns in parallel. For example, Fig. 3 shows an Aho-Corasick
state machine for matching “hey”, “ho”, and “error” patterns. In Fig. 3, the solid
lines indicate valid transitions, and the dashed lines indicate failure transitions.
The circle nodes indicate internal states, and the double circle nodes indicate
final states. In each state, the Aho-Corasick algorithm will check whether there
is a valid transition for an input character. If so, it will switch to the next state
pointed by the valid transition. Otherwise, it will switch to the next state pointed
by a failure transition and check again whether the input character has a valid
transition. Whenever a final state is reached, a string pattern is matched. In
Fig. 3, states 1, 2, and 3 are the final states of the patterns “hey”, “ho”, and
“error”.

200 C.-Y. Liao and C.-H. Lin

1

2

3

0

4h

6

e

o

5e

7r

y

8
r

9o r

[^he]

Fig. 3. Traditional Aho-Corasick state machine with failure transitions

h e y h o s e k a i n o o w a r i

Fig. 4. The parallelization of PFAC

2.2 Review of Parallel Failureless Aho-Corasick Algorithm

The Parallel Failureless Aho-Corasick (PFAC) algorithm [14], the highly parallel
extension of the Aho-Corasick algorithm provides high performance for string
matching on SIMD platforms, especially on GPUs. Figure 4 shows the paralleliza-
tion of the PFAC algorithm which allocates each position a thread to traverse a
specific PFAC state machine. The PFAC state machine removes all failure tran-
sitions as well as the loop-back transitions in the initial state. In other words,
a PFAC thread only concerns whether any pattern is matched from its starting
address. As long as there is no valid transition for an input character, the thread
will terminate immediately. A pattern ID will be recorded if its final state is
reached. In Fig. 4, all threads terminate quickly except the 1st and 4th thread,
which match the pattern “hey” and “ho”, respectively.

2.3 Review of Perfect Hashing Algorithm

Reducing the size of a state transition table has always been a critical issue [4,13].
The original state transition table is a 2-dimensional sparse array. Compression
can reduce the memory requirements for storing a state transition table and
improve the hit rate of hardware cache, but increase the complexity of looking
up state transitions. A perfect hashing algorithm [13] is adopted to compress a
sparse state transition table with less overhead when retrieving the next state
information of a state transition. The perfect hashing algorithm starts with a
2-dimensional table. Figure 5(a) shows an example where nine keys are first

A Novel Parallel Dual-Character String Matching Algorithm 201

0 2

11 16

32

39

50

60

72

(a)

0 2

11 16

32

39

50

60

72

(b)

Offset LUT

0 1 -7 -2 -1 2 2

Transition Array

0 11 2 32 39 50 16 60 72

(c)

Fig. 5. Transition table compression using perfect hashing

placed in a 2-dimensional table in order. In Fig. 5(a), different colors are used to
distinguish the keys on different rows. In the second step, each row is prioritized
by the number of keys that are owned. In the third step, depending on the
precedence of rows, each row moves left and right until no two keys are located
in the same column, as shown in Fig. 5(b). The offset of each row is recorded
in a table called Offset LUT. Finally, the 2-dimensional table is compressed
into a one-dimensional hash table called Transition Array, as shown in Fig. 5(c).
Compared with the original 2-dimensional table which has 77 elements (7 rows
and 11 columns), the compressed hash table has only one row of 9 elements, 88%
of memory is reduced.

There are only four steps to query whether an input key exists in this hash
table. The first step is to get the row and column where the key exists in the
original 2-dimensional table. The second step is to get the row offset of the key
by looking up the Offset LUT. The third step is to calculate the position of the
key in the one-dimensional hash table. Finally, the input key is compared with
the key stored in the hash table. If they are the same, the input key is a valid key.
Otherwise, the input key is not the real key. In our application, a key represents
a valid transition.

3 Parallel Dual-Character String Matching Algorithm

In this section, we propose a dual-character string matching algorithm to improve
the throughput of string matching. The dual-character state machine, matching
kernel, and trie compression are described as follows.

3.1 Dual-Character State Machine

We start our idea by modifying the PFAC algorithm to process two characters
in a cycle. We choose to deal with two characters in a cycle because the growth
of a dual-character state transition table is within a reasonable range. As we
have mentioned, a dual-character state transition table need 65,536 columns
to store the next state information for each pair of ASCII alphabets. In other
words, each state needs 256K (65536 ∗ 4) bytes to store next state information.
On the other hand, processing four characters in a cycle will need 4,294,967,296

202 C.-Y. Liao and C.-H. Lin

(4G) columns to store the next state information for each group of four ASCII
alphabets. The storage of the state transition table causes the processing of four
or more characters to become infeasible and impractical.

Instead of storing state transition table on commodity memory, many hard-
ware approaches such as FPGA, ASIC and TCAM [1,3,5,6,8–10,12,19] are pro-
posed to lookup state transition. In so far as the authors are aware, this paper
proposes the first software-based algorithm for processing two characters in a
cycle on GPUs and using perfect hashing to compress state transition table.
Figure 2 begins the basic idea of the proposed dual-character string matching
algorithm [11]. If two consecutive input characters match the two characters on
a transition, the state machine moves to the next state pointed by the transition,
otherwise it moves to the trap state and terminates the processing of the thread.

A major problem with the dual-character algorithm is the input alignment
problem. As shown in Fig. 6, the pattern “ho” appears in an odd position marked
with red. Reading two characters every time by striding two characters will miss
this pattern. To solve the input alignment problem, a simple solution is to read
two characters every time by striding one character. However, as we have men-
tioned before, striding one character will encounter data structure alignment
problem. Data structure alignment problem indicates that unaligned memory
accesses will degrade system performance because the hardware has to read two
consecutive blocks of memory and mask out irrelevant bytes. [10] proposes a
variable-stride multi-pattern matching algorithm. However, variable-stride sizes
can cause memory accesses to not satisfy the principle of data structure align-
ment and significantly degrade the performance of memory accesses. For mod-
ern single instruction multiple data (SIMD) computer systems, fixed-stride sizes
would be more appropriate than variable-stride sizes for multi-character string
matching approaches.

To solve the input alignment problem and satisfy the principle of data struc-
ture alignment, our idea is that if we can deal with the input alignment problem
at the initial state, we can further process by reading two characters and then
striding two characters without unaligned data accesses. In other words, we can
solve the problem by separating the transitions of initial state into two routes.
As shown in Fig. 7, we create another route to final states by introducing a new
transition in the initial state. The new transition contains a meta-character “?”
in the beginning which denotes any character. In other words, we insert a “don’t
care” character in front of a pattern so that we can find the pattern that occurs
in the odd position. In addition, the dual-character algorithm has to deal with
the string patterns whose length is not a multiple of 2. For the patterns of odd

h e y h o s e k a i n o o w a r i \0

Fig. 6. The pattern “ho” in the odd position will be missed

A Novel Parallel Dual-Character String Matching Algorithm 203

1

2

3

0

7?h

8

?e

ey

o?

9
rr or

Fig. 7. Insert a “don’t care” character in front of a pattern

1

2

3

0
ho

4

he

5

er

7
?h

8

?e

y?

6ro
r?

ey

o?

9rr
or

Fig. 8. The combined dual-character finite state machine

length, we also insert a “don’t care” character in the end of the pattern. Finally,
the two state machines in Figs. 2 and 7 can be merged together to form a new
state machine. As shown in Fig. 8, each pattern has two different routes to its
final state. Using the new state machine, the memory accesses are always aligned
to the addresses of multiple of 2. We would like to mention that compared with
the one-character state machine, the cost of the dual-character state machine
is very low. In this example, the total number of transitions increases slightly,
while the number of states remains the same.

Figure 9 shows the parallelization of the proposed dual-character string
matching algorithm which allocates every two characters a thread to traverse
the dual-character state machine. Each thread processes two characters in a
cycle and then strides two characters. In the initial state, every thread traverses
the dual-character state machine via two paths by the two-character sequence
from its starting position. Because each thread traverses two paths of the dual-
character trie, we can find patterns occurring at any position. Moreover, since
each thread is only responsible for matching patterns from its starting position
and next position, the thread terminates when no valid transition exists. When
a final state is reached, the state value (pattern ID) is recorded and the thread
terminates. For example in Fig. 9, the first thread processes the two-character
sequence, “he, yh, os, ...”. In the initial state, the first thread will activate state

204 C.-Y. Liao and C.-H. Lin

h e y h o s e k a i n o o w a r i \0

Fig. 9. The parallelization of DCSM

4 and state 8 because the dual-character “he” matches “he” and “?e”, respec-
tively. And then, the first thread will move from state 4 to state 1 because the
next dual-character “yh” matches “y?”. Because state 1 is the final state of the
pattern “hey”, the first thread finds the pattern “hey” at the first position. On
the other hand, the second thread processes the two-character sequence, “yh,
os, ek...”. In the initial state, the second thread will activate state 7 because the
dual-character “yh” matches “?h”. And then, the second thread will move from
state 7 to state 2 because the next dual-character “os” matches “o?”. Because
state 2 is the final state of the pattern “ho”, the second thread finds the pattern
“ho” at the third position.

3.2 Trie Compression

Traditionally, the state transition table of the dual-character transition trie is
stored in a two-dimensional array where each row represents a state and each
column represents a pair of characters in a transition. In other words, each row
requires 65,536 (2562) columns to store the next state information, which results
in a huge memory requirement. Because the state transition table of the dual-
character transition trie is very sparse, we propose to use perfect hashing to
compress the state transition table into a one-dimensional table. Experimental
results show that perfect hashing significantly reduces the size of the state tran-
sition table, small enough to fit into the cache of processing units. When the
size of the compressed state transition table is small enough to fit into cached
memory, the performance is significantly improved.

4 Experimental Results

In this section, the proposed dual-character string matching (DCSM) algorithm
is compared with the parallel AC and PFAC. Experiments are conducted on
an Intel-based workstation. We evaluate the proposed DCSM, parallel AC, and
PFAC algorithms on various devices, including an Intel Xeon E5-1620 CPU (4
cores operating at 3.60 GHz, with 2 hardware threads each core), an Intel Xeon
Phi 3120P MIC device (56 cores operating at 1.10 GHz, with 4 hardware threads

A Novel Parallel Dual-Character String Matching Algorithm 205

Table 1. Comparison of existing algorithms with our proposed method

Parallel AC PFAC DCSM

Time complexity O(N + ms) O(mN) O(mN/2)

Space complexity O(256 ∗ S) O(256 ∗ S) O(2562 ∗ S)

Load imbalance Low High High

Performance variation Low High Median

each core), and an NVIDIA GeForce GTX Titan X GPU (Maxwell GM200,
24 stream processors operating at 1.08 GHz). A variety of SIMD methods are
adopted to accelerate the algorithms written by OpenMP [17], OpenCL [16], and
CUDA [15]. The Clang-3.8 [7] and CUDA-8.0’s NVCC are used for compilation.

Table 1 shows the differences in parallel AC, PFAC, and the proposed dual-
character string matching (DCSM) algorithm for time complexity, space com-
plexity, load imbalance, and performance variation. In Table 1, N represents the
length of the input string, m represents the longest pattern length, S represents
the number of states, and s represents the number of segments. Compared to
the PFAC algorithm, the proposed DCSM has 50% of time complexity. Before
using perfect hashing to compress state transition table, the proposed algorithm
has more space complexity than other algorithms.

In order to evaluate the performance and the effect of load imbalance, we gen-
erate different kind of input stings and patterns. The input string file is a 256 MB
text file with duplicated text. The pattern file contains only one pattern with
different amount of “b”. For example, given an input string “AbAbAbAb...” and
a pattern “b”, each thread will find the pattern “b”, so the average match length
per thread is 1. On the other hand, given an input string “AbbAbbAbbAbb...”
and a pattern “bb”, each thread will find the pattern “bb”, so the average match
length per thread is 2.

Table 2 shows the throughput of the five string matching algorithms per-
formed on Intel Xeon E5-1620 CPU. The AC and PFAC are performed using
single thread while AC-OMP, PFAC-OMP, and DCSM-OCL are performed using
multiple threads on a multi-core CPU. The first column shows the average
matched string length. Each data is the average of 32 experiments performed.

Figure 10 shows the throughput of each algorithm in terms of average
matched string length. The proposed DCSM algorithm is superior to the tradi-
tional AC algorithm, but worse than the PFAC algorithm. The possible reason
is that the cache hardware is more suitable for the PFAC algorithm than our
proposed algorithm.

Table 3 shows the throughput of string matching algorithms running on ded-
icated SIMD hardware. In order to reduce the memory access time, it is best to
put patterns into shared memory of GPUs. We find that manually cache string
patterns into shared memory will lead to additional time consuming. The auto-
matic global cache function works relatively well. Moreover, the new Opt-In L1
cache method introduced in compute capability 5.2 of NVIDIA’s GPUs cache

206 C.-Y. Liao and C.-H. Lin

Table 2. Thoughput of string matching algorithms on CPU (Gbps)

Len AC PFAC AC-OMP PFAC-OMP DCSM-OCL

0 3.003265 6.461977 3.109569 17.599781 6.241063

1 1.944218 4.121960 2.098434 7.629187 7.430604

2 1.747764 3.384988 1.912033 7.619888 4.888151

3 1.596871 2.835836 1.718806 7.628115 4.196878

4 1.467276 2.389326 1.523695 7.316531 3.896687

5 1.369525 1.973989 1.359593 6.544737 3.379701

6 1.271533 1.685289 1.222860 5.862118 3.281834

7 1.183336 1.290091 1.109950 5.306875 2.874439

8 1.119125 1.276692 1.012377 4.829496 2.826690

9 1.052028 1.129413 0.931223 4.308836 2.494296

10 0.991375 1.012270 0.862948 4.013759 2.427218

11 0.940956 0.905610 0.802917 3.742073 2.185619

12 0.889874 0.829753 0.750737 3.520241 2.147560

13 0.847851 0.758642 0.665933 3.339794 1.945141

14 0.806011 0.698257 0.633191 3.165751 1.880892

15 0.766781 0.644466 0.597062 2.892655 1.723106

16 0.730333 0.598859 0.568756 2.575769 1.649733

17 0.696826 0.557244 0.514232 2.475240 1.524064

18 0.664104 0.522199 0.497940 2.378750 1.498077

19 0.588959 0.489555 0.460690 2.235594 1.391194

20 0.560490 0.458940 0.444000 2.067800 1.364938

21 0.536560 0.426624 0.429269 1.987974 1.275266

22 0.484535 0.403728 0.400936 1.842082 1.240864

23 0.453467 0.380238 0.390517 1.799058 1.162725

24 0.418239 0.361198 0.376786 1.763723 1.164886

25 0.414786 0.344072 0.345002 1.706004 1.083368

26 0.384740 0.327696 0.353840 1.653063 1.084081

27 0.364139 0.316330 0.329335 1.608079 1.015276

28 0.343706 0.293329 0.311075 1.555089 1.015196

29 0.330598 0.278171 0.297853 1.507681 0.961770

30 0.320936 0.264541 0.285636 1.454268 0.960174

31 0.309753 0.253609 0.262843 1.401605 0.911594

A Novel Parallel Dual-Character String Matching Algorithm 207

0 5 10 15 20 25 30
0

5

10

15

Average Matched String Length

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

AC

PFAC

AC-OMP

PFAC-OMP

DCSM-OCL

Fig. 10. Throughput of string matching algorithms on CPU (Gbps)

Table 3. Thoughput of string matching algorithms on CPU (Gbps)

Len (MIC)DCSM-OCL (GPU)PFAC-CUDA (GPU)DCSM-CUDA

0 21.441349 628.870897 319.769612

1 27.029806 461.863151 340.382600

2 12.599209 280.428175 214.278467

3 12.954708 207.998002 188.814390

4 8.477064 164.863106 158.220112

5 8.601811 137.101213 144.809349

6 6.669896 118.474421 127.003311

7 6.827178 103.901415 118.563154

8 5.488810 92.104392 106.338814

9 5.542212 82.715548 100.244526

10 4.680273 75.271303 91.624524

11 4.710292 69.047148 86.720623

12 4.078782 63.640013 80.195513

13 4.098180 58.958746 76.820802

14 3.605530 55.032578 71.649087

15 3.645438 51.528281 68.924011

16 3.249860 48.347110 64.861113

17 3.250740 45.716155 62.816724

(continued)

208 C.-Y. Liao and C.-H. Lin

Table 3. (continued)

Len (MIC)DCSM-OCL (GPU)PFAC-CUDA (GPU)DCSM-CUDA

18 2.965682 43.381114 59.370970

19 2.948099 41.211043 57.654006

20 2.725243 39.231509 54.639669

21 2.694917 37.266576 53.142429

22 2.515006 35.660377 50.581263

23 2.485380 34.137180 49.345691

24 2.335990 32.768088 47.079678

25 2.300857 31.493322 45.966321

26 2.179472 30.319198 44.039056

27 2.146681 29.256904 43.078256

28 2.040959 28.337732 41.405870

29 2.011340 27.226866 40.540811

30 1.922978 26.320876 38.961908

31 1.891966 25.488163 38.263773

0 5 10 15 20 25 30
0

200

400

600

Average Matched String Length

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

(MIC)DCSM-OCL

(GPU)PFAC-CUDA

(GPU)DCSM-CUDA

Fig. 11. Throughput of string matching algorithms on accelerators (Gbps)

the global memory of patterns to the L1 cache, the same area as the texture
memory. Each data in this table is the average of 256 experiments performed.

Figure 11 shows the throughput of each algorithm performed on dedicated
SIMD hardware including MIC and GPU. When the average matched string
length is greater than 5, the proposed DCSM algorithm is superior to PFAC.

A Novel Parallel Dual-Character String Matching Algorithm 209

0 5 10 15 20 25 30

0.5

1

1.5

Average Matched String Length

T
h
ro

u
g
h
p
u
t

R
a
ti

o

(GPU)PFAC-CUDA

(GPU)DCSM-CUDA

Fig. 12. Performance comparison with PFAC

Figure 12 shows the improvement rate of our proposed algorithm relative
to the PFAC algorithm on GPUs. Our proposed algorithm is about 50% more
efficient than the PFAC algorithm when the average matched length is 31.

5 Conclusion

In this paper, we have proposed a novel parallel dual-character string matching
algorithm to accelerate exact string matching on GPUs. We also have discussed
several optimization techniques for the proposed algorithm performed on variable
SIMD devices, including CPU, MIC, and GPU. The experimental results show
that the proposed algorithm is superior to the state-of-the-art PFAC algorithm
on GPUs.

References

1. AbuHmed, T., Mohaisen, A., Nyang, D.: A survey on deep packet inspection for
intrusion detection systems. CoRR abs/0803.0037 (2008)

2. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic
search. Commun. ACM 18(6), 333–340 (1975)

3. Alicherry, M., Muthuprasanna, M., Kumar, V.: High speed pattern matching for
network ids/ips. In: Proceedings of the 2006 IEEE International Conference on
Network Protocols, pp. 187–196 (2006)

4. Bremler-Barr, A., Hay, D., Koral, Y.: CompactDFA: Generic state machine com-
pression for scalable pattern matching. In: 2010 Proceedings of IEEE INFOCOM,
pp. 1–9 (2010)

210 C.-Y. Liao and C.-H. Lin

5. Chang, Y.K., Chang, C.R., Su, C.C.: The cost effective pre-processing based nfa
pattern matching architecture for nids. In: 2010 24th IEEE International Confer-
ence on Advanced Information Networking and Applications, pp. 385–391 (2010)

6. Chen, C.C., Wang, S.D.: An efficient multicharacter transition string-matching
engine based on the aho-corasick algorithm. ACM Trans. Archit. Code Optim.
10(4), 25:1–25:2 (2013)

7. Clang: A C language family frontend for LLVM. https://clang.llvm.org/ (April
2017)

8. Dharmapurikar, S., Lockwood, J.W.: Fast and scalable pattern matching for
network intrusion detection systems. IEEE J. Select. Areas Commun. 24(10),
1781–1792 (2006)

9. Dharmapurikar, S., Lockwood, J.: Fast and scalable pattern matching for content
filtering. In: Proceedings of the 2005 ACM Symposium on Architecture for Net-
working and Communications Systems ANCS 2005, NY, USA. pp. 183–192. ACM,
New York (2005)

10. Hua, N., Song, H., Lakshman, T.V.: Variable-stride multi-pattern matching for
scalable deep packet inspection. IEEE INFOCOM 2009, 415–423 (2009)

11. Jiang, W., Yang, Y.H.E., Prasanna, V.K.: Scalable multi-pipeline architecture for
high performance multi-pattern string matching. In: 2010 IEEE International Sym-
posium on Parallel Distributed Processing (IPDPS), pp. 1–12 (2010)

12. Kim, J., i. Choi, S.: High speed pattern matching for deep packet inspection. In:
2009 9th International Symposium on Communications and Information Technol-
ogy, pp. 1310–1315 (2009)

13. Lin, C.H., Li, J.C., Liu, C.H., Chang, S.C.: Perfect hashing based parallel algo-
rithms for multiple string matching on graphic processing units. IEEE Trans. Par-
allel Distrib. Syst. 99, 1 (2017)

14. Lin, C.H., Liu, C.H., Chien, L.S., Chang, S.C.: Accelerating pattern matching
using a novel parallel algorithm on gpus. IEEE Trans. Comput. 62(10), 1906–1916
(2013)

15. NVIDIA: CUDA Zone (2016). https://developer.nvidia.com/cuda-zone
16. OpenCL - The open standard for parallel programming of heterogeneous systems

(2017). https://www.khronos.org/opencl/
17. The OpenMP API specification for parallel programming (2016). http://www.

openmp.org/
18. Wikipedia: Data structure alignment (2017). https://en.wikipedia.org/wiki/Data

structure alignment
19. Yamagaki, N., Sidhu, R., Kamiya, S.: High-speed regular expression matching

engine using multi-character nfa. In: 2008 International Conference on Field Pro-
grammable Logic and Applications, pp. 131–136 (2008)

https://clang.llvm.org/
https://developer.nvidia.com/cuda-zone
https://www.khronos.org/opencl/
http://www.openmp.org/
http://www.openmp.org/
https://en.wikipedia.org/wiki/Data_structure_alignment
https://en.wikipedia.org/wiki/Data_structure_alignment

Distributed Nonnegative Matrix Factorization
with HALS Algorithm on MapReduce

Rafa�l Zdunek(B) and Krzysztof Fonal

Department of Electronics, Wroclaw University of Science and Technology,
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
rafal.zdunek@pwr.edu.pl, krzysiekfonal@gmail.com

Abstract. Nonnegative Matrix Factorization (NMF) is a commonly
used method in machine learning and data analysis for feature extraction
and dimensionality reduction of nonnegative data. Recently, we observe
its increasing popularity in processing massive data, and advances in
developing various distributed algorithms for NMF. In the paper, we
propose a computational strategy for implementation of the Hierar-
chical Alternating Least Squares (HALS) algorithm using the MapRe-
duce programming paradigm. Due to this approach, the scalable HALS
NMF, which can be implemented on parallel and distributed computer
architectures, is obtained. The scalability and efficiency of the proposed
algorithm is confirmed in the numerical experiments, performed on large-
scale synthetic and recommendation system datasets.

Keywords: Distributed nonnegative matrix factorization · Large-scale
NMF · HALS algorithm · Mapreduce paradigm · Recommendation
systems

1 Introduction

Nonnegative Matrix Factorization (NMF) [1] is an unsupervised method for
extracting a latent structure from an input matrix that contains only nonnegative
entries. The basic model of NMF assumes an approximate decomposition of an
input nonnegative matrix into lower-rank nonnegative factors. Lee and Seung
[2] considerably popularized NMF by proposing simple multiplicative algorithms
for updating the factors. Since then, thousands of research papers on NMF and
its applications have been published. Nowadays, many computational strategies
exist for updating the factors in various NMF models.

Most of the existing algorithms are intended for a single node implementa-
tion, assuming that the whole data matrix is uploaded to the RAM memory.
However, in the era of big data, this assumption cannot be often satisfied, which
motivates the need for developing distributed versions of computational algo-
rithms. Recently, many research papers have reported a potential of NMF for
processing massive data, especially a large volume data. It mostly results from
flexibility of many NMF algorithms for partitioning computational problems and
processing block-wise updates using the MapReduce programming paradigm.
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 211–222, 2017.
DOI: 10.1007/978-3-319-65482-9 14

212 R. Zdunek and K. Fonal

MapReduce is a programming model for applications that aim to perform
distributed and parallel processing of large datasets on commodity hardware
units. It consists of two procedures: Map and Reduce. The former is invoked on
the input data to break down it into so-called tuples (key/value pairs). Then, the
shuffle step redistributes the output data from the mapping function according
to their output keys. The data with the same output key is usually processed
by the same node (server). The latter combines the data tuples from the nodes
into a smaller set of tuples, and finally writes the output, usually to the Hadoop
Distributed File System (HDFS). Due to the distributed and parallel nature of
the MapReduce model, many numerical algorithms can be implemented very
efficiently.

Many attempts have been made to implement NMF algorithms on distrib-
uted computer architectures. Liu et al. [3] faced up the scalability problem of
multiplicative algorithms for NMF. They analyzed how to partition the data and
arrange the computation using the MapReduce paradigm to factorize very large
matrices that contain more than 4 billion nonzero entries. Unfortunately, multi-
plicative algorithms suffer from terrible slow convergence. Hence, there is a need
to develop other distributed NMF algorithms which are more faster. The MapRe-
duce paradigm has been also used in the work [4] to scale up convex NMF [5].
This model of NMF is very useful for solving clustering problems, and the pro-
posed algorithm was able to factorize matrices with 600 million nonzero entries.
However, this work should be also regarded as an extension of multiplicative algo-
rithms, which is not profitable due to convergence reasons. Another approach
to distributed NMF is presented by Yin et al. in the paper [6], where the input
matrix is split into blocks that are used for updating the corresponding blocks
of the latent factors. The partitioning is performed by the mapping procedure
and the reduction step unifies the partial results. The block-wise updates can
be applied to any decomposable objective function but the discussed algorithms
are only derived for the Euclidean function, and the distributed updating rules
are formulated on the basis of multiplicative rules. Hence, this algorithm cannot
converge fast. The MapReduce paradigm has also been used in the paper [7] for
implementing the standard multiplicative NMF algorithms [2] in the computa-
tional cloud. The proposed approach has been applied for extracting the latent
components from the STRING dataset that contains biological data represented
by a 1, 349, 909 × 1, 349, 909 matrix. In the literature, we can find more exam-
ples of using the MapReduce paradigm for scaling up various matrix factorization
methods, e.g. see [8,9].

For many computational problems, the condition number depends on their
size, e.g. for a matrix with normally distributed entries, the condition number
grows asymptotically to log n if n → ∞ (size). Hence, the gradient descent
algorithms need more iterations to reach a given error threshold if n increases.
The rate of convergence for a given iterative solver plays a very important role,
especially if a computational task is very large. To face up this problem in
multiplicative algorithms, many other updating rules were proposed for NMF
[1]. One of them is the Hierarchical Alternating Least Squares (HALS) algorithm

Distributed Nonnegative Matrix Factorization 213

that was first proposed by Cichocki et al. [10], and then considerably improved
by Cichocki and Phan [11]. Many independent researches [12–16] confirmed its
high efficiency for solving various NMF problems and its very fast convergence.

In this paper, we further extend the HALS algorithm to the distributed
implementation with the MapReduce paradigm. Despite the HALS belongs to a
family of block-coordinate descent algorithms, its most computationally involv-
ing operations can be implemented using the BLAS-3 routines (matrix-matrix
multiplications). The coordinate descent updates, which must be implemented
with at most BLAS-2 (matrix-vector multiplications), are swept only through
the latent components. Thus, the operations with the BLAS-2 do not require
large computational complexity since the number of latent components is usually
much lower than the number od samples or attributes. Our concept of applying
the MapReduce paradigm to the HALS concerns partitioning the most compu-
tationally involving tasks in the HALS into chunks, which are computed with
the BLAS-3. Obviously, the BLAS-2 routines are also used for each chunks of
data but these computations can be easily performed.

The paper is organized as follows: Sect. 2 discusses the standard HALS algo-
rithm implemented on a single node. The distributed HALS NMF is presented
in Sect. 3. The experiments carried out for large-scale matrices are described in
Sect. 4. Finally, the conclusions are drawn in Sect. 5.

2 Single Node HALS Algorithm

The basic model of NMF assumes an approximate decomposition of the nonneg-
ative input matrix Y = [yit] ∈ R

I×T
+ into the lower-rank nonnegative matrices

A = [aij] ∈ R
I×J
+ and X = [xjt] ∈ R

J×T
+ , given the lower rank J , and possibly

some prior knowledge on the matrices A or X . Usually: J << min{I, T}. Thus:
Y ∼= AX ∈ R

I×T
+ .

The factors A and X are typically estimated from Y by using the following
alternating optimization scheme: For s = 1, 2, . . . ,do:

X (s) = arg min
X≥0

Ψ(Y ||A(s−1)X) , (1)

A(s) = arg min
A≥0

Ψ(Y ||AX (s)) , (2)

where Ψ(Y ||AX) is an assumed objective function that measures dissimilarity
between the observed data in Y and the model AX . The matrices A(0) and
X (0) are the initial guesses.

The optimization problems in (1) and (2) can be solved with many solvers.
A survey of such methods can be found in [1,17]. The HALS [10,11] performs
block-coordinate descent updates. For approximating the problem (1) in the s-th
iterative step, the j-th row vector x j of X is updated by solving the subproblem:

x
(s)
j = arg min

x∈Ω
(j)
X ⊂R

T
+

Ψ
(
A(s−1),

[
x
(s)
1 ; . . . ;x (s)

j−1;x ;x (s−1)
j+1 ; . . . ;x (s−1)

J

])
, (3)

214 R. Zdunek and K. Fonal

where Ω
(j)
X = {xj1, . . . , xjT }, j = 1, . . . , J , and X (s) = [x (s)

1 ; . . . ;x (s)
J] ∈ R

J×T
+ .

The objective function Ψ can take various forms. The HALS-based algorithms
for minimizing the α- and β-divergences can be found in [1]. Without loss of
generality, the distributed HALS will be presented for the squared Euclidean
function which is optimal for Gaussian noise. Assuming Ψ(A,X) = 1

2 ||Y −∑J
j=1 ajx j ||2F , and performing some straightforward algebraic computations [1],

the HALS rule for updating X is given by:

x j ←
[
x j +

[ATY]j,∗ − [ATA]j,∗X
[ATA]jj

]

+

, (4)

where [C]j,∗ stands for the j-th row vector of the matrix C , and [ξ]+ = max{0, ξ}
projects ξ onto the set of nonnegative numbers.

Algorithm 1. HALS

Input : A ∈ R
I×J
+ , Y ∈ R

I×T
+ , X (0) ∈ R

J×T
+ , kmax - maximum number of

iterations,
Output: X - estimated factor

1 Initialization: C (X) = ATY , B (X) = ATA;
2 for k = 0, 1, . . . , kmax do
3 for j = 1, . . . , J do

4 x
(k+1)
j =

[
x

(k)
j +

c
(X)
j −b

(X)
j X (k)

b
(X)
jj

]
+

; // Projected updates

The pseudo-code for implementation of the rule (4) is shown in Algorithm 1.
It contains two loops for - the outer for sweeping the iterations, and the inner
for sweeping over the block-coordinates, where the block is regarded as the set of
variables in the vector x j = [xj1, . . . , xjT]. Note that due to the precomputation
of the matrices C (X) ∈ R

J×T
+ and B (X) ∈ R

J×J
+ in the step 1, the computational

complexity for the inner-loop computations is only O(JT). Thus, when the inner
loop is completed, the complexity is O(J2T). The computations in the inner loop
are performed only with the BLAS-2 routine, but this is not a problem because
their complexity is low under the assumption J << T . The most computationally
involving tasks are performed in the step 1, which hopefully can be implemented
according to the BLAS-3 routines. The matrices C (X) and B (X) need O(IJT)
and O(IJ2), respectively. Hence, the overall time complexity for updating X
can be estimated as O(J2Tkmax) + O(IJ2) + O(IJT). Assuming J << T and
kmax ≈ J , the roughly approximated time complexity for these updates amounts
to O(IJT).

To solve the problem (2), the squared Euclidean distance is minimized with
respect to A using the similar numerical approach, which leads to the update
rule:

Distributed Nonnegative Matrix Factorization 215

aj ←
[
aj +

c
(A)
j − Ab

(A)
j

b
(A)
jj

]

+

, (5)

where C (A) = [c(A)
1 , . . . , c

(A)
J] = YX T ∈ R

I×J
+ and B (A) = [b(A)

ij] = XX T ∈
R

J×J
+ . In this case, we also need the inner loop for for sweeping the column

vectors in A. Thus, under the same assumption as above, the time complexity
for updating A can also be roughly estimated as O(IJT).

3 Distributed HALS Algorithm

The update rules (4) and (5) can be easily implemented in many computational
environments and run on a single-node computational machine, i.e. under the
assumption that the whole matrix Y can be uploaded to the shared memory.
If so, A and X can also be shared easily among the cores of CPU, and C (X)

can be calculated in parallel on different cores by partitioning the corresponding
columns of Y . Similarly, the parallel calculation of C (A) requires partitioning
of Y along their rows.

The matrix Y , which has only one dimension large (I or T), belongs to a
class of tall-and-skinny matrices, and for it the geometric algorithms based on
the MapReduce paradigm have been proposed by Benson et al. [18]. Unfortu-
nately, when Y is large, in the sense that both I and T are large, neither the
geometric algorithms nor the parallelization of computations are sufficient. To
tackle this problem, the computations should be distributed across many nodes
in a distributed cluster. For this case, the updating rules (4) and (5) must be
modified. We assume that the matrix Y can be divided into blocks which can
be distributed across the nodes. Let Y = [Y mn] be composed of the blocks
Y mn ∈ R

Im×Tn
+ , where

∑M
m=1 Im = I and

∑N
n=1 Tn = T , for m = 1, . . . , M ,

n = 1, . . . , N . Since J << min{I, T}, X is partitioned only along the columns,
i.e. X = [X 1, . . . ,XN], where ∀n : X n ∈ R

J×Tn
+ . Similarly, A is divided into

row-blocks, i.e. A = [A1; . . . ;AM] with Am ∈ R
Im×J
+ . Considering the above

partitioning, C (X) and B (X) in Algorithm 1 can be computed as follows:

C (X) =
M∑

m=1

C (X)
m , where C (X)

m = AT
mY m, (6)

B (X) =
M∑

m=1

B (X)
m and B (X)

m = AT
mAm. (7)

For updating the matrix A, C (A) and B (A) have the forms:

C (A) =
N∑

n=1

C (A)
n , where C (A)

n = [C (A)
1n ; . . . ;C (A)

Mn] and C (A)
mn = Y mnX

T
n , (8)

216 R. Zdunek and K. Fonal

B (A) =
N∑

n=1

B (A)
n and B (A)

n = X nX
T
n . (9)

The above block-partitioning approach determines a fully distributed HALS
algorithm. However, in this paper we present its MapReduce implementation,
assuming that A and X are kept in the shared memory. If so, the blocks B (X)

m

and B (A)
n can be computed in parallel across the cores, where each B (X)

m or B (A)
n

is computed by one thread. In our approach, we assume that only the matrices
C (X) and C (A) require distributed computations. Moreover, we assume that the
data are read in chunks that are blocks of rows in the matrix Y . This way of
reading is motivated by the datastore function in Matlab 2016a. It creates chunks
specified by a given number of rows from a textual file (e.g. csv-file) or specified
by a collection of other files (such as mat-files or image-files). Considering the
above notation, one chunk of data is denoted by Y m = [Y m1, . . . ,Y mN] ∈
R

Im×T
+ . Because of the characteristics of datastore chunks, the computation of

(8) is a little bit more complex than its counterpart (6) but it will be explained
later.

The computation of C (X) requires one MapReduce job. According to (6),
the mapper simply creates < m,Y m > - the key-value pair that refers to the
m-th chunk. The reducer calculates C (X)

m and then the summation is performed
over m. To calculate C (X) the following MapReduce operations are needed:

– Map: Map < m,Y m > on m such that tuples with the same m are shuffled
to the same machine in the form of < m, {Y m,A} >,

– Reduce I: Take < m, {Y m,A} > and emit < m,C (X)
m >,

– Reduce II: Sum < m,C (X)
m > over m.

The reducer gets the chunks ordered as key values and multiplies every chunk
with the counterpart row-chunk from A. Each key contains a single value which
is the whole row-chunk of Y . The output datastore from the step Reduce I
contains a KeyValueDatastore object, hence the second mapping (in Matlab) is
not necessary. The second reducer performs the summation over the values in the
output object. Note that the chunks {Y m} and the blocks {Am} are disordered
in the same way, but the sum of matrices is commutative, and hence it does not
affect the matrix C (X).

To compute C (A) we also need one MapReduce job, however, it is more
difficult because our chunks are still the same blocks {Y m}. Since the updating
C (A) requires the summation over n but the chunks are read over m, the mapper
is different than the previous one. Here, the mapper produces multiple key-value
pairs per a single block as it splits the block with n partitions. In consequence,
the mapper generates a m-length list of values per key. Because of the fact that
the MapReduce paradigm does not ensure the ordering in the list of values (it
has usually different order than it was added), we need to keep a label with every
value (block of rows) which refers to m-block it was taken from. The reducer
calculates C (A)

mn for every item in the list of n-th key, filling the proper part of

Distributed Nonnegative Matrix Factorization 217

C (A)
n thanks to the label. The MapReduce-based operations needed to compute

C (A) can be listed as follows:

– Map: Map < m,n,Y mn > on n such that tuples with the same n are shuffled
to the same machine in the form of < n, {m,Y mn,X },∀m ∈ {1, . . . , M} >,

– Reduce I: Take < n, {m,Y mn,X },∀m ∈ {1, . . . , M} > and emit <

n,C (A)
n > by calculating C

(A)
mn and filling it to C

(A)
n according to the m-label.

– Reduce II: Sum < n,C (A)
n > over n.

The MapReduce paradigm is not only used for computing the matrices C (A)

and C (X). The alternating iterations, indexed by s in (1) and (2), are terminated
according to the stopping criterion based on the residual error. The normalized
residual error is given by:

rs =
||Y − A(s)X (s)||F

||Y ||F . (10)

Both the nominator and the denominator involve the operations on large matri-
ces, and hence must be computed using the distributed approach. The MapRe-
duce operations for computing the nominator in (10) are given by the steps:

– Map: Map < m,Y m > on m such that tuples with the same m are shuffled
to the same machine in the form of < m, {Y m,A,X } >,

– Reduce I: Take < m, {Y m,A,X } >
and emit 〈′KeyName′,

{
r̃m = ||Y m − AmX ||2F

}〉,
– Reduce II: Take <′ KeyName′, {r̃m},∀m ∈ {1, . . . , M} >

and emit r̃ =
∑

m r̃m.

The denominator in (10) needs the following steps:

– Map: Map < m,Y m > on m such that tuples with the same m are shuffled
to the same machine in the form of < m, {Y m} >,

– Reduce I: Take < m, {Y m} > and emit 〈′KeyName′,
{
r̂m = ||Y m||2F

}〉,
– Reduce II: Take <′ KeyName′, {r̂m},∀m ∈ {1, . . . , M} >

and emit r̂ =
∑

m r̂m.

Finally r =
√

r̃
r̂ in each iterative step s. The final version of the Distributed

(D-HALS) is given by Algorithm 2. The functions MR(Ds, . . .) are executed
with the MapReduce paradigm using the datastore Ds and the other respective
arguments.

218 R. Zdunek and K. Fonal

Algorithm 2. D-HALS
Input : Y ∈ R

I×T
+ , smax - maximum number of alternating iterations, kmax -

maximum number of inner iterations.
Output: A, X - estimated factors

1 Initialization: A(0), X (0);
2 Create the datastore Ds from Y ;
3 for s = 0, 1, . . . , smax do

4 Compute: C (A) = MR(Ds,X) with (8); B (A) with (9) ; // Update for A

5 for k = 0, 1, . . . , kmax do

6 G(A) = AB (A) − C (A) ; // Gradient of the objective w.r.t. A

7 if Stopping criterion based on G(A) is satisfied, then
8 break

9 for j = 1, . . . , J do
10 Update aj with the rule (5);

11 Compute: C (X) = MR(Ds,A) with (6); B (X) with (7) ; // Update for X

12 for k = 0, 1, . . . , kmax do

13 G(X) = B (X)X − C (X) ; // Gradient of the objective w.r.t. X

14 if Stopping criterion based on G(X) is satisfied, then
15 break

16 for j = 1, . . . , J do
17 Update x j with the rule (4);

18 Compute the residual error: r = MR(Ds,A,X) with (10);
19 if r satisfies a given stopping criterion, then
20 break

4 Experiments

The D-HALS algorithm has been tested on the following datasets:

– Benchmark I: The matrix Y ∈ R
I×T
+ is generated synthetically from the

factor matrices: A = [aij] ∈ R
I×J
+ and X = [xjt] ∈ R

J×T
+ , where aij =

max{0, âij}, xjt = max{0, x̂jt} and ∀i, j, t : âij , x̂jt ∼ N (0, 1). The algorithm
is tested for various sizes of Y : (A) I = 103, T = 104; (B) I = T = 104; (C)
I = 104, T = 105; (D) I = T = 105. In each case, we set J = 10, and for this
value the matrix Y is nearly fully dense, despite A and X have nearly 50%
zero-entries. Thus, the chunks are represented in double-precision floating-
point, and the number of entries being processed for each case amounts to:
(A) 107, (B) 108, (C) 109, (D) 1010. For the cases A-C, the data are split into
10 chunks along the rows, and due to the shared memory limit this number
was increased to 100 for the dataset D.

Distributed Nonnegative Matrix Factorization 219

– Benchmark II: The matrix Y is created from the dataset (ml-latest) issued
by MovieLens1 [19]. It contains 5-star rating and free-text tagging activity
from a movie recommendation service. We used the dataset that has 22884377
ratings and 586994 tag applications across 33670 movies, evaluated by 247753
users within the period from January 09, 1995 to January 29, 2016. Thus Y ∈
R

247753×33670
+ is a sparse matrix, containing about 27.43% nonzero entries.

The number of chunks amounts to 10.

The aim of the numerical experiments is to show that the D-HALS is scalable,
and its performance increases with the size of the datasets that are generated
from the same distributions (as in benchmark I). The benchmark II is used to
demonstrate usefulness of the D-HALS in processing real data from a movie
recommendation system.

The D-HALS is coded in Matlab 2016a according to the MapReduce para-
digm (the mapreduce function accessible since Matlab R2014a). Using the Par-
allel Computing Toolbox or MATLAB Distributed Computing Server, it can be
executed using parallel pool on the specified cluster, including the Hadoop clus-
ter. In this paper, we present the results mainly obtained with the parallel pool
of 8 workers, run on the workstation equipped with CPU Intel i7-6700, 3.4 GHz,
32 GB RAM, 500 GB SSD disk. The selected computations have been also run
in PBS queues on the distributed cluster server in Wroclaw Center for Network-
ing and Supercomputing (WCSS)2. The proposed algorithm can be run on any
multi-node cluster, and we will use another publicly available computational
servers for larger-scale computations in the near future.

Due to the intrinsic ambiguities of the NMF model, statistical validation of
NMF algorithms requires to use the Monte Carlo (MC) scheme. We assumed
30 MC runs of the algorithm for each dataset from the benchmark I, where in
each run new factors A and X and their initial approximations are generated. In
each alternating iteration (step s in Algorithm 2), the normalized residual error
is calculated, and the iterations are terminated when the normalized difference
in the residual error between consecutive iterations drops below the threshold
10−5. The inner iterations (steps k) and the other parameters are set similarly
as in the Lin’s Projected Gradient (LPG) algorithm [20].

For each MC run, the ratio of the runtime to the number of performed iter-
ations is measured. The averaged runtime/iteration is plotted in Fig. 1(a) for all
the datasets in the benchmark I. The whiskers determine the Standard Deviation
(STD). For comparison, the dataset A was also computed in the WCSS using
24 cores (ncpus) and 24 GB RAM (mem). The runtime/iteration ratio amounts
to 3.836 s. Regarding the ratio of 3.08 s obtained for the workstation (and other
limitations in WCSS), the remaining computations were restricted only to the
workstation.

The performance of the D-HALS is also evaluated with the Signal-to-
Interference Ratio (SIR) [1] between the estimates and the true factors.
Figure 1(b) illustrates the averaged SIR-values and the STD-ranges for each
1 https://grouplens.org/datasets/movielens/.
2 https://www.wcss.pl/en/.

https://grouplens.org/datasets/movielens/
https://www.wcss.pl/en/

220 R. Zdunek and K. Fonal

A B C D
100

101

102

103

104

A B C D
0

20

40

60

80

100

120

140
Factor A

)b()a(

Fig. 1. MC simulations: (a) runtime per iteration [in seconds]; (b) SIR-values [dB],
obtained for the synthetic data – benchmark I with various sizes: (A) I = 103, T = 104;
(B) I = T = 104; (C) I = 104, T = 105; (D) I = T = 105. The whiskers (in both
figures) denote the standard deviation.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

||Y
-A

(s
) X

(s
) || F

/||
Y
|| F

Benchmark I

A B C

15

20

25

30

35

st
op
)

)b()a(

Fig. 2. MC simulations: (a) normalized residual error plots versus iterations with the
marked STD area (in green); (b) boxplots of truncated alternating iterations over MC
runs. Benchmarks I (with A-D sizes) and II. (Color figure online)

problem. The normalized residual errors versus alternating steps are presented in
Fig. 2(a) for both benchmarks. The green patch highlights the region determined
by the standard deviation of all 120 curves (30 by 4). The red line represents the
residual error obtained for the benchmark II. Figure 2(b) illustrates the box plots
of the performed alternating iterations for each dataset. The D-HALS applied to
the benchmark II stopped after 14 alternating iterations, decreasing the residual
error monotonically to the value 0.8373. The runtime per one iteration amounts
to 696 s.

For comparison, the benchmark II was also factorized with the ALS algorithm
from the MLib library in the Apache Spark. For this case, RMSE is equal to 0.92
if the regularization parameter is set optimally to 0.1 [21].

5 Conclusions

In this paper, we extended the HALS-based NMF algorithm to the distributed
version by partitioning the computational tasks according to the MapReduce

Distributed Nonnegative Matrix Factorization 221

paradigm. The results presented in Fig. 1(a) clearly demonstrate that the pro-
posed D-HALS is linearly scalable and can be applied to factorize a data matrix
of any size, provided that the factors A and X are kept in the shared mem-
ory. This condition will be relaxed in the further extensions. The performance
expressed in terms of the SIR measure slightly increases with the size of the
analyzed problem at the constant rank of factorization, which is intuitively jus-
tified – see Fig. 1(b). For the case D, the number of chunks raised tenfold with
respect to the previous cases, and this might account for the slightly lower perfor-
mance. Figure 2(a) shows that in each analyzed case the residual error diminishes
monotonically. Surprisingly, larger problems do not necessary involve more itera-
tions to reach a given threshold for stagnation of the residual error. As presented
in Fig. 2(b) for all the tested problems, the threshold occurs within less than 36
iterations. The number of performed iterations varies in the range [12, 36]. For
the benchmark II, the algorithm stopped after 14 iterations, and the behavior of
the residual error suggests that a larger number of iterations does not improve
the fitting of the model to the data. The similar behavior was also observed with
the ALS algorithm in the Apache Spark. The stagnation of the residual error
is obvious since an exact nonnegative factorization of the data in benchmark
II does not exist. The aim is to find the best fitting of a low-rank model to
the large-scale nonnegative data. Better fitting requires to change the rank of
factorization.

Summing up, the proposed algorithm is experimentally demonstrated to be
linearly scalable, if the estimated factors can be kept in the shared memory.
In the future works, the D-HALS will be applied to process larger and real
data on powerful multi-node clusters, and the linear scalability will be proved
analytically.

Acknowledgment. This work was supported by the grant 2015/17/B/ST6/01865
funded by National Science Center (NCN) in Poland. Some calculations have been
carried out in Wroclaw Centre for Networking and Supercomputing, grant no. 127.

References

1. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.I.: Nonnegative Matrix and Tensor
Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind
Source Separation. Wiley, Hoboken (2009)

2. Lee, D.D., Seung, H.S.: Algorithms for nonnegative matrix factorization. In:
Advances in Neural Information Processing, NIPS, vol. 13, pp. 556–562. MIT Press
(2001)

3. Liu, C., Yang, H.c., Fan, J., He, L.W., Wang, Y.M.: Distributed nonnegative matrix
factorization for web-scale dyadic data analysis on MapReduce. In: Proc. 19th
International Conference on World Wide Web (WWW 2010), pp. 681–690. ACM,
New York, NY, USA (2010)

4. Sun, Z., Li, T., Rishe, N.: Large-scale matrix factorization using MapReduce. In:
ICDM Workshops, pp. 1242–1248. IEEE Computer Society (2010)

5. Ding, C., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factorizations.
IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 45–55 (2010)

222 R. Zdunek and K. Fonal

6. Yin, J., Gao, L., Zhang, Z.M.: Scalable nonnegative matrix factorization with
block-wise updates. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.)
ECML PKDD 2014. LNCS, vol. 8726, pp. 337–352. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-44845-8 22

7. Liao, R., Zhang, Y., Guan, J., Zhou, S.: CloudNMF: A MapReduce implementation
of nonnegative matrix factorization for large-scale biological datasets. Genomics,
Proteomics and Bioinform. 12(1), 48–51 (2014)

8. Schelter, S., Boden, C., Schenck, M., Alexandrov, A., Markl, V.: Distributed matrix
factorization with MapReduce using a series of broadcast-joins. In: ACM Confer-
ence on Recommender Systems (RecSys) (2013)

9. Tan, W., Cao, L., Fong, L.L.: Faster and cheaper: Parallelizing large-scale matrix
factorization on GPUs. CoRR abs/1603.03820 (2016)

10. Cichocki, A., Zdunek, R., Amari, S.: Hierarchical ALS algorithms for nonnega-
tive matrix and 3D tensor factorization. In: Davies, M.E., James, C.J., Abdallah,
S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 169–176. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74494-8 22

11. Cichocki, A., Phan, A.H.: Fast local algorithms for large scale nonnegative matrix
and tensor factorizations. IEICE Trans. Fund. Electron. Commun. Comput. Sci.
E92–A(3), 708–721 (2009)

12. Han, L., Neumann, M., Prasad, U.: Alternating projected Barzilai-Borwein meth-
ods for nonnegative matrix factorization. Electron. Trans. Numer. Anal. 36, 54–82
(2009–2010)

13. Kim, J., Park, H.: Fast nonnegative matrix factorization: An active-set-like method
and comparisons. SIAM J. Sci. Comput. 33(6), 3261–3281 (2011)

14. Gillis, N., Glineur, F.: Accelerated multiplicative updates and hierarchical ALS
algorithms for nonnegative matrix factorization. Neural Comput. 24(4), 1085–1105
(2012)

15. Chen, W., Guillaume, M.: HALS-based NMF with flexible constraints for hyper-
spectral unmixing. EURASIP J. Adv. Sig. Proc. 54, 1–14 (2012)

16. Laudadio, T., Sava, C., Anca, R., Sima, D.M., Wright, A.J., Heerschap, A., Mas-
tronardi, N., Van Huffel, S.: Hierarchical non-negative matrix factorization applied
to three-dimensional 3T MRSI data for automatic tissue characterization of the
prostate. NMR Biomed. 29(6), 751–758 (2016)

17. Wang, Y.X., Zhang, Y.J.: Nonnegative matrix factorization: A comprehensive
review. IEEE Trans. on Knowl. Data Eng. 25(6), 1336–1353 (2013)

18. Benson, A.R., Lee, J.D., Rajwa, B., Gleich, D.F.: Scalable methods for nonnegative
matrix factorizations of near-separable tall-and-skinny matrices. In: Proceedings of
Neural Information Processing Systems, pp. 945–953(2014)

19. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2015)

20. Lin, C.J.: Projected gradient methods for non-negative matrix factorization. Neural
Comput. 19(10), 2756–2779 (2007)

21. Buksak, D.: Implementation of nonnegative matrix factorization algorithms in
apache spark framework. Master’s thesis, Wroclaw University of Science and Tech-
nology Supervised by Dr. R. Zdunek (2016)

http://dx.doi.org/10.1007/978-3-662-44845-8_22
http://dx.doi.org/10.1007/978-3-540-74494-8_22

Applications of Parallel and Distributed
Computing

GPU-Accelerated Block-Max Query Processing

Haibing Huang, Mingming Ren(B), Yue Zhao, Rebecca J. Stones, Rui Zhang,
Gang Wang, and Xiaoguang Liu

Nankai-Baidu Joint Lab, College of Computer and Control Engineering,
Nankai University, Tianjin 300350, China

{hbhuang,renmingming,zhaoy,rebecca.stones82,zhangruiann,
wgzwp,liuxg}@nbjl.nankai.edu.cn

Abstract. In this paper, we propose a method for parallel top-k query
processing on GPU(s). We employ a novel partitioning strategy which
splits the posting lists according to document ID numbers. Individual
GPU threads simultaneously perform top-k query processing within their
allocated subsets of posting lists, the results of the query are merged to
give the final top-k results. We further design a CPU-GPU cooperative
query processing method, where a majority of queries involving shorter
posting lists are processed on the GPU side. We experiment with AND,
OR, WAND, and Block-Max WAND (BMW) queries, with experimental
results showing a promising improvement in query throughput, particu-
larly in the case of BMW queries.

Keywords: Information retrieval · GPU · Index partition · Query
assignment

1 Introduction

Search engines face a large number of queries from users. To provide high query
throughput and response time, current commercial search engines use large clus-
ters consisting of thousands of nodes. Each node is responsible for processing a
subset of the whole posting data. Distributing the workload over a large number
of nodes facilitates the timely return of top-k results to users. In this paper,
we design a GPU-accelerated query processing method, where the workload is
distributed over GPU threads (and even the CPU).

In many domains, we see applications of graphics processing units (GPUs)
extending from their original purpose (graphics processing) into a wide range of
general-purpose applications, primarily for the single goal of making software run
faster. GPU programming requires carefully balancing workloads, data transfers,
and utilizing the GPU’s memory hierarchy, and programs are typically custom
built for an application.

SeveralGPU-basedqueryprocessing techniques havebeenproposedpreviously
(see Sect. 2.5 for a review). The research presented here takes three new direc-
tions: (a) we design a method which can subdivide the task of generating the top-k
results for a single query among threads, (b) we address several query processing
strategies, such as WAND [3] and block-max WAND (BMW) [6] (WAND queries
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 225–238, 2017.
DOI: 10.1007/978-3-319-65482-9 15

226 H. Huang et al.

for block-max indexes), and (c) we extend the proposed method to utilize both
the CPU and GPU for query processing. In addition, previous work has typically
assumed that the inverted index can be fully loaded into the GPU memory, which
is unrealistic for large indexes, which we do not assume here.

The remainder of this paper proceeds as follow: Sect. 2 gives the background
and related research of the information retrieval and parallel query processing.
Section 3 presents our method of GPU-based and CPU-GPU cooperation algo-
rithm. Section 4 presents the experimental results of our method. Finally, Sect. 5
concludes and discusses future work.

2 Background and Related Work

2.1 Block-Max Index

Documents are assigned docID numbers 0, 1, . . . , N − 1, where N is the number
of indexed documents. A term t has a corresponding posting list, denoted

�(t) = 〈st; (d0, f0), (d1, f1), . . . , (dst−1, fst−1)〉 (1)

which lists the documents d0, d1, . . . , dst−1 containing the term t. The posting
list has length st and the number of occurrences of term t in document di is
denoted fi = f(t, di). We assume d0 < d1 < · · · < ds−1. Posting lists belong to
a large index known as the inverted index.

The differences between consecutive docIDs in a posting list are referred to
as d-gaps, and are numerically much smaller than the raw docID values. As such,
d-gaps are typically used in place of the raw docIDs to reduce the inverted index
size with effective compression method.

The inverted index is usually stored in a compressed form to significantly
reduce its size. At the same time, its contents need to be readily accessible to
allow fast query processing. Many inverted index compression techniques having
been proposed [17] balancing these goals. In this paper we use NewPFD [15] to
compress the posting lists and corresponding frequency lists with a block size of
64 (although the proposed method could use other compression techniques).

Ding and Suel [6] proposed a block-max index data structure, where posting
lists are partitioned into blocks comprising, say, 64 docIDs (corresponding to
the 64 docIDs in the NewPFD blocks). The docIDs and their frequencies are
stored in a compressed format, and are stored along with the least and greatest
docIDs and the maximum “impact score” (essentially, the maximum contribution
to the top-k ranking). In this way, every NewPFD block can be decompressed
separately, and the top-k results can be computed with early termination. This
was shown to be an effective technique for improving the performance of WAND
query processing. In this paper, we borrow aspects of this index method.

2.2 Query Processing

In query processing, for documents relevant to a query, we compute a score, and
those with the highest score are considered the most relevant. To this end, we

GPU-Accelerated Block-Max Query Processing 227

traverse all of the relevant posting lists (those with terms in the query) from
beginning to end. For index traversal, we use a Document-At-A-Time (DAAT)
approach, where each list has a pointer that points to the “current” docID, which
moves forward to identify the docIDs which are common among the relevant
posting lists for conjunctive query. The document scores are computed while
traversing the lists, and we can use min-heap data structure to store the top-k
results.

The DAAT approach can work well for conjunctive (AND) and disjunctive
(OR) query processing [3], and WAND [3] and BMW [6] can also be implemented
using the DAAT approach. The WAND and BMW algorithm can avoid fully
evaluating the score of all documents in the posting list of each term belonging
to a given query, a smart pointer movement technique is used to skip many
documents that would be evaluated by an exhaustive algorithm. In this paper,
we will take these four kind query processing strategies into consideration.

2.3 Scoring

Ranking functions are used to give a numerical score for a document d and a
query q. BM25 [9] is a well-known ranking function, which varies with both d
and q (and two parameters a ≥ 0 and b ∈ [0, 1]), given by

BM25a,b(d, q) :=
∑

t∈q

wt(q) IRa,b(d, t) (2)

where

IRa,b(d, t) =
(1 + a)f(d, t)

a
(
1 + b(ld − 1)

)
+ f(d, t)

(3)

where ld is the length of document d divided by the average document length,
f(d, t) is the number of occurrences of t in document d, and the inverse document
frequency weight is defined as

wt(q) = log
N − st + 0.5

st + 0.5
(4)

where N is the number of the documents in the collection and st is the number
of documents containing term t (which is included in the posting list (1)).

During query processing, we use DAAT approach to iterate through the rel-
evant posting lists, retaining the top-k highest scoring documents, the top-k
results are returned to the user finally.

2.4 GPUs

Modern GPUs have a massively parallel architecture consisting of thousands
of cores. NVIDIA brand GPUs support Compute Unified Device Architecture
(CUDA) [8], where threads are organized into thread blocks and thread blocks
are organized into Grid. A GPU computation is performed by invoking a kernel
which is executed by a grid of thread blocks.

228 H. Huang et al.

GPUs have their own memory, which is organized into a hierarchy, and the
GPU memory is usually far smaller than the (CPU side) system memory. The
relevant GPU memories for this paper are: (a) Global memory, the largest but the
slowest GPU memory, and is accessible to all the GPU threads. Data transferred
from the CPU to the GPU goes into the global memory. (b) Shared memory,
which is much faster than the global memory, but is much smaller, and is only
accessible to the threads in the corresponding thread block. (c) Registers, the
fastest but the most scarce memory resource. Each multiprocessor has a set of
registers partitioned among the warps (which partition thread blocks). Overall,
registers are unique to a thread, shared memory is unique to a block, and global
memory exist across all blocks.

Efficient GPU programming requires careful consideration of (a) GPU mem-
ory usage, (b) CPU-GPU transfers, (c) workload distribution. and (d) parallel
algorithm.

2.5 Related Work

GPUs have been widely utilized in general-purpose application. Zhang et al. [18]
proposed an effective algorithm which can parallelize DNN training on multiple
GPU cards in a single computing server. Fang et al. [7] proposed a in-memory
GPU algorithms, which support three common database operations. Agrawal [1]
utilized data parallel accelerators and a software architecture, Rhythm, to
address throughput and efficiency demands of future server workloads.

To speed up the query processing, there are many previous papers that focus
on how to efficient parallel query processing. Rojas et al. [10] proposed the par-
allelization the Block-Max WAND algorithm using two-level ranking on distrib-
uted search engine. Ding et al. [4] achieved good performance using specialized
mechanisms for executing batch queries. Tatikonda et al. [12] achieved more than
five times reduction average query processing time by exploiting parallelism at
the finest-level of granularity in on an eight-core system.

There are also several previous papers that focus on GPU-based query
processing. Ding et al. [5] presented a general architecture for GPU-based query
processing and proposed a parallel lists intersection algorithm with the GPU,
but queries are dispatched to CPU or GPU one by one, incurring a impracti-
cal transfer overhead. Wu et al. [14] presented a GPU-based lists intersection
framework in which queries are first grouped into batches, and then processed
in parallel on the GPU using their proposed PARA algorithm. Zhang et al. [16]
proposed a Bloom filter batched algorithm for intersection aiming at reducing
the number of memory accesses for each GPU thread. Ao et al. [2] proposed
linear regression and hash segmentation algorithms for GPU-based lists inter-
section (a component of query processing), which was up to around 23 times
faster using a NVIDIA GTX480.

However, previous GPU-based query processing methods have some
limitations:

GPU-Accelerated Block-Max Query Processing 229

– Methods have been restricted to conjunctive (AND) query processing.
– The total inverted index is typically assumed to be residing in the GPU

global memory, which might be assuming an unrealistic GPU memory size
on current hardware for large indexes.

In this paper, we do not assume the whole inverted index resides in the GPU
memory. To cope with this, we batch transfer the user queries together with the
relevant posting lists not residing in the GPU memory. Another major aspect
of this paper is also incorporating OR, WAND, and BMW strategies for query
processing.

3 The Proposed Method

3.1 Overview

Figure 1 illustrates the proposed GPU-based query processing framework.
The entire inverted index is assumed to reside in the (CPU-side) system

memory. In the case that the index’s size actually exceeds the CPU memory
capacity, some queries will require disk access to be processed. Without modi-
fying the inverted index compression method, this will be unavoidable and an
essentially constant overhead (i.e., will not substantially vary with the design
of the GPU query processing method). and we assume user queries are contin-
uously incoming rapidly enough to allow them to be batched and transferred
jointly to the GPU. The queries will be added to the current batch along with
any required posting list not residing in the GPU list cache. Once the batch
size reaches a certain threshold, or the number of queries in the batch reaches
the maximum value that can be processed, the batch is transferred to the GPU
global memory.

The GPU global memory space contains two main parts: a list cache, which
contains a portion of the whole inverted index, and a buffer space, which contains
the batches. The posting lists residing in the list cache is determined by some

Batch of
Queries

Batch of
Results

List
Cache

Buffer

GPU
Memory Thread Blocks

CPU

q0 q2q1

q0

q2

q1

User queries

Inverted
Index

GPU

Cache
Lists

Fig. 1. The workflow of GPU-based query processing.

230 H. Huang et al.

Algorithm 1. The proposed GPU-based query processing algorithm
Input: a batch of queries Q
Output: top-k results for each query in Q
1: Transfer Q to the GPU buffer space
2: for thread block bid ∈ {0, 1, . . . , (|Q| − 1)} do
3: for each thread tid ∈ {0, 1, . . . , P − 1} do
4: Compute local top-k results by using a query processing strategy.
5: end for
6: Synchronize threads for thread block bid
7: Merge local top-k results for thread block bid
8: end for
9: Transfer every thread block top-k results to CPU

admission policy (described in Sect. 4.1). A hash table is maintained on the CPU
side to record which posting lists in the GPU list cache.

Algorithm 1 shows our proposed GPU-based query processing algorithm. The
algorithm assigns a thread block the task of generating the top-k results for a
single user query. An individual thread within a thread block generates the local
top-k results on its assigned subset of the docIDs. Specifically, the set of docIDs
{0, 1, . . . , N−1} is partitioned into d-sized (d = �N/P �) intervals {0, 1, . . . , d−1},
{d, d+1, . . . , 2d−1}, and so on, with each thread being assigned to work on one
part, and we have P threads in every thread block. In our experiments, we will
test a range of P -values.

Figure 2 shows a toy example of the inverted index partition strategy. The
four threads T0, T1, T2, and T3 are responsible for processing the subsets of
three compressed block-max posting lists respectively. Thread T0, for example,
is responsible for the subsets of posting lists in first left dashed box, i.e., the
docIDs interval {0, . . . , 999}.

Fig. 2. A toy example of the document-based index partition strategy. Threads T0,
T1, T2, and T3 are responsible for their assigned subsets of three compressed block-
max posting lists. The number in the solid box shows the max docID in corresponding
compressed a NewPFD block. The subsets are indicated by a dashed boundary and
each subset’s docIDs interval is 1000 in this example. For term Term0, thread T0 is
responsible for the whole first NewPFD block and first part of the second NewPFD
block. Thread T1 is responsible for second part of the second NewPFD block and the
whole third NewPFD block, and so on.

GPU-Accelerated Block-Max Query Processing 231

After the posting lists are partitioned for each thread, the threads perform
query processing on their assigned sub-posting lists and compute the local top-k
results. Before computing the merge operation in a thread block, a synchro-
nization barrier is needed. Once all of the local top-k results are obtained, the
threads in a thread block merge every thread’s local top-k results to compute the
thread block top-k results. we select insert sort method to complete the merge
operation. Once the thread block top-k results for the whole batch of queries
has been computed, they are transferred to the CPU as a batch, and the final
results can be displayed to the users.

3.2 CPU-GPU Cooperative Version

Algorithm 1, by itself, would result in a large amount of CPU idle time. To avoid
this, we propose a CPU-GPU cooperative algorithm, which is a modified version
of the proposed GPU query processing method. Essentially, some queries are
processed on the CPU side and the other queries would be transferred to the
GPU for query processing.

Before we introduce the CPU-GPU cooperative algorithm, we first do some
experiments about the relation between the queries’ posting length and query
processing time about our GPU algorithm. Figure 3 shows the average query
processing time for different queries’ posting block number S with AND, OR,
WAND, and BMW queries (both with P = 64 threads per thread block and top-
K = 10, other parameters have similar results). We can see that CPU algorithm

0

10

20

30

40

50

60

70

80

90

10000 50000 100000 150000 200000

Av
er

ag
e

qu
er

y
pr

oc
es

si
ng

 ti
m

e(
m

s)

Queries' block number(S)

AND CPU

AND GPU

0

100

200

300

400

500

600

700

10000 50000 100000 150000 200000

Av
er

ag
e

qu
er

y
pr

oc
es

si
ng

 ti
m

e(
m

s)

Queries' block number(S)

OR CPU

OR GPU

0

10

20

30

40

50

60

70

80

90

100

10000 50000 100000 150000 200000

Av
er

ag
e

qu
er

y
pr

oc
es

si
ng

 ti
m

e(
m

s)

Queries' block number(S)

WAND CPU

WAND GPU

0

10

20

30

40

50

60

70

10000 50000 100000 150000 200000

Av
er

ag
e

qu
er

y
pr

oc
es

si
ng

 ti
m

e(
m

s)

Queries' block number(S)

BMW CPU

BMW GPU

Fig. 3. The average query processing time on different queries’ block number S (hori-
zontal axis) on CPU and GPU for AND, OR, WAND, and BMW queries.

232 H. Huang et al.

49%

32%

13%

4% 2%

10000

50000

100000

150000

200000

Fig. 4. The proportion of the queries’ posting lists block number in TREC 2009 query
set.

is more effective than GPU algorithm when query block number S increases
(except for OR queries).

The reason is that: as the document-based index partition is a simple par-
titioning method and the distribution of docIDs is clustered, long posting lists
result in imbalanced lengths of sub-posting lists. A thread responsible for process-
ing longer sub-posting lists will spend a greater amount of time than other
threads, which will be idle because of the synchronization step.

Therefore, we propose a length-based distribution (LBD) method to deter-
mine which queries to distribute to the CPU and GPU. From the Fig. 4, we can
find that short posting lists queries (queries’s posting lists block number less
50000) take up the majority of the query set, approximately 81%. The GPU will
be responsible for processing queries involving short posting lists, comprising
a majority of the queries. and the CPU will be responsible for processing the
smaller number of queries containing longer posting lists. Specifically, the GPU
processes the queries whose relevant posting lists have fewer than S NewPFD
blocks in total, and we will experiment with varying the threshold S.

4 Experimental Testing

4.1 Experimental Setup

For our experiments, we use the TREC GOV2 [13] data set which consists of
about 25 million documents crawled from web sites in the .gov domain during
early 2004. The index data is composed of approximately 12 GB inverted index,
another 12 GB frequency information index and a file about 97 MB storing docu-
ment sizes. The docIDs are assigned according to the lexicographic order of their
URLs [11]. We use NewPFD to compress the index and also store a array about
the greatest docIDs and the maximum “impact score” of each block. We choose

GPU-Accelerated Block-Max Query Processing 233

the RREC 2009 query set, which contains 32,255 queries, as our test query set.
We carry out our experiments on a 2.60 GHz Intel(R) Xeon(R) E5-2630 CPU
with 64 GB of memory and a NVIDIA GeForce GTX Titan graphics card with
6 GB global memory. The gcc version is 4.4.6, and the nvcc version is 6.5.12.

For the parameters in the ranking function BM25, we set a = 1.2 and b =
0.75. These parameters may affect the quality of the final top-k ranking, but
will not significantly affect the throughput and response time of our method.
We experiment with top-k = 10 unless we have special statement.

For the GPU list cache policy, we calculate that the number of the short
lists (posting length 1,. . . ,64) takes up the majority of the whole compression
lists; approximately 97.45% in GOV2 data set. As long lists need more transfer
time and there are fewer long lists. Therefore we put the lists with more than 1
NewPFD block in the GPU list cache memory as our (static) cache policy.

4.2 Query Processing Time

Table 1 shows the average query processing time of the proposed GPU query par-
allel processing method (the non-cooperative version) as the number of threads
GPU thread block and top-K vary (i.e., the P -value and top-K), for AND, OR,
WAND and BMW query processing strategies. For comparison, we also include
CPU a thread results in the bottom of Table 1.

We see that the GPU method results in improved query processing times for
every query type, AND, OR, WAND, and BMW, with a average query processing
time drop of up to 54.68%, 55.31%, 51.15%, and 50.11%, respectively (all when
P = 64 and top-K = 10). We attribute this modest improvement to workload
imbalance: the processing of long posting lists is time-consuming, resulting in
long synchronization waiting times. The proposed CPU-GPU cooperative version
aims to reduce this problem, by performing query processing on queries involving

Table 1. The comparison between average query processing time (ms) for the GPU as
the number of threads per GPU thread block and top-K vary with the CPU a thread,
for the AND, OR, WAND, and BMW queries. Values in bold show the best result in
corresponding row.

P AND OR WAND BMW

Top1 Top10 Top20 Top1 Top10 Top20 Top1 Top10 Top20 Top1 Top10 Top20

32 8.07 8.08 8.14 45.57 45.88 45.97 8.29 10.22 11.18 3.54 4.90 6.49

64 5.78 5.81 5.86 30.26 30.32 30.37 5.97 7.45 8.23 2.69 4.47 5.21

128 6.06 6.08 6.13 29.48 29.53 29.57 6.19 7.86 8.73 2.96 4.47 5.21

256 7.53 7.56 7.61 34.38 34.42 34.49 7.55 8.97 9.65 4.14 6.51 7.60

320 9.33 9.35 9.39 39.86 39.91 39.95 9.24 11.71 13.03 4.91 7.51 8.71

512 12.24 12.28 12.36 49.02 49.08 49.21 12.05 15.23 16.93 6.17 9.14 10.53

CPU 12.70 12.82 12.93 65.77 66.08 66.15 15.11 15.25 15.34 8.82 8.96 9.03

234 H. Huang et al.

Fig. 5. The proportion of the average query processing time for the three stages in
GPU-based query processing. We include measurements for P ∈ {32, 64, 128, 256}
threads per thread block, and for AND, OR, WAND, and BMW queries.

long posting lists on the CPU. and P = 64 threads per thread block is almost
always the best P -value among those tested except for OR queries. In addition,
average query processing time increases as top-K increases for every query type
and different threads per thread block.

In the proposed GPU-based query processing algorithm, the query processing
time splits into three major stages: (a) Initialization: The GPU threads identify
which docIDs in posting lists belong to its assigned docID range, along with other
initialization tasks; (b) Scoring : Traversing the posting lists to calculate the top-
k results with the different strategies (AND, OR, WAND, and BMW); and (c)
Merging : Going from the local top-k results to the final top-k results. Figure 5
plots the proportion of the average query processing time of these three stages,
computed using 1000 random user queries. We see (a) the top-k scoring takes
up most of the GPU query processing time and (b) the proportion of time spent
on scoring decreases as P increases, while the proportion of initialization and
merging time increases as P increases. This can explain the unimodal behavior
seen in Table 1.

4.3 CPU-GPU Cooperative Version

We compare the performance of the proposed LBD method (introduced in
Sect. 3.2) with the GPU and CPU-only methods, and with a simple distribu-
tion (SD) method, which randomly allocates half of the queries to CPU and the

GPU-Accelerated Block-Max Query Processing 235

0

1

2

3

4

5

6

7

25000 30000 35000 40000 45000 50000

Av
er

ag
e

qu
er

y
pr

oc
es

si
ng

m

e(
m

s)

Queries' block number(S)

AND 32
64
128
256

0

5

10

15

20

25

30

35

40

45

25000 30000 35000 40000 45000 50000Av
er

ag
e

qu
er

y
pr

oc
es

si
ng

m

e(
m

s)

Pos ng Length (S)

OR
32

64

128

256

0

5

10

15

20

25

30

35

40

45

25000 30000 35000 40000 45000 50000

Av
er

ag
e

qu
er

y
pr

oc
es

si
ng

m

e(
m

s)

Queries' block number(S)

OR 32

64

128

256

1

2

3

4

5

6

7

25000 30000 35000 40000 45000 50000

Av
er

ag
e

qu
er

y
pr

oc
es

si
ng

m

e(
m

s)

Queries' block number(S)

WAND 32
64
128
256

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

25000 30000 35000 40000 45000 50000

Av
er

ag
e

qu
er

y
pr

oc
es

si
ng

m

e(
m

s)

Queries' block number(S)

BMW 32
64
128
256

Fig. 6. The average query processing time for different threshold S (horizontal axis)
in LBD. We include measurements for P ∈ {32, 64, 128, 256} threads per thread block,
and for AND, OR, WAND, and BMW queries.

other half to GPU. In order to achieve the best query processing throughput
with our LBD method, we carry out the experiments by varying the threshold
S. Figure 6 shows the average query processing time with different threshold S
for AND, OR, WAND, and BMW queries. We see that (a) threshold S = 30000
results in the best performance among those tested in every case, and (b) P = 64
threads per thread block is almost always the best P -value among those tested.

Table 2 tabulates the average query processing time of SD and LBD, with a
varying number of threads per thread block P (all when top-K = 10), and for
AND, OR, WAND, and BMW queries. We list the best results among the tested
threshold value (S) as the LDB results. We see (a) that LBD outperforms SD
in every case, and (b) LBD algorithm shows a greater improvement in query
processing time, particularly in the case of BMW queries.

4.4 Extensions

In this section we give some extensions of our GPU-based algorithm. we will test
our algorithm on multi-GPUs cluster. In the experiment setting, we distribute

236 H. Huang et al.

Table 2. Average query processing time (ms) for LBD and SD, and the difference Δ as
a percentage of the SD time. Values in bold highlight the best observed average query
processing time.

Method 32 64 128 256

SD LBD Δ SD LBD Δ SD LBD Δ SD LBD Δ

AND 5.36 2.61 51.31% 4.2 2.11 49.76% 4.03 2.12 47.39% 5.22 2.78 46.74%

OR 23.2 10.6 54.31% 17.54 8.76 50.06% 16.87 9.19 45.52% 20.8 12.71 38.89%

WAND 6.32 3.33 47.31% 4.85 2.69 44.54% 4.84 2.77 42.77% 6.15 3.6 41.46%

BMW 3.79 1.74 54.09% 3.82 1.44 62.30% 3.85 1.55 59.74% 4.19 1.77 57.76%

Table 3. Average query processing time (ms) of the GPU-based algorithm on four
GPUs and one GPU as the number of threads per GPU thread block, and the difference
Δ as a percentage on one GPU time, and for the AND, OR, WAND and BMW queries.
Values in bold highlight the best observed average query processing time.

Method 64 128 256

1 GPU 4 GPU Δ 1 GPU 4 GPU Δ 1 GPU 4 GPU Δ

AND 5.81 1.51 74.01% 6.08 1.38 77.30% 7.56 1.65 78.17%

OR 30.32 5.67 81.30% 29.53 5.38 81.78% 34.42 6.50 81.12%

WAND 7.45 1.75 76.51% 7.86 1.63 79.26% 8.97 1.98 77.93%

BMW 4.47 0.94 78.97% 4.47 0.93 79.19% 6.51 1.12 82.80%

0

10

20

30

40

50

60

70

AND OR WAND BMW

Av
er

ag
e

qu
er

y
pr

oc
es

si
ng

m

e(
m

s)

4GPU

LBD

SD

GPU

CPU

Fig. 7. The comparison between average query processing time (ms) forGPU-only, CPU-
GPU cooperative (LBD and SD) and multi-GPUs (4 GPUs) (P = 64 and top-K = 10)
with the CPU time. and for AND, OR, WAND, and BMW queries.

query batches across four GPUs. Table 3 tabulates the average query processing
time of the one GPU and four GPUs algorithm as the number of threads GPU
thread block (all top-K = 10). Interestingly, P = 128 threads per thread block
is the best P -value among those tested.

Figure 7 compares the average query processing time for the two CPU-
GPU cooperative query processing methods (LBD and SD, both with P = 64

GPU-Accelerated Block-Max Query Processing 237

threads per thread block) along with the GPU non-cooperative, 4 GPUs (all
when P = 64) and CPU-only query processing methods. We see that utilizing a
GPU and multi-GPUs for query processing can result in performance improve-
ments for AND, OR, WAND, and BMW queries. Of the inspected methods, the
LBD CPU-GPU cooperative method minimized query processing time, particu-
larly in the case of BMW queries.

5 Conclusion and Future Work

In this paper, we propose two GPU-based query processing methods: one where
the GPU performs parallel query processing for queries, and a CPU-GPU cooper-
ative version where queries are simultaneously processed by both the CPU and
GPU. We further develop a method for deciding which queries are processed
by the CPU and GPU based on the lengths of the posting lists relevant to a
query. In addition, we also evaluate the parallel query processing algorithm on
multi-GPUs. Experiments indicate the CPU-GPU cooperative version results
in around a 84% drop in average query processing time on one GPU and the
multi-GPUs results can achieve 89% drop in average processing time.

We make the following suggestions on how to build upon this work:

– The GPU list cache policy could be optimized for the LBD method, e.g., by
designing a dynamic caching algorithm which determines which posting lists
are more likely to be needed by the GPU.

– We have not incorporated early termination in this work, which would reduce
the time spent on top-k ranking. We have also not incorporated CPU-side
parallelism in this work, which could allow the CPU to process a heavier
workload.

Acknowledgment. This work is partially supported by NSF of China (grant num-
bers: 61373018, 61602266 11550110491), Science and Technology Development Plan
of Tianjin (17JCYBJC15300, 16JCYBJC41900) and the Fundamental Research Funds
for the Central Universities (Grant number: 65141020).

References

1. Agrawal, S.R., Pistol, V., Pang, V., Tran, J., Tarjan, D., Lebeck, A.R.: Rhythm:
harnessing data parallel hardware for server workloads. In: Proceedings of ASP-
LOS, pp. 19–84 (2014)

2. Ao, N., Zhang, F., Wu, D., Stones, D.S., Wang, G., Liu, X., Liu, J., Lin, S.:
Efficient parallel lists intersection and index compression algorithms using graphics
processing units. Proc. VLDB Endow. 4, 470–481 (2011)

3. Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., Zien, J.Y.: Efficient query
evaluation using a two-level retrieval process. In: Proceedings of CIKM, pp. 426–
434 (2003)

4. Ding, S., Attenberg, J., Baeza-Yates, R., Suel, T.: Batch query processing for web
search engines. In: Proceedings of WSDM, pp. 137–146 (2011)

238 H. Huang et al.

5. Ding, S., He, J., Yan, H., Suel, T.: Using graphics processors for high performance
IR query processing. In: Proceedings of WWW, pp. 421–430 (2009)

6. Ding, S., Suel, T.: Faster top-k document retrieval using block-max indexes. In:
Proceedings of SIGIR, pp. 993–1002 (2011)

7. Fang, R., He, B., Lu, M., Yang, K., Govindaraju, N.K., Luo, Q., Sander, P.V.:
GPUQP: query co-processing using graphics processors. In: Proceedings of SIG-
MOD, pp. 1061–1063 (2007)

8. NVIDIA: NVIDIA CUDA C programming guide (2015)
9. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M.:

Okapi at TREC-3, p. 109. NIST Special Publication, Gaithersburg (1995)
10. Rojas, O., Gil-Costa, V., Marin, M.: Efficient parallel block-max WAND algorithm.

In: Wolf, F., Mohr, B., Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 394–405.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40047-6 41

11. Silvestri, F.: Sorting out the document identifier assignment problem. In: Amati,
G., Carpineto, C., Romano, G. (eds.) ECIR 2007. LNCS, vol. 4425, pp. 101–112.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71496-5 12

12. Tatikonda, S., Cambazoglu, B.B., Junqueira, F.P.: Posting list intersection on mul-
ticore architectures. In: Proceeding of the 34th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR 2011, Beijing,
China, pp. 963–972, 25–29 July 2011

13. Voorhees, E.M.: Overview of TREC 2003. In: Proceedings of TREC, pp. 1–13
(2003)

14. Wu, D., Zhang, F., Ao, N., Wang, G., Liu, X., Liu, J.: Efficient lists intersection
by CPU-GPU cooperative computing. In: Proceedings of IPDPSW, pp. 1–8 (2010)

15. Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with
optimized document ordering. In: Proceedings of WWW, pp. 401–410 (2009)

16. Zhang, F., Wu, D., Ao, N., Wang, G., Liu, X., Liu, J.: Fast lists intersection with
bloom filter using graphics processing units. In: Proceedings of SAC, pp. 825–826
(2011)

17. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in
search engines. In: Proceedings of WWW, pp. 387–396 (2008)

18. Zhang, S., Zhang, C., You, Z., Zheng, R., Xu, B.: Asynchronous stochastic gradient
descent for DNN training. In: IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, pp. 6660–6663, 26–
31 May 2013

http://dx.doi.org/10.1007/978-3-642-40047-6_41
http://dx.doi.org/10.1007/978-3-540-71496-5_12

KD-Tree and HEALPix-Based Distributed Cone
Search Indexing System for Multi-Band

Astronomical Catalogs

Chen Li1, Ce Yu1(B), Jian Xiao1, Xiaoteng Hu1, Hao Fu1, Kun Li1,
and Yanyan Huang2

1 School of Computer Science and Technology,
Tianjin University, Tianjin 300350, China

{tju lichen,yuce,xiaojian,xiaotenghu,haofu,likun30901}@tju.edu.cn
2 Service Center for Information Security and Technology, Hebei University

of Technology, Tianjin 300130, China
huangyy@hebut.edu.cn

Abstract. An increasing number of telescopes are being built to provide
multi-band data of celestial objects, which is indispensable to astronomi-
cal research. The amount of collected observation data, however, have put
tremendous pressure on computing systems. Moreover, with the develop-
ment of the observation equipment, the number of astronomical catalogs
that telescopes generated per day keeps increasing rapidly. In this paper,
we propose a distributed cone search indexing system (DCSIS) for Multi-
Band Astronomical Catalogs among multi-band astronomical catalogs to
solve this problem. Major contributions of DCSIS include defining new
meta file format for astronomical catalogs, achieving scalability and par-
allelism for cone search, and the ability to flexibly add data to index
system. Evaluations are performed on the Tianhe-1A supercomputer to
showcase DCSIS’ scalability for large scale deployment, the results of
which show that DCSIS reduce the response time of Multi-band cone
search into a tolerant range.

Keywords: Astronomical catalogs · Cone search · Distributed query
system · HEALPix · Protobuf · KD-tree

1 Introduction

Multi-band observation data refers to the data about the same object obtained
by telescopes of different bands (e.g. optical telescope, radio telescope, etc.).
Varied astronomical features of a celestial object can be observed by telescopes
of different bands. Figure 1(a) [1] shows the images of the Crab Nebula observed
in 6 distinct bands.

No matter which band of observation apparatus it is, the astronomical catalog
is the standard file recording all the corresponding information in tabular form.
In other words, observation data of different bands associated with each other
by astronomical catalogs.
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 239–253, 2017.
DOI: 10.1007/978-3-319-65482-9 16

240 C. Li et al.

Astronomical research requires all related records among the entire existing
astronomical catalogs. With the development of virtual observatory (VO), more
and more astronomical data has been uploaded to VO servers [5]. VO faces the
problem of how to let astronomers get the required data from certain catalogs
online in real time.

Fig. 1. Background and the architecture of DCSIS

As telescopes keep producing huge amount of data, especially the telescopes
like Five hundred meters Aperture Spherical Radio Telescope (FAST) in Guizhou
China [19], the online service quality of VO might has difficulties to guaranteed.
Investigation shows that FAST will take 3 TB storage space each day. The per-
formance of VO might be affected due to the massive increasing data.

For astronomers, an efficient indexing service is needed to find related records
from massive astronomical catalogs.

However, the features of massive astronomical data complicate this goal.

Data Integrity. Data integrity requires the completeness of all the observed
ever produced. The massive spatial data push astronomical data centers to scale

KD-Tree and HEALPix-Based Distributed Cone Search Indexing System 241

storage volume from terabyte (TB) to petabyte (PB) and force engineers to find
an efficient way to guarantee the speed of response.

Cone Search. Cone search is a special search method in the field of astronomy
and requires more calculations than ordinary search. It describes sky position
and an angular distance, defining a cone on the sky. The response returns a
list of astronomical sources from the catalog whose positions lie within the cone
[14]. Because each catalog contains millions even billions of records, the amount
of calculation could be very alarming if we were to do cone search among all
existing catalogs.

Scalability. Because of the incremental data that all the telescopes produced
each day, a distributed system with excellent scalability is needed.

In this paper, DCSIS (Distributed Cone Search Indexing System), is pro-
posed to solve the problems listed above.

The architecture of DCSIS is shown as Fig. 1(b).
The major contributions of DCSIS can be summarized as follows.

Define a new meta file format for astronomical catalogs. We divide the
astronomical catalogs and build KD-tree [8] for every partition to define a new
meta file format of DCSIS. It reduce the time complexity of cone search from
O(N) to O(log(N)). The meta file is also designed to handle boundary problem.

Design a parallel system with great scalability for cone search. We
design a distributed query system whose compute nodes and storage nodes are
separated to handle cone search request. When query coming, compute nodes
load corresponding related meta files from storage nodes and execute cone search
operation, then gather all results and return to users.

Flexibly add incremental data into index system. For incoming observa-
tion records, DCSIS transfers them into meta files and sort them with existing
data together. When total data size reach the limit of storage system, the system
can extend storage capability. The computing capability can be scaled to keep
the response time unchanged.

Tianhe-1A [20] supercomputer is used as the evaluation environment. The
astronomical catalogs like 2MASS, PPMXL, SDSS acquired from National
Astronomical Observatories of the Chinese Academy of Sciences (NAOC) as
the data set.

Evaluation result shows that DCSIS have great scalability and shorter
response time compared to other databases.

The rest of the paper is organized as follows: Sect. 2 gives background and
related work that motivated our work. The design of the DCSIS is present in
Sect. 3. Section 4 describes experimentally evaluation of DCSIS. We conclude
and discuss future work in Sect. 5.

2 Related Work

Cone search among multi-band astronomical catalogs is generally the first step
of celestial object study, such as supernova discovery or drawing lighting curve.

242 C. Li et al.

GSC2, ...

GSC2, ...

GSC2, ...

GSC2, ...

GSC2, ...

Dispatcher

(Master Node)

Node 4

Node 5

Node 3

Node 2

Node 1

(a)Database and queries processing[4] (b) CoCat cluster[12]

Fig. 2. Construction of VizieR

However, getting the complete result is difficult because of the large amount of
multi-band catalogs.

A naive method is using relative database management system (RDBMS)
[3,17]. But RDBMS meets its bottleneck when handle massive data. For instance,
the observing data from Antarctic astronomy project of NAOC is stored in
RDBMS which employed in VO servers. It takes up to 6.11 s doing cone search in
a single astronomical catalog containing 13 million records. Consider there are a
plenty of catalogs, its performance is not satisfactory for the need of astronomers.

Besides, RDBMS shows very poor performances especially in the updating
phase: the addition of a new catalog can be required up to 4.6 millions times
which perform dramatically slow.

There are a number of method that can handle massive scientific data.
NoSQL is one of the most popular methods used to deal with such problem but
it has high storage cost. HIVE, which is distributed SQL-like interface querying
data based on Hadoop [16], and SciDB [2,15,18], which is designed to work on
multi-dimensional scientific data, both need to import raw data files into file sys-
tem. That means both methods would effectively require at least doubling the
storage space. What’s worse, astronomical data are no exception to the 20/80
rule (i.e. 80% of the queries focuses only on 20% of the data), which makes it
even less cost-efficient to duplicate the entire data [7].

The mainstream approach for astronomers to do cone search is using VizieR
[13]. VizieR, the most used cone search service involving multi-band astronomical
catalogs, utilize indexing to find celestial targets. Users can upload parameters
of cone search by browser and receive result online.

VizieR divides all catalogs into two categories: standard and large [12]. The
standard catalogs with up to a few millon records are managed by a standard
relational DBMS. The large catalog is defined as having more than 107 rows.

As shown in Fig. 2(a), those very large catalogs are compressed into binary
files losslessly and consist of the index. Besides, Fig. 2(a) also present the ordinary
astronomical research work flow that astronomers utilize VizieR to find which

KD-Tree and HEALPix-Based Distributed Cone Search Indexing System 243

catalogs contain the records they interested and then download the original
catalogs. When querying such a large catalog, a dedicated program handles the
request, extracts and decodes the matching data, and sends its output back to
VizieR [4].

In fact, astronomers need to access all catalogs involving the interested posi-
tion. VizieR creates an inverted index in order to search complete result for
astronomers [9]. The key of index is sky coverage ID and value is the catalogs
that obtain data in corresponding block. VizieR find the index of the coordinate
that users input and then look successively into the corresponding value finding
all related catalogs [11].

Moreover, to reduce the response time, VizieR designs a Co-Cat (Co-
processor Catalog, Fig. 2(b)) project to parallelize the VizieR [12]. Co-Cat put
replication of all data on each node. The master node gather the results from
slave nodes and response it to users.

VizieR, though widely used, still possesses a number of deficiencies, and
improvements can be made to increase its query efficiency.

(1) Due to the two catalog categories, VizieR is obliged to handle cone search
query in two method. What’s more, relative DBMS has negative impact on
scalability of the system.

(2) VizieR has to load and handle whole involved catalogs during every single
query. That’s inefficient because the involved data is actually a very small
part of the whole (80/20 rule).

(3) Co-Cat put replication of all data on each node which is space-wasting.

By reference of VizieR, we propose our DCSIS. Our approach has some sim-
ilar parts to VizieR and some optimization has been done in order to increase
storage efficiency, reduce response time and improve scalability.

3 Proposed Distributed Cone Search Indexing System

The design of DCSIS is present in this section. The basic idea can be demon-
strated by the three contributions of DCSIS that mentioned above.

3.1 Define a New Meta File Format for Astronomical Catalogs

Cone search needs 3 inputs: right ascension (R.A.), denoted by Tra, declination
(Dec), denoted by Tdec, and radius, denoted by R. It will find all the celestial
objects that satisfy following formula:

(Sra − Tra)2 + (Sdec − Tdec)2 ≤ R2 (1)

where Sra and Sdec denote the set of celestial object’s coordinate records from
all existing astronomical catalogs. The time complexity is O(N) while using
exhaustive search.

244 C. Li et al.

If we let ME be the average number of records in a single catalog and Total
denotes the number of catalogs we have, the time complexity of cone search
among all catalogs is as followed:

Total × O(ME) (2)

There are millions even billions of records in each existing catalog so that exhaus-
tive search isn’t appropriate because the time complexity is outrageous. To tackle
this problem, a new meta file that fit for cone search is defined in DCSIS to
reduce computational complexity. One of the favorable features is that astro-
nomical catalogs are static after published. That’s to say, there is no update or
modification in any published catalogs. What’s more, catalogs are independent
for each catalog maps only one astronomical observation. The process of building
meta files for a single catalog is demonstrated as followed.

Step 1: Divide Astronomical Catalogs into Blocks. First of all, R.A and
Dec are extracted from original catalog and combined a temporary file. Then,
we divided the whole sky into a mesh and every block in the mesh has its own ID
so that every record in the temporary file has an ID of sky block that it belongs
to. The records with the same block ID are put together and combined into new
files. So the temporary file has been split into many smaller partition files.

Step 2: Control the File Size Within a Certain Range. For ME is increas-
ing day by day, the scalability must be considered. Thus, a distributed query sys-
tem is set up to reduce response time. As we will demonstrate in the following
section, the complete time of a single query depends on the most time-consuming
task. The size of all partition files must be kept at about the same level (the
reason why we don’t make blocks as small as possible will be addressed in Step
3) ensuring that there is no obstacle affecting response time of each search.
Thus, adaptive mesh refinement (AMR) is applied to control the partition file
size within a certain range. Here is our AMR strategy:

(1) If the size of a sky block exceeded a certain threshold, divide it into 4 sub-
blocks;

(2) If the total size of 4 sub-blocks less than threshold, combine them into a
whole;

(3) Do (1) and (2) until all blocks needn’t to be changed.

The most appropriate size of the certain threshold will be discussed in Sect. 4.

Step 3: Adding Redundancy into Partition File. Redundant data is added
into every partition file to solve boundary problem. As the Fig. 3(a) shows, if we
want to find all objects around circular area in a certain block whose center is
very close to the block boundary, the target that located in the adjoining block
might be missed. It’s a common and inevitable problem in cross-matching and

KD-Tree and HEALPix-Based Distributed Cone Search Indexing System 245

)b()a(

Fig. 3. Boundary problem and “outer border”

cone search. Therefore, “outer border” is added in each partition file to ensure
the completeness of the query results.

As Fig. 3(b) shown, the “outer border” consists of the data from eight neigh-
boring blocks in different directions and the breadth of it must larger than cone
search radius.

If the breadth of “outer border” is fixed, the proportion of redundancy data
would increase when using smaller blocks. That’s why the blocks can’t be as
small as possible.

Step 4: Build KD-tree for Partition File. K-dimensional tree (KD-tree) is
a data structure which can organize points in a k-dimensional space by spatial-
partition [8]. It is useful in searching by multidimensional keys and finding K
nearest neighbours. The time complexity using KD-tree to search is log(N). KD-
tree is applied in building meta files because it is consistent with the need of
cone search. We take all (R.A., Dec) in partition files as coordinate of points and
build KD-tree for every partition file.

Step 5: Serialization. Our last step is serializing KD-tree into binary files
because KD-tree is just a type of data structure stored in memory. The produced
binary files are saved in disks for data persistence. Those binary files are the final
meta files of DCSIS. The whole process of generating meta file for a single catalog
is shown in Fig. 4.

All existing catalogs are processed from Step 1 to Step 5. Thus, the time
complexity of cone search on all existing catalogs is as followed:

Total × O(log(
ME

p
+ Mred)) (3)

where p denotes the average number of partition files for a single catalog and
Mred denotes the redundancy of each partition. When Mred is as small as pos-
sible, (3) is much less than (2).

246 C. Li et al.

Fig. 4. Process of generating meta files

So far, we have already reduced time complexity of cone search from O(N) to
O(log(N)). When query coming, DCSIS will load corresponding meta files into
memory and do cone search.

3.2 Design a Distributed Query System for Cone Search

Though meta file has good performance on time complexity of cone search, it
can just be processed by only one thread or node since KD-tree must be read
from the root. But we can still parallelize cone search query by partitioning the
whole task since each cone search query involves a number of catalogs. Each
process load meta files and return result.

The complete time of doing cone search in serial can be defined as:

Tserial + Tpara (4)

where Tserial denotes the time of the part that can’t be paralleled. and Tpara

denotes the time of the part which can be paralleled. So if we run cone search
in parallel, the overall completion time Toverall can be defined as:

Toverall = Tserial +
Tpara

M
(5)

where M denotes the number of threads or nodes in parallel system.
The process time of each meta file is almost the same since the meta file size

is controlled. Thus, let tprocess represent it,

Tpara = tprocess ∗ nk (6)

Toverall = Tserial +
tprocess ∗ nk

M
(7)

where nk denoted the number of meta files that involved in a single cone search.
The makespan decided by the maximal of tprocess. Thus, The makespan could be

KD-Tree and HEALPix-Based Distributed Cone Search Indexing System 247

Fig. 5. The architecture of distributed query system in DCSIS

minimized if M is maximized and the maximal of tprocess is minimized. That’s
why we must control the meta file size.

In order to maximize M, in other words, utilize as many threads or nodes
as possible, a parallel querying system whose architecture is shown in Fig. 5 is
designed, of which compute nodes and storage nodes are separated and connected
via a infinite-band network. It’s composed by master node, slave nodes and
storage nodes with high I/O throughput distributed file system. In this kind of
file system, slave nodes can access any of meta files and benefit the workload
balance for different query.

What’s more, in order to make slave nodes find related indexing easily, the
meta files in file system are sorted by sky block ID and consist of many meta
file groups.

When a cone search query comes:

(1) Master node broadcast the input to the slave nodes.
(2) Every slave node start to search corresponding meta file groups finding a

related meta file which is not be found by other slave nodes.
(3) Then the slave node do cone search on the meta file and return result to

master node.
(4) Do (2)(3) until there is no related meta file can be found.
(5) Master node gather all results from slave nodes and send it to users.

Compared to CoCat, the distributed query system we design can make better
use of storage resource without replication of the data. By sharing the whole
storage nodes, we can take advantage of the compute nodes as much as possible
and maximize M.

3.3 Flexibly Add Incremental Data into Index System

When new astronomical catalogs comes, they will be processed step by step like
Sect. 3.1. The new meta files will be put in storage nodes with other existing
meta data generated before. Due to the compute nodes and storage nodes are
separated, when total data size reach the limit of storage system, the system can
extend storage capability and the computing capability can be scaled accordingly
to keep the response time in range.

248 C. Li et al.

4 Implement and Performance Evaluation

4.1 Implement

HEALPix. HEALPix is acronym for Hierarchical Equal Area isoLatitude Pixe-
lation of a sphere [10] developed by NASA. It is a typical virtual spatial-indexing
function partitioning the whole sky into a recursive quad-tree pixel sub-blocks,
which establishes a index of sky coverage blocks, and each block has an unique
ID by their coordinate and hierarchy, like Fig. 6(a). It is utilized to partition
the astronomical catalogs. Each block partitioned by HEALPix is divided into
4 sub-blocks, which means only the additional 2-bit-length code need be added
to the end of the father block’s number. Since HEALPix is a hierarchical mesh,
we apply it on AMR.

(a)HEALPix[10] (b)”Outer border”[21]

Fig. 6. HEALPix and “outer border”

As far as we know, the common radius of cone search is 15–20. We partition
the eight neighboring blocks on the level 13 using HEALPix C facility, since 13
is the maximum level of the C HEALPix. More importantly, the breadth of the
level-13 blocks is slightly larger than 20 arcsec. All level-13 blocks next to border
are picked up and combine them into “outer border” like Fig. 6(b) [21].

Protocol Buffer. Protobuf is an open-source tool developed by Google [6]. It’s
a method of serializing structured data into binary format which is compact,
forward- and backward-compatible. And we take advantage of it to serialize
meta files.

4.2 Evaluation Results

With the help of NAOC, the widely-used astronomical data like 2MASS,
PPMXL, SDSS, USNOB2 and other truthful astronomical catalogs are as the
dataset. The details of dataset are shown in Table 1.

KD-Tree and HEALPix-Based Distributed Cone Search Indexing System 249

Table 1. The file size of DCSIS data set

Name of catalogs 2MASS PPMXL SDSS USNOB2

Num of records 470,992,971 910,469,430 134,269,975 305,391,856

Original file size (GB) 200.2 198.2 253.4 39.1

Building Time and Storage Effect of the Different Meta File Sizes.
First of all, we evaluate the building time and storage efficiency in various meta
file size. Our test PC is equipped with an Intel i7-4970 CPU (4 cores@3.6 GHz),
16 GB of RAM, and two HDDs, one (1 TB) for the Ubuntu operating system,
the other (3 TB) for storing the data set. The files which contain from 1 million
to 15 million records are extracted from 2MASS. We transfer them into meta
files and compared the building time and file size with each other.

Table 2. Evaluation of indexing building time

Num of records (Million) 1 3 5 7 9 11 13 15

Original file size (GB) 0.422 1.275 2.128 2.973 3.524 4.676 5.526 6.375

Meta file size (MB) 27.1 83.4 141.8 191.8 242.7 308.7 358.7 408.7

Rates(%) 6.27 6.38 6.50 6.30 6.73 6.44 6.30 6.26

Building time (s) 0.914 2.960 5.318 7.368 10.386 12.299 14.166 16.016

From Table 2, we can see that the “Rates”, which means the ratio of meta
file size to original file, are similar in different amount of data records. As we can
see from the results, the meta file building time, in principle, increases linearly
as the data set grows. This is due to the meta file building process having a
time complexity of O(n). Building meta file for 6 GB of a astronomical catalog
takes about 16 s, which, considering that the meta file building is just a one-time
thing, is pretty acceptable in real life usage.

Consider the redundancy data would increase when using smaller block and
the IO increase when using larger block, we choose 7 million as our file size
threshold in AMR.

Response Time of Cone Search Query. Table 3 shows the response time of
cone search query on a single meta file. Through the comparison with the correct
results from VizieR, the query results returned in our evaluation are credible.

The time of locating corresponding meta files can be ignored since all the
meta files are sorted by sky block IDs in our storage system. Therefore, the
response time consists of two parts: meta file loading time, whose time complexity
is O(N), and query time, whose time complexity is O(logN).

From Table 3 we can see that the response time can form a linear curve.
That’s because the consuming time of loading meta files is far greater than

250 C. Li et al.

Table 3. Response time of different meta file size

Num of records (Million) 1 3 5 7 9 11 13 15

File loading time (s) 0.154 0.462 0.763 1.092 1.419 1.695 2.027 2.316

Query time (ms) 0.008 0.008 0.009 0.009 0.009 0.009 0.010 0.011

Response time (s) 0.154 0.462 0.764 1.092 1.419 1.695 2.028 2.317

Fig. 7. Query time comparison between different databases

which of query time. Due to the time complexity, the query time is pretty short
and almost keep unchanged when number of records increasing.

Besides, our approach has compared with the other two query methods: Mon-
goDB and PostgreSQL on query time. The records in indexing are put into dif-
ferent databases whose query time are present in Fig. 7. When doing cone search
on the same dataset, our approach consumes the shortest time compared with
other methods and shows the excellent performance. It is worth mentioning that
MongoDB and PostgreSQL take about 5 min and 2 h loading a single indexing
with 1 million records. Compared to the building time of meta file, it is extremely
slow.

Scalability. DCSIS is deployed on Tianhe-1A supercomputer for evaluate the
scalability. Tianhe-1A supercomputer equipped with 256 compute nodes, 8 I/O
nodes, 8 TB memory capacity and 96 TB storage capacity. The communication
bandwidth of Tianhe-1A is 40 Gbps. The number of processes we set in Tianhe-
1A are 1, 2, 4, 8, 16, 32, 64 and 128.

KD-Tree and HEALPix-Based Distributed Cone Search Indexing System 251

Fig. 8. Makespan of DCSIS in different process workload

To expand data scale, we add noise into 4 truthful catalogs which men-
tioned before and create 1200 different astronomical catalogs which totally con-
tain about 70 billion records. These experimental catalogs are processed into
meta files and threw into the Lustre of Tianhe-1A, which can handle very high
concurrent IO requests efficiently. The dataset of meta files we use is expanded
up to 10 TB and the related original astronomical catalogs is up to 200 TB.

The scalability of our method is tested by executing cone search query on
different amount of datasets with different number of processes. Based on the
evaluation result before, the AMR threshold is set to 7 million to allow for best
performance.

DCSIS showed excellent both on weak scalability and strong scalability.

Fig. 9. Makespan and speedup of DCSIS in different amount of data set

252 C. Li et al.

From Fig. 8 we can see that, when q fixed, the makespan almost remains
unchanged. Here q means the Ratio of the total number of files and the number
of processes, or can be realized as the workload of each process. In our evaluation
environment, a single node has 12 processors. Thus, when we test DCSIS in more
than 12 processes, the communication and I/O increase. That’s why when we
use 2, 4 and 8 processes, the makespan is a bit shorter than 16, 32, 64 and 128.

The Total in Fig. 9 denotes the total number of catalogs in the data set. The
speedup shown in Fig. 9(b) increases linearly as the number of processes grows.
That’s because there is a few communication between processes when doing cone
search and the workload of every process keep balanced.

5 Conclusion and Future Work

In this paper, DCSIS, KD-tree and Protobuf-Based distributed cone search
indexing System for multi-band astronomical catalogs is presented. DCSIS
defines a new meta file format for cone search indexing about astronomical
catalogs, do cone search in parallel and handle the incremental astronomical
data.

Evaluation results shows that DCSIS perform well on scalability. The method
of the meta file definition, distributed query system design are presented, whose
experimental results has corroborated the theory and testified that our method
have reduced the time complexity of cone search.

Generally speaking, the three contributions of DCSIS fix the problem that
how to unify astronomical catalogs into a query system since catalogs is the
common description of astronomical observation in any band.

For future work, distributed meta file building process, meta files storage with
fault-tolerant as well as the optimization of response time in high concurrency
might bring new interesting challenges to DCSIS.

Acknowledgements. This work is supported by the Joint Research Fund in Astron-
omy (U1531111) under cooperative agreement between the National Natural Science
Foundation of China (NSFC) and Chinese Academy of Sciences (CAS), the National
Natural Science Foundation of China (11573019, 61602336). Special thanks goes to Mr.
Zhi Hong for providing writing assistance for the paper.

References

1. Crab nebula messier 1. http://www.constellation-guide.com/crab-nebula-
messier-1/

2. Brown, P.G.: Overview of sciDB: large scale array storage, processing and analysis.
In: ACM SIGMOD International Conference on Management of Data, pp. 963–968
(2010)

3. Chilingarian, I., Bartunov, O., Richter, J., Sigaev, T.: PostgreSQL: the suitable
DBMS solution for astronomy and astrophysics, vol. 314, p. 225 (2004)

4. Derriere, S., Ochsenbein, F., Egret, D.: On-line access to very large catalogues. In:
Astronomical Data Analysis Software and Systems IX, vol. 216, p. 235 (2000)

http://www.constellation-guide.com/crab-nebula-messier-1/
http://www.constellation-guide.com/crab-nebula-messier-1/

KD-Tree and HEALPix-Based Distributed Cone Search Indexing System 253

5. Djorgovski, S.G., Williams, R.: Virtual observatory: From concept to implementa-
tion. Computer Science (2005)

6. Google: Google protocol buffers homepage. https://developers.google.com/
protocol-buffers/

7. Hong, Z., Yu, C., Xia, R., Xiao, J., Wang, J., Sun, J., Cui, C.: AQUAdex: a highly
efficient indexing and retrieving method for astronomical big data of time series
images. In: Wang, G., Zomaya, A., Perez, G.M., Li, K. (eds.) ICA3PP 2015. LNCS,
vol. 9529, pp. 92–105. Springer, Cham (2015). doi:10.1007/978-3-319-27122-4 7

8. Hu, L., Nooshabadi, S., Ahmadi, M.: Massively parallel KD-tree construction and
nearest neighbor search algorithms. In: IEEE International Symposium on Circuits
and Systems, pp. 2752–2755 (2015)

9. Landais, G., Ochsenbein, F.: The new version of the vizier catalogue service. Mod.
Lang. Notes 461(3), 383 (2012)

10. NASA: Jet propulsion laboratory healpix homepage. http://healpix.jpl.nasa.gov/
11. Ochsenbein, F.: The vizier system for accessing astronomical data. vol. 145, p. 387

(1998)
12. Ochsenbein, F., Derriere, S., Nicaisse, S., Schaaff, A.: Clustering the large vizier

catalogues, the cocat experience. vol. 314, p. 58 (2004)
13. Ochsenbein, F., Bauer, P., Marcout, J.: Astronomy and astrophysics the vizier

database of astronomical catalogues (2000)
14. Plante, R., Williams, R., Hanisch, R., Szalay, A.: Simple cone search version 1.03

(2008)
15. Planthaber, G., Stonebraker, M., Frew, J.: EarthDB: scalable analysis of MODIS

data using sciDB. In: ACM Sigspatial International Workshop on Analytics for Big
Geospatial Data, pp. 11–19 (2012)

16. Richter, S., Schuh, S., Dittrich, J.: Towards zero-overhead static and adaptive
indexing in hadoop. VLDB J. 23(3), 469–494 (2014)

17. Smareglia, R., Laurino, O., Knapic, C.: VODance: VO data access layer service
creation made easy. vol. 442, p. 575 (2011)

18. Stonebraker, M., Brown, P., Poliakov, A., Raman, S.: The architecture of sciDB.
In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol.
6809, pp. 1–16. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22351-8 1

19. Xinhua: Xinhua insight: Installation complete on world’s largest radio telescope.
http://news.xinhuanet.com/english/2016-07/03/c 135485389.htm

20. Yang, X.J., Liao, X.K., Lu, K., Hu, Q.F., Song, J.Q., Su, J.S.: The TianHe-1A
supercomputer: its hardware and software. J. Comput. Sci. Technol. 26(3), 344–
351 (2011)

21. Zhao, Q., Sun, J., Yu, C., Xiao, J., Cui, C., Zhang, X.: Improved parallel process-
ing function for high-performance large-scale astronomical cross-matching. Trans.
Tianjin Univ. 17(1), 62–67 (2011)

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://dx.doi.org/10.1007/978-3-319-27122-4_7
http://healpix.jpl.nasa.gov/
http://dx.doi.org/10.1007/978-3-642-22351-8_1
http://news.xinhuanet.com/english/2016-07/03/c_135485389.htm

An Out-of-Core Branch and Bound Method
for Solving the 0-1 Knapsack Problem on a GPU

Jingcheng Shen1(B), Kentaro Shigeoka2, Fumihiko Ino1, and Kenichi Hagihara1

1 Graduate School of Information Science and Technology, Osaka University,
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

jc-shen@ist.osaka-u.ac.jp
2 Hitachi High-Technologies Corporation, 14-24-1 Nishishinjuku,

Minato-ku, Tokyo 105-8717, Japan

Abstract. In this paper, we propose an out-of-core branch and bound
(B&B) method for solving the 0–1 knapsack problem on a graphics
processing unit (GPU). Given a large problem that produces many sub-
problems, the proposed method dynamically swaps subproblems out to
CPU memory. We adopt two strategies to realize this swapping-out pro-
cedure with minimum amount of CPU-GPU data transfer. The first
strategy is a GPU-based stream compaction strategy that reduces the
sparseness of arrays. The second strategy is a double buffering strat-
egy that hides the data transfer overhead by overlapping data transfer
with GPU-based B&B operations. Experimental results show that the
proposed method can store 33.7 times more subproblems than the previ-
ous method, solving twice more instances on the GPU. As for the stream
compaction strategy, an input-output separated scheme runs 13.1% faster
than an input-output unified scheme.

Keywords: Out-of-core computation · Branch and bound · Knapsack ·
GPU

1 Introduction

The 0-1 knapsack problem [1], a combinatorial optimization problem, appears
in a wide range of fields such as manufacturing, logistics, and finance. Given
n (≥ 1) items, each with its profit and weight, the problem is to determine
which item should be included in a knapsack such that the total weight is not
beyond capacity c and the total profit is as large as possible:

maximize
n∑

i=1

pixi

subject to
n∑

i=1

wixi ≤ c, i ∈ {1, 2, . . . , n},

where pi and wi are the profit and weight of the i-th item, respectively, and
xi ∈ {0, 1} is the binary decision variable that decides if the i-th item will be
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 254–267, 2017.
DOI: 10.1007/978-3-319-65482-9 17

An Out-of-Core Branch and Bound Method 255

Fig. 1. A search tree of B&B approach. In this figure, node Pi refers to the i-th sub-
problem. Especially, the root P0 refers to the original problem. Pruned subproblems
(i.e., passive subproblems) are marked with “X.”

included or not: xi = 1 if included and xi = 0 otherwise. The B&B [2] approach,
a widely-known scheme for obtaining optimal solutions for NP-hard combina-
torial optimization problems, is the most common way to effectively find the
optimal solutions of knapsack problems [1]. This iterative scheme reduces the
search space by using upper and lower bounds updated every time iterations
continue. Each iteration consists of branching, bounding, and pruning opera-
tions. The branching operation decomposes a problem into multiple small sub-
problems. The bounding operation then computes the lower and upper bounds
for each subproblem. Finally, the pruning operation discards unpromising (pas-
sive) subproblems whose upper bounds are smaller than the best solution found
so far. The remained promising (active) subproblems proceed to the next iter-
ation to further apply these three operations. The outline of B&B approach is
shown in Fig. 1.

Many B&B approaches successfully solved knapsack problems by exploit-
ing data parallelism using various parallel machines such as single-instruction
multiple-data (SIMD) machines [3], cluster systems [4], computational grids
[5,6], and graphics processing units (GPUs) [7–10]. Among these parallel
machines, the GPU [11] is a powerful accelerator device for not only graph-
ics applications but also compute- and memory-intensive applications [12,13].
However, the capacity of GPU memory, 12 GB for example, is relatively small as
compared to that of CPU memory. Furthermore, previous GPU-based methods
use the GPU memory to manage subproblems, so that these methods fail to solve
large problems that rapidly consume GPU memory due to splitting subproblems.

Therefore, in this paper, we present an out-of-core B&B method for solv-
ing large 0-1 knapsack problems that exhaust the GPU memory due to many
subproblems to be investigated. Our out-of-core method relaxes the limitation
of problem size (i.e., maximum number of subproblems) from the capacity of
GPU memory to that of CPU memory. To solve a large problem, our method
buffers the data of subproblems in the CPU memory rather than the GPU mem-
ory. However, such a CPU-centric subproblem management scheme increases
the CPU-GPU data transfer that impairs the performance of GPU acceleration.
For the purpose of alleviating this side effect, we integrate two optimization

256 J. Shen et al.

Fig. 2. An array-based subproblem management scheme. Pruned subproblems (i.e.,
passive subproblems) marked with “X” make the array sparse as the depth of the
search tree increases.

strategies into our method: (1) a stream compaction strategy accelerated on the
GPU completely and (2) a double buffering strategy required for efficient pipelin-
ing. Stream compaction here is an important process that converts sparse arrays
into dense arrays for reducing the data to be transferred as well as achieving
full utilization of massive GPU cores. In order to find an efficient scheme for
the stream compaction strategy, we compare a separated scheme with a unified
scheme. The separated scheme differentiates an output array from the input
array to store the compacted data. On the contrary, the unified scheme uses a
single array for both input and output. As such, the unified scheme allows the
GPU to simultaneously process 1.5–2 times more subproblems than the sepa-
rated scheme. As for the double buffering strategy, it hides the data transfer
overhead by overlapping data transfer with GPU-based B&B operations.

Following this introduction, Sect. 2 presents related studies of this paper.
Section 3 then summarizes GPU-based B&B methods. Section 4 describes our
method and Sect. 5 shows experimental results. Finally, Sect. 6 comprises con-
clusion and future work.

2 Related Work

Boukedjar et al. [8] presented a B&B approach that solves the 0-1 knapsack
problem on a GPU. Their method managed subproblems in the GPU memory
with arrays standing for subproblems. Their method describes a subproblem
with several attributes such as the upper and the lower bounds of profit, and
currently obtained profit and weight. They prepared an array for each of those
attributes. However, those arrays may get sparse after B&B operations (Fig. 2),
because elements representing passive subproblems will never be referred again.
The sparseness wastes the GPU memory with useless data and harms the local-
ity of reference. Therefore, they integrated a CPU-based compaction strategy
into their method for reducing the sparseness. The basic idea for their com-
paction strategy is to exchange passive elements and active elements with a
quicksort-wise scheme, so that all the active subproblems are stored continuously

An Out-of-Core Branch and Bound Method 257

in the front of the array. Because this is a CPU-based sequential operation, their
method transfers all attributes from the GPU memory to the CPU memory every
time the compaction proceeds. Therefore, CPU-GPU data transfer remains as a
performance bottleneck.

To reduce the amount of data transfer between the CPU and GPU, Lalami
et al. [9] presented an extension of [8] by restricting transferred data to a single
attribute: label data (i.e., label array), where a label shows whether an element
is active (label = 1) or passive (label = 0). They focused on the data access
pattern required for compaction. That is, any attribute array generates the same
pattern as those generated by other attribute arrays. As such, they computed the
pattern on the CPU, according to the label data, and reused that information
to carry out stream compaction for every attribute array on the GPU. This
extension successfully doubled the performance compared to the baseline method
[8]. However, it is still inevitable to transfer data between the GPU and the CPU
every time the stream compaction proceeds. Moreover, their method can solve
larger problems if subproblems are managed in the CPU memory.

Carneiro et al. [14] presented a GPU-accelerated B&B approach that uses a
hybrid scheme of breadth first search and depth first search to solve the sym-
metric traveling salesman problem. Their method initially performs breadth first
search on the CPU to generate many initial subproblems to be examined in par-
allel. After that, the method switches to depth first search that processes B&B
operations on the GPU. However, similar to [8], the stream compaction strategy
was not integrated into this approach.

3 B&B Approach for Solving Knapsack Problem

The branching operation of the B&B approach is to divide one n-variable (item)
problem into two (n − 1)-variable subproblems. These two subproblems respec-
tively stand for the two cases of decision for the i-th item, where 1 ≤ i ≤ n. For
an n-item knapsack problem, from the first item to the last item, we iteratively
divide one problem into two subproblems with a breadth-first search scheme.

On the other hand, the bounding operation is to reduce the search space
by judging each subproblem whether it is possible to get an optimal solution
or not. For this purpose, the bounding operation computes the upper and the
lower bounds for every existing subproblem. A subproblem whose upper bound is
smaller than the best (i.e., biggest) lower bound is passive and must be deleted
from the search space. In the following discussion, we assume that items are
sorted according to decreasing profit per ratio. This assumption facilitates lower
bound computation mentioned below. Let k be the index of the current item to
be examined for decision. Let also Iv be the set of items picked for a subproblem,
i.e., a vertex v in the search tree. The weight and profit of vertex v, Wv and Pv,
respectively, then can be computed as follows:

Wv =
∑

i∈Iv
wi, (1)

Pv =
∑

i∈Iv
(2)

258 J. Shen et al.

A vertex v can be described as a tuple (Wv, Pv, Uv, Lv, Sv), where Uv and Lv

represent an upper and lower bounds of the vertex, respectively, and Sv is the
slack variable [9] for the vertex such that

Sv−1∑

i=k+1

wi ≤ c − wv <

Sv∑

i=k+1

wi. (3)

That is, the slack variable Sv is determined by picking all items after the k-th
item as long as the knapsack can. Using the slack variable, the residual capacity
r of the knapsack is given by:

r = c − Wv −
Sv−1∑

i=k+1

wi. (4)

A lower bound Lv can be obtained by picking the abovementioned items (i.e.,
from k + 1 to Sv − 1) and others in a greedy manner:

Lv = Pv +
Sv−1∑

i=k+1

pi +
n∑

i=k+1

pixi, (5)

where xi = 1 if wi ≤ r − ∑i−1
j=Sv+1 wjxj . With respect to an upper bound Uv,

on the other hand, we adopt the Dantzig bound [15] that can be given by:

Uv = Pv +
Sv−1∑

i=k+1

pi + �rPSv
/WSv

� . (6)

4 Proposed Method

The proposed method deploys a CPU-centric subproblem management scheme
that exploits the large capacity of the CPU memory to relax the limitation
of problem size. However, this out-of-core method can increase the amount of
CPU-GPU data transfer, so that we integrate two strategies into our method to
mitigate this side effect. The first strategy is a stream compaction strategy that
proceeds on GPU completely. As such, it eliminates the data transfer for the
pattern computation and increases the parallelism of the pattern computation,
compared to [9]. The second strategy is a double buffering strategy that pipelines
a series of operations. The strategy hides the overhead of CPU-GPU data trans-
fer by overlapping the GPU-based B&B operations with the CPU-GPU data
transfer.

4.1 CPU-Centric Subproblem Management

For an efficient CPU-centric subproblem management, the data structure that
stores subproblems must satisfy two requirements.

An Out-of-Core Branch and Bound Method 259

(1) The data structure must be accessed randomly by a GPU thread with O(1)
time.

(2) The data structure stores subproblems continuously without fragmentation
in order to improve the efficiency of direct memory access (DMA) required
for CPU-GPU data transfer.

To satisfy requirement (1), we choose arrays as a buffer for storing subproblems
in the CPU memory. To satisfy requirement (2), we organize the buffer in a
circular manner with two pointers: pointer head pointed to the first subproblem
in the buffer and pointer tail pointed to the position behind the last subprob-
lem in the buffer. For every iteration, we transfer a series of subproblems that
begin with the subproblems pointed by head from the CPU memory to the GPU
memory in order to process GPU-based B&B operations. On the other hand,
when we predict that the GPU memory will be exhausted after the next branch-
ing operation, we transfer the subproblems from the GPU memory to the CPU
memory, stored from the position pointed by tail. Every time a data transfer
operation proceeds, the position of head or tail (according to the operation) is
updated by an increment of the amount of transferred data. Furthermore, the
circular manner means that if we reach the last position of the buffer during
transferring data, we turn to its first position again. However, in this occasion,
we must call the data transferring function once more, because of the change of
the baseline address.

These transfer and computation jobs proceed iteratively until all the sub-
problems are finished, meaning that decision of the last item, i.e., xn, is done
for every subproblem. Moreover, the proposed method either prunes a finished
subproblem if it is judged as passive, or set aside the finished subproblem if it
is judged as active currently. In no case does the proposed method branch a
finished subproblem.

4.2 Stream Compaction Strategy

To avoid extra CPU-GPU data transfer when computing the data access pattern
required for compaction, we adopt a stream compaction strategy that proceeds
on the GPU completely. Our stream compaction strategy computes the data
access pattern on the GPU instead of the CPU. Moreover, we compare two
stream compaction variations, a separated scheme and a unified scheme. The
separated scheme requires that the input array (i.e., the array to be compacted)
is separated from the output array. As such, the separated scheme consumes
more GPU memory than the unified scheme. However, the separated scheme
is cogent and it avoids any preprocess. On the other hand, the unified scheme
compacts the input array within itself, instead of using a separated output array.
Therefore, given that we adopt a double buffering strategy, the buffer size of the
unified scheme is 1.5 times bigger than that of the separated scheme. However,
the unified scheme requires a preprocess phase for compaction, which incurs an
extra overhead. The details of both schemes are presented below.

260 J. Shen et al.

Fig. 3. An overview of the separated stream compaction scheme. In this figure, Pi

refers to an active subproblem while Qi refers to a passive subproblem. In step (1),
we associate active and passive subproblems with 1 and 0, respectively. In step (2), we
then apply the computation of prefix sums to the array of labels, in order to obtain
the array of prefix sums that indicates where to move the active subproblems (i.e., the
data access pattern). Finally, in step (3), we contiguously pack the active subproblems
into the output array according to the array of prefix sums.

Separated Scheme. The separated stream compaction is a filtering process.
The elements that meet the requirements will be selected from the input array,
and then be packed into the output array. Generally, the compaction process is
done in three steps (Fig. 3): (1) preparation of the array of labels, (2) computa-
tion of prefix sums, and (3) packing procedure. We use the thrust library [16] to
implement prefix sums computation.

Unified Scheme. The unified scheme overwrites the input array by immedi-
ately moving some active elements onto passive elements (Fig. 4). The general
idea is to calculate the number of active elements na that is used as a border
index. We can predict that all active elements will be stored in the first na

elements of the input array after compaction. Thus, we only need to move the
active elements stored after the border index onto the passive elements stored
before the border index. The unified scheme requires preparation of the array
of labels, computation of prefix sums, and packing procedure, the same as the
separated scheme. Besides, the unified requires a preprocess phase before the
packing procedure. This preprocess phase consists of two steps:

(1) The unified scheme computes the number of active elements (na) that is
used as the border index.

(2) The unified scheme associates active elements with passive elements by cal-
culating the order number of every active element stored after the border
index and the order number of every passive element stored before the bor-
der index. For instance, the i-th active element stored after the border index
is associated with the i-th passive element stored before the border index.
By doing so, the unified scheme prepares a lookup table for looking up the
destinations where the active elements should be moved.

Algorithm 1 describes the lookup table preparation procedure.

An Out-of-Core Branch and Bound Method 261

Fig. 4. An overview of the unified stream compaction scheme based on a lookup table.

Algorithm 1. Preparation for a lookup table.
Input: (1)Labels, the array of labels and (2) Sums, the array of prefix sums
Output: Table, the lookup table

1 i := threadID
2 if na ≤ i then
3 return
4 end if
5 l := Labels[i]
6 if l = 0 then
7 passive order number := i − Sums[i]
8 Table[passive order number] := i
9 end if

4.3 Double Buffering Strategy

In order to hide the overhead of CPU-GPU data transfer, we realize a double
buffering strategy that overlaps the CPU-GPU data transfer with GPU-based
B&B operations using two CUDA streams (Fig. 5). A CUDA stream here is a
sequence of operations that execute in issue-order on the GPU [17]. The data
transfer proceeds on a stream using buffer A while the GPU-based B&B oper-
ations proceed on the other stream using buffer B. When operations on both
streams complete, the strategy exchanges the references of buffer A and buffer B
(i.e., pointer A and pointer B in Fig. 5), and then proceeds to the next iteration
of this overlapped transfer and computation procedure until finishing processing
all subproblems left in the circular buffer. However, before the next iteration,
the strategy must synchronize both streams to ensure operations of the current
iteration have finished. We carry out synchronization to prevent both streams
from simultaneous data transfer, lest the circular buffer is inconsistent.

Besides, we appropriately use two execution modes according to the number
of subproblems managed on the CPU. If the circular buffer lacks sufficient sub-
problems to fully exploit the massive parallelism on the GPU, we only use CPU
to process the branching, bounding, and pruning operations. We use GPU to
process the operations otherwise. We experimentally determined 24, 576 as the
threshold number of subproblems that triggers changing the execution mode.
The threshold number may vary under different environments.

262 J. Shen et al.

Fig. 5. An overview of the double buffering strategy, which overlaps the CPU-GPU
data transfer with GPU-based B&B operations using two CUDA streams.

5 Experimental Results

We conducted experiments to evaluate the proposed method in terms of the
problem size and the execution time. We used Lalami’s method [9] as a compa-
rable method. Both the proposed method and the previous method are honestly
implemented with the same optimization techniques. As for the stream com-
paction strategy, we compared the separated scheme with the unified scheme
in terms of the performance. For datasets, we used a suite of benchmarking
datasets [18,19] shown in Table 1. We used strongly correlated instances with
up to n = 1000 items, where the weight of each item mainly determines its
profit. Such instances can be efficiently parallelized because of enormous combi-
nations of items that may be an optimal solution, and therefore, represent the
most difficult problems. We generated 20 different instances for each n.

Table 2 shows the specifications of two experimental machines. We prepared
two machines equipped with different capacities of GPU memory: 2 GB and
12 GB for machines 1 and 2, respectively. These capacities were relatively small
for the datasets, which consumed at most 20 GB of memory space. Both machines
ran on the Ubuntu 14.04 with CUDA 7.5 [20]. Besides, the version of thrust
library [16] was 1.8.3.

Table 1. Experimental datasets.

Parameter Value

pi: profit of the i-th item wi + 1000 + random(−20, 20)

wi: weight of the i-th item random(1, 10000)

c: knapsack capacity

n∑

i=1

wi ∗ 100/1001

An Out-of-Core Branch and Bound Method 263

Table 2. Specification of experimental machines.

Machine 1 Machine 2

CPU Intel Core i7-6700 Intel Xeon E5-2660 v3

CPU memory capacity 32 GB 64 GB

GPU GeForce GTX 680 Kepler GeForce GTX Titan X Pascal

GPU memory capacity 2 GB 12 GB

GPU driver version 375.39 352.39

PCIe Controller gen3 ×16 gen3 ×16

5.1 Robustness Against the Increase of Problem Size

We prepared ten classes of instances, varying from 100 items to 1000 items. We
generated 20 different instances for each class. In this experiment, we allocated
an array of 20 GB for the circular buffer. On the other hand, two arrays of total
2 GB were used for processing B&B and stream compaction operations on the
GPU. As shown in Fig. 6, our CPU memory subproblem management scheme
successfully solved more instances, demonstrating more robustness against the
increase of problem size. This robustness is noticeable especially for the “prop-
erly” large instances, varying from 400 items to 700 items. However, there was
no significant difference for the instances of more than 700 items because sharply
increasing subproblems beat the capacity of CPU memory, resulting in a mem-
ory exhaustion. Moreover, we can conclude that our out-of-core method solved
33.7 times more subproblems than the previous in-core method. For example,
our method successfully stored 845, 940, 791 subproblems at a time, whereas the
number of subproblems was limited by 25, 096, 462 in the previous method.

5.2 Performance Comparison

For each instance class, from the instances which can be solved by both meth-
ods, we selected a representative one to compare the execution time of the two
methods. For example, presuming that in the 700-item instance class there were
three instances which can be solved by both methods, we first computed the
average execution time of the three instances processed by the previous method.
We then selected the instance whose execution time was nearest to the aver-
age execution time (Fig. 7). Obviously, the instances that can be solved by both
methods did not produce so many subproblems that exhaust the GPU memory,
thus, there is no extra data transfer for swapping-out operations. Our method
achieved a higher performance because our stream compaction strategy (with
the separated scheme) was completely processed on the GPU in parallel. As
presented in Sect. 2, the previous stream compaction strategy computed data
access pattern on the CPU, sequentially instead of in parallel, and it required to
transfer the array of label between the CPU and GPU. Therefore, our stream
compaction strategy ran 4.5 times faster than the previous strategy, shortening
the total execution time by 26% on average.

264 J. Shen et al.

Fig. 6. Comparison of the numbers of instances solved by the proposed method and
the previous method [9].

Fig. 7. Comparison and breakdown of execution time with different number of items.
In this figure, the notations “T” and “P” refer to this work and previous work [9],
respectively.

5.3 Comparison of Separated and Unified Schemes

In this experiment, we allocated 1 GB (i.e., half) of GPU memory because the
experimental machine 1 had only 2 GB GPU memory. Thus, we thought the
efficiency of GPU memory usage would be more important. As for the CPU
memory, the same amount (20 GB) was used for execution. We compared the
execution time of both schemes by selecting a representative instance for each
instance class in the same manner described in Sect. 5.2. As we mentioned above,
the buffer size of the unified scheme is 1.5 times larger than that of the separated

An Out-of-Core Branch and Bound Method 265

Fig. 8. Comparison and breakdown of execution time with different number of items.
In this figure, the notations “S” and “U” refer to the separated and unified schemes,
respectively.

scheme. Consequently, the unified scheme allowed 26.2 million subproblems to
be processed at a time on the GPU, while the separated scheme allowed 17.4
million subproblems (Fig. 8).

According to the result, the execution time of GPU-based B&B operations
(that are overlapped with data transfer) of the separated scheme was 12.3%
shorter than that of the unified scheme. The execution time of stream compation
of the separated scheme was 19.6% shorter than that of the unified scheme.
Totally, the separated scheme was 13.1% faster than the unified scheme. We
therefore concluded that the separated scheme is better than the unified scheme
from the aspect of performance.

6 Conclusion

In this paper, we presented a GPU-accelerated, out-of-core B&B method for
solving the 0-1 knapsack problem. The maximum problem size depends on the
capacity of the CPU memory rather than that of the GPU memory. To real-
ize this relaxation, our method buffers active subproblems in the CPU memory
instead of the GPU memory. Because such a CPU-centric management scheme
can suffer from increased amount of data transfer between the CPU and GPU,
our method minimizes the data transfer overhead by a stream compaction strat-
egy and hides the minimized overhead by a double buffering strategy that over-
laps data transfer with GPU-based B&B operations.

In our experiments, we found that our out-of-core method stored 33.7 times
more subproblems at a time, solving twice more problems than a previous in-core
method. We also found that our completely CPU-based compaction strategy was
4.5 times faster than the previous compaction strategy. Moreover, we determined
that the separated scheme was better because the separated scheme ran 13.1%
faster than the unified scheme.

266 J. Shen et al.

Our future work includes investigation of more sophisticated ways to traverse
the search tree, e.g., dynamically choosing breadth first search and depth first
search, which improves robustness against rapidly growing subproblems.

Acknowledgments. This study was supported in part by the Japan Society for the
Promotion of Science KAKENHI Grant Numbers 15H01687, 16H02801 and 15K12008.
We are also grateful to the anonymous reviewers for their valuable comments.

References

1. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, Chichester (1990)

2. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28(3), 497–520 (1960)

3. Lin, J., Storer, J.A.: Processor-efficient hypercube algorithms for the knapsack
problem. J. Parallel Distrib. Comput. 13(3), 332–337 (1991)

4. Eckstein, J., Phillips, C.A., Hart, W.E.: PICO: an object-oriented framework for
parallel branch and bound. Stud. Comput. Math. 8, 219–265 (2001)

5. Goux, J.-P., Kulkarni, S., Yoder, M., Linderoth, J.: Master-worker: an enabling
framework for applications on the computational grid. Cluster Comput. 4(1), 63–
70 (2001)

6. Tanaka, Y., Sato, M., Hirano, M., Nakada, H., Sekiguchi, S.: Performance evalua-
tion of a firewall-compliant Globus-based wide-area cluster system. In: Proceedings
of HPDC 2000, pp. 121–128 (2000)

7. Boyer, V., Baz, D.E., Elkihel, M.: Solving knapsack problems on GPU. Comput.
Oper. Res. 39(1), 42–47 (2012)

8. Boukedjar, A., Lalami, M.E., El-Baz, D.: Parallel branch and bound on a CPU-
GPU system. In: Proceedings of PDP 2012, pp. 392–398 (2012)

9. Lalami, M.E., El-Baz, D.: GPU implementation of the branch, bound method for
knapsack problems. In: Proceedings of IPDPSW 2012, pp. 1769–1777 (2012)

10. Pedemonte, M., Alba, E., Luna, F.: Towards the design of systolic genetic search.
In: Proceedings of IPDPSW 2012, pp. 1778–1786 (2012)

11. Luebke, D., Humphreys, G.: How GPUs work. Computer 40(2), 96–100 (2007)
12. Ino, F., Munekawa, Y., Hagihara, K.: Sequence homology search using fine grained

cycle sharing of idle GPUs. IEEE Trans. Parallel Distrib. Syst. 23(4), 751–759
(2012)

13. Mitani, Y., Ino, F., Hagihara, K.: Parallelizing exact and approximate string
matching via inclusive scan on a GPU. IEEE Trans. Parallel Distrib. Syst. 28,
1989–2002 (2017)

14. Carneiro, T., Muritiba, A.E., Negreiros, M., de Campos, G.A.L.: A new parallel
schema for branch-and-bound algorithms using GPGPU. In: Proceedings of SBAC-
PAD 2011, pp. 41–47 (2011)

15. Dantzig, G.B.: Discrete variable extremum problems. Oper. Res. 5(2), 266–277
(1957)

16. Bell, N., Hoberock, J.: Thrust: A Productivity-Oriented Library for CUDA.
Morgan Kaufmann, San Mateo (2011). Chap. 26. http://thrust.github.io/

17. Rennich, S.: CUDA C/C++ Streams and Concurrency, Nvidia GTC express
(2011). http://on-demand.gputechconf.com/gtc-express/2011/presentations/
StreamsAndConcurrencyWebinar.pdf

http://thrust.github.io/
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf

An Out-of-Core Branch and Bound Method 267

18. Martello, S., Pisinger, D., Toth, P.: New trends in exact algorithms for the 0-1
knapsack problem. Eur. J. Oper. Res. 123(2), 325–332 (2000)

19. Martello, S., Pisinger, D., Toth, P.: Dynamic Programming and Tight Bounds
for the 0-1 Knapsack Problem, Datalogisk Institut København: DIKU-Rapport,
Datalogisk Institut, Københavns Universitet (1997)

20. CUDA Toolkit Documentation: Nvidia (2017). http://docs.nvidia.com/cuda/
index.html

http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/index.html

The Curve Boundary Design and Performance
Analysis for DGM Based on OpenFOAM

Yongquan Feng, Xinhai Xu(B), Yuhua Tang, Liyang Xu, and Yongjun Zhang

State Key Laboratory of High Performance, Computing College of Computer,
National University of Defense Technology, Changsha, China

yqfeng0418@163.com, {xuxinhai,xuliyang08,yjzhang}@nudt.edu.cn,
yhtang62@163.com

Abstract. OpenFOAM is a widely used numerical simulation software,
and Discontinuous Galerkin method (DGM), a high-order numerical
method, has been developed on OpenFOAM. In order to obtain mean-
ingful numerical simulations, curve boundary is needed, but it has not
been implemented on OpenFOAM. In this paper, based on codeStream
function of original OpenFOAM, we design and implement curve bound-
ary interface with reference to the interface of original OpenFOAM, so
that users can use C++ code to describe curve boundary. Furthermore,
in order to move the high-order points on the linear boundary to the
curve boundary, we propose an algorithm to move each high-order point
to a specific position on the curve, where the normal of this position
passes through the origin point. Experimental results based on the flow
around a cylinder show that curve boundary is needed by DGM numer-
ical simulation, and DGM high-order simulation is much more efficient
than DGM low-order. Typically, when the error of drag coefficient is
about 0.03, the DGM high-order can save 89.6% time cost and 83.0%
memory cost.

Keywords: Curve boundary · OpenFOAM · DGM · High-order

1 Introduction

Computational Fluid Dynamics (CFD) is a branch of fluid mechanics that uses
numerical simulation to solve and analyse problems that involve fluid flows.
With the development of computer technology, it is widely used in many research
domains, such as automotive industry and aerospace field [1]. There are a variety
of CFD softwares, including some famous commercial softwares (Fluent, CFX,
etc.), and some open-source softwares (OpenFOAM, deal.II, etc.) [15]. Typically,
OpenFOAM is a open-source C++ toolbox for flexible engineering simulation in
CFD [14], whose numerical method is based on Finite Volume Method (FVM)
[20]. It has good expansibility that supports users to develop their own solvers.
Moreover, parallelization is well implemented in OpenFOAM, thus large-scale
problems are supported in OpenFOAM. Due to these advantage, OpenFOAM

c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 268–282, 2017.
DOI: 10.1007/978-3-319-65482-9 18

The Curve Boundary Design and Performance Analysis 269

has become the major research tool for CFD academia and industry, such as
properties of fluid analysis [5,10,11], coastal engineering simulation [13].

For large-scale simulations, such as the wind tunnel, computational cost has
become a key problem. There are several factors that affect the amount of cal-
culation, including grid size, numerical method, parallel algorithm, computer
architecture and so on. Wang [21] suggests that, at a same precision, high-order
method requires fewer grid cells than low-order method so high-order method
becomes the research hotspot of CFD. However, the current CFD numerical
simulation softwares mostly use low-order methods to perform numerical dis-
cretization, like Fluent, OpenFOAM, and so on. Typically, DGM is a famous
high-order finite element method with high stability and accuracy [4]. Therefore,
to conduct high-order numerical simulations, our group have coupled DGM into
OpenFOAM.

[6–8] suggest that for a numerical simulation with curved geometry, if a high-
order method is used, the computational grid must be generated with curved
boundaries as well. However, original OpenFOAM does not support the curve
boundary. In addition, Bassi [2,3] demonstrated that the curve boundary of grid
had an effect on the accuracy of DGM. But, the existing analysis of this effect
is qualitative and non-quantitative. Therefore, the first question considered in
this paper is how to develop the original OpenFOAM platform to support curve
boundary, in order to make DGM discretization more accurate. Furthermore,
after the platform supports curve boundary, whether the cost of the high-order
DGM numerical discretization is less than low-order DGM discretization at the
same precision. This paper studies the above two questions, and the main con-
tributions of this paper are summarized below:

– Based on codeStream function on original OpenFOAM, we design and imple-
ment the curve boundary interface in boundary configure file, which is consis-
tent with the architecture of OpenFOAM. Users can describe curve boundary
with C++ code in curve boundary interface.

– In order to move the high-order points on original OpenFOAM geometric
mesh boundary to curve boundary with a specific rule, we propose an algo-
rithm to move each high-order point to a specific position on the curve, where
the normal of this position passes through the origin point, thus high-order
numerical discretization requirements of DGM could be met on the mesh of
OpenFOAM.

– The effect of the curve boundary on DGM high-order numerical simulation
is verified on the benchmark of flow around a cylinder. Our results show
that DGM high-order simulation is much more efficient than DGM low-order.
Typically, when the error of drag coefficient is about 0.03, compared to the
DGM low-order numerical simulation, the DGM high-order can save 89.6%
time cost and 83.0% memory cost.

The rest of the paper is organized as follows. Section 2 reviews the background
and related work. Section 3 presents the process of design and implementation of
curve boundary on OpenFOAM. Section 4 describes our evaluation methodology

270 Y. Feng et al.

and demonstrates the performance superiority of DGM high-order numerical
simulation with curve boundary by experiments. Section 5 conclude the paper.

2 Background

2.1 Original OpenFOAM and DGM

By using numerical methods, the theoretical models in hydromechanics are dis-
cretized into linear equations which can be solved by computer. The basis of
numerical discretization is the geometric mesh which is obtained by dividing
the computational domain of the theoretical model into cells. The geometric
mesh of original OpenFOAM not only contains the topology of the grid, but
also retains the properties of the domain boundary through a configuration file
named boundary. Figure 1 shows the process of dividing a circular computa-
tional domain into 6 cells on the original OpenFOAM. From the left figure, we
can acquire that the boundary of this domain consists of two part, UP and
DOWN , UP for the upper semicircle boundary, and DOWN for the other half.
The result of the division is shown in the right figure. Since only the coordinate
information of the cell vertices is preserved, the topology of the geometric mesh
is shown by solid line. The boundary file of this geometric mesh is shown in
Fig. 2, where there are three keywords for each mesh boundary:

– type: represents the type of mesh boundary. The original OpenFOAM sup-
ports multiple boundary types and assigns different boundaries with different
properties. In Fig. 2, wall is one of boundary types on the original Open-
FOAM.

– nFaces & startFace: nFaces is the number of faces, and startFace is
the start index of faces belonging to this boundary. Both of them can describe
the component of boundary. For example, as shown in Fig. 1, UP consists
of three faces, numbered 0, 1 and 2, so that nFaces and startFace are 3
and 0.

From Figs. 1 and 2, it is clear that the original OpenFOAM does not hold the
information of circular boundary so that it can not support curve boundary, as
mentioned earlier.

Fig. 1. Circle domain 6 equal division Fig. 2. Content in boundary file

The Curve Boundary Design and Performance Analysis 271

DGM was firstly introduced by Reed and Hill in 1973 for solving the Neu-
tron transport equation [17]. As a high-order finite element method, it obtains
a higher accuracy by fitting the flow fields with higher order polynomial in the
grid cell. According to the basic theory of solving polynomial, the higher order
of polynomial, the more nodes are needed. Thus, more nodes are required by
DGM high-order numerical discretization, so that the mesh for DGM high-order
numerical discretization needs to insert points within the cells of original Open-
FOAM geometry mesh. The process developing DGM on OpenFOAM can be
described by Fig. 3.

Fig. 3. DGM on OpenFOAM

2.2 Simulation Accuracy and Discretization Error

By using numerical methods, CFD can obtain the approximate solution to the
theoretical model, and in this process, the difference between the linear equations
and the theoretical model is termed discretization error, which is the main factor
affecting the accuracy of numerical simulation. The exact solution to theoretical
model can be expressed by Eq. 1:

fexact = fk + DEk. (1)

where fexact is the exact solution to the theoretical model, fk is a discrete solution
on mesh level k, and DEk is the corresponding discretization error. According
to [18], Eq. 1 can be rewritten as:

fk = fexact + g1hk + g2h
2
k + g3h

3
k + O(h4

k). (2)

where gi is the ith-order error term coefficient and hk is some measure of the
grid spacing on mesh k. When the second-order method is used, the coefficient
g1 is 0, then Eq. 2 can be written as:

fk = fexact + O(h2
k). (3)

Therefore, we can obtain the relationship between the simulation accuracy
and the discrete order of numerical method:

Ak = DEk = O(hn
k). (4)

where Ak is the simulation accuracy on mesh level k and n is the discretization
order. Wang [21] points out that high-order methods are those n ≥ 3.

272 Y. Feng et al.

3 Design and Implementation of Curve Boundary

3.1 DGM Discretization and Curve Boundary Requirement

The numerical method of the original OpenFOAM, FVM, is low-order, and only
the cell vertex information is used in the numerical simulation, so that original
OpenFOAM can only reduce the loss of the computational domain by generating
finer cells. Dividing the circular domain into 6 cells, 12 cells, and 24 cells are
shown in Fig. 4 respectively, and it is clear that the larger the number of cells,
the less the loss of the computational domain.

Fig. 4. Circle domain mesh generation

DGM has the advantage of obtaining higher accuracy on coarse-grained grid
cells by using high-order numerical simulation which requires to insert nodes
within cells, which are named high-order points in this paper. Figure 5 indi-
cates the result of inserting high-order points on a grid cell when DGM perform
third-order numerical discretization. There is curve boundary belonging to this
cell, indicated by a dashed line. Figure 5(a) illustrates the result based on the
geometric mesh of original OpenFOAM. When DGM discretizes the theoretical
model, it is required that, after discretization, the residuals of the theoretical
model and the basis functions of finite element methods have to be orthogo-
nal, that is to say, the integration of the product of the two on each cell is 0
(Eq. 5) [12]. However, if we insert high-order points as Fig. 5(a), the loss of the
computational domain will not reduce, and the situation shown in Fig. 5(b) is
expected. Therefore, curve boundary is required by DGM high-order numerical
discretization. ∫

Dk

(Rh(x, t))ψn(x)dx = 0, 1 ≤ n ≤ Np (5)

where Dk is the area of the kth cell, x contains the coordinate information for
all points in this cell, t is time, Rh is the residual caused by discretization, ψn

is the basis function of DGM, and Np is the number of nodes in kth cell.
The principle of curve boundary is to ensure high-order points locate on the

actual boundary of the computational domain, so the following functions are
required:

The Curve Boundary Design and Performance Analysis 273

Fig. 5. The process of interpolating high-order points

– Firstly, a interface is required for user to describe the curved geometry. As
indicated earlier, the original OpenFOAM geometric mesh loses the informa-
tion of curve boundary, so that DGM, which is developed on OpenFOAM, can
not acquire it, and high-order points can not locate on the actual boundary of
the computational domain. Therefore, we need to design and implement the
curve boundary interface, by reference to the interface of the geometric mesh
on original OpenFOAM, to hold curve boundary information;

– Secondly, it is necessary to move the high-order points on the geometric mesh
boundary of original OpenFOAM to curve boundary according to a specific
rule. According to [12], the high-order points of DGM have the properties of
the Legendre-Gauss-Lobatto (LGL) integral points. The influence on it needs
to be minimized, which is produced by moving. So we need to design and
implement a rule of moving high-order points.

3.2 Design and Implementation of Curve Boundary Interface

Original OpenFOAM supports multiple boundary types and assigns a type for
every boundary by a configuration file named boundary. We can add a new
boundary type on original OpenFOAM to make it support curve boundary func-
tion. The curve boundary interface is designed by reference to the boundary type
interfaces of original OpenFOAM in boundary configure file, and we need to add
the curve boundary information into the curve boundary interface. According to
[9], original OpenFOAM allows users to write C++ code in configuration files,
and through a function called codeStream, the code will be compiled so that
it can be executed in the numerical simulation process. Therefore, we can use
C++ code to describe curve boundary.

Figure 6 illustrates the result of splitting circular computational domain with
curve boundary. Compared to geometric mesh of original OpenFOAM, the con-
tent of configuration file boundary has changed, and Fig. 7 shows new interface of
UP boundary. type is turned into arc which is the type name of curve bound-
ary, and nFaces and startFace are kept unchanged. There are four more
keywords:

274 Y. Feng et al.

– name & code: name is the name of the code in UP . code is the code
which is used to describe curve boundary, and its style is standardized by
codeStream function.

– u Range & v Range: The curve boundary is described with parametric
equations using C++ code, and the parameters are u and v. These two key-
words are used to define the range of them.

Fig. 6. Curve boundary mesh generation Fig. 7. Curve boundary interface

3.3 Design and Implementation of Moving Rule

In order to reduce the influence on the LGL property of high-order points, we
design the moving rule as follow: For a high-order point P , we choose a point P ′

on the curve boundary, whose normal passes P , and replace P with P ′. Figure 8
illustrates the process to find P ′ for P . For P1, first, the endpoint of the curve
face is selected as the initial point P ′

0, and we can get the unit normal vector −→n0

of P ′
0 according to the parametric equations of curve boundary. Then, the cross

product of −→n0 and
−−−→
P1P

′
0 can be achieved, and we can correct P ′

0 to get the new
point P ′

1 on curve boundary according to the cross product. Finally, repeat the
process of correction until the cross product less than a threshold value which
is preset by us, and replace P1 with P ′

n. From the point of view of performance
optimization, P ′

n can be the initial point in process of moving P2. The whole
process can be described abstractly by Algorithm 1.

By adding curve boundary interface and the function of moving high-order
points on OpenFOAM, where our research group has developed DGM, the plat-
form can support curve boundary for DGM numerical discretization (Fig. 9).

4 Experiment and Analysis

4.1 Platform and Test Cases

The numerical simulation platform of this experiment is OpenFOAM4.0 where
our research group has developed DGM, so it can support high-order numerical
simulation. As introduced above, we have added curve boundary on it.

The Curve Boundary Design and Performance Analysis 275

Fig. 8. High-order points moving process

Algorithm 1. High-order Points Moving Algorithm
1: Get curved boundary faces faces;
2: Get curved boundary equations;
3: Set threshold threshold;
4: for all face in faces do
5: Get initial point P ′;
6: Get high-order points highOrderPoints of face;
7: for all P in highOrderPoints do
8: Initial −−→res =

−→
0 ;

9: repeat
10: Correct P ′ according to | −−→res |;
11: Calculate unit normal vector −→n of P ′;

12: Calculate −−→res= −→n × −−→
PP ′;

13: until | −−→res |< threshold
14: Mapping P to P ′;
15: end for
16: end for

First, we select the 2-dimensional vortex problem to verify the correctness of
DGM on our platform. The computational domain of this case does not contain
the curve boundary (Fig. 10(a)), and there is a exact solution to this problem:

⎧⎪⎨
⎪⎩

u = − sin(2πy) exp −ν4π2t,

v = sin(2πx) exp −ν4π2t,

p = − cos(2πx) cos(2πy) exp −ν8π2t.

(6)

Fig. 9. DGM mesh generation

276 Y. Feng et al.

where u and v are the velocity components in x and y directions, p is the pressure,
nu is viscosity coefficient which is equal to 10−2 in this case, and t is time. We
apply the incompressible Navier-Stokes equations to solving the problem, and
the computational domain and its boundary are shown in Fig. 10(a). For inlet,
the value velocity is equal to the exact solution, and the gradient of pressure is 0.
For outlet, the gradient of velocity is equal to the gradient of the exact solution,
and the value of the pressure is equal to the exact solution. The incompressible
Navier-Stokes equations are discretized on Fig. 10(b), (c) and (d). Figure 10(c)
is obtained by cut each cell into quarters in Fig. 10(b), and by cutting each cell
into quarters in Fig. 10(c), we can get the geometric mesh shown in Fig. 10(d).
Therefore, if we measure the cell edge length of geometric mesh in Fig. 10(b)
with h, then h/2 for Fig. 10(c) and h/4 for Fig. 10(d).

Fig. 10. Vortex domain and grid

Then, the flow around a cylinder in 2-dimension is selected to verify the
effect of the curve boundary on the accuracy and the performance of DGM.
The pressure and the velocity of boundary, the viscosity coefficient and the
simulation time are kept the same with document [16]. Figure 11 illustrates the
computational domain of this problem.

4.2 Methodology

In order to verify the effect of curve boundary on the accuracy and performance
of DGM numerical simulation, the experiments of this paper are divided into
three parts.

The Curve Boundary Design and Performance Analysis 277

Fig. 11. Domain of flow around a cylinder

– First, through the vortex problem numerical simulation, we can complete the
correctness verification of DGM on our platform, thus excluding the influ-
ence of DGM on curve boundary. The correctness of DGM can be verified by
comparing the convergence order of the simulation error with discretization
order. According to [19], we can calculate the convergence order of numerical
simulation based on the maximum point error of pressure on Fig. 10(b), (c)
and (d).

– Then, to demonstrate the effect of curve boundary on DGM, we simulate the
flow around a cylinder under the condition of using curve boundary and linear
boundary, and compare the simulation error of them. The geometric mesh of
this part is shown in Fig. 12. In this experiment, we select the maximum value
of drag coefficient Cd and the maximum value of lift coefficient Cl as the
evaluation index, that is to say, the simulation error is expressed by the error
of Cd and Cl.

– Finally, to compare the performance of high-order method and low-order
method, the problem of flow around a cylinder is numerically simulated with
high-order DGM using curve boundary and the low-order DGM (the dis-
cretization order is 2) using linear boundary, and after that, we count the
time cost and the memory cost of simulation. In order to save the time of
experiment, the relevant performance statistics are obtained by simulating the
physical process lasting for 0.1 s. According to [21], high-order numerical simu-
lation has less geometric mesh cells than the low-order. Thus, 460 cells grid and
1840(460∗41) grid are selected as the geometric mesh of high-order numerical
simulation, and 7360(460∗42) cells, 29440(460∗43) cells, 117760(460∗44) cells
for the low-order. All the grids above have similar topology to 460 cells grid.

Fig. 12. 460 Cells grid for flow around a cylinder

278 Y. Feng et al.

However, it should be noted that there is no exact solution to the flow around
a cylinder. By reference to [22] we select the data from [16] as the exact value
of Cd and Cl, which is Cd = 2.950921575, Cl = 0.47795.

4.3 Experimental Results and Analysis

Table 1 details the result of the vortex problem. The convergence order is basi-
cally consistent with [12], So the correctness of DGM on our platform can be
proved.

Table 1. Vortex pressure field error

Order h 0.5h 0.25h Convergence order

2 8.41058E−01 1.23537E−01 2.45985E−02 2.5478

3 1.31690E−01 2.23336E−02 4.57408E−03 2.4238

4 7.72596E−02 2.94520E−03 1.75313E−04 4.3918

5 5.66944E−03 6.16050E−04 1.38162E−05 4.3404

6 9.10737E−03 3.51222E−05 6.38626E−07 6.8999

Figure 13 shows the exact value from [16] and the simulation result of Cd and
Cl. It is clear that the test results using the curve boundary tend to approach the
exact value with the increase of the preset order, and the result using non-curve
boundary grid tends to a value different from the exact one. When order ≥ 9,
the error of Cd is maintained at 0.04, and the error of Cl maintained at 0.01.
Therefore, it is clear that the numerical discretization of high-order method
needs curve boundary.

Figure 14 shows the result of flow around a cylinder using high-order DGM.
Figure 14(a) and (b) illustrate the relationship between the error of Cd, Cl and

Fig. 13. Test result of 460 cells grid

The Curve Boundary Design and Performance Analysis 279

the discretization order, and it can be figure out that the more cells, the high
accuracy, and the larger the discretization order, the high accuracy. Figure 14(c)
and (d) show the relationship between the time cost, memory cost and the dis-
cretization order, which indicates that the higher the number of grids, the higher
the time and memory cost. Moreover, if the number of cell is fixed, the time cost
and the memory cost increase exponentially with the increase of the discretiza-
tion order.

Fig. 14. High-order numerical simulation result

According to the above, the error of Cd and the error of Cl have the same
trend. Due to limited by the length of paper, we only show the experimental
result based on the error of Cd. Figure 15 describes the relationship between
simulation cost and the error of Cd. From Fig. 15(a) and (b), it is clear that
the time and memory cost of the high-order DGM are much less than the low-
order DGM, under the same test error premise. When the error of Cd is about
0.03, compared to the DGM low-order numerical simulation, the DGM high-
order can save 89.6% time cost and 83.0% memory cost (shown as Table 2). For
this problem, on 460 cells grid and 1840 cells grid, the cost of DGM high-order
numerical simulation is basically the same, in order to achieve the same accuracy.

280 Y. Feng et al.

Fig. 15. Cost of high-order numerical simulation and low-order numerical simulation

Table 2. Cost when error of Cd is about 0.03

Type Cd Error Memory cost Time cost

High-order 2.82206E−2 463228 KB 125.96 s

Low-order 3.03178E−2 2720016 KB 1209.16 s

5 Conclusion

High-order methods can deliver higher accuracy with lower cost than low-order
methods, and they have received much attention of CFD researchers. DGM is a
locally conservative, stable and high-order accurate method, which has brought it
into the mainstream high-order methods of CFD. Our research group has devel-
oped DGM on OpenFOAM. However, the conclusion that the curve boundary
has effect on the numerical simulation of DGM has be proposed, but the platform
of OpenFOAM with DGM can not support curve boundary.

This paper analyses the process of inserting high-order points of DGM numer-
ical discretization based on the original OpenFOAM geometric mesh, and designs
and implements the curve boundary on OpenFOAM with DGM. The effect of
the curve boundary on DGM is verified by experiments, and we conclude that
curve boundary is needed by high-order numerical simulation, and linear bound-
ary lead to a fixed error. Furthermore, compared to low-order DGM numerical
simulations, high-order DGM numerical simulations with curve boundary are
much more efficient, that is to say, under the same precision, the latter cost
much less.

Acknowledgments. The authors would like to thank the National Key Research and
Development Program of China (No. 2016YFB0201301), Science Challenge Project
(No. JCKY2016212A502) and the open fund from the State Key Laboratory of High
Performance Computing (Grant No. 201503-01 and 201503-02).

The Curve Boundary Design and Performance Analysis 281

References

1. Anderson, J.D., Wendt, J.: Computational Fluid Dynamics, vol. 206. Springer,
Heidelberg (1995)

2. Bassi, F., Rebay, S.: Accurate 2D Euler computations by means of a high order dis-
continuous finite element method. In: Deshpande, S.M., Desai, S.S., Narasimha, R.
(eds.) Fourteenth International Conference on Numerical Methods in Fluid Dynam-
ics, pp. 234–240. Springer, Heidelberg (1995)

3. Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of
the 2D Euler equations. J. Comput. Phys. 138(2), 251–285 (1997)

4. Cockburn, B.: Discontinuous Galerkin methods. ZAMM-J. Appl. Math. Mech./Z.
Angew. Math. Mech. 83(11), 731–754 (2003)

5. Favero, J., Secchi, A., Cardozo, N., Jasak, H.: Viscoelastic flow analysis using the
software openfoam and differential constitutive equations. J. Nonnewton. Fluid
Mech. 165(23), 1625–1636 (2010)

6. Gao, H., Wang, Z., Liu, Y.: A study of curved boundary representations for 2D
high order Euler solvers. J. Sci. Comput. 44(3), 323–336 (2010)

7. Gordon, W.J., Hall, C.A.: Construction of curvilinear co-ordinate systems and
applications to mesh generation. Int. J. Numer. Methods Eng. 7(4), 461–477 (1973)

8. Gordon, W.J., Hall, C.A.: Transfinite element methods: blending-function inter-
polation over arbitrary curved element domains. Numer. Math. 21(2), 109–129
(1973)

9. Greenshields, C.J.: Openfoam user guide. Version 3(1), OpenFOAM Foundation
Ltd. (2015)

10. Guo, X.W., Yang, W.J., Xu, X.H., Cao, Y., Yang, X.J.: Non-equilibrium steady
states of entangled polymer mixtures under shear flow. Adv. Mech. Eng. 7(6),
1687814015591923 (2015)

11. Guo, X.W., Zou, S., Yang, X., Yuan, X.F., Wang, M.: Interface instabilities and
chaotic rheological responses in binary polymer mixtures under shear flow. RSC
Adv. 4(105), 61167–61177 (2014)

12. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algo-
rithms, Analysis, and Applications. Springer Science & Business Media, New York
(2007)

13. Higuera, P., Lara, J.L., Losada, I.J.: Simulating coastal engineering processes with
openfoam R©. Coast. Eng. 71, 119–134 (2013)

14. Jasak, H., Jemcov, A., Tukovic, Z., et al.: OpenFOAM: a C++ library for complex
physics simulations. In: International Workshop on Coupled Methods in Numerical
Dynamics, vol. 1000, pp. 1–20. IUC Dubrovnik, Croatia (2007)

15. Jian-hua, Z.: Review of commercial CFD software. J. Hebei Univ. Sci. Technol. 2,
160–165 (2005)

16. John, V.: Reference values for drag and lift of a two-dimensional time-dependent
flow around a cylinder. Int. J. Numer. Methods Fluids 44(7), 777–788 (2004)

17. Reed, W.H., Hill, T.: Triangular mesh methods for the neutron transport equation.
Los Alamos Report LA-UR-73-479 (1973)

18. Roy, C.J.: Grid convergence error analysis for mixed-order numerical schemes.
AIAA J. 41(4), 595–604 (2003)

19. Slater, J.W.: Examining spatial (grid) convergence. Public tutorial on CFD verifi-
cation and validation, NASA Glenn Research Centre, MS 86 (2006)

20. Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid
Dynamics: The Finite Volume Method. Pearson Education, New York (2007)

282 Y. Feng et al.

21. Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck,
H., Hartmann, R., Hillewaert, K., Huynh, H.T., et al.: High-order CFD methods:
current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811–845
(2013)

22. Yano, M., Darmofal, D.L.: Case C1.3: Flow over the NACA 0012 airfoil: Sub-
sonic inviscid, transonic inviscid, and subsonic laminar flows. In: First international
workshop on high-order CFD methods (2012)

Service Dependability and Security in
Distributed and Parallel Systems

Leakage-Resilient Password-Based
Authenticated Key Exchange

Ou Ruan1(&), Mingwu Zhang1, and Jing Chen2

1 School of Computer Science, Hubei University of Technology, Wuhan, China
ruanou@163.com

2 School of Computer Science, Wuhan University, Wuhan, China

Abstract. Password-based authenticated key exchange (PAKE) protocols are
among the most practically cryptographic primitives, where no additional device
is required, but just a short human-memorable password. There are lots of works
for PAKE protocols. All these protocols were proven secure in the traditional
model, but could be completely insecure in the presence of side-channel attacks.
In many practical applications such as Internet of Things, PAKE systems are
very vulnerable to side-channel attacks, where a very small leakage may be
completely exposed the whole password. Therefore, it is very important to
model and design the leakage-resilient (LR) PAKE protocols. However, there is
no prior work for modelling and constructing LR PAKE protocols. In this paper,
we first formalize the LR eCK security model for PAKE, and then propose a
continuous after-the-fact LR eCK-secure PAKE protocol based on key deriva-
tion function, leakage-resilient storage (LRS) and leakage-resilient refreshing of
LRS, and show a formal security proof in the standard model.

Keywords: Leakage-Resilience � Password-based Authenticated Key
Exchange � Side-channel attacks � Internet of Things

1 Introduction

With the development of Internet of Things (IoT), the fourth industrial revolution is
coming, known as Industrie 4.0 factories, traditional industries will evolve into smart
factories, intelligent productions. Intelligent system of the industrial control involves
many smart control terminals (nodes), which communicate and cooperate with others to
accomplish the production tasks. In order to ensure the security of productions, security
mechanisms must be taken to protest these terminals and their communication. Secure
communication between terminals, first of all, will need to generate a common cryp-
tographically strong session key. In order to satisfy this demand, the authenticated key
exchange (AKE) protocols were introduced. Among AKEs, the password-based
authenticated key exchange (PAKE) protocols are most widely used, since no addi-
tional device is required, but just a human-memorable password for authenticating the
parties. There are lots of works to model and design PAKE protocols. For a brief
reviews, please refer to related works of traditional PAKE.

Computations or communications of the smart terminals will emit signals known as
“side channels” such as electromagnetic emissions, power consumption. A majority of

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 285–296, 2017.
DOI: 10.1007/978-3-319-65482-9_19

these IoT terminals are exposed to the public outside, and an attacker can overcome the
security protecting by measuring these signals, which are called side-channel attacks
[1]. Because of the cost control, side-channel attacks are not considered in the hardware
design of these terminals. Thus, in order to ensure communication security and data
privacy of the smart terminals, the secure protocols such as PAKE not only should be
employed, but also the measures to resist side-channel attacks must be taken. There-
fore, it is very important to model and design the leakage-resilient (LR) PAKE pro-
tocols. However, there has no prior work for modelling and constructing LR PAKE
protocols.

In this paper, we first formalize the LR eCK security model for PAKE, and then
propose a LR PAKE protocol based on key derivation function (KDF) [2],
leakage-resilient storage (LRS) [3] and leakage-resilient refreshing of LRSl. We con-
sider a more strong security model, k-continuous after-the-fact (AF) LR (CAFLR) eCK
security model, and formally prove the security of the proposed protocol in the standard
mode. In the CAFLR model, the leakages are continuous and are allowed after the
adversary chooses the test session, and the overall leakage amount could be arbitrarily
large, but for each protocol instance the amount of leakage is bounded by k.

Overview of our construction. We first map the short shared secret password pw to a
random element s of a group G with a large order using a one-way collision-free hash
function H, and then encode s using a LRS scheme; this approach can resist the leakage
attacks to the shared secret password. However, how to use the encodings of the shared
password to accomplish authentication and generate a secure session key, become a big
challenge. We find a good solution to this challenge by combining Diffie-Hellman key
exchange and Dziembowski-Faust (DF) [4] LRS (DF-LRS) scheme appropriately. The
important observations are as follows: (1) Two primitives can share a common group G
with a big prime order p; (2) In DF-LRS scheme, ðgsLÞsR ¼ gsL�sR¼ gs since s ¼ sL � sR,
where g is a generator of G, s denotes the secret mapping element, and ðsL; sRÞ rep-
resents two encodings of s using DF-LRS scheme; (3) there has an efficient
leakage-resilient refreshing protocol for DF-LRS scheme, and we could refresh two
encodings of s after using them in the end of the protocol, thus our construction is
secure against continuous leakage attacks.

The rest of this paper is organized as follows. Section 2 addresses related works.
Section 3 describes the CAFLR eCK security model of PAKE. Section 4 presents the
proposed protocol and analyzes the provable security and the performance comparison.
Finally, Sect. 5 concludes the paper and discusses the future works.

2 Related Works

Traditional PAKE. Bellovin et al. [5] first showed a PAKE protocol, but its security
was not formally treated. In 2000, Bellare et al. [6] and MacKenzie et al. [7] proposed
the provably secure PAKE protocols in the random oracle (RO) model. Byun et al. [8]
and Mohammad et al. [9] showed some improvements and generalizations to PAKE
protocols in the RO model. Goldreich et al. [10] first designed a PAKE protocol in the
standard model, and Katz et al. [11] designed an efficient PAKE protocol with a proof

286 O. Ruan et al.

of security based on the decisional Diffie-Hellman (DDH) assumption. Then, [12–14]
gave some different efficient constructions for PAKE protocols in the standard model.
Ruan et al. [15] gave a formal security definition of explicit PAKE, which is a mutual
PAKE protocol with mutual key confirmation. Yi et al. [16] presented a two-server
PAKE protocol, where two servers cooperate to authenticate the client without
knowing the password of the client. Recently, Islam et al. [17], Amin et al. [18] and Lu
[19] proposed the provably secure three-party/multi-party PAKE protocols; Nam et al.
[20] and Guo et al. [21] designed the provably secure group PAKE protocol.

Leakage-Resilient AKE. Moriyama and Okamoto [22] first proposed the formal
k-LR security model of authenticated key exchange (AKE) protocols in the eCK
security model [23], where k is a leakage parameter. The eCK security model is an
extension of the CK security model [24], where the adversary is much stronger than the
CK model and could access either the long-term secret key or the ephemeral secret
randomness of the test session. They presented a two-pass k-LR eCK-secure AKE
protocol based on hash proof system and gave a formal proof in the standard model.
There has a central limitation in the MO model, in which the leakages are only allowed
before the adversary chooses the test session and gets the challenge. Leakage which
happens after the adversary gets the challenge is called AF leakage. In 2014,
Alawatugoda et al. [25] first presented an AFLR CK security model, and constructed a
CAFLR AKE protocol using existing LR public key encryption system. In 2015,
Alawatugoda et al. [26] proposed an AFLR eCK security model for AKE protocols,
and Alawatugoda et al. [26] presented the first bounded AFLR (BAFLR) eCK-secure
AKE protocols and Alawatugoda et al. [27] gave the first concrete construction of
CAFLR eCK-secure AKE protocol. In 2016, Chen et al. [28] introduced a strong
AFLR eCK security model, named challenge-dependent LR eCK (CLR-eCK) model,
which not only captured leakage attacks on long-term secret private key, but also
considered leakage of ephemeral secret randomness. Based on smooth projective hash
functions and pseudo-random functions, they constructed a one-round CLR-eCK
secure AKE protocol. In 2017, Ruan et al. [29] first proposed a ID-based LR AKE
protocol based on leakage-smooth ID-based hash proof system, and gave a bounded
AFLR eCK-secure proof in the standard model. Recently, Toorani [30] showed that
Alawatugoda et al.’s AKE protocol [25] was vulnerable to ephemeral key compromise
impersonation (KCI) attack; Yang et al. [31] also indicated that Alawatugoda et al.’s
AKE protocol [26] was insecure by presenting a KCI attack and that their proofs of
Case 2 (the adversary is active) were incorrectly reduced to DDH assumption, and then
they improved their constructions and gave formal proofs in the RO model under Gap
Diffie-Hellman (GDH) assumption; Chakaraborty et al. [32] showed the proofs of Chen
et al.’s AKE protocol [28] had the same problem as [26] and reproved it in the RO
model under GDH assumption.

It is very surprising that there has no prior work for LR PAKE protocols. In this
paper, we first propose a k-CAFLR PAKE protocol and formally prove its security in
the standard model.

Leakage-Resilient Password-Based Authenticated Key Exchange 287

3 The k-CAFLR eCK Security Model for PAKE

This section formalizes the k-CAFLR eCK security model for PAKE by extending the
eCK security PAKE model and following the OCL model. We assume that leakage
occurs only in computations associated with the long-term shared secret password pw.
In the k-CAFLR eCK security model an adversary A can continuously obtain arbi-
trarily large amount of leakage of the secret password, but for each protocol instance
the amount of leakage is bounded by k. In each instance, A can adaptively choose
arbitrary PPT leakage functions f ¼ ðf1; . . .; fnÞ to obtain leakage of pw, and the total
leakage amount is bounded by k, i.e.,

P
fiðpwÞj j � k. After issuing a Send query with

an adaptive leakage function chosen by A, A will be given a normal protocol message
generated according to the protocol specifications and the leakage of the long-term
secret password.

Notation: Assume s �$ S represent that s is a random value chosen uniformly from a

finite set S, j denote a system security parameter, and k is a leakage parameter.

3.1 Adversarial Powers

Let U, V identify two parties, the term “principal” represent a party involved into a
protocol instance, and the term “session” denote a protocol instance with principals.
Each principal may have multiple sessions that maybe run concurrently. We denote the
sth session at the owner principal U interacting with the intended partner principal V as
the oracle Ps

U;V , and denote the principal who activates a session as the initiator of the
session, and the principal who responds to the initiator as the responder.

The adversary A is a PPT algorithm that controls all communications over the
whole network and interacts with a set of oracles. In fact, A can do anything as he
wants. The following queries model the capabilities of the adversary A.

Send (U, V, s, m, f) query: A can run the protocol by this query, and can also activate
a new protocol instance as an initiator by using this query with blank m and f. After
issuing this Send query in the sth session with a protocol message m and a leakage
function f, A will be given a normal protocol message and the leakage f(pw) of the
long-term password, which are produced by the oracle Ps

U;V based on the protocol
specifications and f.

RevealSessionKey (U, V, s) query: Ps
U;V sends the sth session key to A. This query

models A’s ability to compromise certain session key.

RevealEphemeralKey (U, V, s) query: Ps
U;V sends the sth session ephemeral keys to

A. This query models A’s ability to compromise certain ephemeral keys.

RevealPassword () query: Any one of the principal U and V sends their long-term
shared secret password pw to A. This query models A’s ability to get the principals’
shared password.

288 O. Ruan et al.

Test (U, s) query: After receiving a Test query, the challenger picks a random bit

b �$ ð0; 1Þ, if b = 1 then A is given the actual session key, while a random session key

is sent to A. This query is used to formalize the security notion of a PAKE protocol,
and could be activated only once across all sessions.

3.2 k-CAFLR eCK Security Model

In the k-CAFLR eCK security model, the overall leakage size of the secret password
for each instance are bounded by the leakage parameter k, i.e.,

P
fiðpwÞj j � k.

Definition 3.1 [Partner sessions in k-CAFLR eCK security model]. Two oracles
Ps

U;V and Ps0
U0;V 0 are called partners if the followings hold:

(1) Both Ps
U;V and Ps0

U0;V 0 have generated session keys;

(2) Messages sent from Ps
U;V are same as messages received by Ps0

U0;V 0 ;

(3) Messages sent from Ps0
U0;V 0 are same as messages received by Ps

U;V ;
(4) U ¼ V 0 and V ¼ U0;
(5) Exactly one of U and V is the initiator and the other is the responder

Correctness of a PAKE protocol means that two partner oracles generate same
session keys.

Definition 3.2 [k-CAFLR-eCK-freshness]. Let f ¼ ðf1; . . .; fnÞ be n arbitrary PPT
leakage functions for an instance of the protocol chosen by the adversary. An oracle
Ps

U;V is k-CAFLR-eCK-fresh if the followings hold:

(1) The oracle Ps
U;V or its partner, Ps

0

V ;U (if it exists) has not been queried a
RevealSessionKey.

(2) If the partner Ps
0

V ;U exists, none of the following combinations has been queried:
(a) RevealPassword() and RevealEphemeralKey(U, V, s).
(b) RevealPassword() and RevealEphemeralKey(V, U, s

0
).

(3) If the partner Ps
0

V ;U does not exist, A could not ask the RevealPassword() query.
(4) For all Send(.,U, ., .,fi) queries,

P
fiðpwÞj j � k.

(5) For all Send(.,V, ., .,fi) queries,
P

fiðpwÞj j � k.

3.3 Security Game and Security Definition

This section formalizes the security definition of the k-CAFLR eCK model.

Definition 3.3 [k-CAFLR eCK security game]. Security definition of the k-CAFLR
eCK model is captured by the following distinguishing game, which the protocol
challenger C runs with a PPT adversary A:

Leakage-Resilient Password-Based Authenticated Key Exchange 289

(1) A queries any of Send, RevealSessionKey, RevealEphemeralKey and
RevealPassword to any oracle as he wants.

(2) A selects a k-CAFLR-eCK-fresh oracle and issues a Test query. After receiving a

Test query, C picks a random bit b �$ ð0; 1Þ, if b = 1 then sends the actual session

key to A, while a random session key is sent to A.
(3) A continues querying Send, RevealSessionKey, RevealEphemeralKey and

RevealPassword. All these queries should not violate the k-
CAFLR-eCK-freshness of the test session.

(4) At last A outputs a bit b0 2 ð0; 1Þ. A wins if b
0 ¼ b.

Definition 3.4 [k-CAFLR eCK security]. k-CAFLR eCK security means that

Advk�CAFLR eCK
PAKE ¼ j Pr½b0 ¼ b� � 1=2j ¼ NS=N þ eðjÞ;

where Advk�CAFLR eCK
PAKE is the advantage of A in winning the k-CAFLR eCK distin-

guishing game in Definition 4.3, NS represents the number of sessions on a principal,
N denotes the size of the password dictionary, and eðjÞ is a negligible function. In other
words, a PAKE protocol is k-CAFLR eCK-secure if there doesn’t exist any PPT
adversary A that can win the above distinguishing game with an advantage more than
NS=N.

Note: In PAKE protocols, the on-line dictionary attack is unavoidable, and NS=N
represents the success probability of the on-line dictionary attack. But this attack can be
limited by some kind of strategy, for example, continuous attempts will not be allowed
after a certain number of failed attempts to a password.

4 A New k-CAFLR eCK-Secure PAKE Protocol

This section gives our proposed k-CAFLR eCK-secure PAKE protocol and its formal
security proof in the standard model.

4.1 Dziembowski-Faust(DF) LRS Scheme

DF-LRS Scheme [4] is a LRS that efficiently stores a secret value s 2 ðZ�pÞm with any
m 2 N, where p is a large prime.

Encode: Pick sL �$ ðZ�pÞnnfð0nÞg at random and compute sR 2 ðZ�pÞn�m such that

sL � sR ¼ s, where n 2 N, then output ðsL; sRÞ.
Decode: Output sL � sR.

Lemma 4.1 [4]. The above Definition 3.7 is a k-secure LRS scheme if 20 m\n, where
k¼ ð0:3 nlog p, 0:3 nlog p).

290 O. Ruan et al.

Lemma 4.2 [4]. If Un;m
Z�p

is a k-secure DF-LRS scheme and m=3� n ^ n� 16, there has

a ðk=2; kÞ-secure leakage-resilient refreshing Refreshn;mZ�p
for Un;m

Z�p
.

4.2 The Proposed Protocol:

Figure 1 shows the proposed protocol, which includes the following two stages:

The Initial Setup stage. User U and V first map the shared secret password to a
random element of the group G, sUV ¼HðpwUV Þ. We assume that this computation is
executed in secret and leakage attacks aren’t allowed. Then, U runs a k-secure DF-LRS

scheme Un;1
Z�p
, picks a0L �

$ ðZ�p Þnnfð0nÞg at random and generates a0R 2 ðZ�pÞn�1 such that
a0L � a0R = sUV , and V also chooses b0L �

$ ðZ�pÞnnfð0nÞg at random and computes b0R 2
ðZ�pÞn�1 such that b0L � b0R = sUV .

The Protocol Execution stage: Step 1. User U chooses a number xU �$ Z�p at random,

computes YU ¼ gxU , TU1 ¼ ðYUÞa
j
L , and then sends ðU; TU1Þ to user V.

Fig. 1. The k-CAFLR eCK-Secure PAKE Protocol

Leakage-Resilient Password-Based Authenticated Key Exchange 291

Step 2. After receiving the messages ðU; TU1Þ, V picks a random number xV �$ Z�p ,

computes YV ¼ gxV ,TU2 ¼ ðTU1ÞxV and TV1 ¼ ðYV Þb
j
L , then sends ðV; TU2; TV1Þ to U.

Step 3. After receiving the messages ðV; TU2; TV1Þ, U computes TV2 ¼ ðTV1ÞxU and

sends it to V. Finally, U generates the session key kUV by computing TU ¼ ðTU2Þa
j
R and

kUV ¼ KDFðU;V ; TUÞ, and refresh the store pieces with ðajþ 1
L ; ajþ 1

R Þ Refreshn;1Z�p

ða jL; a jRÞ.
Step 4. After receiving the messages ðU; TV2Þ, V generates the session key kUV by

computing TV ¼ ðTV2Þb
j
R and kUV ¼ KDFðU;V ; TV Þ, and refresh the store pieces with

ðbjþ 1
L ; bjþ 1

R Þ Refreshn;1Z�p
ðb j

L; b
j
RÞ

Correctness of the proposed protocol: Since,

TU ¼ ðTU2Þa
j
R¼ðððgxU Þa j

LÞxV Þa j
R

¼ ðððgxU ÞxV Þa j
LÞa j

R ¼ ððgxU ÞxV Þ
a j
L
�a j
R

¼ ððgxU ÞxV ÞsUV ¼ ðððgxU ÞxV Þb j
LÞb j

R

¼ ðððgxV Þb j
LÞxU Þb j

R

¼ðððYV Þb
j
LÞxU Þb j

R

¼ ðTV2Þb
j
R ¼ TV

We get KDFðU;V ; TUÞ = KDFðU;V ; TV Þ. Thus, the correctness of the proposed
protocol holds.

4.3 Mutual Authentication

If parties want to make sure that the other is his/her intended partner and the partner has
actually computed the session key, then mutual authentication can be incorporated into
AKE protocol. To add mutual authentication to our scheme, we can use
KDFðU;V ; kUV Þ as an additional authenticator structure, where kUV ¼ KDFðU;V ; TVÞ.
After generating the session key, parties compute an authenticator Auth =
KDFðU;V ; kUV Þ, and send Auth to the other who verifies whether the received
authenticator Auth is equal to KDFðU;V ; kUV Þ.This authenticator transformation for
mutual authentication preserves the indistinguishability security of the original proto-
col. Thus, we do not consider a security of mutual authentication in the paper.

292 O. Ruan et al.

4.4 Security Proof

This section formally proves the security of the proposed protocol in the standard
model.

Theorem 4.1. The proposed PAKE protocol is k-CAFLR eCK-secure, if the DDH
assumption is hold, the leakage-resilient refreshing of LRS is ðk; 2kÞ-secure and the
KDF is secure with a uniformly random key material. Let Advk�CAFLR eCK

PAKE denote the
advantage of a PPT adversary A against k-CAFLR eCK-security of the proposed
protocol, there has:

Advk�CAFLR eCK
PAKE �NS=N þN2

PN
2
SðAdvDDH þAdvRefresh�LRSþAdvKDFÞ

where AdvDDH ;AdvKDF ;AdvRefresh�LRS are advantages of A against the security of DDH
problem, KDF and leakage-resilient refreshing of LRS, respectively, and NP denotes
the number of protocol principals, NS represents the number of sessions on a principal,
N is the size of the password dictionary.

Proof. Due to the space limitation, we just describe the proof sketch here. The full
security proof will be given in the full paper. The proof can be split into the following
two main cases.

Case 1 A partner session to the test session exists. In this case, (1) A may ask a
RevealPassword query, or (2) A may ask RevealEphemeralKey query. In this Case
1.1, the adversary A can get principals’ long-term shared secret password pwUV by the
RevealPassword query, and learns sUV¼HðpwUV Þ, thus leakage attacks don’t need to
be considered. In order not to violate the k-CAFLR-eCK-freshness of the test session,
A could not get any principals’ ephemeral keys (xU , xV) to the Test session. Thus,
A could not learn the Test session key because he could not get TU¼ððgxU ÞxV ÞsUV . In
this Case 1.2, the adversary A can get (xU , xV), but not pwUV and sUV¼HðpwUV Þ. And
A could not get (aiL; a

i
R; b

i
L; b

i
R) from the security of k-LRS and leakage-resilient

refreshing of LRS. Thus A could not learn the Test session key.

Case 2 A partner session to the test session does not exist. In this case, A is an active
adversary who could run the protocol with the owner of the test session by mas-
querading as the intended partner principal. Therefore, A is not allowed to get the
principals’ long-term shared password by asking a RevealPassword query. But, A can
learn two parties’ session ephemeral keys (xU ,xV) by asking the RevealEphemeralKey
queries. This case is similar to Case 1.2 except for the followings: A could execute
online password guessing attacks whose probability of success is NS

N . □

4.5 Security and Performance Comparison

We analyze the security and performance of our protocol by comparing with other
representative AKE protocols. The comparison between our protocol and others is
shown in Table 1, where Exp is modular exponentiation. From Table 1, we should note
that: (1) our new protocol is the first protocol for LR PAKE; (2) our new protocol is the

Leakage-Resilient Password-Based Authenticated Key Exchange 293

first AFLR eCK-secure AKE protocol in the standard model, while [23] did not
allowed leakage attacks, [22] only addressed the leakage that happens before the test
session was selected by the adversary, [25] just gave the proof in the CK security
model, and [26–28] only proved the security in the RO model; (3) our protocol is more
efficient than other LR AKE protocols [22, 25–28].

5 Conclusion and Future Works

In this paper, we first formalize the LR eCK security model for PAKE and propose a
LR PAKE protocol. We consider a more strong security model, k-CAFLR eCK
security model, and formally prove the security of the proposed protocol in the standard
mode. Our future works include: and 1) extending our result to the group setting; 2)
considering a strong security model that not only captures leakage attacks on long-term
secret password but also considers leakage of ephemeral secret randomness.

Acknowledgement. The work was supported by the Educational Commission of Hubei
Province of China (No. D20151401) and the Green Industry Technology Leading Project of
Hubei University of Technology (No. ZZTS2017006).

References

1. Chen, C.S., Wang, T., Tian, J.: Improving timing attack on RSA-CRT via error detection and
correction strategy. Inf. Sci. 232, 464–474 (2013)

2. Krawczyk, H.: On extract-then-expand key derivation functions and an HMAC based KDF
(2008). http://webee.technion.ac.il/*hugo/kdf/kdf.pdf

3. Davì, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A., Prisco, R.
(eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15317-4_9

4. Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product extractor.
In: Lee, D.H., Wang, X.Y., (eds.) Asiacrypt 2011, Seoul, South Korea, pp. 702–721 (2011)

5. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols secure
against dictionary attacks. In: Proceedings of IEEE Symposium on Security & Privacy,
Oakland, California pp. 72–84. IEEE Computer Society Press (1992)

Table 1. Security and Efficiency comparison of AKE protocols

Scheme [23] [22] [25] [26] [27] [28] Ours

Security model eCK eCK CK eCK eCK eCK eCK
Leakage Feature None RLM CLM RLM CLM RLM CLM
After-the-fact Yes No Yes Yes Yes Yes Yes
Proof model RO Standard Standard RO RO RO Standard
Key Infrastructure PKI PKI PKI PKI PKI PKI PW-based
Rounds 2 2 1 2 1 1 2
Computations 8Exp 16Exp 20Exp 24Exp 12Exp 16Exp 8Exp

294 O. Ruan et al.

http://webee.technion.ac.il/~hugo/kdf/kdf.pdf
http://dx.doi.org/10.1007/978-3-642-15317-4_9
http://dx.doi.org/10.1007/978-3-642-15317-4_9

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against
dictionary attacks. In: Preneel, B., (ed.) Proceedings of EUROCRYPT 2000, Bruges,
Belgium, pp. 139–155 (2000)

7. MacKenzie, P.D., Patel, S., Swaminathan, R.: Password-authenticated key exchange based
on RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 599–613.
Springer, Heidelberg (2000). doi:10.1007/3-540-44448-3_46

8. Byun, J.W., Lee, D.H., Lim, J.I.: EC2C-PAKA: an efficient client-to-client password-
authenticated key agreement. Inf. Sci. 177(19), 3995–4013 (2007)

9. Mohammad, S.F., Mahmoud, A.: An efficient client–client password-based authentication
scheme with provable security. J. Supercomput. 70(2), 1002–1022 (2014)

10. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. J. Cryptol.
19(3), 241–340 (2006)

11. Katz, J., Ostrovsky, R., Yung, M.: Efficient and secure authenticated key exchange using
weak passwords. J. ACM 57(1), 78–116 (2009)

12. Katz, J., MacKenzie, P.D., Taban, G., Gligor, V.D.: Two-server password-only authenti-
cated key exchange. J. Comput. Syst. Sci. 78(2), 651–669 (2012)

13. Canetti, R., Dachman-Soled, D., Vaikuntanathan, V., Wee, H.: Efficient password
authenticated key exchange via oblivious transfer. In: Fischlin, M., Buchmann, J., Manulis,
M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 449–466. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-30057-8_27

14. Goyal, V.: Positive results for concurrently secure computation in the plain model. In: 53rd
Annual Symposium on Foundations of Computer Science (FOCS), New Brunswick, NJ,
USA, pp. 41–50. IEEE Computer Society (2012)

15. Ruan, O., Kumar, N., He, D.B., Lee, J.H.: Efficient provably secure password-based explicit
authenticated key agreement. Pervasive Mob. Comput. 24(12), 50–60 (2015)

16. Yi, X., Rao, F.Y., Tari, Z., Hao, F.: ID2S password-authenticated key exchange protocols.
IEEE Trans. Comput. 2016, 1–14 (2016)

17. Islam, S.H.: Design and analysis of a three party password-based authenticated key exchange
protocol using extended chaotic maps. Inf. Sci. 312(C), 104–130 (2015)

18. Amin, R., Biswas, G.P.: Cryptanalysis and design of a three-party authenticated key
exchange protocol using smart card. Arab. J. Forence Eng. 40(11), 1–15 (2015)

19. Lu, C.F.: Multi-party password-authenticated key exchange scheme with privacy preserva-
tion for mobile environment. Ksii Trans. Internet Inf. Syst. 9(12), 5135–5149 (2015)

20. Nam, J., Paik, J., Kim, J., Lee, Y., Won, D.: Server-aided password-authenticated key
exchange: from 3-party to group. In: Smith, M.J., Salvendy, G. (eds.) Human Interface 2011.
LNCS, vol. 6771, pp. 339–348. Springer, Heidelberg (2012). doi:10.1007/978-3-642-21793-7

21. Guo, C., Zhang, Z., Zhu, L., Tan, Y.A., Yang, Z.: Scalable protocol for cross-domain group
password-based authenticated key exchange. Front. Comput. Sci. 9(1), 157–169 (2014)

22. Moriyama, D., Okamoto, T.: Leakage resilient eCK-secure key exchange protocol without
random oracles. In: Cheung,B., Hui, L., (eds.) ASIACCS 2011, Hong Kong, China, pp. 441–
447 (2011)

23. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange.
In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-75670-5_1

24. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building
secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–
474. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6_28

25. Alawatugoda, J., Boyd, C., Stebila, D.: Continuous after-the-fact leakage-resilient key
exchange. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 258–273.
Springer, Cham (2014). doi:10.1007/978-3-319-08344-5_17

Leakage-Resilient Password-Based Authenticated Key Exchange 295

http://dx.doi.org/10.1007/3-540-44448-3_46
http://dx.doi.org/10.1007/978-3-642-30057-8_27
http://dx.doi.org/10.1007/978-3-642-30057-8_27
http://dx.doi.org/10.1007/978-3-642-21793-7
http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://dx.doi.org/10.1007/3-540-44987-6_28
http://dx.doi.org/10.1007/978-3-319-08344-5_17

26. Alawatugoda, J., Stebila, D., Boyd, C.: Modelling after-the-fact leakage for key exchange.
In: Moriai, S., Jaeger, T., Sakurai, K., (eds.) ASIACCS 2014, Kyoto, Japan, 207–216 (2014)

27. Alawatugoda, J., Stebila, D., Boyd, C.: Continuous after-the-fact leakage-resilient
eCK-secure key exchange. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 277–
294. Springer, Cham (2015). doi:10.1007/978-3-319-27239-9_17

28. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F.C.: Strongly leakage-resilient authenticated
key exchange. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 19–36. Springer,
Cham (2016). doi:10.1007/978-3-319-29485-8_2

29. Ruan, O., Zhang, Y.Y., Zhang, M.W., Zhou, J., Harn, L.: After-the-fact leakage-resilient
identity-based authenticated key exchange. IEEE Syst. J. (2017). doi:10.1109/JSYST.2017.
2685524

30. Toorani, M.: On continuous after-the-fact leakage-resilient key exchange. In: Pimentel (ed.)
Proceedings of the Second Workshop on Cryptography and Security in Computing Systems,
Amsterdam, Netherlands, pp. 31–35 (2015)

31. Yang, Z., Li, S.Q.: On security analysis of an after-the-fact leakage resilient key exchange
protocol. Inf. Process. Lett. 116(1), 33–40 (2016)

32. Chakraborty, S., Paul, G., Rangan, C.P.: Flaw in the Security Analysis of Leakage-resilient
Authenticated Key Exchange Protocol from CT-RSA 2016 and Restoring the Security
Proof (2016). http://eprint.iacr.org/2016/862.pdf

296 O. Ruan et al.

http://dx.doi.org/10.1007/978-3-319-27239-9_17
http://dx.doi.org/10.1007/978-3-319-29485-8_2
http://dx.doi.org/10.1109/JSYST.2017.2685524
http://dx.doi.org/10.1109/JSYST.2017.2685524
http://eprint.iacr.org/2016/862.pdf

Secure Encrypted Data Deduplication
with Ownership Proof and User Revocation

Wenxiu Ding1, Zheng Yan1,2(&), and Robert H. Deng3

1 State Key Lab of Integrated Services Networks,
School of Cyber Engineering, Xidian University, Xi’an, China
wenxiuding_1989@126.com, zyan@xidian.edu.cn

2 Department of Communications and Networking,
Aalto University, Espoo, Finland
3 School of Information Systems,

Singapore Management University, Singapore, Singapore
robertdeng@edu.smu.sg

Abstract. Cloud storage as one of the most important cloud services enables
cloud users to save more data without enlarging its own storage. In order to
eliminate repeated data and improve the utilization of storage, deduplication is
employed to cloud storage. Due to the concern about data security and user
privacy, encryption is introduced, but incurs new challenge to cloud data
deduplication. Existing work cannot achieve flexible access control and user
revocation. Moreover, few of them can support efficient ownership proof,
especially public verifiability of ownership. In this paper, we propose a secure
encrypted data deduplication scheme with effective ownership proof and user
revocation. We evaluate its performance and prove its security. The simulation
results show that our scheme is efficient and effective for potential practical
employment.

Keywords: Deduplication � User revocation � Homomorphic encryption �
Proxy re-encryption

1 Introduction

Cloud computing provides seemingly unlimited resources as services to cloud users by
rearranging various resources. Cloud storage as one of the most popular cloud services
enables cloud users to store tremendous amount of data in the cloud, which may exceed
their own storage spaces.

In order to improve the storage services, deduplication has become an important
technique in cloud storage. Data deduplication can help eliminate multiple copies of
same files and improve the utilization of storage. It has proved to achieve high cost
savings, such as reducing up to 68% storage for standard file systems [1]. The savings
can be passed back to cloud users in many ways, such as reducing storage cost. Thus,
efficient deduplication is extremely desired by both cloud service providers and cloud
users. Though data deduplication brings many benefits, it also faces some challenges.

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 297–312, 2017.
DOI: 10.1007/978-3-319-65482-9_20

First, cloud storage and deduplication management incurs the concern about data
privacy and user privacy [2]. Cloud users would lose the full control over their
out-sourced personal data, which even may be disclosed by the dishonest cloud service
providers. Thus encryption as a popular method is introduced to solve this problem [3].
But the same file encrypted with different encryption schemes would result in different
ciphertexts, which makes it difficult to check duplication and conduct deduplication.
Second, how to share the duplicated data flexibly to authorized data holders is an issue
[4]. Duplicated data would not be stored again, but it should guarantee the access right
of data holders. Third, data deletion by users complicates the deduplication manage-
ment. If some data holders delete their stored data, their access to the data should be
completely prevented even when they still hold the previous key for obtaining the data.
Thus, deduplication management should support user revocation. Fourth, how to
guarantee the ownership proof of data holders is an open issue [5]. In order to reduce
the communication cost and computation cost caused by duplicated data upload, file
tag is always employed for duplication check. But it is vulnerable to forgery attack and
difficult to guarantee the ownership.

In order to solve the above problems, this paper presents a flexible encrypted data
deduplication scheme under the cooperation of an Authorized Party (AP) and a cloud
service provider (CSP). First, we propose an Additive Homomorphic Re-Encryption
(AHRE) algorithm. In our deduplication scheme, uploaded file is encrypted with
symmetric encryption while the symmetric key is encrypted with AHRE. It can effi-
ciently update the ciphertexts and revoke those data holders who delete their data at the
cloud. Moreover, we propose a scheme to prove the ownership without complicated
interactions between data holders and CSP or AP, which can support flexible public
verifiability. Different from existing work [6, 7], our scheme can effectively deal with
encrypted data deduplication with revocation at the cloud without involvement of data
owners or data holders. Specifically, the contributions of this paper are:

• We construct an additive homomorphic re-encryption algorithm, which supports
re-encryption and additive homomorphic computation. It lays the basic foundation
of our proposed scheme for encrypted data deduplication with effective ownership
proof and user revocation.

• We integrate data deduplication with flexible access control based on AHRE, which
results in a secure and efficient encrypted data deduplication.

• We design an encrypted data update and user revocation protocol to enhance data
security. It can refresh the stored data at any time and support the data holder
revocation when it deletes the data. In addition, the above operations do not need
any involvement of data holders.

• We design an efficient ownership proof scheme, which does not incur complicated
interaction between data holders and CSP and can support public verifiability.

• We prove the security and justify the performance of our scheme through analysis
and implementation.

The rest of this paper is organized as follows. Section 2 gives a brief overview of
related work. System model and security model are introduced in Sect. 3, followed by
the detailed design of proposed schemes in Sect. 4. In Sect. 5, security analysis and
performance evaluation are given. Finally, we conclude the paper in the last section.

298 W. Ding et al.

2 Related Work

Cloud storage service providers such as Dropbox [8], Google Drive [9], Mozy [10],
perform deduplication to save space by eliminating redundancy in cloud storage and
optimizing its utilization. In order to preserve the privacy of data holders, encryption is
employed. However, storage savings through deduplication are totally lost if clients
conventionally encrypt their data. This is because the encrypted data are saved as
different contents by applying different keys, which complicates the deduplication. For
example, DeDu [11] - a deduplication system is unable to handle encrypted data.

Encrypted Data Deduplication
Convergent Encryption (CE) as the most prominent manifestation of Message Locked
Encryption (MLE) was introduced [12, 13]. In CE, a user employs the hash code of
data as the key to encrypt the data, which results in EHðmÞðmÞ. Any user with the same
data can generate the same ciphertext, thus realizing deduplication. However, CE
suffers from offline brute-force dictionary attacks. Moreover, it is hard to support user
revocation. Bellare et al. proposed DupLESS to resist the above-mentioned brute-force
attacks [14] by introducing a Key Server. But it still cannot control data access of other
data users in a flexible way. Wen et al. [15] constructed a session-key-based convergent
key management scheme and a convergent key sharing scheme to overcome the
problem caused by frequently changed ownership and data blocks. But this work
requests all data owners communicate with each other to manage their session key. Liu
et al. proposed a secure cross-user deduplication scheme that supports client-side
encryption without requiring any additional independent servers by applying a pass-
word authenticated key exchange protocol [16]. But this scheme requests that the data
owner is always online for data ownership check and deduplication. Thus this approach
cannot handle the situation that the data owner is not available, which is very common
in practice.

In another work [17], attribute-based encryption (ABE) is applied to realize dedu-
plicated data access control managed by data owners. But it needs the data owners to be
online and incurs much computation cost to them. In our previous work [18, 19], we
proposed deduplication schemes based on proxy re-encryption (PRE). But the
ciphertext update needs the data holders to download the stored file from the cloud and
then encrypt it, which incurs higher communication cost and computation overhead.
Liu et al. proposed a policy-based deduplication proxy scheme [20], but they did not
consider data deletion. Another work [21] even proposed to forfeit deduplication to
reduce chunk fragmentation by container capping. But all of the above work does not
consider user revocation management. Though the work [7] proposed to solve the
deduplication with user revocation, it complicates the key management of
Attribute-Based Encryption (ABE) especially during user revocation. Hur et al. pro-
posed a novel server-side deduplication scheme for encrypted data [6]. It allows a cloud
server to control access to outsourced data even when data ownership changes
dynamically by exploiting randomized convergent encryption and secure ownership
group key distribution. This scheme prevents data leakage from revoked users. But it
needs all users to upload their encrypted files and data owners should be online for user
revocation, which is not efficient.

Secure Encrypted Data Deduplication 299

Data Ownership Verification
Halevi et al. introduced a practical implementation of Proofs of Ownership (PoW) for
deduplication [22]. They proposed to use Merkle tree on the pre-processed data to
generate verification information. When challenging a prover, a verifier randomly
chooses several leaves of the tree and obtains the corresponding sibling-paths of all
these leaves. Only when all paths are valid, will the verifier accept the proof. Pietro
et al. [23] chose the projection of a file onto some randomly selected bit-positions as
proof to realize the PoW. But both schemes above do not consider data privacy. Ng
et al. [24] also applied Merkle tree to manage the deduplication of encrypted data. The
value of each leaf node is generated from several data blocks, while only one leaf is
considered in each interactive proof protocol. Thus, it needs to execute the protocol
multiple times to enhance its correctness, which causes high computation overhead.

Yang et al. proposed an efficient scheme to check the ownership [25]. A data holder
only needs to access partial and dynamical portions of an original file to generate the
proof of possession. In addition, the data holder has no need to upload the file, which
can reduce communication and computation costs. In our previous work [19], Elliptic
Curve Cryptography (ECC) is employed to verify data ownership by challenging data
holders. The scheme presented in this paper simplifies this procedure, which can
support public verifiability of ownership when data holders are offline.

3 Problem Statements

3.1 System Model and Security Model

Our proposed scheme mainly consists of four types of entities as shown in Fig. 1:

(1) Cloud Service Provider (CSP) is in charge of data storage and duplication check.
CSP is curious about user data, but it follows designed protocols strictly in order
to gain commercial benefits from providing storage service to its consumers or
users.

(2) Authorized Party (AP) is responsible for access policy check, re-encryption key
generation, and user revocation by cooperating with the CSP. It would never
collude with the CSP and is fully trusted. AP cannot access the data stored at the
CSP.

Fig. 1. System model

300 W. Ding et al.

(3) Data owner is the cloud service consumer and the first data uploder. It encrypts an
original file and uploads it to the CSP. The CSP generates one file tag based on the
proof message of the data owner.

(4) Data holders are subsequent uploaders, who do not need to encrypt the file but
need to pass ownership check in order to obtain the access right of the stored file.
If one user deletes its file at the CSP, AP and CSP should revoke its privilege on
the file.

We further assume that communication channels among system entities are secure
and each system entity can be authenticated based on a unique identifer.

3.2 Preliminary and Notations

Preliminary
A simplified variant scheme [26]: Given two large primes p and q, then n ¼ p � q. Let g
and h be two elements of maximal order in G, where G is the cyclic group of quadratic
residues modulo n2.

Key Generation: The public parameters are n, g and h ¼ gx mod n2 by randomly
choosing a secret value x 2 ½1; ordðGÞ�:

Encryption (Enc): Given a message m 2 Zn, random number r is chosen in Z
�
n.

The ciphertext is computed as ½m�h ¼ ðT ; T 0Þ ¼ fhrð1þm � nÞ; grg ðmod n2Þ.
Decryption (Dec): Knowing x, m can be obtained as follows:

m ¼ LðT=ðT 0Þxmod n2Þ, where LðuÞ ¼ ðu� 1Þ=n.
Notations
Table 1 summarizes the notations used throughout the paper.

Table 1. System notations

Symbols Description

g The system generator that is public
n The system parameter
[m] The ciphertext of data m
L �ð Þ The bit length of input data
H() The hash function
e(;) The bilinear pairing: G1 � G1 ! GT

v The generator in G1

ðskAP; pkAPÞ ¼ ðb; vbÞ The key pair of AP

ðskCSP; pkCSPÞ ¼ ða; vaÞ The key pair of CSP
ðski; pkiÞ ¼ ðuj; vujÞ The key pair of user j
uKey The updating key for ciphertext refresh
rki!j The re-encryption key from user i to user j
EkðÞ The symmetric encryption under symmetric key k
PrM The proof message generated by data uploaders

Secure Encrypted Data Deduplication 301

4 Algorithm and Scheme Design

In this section, we first combine PRE and homomorphic encryption to obtain a newly
designed AHRE algorithm. Then we propose some schemes to support flexible
duplicated data management based on AHRE.

4.1 Additive Homomorphic Re-Encryption (AHRE)

AHRE lays the technical foundation of deduplication, which can support homomorphic
processing and re-encryption computation. Its detailed design is described below.
System Setup: Let p, q be two large primes. Due to the property of safe primes, there
exist two primes p0 and q0 that satisfy that p ¼ 2p0 þ 1, q ¼ 2q0 þ 1. We compute
n ¼ p � q and choose generator g with order k ¼ 2p0q0, which can be chosen by
selecting a random number z 2 Z

�
n2 and computing g ¼ �z2n. The value k can be used

for decryption, but we choose to conceal it and protect it from all parties. In addition,
the system chooses two groups G1 and GT of a prime order with bilinear map e:
G1 � G1 ! GT . The system parameters are random generators v 2 G1 and
Z ¼ eðv; vÞ 2 GT . A cryptographic hash function: H: f0; 1g� ! Zn is also applied.

Key Generation ðKGenÞ: The CSP and the AP generates their key pairs:
skCSP; pkCSPð Þ ¼ ða; vaÞ and skAP; pkAPð Þ ¼ ðb; vbÞ respectively. User j generates key
pair ðuj; vujÞ.
Encryption ðEncÞ: Any users upload their data to CSP for storage and deduplication
management. User i chooses two random values r1 and r2, and then encrypts its raw
data m with public keys pkAP. The ciphertext of data m is denoted as:
m½ � ¼ C1;C2;C3f g ¼ f 1þm � nð ÞgH Zr1ð Þ�r2 modn2; gr2 modn2; pkr1APg.
Re-Encryption Key Generation ðRKGenÞ: The AP wants to delegate user j by
publishing re-encryption key rkAP!j ¼ vuj=b.

Re-Encryption ðReEncÞ: The CSP computes C0
3 ¼ e pkr1AP; rkAP!j

� � ¼ Zr1�uj , and sets
C0
2 ¼ C2 and C0

1 ¼ C1. Finally, the CSP forwards fC0
1;C

0
2;C

0
3g to user j.

Decryption ðDecÞ: Upon receiving the encrypted data, user j can directly decrypt it to

obtain the original data: (1) compute C00
3 = HððC0

3Þ1=ujÞ = HðZr1Þ; (2) decrypt to obtain

the raw data m ¼ LðC1=ðC0
2ÞC

00
3modn2Þ where L uð Þ ¼ ðu� 1Þ=n.

Moreover, it can also support ciphertext refresh and additive homomorphism.
Updating Key Issue ðUKIÞ: In case that the CSP wants to update the ciphertext ½m�,
AP can generate an auxiliary parameter for the CSP: uKey ¼ gH Zr1ð Þ ¼
gHðeðv1=b;pkr1APÞÞ mod n2.

Ciphertext Refresh ðCipRÞ: The CSP can update the ciphertext with its own secret key
and uKey by: (1) choose random r3 and compute C1 ¼ C1 � uKeyr3 mod n2; (2)
compute C2 ¼ C0

2 � gr3 mod n2; (3) C3 ¼ C3.

302 W. Ding et al.

Additive Homomorphism ðAHÞ:With the updating key, the CSP can achieve additive
homomorphic operation over the ciphertext ½m�. It simply chooses another data m0 and
computes eC1 ¼ 1þm0 � nð Þ � C1 mod n2. Finally, it directly calls CipR to

update eC1;C2;C3

n o
. As a result, we get the ciphertext of ðm0 þmÞ.

4.2 Ownership Check

In order to support deduplication, we first present an ownership proof scheme in Fig. 2.

If U1 wants to upload its file m, then it generates a proof message PrM1 ¼ pkHðmÞ=u1
CSP

and forwards it to CSP. Upon receiving the message, the CSP first computes a file tag
with the public key of uploader U1: e PrM1; pku1ð Þ = Za�HðmÞ. It then checks if this tag
has been stored. If yes, it means that the corresponding file has been kept and the CSP
only needs to record U1 as a data holder. Otherwise, it informs U1 to upload the file.
The details will be presented in the next section.

Specially, the ownership proof can realize public verifiability. AP or any data
owner can check the legality of data holders based on proof message and file tag. The
ownership check is also applied during re-encryption key generation executed by AP,
which can help prevent the collusion of CSP with unauthorized cloud users.

4.3 Data Deduplication Management

We suppose that data holder U1 stores file m at the CSP and later U2 wants to store the
same file. If U2 wants to save the same data to the CSP, then the CSP will cooperate
with the AP to enable U2 to access file m without uploading file. Figure 3 illustrates a
brief protocol of encrypted data deduplication and data retrieve based on the AHRE.
The details are presented below (system setup refers to Sect. 4.1):

Step 1 - Original Data Upload: Data holder U1 wants to store file m at the CSP. It
follows the ownership check above and sends proof message PrM1 to CSP. Upon
receiving PrM1, the CSP first computes file tag Za�HðmÞ and checks if this file has been
stored. If not, the CSP informs U1 to upload its file and related files to CSP for storage.

Fig. 2. The procedure of ownership check

Secure Encrypted Data Deduplication 303

U1 as the first data uploader should encrypt its file with k1 using symmetric key
encryption, call Enc to encrypt k1. The data package Ek1ðmÞ; k1½ � ¼ C1;C2;C3f g;f
Za�HðmÞg is kept by the CSP for data storage and duplication check.

When U2 wants to upload the same file, it follows:

Step 2 - Duplicated Data Upload: U2 also generates proof message PrM2 ¼ pkHðmÞ=u2
CSP

based on its own secret key, while the CSP finds that e vu2 ;PrM2ð Þ ¼ Za�HðmÞ has been
stored. The CSP directly informs U2 that the data has been stored.

Step 3 - Download Request: The data holder (such as U2) sends its request for
accessing file m to the CSP. The CSP contacts the AP for re-encryption key generation.

Step 4 - Re-encryption Key Issue: AP checks the legality of data holders through
public verifiability. If it does not pass the check, it rejects to provide the re-encryption
key; Otherwise, AP calls RKGen to generate a re-encryption key for authorized data
holder U2: rkAP!u2 ¼ vu2=b. Notably, the failed cases of ownership check can be
broadcasted, which will obviously reduce the reputation of CSP and its benefits.

Step 5 - Data Re-Encryption: CSP calls ReEnc using rkAP!u2 to encrypt k1½ � to
generate new key ciphertext for U2: fC0

1;C
0
2;C

0
3g. Then data packet fC0

1;C
0
2;C

0
3g and

Ek1ðmÞ are sent back to data holder U2.

Step 6 - Data Retrieve: Upon receiving data packet, U2 decrypts fC0
1;C

0
2;C

0
3g first to

get the symmetric key k1 and then performs decryption to gain the original file m.

Fig. 3. The procedure of data deduplication management

304 W. Ding et al.

4.4 Encrypted Data Update

In some cases, the data holders or owners would like to update the stored data peri-
odically to enhance data security. But in most of existing schemes, the data holders
always need to download the file and use new keys to encrypt the original file, which is
time-consuming and causes high communication cost. In order to solve this problem,
we propose the following scheme to update encrypted data without user interaction.

The ciphertext update request may occur in two cases (See Fig. 4) and lead to
different operating procedures, which are presented as follows:

Scheme 1 - First ciphertext update request: In this case, it is the first update initiated
by the CSP or data holders over the stored data fEk1 mð Þ; k1½ � ¼ C1;C2;C3f gg.

The CSP randomly chooses key k2 to further encrypt the ciphertext of file m. In
order to optimize the management of keys, we concatenate two keys in a secure way.
The CSP first scales k2 by 2LðkÞ where LðkÞ is the largest length of symmetric keys, and
calls AH to get the ciphertext of ðk1 þ 2L kð Þk2Þ. It keeps the packet fEk2ðEk1ðmÞÞ;
cipK 0 ¼ ½k1 þ 2L kð Þk2�g and keeps k2 secret in its storage.

Scheme 2 - Follow-up update request: In this case, the ciphertext update is requested
after first ciphertext update request, which is over the ciphertext fEk2ðEk1ðmÞÞ; cipK 0 ¼
½k1 þ 2L kð Þk2�g. The CSP follows the steps below:

(a) Use k2 to decrypt the ciphertext Ek2ðEk1 mð ÞÞ;
(b) Choose a random number k3, and compute ðn� 2L kð Þk2 þ 2L kð Þk3Þ;
(c) Call AH to get the ciphertext of ðk1 þ 2L kð Þk3Þ: cipK 00 ¼ k1 þ 2L kð Þk3

� �
;

(d) Update its stored packet with fEk3ðEk1ðmÞÞ; ½k1 þ 2L kð Þk3�; k3g.

Fig. 4. Procedure of encrypted data updating

Secure Encrypted Data Deduplication 305

4.5 User Revocation Management

If use i deletes their storage in the cloud, the ciphertext update as described above is not
secure enough since it cannot prevent the access of user i if it has kept some previously
secret keys. Thus, we further design a secure scheme to really block the access from
these revoked users.

Similar to the ciphertext update, the user revocation also falls into two types:
Scheme 3 – Revocation before ciphertext update (See Fig. 5): Some user deletes its
storage of file m without any update on its ciphertext Ek1 mð Þ. In this case, this revo-
cation can be completed through the following steps:

(a) CSP chooses a random number r3, and calls AH to get cipK ¼ ½k1 þ r3�; finally,
cipK is sent to AP;

(b) The AP decrypts cipK to get ðk1 þ r3Þ, calls Enc to encrypt ðk1 þ r3Þ with newly

chosen randoms to get cipK 0 ¼ k1 þ r3½ � ¼ fð1þðk1 þ r3Þ � nÞgHðZr0
1 Þ�r02 mod n2;

gr
0
2 mod n2; Yr01g; in addition, it calls UKI to generate a new updating key

uKey0 ¼ gHðeðv1=y;Yr0
1 ÞÞ ¼ gH Zr0

1

� �
mod n2. Then, the data packet fcipK 0; uKey0g is

sent back to the CSP.
(c) The CSP directly updates its ciphertext with a new symmetric key k4 to get the

new packet fEk4ðEk1ðmÞÞ; ½k1 þ 2L kð Þk4�g.

Scheme 4 – Revocation after ciphertext update: In some cases, data holder deletes
its storage after ciphertext update. Hence, the CSP executes user revocation over
ciphertext fEk2ðEk1ðmÞÞ; ½k1 þ 2L kð Þk2�g.
(a) The CSP chooses a random r4; then it calls AH to get cipK ¼ ½k1 þ r4 þ 2L kð Þk2�;

finally, cipK is sent to AP.
b) Similar to the step b) above, the AP chooses random numbers r01 and r02, and then

get fcipK 0 ¼ ½k1 þ r4 þ 2L kð Þk2� ; uKey0g.
(c) Upon receiving the data packet, the CSP decrypts Ek2ðEk1 mð ÞÞ with k2 and

chooses random key k5 to get Ek5ðEk1 mð ÞÞ; then it calls AH to remove r4 and

Fig. 5. Procedure of user revocation caused by user deletion

306 W. Ding et al.

update k2 with k5 to get a new ciphertext key cipK 00 = ½k1 þ 2L kð Þk5�. It updates its
storage with new ciphertexts fEk5ðEk1ðmÞÞ; ½k1 þ 2L kð Þk5�g.

Through the schemes above, CSP finally block unauthorized users’ access without
the need of the intervention of data holders or data owner.

5 Security Analysis and Performance Evaluation

5.1 Security Analysis

Our scheme provides a secure approach to realize the deduplication management. The
security of the proposed scheme is guaranteed by the security of the AHRE algorithm.
Thus, we mainly concentrate on the security proof of AHRE and the ownership check.

Assumptions

Definition 5.1. Discrete Logarithm (DL) Problem: Given g 2 G and y ¼ gx (x 2 Z�
q),

it is hard to get x.

Definition 5.2. Computational Diffie-Hellman (CDH) Problem: Given a group G and
group element v, and vx and vy, it is hard to compute the value of vxy.

Proposition 1. If the CDH problem holds, then it is hard for adversaries to pass the
ownership proof without the original file even when it colludes with CSP.

Proof. We prove it by contraction. For this purpose, we assume that the adversary can
pass the ownership proof without the real file. Our goal then is to use A to construct an
algorithm to solve the CDH problem.

Given the challenge public parameters (v; Z; eð; Þ), the adversary A can construct its
own key pair (uA; vuA). If it colludes with CSP, then the adversary can further get

pkHðmÞ=u1
CSP , vHðmÞ=u1 and ZHðmÞ of real data holder u1 from CSP. The adversary can

compute to get its own proof message pkHðmÞ=uA
CSP ¼ vaHðmÞ=uA on the pkHðmÞ=u1

CSP ¼
vaHðmÞ=u1 and vu1 . The adversary can generate real proof message vaHðmÞ=uA , and easily
gain vaHðmÞ with its own secret key.

Here, we set vx ¼ vaHðmÞ=u1 and vy ¼ vu1 , thus it means the adversary gets vxy ¼
vaHðmÞ and breaks the problem of CDH. Hence, our ownership proof is secure and can
guarantee that only real data holders can pass the proof. In addition, anyone can verify
the ownership of data holders with proof message and file tag.

Proposition 2. If the DL problem holds in group G1 and the CDH problem holds in
group Z�

n2 , then the AHRE is secure.

Proof. Given the AHRE ciphertext of data m under the secret key of CSP:
m½ � ¼ C1;C2;C3f g ¼ 1þm � nð ÞgH Zr1ð Þ�r2 mod n2; gr2 mod n2; pkr1AP

� �
, the adversary A

would like to obtain the original data m.
Due to the difficulty of DL problem, it is hard to get vr1 from pkr1AP ¼ vb�r1 . Hence,

the adversary cannot obtain the value of H Zr1ð Þ. In the update process, the updating
key gH Zr1ð Þ is issued to CSP. If the adversary colludes with CSP, it can get packet

Secure Encrypted Data Deduplication 307

(C1;C2;C3f g ¼ 1þm � nð ÞgH Zr1ð Þ�r2 mod n2; gr2 mod n2; pkr1AP
� �

; gH Zr1ð Þ). But due to

CDH problem, the adversary cannot get gH Zr1ð Þ�r2 from the packet and cannot obtain the
original data.

Proposition 3. The cooperation of CSP and AP without collusion guarantees that only
eligible data holders can access the original file m and the file can be deduplicated
securely.

Proof. The adversary has no way to obtain the original file m even when it colludes
with CSP as it is always in an encrypted form. The file m is encrypted with symmetric
encryption (such as AES) while the symmetric key is encrypted with AHRE. Owing to
the security of AHRE, the symmetric key is protected and unauthorized users cannot
get it. Moreover, original data confidentiality is guaranteed by symmetric encryption.
Hence, only the authorized users can decrypt ciphertext of keys to further obtain the
original file.

The ownership proof helps check the legality of cloud users without reducing the
confidentiality of original data. The re-encryption key issue further transforms the
ciphertext under the secret key of AP to another one under the secret key of authen-
ticated data holders. It helps control the access to the ciphertext. In addition, the
ciphertext of original file is kept by the CSP, thus the AP can only control the
ciphertext of symmetric key.

In the ciphertext update, a random number is introduced to mask the original
symmetric key, which can make sure neither CSP nor AP can get the symmetric key.

5.2 Computation Complexity

The proposed scheme involves four kinds of system roles: data owner, CSP, AP, and
data holder. To present the computation complexity in details, we adopt AES and
AHRE. As the encryption over the uploaded data is unavoidable, we neglect the
symmetric encryption. Due to the limitation of paper length, we analyze the complexity
of deduplication presented in Sect. 4.3 as below:

Data Owner: It needs to do one hash, one modular exponentiation in duplication
check, and two modular exponentiations and two exponentiations over group G1 or GT

to upload its data to the CSP. Thus, its computation complexity is O 1ð Þ.
CSP: CSP performs one pairing to compute the file tag for duplication check and one
pairing for re-encryption with regard to each data holder’s data upload. Thus, its
computation complexity is OðNÞ, where N is the number of data holders.

AP: It conducts one pairing for duplication check and one exponentiation over group
G1 for re-encryption key generation. Thus, its computation complexity is O Nð Þ.
Data Holder: It also needs one modular exponentiation in duplication check. In order
to get the data, it should do one exponentiation over GT , one hash and one modular
exponentiation. Thus, its computation complexity is O 1ð Þ.

Besides the computation above, they all need to generate one key pair for them-
selves, which involves one exponentiation over G1. Table 2 lists the computation of all

308 W. Ding et al.

entities. We also compare it with our previous work [18, 19]. We can observe that our
scheme incurs a little higher computation cost during data upload and data retrieval
process but enables more functionalities, such as public verifiability and user revoca-
tion. In addition, it simplifies ownership challenge and reduces the communication
costs caused by ciphertext update or user revocations. In our scheme, CSP and AP only
need to exchange the ciphertexts of keys. The ciphertext of original file is always kept
and updated by CSP without any involvement of data owners or data holders, which
saves the communication cost, especially for multimedia data.

5.3 Performance Analysis

System Setting
In this section, we further implemented the proposed schemes and tested their per-
formances to check with our theoretic analysis and prove its correctness. The evalu-
ations are performed on a laptop with Intel Core i5-3337U CPU 1.8 GHz and 8 GB
RAM with Java Paring-Based Cryptography library (jPBC). To achieve better accu-
racy, we tested each algorithm 1000 times and reported the average value of all testing
results. We choose AES as the symmetric key encryption. Unless particularly specified,
some parameters in our tests are set as default values: (1) L nð Þ ¼ 1024 bits; (2) bilinear
pairing parameters generator - TYPE A; (3) length of random numbers – 500 bits;
(4) length of symmetric key – L kð Þ ¼ 128 bits.

Performance of AHRE
As AHRE is applied to encrypt symmetric key, we only evaluate its performance over
data with L mð Þ = 128bits. The computation time of each algorithm in AHRE is pre-
sented in Table 3. Through tests, one pairing in jPBC library can be computed in
approximately 10.1 milliseconds (ms). From the simulation results, we can observe that
the encryption is a little time-consuming but the decryption is very efficient, which is
acceptable for cloud users as they only need to execute it once. Moreover, if the cloud
users are subsequent data holders, they do not need to execute encryption.

Table 2. Computation complexity of each entity by comparing with previous work [18, 19]

Entity Algorithm Computations [our scheme] Computations [19] Computations [18]

Data
owner

Setup 1 * Exp 1 * PointMulti + 1 * Exp 1 * ModInv + 1 * ModExp

Data upload 2 * Ex + 2 * ModExp 2 * ModExp + 1 * PointMulti 3 * ModExp

Csp Re-encryption 1 * Pair 1 * Pair 1 * Pair

Duplication check 1 * Pair – –

Data
holder

System setup 1 * Exp 1 * PointMulti + 1 * ModExp 1 * ModInv + 1 * ModExp

Duplication check 1 * ModExp 2 * ModExp + 1 * PointMulti –

Data upload – – 3 * ModExp

Data retrieval 1 * Exp + 1 * Hash + 1 * ModExp 1 * ModExp 1 * ModExp

AP System setup 1 * Exp 1 * ModExp 1 * ModExp

Ownership check and rekey
generation

1 * Exp + 1 * Pairing 2 * ModExp + 2 * PointMulti 1 * ModExp

Notes: Pair: Bilinear Pairing; Exp: Exponentiation in G1 or GT ; ModInv: Modular Inversion; ModExp: Modular Exponentiation; N: Number of
data holders; PointMulti: Point multiplication in ECC

Secure Encrypted Data Deduplication 309

Performance of Our Proposed Schemes
In this experiment, we test the performance of our proposed schemes by testing their
simulation time over different size of original files: 10 MB, 30 MB and 50 MB. As
some basic operations are similar to the operations of AHRE and are not affected by the
size of files, we only present the computation time varying with the size of original file,
which is shown in Table 4.

We can observe that the ciphertext update and user revocation almost double the
decryption time of users. But it does not involve the data holders in the two operations.
In most of existing schemes, the data holders need to download the outsourced file,
decrypt the ciphertext and then re-encrypt them, which is not efficient, especially for
large files, such as multimedia data. Though revocation and update introduce much
computation overhead, they are almost undertaken by the CSP, which is acceptable for
a cloud service provider.

Table 3. The computation time of each algorithm in AHRE (Unit: ms)

Algorithm System Setup KGen Enc RKGen ReEnc Dec UKI CipR AH Pairing

Time 89.81 13.04 38.82 13.9 10.01 4.08 25.5 13.46 14.02 10.1

Table 4. The computation time of some operations in deduplication schemes (Unit: ms)

Operation Time
File size:
10 MB

File size:
30 MB

File size:
50 MB

Data upload (User) 82.1 317.9 618.1
Decryption before update or
revocation (User)

55.78 300.7 589.7

Update Scheme 1 (CSP) 62.2 298.1 581.8
Scheme 2 (CSP) 117.6 619.4 1210.1

Revocation Scheme 3 Step 1
(CSP)

13.7 13.8 13.8

Step 2
(AP)

80.5 82.5 78.7

Step 3
(CSP)

67.6 314.7 591.3

Scheme 4 Step 1
(CSP)

13.6 14.0 12.3

Step 2
(AP)

79.8 82.7 76.6

Step 3
(CSP)

124.9 600.7 1202.0

Decryption after update or revocation
(User)

104.8 608.7 1182.9

310 W. Ding et al.

6 Conclusion

Data deduplication helps improving the utilization of cloud storage and in turn helps
reducing the storage cost of cloud users. In this paper, we proposed a flexible data
deduplication scheme with effective ownership proof and user revocation. Our scheme
can flexibly support outsourced data update and data sharing among data holders.
Moreover, it can support public verifiability of ownership and user revocation without
intervention of data owners, which greatly enhances cloud data security and effectively
reduces the communication cost caused by ciphertext update, especially significant for
large files. Extensive performance analysis and test shows that our scheme is secure
and efficient. Although our scheme incurs a little higher computation cost than some
existing work, it can provide advanced features. In future work, we will optimize our
design and study privacy-preserving and verifiable data deduplication.

Acknowledgment. This work is sponsored by the National Key Research and Development
Program of China (grant 2016YFB0800700), the NSFC (grants 61672410 and U1536202), the
Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China (Pro-
gram No. 2016ZDJC-06), the 111 project (grants B08038 and B16037), and Academy of Finland
(Grant No. 308087).

References

1. Meyer, D.T., Bolosky, W.J.: A study of practical deduplication. ACM Trans. Storage 7(4),
1–20 (2012)

2. Ali, M., Dhamotharan, R., Khan, E., Khan, S.U., Vasilakos, A.V., Li, K., Zomaya, A.Y.:
SeDaSC: secure data sharing in clouds. IEEE Syst. J. 99, 1–10 (2015)

3. Liu, C., Yang, C., Zhang, X.Y., Chen, J.J.: External integrity verification for outsourced big
data in cloud and IoT: a big picture. Future Gener. Comput. Syst. 49, 58–67 (2015)

4. Puzio, P., Molva, R., Onen, M., Loureiro, S.: ClouDedup: secure deduplication with
encrypted data for cloud storage. In: Proceedings of IEEE 5th International Conference on
Cloud Computing Technology and Science, pp. 363–370. IEEE (2013)

5. Mulazzani, M., Schrittwieser, S., Leithner, M., Huber, M.: Dark clouds on the horizon: using
cloud storage as attack vector and online slack space. In: Proceedings of USENIX Security
Symposium, p. 5 (2011)

6. Hur, J., Koo, D., Shin, Y., Kang, K.: Secure data deduplication with dynamic ownership
management in cloud storage. IEEE Trans. Knowl. Data Eng. 28(11), 3113–3125 (2016)

7. Kwon, H., Hahn, C., Kim, D., Hur, J.: Secure deduplication for multimedia data with user
revocation in cloud storage. Multimedia Tools Appl. 76(4), 5889–5903 (2017)

8. Dropbox: A file-storage and sharing service. http://www.dropbox.com/
9. Google Drive. http://drive.google.com
10. Mozy, Mozy: a file-storage and sharing service. http://mozy.com/
11. Sun, Z., Shen, J., Yong, J.M.: DeDu: building a deduplication storage system over cloud

computing. In: IEEE International Conference on Computer Supported Cooperative Work in
Design, pp. 348–355. IEEE (2014)

Secure Encrypted Data Deduplication 311

http://www.dropbox.com/
http://drive.google.com
http://mozy.com/

12. Wallace, G., Douglis, F., Qian, H.W., Shilane, P., Smaldone, S., Chamness, M., Hsu, W.:
Characteristics of backup workloads in production systems. In: Proceedings of USENIX
Conference on File and Storage Technologies, p. 500 (2012)

13. Wilcox, Z.O.: Convergent encryption reconsidered (2011). http://www.mail-archive.com/
cryptography@metzdowd.com/msg08949.html

14. Bellare, M., Keelveedhi, S., Ristenpart, T.: DupLESS: server aided encryption for
deduplicated storage. In: Proceedings of 22nd USENIX Conference on Security, pp. 179–
194 (2013)

15. Wen, M., Ota, K., Li, H., Lei, J.S., Gu, C.H., Su, Z.: Secure data deduplication with reliable
key management for dynamic updates in CPSS. IEEE Trans. Comput. Soc. Syst. 2(4), 137–
147 (2015)

16. Liu, J., Asokan, N., Pinkas, B.: Secure deduplication of encrypted data without additional
independent servers. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 874–885. ACM (2015)

17. Yan, Z., Wang, M.J., Li, Y.X., Vasilakos, A.V.: Encrypted data management with
deduplication in cloud computing. IEEE Cloud Comput. 3(2), 28–35 (2016)

18. Yan, Z., Ding, W., Zhu, H.: A scheme to manage encrypted data storage with deduplication
in cloud. In: Wang, G., Zomaya, A., Perez, G.M., Li, K. (eds.) ICA3PP 2015. LNCS, vol.
9530, pp. 547–561. Springer, Cham (2015). doi:10.1007/978-3-319-27137-8_40

19. Yan, Z., Ding, W.X., Yu, X.X., Zhu, H.Q., Deng, R.H.: Deduplication on encrypted big data
in cloud. IEEE Trans. Big Data 2(2), 138–150 (2016)

20. Liu, C., Liu, X., Wan, L.: Policy-based de-duplication in secure cloud storage. In: Yuan, Y.,
Wu, X., Lu, Y. (eds.) ISCTCS 2012. CCIS, vol. 320, pp. 250–262. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-35795-4_32

21. Lillibridge, M., Eshghi, K., Bhagwat, D.: Improving restore speed for backup systems that
use inline chunk-based deduplication. In: Proceedings of USENIX Conference on File and
Storae Technologies, pp. 183–198 (2013)

22. Halevi, S., Harnik, D., Pinkas, B., Shulman-Peleg, A.: Proofs of ownership in remote storage
systems. In: Proceedings of the 18th ACM conference on Computer and communications
security, pp. 491–500. ACM (2011)

23. Pietro, R.D., Sorniotti, A.: Boosting efficiency and security in proof of ownership for
deduplication. In: Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security, pp. 81–82. ACM (2012)

24. Ng, W.K., Wen, Y., Zhu, H.: Private data deduplication protocols in cloud storage. In:
Proceedings of the 27th Annual ACM Symposium on Applied Computing, pp. 441–446.
ACM (2012)

25. Yang, C., Ren, J., Ma, J.F.: Provable ownership of file in de-duplication cloud storage. In:
IEEE Global Communications Conference, pp. 695–700. IEEE (2013)

26. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with a double
trapdoor decryption mechanism and its applications. In: Laih, C.-S. (ed.) ASIACRYPT
2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003). doi:10.1007/978-3-540-
40061-5_3

312 W. Ding et al.

http://www.mail-archive.com/cryptography%40metzdowd.com/msg08949.html
http://www.mail-archive.com/cryptography%40metzdowd.com/msg08949.html
http://dx.doi.org/10.1007/978-3-319-27137-8_40
http://dx.doi.org/10.1007/978-3-642-35795-4_32
http://dx.doi.org/10.1007/978-3-540-40061-5_3
http://dx.doi.org/10.1007/978-3-540-40061-5_3

Optimally Selecting the Timing of Zero-Day
Attack via Spatial Evolutionary Game

Yanwei Sun1,2, Lihua Yin1, Yunchuan Guo1(B), Fenghua Li1,2,
and Binxing Fang3

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

guoyunchuan@iie.ac.cn
2 School of Cyberspace Security, University of Chinese Academy of Sciences,

Beijing, China
3 Electronic Information Engineering Research Institute,

University of Electronic Science and Technology of China, Dongguan, China

Abstract. Zero-day attacks pose a serious threat to the government agen-
cies and companies. To get better protection of the internet infrastructure,
it is very important for the defenders to analyze the behavior of attackers
who exploit the zero-day vulnerabilities and predict their attack timing.
For attackers, when to exploit the zero-day vulnerability means a tough
tradeoff between profit and risk: If the attackers exploit too soon, they may
get limited profits; too late, they may suffer the higher risk of being found
before the attack. To help defenders make a better prediction, this paper
computes the optimal timing from the perspective of attackers. We use an
evolutionary game to estimate the risk of being found and then chooses
the optimal timing based on the risk and profit. In detail, we design a learn-
ing strategy to deal with individual differences among multi-attackers, and
use spatial structure to model the evolutionary process. The experiment
results show the efficiency of this approach.

Keywords: Zero-day attack · Optimal timing · Evolutionary game

1 Introduction

1.1 Background

Zero-day attacks against government agencies and companies are increasing at
an alarming rate. In 2016, 10822 vulnerabilities were found in China, and 2203
of them were zero-day vulnerabilities1, which may cause serious consequences.
According to The Hacker News, hackers exploited the zero-day vulnerability to
attack Bangladesh’s central bank in 2016 and stole over $80 million from the
Federal Reserve Bank2. Because of the serious consequence of zero-day attack, it

This work was supported by the National Key R&D Program of China (No.
2016YFB0800702), and NSFC General Projects (No. 61672515).

1 http://www.cert.org.cn/publish/main/upload/File/2016CNVDannual1.pdf.
2 http://thehackernews.com/2016/03/bank-hacking-malware.html.

c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 313–327, 2017.
DOI: 10.1007/978-3-319-65482-9 21

http://www.cert.org.cn/publish/main/upload/File/2016CNVDannual1.pdf
http://thehackernews.com/2016/03/bank-hacking-malware.html

314 Y. Sun et al.

is very important for the defenders to analyze the zero-day attack behavior from
the perspective of attackers to reasonably allocate their limited defense resource
and relieve the attack. In recent years, many approaches have been proposed to
analyze attacker behaviors. However, these approaches mainly focus on the rela-
tionship between exploits and system vulnerabilities [17], the attacker preference
and skill set [3]; yet few of them have analyzed attack timing. Obviously, if a
defender can accurately predict the timing that attackers exploit zero day vul-
nerability, (s)he can allocate his/her defense resource more efficiently to prevent
the attack.

1.2 Motivation

Axelrod et al. [6] formulated the zero-day attack as a long-term process. They
claimed that the use of the zero-day exploits this time might make it unavailable
for use later. This revealed that the long-term profit should be a higher priority
than any one-time attacking income to the attacker. But the research only con-
sidered the behavior of the attacker but ignored that of the defender, so the final
result had low accuracy. This motivated us to rethink the predication model of
attack timing from the perspective of the attack-defense game.

Most of existing game-based approaches used in behavior analysis assume
that all attackers are adequately rational [18]. That is, they make their strate-
gic choice on a wholly rationally determined evaluation of probable outcomes.
However, in practice, attackers who use the zero-day vulnerabilities do not know
completely information about the attacked target systems before initiating an
attack and even during the attack. This means that the adequate rationality
assumption is not realistic enough in modeling the behaviors of attackers who
exploit the zero-day vulnerability. On the contrary, evolutionary game, based
on the hypothesis of bounded rationality is more efficient than the other game
models when applied to analyze attack-defense behavior [19]. So in this paper,
the evolutionary game is used to select the optimal attack timing of the attacker
who exploits zero-day vulnerabilities.

1.3 Challenge

The main challenges of optimally selecting the timing of zero-day attack are
summarized as follows:

– Proper modeling of the long-term process of zero-day attacks. As mentioned
above, zero-day attack is a long-term process. The zero-day exploit (also
called cyber resources) will always be available unless the vulnerability is
fixed by the defender. As the process goes on, the attacker needs to make
a tradeoff between risk and profit for each time point: if the vulnerability is
exploited, the attacker may get some profit but the risk of being noticed may
also increase. On the contrary, if the zero-day vulnerability is exploited too
late or not exploited, there is also a chance for the defender to fix it, leave no
chances for the attacker. So the first challenge is how to model this process
properly.

Optimally Selecting the Timing of Zero-Day Attack 315

1.Have you launched an attack?
2.Have you been discovered?
3.What’ s your estimation about the
defense ability of defender?

Exchange
information

Exchange
information

Exchange information:

Fig. 1. Multi-attackers vs. a certain company

– Proper modeling of the information sharing mechanism among multiple
attackers. Many hackers think that all the information should be free, so they
will form a unique “black ecosystem” to share information more effectively.
According to the director of Baidu security laboratory3, the information shar-
ing mechanism of black ecosystem is much better than that of white ecosys-
tem. To get a better understanding of the process, attackers will exchange
their views about the defender. So the second challenge is how to model the
information sharing mechanism properly among multiple attackers.

– Precise evaluating the profit for each game. During the process, the attacker is
most concerned about the long-term profit rather than the one-time attacking
income. The long-term profit highly depends on the duration of the process,
however the duration is difficult to be estimated if the attacker knows little
about the defender. So the third challenge is how to evaluate the profit precisely.

1.4 Contribution

To solve those challenges, this paper analyzes the attack-defense scenario (shown
in Fig. 1) between multiple attackers and a single defender. Our main contribu-
tions are as follows.

– We use evolutionary game to model the zero-day attacks. We consider the
problem from the perspective of the attack-defense game. At the beginning
of the game, attackers know little about the defender. But with the game
process, their understandings become more and more accurate due to their
observation and information sharing, so this is an evolutionary process.

– We design a new learning strategy to model the information sharing mecha-
nism. The most common learning strategy in evolutionary game is to simply

3 Baidu is the predominant search engine in China.

316 Y. Sun et al.

imitate the strategy of the neighbor who has the highest payoffs. But this is
not fitted in our scenario, because different attackers have different zero-day
exploits. Individual difference will lead to the fact that the optimal timing for
some certain attackers may not suitable for other attackers. So a new learning
strategy is designed to model the information sharing mechanism. By doing
so, the attackers could get a better understanding of the defense capability
of the defender.

– We specify and compute all the factors that affect the payoffs. We first specify
all the factors that affect the payoffs and discuss the relationship between
factors and payoffs. Then we compute the factors and the payoffs to help
attackers to decide whether to attack or not for each time point. By doing
this, the attackers could get a relatively better reward for the whole game.

The rest of the paper is organized as follows. Section 2 introduces the related
works. Section 3 introduces our solution. Section 4 discusses the details about
the players’ payoffs. Section 5 reports experimental results, and Sect. 6 gives the
conclusions.

2 Related Work

2.1 Zero-Day Attack Protection

To protect against the zero-day attack, a lot of researches have focused on
detecting [5,14] and evaluating [22,23] the zero-day vulnerabilities. To identify
the unknown files, Acasarala et al. [5] introduced the class-matching approach.
Mishra et al. [14] proposed a hybrid solution which used the concept of CSS
matching and URI matching to defend against zero-day phishing attacks. To
evaluate the robustness of networks, Wang et al. [23] proposed two complemen-
tary diversity metrics and Wang et al. [22] conducted the evaluation process
based on how many zero-day vulnerabilities are required to compromise a net-
work asset.

Another way of protection is analyzing the attacker behavior. Ekelhart et al.
[10] developed a simulation-driven approach which took attack strategies and
attacker behavior into consideration. Al et al. [1] used the time delay neural
network which embedded the temporal behavior of the attacks to maximize the
recognition rate of network. Mitshell et al. [15] proposed a specification-based
IDS which could adapt to different types of attackers such as reckless, ran-
dom, and opportunistic ones. In this way, it could get a higher detection accu-
racy. Allodi et al. first pointed out that not all the vulnerabilities were equally
exploited by the attacker [2], and then focused on the choice of attackers [3]. By
validating the actual ’traces’ attackers leave on real systems, they claimed that
the real attacker would not be as powerful as we thought and would not exploit
every vulnerability. The attackers would strategically choose the busy periods
and some certain vulnerabilities while the efforts of security professionals are dif-
fused across many vulnerabilities [16,17]. Based on this observation, Dumitrace
et al. [9] proposed a novel metrics that enabled a more accurate assessment of

Optimally Selecting the Timing of Zero-Day Attack 317

the risk of cyber-attacks. Bozorgi et al. [8] used machine learning method with
high dimensional feature vectors input to predict the vulnerability which was
most likely to be exploited by the attacker. All these analyses, however, have
been carried out from the perspective of defenders, ignoring the information
sharing mechanism among attackers where the mechanism is the most impor-
tant part during the attack and can guide attackers to changer their strategies
dynamically.

2.2 The Use of Evolutionary Game Against Cyber-Security

Realizing the importance of information sharing, lots of researchers have used
evolutionary game approaches to improve network security. Tosh et al. [21] used
non-cooperative information sharing game for participants to protect against the
cyber-attacks. The participation costs were considered and dynamic cost adjust-
ment were proposed to help to Cyber-security Information Exchange framework
to increase information sharing as well as its own revenue. Guo et al. [11] pro-
posed a general defense mechanism against various routing attacks on DTNs.
They used evolutionary game theory to promote nodes to cooperate with each
other and demonstrated the ESS of the game. That is, when a few nodes change
their strategies, the whole system can return to the original stable status. Ruan
et al. [19] first proposed a new authentication protocol in crowdsensing networks
and then used evolutionary game theory to formulate the attack-defense model.
The model could alleviate the defense cost and achieve security assurance by
means of setting the parameters in the new protocol. In wireless sensor net-
works, to make an optimal tradeoff between maximizing the secrecy rate of a
sensor node and minimizing power consumed for data transmission, Jiang et al.
[12] used evolutionary game to help the sensor node to adaptively select the
power level. However, all of these researches have considered the problem from
the defender’s perspective, ignoring the fact that the attackers could also benefit
from cooperation.

3 Computing Defender’s Protecting Ability
via Evolutionary Game

Before introducing the evolutionary game model, a brief discussion about the
differences between general cyber-attack and zero-day attack is given as follows.
According to the stealth features of zero-day exploit, most of the software and the
security products cannot detect the existence of threat [7]. So, the first difference
is that the attackers with zero-day exploits can get the one-time attacking income
as long as they launch an attack and regardless of whether the target is protected
or not. Second, as mentioned above, attackers using zero-day exploits are more
concerned about the long-term profit, and they have to make sure if the resource
will be invalid after this attack. Therefore, the key points to the entire game
process are the attacker’s actions and the defense capability of the defender, i.e.
whether the defender could discover and recove the vulnerability in time before

318 Y. Sun et al.

(after) the attack happens. What’s more, the attackers’ decisions are closely
related to the defense capability. For example, if the attacker believes that the
defender is sensitive enough to the attack, he will not attack until the one-
time attacking income is worth the risk. On the contrary, if the attacker thinks
that the defender has a strong capability of discovering the vulnerability even
if nothing happens, the attacker will choose to attack as soon as possible. So in
this section, we will explain the evolutionary game model from the perspective
of the attacker, to show how to get an exact assessment of the defense capability
and then make a proper decision.

3.1 Problem Description

In order to make a precise assessment of the defense capability, the attacker needs
to play a number of games and revise the assessment time by time according to
each result. But this is not practical for a single attacker, for the game is likely
to be terminated after several attacking attempts. Therefore, it is important
to learn from the surrounding attackers, observe the state of neighbors and
exchange information with each other. On the one hand, to a great extent, it
avoids the risk of being discovered to a great extent; on the other hand, it helps
them to understand the real defense capability quickly and precisely. Therefore,
we use the evolutionary game model to analyze this problem. It should be noted
that due to space constraints and for the purpose of simplifying the model,
this article mainly discusses about the parameters and the learning strategy of
attackers, and simplifies the discussion of the defender. Before discussing the
model, some notations should be introduced.

Because this is a long-term process, an explanation about the time point is
necessary. The notation t represents the time point, and we assume that one time
point equals to a short period required for a one-time attack. At the beginning of
each time point, a new sub-game starts and the attacker should decide whether
to attack at this time point or not.

In terms of the zero-day vulnerability, which is called cyber resource from the
perspective of the attacker, we use notation L to represent the lifecycle of cer-
tain vulnerability. Different vulnerabilities have different lifecycles. For example,
compared with buffer overflow and executable code, other vulnerabilities such
as PHP vulnerability or SQL injection often have longer lifecycles [20]. During
the lifecycle, the related process of vulnerabilities are generally divided into sev-
eral key stages [4], including being discovered, being used, being disclosed, being
repaired, etc. Risk levels are also different at different stages. So we define threats
coefficient TA(t) to characterize the vulnerability threat level at different stages
where t ∈ [0, L]. For example, TA(t) equals to 1 when the vulnerability are not
disclosed and reduces to 0.2 when the patches of certain vulnerability are pro-
vided. Along with the threats coefficient TA(t), we also define the gain function
of time g(t) to represent the one-time attacking income that the attacker can
get when he attacks the target at the certain time point t. G(t) is determined
by both the resource itself and the target, in this paper, it is assumed that the
g(t) is preset and known to the attacker and defender.

Optimally Selecting the Timing of Zero-Day Attack 319

As to the defender, PD(t) denotes the protection probability at time point t,
and Pa denotes the passive-defense capability, indicating the probability of dis-
covering the vulnerability after being attacked. Pb denotes the initiative-defense
capability, indicating the probability of discovering the vulnerability without
being attacked. If notation A is used to indicate that the vulnerability is found
by the defender, notation B is used to indicate that the resource is used by the
attacker; notation C is used to indicate that the defender decides to protect,
then Pa = {A|BC} and Pb = {A|BC} can be concluded. Pa and Pb are both
fixed values which are known to the defender and unknown to the attackers
during the game process. In addition, it should be noted that Pa is bigger than
Pb in most cases. That is, the vulnerability is much more likely to be discovered
by defender after being attacked compared with the situation where nothing
happens. In this paper, Pa and Pb are preset and known to the defender but
unknown to the attacker.

For each attacker, PA(t) denotes the attack probability. Both PA(t) and PD(t)
are determined by the payoffs of the attacker and the defender at time point t.
We use Pa(t) and Pb(t) to represent the attacker’s assessment of Pa and Pb at
time point t respectively. As the game goes on, the attacker will revise these two
assessments by observing the state of other neighbors and exchanging informa-
tion with each other.

3.2 Game Formulation

Participants: It is assumed that the game is between multiple attackers and a
single defender. Each attacker owns a kind of particular resource, set AT =
{1, 2, . . . , n} is used to denote the multiple attackers. The defender may protect
multiple targets at the same time. Each attacker chooses a certain target for
which the resource is applicable to start the game. We assume that all the targets
share the same Pa and Pb, because they are protected by the same defender.

Strategy set: General analysis is conducted, which means the network is not
specific but abstract [13], and the strategy set of attacker is SA= {attack, not
attack}, meanwhile the set of defender is SD = {protect, not protect}.

Payoff: For any attacker i ∈ AT , at any time point t ∈ [0, L], the payoff of the
sub-game consists of three parts: the attacking cost denoted as Ci

a, the one-time
attacking income gi(t) and the long-term profit expectancy from time point t
to the end of the lifecycle, denoted as Ei(t). The specific parameter settings are
discussed in next section. For the defender, the loss also includes two parts, the
cost of protecting denoted as Cd, and the loss caused by the attack. In order to
reduce the complexity of this model, it is assumed that the attacking loss equals
to the negative of the attacker’s attacking revenue.

The total number of attackers: During the whole process of the game, the total
number of attackers n will change from time to time. So n(t) is used to represent
the total number at time point t. There are three main aspects that will influence
the number: First, at the beginning of time point t, nnew(t) is used to denote

320 Y. Sun et al.

the newly discovered resource. Second, at the end of time point t, nexp(t) is
used to denote the number of expired resource. Third, according to the defense
capability, some of the resource are randomly eliminated at the end of time point
t, the number is notated as ndis(t). Then the total number of attackers at time
point t + 1 is: n(t + 1) = n(t) + nnew(t) − ndis(t) − nexp(t)

Game rules: For each attacker-target pair, given the payoffs, both attacker and
defender will make their decisions by calculating the Nash equilibrium. At the
end of time point, the attacker revises the assessment by observing the state of
other neighbors and exchanging information with each other in order to recal-
culate the payoffs for next time point.

Learning strategy: The most common learning strategy in evolutionary game is
imitating the neighbor’s strategy which has the highest payoffs after comparing
with all the surrounding neighbors. However, as mentioned above, gi(t) may be
various so that it is not likely that two different attackers share the same optimal
timing. Therefore, in this model, the learning strategy is to revise the assessment
of Pa(t) and Pb(t) by observing the state of other neighbors instead of imitating
their strategies directly.

Evolutionary stable strategy: In this model, the stability of the evolution refers
to the stability of revising the parameters Pa(t) and Pb(t), which means when
the game become stable, the assessment of Pa(t) and Pb(t) of each attacker
will not fluctuate dramatically when new attackers join in. In other words, the
assessment will converge to an exact value after several times of corrections.

Assessment update rule: The update rule includes the following main steps.

– Initializing the assessment randomly at the beginning of the game. The initial
assessments are random because the attacker knows little about the defender.

– Calculating the observed result of Pa and Pb. At the end of the time point t, the
attacker observes his neighbors and counts the numbers of them (1) who had
attacked this time and been discovered and (2) who hadn’t attacked this time
and been discovered, and then calculates the observed result of Pa and Pb.

– Combining the observed result, neighbors’ assessment with his previous assess-
ment to be his new assessment. When combining these three results, the refer-
ence value difference should be considered. For the neighbor who has survived
longer, its assessment has a higher reference value. What’s more, at the begin-
ning of the game, the observed result plays an important role. However, as
the game goes on, this importance diminished. Because the observed samples,
i.e. attacker’s neighbors, are limited, so that the observed result has a strong
randomness.

Some new parameters and notations are introduced as follows. Let PaD

denote the probability of the attacker being eliminated after attack, so PaD =
Pa × PD. Similarly, PbD is used to denote the probability of being eliminated
without attack, so PbD = Pb × PD. For any attacker i ∈ AT at the end of time
point t ∈ [0, Li], P i

a(t) and P i
b (t) represent the attacker’s assessment of Pa and Pb,

Optimally Selecting the Timing of Zero-Day Attack 321

P i
a(0) and P i

b (0) are the initial estimates. We use s = {st
1, s

t
2, . . . , s

t
kt

} to denote
the neighbors’ strategy, and f = {f t

1, f
t
2, . . . , f

t
kt

} to denote whether these neigh-
bors are found by the defender or not, where kt is the total number of neighbors
of i, st

j ∈ Sa, f t
j ∈ 0, 1. AD is used to denote the neighbors who had attacked

this time and had been found, so AD = {j|st
j = 1 ∧ f t

j = 1, j ∈ [0, kt]}. ND
is used to denote the neighbors who were not attacked and had been found, so
ND = {j|st

j = 0∧ f t
j = 1, j ∈ [0, kt]}. P t

D(j) is used to denote the PD calculated
by neighbor j. Let P t

obaD denote the observed value of PaD, so P t
obaD(i) = |AD|∑

st
j
,

let P t
obbD denote the observed value of PbD so P t

obbD(i) = |ND|
k−∑ st

j
. Thus the

updating rules for revising the parameters Pa(t) and Pb(t) are as follows:

Pa(t + 1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
∑kt

j=1 P t
a(j)P

t
D(j)tj+P t

a(i)P
t
D(i)t+

|AD|
st
j

)(kt+1)

(
∑kt

j=1 tj+t+1)(
∑kt

j=1 P t
D(j)+P t

D(i))
t + 1 ≤ L

2

(
∑kt

j=1 P t
a(j)P

t
D(j)tj+P t

a(i)P
t
D(i)t)(kt+1)

(
∑kt

j=1 tj+t)(
∑kt

j=1 P t
D(j)+P t

D(i))
t + 1 > L

2

(1)

Pb(t + 1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
∑kt

j=1 P t
b (j)P

t
D(j)tj+P t

b (i)P
t
D(i)t+

|AD|
st
j

)(kt+1)

(
∑kt

j=1 tj+t+1)(
∑kt

j=1 P t
D(j)+P t

D(i))
t + 1 ≤ L

2

(
∑kt

j=1 P t
b (j)P

t
D(j)tj+P t

b (i)P
t
D(i)t)(kt+1)

(
∑kt

j=1 tj+t)(
∑kt

j=1 P t
D(j)+P t

D(i))
t + 1 > L

2

(2)

4 Specification of Player’s Pay-off

As mentioned in Sect. 3, the pay-off consists of three parts. As the long-term
profit expectancy is the main focus, it is assumed that the attacking cost is a
fixed value and g(t) is known to the attacker.

For the certain attacker, we use E(t) to represent the profit expectancy from
time t to the end of the lifecycle, so E(t) =

∑L
σ=t PA(σ)g′(σ)TA(σ) where

g′(σ) = max{g(σ) − Ca, 0} and σ ∈ [t, L]. So, there is a need to compute all the
PA(σ) for σ = t, t + 1, ..., L. If notation Q is used to indicate that the resource
is still available at time point σ and notation R is used to indicate that the
attacker will choose to attack, then PA(σ) = P (Q) ∗ P (R). So we have

PA(σ) = [PA(σ − 1) ∗ (1 − Pa) + (1 − PA(σ − 1)) ∗ (1 − Pb)] ∗ PA(t − 1) (3)

PA(σ − 1) ∗ (1 − Pa) means that the attacker has attacked last time but has
not been discovered, (1 − PA(σ − 1)) ∗ (1 − Pb) means that the attacker has not
attacked last time and has not been discovered. For simplify the computation, it
is assumed that the defender will always been protected when calculating PA(σ).
And PA(t − 1) used in (4) is an approximate value. Because the exact value of
P (Y) which is determined by calculating the Nash equilibrium of the sub-game

322 Y. Sun et al.

at time point σ could not be known, the probability PA(t − 1) is used instead.
According to the above recursive formula, we can get:

PA(σ) = [PA(t−1)+
(1 − Pb) ∗ PA(t − 1)

(Pb − Pa) ∗ PA(t − 1) − 1
][(Pb−Pa)∗PA(t−1)]

t−1− (1 − Pb) ∗ PA(t − 1)

(Pb − Pa) ∗ PA(t − 1) − 1
(4)

The payoffs matrix can be as follow (Table 1):

Table 1. Payoff in the multi-player evolutionary game.

Protect Not protect

Attack GD
A ,−GD

A − Cd GND
A ,−GND

A

Not attack GD
NA,−GD

NA − Cd GND
NA ,−GND

NA

where:
GD

A = g(t) − Ca + (1 − PA)E(t + 1) (5)

GD
NA = (1 − Pb)E(t + 1) (6)

GND
A = g(t) − Ca + E(t + 1) (7)

GND
NA = E(t + 1) (8)

Here’s a brief discussion of the game’s Nash equilibrium, also the optimal timing
selection guidelines:

1. At some time t, when g(t) − Ca ≤ 0 and Cd < PbE(t + 1), attacker will not
attack but the defender will protect. When g(t)−Ca ≤ 0 and Cd > PbE(t+1),
attacker will not attack and the defender will not protect.
Because g(t) − Ca ≤ 0 and Pa > Pb, so GND

A < GND
NA , the best choice

for attackers is not attack whatever the defending choice is. But in terms
of the defenders, if Cd < PbE(t + 1), that means there is some probability
of discovering the vulnerability by expending a little defending cost, so the
defender will defend. But if the cost is high, i.e. Cd > PbE(t+1), the defender
will not defend.

2. At some time t, when g(t) − Ca > (Pa − Pb)E(t + 1) and Cd < PaE(t + 1),
attacker will attack and the defender will protect. When g(t) − Ca > (Pa −
Pb)E(t + 1) and Cd ≥ PaE(t + 1), attacker will attack and the defender will
not protect.

3. At some time t, when 0 < g(t)−Ca ≤ (Pa −Pb)E(t+1) and Cd ≥ PaE(t+1),
the defender will not protect and the attacker will attack.

4. At some time t, when 0 < g(t)−Ca ≤ (Pa −Pb)E(t+1) and Cd < PbE(t+1),
the defender will protect and the attacker will not attack.

5. At some time t, when 0 < g(t)−Ca ≤ (Pa−Pb)E(t+1) and PbE(t+1) < Cd <
PaE(t + 1), there is no pure Nash equilibrium, but only mixed Nash equilib-
rium, that is, the attacker will attack with the probability of Cd−PbE(t+1)

(Pa−Pb)E(t+1) ,

and the defender will defend with the probability of g(t)−Ca

(Pa−Pb)E(t+1) .

Optimally Selecting the Timing of Zero-Day Attack 323

We use X to denote the probability of attack for the attacker, and Y to denote
the probability of defend. So the expected utility function of the attacker is:

UA = X[Y GD
A + (1 − Y)GND

A] + (1 − X)[Y GD
NA + (1 − Y)GND

NA] (9)

UD = Y [X(−G
D
A −Cd)+(1−X)(−G

D
NA −Cd)]+ (1−Y)[X(−G

ND
A)+(1−X)(−G

ND
NA)] (10)

Differentiated the above-mentioned function:

∂UA

∂X
= [Y GD

A + (1 − Y)GND
A] − [Y GD

NA + (1 − Y)GND
NA] (11)

Let ∂UA

∂X = 0, we get:

Y =
GND

NA − GND
A

GD
A + GND

NA − GND
A − GD

NA

=
g(t) − Ca

(Pa − Pb)E(t + 1)
(12)

Similarly,

X =
GD

NA − GND
NA + Cd

−GD
A − GND

NA + GND
A + GD

NA

=
Cd − PbE(t + 1)

(Pa − Pb)E(t + 1)
(13)

5 Experiment

The effectiveness of the proposed evolutionary games by synthetic data set has
been evaluated. All experiments are conducted on a Windows7 system with Intel
Core i7-6700 3.4 GHz CPUs and 8G memory.

Exp. 1: Numbers of attackers. The experiment is carried out to observe the total
number of attackers. Ten types of gain functions with various monotonicity and
codomain are used.

The lifecycle of each resource is assumed to be 20 (each round represents
1), and the total number of attackers at the beginning is 12000, distributed at
a 200 ∗ 100 matrix. The numbers of new found resource can be regarded as a
statistic process obeying Poisson distribution. Different Pa and Pb are picked
to see whether the population could stay stable with different number of newly
found resource. Figure 2 shows the total number of attackers when the average of
newly found resource equals 500, 1000, 1500 and 2000. We can see all of them can
stay stable though the amplitudes are a little bit large. It can be found that when
Pb equals 0.1 (notated as the black line and blue line), the number is greater
than those when Pb equals 0.2 (the red line and pink line) whatever the Pa is.
However, the difference of Pa doesn’t have a major impact on the change of the
total number. That is reasonable because during the whole evolution process,
the probability of attack is much less than the probability of waiting. So the
impact of Pa is much less.

Exp. 2: Convergence of estimations of Pa and Pb. The convergence of estimations
of Pa and Pb is observed. The same configuration with Exp. 1 is used. In addition,
we assume the initial estimate of Pa and Pb are random, and the real Pa = 80%

324 Y. Sun et al.

0 100 200 300 400 500

2000

4000

6000

8000

10000

12000

 Pa=0.8.Pb=0.1
 Pa=0.8.Pb=0.2
 Pa=0.9.Pb=0.1
 Pa=0.9.Pb=0.2

N
um

be
rs

 o
f a

tta
ck

er
s

Times

(a) newdis = 500

0 100 200 300 400 500

2000

4000

6000

8000

10000

12000

 Pa=0.8.Pb=0.1
 Pa=0.8.Pb=0.2
 Pa=0.9.Pb=0.1
 Pa=0.9.Pb=0.2

N
um

be
rs

 o
f a

tta
ck

er
s

Times

(b) newdis = 1000

0 100 200 300 400 500

2000

4000

6000

8000

10000

12000
 Pa=0.8.Pb=0.1
 Pa=0.8.Pb=0.2
 Pa=0.9.Pb=0.1
 Pa=0.9.Pb=0.2

N
um

be
rs

 o
f a

tta
ck

er
s

Times

(c) newdis = 1500

0 100 200 300 400 500

2000

4000

6000

8000

10000

12000

14000

 Pa=0.8.Pb=0.1
 Pa=0.8.Pb=0.2
 Pa=0.9.Pb=0.1
 Pa=0.9.Pb=0.2

N
um

be
rs

 o
f a

tta
ck

er
s

Times

(d) newdis = 2000

Fig. 2. Numbers of attackers (Color figure online)

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Times

Average estimation of Pa
Average estimation of Pa

(a) Range from 0 to 0.2

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Times

Average estimation of Pa Average estimation of Pa

(b) Range from 0.5 to 1

Fig. 3. Convergence of estimations of Pa and Pb, where the range of initial estimations
of Pa in (a) is from 0 to 0.2 and in (b) is from 0.5 to 1. Pb is random in (a) and (b).
(Color figure online)

and Pb = 20%. Figure 3 shows the average value of estimations of Pa and Pb.
It can be seen that the convergence of Pb is fast, while the convergence of Pa

is a little bit slow when the initial estimation of Pa is small. That is reasonable
because most of the attacker will not attack most of the time, and the large
base set makes the observation quite valuable. So the convergence of Pb is fast.
The amplitudes of Pa are both quite large. There are two reasons accounting for
this: First, because only a few attackers choose to attack, so the base set is quite
small, which will lead to the uncertainty of estimation. Second, both numbers

Optimally Selecting the Timing of Zero-Day Attack 325

0 5 10 15 20
0

1

2

3

4

5

6

7

Pr
of

it
Game Duration

 our method
 Axelrod's method

Fig. 4. The average profit of the attacker.

of eliminated attackers and the new comers are large and that will affect the
average value of Pa.

Exp. 3: The average profit of the attacker. The last experiment is about profit
comparison. This method is compared with the method introduced in [6]. The
same configuration with Exp. 2 is used. In addition, same with the assumption
in [6], it is assumed that there is an equal chance of the stakes, which will be
1, 2, 3, 4, 5, or 6. All the estimations of Pa and Pb are initiated randomly, and
in this method, the estimation will be revised during the game and will not
change in Axelrod’s method. For each attacker, when his game is over (he has
been discovered or the resource has been expired), the duration of the game and
the overall profits of this attacker will be recorded, and the average of overall
profit of the attackers whose games have the same duration will be calculated.
The result (shown in Fig. 4) shows that with this method, there is a significant
improvement for the attackers whose game duration ranges from five to fifteen.

6 Conclusion

This paper focuses on computing the optimal timing for launching a zero-day
attack. The evolutionary game is used to model this long-term process. In detail,
the fact that attackers will cooperate and share information with each other
to get a better understanding about the target has been considered. A new
learning strategy is designed to model this information sharing mechanism. After
assessing the defense capability, the attacker will make a tradeoff between risk
and profit by computing the Nash equilibrium. Spatial structure is used to model
the evolutionary process. The results show that attackers can make a reasonable
estimation about the defense capability and get a relatively higher profit.

326 Y. Sun et al.

References

1. Al-Jarrah, O., Arafat, A.: Network intrusion detection system using attack behav-
ior classification. In: 2014 5th International Conference on Information and Com-
munication Systems (ICICS), pp. 1–6. IEEE (2014)

2. Allodi, L., Massacci, F.: Comparing vulnerability severity and exploits using case-
control studies. ACM Trans. Inf. Syst. Secur. (TISSEC) 17(1), 1 (2014)

3. Allodi, L., Massacci, F., Williams, J.M.: The work-averse cyber attacker model:
theory and evidence from two million attack signatures, 27 June 2017. https://
ssrn.com/abstract=2862299

4. Arbaugh, W.A., Fithen, W.L., McHugh, J.: Windows of vulnerability: a case study
analysis. Computer 33(12), 52–59 (2000)

5. Avasarala, B.R., Day, J.C., Steiner, D., et al.: System and method for automated
machine-learning, zero-day malware detection, US Patent 9,292,688, 22 March 2016

6. Axelrod, R., Iliev, R.: Timing of cyber conflict. Proc. Natl. Acad. Sci. 111(4),
1298–1303 (2014)

7. Bilge, L., Dumitras, T.: Before we knew it: an empirical study of zero-day attacks
in the real world. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security, pp. 833–844. ACM (2012)

8. Bozorgi, M., Saul, L.K., Savage, S., Voelker, G.M.: Beyond heuristics: learning
to classify vulnerabilities and predict exploits. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
105–114. ACM (2010)

9. Dumitraş, T.: Understanding the vulnerability lifecycle for risk assessment and
defense against sophisticated cyber attacks. In: Jajodia, S., Shakarian, P., Subrah-
manian, V.S., Swarup, V., Wang, C. (eds.) Cyber Warfare, vol. 56, pp. 265–285.
Springer, Cham (2015). doi:10.1007/978-3-319-14039-1 13

10. Ekelhart, A., Kiesling, E., Grill, B., Strauss, C., Stummer, C.: Integrating attacker
behavior in it security analysis: a discrete-event simulation approach. Inf. Technol.
Manage. 16(3), 221–233 (2015)

11. Guo, H., Wang, X., Cheng, H., Huang, M.: A routing defense mechanism using
evolutionary game theory for delay tolerant networks. Appl. Soft Comput. 38,
469–476 (2016)

12. Jiang, G., Shen, S., Hu, K., Huang, L., Li, H., Han, R.: Evolutionary game-based
secrecy rate adaptation in wireless sensor networks. Int. J. Distrib. Sens. Netw.
11(3), 975454:1–975454:13 (2015)

13. Liang, X., Xiao, Y., et al.: Game theory for network security. IEEE Commun. Surv.
Tutor. 15(1), 472–486 (2013)

14. Mishra, A., Gupta, B.: Hybrid solution to detect and filter zero-day phishing
attacks. In: Proceedings of the Second International Conference on Emerging
Research in Computing, Information, Communication and Applications, pp. 373–
379 (2014)

15. Mitchell, R., Chen, R.: Adaptive intrusion detection of malicious unmanned air
vehicles using behavior rule specifications. IEEE Trans. Syst. Man Cybern. Syst.
44(5), 593–604 (2014)

16. Mitra, S., Ransbotham, S.: Information disclosure and the diffusion of information
security attacks. Inf. Syst. Res. 26(3), 565–584 (2015)

17. Nayak, K., Marino, D., Efstathopoulos, P., Dumitraş, T.: Some vulnerabili-
ties are different than others. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.)
RAID 2014. LNCS, vol. 8688, pp. 426–446. Springer, Cham (2014). doi:10.1007/
978-3-319-11379-1 21

https://ssrn.com/abstract=2862299
https://ssrn.com/abstract=2862299
http://dx.doi.org/10.1007/978-3-319-14039-1_13
http://dx.doi.org/10.1007/978-3-319-11379-1_21
http://dx.doi.org/10.1007/978-3-319-11379-1_21

Optimally Selecting the Timing of Zero-Day Attack 327

18. Niyato, D., Wang, P., Kim, D.I., Han, Z., Xiao, L.: Game theoretic modeling of
jamming attack in wireless powered communication networks. In: 2015 IEEE Inter-
national Conference on Communications (ICC), pp. 6018–6023. IEEE (2015)

19. Ruan, N., Gao, L., Zhu, H., Jia, W., Li, X., Hu, Q.: Toward optimal dos-resistant
authentication in crowdsensing networks via evolutionary game. In: 2016 IEEE
36th International Conference on Distributed Computing Systems (ICDCS), pp.
364–373. IEEE (2016)

20. Shahzad, M., Shafiq, M.Z., Liu, A.X.: A large scale exploratory analysis of software
vulnerability life cycles. In: Proceedings of the 34th International Conference on
Software Engineering, pp. 771–781. IEEE Press (2012)

21. Tosh, D., Sengupta, S., Kamhoua, C., Kwiat, K., Martin, A.: An evolutionary
game-theoretic framework for cyber-threat information sharing. In: 2015 IEEE
International Conference on Communications (ICC), pp. 7341–7346. IEEE (2015)

22. Wang, L., Jajodia, S., Singhal, A., Cheng, P., Noel, S.: k-zero day safety: a network
security metric for measuring the risk of unknown vulnerabilities. IEEE Trans.
Depend. Secur. Comput. 11(1), 30–44 (2014)

23. Wang, L., Zhang, M., Jajodia, S., Singhal, A., Albanese, M.: Modeling network
diversity for evaluating the robustness of networks against zero-day attacks. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 494–511.
Springer, Cham (2014). doi:10.1007/978-3-319-11212-1 28

http://dx.doi.org/10.1007/978-3-319-11212-1_28

Performance Modeling and Evaluation

Performance Analysis of a Ternary Optical Computer
Based on M/M/1 Queueing System

XianChao Wang1(✉), Sulan Zhang2, Mian Zhang3, Jia Zhao1, and Xiangyang Niu3

1 School of Computer and Information Engineering, Fuyang Normal University,
Fuyang 236037, China
wxcdx@126.com

2 School of Computer Engineering and Science, Shanghai University,
Shanghai 200444, China

3 School of Mathematics and Statistics, Fuyang Normal University,
Fuyang 236037, China

Abstract. A Ternary Optical Computer (TOC), a dynamically reconfigurable
computing platform, has attracted more and more attentions. However, Quality
of Service (QoS) is a crucial factor for its commercial success. This paper presents
a service model for TOC based on first-come-first-service strategy, the M/M/1
queueing system and tandem queueing. And it uses the mean response time to
analyze and evaluate the performance of TOC. Moreover, this paper shows the
influence of various metrics on the response time by simulating the model. The
results demonstrate that the computation and network transmission speed are the
bottlenecks of system response time. Therefore, the proposed model is good for
designing the task management system of TOC.

Keywords: M/M/1 queueing system · Ternary Optical Computer · Task
scheduling · Response time · Tandem queue

1 Introduction

The speed of high-performance electronic computers is increasingly limited not only by
processing power but also by the bandwidth and number of the interconnections and by
data access rate. On the other side, optics can offer interesting solutions to alleviate these
limitations on account of its three-dimensional inter-connection capabilities and inherent
parallelism. Therefore, more and more attentions have been paid to optical computing,
an emerging technology. A multitude of significant advances have been obtained in the
development of optical computing hardware [1–7], including Ternary Optical Computer
(TOC), during the past decades.

The architecture and principle of TOC was proposed by Jin in 2003 [6, 7]. Many
significant achievements have been obtained in hardware and software of TOC [8–22].
For example, Jin et al. put forward the lane theory of parallel through carry to solve the
carry problem of adder [8]; Yan et al. proposed the Decrease-Radix Design Principle
(DRDP) to construct reconfigurable optical processors [9]. Wang, Song, Shen and Peng
et al. designed and implemented carry-free addition [10–13] on TOC in several different

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 331–344, 2017.
DOI: 10.1007/978-3-319-65482-9_22

ways based on Modified Signed-Digit (MSD) number system, and Wang implemented
vector-matrix multiplication [10] on the basis of MSD addition. Wang et al. designed
the modular architecture of TOC task management system and implemented it [14–17],
and proposed task scheduling algorithm [16] and processor allocation algorithms [16,
18] which were suitable for TOC. These achievements promoted the development of
TOC from theory to practice.

In particular, DRDP makes the processors of TOC dynamically reconfigurable, and
the reconfiguration has been implemented by use of different ways [20–22]. In other
words, TOC can bitwise reconfigure different optical processors according to customer
demands, which increases the flexibility of computing. At the same time, TOC has much
more data-bits than electronic computers on account of the parallelism of optical
computing. As a consequence, TOC, a novel computing paradigm, can provide services
with high-performance, scalability and security.

TOC has captured many researchers’ attentions because of its pleasurable features
and many achievements. However, there are a lot of problems to solve before it comes
into real services. Currently, the research on system performance of TOC is wanted.
Hence, the paper will investigate the service performance of TOC based on M/M/1
queueing system in order to deliver guaranteed QoS. The main contribution of this paper
consists of a service QoS model for TOC, a computation model of response time based
on queueing system and experiments showing favorable results.

The remainder of the paper is organized as follows. Section 2 briefs the related work.
Section 3 presents our modeling proposal to guarantee QoS for customer tasks based on
tandem M/M/1 queueing system. Simulation experimentation illustrating a perfect
behavior of the proposed model is presented in Sect. 4. Finally, Sect. 5 outlines the main
conclusions and future work.

2 Related Work

2.1 Task Management System of Ternary Optical Computer

Figure 1 shows the computing paradigm of TOC. Server is a single access node for the
computing services of the customers being served in the model. Tasks can be submitted
through Network to Server by Client. After finish computing, Server transmits the results
to the corresponding Client.

Fig. 1. Computing paradigm of TOC.

The task management system architecture of TOC is shown in Fig. 2. It consists of
the following modules, Request Accepting Module (RAM), Data PreProcessing Module

332 X. Wang et al.

(DPPM), Task Scheduling Module (TSM), Processor Allocating Module (PAM),
Processor Reconfiguring Module (PRM), Optical Computing Module (OCM) including
encoder and optical processor, Decoding Module (DM) and Result Transmitting Module
(RTM). Meanwhile, TOC, which executes the optical computing, is mainly comprised
of PRM, OCM and DM.

Fig. 2. Modular architecture of TOC task management system.

The functions of these modules are as follows. RAM is responsible for accepting
operation-requests, i.e. tasks submitted in communication internal code (CIC) [16] by
customer clients. DPPM calculates the task priorities, transforms operands from CIC
into control internal code, and inserts them into a queue to schedule according to their
priorities. TSM schedules the tasks in the queue according to a scheduling strategy and
send the operands to TOC. PAM looks up the reconfigurable codes [22] for different
operations (Supposing that there are no more than 15 kinds of two-input trivalued logic
operations in a task), allocates the optical processor resource for the scheduled tasks and
their various operations in accordance with allocation-by-demand algorithm [16] and
sends the reconfigurable codes and the allocation result to TOC. PRM reconfigures the
optical processors for various operations in parallel after receiving the information from
PAM. The encoder of OCM generates the optical signals (no intensity light, horizontal
polarized light, and vertical polarized light) according to the control internal codes of
operands, and the optical processors carry out the optical computing. DM decodes the
operation results and sends them to RTM. Finally, RTM feeds the results in communi‐
cation internal code back to the right client. In short, all of the modules work harmo‐
niously to implement computing services for the customers.

2.2 Brief Introduction to Queueing System

Queueing theory, an important branch of stochastic operations research, was constructed
by Erlang in 1909 [23]. Now it has been widely used in communication [23–25], trans‐
portation [26], inventory [27], task scheduling [28, 29], resource allocation [30–32],
cloud computing [32–35] and many other areas, highlighting its powerful vitality.

Performance Analysis of a Ternary Optical Computer 333

Researchers have investigated the performance of cloud computing based on various
queueing systems in recent years. For instance, Khazaei obtained some important
performance metrics such as task blocking probability and total waiting time by using
interactive continuous time Markov chain [29]. Vilaplana studied a cloud computing
QoS (i.e. response time) in an open Jackson networks based on M/M/1 queueing system
and obtained the system bottleneck [32].

Similarly, the performance metrics of TOC involve throughput, resource utilization
and mean response time. However, this paper will primarily explore the mean response
time by building the service model based on tandem M/M/1 queueing system.

3 Service Model of the Ternary Optical Computer

3.1 Service Model of the Ternary Optical Computer

In this subsection, we propose a service model for TOC based on M/M/1 queueing
system and first come first service (FCFS) strategy to analyze the response time.

As mentioned in Subsect. 2.1, RAM is a unique module to receive the tasks sent by
the customer clients. To reduce transmission data, the operands in every operation are
sent to RAM not in ASCII but in CIC. Each couple of operands are stored with four
binary bits in CIC [16]. In other words, each byte can store two couples of operands.
The tasks will queue to be accepted after arriving since various customers can concur‐
rently submit them. Therefore, the RAM can be represented by an M/M/1 queueing
system.

In this paper, a bit two-input trivalued logic operation is looked upon as a counting
unit for computation. Suppose that the arrival of n tasks follows the exponential distri‐
bution with parameter λ, the mean computation of these tasks is μ, the mean transmission
speed of network is ω. Thus, the mean transmission data and mean transmission time
are μ/2 and μ/2ω, respectively, and the number of tasks received by RAM per unit of
time is 2ω/μ. In other word, the service of RAM follows the exponential distribution
with parameter 2ω/μ.

Suppose that the rate of data preprocessing is τ. Similarly, DPPM can be also
modeled by an M/M/1 queueing system, and its service follows the exponential distri‐
bution with parameter τ/μ.

The timing scheduling strategy was proposed for the tasks of TOC [16]. RSM can
simultaneously schedule several tasks for the optical processor to compute. However,
we shall use another simpler scheduling strategy. In the strategy, the first task is sched‐
uled immediately when it arrives, and RSM will once again schedule tasks in task queue
after the optical processors finishes the being serviced ones. The scheduling strategy is
called scheduling strategy after (the being serviced tasks) being finished. For simplicity,
this paper assumes that RSM schedules a task at a time. Obviously, the assumption
increases the times of scheduling and the ones of reconfiguring in some degree.

As mentioned in Subsect. 2.1, PAM allocates the optical processors for every oper‐
ation of the scheduled tasks to guarantee that all operations can be finished simultane‐
ously, obtains the reconfigurable codes of optical processors. And then it sends the allo‐
cation result and reconfigurable codes to TOC and PRM, respectively. Obviously, the

334 X. Wang et al.

time PRM spends on allocating optical processors for a task hardly changes. Therefore,
we can suppose that the allocation time is a constant.

PRM reconfigures optical processors as soon as it receives the information sent by
PAM. For a given optical processors, the time spent on reconfiguring them is a constant
since the reconfiguration is independent and parallel.

In the TOC module, the encoder of OCM transforms the operands into optical signals
according to their control internal codes. The optical processors implement the trans‐
formation between optical signals, i.e. optical computing after the reconfiguration is
over. And the decoder changes the optical signals i.e. computation results into electronic
signals and transmits them to RTM. Apparently, the computing time is relevant to the
computation μ and the speed of optical computing δ.

It can be seen that there is a task queue, shown in Fig. 3, before RSM to schedule
from RSM to DM. In other words, the course from scheduling to decoding can be like‐
wise manifested by an M/M/1 queueing system.

Fig. 3. Task queueing model on TOC.

The operation results of tasks may have to wait in a queue before being transmitted
by RTM to the right clients because the optical computing speed of TOC is much greater
than the transmission speed of networks. Consequently, RTM can be also described by
an M/M/1 queueing system. The transmission data in communication internal code is
μ/4 because a couple of operands generate an operation results. Thus, the service of
RTM follows the exponential distribution with parameter 4ω/μ.

It can be easily seen that all of these modules constitute a 4-stage queueing system
shown in Fig. 3. In the queue, Stage 1, Stage 2 and Stage 4 are made up of RAM, DPPM
and TRM, respectively. However, Stage 3 is made up of RSM, PAM, PRM, OCM and
DM modules, and divided into three sub-stages, request scheduling, processor allocation
and optical computing. The four stages are cascaded into a tandem M/M/1 queueing
system.

Meanwhile, the mean response time T of n tasks can be obtained in the following
formula:

T = TRA + TDPP + TRS + TRT (1)

Where TRA is the mean time RAM spends on receiving these tasks, TDPP is the mean
time DPPM spend on data preprocessing, TRS is the mean time spent from task sched‐
uling to decoding and TRT is the mean time RTM spends on transmitting the results to
the right clients.

Performance Analysis of a Ternary Optical Computer 335

3.2 Obtaining TRA

As discussed above, RAM can be modeled by an M/M/1 queueing system. According
to [36, 37], the mean response time TRA of RAM is defined as

TRA =
1

2𝜔
𝜇

− 𝜆

=
𝜇

2𝜔 − 𝜆𝜇 (2)

Where λ is the number of arrival tasks per unit of time, i.e. arrival rate of tasks, μ is
the mean computation of these tasks and ω is the mean speed of receiving them.

3.3 Obtaining TDPP

The arrival rate of the tasks is also λ when they reach DPPM, according to [36]. Similarly,
the mean response time of DPPM is defined by the following formula:

TDPP =
1

𝜏

𝜇
− 𝜆

=
𝜇

𝜏 − 𝜆𝜇 (3)

Where τ is the speed of data preprocessing.

3.4 Obtaining TRS

During scheduling, RSM sends the operands in control internal code of the scheduled
task to TOC and deletes it from the queue. And then, PAM allocates the optical
processors, PRM reconfigures the optical processors, OCM executes optical computing
and DM decodes the operation results. Therefore, the combination of these five modules
can be modeled by an M/M/1 queueing system. In other words, TRS consists of not only
scheduling time but also allocating processor time, reconfiguring processor time,
computing time and decoding time.

As mentioned in Subsect. 3.1, both allocating processor time and reconfiguring
processor time are constants. In particular, the processor reconfiguring module is pecu‐
liar to TOC according to the DRDP. The reconfiguration increases the flexibility of
computing, but it also increases system overhead. Consequently, we shall not ignore the
two constants in order to show an analysis of how PAM and PRM influence system
performance, especially response time T.

As mentioned in Subsect. 3.1, OCM executes optical computing after TOC receiving
the operands and PRM accomplishes the optical processor reconfiguration, and then DM
decodes the computation results. As a consequence, the computation speed of TOC is
the less between OCM speed and DM speed.

According to the analysis above, we assume that the mean transmission speed from
RSM to TOC is φ, allocating processor time is a constant C1, reconfiguring time is
another constant C2, and the computation speed of TOC is δ. Thus, the service rate π of
Stage 3 in Fig. 3 is defined by the following formula.

336 X. Wang et al.

𝜋 =
1

𝜇

𝜑
+ C1 + C2 +

𝜇

𝛿

=
𝜑𝛿

𝜇(𝜑 + 𝛿) + 𝜑𝛿
(
C1 + C2

) (4)

Similarly, TRS is defined as:

TRS =
1

𝜋 − 𝜆
(5)

3.5 Obtaining TRT

RTM transmits the operation results to relevant clients after receiving them. As
discussed above, TRT is similarly obtained by the following formula.

TRT =
1

4𝜔
𝜇

− 𝜆

=
𝜇

4ω − 𝜆𝜇 (6)

Response time T is obtained by the following formula (7), based on tandem M/M/1
queueing system, after formulas (2), (3), (5) and (6) are substituted into (1).

T = 𝜇

(
1

2𝜔 − 𝜆𝜇
+

1
𝜏 − 𝜆𝜇

+
1

4ω − 𝜆𝜇

)
+

1
𝜋 − 𝜆

(7)

4 Simulation

The following section illustrates an analysis of how the response time T is influenced
by modifying some parameters presented in the model. Our purpose is to testify whether
the proposed model behaves as expected when a range of metrics and system configu‐
rations are tested.

4.1 System Metrics

The model will be implemented on Matlab R2010b platform. The metrics in the simu‐
lation are described as follows.

• Arrival rate λ of tasks. It is the average number of operation requests, i.e. tasks
reaching the system per unit of time and 1/λ is the mean inter-arrival time. We shall
show how the response time T is affected by changing the metric λ. It can be easily
seen that T is an increasing function of arrival rate λ according to formula (7).

• Computation μ. Here the computation is referred to the two-input trivalued logic
operation in operation requests though the carry-free addition and vector-matrix
multiplication have been implemented on TOC. The reason is that other operations
can be implemented with different two-input trivalued logic operations and only two-
input trivalued logic operations can be submitted by costumer clients in the current

Performance Analysis of a Ternary Optical Computer 337

task management system. Consequently, computation is referred to the mean couple
number of operands. As discussed in Subsect. 2.1, the operands are stored in CIC.
Thus, MB can be looked upon as the unit of computation, and the mean transmission
data from costumer clients to server and from server to right clients are μ/2 and μ/4,
respectively.

• Transmission speed ω of networks. The transmission speed of WAN is very different
from the one of LAN. Meanwhile, there are much more potential customers in WAN
than those in LAN. We shall implement the model simulation by use of the trans‐
mission speed ω (MB per second) of WAN.

• Speed τ of data preprocessing. As mentioned in Subsect. 2.1, DPPM mainly trans‐
forms operands from CIC into control internal code. Thus, τ is relevant to the server
speed, reaching G (in bytes per second) magnitude.

• Transmission speed φ from server to TOC. The Server is connected with TOC by
cable to achieve the communication between them. Therefore, φ (in MB per second)
is the transmission speed of LAN.

• Computing speed δ of TOC. Now computing speed of TOC is restricted in the rotating
light speed of liquid crystal and the decoding speed of decoder. However, the
computing speed still reaches G (in bytes per second) magnitude because of its
parallelism.

4.2 Response Time

In order to demonstrate an analysis of how the response time T is influenced by arrival
rate λ, we simulate the tandem queueing model with the average number of tasks
reaching the system per hour. Thus, the service rate of RAM is equal to 7200 ω/μ. In
other words, the module can deal with 7200 ω/μ tasks per hour.

Let ρ = max{λμ/(3600 * 2ω), λμ/3600τ, λμ/3600φ, λμ/3600δ}, then ρ is determined
by the minimum of ω, τ, φ and δ. Generally speaking, ω is the minimum of them. The
system will reach the equilibrium state when ρ < 1.

As we expected, Fig. 4 shows how the response time T is affected by increasing the
arrival rate from 1 to 60 when the queueing system reaches the equilibrium state and the
metrics μ, ω, τ, φ, δ, C1 and C2 are equal to 100 MB, 5 MB/s, 2 GB/s, 50 MB/s,
1 GB/s, 0.01 s and 0.01 s, respectively. It can be seen that the response time is about
32 s when λ is equal to 1. However, the response time T is not doubled and redoubled
but approximately linearly increased with the increase of arrival rate λ. The reason is
that the modules work in parallel when there are multi-tasks in the system though each
task undergoes the four stages in the queueing model which is cascaded with four
M/M/1 queueing systems.

According to formula (7), response time T not only is an increasing function of arrival
rate λ but also is an increasing function of computation μ. The change of response time is
shown in Fig. 5 when μ is increased from 100 to 250 and the other parameters are fixed.

338 X. Wang et al.

Fig. 5. Response time T in functions of λ and μ.

4.3 System Bottlenecks

Response time T shown in Fig. 6(a) and (b) changes significantly compared with Fig. 4
when computation μ is equal to 100 MB and transmission speed ω of WAN is equal to
10 MB/s while the other metrics are unchanged. However, response time shown in
Fig. 6(c) and (d) hardly changes when the other parameters, such as δ and τ are changed.
Therefore, computation μ and transmission speed ω of WAN are bottlenecks of the
queueing system, i.e. TOC computing platform. The reason is that the magnitudes of
the parameters are different. δ and τ are in G magnitude but μ and ω are in M magnitude.
Thus, slight increase of ω will make response time T reduce distinctly while large
increase of δ and τ hardly makes response time reduce, shown in Fig. 6. In addition, it
can be seen from Fig. 6(d) that response time doesn’t change remarkably even though
δ, C1 and C2 synchronously and greatly improve.

Fig. 4. Response time T of the queueing model in function of λ.

Performance Analysis of a Ternary Optical Computer 339

Fig. 6. Response time T when parameters change (a) different computation μ, (b) different
transmission speed ω of WAN, (c) different data preprocessing rate τ, (d) different optical
computing rate δ.

According to the analysis above, decreasing transmission time can reduce the
response time and improve system efficiency. Obviously, there are several approaches,
such as increasing the number of RAM, improving the transmission speed of WAN, and
decreasing the transmission data, to reduce transmission time. RAM can be modeled by
an M/M/c queueing system when several RAM modules are used to receive the costumer
tasks (This will be discussed in another paper). Improving the transmission speed of
WAN by a large margin needs novel technologies and equipment. In other words, it is
arduous to substantially improve the transmission speed in the existing network envi‐
ronment. On the other hand, as mentioned above, the operations achieved on TOC are
basically two-input trivalued logic operations and the operands are stored and trans‐
mitted in CIC which can decrease the transmission data in some degree. However, input
of the mathematical operators and operands in routine will reduce substantially the
transmission data and improve the response time. Therefore, to make the costumers use
TOC like electronic computer, we should expedite the investigation of TOC task
management system.

340 X. Wang et al.

Figure 6(b) shows that improving the transmission speed of WAN can reduce greatly
the response time. In order to illustrate a further analysis of how the response time T is
affected by the transmission speed ω of WAN, we present the change tendency, shown
in Fig. 7, of response time when ω varies from 1 to 15 and the other metrics are fixed,
compared with Fig. 4. Meanwhile, the response time reduced sharply with the increase
of ω when 1 ≤ ω ≤ 7. However, the response time further reduced with the further
increase of ω, but the decreasing amplitude is small.

Fig. 7. Response time T in function of transmission speed ω.

Fig. 8. Response time T in functions of transmission speed ω and computation μ, given arrival
rate λ = 30.

Performance Analysis of a Ternary Optical Computer 341

Figure 8 shows that the change of response time T in functions of computation μ and
transmission speed ω of WAN given arrival rate λ = 30. As we imagine, the response
time increased with the increase of μ and the decrease of ω.

The simulation results demonstrate that the proposed model not only represents the
service of TOC but also reveals the law that the parameters affect the response time.
Moreover, the model can provide the solutions to improve system efficiency.

5 Conclusions

This paper proposed a service model for analyzing and exploring the performance of
TOC based on M/M/1 queueing system. After discussing in details the modules
composed of TOC task management system and their functions, it designed and modeled
not only several independent modules, such as RAM, DPPM and RTM, but also the
combination of several modules by the use of M/M/1 queueing system, linked them in
series, and obtained the formula of the mean response time. Simulation results illustrated
that the response time increased with the increase of arrival rate, computation, and with
the decrease of transmission speed of WAN. Moreover, computation and transmission
speed of WAN are the bottleneck of the system. We can conclude that our model is very
beneficial for improving the QoS of TOC, especially the response time, guaranteeing
the contract between the costumers and TOC service providers.

In future, we plan to investigate other issues, such as resource utilization and
throughput capacity, of the service performance of TOC. In addition, we shall redesign
the architecture of task management system and remodel the system based on other
queueing systems. Our final purpose is to enable TOC to own much higher QoS and to
satisfy the servicing need of many areas.

Acknowledgements. This work was supported by the by the NSFC (No. 61672006), Key Project
of Science Research in Colleges and Universities of Anhui Province (No. KJ2015A191,
KJ2015A182). And the authors thanked the reviewers for their helpful comments, remarks, and
suggestions, which led to improvements of the paper.

References

1. Heinz, R.A., Artman, J.O., Lee, S.H.: Matrix multiplication by optical methods. Appl. Opt.
9(9), 2161–2168 (1970)

2. Mosca, E.P., Griffin, R.D., Pursel, F.P., Lee, J.N.: Acoustooptical matrix-vector product
processor: implementation issues. Appl. Opt. 28(18), 3843–3851 (1989)

3. Ellett, S.A., Walkup, J.F., Krile, T.F.: Error-correction coding for accuracy enhancement in
optical matrix-vector multipliers. Appl. Opt. 31(26), 5642–5653 (1992)

4. Goodman, J.W., Dias, A.R., Woody, L.M.: Fully parallel, high-speed incoherent optical
method for performing discrete Fourier transforms. Opt. Lett. 2(1), 1–3 (1978)

5. Paquot, Y., Schroder, J., Eggleton, B.J.: Reconfigurable linear combination of phase-and-
amplitude coded optical signals. Opt. Express 22(3), 2609–2619 (2014)

6. Jin, Y., He, H.C., Lű, Y.T.: Ternary optical computer principle. Sci. Chin. Ser. F 46(2), 145–
150 (2003)

342 X. Wang et al.

7. Jin, Y., He, H.C., Lű, Y.T.: Ternary optical computer architecture. Phys. Scr. 59(T118), 98–
101 (2005)

8. Jin, Y., He, H.C., Ai, L.R.: Lane of parallel through carry in ternary optical adder. Sci. Chin.
Ser. F 48(1), 107–116 (2005)

9. Yan, J.Y., Jin, Y., Zuo, K.Z.: Decrease-radix design principle for carrying/borrowing free
multi-valued and application in ternary optical computer. Sci. Chin. Ser. F 51(10), 1415–1426
(2008)

10. Wang, X.C., Peng, J.J., Li, M., Shen, Z.Y., Ouyang, S.: Carry-free vector-matrix
multiplication on a dynamically reconfigurable optical platform. Appl. Opt. 49(12), 2352–
2362 (2010)

11. Song, K., Yan, L.P.: Design and implementation of the one-step MSD adder of optical
computer. Appl. Opt. 51(7), 917–926 (2012)

12. Peng, J.J., Shen, R., Jin, Y., Shen, Y.F., Luo, S.: Design and implementation of modified
signed-digit adder. IEEE Trans. Comput. 63(5), 1134–1143 (2014)

13. Shen, Y.F., Pan, L.: Principle of a one-step MSD adder for a ternary optical computer. Sci.
Chin. Ser. F 57(1), 012107 (2014)

14. Wang, X.C., Peng, J.J., Ouyang, S.: Control method for the optical components of a
dynamically reconfigurable optical platform. Appl. Opt. 50(5), 662–670 (2011)

15. Song, K., Jin, Y.: Overall plan and design of the task management system of ternary optical
computer. J. Shanghai Univ. 15(5), 467–472 (2011)

16. Wang, X.C., Yao, Y.F., Wang, C.S., Sun, W.W., Wang, K.Z.: Architecture of the monitor
system in ternary optical computer. Adv. Mater. Res. 616–618, 2158–2161 (2013)

17. Yan, L.P., Song, K.: Communication mechanism of the monitor system of the ternary optical
computer. Int. J. Digit. Content Technol. Appl. 5(11), 283–289 (2011)

18. Wang, X.C., Yao, Y.F., Wang, C.S., Sun, W.W., Wang, K.Z.: Processor allocation of a ternary
optical computer. Adv. Sci. Lett. 19(6), 1714–1717 (2013)

19. Wang, X.C., Yao, Y.F., Wang, C.S., Wang, K.Z.: Dynamic data-bit allocation of a ternary
optical computer. Appl. Mech. Mater. 109, 181–186 (2012)

20. Shen, Z.Y., Wu, L.L.: Reconfigurable optical logic unit with a terahertz optical asymmetric
demultiplexer and electro-optic switches. Appl. Opt. 47(21), 3737–3742 (2008)

21. Shen, Z.Y., Wu, L.L., Yan, J.R.: The reconfigurable module of ternary optical computer. Optik
124(13), 1415–1419 (2013)

22. Wang, H.J., Song, K.: Simulative method for the optical processor reconfiguration on a
dynamically reconfigurable optical platform. Appl. Opt. 51(2), 167–175 (2012)

23. Erlang, A.K.: The theory of probabilities and telephone conversations. Nyt Tidsskrift for
Matematik B 20, 33–39 (1909)

24. Panlop, Z., Anthony, B., James, B., Peter, D., Zahir, T.: Queuing theory applications to
communication systems: control of traffic flows and load balancing. In: Pham, H. (ed.)
Springer Handbook of Engineering Statistics. Springer, London (2006). doi:
10.1007/978-1-84628-288-1_52

25. Van, D.N.M.: On the arrival theorem for communication networks. Compu. Netw. ISDN Syst.
25(10), 1135–2013 (1993)

26. Anokye, M., Abdul-Aziz, A.R., Annin, K., Oduro, F.T.: Application of queuing theory to
vehicular traffic at signalized intersection in Kumasi-Ashanti region, Ghana. Am. Int. J.
Contemp. Res. 3, 23–29 (2013)

27. Liu, L.M., Liu, X.M., Yao, D.D.: Analysis and optimization of a multistage inventory-queue
system. Manage. Sci. 50, 365–380 (2004)

28. Mor, H.-B.: Scheduling: SRPT and Fairness, Performance Modeling and Design of Computer
Systems. Cambridge University Press, Cambridge (2013)

Performance Analysis of a Ternary Optical Computer 343

http://dx.doi.org/10.1007/978-1-84628-288-1_52

29. Khazaei, H., Misic, J., Misic, V.B.: A Fine-grained performance model of cloud computing
centers. IEEE Trans. Parallel Distrib. 24(11), 2138–2147 (2013)

30. Murugesan, R., Elango, C., Kannan, S.: Resource allocation in cloud computing with
M/G/s-queuing system. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(9), 443–447 (2014)

31. Li, B.F., Wang, D.H.: Configuration issues of cashier staff in supermarket based on queuing
theory. In: Zhu, R., Zhang, Y., Liu, B., Liu, C. (eds.) ICICA 2010. CCIS, vol. 106, pp. 334–
340. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16339-5_44

32. Vilaplana, J., Solsona, F., Teixidó, I., Mateo, J., Abella, F., Rius, J.: A queuing theory model
for cloud computing. J. Supercomput. 69(1), 492–507 (2014)

33. Mary, N.A.B., Saravanan, K.: Performance factors of cloud computing data centers using [(M/
G/1): (∞/GDmodel)] queuing systems. Int. J. Grid Comput. Appl. 4(1), 1–9 (2013)

34. Sandeep, K.S.: Dynamic resource provisioning in cloud based on queuing model. Int. J. Cloud
Comput. Serv. Sci. 2(4), 314–320 (2013)

35. Oumellal, F., Hanini, M., Haqiq, A.: MMPP/G/m/m+r queuing system model to analytically
evaluate cloud computing center performances. Br. J. Math. Comput. Sci. 4(10), 1301–1317
(2014)

36. Gross, D., Shortie, J.F., Thompson, J.M., Harris, C.M.: Fundamentals of Queuing Theory, 4th
edn. Wiley, Hoboken (2008)

37. Kleinrock, L.: Queuing Systems: Theory, vol. 1. Wikey-Interscience, New York (1975)

344 X. Wang et al.

http://dx.doi.org/10.1007/978-3-642-16339-5_44

Efficient Computation Offloading for Various
Tasks of Multiple Users in Mobile Edge Clouds

Weiyu Liu(B), Xiangming Wen, Zhaoming Lu, Luning Liu, and Xin Chen

Beijing Laboratory of Advanced Information Networks, Beijing, China
wyliu@bupt.edu.cn

Abstract. Mobile edge clouds (MEC) is a novel paradigm to augment
computation capabilities of mobile devices for resource-scarce applica-
tions. This paper first investigates the computation offloading decision
making problem among mobile users and leverages the variability in
types of tasks, capabilities of mobile devices and user preferences. As it is
NP-hard to compute an optimal solution, this paper transforms the prob-
lem into a system utility maximization problem. This paper formulates
the system utility maximization problem as a resource allocation offload-
ing mechanism (RAOM) for achieving efficient computation offloading.
This paper then designs a resource allocation offloading algorithm that
can maximize system utility within the constraints of system bandwidth
and maximum instructions per second allowed in edge clouds and quanti-
fies its efficiency ratio over the optimal solutions in terms of two vital per-
formance metrics. This paper further extends the study to the scenario
of multi-user computation offloading in the wireless interference model.
Numerical results demonstrate that the extension is worthwhile and the
proposed mechanism RAOM achieves efficient computation offloading
performance either with interference or without interference.

Keywords: Edge cloud · Mobile edge computing · Multi-user offload-
ing · Resource allocation · Various tasks

1 Introduction

As mobile devices are gaining enormous popularity, resource-intensive mobile
applications, such as natural language processing, face recognition, augmented
reality and interactive gaming, are increasingly emerging [8]. Nevertheless,
mobile devices are always restricted in processing capacity and battery, so that
many applications cannot be run in such devices. The conflict between increasing
demand of resource-intensive applications and resource-limited devices becomes
a bottleneck for providing satisfactory quality of service (QoS) [9].

Mobile cloud computing (MCC) is conceived as a promising method of
addressing the above challenges. By offloading part of the tasks through wire-
less access to the resource-abundant cloud infrastructure, such as Amazon EC2
and Microsoft Azure [4], MCC can enhance the functionalities of mobile devices
for resource-scarce applications. However, an obvious drawback of MCC is that
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 345–358, 2017.
DOI: 10.1007/978-3-319-65482-9 23

346 W. Liu et al.

mobile devices always go through long delay for data exchange with the cloud
infrastructure, which would hurt the interaction as humans are sensitive to delay
and jitter. To take care of this problem, the cloudlet based MCC was proposed
as a promising solution [14]. Unlike depending on remote cloud infrastructure, it
is through one-hop WiFi wireless access that efficiency is promoted by reducing
latency, which is realized by offloading computation tasks to computing servers
nearby. However, the cloudlet based MCC has two obvious drawbacks: (1) indoor
environments are always neglected by the cloudlet based MCC owing to limited
coverage of WiFi networks; (2) owing to space constraint, the cloudlet based
MCC can not guarantee QoS of users as the cloudlet has no alternative but to
use computing servers with small/medium computation resources [4].

To take care of these problems, authors in [2,6,11] proposed mobile edge
clouds (MEC), a novel solution to supplement the cloudlet based MCC. As
described in Fig. 1, at the edge of access networks, MEC leverages the physical
proximity to mobile devices to augment the capabilities of mobile devices for
resource-scarce applications. Under this circumstance, fiber transmission from
the wireless base-station to the resource-abundant cloud infrastructure deployed
by telecom operators can meet the demand for fast interaction.

However, the task of developing a reliable and comprehensive MEC system
remains challenging. A key challenge is the communication from the mobile
devices to the MEC server incurs extra overhead, which are latency fluctua-
tion and extra energy cost. Another critical factor is bandwidth and computing
resources are limited, if too many mobile users offload computation tasks to the
cloud simultaneously, the cloud may not accommodate all of users and guarantee
users’ QoE (Quality of Experience). Hence how to achieve an efficient computa-
tion offloading coordination among mobile devices becomes an issue. This paper
computes offloading utility of each user and picks only part of them for offload-
ing. Owing to the constraint of limited bandwidth and computing resources, the
total bandwidth and computing resources of picked users could not be more than
that of the system. This paper designs an efficient offloading algorithm consid-
ering to maximize the system utility with varying number of users, under the
constraint of limited bandwidth and computing resources. This paper formu-
lates the issue as a resource allocation offloading problem solved by offloading
qualification judgement (described in Sect. 4.1) and resource allocation offload-
ing mechanism (described in Sect. 4.2), which transforms the NP-hardness issue
into a polynomial problem.

The rest of the paper is organized as follows. This paper first discusses
the related work in Sect. 2 and introduces the system model in Sect. 3. This
paper then proposes the resource allocation offloading problem and develops the
resource allocation offloading mechanism in Sects. 4 and 5, respectively. This
paper further extends the study to the case under the wireless contention model
and presents the numerical results in Sect. 6. The conclusion is in Sect. 7.

Efficient Computation Offloading for Various Tasks of Multiple Users 347

2 Related Work

Single-user computation offloading has been proposed in many previous work
(e.g., [7,12,16]). Rudenko et al. in [12] investigated that computation offloading
can significantly reduce energy consumption. Xian et al. in [16] demonstrated a
suspension scheme where mobile devices’ energy efficiency increase by computa-
tion offloading. Huang et al. in [7] developed an efficient majorization policy for
mobile computing by dynamic offloading to minimize the energy consumption.

A few works have addressed the centralized decision making of offloading
tasks from mobile devices to the cloud in a multi users context [13]. Lyu et al. in
[8] jointly optimized the offloading decision and resource utilization, formulated
the problem as a system utility maximization problem and solved the problem
by a centralized heuristic genetic algorithm. The previous work in [8] deter-
mined the number of users who eventually can be offloaded first (i.e., the system
bandwidth 20 MHz, UE (User Equipment) bandwidth 1 MHz, 20 MHz divided
by 1 MHz is equal to 20) and let users participate in the selection of offloading
algorithm process then. Given the fact that UE bandwidth is varied owing to
the varied cloud computing service contract subscribed by the user i from the
telecom operator and hence the number of users who eventually can be offloaded
can not be determined before the selection of offloading algorithm process, this
paper studies the generalized multi-user computation offloading problem in a
multi-service and multi-bandwidth of UE setting, which results in significant
differences in analysis with [8]. For example, this paper derives the input data
size of the face recognition application and processing the English main page
of Wikipedia (different services corresponding to different occupied bandwidth),
which is not true for the single-service case. This paper carries out the user selec-
tion of offloading algorithm process first, unnecessary to determine the number
of users who eventually can be offloaded before the selection. This paper also
investigates the issue of maximum system utility, which is solved by a resource
allocation offloading mechanism and sharply reduces the complexity compared
with the previous work in [8].

3 System Model

A multi-service MEC scenario is shown in Fig. 1. This paper considers a LTE
(Long Term Evolution) wireless base-station which serves N mobile users (e.g.
tablets, laptops and smartphones) in its range and connects to an edge cloud.
This paper denotes by Q

Δ= {i : 1, 2, ..., N} the set of all the users, and by
yi ∈ {0, 1} whether each user offloads or not (0 indicates no offloading and 1
indicates offloading). This paper also denotes by Y

Δ= {i|yi = 1} the set of all the
offloading users. Service, users’ occupied bandwidth and computation capability
assigned to each user are varied.

Each mobile user i has a computation task Γi
Δ= (wi, di) [3,4,8,9]: the total

CPU cycles wi to accomplish the task and the size of computation input data di

(bit) to transfer the input parameters and program codes from local to the edge

348 W. Liu et al.

Fig. 1. Multi-service offloading scenario

cloud. A mobile device i can apply the means in [5,17] to obtain the information
of wi and di.

Each computation task can be either executed locally or remotely in the edge
cloud. Since task completion time and energy consumption are the key influenc-
ing factors for both the users’ quality of experience and offloading decision-
making, this paper next investigates them in local and remote contexts.

3.1 Local Execution

For the local execution approach, a mobile device user i executes its computation
task Γi locally on the mobile device. Task completion time T l

i by local computing
is given as:

T l
i =

wi

f l
i

(1)

where f l
i is local computation capability (i.e., CPU cycles per second) of mobile

user i. Energy consumption of mobile user i El
i can be written as:

El
i = P l

i · T l
i = α · (f l

i)
β · wi

f l
i

= α · (f l
i)

β−1 · wi (2)

where P l
i is the CPU power consumption, α = 10−11 and β = 2. α and β can be

obtained by the measurement method in [3,4].

3.2 Remote Execution

For the remote execution approach, a mobile device user i will offload its com-
putation task Γi to the cloud in proximity deployed by telecom operator via
wireless access and the cloud will execute the computation task on behalf of the
mobile device user.

Efficient Computation Offloading for Various Tasks of Multiple Users 349

For the computation offloading, a mobile user i would incur the extra over-
head in terms of time and energy for transmitting the computation input data
to the cloud via wireless access.

It is known that the intra-cell interface is alleviated greatly in LTE networks
for the uplink transmission. Accordingly, the uplink data rate of user i can be
written as:

Ri = Bi · log2(1 +
piHi

ω0
) (3)

where Bi (Hz) denotes the occupied bandwidth of user i and is related with
task service type. The primary motivation of relating occupied bandwidth with
service is that the running applications of mobile devices are quite different. B
(Hz) denotes the system bandwidth, pi is transmission power of user i and ω0

denotes the background noise power. Hi is the channel gain (related to pathloss,
Rayleigh fading and lognormal shadowing standard deviation) from the user i
to the LTE base-station.

T r
i , the total task completion time of remote execution for user i, consists of

two parts:

T r
i = T t

i + T e
i =

di

Bilog2(1 + piHi

ω0
)

+
wi

fr
i

(4)

where T t
i and T e

i are transmission time and remote execution time, respectively.
It is supposed that the time for remote edge cloud to send the results back

to the mobile device could be neglected [7]. This is because the size of compu-
tation results is also much smaller than that of input data in general. So the
transmission energy of mobile user i for offloading the input data of size di can
be computed as

Er
i = pi · T t

i = pi · di

Bilog2(1 + piHi

ω0
)

(5)

3.3 Offloading Utility Function

For user i, task completion time and energy consumption can be obtained as:

Ti = yi · T r
i + (1 − yi)T l

i (6)

Ei = yi · Er
i + (1 − yi)El

i (7)

We define an offloading utility function of user i as [8]:

ui = λt
i

T l
i − Ti

T l
i

+ λe
i

El
i − Ei

El
i

= yi(λt
i

T l
i − T r

i

T l
i

+ λe
i

El
i − Er

i

El
i

) (8)

Note that the utility function characterizes the improvement in quality of expe-
rience compared with executing locally. To provide flexibility in capturing users’
preferences on task completion time and energy consumption, this paper defines:

λt
i, λ

e
i ∈ [0, 1], λt

i + λe
i = 1 (9)

350 W. Liu et al.

where λt
i is users’ preference on time for task completion and λe

i is user’ pref-
erence on task energy consumption. In practice the proper preferences which
capture users’ valuations on task completion time and energy consumption can
be determined by applying the multi-attribute utility method in the multiple
criteria decision making theory [15].

This paper formulates the system utility maximization problem as follows:

max
|Q|∑

i=1

ui(Bi, f
r
i , yi)

s.t. C1 : yi = {0, 1},∀i ∈ Q
P : C2 : Bi > 0,∀i ∈ Q

C3 : fr
i > 0,∀i ∈ Q

(10)

where Bi denotes the occupied bandwidth, fr
i represents the computation capa-

bility (i.e., CPU cycles per second) assigned to user i and yi denotes the offloading
decision, respectively. Bi and fr

i are determined according to the cloud comput-
ing service contract subscribed by the mobile user i from the telecom operator.
Q denotes the set of all the users. Constraint C1 states that a task can be either
executed locally or offloaded. According to Constraint C2, the occupied band-
width must be positive. Constraint C3 ensures that the computation capability
assigned to users must be positive.

The optimal offloading decision can be obtained by enumerating and com-
paring the whole possible offloading decisions. However, it is NP-hard. Thence,
this paper decomposes the system utility maximization problem into offloading
qualification judgement (described in Sect. 4.1) and resource allocation offloading
mechanism (described in Sect. 4.2).

4 Resource Allocation Offloading Problem

4.1 Offloading Qualification Judgement

Users in Q transmit the pilot signal to the wireless base-station, and receive
the information of assigned computation capability and occupied bandwidth
according to the cloud computing service contract subscribed by the mobile
users from the telecom operator.

Judgement 1. Users can calculate ui according to the Eq. (8). If ui > 0, user
i obtains qualification to participate in the process of Algorithm1 and i ∈ Y .
If ui ≤ 0, user i loses offloading qualification and i ∈ {Q\Y }. Since the system
utility is the sum of user utilities, if ui ≤ 0, user i has a negative impact on the
system utility, and also has a negative impact on its own QoE of remote exe-
cution. Hence, it loses qualification to participate in the process of Algorithm1
naturally.

The set Y whose users own qualification to participate in the process of
Algorithm 1 can be obtained. Then all users in Y send offloading requests to the
edge cloud. After the edge cloud receives all requests, it judges whether the first

Efficient Computation Offloading for Various Tasks of Multiple Users 351

user offloads the task or not. As long as the communication and computation
resources are both adequate, the first user is permitted to offload. Then the
utility value of the first user and the current maximum system utility can be
calculated.

4.2 Resource Allocation Offloading Problem

For the second user, if the communication and computation resources remain
both adequate, G[Bnorm][Fnorm] and G[Bnorm −B1 norm][Fnorm −fr

1 norm]+u2

should be compared, which indicates the maximum system utility when the
first user offloads under the constraints of bandwidth B and the maximum
instructions F per second allowed at the remote edge cloud, and indicates
the maximum system utility of the first user and the second user, respec-
tively. If G[Bnorm][Fnorm] is greater, the second user is prevented offloading.
If G[Bnorm − B1 norm][Fnorm − fr

1 norm] + u2 is greater, the second user is per-
mitted to offload.

If the user j executes the task locally, the system utility is G[Bnorm][Fnorm].
If the user j offloads the task, the system utility is G[Bnorm −Bj norm][Fnorm −
fr

j norm] + uj . Then the comparison procedure repeats until all users in Y are
decided to be offloaded or not. The problem L is transformed as:

max
|Y |∑

i=1

ui(Bi, f
r
i , yi)

s.t. C1 : yi = {0, 1},∀i ∈ Y
C2 : Bi > 0,∀i ∈ Y

L : C3 :
∑

i∈ZBi ≤ B
C4 : fr

i > 0,∀i ∈ Y
C5 :

∑
i∈Zfr

i ≤ F

(11)

where Bi, fr
i , yi, Q, Constraint C1, constraint C2 and constraint C4 are the

same as those in the problem P . Constraint C3 ensures that the total occu-
pied bandwidths of users are less than the system bandwidth B. Constraint
C5 guarantees that the total computation capability assigned are less than the
maximum instructions per second allowed at the remote edge cloud, denoted as
F . Z represents the set of all the users who eventually offload the task to the
wireless base-station (i.e. Y is the input of Algorithm1 and Z is the output of
Algorithm 1, Z ⊂ Y).

5 Resource Allocation Offloading Mechanism

In Algorithm 1, Bremain and Fremain denotes current remaining channel band-
width and remaining computation capability, respectively. Bnorm is the unit-
normalized symbol of B and Fnorm is the unit-normalized symbol of F . (i.e.,
B is set to 20 MHz, thence Bnorm is 20. F is set to 20 GHz, thence Fnorm is
20.) The primary motivation of using unit-normalized symbol is the application

352 W. Liu et al.

Algorithm 1. Resource Allocation Offloading Mechanism (RAOM)
Stage I (Judgement 1): at each user i
1: if ui ≤ 0 then
2: lose the offloading qualification
3: else
4: send an offloading request to the edge cloud
5: end if
Stage II: the edge cloud judge whether the first user offload the task or not
6: wait until all the requests are received
7: for index F = Fnorm : −1 : 0
8: for index B = Bnorm : −1 : 0
9: if B|Y | < Bremain && fr

|Y | < Fremain

10: G(index B, index F) = u|Y |
11: else
12: G(index B, index F) = 0
13: end if
14: end
15: end
Stage III: the edge cloud, repeat Stage II, judge

whether the latter user offload the task or not
16: for index B = Bnorm : −1 : 0
17: for index F = Fnorm : −1 : 0
18: G[Bnorm][Fnorm] = max{G[Bnorm][Fnorm], G[Bnorm−

Bi norm][Fnorm − fr
i norm] + ui}

19: end
20: end
Stage IV: the edge cloud find out the users who offload the task
21: determine the users whose task should be offloaded by the value of G
22: the edge cloud send the offloading decision to the mobile users who have sent

an offloading request to notice them whether their task can be offloaded or not

convenience in Algorithm 1. |Y | denotes the user number of set Y , and 1,2,...,|Y |
are the serial numbers of users in set Y , index |Y | ∈ {1, 2, ..., |Y |}.

The time complexity of Algorithm 1 is O (N · Bnorm · Fnorm) and the space
complexity of Algorithm 1 is O (Bnorm · Fnorm). Note that the loop index B =
Bnorm : −1 : 0 has to be inverse order rather than index B = 1 : 1 : Bnorm +
1. The loop index F = Fnorm : −1 : 0 has to be inverse order rather than
index F = 1 : 1 : Fnorm +1. The step length is set to −1, which guarantees that
the space complexity is O (Bnorm · Fnorm) rather than O (N · Bnorm · Fnorm).

6 Numerical Results

6.1 Comparison of System Utility and Task Completion Time

In this section, this paper evaluates the proposed resource allocation offloading
mechanism by numerical studies. This paper adopts the face recognition in [4,8]
and the workload of processing the English main page of Wikipedia in [10].

Efficient Computation Offloading for Various Tasks of Multiple Users 353

Table 1. Simulation parameters

Parameters Values

LTE base-station radius r 500 m

System bandwidth B 60 MHz

Maximum instructions allowed at edge cloud F 60 GHz

Input data size of face recognition d1 420 KB

Input data size of wikipedia d2 125 B

Number of CPU cycles of face recognition w1 1000 MCycles

Number of CPU cycles of wikipedia w2 737500 Cycles

Occupied bandwidth of face recognition 3 MHz

Occupied bandwidth of wikipedia 1 MHz

Assigned computation capability 1 GHz–3 GHz

Noise power ω0 −174 dBm/Hz

Rayleigh fading 20 dB

Lognormal shadowing standard deviation 10 dB

Pathloss from mobile device to LTE BS 128.1 + 37.5log10(r)

Maximum transmission power of mobile device pi 23 dBm

Local CPU computation capability f l
i 0.5 GHz–1.5 GHz

Users preference on task completion time λt
i 0–1

Users preference on task energy consumption λe
i 1 − λt

i

For comparing the performances, this paper also considers other four algo-
rithms as follows:

(1) Enumeration algorithm (EA): All 2N offloading decisions are enumerated
and compared to find the optimal one.

(2) Joint optimization without offloading qualification judgement (JWOJ): All
users participate in the selection of RAOM directly rather than participate
in Judgement 1 before the selection.

(3) Simulated Annealing Algorithm (SAA): Firstly, it is assumed that all users
offload and a group of initial solution can be gotten. Then a new decision is
generated, updating the number of offloading users and the maximum system
utility. If the new utility is greater than the previous one, the new decision
will be adopted. As a heuristic algorithm, SA employs initial temperature
and cooling factor to control iterations. When temperature drops to the
designated value, iteration stops and the maximum system utility at this
time is the final result.

(4) 0-1 Linear Programing (LP): The optimal object is maximum system utility.
Meanwhile, the total occupied bandwidths are less than the system channel
bandwidth and the total computation capability assigned are less than the
maximum instructions per second allowed at the remote edge cloud.

354 W. Liu et al.

0 10 20 30 40 50 60 70 80 90

Number of Users

-2

0

2

4

6

8

10

12

14

16

18

M
ax

im
um

 S
ys

te
m

 U
til

ity

JWOJ
EA
RAOM
SAA
LP

Fig. 2. Comparison of system utility

0 10 20 30 40 50 60 70 80 90

Number of Users

0

2

4

6

8

10

12

14

16

18

A
ve

ra
ge

 T
im

e
C

on
su

m
pt

io
n

JWOJ
EA
RAOM
SAA
LP

Fig. 3. Comparison of task time

Figure 2 demonstrates a comparison of maximum system utility achieved by
JWOJ, EA, RAOM, SAA and LP. JWOJ performs much worse than RAOM as
no Judgement 1 implements: Users whose ui ≤ 0 also participate in offloading,
causing the system utility decreases. RAOM performs very close to the optimal
solution computed by EA. Its performance remains within 10% of the optimal.
Comparing RAOM, SAA and LP, when number of users is less than 40, three
algorithms have similar performance. As number of users increases, RAOM has
a more thorough and superior resource allocation mechanism than the other
two algorithms and achieves better computation offloading performance when
number of users is greater than 40.

Figure 3 reflects a QoS comparison for the users, which is the comparison
of task completion time realized by JWOJ, EA, RAOM, SAA and LP. When
number of users is less than 16, the time consumption of JWOJ is slightly shorter
than RAOM as JWOJ involves no Judgement 1. When number of users is greater
than 16, the drawback of involving no Judgement 1 becomes visible. The time
consumption of JWOJ is much longer than RAOM as too many users who do
not satisfy Judgement 1 (ui ≤ 0) also participate in offloading. RAOM can
achieve up-to 99% time consumption reduction over with SAA and EA while
the system utility of RAOM remains outside 20% of SAA and within 10% of the
optimal computed by EA. Although the task completion time realized by LP is
shorter than that of RAOM, the system utility realized by LP in Fig. 2 is much
less than those of the optimal and RAOM. For users, RAOM brings better user
experience of offloading than the other four algorithms, which means shorter
time and higher efficiency. Figure 4 further illustrates how RAOM significantly
reduces users’ task completion time.

Figure 4 shows a distribution of 90 users’ task completion time realized by
RAOM. In this random simulation, 38 users whose completion time is close to
0 are offloaded users. The remaining 52 users are not picked by RAOM and
execute their tasks locally. In this case, RAOM properly chooses 38 users to be
offloaded and help them save a lot of time (from around 2.5 to around 0).

Efficient Computation Offloading for Various Tasks of Multiple Users 355

0 10 20 30 40 50 60 70 80 90

User Number

0

0.5

1

1.5

2

2.5

3

T
as

k
C

om
pl

et
io

n
T

im
e

Fig. 4. Distribution of task completion time

6.2 Extension to Wirelessinterference Model

In the previous sections above, this paper mainly focuses on exploring the com-
putation offloading problem under the model as given in Fig. 1, which consists of
a LTE macro wireless base-station and N mobile users in its range. In order to
be more accordant with practical circumstances, this paper extends the study to
the wireless interference between the macro base-station and small base-stations.
In this case, the number of simulated users should increase synchronously.

Hotspot is an appropriate model to simulate the topology of the whole system
as shown in Fig. 5. The hotspot graph starts with 4 seed points. 6 small cells
and approximate 60 users distribute randomly besides each seed point. A macro
cell is set up in the center of the area, in charge of the area which can not be
covered by small cells. By applying hotspot model, mobile users can distribute
more intensively so as to be more accordant with practical circumstances.

0 50 100 150 200 250 300 350 400 450 500

x

0

50

100

150

200

250

300

350

400

450

500

y

macro cell base station
seed point
small cell base staion
users

Fig. 5. Wireless interference model

As interference among users in the same small cell and between different small
cells can be eliminated by receiving ends, this paper only considers interference

356 W. Liu et al.

between the macro cell and small cells. Based on Eq. (3), the modified uplink
data rate of user Rin

can be written as:

Rin = Bin · log2(1 +
pinHin

Iin + ω0
) (12)

n, k denotes the serial number of small cells. i, j denotes the serial number of
users. Iin denotes the total interference from other cells:

Iin =
∑

jK∈I,k �=n

pjkHjk (13)

According to the 3GPP specification [1], the bandwidth of each small cell is
set to 10 MHz and the bandwidth of the macro cell is set to 20 MHz. The scenario
area is 500m ∗ 500m. The other communication and computation parameters
used in the simulations are summarized in Table 1.

0 50 100 150 200 250

Number of Users

0

5

10

15

M
ax

im
um

 S
ys

te
m

 U
til

ity

RAOM
SAA
LP

Fig. 6. Comparison of system utility

0 50 100 150 200 250

Number of Users

0

10

20

30

40

50

60

N
um

be
r

of
 O

ffl
oa

di
ng

 N
um

be
rs

RAOM
SAA
LP

Fig. 7. Comparison of offloading users

Figure 6 depicts maximum system utility changes with number of users when
considering interference between the macro cell and small cells. Compared with
Fig. 2, the curve trend is totally different, testifying the interference is too serious
to be ignored and the model extension is worthwhile. When number of users
is less than 80, three algorithms have similar performance. As number of users
increases, the effect of interference on system utility becomes appreciable. RAOM
has superior interference immunity than the other two algorithms and achieves
efficient computation offloading performance when number of users is greater
than 80 (Fig. 7).

As shown in Fig. 8, when preference coefficient on task energy consumption
in the range of 0.35 to 0.55 and 0.65 to 1, the maximum system utility realized
by RAOM is slightly greater than the other two algorithms. The superior range
occupies 55% of the whole range. As shown in Figs. 8 and 9, RAOM is also the
most sensitive algorithm as its curve slope has the most obvious change as the
preference coefficient changes, which has more adaptability to different users’
preferences in practice.

Efficient Computation Offloading for Various Tasks of Multiple Users 357

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Preference Coefficient on Task Energy Consumption

0

5

10

15

20

25

30

35

40

45

50
M

ax
im

um
 S

ys
te

m
 U

til
ity

RAOM
SAA
LP

Fig. 8. Sensitivity of system utility

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Preference Coefficient on Task Energy Consumption

10

20

30

40

50

60

70

80

90

100

110

N
um

be
r

of
 O

ffl
oa

di
ng

 N
um

be
rs

RAOM
SAA
LP

Fig. 9. Sensitivity of offloading users

7 Conclusion

This paper proposes a resource allocation offloading mechanism for the computa-
tion offloading decision making problem among multiple mobile users for mobile
edge clouds. This paper formulates the problem as a system utility maximization
problem, designs a resource allocation offloading mechanism that can maximize
system utility within the constraints of system bandwidth and maximum instruc-
tions per second allowed in edge clouds and also quantifies its efficiency ratio over
the optimal solutions in terms of two vital performance metrics. This paper fur-
ther extends the study to the scenario of multi-user computation offloading in the
wireless interference model. Numerical results demonstrate that the extension is
worthwhile and the proposed mechanism RAOM achieves efficient computation
offloading performance either with interference or without interference.

References

1. EUTR Access: Further advancements for E-UTRA physical layer aspects. Technical
report, 3GPP TR 36.814 (2010)

2. Barbarossa, S., Sardellitti, S., Di Lorenzo, P.: Joint allocation of computation and
communication resources in multiuser mobile cloud computing. In: 2013 IEEE 14th
Workshop on Signal Processing Advances in Wireless Communications (SPAWC),
pp. 26–30. IEEE (2013)

3. Chen, X.: Decentralized computation offloading game for mobile cloud computing.
IEEE Trans. Parallel Distrib. Syst. 26(4), 974–983 (2015)

4. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for
mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24, 2795–2808 (2015)

5. Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu, S., Chandra, R.,
Bahl, P.: MAUI: making smartphones last longer with code offload. In: Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Services,
pp. 49–62. ACM (2010)

6. Drolia, U., Martins, R., Tan, J., Chheda, A., Sanghavi, M., Gandhi, R.,
Narasimhan, P.: The case for mobile edge-clouds. In: 2013 IEEE 10th International
Conference on Ubiquitous Intelligence and Computing and 10th International Con-
ference on Autonomic and Trusted Computing (UIC/ATC), pp. 209–215. IEEE
(2013)

358 W. Liu et al.

7. Huang, D., Wang, P., Niyato, D.: A dynamic offloading algorithm for mobile com-
puting. IEEE Trans. Wirel. Commun. 11(6), 1991–1995 (2012)

8. Lyu, X., Tian, H., Zhang, P., Sengul, C.: Multi-user joint task offloading and
resources optimization in proximate clouds. IEEE Trans. Veh. Technol. (2016)

9. Mao, Y., Zhang, J., Letaief, K.B.: Dynamic computation offloading for mobile-
edge computing with energy harvesting devices. IEEE J. Sel. Areas Commun. 34,
3590–3605 (2016)

10. Miettinen, A.P., Nurminen, J.K.: Energy efficiency of mobile clients in cloud com-
puting. HotCloud 10, 4 (2010)

11. Patel, M., Naughton, B., Chan, C., Sprecher, N., Abeta, S., Neal, A., et al.: Mobile-
edge computing introductory technical white paper. White Paper, Mobile-Edge
Computing (MEC) Industry Initiative (2014)

12. Rudenko, A., Reiher, P., Popek, G.J., Kuenning, G.H.: Saving portable computer
battery power through remote process execution. ACM SIGMOBILE Mob. Com-
put. Commun. Rev. 2(1), 19–26 (1998)

13. Sardellitti, S., Scutari, G., Barbarossa, S.: Joint optimization of radio and com-
putational resources for multicell mobile-edge computing. IEEE Trans. Sig. Inf.
Process. Netw. 1(2), 89–103 (2015)

14. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based
cloudlets in mobile computing. IEEE Pervasive Comput. 8(4) (2009)

15. Wallenius, J., Dyer, J.S., Fishburn, P.C., Steuer, R.E., Zionts, S., Deb, K.: Multiple
criteria decision making, multiattribute utility theory: recent accomplishments and
what lies ahead. Manage. Sci. 54(7), 1336–1349 (2008)

16. Xian, C., Lu, Y.H., Li, Z.: Adaptive computation offloading for energy conservation
on battery-powered systems. In: 2007 International Conference on Parallel and
Distributed Systems, vol. 2, pp. 1–8. IEEE (2007)

17. Yang, L., Cao, J., Yuan, Y., Li, T., Han, A., Chan, A.: A framework for partition-
ing and execution of data stream applications in mobile cloud computing. ACM
SIGMETRICS Perform. Eval. Rev. 40(4), 23–32 (2013)

A CNN-Based Supermarket
Auto-Counting System

Zhonghong Ou(B), Changwei Lin, Meina Song, and Haihong E

Beijing University of Posts and Telecommunications, Beijing, China
{zhonghong.ou,linchangwei,mnsong,ehaihong}@bupt.edu.cn

Abstract. Deep learning has made significant breakthrough in the past
decade. In certain application domain, its detection accuracy has sur-
passed human being in the same task, e.g., voice recognition and object
detection. Various novel applications has been developed and achieved
good performance by leveraging the latest advances in deep learning. In
this paper, we propose to utilize deep learning based technique, specifi-
cally, Convolutional Neural Network (CNN), to develop an auto-counting
system for supermarket scenario. Given a picture, the system can auto-
matically detect the specified categories of goods (e.g., Head & Shoulders
bottles) and their respective numbers. To improve detection accuracy of
the system, we propose to combine hard example mining and multi-scale
feature extraction to the Faster R-CNN framework. Experimental results
demonstrate the efficacy of the proposed system. Specifically, our system
achieves an mAP of 92.1%, which is better than the state-of-the-art, and
the response time is about 250ms per image, including all steps on a
GTX 1080 GPU.

Keywords: Auto-counting system · Deep learning · Convolutional
Neural Network

1 Introduction

Deep learning based techniques have experienced significant development in the
past decade. From the milestone paper published by Hinton et al. [8] in 2006
in Science, deep learning has made breakthrough in many domains. In 2009,
deep learning was introduced to solve the problem of voice recognition. In 2010,
the voice recognition accuracy was improved by more than 20%, which is more
than the accumulative total in the past few years. In machine vision domain,
in the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [22],
Hinton et al. utilized Convolutional Neural Network (CNN) to classify images
and decreased the top-5 classification error rate to 15.3%. It improved the state-
of-the-art (with 26.2% error rate) by more than 10%. Moreover, deep learning
based techniques have been used in other domains as well, e.g., text understand-
ing, activity recognition, and medical image processing, and achieved significant
better performance than conventional approaches.

c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 359–371, 2017.
DOI: 10.1007/978-3-319-65482-9 24

360 Z. Ou et al.

On the other hand, a number of deep learning based frameworks and libraries
have been made publicly available. For example, Google open sourced Tensor-
Flow [12], a software library for numerical computation using data flow graphs.
Berkeley also open sourced Caffe [4], a deep learning framework which supports
good expression, speed, and modularity. There are also a number of other frame-
works which are publicly available, e.g., Torch [31], Theano [28], Keras [18], and
CNTK [5], just to name a few. These open source deep learning libraries and
frameworks have made deep learning techniques readily accessible to many other
domains than computer science. A lot of novel applications have been developed
based on the frameworks mentioned above. For example, Esteva et al. [6] utilized
Google Inception v3 architecture, which is a model contained in TensorFlow, to
detect skin cancers from pictures, and achieved comparable and even slightly
better detection accuracy than board-certified dermatologists. Put it in another
way, deep learning based techniques have become a tool to enable application
scenarios in many domains.

Fig. 1. Output of the proposed system. Rectangles label the products that are of
interests to the system. Different color stands for different product category.

A CNN-Based Supermarket Auto-Counting System 361

In this paper, we propose to utilize CNN to develop an auto-counting sys-
tem for supermarket scenarios. The system takes an picture as input, and then
outputs the different categories and the respective number of each category con-
tained in the picture. Figure 1 illustrates one example of the output of the pro-
posed system. The system can be used in various scenarios, e.g., auto-counting
products on supermarket shelves, or estimating the number of goods in storage.
We use Caffe [4] to train the model and encapsulate it into our system mod-
ule as the core recognition component. The clients gain recognition results from
the server through HTTP requests and carry out analysis and rendering. We
implement the system on both CPU and GPU based machines, and conduct
well-defined experiments to evaluate its performance.

To summarise, we make the following key contributions in this paper:

1. We propose to utilize CNN to develop an auto-counting system for supermar-
ket scenarios;

2. We propose a new object detection method which combines hard example
mining and multi-scale feature extraction into the Faster R-CNN framework,
and acquire better performance than Faster R-CNN;

3. We implement the proposed system on both CPU and GPU based machines;
experimental results demonstrate efficacy of the system. Specifically, our sys-
tem achieves a mAP of 92.1%, which is better than Faster R-CNN, and the
response time is around 250 ms per image, including all steps on a GTX 1080
GPU.

2 Background

In this section, we describe background information that are necessary to under-
stand the architecture of our system. Specifically, we present existing object pro-
posal and detection techniques, especially deep learning based approaches. We
first describe Faster R-CNN in Sect. 2.1, then present the techniques to resolve
hard example mining in Sect. 2.2, and introduce multi-scale feature maps for
object detection in Sect. 2.3.

2.1 Faster R-CNN

In the past few years, a number of object detection techniques have been pro-
posed. Typical examples include R-CNN [10], Fast R-CNN [9] and Faster R-
CNN [21]. Faster R-CNN was proposed by Ren et al. [21], and is mainly based
on the R-CNN and Fast-RCNN framework. As shown in Fig. 2, the Faster R-
CNN architecture consists of three steps: (1) CNN feature extraction; (2) region
proposal; and 3) object classification and fine-grained bounding box regression
(bbox reg in Fig. 2). As an improvement, Faster R-CNN introduced a novel
Region Proposal Networks (RPN) for region proposal with higher accuracy and
faster speed. RPN, regarded as the highlight of Faster R-CNN, generates pro-
posals with a deep convolutional network and shares full-image convolutional
features with Fast R-CNN. The unified network of Faster R-CNN gains better
performance both in speed and accuracy.

362 Z. Ou et al.

Fig. 2. Architecture of faster R-CNN.

2.2 Hard Example Mining

There are a few recent studies [20,24,25,34] that select hard examples for train-
ing deep networks. Shrivastava et al. [24] proposed a novel bootstrapping tech-
nique called online hard example mining (OHEM) for training state-of-the-art
CNN-based detection models. The algorithm is a simple modification to Stochas-
tic Gradient Descent (SGD) in which training examples are sampled according
to a non-uniform, non-stationary distribution that depends on the current loss
of each example under consideration. The method takes advantage of detection-
specific problem structure in which each SGD mini-batch consists of only one or
two images, but thousands of candidate examples. The candidate examples are
subsampled according to a distribution that favors diverse, high loss instances.
Gradient computation (back propagation) is still efficient because it only uses
a small subset of all candidates. Applying OHEM to the standard Fast R-CNN
detection method has shown a consistent and significant boost in mean average
precision compared to the baseline training algorithm.

2.3 Multi-scale Feature Maps for Object Detection

The popular CNN-based detection method such as Faster R-CNN extracts fea-
tures only from the last convolution layer for region proposal and object classifi-
cation. Deep feature maps are highly semantic. Nevertheless, they still struggle
in small-size object detection and precise localization, mainly due to the coarse-
ness of its feature maps. A number of recent approaches improve detection by
aggregating feature maps from multiple layers and then compressing them into
a uniform space before making the prediction. Multi-scale feature maps well
incorporate deep but highly semantic, intermediate but really complementary,
and shallow but naturally high-resolution features of the image, thus are helpful
to both generate proposals and detect objects. Representatives include Hyper-
columns [13], HyperNet [16], ParseNet [19], and ION [3].

A CNN-Based Supermarket Auto-Counting System 363

3 Design and Implementation

In this section, we present the auto-counting system, which combines hard exam-
ple mining and multi-scale feature extraction to the Faster R-CNN framework.
We first introduce the training details in Sect. 3.1, and then present the design
and implementation of the system in Sect. 3.2.

Fig. 3. Structure of our model. (Color figure online)

3.1 Training Model

The structure of our model is illustrated in Fig. 3. We simultaneously add hard
example mining and hyper feature extraction method to the Faster R-CNN base-
line structure. We implement both methods using the Caffe framework. The two
improvements made in the model are described briefly as follows:

The implementation of hard example mining is composed of two copies of the
detection network: (1) detection network (a), which allocates memory only for
forward pass of all Region of Interest (RoI); (2) standard detection network (b),
which allocates memory for both forward and backward passes. It is notable that
detection network (a) and (b) share parameters. For an SGD iteration, given the
feature maps, detection network (a) performs a forward pass and computes loss
for all input RoIs (green arrows); then the hard RoI sampling module selects
hard examples (R-hard) by ranking loss and inputs them to detection network
(b) (red arrows). This network computes forward and backward passes only for
R-hard, and accumulates the gradients and passes them to the front convolution
network.

The implementation of hyper feature extraction combines feature maps from
multiple layers. Because of subsampling and pooling operations in CNN, these

364 Z. Ou et al.

feature maps from multiple layers are not at the same resolution. To combine
multi-level maps at the same resolution, we carry out different sampling strate-
gies for different layers. We add a max pooling layer on the lower layer to carry
out subsampling. For higher layers, we add a deconvolutional operation (Deconv)
to conduct upsampling. A convolutional layer (Conv) is applied to each sampled
result. The Conv operation not only extracts more semantic features but also
compresses them into a uniform space. Finally, we can acquire the hyper feature
maps and apply them to the subsequent detection modules.

3.2 Design and Implementation of Our System

The overall architecture of our system is shown in Fig. 4. The system takes
an picture as input, and then passes it to the recognition server through an
HTTP request. In the HTTP response returned by the server, a list of para-
meters are contained where instances of the objects are detected in the image.
The parameters contain 4 aspects, consisting of class name, location coordi-
nates, corresponding classification confidence score, and the response time on
the recognition server as a reference. Note that this problem is distinct from and
more challenging than the simple classification problem, which decides whether
an input image contains an instance of the specific object class or not. The
additional location information of the detection task is useful for the counting
problem, and is necessary for image rendering for better display.

Fig. 4. Overall architecture of our proposed system.

4 Performance Evaluation

In this section, we evaluate performance of our system. We first present the
dataset used in Sect. 4.1, then describe the evaluation metrics in Sect. 4.2, and
finally, present the experimental results in Sect. 4.3.

4.1 Datasets

To test detection performance, we first used the standard PASCAL VOC 2007
detection benchmarks [15] to validate our method. PASCAL VOC 2007 dataset

A CNN-Based Supermarket Auto-Counting System 365

covers 20 categories, 9,963 images in total containing 24,640 annotated objects.
Then, in order to detect goods on supermarket shelves, we collected 500 goods
pictures mainly belonging to shampoo category from different supermarket,
and labeled 4 subcategories with class name (hfs-qsqysmall, hfs-qsqybig, hfs-
ysblsmall, hfs-ysblbig) and location coordinates. It is notable that the class name
with “small” suffix indicates the object has smaller size in actual compared with
the class name with “big” suffix. hfs is the Chinese acronym of the shampoo
brand, i.e., Heads & Shoulders, which we used to test our system; qsqy and ysbl
stands for different subcategory. In total, our shampoo dataset consists of 500
images containing 5306 object instances. The dataset is divided into training set
and testing set, containing 400 images and 100 images, respectively.

4.2 Evaluation Metrics

We use recall, precision and mAP as the evaluation metrics of our proposed
method.

Recall is defined as the proportion of all positive examples ranked above a
given rank. The detailed calculation is listed in Eq. 1.

Recall =
TruePositive

TruePositive + FalseNegative
(1)

Precision is defined as the proportion of all examples above that rank which
are from the positive class. The detailed calculation is listed in Eq. 2.

Precision =
TruePositive

TruePositive + FalsePositive
(2)

The terms positive and negative refer to the classifier’s prediction, and the
terms true and false refer to whether that prediction corresponds to the external
judgment.

Average Precision (AP) summarises the shape of the precision/recall
curve, and is defined as the mean precision at a set of eleven equally spaced
recall levels [0, 0.1, ..., 1]:

AP =
1
11

∑

r∈{0,0.1,··· ,1}
Pinterp(r) (3)

The precision at each recall level r is interpolated by taking the maximum
precision measured for a method for which the corresponding recall exceeds r:

Pinterp(r) = max
r̃:r̃≥r

p(r̃) (4)

mean Average Precision (mAP) is the mean value of AP of all N classes,
representing the overall result.

mAP =
1
N

N∑

i

APi (5)

366 Z. Ou et al.

4.3 Results

PASCAL VOC 2007 Data Set. We first compare our proposed scheme, as
shown in Fig. 3, with Faster R-CNN for generic object detection on PASCAL
VOC 2007. Detailed results are listed in Table 1. The performance is measured
by the AP of each category and the mAP of the 20 categories contained in the
PASCAL VOC 2007 dataset. Both methods start from the same pre-trained
VGG16 [32] network and use bounding box regression, ensuring consistency of
test procedures by the same parameters with Intersection over Union (IoU = 0.5).

From Table 1, we can see that the overall trend is that our approach out-
performs Faster R-CNN in every category. However, the exact outperformance
ranges from category to category. For example, for the bike category, our app-
roach outperforms Faster R-CNN by 1.8%; while for the plant category, the
improvement of our approach reaches 14.7%. Overall, faster R-CNN achieves a
mAP of 69.9%, while our method achieves a mAP of 75.0%, which is 5.1 points
higher than the former.

As we have shown above, the improvement of our method is mainly because
of the benefits from multi-scale feature maps and hard example mining. The
extraction of multi-scale feature can acquire both detailed texture feature and
highly semantic feature, which is useful for small-size object detection and precise
location. On this basis, the hard example mining method, which selects better
samples as the negative samples, further optimizes the region proposal and clas-
sification quality. Consequently, the use of both multi-scale feature extraction
and hard example mining improves detection accuracy significantly.

Moreover, reasonable resolution of multi-scale feature maps makes for better
object localization, especially when the object size is small. For objects of small
size, our detection network outperforms Faster R-CNN by a significant margin,
as shown in dotted circles in Table 1. For the bottle category, our approach
achieves an AP of 60.2%, which is 10.3 points improvement than Faster R-
CNN; while for the plant category, our method improves AP by 14.7 points
(53.8% − 39.1% = 14.7%), compared with Faster R-CNN.

Table 1. Results on PASCAL VOC 2007 test set (with IoU = 0.5). Dotted circles
stand for small-object detection results.

Method mAP arco bike bird boat bottle bus car cat chair cow

Faster R-CNN 69.9 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3

Ours 75.0 73.6 82.4 75.1 63.3 60.2 80.2 83.3 85.6 59.3 77.2

Method table dog horse mbike person plant sheep sofa train tv

Faster R-CNN 67.2 80.3 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6

Ours 74.5 84.8 86.5 78.4 80.9 53.8 70.4 73.2 83.2 74.6

A CNN-Based Supermarket Auto-Counting System 367

Shampoo Data Set. Then, we train both Faster R-CNN baseline network
and our improvement network through the newly collected dataset, as described
in Sect. 4.1. Recall results are illustrated in Fig. 5, while precision results are
demonstrated in Fig. 6. Conf thresh value shown on the x-axis stands for the
confidence threshold. Through the two figures, we can see that recall decreases
as the conf thresh increases, while precision increases along with conf thresh.
On the other hand, it is obvious that detection results of the objects with small
size (hfs-qsqysmall, hfs-ysblsmall) are worse than the objects with large size
(hfs-qsqybig, hfs-ysblbig), including both recall and precision. If the camera
is far away from the shelves which leads to smaller size of the objects in the
picture, the detection result will be worse.

Fig. 5. Recall along with confidence threshold (conf thresh) on the shampoo data set.

The AP results of our system compared with Faster R-CNN are illustrated
in Fig. 7. From the figure, it is clear that our method acquires better AP than
Faster R-CNN on each class. Especially, the detection result of small size objects
of our approach is comparable to that of large objects from Faster R-CNN.
Finally, our method on the new shampoo dataset achieves a mAP of 92.1%, while
Faster R-CNN achieves a mAP of 85.8%. The running time for obtaining results
is about 250 ms per image, including all steps on a GTX 1080 GPU. Figure 8
illustrates some detection results of our system on the shampoo dataset, which
demonstrates that our system can successfully detect the objects of interest.

368 Z. Ou et al.

Fig. 6. Precision along with confidence threshold (conf thresh) on the shampoo data
set.

Fig. 7. Average Precision (AP) along with confidence threshold on the shampoo data
set.

5 Related Work

CNN-based object detection. In the past few years, significant improvement
has been made in object detection. Inspired by the successful application of
deep CNN to ImageNet classification [22], the R-CNN [10] and OverFeat [23]
detectors have been proposed with good results on PASCAL VOC [15] and
ImageNet detection task. OverFeat is based on the sliding-window detection
method, which is presumably the most intuitive and oldest search method for

A CNN-Based Supermarket Auto-Counting System 369

Fig. 8. Selected examples of object detection results on the shampoo data set using
our system, illustrating that our system can successfully detect the objects of interest.

detection. R-CNN [10], in contrast, uses region proposals, a method that was
made popular by the selective search algorithm [32]. Since R-CNN, there has
been rapid progress in region-based detection network, including SPPnet [14],
Fast R-CNN [9], and Faster R-CNN [21].

Object detection application cases. There have been many practical
usage scenarios of CNN-based object detection to deal with different prob-
lems such as face detection [7,15,17], pedestrian detection [29,30,35], vehicle
detection [33,36], traffic-sign detection [26,27,37], fruit detection [1,2] and part
detection [11]. Nevertheless, to the best of our knowledge, there has not been
any object detection application to solve goods detection for supermarket auto-
counting scenario. Thus, the study conducted in this paper is necessary and
well-motivated.

6 Conclusion

We presented object detection method using hard example mining and multi-
scale feature extraction based on Faster R-CNN in this paper, and applied it
to the practical scenario of goods detection for supermarket auto-counting sce-
nario. Our system can help calculate the occupancy of various categories of goods
on the shelves automatically by using pictures, which can reduce the operating
costs of the wholesale industry and promote the wholesale decision making. By
combining hard example mining and multi-scale feature extraction to the Faster
R-CNN framework, our system improved the state-of-the-art in terms of detec-
tion accuracy. Moreover, our system can return response within a reasonable
time frame. Thus, it is of practical value for realistic scenarios. In the future, we
will extend our system to cover panoramic pictures, and improve response time
further.

370 Z. Ou et al.

References

1. Bargoti, S., Underwood, J.: Deep fruit detection in orchards. arXiv preprint
arXiv:1610.03677 (2016)

2. Bargoti, S., Underwood, J.P.: Image segmentation for fruit detection and yield esti-
mation in apple orchards. J. Field Robot. arXiv preprint arXiv:1610.08120 (2017)

3. Bell, S., Lawrence Zitnick, C., Bala, K., Girshick, R.: Inside-outside net: detecting
objects in context with skip pooling and recurrent neural networks. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2874–
2883 (2016)

4. Caffe (2017). http://caffe.berkeleyvision.org/. Accessed 13 Apr 2017
5. CNTK (2017). https://github.com/Microsoft/CNTK/. Accessed 13 Apr 2017
6. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.:

Dermatologist-level classification of skin cancer with deep neural networks. Nature
542, 115–118 (2017)

7. Farfade, S.S., Saberian, M.J., Li, L.J.: Multi-view face detection using deep con-
volutional neural networks. In: Proceedings of the 5th ACM on International Con-
ference on Multimedia Retrieval, pp. 643–650. ACM (2015)

8. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science 313(5786), 504–507 (2006)

9. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440–1448 (2015)

10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on computer Vision and Pattern Recognition, pp. 580–587 (2014)

11. Gonzalez-Garcia, A., Modolo, D., Ferrari, V.: Objects as context for part detection.
arXiv preprint arXiv:1703.09529 (2017)

12. TensorFlow (2017). https://www.tensorflow.org/. Accessed 13 Apr 2017
13. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object seg-

mentation and fine-grained localization. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 447–456 (2015)

14. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). doi:10.
1007/978-3-319-10578-9 23

15. Hu, P., Ramanan, D.: Finding tiny faces. arXiv preprint arXiv:1612.04402 (2016)
16. Hwang, K., Ghosh, J.: Hypernet: a communication-efficient architecture for con-

structing massively parallel computers. IEEE Trans. Comput. 100(12), 1450–1466
(1987)

17. Kalinovskii, I., Spitsyn, V.: Compact convolutional neural network cascade for face
detection. arXiv preprint arXiv:1508.01292 (2015)

18. Keras (2017). https://github.com/fchollet/keras/. Accessed 13 Apr 2017
19. Liu, W., Rabinovich, A., Berg, A.C.: ParseNet: looking wider to see better. arXiv

preprint arXiv:1506.04579 (2015)
20. Loshchilov, I., Hutter, F.: Online batch selection for faster training of neural net-

works. arXiv preprint arXiv:1511.06343 (2015)
21. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object

detection with region proposal networks. In: Advances in Neural Information
Processing Systems, pp. 91–99 (2015)

http://arxiv.org/abs/1610.03677
http://arxiv.org/abs/1610.08120
http://caffe.berkeleyvision.org/
https://github.com/Microsoft/CNTK/
http://arxiv.org/abs/1703.09529
https://www.tensorflow.org/
http://dx.doi.org/10.1007/978-3-319-10578-9_23
http://dx.doi.org/10.1007/978-3-319-10578-9_23
http://arxiv.org/abs/1612.04402
http://arxiv.org/abs/1508.01292
https://github.com/fchollet/keras/
http://arxiv.org/abs/1506.04579
http://arxiv.org/abs/1511.06343

A CNN-Based Supermarket Auto-Counting System 371

22. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large
scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015).
http://dx.doi.org/10.1007/s11263-015-0816-y

23. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:
integrated recognition, localization and detection using convolutional networks.
arXiv preprint arXiv:1312.6229 (2013)

24. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors
with online hard example mining. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 761–769 (2016)

25. Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Moreno-Noguer, F.: Fracking
deep convolutional image descriptors. arXiv preprint arXiv:1412.6537 (2014)

26. Song, M., Zhonghong, O., Castellanos, E., Ylipiha, T., Kämäräinen, T.,
Siekkinen, M., Ylä-Jääski, A., Hui, P.: Exploring vision-based techniques for out-
door positioning systems: a feasibility study. IEEE Trans. Mob. Comput. (2017)

27. Song, M., Ou, Z., E, H., Song, J., Zhao, X.: Vision-based positioning system. J.
Chin. Univ. Posts Telecommun. 23(5), 88–96 (2016)

28. Theano (2017). http://deeplearning.net/software/theano/. Accessed 13 Apr 2017
29. Tian, Y., Luo, P., Wang, X., Tang, X.: Deep learning strong parts for pedestrian

detection. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 1904–1912 (2015)

30. Tian, Y., Luo, P., Wang, X., Tang, X.: Pedestrian detection aided by deep learning
semantic tasks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5079–5087 (2015)

31. Torch (2017). http://torch.ch/. Accessed 13 Apr 2017
32. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search

for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)
33. Wang, L., Lu, Y., Wang, H., Zheng, Y., Ye, H., Xue, X.: Evolving boxes for fast

vehicle detection. arXiv preprint arXiv:1702.00254 (2017)
34. Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos.

In: Proceedings of the IEEE International Conference on Computer Vision, pp.
2794–2802 (2015)

35. Zhang, L., Lin, L., Liang, X., He, K.: Is Faster R-CNN doing well for pedestrian
detection? In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9906, pp. 443–457. Springer, Cham (2016). doi:10.1007/978-3-319-46475-6 28

36. Zhou, Y., Liu, L., Shao, L., Mellor, M.: DAVE: a unified framework for fast vehicle
detection and annotation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.)
ECCV 2016. LNCS, vol. 9906, pp. 278–293. Springer, Cham (2016). doi:10.1007/
978-3-319-46475-6 18

37. Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B., Hu, S.: Traffic-sign detection and
classification in the wild. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2110–2118 (2016)

http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1412.6537
http://deeplearning.net/software/theano/
http://torch.ch/
http://arxiv.org/abs/1702.00254
http://dx.doi.org/10.1007/978-3-319-46475-6_28
http://dx.doi.org/10.1007/978-3-319-46475-6_18
http://dx.doi.org/10.1007/978-3-319-46475-6_18

Research and Implementation of Question Classification
Model in Q&A System

Haihong E(✉), Yingxi Hu, Meina Song, Zhonghong Ou, and Xinrui Wang

Beijing University of Posts and Telecommunications, Beijing 100876, China
{ehaihong,mnsong,zhonghong.ou}@bupt.edu.cn,
huyingxi.cn@gmail.com, w19941025110@gmail.com

Abstract. Question classification is the core of the question-and-answer (Q&A)
sys-tem. This paper intends to use the method of deep learning to explore the ques‐
tion classification model in Q&A systems, the aim of which is to improve the accu‐
racy of question classification.

 The characteristics of natural language questions, such as the use of short texts
and basic grammar, were well considered. Subsequently, we want to fully extract the
features of questions by using the following methods: multi-channel inputs, multi-
granularity convolution kernels, and direct connection with high-speed channels. By
combining the three methods, this paper proposes the multi-channel and Bidirec‐
tional long-and short-term memory and multi- granularity convolution neural net-
work (MC–BLSTM–MGCNN) model to fully extract the features from interrogative
sentences, both in time and spatial domains.

To verify the validity of the model, this paper experimented with the TREC [1]
classification standard dataset. Results achieved 96.6% accuracy, which is superior to
the highest existing industry benchmark (96.1%). In addition, this paper used the
complete TREC dataset to innovate further, and results obtained 98% accuracy, which
greatly improved the classification.

Keywords: Q&A system · Question classification · Deep learning · Convolution
neural network · Long- and short-term memory network

1 Introduction

The Q&A system is currently a popular research topic in the field of natural language
processing. A Q&A system is divided into three parts: problem analysis, information
retrieval, and answer extraction. Problem analysis highlights the importance of problem
classification, as its performance will directly affect the accuracy of subsequent answer-
extraction protocols. Question classification is highly significant to the Q&A system based
on these two aspects: (1) reduced candidate choice of space and (2) for different types of
questions, a follow-up process implies different strategies. Therefore, an intelligent Q&A
system requires a highly accurate question classification model.

Early models on question classification adopted the rule-based matching method [2–6],
which requires the manual development and establishment of multiple rules. In recent years,
methods on question classification mainly aimed at formulating lexical, syntactic, semantic,

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 372–384, 2017.
DOI: 10.1007/978-3-319-65482-9_25

and related extraction strategies, after which machine learning methods are employed to
classify a problem. However, in this method, the accuracy of the results depended on the
characteristics and quality of extraction; that is, the richer the characteristics being extracted,
the higher the classification accuracy. Consequently, scholars have adopted deep learning
[7–18]. The deep learning model adopts the recurrence neural network (RNN) and convo‐
lution neural network (CNN) for question classification. RNN is widely used in the field of
natural language processing. Meanwhile, CNN is increasingly being applied to natural
language processing because of its outstanding performance in image processing. CNN can
also extract information in spatial domain, and many experiments have verified the contri‐
bution of CNN to natural language processing.

Nonetheless, existing models on question classification are still constrained by low
accuracy, so this paper intends to use the method of deep learning to explore the question
classification model in Q&A systems, the aim of which is to improve the accuracy of ques‐
tion classification.

2 Related Work

The goal of question classification is to assign a category label to each natural language
question to represent the type of final answer desired by the question. A text search confer‐
ence in 1999 led to the evaluation of automatic Q&A systems. Subsequently, an increasing
number of scholars have contributed to the field of question classification. Accordingly,
several scholars have conducted considerable research on problem classification.

Question classification is divided into two categories: (1) traditional question classifica‐
tion; (2) question classification based on deep learning. Regardless of the categories, most
studies use the TREC standard question classification dataset, which will be described in
Sect. 4.1.

This section introduces the present application of the two aforementioned question
classification categories.

2.1 Traditional Question Classification Methods

Zhang et al. [2] extracted the characteristics of word frequency and part of speech, and
classified the problem by improving the Bayesian model. Based on the basic characteristics
of word frequency, Wen et al. [3] used syntactic structures to extract main words and ques‐
tions, such that words and their subsidiary components are classified according to their
characteristics. Sun et al. [4] used the knowledge network as a semantic resource to extract
classification characteristics. Silva et al. [5] used feature combinations to classify the problem
using linear kernels (i.e., linear SVM). Li et al. [6] proposed to combine parts of speech and
bag-of-words to the syntactic-dependent tree method to calculate the value of kernel func‐
tions and explore the structure of the question. The abovementioned methods mainly
express a question in terms of its characteristics. Combining the characteristics—although
it may lead to subjectivity—and accommodation of language diversity can make the
proposed question classification model more accurate compared with feature extraction
method, but this endeavor is more expensive.

Research and Implementation of Question Classification Model 373

Traditional machine-learning process uses fixed-length data, that is, in the length of the
interrogative sentence, should be fixed, otherwise it will lead to loss of information, and this
type of research method does not consider the data field information (i.e., classifier), as any
dissonance will lead to performance degradation. Feature extraction in the machine-learning
model also requires manual extraction. Human error is rather expected; hence, this method
is costly in terms of human and material resources.

2.2 Deep Learning Question Classification Methods

Sauer et al. [7] used the improved recursive automatic coding model to deal with problems
on semantic synthesis and emotional analysis. Cui et al. [8] explored the depth of neural
networks to learn the thematic expressions of statistical machine-translation disambigua‐
tion. Nal et al. [9] explored sentence structures and proposed dynamic CNN for semantic
sentence modeling. Li et al. [10] used multi-column CNN method to deal with knowledge-
based Q&A system problems. Zhang et al. [11] used the convolution depth belief network
to study the vocabulary characteristics and sentence levels of the relation classification of
words-between-words. For the classification of questions, the present study uses deep
learning to acquire the initiative to learn the syntactic and semantic features implied in a
sentence [12] and deploy deep analysis of the problem structure. Irosy et al. [13] proposed
the DRNN model to achieve temporal and structural deep reproduction. Lei et al. [14]
proposed a neural network based on tensor products for question classification to fuse
nonlinear characteristics. Iyyer et al. [15] proposed a question classification model based on
the syntactic-independent deep-average network for the embedding layers, considering that
syntactic functions require additional training time and is costlier in terms of computational
resources compared with using the disordered combinatorial function. Tai et al. [16]
proposed the tree–LSTM question classification model based on the syntactic nature of
combined words and phrases. Li et al. [17] proposed a model to combine the CNN and LSTM
networks, considering that CNN can better tap stylistic features while LSTM can better
represent the semantic meaning of word sequences. Moreover, Fang et al. [18] compared the
performance of CNN with multiple LSTM and multi-convolution kernels for problem clas‐
sification; their findings showed that CNN and bidirectional LSTM (BLSTM) achieved the
best performance.

In summary, studies on classification using the deep learning method mainly focused on
improving and integrating CNN and cyclic neural networks. Previous studies also focused
on the features of text sequence, nonlinear extraction, and grammatical structures. However,
results from previous works are only applicable for sentence-level or text-level classifica‐
tion tasks, and these can limit short-text question classification in the Q&A scenes. The
aforementioned models were also independent and did not combine scene and model
features that could filter and integrate multiple models. Previous models could still be
improved.

In this paper, the short-text questioning classification task in Q&A system is
modeled, and the characteristics of multiple models are integrated to improve the clas‐
sification accuracy.

374 H. E et al.

3 MC-BLSTM-MGCNN Neural Network Question Classification
Model

In this chapter, we introduce the MC–BLSTM–MGCNN model. Short texts and grammars
may be missing in the questions of the Q&A system. Hence, this paper adopts multi-channel
input, multi-granularity convolution, and high-speed channel direct connection to anticipate
these missing elements. Neural network and CNN are combined to extract and characterize
the features by their time and spatial dimensions. The model can then be explored in terms
of characteristics and structure.

3.1 Characteristics

Multi-channel Input. Traditional neural networks use the single-channel word-
embedding layer as input, which can be divided as trained embedding layer and non-
trained embedding layer. The first training embedding layer is modified during model
training to better express scene semantics. However, at present, we cannot quantitatively
analyze the performance of this change. The change may also encounter excessive
modification and cause larger semantic deviations. Furthermore, the single-embedding
layer in the random discarding layer could lose most of its value, thereby affecting
subsequent calculation. The second non-trained embedding layer directly uses the
trained word vector as input. In the process of model training, the embedding layer is
not optimized automatically by the input data, and thus, it is not fully adapted to the task
scene. Similarly, the single-embedding layer (i.e., through the discarding layer) could
further lose information, and this could also affect subsequent calculation.

In this paper, we use the dual-channel embedding layer as input. The embedding layer
may or may not be a trained parameter to balance the original semantic information and
dynamically modify semantic information.

Multi-granularity Convolution. Most traditional models use a single granularity
convolution kernel where only the feature extraction of the sentence information is
carried out on a single granularity; however, this brings problems if the feature extraction
of the question is insufficient. Considering the short-text characteristic of a natural
language question, information needs to be fully excavated by the user input (i.e., in
short text) to obtain accurate semantics. Therefore, this paper intends to use the multi-
granularity convolution kernel to extract multi-range features. The approach also
combines the characteristics of time-dimension information to the output of long- and
short-term memory (i.e., BLSTM) network to extract the range of related information.
The feature of different time range is extracted, and the question information is extracted
completely in its space and time dimension.

High-Speed Way. In the neural network, the random discarding layer and the pooling
layer are added for model performance, and the features are abstracted gradually. This
task is required by the extraction characteristics and data dimensionality to prevent over-
fitting in the model. However, layer integration can also cause some loss of information
(original data). In the case of short texts, the full use of original information becomes

Research and Implementation of Question Classification Model 375

particularly important. Therefore, this paper adds high-speed channel to achieve the
following: first, the original embedding-layer information is directly connected to the
BLSTM output, and second, the same layer is added as input to the CNN layer, but
without affecting the embedding-layer output to prevent over-fitting. Hence, the full use
of original information is ensured, and information loss is reduced (Fig. 1).

Fig. 1. The architecture of MC-BLSTM-MGCNN model

3.2 Architecture

Multi-channel Input. In this paper, we use the dual-channel embedding layers as the
input of the subsequent network (i.e., BLSTM). By setting the embedding layer to dual
channel, we can increase the weight of the embedding layer in the high-speed channel
layer. At the same time, by changing the parameter value, the model can be trained.
Equilibrium dynamic change and primitive word vector representation of the semantic
information can further control the optimization model.

BLSTM. The key to the RNN model lies in the connection of the previous information
to the current task. LSTM, a type of RNN, can learn long-term dependency information.
In a given input sequence, the LSTM unit is in chronological order and generally includes
the following steps: decision to discard the information (Eq. 1) for the output between
the value of zero and one; updating of information (Eqs. 2 and 3); updating of hidden
state (Eq. 4); and output information (Eqs. 5 and 6).

ft = 𝜎
(
Wf ⋅

[
ht−1, xt

]
+ bf

)
(1)

it = 𝜎
(
Wi ⋅

[
ht−1, xt

]
+ bi

)
(2)

C̃t = tanh
(
Wc ⋅

[
ht−1, xt

]
+ bc

)
(3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

Ot = 𝜎
(
Wo

[
ht−1, xt

]
+ bo

)
(5)

ht = ot ∗ tanh
(
Ct

)
(6)

376 H. E et al.

Taking into account the continuity of the natural language problem, this paper models the ques‐
tionnaires in their time dimension using the two LSTM networks, and then adds the user questions
into the two networks (i.e., one is in the forward direction, the other is in the reverse time order). To
complete the text information, we obtain the output of all hidden nodes at each point in time in the
LSTM network and connect them for averaging. Equation 7 shows that the output of the hidden
nodes is in the forward direction of t, indicating the output of the hidden nodes in the reverse direc‐
tion of t, and the average output of each node at the same time node forms a two-dimensional tensor
(i.e., input of subsequent network).

ht =

⇀

ht +
↼

ht

2
(7)

Multi-granularity. The input of the convolution layer is considered as the two-dimen‐
sional tensor output of the BLSTM network that contains time-dimension and hidden-
node information at each time point. Hence, the short-text version of the question refers
to the particle size of the two-dimensional tensor for different ranges of convolution (i.e.,
text extraction features). The volume of the convolution kernel in this paper is different
from those in image processing tasks, as the lengths of convolution kernels are usually
consistent with word vector dimensions. To confirm the optimal value, this paper
experimented with convolution kernel size and convolution kernel category. Experi‐
mental results showed consistency in convolution kernel length and word vector.
Convolution kernel width is set to three to achieve the best classification accuracy.
Subsequently, this paper selected a single-granularity convolution kernel with the
following sizes: (1, embedding dims), (2, embedding dims), and (3, embedding dims).

Maximum Pooling. Compression extraction is adopted to simplify the calculation of
the feature graph and the computational complexity of the network. The model also
adopted the commonly used two-dimensional maximum pooling operation. Compared
with other pooling operations, maximum pooling provides better robustness. Maximum
pooling also integrates feature points in a small neighborhood of tensors to obtain new
features. More particularly, in a two-dimensional pool, the pooling operation will be
applied to various places of tensor (Eq. 8).

Pi,j = down
(
Oi:i+P1 ,j:j+P2

)
(8)

This approach represents the specific and simultaneous operation of the two-dimen‐
sional pool. The pooled output is shown in Eq. 9.

h∗ =

⎡⎢⎢⎢⎣
P1,1, P1,1+p2

, ⋯ , P
1+

⎛⎜⎜⎝
1−k+

1
P1

−1
⎞⎟⎟⎠
⋅p1

, 1 +
(
dw − d + 1∕p2 − 1

)
⋅ p2

⎤⎥⎥⎥⎦
(9)

Softmax. The last layer of this model is the softmax layer (Eqs. 10 and 11), which uses
the output of the hidden layer as input to predict the problem category to which the S-
question belongs. The classifier performs probability analysis on the question and

Research and Implementation of Question Classification Model 377

determines the matching degree of each category. Outputs with the highest probability
are inputted to the final prediction category.

This paper also uses categorical cross-entropy for the loss function (Eq. 12), where m is
the number of classification types, as defined in the L2 regularization of ultra-parameters.
The model is further optimized by the Adadelta objective function.

p̂(y|s) = softmax
(
W (s)h∗ + b(s)

)
(10)

ŷ = arg max
y

p̂(y|s) (11)

J(𝜃) = −
1
m

∑m

i=1
tilog

(
yi

)
+ 𝜎‖𝜃‖2

F
(12)

4 Experiment

4.1 Dataset

The present study uses the standard question classification dataset in the academic
community, particularly the TREC dataset (Li and Roth 2002) [1]. Hence, this paper intends
to make experiment with this dataset for comparing with existing models.

The dataset divides the question into six categories (abbreviations, descriptions, enti‐
ties, people, locations, and numbers) and classified by training sets and test sets (Table 1).
The training set consists of five text documents, while the testing set contains one text docu‐
ment. To the best of our knowledge, most scholars train models by using only the fifth TREC
document [9, 11–14], and none of the studies in the literature review show the effect of the
model using the complete training set. Therefore, this paper divides the dataset into standard
and complete datasets: (1) Standard datasets, including 5,432 training sets and 500 test sets.
(2) Complete dataset, including 15,432 training set and 500 test sets.

Table 1. Files in TREC dataset.

Number Standard
dataset

Complete
dataset

Train file
Train file 1 1000

√
Train file 2 2000

√
Train file 3 3000

√
Train file 4 4000

√
Train file 5 5432

√ √
Test file
Test file 500

√ √

378 H. E et al.

Both standard and complete training sets were used for the experiment. At the outset, it
is easy to compare and verify the validity of the present model with existing models.
Therefore, the training set was expanded to improve model accuracy and model performance.

4.2 Environment

The hardware support for this experiment comes from the NVIDIA GPU – GTX1080,
and we use python programming language to achieve our model with the Tensorflow
deep learning framework.

4.3 Word Vector

Word2vec is a word-vector training tool launched by Google in 2013. The software is
based on a given corpus, and the optimized training model can quickly and effectively
express a word in its vector form. Its word vector library contains a large number of
datasets for training use, and the software continues to form complete words for scholars.
Thus, this article uses Google’s Word2vec for the word vector library of the proposed
model.

4.4 Hyper-parameter Setting

In this paper, 10% of the training set was selected as the verification set, while the
remaining 90% was used as is (i.e., training set). Model parameters were optimized
according to the accuracy of the verification set. The model effect was verified according
to the accuracy of the test set. The settings for selecting the optimal super parameters
are shown in Table 2.

Table 2. Optimal settings of hyper-parameter

Hyper parameter Hyper parameter setting
Batch size 32
Word vector dimension 300
Number of Embedding layer 2
Embedding layer trainable Both false
MaxPooling of embedding layer 0.5
Number of hidden units in
BLSTM layer

300

MaxPooling of BLSTM 0.2
Optimizer Adadelta
L2 regularizer 0.02
MaxPooling in dense layer 0.4

Research and Implementation of Question Classification Model 379

4.5 Experiment Result

Result. In this paper, we use the common TREC dataset to test model validity.
Table 3 compares the accuracy of existing models with those for the proposed model.
The model achieved 96.6% accuracy for the TREC standard dataset, which implies that
the model in the present study is superior to the existing model in terms of accuracy.

Table 3. Compares the accuracy of existing models with those for the proposed model

Network Model TREC accuracy (%)
CNN DCNN (2014) [19] 93.0

CNN-non-static
(2014) [20]

93.6

CNN-MC (2014) [20] 92
TBCNN (2015) [21] 96
CNN-Ana (2015) [22] 91.37

RNN BLSTM (2016) [23] 93
BSLTM-Att (2016)
[23]

93.8

BLSTM-2DPooling
(2016) [23]

94.8

Others Combine-skip (2015)
[24]

92.2

AdaSent (2015) [25] 92.4
C-LSTM (2015) [26] 94.6
DSCNN (2016) [27] 95.4
BLSTM-2DCNN
(2016) [23]

96.1

Our MC-BLSTM-
MSCNN

96.6

Effect of Embedding Layers. To explore the effect of word-embedding layers on the
model, this paper experimented with single-, double-layer, trained-, and non-trained
embedding layers (Table 4). When the embedding layer is set to non-trainable, results
are generally better for training. More specifically, the best effect is achieved with dual
non-trainable embedding layers.

Table 4. Compares the accuracy of different embedding layers

Embedding
layer

Single- Double-(both
not-trainable)

Double-

Trainable 95.6% 96% 96%
Not-trainable 96.2% 96.6%

Effect of Convolution Kernel Number. To explore the effect of the number of convo‐
lution on the model, the number of convolution was set to 1, 2, 3, and 4. Figure 2 shows
that the best results were achieved when convolution number was set to 3.

380 H. E et al.

Fig. 2. Compares the accuracy of different number of kernels

Effect of Highway. To explore the effect of high-speed channel on the model, high-
speed channels were used to integrate the double-embedding layer and bi-directional
LSTM output, and the output to the convolution layer. The model directly forwards the
bi-directional LSTM output as the input of the convolution layer. The accuracy of the
model, which is without high-speed way is 90.8, and the accuracy of the high-speed way
is 96.6%, which is higher than the accuracy of model without high-speed way.

Effect of Training Set Size. Both standard and complete TREC datasets were used to
verify the performance of the model. The standard dataset can be used to experiment
and compare with the existing model to show the effectiveness of the model. Moreover,
the complete dataset can be used to experiment with the standard dataset of this compar‐
ison and effectively explain the observation that the larger training dataset of the model
leads to better effects which accuracy is up to 98%. Experimental results further show
that using the complete dataset, the proposed model can be better trained for accuracy
and performance, unlike the existing model that uses the standard dataset.

4.6 Discussion

In the prior research, the most competitive works are TBCNN [22] and BLSTM-2DCNN
[24]. TBCNN model only uses CNN to achieve a very good accuracy, the model splits
the word embedding layer into different region sizes, each of which has two filters. And
the max pooling is performed over the generated feature maps which finally send into
the softmax layer. And the BLSTM+2DCNN model stacks the LSTM layer over the
convolution layer, which can fuse the time information and spatial information at the
same time, and the experiment shows that the model is better than the former in terms
of accuracy. However, the previous work about this question do not make use of the
short text information well. And the model in our paper can increase the accuracy by
adding the multi-granularity convolution kernel, multi-channel input and high-speed
way, which has a high signification to improve the understanding of other short-text
problems.

Research and Implementation of Question Classification Model 381

An analysis of the experimental results showed that independent models could not
fully exploit information in short text for natural language processing, hence the need
to integrate various models and features. Information loss should also be minimized.
Natural language processing can use both BLSTM and CNN networks, as the aim should
be to better integrate two information and improve model performance. BLTSM net-
works can extract features in space–time domain. CNN networks can extract information
in spatial domain and superimpose this onto network order and convolution kernel size.
However, CNN texts must have the same length as the BLSTM output in order for the
information of the time dimension to be entered into spatial dimension for further
abstraction. A high-speed channel direct-connection module is also required by short
texts for maximum use of information; it also does not compromise model performance
with over-fitting. To the best of our knowledge, several scholars have used the standard
dataset to train models. By contrast, the innovative method presented by the current
study uses both standard and complete datasets (i.e., the former is used for comparison
with existing model; the latter is used to quantitatively show the effect of dataset size
on the model performance). Multiple datasets further improve model accuracy and
provide additional reference for future research and model construction.

5 Conclusion

Many natural language processing tasks can be attributed to text classification, and
question classification as a text classification is being studied extensively. This paper
focuses on the application of depth learning to the question classification model. To
overcome some challenges (i.e., lack of short text and grammar of user questions), this
paper proposes a model by adopting the LSTM neural network for (1) single- or dual-
channel input, (2) single or multi-granularity convolution kernel, and (3) with or without
high-speed channel. Direct analysis and other factors on the use of control variable
method for a number of experiments and the optimal model and its parameter settings
were explored. Finally, the experimental results show that the accuracy of this method
is 96.6%, which is better than the existing best model. The method in the present study
also does not need to develop cumbersome characteristic rules. However, the results of
this paper is not sufficient to optimize the parameters, such as no test, convolution, and
whole connection layers.

References

1. Li, X., Roth, D.: Learning question classifiers. In: Proceedings of the 19th International
Conference on Computational Linguistics, vol. 1, pp. 1–7. Association for Computational
Linguistics (2002)

2. Zhang, Y., Liu, T., et al.: Modified Bayesian model based question classification. J. Chin. Inf.
Process. 19(2), 100–105 (2005). (in Chinese)

3. Wen, X., Zhang, Y., et al.: Syntactic structure parsing based chinese question classification.
J. Chin. Inf. Process. 20(2), 33–39 (2006)

382 H. E et al.

4. Sun, J.G., Cai, D.F., et al.: How Net based Chinese question automatic classification. J. Chin.
Inf. Process. 21(1), 90–95 (2007). (in Chinese)

5. Silva, J., Coheur, L., et al.: From symbolic to sub-symbolic information in question
classification. Artif. Intell. Rev. 35(2), 137–154 (2011)

6. Liu, L., Yu, Z., et al.: Chinese question classification based on question property kernel. J.
Mach. Learn. Cybern. 5(5), 713–720 (2014)

7. Socher, R., Pennington, J., et al.: Semi-supervised recursive auto encoders for predicting
sentiment distributions. In: Proceedings of the Empirical Methods in Natural Language
Conference, pp. 151–161. Association for Computational Linguistics (2011)

8. Cui, L., Zhang, D., et al.: Learning topic representation for SMT with neural networks. In:
Proceedings of the 52nd Annual Meeting, pp. 133–143. Association for Computational
Linguistics (2014)

9. Blunsom, P., Grefenstette, E., et al.: A convolutional neural network for modelling sentences.
In: Proceedings of the 52nd Annual Meeting, pp. 655–665. Association for Computational
Linguistics (2014)

10. Dong, L., Wei, F., et al.: Question answering over freebase with multi-column convolutional
neural networks. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing, pp. 260–269 (2015)

11. Zhang, D., Wang, D.: Relation classification via recurrent neural network. J. Comput. Sci.
Process. (2015)

12. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the
Empirical Methods in Natural Language, pp. 1746–1751 (2014)

13. Irsoy, O., Cardie, C.: Deep recursive neural networks for compositionality in language. J. Adv.
Neural Inf. Process. Syst. 2096–2104 (2014)

14. Lei, T., Barzilay, R., et al.: Molding CNNs for text: non-linear, non-consecutive convolutions.
J. Indiana Univ. Math. Process. 58(3), 1151–1186 (2015)

15. Iyyer, M., Manjunatha, V., et al.: Deep unordered composition rivals syntactic methods for
text classification. In: Proceedings of the Annual Meeting of the Association for
Computational Linguistics (2015)

16. Tai, K.S., Socher, R., et al.: Improved semantic representations from tree-structured long
short-term memory networks. In: Proceedings of the Annual Meeting of the Association for
Computational Linguistics (2015)

17. Graves, A.: Generating sequences with recurrent neural networks. J. Comput. Sci. (2014)
18. Fang, I.-T.: Deep learning for query semantic domains classification (2016). http://

cs224d.standford.edu/reports_2016.html
19. Kalchbrenner, N., Grefenstette, E., et al.: A convolutional neural network for modelling

sentences. arXiv preprint arXiv:1404.2188 (2014)
20. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:

1408.5882 (2014)
21. Mou, L., Peng, H., et al.: Discriminative neural sentence modeling by tree-based convolution.

arXiv preprint arXiv:1504.01106 (2015)
22. Zhang, Y., Wallace, B.: A sensitivity analysis of convolutional neural networks for sentence

classification. arXiv preprint arXiv:1510.03820 (2015)
23. Zhou, P., Qi, Z.Y., et al.: Text classification improved by integrating bidirectional LSTM with

two-dimensional max pooling. arXiv preprint arXiv:1611.06639 (2016)
24. Kiros, R., Zhu, Y.K., et al.: Skip-thought vectors. In: Advances in Neural Information

Processing Systems, pp. 3295–3302 (2015)

Research and Implementation of Question Classification Model 383

http://cs224d.standford.edu/reports_2016.html
http://cs224d.standford.edu/reports_2016.html
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1504.01106
http://arxiv.org/abs/1510.03820
http://arxiv.org/abs/1611.06639

25. Zhao, H., Lu, Z.D., et al.: Self-adaptive hierarchical sentence model. arXiv preprint arXiv:
1504.05070 (2015)

26. Zhou, C., Sum, C., et al.: A C-LSTM neural network for text classification. J. Comput. Sci.
1(4), 39–44 (2015)

27. Zhang, R., Lee, H., et al.: Dependency sensitive convolutional neural networks for modeling
sentences and documents. In: Proceedings of NAACL-HLT, pp. 1512–1521 (2016)

384 H. E et al.

http://arxiv.org/abs/1504.05070
http://arxiv.org/abs/1504.05070

The 4th International Workshop on
Data, Text, Web, and Social Network

Mining (DTWSM 2017)

An Android Malware Detection System Based on Behavior
Comparison Analysis

Jing Tao(✉), Yan Zhang, Pengfei Cao, Zheng Wang, and Qiqi Zhao

Ministry of Education Key Lab for Intelligent Networks and Network Security,
Xi’an Jiaotong University, Xi’an 710049, China

jtao@mail.xjtu.edu.cn

Abstract. At present, Android malwares become more and more subtle and intelli‐
gent, after their invasion, they often detect whether the running environment is a real
environment, to decide whether to perform their malicious behavior. Therefore,
malware tend to execute different behavior when running in different environments.
Benign applications will perform the same functions in different environments, their
behaviors have a strong consistency. Based on this basic idea, we design an Android
malware detection method based on behavior comparison analysis. First, design and
development a number of specific different running environments, and then execute
application in these environments. With the same event input, record and compare the
behaviors of this application, calculate the difference, determine whether it is mali‐
cious. Under the guidance of this thought, we design and development the Android
malware detection system EmuProtect. We evaluate EmuProtect system from the
aspects of accuracy and validity, the results show that this system can effectively
detect Android malicious applications.

Keywords: Android malware detection · Android application behavior model ·
Behavior analysis

1 Introduction

In recent years, with the rapid development of mobile smart devices, mobile devices
such as smart phones and tablet computers are increasingly involved in all aspects of
people’s daily life. According to the survey results of Kantar Worldpanel ComTech, as
of the first quarter of 2016, the market share of Android operation system in US, Europe
and china have been a significant growth compared to the same period last year.

As the Android system has the characteristics of openness and the huge number of
users, it has become more and more malicious code author’s main target. Apps can gather
environment information while running process, similarly, malware can change their
behaviors according to the change of external running environment. Such as checking
the IMEI (International Mobile Equipment Identification) of the device, if the IMEI of
the current device is found to be the same as the preset value in the emulator, the mali‐
cious behavior is not executed and thus the detection is evaded.

With the improvement of malicious application developers’ anti-detection aware‐
ness, malware will become more intelligent and more hidden, according to the operating

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 387–396, 2017.
DOI: 10.1007/978-3-319-65482-9_26

environment feature automatically change and hide their behavior. There is an urgent
need for a detection method for malicious applications whose behavior changes with
the environment, and can effectively detect various behaviors of malicious applications.

In response to the above questions, this paper designs an abstract model for analyzing
the behavior of Android applications to support the analysis of application behavior. On
this basis, we proposed a malware detection method using comparative analysis of
application behavior in different operating environments. With this method, the
EmuProtect system is designed and implemented.

We have proved that this method can generate different operating environment,
capture the difference of the behavior of the app in different environments, and effec‐
tively determine the malicious app.

Our work makes the following contributions:
We design an abstract model to analyze the behavior of Android applications.

This abstract model supports the comparative analysis of application behavior.
We propose a method of judging the consistency of application behavior. By

comparing the behavioral differences between applications in different operating envi‐
ronments, this method can analyze the consistency of application behavior under
different operating environments. On this basis, determine the malicious nature of the
malware.

We prove the validity and accuracy of the proposed method. After a series of
experiments, we proved the effectiveness of the method.

2 Related Works

Based on the research of attacker’s point view, Boris [1] proposed a variety of methods to
detect the underlying APIs of the operating environment, such as the communication
channel of VMWare tools. Raffetseder [2] found a series methods to detect system
emulator, their approach si to take advantage of various features of the emulation runtime
framework, such as the limitations of simulating CPU execution, instruction length limita‐
tions, and runtime relative performance comparisons. Paleari et al. [3] proposed a method
for automating the generation of special code segments which, when run, can produce
different results depending on the operating environment, thereby enabling the identifica‐
tion of the current environment. Timothy [4] introduced a series emulation environment
detection methods specifically for Android, which can find the characteristics of emulation
environment, such as checking return values of the system APIs, static fields and analyzing
runtime performance. Petsas [11] systematically classified methods for detecting emulated
operating environments and selected some of the typical features to test some of the publicly
available malware detection tools, found that the vast majority of analyze tools [7, 8, 12, 13]
did not attach enough importance to the confrontation of environment detection. Timing [5]
design a method to automatically generate static characteristics for Android to distinguish
the emulation environment, these features are mainly specific content of system files, system
APIs and system properties.

388 J. Tao et al.

3 Background and Thread Model

This section begins with an introduction to the background knowledge of the operating
environment detection of Android platform, and then presents the threat model that is
being addressed in this study.

Traditional operation system such as Windows and Linux are user-centric, believe
that the user is not credible, mostly thinking isolation between resources of different
users. Android defaults assume that the application is not credible, which means that
expect system applications, other applications that user installed are not credible. Under
such constraints, if an application attempts to determine whether it is running in an
emulated environment, only a limited amount of information can be obtained from the
exterior of isolation sandbox can be used by it. In order to avoid detection of malware
detection system, malware will check some environment features which are easy to
implement and effective.

As shown in Fig. 1, applications can check the value of Build.BORAD static variable
with only one line Java code, if it is equal to the default value of Android emulator.

Fig. 1. A method to check operating environment.

According to what has been discussed above, we set the threat model in this paper
as Android malware that can analyze the information of operating environment to
perform different behavior in different environment.

4 Android Application Behavior Model

Android is an event-based response system, in which the behavior of an application’s
entire lifecycle can be viewed as a series of responses to various events occurring in the
system. Which means that the Android application itself is a response system of exterior
operating environment.

This feature of Android applications can abstract its behavior model as follows:
An Android application P runs in the environment E and given the input event I, then

the set of behavior it displays in the process of running is BP. That is, application P runs
in environemtn Ei and Ej with same input event I, the sets of behaviors if Bp(Ei, I) and
BP(Ej, I).

All the behavior in the behavior set BP that the application exhibits, can be divided
into three categories according to conditions of occurrence, the sensitive behavior α
influenced by the external environment, the non-sensitive behavior β influenced by the

An Android Malware Detection System Based on Behavior Comparison Analysis 389

external environment and the behavior γ that not influenced by the external environment.
The behavior of application can be redefined to the following form:

Bp(E, I) = α(E, I) + β(E, I) + γ(E, I) (1)

The behavior contained in α(E, I) is the sensitive behavior that hides or occurs that
changes in the operating environment, such as making a phone call, sending messages,
reading privacy data, etc. The behavior contained in β(E, I) is the non-sensitive behavior
that is hidden as the environment changes, such as file operation, accessing to system
information. The behavior contained in γ(E, I) is all behavior independent of the oper‐
ating environment. These behavior is only affected by the input events and do not change
regardless of the operating environment.

5 EmuProtect Detection System

This paper presents a new malicious code detection method, that is, by changing the
operating environment features to generate different environment, then run applications
in these different operating environment with same input events, analyze the difference
between each behaviors in different environment, and thus determine the malicious. In
this method, we design and development the Android malware detection system
EmuProtect.

EmuProtect system architecture shown in Fig. 2, mainly composed of five modules.

Fig. 2. EmuProtect detection system architecture.

390 J. Tao et al.

6 System Implementation

6.1 Dynamic Analysis and Application Behavior Triggering Technique

EmuProtect system dynamic analysis module uses sandbox technology to analyze
Android application.

The most sensitive behavior of malware is triggered by registering a broadcast
receiver that receives specific system events in the system, and these system events are
able to reflect the system status, with a certain regularity, such as the system boot
complete broadcast, the user interactive broadcast, network status change broadcast, etc.
Therefore, after the emulator is booted, application is installed and the operating envi‐
ronment features are set, the detection system need to start the application and input a
series of system events to trigger the application’s response behavior.

Because the malware can start a service, which runs in the background and execute
sensitive behavior secretly, and will not start an activity in the foreground, the behavior
trigger method cannot rely entirely on the UI trigger technology to achieve goals. Most
of the system events that trigger application behavior are related to user behavior, as
shown in Table 1.

Table 1. Trigger event content.

Event name Broadcast name or telnet
command

Content

tBootComplete BOOT_COMPLETED System boot complete
tLockScreen SCREEN_OFF Screen lock
tUnLock USER_PRESENT Screen unlock
tReceiveSMS sms send Receive SMS
tSendSMS SENDTO Send SMS
tCall CALL Dial call
tACCall gsm call/accept Receive call
tLocatioin geo fix Geographical change

6.2 Operating Environment Feature Setting Technique

In the case of the emulator’s default settings, the features of emulation environment are
static and obvious regularity, so if the features are not disguised, the application can
obtain the information and compare it with some known values in order to determine
whether it is running in an emulation environment.

According to the treat model set in this paper, the features that can be used to deter‐
mine operating environment can be divided into three levels: the Android framework
layer, the Linux kernel layer and the emulator environment layer. The main features in
each layer are shown in Table 2.

An Android Malware Detection System Based on Behavior Comparison Analysis 391

Table 2. Java layer emulation environment detection methods

Method level Feature class
Android framework level Device status information/device hardware

information/ system properties/simulation event/ …
Linux kernel level Hardware driver/device profile/shell property

command
Emulator level CPU info

Dynamic analysis module runs the application for the first and second round in
default emulator environment without any camouflage, the third round in the environ‐
ment that set the features of the Android framework layer, the fourth in the environment
that set the features of the Linux kernel layer, the fifth in the environment that set the
features of the emulator environment layer, and the sixth round in the environment that
set all of the features of the three layers.

The ability to dynamically modify all of the features of the camouflage is based on
the modification of Android source code.

6.3 Behavior Record Generation and Comparison Technique

When an application is running in an operating environment, the external input events
will lead to the corresponding response of it. These behavior can be recorded by gener‐
ating its system API call sequence during the application is running. All the recording
information output in the Android log system, the module filter and extract these records
with logcat tool, and then save it in file.

When comparing two behavior records obtained by an application in different oper‐
ating environment, the behavior record comparison module calculates the similarity of
the system API call sequences between the corresponding threads in two records
according to the thread numbers. Here we use the edit distance between records to
measure the similarity between them, get a real number between 0 to 1 as a measure of
similarity, the greater the similarity, the more similar of the two records. After calcu‐
lating the similarity between each thread pair, according to the proportion of the API
call sequence of each thread in the whole behavior record, these individual similarities
are summed up as an overall similarity C.

Other behavior records are calculated similarity with the two reference objects, the
average of the two similarity is the final similarity C′ of each round. If the ratio of C′ to
C0 is less than a threshold t, that is

C′∕C0 < t (2)

It is considered that there is a difference between the behavior of this round and the
reference objects in the original environment. By adjusting the threshold t, we can adjust
the discrimination of this detection system.

392 J. Tao et al.

After processing the records in last four rounds of an application as above, we can
determine whether or not there is some difference between these records and the refer‐
ence objects. And combined with the behavior classification statistics result S, determine
whether the application has hidden sensitive behavior.

7 Evaluation

Three experiments were conducted to evaluate the effectiveness of the EmuProtect
detection system.

In each experiment, we ran each of the application to detected in six rounds, recording
their behavior information in every operating systems as described in the previous
chapter. The effectiveness of the EmuProtect system was evaluated by analyzing the
results of the detection results of different types of applications in three experiments.

7.1 Experiment I

To compare the behavior exhibited by an application when it is run in different envi‐
ronments, the input system events need to be consistent. Because if there is a difference
in the input information, that will inevitably lead to differences in the application’s
behavior. The ability to accurately repeat the input events is the basis for comparing the
behavior of the application. In the first experiment, we tested applications that did not
have environment detection behavior, in order to evaluate the accuracy of the EmuPro‐
tect system’s repetitive entry of system events.

The data set used in this experiment is 400 popular apps in 10 categories from the
Google Play and 50 malware samples.

The Fig. 3 shows the detection data for some of three categories of applications. Each
application in the figure shows four data, the first column on the left is the similarity
reference C0 between the two reference objects, the other three columns is the value of
C’/C0 in the third, fourth and fifth rounds.

Fig. 3. Similarity comparison results of books Reference and tools categories

An Android Malware Detection System Based on Behavior Comparison Analysis 393

7.2 Experiment II

In the second experiment, we verified the ability of the system to detect malware that
detect environment while runtime. Due to the limited number of malware that have been
discovered to detect operating environments, there are currently only a few types of
environment detection method used by malware in the real world. In order to fully vali‐
date EmuProtect’s detection capabilities, the applications being tested in this experiment
are repackaged and injected several kinds of code that detect the emulating environ‐
ments. The original malware in this experiment is AndroidXBot malicious code family.
Table 3 shows the environment detection method we injected to the malware and their
test results.

Table 3. Samples and test results

Category Record length Result
XBot + IMEI 101 Success
Xbot + MAC 102 Success
Xbot + Build.DEVICE 98 Success
Xbot + drivers 101 Success
Xbot + qemud 102 Success
Xbot + ro.kernel.qemu 101 Success

7.3 Experiment III

In this experiment, we tested the ability of EmuProtect system to detect malware in the
real world that hide malicious behavior in specific environments.

We used a calibrated standard test data set as the ground truth, which contains four
types of application samples: normal application without anti-emulator behavior (class
A, 30), malware without anti-emulator behavior (class B, 51), real world malware with
anti-emulator behavior (class C, 21), repackaged malware with anti-emulator behavior
(class D, 10).

The data set was detected by EmuProtect. The overall detection accuracy was 90.3%,
false positive rate was 4.9%, and false negative rate was 9.7%. The detailed test results
are shown in Tables 4 and 5.

Table 4. Standard data set test results

Category Android Linux Emulator Total
A: normal APP 0 3.3% 0 3.3%
B: malware (not anti-emulator) 3.9% 1.9% 1.9% 8%
C: malware (anti-emulator) 76.2% 4.7% 4.7% 85.6%
D: malware repackaged 60% 30% 10% 100%

394 J. Tao et al.

Table 5. False positive and false negative

Index A B C D
False positive 3.3% 8% – –
False negative – – 14.2% 0

From the experiment results, we can see that most of anti-emulator method used by
malware are against the features of the Android framework layer, relatively, the anti-
emulator behavior of other two layers accounted for a smaller proportion. Experiment
results show that EmuProtect system can effectively detect the behavior difference of
malware in different operating environments, determine the anti-emulator behavior
targeting on each layer, and maintain high accuracy and low false positive rate.

8 Discussion

Chapter 6 introduces the key techniques and the advantages of the system, but the system
still has some limitations, the following are the limitations of the system and the future
work of about this detection method.

(1) The detection system proposed in this paper has some expansion, mainly in two
aspects. First, in the emulation of the operating environment architecture, we can
add more emulation environment, not only limited to the use of QEMU-based ARM
architecture. Second, in the environment camouflage features, this currently only
deal with some of the features of three layers above, we can add more features in
the future.

(2) Because many applications have network operation, and network behavior can also
been as a kind of input event of external environment and affect application
behavior. This kind of network behavior is not under control in our system for now.

Based on the limitations of current dynamic analysis methods in hiding malicious
behavior problems, this paper designs an abstract model for Android application
behavior analysis. On the basis, we present a method to detect malware based on
comparing the behavior of application in different operating environments and system‐
atically implements it. The system complements the lack of existing methods of
detecting anti-emulator malware problem from the defender’s perspective. Finally, this
paper validates the effectiveness and accuracy of the system to detect malware and its
hidden behavior through experiments. The experiment results show that the system is
running properly and can achieve the intended design goals.

References

1. Lau, B., Svajcer, V.: Measuring virtual machine detection in malware using DSD tracer. J.
Comput. Virol. 6(3), 181–195 (2008)

2. Raffetseder, T., Kruegel, C., Kirda, E.: Detecting System Emulators. In: Garay, J.A., Lenstra,
A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 1–18. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-75496-1_1

An Android Malware Detection System Based on Behavior Comparison Analysis 395

http://dx.doi.org/10.1007/978-3-540-75496-1_1

3. Paleari, R., Martignoni, L., Roglia, G., Bruschi, D.: A fistful of red-pills: how to automatically
generate procedures to detect CPU emulators. In: The 3rd USENIX Conference on Offensive
Technologies (WOOT 2009), Berkeley, CA, USA (2009)

4. Vidas, T., Christin, N.: Evading android runtime analysis via sandbox detection. In:
Proceedings of the 9th ACM Symposium on Information, Computer and Communications
Security (ASIA CCS 2014), Kyoto Garden Palace, Kyoto, Japan, pp. 447–458 (2014)

5. Jing, Y., Zhao, Z., Ahn, G., Hu, H.: Morpheus: automatically generating heuristics to detect
android emulators. In: Annual Computer Security Applications Conference (ACSAC 2014),
New Orleans, Louisiana, USA, pp. 216–225 (2014)

6. Neuner, S., Veen, V.V.D., Lindorfer, M., et al.: Enter Sandbox: Android sandbox comparison.
In: Proceedings of the IEEE Mobile Security Technologies workshop (MoST), San Jose,
California, USA (2014)

7. Tam, K., Khan, S., Fattori, A., Cavallaro, L.: CopperDroid: automatic reconstruction of
Android Malware behaviors. In: The Network and Distributed System Security Symposium
(NDSS), San Diego, California, USA, pp. 8–11 (2015)

8. Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., et al.: Mobile-Sandbox: having a
deeper look into Android applications. In: ACM Symposium on Applied Computing (SAC),
New York, NY, USA, pp. 1808–1815 (2013)

9. Gajrani, J., Sarswat, J., Tripathi, M., et al.: A robust dynamic analysis system preventing
SandBox detection by Android malware. In: Proceedings of the 8th International Conference
on Security of Information and Networks (SIN 2015), New York, NY, USA, pp. 290–295
(2015)

10. Tal, G., Keith, A., Andrew, W., and Jason, F.: Compatibility is not transparency: VMM
detection myths and realities. In: Proceedings of the 11th USENIX Workshop on Hot Topics
in Operating Systems (HOTOS 2007), Berkeley, California, USA, pp. 6:1–6:6 (2007)

11. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage against
the virtual machine: hindering dynamic analysis of Android malware. In: Proceedings of the
Seventh European Workshop on System Security (EuroSec 2014), Amsterdam, Netherlands,
pp. 5:1–5:6 (2014)

12. Enck, W., Gilbert, P., Chun, B., et al.: TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS) 32(2), 5
(2014)

13. Yan, L., Yin, H.: Droidscope: seamlessly reconstructing the OS and Dalvik semantic views
for dynamic android malware analysis. In: Proceedings of the 21st USENIX Security
Symposium, Berkeley, California, USA, p. 29 (2012)

14. Dhilung, K., Giovanni, V., Christopher, K.: BareCloud: bare-metal analysis-based evasive
malware detection. In: 23rd USENIX Security Symposium (USENIX Security 2014), San Diego,
California, USA, pp. 287–301 (2014)

15. Simone, M., Christopher, K. et al.: BareDroid: large-scale analysis of Android apps on real
devices. In: Annual Computer Security Applications Conference (ACSAC 2015), Los Angeles,
California, USA (2015)

396 J. Tao et al.

Stream-Based Live Probabilistic Topic
Computing and Matching

Kun Ma(B), Ziqiang Yu, Ke Ji, and Bo Yang

Shandong Provincial Key Laboratory of Network Based Intelligent Computing,
University of Jinan, Jinan 250022, China

{ise mak,ise yuzq,ise jik,yangbo}@ujn.edu.cn

Abstract. Public opinion monitoring refers to real-time first story
detection (FSD) on a particular Internet news event. It play an important
part in finding news propagation tendency. Current opinion monitoring
methods are related to text matching. However, it has some limitations
such as latent and hidden topic discovery and incorrect relevance rank-
ing of matching results on large-scale data. In this paper, we propose one
improved solution to live public opinion monitoring: stream-based live
probabilistic topic computing and matching. Our method attempts to
address the disadvantages such as semantic matching and low efficiency
on timely big data. Topic real-time computing with stream processing
paradigm and topic matching with query-time document and field boost-
ing are proposed to make substantial improvements. Finally, our exper-
imental evaluation on topic computing and matching using crawled his-
torical Netease news records shows the high effectiveness and efficiency
of the proposed approach.

Keywords: Public opinion · Public sentiment · Topic computing ·
Topic matching · Probabilistic topic model · Stream computing · Stream
processing · Mapreduce

1 Introduction

1.1 Background

Public opinion, by definition, refers to individual views and attitudes on a partic-
ular news event from Internet news media, forum, Twitter, and WeChat. With
the explosive growth of social media, automatic opinion analysis and monitor-
ing on media data has provided critical decision making in various fields [7].
However, traditional public opinion monitoring systems are usually based on
text matching without latent topic, and the relevance ranking of the matching
results is not always correct.

To overcome the lack of real-time monitoring of opinion monitoring systems,
this paper has proposed a new stream-based live probabilistic topic computing
and matching method. The innovations of this method come in topic real-time
computing with stream processing paradigm and query-time topic matching with
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 397–406, 2017.
DOI: 10.1007/978-3-319-65482-9 27

398 K. Ma et al.

document and field boosting. Topic real-time computing with stream process-
ing paradigm. In our public opinion monitoring solutions, stream processing
framework with proposed topology and its processing elements can speed up the
inference processing in real time, which powers extremely low-latency velocities
and accelerates the batch parallel computing. The core role of stream process-
ing replies rather on in-memory computing than high-volume storage. Topic
matching with query-time document and field boosting. Compared with exist-
ing index-time boosting, we use query-time boosting with popularity (document
boosting) and query coordination (field boosting) instead. For document boost-
ing, a new field rowboosting is to store the row boosting value to formulate
function score query. For field boosting, each news record has different fields
with different weights for matching.

The remainder of the paper is organized as follows. The related work of public
opinion monitoring is discussed in Sect. 2. Section 3 gives the improved version
of live public opinion monitoring, which is called stream-based live probabilistic
topic computing and matching. This method firstly crawls the timely news, and
then puts the data in the full-text searching engine and messaging middleware
at the same time. Deduplication, pagerank, and sentiment analysis are processed
in the messaging middleware. Finally, topic estimation with MapReduce, topic
inference with stream processing paradigm, and topic matching with document
boosting are proposed. Section 4 gives the experimental evaluation for our live
public opinion monitoring, and compares it with the existing approaches. Brief
conclusions are outlined in the last section.

2 Related Work

The first method is content matching. Ubiquitous content matching is to seek
to maximize the overall relevance of the matched content. There are a lot of
content matching algorithms [6]. In the popular TF-IDF scheme [14], a basic
vocabulary of words is chosen for each document in the corpus, an inverse doc-
ument frequency count is to measure the number of occurrences of a word in
the entire corpus. Using TF-IDF, Apache Lucene scoring evolves from under-
lying Vector Space Model (VSM) of Information Retrieval to implementation
[10]. There are some distributed parallel content matching methods [8,9]. Elas-
ticsearch [4] and Apache Solr [12] are distributed RESTful search engines using
Lucene storage. GreedyMR and StackMR algorithms were proposed to produce
high-quality solutions to content matching on large datasets using MapReduce
paradigm [2]. The second method is semantic matching. Since the synonyms con-
vey the same meaning with different words, content matching might not get the
correct result. So, similar features clustering, as a method of semantic match-
ing, is used to group the synonyms which express the same features under the
same feature group. The semi-supervised EM algorithm is a method to solve the
problem by considering two soft constraints based on sharing of words and the
lexical similarity [15]. Although several methods have been proposed to extract
product features from comment texts, limited work has been done on clustering

Stream-Based Live Probabilistic Topic Computing and Matching 399

of similar features [16], especially in the field of public opinion monitoring. A new
neural network architecture was presented to embed multi-relational graphs into
a flexible continuous vector space [1]. This method can be applied to perform
semantic matching. The goal is to learn to assign a structured meaning represen-
tation to almost any sentence of free text, demonstrating that it can scale up to
tens of thousands of nodes and thousands of types of relation. A semantic graph
was built to label columns with scale and timestamp information, and compute
semantic matches between columns even when the same numeric attribute [17].
A novel deep relevance matching model (DRMM) for ad-hoc retrieval was pro-
posed to employ a joint deep architecture at the query term level for relevance
matching [3]. This model includes a feed forward matching and a term gating
network using matching histogram mapping. word2vec [11] provides the efficient
deep learning method to implement the continuous bag-of-words (CBOW) and
skip-gram architectures for computing the vector representations of words in
the high-dimensional vector space and calculate the cosine distances between
words. The CBOW architecture predicts the current contextual word, and the
skip-gram predicts surrounding words given the current word. That is to say
that word2vec tool can find the semantic relationships between words in the
document. Therefore, it can be used for semantic matching.

3 Stream-Based Live Probabilistic Topic Computing and
Matching

3.1 Architecture

Figure 1 shows the architecture of stream-based live probabilistic topic com-
puting and matching, which is composed of collector layer, topic acquisition
layer, messaging layer, and topic alert layer. The collector layer is the same
as simple probabilistic topic computing and matching. In the topic acquisi-
tion layer, we improve the LDA topic acquisition with MapReduce-based batch
processing framework. In the messaging layer, we use publish-subscribe mes-
saging rethought to deduplicate, cache, evaluate pagerank and sentiment of the
new timely media data from the spiders. This messaging middleware can handle
hundreds of megabytes of reads and writes per second from thousands of clients
without downtime. Streams of news records are partitioned and spread over a
cluster of nodes. Compared with the topic alert layer of simple probabilistic topic
computing and matching, we propose stream-based LDA framework to infer the
topics of the new data, and propose a new topic matching method where the
ranking of matching result is based on the combination of key probability, pager-
ank, and sentiment boosting. Some new improvements are real-time processing
with stream-based paradigm and new ranking method with field and document
boost.

400 K. Ma et al.

Fig. 1. Architecture of stream-based live probabilistic topic computing and matching.

3.2 Method

Pagerank and Sentiment Analysis. The crawled news record is from the
web HTML pages, we use Google pagerank to determine the news record’s rel-
evance and importance. Generally, it is more concerning if the pagerank of the
news record is higher. When the spiders crawl the web pages, it takes the pager-
ank of the page as the pagerank of the news record. In the same news site or
news aggregator site, all the news pages are linked together to calculate pager-
ank. PageRank is an eigenvector-based algorithm to measure the importance of
news entries. The score for a given vertex may be thought of as the fraction of
time spent ‘visiting’ that vertex in a random walk over the vertices. PageRank
modifies this random walk by adding to the model a probability (specified as α)
of jumping to any vertex. We take 0.15 for α. Besides, the sentiment score is
another factor to determine the importance of the news record. Generally, it is
more concerning if it is a very positive or negative news. We implement recursive
deep sentiment model [13] to compute the sentiment score of the crawled news
data, which is related to the average sentiment score of several segmented sen-
tences based on sentence length. Logic behind it is that longer sentences should
carry more weight than shorter ones. The overall average sentiment score is
denoted as avgSentiment =

∑
sentiPerSent ∗ sentLength/textLength, where

avgSentiment is the average sentiment score, sentiPerSent is the sentiment per
sentence, sentLength is the sentence length, and textLength is the text length.

Stream-Based Live Probabilistic Topic Computing and Matching 401

Each crawled news record has different significance degrees, we propose
an indexing-based row boosting method using page rank and sentiment score,
denoted as rowboosting = duplication ∗ avgSentiment ∗ pagerank, where
rowboosting is the indexing-based row boosting, duplication is duplicated times
of this record, and pagerank is the pagerank of this record. To avoid index
rebuilding using index-time boosting, rowboosting is taken as a separate field to
be stored in the indexing.

Topic Inference with Stream Processing Paradigm. Topic inference con-
sumes real-time crawled news, and produces topics per news. It seemed like an
ideal use case for stream processing which can scale up the work by adding more
resources. Compared with simple probabilistic topic computing and matching,
we propose stream-based topic inference in the topic alert layer. The topic alert
layer of Fig. 1 shows the network topology containing the whole application logic.
Spouts are the entry point of the topic inference and are responsible for reading
data from the messaging layer. Bolts on the other hand are the logical units
of the topic inference and can perform word segmentation, parameter inference,
and topic matching using running functions, filtering, aggregations and joins of
streams.

Topic Matching with Query-Time Document Boosting. Compared with
simple probabilistic topic computing and matching, we make the improvement of
score boosting of ranking matching result. Generally, the topic matching deter-
mines which news records match, while the similarity determines how to assign
scores to the matching records. As per LDA algorithm, a news record is repre-
sented with several topics with different probabilities. The news record we are
sorting can be considered as a document, and the topics per document can be
considered as the fields. This is important because two documents with the exact
same content, but one having the content in two fields and the other in one field
may return different scores for the same query due to length normalization. To
match the keywords with the existing news data, we propose document and field
boosting to match the keywords with topics per document.

Since index-time boosting is combined with the field-length norm, we
use query-time boosting with popularity (document boosting) and query
coordination (field boosting) instead. For each news record, a new field
rowboosting is to store the row boosting value. At search time, we can use
the function score query with the field value factor function to combine the
number of rowboosting with the full-text relevance score. The functionscore
query wraps the main query and the function we would like to apply. First, the
main query is executed. Then, the fieldvaluefactor function is applied to every
document matching the main query. Every document must have a number in
the rowboosting field for the functionscore to work.

Topic Matching with Query-Time Field Boosting. With LDA algorithm,
each news record has several fields with different probabilities. As for matching,

402 K. Ma et al.

different fields have different significance degree. To increase the weight of the
field, we add a boost value, and the value depends on the probability of this field.
Boosts with higher value has more impact on the topic matching. probabilityi
is mapped into the interval between 0 and 1 using Min-Max normalization,
denoted as fieldboostingi = (probabilityi − probabilitymin)/(probabilitymax −
probabilitymin), where probabilityi is the field probability, probabilitymin and
probabilitymax is the minimum and maximum of field probability.

4 Experiment Results

4.1 Experiment Setup

For our experiments, we use the same input dataset obtained from the Netease
News, which is a Chinese news syndication websites to several mainstream Inter-
net news sites in China. To monitor the public opinions that lead to a set of top-
ics, we include historical 352, 971 Netease news records captured from 1st June
2016 to 30th December 2016 as the training data, and include some new 9, 624
Netease news records captured from 1st 2017 to 10th 2017 as the test data.

To evaluate topic computing and matching, we set up 4 developing and
testing environments: standalone, MapReduce-based, Message Passing Interface
(MPI)-based, and stream-based environment. Standalone machine has an Intel
Xeon(R) E5-2620 @2.00 GHz CPU and 24 GB memory, and runs a 64-bit Cen-
tOS Linux OS with a Java 1.8 64-bit server JVM. Intel Xeon(R) E5-2620 has 6
cores with 12 threads. MPI-based environment is a standardized and portable
message-passing system on a wide variety of parallel computing architectures.
Since we do not have enough hardware resources, we use virtualization technol-
ogy to simulate distributed MapReduce-based and stream-based environment.
We adopt Hadoop 2.7.3 to implement the MapReduce framework. In order to
maximize the parallelism and make full use of the resources, we made the fol-
lowing changes to the default Hadoop configuration: we set the block size of the
DFS of Hadoop to 256 MB, allocate 1 GB to each Hadoop daemon and 1 GB
virtual memory to each map and reduce task, and disable speculative execu-
tion feature. The ratio of map and reduce tasks per job is set 2:1, which is the
default configuration of Hadoop. We adopt Apache Storm 0.10.2 to implement
the stream topology.

4.2 Topic Computing

In this section, we compare serial topic computing, PLDA+, MapReduce-based
topic computing, and stream-base topic computing. We adopt the 4 environ-
ments described in Sect. 4.1. We have made PLDA+ on different sizes of proces-
sors from 2 to 12. We have made MapReduced-based topic computing on 2
Hadoop instances with 6 CPU cores and 24 GB memory. The capability of this
Hadoop instances are to run at most 12 map and 6 reduce tasks in parallel. The
stream topology has 2 computing instances, and each instance has a 6-core CPU

Stream-Based Live Probabilistic Topic Computing and Matching 403

and 24 GB memory. The capability of this stream cluster is to run at most 12
groups. We accept the same training and test data described in Sect. 4.1.

We calculate the execution time of topic computing, and observe the speedup.
Speedup is defined as the ratio of the serial runtime of the best sequen-
tial algorithm for solving a problem, to the time taken by the parallel algo-
rithm to solve the same problem on p tasks. Sp = Tserial

Tp
is used to com-

pute the speedup of PLDA+, where Sp is the speedup with p processors,
and Tserial means the execution time of serial topic computing. Sm=2r=p =
Tserial

Tm=2r=p
is used to compute the speedup of MapReduce-based topic, where

Sm=2r=p is the speedup with p map and p/2 reduce tasks, Tm=2r=p means
the execution time with p map and p/2 reduce tasks, and Tserial means
the execution time of serial topic computing. Sstream computing with p groups =

Tserial

Tstream computing with p groups
is used to compute the speedup of stream-base topic

computing, where Sstream computing with p groups is the speedup of stream-based
topic inference with p groups, Tstream computing with p groups means the execu-
tion time of stream-based topic inference with p groups, and Tserial means the
execution time of serial topic inference.

2 4 6 8 10 12

E
xe

cu
tio

n
tim

e
(m

in
)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

serial topic computing
PLDA+
MapReduce-based topic computing
stream-base topic computing

(a)

2 4 6 8 10 12

S
pe

ed
up

0

2

4

6

8

10

12

14

16

18

20

Perfect
PLDA+
MapReduce-based topic computing
stream-base topic computing

(b)

Fig. 2. Execution time and speedup of topic estimation of the training news records.

The first experiment involves topic estimation of the training news records.
All programs share the same training and test data as described in Sect. 4.1.
The serial topic estimation creates several topics using simple probabilistic topic
computing. PLDA+ comes from this implementation [5]. MapReduce-based and
stream topic estimation program performs the same operations as the sequential
code using MapReduce framework shown in Fig. 1. With the same LDA para-
meters and 500 iterations, these methods will achieve the same level of accuracy.
Figure 2(a) shows the average execution time of topic estimation, and Fig. 2(b)
shows the speedup as a measure of scalability. The average execution time and
speedup are important because it shows whether the parallel implementation is
an improvement. Serial topic estimation is baseline. For PLDA+, axis x means
the number of processors. For MapReduce-based topic computing, axis x means

404 K. Ma et al.

the number of map tasks. For stream-based topic computing, axis x means the
number of groups in the stream topology. In each case, we report the average exe-
cution time of 500 iterations. PLDA+ is nearly linear speedup. To sum up, axis x
means processor/map task/group in stream topology. Figure 2(a) and (b) high-
lights two points of topic inference. First, the parallel method such as PLDA+,
MapReduce-based, and stream-based work well. Improvement of MapReduce-
based computing was dramatic until 10 map tasks. The best solution of topic
estimation is MapReduce-based topic estimation.

2 4 6 8 10 12

E
xe

cu
tio

n
tim

e
(m

in
)

0

5

10

15

20

25

serial topic computing
PLDA+
MapReduce-based topic computing
stream-base topic computing

(a)

2 4 6 8 10 12

S
pe

ed
up

0

2

4

6

8

10

12

14

16

18

20

Perfect
PLDA+
MapReduce-based topic computing
stream-base topic computing

(b)

Fig. 3. Execution time and speedup of topic inference of the test news records.

The second experiment involves topic inference of the test news records.
Figure 3(a) shows the average execution time of topic inference, and Fig. 3(b)
shows the speedup as a measure of scalability. Axis x is the same as the first
experiment. It highlights two points. Compared with MapReduce-based topic
computing, stream-based topic computing has nearly linear speedup. The execu-
tion time of stream-based topic computing is slightly faster than other methods.
This improvement of the computation is caused by the stream-based topology
and parallel grouping strategy. This result can be explained. First, a MapRe-
duce runtime system introduces overhead due to job startup, communication,
and sorting. Additional overhead is incurred by MapReduce’s inter-particle mes-
sages. Second, stream processing has no startup issue due to continuous work.
Without repeated startup of topic computing jobs, stream-based topic comput-
ing is better in inferring small amount of real-time crawled news records.

4.3 Topic Matching

Next, we compare our query-time boosting with index-time boosting. Index-time
boosting has two limitations. First, index-time boosting will reindex all docu-
ments, and it will has serious performance issue with large frequent data. Second,
index-time boosting reduces the resolution of the field length normalization fac-
tor leading to lower quality relevance calculations.

Stream-Based Live Probabilistic Topic Computing and Matching 405

Transactions per second
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
re

at
io

n
tim

e
of

 n
ew

s
re

co
rd

s
(m

s)

0

10

20

30

40

50

60

70

80

90

100

Index-time boosting
Query-time boosting

(a)

Transactions per second
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
at

ch
in

g
tim

e
of

 n
ew

s
re

co
rd

s
(m

s)

0

1000

2000

3000

4000

5000

6000

7000

Index-time boosting
Query-time boosting

(b)

Fig. 4. Average creation and matching time of with different transactions per second.

Figure 4(a) shows the average creation time of a timely news record with
different transactions per second using query-time and index-time boosting
respectively. Since the frequent changes will rebuild the index using index-time
boosting, index maintenance issue become the bottleneck of the creation. Thus,
index-time boosting is worse than query-time boosting. The creation time of
index-time boosting rose sharply in the case of high transactions per second.
Figure 4(b) shows the average matching time of historical 352, 971 Netease news
records with different write transactions using query-time and index-time boost-
ing respectively. With high write transactions, the matching time of index-time
boosting is serious affected due to the indexes rebuilding. It indicates that the
query-time boosting is better than index-time boosting.

5 Conclusions

In this paper, we have introduced stream-based public opinion monitoring app-
roach with adaptive probabilistic topic model. Innovations highlights two points:
topic real-time computing with stream processing paradigm and topic match-
ing with query-time document and field boosting. Probabilistic topic computing
and matching addressed latent and hidden topic discovery, and stream-based
live probabilistic topic computing and matching addressed timely monitoring on
big data and relevance ranking of matching results.

Acknowledgments. This work was supported by the Science and Technology Pro-
gram of University of Jinan (XKY1734), the Open Project Joint Funding of Information
Science and Engineering School of Linyi University and Discipline Team of Intelligent
Logistics and Information Engineering (LDXX2017KF155), the Shandong Provincial
Natural Science Foundation (ZR201702170261), the Shandong Provincial Key R&D
Program (2015GGX106007 & 2016ZDJS01A12), and the Project of Shandong Province
Higher Educational Science and Technology Program (J16LN13).

406 K. Ma et al.

References

1. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy func-
tion for learning with multi-relational data. Mach. Learn. 94(2), 233–259 (2014)

2. De Francisci Morales, G., Gionis, A., Sozio, M.: Social content matching in mapre-
duce. Proc. VLDB Endow. 4(7), 460–469 (2011)

3. Guo, J., Fan, Y., Ai, Q., Croft, W.B.: A deep relevance matching model for ad-
hoc retrieval. In: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, pp. 55–64. ACM (2016)

4. Kononenko, O., Baysal, O., Holmes, R., Godfrey, M.W.: Mining modern reposito-
ries with elasticsearch. In: Proceedings of the 11th Working Conference on Mining
Software Repositories, pp. 328–331. ACM (2014)

5. Liu, Z., Zhang, Y., Chang, E.Y., Sun, M.: PLDA+: parallel latent dirichlet alloca-
tion with data placement and pipeline processing. ACM Trans. Intell. Syst. Tech-
nol. (TIST) 2(3), 26 (2011)

6. Ma, K., Dong, F., Yang, B.: Large-scale schema-free data deduplication approach
with adaptive sliding window using mapreduce. Comput. J. 58(11), 3187–3201
(2015)

7. Ma, K., Tang, Z., Zhong, J., Yang, B.: LPSMon: a stream-based live public senti-
ment monitoring system. Lect. Notes Comput. Sci. 9659, 534–536 (2016)

8. Ma, K., Yang, B.: Stream-based live data replication approach of in-memory cache.
Concurrency Comput. Pract. Exp. 29(11), 1–9 (2017)

9. Ma, K., Yang, B., Yang, Z., Yu, Z.: Segment access-aware dynamic semantic cache
in cloud computing environment. J. Parallel Distrib. Comput., 1–10 (2017)

10. McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action: Covers Apache
Lucene 3.0. Manning Publications Co., Cherry Hill (2010)

11. Mikolov, T., Yih, W.T., Zweig, G.: Linguistic regularities in continuous space word
representations. In: HLT-NAACL, vol. 13, pp. 746–751 (2013)

12. Shahi, D.: Apache solr: an introduction. In: Shahi, D. (ed.) Apache Solr, pp. 1–9.
Springer, Heidelberg (2015)

13. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts,
C.: Recursive deep models for semantic compositionality over a sentiment treebank.
In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), vol. 1631, p. 1642. Citeseer (2013)

14. Wu, H.C., Luk, R.W.P., Wong, K.F., Kwok, K.L.: Interpreting TF-IDF term
weights as making relevance decisions. ACM Trans. Inf. Syst. (TOIS) 26(3), 13
(2008)

15. Zhai, Z., Xu, H., Kang, B., Jia, P.: Exploiting effective features for Chinese senti-
ment classification. Expert Syst. Appl. 38(8), 9139–9146 (2011)

16. Zhang, D., Xu, H., Su, Z., Xu, Y.: Chinese comments sentiment classification based
on word2vec and SVM perf. Expert Syst. Appl. 42(4), 1857–1863 (2015)

17. Zhang, M., Chakrabarti, K.: InfoGather+: semantic matching and annotation of
numeric and time-varying attributes in web tables. In: Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data, pp. 145–156.
ACM (2013)

Experiment for Analysing the Impact
of Financial Events on Twitter

Ana Fernández-Vilas1(&) , Lewis Evans2, Majdi Owda2,
Rebeca P. Díaz Redondo1, and Keeley Crockett2

1 Information & Computing Laboratory, AtlantTIC Research Centre,
University of Vigo, 36310 Vigo, Spain
{avilas,rebeca}@det.uvigo.es

2 School of Computing, Mathematics and Digital Technology, Manchester
Metropolitan University, Manchester M1 5GD, UK

{L.Evans,m.owda,k.crockett}@mmu.ac.uk

Abstract. Twitter, as the heart of publicly accessible Social Media, is one of
the currently used platforms to share financial information and is a valuable
source of information for different roles in the financial market. For all these
roles, the quality analysis of Twitter as a source of financial information is
essential to take decisions. The work in this paper is aligned with the ongoing
work of the authors to a solution for irregularity monitoring in the financial
market by harnessing data in online social media. To do so, the permeability of a
variety of social media data feeders to financial irregularities should be analysed.
That is the case of the experiment in this paper by putting the focus on Twitter
microblogging platform and checking if this general purpose social media is
permeable to a specific financial event. For this, we detail the analysis of Twitter
permeability to a specific event in the past few months: the announcement about
the merge of Tesco and Booker to create a UK’s Leading Food Business on the
27th January 2017. Both companies Tesco PLC and Booking Group PLC are
listed in the main market of LSE (London Stock Exchange). Our findings
provide promising evidences to address the problem of real-time detection of
irregularities in the financial market via Twitter according to the volume (as a
sign of the importance of the irregularity) and to other features (as signs of the
potential origin causing the irregularity).

Keywords: Twitter � Stock market � Financial irregularities � Permeability

1 Introduction

As the heart of publicly accessible Social Media, Twitter has become a vital source for
open source intelligence in natural disasters, politics, consumers’ opinion, etc. Also,
Twitter is one of the currently used platforms to share financial information from
businesses, brokers, news agencies or through individual investors tweets. As Twitter
usage to share financial information is definitively increasing [1]; it is important to
stress that, according to [2], stock microblogs exhibit three distinct characteristics
above stock message boards: (i) Twitter’s public timeline may capture the natural
market conversation more accurately and reflect up to date developments; (ii) Twitter

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 407–419, 2017.
DOI: 10.1007/978-3-319-65482-9_28

http://orcid.org/0000-0003-1047-2143

reflects a more ticker‐like live conversation which allows micro-bloggers to be exposed
to the most recent information of all stocks and does not require users to actively enter
the forum for a particular stock; and (iii) micro-bloggers have a strong incentive to
publish valuable information to maintain reputation (increase mentions, the rate of
retweets, and their followership), meanwhile financial bloggers can be indifferent to
their reputation in the forum. Providing sensing, harvesting and analysing methods and
tools of such information could be very useful for many stakeholders such as busi-
nesses and individuals making decisions to invest, stock market analysts and law
enforcement agencies.

Our medium-term objective is a collaboration project among the University of Vigo
and the Manchester Metropolitan University to deploy an architecture for real-time
monitoring of irregularities in the stock market. That architecture will apply data
mining and fusion technologies from a pool of social feeders related with the stock
market. In order to design the architecture, the permeability of the different feeders
should be analysed, that means, to what extent a specific financial information feeder is
permeable to fraudulent and common irregularities in the financial market. That is the
case of the experiment in this paper by putting the focus on Twitter microblogging
platform.

This paper states the following research question: Is Twitter permeable to specific
actions ion the financial market? We hypothesize that Twittersphere, the total universe
of Twitter users and their habits, is permeable towards relevant actions in the financial
market and that the impact of this permeability can be measure according to (1) the
disturbance of Twitter behaviour in terms of volume, tweets features and geographical
distribution; and (2) the rapidness of this permeable layer between the financial market
and the social media (Twitter in our experiment). Showing that a general purpose social
media is permeable to financial-specific events is the first step to consider Twitter as a
relevant feeder for taking decisions regarding the financial market and event fraudulent
activities in that market. For this, we detail the analysis of Twitter permeability to a
specific event in the past few months: the announcement about the merger of
Tesco PLC (hereinafter Tesco) and Booker Group PLC (hereinafter Booker) to create
UK’s Leading Food Business on the 27th January 2017. Both companies Tesco PLC
and Booking Group PLC are listed in the main market of LSE (London Stock
Exchange).

This paper is structured as follows. Section 2 introduces the Twitter efforts to
accommodate financial information in a general-purpose microblogging platform as
well as related work in the area of the use of Twitter data for financial analysis where
researchers capture data by using the APIs provided by Twitter, which are discussed in
Sect. 2.1 along with the selection of Twitter features we consider during our experi-
ment. Section 3 describes the scenario, the extraction strategy and the resulting datasets
for the experiment, which aims to analyse permeability for the Tesco & Booker merger.
After cleaning the data and conducting the analysis, the paper reports the impact of the
merger on 27th January 2017 in terms of tweets volume and features (Sect. 4), in terms
of geographical distribution (Sect. 5) and in terms of its rapidness to react to the action
(Sect. 6). Finally, Sect. 7 discusses our findings and introduces our ongoing work in
the study of permeability of Twitter to financial events.

408 A. Fernández-Vilas et al.

2 Twitter and Financial Information

It is fair to say that it was Twitter that popularised the term hashtag as well as its #
symbol to index keywords or topics so that people can easily follow topics they are
interested in. Also, in 2012 Twitter unveiled a new clicking & tracking feature for stock
symbols (known as Cashtags). Cashtags are stock market symbols that can be included
in tweets and when preceded with a dollar sign (for example $VOD in regards to
Vodafone) become clickable. [3] reported an exploratory analysis of public tweets in
English, extracted via Firehose, which should contain at least one Cashtag from
NASDAQ or NYSE. The analysis concludes that the use of Cashtag is higher in the
technologic sector, which seems to be related with the technological profile of most of
the Twitter users; and the top 10 Twitter accounts according to the usage of cash-tags are
companies or news agencies (i.e. automatic or semi-automatic Twitter accounts). The
analysis also highlights the existence of relevant information behind the co-occurrence
of Cashtags (revealing main competitors of companies) and the co-occurrence of
Cashtags with Hashtags (allowing to group companies into clusters). Some other works
research on the possible connections between Twitter information and market perfor-
mance, that is the predictive value of information gathered form social media [2, 4].
Most of these works, based on the twitter data volume, also apply some sentiment
analysis technique in order to distinguish the polarity of the impact [5–8].

2.1 Twitter Mining

There are three different ways to catch Twitter data: Search API, Streaming API and
Firehose. The Twitter Search API provides the endpoints to recover tweets that were
published in the previous two weeks, with the possibility of filtering according to
several criteria. On the other hand, Twitter Streaming API returns 1% of the tweets that
match some search parameters in real time. Finally, Twitter Firehose provide access to
100% of the tweets, but it is not a free-access API. Twitter APIs are constructed around
four main “objects”: Tweets, Users, Entities (hashtags, URLs, mentions and media in a
tweet) and Places. Then, users construct API queries (combining object fields and
query operators) to retrieve information posted from specific users, containing a par-
ticular combination of keywords, including particular entities, etc. With regard to this
work, the experiment does not include the analysis of the spreading perspective of
information on Twitter so we select the following features (existing in both Search and
Streaming APIs under different field names) for the analysis, all of them accessible
from a Tweet object:

• Content perspective: the status update (Tweet:text) and the entities (Tweet:
entities), specifically hashtags (including cashtags) and urls.

• Context perspective: the post time of the status update (Tweet:created_at)
and, if available, also the place (Tweet:coordinates; Tweet:place:
bounding_box).

• Social Perspective: User (Tweet:user, specifically the field verified).

Experiment for Analysing the Impact of Financial Events 409

There are highly relevant differences between the Searching API and the Stream-
ing API, time direction being the most apparent and functionally-impacting one.
Search API goes back in time meanwhile Streaming API goes forward. Moreover, there
are other differences related to mainly the format and the rate limit rules. Regarding
their extracting capacity, Twitter forums contain plenty of discussion about this issue
which has not ever made enough clear from Twitter officially.

3 The Experiment and the Data

As mentioned, the aim of this experiment is analysing the permeability of Twitter to the
occurrence of specific events in the day to day of financial market. For that, we perceive
TESCO on Twitter with the pair (cashtag, keyword), that is ($TSCO, “tesco”), rep-
resenting the financial perspective of TESCO on Twitter ($TSCO) and general refer-
ences to TESCO on Twitter (“tesco”). According to this representation, we respond to
our research question. Our hypothesis is that Twitter (although not a specific financial
forum) is permeable to financial events and this permeability can be analysed by
monitoring the name of companies as a keyword (“tesco” in this case) and the Cashtag
of the company ($TSCO). Also, we hypothesize that the permeability and the impact is
not alike in the two perspectives. Meanwhile the cashtag is invariably linked to
financial news of a company, the general content, or ‘Tesco’ content, have some
completely different dynamics which is generally driven by company decisions, mar-
keting campaigns, consumer opinions, etc. Presumably, financial events should have a
bigger impact on cashtag tweets (according to volume and features) than on tweets
containing the keyword ‘Tesco’. Nevertheless, this presumably different behaviour
should be inspected. Taking this merge action as our first experiment to a general
measure of permeability, while taking into account that we are reporting a single event,
we analyse the impact of this financial event on Twitter $cashtag-content and on
Twitter keyword-content related with the company, separately. The impact on both data
sources ($TSCO and ‘tesco’) is measured in terms of Twitter volume (Sect. 4), in terms
of geographical distribution (Sect. 5) and in terms to their response to the announce-
ment by the RNS (Regulatory News Service) of LSE1 (Sect. 6).

3.1 Data Extraction

We prepared the experiment according to the following extraction strategy for the query
($TSCO, “tesco”). Once we selected the event, we used the Search API to recover the
information backwards before the announcement on 27th of January 7:00 a.m. and the
streaming API to recover information forwards. The aim of streaming data just after the
announcement was to visualize the impact of the announcement and analyse the time
Tesco Twitter behaviour returns to a regular pattern. The results of the combination of
the search and streaming results is shown in Fig. 1. Once the behaviour becomes stable,

1 http://www.londonstockexchange.com/exchange/news/market-news/market-news-home.html.

410 A. Fernández-Vilas et al.

http://www.londonstockexchange.com/exchange/news/market-news/market-news-home.html

we used the Search API again to obtain a regular dataset as a reference for the
experiment.

Clearly, the Twitter Search API is not appropriate for continuous analytical mon-
itoring and as a data source to taking decisions in real time. It is not intended and does
not fully support the repeated constant searches that would be required to deliver 100%
coverage. However, the experiment in this paper is limited to one individual company,
2 keywords and timelines in the scale of weeks. In such conditions, Search API provide
a better coverage than de Streaming API (1% according to the Twitter official infor-
mation) if we use the superior filtering characteristics of the Search API. Nevertheless,
as the Search API has a limit on the number of returning Tweets, to get the whole data,
we repeatedly ask Twitter for the most recent results backwards by windowing the
searches according to the publication date and merging results according to the post Id.
Apart from that, the Search API guarantees a fair comparison according to the volume
of data, in any manner we should compare Search results with Streaming results.
According to that, and to give response to the research questions, we use Search API
queries to cover the time periods in Table 1.

Fig. 1. Total Twitter volume for ‘tesco’ (left) and $TSCO (right) by merging (without
duplicates) the retrieved data from queries to Search API (backwards) and Steaming API
(backwards).

Table 1. Time Periods (UK Time) extracted with the Search API.

Name/Period ‘Tesco’ $TSCO
Total Per/hour Total Per/hour

Pre-announcement 25th Jan 00:00–27th Jan 06:59 11,817 214.85 12 0.218
Post-announcement 27th Jan 07:00–29th Jan 23:59 25,547 393.03 91 1.400
Regular 2-weeks-after 8th Feb 00:00–10th Feb 06:59 13,417 243.94 26 0.473
Regular 2-weeks-after 10th Feb 07:00–12th Feb 23:59 20,012 307.88 22 0.338

Experiment for Analysing the Impact of Financial Events 411

4 Impact on Twitter Volume

In this section, we detail the impact of the event by analysing the variation in the
number of tweets (volume) with respect to the regular behaviour, which provides a
quantitative measure of Twitter permeability to the Tesco & Booker merger. During
this part of the analysis some irregularities appeared which uncovered an inconsistency
in the named scheme of tickers in Twitter. In particular, to our knowledge, Twitter has
not promoted the specific distinction among markets so that the uniqueness of ticker
symbols inside a market disappear in the Twittersphere. That is the case of $TSCO
cashtag which corresponds to ‘Tesco PLC’ in LSE and to ‘Tractor Supply Company’ in
NASDAQ (National Association of Securities Dealers Automated Quotation), the
second stock exchange in USA. So, the returned results to a $TSCO query include
tweets related to Tesco Plc and also to Tractor Supply Company. If cashtags are the
Twitter vehicle to aggregate and allow the spreading of financial information about
companies, some kind of market prefix should be used, specially in the times when
companies are becoming increasingly global.

Figure 2 shows the temporal series in a tweets-per-hour (TPH) scale. Although it is
quite obvious that the number of TPH in ‘tesco’ dataset is up several orders of mag-
nitude higher than those of $TSCO dataset, the peak behaviour is more acute in the
$TSCO one. As it is shown in Table 2, considering the hourly volume of ‘tesco’
dataset on the 27th January, there are not outliers during the day, with a peak value of
2,057 tweets in the sample from 8:00 to 9:00. Nevertheless, there are 3 outliers in the
$TSCO dataset: samples 8:00–9:00, 9:00–10:00 and 12:00–13:00, corresponding to the
time just after the announcement and lunch time in the UK, the latter being consistent
with previous studies about social timing, i.e. [9].

Apart from the peak comparison, we also inspected the potential disturbances on
other dataset features before and after the announcement, also comparing these dates
with the regular behaviour 2 weeks later (see Table 3). We highlight the invariability
on the number of verified users either along all the periods and along the two datasets.
Secondly, the percentage of tweets which contain URL are significantly higher in the
$TSCO dataset with respect to the ‘tesco’ one, which is a result of the professional and
financial orientation of the $TSCO data as a channel to spread facts and news rather
than opinions and sentiments. Finally, the retweeting activity is higher in the
announcement periods (pre- and post-) compared to the regular periods in both data-
sets. The increase of retweeting is, by nature, linked to the need or desire of spreading a
piece of content but, the reason behind may be different as, in fact, it is in our case
study: retweeting in the ‘tesco’ keyword dataset is mainly related with a Tesco cam-
paign for wining a voucher, meanwhile retweeting in $TSCO data is mainly linked to
spreading the information about the merge (post-announcement) and about other
financial news.

412 A. Fernández-Vilas et al.

Fig. 2. Time series of the ‘tesco’ and $TSCO dataset from 25th January to 29th January

Table 2. Peak behaviour on the 27th January for ‘tesco’ and $TSCO.

Experiment for Analysing the Impact of Financial Events 413

5 Impact on Geographical Distribution

Although Twitter is one of the most used data source in data mining, the geo-location
component of Twitter is not comparable to other data sources which we can refer to as
Location-based social networks. In fact, according to [10], the geo-located tweets
returned by the Streaming API cover up to the 90% of the geo-located tweets extracted
from Firehose API. However, [10] also reveals that the number of geo-located tweets is
low, being only a 1.45% of the tweets obtained from Firehose API and 3.17% of the
tweets obtained from Streaming API. The total percentage of geo-located tweets for the
‘tesco’ dataset is consistent with this previous study [10], with a percentage of 4.3% for
all the periods in the experiment. Although the number of tweets in the $TSCO dataset
may be not representative enough, we should remark that the percentage of geo-located
tweets in the $TSCO dataset is almost 0%, 1 tweet out of a total of 199, so bellow the
4.3% in ‘tesco’ dataset. Also, there is not variability of those percentages throughout
the periods considered (pre- post- and regular). Although these data should be inter-
preted with caution, we may consider the possibility of accessing from a desktop device
or corporate mobile in the case of financial professionals (supposedly devices without
location feature or whit this feature disabled).

Beyond the percentage of geo-located tweets that the Twitter APIs return, the
variation of the geographical distribution of the tweets due to the financial event
deserves to be analysed. Figure 3 shows this distribution and, apparently, there is not
much variation if we compare post-announcement with the regular period for the same
days of the week.

A deeper inspection of the tweets per country in Table 4 confirms that most of
tweets come from the countries where Tesco deploy its main business either under
Tesco trademark or thorough subsidiary local companies. Apart from UK and Republic
of Ireland, the main retail locations of Tesco PLC all over the world are the
Czech Republic, Hungary, Poland, Slovakia, Turkey, Malaysia and Thailand.

Table 3. Variability of features in ‘tesco’ and $TSCO datasets (Green bars correspond to the
variation in the ‘tesco’ dataset and blue bars correspond to the variation in the $TSCO dataset).

414 A. Fernández-Vilas et al.

P
ost- announcem

ent
27

th
Jan 07:00 -

29
thJan 23:59

R
egular 2- w

eeks- after
10

th Feb 07:00 -
12

thFeb 23:59

Fig. 3. Geographical distribution of ‘tesco’ dataset after the announcement and during a regular
period.

Table 4. Geographical distribution of tweets in ‘tesco’ dataset

Experiment for Analysing the Impact of Financial Events 415

According to the results in the table, before the announcement, the bigger contribution
to Twitter volume corresponded to the UK market which is consistent with the his-
torical roots of the company in this country where its retailing business is fully inte-
grated in the society. Nevertheless, after the announcement, this percentage decreases
in favour of other locations over the world, which is a sign of the global impact of the
action so that twitter users outside UK are not so linked to Tesco PLC main business
campaigns during regular period but they are reactive to a relevant event related with a
company with presence in their countries. Nigeria is highlighted in Table 4 as a country
with a definitely high position during the post-announcement despite the fact that Tesco
does not have business in this country. 42 of the 43 tweets in Nigeria has the same
content but they are tweeted from 42 different users, not being retweets, so that it may
be a violation of the spam terms in Twitter rules.

6 Rapidness

Although our analysis focuses on the permeability of Twitter to financial events our
long-term objective is the use of Twitter as a sensor of irregularities in the stock market.
So, this section includes our findings related to the rapidness and synchronization of
Twitter as a channel to the activity in the stock market: rapidness in its response to the
RNSs of LSE (London Stock Exchange) and synchronization with the share prices also
in LSE. Regarding the rapidness, the experiment definitively shows the good charac-
teristics of Twitter. The first tweet referring to the RNS was at 7:03 a.m. on 27th, just
3 min before the RNS announcement about the Tesco and Booker merge. Beyond the
very first tweet, it is remarkable the rapidness of the peak response to the

27th January ‘tesco’ Regular Friday for ‘tesco’

27th January $TSCO Regular Friday for $TSCO

Fig. 4. Time series at hour scale on the 27th January in comparison with a regular Friday.

416 A. Fernández-Vilas et al.

announcement in both datasets, so that the 27th Twitter time series (‘tesco’ and
$TSCO) can be considered abnormal time series when a regular Friday is taken as a
reference. We highlight that the peak starts form 7:00 to 8:00 both in the #TSCO and
$TSCO dataset (see Fig. 4).

Regarding the synchronization with the share prices at LSE (Fig. 5), it is fair to
mention that although the share prices were abnormally low the day before the
announcement, we haven’t found any reference to a potential Tesco & Booker merger
in tweets before the announcement in our dataset, neither by manual inspection of
Twitter Web Site.

7 Discussion

This paper inspects the permeability of Twitter to financial events in order to provide
evidences which allows Twitter to be used as social sensor for the financial and stock
market. Bearing in mind that this a single experiment for a single financial event and
also that the event was fully covered by traditional social media, we can conclude that
the event in the financial market invaded the Twittersphere on the 27th January, just
after the RNS announcement at 7:00, and that the behaviour of ($TSCO, “tesco”) was
altered in comparison with the regular behaviour around the company involved in the
financial event. Nevertheless, the experiment had a little success in predicting the
irregularity, that is, identifying some rumour or sign of the announcement. Even
considering that the experiment was not deployed over the whole Firehose Twitter data,
uncovering rumours before the announcement turns definitively into a hard task if the
human spreading of rumours is not mimic inside Twitter, that means, if the rumour is
not there. At this respect, and according to [11], social media data can only be gen-
eralized to human behaviour if social media provides a representative description of

Fig. 5. Main observational points in the evolution of the Tesco PLC share price (16th January to
27th March 2017)

Experiment for Analysing the Impact of Financial Events 417

human activity. Twitter is a social media which, at least, exhibit some demographic
bias. Moreover, Twitter may be providing a skewed representation of their content.
Although well-known rumour detection algorithms [12, 13] can be applied to Twitter,
an alternative approach can be the fusion of financial information from different data
sources in a way that we can mitigate the inevitable bias in a single source, and, at the
same time, combine their weaknesses and strengthens in a proper representation of the
real financial activity.

Meanwhile this paper analyses the quantitative and objective permeability of a
financial event on Twitter, our ongoing work has conducted and initial analysis the
qualitative characteristics of that permeability: in terms of topic modelling and infor-
mation provenance, but also considering the polarity of twitter financial information.
The experiment in this paper provides promising results to address our final objective: a
real-time monitoring system which would detect irregularities according to the volume
(as a sign of the importance of the irregularity) and to other features (as signs of the
potential origin causing the irregularity). Such a system implies prime benefits for
individuals, specially uninformed traders, and for regulatory and low enforcement
agencies as a sign which may trigger further actions. Unfortunately, the need to
influence social media for different purposes is often linked to the propagation of
information with low credibility level or definitely false. Also, as it is shown in [14],
firms strategically disseminate information in social media, that is, they decide to use or
not to use certain channels depending on the piece of news. Even worse, information
may be automatically disseminated by artificial agents in order to influence the com-
munity in a deceptive way.

Acknowledgement. This work was funded by Spanish Ministry of Education Culture and
Sports, National Plan for Scientific and Technical Research and Innovation (Sub-Programme for
Mobility) under the research stay grant PRIX16/00368. We thank the Manchester Metropolitan
University (School of Computing Mathematics and Digital Technology) for its support during the
research stay. This work is also partially funded by the Spanish Ministry of Economy and
Competitiveness under the National Science Program (TEC2014-54335-C4-3-R).

References

1. Cazzoli, L., Sharma. R., Treccani, M., Lillo, F.A.: Large scale study to understand the
relation between Twitter and financial market. In: Third European Network Intelligence
Conference (2016)

2. Sprenger, T.O., Tumasjan, A., Sandner, P.G., Welpe, I.M.: Tweets and trades: the
information content of stock microblogs. In: European Financial Management, vol. 20,
pp. 926–957 (2014)

3. Hentschel, M., Alonso, O.: Follow the money: a study of cashtags on Twitter. First Monday
19(8) (2014)

4. Ruiz, E.J., Hristidis, V., Castillo, C., Gionis, A., Jaimes, A.: Correlating financial time series
with microblogging activity. In: Proceedings of the Fifth ACM International Conference on
Web Search and Data Mining (2012)

418 A. Fernández-Vilas et al.

5. Oliveira, N., Cortez, P., Areal, N.: The impact of microblogging data for stock market
prediction: using Twitter to predict returns, volatility, trading volume and survey sentiment
indices. Expert Syst. Appl. 73, 125–144 (2017)

6. Liew, J.K.S., Budavári, T.: Do Tweet Sentiments Still Predict the Stock Market? SSRN
(2016)

7. Rajesh, N., Gandy, L.: CashTagNN: using sentiment of tweets with CashTags to predict
stock market prices. In: 11th International Conference on Intelligent Systems: Theories and
Applications (2016)

8. Cortez, P., Oliveira, N., Ferreira, J.P.: Measuring user influence in financial microblogs:
experiments using stocktwits data. In: Proceedings of the 6th International Conference on
Web Intelligence, Mining and Semantics, WIMS 2016 (2016)

9. Adnan, M., Leak, A., Loingley, P.: A geocomputational analysis of Twitter activity around
different world cities. Geo-Spatial Inf. Sci. 17(3), 145–152 (2014)

10. Morstatter, F., Pfeffer, J., Liu, H., Carley, K.M.: Is the sample good enough? Comparing data
from twitter’s streaming API with Twitter’s firehose. In: Proceedings of the 7th International
Conference on Weblogs and Social Media, ICWSM 2013 (2013)

11. Liu, H., Morstatter, F., Tang, J., Zafarani, R.: The good, the bad, and the ugly: uncovering
novel research opportunities in social media mining. Int. J. Data Sci. Anal. 1(3–4), 137–143
(2016)

12. Vosoughi, S.: Automatic Detection and Verification of Rumors on Twitter. Massachusetts
Institute of Technology (2015)

13. Tafti, A., Zotti, R., Jank, W.: Real-time diffusion of information on Twitter and the financial
markets. PLoS ONE 11(8) (2016)

14. Jung, M.J., Naughton, J.P., Tahoun, A., Clare, A.W.: Do Firms Strategically Disseminate?
Evidence from Corporate Use of Social Media. SSRN (2016)

Experiment for Analysing the Impact of Financial Events 419

APK-DFS: An Automatic Interaction System Based
on Depth-First-Search for APK

Jing Tao(✉), Qiqi Zhao, Pengfei Cao, Zheng Wang, and Yan Zhang

Ministry of Education Key Lab for Intelligent Networks and Network Security,
Xi’an Jiaotong University, Xi’an 710049, China

jtao@mail.xjtu.edu.cn

Abstract. Android is paid more and more attention by many mobile phone
manufacturers and software vendors. Due to defects of the Android and the huge
potential economic benefits, there are more and more malicious codes. The
majority of malicious applications will exhibit malicious behavior only if they
interact with users. However, there is not a mature solution to traverse APKs
automatically currently. By studying and analyzing the framework of Android
system, we design and implement a system called APK-DFS which can traverse
APKs automatically. This system can extract and recognize views in UI pages,
and interact with these views via depth-first-search algorithm layer by layer; it
establishes a UI storage stack and a UI trash can; it can also generate strings with
specified format for views which require text input. We evaluate the system by
testing it with APKs downloaded from Android markets. The results show that
APK-DFS can simulate real users to trigger views in APKs effectively. For APK-
DFS, in 30 min the average of effective trigger rate is 91%, and the average number
of views that can be triggered in 50 events is 32.58. Compared with Monkey and
PUMA, APK-DFS is the best one.

Keywords: Android · Automatically trigger · Traverse all views · Interaction of
UI · Depth first search

1 Introduction

In recent years, the market share of smart phones has risen rapidly. With the promotion
of Android mobile phones, the number of APKs is also increasing. However, due to the
defects of Android and the huge potential economic benefits, there are more and more
malicious applications. The majority of malicious applications will exhibit malicious
behavior only if they interact with users. By installing APKs in simulator, simulating
users to interact with the APKs, we can witness the malicious acts, and do safety inspec‐
tion of APKs before using them. Now, there are some tools that can interact with APKs
automatically, such as Monkey, PUMA [2] and Dynodroid [3].

Monkey is an automated testing tool that comes with the Android system and can
generate a specified number of random events, including keystroke entry, touch screen
operations, gesture input, and so on. But it just generates random events, it can’t generate
events as users need. In those random events, there are some repeated events which will

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 420–430, 2017.
DOI: 10.1007/978-3-319-65482-9_29

trigger the same view, and some of the events are not needed in some UI pages, but there
is no way to avoid them in Monkey.

Shuai et al. proposed to separate two tasks which are analyzing the UI pages and
exploring the execution logic of the application, so that the trigger strategy is defined
after analyzing the APK. They implemented the PUMA system [2]. But PUMA ignores
views which need users to input text into; some applications has advertisements when
started, and PUMA will get the advertising page, then exit without recognizing any
useful views, so it cannot trigger any useful views in the applications.

Aravind et al. proposed to use the “observe - select – execute” cycle for automatic
trigger and they implemented Dynodroid system [3]. First, it observes events related to
the current page of the APK, next it selects one of these events, then it executes the
event, and repeats the process. When getting the events, it needs a collection of registered
callback functions and a collection of overridden methods which need to be analyzed in
the source code. In Dynodroid system, the Android SDK source code is modified to
obtain the information of events, but this needs to modify the Android source code and
is not compatible with different Android versions.

In a word, these tools proposed in the existing researches can trigger APKs auto‐
matically with good results in some aspects, but there are still some problems. Aiming
at solving these problems, we designs an APK interactive system named APK-DFS.

The contributions of this paper are as follows:

(1) We design and implement an automatic interaction system based on Depth-
First-Search for APK named APK-DFS. The APK-DFS system uses the depth
first search algorithm to extract, identify and traverse UI views layer by layer, and
interacts with views that need to be clicked and input text in. It also records the
views that have been triggered, avoids triggering the same views repeatedly, and
performs a more complete traversal of all the UI views in APKs.

(2) We design a method to construct fingerprints for UI pages and record infor‐
mation of UI pages in a UI storage stack and a UI trash can. APK-DFS distin‐
guishes different UI pages through the fingerprint information of different UI pages.
It records the UI states in traversal process, establishes UI storage stack to store
related information, and establishes UI trash can to record UI pages that have been
visited.

(3) The effectiveness of the APK-DFS is verified by experiments on APKs from
Android markets. We use APK-DFS, Monkey and PUMA to trigger APKs from
Android markets, and the results show that APK-DFS is the best one.

2 The Framework of APK-DFS

APK-DFS is used to start APKs and trigger all views that can interact with users in APKs
automatically. The whole system can be divided into three modules: APK analysis
preprocess module, APK automatic installation and startup module, and APK automa‐
tion interaction module. The framework of the system is shown in Fig. 1.

An Automatic Interaction System Based on DFS for APK 421

Fig. 1. The framework of the system

APK analysis preprocess module includes two parts which are launch the simulator
and analysis of AndroidManifest.xml. Launch the simulator provides a runtime envi‐
ronment for APK-DFS to simulate users for automatic triggering; analysis of Android‐
Manifest.xml file provides the PackageName, MainActivity and all valid Activity
classes of the APK, which provide reference information to judge whether an Activity
belongs to the APK, so as to avoid wasting time in useless UI pages.

The APK automatic installation and startup module is divided into APK installation
and APK startup. After getting the position of APK to be tested, we can install it onto
the simulator through “adb install” command, and then start the APK according to the
PackageName and MainActivity by using “adb shell am start” command.

The APK automation interaction module is the main part of the system, which simu‐
lates the interaction between users and views in UI pages by the depth first search
traversal algorithm. It is described in Sect. 3.

3 Design and Implementation of Automated Interaction

3.1 Automatic Interaction Process

The process of automated interaction is shown in Fig. 1. The steps are as follows:

(1) Get the UI page and all views that are not triggered in the UI page.
(2) Judge whether all views in the current UI page have been triggered, if so, enter (4),

else enter (3).
(3) Select a view that hasn’t been triggered before, and simulate users to interact with

the view according to the class of the view, then judge whether UI changes, if so

422 J. Tao et al.

save the original UI information and interact with the new UI page, back to (1), else
trigger the original UI page, back to (2).

(4) Judge whether all UI pages in the APK have been triggered, if so, the interaction is
ended, else go back to the UI page that has views to be triggered, then back to (1).

3.2 Depth First Search Traversal Algorithm

The APK-DFS system is based on “layer” to implement the depth first search traversal
(DFS) algorithm, which is the key to the system. The layer refers to different UI pages.
In the system, each UI page belongs to and only belongs to a certain layer. When APK
starts, the initial UI page is the 1st layer, such as 1-1 in Fig. 2. If a new UI page emerges
after triggering a view in the first layer, it belongs to the 2nd layer, such as 2-1, 2-2 and
2-3 in Fig. 2. The new UI pages which have never emerged after triggering the views
in the 2nd layer belong to the 3rd layer, such as 3-1 in Fig. 2, and so on. After triggering
the views in n layer, new UI pages belong to the n + 1 layer. If a UI belongs to k (0 < k
<= m) layer which has already emerged after triggering a view of the m layer, the layer
to which the UI belongs will not change, it belongs to k layer. In the 2-3, clicking the
“registration” will show 2-2, but 2-2 has already emerged in the 2nd level, so 2-2 belongs
to the 2nd layer instead of the 3rd layer.

Fig. 2. APK layers

An Automatic Interaction System Based on DFS for APK 423

APK-DFS’s main interactive traversal algorithm is depth first search traversal (DFS)
algorithm, the detailed design of the which is as follows

(1) The DFS method is used when traversing an APK. First, start the application. When
traversing a UI page, get all the interactive views of the UI page, then traverse all
views one by one. After triggering a view in the n layer, UI page changes, then the
new UI belongs to n + 1 layer. Then store the old UI page information, and traverse
the new UI page. When finish traversing the n + 1 page, go back to the n page to
traverse the remaining views. The depth first traversal algorithm is described in
algorithm 1.
Regard “Baidu Tieba” APK as an example in Fig. 2. It launched the “Baidu Tieba”
firstly, and in the initial 1-1 page, there are three interactive UI views which are
“login”, “registered” and “look”. When clicking “login”, page changes, and new
page 2-1 emerges, so the information of the 1-1 is stored, and then it traverse the
2-1 UI. After finishing triggering the views in 2-1, go back to the 1-1 to trigger other
views.

(2) In the traversal process, if you go through all views of a UI page in layer n + 1, then
find the click path in this page to reach the n layer page, and go back to the n layer
page. In Fig. 2, if you want to go back to 2-3 after 3-1 traversal, you can reach 2-3
directly by clicking “home page”. If the n + 1 layer page is fully traversed and there
is no path to the n layer pages, click the backspace key BACK.

(3) If you don’t go back to the n layer pages after clicking BACK, but to an m (0 < m<
n) layer page, then click the appropriate button in the page, until you reach the page
of layer n. As shown in Fig. 2, after clicking BACK in 3-1, it isn’t back to the target
page 2-3, but back to 1-1, then click the “random look” in 1-1 to reach 2-3.

3.3 UI Page Fingerprint

Judging whether UI pages are the same one requires a standard, and APK-DFS uniquely
identifies UI pages by building fingerprints for them. The fingerprint of a UI page is
composed by all views with different attributes in the UI, so before building the finger‐
print of a UI, we need to build fingerprints of views with its attributes.

The fingerprint information of a view consists of the following attributes:

(1) class of the view, such as RadioButton, TextView;
(2) coordinate information of the view;
(3) the size of the view;
(4) the class name of the Activity where the view is located.

The string is spliced by above information, and the fixed length string, which is the
fingerprint of the view, is obtained by using Hash algorithm. Then the string obtained
by using Hash algorithm in fingerprints of all views is the fingerprint of the UI page.

According to whether the fingerprints of two UI pages are the same, we can judge
whether the they are the same and the method is as follows:

(1) If the Activity class names of the two UI pages are different, they are different UI
pages, else enter (2);

424 J. Tao et al.

(2) If the numbers of views in the two UI pages are different, they are different UI
pages, else enter (3);

(3) If the fingerprints of the two UI pages are inconsistent, they are different UI pages,
otherwise they are the same UI page.

3.4 UI Storage Stack and UI Trash Can

To ensure that all UI pages that you can get are completely traversed in sequence, APK-
DFS constructs a UI storage stack for UI pages, as shown in Fig. 3. When an APK is
triggered automatically, there is a UI storage stack that stores all the UI pages that
emerged and the views in which haven’t been triggered. When a UI page is being trav‐
ersed, if there is a new UI page emerging, then the old UI page information is stored,
and the old UI page is pushed into the UI storage stack, then traverse views in the new
UI page. When all of the UI pages in the stack on one UI page have been traversed, the
stack pops up this UI page and traverses the views that have not yet been triggered. If
all views have already been triggered, then mark the UI page as “completed traversal”
and no longer push it into the stack.

Fig. 3. UI storage stack

Those UI pages marked as “completed traversal” may emerge later in the process of
interaction. In order to avoid repeated traverse, APK-DFS constructs a UI trash can to
store information of those pages that have been triggered. When the system is running,
if there is a new UI page, and the page is in the UI trash can, there is no need to traverse
it, so leave from it directly, otherwise traverse it as needed.

Take “Baidu Tieba” APK as an example, as shown in Fig. 3, which is the change
process of the UI storage stack corresponding to Fig. 2. The initial UI page stack is
empty. In the traversal of 1-1, the new page 2-1 emerges, it will push 1-1 into the stack,
then traverse 2-1. When finish traversing 2-1, pop the 1-1, and continue to traverse the
1-1. When 2-2 emerges, put 1-1 into the stack. After traversing the 2-2, pop 1-1, continue
to traverse 1-1. 2-3 emerges, put 1-1 into the stack, then traverse the 2-3. 3-1 emerges,

An Automatic Interaction System Based on DFS for APK 425

put 2-3 into the stack, too, traverse 3-1. After the traversal of 3-1, pop 2-3. After the
traversal of 2-3, pop 1-1 stack.

3.5 User Operation Simulation

APK-DFS mainly simulates the interaction on views that are clickable and need text to
input. Through the simulation of these two types of operation, it can interact with most
of the views. Clickable views include Button, RadioButton, ImageView, TextView,
CheckBox, and so on. APK-DFS uses the AndroidViewClient [10], an open source tool
to obtain UI page information and performs click operations.

Text input boxes are usually required to enter text with specified format, such as
“username”, “password”, the format is usually indicated in the text property of the view.
APK-DFS automatically generates strings that conform to the format requirements. The
string types and formatting requirements that can be generated are shown in Table 1. In
the system, first of all, extract all views that need to input text according to the class of
them, then generate string automatically according to the text property of the views, then
trigger other views. Many views in the UI pages need text input before they are triggered.
Inputting valid strings automatically can trigger more pages.

Table 1. The string format generated automatically

String type String format
Mailbox Ended with @xx.com. The mailbox name is a combination of 5–9

letters and digit numbers
Mobile phone number A combination of 11 digit numbers at the beginning of 1
Verification code A combination of 6 digit numbers
Username A combination of 4–9 characters, special characters and numbers
Password A combination of 4–9 characters, special characters and numbers
Others A combination of 1–20 characters, special characters and numbers

4 Experiments and Results

4.1 Experimental Results

In order to validate the effectiveness of APK-DFS system, we choose Monkey and
PUMA to compare. Monkey is an automated testing tool that comes with Android
system. It uses socket communication and can generate random click events, touch
screen, gestures and other types of events. PUMA is a tool that identifies UIs in APK
dynamically, and identifies various views in the page to trigger automatically.

The APKs used in the experiment are downloaded from the Android markets,
including many frequently used APKs such as Renren and Baidu Tieba. The total
number is 100. In experiments, APK-DFS, Monkey and PUMA are used to automati‐
cally trigger APKs. By counting the number of views that are effectively triggered by
each tool, the results of various tools triggering APK are compared.

426 J. Tao et al.

The 1st experiment, set the trigger time of APKs to be 30 min, then count the total
number of generated events(TN) and the number of events that can effectively trigger
views(EN), then calculate the effective trigger rate, the formula of which is:

effective trigger rate =
EN
TN

The experimental results of monkey, PUMA and APK-DFS are shown in Figs. 4, 5
and 6. The abscissa is the serial number of APK, and the ordinate is the effective trigger
rate. Lines in Figs. 4, 5 and 6 are average numbers. According to the experimental results,
the maximum value of monkey effective trigger rate is 26%, the minimum is 0%, the
average is 14%. We can see from Fig. 4 that triggering views by monkey, each APK’s
effective trigger rate remains at a low level, and the automatic trigger result is poor; the
maximum value of effective rate of PUMA is 100%, the minimum is 0%, and the average
is 29.93%. We can see from Fig. 5, the PUMA trigger results are not stable that many
APKs’ trigger ratio being 0%. The results are not very good; the maximum value of
APK-DFS system effective trigger rate is 91%, the minimum is 0%, and the average is
59%. As shown in Fig. 6, a small number of APKs’ trigger rate is 0%, but the number
of those APKs is little. Overall, the results of APK-DFS are more stable and better than
that of PUMA and APK-DFS.

The 2nd experiment, setting the number of events that each APK can trigger to be 50, and
counting the number of views that are effectively triggered after each APK triggers 50
events automatically. The experimental results of monkey, PUMA and APK-DFS are shown
in Figs. 7, 8 and 9. The abscissa is the serial number of APK, and the ordinate is the number
of views that are effective triggered. Lines in Figs. 7, 8 and 9 are the average numbers. The
number of views triggered effectively by monkey maintains in low level; there is a large gap
for numbers of views triggered by different APKs when use PUMA, and the number of
views triggered for many APKs is 0. The trigger results are not stable. The numbers of views
APK-DFS triggered are relatively stable, the numbers of most of the APKs are near the
average number 32.58, so its automatically trigger results are the best.

Fig. 4. Monkey results of the 1st experiment Fig. 5. PUMA results of the 1st experiment

Fig. 6. APK-DFS results of the 1st experiment Fig. 7. Monkey results of the 2nd experiment

An Automatic Interaction System Based on DFS for APK 427

Fig. 8. PUMA results of the 2nd experiment Fig. 9. APK-DFS results of the 2nd experiment

4.2 Result Analysis

The number of views that Monkey effectively triggers is less due to the random events
which include a large number of repeated events and invalid events, such as various
sliding events, which rarely trigger views. The APK-DFS takes class of each view,
generates effective events that can trigger views, and records the trigger states of each
view to avoid generating events that trigger the same view repeatedly.

When PUMA triggers, many APKs end automatic triggering process shortly after
the start, and can’t trigger views in APKs. This is because when APK starts, the ad page
first appears, and PUMA identifies the ad page, without identifying the active views.
Without triggering any views, it ends the trigger process. Most of these ad pages need
to be slid to skip, and PUMA doesn’t deal with them effectively. When APK starts
running, APK-DFS can simulate users’ sliding action to avoid advertising, then entering
the main page and triggering the active view. But for the views requiring users to input
text, PUMA can’t input string as needed, so that PUMA can’t trigger some views, while
APK-DFS can generate strings in accordance with the demand and trigger more views.
In APK-DFS, some APKs stop soon after starting, because the ad page at these APK
starts requires more sophisticated user actions to skip.

In a word, the features of APK-DFS are as follows:

(1) Avoid triggering views repeatedly. APK-DFS takes a layered approach, defining
each of the UI pages as a layer, and traversing all the views based on the layers.
For views in each layer, it can conduct a comprehensive interactive traverse, and
views have been triggered in the running process of the system won’t be triggered
again, so it can reduce time consumption used by triggering the same views repeat‐
edly. APK-DFS enables more comprehensive triggering of views in APKs,
exposing more malicious behavior hidden behind views (Tables 2 and 3).

(2) Strings of the corresponding format is generated according to the need of the text
input boxes. APK-DFS can generate the corresponding string format according to
the text property of a text input box to meet the need of the majority of the text input
boxes, thereby triggering more pages, simulate the interaction with more views.

(3) It can avoid the influence of initial advertisement pages. At APK startup, the ad
pages can be skipped by simulating sliding operation, so that it can enter main page
and trigger more views.

428 J. Tao et al.

Table 2. Effective trigger rate of the 1st experiment

Tools Maximum value Minimum value Average value
Monkey 26% 0% 14%
PUMA 100% 0% 29.93%
APK-DFS 100% 0% 91%

Table 3. Effectively triggered views of the 2nd experiment

Tools Maximum value Minimum value Average value
Monkey 14 0 6.95
PUMA 50 0 10.73
APK-DFS 50 0 32.58

5 Summary

In order to test APKs and expose malicious behaviors, we design and implement an
automatic interaction system based on DFS for APKs named APK-DFS. APK-DFS is
based on layer and uses the depth first search traversal algorithm to traverse all views
in APKs. For different UI pages, it builds fingerprints to distinguish them. It establishes
UI storage stack to store information of UI pages that need to visit, and builds UI trash
can to store UI pages that have been traversed. It can generate strings according to string
format requirements. When the system is running, it automatically installs and starts
APK, and traverses the UI page automatically in APK. By comparing with Monkey and
PUMA, we can see that APK-DFS triggers APKs better.

There are still some problems: APK-DFS can’t recognize views developed by devel‐
opers; because of the verification code mechanism, it can’t simulate the registration
operation. To resolve these problems, we will conduct further research from these
aspects: (1) Use other methods to obtain UI page information, and further analyze the
page information about custom views. (2) Analyze the verification mechanism of veri‐
fication code, simulate verification of mailbox, mobile phone, etc., so as to bypass these
steps and jump to the next page directly. In the future, we will search relevant papers
about these methods, and learn related technologies to perfect our system.

References

1. Domenico, A., Anna, R.F., Porfirio, T., Bryan, D.T., Atif, M.: MobiGUITAR–A tool for
automated model based testing of mobile apps. IEEE Softw. 32(5), 53–59 (2014)

2. Shuai, H., Bin L., Suman, N., William, G.J.H., Ramesh, G.: PUMA: Programmable UI-
automation for large-scale dynamic analysis of mobile apps. In: 12th Annual International
Conference on Mobile Systems, Applications, and Services, pp. 204–217 (2014)

3. Aravind, M., Rohan, T., Mayur, N.: Dynodroid: An input generation system for android apps.
In: 9th Joint Meeting on Foundations of Software Engineering, pp. 422–434 (2013)

An Automatic Interaction System Based on DFS for APK 429

4. Peng, W., Bin, L., Wei, Y., Jingzhe, L., Wenchang, S.: Automatic android GUI traversal with
high coverage. In: International Conference on Communication Systems and Network
Technologies, pp. 1161–1166 (2014)

5. Wontae, C., George, N., Koushik, S.: Guided GUI testing of android apps with minimal restart
and approximate learning. ACM Sigplan Not. 48(10), 623–640 (2013)

6. Vaibhav, R., Yan, C., William, E.: AppsPlayground: Automatic Security Analysis of
Smartphone Applications. In: Third ACM Conference on Data and Application Security and
Privacy, pp. 209–220 (2013)

7. Tanzirul, A., Iulian, N.: Targeted and depth-first exploration for systematic testing of android
apps. Acm Sigplan Not. 48(10), 641–660 (2013)

8. Hsiang-Lin, W., Chia-Hui, L., Tzong-Han, H., Cheng-Zen, Y.: PATS: A parallel GUI testing
framework for android applications. In: Computer Software amd Applications Conference,
pp. 210–215 (2015)

9. Wei, Y., Mukul, R.P., Tao, X.: A grey-box approach for automated GUI-model generation of
mobile applications. In: International Conference on Fundamental Approaches to Software
Engineering, pp. 250–265 (2013)

10. AndroidViewClient. https://github.com/dtmilano/AndroidViewClient accessed 1 Feb 2017

430 J. Tao et al.

https://github.com/dtmilano/AndroidViewClient

Optimized Data Layout for Spatio-temporal
Data in Time Domain Astronomy

Jie Yan1, Ce Yu1(B), Chao Sun1, Zhaohui Shang2, Yi Hu2, Jinghua Feng3,
Jizhou Sun1, and Jian Xiao1

1 School of Computer Science and Technology, Tianjin University,
Tianjin 300350, China

{jerryan,yuce,sch,jzsun,xiaojian}@tju.edu.cn
2 National Astronomical Observatories, CAS, Beijing 100000, China

zshang@gmail.com, huyi.naoc@gmail.com
3 National Supercomputer Center in Tianjin, Tianjin 300457, China

fengjh@nscc-tj.gov.cn

Abstract. Spatio-temporal data is a common data-type in astronomy,
and layouts for this data are generally to improve the performance.
However, restricted by Antarctic environmental conditions, the energy
consumption of the storage system is the most pivotal problem. Tradi-
tional storage layout consumes a lot of energy for request execution. In
this paper, a new storage layout for the astronomical observation data
on Antarctic Dome A is designed, which divides the disk array by the
observant sky coverage, stores data according to the space while the
traditional storage method stores data chronologically. Then we use the
tree-like structure to store the popular data and use the redundant mode
to store the cold data. In simulated experiments, this storage layout is
applied on the Antarctic storage system, and the average number of disks
that needs to be opened at request can be reduced from 23.88 to 2.74,
greatly reducing the energy consumption of the request.

Keywords: Data layout · Storage · Disk array · Energy efficient · Time
domain astronomy · Spatio-temporal data

1 Introduction

Time domain research is an important branch of astronomy which puts emphasis
on how astronomical objects change with time. For the analysis of time domain
astronomy, a massive volume of data from astronomical observation is indispens-
able. China has established a series of telescopes for astronomical observations
in Antarctic, namely by Antarctic Schmidt Telescopes (AST3) [8]. The AST3 is
a trio of 50-cm optical telescopes installed on Dome A, which is the highest place
in Antarctica with the lowest temperature reaching about −80 ◦C. In Antarctica,
the power supply is extremely limited. While the generation and the storage of
the massive data of the telescope is highly energy-consuming, and a large part
of the power will be used to maintain the operating of the disk. Therefore an
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 431–440, 2017.
DOI: 10.1007/978-3-319-65482-9 30

432 J. Yan et al.

Fig. 1. Traditional layout Fig. 2. Optimized layout (request the grey area)

array of disks is used to store it which usually only keeps the disk being used
running and closes other disks to reduce the energy consumption.

The traditional method to store astronomical observation data is to store in
chronological order. As shown in Fig. 1. After one disk is filled of data, it will be
closed and the disk management system will wake up an other disk to continue.
It will cut down on electricity when saving data. However, when scientists want
to find the data that they are interested in, they usually search in spatial order.
Due to the inconsistent order organization, the system has to access all the disks
to find the target data, which will cost too much time and power to both wake up
all the disk. It is also very contradictory to the idea of saving energy by shutting
down more disks. So it is necessary to change the data storage layout and reduce
the number of disks which will be waken up when someone requesting the data.
Only thus can the power supply support the observation system longer. In this
article, we propose an optimized layout for spatio-temporal data storage which is
based on the demand of Time domain astronomy. As shown in Fig. 2. Unlike the
traditional data layout which stores data in the order that they are produced,
we divide the disk array by the sky coverage and design a partition model for
the data. In this model, each piece of sky coverage corresponds to one or more
disks and each disk only saves data from the corresponding sky coverage. In
order to reduce the number of disks being opened during the storage stage, a
cache disk is used to store the data generated by the telescope. Whenever the
cache disk is full of data, the largest part of data from the same sky coverage
will be transferred to the specified disk. Compared with the old method, the
power consumption of this data layout will increase a little. But the number of
disks being opened at each request will be significantly reduced. Experiments
show that in the AST3 simulation environment, the power consumption in the
request stage is reduced about 57.6%, The average number of disks that have
been opened during each request drop from 23.88 to 2.74, and the waiting time
is also reduced about 26.15%.

The rest of the paper is organized as follows. Section 2 presents the back-
ground and the related works. Section 3 presents the model of the data layout.

Optimized Data Layout for Spatio-temporal Data 433

In Sect. 4, we evaluate the performance of the optimized layout. We conclude
and discuss future work in Sect. 5.

2 Related Work

We can not ignored the energy consumption of the storage system in data center.
This is also true for data processing of Antarctic astronomical observations. Disk
is very important for the storage system. There are many energy-saving plan for
the disk. S. W. Son [9] and Hai Huang [4] have tried to use the head positioning
to optimize the movement, by changing the storage on the disk and reducing
the power consumption of the head positioning. There are also many plans for
disk management systems, such as power-aware prefetching schemes [10], multi-
speed settings [3], power-aware cache management strategies [13]. But taking
the extreme conditions in the Antarctic into consideration, the disk which not
in use will be shut down instead of entering standby model. Almost all of the
above methods can not solve this problem. However, Yuan [12] using a special
storage system for the Antarctic disk matrix management. In this system, the
system will shut down the disk which not running. But this system can not solve
the problem of data layout.

Lu [6] introduce a family of energy-efficient disk layouts that generalize the
data mirroring of a conventional RAID1 system. The scheme called DiskGroup
distributes the workload between the primary disks and secondary disks based
on the characteristics of the workload. But in Antarctic, the power supply is not
enough to support any backup, the data is simply save on the storage system.
The same problem also exist in Lius theory [5].

Moreover, Reddy R. [1] proposed a data layout for power efficient archival
storage systems. They present a two-tier architecture for active archives compris-
ing of online and offline disks, and provide an accessaware intelligent data layout
mechanism to bring power efficiency. However, the time domain astronomys data
is peculiar, it contains both time and space attributes, and uses a completely
different order when it is generated and read. Although there are some researches
for optimizing the spatio-temporal data [2], they mainly scheduling the opera-
tions to optimize the performance, rather than focus on energy saving.

For the Antarctic astronomical data layout, it should consider the following
characteristics:

1. Use a disk array to store data and shut down the disk when it is not in use.
2. The spatio-temporal data will be generated in chronological order, while the

request will search for all the data of a part of the sky coverage.
3. The key purpose of this paper is to reduce power consumption, and then

consider the performance of the request.

This is the main consideration of data layout model.

434 J. Yan et al.

3 Design

Our storage layout model has three parts. The first part is called the partitioned
layout. It is used to divide the sky coverage. In second part, the layout of the
partition accessed frequently by the search request is adjusted. The binary tree
layout is used to adjusted the layout. In the last part, we handle the layout
of non-popular data called redundant layout. The first part of the layout is
the most basic and indispensable section and the other two parts can be used
independently according to the requirement. When build the model, we assume
that the image size of the generated stage and the search request stage is the
same.

3.1 Partitioned Layout

Table 1 shows the parameters of the astronomical observation. To simplify the
calculation, we assume that the maximum observing range of the telescope is a
rectangle which has length L and width W . The size of the telescope observation
image is called the field of view. It has length l′ and width w′. After the interval
of observation t, the total time of the observation D, and m, the size of the data
for each time, are determined. the total size of data N can be calculate as:

N = m× D

t
(1)

Assuming that the observed data is uniform, the entire observation areas
should be divided equally. Since we have already known N and V , it is clear
that the number of required disks can be estimate. Besides, the biggest problem
of partitioning is that the scope of the request may span multiple divided regions.
That’s to say, the storage system may need to open multiple disks instead of only
one to read the data. So it is necessary to make the request regions as less as
possible. For each divided region, we want to minimize the proportion of the

Table 1. Parameters of the astronomical observation

Parameter Description (Unit)

l’ w’ The length and width of the field of view

L W The length and width of observation area

m Image’s size (MB)

t The interval at which the image is generated (second)

D The total time of observation (second)

N The total size of data (MB)

V Disk capacity (MB)

Optimized Data Layout for Spatio-temporal Data 435

cross-query area in total area. If we assume that each region has length l and
width w after the partition, the probability of image that will span multiple
regions is:

l × w′ + l′ × w − l′ × w′

l × w
(2)

Considering S, the total area for each region has been determined, let w in
the molecule be S

l
and transferred the denominator l×w to S. S is a constant,

then take the derivative of (2) with respect to l:

w′ − l′ × S × l−2

S
(3)

Let (3) equal to zero and get the limit value: l =
√

S×l′
w′ w =

√
S×w′

l′

We can see that when the ratio between l and w equal to the ratio between l′

and w′, the probability of image that will span multiple regions will be reduced
to the minimum. So when partitioning the sky coverage, we try to ensure that
each region’s proportion between length and width is closed to l′

w′ . At this point,
we can list the following equation:

l′ × p1 × x = L (4)

w′ × p2 × y = W (5)

x× y =
N

V
× k (6)

where p1 and p2 are the expansion ratio, and x and y mean the number of
regions in the row and column respectively. It is expected that p1 and p2 are as
close as possible. k means the magnification.

To solve the above equation, we assume that p1 equal to p2. After solving
the equation, the condition that x and y must be integers has been considered,
and p1 and p2 will be adjusted according to x and y to obtain the final result.
The following figure is a partitioned layout diagram:

Fig. 3. Result of partitioned layout

In the observation stage, a cache disk is needed. Firstly, The data will be
saved to the cache disk until it is full. Then the data from the most populated

436 J. Yan et al.

areas will be migrated from the cache disk to the partitioned disk. In this way,
the frequency of disk opening will be reduced when observing.

3.2 Binary Tree Layout

In Sect. 3.1, we assumed that the whole data of the sky coverage is hypodisper-
sion. However, it is obviously impossible in the actual situation. In fact, a single
region may involved with multiple disks. In Sect. 3.2, we try to divide this region
and change its layout to the binary tree layout.

Fig. 4. Divide a region into two parts Fig. 5. Binary tree layout for a region

Figures 4 and 5 shows an example of the binary tree layout. When the current
writing disk is full, the data will write into anther spare disk. At this moment,
the region will also be re-layout and divided into two sub-regions. It can be
chosen to be divided by either horizontal or vertical line. Figure 4 chooses the
vertical way. The split line divide the region into two parts. Each one of which
would have the same size of data. After that, two spare disks will be waken up
and each disk will be responsible for a new region. The previous data are still
stored on the old disk.

Figure 5 shows that by the storage structure changes from chain to tree in
the binary tree layout.

3.3 Redundant Layout

In this subsection, we will focus on the cold region. Normally, cold region refers
to the sky coverage which contains a few astronomical celestial so that the data
from single cold region mostly store in a single disk. This disk is not full usually.
Therefore we can change the layout of those regions to make a backup for some
data on the border like Fig. 6.

The condition that one image belongs to a region is that the upper-left vertex
of the image is in this region. However, when responding a request, any images
having overlapping areas with the request image should be submitted to the
user. If the upper-left part of a request image belongs to the shadow part, the
request may need data from the light blue region. We put data which from the
light blue region and the shadow border on the same disk, and the request of
this region will no longer need to open the white area’s disks.

Optimized Data Layout for Spatio-temporal Data 437

Fig. 6. Redundant layout

4 Simulation Results Analysis

In this section, the performance of traditional layout and optimized layout are
compared under the simulated system. After evaluating performance in simu-
lated environment, the optimized layout will deployed in real astronomical sys-
tem. AST3 telescope is chosen as our simulation dataset.

4.1 Simulation Parameter Settings

AST3 telescope has two observation modes, sky survey mode and asteroid mode.
When observing in the asteroid mode, AST3 will fixed on a specific location on
the sky and stored separately. It isn’t discussed in this paper. For the former
one, the dataset should include stored data and requested data. According to
the real specific observation plan, some locations in the sky coverage will be
visited more times. However, the data layout become non-sense if every request
involved all the observation result for the density of the data. Eventually when
generating the dataset, we randomly selected two areas as the popular region.
The popular region included half of the observed data. The remaining areas
occupy the other half together. Similarly, each request has a probability of 50%
to access the popular region, and others will be decided randomly.

The basic parameters of the AST3 telescope are shown in Table 2.

Table 2. parameters of AST3

Parameter Value Description

l’ w’ 1.5 3 The length and width of the field of view

L W 360 50 The length and width of observation area

m 120 Image’s size (MB)

t 120 The interval at which the image is generated (second)

D 25920000 The total time of observation (second)

N 25920000 The total size of data (MB)

S 1000000 Disk capacity (MB)

438 J. Yan et al.

Table 3. Parameters of seagate ST2000DM001

Value Description (Unit)

0.75 Standby mode power (W)

5.4 Idle mode power (W)

8 Active mode power (W)

54 The energy consumed from idle mode to standby mode (J)

300 The energy consumed from standby mode to active mode (J)

10 Time from idle mode to standby mode (second)

10 Time from standby mode to active mode (second)

120 Average read/write speed (MB/s)

ST2000DM001 [7] is selected as the disks of the storage system, and the
parameters of the disk shows in Table 3.

In the Antarctic observation system, the disk will be completely powered off
after idling for a long time. We set this as 30 s. On the other hand, to reduce
the power consuming of the storage system, the total number of disks is limited.
In the simulation, the total number set as 64 and the total capacity twice than
the size of data. In fact some of disks are not used at all, they are set for the
KDUST [11].

Finally, due to the feature of the Antarctic storage system, we do not con-
sider the competition between requests. That’s to say, all requests are handled
individually. There is no concurrency or contextual. The code of the simulator
can be fetched at: https://github.com/muxiaokui/PE/tree/data.

4.2 Non-uniform Data Model

In this model, we will discuss C (short for Chronological), P (short for par-
titioned), PB (short for Partitioned & Binary Tree) and PBR (short for Parti-
tioned & Binary Tree & Redundancy) layout, four different layouts performance.

First shown the result of the partition by the partitioned layout. Divided the
observation area into 20 × 2 = 40 regions. The length and width of each region
are 20 and 25 Considered the original area has length 360 and width 50, the
result is aim to the field of views length 1.5 and width 3.

Fig. 7. Total consumption of storage sys-
tem

Fig. 8. Request energy consumption

https://github.com/muxiaokui/PE/tree/data

Optimized Data Layout for Spatio-temporal Data 439

Fig. 9. Ratio of Consump-
tion

Fig. 10. Time for request Fig. 11. Open disks number

Figures 7 and 8 shown that the power consuming is increased from about
3.17% to 3.50% in the storage stage, but decreased from about 49.82% to 57.82%
after the 2000th request.

The excellent performance of PBR can be seen in Fig. 9. After the 375th
request, PBR is better than P in all respects. And PBR takes more 228 times
request to surpass the C. When the number of request is beyond 655 times, PBR
is the best layout in this data model. While 600 requests are easy to reach in
any data center, PBR demonstrates to be the most efficient layout.

We can see that the average time of accessing reduces slightly and each layout
spend more time on reading data, which indicates that the inference we are
concerned about in the stage of data proved that if the data is too concentrated,
it will lose the meaning of the layout.

Figure 11 shows the worth of our work is valuable in reducing energy con-
sumption. The number of open disks declines significantly. No matter it is max-
imum, minimum or average, the new layout’s open disk number is less than half
of old method’s number. In short, the optimized data layout can reduce up to
88.53% of the number of open disks.

5 Conclusion and Future Work

In this paper, a new storage layout model include partitioned layout, binary tree
layout and redundant layout is designed for astronomical observation. Because
of the environmental conditions, especially the strict limit of electricity, the data
storage system should be energy efficient. Since partitioned layout used to store
the data which generated by telescope according to the space, less disks are
opened to get data than before. The binary tree layout reduced the energy con-
sumption of the popular data and the redundant layout reduced the consumption
of cold data. This layout model is evaluated on TB data level simulator storage
systems, and the results show that the energy consumption reduces about 49.81%
to 57.61% when requesting compared with the original layout, and decrease the
number of open disks from 23.88 to 2.74.

This storage layout is also expected to play a significant role in KDUST
which the observation data size will be larger than petabyte (PB) level. We will
test whether it can be use to manage the data of KDUST. In addition, the layout
model can be optimized further, such as the strategy of the cache disk’s data

440 J. Yan et al.

migration, and the way to schedule the request sequence. In this paper the layout
is simply presented practical application will be our main work in the future.

Acknowledgments. This work is supported by the National Natural Science Founda-
tion of China (11573019, 61602336), the Joint Research Fund in Astronomy (U1531111)
under cooperative agreement between the National Natural Science Foundation of
China (NSFC) and Chinese Academy of Sciences (CAS).

References

1. Basak, J., Basak, J., Basak, J., Katz, R.: Data layout for power efficient archival
storage systems. In: The Workshop on Power-Aware Computing and Systems, pp.
16–20 (2015)

2. Gong, Z., Lakshminarasimhan, S., Jenkins, J., Kolla, H., Ethier, S., Chen, J., Ross,
R., Klasky, S., Samatova, N.F.: Multi-level layout optimization for efficient spatio-
temporal queries on isabela-compressed data. In: Parallel & Distributed Processing
Symposium, pp. 873–884 (2012)

3. Gurumurthi, S., Sivasubramaniam, A., Kandemir, M., Franke, H.: DRPM: dynamic
speed control for power management in server class disks. ACM SIGARCH Com-
put. Archit. News 31(2), 169–181 (2003)

4. Huang, H., Hung, W., Kang, G.S.: Fs2: dynamic data replication in free disk
space for improving disk performance and energy consumption. In: Twentieth ACM
Symposium on Operating Systems Principles, pp. 263–276 (2005)

5. Liu, J., Zheng, J., Li, Y., Sun, Z., Wang, W., Yuan, T.: Hybrid s-raid: an energy-
efficient data layout for sequential data storage. J. Comput. Res. Dev. 50(1), 37–48
(2013)

6. Lu, L., Varman, P., Wang, J.: Diskgroup: energy efficient disk layout for raid1
systems. In: International Conference on Networking, Architecture, and Storage,
pp. 233–242 (2007)

7. Seagate: Desktop HDD product manual. http://www.seagate.com/wwwcontent/
product-content/barracuda-fam/desktop-hdd/barracuda-7200-14/enus/docs/
100686584p.pdf

8. Shang, Z., Hu, K., Hu, Y., Li, J., Li, J., Liu, Q., Ma, B., Quinn, J.L., Sun, J., Wang,
L.: Operation, control, and data system for Antarctic survey telescope (ast3). In:
Observatory Operations Strategies Processes & Systems IV. Proceedings of the
SPIE, vol. 8448(8), p. 26 (2012)

9. Son, S.W., Chen, G., Kandemir, M.: Disk layout optimization for reducing energy
consumption. In: International Conference on Supercomputing, pp. 274–283 (2005)

10. Son, S.W., Kandemir, M.: Energy-aware data prefetching for multi-speed disks. In:
Conference on Computing Frontiers, Ischia, Italy, pp. 105–114, May 2006

11. K.D.U.S. Telescope: Kdust. http://en.wikipedia.org/wiki/Kunlun Dark Universe
Survey Telescope

12. Yuan, Z., Yu, C., Sun, J., Xiao, J., Wang, J., Shang, Z., Hu, Y.: An energy effi-
cient storage system for astronomical observation data on dome A. In: Wang, G.,
Zomaya, A., Perez, G.M., Li, K. (eds.) ICA3PP 2015. LNCS, vol. 9531, pp. 33–46.
Springer, Cham (2015). doi:10.1007/978-3-319-27140-8 3

13. Zhu, Q., David, F.M., Devaraj, C.F., Li, Z., Zhou, Y., Cao, P.: Reducing energy con-
sumption of disk storage using power-aware cache management. In: International
Symposium on High PERFORMANCE Computer Architecture, p. 118 (2004)

http://www.seagate.com/wwwcontent/product-content/barracuda-fam/desktop-hdd/barracuda-7200-14/enus/docs/100686584p.pdf
http://www.seagate.com/wwwcontent/product-content/barracuda-fam/desktop-hdd/barracuda-7200-14/enus/docs/100686584p.pdf
http://www.seagate.com/wwwcontent/product-content/barracuda-fam/desktop-hdd/barracuda-7200-14/enus/docs/100686584p.pdf
http://en.wikipedia.org/wiki/Kunlun_Dark_Universe_Survey_Telescope
http://en.wikipedia.org/wiki/Kunlun_Dark_Universe_Survey_Telescope
http://dx.doi.org/10.1007/978-3-319-27140-8_3

Cloud Multimedia Files Assured Deletion Based
on Bit Stream Transformation with Chaos Sequence

Wenbin Yao1, Yijie Chen1(✉), and Dongbin Wang2

1 Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing
University of Posts and Telecommunications, No.10, Xitucheng Road,

Beijing 100876, China
yijie8899@126.com

2 National Engineering Laboratory for Mobile Network Security, School of Computer Science,
Beijing University of Posts and Telecommunications, No. 10, Xitucheng Road,

Beijing 100876,China

Abstract. As more and more data is outsourced to the cloud, data owners lose
direct control of their data. When clients delete their data, it is important to prevent
illegal users from visiting the deleted or backup data. The mainstream method of
this problem is to encrypt the data in advance, and then protect the decryption key
without being sent to unauthorized users. However, if we remain the full
encrypted data in the cloud, once the decryption key is stolen by attackers, the
data is unsafe. Especially, it is important to protect the privacy of cloud pictures,
videos and other multimedia files which contain plenty of private information. In
this paper, a new scheme named ADBST is presented for cloud multimedia files.
In this method, the bit stream of multimedia files will be transformed into a new
one by using logistic chaotic mapping before being encrypted in order to make
the cloud file be different from the original file. It can even ensure the security of
files on the condition of missing the encryption key. Moreover, this scheme does
not bring other third parties in order to reduce the risk of data leakage. Compared
with other schemes on the same condition, it only brings little time costs in the
acceptable range.

Keywords: Cloud multimedia files · Assured deletion · Logistic chaotic mapping ·
Bit stream transformation

1 Introduction

With the development of cloud storage technology, an increasing number of people or
companies try to reduce the cost of computing by outsourcing their data to the storage
server. Cloud storage reduces data management costs. However, it causes some prob‐
lems for information security. Because data owners lose control of the outsourced data,
data security becomes a major concern while users consume the cloud storage. When a
data owner pretends to delete the data, he expects that his data becomes permanently
inaccessible once he makes the request.

Data assured deletion is one of those security concerns, because data owners cannot
make sure whether a cloud service provider (CSP) has deleted the data upon their

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 441–451, 2017.
DOI: 10.1007/978-3-319-65482-9_31

deletion request. With the arrival of the whole media era, more and more information
is transmitted in the form of multimedia. Multimedia files often contain a lot of important
information or personal privacy. So, it is necessary to realize the assured deletion of
cloud multimedia files.

In order to protect the data from malicious visits by illegal users, data owners usually
encrypt the data before it is delivered to CSP. The encryption key will be protected by
data owner himself. Although the data has been stored by CSP, there also exist some
potential risks. For instance, in order to improve the reliability of service, CSP might
have many data backups and put them into different servers. On this condition, if the
data is overdue and the data owner orders CSP to delete his data, CSP might not delete
all of the data or the backups absolutely. Once the attacker takes both the encryption
key and the encrypted file data which has not been deleted from CSP through violent
attacks, the confidentiality of the data will be destroyed. When the data owner deletes
the data, he can not be sure that the deleted data will never resurface in the future if CSP
does not perform the actual data removal. This is what this paper will really discuss
about.

In the following part, we present several previous solutions in order to solve the
problem of data assured deletion. The scheme in [1] designed a file assured deletion
system which can make it impossible to recover the encrypted file by destroying the
encryption key at the right time. But it only put forward a conception model without
implementation and its theoretical model is not very persuasive. In a cloud environment,
the ownership of the data and the management right are divided. In order to protect data
security, data has to be encrypted before being outsourced to the cloud. To some degree,
this idea makes the problem of data assured deletion transformed into another problem,
that is, how to delete the encryption key. However, this method exists the risk that the
attacker might get the encryption key by cryptanalysis or brute force. The scheme in [2]
pointed out another method based on strategy. The main point is that the file was
encrypted by a data encryption key at first, and then, the data encryption key was
encrypted by a control key related to strategy. Finally, in that paper the deletion of the
control key equals to the deletion of the file. However, the control key used in [2] is
managed by a third party, that is, a centralized management which exists potential safety
hazard that the trustless key manager might delete or give away the control keys.
Compared with centralized management for secret keys, distributed management gains
higher security. E.g. the Vanish system in [3] distributed secret keys into Distributed
Hash Tables (DHT) randomly after threshold cryptographic process. When privileged
time is up, the secret keys will be deleted by DHT. Although the scheme in [3] has
realized the destruction of mail servers and mail courtesy copies, attackers can also get
the secret keys by sniffing attack or leap attack.

Furthermore, [4] indicated that if the scheme only destroyed the encryption key
without the encrypted data, there exist potential safety hazards which might make the
encrypted data attacked by analysis of cryptography or brute force. In its scheme, they
distributed both the encryption key and part of the encrypted data into DHT. The cipher
text which is stored on the servers is incomplete, so the traditional cryptanalysis attacks
will fail. Even though, this method has prevented some attacks mentioned above,
someone can also decode the encrypted data if he has gained the secret key before and

442 W. Yao et al.

make some backups. In a word, the scheme in [4] can not guarantee backward security,
and it will also increase the communication overhead of the network.

Next, [5] pointed out another scheme which divided the original encrypted data into
sampling data and remaining data. Then, they delivered the remaining data to the cloud,
which makes the trustless CSP unable to obtain the total encrypted data. The disad‐
vantage in [5] is that it introduces the third party which is supposed to be trustworthy to
keep the sampling data. However, that premise is too idealistic. As it is mentioned in [6],
if we can not fully trust the cloud service provider, shouldn’t we place the same benefit
of doubt on any other third-party? If the government has a court order to force the cloud
and the third party to surrender the data and the keys of a company under investigation,
no matter how hard the data owner tries to delete its data, it will be useless [7, 8].

To reduce the risk of data breaches, we propose ADBST (data assured deletion based
on bit stream transformation with chaos sequence), which not only allows the encryption
key to be stolen but also does not need the management or storage from any other third
party. As for this paper, the object of assured deletion is cloud multimedia file, which
can make the process much simple and convenient. For multimedia file, it will be
destroyed even if there is a very small change to the bit stream of its source file. In our
ADBST, we firstly do some transformation for the multimedia file before it is encrypted
and uploaded to the cloud. The algorithm of transformation guarantees the randomness
of data extraction based on logistic chaotic mapping. When the data is required to be
deleted, the only thing should do is to delete the random sequences which is used to be
the location number of transformation. Without the location number, the transformation
can not be recovered by anyone. Moreover, we do not need any other third party. The
transformed multimedia file is different from the original one. What we do next is to
encrypt the changed file into a corresponding encrypted one. Then, we upload the
encrypted file to the cloud. It makes the data on the cloud not the encrypted file of the
original one but the changed one. These process can ensure that the deleted data will not
be visited anymore even if the cloud data and the decryption key have been both stolen
by attacker.

2 Security Assumptions and Threat Model

2.1 Security Assumptions

In this paper, a model with three main entities is provided: data owner, cloud service
provider (CSP) and data user.

Data owner is not only responsible for multimedia file’s transformation and recovery,
but also responsible for the changed data’s encryption. And it will keep the algorithm
of file change and recovery. The random sequences which are generated by logistic
chaotic mapping are stored by data owner too.

Cloud service provider is responsible for the storage of encrypted data. But CSP is
untrusted. It will do the operation for the data storage loyally, but at the same time, it is
curious about the sensitive data and expects to get the sensitive information.

Data user is responsible for the decryption for the unreal encrypted file.
The process of file access for data user is shown in Fig. 1.

Cloud Multimedia Files Assured Deletion 443

2.2 Threat Model

According to the security assumptions above, several conditions are defined as follows:
CSP is untrusted. It will give away the encrypted file to others or some malicious

users. What stored in CSP is not secure. The action of attackers is not real time but a
kind of subsequent conduct. So the attacker will not know which the useful data is before
the data has been visited.

Data user is believable. It won’t keep either the original data or transmit after using.
The process of data access for attacker is shown in Fig. 2.

3 System Design

Our security goal is to achieve data assured deletion even if the encryption key has been
gotten by the attacker. Three assumptions are made for this approach. First, the encryp‐
tion operation is secure, on the condition that it is impossible for the attacker to recover
the encrypted data without the decryption key. Second, although the attacker can decrypt
the cloud encrypted data into the corresponding one, it is impossible for them to get the
unchanged original one without the recovery of bit stream transformation. Third, data
user will not back up the original data after visiting because of the heavy storage cost.

In our design, what is kept on the cloud is not the original encrypted data. The scheme
is based on the condition that if the encryption key should be leaked in active and passive
situation by attacker, the data can also be safe. Moreover, our design only contains data
owner and data user without any other third party to do some transfer or storage work.

We firstly do some transformation for the bit stream of the multimedia file before it
is encrypted and uploaded to the cloud. We create an algorithm to do the transformation
work and the algorithm and transformation information are only kept by data owner.
The algorithm guarantees the randomness of data extraction based on logistic chaotic
mapping. Choosing proper parameter value, the logistic mapping can come into chaotic
state. When the data is required to be deleted, the only thing should do is to delete the
random sequences which is used to be the location number of transformation. Without
the location number, the transformation can not be recovered by anyone.

Data Owner

Cloud Service Provider

Original Data Request Data

Encryption Key

Changed Data

Encrypted Data

Original Data

Data User

Fig. 1. Data access for data user

Data Owner

Cloud Service Provider

Attacker

Original Data

Encrypted Data

Encryption Key

Illegally Obtain

Can Only Get Changed
Data

Fig. 2. Data access for attacker

444 W. Yao et al.

To formalize, we now revise our notations as follows. Let {M} be the original data.
Let n be the total number of the original data blocks. Let {Mi} be the original data block
with a unique identifier i(1 ≤ i ≤ n) for each one. Let l be the total bit number of each
block. Let q be the bit number of extracting bits for each block. Let {Si}(1 ≤ Si ≤ l) be
the position number for each data block. Let {Ki} be the changed data block. Let m be
the number of changed data blocks. Let {Ci} be the encrypted data block. Let k be the
encryption key. Let Round() be the function of rounding to the nearest integer. Let
Trans() be the function of bit stream transformation. Let Com() be the function of data
combination.

In this paper, the original data will be firstly segmented into n data blocks {Mi}. Next,
the original data blocks will be transformed into new ones {Ki} according to the position
numbers {Si}. The detail transformation will be explained in the following parts.

3.1 Logistic Chaotic Mapping

In order to make every data block has its own transformation way, it is necessary to use
logistic chaotic mapping to generate chaos sequence. It is precisely the random
sequences made the transformation more secure. According to the traditional definition,
the expression of logistic chaotic mapping is (1):

Xi+1 = f
(
Xi

)
= 𝜇Xi(1 − Xi) (1)

In this formula: Xi ∈ [0, 1] is the state of logistic mapping. From the definition of
Chaos Sequence, we can know that when the parameter of logistic mapping
μ ∈ [3.5699456, 4], logistic mapping will come into chaotic state [9].

There are n irregular numbers which are generated by logistic mapping. In this
design, we choose μ = 4 because of that state is the whole chaotic state. As Xi ∈ [0, 1],
it has to been done a mapping relation between Xi and Si. It is shown in (2).

Si = Round(Xi ∗ l) (2)

There is another characteristic for logistic chaotic mapping. It is such a sensitive
system that the tiny difference of initial value will lead to great changes of the results.
So, different files will be chosen different X0 in order to ensure the security of each file.
When the input variable X0 is chosen to be 0.200001, 0.200010 and 0.200100, the
responding outputs are 0.013014, 0.025865, 0.832657. Especially, when the iterations
come to the last time, the difference of input is one ten thousandth, the one output result
is 64 times of the other. From this result, it is impossible for attacker to guess the next
transformation position without the chaos sequence. The following content will describe
the calculation of X0. Firstly, each file will be done hash summary calculations. Then,
the hash value will be changed into a number range from 0 to 1. Finally, the generated
number will be X0.

X0 = Change[Hash(file)] (3)

Cloud Multimedia Files Assured Deletion 445

As every file has its own X0, every file has its own {Si}. There is no possibility for
anyone to guess another file’s transformation rules according to the existed one. This is
the key procedure to ensure the security of deleted data.

3.2 Original Data Transformation

In order to protect the confidentiality of the data, before the data owner begin to encrypt
the original data, we firstly extract it. Based on the idea mentioned above, we do some
transformation for the original data before it has been encrypted and uploaded to the
cloud. The algorithm of this process and a small fraction of the extracted data are both
kept by data owner. Anyone who does not get either the algorithm of the extracting
process or the small fraction of the data can not get the real full original data. This is the
key point for our design to guarantee the security of the cloud data for multimedia files.
The sketch of bit stream transformation is shown in Fig. 3.

0 1 1 0 ... 0 1 0 1 ... 1 0

1 1 0 0 ... 1 1 0 0 ... 1 1

0

1

...

0 1 1 0 ... 0 1 0 0 ... 0 1

1

0 1 1

The first block

 The second block

The last block

The random number S1=4

The random number S2=60

The random number Sn=3

Extracted data block

Fig. 3. Data transformation

Firstly, we segment the bit stream of the original data, and the length of each block
is set to be l bits. Secondly, we randomly generate n positive integer {Si}. Thirdly, we
take out the data in the position of Si in the blocks. Finally, we arrange the taken out data
in order to the last position of the entire data bit stream.

Ki = Trans(Mi, Si) (4)

Our algorithm ensures double randomness. We firstly divide the original data into
several data blocks. The purpose of this step is to avoid random data concentrating in a

446 W. Yao et al.

near location. This is one part of the randomness which can help the bit data to be
completely disrupted. The other is that we use logistic chaotic mapping to generate the
numbers on behalf of extraction location in different data blocks. It makes the extracting
process more irregular. We call the very small part of the extraction data extracted data
block, the other blocks changed data blocks. After transformation, we will generate two
important things. The one is extracted data, the other is the location information of data
transformation. They will both be kept by data owner only without sending to anyone
else.

3.3 Data Encryption, Recovery and Assured Deletion

Each extracted original data block {Ki} will be encrypted into encrypted data block {Ci}

by the encryption key k. We encrypt the changed data blocks by using the symmetric
cryptography named AES. Then, encrypted data blocks are created.

Ci = Ek(Si) (5)

After data encryption, the new encrypted data will be uploaded to the cloud. It can
be decrypted by the encryption key.

Si = Dk(Ci) (6)

After data decryption, we can get the changed encrypted data blocks {Si}. They can
be changed into {Mi} by using the function of Com().

Mi = Com(Ki, Si) (7)

When data owner wants to delete the data, the only thing he should do is to delete
the location information for the process of bit stream transformation. That information
has been kept by data owner after data transformation. As long as the location has been
deleted, attacker could not recover the multimedia file. This way of deleting data is real
time deletion. And can also make the data to be assured deleted. Without deletion
request, the location information of data transformation will be kept by data owner
forever.

4 Security Analysis and Implementation

4.1 Security Analysis

In this paper, an algorithm of bit stream transformation is created to confuse the original
data. In this way, we make the cloud encrypted data neither complete nor real. What is
stored in the cloud is the encrypted one of the changed data. On this condition, in order
to get the real original data, the attacker has to not only get the encryption key, but also
the algorithm of bit stream transformation. Or, if he only gets the encryption key, the
optimal situation is that the attacker can decrypt the cloud encrypted data which is not
related to the original data. I.e. the cloud data is not the real one. What is stored in the

Cloud Multimedia Files Assured Deletion 447

cloud is the encrypted one for the changed data. However, as for a multimedia like
picture, it can not be recovery even if there is only one bit missed.

Theorem: Under the same condition of the data length, it is harder for attacker to
recover the original data by using ADBST when he gets the encryption key than the
traditional way when he gets the encrypted data.

Proof: From the process that is mentioned above, it is not difficult to see that the
critical process is to get the function of transforming the bit stream. Compare with the
scheme that the attacker gets the full encryption data without encryption key, the scheme
in this paper has better security. Even though, the attacker has already had the encryption
key, it is more difficult for him to guess the real original data without the function of
transforming the bit stream than to guess the original data with the full encrypted data
and the encryption key. The security of this scheme is determined by the security of the
algorithm of transforming bit stream. Let Dt be the difficulty that how hard does the
attacker guess the original data in the scenario described in this paper. Let D be the
difficulty that how hard does the attacker guess the original data with the full encrypted
data without the encryption key. I.e. D = 2P, p is the length of the encryption key of the
symmetric encryption algorithm. When the length of every data block is l bit, then
Dt = (2l)n, n is the number of data blocks. I.e. p ≈ l ⋅ n. Supposed, the length of encryp‐
tion key equals to the length of data block, i.e. p = n.

Dt

D
= ln (8)

As is shown in (8), ADBST at least has higher security than the traditional way that
the attacker has the encrypted data without encryption key. Let Ds be the difficulty that
how hard does the attacker guess the original data in ADCSS. I.e. Ds = Cn

m
⋅ 2n, m is the

length of both original data and encrypted data. If the length of bits which are filled in
ADBST is x, m = l ⋅ n + x.

Dt

Ds
=

(2l)n

Cn
m ⋅ 2n

=
(m − x)n

⋅ n! ⋅ (m − n)!

nn
⋅ m!

(9)

As it is shown in (9), Dt and Ds are in the same order of magnitude for attacker to
guess the original data. However, ADBST has less entities than ADCSS, which reduces
more security risks. The security of ADBST is guaranteed by data owner, while the
security of ADCSS is guaranteed by others. Moreover, ADBST uses logistic chaotic
mapping to generate chaos sequences rather than pseudo-random sequence which is
used in ADCSS. Chaotic system produces the sequence is irregular to follow, and the
more times the iterations are, the stronger the chaos will be. However, the pseudorandom
sequence has intrinsic regularity because of the system seed. Finally, the encryption key
and encrypted data are both stolen by attacker, which only effects the current file, as
long as data owner has deleted the chaos sequences. Attacker can not get any useful
information about former or later file because of the chaos characteristic of logistic
chaotic mapping. Thus, ADBST has guaranteed both forward secrecy and backward
secrecy.

448 W. Yao et al.

4.2 Time Costs for this System

We have implemented a prototype system of our scheme using JAVA and the experi‐
ments are conducted on a PC with Mac OS, Intel Core i5 2.7 GHz Processor and 8 GB
Memory.

We have done three contractive experiments for different sizes of data block, i.e.
256 byte, 512 byte and 1024 byte. The trends of time costs for different block sizes is
shown in Fig. 4. When the size of block is chosen to be 512 byte, the time cost will
plunge. However, the smaller the size is, the more security we will get. So, after
balancing the attractions of a high security against the prospect of little time costs, we
conclude to choose 512 byte to be the size of the block. The detailed time cost with
512 byte is shown in Table 1.

Fig. 4. Time costs with different block sizes Fig. 5. Time costs comparison

Table 1. Time costs with 512 byte blocks.

File size (M) 1 8 16 32 64 128 256 512 1024
Time for transformation (ms) 6178 6729 7540 6251 8514 9181 14125 20466 37693
Time for encryption (ms) 24 102 195 380 734 1505 2912 5735 11445
Time for decryption (ms) 16 96 254 366 722 1416 2805 5919 12533
Time for combination (ms) 6216 6790 7632 6326 8620 9213 14192 20512 37137
Total time (ms) 12434 13717 15621 13323 18590 21315 34034 52632 98808

Next, we compare the two methods of time cost upon data owner: ADBST and
ADCSS in [5]. As data in ADCSS is not complete, we only make six groups of experi‐
ment.

From Table 2, when the file size is not very big, the time cost of ADBST is heavier
than ADCSS. However, when the file size reaches 256 M, the time cost of ADBST is
only 3 ms longer than ADCSS. According the time trend in Fig. 5, it not hard to predict
that when the file size is increasing, the time cost in our scheme will be nearly close to
ADBST even might shorter than it. To sum up, our scheme only brings some time cost
on small files, but we gain more security about the data deletion without relaying on the
third party in ADCSS. When the size of file is super, this cost will be too tiny to be
noticed.

Cloud Multimedia Files Assured Deletion 449

Table 2. Time costs between ADBST and ADCSS

File size (M) 8 16 32 64 128 256
Time for ADBST (ms) 6831 7735 6631 9248 10686 17037
Time for ADCSS (ms) 1066 1130 1654 2880 7476 14472

5 Conclusion and Future Works

In this paper, a new scheme named ADBST to solve the problem about multimedia files
assured deletion in the cloud is proposed. In this scheme, we do not need other third
parties and do not store the full encrypted data in the cloud. It can realize the goal that
the data will not be visited if data owner has already deleted it, even if the encryption
key has been stolen by some attackers in the worst state. This scheme is based on the
process of data transformation. Before encryption, data owner has to do a data trans‐
formation based on chaos sequence in order to make some differences between original
data and the cloud encrypted corresponding data. Just in this way, can we guarantee that
the encrypted data in the cloud is not the real one. Then, the attacker can not decrypt the
encrypted data in the cloud without the algorithm of scrambling original data and the
position information for each transformed data block, even if he has already gotten the
encryption key and the encrypted data in the cloud. So, if the data is determined to be
deleted, what we really delete is the information about changing location and the small
part of the data. At last, the experimental result shows that our scheme can meet the
desire that data owner can ensure the deleted data would not be visited by others. The
next work is to reduce the time cost of data transformation without bring other security
risks especially for small size files.

Acknowledgment. This work was partly supported by the NSFC-Guangdong Joint Found
(U1501254) and the Co-construction Program with the Beijing Municipal Commission of
Education and the Ministry of Science and Technology of China (2012BAH45B01) and the
Fundamental Research Funds for the Central Universities (BUPT2011RCZJ16, 2014ZD03-03)
and China Information Security Special Fund (NDRC).

References

1. Perlman R.: File system design with assured deletion. In: International Security in Storage
Workshop, Third IEEE International, pp. 83–88. IEEE (2005)

2. Tang, Y., Lee, P.P.C., Lui, J.C.S., Perlman, R.: FADE: secure overlay cloud storage with file
assured deletion. In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010. LNICST, vol. 50, pp. 380–
397. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16161-2_22

3. Geambasu, R., Kohno, T., Levy, A.A., Levy, H.M.: Vanish: increasing data privacy with self-
destructing data. In: Conference on Usenix Security Symposium, pp. 299–316. USENIX
Association (2009)

4. Wang, G., Yue, F., Liu, Q.: A secure self-destructing scheme for electronic data. J. Comput.
Syst. Sci. 79(2), 279–290 (2013)

5. Zhang, K., Yang, C., Ma, J.F., Zhang, J.W.: Novel cloud data assured deletion approach based
on cipher text sample slice. J. Commun. 36(11), 108–111 (2015)

450 W. Yao et al.

http://dx.doi.org/10.1007/978-3-642-16161-2_22

6. Mo, Z., Qiao, Y., Chen, S.: Two-party fine-grained assured deletion of outsourced data in cloud
systems. In: International Conference on Distributed Computing Systems, pp. 308–317. IEEE
(2014)

7. Mo, Z., Xiao, Q., Zhou, Y., Chen, S.: On deletion of outsourced data in cloud computing. In:
International Conference on Cloud Computing, pp. 344–351. IEEE (2014)

8. Reardon, J., Ritzdorf, H., Basin, D., Capkun, S.: Secure data deletion from persistent media.
In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, pp. 271–284. ACM (2013)

9. Patidar, V., Pareek, N.K., Purohit, G., Sud, K.K.: Modified substitution–diffusion image cipher
using chaotic standard and logistic maps. Commun. Nonlinear Sci. Numer. Simul. 15(10),
2755–2765 (2010)

Cloud Multimedia Files Assured Deletion 451

Interval Merging Binary Tree

István Finta1(B), Lóránt Farkas1, Sándor Szénási2, and Szabolcs Sergyán2

1 Bell Labs, Nokia, Budapest 1083, Hungary
istvan.finta@nokia-bell-labs.com

2 John von Neumann Faculty of Informatics, Óbuda University, Budapest, Hungary

Abstract. The general area of the paper is methods and data struc-
tures to efficiently avoid data duplication. In telecommunication net-
works operation support systems (OSS) process time series of counters
related to the behaviour of network elements, such as failed location
updates over the last 5min. In general we may assume time series of
key-value pairs with the key encoding the ordered sequence number of
the particular counter.

In certain scenarios packets are duplicated in the course of transmis-
sion from the network element to the OSS system. In other scenarios
packets arrive out of order and some of them do not arrive at all. As a
result KPI-s aggregated from the individual counters held by the pack-
ets will have incorrect values potentially resulting in thresholds agreed
in SLA-s being falsely exceeded. The filtering of duplicated keys and
the management of missing (out of order) keys should operate fast and
exhibit relatively low memory footprint. For this purpose well known
data constructs like hashes or binary search trees can be used, but usu-
ally they need to store all individual keys. This implies high memory
footprint and slow operation, since the time complexity of a search or
insert operation is proportional to the number of stored elements in most
cases. We propose a special type of binary tree that overcomes both lim-
itations within certain constraints.

Keywords: Data structure · Tree data structure · Binary search tree ·
AVL tree · Red-Black tree · B tree · Interval tree · Segment tree ·
Streaming · Storm · Data duplication · Java collections framework ·
Set · Algorithm · Interval merging binary tree

1 Introduction

In a generic context of an operating support system, more specifically in rela-
tionship with the performance management of a telecommunication network,
streams of performance counters need to be ingested and transformed towards
higher level KPI-s in order to characterize and monitor the performance of such
networks. Among several different possibilities a natural choice for such an inges-
tion layer and real time transformation engine is a stream processor.

Stream processors are cluster level generic processing frameworks allowing
real or near real time operations over streams of data. Some of them can be
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 452–464, 2017.
DOI: 10.1007/978-3-319-65482-9 32

Interval Merging Binary Tree 453

programmed in an SQL-like stream processing language, a construct supporting
different processing primitives. Alternatively, and more widely available, it is
possible to program such stream processors in high level programming languages
such as C++ or Java, like in case of the actually applied Storm framework [1].

Major object-oriented programming languages support data types related to
collections, like Java Collection Frameworks [2]. These contain data elements
that are related to each other. Implementations range from generic collection
types towards specialized ones. One collection type useful for our purposes is
SET, which is not allowing the duplication of data elements within. There are
three basic operations over SETs: INSERT and DELETE operations modify the
number of elements in the SET, while SEARCH operation does not.

SET implementations use special data structures based on the desired trade-
off between storage space and the duration of the typical operations defined on
sets. When the number of involved elements is well predictable and relatively
steady and there is no need for sorted iteration, hash data structure implemen-
tations are the best choice. One hash structure that can be used to implement
a filter is the Bloom filter [3].

In cases when the number of elements is not well predictable, the wrongly
selected capacity may led to too frequent re-hashing which makes the system
slower. Additionally, Bloom filters allow for false positives. This implies that the
duplication will not only be avoided, but all instances of the data item will be
completely filtered out.

When sorted iteration is a must or the number of involved elements is not
well predictable Binary Search Tree (BST) data structure implementations could
provide better performance. The original BST was invented in 1960 [4,5] and
serves as the basis of many other advanced variants. B-tree [6] has been pro-
posed as a variant optimizing the movement of large amounts of data. Typical
application areas of B-trees are file systems and databases.

The main drawback of BST is that the tree may become degenerated after
certain sequences of the insert and remove operations.

To eliminate the problem of degeneration and make the BST balanced,
implicitly improving the performance of the SEARCH operation, AVL Tree [7,8]
has been proposed in 1962. Balancing is time demanding but only when INSERT
or REMOVE operations are performed, since these operations may modify the
structure of the tree. On the positive side both INSERTION and REMOVE
execute embedded SEARCH operations, therefore eventually the operations
required to keep the tree balanced do not appear as pure loss compared to
unbalanced trees.

Red-Black Tree [9,10] combines the advantages of AVL and B-trees: it is
based on a modified B-tree variant and it keeps the tree balanced. (a,b)tree [11]
is a balanced tree where all the leaves reside on the same level.

There are other trees which are optimized to solve special problems faster or
with less resources. Interval tree [12] and Segment tree [13] have been developed
to perform a specific search operation on the number of intervals containing a
particular key.

454 I. Finta et al.

The reason behind of the so many BST variants is that all of them aiming
different trade-off. However the comprehensive comparison of the variants has
not been performed until 2004. [14] covers the missing gap: most of the above
introduced self-balancing trees are part of the performance analysis.

It is common in the above mentioned data structures, except the last two
ones, that these trees must store all the keys. In the Problem section we will
describe why this feature might be a drawback during near real-time duplication
filtering from both space and processing time point of view.

2 Problem

As stated in the 1, we assume an input stream of keys where the key is a sequence
number. Keys are arriving mostly ordered respective to the sequence number.
The task is to filter out those entries that arrived already once, meaning that the
sequence number has had already this value in an earlier key instance. Additional
boundary conditions regarding the arrival pattern apply:

1. upper unbounded range: there is no upper bound of the sequence numbers
apart from the limit of the binary representation of this field,

2. lower unbounded range: at any point in time a new key can arrive to the
system with a sequence number lower than any sequence number encountered
so far,

3. there are long, contiguous intervals of keys with relatively few ‘gaps’ (missing
keys) in between,

4. after a while almost all keys arrive,
5. key duplication (i.e. same key arrived at least twice) on the arrival side is

possible due to some reason.

Due to condition 2., a traditional mask cannot be applied for the incoming
keys that would drop all keys below a pre-defined value. Thus according to
naive approach once all the previously arrived keys have to be stored and the
newly arrived ones have to be compared with previously encountered keys. So
as a conclusion, based on the requirements, SET abstraction could be an ideal
solution for the problem, however actual implementations suffer from storage
space and processing time limitations due to the two-sided unbound range, see
Fig. 1. On this figure timestamps are marked by ti, while keys are marked by
nj . Dashed arrow and striped rectangle point out to a key, which has already
arrived. The storage need is linearly depending on the number of de-duplicated
keys, while the search is log2 proportional if the keys are stored in ordered
fashion.

3 Methodology

We propose in the subsequent a binary tree that stores intervals of keys rather
than individual values, implemented using a JSF SET-like interface. We describe
the concept of the tree, then we focus on the insertion operation and the concrete
data structure that can optimally implement such a tree.

Interval Merging Binary Tree 455

Fig. 1. Naive approach.

3.1 Concept of the Data Structure

Let’s suppose that keys arrive in the following order:

...n0, n−1, n2, n3, n7, n5, n4, n6, n−2, ...

In a naive approach all elements could be stored in a hash or in a binary
search tree which is easily searchable, but still the binary search tree or the hash
remains an upside-downside open system with infinite storage requirements when
keys can arrive with infinite delay.

Increments are ordered, only the arrival sequence can be disordered. The first
tweak to the naive approach is to represented arrived keys as pairs. So, elements
will be stored like the following:

(n0, n0), (n−1, n−1), (n2, n2), (n3, n3), (n7, n7), (n5, n5),

(n4, n4), (n6, n6), (n−2, n−2).

At first sight it looks like that we did not win anything, but only doubled the
memory footprint. The second tweak is not to automatically put newly arrived
elements at the end, but rather to organize the elements in an ordered fashion,
filtering at the same time duplicates found during the ordering process. This can
be conceptually a sequence of 3 operations: insert at the end, order by key and
a filter to skips the entry if it is already found:

(n−2, n−2), (n−1, n−1), (n0, n0), (n2, n2), (n3, n3), (n4, n4),

(n5, n5), (n6, n6), (n7, n7).

456 I. Finta et al.

The third tweak is to add an operation that we call interval merging: every
pair of neighbour values is checked and if the values are consecutive, the two pairs
are converted into one, where the first value of the resulting pair is the first value
of the first pair and the second value of the resulting pair is the second value
of the second pair. Conceptually the 4th operation can be executed after the
order by and filtering operations, but in a more efficient implementation these
operations will be covered by a more complex variant dealing with all operations
in one INSERT procedure, as described below:

1. The key for ordering is the L-value of an ordered pair and R-value is the
second component.

2. If the first key/number arrives store it in the data structure as an ordered
pair with the same value stored both as L- and R-values.

3. All successive keys stored according to the following: search the place for the
key (remember this is the L-value of the pair) in the data structure
(a) If it exactly matches with an element in the data structure then drop it

⇒ DUPLICATION (message already received)
(b) If it is the predecessor of the first element check the distance between

them (the degree of succession/predecession between them) based on the
first element’s L-value.
i. In case the distance is 1 modify the R-value of the generated ordered

pair to the R-value of the first element. Then delete the L-value. Insert
this pair into the data structure ⇒ MERGING.

ii. In case the distance is higher than 1, simply insert the pair into the
data structure.

(c) If it is a successor of the last element check the distance between them
based on the last element’s R-value.

i. If the last element’s R-value is smaller than the currently arrived
one’s R-value with more than 1, insert the currently arrived element
into the data structure according to rule 2.

ii. If the distance between the last element’s R-value and the currently
arrived one is exactly 1, then replace the last element’s R-value with
the currently arrived one ⇒ MERGING.

iii. If the last element’s R-value is higher or equivalent to the currently
arrived one’s r-value, then drop the actually arrived one ⇒ DUPLI-
CATION (key already received).

(d) If it is in the middle in the data structure both direction checking is
required in the following order.
i. Check the predecessor’s value.

A. In case the currently arrived element’s distance is less than 1,
drop the message ⇒ DUPLICATION.

B. In case the currently arrived element’s distance is 1 then change
the R-value of the predecessor’s with the current one’s value.
Then check the distance from the successor. If it is 1 then change
again the predecessor’s value (updated with the currently arrived
one) to the successor’s value ⇒ DOUBLE MERGING.

Interval Merging Binary Tree 457

ii. Else check the distance between the successor’s L-value and the cur-
rently arrived element’s L-value. In case of equivalence change the cur-
rently arrived element’s value to the successor’s L-value. Then delete
the successor and insert the newly created pair ⇒ MERGING.

iii. Else insert the newly arrived element into the data structure according
to rule 2.

In the following we describe the operation of the algorithm for our small data
set:

– n0 arrives, our data structure will store the following element:

(n0, n0)

– n−1 arrives, our data structure will store the following element:

(n−1, n0)

– n2 arrives, our data structure will store the following element:

(n−1, n0), (n2, n2)

– n3 arrives, our data structure will store the following element:

(n−1, n0), (n2, n3)

– n7 arrives, our data structure will store the following element:

(n−1, n0), (n2, n3), (n7, n7)

– n5 arrives, our data structure will store the following element:

(n−1, n0), (n2, n3), (n5, n5), (n7, n7)

– n4 arrives, our data structure will store the following element:

(n−1, n0), (n2, n4), (n5, n5), (n7, n7)

Then
(n−1, n0), (n2, n5), (n7, n7)

– n6 arrives, our data structure will store the following element:

(n−1, n0), (n2, n6), (n7, n7)

Then
(n−1, n0), (n2, n7)

– n−2 arrives, our data structure will store the following element:

(n−2, n0), (n2, n7)

So at the end storing only 4 keys, represented as 2 vectors or complex num-
bers, is required to represent 9 arrived elements. These two complex elements
represents two intervals in which all expected keys arrived to the system, this is
from where the data structure name origins.

This organization of keys can successfully fulfill the storage complexity
related requirements.

458 I. Finta et al.

3.2 Data Structure for Interval Merging

In the previous section an algorithm was introduced that performs an INSERT
operation on an imaginary data structure with elements of type value pairs that
represent related intervals of ranges of arrived messages without gaps. The data
structure can be implemented in many ways impacting the time complexity:

1. in an array element pairs can represent L- and R-values (continuously reserved
memory area for a particular type of elements),

2. in a linked list nodes can represent value pairs (not continuously reserved,
but references maintained to next/previous nodes as well),

3. in potentially many other ways not listed furthermore,
4. in a newly developed binary tree that we will further elaborate on.

Examining the above mentioned implementations:

1. in case of an array with ordered value pairs the average time complexity is
T (n) = O(log(n)). However INSERT and REMOVE can require too many
movements depending on the place of the affected element in the array.
INSERT cause re-indexing of all successor elements and thus moving them
one step forward. REMOVE can cause the opposite direction movement.

2. SEARCH in a linked-list is not an efficient operation, however INSERT and
REMOVE is very efficient.

As it is visible from the analysis of the first two data structures it seems
that a tree-based approach would be effective: in case of a well balanced tree the
element-related operations can be quite fast. The question is how to apply ele-
ment pairs in the nodes. To solve this problem we propose the so-called Interval
Merging Binary Tree (IMBT).

A node in the tree has the following signature: {pointer to parent,
interval Left V alue, interval Right V alue, pointer to Left Child, pointer to
Right Child}.

NULL parent pointer means that this particular element is the root node of
the data structure. NULL pointer to Left Child and pointer to Right Child
means leaf node just as in a traditional binary search tree.

A node always stores value pairs, which are the interval Left V alue and
the interval Right V alue, despite elements to be inserted, removed, searched
for being single keys.

The relation between a parent node and a Right Child of the parent node is
that the interval Left V alue of the child node must be higher by two or more
than the interval Right V alue of the parent node.

The relation between a parent node and a Left Child of the parent node is
that the interval Right V alue of the child node must be smaller by two or more
than the interval Left V alue of the parent node.

Additionally, pointers to parents and left or right elements are substituted
by single lines. The left and right values must be indicated.

Figure 2 is the visualization of the example from previous section, based on
the graphical representation of IMBT and the INSERT concept:

Interval Merging Binary Tree 459

Fig. 2. The evolution in time of the IMBT based representation

4 Analysis of Interval Merging Binary Tree

At first sight IMBT behaves as an ordinary binary tree:

– It has nodes in the tree.
– Each node can have two children and one parent element.
– Special node types are the root (has no parent) and the leaf (has no child).
– Three basic operations are defined on the tree: SEARCH, INSERT,

REMOVE.

If no balancing mechanisms are used, the tree - just as an ordinary binary
tree - can become degenerated depending on the sequence of incoming elements.
However, the nodes of the tree contain intervals and this fact highly influences
the behaviour of the operations. A successful modification operation (INSERT,
REMOVE) can affect 0, 1, 2 nodes in the tree. Opposed to legacy binary trees
both INSERT and REMOVE operations might cause a decrease by 1, an increase
by 1 or no change in the number of nodes. Because SEARCH is crucial from
the above mentioned operation point of view as well it is the basis of the cost
counting.

To determine the input-dependent worst-case, average and best-case scenar-
ios it is important to highlight that nodes represent disjoint intervals therefore
it requires different analysis method from that applicable to a simple BST case.
In case of a legacy binary search tree the storage space complexity is O(n). This
means the tree occupies as much space as many elements are stored inside the
tree. However, in case of IMBT, it can happen that the number of nodes in the
tree is far smaller, equal, or far higher than the number stored elements.

Space complexity of IMBT is highly dependent on the input pattern. To
be able to express the difference lets introduce e, which refers to the number
elements represented by the tree and n referring to the number of nodes in the
tree and finally N being the total number of elements. According to this the
storage space complexity of IMBT can vary from O(2) to O(2e). This feature

460 I. Finta et al.

of IMBT influences the time complexities as well. Therefore it is not enough to
check only the number of elements but their distribution is also important.

To be able to compare the difference between BST and IMBT Input Pattern
Series (IPS) will be defined according to the following:

Define Input Pattern Series: IPS(ACDL, D, O, DIR) where
Average Contiguous Domain Length(ACDL) = {1...∞}; under contiguous

domain we understand a countable set of keys where each member of the set
except two members has a successor and one predecessor, exactly one member
has only successor (first key of the domain) and exactly one member has only
predecessor (last key of the domain), in simpler terms there are no ‘gaps’ in the
set. The ACDL is in fact the element count of this set;

Distance(D) = {1, 2+}/{ACDL + 1, ACDL + 2}; this is for instance the
‘distance’ between the first element of a related domain and the first element
of the subsequent related domain, or alternatively, the ‘distance’ between the
last element of a related domain and the last element of the subsequent related
domain. By the distance between 2 keys we mean the number of keys between
them +1;

Offset(O) = {−∞, ..., 0, ...,∞}; the ordinal number of the key associated with
the very first message;

Direction(DIR) = {Left,Right,AlterWalkwithIncreasingStep(AWIS)
length}.

Below we provide a set of possible IPS-es and in the next step we will assess
the performance of the algorithm if keys arrive according to these patterns.

4.1 Input Pattern Series

IPS(3,4,1,R) ⇒ ACDL=3; Distance =4; Offset =1; Direction=Right
Key series: 1, 2, 3,
IMBT Interval(s): (1, 2, 3), (5, 6, 7), (9, 10, 11),
The formula of the series is:

an =
⌊n
d

⌋
+ n, n ∈ N, d = 3. (1)

IPS(3,4,0,AWIS). Key series: 0, 2,−1, 3,−2, 4,−4, 6,−5, 7,−6, 8,−8....
IMBT Interval(s): ...(−6,−5,−4), (−2,−1, 0), (2, 3, 4), (6, 7, 8), (10, ...
The formula of the series is:

an =
(
1+

⌊n
d

⌋
+

1 + n

2

)
(nmod(2))−

(⌊n
d

⌋
+
n

2

)
((n+1)mod(2)) | d = 2×ACDL

(2)
During all the above mentioned cases ACDL parameter was considered as a

constant multiplier. However, if ACDL would be considered as a variable and as
time goes by it increases, so a formula could be used like this: ACDL = f(n),
then it can change the growth rate from O(n) to O(c) or O(1/cn).

Let’s start with the two simplest cases when ACDL = f(n) = n → ∞
(Fig. 3).

Interval Merging Binary Tree 461

Fig. 3. IPS(3,4,0,AWIS)

IPS(n,1,1,R). Key series: 1, 2, 3,
IMBT Interval(s): (1, ...,∞).
The formula of the series is:

an = n, n ∈ N. (3)

IPS(1,1,0,AWIS). Key series: 0, 1,−1, 2,−2....
IMBT Interval(s): (−∞, ...,∞).
The formula of the series is:

an =
1 + n

2
(nmod(2)) − n

2
((n + 1)mod(2)), n ∈ N. (4)

The most natural function where we expect that length of intervals grows
incrementally is Sn (Sum n) is the basis of g(n), which is the floor function of
“semi-inverse” Sn. Only the positive domain is acceptable:

Sn =
n∑

i=1

i =
n(n + 1)

2
, (5)

Sn
−1 =

−1 +
√

1 + 8n
2

, (6)

g(n) =
⌊−1 +

√
1 + 8n

2

⌋
. (7)

Declare that ACDL = f(n) = n+1
g(n)+1 . Define an = g(n)+n, this will lead to

the following IMBT intervals:
(0), (2, 3), (5, 6, 7), (9, 10, 11, 12), (14, ...
Let’s examine the next pattern where:

g(n) = �logd(n)� | n = {1, 2, 3, ...}, d = 2 (8)

f(n) =
n

g(n) + 1
. (9)

IPS(f(n), dg(n)+1, 1, R) Key series:
1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20,

462 I. Finta et al.

IMBT Interval(s): (1), (3, 4), (6, 7, 8, 9), (11, 12, 13, 14, 15, 16, 17, 18), (20,
The formula of the series is:

an = �logd(n)� + n. (10)

In this case d = 2, but of course this can vary to a value that fits better to
our model. The most important aspect when choosing this functions is that f(n)
should be a slowly growing one to be able to map the result into distances via
floor function.

4.2 Comparison of Balanced BST with IMBT

It is easy to recognize that IMBT degenerates into a single node in case of
IPS(n,1,1,R) or IPS(1,1,0,AWIS), which is pretty good from SEARCH perfor-
mance point of view. On the other hand an unbalanced BST (including IMBT)
degenerates into a linked-list in case of IPS(3,4,1,R) or IPS(f(n), dg(n)+1, 1, R),
which may highly degrade the SEARCH performance. Therefore the application
of one of the legacy balancing techniques (rotation strategies) is reasonable. In
the following we will compare the performance of SEARCH operation against
the selected IPS-es, supposing that AVL type balancing was applied for both
BST and IMBT.

IPS(10,11,1,R)

a., BST - BALANCED

– n = e = N ,
– space complexity = O(N),
– time complexity = worst case - O(log(N)), average - O(log(N)).

b., IMBT - BALANCED Since comparison is based on the left value this influ-
ence the result.

– n = N/10; e = N ;
– space complexity = O(2 ∗ log(n)),
– time complexity = worst case - O(2 ∗ log(n)), average - O(log(n)).

IPS(f (n) = n
�logd (n)�+1 , dg(n)+1,0,R)

a., BST

– n = e = N ,
– space complexity = O(N),
– time complexity = worst case - O(N), average - O(N/2).

Interval Merging Binary Tree 463

Fig. 4. IMBT with balancing

b., IMBT

– n = log(N); e = N ;
– space complexity = O(2log(n)),
– time complexity = worst case - O(2log(n)) = O(2log(log(N))), average
O(log(n)) = O(log(log(N))).

It is visible that in case of constant ACDL with a value equal or higher than
3 on average a gain can be achieved over “simple” balanced trees. However if
ACDL is growing and not only constant in time the gain is significant from both
time and space complexity point of view. Nevertheless IMBT structure influences
the balancing effort, because the balancing should be performed on less nodes in
the tree, however the key/element coverage is the same. To visualize the above
mentioned, supposing that AVL was used, the last introduced IPS is visualized
in Fig. 4.

5 Conclusion

In this contribution we introduced an algorithm to efficiently handle data dupli-
cates and missing/out of order data items in a telco application, as well as a
data structure that enables an efficient manipulation of missing/duplicate data
that we called IMBT. We have analyzed a number of selected data arrival pat-
terns quantifying the benefits of the proposed approach over traditional data
structures used in the state of the art.

The application in a centralized environment (implemented in a Storm bolt)
is straightforward. If we need distributed processing because of resource con-
straints, the keys may be distributed with the help of a mod function. The basis

464 I. Finta et al.

of the mod function is depending on the number of filter bolts we use in parallel.
Then in a particular bolt we have to normalize the arrived key with basis of the
mod function and take the floor of the given value.

Storing the lower bound along with the length of the interval in a modi-
fied IMBT is subject to future work. The space complexity might significantly
decrease in case of very short ranges and many gaps, in exchange for an increase
of the computational complexity.

References

1. STORM - A distributed real-time computation system. http://storm.apache.org/
documentation/Home.html. Last visited 29 Mar 2017

2. Java Collections Frameworks. http://docs.oracle.com/javase/7/docs/technotes/
guides/collections/overview.html. Last visited 29 Mar 2017

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press and McGraw-Hill (2009). ISBN: 0-262-03384-4

5. Binary Search Tree - Wiki. https://en.wikipedia.org/wiki/Binary search tree. Last
visited 29 Mar 2017

6. Adelson-Velsky, G., Landis, E.: Organization and maintenance of large ordered
indexes. Acta Informatica 1(3), 173–189 (1972). doi:10.1007/BF00288683

7. Adelson-Velsky, G., Landis, E.: An algorithm for the organization of information.
Proc. USSR Acad. Sci. 146, 263–266 (1962)

8. AVL Tree - Wiki. https://en.wikipedia.org/wiki/AVL tree. Last visited 29 Mar
2017

9. Bayer, R.: Symmetric binary B-Trees: data structure and maintenance algorithms.
Acta Informatica 1(4), 290–306 (1972). doi:10.1007/BF00289509

10. Red-black tree - Wiki. https://en.wikipedia.org/wiki/Red-black tree. Last visited
29 Mar 2017

11. (a, b) Tree. https://en.wikipedia.org/wiki/(a,b)-tree. Last visited 29 Mar 2017
12. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Interval trees. In:

Computational Geometry, 2nd revised edn., Section 10.1, pp. 212–217. Springer,
Heidelberg (2000)

13. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput. C–28(9), 643–647 (1979). doi:10.1109/TC.
1979.1675432

14. Pfaff, B.: Performance analysis of BSTs in system software. ACM SIGMETRICS
2004 32(1), 410–422 (2004). ISBN: 1-58113-873-3

http://storm.apache.org/documentation/Home.html
http://storm.apache.org/documentation/Home.html
http://docs.oracle.com/javase/7/docs/technotes/guides/collections/overview.html
http://docs.oracle.com/javase/7/docs/technotes/guides/collections/overview.html
https://en.wikipedia.org/wiki/Binary_search_tree
http://dx.doi.org/10.1007/BF00288683
https://en.wikipedia.org/wiki/AVL_tree
http://dx.doi.org/10.1007/BF00289509
https://en.wikipedia.org/wiki/Red-black_tree
https://en.wikipedia.org/wiki/(a,b)-tree
http://dx.doi.org/10.1109/TC.1979.1675432
http://dx.doi.org/10.1109/TC.1979.1675432

Mining Suspicious Tax Evasion Groups
in a Corporate Governance Network

Wenda Wei1, Zheng Yan2,3, Jianfei Ruan1, Qinghua Zheng1, and Bo Dong1(B)

1 SPKLSTN Lab, Xi’an Jiaotong University, Xi’an, China
dong.bo@xjtu.edu.cn

2 State Key Lab on Integrated Services Networks, Xidian University, Xi’an, China
3 Department of Communications and Networking, Aalto University, Espoo, Finland

Abstract. There is a new tendency for corporations to evade tax via
Interest Affiliated Transactions (IAT) that are controlled by a potential
“Guanxi” between the corporations’ controllers. At the same time, the tax-
ation data is a classic kind of big data. These issues challenge the effec-
tiveness of traditional data mining-based tax evasion detection methods.
To address this problem, we first coin a definition of controller interlock,
which characterizes the interlocking relationship between corporations’
controllers. Next, we present a colored and weighted network-based model
for characterizing economic behaviors, controller interlock and other rela-
tionships, and IATs between corporations, and generate a heterogeneous
information network-corporate governance network. Then, we further pro-
pose a novel Graph-based Suspicious Groups of Interlock based tax eva-
sion Identification method, named GSG2I, which mainly consists of two
steps: controller interlock pattern recognition and suspicious group iden-
tification. Experimental tests based on a real-world 7-year period tax data
of one province in China, demonstrate that the GSG2I method can greatly
improve the efficiency of tax evasion detection.

Keywords: Tax evasion · Controller interlock · Corporate Governance
Network · Big data

1 Introduction

Tax revenue collection is considered a top priority in China. It was reported
by Chinese government that the rate of tax revenue loss in China was above
22%. How to technically support tax evasion detection, especially identifying
suspicious tax evasion corporations/groups, from a large scale of business trans-
actions and related data, has become one of important and challenging issues.
Meanwhile, there is a new tendency for corporations to evade tax via Inter-
est Affiliated Transactions (IATs) that are controlled by a potential “Guanxi”
between the corporations’ controllers.

For dealing with these challenges, we perform an extensive literature study
about potential “Guanxi” for corporations, and find that a phenomenon named

c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 465–475, 2017.
DOI: 10.1007/978-3-319-65482-9 33

466 W. Wei et al.

board interlock has been deeply researched in western economics that refers to
the practice of members of a corporate board of directors serving on the boards
of multiple corporations. However, scholars paid too much attention to the rela-
tionship between corporations constituted by the board interlock, but neglected
the critical role of the interlocking relationship between the corporations’ con-
trollers. We believe that the ties between controllers are more important in China
or other emerging economies where “Guanxi” has been rooted in the blood of
the normal people. Moreover, essentially the economic behavior of a corporation
is a concrete embodiment of its controllers’ will. Besides, it is verified that in the
process of economic transformation in China, when the corporation governance
is not matured, interlocking controllers tend to find loopholes in supervision to
maximize their self-interest through legal-like-transactions. Therefore, this paper
coins a definition of controller interlock, which characterizes the interlocking rela-
tionship between corporations’ controllers.

In order to model controller interlock and related behaviors and relation-
ships, we propose a Colored and Weighted Network-based Model (CWNM), and
generate a heterogeneous information network-Corporate Governance Network
(CGN). We adopt the shareholder and management-involved role relationships
between persons and corporations (such as being the corporations’ executives
or managers or legal persons), as well as investment and trading relationships
between corporations. In CGN, persons or corporations act as nodes, and rela-
tionships between persons and/or corporations act as arcs, as well as the weight
of an arc is equal to the Interest Affiliated Degree (IAD) of a direct tie.

After introducing the definition of controller interlock and CGN, this paper
focuses on an important problem that is the detection of Interlock based Tax
Evasion (ITE) in CGN. This problem is split into two basic questions, (i) how to
recognize the controller interlock ties between corporations’ controllers and (ii)
how to identify suspicious groups of ITE. To solve these questions, we propose
a novel Graph-based Suspicious Groups of ITE Identification method, named
GSG2I, which includes (i) a graph projection algorithm to recognize the ties
that meet controller interlock pattern and (ii) a component pattern matching
algorithm based on the controller interlock ties to discover suspicious groups of
ITE. Finally, experimental tests based on a real-world 7-year period tax data of
one province in China, demonstrate that the GSG2I method can greatly improve
the efficiency of ITE detection.

2 Related Work

Board interlock analysis is an emerging topic in taxation and economic field, and
has received considerable attention. It has been applied to industry dynamic
analysis [5,8,11,12] and corporation decision making [1,3]. Suominen et al.
[12] considered board interlock as the tool of inter-organizational flows needed
for innovation and growth of the companies, concentrating especially on inter-
organizational flows of board networks or interlocks. Robins et al. [11] introduced
a bipartite clustering coefficient to compare global structural properties of US

Mining Suspicious Tax Evasion Groups in a CGN 467

and Australian interlocking company directors. Ma et al. [8] discovered a struc-
turally autonomous sphere in board interlock network of Chinese non-profits
associated with major political and social events in the state-society relation-
ship. Connelly et al. [3] explored the diffusion of an emerging strategy through
the interlocking directorate effected by incorporating rational actors, potentially
suppressive influences, and network structural considerations, and examined a
broad social network of interlocking directors in US firms.

Moreover, many researchers pointed out that there exists obviously imita-
tion effect between interlocked companies which can improve the companies’
profitability. For example, Chua et al. [2] used social network analysis to deter-
mine the relationship between interlocking directorates and corporate profitabil-
ity drawn from 2010 Fortune 500 companies, and suggested that both interlocks
and power asserted a positive linear relationship with companies’ profitability.
Peltonen et al. [10] indicated companies that have international revenue are
often interlocked with each other, and interlocked boards of directors have the
potential to act as important information and resource conduits.

However, negative performance effects associated with board interlocks were
also analyzed in some special environment. Liu [7] studied the effect of environ-
ment dynamism to the relation between the interlocking directorates and the
corporation’ s performance in emerging economics such as China. He pointed
that the output of the firms in the center of the social networks constituted
by interlocking directorates would be negatively affected. Croci et al. [4] used
measures of vertex centrality to examine interlocking directorates and their eco-
nomic effects, and discovered a negative relationship between firm value and the
degree and eigenvector centrality of board interlock network in Italy.

3 Definitions of Controller Interlock and Corporate
Governance Network

3.1 Controller Interlock

In the literature [6,9], a board interlock was defined as sharing a common mem-
ber on respective boards of directors in which a person affiliated with one cor-
poration sits on the board of directors of another corporation.

In this paper, we extend the connotations of board interlock and develop it
into a concept that fit the Chinese economic environment:

(i) The attention is changed from finding the interlocking relationship ties
between corporations to mining the potential interlocking relationship ties
between the corporations’ controllers.

(ii) The persons concerned are extended from simple director to multiple
roles of controllers: director, legal person and shareholder. The relationships
concerned are extended from simple director relationship between P and C to
the cover of actual control, share holding relationship between P and C, as well
as investment relationship between C and C (C for Corporation, P for Person).
Then, the influence from P to C is accordingly extended from direct control tie
(P -C) to control trail (P -C -· · · -C) covering both direct and indirect influence.

468 W. Wei et al.

Base on the above extension, we define a controller interlock as a tie between
two controllers, each of whom sits on the board or executive of or has a indirect
influence on a common corporation.

3.2 Corporate Governance Network

A Corporate Governance Network (CGN) is formed to represent a kind of het-
erogeneous information networks built based on the CWNM. Thus, we coin the
definition of CGN as follows:

Definition 1. A CGN is is formulated as a quintuple:

CGN = (V,E,W,VColor,EColor)

where

• V = {vp|p = 1, . . . , NV } denotes a set of nodes;
• E denotes a set of all existing arcs, and let E= {epq} = {(vp, vq)|0 < p, q �

NV }, where epq = (vp, vq) denotes that there exists an arc from the p-th node
to the q-th node;

• W = {wpq|0 < p, q � NV } denotes the weight (i.e., IAD) of the arc from the
p-the node to the q-th node;

• VColor= {LC,BC,CC}, where LC denotes the color of a legal person or
director, CC denotes the color of a corporation; BC denotes the color of a
shareholder; Using colors in VColor to classfy V in CGN, we can get the
following conclusion V= {L∪C∪B}, where L = {vl|l = 1, . . . , NL, NL < NV }
denotes all legal person or director nodes marked by the color LC, C =
{vc|c = 1, . . . , NC , NC < NV } denotes all corporation nodes marked by the
color CC, B = {vb|b = 1, . . . , NB , NB < NV } denotes all shareholder nodes
marked by the color BC, then NL + NC + NB = NV ;

• EColor= {CL,HR, IN, TR}, CL denotes the unidirectional actual con-
troller relationship between a legal person/director vl and a corporation vc,
and if the color of the arc elc from vl to vc is CL, then elc is denoted as eCL

lc ,
and its weight is equal to 1, which is denoted as w(eCL

lc) = 1; HR denotes the
unidirectional share holding relationship between a shareholder vb and a cor-
poration vc, and w(eHR

lc) ∈ (0, 1]; IN denotes the unidirectional investment
relationship between two corporations vc1 and vc2, and w(eINc1c2) ∈ (0, 1]; TR
denotes the unidirectional trading relationship between two corporations vc1
and vc2. CL, HR and IN belong to control relationship.

From the view of control relationships and trading relationship, there are
two parts in a CGN: the control network and the trading network. The control
network covers all relationships (actual control, investment, share holding, etc.),
which have influence on transactions between Corporation nodes, except for the
trading relationship.

Mining Suspicious Tax Evasion Groups in a CGN 469

4 Suspicious Groups of ITE Identification Method

We propose a novel Graph-based Suspicious Groups of ITE Identification
method, named GSG2I, which consists of two parts: controller interlock pat-
tern recognition algorithm and suspicious groups identification algorithm.

4.1 Controller Interlock Pattern Recognition Algorithm

Considering that the generated CGN is a large scale graph, the first step is to
partition the CGN into a series of small weakly connected subgraphs by apply-
ing divide and conquer strategy. This step is inspired by an intuitive idea that
the topology of controller interlock structure is included in one component of
a control network as it belongs to a connected graph and is constructed solely
by control arcs. Meanwhile, a trading relationship arc that connects two uncon-
nected components of a control network is an unsuspicious trading relationship.
Obviously, this means that there is definitely without one party (node) involved
in two components at the same time behind the trading relationship arc. There-
fore, the i-th maximal weakly connected subgraph of an control network and the
trading relationship arcs between its corporations nodes forms the i-th interest
community of a CGN, denoted as subCGN(i). The control part of subCGN is
denoted as subCtrlNet, and the trading part of subCGN is denoted as subTraNet.

Each suspicious Group of ITE consists of two potential control relationship
trails (see Definition 2) behind an IAT with a controller interlock tie between
the start nodes of each trail (controller). Therefore, it is necessary to construct
a Potential Component Pattern Base (PCPB) to record all potential control
relationship trails throughout the corresponding subCtrlNet in the form of InP-
OutC walk (see Definition 3). To this end, a novel parallel label propagate-based
control relationship trail traversal algorithm is then presented, which is carried
out in each subCtrlNet to obtain its PCPB. The main steps of the algorithm are
as follows.

Step 1: Initialization process
First, initialize each node with a unique identification label (IdLabel). Mean-
while, suppose that each node in a subCtrlNet carries a local trail set LTrailSet,
which stores control relationship trails ended by the node itself. Append the
unique IdLabelof each Person node (one node as a trail) to its LTrailSet for
initialization, and define the LTrailSet of each Corporation node to a null set.
Meanwhile, define a globle trail set GTrailSet to store all static IRR trails in
the subCtrlNet and initialize it to be a null set.

Step 2: Propagation process
Let the LTrailSet of each node (Person node only for the first loop) propagate
to its neighbors by tracing the directions of its adjacent edges. Then, remove
the nodes which have not received any LTrailSet from neighbors, and break the
ties to its neighbors. Next, count the number of nodes in the subCtrlNet. If the
number is equal to zero, then the algorithm is terminated, and GTrailSet is the

470 W. Wei et al.

PCPB that records all static IRR trails throughout this subCtrlNet; otherwise,
continue.

Step 3: Updating process
Each node updates its LTrailSet based on the LTrailSet collected from its
neighbors. The detailed update operation on each node consists of the following
three steps: (i) pop its LTrailSet to the GTrailSet, (ii) merge the LTrailSet
collected and remove the component trails containing the IdLabel of this node,
and (iii) append the IdLabel to the rest of the component trails, and update the
LTrailSet of this node by the set of the new trails obtained.

Steps 2 and 3 are performed iteratively until the termination condition is met.
Then, all control relationship trails throughout each subCtrlNet are recorded in
the corresponding PCPB, and a copy of each trail is distributed to the LTrailSet
of the node with IdLabel equal to the last element of the trail.

Definition 2. Potential control relationship trail.
A potential control relationship trail is a trail, T , met the following condition:

T = {(p, c1, c2, . . . , cn)|p ∈ P, c1, c2, . . . , cn ∈ C, (p, c1), (p, c2), . . . , (cn, c) ∈ E}
Definition 3. Person-node-start-and-corporation-node-stop walk (InP-OutC
walk)

A Person-node-start-and corporation-node-stop walk is a trail belongs to a
set of trails in a control network and does not contain any trading arc, which is
start by a Person node and stop by a Corporation node.

Finally, we propose a bipartite netwok-based model for characterizing the
control relationship between persons and corporations and generating a Person-
Corporation Bipartite Network (PCBN). Thus, we accomplish the task of con-
troller interlock tie construction by map the PCBN onto a unipartite network of
Person called a P-projected graph.

For each potential control relationship trails in a PCPB, in the form of InP-
OutC walk, the first and last node (p and c) is extracted to form the Person node
set, P , and the Corporation node set, C, and the edge (p, c) forms the edge set
E. Then the PCBN can be represented by a bipartite graph PCBN = {P,C,E},
where P and C are two parts of the nodes in PCBN. E is the set of edges in
PCBN. There is no edge between the nodes in the same set of P and C; namely,
every edge (p, c) ∈ E satisfies p ∈ P , and c ∈ C. We use N(p) = {c|c ∈ C, (p, c) ∈
E} to denote the set of Corporation neighbors of Person node p in PCBN.

To analyze the controller interlock ties in the PCBN, we map it onto a P-
projected graph (see Definition 4).

Definition 4. (P-projected graph). Given a bipartite graph PCBN =
{P,C,E}, its P-projected is defined as a unipartite graph PCBNP = {P,EP }
where the set of edges is EP = {(p1, p2)|p1, p2 ∈ P,∃c ∈ C, c ∈ N(p1) ∩ N(p2)}.

From the definition, we can see that if Person part nodes p1 and p2 in the
bipartite network PCBN have at least one common neighbor in the Corporation
part, then there exists a controller interlock tie (p1, p2) in the P-projected graph
PCBNP .

Mining Suspicious Tax Evasion Groups in a CGN 471

4.2 Suspicious Groups Identification Algorithm

According to Definition 5, a series of FIT-OutC walks are constructed by carry-
ing out first-interlock-tie join (see Lemma 1) based on the PCPB and controller
interlock ties. Then, the topologies pattern of ITE can be redescribed as two
FIT-OutC walks started by a same controller interlock tie behind a transaction.

For each trading relationship arc, tra, in subTraNet(i) (i = 1, . . . , L), extract
the LIntrlSet of tra’s source vertex src and destination vertex dst from the
InPCPB of subCGN(i). If there exist trails ∈ LIntrlSet(src) and traild ∈
LIntrlSet(dst), such that the combination of trails, traild and tra meets the
topology pattern referred above, then we say that the two trading parties of tra
are in suspicion of being involved in ITE, that is, tra belongs to interest affiliated
transaction, and trails and traild are the suspicious relationship trails.

Definition 5. First-controller-interlock-tie-start-and-corporation-node-stop
walk (FIT-OutC walk) is a trail produced by a first-interlock-tie join (see
Lemma 1), which adds a controller interlock tie to the start of a trail that belongs
to the set of InP-OutC walks (PCPB). The newly generated local and globle FIT-
OutC walk set is named as LIntrlSet and InPCPB corresponding to those of
InP-OutC walk set, respectively.

Lemma 1. If a controller board tie is added to a head in a control relationship
tails and it forms a new walk, nw, then nw is a trail. We can call this controller
interlock tie added operation first-interlock-tie join.

5 Experimental Evaluation

5.1 Experimental Design

Data Set and Preprocess. We carried out experiments based on the real tax
data of S province in China from 2009 to 2015. A series of CGNs were generated
from the data monthly, average of which included 2,872,469 nodes and 2,488,982
arcs. Meanwhile, audit results of the 7 years were used as the data set. In the
data set, 19,328 ITE companies and 18,209 non-ITE companies were included
for each month in average.

Evaluation Technique. For each corporation, CO, in the data set, the GSG2I
method was applied to detect whether it belonged to the trading parties of a
suspicious tax evasion group. Then, the obtained conclusion, OC, was compared
with the actual audit results (i.e., the ground truth) from the following two
aspects: (i) when the identifier of t equals to 1, CO is correctly identified if OC
contains any recognized suspicious group; (ii) when the identifier of CO equals
to 0, OC is not falsely alarmed if OC is returned to be null.

Evaluation Criteria. To evaluate the performance of the GSG2I method, two
metrics, which are Identification Precision and Hit Rate, are employed.

Identification Precision (IP) is the faction of companies which are predicted
to be suspicious, and are really involved in evasion. Hit Rate (HR) is the fraction

472 W. Wei et al.

of companies which really carry out tax evasion behaviors, and are subsequently
successfully identified. A higher Identification Precision and Hit Rate indicates
a higher identification capacity.

Method for Comparison. In the experiments, we used traditional board inter-
lock for comparison, since both board interlock and the GSG2I method refer to
the practice of controllers sharing influence on multiple corporations.

For these two interlock concepts, graph-based models are employed to charac-
terize the patterns, each of which is formed by two potential control relationship
trails and one interest affiliated transaction arc. The construction of suspicious
relationship trails is affected by two factors: (i) Th: the weight threshold for
control arcs, and (ii) L: the max length limit for suspicious potential control
relationship trails. Less control arcs will be regarded as sufficiently influential if
we set a higher Th, and subsequently less trails will be constructed. Likewise, the
same condition will occur if we set a smaller L. The experimental results show
the influence of diversity of suspicious relationship trail construction factors (i.e.,
Th and L) on evaluation metrics.

5.2 Experimental Results

The Effect of Different Methods. Tables 1 and 2 show the comparisons of
effects obtained by the GSG2I method and board interlock method. While the
effects are of difference under different evaluation metrics, the GSG2I as a whole
achieves a better performance than board interlock method. Specifically, the
improvements are significant with respect to Hit Rate, and much smoother with
respect to Identification Precision. As shown in Table 1 taking L = 2, Th = 0.3
as an example, the effects of the GSG2I method are described as follows: (i) its
Identification Precision is approximately equal to board interlock method; (ii)
its Hit Rate are much higher, with the improvements being 237%. In conclusion,
the GSG2I method greatly improves the Hit Rate of tax evasion identification
and simultaneously achieves a similar Identification Precision.

The Effect of Weight Threshold. Table 1 and Fig. 1(a) show the effects with
respect to Th. Similarly, the effects of both method are of great difference in
different settings of Th. During the increase of Th (from 0 to 0.9), Hit Rate
decreases sharply. The reason is that as Th increases, a great number of weak
control arcs are filtered and fewer potential control relationship trails will be
involved in PCPBs, which means less evidence can be used to identify tax evasion
behaviors. Thus, it will lead to a decrease in Hit Rate. Meanwhile, we find that
Identification Precision remains stable with decreasing Hit Rate decreases, which
means that ITE behaviors are irrelevant to the IAD of control relationship.

The Effect of Max Length. Table 2 and Fig. 1(b) show that Identification
Precision and Hit Rate remain stable with increasing L; the increase is not
significant when L changes from 1 to 5. Theoretically, if the max length is
larger, there will be more potential control relationship trails involved in PCPBs.

Mining Suspicious Tax Evasion Groups in a CGN 473

Table 1. Effects with respect to Th

Th GSG2I Board interlock

IP HR IP HR

0.1 0.7850 0.0331 0.8025 0.0101

0.2 0.7810 0.0316 0.7957 0.0095

0.3 0.7748 0.0283 0.7874 0.0084

0.4 0.7793 0.0258 0.7772 0.0074

0.5 0.7768 0.0225 0.7815 0.0061

0.6 0.7674 0.0188 0.7759 0.0047

0.7 0.7621 0.0162 0.7529 0.0033

0.8 0.7618 0.0151 0.7246 0.0026

0.9 0.7690 0.0131 0.7069 0.0021

Table 2. Effects with respect to L

L GSG2I Board interlock

IP HR IP HR

1 0.7764 0.0282 0.7874 0.0084

2 0.7748 0.0283 0.7874 0.0084

3 0.7748 0.0283 0.7874 0.0084

4 0.7748 0.0283 0.7874 0.0084

5 0.7748 0.0283 0.7874 0.0084

(a) Identification coverage with respect to W (b) Identification coverage with respect to L

Fig. 1. Identification coverage with respect to W and L (CI for GSG2I, BI for board
interlock)

474 W. Wei et al.

We analyze the reason and find that though there are many additional suspicious
groups of ITE with larger lengthes of control trails when L gets larger, the extra
corporations identified are quite few as most of corporations newly discovered
are replicated with prior findings.

6 Conclusion

This paper focuses on the detection of corporations evading tax via IATs that
are controlled by a potential interlocking relationship between the corporations’
controllers. We first coin a new concept named controller interlock based on the
control relationships in Chinese corporations, drawing on the deeply researched
board interlock concept. Next, we present CGN to model controller interlock
and related behaviors and relationships. Then, we further propose the GSG2I
method to recognize controller interlock ties and discover suspicious groups of
ITE. Experimental results based on a real-world big data set demonstrate that
the GSG2I method can greatly improve the efficiency of ITE detection.

Acknowledgments. This work is supported by “The Fundamental Theory and Appli-
cations of Big Data with Knowledge Engineering” under the National Key Research
and Development Program of China with Grant No. 2016YFB1000903, the National
Science Foundation of China under Grant Nos. 61502379, 61472317, 61532015, and
Project of China Knowledge Centre for Engineering Science and Technology.

References

1. Battiston, S., Bonabeau, E., Weisbuch, G.: Decision making dynamics in corporate
boards. Phys. A: Stat. Mech. Appl. 322, 567–582 (2003)

2. Chua, A.Y., Balkunje, R.S.: Interlocking directorates and profitability: a social
network analysis of fortune 500 companies. In: Proceedings of the 2012 Interna-
tional Conference on Advances in Social Networks Analysis and Mining (ASONAM
2012), pp. 1105–1110. IEEE Computer Society (2012)

3. Connelly, B.L., Johnson, J.L., Tihanyi, L., Ellstrand, A.E.: More than adopters:
competing influences in the interlocking directorate. Organ. Sci. 22(3), 688–703
(2011)

4. Croci, E., Grassi, R.: The economic effect of interlocking directorates in Italy: new
evidence using centrality measures. Comput. Math. Organ. Theory 20(1), 89–112
(2014)

5. Elouaer, S.: A social network analysis of interlocking directorates in french firms
(2006)

6. Labrinidis, A., Jagadish, H.V.: Challenges and opportunities with big data. Proc.
VLDB Endow. 5(12), 2032–2033 (2012)

7. Liu, T.: An empirical study about the effects of interlocking directorates strategy on
the firm’s output in the dynamic environment. In: International Joint Conference
on Artificial Intelligence, JCAI 2009, pp. 818–820. IEEE (2009)

8. Ma, J., DeDeo, S.: State power and elite autonomy: The board interlock network
of Chinese non-profits. arXiv preprint arXiv:1606.08103 (2016)

http://arxiv.org/abs/1606.08103

Mining Suspicious Tax Evasion Groups in a CGN 475

9. Mizruchi, M.S.: What do interlocks do? an analysis, critique, and assessment of
research on interlocking directorates. Annu. Rev. Sociol. 22(1), 271–298 (1996)

10. Peltonen, J., Rönkkö, M.: Board interlocks in high technology ventures: the rela-
tion to growth, financing, and internationalization. In: Tyrväinen, P., Jansen,
S., Cusumano, M.A. (eds.) ICSOB 2010. LNBIP, vol. 51, pp. 163–168. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13633-7 14

11. Robins, G., Alexander, M.: Small worlds among interlocking directors: network
structure and distance in bipartite graphs. Comput. Math. Organ. Theory 10(1),
69–94 (2004)

12. Suominen, A., Rilla, N., Oksanen, J., Still, K.: Insights from social network
analysis-case board interlocks in finnish game industry. In: 2016 49th Hawaii Inter-
national Conference on System Sciences (HICSS), pp. 4515–4524. IEEE (2016)

http://dx.doi.org/10.1007/978-3-642-13633-7_14

PerRec: A Permission Configuration Recommender
System for Mobile Apps

Yanxiao Cheng1 and Zheng Yan1,2(✉)

1 The State Key Lab of Integrated Services Networks, School of Cyber Engineering,
Xidian University, Xi’an, China

780960172@qq.com, zyan@xidian.edu.cn
2 Department of Communications and Networking, Aalto University, Espoo, Finland

Abstract. Android operating system uses a security mechanism based on
permissions to restrict mobile apps to access sensitive device resources. However,
because of such disadvantages as coarse-granularity of permission management
and vague permission description, the current permission-based security mecha‐
nism of Android is not sufficiently effective in practice. In addition, only a small
number of users realize the importance of permission settings and mostly they
cannot make a proper decision on permission settings due to lack of runtime
information and professional knowledge. In this paper, we propose PerRec, a
permission configuration recommender system based on trust management,
which assists the mobile users to set permissions in order to enhance user privacy
and device security. It is designed based on our pre-developed reputation system
named TruBeRepec [1] to get the trust and reputation values of an app and further
offer recommendations on how to set permissions. Based on system implemen‐
tation, we evaluate the accuracy and safety of PerRec by comparing PerRec’s
recommendations with the Android system default permission settings. The result
shows that PerRec can provide effective permission recommendations to prevent
potential security threats. We further conduct a small-scale user study to demon‐
strate its user acceptance.

Keywords: Android platform · Mobile application · Permission configuration ·
Recommender system · Trust management

1 Introduction

Android uses a unique permission mechanism to prevent a mobile app from accessing
sensitive device resources without user consent. The Android system requires each app
developer to explicitly request permissions by pre-specifying them in a file named Android‐
Manifest.xml bundled with the app. These permissions manage a set of resources required
by the app for realizing its functionalities. During app installation, the Android permission
system provides a user a list of permissions requested by the app. The user needs to agree
with all these permission requests as a precondition of app installation (for Android API
level 22 or lower) and execution (for Android API level 23) [7]. At the app runtime, the
Android system allows or denies using specific resources based on its permission settings.

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 476–485, 2017.
DOI: 10.1007/978-3-319-65482-9_34

However, this permission control mechanism is ineffective to preserve user privacy and
protect device security because of some disadvantages such as coarse granularity of
permissions and permission over-claiming [6]. Coarse granularity of permissions results in
requesting unnecessary permissions to produce over-privileged apps. Study shows that
more than 70% of apps request to access data irrelevant to their main functions [7]. On the
other hand, when installing a new app, only a small portion (3%) of users pay attention to
and make correct decision on permission granting since they tend to rush through prompted
permission requests to start app usage. In addition, current Android permission warnings
cannot help most users make correct security decisions [9]. Even though users realize the
importance of the permission settings, they still cannot make a correct decision on the
settings due to confusion about permission descriptions and lack of runtime information and
professional knowledge. Obviously, users need to be directed on permission settings.
However there are few studies performed to help user in permission setting [14, 15]. This
motivates our research and development.

In this paper, we propose PerRec, a permission configuration recommender system
based on trust management, to assist users in permission settings. PerRec can automat‐
ically generate a recommendation on the setting of an individual permission requested
by a mobile app and adjust app permission configuration based on risk evaluation.
PerRec is built up based on our pre-developed reputation system TruBeRepec [1] to get
the trust and reputation values of an app in the recommendation of permission settings.
To the best of our knowledge, PerRec is the first permission setting recommender system
based on trust management [3–5, 7, 10, 14, 15].

Differently from previous work, PerRec provides recommendations on permission
configuration for mobile apps based on trust management. The contributions of this
paper lie in three folds:

• We design PerRec by holistically considering the factors in the permission recom‐
mendation generation, such as the similarity between apps, the risk of granting an
individual permission, the trust/reputation values of apps, and the risk of installing/
using a certain app.

• We implement PerRec based on the Android operating system;
• We evaluate the accuracy and safety of PerRec by comparing its recommendation

performance with the default permission setting of customized Android system
MEIZU Flyme OS 4.2.1.1.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3
introduces the design of PerRec. Section 4 describes PerRec implementation and the system
performance evaluation. Finally, a conclusion is presented in the last section.

2 Related Work

Some studies aim to assist app developers to request the least amount of permissions
and ensure apps can execute normally at the same time. For example, Bagheri et al.
created a tool that aids the developers to assess appropriate permission requests [13].
They created one-to-many permission-API mappings by manually parsing API

PerRec: A Permission Configuration Recommender System for Mobile Apps 477

documentation and creating a database of functions and permissions upon which the
functions depend. Bao et al. proposed an approach based on a collaborative filtering
technique and the intuition that the apps with similar features usually use similar permis‐
sions [8].

Existing research also makes efforts to dynamically configure permissions in a
context-aware way. Apex system [3] allows user to run an app by splitting an app’s
permissions to only authorize part of permissions. Dr. Android [4] and PeMo [10] can
dynamically make permissions enabled and disabled. Zhang et al. [14] presented a
framework to provide context-sensitive permission enforcement that regulates permis‐
sion usage policies according to system-wide application contexts, which cover both
intra-application context and inter-application context. TaintDroid [5] is a data flow
tracking system that can track and analyze flows of permission related sensitive data and
identify suspicious apps.

Wang et al. thought the malapps were basically different from benign apps on
requesting different permissions and they provided a table named top 40 risky permis‐
sions. They defined a class variable that indicates the label of an app, benign or malicious.
The risk of granting a permission can be evaluated by measuring the relevance between
this permission/feature variable and the class variable. The top 20 most frequent permis‐
sions requested by malware referred in paper [12] is listed by Zhou et al. They compared
the top permissions requested by malicious apps with the top permissions requested by
benign ones. They collected 1260 Android malware samples1 in 49 different malware
families, which covers the majority of existing Android malware, ranging from their
debut in August 2010 to recent ones in October 2011. They find that malicious apps
tends to request more permissions than benign ones.

Some mechanisms were proposed with regard to app permission settings. RecDroid
[7] allows users to install apps under either a “probation” mode or a “trusted” mode. In
the trusted mode, users grant all permissions to an app. In the probation mode, users can
make a real-time granting decision when the app is running. RecDroid [15] relies on a
small set of seed expert users that could make reliable recommendations for a limited
number of apps. Due to the limitation of seed experts amount, majority of apps cannot
be covered. Similar to RecDroid, LBE safety master [15] also provides a trusted mode
and a probation mode. However, user sensitive information could be still stolen during
the execution of benign apps. Therefore, it is risky to grant all permissions in the trust
mode. In the probation mode, LBE can only provides recommendations for partial apps
and the permissions that the LBE safety master can provide recommendations are
limited, incomplete, less than those the app really requests. LBE safety master cannot
provide complete recommendations on the whole list of app permissions to users.

We can see that the current permission recommender mechanisms are not fine-
grained and accurate enough to guide users. In this paper, we aim to design and develop
PerRec in order to realize fine-grained and safe recommendations for mobile app
permission configuration.

478 Y. Cheng and Z. Yan

3 System Design

3.1 PerRec System Structure

We design PerRec based on the TruBeRepec which is a trust-behavior-based reputation
system for mobile apps [1]. It was developed based on a model of trust behavior for mobile
apps explored through a large-scale user survey [16]. Our previous work showed that there
are three types of trust behaviors: (1) using behavior (UB) that relates to normal applica‐
tion usage, which can be mainly reflected by elapsed usage time, number of usages, and
usage frequency; (2) reflection behavior (RB) that concerns usage behaviors after a user
confronts application problems/errors or has good/bad usage experiences; (3) correlation
behavior (CB) correlated to a number of similar functioned mobile apps. TruBeRepec
evaluates an individual user’s trust in a mobile app based on automatically monitored trust
behaviors and generates the app’s reputation by aggregating individual trust.

Figure 1 shows the system structure of PerRec. In PerRec, an app permission
extractor can extract the requested permission list of an app by analyzing Android‐
Manifest.xml; a permission category risk level setting model sets the risk level of
permissions; a similar app list and threshold calculator can get the similar app list of a
certain app and the threshold applied in the process of risk and recommendation gener‐
ation; an application installing/using risk generator can compute the installing/using
risk of an app based on its trust and reputation values and app similarities that are saved

Fig. 1. Design of the permission configuration recommender system

PerRec: A Permission Configuration Recommender System for Mobile Apps 479

in a SQL database by the TruBeRepec system; a permission recommendation generator
can generate permission setting recommendations based on the installing/using appli‐
cation risk, the level of permission risk and a threshold; an app permission configuration
recommendation generator can recommend permission configuration based on the
permission risk level, user permission settings and a threshold.

3.2 Permission Risk Level

Android defines a set of permission categories based on functionalities. For the permis‐
sions under the same category, as long as users grant a permission to that category for
an app, the app can use other permissions in the same category. So we rank the risk
levels of these permissions based on their categories. It is clear that top risky permissions
can help discriminating malicious apps from benign ones by checking the frequency of
their appearance. We rank the permission risk based on the top 40 risky permissions
requested by malicious apps [11] and the top20 most frequently used permissions
requested by malware as specified in [12].

The permissions in the categories of MICROPHONE, VOICEMAIL, BLUE‐
TOOTH_NETWORK, and DISPLAY are not listed in [11, 12]. So we set the lowest risk
level to these permission categories. The permissions under COSTMONEY category can
directly cause property loss without notifying users, so we set the highest risk level to this
category as 4. The resources managed by permissions in the categories of MESSAGE,
SMS, SOCIAL_INFO, LOCATION, NETWORK, WIFI, PERSONAL_INFO, and
STORAGE are crucial for users and have little dependence on device hardware. It is easy
for malicious apps to send low-payload data packages to a remote destination without
discovery by making use of these permissions. So we put these permission categories into
the second risk level, marked as 3. The permissions in the categories of PHONE_CALLS,
SYSTEM_TOOLS, CAMERA control device hardware and could cause device damage but
their potential risk to users may not as high as that of those permissions in the risk level 3,
so we set these permission categories into the third risk level as 2. The risk levels of all
categories are listed in Table 1.

Table 1. Risk level of permission categories

Category Risk level Category Risk level
COSTMONEY 4 PHONE_CALLS 2
MESSAGE 3 ACCOUNTS 2
SOCIAL_INFO 3 CAMERA 2
LOCATION 3 MICROPHONE 1
NETWORK 3 DISPLAY 1
PERSONAL_INFO 3 VOICEMAIL 1
STORAGE 3 BLUETOOTH_NETWORK 1
SYSTEM_TOOLS 2

480 Y. Cheng and Z. Yan

3.3 Recommendation on Permission Configuration

By analyzing the risk of installing and using an app, the risk of granting one permission
requested by an app, PerRec can analyze the risk of app permission configuration and
thus provide recommendations on permission settings.

The risk of installing and using an app. The risk of installing and using an app is
relevant to the reputation of the app. The lower reputation indicates the higher risk of
installing and using the app. However, the category of apps should be considered because
apps indifferent categories could fall into different reputation and individual trust levels.
Before installing the app, we roughly filter out the app with low reputation. If the repu‐
tation value of underlying app ao, denoted Ro is below threshold thr0, i.e., Ro < thr0, this
app maybe malicious and we recommend to reject installing and using this app. In
PerRec, we choose the lowest reputation of the apps installed in the user device as
thr0. Note that the user can setup thr0 by himself/herself.

Permissions are highly related to the features that describe the functionalities of an
app or its behaviors to interact with its installed device system, device data and other
apps. Based on this perception, we categorize the apps based on their similarity calcu‐
lated by their requested permissions. The similarity is calculated in a simple way as:

S
(
ao,aj

)
=

pno,j

pno + pnj − pno,j
, where pno and pnj stands for the number of permissions

owned by app ao and aj respectively and pno,j stands for the number of permissions both
requested by ao and aj.

To categorize apps, we filter out the apps with lower similarity than threshold thr1,

which is set as
S(ao,aj)max

2
, where S(ao,aj)max is the maximum similarity between ao and

its similar apps. If S(ao,aj)max < thr1, we remove app aj from the similar app list of ao.
By comparing the reputation of app ao and the trust value of its similar app aj, denoted
Tj, we calculate the risk impact factor IFo,j of ao for referring the permission setting of
similar app aj in recommendation. Obviously, the higher the similarity S

(
ao, aj

)
 is, the

lower the risk impact factor. The higher the reputation Ro and the trust Tj are, the lower
the risk impact factor. Thus, we set IFo,j as IFo,j =

(
1 − S

(
ao, aj

))(
1 − Ro

)
(1 − Tj). We

then aggregate the risk impact factors of all similar apps together by weighting IFo,j with
Tj since Tj serves as its credibility. The purpose is to get the risk of installing and using

app ao: Risko =
No∑

j=1
IFo,j ∗ Tj, where No refers to the total number of similar apps of ao.

The risk of granting a permission requested by an app. The risk of granting permis‐
sion k for a certain app is related to the installing/using risk of this app and the risk level
of permission k (denoted rk). The risk of using an app influences user decision on its
permission setting, the user prefers to grant permission to the app with low using risk.
For permission k requested by app ao, we calculate the risk of granting permission k as
below by considering both Risko and rk:Riso,k = f

(
Risko ∗ rk

)
, where function f () is

applied to formalize the impact of Risko ∗ rk on recommendation. One applicable

PerRec: A Permission Configuration Recommender System for Mobile Apps 481

function is f (x) = exp

(
−x2

2𝜎2

)
, where 𝜎 can be set based on practical demand, e.g.,

𝜎 = 5.
We recommend the permission setting by measuring the risk of granting permission

k requested by app ao. We set the maximum risk Max(Riso,k) of the app requesting
permission k in terms of all similar apps of ao as thr2. If Riso,k > thr2, recommend
rejecting the permission; else recommend granting.

The risk of application permission configuration. We further collect all permission
settings and generate the risk index of app ao permission configuration (RIo) by aggre‐

gating Risko and rk of all granted permissions as below: RIo =
K∑

k=1
(rk ∗ Reck) ∗ Risko,

where Reck is the user setting on permission k: if the setting is granting, Reck = 1; else
Rec_k = 0. rk is the risk level of permission k. We compare RIo with those of its similar
apps. Herein, we choose Max(RIj), the maximum RIj of similar apps of ao as threshold
thr3. If RIo > thr3, a warning is generated to suggest user resetting.

4 System Implementation and Performance Evaluation

4.1 System Implementation

We implemented PerRec in Android phones MEIZU m1 Flyme OS 4.2.1.1 on the basis
of the TruBeRepec system [2]. It has a number of functionalities: (1) Provide and display
user individual trust and reputation of installed third party apps; (2) Monitor app usage
statistics and record usage data; (3) Provide and display app usage statistical data, such
as usage time and usage frequency; (4) Calculate app similarity and show the list of
similar apps of an app and their similarity values; (5) Provide and display app permission
information, such as permission category, permission risk level, permission description
and setting recommendation; (6) Provide the risk levels of all permission categories or
take default permission settings.

4.2 Performance Evaluation

To evaluate the recommendation performance of PerRec, we investigated the overlap
proportion between the permissions actually used by the app and the permissions recom‐
mended by PerRec or set by the customized Android system MEIZU Flyme OS 4.2.1.1
by default. Note that Flyme 4.2.1.1 provides default permission settings if the users do
not set permissions during app installation. Refer to Fig. 2, A + B stands for the permis‐
sions recommended by PerRec or set by Flyme 4.2.1.1 by default. B + C refers to the
permissions actually used by the app. The bigger B / (A + B) is, the more accuracy of
PerRec recommendations or Flyme 4.2.1.1 default settings. The bigger B / (B + C) is,
the more functionalities supported by the PerRec recommendation or default settings
during permission granting. In the following test, we compared the performance of

482 Y. Cheng and Z. Yan

PerRec with Flyme 4.2.1.1 default permission settings in terms of B / (A + B) and
B / (B + C) in order to show the accuracy and safety of PerRec.

Fig. 2. The permission list corresponding area

We used 107 mobile apps falling into 11 app categories (e.g., gaming, social
networking, multimedia, etc.) to perform performance evaluation on PerRec. These 107
mobile apps are come from the most popular apps ranked by Baidu MOTA, an app
ranked website [19], and we download them in MEIZU official app store. We counted
the number of permissions requested in app installation, the number of permissions used
in app execution and calculated their average values. We got the permissions that the
apps applied and used through Androguard [17] and XPrivacy [18], respectively. Andro‐
guard is a static malware analysis toolkit that can get the permissions applied by an app.
XPrivacy can provide permission usage records according to the execution of app func‐
tions. We can get the permissions that an app actually uses by checking the permission
usage records. We compared the proportion of A and B in terms of A + B. As shown in
Fig. 3, we can see the B / (A + B) is increased from 24.68% to 69.87% after applying
PerRec. Obviously, PerRec’s recommendation performance is more accurate than
Flyme 4.2.1.1 default permission settings. This testing result also implies that most of
the permissions recommended by PerRec to be granted are used by apps. In Flyme
4.2.1.1 default permission settings, the over-claimed 75.32% permissions could cause
private information leakage and potential security threats (refer to Fig. 3). From this
point of view, PerRec can provide safer permission settings than the Flyme 4.2.1.1
default settings.

Fig. 3. The proportion of A and B based on Flyme 4.2.1.1 and PerRec

PerRec: A Permission Configuration Recommender System for Mobile Apps 483

We further weighted the permissions with the permission risk levels to evaluate the
risk of permissions. This risk indicates the possibility of information leakage and
security threats. Comparing Figs. 3 with 4, the proportion of A based on the Android
system default settings after weighting (84.03%) is much higher than that based on
PerRec (28.74%). This means that the risk level of permissions that the Android system
set by default but not used by apps are much higher than that based on PerRec. So it is
safer to rely on PerRec than depending on the Android default settings.

Fig. 4. The weighted proportion of A and B based on Flyme 4.2.1.1 and PerRec

5 Conclusion

In this paper, we proposed PerRec, a permission configuration recommender system for
mobile apps based on trust management. It can automatically generate recommendations
on permission configuration for a mobile app based on a mobile app reputation system.
We presented the design and performance evaluation of PerRec. The testing result
demonstrated its accuracy in permission evaluation. We are going to further improve
the PerRec system by optimizing its algorithm and its user interface towards practical
usage.

Acknowledgments. This work is sponsored by the National Key Research and Development
Program of China (grant 2016YFB0800704), the NSFC (grants 61672410 and U1536202), the
Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China (Program
No. 2016ZDJC-06), the 111 project (grants B08038 and B16037), and Academy of Finland (grant
No. 308087).

References

1. Yan, Z., Zhang, P., Deng, R.H.: TruBeRepec: a trust-behavior-based reputation and
recommender system for mobile applications. Pers. Ubiquit. Comput. 16(5), 485–506 (2012)

2. Dang, T.L., Yan. Z., Tong. F., Zhang. W.D., Zhang. P.: Implementation of a trust-behavior
based reputation system for mobile applications. In: 2014 IEEE 9th International Conference
on Broadband and Wireless Computing, Communication and Applications, pp. 221–228
(2014)

484 Y. Cheng and Z. Yan

3. Nauman, M., Khan, S., Zhang, X.: Apex: extending android permission model and
enforcement with user_defined run time constraints. In: 5th International Symposium on ACM
Symposium on Information, Computer and Communications Security, pp. 328–332 (2010)

4. Jeon, J., Micinski, K.K., Vaughan, J.A., Fogel, A., Reddy, N., et al.: Dr. Android and Mr.
Hide: fine_grained permissions in android applications. In: The Second ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, Raleigh, North Carolina, USA, pp.
3–14. ACM (2012)

5. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P., et al.: TaintDroid: an
information-flow tracking system for realtime privacy monitoring on smartphones. ACM
Trans. Comput. Syst. 32(2), 393–407 (2010)

6. Fang, Z., Han, W., Li, Y.: Permission based Android security: issues and countermeasures.
Comput. Secur. 43(6), 205–218 (2014)

7. Rashidi, B., Fung, C., Vu, T.: Dude, ask the experts!: Android resource access permission
recommendation with RecDroid. In: IEEE International Symposium on Integrated Network
Management (IM), pp. 296–304 (2015)

8. Bao, L., Lo, D., Xia, X., Li, S.: What permissions should this Android app request? In: 2016
International Conference on Software Analysis, Testing and Evolution (SATE), Kunming,
pp. 36–41 (2016)

9. Felt, A.P., Ha, E., Egelman, S., Hane, A.Y., E, Chin., Wagner, D.: Android permissions: user
attention, comprehension, and behavior. In: 2012 Eighth Symposium on Usable Privacy and
Security(SOUPS 2012), New York, pp. 1–14 (2012)

10. Kaur, A., Upadhyay, D.: PeMo: modifying application’s permissions and preventing
information stealing on smartphones. In: 2014 5th International Conference - Confluence The
Next Generation Information Technology Summit (Confluence), Noida, pp. 905–910 (2014)

11. Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., Zhang, X.: Exploring permission-induced
risk in Android applications for malicious application detection. IEEE Trans on Information
Forensics and Security 9(11), 1869–1882 (2014)

12. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Permission evolution in the android
ecosystem. In: ACM Computer Security Applications Conference ACSAC, pp. 31–40 (2012)

13. Bagheri, H., Sadeghi, A., Garcia, J., Malek, S.: COVERT: compositional analysis of Android
inter-app permission leakage. IEEE Trans. Software Eng. 41(9), 866–886 (2015)

14. Zhang, Y., Yang, M., Gu, G., Chen, H.: Rethinking permission enforcement mechanism on
mobile systems. IEEE Trans. Inf. Forensics Secur. 11(10), 2227–2240 (2016)

15. LBESafety Master. http://dl.pconline.com.cn/download/90435.html
16. Yan, Z., Dong, Y., Niemi, V., Yu, G.L.: Exploring trust of mobile applications based on user

behaviors: an empirical study. J. Appl. Soc. Psychol. 43(3), 638–659 (2013)
17. Feng, S.: Android software security and reverse analysis, 407 pages. Chap. 5 (2013)
18. https://forum.xda-developers.com/xposed/xposed-installer-versions-changelog-t2714053
19. http://mota.baidu.com/index.php/page/industry/apprank/use

PerRec: A Permission Configuration Recommender System for Mobile Apps 485

http://dl.pconline.com.cn/download/90435.html
https://forum.xda-developers.com/xposed/xposed-installer-versions-changelog-t2714053
http://mota.baidu.com/index.php/page/industry/apprank/use

The 5th International Workshop
on Parallelism in Bioinformatics

(PBio 2017)

A Resource Manager for Maximizing
the Performance of Bioinformatics

Workflows in Shared Clusters

Ferran Badosa1(B) , César Acevedo1 , Antonio Espinosa1 ,
Gonzalo Vera2 , and Ana Ripoll1

1 Universitat Autònoma de Barcelona, Bellaterra, Spain
ferran.badosa@caos.uab.cat

2 Centre for Research in Agricultural Genomics, Bellaterra, Spain

Abstract. In order for bioinformatics workflows to achieve good perfor-
mance when running on shared clusters, resources must be properly allo-
cated, adjusting to the needs of the bioinformatics applications within.

Time-changing cluster status, caused by the dynamic workload, must
also be considered. Users of bioinformatics applications are prompted
with the dilemma of providing adequate job description, without prior
hint of the resources used by their applications. As a result, naive
approaches are taken and both platform efficiency and users’ goals, such
as makespan or cost, are compromised. To prevent that, we propose a
Resource Manager (RM) for bioinformatics workflows running in shared
clusters, capable of improving platform efficiency and reducing average
makespan of queued applications.

Our RM contains a predictor that generates multiple job performance
predictions, under different combinations of resources. We also included
a shared-resource model, that considers the degree of multiprogramming
of the nodes (DP), and determines which applications are more compati-
ble for sharing same-node resources. With this information, we developed
a scheduling algorithm capable of operating in compliance with the clus-
ter’s default manager, i.e. SLURM.

At the end, our RM is tested on a set of queued workflows, formed by
multiple applications each. We prove that a 28% makespan reduction,
and a 75% resource efficiency improvement, can be achieved.

Keywords: Bioinformatics workflows · Resource sharing · Multivariate
regression prediction · Makespan · Scheduling

1 Introduction

Bioinformatics workflows are the main tools used by biologists to perform biolog-
ical data analysis, including tasks such as genome alignment or variant calling.

Funded by the Spanish Economy ministry. Project Number: TIN2014-53234-C2-1-R.

c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 489–502, 2017.
DOI: 10.1007/978-3-319-65482-9 35

http://orcid.org/0000-0002-9162-2918
http://orcid.org/0000-0001-8481-8173
http://orcid.org/0000-0002-6460-3789
http://orcid.org/0000-0001-6990-0216
http://orcid.org/0000-0001-6874-9278

490 F. Badosa et al.

They are usually formed by various bioinformatics applications arranged in a pre-
defined order. Although there are many workflows, most of them are composed of
a similar subset of applications, and have a resembling structure. Applications
within workflows manage large amounts of datasets that have to be analyzed
by resorting to complex algorithms. Thus, workflows demand great amounts of
computing resources to carry out their tasks. In this work, for simplicity, we will
refer to applications and jobs indistinctly.

Shared clusters formed by heterogeneous nodes with multiple sockets and
multiple cores have become a common environment to execute these workflows.
However, in order to harness computing power, and meet, in so far as possi-
ble, user-defined performance criteria (ρ), such as: makespan, or execution cost,
resources must be properly allocated. To do so, application’s resource usage
and characteristics, must be accounted for. Optimal allocation of applications to
shared resources is an NP-hard issue, widely studied over the past decades. Pre-
vious knowledge of the resource requirements of jobs generated by bioinformatics
workflows applications is paramount to allocate resources. In most cases, cluster-
submitted HPC applications include a resource description. Implying that, prior
to job submission, an estimation of the resources to be used by the job may
already have been acquired by the user. In this work, as common within bioin-
formatics, we considered a shared-memory scenario where jobs are broken down
into tasks running in same-node threads. In these cases, node descriptions should
include estimation of execution time, memory, node architecture or number of
processing units.

However, most bioinformatics jobs don’t come along with resource descrip-
tions. Instead, they must be provided by users themselves, without prior hint
or even partial knowledge of the resources required by their application. Thus,
when dealing with bioinformatics applications, mostly managed by biological
data analysts, job’s resource description tends to be based on their functional
requirements, such as type of data processing or desired output quality. Conse-
quently, descriptions are rarely based on the actual resources to be requested by
the application.

Furthermore, bioinformatics applications show highly variable execution
times or amount of resource usage, depending on: configuration parameters,
detailing the specifics about the observed biological phenomenon, or input
datasets characteristics, such as: file size, number or length of sequences. The
same bioinformatics application may then require substantially different amount
of resources depending on the case of analysis. Different underlying algorithms
with different resource consumptions may be activated.

This phenomenon may be encountered in blast 2.2.27, which compares a set
of query sequences versus a set of reference sequences, searches for similarities,
and outputs findings. The quantity of the findings searched for on the same
datasets can be adjusted with word size parameter. The blast algorithm uses
the word parameter to nucleate regions of similarity and it is usually related
to the query size. The lower it is, the more findings are searched for, implying
more computational complexity and larger execution times, as Fig. 1 (L) shows.

A Resource Manager for Maximizing the Performance 491

Fig. 1. Blast’s performance variation caused by word size parameter and input dataset
size.

In Fig. 1 (R), we can see how varying characteristics of input datasets, such as
their size, also has a major impact on application’s execution time, regardless
of resources used. It is necessary to have a deep knowledge of the application to
provide specific needed resource description. Including for instance, application
scalability and memory consumption for each given combination of parame-
ter values and input datasets characteristics. Consequently, resource reservation
doesn’t adjust to the needs of applications. Naive approaches are taken instead,
such as over-allocation of resources, i.e. reservation of the whole node. However,
most bioinformatics applications are written in programming models that don’t
scale well [2]. Thus, resources like processing units and memory remain practi-
cally unused as other jobs wait. As a result, cluster efficiency drops and larger
waiting times arise.

Since most clusters are shared, jobs’ performance is also affected by a dynamic
workload, defined by the number of running jobs and their characteristics, such as
the performance-bounding resource. The degree of multipgrogramming (DP) of
the nodes will become greater than 1, since multiple applications will run simul-
taneously in the same nodes. Jobs’ execution times will be extended compared
with the respective exclusive cases, affecting makespan. However, execution time
extension, also known as slowdown, largely depends on the characteristics and
resource usage of the applications running in the same node, and can be modeled.

To improve applications’ makespan and cluster efficiency, we propose a
Resource Manager (RM) designed for bioinformatics workflow applications.
Our RM predicts jobs’ performance depending on their parameters and input
datasets, so that resource description can be adjusted, preventing under or over
allocation of resources. A resource-sharing model is also included in the pro-
posed RM. It will handle the multiprogramming of resources, by determining
which groups applications are more compatible to share the same node resources.
Thus, the efficiency of resources will be improved and slowdown minimized. Fur-
thermore, a resource scheduling algorithm has been developed. For each queued
job, given availability of shared resources at that certain instant, we will deter-
mine the combination of resources best suiting performance criteria set by job
user.

492 F. Badosa et al.

Thus, our RM will assist the user by defining resource description match-
ing applications’ needs and user criteria, in an automated, on-the-go way. As a
result, cluster efficiency and applications’ performance are improved. Further-
more, it has been designed to operate alongside SLURM, one of the top workload
managers used in clusters. To develop our proposal, we selected a set of bioinfor-
matics applications, as described in Sect. 3.1, and queued them up on a cluster,
formed by 4 nodes containing heterogeneous resources and SLURM workload
manager. Further description of cluster nodes is provided in Sect. 4.

2 Related Work

Resource Management Systems (RMS) are in charge of allocate cluster resources,
monitor their status, and managing the queue of submitted jobs. Examples of
these are Sun Grid Engine, MAUI or SLURM, present in 60% of world’s top 500
supercomputers. SLURM is composed by several daemons, such as slurmctld
(monitors resources) or slurmd, (executes work). It also includes several plug-
ins. On one hand, node selection plug-ins, which determine resources to allocate.
On the other, scheduling plug-ins, allowing: priority assignation, backfilling, and
many other features. However, despite all functionalities included in SLURM, we
haven’t found any considering the dynamic characteristics of the bioinformatics
applications, which prompt a single application to require substantially different
resources to be executed in reasonable time.

Due to the dynamic nature of cluster status, affected by the workload: queue,
variable resource availability, and the wide-range of different resource utilizations
of bioinformatics applications (parameters, datasets), using previous knowledge
can help predict how the system is going to behave in a near-future, and estimate
resources used by bioinformatics jobs. Thanks to that knowledge and forecast,
resource managers can take more enhanced scheduling decisions, adjusted to
present cluster status, so that resources are more efficiently allocated to jobs.
In order to improve allocation of bioinformatics applications in clusters, we con-
sidered developing a prediction-based plug-in intended for SLURM manager.
The plug-in can be developed by using slurm spank interface, and is able to
dynamically modify SLURM’s policy.

Depending on the performance issue to be predicted on clusters or grids,
different prediction approaches are required. Several studies have focused on
predicting jobs’ execution time [14,15], queue waiting time [10,11], or slowdown
caused by resource-sharing [5]. Prediction techniques can be divided into many
categories, such as: benchmarking, application code analysis, simulation or para-
meter prediction. Benchmarking techniques are used for estimating system’s per-
formance given a reference parameter. Application code analysis techniques are
employed for estimating applications’ performance, however, they require thor-
ough analysis of application code, and are not efficient when dealing with mul-
tiple applications, due to effort and cost reasons. Furthermore, they dismiss the
characteristics of the system. Parameter prediction techniques estimate applica-
tions’ execution times by employing estimation models. To do so, they consider

A Resource Manager for Maximizing the Performance 493

applications’ characteristics, such as the performance-determining parameters.
Parameter prediction techniques are suitable for bioinformatics applications, due
to their dynamic behavior, strongly dependent on their parameters and datasets.

Parameter prediction techniques can employ analytical or statistical models.
Analytical models [12,13] can provide performance measures, such as execution
time. However, they predict assuming a determined, non-dynamic, cluster status.
Statistical methods include on one hand time-series modeling, which use the high
over-time correlation shown by system load [7,17]. These systems can be useful
for modeling workloads and queue waiting times in shared systems [4,16]. On
the other hand, statistical methods include history-based learning approaches.
In order to predict execution time, they not only consider the characteristics of
applications to be executed, but also current system status [3]. Within statistical
models, we can find two methods: categorization, accounting for applications’
characteristics, and instant-based learning (IBL), also accounting for resource
status. Finally, within IBL methods, correlation models can be found, such as
regression models. To determine resources needed by bioinformatics applications,
we base our RM on prediction. The prediction model must consider the dynamic
behavior of bioinformatics applications, caused by parameters and data variables,
and system resources. Thus to generate predictions, Multivariate Regression has
been chosen.

Since the goal of this work is to improve resource management of bioinfor-
matics jobs on real clusters, we develop a RM capable of operating jointly with
the default RMS featuring in the cluster. In our case, SLURM. Hence, basing
RMS’ scheduling decisions on past events, and adjusting resource allocation to
applications’ needs.

3 Proposed Resource Manager

The RM proposed in this work is formed by three stages, depicted in Fig. 2, in
red color: characterization, prediction and scheduling. Our RM is attached to
the cluster, and features a feedback mechanism that improves its performance.
Further description on proposed RM’s blocks is provided below.

Fig. 2. Proposed RM (red blocks) attached to a SLURM cluster. (Color figure online)

494 F. Badosa et al.

3.1 Application Characterization Model

The first step consisted on building a set of popular applications to analyze. To
select them, previous studies on comparative analysis of bioinformatics applica-
tions have been reviewed [6,8,9]. From these studies we picked different kinds
of applications, with relevant performance or differential resource usage. The
purpose is to build a set of applications commonly found within bioinformatics
workflows and representative of many cluster queues. The resulting set is formed
by memory-bound applications, performing sequence alignment or read mapping
(blast 2.2.27, bwa-mem 0.7.5a, bwa-aling 0.7.5a, bowtie 2.2.6, soap 2.21, star
2.4.2a, hisat 2.0.5), and cpu-bound applications, performing phylogeny analysis
(phyml 2.4.5par, mrbayes 3.1.2h, raxml 8.2.9, fasttree 2.1.3.c). From this set, we
will generate a performance model that will allow us to predict the resources
needed for submitted applications. The main factors determining the perfor-
mance of each bioinformatics application have been reviewed, and classified in
three categories: application parameters (P), IO datasets characteristics (d) and
resources (resources, or r). The job execution vector is shown in Eq. 1, with ρ
representing user-selected criteria: time or cost.

J = Appresources
ID=(P),(d),ρ = Appnode,PU,mem

(Par1,..,Parx),(data1,..,datay),ρ (1)

Each application of the set has been given multiple (P, d) values, and exe-
cuted in all cluster nodes with a wide range of PUs. For each run, performance
information such as execution time or cost, has been stored in a historical data-
base. Resource consumption metrics: CPU usage, memory or disk consumption
and accesses among others, have been also thoroughly tracked and stored. A
variety of Linux tools have been used to do so, including: /usr/bin/time, Perf
Stat, PidStat, VmStat and Sar.

Prior to execution, job’s required data sets existence in the available nodes
is checked, and loaded otherwise into the local disk of the corresponding node.
Applications are thread-level parallel and therefore will be executed solely in
one node at a time. As customary within bioinformatics, memory consumption
won’t surpass node capacity. Each time an application is executed in the cluster,
new performance results are stored. Hence, the database has more and more
information to predict.

3.2 Multivariate Regression Prediction Model

To determine whether prediction is feasible, we generated execution time data
samples and analyzed them statistically. We proved that, even when repeating
same job execution, with identical conditions, little variation occurs and data
is inferential. Several samples have been generated by executing all applications
in the set with different parameters and IO datasets. For simplicity, and since
identical conclusions have been obtained for all cases, only one case is shown.
The sample used for explanation has been generated by executing 9 identical
instances of blast. Makespan data is displayed within squares in Fig. 3, aver-
aging 816 s. First, we checked whether data is parametric/Normally Distributed

A Resource Manager for Maximizing the Performance 495

with Shaphiro-Wilk Normality Test. Obtained p-value = 0.91 (>0.05) shows data
is normally distributed. Afterwards, the Confidence Interval was calculated with
the One-Sample T-Test, which requires data to be parametric. Obtained confi-
dence interval (UpperLim = 817 s, LowerLim = 814 s), whose width (3) equating
to a tiny percentage (3 ∗ 100/816 = 0.36%) of the mean, proves data is inferen-
tial. Once data inferentiability is proven, Multivariate Regression Prediction can
be carried out, based on already-obtained performance information. Although
both makespan and cost are predicted, only makespan predictions are shown
since from these, execution cost predictions can easily be obtained. Cost has
been calculated by assigning by-the-hour fees to both CPU Model and gigabytes
of memory used. Pricing has been estimated using Amazon’s EC2 resource cost
scale.

Fig. 3. Sample data values within squares, and resulting distribution.

Among existing regression prediction methods, linear regression has been cho-
sen since data is normally distributed. Predictor variables have been picked based
upon Pearson Correlation Coefficient, and included following Forward Vari-
able Selection mechanism. To prevent over-fitting, and the consequent unwanted
modeling of noise, Adjusted R2 coefficient has been calculated. When a user sub-
mits a job (Jobr=?

P,d,ρ), with unspecified resources denoted with (r = ?), for any
combination of cluster resources available, makespan predictions are generated.
By the time multiple jobs are submitted to our varying-status cluster, we will
have enough information to allocate resources best suiting average job makespan
and cluster efficiency.

In Fig. 4, top, real and multivariate regression prediction results shown for
bowtie and bwa-aling. Predicted variable is execution time, whereas dependent,
correlated variables are PUs and the size of reads dataset file (Size). The pre-
diction equation is:

PredT ime = α ∗ (Size/PUs) + β ∗ Size + γ (2)

Mean relative prediction errors obtained: 7.5% for bowtie and 8.7% for bwa-
align, prove the accuracy of the developed prediction method.

Speedup curves, such as those shown in Fig. 4 (bottom), can be calculated
from time predictions. For the displayed curves, little speed improvement is

496 F. Badosa et al.

shown when employing between 12 and 16 PUs. At the end of that step, on
one hand, given a job and a cluster we can determine the fastest node. On the
other hand, we can determine how to properly balance the trade-off between
the number of PUs and time. Not only we know the threshold beyond which
time doesn’t decrease (PUMaxSpeed), but also the time penalty inflicted on a
job, when it runs with n◦PU < PUMaxSpeed, that is PULowSpeed.

3.3 Resource-Sharing Model and Multicriteria Scheduler

As previously discussed, analyzed bioinformatics mappers barely scale beyond
a low threshold of PUs, such as shown in Fig. 4, bottom, for bwa-align and
bowtie. This downside is caused by another, performance-limiting resource. For
the analyzed mappers, which have PUs and memory as predominant resources,
low scalability issue is caused by poor memory management. In order to harness
the idle portion of node resources, other applications can be executed in the same
node (DP> 1). As a consequence, larger execution times will be obtained, that
is, they are slowed down. However, slowdown of depends on which combinations
of applications are simultaneously scheduled in the same node. The lesser slow-
down is obtained, the more compatible applications are. Compatibility might be
strongly influenced by the resource usage of applications, which will determine
how much interference is to occur among applications sharing the node. Thus,
differently-bound applications are likely to make better candidates for simultane-
ous execution than identically-bound applications. To minimize slowdown, and
determine which applications are more compatible, analyzed applications have

Fig. 4. Top: Real and prediction results of bowtie and bwa-align, with multiple PUs
and reads sizes. Bottom: Speedups obtained from predictions, revealing PUMaxSpeed

threshold and PULowSpeed penalties.

A Resource Manager for Maximizing the Performance 497

Fig. 5. Up to 22% slowdown reduction is obtained, comparing best case scenario
(bwaM+fasttree= 1%), vs. worst (bwaM+fasttree= 23%).

been simultaneously executed in all cluster nodes, with n◦ PU =PUMaxSpeed.
Since different jobs won’t have identical execution times, when the shorter ones
finish, they are executed again. Slowdown have been calculated by comparing
shared execution time vs. exclusive execution time of an application, in percent-
ages. Slowdowns obtained running a top-row application alongside a left-column
application are shown in Table 1. Our scheduler consults the slowdown table,
and sets queued jobs’ priority in such a way that slowdowns are minimized.
This situation is represented in Fig. 5. Given a running application, i.e. bwaM
(bwa-mem), our model prioritizes the most compatible job, over all others. Best
vs. worst case scenario (1% vs. 23% slowdown), shows up to 22% slowdown
reduction is be obtained. Next, we developed a scheduling algorithm capable of
operating alongside one of the world’s top workload manager such SLURM. Our
algorithm consults applications’ exclusive performance makespan predictions in
function of multiple resources (nodes, PUs), and slowdown information at every
step in order to schedule a queue of jobs. Summarized, pseudo-code description
of the algorithm is provided in Algorithm1:

Table 1. Slowdowns obtained when running top-row alongside left-column applica-
tions.

Blast BwaM Bowtie BwaA Hisat Star Soap Phyml Mrbayes Fasttree Raxml

Blast 8% % % % % % % % % % %

BwaM 18% 2% % % % % % % % % %

Bowtie 6% 12% 10% % % % % % % % %

BwaA 16% 23% 21% 3% % % % % % % %

Hisat 18% 2% 16% 18% 8% % % % % % %

Star 21% 19% 30% 6% 18% 31% % % % % %

Soap 6% 3% 15% 2% 6% 13% 10% % % % %

Phyml 2% 6% 7% 11% 3% 1% 0.2% 12% % % %

Mrbayes 3% 6% 2% 3% 3% 5% 4% 27% 6% % %

Fasttree 5% 1% 2% 0.5% 7% 0% 0.5% 21% 4% 6% %

Raxml 3% 3% 4% 2% 4% 7% 1% 16% 4% 6% 8%

498 F. Badosa et al.

Algorithm 1: Scheduling Pseudocode
input : List of Application to Schedule (LAS), List of Predictive Time of Application Exclusive Mode

(LPTA), List of Compatibility Slowdown Application (LCSA)
output: List of Priority Applications

1 Available Resources = Resource Status trough the Distributed Resource Management and read process log;
2 if Available Resources == 0 then

3 reject LAS; // Node Full

4 end

5 while List of Application to Schedule (LAS) not empty do

6 Order List of Application to Schedule (LAS) according Time ; // Longest First

7 Order List of Compatibility Slowdown Application (LCSA) for App; ; // Most Compatible First

8 App = First in List of Application to Schedule;
9 PredResource = Max PUnits from List of Predictive Time of Application Exclusive Mode(LPTA) for

App;
10 for i = All Applications in Resources do

11 MostCompatible = List of Compatibility Slowdown Application (LCSA) for App;
12 if MostCompotaible == i and Selected Resources != 0 then

13 List of Priority Applications = App + i;
14 if Available Resources >PredResource then

15 Select Resources = PredResource ; // Maximun cores according to LPTA

16 end

17 else

18 Select Resources = All Available Resource
19 end

20 List of Application to Schedule = Remove App ; // App Scheduled, remove from list

21 List of Priority Applications += App + i; // App Scheduled, Add to Priority List

22 if List of Compatibility Slowdown Application (LCSA) for App == Complete and Selected Resources != 0

then

23 List of Priority Applications = App;
24 if Available Resources >PredResource then

25 Select Resources = PredResource ; // Maximun cores according to LPTA

26 end

27 else

28 Select Resources = All Available Resource
29 end

30 List of Application to Schedule = Remove App ; // App Scheduled, remove from list

31 List of Priority Applications += App ; // App Scheduled, add to Priority List

32 end

33 end

34 else

35 MostCompatible = Next in List of Compatibility Slowdown Application (LCSA) for App;
36 end

37 end

38 end

39 return List of Priority Applications;

4 Experiments

In this section, we process a group of bioinformatics workflows composed by
commonly used bioinformatics applications, in a shared cluster, described below.
Workflow applications are executed in two different ways. On one hand, by using
the proposed RM (characterization, prediction, scheduling) alongside SLURM,
as in Fig. 2. On the other hand, by solely using SLURM, cluster’s default man-
ager. Among all scheduling policies included in SLURM, we discarded those
requiring previous prediction of resources or execution times, such as Shortest
Job First (SJF), Longest Job First (LJF) or backfilling. From 0-prior-knowledge
policies, well-know First Come First Served (FCFS) has been chosen as a first
approach.

The prototype cluster is shared among multiple kinds of applications, with
different programming paradigms, i.e. MapReduce, MPI or multithread. First,
the cluster has been properly partitioned according to the resource needs of the
applications running within. Thus, for bioinformatics applications, a multithread

A Resource Manager for Maximizing the Performance 499

partition has been defined, and equipped with four nodes with heterogeneous
characteristics. Namely: AMD IO-6376 (2.3 GHz, 64 PU, 128 GB), Intel Xeon
E5-4620 (2.2 GHz, 64 PU, 128 GB) and 2 Intel Xeon E5-2620 (2.1 GHz, 24 PU,
64 GB).

Workflows are submitted to the cluster. For each workflow applications, the
predictor generates multiple makespan predictions considering: node architecture
and a range of processing units. With this information, the number of PUs
marking the scalability limits of each application, PUMaxSpeed, are obtained.
As well as the time penalties obtained when a application runs with: n◦PUs <
PUMaxSpeed, that is: PULowSpeed.

The large amount of applications requests received by the cluster, and their
computing requirements may overwhelm cluster’s potential by far. To prevent
unproportionally-long waiting times with respect to execution times, the appli-
cation queue is divided into different processing batches.

To determine a proper batch size, we firstly consulted time predictions of
queued applications. Secondly, we calculated the aggregated number of PUs
needed in order to process them, (aggregated n◦PUMaxSpeed), and compared it
with the amount of PUs of the cluster. Our criteria is based on previous studies,
such as [1].

Next, we selected two batches. This amount has been chosen since allows us to
recreate a real scenario, with number of requests surpassing resource availability,
and show the benefits of our proposal. Each batch has 2 workflows. In turn, a
list of applications is selected from each workflow. As an example, one of the
workflows is shown in Fig. 6. From this workflow, 4 mappers (hisat, bowtie,
bwaM, soap), and phylogeny applications (phyml, mrbayes) are selected.

Fig. 6. Structure and applications of one of the workflows considered for the experi-
ments.

Our experimentation starts with the processing of 4 bioinformatics workflows.
The complete list of applications selected from the 4 workflows included in the
two batches, can be seen in Table 2.

In order to process the workflows, their applications are scheduled for simul-
taneous execution in the same nodes, (DP> 1). In Fig. 7, we show that node
capacity (AMD IO 64 PUs), allows for DP = 8 applications to scale in the same
node, with average slowdown of 65%. However, to implement our idea, our exper-
imentation is shown with DP = 2, since the same course of action applies, and
improvements on makespan and efficiency can be shown in an easier way.

500 F. Badosa et al.

Table 2. List of workflow applications to be processed in the cluster, average predicted
times with n◦ PU=PUMaxSpeed in each node (in seconds), and mean relative prediction
errors.

Admited apps Blast BwaM Bowt. BwaA Hisat Star Soap Phyml Mrbay. Fasttr. Raxml

WF1 3640 3313 - 4136 - - 2921 1622 3079 3000 2767

WF2 - - 2934 5688 864 - 4021 3068 3510 1985 -

WF3 - 4576 3681 - 1220 1207 5362 - - 3265 3443

WF4 7021 - 5420 8346 1966 1572 - 3753 - 6508 4099

Mean.Rel.Err 4.1% 5.4% 7.5% 8.7% 7% 6.1% 11% 5.3% 7.7% 6.7% 8.1%

Fig. 7. Scalability with 8 applications in AMD node (DP = 8), containing 64 PUs.
Average slowdown of all applications is 65%.

The Multicriteria Scheduler consults predictions in every node: execution
times, scalability, time penalties with PULowSpeed, as well as the slowdown table.
Thus, exclusive-mode and shared-mode application performance information is
employed by our scheduler in order to determine jobs’ resources and priorities,
altering the course of action set by SLURM’s chosen FCFS policy. At the begin-
ning, the cluster is assumed idle. Given the queue, our scheduling algorithm,
described in Sect. 3.3, performs as follows:

For idle nodes: prioritizes longest application (bwaM1) containing at least
one compatible job (phyml1), and allocates them both to the fastest idle node
(AMD), each with n◦ PU = PUMaxSpeed. Minimum slowdowns and makespans
are obtained for both jobs, while minimizing the amount of PUs used, and leaving
for other submitted jobs. Same procedure is followed until all idle nodes have
become loaded.

Once all nodes are loaded, the algorithms performs as follows:

For loaded nodes: At this point, we search for waiting jobs that are most
compatible with the load of any node that still has available PUs. We also
consider that since a only small number PUs per node may be available, jobs
are likely to run with PULowSpeed. That is, less PU than PUMaxSpeed, implying
that the job will have some time penalty. Assuming the following situation: Intel

A Resource Manager for Maximizing the Performance 501

Table 3. Makespan and efficiency obtained with SLURM’s FCFS, and by attaching
the blocks of the proposed resource manager alongside SLURM.

Queue SLURM (FCFS) Proposed RM+SLURM Comparison

Makespan Efficiency Makespan Efficiency Makespan reduct. Efficien. increase

WF1 23057 s 0.25 17959 s 0.43 22% 73%

WF2 23589 s 0.3 18243 s 0.52 23% 74%

WF3 25963 s 0.28 18175 s 0.51 30% 85%

WF4 27958 s 0.31 17959 s 0.52 35% 67%

Average 25141 s 0.29 18084 s 0.5 28% 75%

E5-2620 (24 PU, 64 GB), is loaded with (soap1) with PUMaxSpeed. Then, the
most compatible job would be: (mrbayes1), which has PUMaxSpeed. However,
only 8 PUs are available, implying a time penalty for (mrbayes) job, since it
would have to run with PULowSpeed = 8. In these cases, our algorithm compares
whether it’s fastest: to wait for the release of 12 PUs, and run with PUMaxSpeed,
or to run with PULowSpeed. If waiting option is chosen, then a job shorter than
mrbayes1’s predicted waiting time, is executed.

Once the 4 bioinformatics workflows applications are executed as described
(using the proposed RM), they are also executed using solely SLURM, with
FCFS policy. At the end, the average makespan and resource efficiency are cal-
culated. Obtained workflow processing results can be seen in Table 3. Results
show that a 28% makespan reduction and a 75% efficiency are obtained when
attaching the proposed resource management blocks to SLURM.

5 Conclusions and Future Work

In this paper we have proposed a new RM intended for bioinformatics workflows
running on shared clusters with heterogeneous resources. In order to develop
our RM, we have characterized and analyzed a set of popular applications. Sec-
ond, we proved data inferentiability and built a multivariate regression model,
that can predict application’s performance in function of multiple combinations
of resources with little error. To consider the shared nature of the cluster, we
also built a resource sharing method. We also proposed a scheduling algorithm
that takes enhanced decisions based on available information. At the end, we
tested our model. Our results show that by attaching the proposed RM along-
side SLURM, our model can process bioinformatics workflows, achieving a 28%
reduction of makespan by also increasing resource efficiency by 75%. Further-
more, early results shown with a higher degree of multiprogramming (8), leave
the door open for higher efficiency and makespan improvement of workflow bioin-
formatics.

To that end, we started a new line of work, migrating our proposal into a
simulated environment for workflows, such as workflowsim simulator.

502 F. Badosa et al.

References

1. Agrawal, P., Kifer, D., Olston, C.: Scheduling shared scans of large data files. Proc.
VLDB Endow. 1(1), 958–969 (2008). doi:10.1145/1453856.1453960

2. Al-Ali, R., Kathiresan, N., El Anbari, M., Schendel, E.R., Zaid, T.A.: Workflow
optimization of performance and quality of service for bioinformatics application
in high performance computing. J. Comput. Sci. 15, 3–10 (2016). doi:10.1016/j.
jocs.2016.03.005

3. Christopher, A., Andrew, M., Stefan, S.: Locally weighted learning. Artif. Intell.
Rev. 11(1–5), 11–73 (1997). doi:10.1023/A:1006511328852

4. Downey, A.B.: Predicting queue times on space-sharing parallel computers. In:
Proceedings of the 11th International Parallel Processing Symposium, pp. 209–
218. IEEE (1997) doi:10.1109/IPPS.1997.580894

5. Figueira, S.M., Berman, F.: A slowdown model for applications executing on time-
shared clusters of workstations. IEEE Trans. Parallel Distrib. Syst. 12(6), 653–670
(2001). doi:10.1109/71.932718

6. Hatem, A., Bozdağ, D., Toland, A.E., Çatalyürek, Ü.V.: Benchmarking short
sequence mapping tools. BMC Bioinform. 14(1), 184 (2013). doi:10.1109/BIBM.
2011.83

7. Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H.:
The grid workloads archive. Future Gener. Comput. Syst. 24(7), 672–686 (2008).
doi:10.1016/j.future.2008.02.003

8. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler
transform. Bioinformatics 25(14), 1754–1760 (2009). doi:10.1093/bioinformatics/
btp324

9. Lord, E., Diallo, A., Makarenkov, V.: Classification of bioinformatics workflows
using weighted versions of partitioning and hierarchical clustering algorithms. BMC
Bioinform. 16(1), 68 (2015). doi:10.1186/s12859-015-0508-1

10. Murali, P., Vadhiyar, S.: Qespera: an adaptive framework for prediction of queue
waiting times in supercomputer systems. Concurr. Comput. Pract. Exp. 28(9),
2685–2710 (2016). doi:10.1002/cpe.3735

11. Prodan, R.: Specification and runtime workflow support in the askalon grid envi-
ronment. Sci. Program. 15(4), 193–211 (2007). doi:10.1155/2007/734021

12. Seneviratne, S., Levy, D.: Enhanced host load prediction by division of user load
signal for grid computing. J. Cluster Comput. (2005, submitted)

13. Seneviratne, S., Levy, D.C.: Task profiling model for load profile prediction. Future
Gener. Comput. Syst. 27(3), 245–255 (2011). doi:10.1016/j.future.2010.09.004

14. Seneviratne, S., Levy, D.C., Buyya, R.: A taxonomy of performance predic-
tion systems in the parallel and distributed computing grids. arXiv preprint
arXiv:1307.2380 (2013)

15. Shanthini, J., Shankarkumar, K.: Anatomy study of execution time predictions in
heterogeneous systems. Int. J. Comput. Appl. 45(7), 39–43 (2012). doi:10.5120/
6795-9123

16. Song, B., Ernemann, C., Yahyapour, R.: Parallel computer workload modeling
with Markov chains. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2004. LNCS, vol. 3277, pp. 47–62. Springer, Heidelberg (2005). doi:10.1007/
11407522 3

17. Yang, L., Schopf, J.M., Foster, I.: Conservative scheduling: using predicted variance
to improve scheduling decisions in dynamic environments. In: Proceedings of the
2003 ACM/IEEE conference on Supercomputing, p. 31. ACM (2003). doi:10.1109/
SC.2003.10015

http://dx.doi.org/10.1145/1453856.1453960
http://dx.doi.org/10.1016/j.jocs.2016.03.005
http://dx.doi.org/10.1016/j.jocs.2016.03.005
http://dx.doi.org/10.1023/A:1006511328852
http://dx.doi.org/10.1109/IPPS.1997.580894
http://dx.doi.org/10.1109/71.932718
http://dx.doi.org/10.1109/BIBM.2011.83
http://dx.doi.org/10.1109/BIBM.2011.83
http://dx.doi.org/10.1016/j.future.2008.02.003
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1186/s12859-015-0508-1
http://dx.doi.org/10.1002/cpe.3735
http://dx.doi.org/10.1155/2007/734021
http://dx.doi.org/10.1016/j.future.2010.09.004
http://arxiv.org/abs/1307.2380
http://dx.doi.org/10.5120/6795-9123
http://dx.doi.org/10.5120/6795-9123
http://dx.doi.org/10.1007/11407522_3
http://dx.doi.org/10.1007/11407522_3
http://dx.doi.org/10.1109/SC.2003.10015
http://dx.doi.org/10.1109/SC.2003.10015

Massively Parallel Sequence Alignment
with BLAST Through Work Distribution

Implemented Using PCJ Library

Marek Nowicki1(B), Davit Bzhalava2, and Piotr Ba�la3(B)

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Chopina 12/18, 87-100 Toruń, Poland

faramir@mat.umk.pl
2 Department of Laboratory Medicine, F46, Karolinska Institutet,

14186 Stockholm, Sweden
davit.bzhalava@ki.se

3 Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw, Pawińskiego 5a, 02-106 Warsaw, Poland

bala@icm.edu.pl

Abstract. This article presents massively parallel execution of the
BLAST algorithm on supercomputers and HPC clusters using thou-
sands of processors. Our work is based on the optimal splitting up the
set of queries running with the non-modified NCBI-BLAST package for
sequence alignment. The work distribution and search management have
been implemented in Java using a PCJ (Parallel Computing in Java)
library. The PCJ-BLAST package is responsible for reading sequence for
comparison, splitting it up and start multiple NCBI-BLAST executables.
We also investigated a problem of parallel I/O and thanks to PCJ library
we deliver high throughput execution of BLAST. The presented results
show that using Java and PCJ library we achieved very good performance
and efficiency. In result, we have significantly reduced time required for
sequence analysis. We have also proved that PCJ library can be used as
an efficient tool for fast development of the scalable applications.

Keywords: Sequence alignment · NGS · Next Generation Sequencing ·
Parallel programming · Java · BLAST · NCBI-BLAST · PCJ

1 Introduction

With the development of Next Generation Sequencing (NGS), there is observed
continuous growth in the size of the databases storing nucleotide and protein
data. In the area of computational biology, there is high demand to extract useful
information from these massive data sources. In order to help researchers ana-
lyze voluminous genetic data the high-performance computing power has been
developed. Different hardware such as clusters, supercomputers or even custom
systems are used to solve the numerous problems originating from analysis of
biological and biomolecular data.
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 503–512, 2017.
DOI: 10.1007/978-3-319-65482-9 36

504 M. Nowicki et al.

Basic Local Alignment Search Tool (BLAST) [1,2] is an extensively used
bioinformatics application for sequence alignment analysis. It allows for querying
DNA (nucleotide) and protein sequence databases with given a query sequence.
In results, the most similar sequences from a listed databases are identified.
This information is then used for the description of structures and functions
of unknown sequences. Another implication is understanding the evolutionary
origin of particular DNA or protein sequences. Due to ultimate importance, the
sequence analysis with BLAST is used in almost all bioinformatics solutions.

The success of BLAST is based on the use of heuristic methods to reduce
the running time not affecting accuracy significantly. BLAST is available as an
application to install on local resources or the web. The implementation from
the National Center for Biotechnology Information (NCBI)1 is the most popular
one and is considered as a reference.

NCBI BLAST offers the possibility of multithreading in symmetric multi-
processing (SMP) systems. Despite the parallelism in the search, NCBI can be
run on only one node. NCBI BLAST keeps a regular linear speed-up behavior,
but node size significantly limits overall performance.

Our parallel solution for BLAST is based on the input sequence fragmen-
tation and efficient query load division ensuring load balancing. The database
search and alignment of the parts of the input sequence are performed by the non-
modified NCBI BLAST application which allows easy adoption to the improve-
ments and further releases. This approach allows to use hundreds and thousands
of processor cores and significantly reduce a time necessary to perform an analy-
sis. What is more important, the user gets the same results as running original
NCBI BLAST.

The paper is organized as follows: in the next section, we present related work
on the parallelization of the BLAST. Section 3 presents PCJ library for paral-
lelization Java applications. The following section presents an implementation of
the sequence alignment using PCJ library. Section 5 presents performance and
scalability benchmarks. The paper ends with the conclusions and future work
sections.

2 Related Work

Since BLAST is an essential bioinformatics application and it is usage require
significant computational resources, there are known attempts to run BLAST on
clusters and supercomputers. Some of them [3–5] are based on the embarrassingly
parallel approach such as the distribution of the query set across computing
nodes. Each of them executes a sequential task which increases throughput,
but the completion time is unchanged, despite the parallel execution of queries.
Another possibility is to partition the database among computing nodes. Each
node performs the search for the same query but using an assigned part of the
database [6–8]. This solution was first implemented in the mpiBLAST [6] and

1 http://www.ncbi.nlm.nih.gov/BLAST [Accessed: June 8, 2017].

http://www.ncbi.nlm.nih.gov/BLAST

Massively Parallel Sequence Alignment with BLAST 505

then developed further in pioBLAST [9]. In this way, one search is performed at
a time; the advantage comes from the reduction of the portion of the database
each thread has to look at.

Despite numerous effort in the area of parallelization of sequence alignment
tools, the bioinformatics community is still lacking good and efficient tools run-
ning on the available computer architectures aligned with the recent progress of
NCBI software.

Therefore, we have developed our solution, hardware independent and
adjusted to the widely used HPC architectures. The compliance to the NCBI-
BLAST is a key issue.

3 PCJ Library

PCJ (Parallel Computing in Java)2 is a Java library [10] that allows performing
parallel and distributed computations. The PCJ library provides users with the
uniform view across nodes. It can work on the multicore systems with the various
interconnects such as Ethernet or InfiniBand. The PCJ source code is available
on GitHub, under Open Source license (BSD).

PCJ implements PGAS (Partitioned Global Address Space) model. The
library development was inspired by the lack of such solution for the recent Java
releases and by other solutions such as Co-Array Fortran [11], Unified Parallel
C [12] or Titanium [13].

In the PCJ design, we ensure compliance with Java standards. In contrast to
the listed above languages, the PCJ does not modify Java syntax and does not
extend it. Therefore additional libraries or tools which are not part of the Java
distribution are not required.

In the PCJ each PCJ thread (task) executes its own set of instructions and
has its local memory. By default, instructions and variables are local to the
task. Each PCJ task can access other PCJ tasks variables that have a special
@Shared annotation. The library provides methods to perform basic operations
such as synchronization of tasks and data transfer between PCJ threads. The
data transfer operations (get and put) are executed in an one-sided asynchro-
nous way. With the PCJ library user can also create task groups, broadcast data,
and monitor variable updates.

The PCJ library completely complies with Java standards. In particular, PCJ
can use Sockets Direct Protocol (SDP) which increases network performance
while InfiniBand is used. The SDP is available starting from Java SE 7.

The application using PCJ library is executed as ordinary Java application.
In the single node execution, it uses Java Virtual Machine (JVM). While running
in the multinode setup, one (or more) JVM is started on each node. This process
is performed by the PCJ library and allows a user to initiate an application on
multiple nodes, running one or more threads on each node. The number of nodes
and threads is set up upon a start of the application in both interactive and batch
modes.
2 http://pcj.icm.edu.pl [Accessed: March 20, 2016].

http://pcj.icm.edu.pl

506 M. Nowicki et al.

One JVM instance is a PCJ node. Single PCJ node can hold many PCJ
threads (tasks). Such design is well suited for current computer architectures
containing a large number (hundreds or thousands) of nodes, each of them built
on several or many cores.

Since PCJ application can be run using multiple JVMs, the communication
between threads has to be realized in an appropriate manner. In particular,
the Java concurrency mechanisms are used to synchronize PCJ threads and
exchange information if communicating threads run within the same JVM. If
data exchange is realized between different JVM’s, the socket based network
communication is used.

4 PCJ-BLAST

The PCJ-BLAST is implemented in Java with the help of PCJ library appli-
cation which allows running multiple NCBI-BLAST instances in parallel. The
parallelization is based on the distribution of the query sequence which small
parts is searched against nucleotide sequence database. This approach seems
to be well adjusted to the NGS data which contains a large number of short
sequences searched independently against the reference database. The database
contains 675 million of nucleotide sequence lines as of December 2015 and has a
size of 52 GB.

4.1 Input Data

Input file for BLAST used in our processing is obtained from the NGS sequencing
equipment (in this case Illumina Sequencing) and consists of about 1 million
short, 100–150 character-long sequences (reads). The input sequence is stored in
the FASTA format, and single input file can contain multiple sequences. Each
sequence has the one-line description, denoted by the greater-than (“>”) symbol.
After the description, sequence data begins. Sequence data can span multiple
non-blank lines. Next sequence starts with description line, which starts with
the line with the greater-than symbol.

Despite the fact that the sequences included in the input file are of similar
length, the processing of each sequence (i.e. search in the reference database) can
take different time ranging from a couple of seconds up to thousands of seconds
(see Fig. 1). The analysis time cannot be easily estimated based on the input
sequence. Therefore, the workload balancing has to be performed dynamically
during execution.

The large size of the input data allows us to speed-up sequence alignment
based on the query-parallelized approach. Multiple query searches are distrib-
uted among different processors and can be done independently. Moreover,
query parallelization can be implemented through wrapper to the original NCBI-
BLAST. In such approach, it is important to decide which queries are assigned
to which processor. The scheduling has to be performed dynamically since the
time required to process the single query is not known in advance. The decision
is performed based on the current state of the processor workload.

Massively Parallel Sequence Alignment with BLAST 507

Fig. 1. Execution time for the selected reads from the input file. The execution time
has been measured using single-threaded execution of the NCBI-BLAST 2.2.28.

4.2 Parallel Sequence Alignment

PCJ process sequences in parallel using multiple instances of NCBI-BLAST exe-
cuted with multiple threads at a node. The number of nodes can be configured
during job submission. The query string is read from the single file. Therefore,
the input is not modified relate to the original NCBI-BLAST.

PCJ thread with id zero (Scatterer) is used for reading and distributing
FASTA input file. Other PCJ threads (Workers) are used for run NCBI-BLAST
application on sequences and process XML output into a proper format for
further processing (see Fig. 2). Scatterer reads specified by the user number of
sequences. Then it sends them to available workers or waits until there will be
one available. The number of sequences processed by the individual worker at
each round is kept low (in our case is equal to 2) to provide fine granularity
and to obtain good load balancing. The sequences sent from the Scatterer to the
Workers are not saved in the files.

The availability of workers is checked as follows. Workers use shared array
buffer for incoming data. Scatterer uses shared array with indices of last read
cell by workers (readIndex) in workers buffer. Initially values in this array are set
to buffer size minus one. Additionally, Scatterer has local writeIndex array that
indicates the next index in the worker’s buffer to put read data. The writeIndex
array is initialized to zeros. After sending data to the worker, Scatterer changes
the value of the writeIndex cell associated with worker’s id, to the next value.

Next read data is sent to next available workers buffer. The worker buffer
is available if the value of writeIndex is not equal to the corresponding cell
in readIndex array. If each worker’s buffer is unavailable, Scatterer waits for a
change in the readIndex array.

508 M. Nowicki et al.

Fig. 2. Schematic view of the PCJ-BLAST. The workload is sent to the available
workers based on the dynamic information sent by the workers. This information is
sent using PCJ put and is not saved to the files. The input sequences can be processed
in arbitrary order.

Workers wait for modification of the buffer and then read data from the first
cell in the buffer. Before running NCBI-BLAST, they modify Scatterer readIndex
array by writing the index of the cell they have just read into cell associated with
their id. At that moment, a worker starts BLAST execution. After completing
NCBI-BLAST execution, the Worker processes XML output into a form suitable
for further processing and writes it into an output file. Each Worker uses its
own output file. After completion, outputs are concatenated into one big file,
as the order of sequences is not important for further processing. When there
is no further data to process, Scatterer writes a null value to a proper cell in
the worker’s buffer, and then the workers stop their work. All communication
between PCJ threads is asynchronous and does not involve saving data to the
disk which allows minimizing time spent for data exchange between Scatterer
and Workers.

It is worth noting that NCBI-BLAST execution time depends significantly on
the query parameters described in the input. In our case we have used following
query settings:

-word_size 11 -gapopen 0 -gapextend 2 -penalty -1 -reward 1

-max_target_seqs 10 -evalue 0.001 -show_gis -outfmt 5

With these settings, the output is formatted as the XML file. The parame-
ters were tuned for the search of viruses sequences, and their optimization was
performed out of this work.

Massively Parallel Sequence Alignment with BLAST 509

4.3 Multithreaded NCBI-BLAST

The PCJ-BLAST allows for flexible configuration of many NCBI-BLAST
instances run on each physical node. At the same time the number of threads used
by the NCBI-BLAST can be adjusted to the efficient use of the computational
node resources. To set up optimal configuration, we have run NCBI-BLAST
using the different number of instances and a different threads count ensuring
that a total number of threads was equal to the number of computational cores
available at each node. The experiments have been performed using x86 cluster
and Cray XC40 systems. In both cases, the input sequence was short (224 and
384 reads long respectively) and consisted of a copy of the same sequence (read)
to ensure ideal load balancing.

5 PCJ-BLAST Performance Results

The experiments were run on the HPC x86 cluster and Cray XC40 systems.
PC cluster consisted of 223 computing nodes with the Intel Xeon E5-2697 v3

CPU (28 core each) clocked at 2.6 GHz and Infiniband FDR and Gigabit Ether-
net interconnection. Every processing node has, at least, 64 GB of memory. PCJ
(version 4.1.0) was run using Java JVM v. 1.8.0 from Oracle. The calculations
were performed using the double precision for floating point arithmetic.

The reference database has been located at the NFS filesystem mounted at
each computing node. A single instance of the reference database has been used
for all NCBI-BLAST copies. The PCJ-BLAST has been run on the different
number of nodes; each time nodes were allocated exclusively using all CPU
cores available. The performance data presented in Fig. 3 shows good scaling
up to the 64 nodes (1792 cores). The parallel efficiency calculated with respect
to the single node is close to 1.0 even for a large number of cores. For example,
while using 64 nodes instead of single one, the analysis time has been reduced
almost 55 times (from 1453 hours to the 26.5 hours) which leads to the parallel
efficiency of 91%.

Cray XT40 has 1084 nodes equipped with 2 Intel Xeon E5-2690 v3 CPUs
running at 2.60 GHz. Every processing node has 128 GB of memory. Nodes are
connected with Cray’s Aries interconnect. PCJ (version 4.1.0) was run using
JVM v. 1.8.0 from Oracle. The calculations were performed using the double
precision floating point arithmetic.

The reference database has been located on the GVS filesystem mounted read
only at each computing node. The PCJ-BLAST has been run on the different
number of nodes under the same conditions as for x86 cluster. The performance
data presented in Fig. 4 shows good scaling up to the 128 nodes (6144 cores).

The parallelization efficiency is over 90% up to 32 nodes. For 64 nodes is over
83% and than starts to decrease. The numbers presented for the PCJ-BLAST
with and without XML output processing confirm parallel postprocessing of the
results. The lower performance of the XML processing on the 128 nodes comes
from the limits of I/O capabilities necessary for the writing analysis results to
the disk.

510 M. Nowicki et al.

Fig. 3. Performance of the PCJ-BLAST on the HPC x86 cluster. The ideal scaling is
plotted for reference. The scaling is based on the single node NCBI-BLAST execution
using 28 threads. The experimental points correspond to the full nodes allocated.

Fig. 4. Performance of the PCJ-BLAST on the Cray XC40. The ideal scaling is plotted
as the dotted line for reference. The scaling is based on the single node running 4
NCBI-BLAST instances executed using 12 threads each. The results are presented for
the PCJ-BLAST with and without XML output processing. The experimental points
correspond to the full nodes allocated. The measurements have been performed for the
12288 sequences long input.

Massively Parallel Sequence Alignment with BLAST 511

The performance results at Cray XC40 have been obtained for the 12288
long sequence out of 1 million reads long input. We expect that due to the larger
number of sequences to process and therefore better load balancing, the parallel
efficiency will be even better while processing full input file.

6 Conclusion

In this paper, we presented parallelization of the sequence search which is the
key element of the processing NGS results. The parallelization is based on the
work distribution based on the partitioned of the input sequence and processing
using NCBI-BLAST. The parallelization schema has been implemented in Java
using PCJ library and executed on the HPC cluster. The load balancing has been
ensured by monitoring the execution of BLAST instances. Also, occurring I/O
bottleneck while reading sequence library has been eliminated. We demonstrated
that these designs allow the application to scale almost linearly (more than 90%
efficiency for 32 nodes) up to 1536 cores of HPC cluster with the InfiniBand
interconnect and NFS or Lustre filesystems. The performance results for Cray
XC40 are similar and present at least 90% parallel efficiency for 32 nodes and
75% parallel efficiency at 128 nodes (6144 cores).

The presented work confirms the ability of PCJ library to parallelize large
scale applications using Java. The design and implementation were fast and
efficient and resulted in the preparation of the scalable application in short time.

The presented results show that still there is a place for the performance
improvements, especially while running on a large number of nodes. This oppor-
tunity will be investigated in the future. The PCJ library is using TCP/IP
protocol for intranode communication (more precisely for communication across
different JVM’s). This solution, especially in the case of Cray Aries interconnect,
is not benefiting from all hardware advantages. The work on an extension of the
PCJ library for the usage of hardware communication capabilities is in progress.

Acknowledgments. The authors would like to thank CHIST-ERA consortium
for financial support under HPDCJ project (Polish part funded by NCN grant
2014/14/Z/ST6/00007) and NordForsk for the support within NIASC consortium. The
performance tests have been performed using ICM University of Warsaw computational
facilities.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

2. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lip-
man, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

3. Braun, R.C., Pedretti, K.T., Casavant, T.L., Scheetz, T.E., Birkett, C.L., Roberts,
C.A.: Parallelization of local BLAST service on workstation clusters. Future Gener.
Comput. Syst. 17(6), 745–754 (2001)

512 M. Nowicki et al.

4. Cofer, H.: SGIR© High Throughput Computing (HTC) Wrapper Program for Bioin-
formatics on SGI ICETM and SGI UVTM Systems. Np: Silicon Graphics Interna-
tional (2012)

5. Chi, E.H.H., Shoop, E., Carlis, J., Retzel, E., Riedl, J.: Efficiency of shared-
memory multiprocessors for a genetic sequence similarity search algorithm. Tech-
nical report, University of Minnesota, CS Department, vol. TR97-05 (1997)

6. Darling, A., Carey, L., Feng, W.C.: The design, implementation, and evaluation of
mpiBLAST. In: Proceedings of ClusterWorld Conference and Expo in Conjunction
with the 4th International Conference on Linux Clusters: The HPC Revolution
2003, San Jose, CA, pp. 13–15 (2003)

7. Bjornson, R.D., Sherman, A.H., Weston, S.B., Willard, N., Wing, J.: Tur-
boBLAST(r): a parallel implementation of BLAST built on the TurboHub. In:
Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS), 0183. IEEE (2002)

8. Mathog, D.R.: Parallel BLAST on split databases. Bioinformatics 19(14), 1865–
1866 (2003)

9. Lin, H., Ma, X., Chandramohan, P., Geist, A., Samatova, N.: Efficient data access
for parallel BLAST. In: Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2005), Washington, DC, USA. IEEE
Computer Society (2005)

10. Nowicki, M., Górski, �L., Grabrczyk, P., Ba�la, P.: PCJ - Java library for high per-
formance computing in PGAS model. In: International Conference on High Per-
formance Computing and Simulation, HPCS 2014, pp. 202–209. IEEE (2014)

11. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. ACM SIG-
PLAN Fortran Forum 17(2), 1–31 (1998). ACM

12. Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K., Brooks, E., Warren, K.:
Introduction to UPC and language specification (Vol. 576). Technical report CCS-
TR-99-157, IDA Center for Computing Sciences (1999)

13. Hilfinger, P., Bonachea, D., Datta, K., Gay, D., Graham, S., Liblit, B., Pike, G.,
Su, J., Yelick, K.: Titanium language reference manual. UC Berkeley Technical
report, UCB/EECS-2005-15, Berkeley, California, USA (2005)

On the Use of Binary Trees for DNA
Hydroxymethylation Analysis

César González1, Mariano Pérez1, Juan M. Orduña1(B), Javier Chaves2,
and Ana-Bárbara Garćıa2

1 Depto. de Informática, Universidad de Valencia,
Avda. Universidad, s/n, 46100 Burjassot, Valencia, Spain

Juan.Orduna@uv.es
2 INCLIVA Health Research Institute, CIBERDEM (Carlos III Health Institute),

Avda. Menéndez Pelayo 4 accesorio, 46010 Valencia, Spain

Abstract. DNA methylation (mC) and hydroxymethylation (hmC) can
have a significant effect on normal human development, health and dis-
ease status. Hydroxymethylation studies require specific treatment of
DNA, as well as software tools for their analysis. In this paper, we
propose a parallel software tool for analyzing the DNA hydroxymethy-
lation data obtained by TAB-seq. The software is based on the use
of binary trees for searching the different occurrences of methylation
and hydroxymethylation in DNA samples. The binary trees allow to
efficiently store and access the information about the methylation of
each methylated/hydroxymethylated cytosines in the samples. Evalua-
tion results shows that the performance of the application is only limited
by the computer input/output bandwidth, even for the case of very long
samples.

Keywords: High performance computing · DNA hydroxymethylation ·
Parallel pipeline

1 Introduction

Epigenetics (any process that alters gene activity without changing the DNA
sequence) seems to be decisive for the development of the human organism as well
as for complex diseases like Obesity, Hypertension, Cancer and Diabetes Mellitus
Type 2 (DM2) development [1,2,7]. DNA methylation (including methylation or
hydroxymethylation of cytosines (mC and hmC, respectively), seems to play a
relevant role in the genetic regulation in the medium and long term [5], although
the involved regions and mechanisms in this process are still unknown [7]. In this
sense, there are evidences indicating that DNA methylation can be modified
along the fetal and neonatal development, and it can affect the presence of

This work has been supported by Spanish MINECO and EU FEDER funds under
grants TIN2015-66972-C5-5-R, TIN2016-81850-REDC, PI14/00874 and CIBER-
DEM (Carlos III Health Institute).

c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 513–522, 2017.
DOI: 10.1007/978-3-319-65482-9 37

514 C. González et al.

diseases at advanced ages [7]. DNA methylation has been traditionally associated
to CpG islands (DNA segments consisting of “CG” repeated sequences) present
in the promoter region of many genes, but it is also present in the rest of a gene,
including the codifying regions [8,10].

Therefore, the mC and hmC analysis has become an important topic in
the study of human health. This analysis requires specific treatment of DNA
that modifies its sequence, as well as software tools for their analysis. The
methylation data can be obtained through bisulphite sequencing, which pro-
vides comprehensive DNA methylation maps at single-base pair resolution [4].
Bisulphite treatment converts unmethylated cytosines (Cs) into thymines (Ts),
which gives rise to C-to-T changes in DNA sequence after sequencing, while leav-
ing methylated cytosines (mCs) unchanged. By aligning and comparing bisul-
phite sequencing reads to the genomic DNA sequence, it is possible to infer
DNA methylation patterns at base pair-resolution. Hydroxymethylated samples
can be obtained through the Ten-eleven translocation (TET) Assisted Bisulfite
Sequencing (TAB-Seq) [13,14], which produces Ts in methylated and unmeti-
lated Cs and maintains as C the hydroxymethylated Cs. Another method is the
oxidative bisulphate sequencing (oxBs-seq) [12], which produces a T from Cs
and hmCs and Cs from mCs. Therefore, the analysis of DNA mCs and hmCs
by next generation sequencing (NGS) requires the alignment and comparison of
two datasets for the identification of each mCs and hmCs in each sequence: the
samples treated with traditional bisulfite sequencing, and the samples treated
with the TAB-Seq or oxBs-seq. For each base-pair, the analysis should consider
three possible cases: the considered base is a mC, it is an hmC, or it is any
other base different from a methylated cytosine. The detection of the first and
third cases can be carried out by any of the available software tools for DNA
methylation analysis like RRBSMAP [11], the widely extended tool Bismark [3],
or the most recent tool HPG-Methyl [6,9]. Since these tools provide single-base
information of the alignment and the methylation status of each input sequence
(or read), the use of the bisulfite-treated dataset as input data for these tools
can yield the alignment and methylation status of these samples. However, to
the best of our knowledge, there are no software tools for the analysis of DNA
hydroxymethylation based on TAB-Seq currently.

The hydroxymethylation analysis should consist in the use any of the avail-
able software tools to align and analyze the methylation status of both datasets
(the bisulfite-treated and the hydroxymethylated ones). Also, it requires the
comparison of the results yielded by the methylation software (usually given as
file in BAM format for both datasets). The methylation information in each of
the BAM files for each base pair should be compared, in order to determine
the hydroxymethylation status and the proportion of each of the three possibil-
ities. In this paper, we propose a parallel software tool, called HPG-HMapper,
for analyzing the DNA hydroxymethylation status. This tool is based on the
use of binary trees for searching the different occurrences of methylation and
hydroxymethylation on each base pair in both DNA datasets. The binary tree
data structure allows an efficient access, insertion and deletion of new nodes

On the Use of Binary Trees for DNA Hydroxymethylation Analysis 515

(representing methylated cytosines bases) as the samples in the dataset are
processed. The performance evaluation results shows that the performance of
the application is only limited by the computer input/output bandwidth, even
for the case of very long samples.

The rest of the paper is organized as follows: Sect. 2 describes the imple-
mentation of the proposed tool, based on binary trees data structures. Section 3
shows the performance evaluation of the proposed tool. Finally, Sect. 4 shows
some concluding remarks.

2 Binary Trees for DNA Hydroxymethylation Analysis

The objective of the proposed software tool is to find the position and the num-
ber (and rate) of each methylated and/or hydroxymethylated cytosine in a DNA
sequence or read. The input data consist of two FASTQ files containing DNA
samples from a human individual. One of the FASTQ files contains traditional
bisulfite-treated samples, in which all the non-methylated cytosines have been
transformed into thymines. The other FASTQ file contain TAB-Seq treated sam-
ples, in which both the non-methylated and the methylated cytosines have been
transformed in thymines, and only the hydroxymethylated cytosines remain as
cytosines.

However, it must be noted that although both datasets can come from the
same individual, due to the library preparation processes for Next-Generation
Sequencing the alignment of the reads contained in both datasets may overlap
or not. Also, the DNA extraction process can include DNA samples from differ-
ent tissues or cells, which show different methylation status. Additionally, the
reads don’t follow any order at all in the FASTQ file, being put as they are
produced in the sequencing process. Given these conditions, the best option is
the construction of one data structure per chromosome that stores information
about the location of the cytosines present in the input data. Since the input
sequences are not ordered within the input files and they are read and processed
in a sequential manner, new methylated cytosines may appear (new nodes may
have to be inserted in the data structure) at any position in the chromosome (at
any position in the tree). This reason suggests that the binary tree is the most
efficient data structure to insert new nodes as required.

2.1 Pipeline Design

The first step in the hydroxymethylation analysis is the alignment of all the input
sequences (from both input data) against the reference genome. We have used
our HPG-Methyl2 tool [6] for this step. After both files have been successfully
aligned, our tool searches for methylated and hydroxymethylated cytosines, and
it stores the results in the disk with the methylation and hydroxymethylation
map for each chromosome. These files can be further processed using external
tools.

516 C. González et al.

Figure 1 depicts the different stages connected in our pipeline. The elements
with dashed lines correspond to those stages out of the direct control of our
software: bisulphite and/or TET treatment, sequencing the DNA and FASTQ.
The elements with filled lines represent stages using our software, HPG-Methyl2
and the tool presented in this paper, denoted as HPG-HMapper. HPG-HMapper
has been designed to be usable with any alignment software compliant with the
optional tags used by Bismark [3].

Fig. 1. Diagram of the hydroxymethylation processing pipeline.

HPG-HMapper is the new tool developed to be used as the last stage of the
methylation mapping pipeline. It takes two BAM alignment files coming from the
methylated and hydroxymethylated FASTQ sequences as input. Both files are
processed in series, first the methylation and then the hydroxymethylation file.
Those reads which have not been aligned (unmapped reads) or do not contain
any methylated or hydroxymethylated cytosines are discarded. HPG-Methyl2
stores the number of methylated cytosines for each read as an optional tag. Each
alignment is processed and the locations and counts of methylated and hydrox-
ymethylated cytosines are stored in a custom binary tree structure. Finally, the
locations are stored as CSV text files in the disk, one for each chromosome.

Nevertheless, the alignment process and the update of the methylation tree
(including insertion operations) take longer than reading the read sequences from
the BAM files and filtering unmapped sequences. This process can be accel-
erated by processing alignments in parallel, and in this sense HPG-HMapper
fully exploits the parallel processing capacity of any multi-core CPU. In order
to achieve this goal, we have developed a parallel pipeline composed of three
stages, whose scheme is shown Fig. 2. The first stage consists of one producer,
which reads and filters the two input BAM files. The second stage consist of a
number of workers that can process in parallel the alignments found on differ-
ent chromosomes. The number of workers is an input parameter that the user

On the Use of Binary Trees for DNA Hydroxymethylation Analysis 517

can change to adjust the parallelism of the pipeline to the underlying computer
platform where HPG-HMapper is executed. Finally, the third stage consists of
one consumer which writes the results in the CSV output file.

Fig. 2. Block diagram of the parallel pipeline used in HPG-HMapper

The producer stage is in charge of reading and filtering alignments from both
BAM files, one at a time. The producer inserts alignments in the queue associ-
ated to the corresponding chromosome (note that the chromosome where each
read is aligned is one of the informations stored in the BAM format file). The
worker stage is in charge of processing the alignments and finding methylated or
hydroxymethylated cytosines in the sequence. Workers are in charge of process-
ing all alignments from one or more chromosomes. In order to avoid the use of
locks and critical sections, the maximum number of workers is limited to the
number of chromosomes (24 for the human genome), since the data structures
for each chromosome (the input queue and the methylation binary tree) are not
shared between threads. Finally, the consumer stage is in charge of storing the
information of the binary trees to CSV files in the disk.

These three stages are controlled by a scheduler, which is in charge of cre-
ating all the threads and assigning them their data structures, as well as the
chromosomes to be processed. In order to schedule an even assignment of work-
ers, the scheduling process is done taking into account the number of methylated
cytosines (mCs) in each chromosome on the input BAM file. This information
is obtained from an auxiliary file created by HPG-Methyl2 after the alignment
process is complete. If this information is not present, the length of each chromo-
some in the human genome is used as the reference. Figure 3 shows a scheduling
example with four workers. The upper part of this figure, shows an array of 24
elements, one for each human chromosome, showing the number of mCs found in
that chromosome by HPG-Methyl2 (or other methylation analysis tool). Below
that array the figure shows the same array, sorted in descending order, according

518 C. González et al.

to the number of mCs found. Thus, the first chromosome in the sorted array is
chromosome 2, which contains 4049 mCs, followed by chromosome 16, containing
3756 mCs, etc. In this way, the first elements show those chromosomes repre-
senting the greatest workload for the mapping software. The figure shows below
how the scheduler then computes the number of chromosomes to be assigned
to each worker. In this example, there are only 4 workers and therefore each
worker should be assigned 6 chromosomes. Once the number is computed, then
the assignment of particular chromosomes to workers is performed following a
round-robin fashion, according to the sorted array of chromosomes. This strategy
ensures an even workload assignment to the processing cores of the computer
platform. The example in the figure assumes that only 4 workers exists, but the
same procedure is to any number of workers. In this way, the software can exploit
the parallelism offered by any multicore processor, regardless of the number of
existing cores.

Fig. 3. Example scheduler configuration with 4 workers.

2.2 Methylation and Hydroxymethylation Mapping

HPG-HMapper uses a custom binary tree for each chromosome in the genome,
in order to keep track of the count of methylated and hydroxymethylated base-
pairs in the sequence files. Each node of the tree stores the position in the
chromosome and the number of methylated and hydroxymethylated cytosines
found in a given position. Due to the presence of different phenotypes in the
sequenced DNA (coming for example from different tissues), methylated, hydrox-
ymethylated cytosines as well as non-methylated cytosines or non-cytosines can
be mapped onto the same chromosome location. Nevertheless, only the methy-
lated and hydroxymethylated cytosines should be taken into account.

For each read alignment found, a tree exploration is performed for each
nucleotide containing relevant methylation data, searching the node holding the

On the Use of Binary Trees for DNA Hydroxymethylation Analysis 519

information of the current position. If a node corresponding to that chromosome
position already exists, then that node is updated with the new methylation or
hydroxymethylation information. If it doesn’t exists, then a new node is created
with the current data. Nodes are inserted taking the position in the chromosome
as the key, inserting nodes with positions larger than the current position to
the right, and nodes with positions smaller than the current to the left. Figure 4
shows an example showing how new nodes are inserted in the tree as the BAM
files are processed. In this example, a new alignment located in the position
116516 should be inserted on the right of the existing node 116500, while a new
alignment at position 116480 should be inserted pending on the right of node
116500, since position 116480 is lower than 116500 and higher than the parent
node 116420.

Fig. 4. Example entries of the methylation binary tree.

HPG-HMapper does not explore the binary tree following a recursive algo-
rithm, in order to speed up the update and insertion process. Once the process
has finished, the trees are traversed in order to store the methylation maps
ordered by ascending position. Then, the information is stored as shown in the
bottom of Fig. 1.

3 Performance Evaluation

In this section, we present the performance evaluation of HPG-HMapper. To the
best of our knowledge, there is no other software available for hydroxymethyla-
tion analysis based on TAB-Seq. There is only a single existing tool for hydrox-
ymethylation based on oxBS-Seq [12], and that tool has been evaluated only for
array data, not for sequencing data. Therefore, we cannot make a fair compari-
son study. Instead, we have studied the execution times, speed-up and memory
usage of HPG-mapper for different levels of parallelism in different synthetic
datasets coming from sequencing data, in order to establish reference values for
this kind of software.

520 C. González et al.

We have used synthetic methylation and hydroxymethylation datasets, com-
posed of 4 million reads. Every figure shown in this section shows plots whose
points have been computed as the average value of five executions of the software
tool. The performance evaluation has been performed on a computer platform
based on a 12 CPU core Intel Xeon E5-2650V4 processor with 64 GB of RAM.
Access to the input datasets and to the output files was performed on solid-state
drives.

Figure 5 shows the elapsed execution times yielded for datasets of different
read lengths (ranging from 75 nucleotides (nts) to 800 nts) when using different
levels of parallelism (workers). Since current chip-array sequencing techniques
do not produce sequences longer than 200 nts, we think that these lengths cover
current and future read lengths.

Fig. 5. Elapsed execution times for datasets of different read lengths.

Figure 5 shows how the required execution time becomes more linear to the
read length as more workers are present. However, the sequential I/O tasks
carried out by both the producer and the consumer stages prevent the tool
performance to become fully linear. Nevertheless, an execution time of 19000 s
(around 30 min) is required with six workers and a dataset of 800 nts. This time
is far below other genomic software, and it has been yielded by a 8-core computer
platform.

Figure 6 shows the speed-up achieved for different number of workers for
datasets of different read length. This figure shows that for the dataset of 75
nts the maximum speedup of 2.4 is achieved with 4 workers, and the speedup
is doubled if we use double the number of workers for a dataset whose length is
double (150 nts). For the case of datasets of 400 and 800 nts, the speedup linearly
increases with the number of workers. These results show that the proposed
software can take advantage of any underlying computer platform, regardless of
the number of existing CPU cores.

Finally, we have measured the maximum memory usage required by the soft-
ware, in order to ensure that it is suitable for the usual memory size in standard
computers. Figure 7 shows the peak memory usage for the different datasets and
when using different number of workers.

On the Use of Binary Trees for DNA Hydroxymethylation Analysis 521

Fig. 6. Speed-up achieved with different number of workers for a given dataset.

Fig. 7. Peak memory usage in the simulations for datasets of different read length.

Figure 7 shows that, as it could be expected, the size of required RAM do not
change with the number of workers (except for the case of a sequential worker),
but with the read length, reaching a maximum of around 55 GB of RAM for
the case of 800 nts dataset and 2 workers. This memory size fits to the memory
available in current workstations.

4 Conclusions

In this paper, we have proposed a software based on binary trees for DNA
methylation and hydroxymethylation analysis based on TAB-Seq, called HPG-
Hmapper. This tool searches the different occurrences of methylation and hidrox-
ymethylation in DNA samples, enabling the detection and quantification of Cs,
mCs and hmCs in each position of genome. The binary tree data structure
allows to efficiently store and access the information about the methylation of
each methylated/hydroxymethylated cytosine in the samples. The performance
evaluation results show that the performance of the application is only lim-
ited by the computer input/output bandwidth, even for the case of very long
sequences.

522 C. González et al.

References

1. Drong, A.W., Lindgren, C.M., McCarthy, M.I.: The genetic and epigenetic basis
of type 2 diabetes and obesity. Clin. Pharmacol. Ther. 92(6), 707–715 (2012)

2. Haumaitre, C.: Epigenetic regulation of pancreatic islets. Curr. Diabetes Rep.
13(5), 624–632 (2013)

3. Krueger, F., Andrews, S.R.: Bismark: a flexible aligner and methylation caller for
Bisulfite-Seq applications. Bioinformatics 27(11), 1571–1572 (2011)

4. Laird, P.W.: Principles and challenges of genome-wide dna methylation analysis.
Nat. Rev. Genet. 11, 191–203 (2010)

5. de Mello, V., Pulkkinen, L., Lalli, M., Kolehmainen, M., Pihlajamâmki, J.,
Uusitupa, M.: DNA methylation in obesity and type 2 diabetes. Ann. Med. 46(3),
103–13 (2014)

6. Olanda, R., Pérez, M., Orduña, J.M., Tárraga, J., Dopazo, J.: A new parallel
pipeline for DNA methylation analysis of long reads datasets. BMC Bioinform.
18(1), 161 (2017)

7. Raciti, A., Nigro, C., Longo, M., Parrillo, L., Miele, C., Formisano, P., Bguino, F.:
Personalized medicine and type 2 diabetes: lesson from epigenetics. Epigenomics
6(2), 229–238 (2014)

8. Shen, L., Zhang, Y.: 5-hydroxymethylcytosine: generation, fate, and genomic dis-
tribution. Curr. Opin. Cell Biol. 25(3), 289–296 (2013)

9. Tárraga, J., Pérez, M., Orduña, J.M., Duato, J., Medina, I., Dopazo, J.: A par-
allel and sensitive software tool for methylation analysis on multicore platforms.
Bioinformatics 31(19), 3130 (2015)

10. Wen, L., Li, X., Yan, L., Tan, Y., Li, R., Zhao, Y., Wang, Y., Xie, J., He, C.,
Li, R., Tang, F., Qiao, J.: Whole-genome analysis of 5-hydroxymethylcytosine and
5-methylcytosine at base resolution in the human brain. Genome Biol. 15(3), R49
(2014)

11. Xi, Y., Bock, C., Muller, F., Sun, D., Meissner, A., Li, W.: RRBSMAP: a fast, accu-
rate and user-friendly alignment tool for reduced representation bisulfite sequenc-
ing. Bioinformatics 28(3), 430–432 (2012)

12. Xu, Z., Taylor, J.A., Leung, Y.K., Ho, S.M., Niu, L.: oxBS-MLE: an efficient
method to estimate 5-methylcytosine and 5-hydroxymethylcytosine in paired bisul-
fite and oxidative bisulfite treated dna. Bioinformatics 32(23), 3667–3669 (2016)

13. Yu, M., Hon, G.C., Szulwach, K.E., Song, C.X., Jin, P., Ren, B., He, C.:
TET-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat. Protoc. 7(12),
2159–2170 (2012)

14. Yu, M., Hon, G.C., Szulwach, K.E., Song, C.X., Zhang, L., Kim, A., Li, X.,
Dai, Q., Park, B., Min, J.H., Jin, P., Ren, B., He, C.: Base-resolution analysis of 5-
hydroxymethylcytosine in the mammalian genome. Cell 149(6), 1368–1380 (2012)

Parallel Multi-objective Optimization
for High-Order Epistasis Detection

Daniel Gallego-Sánchez1, José M. Granado-Criado1(B),
Sergio Santander-Jiménez2, Álvaro Rubio-Largo3,

and Miguel A. Vega-Rodŕıguez1

1 University of Extremadura, Cáceres, Spain
dgallegos@alumnos.unex.es, {granado,mavega}@unex.es

2 Universidade de Lisboa, Lisbon, Portugal
sesaji@unex.es

3 Universidade NOVA de Lisboa, Lisbon, Portugal
arl@unex.es

Abstract. Many studies have shown that there is a direct relationship
between Single Nucleotide Polymorphisms (SNPs) and the appearance
of complex diseases, such as Alzheimer’s or Parkinson’s. However, recent
advances in the Study of the Complete Genome Association indicate that
the relationship between SNPs and these diseases goes beyond a simple
one-to-one relationship, that is, the appearance of multiple SNPs (epis-
tasis) influences the appearance of these diseases. In this sense, this work
proposes the application of the NSGA-II multi-objective algorithm for
the detection of epistasis of multiple loci in a database with 31,341 SNPs.
Moreover, a parallel study has been performed to reduce the execution
time of this problem. Our implementation not only achieves a reasonable
good parallel performance and scalability, but also its biological signifi-
cance overcomes other approaches published in the literature.

Keywords: Parallelism · NSGA-II · Epistasis · SNP

1 Introduction

Nowadays, several studies are demonstrating that SNPs1 (Single Nucleotide
Polymorphisms) have high influence in complex diseases like diabetes,
Alzheimer’s or Parkinson’s [13,20]. In this way, many models used in GWAS

This work was partially funded by the AEI (State Research Agency, Spain) and the
ERDF (European Regional Development Fund, EU), under the contract TIN2016-
76259-P (PROTEIN project). Thanks also to the Junta de Extremadura and
ERDF for the GR15011 grant provided to the group TIC015. Álvaro Rubio-Largo
and Sergio Santander-Jiménez are supported by the Post-Doctoral Fellowships
SFRH/BPD/100872/2014 and SFRH/BPD/119220/2016 respectively, granted by
the FCT (Fundação para a Ciência e a Tecnologia), Portugal.

1 A variation in a single nucleotide that occurs at a specific position in the genome.

c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 523–532, 2017.
DOI: 10.1007/978-3-319-65482-9 38

524 D. Gallego-Sánchez et al.

(Genome-Wide Association Study) to detect the genetic interaction among SNPs
and diseases are based in a single interrelation, that is, there is a one-to-one rela-
tionship between a SNP and a disease. However, the importance of gen-to-gen
interaction, known as epistasis, has increased in GWAS. Epistasis is defined as
the phenomenon by which the effect of a gene depends on the presence of one or
more modified genes. Instead of looking for a one-to-one relationship between a
SNP and a disease, what are sought are the relationships among several SNPs
that can cause that disease. In fact, because of the complexity of the diseases
studied, single locus2 models do not often work well, giving a high false positive
rate [11]. Therefore, unlike the single locus model, the objective of the detection
of many loci epistasis is to identify interactions between groups of SNPs that
have a strong association with the phenotype3.

The traditional method to perform the detection of epistasis is the exhaus-
tive search. In this method, all possible SNP combinations are tested to identify
those that cause the disease. However, due to the size of the actual databases, it
is practically impossible to use exhaustive search methods due to their high com-
putational and temporal costs. Even implementing tasks to reduce the number of
possible combinations, as in [12,19]. This fact is aggravated exponentially when
the number of loci is increased. In this way, several works solve three loci epistasis
detection, but they use small datasets [2]. Other works use parallel programing
in order to reduce the execution time, as cluster computing [7] or GPUs (Graph-
ics Processor Units) [6], but all these solutions are not enough for a number of
loci greater than three. On the other hand, in the last years, multi-objective
metaheuristics have been used to solve several real problems, both in the biolog-
ical field (Transcription-Factor Binding Motif [5], multiple sequence alignment
[15,16]) and in other fields of engineering and telecommunications [14]. In this
sense, Jing and Shen implement MACOED [10], a multi-objective metaheuristic
based on the Ant Colony Algorithm (ACO) to detect two loci epistasis. Another
example of this type of methodology is found in FHSA-SED [17], which is a
heuristic method of detecting the relationship between two loci, based on the
Harmony Search Algorithm (HSA). However, the high memory consumption of
both MACOED and FHSA-SED limits their applicability to scenarios involving
only two loci.

The aim of this work is to develop a parallel multi-objective implementation
for the detection of 2, 5 and 8 loci epistasis employing the NSGA-II algorithm [4]
(Fast Non-Dominated Sorting Genetic Algorithm) using the objective functions
defined in [10].

The present article is organized as follows: Sect. 2 explains the basis of the
problem; Sect. 3 describes the NSGA-II algorithm and its parallelization; follow-
ing, Sect. 4 shows a detailed study of the experiments performed as well as the
results obtained. Finally, Sect. 5 presents the conclusions reached.

2 A locus (plural loci) is the position on a chromosome.
3 Expression of the genetic information that owns a particular organism, or genotype.

Parallel Multi-objective Optimization for High-Order Epistasis Detection 525

2 Problem Definition

In order to solve the gen−gen interaction (epistasis), this work uses two objective
functions. The first function (y1) is based on a logistic regression that measures
the likelihood [21], defined by Eq. (1).

y1 = −2 log lik + d, (1)

where log lik is the maximum likelihood logarithm of the model and d the number
of free parameters. The lower the value of the logistic regression, the greater the
relationship with the disease. Therefore, y1 is a minimization objective function.

The second objective function (y2) is defined by a Bayesian network (Eq. (2)).
This statistical model is represented by a set of random variables and their
conditional dependencies using a directed acyclic graph, where the set of nodes
are formed by the genotypes and phenotypes and the set of edges are formed by
their conditional dependencies. This function will be in charge of measuring the
relationship between SNP nodes and disease nodes [8,9], so that the lower the
value of y2, the greater the association.

y2 =
I∑

i=1

⎛

⎝
ri+1∑

b=1

log(b) −
J∑

j=1

rij∑

d=1

log(d)

⎞

⎠, (2)

where I is the combinational number of SNPs with different values, J is the
number of disease states for a node, ri is the number of SNP nodes for the
combination i and rij is the number of cases where the disease takes the state j
and its parents have the combination i.

In this paper, the Epistasis Detection has been modeled as a Multi-objective
Optimization Problem:

minimize F (x) = (y1(x), y2(x))
subject to x ∈ Ω

(3)

where a solution x is a vector of n decision variables: x = {x1, . . . , xn}. The
upper and lower limits of each x component form the decision space (Ω). In
our case, the objective functions y1 and y2 must be minimized, forming a two-
dimensional space known as objective space (R2): F : Ω → R2. Thus, for each
solution x = {x1, . . . , xn} ∈ Ω, there exists a point z = {z1, z2} in the objective
space.

To compare two solutions in Multi-objective Optimization, the concept of
dominance is used: a solution x1 ∈ Ω dominates (≺) another solution x2 ∈ Ω, if
and only if: (i) ∀i ∈ {1, 2}, yi(x1) ≤ yi(x2), and (ii) ∃i ∈ {1, 2}: yi(x1) < yi(x2).

Given a set of solutions X, a solution is considered non-dominated (x∗) if
there is no solution in X that dominates it. The set of non-dominated solutions
of X is known as Pareto set (whose graphic representation is called the Pareto
front). To measure the quality of a Pareto front multi-objective metrics are
used, the most common one is the Hypervolume (HV) [1], which measures the
area/volume (in the objective space) covered by the non-dominated solutions.

526 D. Gallego-Sánchez et al.

Algorithm 1. NSGA-II
Input : popSize, MaxGen, crossProb, mutProb, mutFactor
Output: ParetoFront (set of non-dominated solutions)

1 P ← ∅
2 for i ← 1 to popSize do
3 xi ⇐ randomIndividual()
4 evaluateSolution (xi)
5 P ← P ∪ xi

6 end
7 R ← fastNonDominatedSort(P) //P = (F1, F2, . . .)
8 for it ← 1 to MaxGen do
9 Q ← ∅

10 for i ← 1 to popSize do
11 xp1 ← Selection (P)
12 xp2 ← Selection (P) //xp1 �= xp2

13 xi ← Crossover (xp1, xp2, crossProb)
14 xi ← Mutation (xi, mutProb, mutFactor)
15 evaluateSolution(xi)
16 Q ← Q ∪ xi

17 end
18 R ← P ∪ Q
19 R ← fastNonDominatedSort(R) //R = (F1, F2, . . .)
20 P ← ∅
21 i ← 1
22 while |P + Fi| < popSize do
23 Fi ← crowdingDistanceCalculation (Fi)
24 P ← P ∪ Fi

25 i ← i + 1

26 end
27 Fi ← crowdingDistanceCalculation (Fi)
28 P ← P ∪ Fi[1 : (popSize − |P |)]
29 ParetoFront ← updateParetoFront(F1)

30 end

The representation of the individual determines the way in which the evolu-
tionary algorithm addresses the problem, providing the necessary knowledge to
carry out the optimization process. In this paper, for each individual (solution)
x = {x1, . . . , xpopSize}, each value of the chromosome (xi) indicates the SNPs on
which epistasis will be analyzed. Moreover, an individual cannot have duplicated
SNPs and they must be sorted.

3 Parallelizing NSGA-II

To solve the multiple loci epistasis detection problem, we propose the use of
parallelism, multi-objective optimization, and evolutionary computation jointly.

Parallel Multi-objective Optimization for High-Order Epistasis Detection 527

Algorithm 2. Parallel NSGA-II – Part 1, Initialization
1 #pragma omp parallel num threads(numThreads)
2 #pragma omp for schedule(schedPolicy)
3 for i ← 1 to popSize do
4 xi ⇐ randomIndividual()
5 evaluateSolution (xi)
6 P ← P ∪ xi

7 end

Algorithm 3. Parallel NSGA-II – Part 2, Offspring Generation
1 #pragma omp for schedule(schedPolicy)
2 for i ← 1 to popSize do
3 xp1 ← Selection (P)
4 xp2 ← Selection (P) //xp1 �= xp2

5 xi ← Crossover (xp1, xp2, crossProb)
6 xi ← Mutation (xi, mutProb, mutFactor)
7 evaluateSolution(xi)
8 Q ← Q ∪ xi

9 end

The multi-objective algorithm chosen for this purpose is the standard Fast Non-
Dominated Sorting Genetic Algorithm (NSGA-II), a population based algorithm
created by Deb et al. [4].

Algorithm 1 shows that NSGA-II begins with the random generation and the
evaluation of popSize solutions, which are stored in the population P (lines 2–6).
This new population P is ordered in categories (rank) according to their domi-
nance relations (line 7), so that P = (F1, F2, . . .), where Fi is the set of solutions
that are found in the i category. Next, in each iteration, NSGA-II generates
and evaluates a new offspring population Q by means of the parent population
P and using the following genetic operators: binary tournament selection, single
point crossover and mutation (one SNP is changed by another one) (lines 10–17).
Then, both populations (P and Q) are mixed and sorted in categories forming a
new population R (lines 18–19). After that, the best solutions of R form the next
iteration population (lines 20–26). In case of a tie when selecting solutions of R
for the new population, NSGA-II uses the crowding distance (average distance
of a solution with its respective neighbors), in a way that favors the distribution
of the solutions along the Pareto front (lines 27–28).

In order to parallelize NSGA-II, the first step is to identify its more time-
consuming sections. For this purpose, we have conducted a time study in order
to check the time spent by the different operations on a sequential version of
the NSGA-II algorithm, concluding that the most time expensive parts of the
algorithm are those that involve the new population generation, that is, lines 2–6
and 10–17 of Algorithm 1. These two code blocks have been parallelized by means

528 D. Gallego-Sánchez et al.

100

120

140

160

180

200

220

75 80 85 90 95 100

y2

y1

250x4000
500x2000

100x10000

(a) Pareto fronts

0%

20%

40%

60%

80%

100%

100x10000 250x4000 500x2000

H
y
p
e
rv

o
lu

m
e

Poblation size x Iterations

(b) Hypervolume

Fig. 1. Median results of 31 executions with k = 8 and 100 × 10,000, 250 × 4,000 and
500 × 2,000 (number of individuals x number of iterations) configurations.

of OpenMP [3] (see Algorithms 2 and 3), where numThreads and schedPolicy
are the number of threads and the scheduling policy used.

4 Experiments and Results

This section shows the results obtained for our implementation. In this paper,
GAMETES [18] has been employed to generate the dataset to perform the exper-
iments. Particularly, a real size data set with 31,341 SNPs with 50 controls (indi-
viduals without the disease) and 96 cases (individuals affected with the disease).
The experiments have been executed over a machine with an AMD Opteron(tm)
Abu Dhabi 6376 processor @2.30 GHz (32 cores) with 96 GB of RAM and com-
piled with g++ 4.9.3. Finally, to evaluate the quality of the non-dominated
solutions, we have employed a well-known multiobjective metrics: Hypervolume
(HV) with the reference points (65.85, 149.06) and (94.28, 322.24) in all the
experiments of this paper.

4.1 Parametric Study

For the NSGA-II algorithm, a parametric study was carried out in order to
determine the best parameter configuration: crossover probability (crossProb),
mutation probability (mutProb), and mutation factor (mutFactor). For each
parameter combination, 31 executions (on a database of size 100 SNPs and 1600
individuals) have been performed to obtain their median hypervolume value
with 50 individuals and 100 iterations (same parameters as in [10]). The best
configuration found is 80%, 20% and 8%, respectively.

Once these three parameters have been set, it is necessary to set the number
of individuals and the number of iterations because 50 and 100 respectively
are not enough for big datasets like the ones used in this paper. Under this
assumption, we have tested three configurations involving 1,000,000 evaluations:
100× 10,000, 250× 4,000 and 500× 2,000 (number of individuals x number of
iterations). In addition, we have set the number of loci (k) to 8 in order to
configure the algorithm for a high order epistasis detection. As we can see in
Fig. 1, after 31 executions, the configuration 500× 2,000 obtains the best result,
so we select this configuration for our experiments.

Parallel Multi-objective Optimization for High-Order Epistasis Detection 529

Table 1. NSGA-II execution time (in seconds) for the static and dynamic scheduling
policy, 1, 8, 16, 24, and 32 threads and k = {2, 5, 8}

k Sched. policy Threads

1 8 16 24 32

2 Static dynamic 9,237.36 1,457.05 866.66 605.66 520.47

1,415.18 806.36 557.23 470.83

5 Static dynamic 11,256.01 1,858.73 1,131.37 928.58 834.22

1,637.72 1,019.37 764.01 671.56

8 Static dynamic 16,835.74 2,160.77 1,599.08 1,379.49 1,279,86

2,118.84 1,442.97 1,103.21 989.72

4.2 Parallel Study

In this section, we assess the quality of our parallel results. Using the config-
uration parameters described previously, we have made a pool of experiments
consisting of three variations in the number of loci, particularly 2, 5 and 8,
and two scheduling policies, static and dynamic. For every experiment, he have
performed 11 executions.

Thanks to the parallelization of NSGA-II, the execution time for k = 8 has
decreased from 16,835 (sequential) to 989 (dynamic parallel version) seconds.
Table 1 shows the median time for every experiment. As this Table shows, in all
cases, the dynamic scheduling policy behaves better than the static one. This
is due to the solution generation process, which can take different times for
different solutions. With regard to the scalability of our implementation, Fig. 2
shows the evolution of efficiencies and speedups reported by our implementation
on increasing system and problem sizes. As it can be seen, the scalability and
speed up is better in the case of dynamic scheduling, being the improvement
observed over the static version more noticeable for higher problem sizes (k > 8).
This means that the parallel solution of very complex instances of the problem
benefits noticeably from the use of dynamic scheduling approaches, giving as a
result a significant reduction in execution time by exploiting multicore resources
more accurately.

4.3 Biological Comparison

In this section, a biological comparison with other multi-objective approach is
presented. To the best of our knowledge, there are only two works that tackle
the epistasis detection problem enploying multi-objective algorithms: MACOED
[10] and FHAS-SED [17]. Since FHAS-SED uses objective functions which are
different from the ones in this paper, we will conduct our biological comparisons
using MACOED as reference method. All in all, in this work, we have compared
with MACOED, but only with k = 2, that is, only two loci epistasis. This is
due to the fact that MACOED (and also FHAS-SED) uses a memory structure

530 D. Gallego-Sánchez et al.

Fig. 2. Efficiency and speed up comparison between static and dynamic policies, k = {2,
5, 8} and 8, 16, 24 and 32 cores

Fig. 3. Comparison of the median Hypervolume (a) and Pareto front (b) of 31 execu-
tions with k = 2 between MACOED and sequential (seq) and parallel (with x threads)
NSGA-II versions.

(oracle) that stores the values of the two objective functions of all the processing
SNP pairs. By using this oracle, MACOED avoids to calculate the objective
functions of repeated SNP pairs, speeding up the algorithm. However, MACOED
has a very high memory requirement. Particularly, with the dataset used in this
paper (31,341 SNPs), MACOED uses more than 43 GB of RAM memory for
k = 2, making impossible to execute it for k > 2 in big datasets. With the
current computing capabilities of parallel architectures, we can replace the use
of memory-consuming techniques like the oracle by exploiting parallelism, thus
allowing us to address satisfactorily epistasis scenarios with increasing values of
k (higher than only two loci).

Figure 3(a) shows the median Hypervolume and Pareto front of 31 executions
of MACOED and sequential and parallel versions of NSGA-II for k = 2 with the
same number of evaluations. From this Figure, we can extract two conclusions:
firstly, NSGA-II improves the Hypervolume value of MACOED in all cases, and
secondly, the parallelization of NSGA-II does not show any negative influence
over the attained solution quality. Figure 3(b) shows the median Pareto fronts

Parallel Multi-objective Optimization for High-Order Epistasis Detection 531

obtained by MACOED and NSGA-II. As it can be observed, the Pareto front
obtained by NSGA-II covers the one obtained by MACOED.

5 Conclusions

This work has proposed the use of multi-objective optimization, evolutionary
computation and parallelism for the multiple loci epistasis detection problem in
a real size dataset. The proposed approach, based on the standard NSGA-II,
has led to an improvement in result quality over other works like MACOED, a
metaheuristic based on ant colonies that has been recently proposed to address
this problem. In terms of execution time, MACOED seems to be faster than the
sequential version of NSGA-II, however it demands more than 43 GB to process
the dataset with only two loci, making impossible to execute it with 3 loci or
more. In contrast, our implementation does not only improve the MACOED
execution time by using eight cores, it also can process many loci relationships.

On the other hand, a parallel study has been made with k = {2, 5, 8} loci,
with 8, 16, 24, and 32 cores, and static and dynamic scheduling policies. In
this way, we can conclude that NSGA-II scales quite good from 8 to 32 cores
using dynamic scheduling policy, achieving improved efficiency values in all the
experiments when this policy is applied.

References

1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indica-
tor: optimal µ-distributions and the choice of the reference point. In: Proceedings
of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp.
87–102. ACM (2009)

2. Cattaert, T., Calle, M., Dudek, S., Hohn, J., Lishout, F., Urrea, V., Ritchie, M.,
Steel, K.: Model-based multifactor dimensionality reduction for detecting epistasis
in case-control data in the presence of noise. Ann. Hum. Genet. 1(75), 78–89 (2011)

3. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP: Portable Shared Memory
Parallel Programming. Scientific and Engineering Computation. The MIT Press,
Cambridge (2007)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Tran. Evol. Comput. 6(2), 182–197 (2002)

5. González-Álvarez, D.L., Vega-Rodŕıguez, M.A., Rubio-Largo, A.: Finding patterns
in protein sequences by using a hybrid multiobjective teaching learning based opti-
mization algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(3), 656–666
(2015)

6. González-Domı́nguez, J., Schmidt, B.: GPU-accelerated exhaustive search for
third-order epistatic interactions in case-control studies. J. Comput. Sci. 8, 93–
100 (2015)

7. Goudey, B., Abedini, M., Hopper, J., Inouye, M., Makalic, E., Schmidt, D.,
Wagner, J., Zhou, Z., Zobel, J., Reumann, M.: High performance computing
enabling exhaustive analysis of higher order single nucleotide polymorphism inter-
action in Genome Wide Association Studies. Health Inf. Sci. Syst. 3(Suppl. 1), S3
(2015)

532 D. Gallego-Sánchez et al.

8. Han, B., Chen, X., Talebizadeh, Z., Xu, H.: Genetic studies of complex human
diseases: characterizing SNP-disease associations using Bayesian networks. BMC
Syst. Biol. 6(Suppl. 3), S14 (2012)

9. Jiang, X., Neapolitan, R.E., Barmada, M.M., Visweswaran, S.: Learning genetic
epistasis using bayesian network scoring criteria. BMC Bioinform. 12(1), 89 (2011)

10. Jing, P., Shen, H.: MACOED: a multi-objective ant colony optimization algorithm
for SNP epistasis detection in genome-wide association studies. Bioinformatics
31(5), 634–641 (2015)

11. Moore, J.H., Asselbergs, F.W., Williams, S.M.: Bioinformatics challenges for
genome-wide aassociation studies. Bioinformatics 26(4), 445–455 (2010)

12. Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F.,
Moore, J.H.: Multifactor-dimensionality reduction reveals high-order interactions
among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet.
69, 138–147 (2001)

13. Rogus, J.J., Poznik, G.D., Pezzolesi, M.G., Smiles, A.M., Dunn, J., Walker, W.,
Wanic, K., Moczulski, D., Canani, L., Araki, S., Makita, Y., Warram, J.H.,
Krolewski, A.S.: High-density single nucleotide polymorphism genome-wide linkage
scan for susceptibility genes for diabetic nephropathy in type 1 diabetes. Diabetes
57(9), 2519–2526 (2008)

14. Rubio-Largo, A., Vega-Rodŕıguez, M.A.: Applying MOEAs to solve the static rout-
ing and wavelength assignment problem in optical WDM networks. Eng. Appl.
Artif. Intell. 26(5–6), 1602–1619 (2013)

15. Rubio-Largo, A., Vega-Rodŕıguez, M.A., González-Álvarez, D.L.: Hybrid multiob-
jective artificial bee colony for multiple sequence alignment. Appl. Soft Comput.
41, 157–168 (2016)

16. Rubio-Largo, A., Vega-Rodŕıguez, M.A., Gonzlez-Álvarez, D.L.: A hybrid multiob-
jective memetic metaheuristic for multiple sequence alignment. IEEE Trans. Evol.
Comput. 20(4), 499–514 (2016)

17. Tuo, S., Zhang, J., Yuan, X., Zhang, Y., Liu, Z.: FHSA-SED: two-locus model
detection for genome-wide association study with harmony search algorithm. PLOS
ONE 11(3), 1–27 (2016)

18. Urbanowicz, R.J., Kiralis, J., Sinnott-Armstrong, N.A., Heberling, T., Fisher, J.M.,
Moore, J.H.: GAMETES: a fast, direct algorithm for generating pure, strict, epista-
tic models with random rrchitectures. BioData Min. 5(1), 16 (2012)

19. Wan, X., Yang, C., Yang, Q., Xue, H., Fan, X., Tang, N.L.S., Yu, W.: BOOST:
a fast approach to detecting gene-gene interactions in genome-wide case-control
studies. Am. J. Hum. Genet. 87(3), 325–340 (2010)

20. Wanga, Y., Tanga, B., Yanga, Y., Cuia, Y., Kanga, J., Liua, Z., Lia, K., Suna,
Q., Xua, Q., Yana, X., Guo, J.: Relationship between Alzheimer’s disease GWAS-
linked top hits and risk of Parkinson’s disease with or without cognitive decline: a
Chinese population-based study. Neurobiol. Aging 39, 217.e9–217.e11 (2016)

21. Wu, T.T., Chen, Y.F., Hastie, T., Sobel, E., Lange, K.: Genome-wide association
analysis by lasso penalized logistic regression. Bioinformatics 25(6), 714–721 (2009)

Configuring Concurrent Computation
of Phylogenetic Partial Likelihoods: Accelerating

Analyses Using the BEAGLE Library

Daniel L. Ayres(B) and Michael P. Cummings(B)

Center for Bioinformatics and Computational Biology,
University of Maryland, College Park, MD 20742, USA

{ayres,mike}@umiacs.umd.edu

Abstract. We describe our approach in augmenting the beagle library
for high-performance statistical phylogenetic inference to support con-
current computation of independent partial likelihoods arrays. Our solu-
tion involves identifying independent likelihood estimates in analyses
of partitioned datasets and in proposed tree topologies, and configur-
ing concurrent computation of these likelihoods via cuda and opencl
frameworks. We evaluate the effect of each increase in concurrency on
throughput performance for our partial likelihoods kernel for a four-state
nucleotide substitution model on a variety of parallel computing hard-
ware, such as nvidia and amd gpus, and Intel multicore cpus, observ-
ing up to 16-fold speedups over our previous implementation. Finally,
we evaluate the effect of these gains on an domain application program,
mrbayes. For a partitioned nucleotide-model analysis we observe an aver-
age speedup for the overall run time of 2.1-fold over our previous parallel
implementation, and 10-fold over the native mrbayes with sse.

Keywords: Bayes methods · Biology computing · Evolution (biology) ·
Phylogeny · Maximum likelihood estimation · Multicore processing ·
Parallel programming · High performance computing

1 Introduction

The most effective methods for inferring phylogenetic trees are based on either
maximum likelihood estimation or Bayesian analysis, which share the same com-
putational bottleneck: calculation of the likelihood of trees [7]. When profiling
garli [11], a leading phylogenetic inference program, we have observed that, for
nucleotide models, likelihood related calculations typically constitute over 94%
of the overall run time. For more complex models (e.g., amino-acid or codon-
based), likelihood calculation will typically incur an even greater proportion of
the analysis time. Speeding the calculation of the likelihood function is key to
increasing the performance of statistical inference-based phylogenetic analyses.

The core likelihood calculations apply to a subtree comprising a parent node,
k, two child nodes, � and m, and connecting branches of length, t� and tm, and
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 533–547, 2017.
DOI: 10.1007/978-3-319-65482-9 39

534 D.L. Ayres and M.P. Cummings

is repeated for all such subtrees within the larger tree being considered. This
partial likelihood function is as follows [7]:

L
(i)
k (z) =

(∑
x

Pr(x|z, t�)L
(i)
� (x)

)
×

(∑
y

Pr(y|z, tm)L(i)
m (y)

)
(1)

This calculation is repeated for each character i in the data (i.e., sequence site
pattern), for each state z that a character can assume, and for each internal node
in the proposed tree. The computational complexity of the likelihood calculation
for a given tree is O(p × s2 × n), where p is the number of patterns in the
sequence (typically on the order of 102 to 106), s is the number of states each
character in the sequence can assume (typically 4 for a nucleotide model, 20
for an amino-acid model, or 61 for a codon model), and n is the number of
operational taxonomic units (e.g., species, alleles). Additionally the tree search
space is very large; the number of unrooted topologies possible for n operational
taxonomic units is given by the double factorial function (2n − 5)!! [6]. Thus, to
explore even a fraction of the total search space, a very large number of topologies
are evaluated, and hence a very great number of likelihood calculations have to
be performed. This leads to analyses that can take days, weeks or even months
to run. Further compounding the issue, rapid advances in the collection of dna
sequence data have made the limitation for biological understanding of these
data an increasingly computational problem.

1.1 The BEAGLE Library and API

The beagle library and api [2] is a high-performance likelihood-calculation
platform for evolutionary models. It defines a uniform application programming
interface (api) and includes a collection of efficient implementations for calcu-
lating a variety of likelihood-based models on different hardware devices, such as
graphics processing units (gpus) and multicore central processing units (cpus).

The beagle library was designed to support a variety of hardware-specific
implementations, each optimized for a different processor type. The library
includes a set of parallel computing implementations that use the cuda and
opencl external computing frameworks.

The beagle library has been very successful in accelerating evolutionary
analyses. The library has been integrated into the most recent versions of popular
phylogenetics software including beast [5], mrbayes [10], and phyml [8], and has
been widely used across a diverse range of evolutionary studies.

Previously, given the fine-scale parallelization of the phylogenetic likelihood
function in the beagle library, the problem with few sequence patterns, or
one broken into small data subsets, was always small, and thus generally not
amenable to speedups, as patterns (for a given model type and category rate
count, e.g., nucleotide with four distinct rates) were the only dimension being
parallelized.

In this paper we describe our recent work to configure concurrent computa-
tion of phylogenetic likelihoods by exploiting additional independent calculation

Configuring Concurrent Computation of Phylogenetic Partial Likelihoods 535

opportunities. The result is that a wider variety of analyses benefit from parallel
computing performance gains.

1.2 Concurrent Computation: Independent Likelihood Estimates

We have focused on the following opportunities for concurrent computation of
phylogenetic likelihoods that were previously unrealized in beagle.

Pattern Partitions. Evolutionary analyses benefit from increases in modeling
flexibility. One clear way of improving model flexibility is to allow independent
estimation of model parameters for different character data subsets (e.g., genes,
codon positions). This is typically referred to as a partitioned model and is a
technique available in all phylogenetic software packages that support beagle.
Until now partitioned analyses with beagle have required the client program to
create multiple instances of the library, one for each data subset defined by the
partitioning scheme. When beagle instances share a hardware resource they
are executed in sequence, thus incurring significant performance and memory
inefficiencies, specially for problems with a large number of small data subsets.

Independent Subtrees. The number of subtrees requiring calculation for any
full tree is n − 1, where n is the number of operational taxonomic units (e.g.,
species, alleles), which is the number of tips (leaves) on the tree. Phylogenetic
algorithms typically use a post-order traversal when calculating tree likelihood,
calculating each of the n−1 subtrees in series. In the case of a fully pectinate tree
no subtrees are independent (Fig. 1, left). However, in the case of more balanced
topologies there are independent subtrees (Fig. 1, middle). The likelihoods for
sets of these independent subtrees can be calculated concurrently. In order to
more easily realize potential concurrency related to independent subtrees present
in a given topology, partial likelihood arrays need to be processed according to a
reverse level-order, or breadth-first, traversal of the tree being evaluated. In the
case of a fully balanced tree the number of independent subtrees is maximized,
and partial likelihood calculations can be done in sets of concurrent operations
corresponding to the number of levels in the tree, �log2 n� (Fig. 1, right). This
exploit of tree level-group concurrency is somewhat similar to a classic parallel
reduction scheme.

7
6

5
4

3
2

1

7

3

1 2

6

4 5

3

2

1 1

2

1 1

Fig. 1. Example pectinate tree (left), and example of a fully balanced tree (middle);
with sequential calculation both trees require n − 1 = 7 partial likelihood operations
in series, corresponding to the order of the node numbers. Balanced tree (right) with
concurrent computation requiring �log2 n� = 3 sets of independent partial likelihood
operations in the order of the shared node numbers.

536 D.L. Ayres and M.P. Cummings

2 Methods

2.1 Benchmarking and Testing

Our approach to increase concurrency in beagle has been focused on the partial
likelihoods kernel that is the computational bottleneck for phylogenetic analy-
ses. To evaluate the performance of this function we used our test program
(genomictest), which generates random synthetic datasets of arbitrary sizes.
This test program is included with the beagle source code and the results
shown throughout this paper can be reproduced by using the default random
seed, 1.

Table 1. System specifications

System 1 System 2

cpu(s) Intel Core i7-930 Dual Intel Xeon E5-2680v4

gpu(s) amd Radeon R9 Nano amd FirePro S9170

nvidia Quadro P5000

Linux kernel 4.8.13 3.10.0

gcc version 6.2.1 6.2.0

cuda release 8.0 —

opencl drivers amd 1912.5 amd 1800.8

nvidia 375.26 Intel 1.2.0

We report a measure of throughput in terms of the effective number of floating
point operations per second (gflops) for computation of the partial likelihoods
function (see Eq. 1). In contrast to a direct timing benchmark, throughput allows
us to more easily compare performance across different problem sizes. We report
benchmark results for two system configurations (Table 1). For conciseness, many
results are shown only for the two best performing platforms we had available,
the nvidia Quadro P5000 gpu under cuda and the amd Radeon R9 Nano gpu
under opencl. Further comparisons across hardware platforms and frameworks
are reported elsewhere [1].

2.2 Pattern Partition Concurrency

Multiple versus Single Library Instances. An initial design goal for the
beagle library was to make a library instance relatively light-weight, and to
leave it up to the client program to manage these instances. This design objective
was fitting for processors at the time, because it was easier to achieve good
saturation as the number of cores and supported threads for cpus and gpus
were modest compared to recent processors. However, we have found that this
light-weight model is limited, as the client program does not have direct access to

Configuring Concurrent Computation of Phylogenetic Partial Likelihoods 537

the parallel devices and cannot configure concurrent communication efficiently.
Furthermore, this model of separate instances also limits us to the concurrency
afforded to asynchronous kernel executions by the parallel computing framework
used (i.e., cuda or opencl).

Given our desire to improve concurrency for partitioned analyses, our first
decision was to move away from one library instance per data subset. This gave
us greater potential for concurrency, such as via single kernel launches, and more
control over how computation is combined into concurrent executions. Using a
single library instance also results in significant memory savings given many
overhead costs become shared for all partitions.

API Changes. In order to support partitioning in a single library instance we
have modified the beagle api to support data subset assignment and per-subset
operations. Partition assignment can be done via a pattern-count length array of
integers, with support for noncontiguous assignments. These changes were done
as additions to the existing beagle v1 api, and the interface remains backwards
compatible.

CUDA First. Our work to increase concurrency, and thus efficiency, for par-
titioned analyses initially focused on our parallel implementation for the cuda
framework. We have found this framework to be generally more mature than
opencl, and to support more features. We identified two solutions to allow
independent data subsets to be concurrently computed: (a) using cuda streams,
which would allow separate likelihood kernel launches to run concurrently; and
(b) developing a multi-operation likelihood kernel, which would compute mul-
tiple likelihood arrays within a single kernel launch. Below we describe each
approach.

Streams. This feature of the cuda framework is described by nvidia as follows:

“The cuda programming model provides streams as a mechanism for pro-
grams to indicate dependence and independence among kernel launches.
Kernels launched into the same stream are guaranteed to execute con-
secutively, while kernels launched into different streams are permitted to
execute concurrently. Streams describe independence between work items
and hence allow potentially greater efficiency through concurrency.”

To achieve partition concurrency we launch our likelihood kernels on separate
streams according to the data subset of the likelihood array operation. We do so
in a breadth-first manner, that is, the kernel launch for the first partial likelihood
array operation for data subset 1 is followed by the launch for the first operation
for subset 2, and so on. This is to compensate for signal delay in each stream.
We use this multi-stream approach for both partial likelihood and likelihood
integration kernels. For all other kernel launches in beagle we use the null
stream which synchronizes with all streams.

538 D.L. Ayres and M.P. Cummings

Multi-operation Kernel. Our second solution for data subset concurrency
involved modifying our partial likelihood cuda kernel to compute multiple like-
lihood arrays in a single execution launch. We used pointer arithmetic to allow
different input and output arrays for different execution blocks.

Figure 2 contrasts available data arrays (nodes, branches) and likelihood
array index (pattern) for our single and multi-operation partial likelihood ker-
nels. The first implementation is restricted to a single set of input likelihood
arrays (for nodes c1 and c2), input branch length arrays (t1 and t2), and output
array (d0), for all execution blocks. Additionally the pattern computed by each
execution thread is directly determined by block index n, block size blockSize,
and thread index threadId.

Fig. 2. Organization of data arrays and indexing for single and multi-operation kernel
execution blocks for partial likelihoods computation in beagle.

With the multi-operation approach, input and output arrays are determined
based on the block index. Further, the pattern computed by each thread is only
indirectly determined by n, which allows padding of data subsets when these do
not fall along block-sized boundaries.

Additionally, to maximize device global memory throughput we rearrange
site patterns on device memory so that data subsets are contiguous. This is
done when sequence partition assignment is made by the client program and
enables each execution block to operate on a single data subset more efficiently.

2.3 Independent Subtree Concurrency

As we developed the above approaches to partition concurrency, we noted
we could also leverage those methods to concurrently compute partial likeli-
hood arrays for independent subtrees. This would be specially beneficial for
large trees with short sequences when running on manycore processors such as
gpus. This combination of problem size and hardware resource previously left
many processing cores underutilized. Below we describe implementation details
for independent subtree operations via both our streams and multi-operation
solutions.

Configuring Concurrent Computation of Phylogenetic Partial Likelihoods 539

Algorithm 1. Streams and partial likelihood array operations
Data: a sequence of likelihood operations in reverse level-order traversal
Result: computation of partial likelihood arrays in concurrent streams

streamIndex ← 0
foreach operation in the operations sequence do

node ← operation.parent
if node.child1.streamIndex is not null then

node.streamIndex ← node.child1.streamIndex
node.waitIndex ← node.child2.streamIndex

else if node.child2.streamIndex is not null then
node.streamIndex ← node.child2.streamIndex
node.waitIndex ← node.child1.streamIndex

else
node.streamIndex ← streamIndex + 1
streamIndex ← streamIndex + 1

end

if node.waitIndex is not null then
cudaStreamWaitEvent(event node.waitIndex, stream node.streamIndex)

end
cudaLaunchKernel(kernel pLikelihoods, stream node.streamIndex)
cudaEventRecord(event node.streamIndex, stream node.streamIndex)

end

Streams. We further leveraged the use of cuda streams to concurrently com-
pute partial likelihood arrays of independent subtrees by assigning them as
described by Algorithm 1. This algorithm shows how we assign a likelihood
array kernel launch (pLikelihoods) to a stream based on an inherited index
from either of the child nodes (child1 or child2). Additionally, we may wait on
a cuda event that has been recorded for the other child node before launching
the kernel.

Multi-operation Kernel. To implement subtree concurrency with this kernel,
we process partial likelihood subtree operations according to a reverse level-order
traversal of the proposed tree. We add each consecutive operation to a set until
we find an operation that is dependent on the result of a previous operation in the
set. We then start a new operation set, repeating the same process. Once we have
processed all operations in this manner, we successively launch each operation set
for concurrent computation using our multi-operation partial likelihoods kernel.

2.4 Extending Concurrency Gains to OpenCL

Our next step was to extend the above work, using the cuda framework, to our
opencl implementation.

540 D.L. Ayres and M.P. Cummings

Queues. The opencl equivalent to cuda streams are concurrent execution
queues. We implemented our approach in an analogous manner but found the
use of concurrent queues only offered at best minimal gains in performance for
the opencl devices we had access to (amd Radeon R9 Nano and FirePro S9170
gpus, and Intel Xeon E5-2680v4 cpu).

Multi-operation Kernel. For this approach, in a comparable manner to cuda
blocks, we launch opencl work-groups such that multiple partial likelihood oper-
ations can be performed concurrently. In contrast to cuda, we found that the
opencl solution was generally more performance sensitive to implementation
details such as operation order and synchronization points. This was ultimately
beneficial, as we iteratively refined of our likelihood kernel to optimize perfor-
mance, and could then translate back some of the gains to the cuda solution.

2.5 Memory Transfer Optimizations

For the multi-operation approach under either cuda or opencl, we necessitate
an explicit memory transfer from host to device for each tree likelihood estima-
tion. Such memory transfers can be costly for gpu devices as they may have to
go over the pci bus. beagle was designed to minimize this type of transfer and
previously explicit host to device transfers only occurred at the initialization
phase of an inference run.

This additional memory transfer for our multi-operation kernel is used to copy
the address offsets for the input and output arrays each block in device memory
will operate on. In order to minimize costs for this additional memory transfer,
we process all subtree operations in a partial likelihoods call to the library, and
perform a single transfer for multiple launches of our multi-operation kernel.

Table 2. gpu memory transfer optimizations; throughput in gflops

Framework gpu Solution tree a tree b

cuda nvidia p5000 write 328.27 188.76

pinned 328.57 203.47

opencl nvidia p5000 write 320.10 183.78

map/unmap 321.24 199.58

amd r9 nano write 397.92 178.04

map/unmap 403.72 210.30

Further, we use faster methods than we had done before for host to device
transfer: pinned host memory allocations under cuda; and map and unmap
approach with opencl. Table 2 shows kernel throughput performance with these
approaches when compared to the performance when using the regular memory
write transfer method under each framework. This comparison was done for two

Configuring Concurrent Computation of Phylogenetic Partial Likelihoods 541

tree sizes: tree a has 16 tips and 100,032 sequence patterns; and tree b has 256
tips and 1024 patterns. We observe that the pinned and map/unmap approaches
have a positive impact on overall throughput, especially for tree b, which has
many more tips, and thus more partial likelihood operations with an ensuing
larger data transfer size.

2.6 Combining Pattern Partition and Independent Subtree
Concurrency

We have found that the most efficient approach (i.e., stream/queues, or multi-
operation) to concurrent partial likelihood array operations depends on the num-
ber of patterns being processed per operation. In order to determine which app-
roach to use for different problem sizes, we have benchmarked the throughput
for our partial likelihood kernel when evaluating a tree with 16 tips and 100,032
patterns for an increasing number of equal-sized data subsets (Table 3) across our
different parallel solutions. The cuda implementation was tested on an nvidia
Quadro P5000 gpu, the opencl-gpu implementation on an amd Radeon R9
Nano, and the opencl-x86 implementation on dual Intel Xeon E5-2680v4 cpus.
Systems were as specified in Table 1.

Table 3. Concurrency solutions and partition sizes; throughput in gflops with bold
text indicating which concurrency approach within a parallel solution offers best per-
formance at each problem size.

Partition cuda opencl–gpu opencl–x86

count size streams multi-op queues multi-op queues multi-op

1 100,032 321.82 272.61 346.26 335.62 79.97 79.43

2 50,016 330.08 228.21 354.79 341.02 79.85 77.85

16 6,252 316.72 225.64 226.77 330.68 70.60 76.10

24 4,168 227.63 223.40 182.71 318.97 65.92 75.21

32 3,126 164.06 217.59 141.50 317.28 54.65 73.00

64 1,563 87.75 212.71 87.98 326.49 24.92 73.61

With the cuda implementation, we observe that for larger numbers of pat-
terns (above 4,168) the Quadro p5000 gpu is near saturation, and the one-time
overhead of the multi-operation approach makes it relatively inefficient (Table 3).
However, for smaller problem sizes there is less work per stream, and the over-
head cost for each stream makes that approach the less efficient alternative. For
the opencl implementations we observe that the multi-operation approach is
the most efficient or close to most efficient for any partitioned problem.

Based on these findings, and on further intermediate analyses not shown
in Table 3, we set a fixed crossover point for each solution which determines
which approach is used. For the cuda implementation we have set this at 4,168

542 D.L. Ayres and M.P. Cummings

patterns, for the opencl-gpu it is set at 8,192 patterns, and for the opencl-
x86 implementation the multi-operation approach is always used. Additionally,
client programs can also explicitly request either the streams or multi-operation
implementation via the library api.

2.7 Other Aspects

Although beagle supports inferences with models of arbitrary state counts, the
work described here has thus far only been implemented for nucleotide model
inferences.

It is also worth mentioning that our implementation allows partitions to
be reassigned at any point. With each new partition assignment we rearrange
patterns in device memory to maintain efficient throughput. This functionality
may be used by client programs in the future to enable efficient inference of
partition assignments in conjunction with currently inferred parameters.

Finally, we use the --default-stream per-thread nvidia cuda compiler
(nvcc) option so that each beagle instance runs on a separate default stream.
This allows further concurrency gains for other independent work in addition to
partitioning, such as Metropolis-coupled, Markov chain Monte Carlo chains or
run replicates.

2.8 Modifications to MrBayes

In order to fully evaluate the efficacy of the concurrency improvements to the
library, we have adapted mrbayes version 3.2.6 to use the new beagle api parti-
tioning extensions. This enabled mrbayes to use a single beagle library instance
for computing the likelihood of multiple data subsets. This modified version of
mrbbayes is open-source under gpl version 3.0, and is available at https://
github.com/ayresdl/mrbayes-beagle3.

2.9 Library Availability

The beagle project is open source under the gpl v3.0 license. The work
described here will be part of an upcoming release, and is available under a
development branch of the library located at https://github.com/beagle-dev/
beagle-lib/tree/kernel-concurrency.

3 Results

Here we explore the performance effect of the concurrency gains on various
parallel hardware resources. System specifications are as shown in Table 1.

https://github.com/ayresdl/mrbayes-beagle3
https://github.com/ayresdl/mrbayes-beagle3
https://github.com/beagle-dev/beagle-lib/tree/kernel-concurrency
https://github.com/beagle-dev/beagle-lib/tree/kernel-concurrency

Configuring Concurrent Computation of Phylogenetic Partial Likelihoods 543

3.1 Pattern Partition Concurrency Gains

We observe that for both the Quadro P5000 and Radeon R9 Nano gpus the
previous approach of sequential computation of data subsets produces a sharp
drop-off in throughput as we increase the number of subsets (Fig. 3). This is
because as we increase the partition count the data subsets have decreasing
numbers of patterns, resulting in increasingly underutilized gpu capacity.

Fig. 3. Plots showing throughput for the partial likelihood kernel with data subset
concurrency (black dots) and with no data subset concurrency (open triangles) for a
problem with 100,032 total sequence patterns and increasing number of equal-sized
data subsets for two gpu device/framework pairs. Left-axis slowdown factor indicates
performance loss relative to the unpartitioned case. Slowdown factors and throughput
in gflops are on a log-scale.

For concurrent computation with the cuda device, throughput is higher than
with the sequential approach at all subset sizes. When there are fewer than 24
subsets we use the streams approach. Throughput with this approach starts to
drop quickly after 17 subsets (corresponding to a subset size of approximately
6,000 patterns). We then note the crossover point at 24 subsets (subset size of
4,168 patterns, and indicated by a dark grey dashed line) where we switch to our
multi-operation kernel approach. This approach exhibits consistent throughput
independent of subset size.

With the opencl solution we use the multi-operation approach for all parti-
tioned cases and note consistent and near best-case throughput, independent of
the number of data subsets.

3.2 Independent Subtree Concurrency Gains

Figure 4 shows the performance improvement associated with concurrent com-
putation of independent subtrees for a problem with 512 patterns. The pectinate
case (open triangle) also represents performance for any tree topology with our
previous solution of serial computation of subtree partial likelihood arrays.

544 D.L. Ayres and M.P. Cummings

Fig. 4. Plots showing throughput for the partial likelihood kernel with subtree concur-
rency for fully balanced trees (black dots), for 1,000 random topology trees (distribution
characterized by box plot), and for pectinate trees (open triangles) for a problem with
512 site patterns and increasing number of tips for two gpu device/framework pairs.
Left-axis speedup factor indicates performance gain relative to the average pectinate
tree throughput. Speedup factors, throughput, and number of tips are on a log-scale.

For both gpus, we observe increasing speedups with tree size for the average
random tree or for fully balanced trees. We also note that for larger trees the
throughput distribution for a random tree is skewed towards the fully balanced
case, which is associated with gpu saturation at these problem sizes. Finally,
we note that pectinate-case performance is approximately twice as fast with the
P5000 gpu under cuda as compared to the R9 Nano gpu using our opencl
implementation. Effective performance towards the pectinate end of the tree
symmetry scale remains highly relevant as phylogenetic inference programs are
optimized such that only a subtree representing the modified portion of the
overall tree is recomputed for each topology change. These subtrees are often
much less balanced than the full tree.

3.3 Application-Level Results

We used our adapted version of mrbayes 3.2.6 to assess application-level per-
formance gains for our concurrency work across a variety of parallel comput-
ing devices. For these benchmarks we used a dataset with 500 taxa and 759
unique site patterns of rbcL, the chloroplast gene encoding the large subunit of
ribulose-1,5-bisphosphate carboxylase/oxygenase, which is derived from a study
of angiosperm relationships [4]. We partitioned the sequence data based on codon
position, resulting in 3 subsets with 253 unique site patterns each, and inferences
were run using the mrbayes default single-precision floating point format.

We chose a dataset with a high number of sequences and with few patterns,
further broken into independent subsets, to best showcase the gains in concur-
rency described in this paper. Previously problems with these characteristics
have been the most challenging for effective parallelization. beagle-enabled

Configuring Concurrent Computation of Phylogenetic Partial Likelihoods 545

Fig. 5. Performance gains for a mrbayes nucleotide-model analysis for various hardware
platforms when using the beagle library, with and without partition and subtree
concurrency. Speedup factors are relative to the total run time when using the standard
mrbayes sse likelihood calculator and are shown on a log-scale.

mrbayes peak performance for datasets with many more patterns and using
higher state-count models are reported elsewhere [1,2].

Speedups for this challenging mrbayes analysis improve as we enable parti-
tion and subtree concurrency, across all hardware resources and corresponding
frameworks (Fig. 5). We observe an average speedup gain of 1.5-fold for subtree
concurrency and 1.4-fold for partition concurrency across all hardware devices.
For the best performing resource (nvidia Quadro P5000 gpu with cuda) we
observe a 1.7-fold gain in speedup when using both concurrency improvements,
ultimately resulting in a 10-fold speedup over the native mrbayes sse run time.

We have attempted but were unable to compare our work to the most recent
proposals from other authors for parallel mrbayes acceleration. For amc3 [3],
which proposes an adaptive multi-gpu approach, we were unable to perform any
analyses with the publicly available code due to execution errors. Additionally,
amc3 is based on mrbayes 3.1.2 which lacks several features and converges more
slowly than version 3.2 [10], making it unsuitable for a direct comparison to our
work. For smc3 [9], which proposes more efficient cpu+gpu parallelism and
reports speedups over previous versions of beagle, neither the source code nor
a binary file appear to be readily available.

546 D.L. Ayres and M.P. Cummings

4 Conclusion

Enabling further concurrency of computation in beagle as described here allows
a wider range of phylogenetic inferences to benefit from parallel computing hard-
ware. Analyses with many small data subsets or with large trees but few site pat-
terns, now benefit from increased throughput on multi and manycore resources.
This work represents an important step in combining the capabilities of increas-
ingly parallel hardware, and the demands of progressively more sophisticated
phylogenetic inference analyses.

Acknowledgments. We thank Marc Suchard, University of California, Los Angeles,
and Andrew Rambaut, University of Edinburgh; Mark Berger, nvidia; and Greg Stoner
and Ben Sander, amd. This work was supported by the National Science Foundation
grant numbers dbi-0755048 and dbi-1356562.

References

1. Ayres, D.L., Cummings, M.P.: Heterogeneous hardware support in BEAGLE, a
high-performance computing library for statistical phylogenetics. In: 2017 46th
International Conference on Parallel Processing Workshops (ICPPW), Bristol, UK
(2017, in press)

2. Ayres, D.L., Darling, A., Zwickl, D.J., Beerli, P., Holder, M.T., Lewis, P.O.,
Huelsenbeck, J.P., Ronquist, F., Swofford, D.L., Cummings, M.P., Rambaut,
A., Suchard, M.A.: BEAGLE: an application programming interface and high-
performance computing library for statistical phylogenetics. Syst. Biol. 61(1), 170–
173 (2012). doi:10.1093/sysbio/syr100

3. Bao, J., Xia, H., Zhou, J., Liu, X., Wang, G.: Efficient implementation of MrBayes
on multi-GPU. Mol. Biol. Evol. 30(6), 1471 (2013). doi:10.1093/molbev/mst043

4. Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler,
B.D., Duvall, M.R., Price, R.A., Hills, H.G., Qiu, Y.L., Plunkett, G.M., Soltis,
P.S., Swensen, S.M., Williams, S.E., Gadek, P.A., Quinn, C.J., Eguiarte, L.E.,
Golenberg, E., Learn Jr., G.H., Graham, S.W., Barrett, S.C.H., Dayanandan, S.,
Albert, V.A.: Phylogenetics of seed plants: an analysis of nucleotide sequences from
the plastid gene rbcL. Ann. Mo. Bot. Gard. 80(3), 528–580 (1993). doi:10.2307/
2399846

5. Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A.: Bayesian phylogenetics
with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012). doi:10.
1093/molbev/mss075

6. Felsenstein, J.: The number of evolutionary trees. Syst. Biol. 27(1), 27–33 (1978).
doi:10.2307/2412810

7. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol. 17(6), 368–76 (1981). doi:10.1007/BF01734359

8. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel,
O.: New algorithms and methods to estimate maximum-likelihood phylogenies:
assessing the performance of PhyML 3.0. Syst. Biol. 59(3), 307–321 (2010). doi:10.
1093/sysbio/syq010

9. Kuan, L., Pratas, F., Sousa, L., Toms, P.: MrBayes sMC3: accelerating Bayesian
inference of phylogenetic trees. Int. J. High. Perform. C. (2016). doi:10.1177/
1094342016652461

http://dx.doi.org/10.1093/sysbio/syr100
http://dx.doi.org/10.1093/molbev/mst043
http://dx.doi.org/10.2307/2399846
http://dx.doi.org/10.2307/2399846
http://dx.doi.org/10.1093/molbev/mss075
http://dx.doi.org/10.1093/molbev/mss075
http://dx.doi.org/10.2307/2412810
http://dx.doi.org/10.1007/BF01734359
http://dx.doi.org/10.1093/sysbio/syq010
http://dx.doi.org/10.1093/sysbio/syq010
http://dx.doi.org/10.1177/1094342016652461
http://dx.doi.org/10.1177/1094342016652461

Configuring Concurrent Computation of Phylogenetic Partial Likelihoods 547

10. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna,
S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P.: MrBayes 3.2: efficient
Bayesian phylogenetic inference and model choice across a large model space. Syst.
Biol. 61(3), 539–542 (2012). doi:10.1093/sysbio/sys029

11. Zwickl, D.J.: Genetic algorithm approaches for the phylogenetic analysis of large
biological sequence datasets under the maximum likelihood criterion. Ph.D. thesis,
University of Texas, Austin, TX (2006)

http://dx.doi.org/10.1093/sysbio/sys029

Accelerating FaST-LMM for Epistasis Tests

Héctor Mart́ınez1(B), Sergio Barrachina1, Maribel Castillo1,
Enrique S. Quintana-Ort́ı1, Jordi Rambla De Argila2, Xavier Farré2,

and Arcadi Navarro2

1 Depto. de Ingenieŕıa y Ciencia de los Computadores,
Universitat Jaume I, 12006 Castellón, Spain

{martineh,barrachi,castillo,quintana}@uji.es
2 Depto. de Ciencias Experimentales y de la Salud, Universitat Pompeu Fabra,

08002 Barcelona, Spain
jordi.rambla@crg.eu, {xavier.farre,arcadi.navarro}@upf.edu

Abstract. We introduce an enhanced version of FaST-LMM that main-
tains the sensitivity of this software when applied to identify epistasis
interactions while delivering an acceleration factor that is close to 7.5×
on a server equipped with a state-of-the-art graphics coprocessor. This
performance boost is obtained from the combined effects of integrating
a dictionary for faster storage of the test results; a re-organization of the
original FaST-LMM Python code; and off-loading of compute-intensive
parts to the graphics accelerator.

Keywords: Epistasis · FaST-LMM · High-performance computing ·
Multithreaded parallelism · Graphics processors

1 Motivation

After years of accumulating technological improvements, we have finally
embraced the postomics era where methodological advances are quickly pro-
viding geneticists with tools to analyze massive genome-wide data sets. Recent
genomic studies illustrate that each healthy individual carries hundreds of loss-
of-function variants as well as tens of thousands of other genomic variants in
coding and regulatory regions of their genomes.

Genome-Wide Association Studies (GWAS) results are accumulating evi-
dence at increasing pace. The aggregated study of these results is already pro-
viding medically-relevant predictions of phenotypic outcomes from genomic pro-
files based on Single Nucleotide Polymorphisms (SNPs) [1]. Still, part of the
problem with GWAS comes from the fact that most associated SNPs have been
detected within an additive framework that basically consists in working under
the assumption of additivity and testing each SNP separately from others. How-
ever, evidence suggests that the assumption of additivity is frequently not ful-
filled in complex organisms [6,10]. Thus, to evaluate the interplay that genetic
variants have on phenotypes, we must compare linear additivity with more com-
plex interactions (or epistasis) among markers, assessing what are the sets of
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 548–557, 2017.
DOI: 10.1007/978-3-319-65482-9 40

Accelerating FaST-LMM for Epistasis Tests 549

relationships between SNPs producing the most adequate genomic risk scores to
predict disease status or treatment outcome.

In this paper we contribute towards the goal of developing new high perfor-
mance computing (HPC) tools for GWAS by introducing an accelerated version
of the epistasis test integrated into FaST-LMM [7]. In doing so, we make the
following specific contributions:

– We provide a detailed performance analysis of the current version of FaST-
LMM, in the form of an experimental profile that identifies the relevant bot-
tlenecks present in the epistasis component of this software.

– We introduce three major improvements in the epistasis component of FaST-
LMM that deliver a significant acceleration:

• A temporary data structure to store the results from each epistasis tests
that delays the insertion of this information on the file with the complete
results, enabling a bulk insertion operation on a database.

• A couple of direct modifications of the code that eliminate some repeated
computations that are unnecessary when FaST-LMM is specifically lever-
aged to perform epistasis test.

• A module to off-load the matrix-matrix multiplications in the compute-
intensive stages of FaST-LMM to a graphics processing unit (GPU).

2 Related Work on Two-Way Epistasis Software

There exist several software packages for genomic-wide epistasis analysis. These
software efforts can be classified according to three criteria: the order of the inter-
actions being inspected, where n-way applications analyze interactions between
n SNPs; the method to detect the epistasis interactions; and the type of explicit
parallelism (if any) they exploit.

When the target is two-way epistasis tests, BOOST [8] is an appealing choice
because it combines fair sensitivity with low computational cost. On the other
hand, GBOOST [9] or EpistSearch [5] can be used to reduce the execution time
of BOOST while maintaining its sensitivity. For this purpose, both packages par-
allelize the underlying BOOST method exploiting the computational resources
of a GPU (GBOOST) or multiple GPUs/FPGAs (EpistSearch).

When sensitivity is the primary goal, FaST-LMM [7] is in general the pre-
ferred option. Although it is considerably more expensive than other methods,
FaST-LMM offers greater sensitivity. Furthermore, the cost of the epistasis test
included in FaST-LMM can be reduced using a parallel implementation based
on Hadoop that can be executed on the Microsoft Azure cloud.

Compared with previous work, in this paper we propose several techniques
to speed-up epistasis tests via FaST-LMM on multicore architectures, possibly
equipped with GPUs. We thus aim to accelerate the execution of this epistasis
software while maintaining its sensitivity on an HPC framework.

550 H. Mart́ınez et al.

3 Analysis of FaST-LMM Epistasis Test

We open this section with a brief description of the epistasis test module in
FaST-LMM 0.2.31. Next we provide a performance evaluation of the FaST-LMM
epistasis test via a profile that exposes the tasks on the critical path.

Overview. FaST-LMM is a general purpose GWAS software to perform uni-
variate GWAS; tests for epistasis; corrections for cellular heterogeneity via the
inclusion of principal components; set association tests; and heritability estima-
tion. The package is implemented in Python1, though, in order to avoid the
performance overhead due to the use of an interpreted language, it relies on
numpy, pandas, and other high-performance libraries to perform the actual com-
putations and data processing. Therefore, the cost due to the use of Python can
be expected to be negligible. FaST-LMM exploits multiprocessing by spawning
multiple processes, potentially incurring higher memory and interprocess com-
munication costs when compared with a proper multi-threaded solution.

FaST-LMM epistasis test. In order to decide whether there exists an epistatic
interaction between any two SNPs, the epistasis test module integrated in FaST-
LMM computes, for each possible combination of two SNPs (pair), the p-value
of the chi-square test associated with the difference between the log-likelihoods
of a null hypothesis and an alternative one; see [7] for details.

From the algorithmic point of view, the first stage of the epistasis test (here-
after, S1) consists of the following two consecutive operations:

S1.1 Assemble the n × k random effects matrix G, where n is the number of
individuals and k denotes the number of SNPs to analyze. If k ≥ n, compute
the n × n random effects covariance matrix K = GGT .

S1.2 If k < n, compute the singular value decomposition [4]: G = UΣV T , where
Σ is a k × k diagonal matrix containing the singular values of G arranged
in descending order of magnitude; next, set S = Σ2. Otherwise, compute
the spectral decomposition [10]: K = USUT where S is an n × n diagonal
matrix containing the eigenvalues of K. In both cases, the columns of the
n × r matrices U , V , with r = min(n, k), are orthonormal.

After these computations are completed, the set of all the possible SNP pairs
is split into packages of a fixed size (by default, consisting of 1 000 SNP pairs
each); a user-specified number of processes are spawned; and the packages are
evenly distributed among these processes. Each process next retrieves the data
corresponding to its SNP-pair packages, computes the p-value associated to each
SNP pair, and stores the results to disk.

In more detail, in order to determine the p-value of an SNP pair, each process
performs the following operations, grouped into two consecutive stages (here-
after, S2 and S3).

1 There is also a FaST-LMM version written in C++ but, according to the authors,
the Python code contains the most advanced features.

Accelerating FaST-LMM for Epistasis Tests 551

During the first of these stages, a process carries out the following operations
for each package:

S2.1 Compute MUX = UTX, where the rows of the r × m matrix X are associ-
ated with the individuals; and the columns correspond to: (i) the covariates;
(ii) the number of minor alleles of each distinct SNP present in the current
SNP-pair package; and (iii) the products of the minor alleles of each SNP
pair in the current SNP-pair package. As the number of distinct SNPs in a
SNP-pair package can vary, the dimension m can be different from one pack-
age to another; however, it will be at most three times the number of SNP
pairs of the package plus the number of covariates being considered (which
in our experimentation setup was 1).

S2.2 In addition, if the number of SNPs is lower than the number of individuals
(i.e., k < n), then compute MUUX = X − UMUX . Otherwise, MUUX is void.

Once the second stage is complete, the process performs the following oper-
ations, for each SNP pair of a package, as part of stage S3:

S3.1 Compute the log-likelihood of the null hypothesis by selecting the columns
of X, UTX, and MUUX that correspond to the covariates and each one of
the two SNPs.

S3.2 Compute the log-likelihood of the alternative hypothesis by selecting the
columns of X, UTX, and MUUX that correspond to the covariates, each one
of the two SNPs, and the product of these two SNPs.

S3.3 Compute the p-value of the chi-square test for the difference of the previous
log-likelihoods.

S3.4 Store the previous results as a new row into a pandas dataframe structure.

Experimental setup. In order to profile the execution of the epistasis test
module in FaST-LMM, our tests consider a sample from the Welcome Trust
Case Control Consortium (WTCCC) bipolar disorder, which provides a total
of 455 086 SNPs for n = 4 804 individuals. In order to reduce the execution
time of our tests, we only selected a small fraction of the original SNP dataset,
consisting of k = 2 000, 3 000, 4 000, 5 000, 6 000, and 7 000 SNPs (which
involve testing from 1 998 000 to 24 493 000 SNP pairs). Note that because
FaST-LMM splits the work in packages comprising 1 000 SNP pairs each, and
the matrix sizes are constrained to the number of individuals, once k ≥ n, an
execution involving a dataset with a larger number of SNPs should roughly
increase the execution time linearly on the number of SNP pairs included in
the test (≈k2/2). Therefore, we can expect that the conclusions extracted from
the following experiments with these (fragments of) datasets carry over to other
cases with a larger number of SNPs. It should also be noted that the epistasis
test in FaST-LMM and our modified version can be conducted on the complete
collection of the SNP pairs in WTCCC (with the corresponding increases of
execution time). Also, the execution time does not depend on the specific subset
of SNP pairs that are selected.

552 H. Mart́ınez et al.

The experiments were conducted on a server furnished with 2 Intel Xeon
E5-2620v4 8-core processors, 32 Gbytes of memory, and an NVIDIA P100
“Pascal” GPU. The operating system was RedHat Linux 2.6.32. The following
software was used for the experimentation: FaST-LMM 0.2.31, Python 2.7.13,
PyCUDA 2016.1.2, Scikit-CUDA 0.5.1, Intel MKL Update 11 (icc 17.0.1), and
NVIDIA CUBLAS 7.5.

Parallel execution options. The epistasis test in FaST-LMM allows the user
to specify the degree of process-level parallelism by setting the number of Python
processes that are spawned to execute stages S2 and S3. Thus, increasing the
number of processes distributes the epistasis analysis of the SNP pairs, per-
formed in these two stages, among more processes, with each process being then
in charge of a smaller collection of packages of SNP pairs. In addition, because
FaST-LMM relies on numpy for the execution of certain basic math kernels,
linking in a multi-threaded instance of the BLAS (basic linear algebra subpro-
grams) [2], as e.g. that provided in Intel MKL, yields a parallel execution of these
kernels using multiple threads. This is the case, for example, of the matrix-matrix
multiplications in S2.1, S2.2 and, to a minor extent, of the solution of the eigen-
problem in S1.2. Given that the target server features a total of 16 physical
cores, our experiments with FaST-LMM determined that the best combination
spawns 16 processes, with a single thread per process.

Evaluation of the preset package size. As argued earlier, the SNP datasets
are partitioned into packages containing a fixed number of SNP pairs, which
are then evenly distributed among the processes. Furthermore, the dimension
of the matrix-matrix multiplications involved in stage S2 stage are determined
by the size of these packages (and the number of individuals). It is important
to realize that the performance of this type of computational kernel strongly
depends on the size of its matrix operands. In particular, if the dimension is too
small, the costs of moving data across the memory hierarchy and the overheads
of the parallel execution will deliver low performance. We ran a few independent
experiments to determine the GFLOPS rate achieved by the FaST-LMM epista-
sis test module with the default package size configuration. Our experiments with
16 processes offered a sustained rate that is close to 92% of the theoretical peak.
Therefore, we can conclude that the default SNP partitioning option embedded
in FaST-LMM involves matrix operands that are large enough to obtain near
optimal performance. In other words, we cannot expect a significant variation of
the performance by modifying the SNP dataset partitioning to produce larger
matrix-matrix multiplications.

Profile of execution time. We next analyze the distribution of costs in a
parallel execution of the FaST-LMM epistasis test. Given the insights gained
from the previous experiments, we utilize 16 Python processes (with a single
thread per process), and employ the default package size in the following study.
The target datasets evaluated in this profile consist of fragments comprising
2 000, 3 000, 4 000, 5 000, 6 000 and 7 000 SNPs of the original 4 804-individual
455 086-SNP WTCCC dataset.

Accelerating FaST-LMM for Epistasis Tests 553

Fig. 1. Distribution of time among the stages of the FaST-LMM epistasis test (using
16 processes). The graphs on the left-hand side correspond to cases with k ≤ n:
(a) 2 000 SNPs, (c) 3 000 SNPs, and (e) 4 000 SNPs; for those on the right-hand
side, k > n: (b) 5 000 SNPs, (d) 6 000 SNPs, and (f) 7 000 SNPs.

Figure 1 visualizes the execution time distribution of the different stages and
their operations. This graphical representation clearly identifies the storage of the
results (S3.4) as the major bottleneck in the FaST-LMM epistasis test module,
but also ranks the relevance of the remaining operations, guiding our optimiza-
tion efforts in the next section. In more detail, the figure reports the distribution
of the execution time among stages S1–S3 plus an additional stage named RR,
which joins the local results from every spawned process in a single dataframe
structure. These results show that the costs of stages S1 and RR are negligible.
Specifically, the cost of RR is below 0.6% of the total cost for any number of

554 H. Mart́ınez et al.

SNPs, and that of S1 rapidly decays as the number of SNPs grows. In contrast,
the combined execution of stages S2 and S3 always consumes more than 99% of
the total time. As a result, we will exclude stages S1 and RR from the following
analyses.

Figure 1 also examines the costs of stages S2 and S3 in further detail. For S2
we can observe that the execution time mainly corresponds to the matrix-matrix
multiplication operations (S2.1 and S2.2). For stage S3, the operations lying on
the critical path correspond to S3.1 (null hypothesis), S3.2 (alternative hypoth-
esis), and especially S3.4 (storage of results). The remaining factors identified in
this stage contribute a minor factor to the total cost, which is below 2.8% for
S3.3 (compute chi-test) and around 1.0% for other operations not included in
the previous groups.

In Sect. 3 we argued that, once k ≥ n, an execution involving a dataset with a
larger number of SNPs should experience an increase of the execution time that
is roughly linear on the number of SNP pairs included in the test. The results
in Fig. 1 support this claim, showing that, for k ≥ 5000 SNPs, the distribution
of the relative execution time among the stages tends to stabilize as the number
of SNPs increases.

4 FaST-LMM Enhancements

In this section we propose and evaluate several source code optimizations and
an extension of the FaST-LMM epistasis test module. Our modifications are
especially designed to speed-up the operations that impose a major bottleneck
on the execution of the test. As reported in the performance profile at the end
of Sect. 3, these correspond to the operations in stages S2 and S3.

Dataframe. In Sect. 3 we exposed that the most expensive operation of the
FaST-LMM epistasis test is S3.4, which corresponds to the insertion of the results
computed for each SNP pair on a pandas DataFrame structure. This plays a role
analogous to that of a database table. FaST-LMM inserts the result for each test
on an SNP pair into this structure as soon as it is computed. Thus, each time an
SNP pair result is inserted, its index is computed (in order to determine whether
a previously-inserted record should be updated or a new one should be created),
leading to a nonnegligible overhead as each SNP pair result is inserted just once.

In order to reduce this overhead, we created a Python dictionary to store
each epistasis test result as it is computed; furthermore, we populate the pandas
DataFrame from this dictionary only after all the epistasis tests have been per-
formed. (This last step is analogous to a bulk insertion on a database.)

The effect of this optimization, labeled as Dict4DataFrame (abbreviated as
D4D), is displayed in Fig. 2, showing a speed-up that is consistently around a
factor of 1.85 with respect to the original implementation of FaST-LMM 0.2.31
running on 16 cores when k ≥ n = 4804.

Last-column and log-likelihood. During stage S3, FaST-LMM computes the
log-likelihood of the null and alternative hypothesis for each SNP pair. In order to

Accelerating FaST-LMM for Epistasis Tests 555

Fig. 2. Execution time of FaST-LMM and the proposed optimizations for different
numbers of SNP pairs (using 16 processes).

do this, FaST-LMM assembles the matrices to compute the log-likelihood of the
null hypothesis first; computes their log-likelihood; then assembles the matrices
for the log-likelihood of the alternative hypothesis; and finally computes their
log-likelihood.

As the matrices for the null and alternative hypotheses differ only on their
last column (the alternative hypothesis matrices include an extra column with
the product of the SNP pair minor alleles), by changing the order of the null
and alternative computations, it is possible to first assemble the matrices for
the alternative hypothesis; and to re-use those same matrices, without their last
column, for the null hypothesis. Proceeding in this manner, the matrices are
assembled only once. We have named this optimization as last-column (LC).

As part of each log-likelihood computation, an intermediate value logdetK
is computed as the sum of the logarithms of the elements of an array Sd of size
n. For the particular case of the epistasis test module in FaST-LMM, the con-
tents of this vector do not vary from one log-likelihood computation to another.
Therefore, it is possible to compute the values of this vector once and re-use the
result for the remaining log-likelihood computations. We have named this source
code optimization as log-likelihood (LOG).

The results obtained by applying these optimizations in addition to D4D,
labeled as D4D+LC+LOG, are shown in Fig. 2. For the more realistic scenarios,
i.e. those with k ≥ n, these two optimizations provide a meager acceleration
factor on top of that already offered by D4D.

Matrix multiplications on the GPU. Our next optimization extends the
FaST-LMM epistasis test module in order to off-load the execution of stages
S2.1 and S2.2 to a graphics processing unit (GPU). Concretely, all p Python
processes employ the GPU to compute the matrix multiplications in these two
stages. Furthermore, to avoid overflowing the memory of the graphics accelerator,
we have implemented a GPU memory manager that holds (i.e., detains) a process
request until enough memory is available in the graphics device.

556 H. Mart́ınez et al.

In order to extend the FaST-LMM software without forcing the user to re-
compile the source code, the GPU extension has been implemented in Python
using the PyCUDA2 library and the scikit-cuda [3] package. PyCUDA provides
access to NVIDIA’s CUDA parallel computation application programming inter-
face from a Python program. Moreover, scikit-cuda provides Python interfaces
to many of the CUDA device/runtime, CUBLAS, CUFFT, and CUSOLVER
functions supporting, among others, high-level functions comparable to those in
NumPy and Scipy.

As argued in Sect. 3, increasing the default package size did not affect the
performance of FaST-LMM when executed on a multicore processor. However,
this is not the case when the target processor is a GPU. Our experiments (omit-
ted for brevity) revealed that, as long as there is enough memory available on
the server to run all 16 processes, the execution time decreases as the package
size is augmented. In consequence, the rest of the experiments using our GPU
extension involve packages of 6 000 SNP pairs each. (Results with larger package
sizes could not be tested due to insufficient memory on the server. However, we
would like to stress here that the available memory constrains the number of
SNP pairs that can be processed at the same time, but not the total number of
SNP pairs that can be tested.)

The acceleration observed when using the GPU extension alongside with the
aforedescribed source code optimizations, labeled as D4D+LC+LOG+GPU, is
reported in Fig. 2. For those cases with k ≥ n, we observe a speed-up factor
between 7.30 and 7.92 with respect to the original implementation running on
16 cores. Here we remind the linear increase of the execution time that occurs
when augmenting the number of SNP pairs involved in the test (provided k ≥ n);
see the profile analysis in Sect. 3. This linear behavior of the original and all
enhanced versions of Fast-LMM can also be observed in the results corresponding
to the largest three datasets (i.e., those with k ≥ n) in Fig. 2. As a result, we
can expect that the acceleration factors remain of the same order as we increase
the number of SNPs beyond 7 000.

To conclude our analysis of the enhancements attained for FaST-LMM, our
performance profile of the modified epistasis test with all optimizations applied
show that the task on the critical path of the algorithm becomes stage S3.1 +
S3.2, which now represents more than 54% of the total time.

5 Conclusions

We have explored the performance and parallel scalability of the current version
of the 2-way epistasis test in FaST-LMM. In practical epistasis studies, the vol-
ume of SNPs exceeds (by far) the number of individuals and the execution time
of FaST-LMM grows linearly with the number of SNP pairs involved in the test.
Under these conditions, our experimental analysis of the original implementa-
tion of FaST-LMM, on a 16-core platform, identifies that the most expensive
operations correspond to: (i) the matrix-matrix multiplication (S2.1); (ii) the
2 PyCUDA: https://mathema.tician.de/software/pycuda/.

https://mathema.tician.de/software/pycuda/

Accelerating FaST-LMM for Epistasis Tests 557

log-likelihood tests (S3.1+ S3.2); and (iii) the insertion of the results from the
test in a Python database (S3.4). Our enhancements to FaST-LMM precisely
target these three bottlenecks,

yielding a global acceleration of the FaST-LMM epistasis test in a factor
that is around 7.5× with respect to the original implementation running on
16 cores. As a result, the critical path is shifted to the computations involving
the log-likelihood of the null and alternative hypotheses.

References

1. Abraham, G., Tye-Din, J.A., Bhalala, O.G., Kowalczyk, A., Zobel, J., Inouye, M.:
Accurate and robust genomic prediction of celiac disease using statistical learning.
PLoS Genet. 10(2), e1004137 (2014)

2. Dongarra, J.J., Croz, J.D., Hammarling, S., Duff, I.: A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Softw. 16(1), 1–17 (1990)

3. Givon, L.E., Unterthiner, T., Erichson, N.B., Chiang, D.W., Larson, E., Pfister,
L., Dieleman, S., Lee, G.R., van der Walt, S., Moldovan, T.M., Bastien, F., Shi, X.,
Schlüter, J., Thomas, B., Capdevila, C., Rubinsteyn, A., Forbes, M.M., Frelinger,
J., Klein, T., Merry, B., Pastewka, L., Taylor, S., Wang, F., Zhou, Y.: scikit-cuda
0.5.1: a Python interface to GPU-powered libraries, December 2015. http://dx.doi.
org/10.5281/zenodo.40565

4. Golub, G., Loan, C.V.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press, Baltimore (1996)

5. Gonzalez-Dominguez, J., Wienbrandt, L., Kassens, J.C., Ellinghaus, D., Schimmler,
M., Schmidt, B.: Parallelizing epistasis detection in GWAS on FPGA and GPU-
accelerated computing systems. IEEE/ACM Trans. Comput. Biol. Bioinform.
(TCBB) 12(5), 982–994 (2015)

6. Hemani, G., Shakhbazov, K., Westra, H.J., Esko, T., Henders, A.K., McRae, A.F.,
Yang, J., Gibson, G., Martin, N.G., Metspalu, A., Franke, L., Montgomery, G.W.,
Visscher, P.M., Powell, J.M.: Detection and replication of epistasis influencing tran-
scription in humans. Nature 508(7495), 249 (2014)

7. Lippert, C., Listgarten, J., Davidson, R.I., Baxter, J., Poon, H., Kadie, C.M.,
Heckerman, D.: An exhaustive epistatic SNP association analysis on expanded
wellcome trust data. Sci. Rep. 3, 1099 (2013)

8. Wan, X., Yang, C., Yang, Q., Xue, H., Fan, X., Tang, N.L., Yu, W.: BOOST: a fast
approach to detecting gene-gene interactions in genome-wide case-control studies.
Am. J. Hum. Genet. 87(3), 325–340 (2010)

9. Yung, L.S., Yang, C., Wan, X., Yu, W.: GBOOST: a GPU-based tool for detecting
gene-gene interactions in genome-wide case control studies. Bioinformatics 27(9),
1309–1310 (2011)

10. Zuk, O., Hechter, E., Sunyaev, S.R., Lander, E.S.: The mystery of missing her-
itability: genetic interactions create phantom heritability. Proc. Natl. Acad. Sci.
109(4), 1193–1198 (2012)

http://dx.doi.org/10.5281/zenodo.40565
http://dx.doi.org/10.5281/zenodo.40565

Pipelined Multi-FPGA Genomic
Data Clustering

Rick Wertenbroek(B), Enrico Petraglio, and Yann Thoma

School of Business and Engineering Vaud HES-SO, REDS Institute at HEIG-VD,
University of Applied Sciences Western Switzerland, Yverdon-les-Bains, Switzerland

{rick.wertenbroek,enrico.petraglio,yann.thoma}@heig-vd.ch

Abstract. High throughput DNA sequencing made individual genome
profiling possible and produces very large amounts of data. Today data
and associated metadata are stored in FASTQ text file assemblies car-
rying the information of genome fragments called reads. Current tech-
niques rely on mapping these reads to a common reference genome for
compression and analysis. However, about 10% of the reads do not map
to any known reference making them difficult to compress or process.
These reads are of high importance because they hold information absent
from any reference. Finding overlaps in these reads can help subsequent
processing and compression tasks tremendously. Within this context clus-
tering is used to find overlapping unmapped reads and sort them in
groups. Clustering being an extremely time consuming task a modular
multi-FPGA pipeline was designed and is the focus of this paper. A
pipeline with 6 FPGAs was created and has shown a speed-up of ×5
compared to existing FPGA implementations. Resulting enriched files
encoding reads and clustering results show file sizes within a 10% margin
of the best DNA compressors while providing valuable extra information.

Keywords: FPGA · Acceleration · Genomic data · Clustering · Com-
pression

1 Introduction

With the advent of high throughput sequencing, genomics has entered a new
era where massive amounts of data are produced (∼2–40 ExaBytes/year are
to be expected in 2025 [13]). The sequencing of one human genome generates
in the order of 300 GB of raw data. This data is composed of small sequences,
called reads, randomly located in the genome with high redundancy (typically
30–50×). Processing data in a timely fashion as well as reducing the required
storage space is imminently important for the future of genomics. Currently,
many different data formats are used, and most of them are far from optimal
[2,4,11]. Each format has different characteristics, and so a universal standard is
required to facilitate the development of algorithms. The authors are currently
working on such a new format, part of which deals with reads that do not map

c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 558–568, 2017.
DOI: 10.1007/978-3-319-65482-9 41

Pipelined Multi-FPGA Genomic Data Clustering 559

the reference human genome1 and are difficult to compress. Using a clustering
algorithm allows to compress these reads while providing useful information with
the goal of accelerating later processing such as de novo assembly.

Currently, sequencing machines, for instance from Illumina2, cut DNA into
small sequences and read them from both ends typically from 50 up to 200 base
pairs (bp) the size of the unread part in the middle of the sequence is typically
in the range of 100–300 bp as can be seen on the right hand side of Fig. 1. Every
read is written into a text based file in the FASTQ format. Sequencing of a
whole genome with ∼40× coverage typically generates roughly 300 GB of data
(uncompressed).

Fig. 1. Paired reads mapped onto the reference genome

Efficient compression algorithms obviously exploit data redundancy. The
first step is to identify known sequences and to map them onto the reference
genome as can be seen on the left hand side of Fig. 1. These sequences are easily
compressed by using their position in the reference, and current compression
algorithms already take advantage of this. However, not all the reads can be
aligned onto the reference genome, and typically ∼10% of the sequences remain
unmapped [1]. This can be caused by the fact that the individual genomes dif-
fer from the reference, by errors in the sequencing or because reads are part of
various other entities found in the body. Nevertheless these sequences remain
important [5], as they could be sign of a mutation or genetic disease, and should
therefore not be discarded. In this particular context clustering can provide
extra information about the unmapped reads (i.e. similarities, interdependen-
cies). This preprocessing step will bring useful additional information for the
end user which can take advantage of the clustering results to speed up genomic
data analysis such as de novo assembly or variant calling. It is in the general
interest to do hard work once and use the results often. The encoding stage is
the critical moment when it is possible to enrich the data at the cost of some
processing time but giving an advantage for every subsequent use of the data.
Adding extra information about relations between sequences with clustering will
not be specially expensive in storage space since the sequences in the clusters
share so many similarities, needing only to encode the differences.

1 This artificial human genome was built as an average of multiple human genomes.
2 http://www.illumina.com.

http://www.illumina.com

560 R. Wertenbroek et al.

The hardware implementation presented in this paper is an improvement of
the FPGA clustering architecture developed by the authors and presented in [10].
The new architecture was developed in order to implement a clustering pipeline
on multiple FPGAs, resulting in a considerable speed up of the clustering process
and therefore allowing the system to handle bigger FASTQ files. Furthermore,
the compression strategy for the clustering results will also be presented.

The rest of this paper is organized as follows: The next section introduces
the concept of clustering applied to genomic data. Section 3 presents the cur-
rent hardware implementation, then Sect. 4 shows results. Finally, Sect. 5 lists
conclusions and introduces future work.

2 Clustering

Clustering data is a well known field of research, and traditional algorithms have
the goal of finding a number k of clusters grouping data with respect to a neigh-
borhood function [3,8]. Clustering algorithms have been designed and tailored
for different domains including genomics [12], however no specific clustering algo-
rithm has been proven to be particularly useful for compressing genomic data.
Compression will benefit more from algorithms that create a variable number of
clusters with highly correlated data, rather than having a given constant number
of clusters. Therefore, instead of doing k-clustering, it would be better to seek
clusters regardless of a total number.

Algorithm 1 will classify sequences as members of a cluster if their distance
with the cluster reference is below a threshold, and seeds new clusters when
needed. The following neighborhood function is used to generate the distance:

– If two sequences overlap completely they have a distance of 0.
– If they overlap leaving out a number N of bases at the extremities the distance

is N .
– If they do not overlap at all the distance considered is infinite.

Algorithm 1. Clustering algorithm
1: function Clustering(seqs)
2: clusters ← ∅
3: while seqs �= ∅ do
4: calcClusters ← {seed with first N non overlapping seqs};
5: Remove these sequences from seqs;
6: for all seq ∈ seqs do
7: for all cluster ∈ calcClusters do
8: if isInCluster(seq, cluster) then
9: cluster ← {cluster, seq}; Remove seq from seqs;

10: clusters ← {clusters, calcClusters}
11: return clusters

Pipelined Multi-FPGA Genomic Data Clustering 561

Running Algorithm 1 in a purely sequential manner is extremely time con-
suming, but since testing for membership is easy to parallelize at a massive scale,
the cost is acceptable. An implementation of Algorithm 1 using FPGA technol-
ogy will benefit from the parallelization possibilities and the on-board memory
to significantly reduce processing time. To the best of our knowledge, FPGA
implementations of k-clustering have been published [7,14], but nothing with a
highly dynamic number of clusters.

3 Design Implementation

This section first describes the software setup, and then presents the multi-
FPGA architecture implementing the clustering algorithm. The target hardware
is a Micron Pico Computing EX-700 Backplane holding 6 AC-510 modules. Each
module is comprised of a Xilinx Kintex Ultrascale FPGA which has access to
a high bandwidth Hybrid Memory Cube (HMC) of 4 GB. All modules are con-
nected together via a PCIe ×8 switch.

3.1 Software Setup

The interface between the data (in the form of FASTQ files) and the FPGA
accelerators is represented by a C++11 software which, thanks to its multi-
threaded architecture, allows for pipelined stages. The software is therefore able
to read and send sequences from a FASTQ file while the FPGAs are running the
clustering algorithm, and at the same time retrieve and directly encode every
result coming from the FPGAs. These results are either references (center of a
cluster) or sequence membership information. When a result is a reference it goes
into a FASTQ file that will be compressed by a state of the art DNA compressor.
All the member sequences will be encoded in relation to the reference of the
cluster they belong to. This will generate a file containing all the information
about the clusters, and their member sequences encoded as differences. This
structured file will be compressed by a standard compressor.

3.2 Multi-FPGA Architecture

To parallelize the clustering algorithm even more compared to [10] it was decided
to span a clustering pipeline on multiple FPGAs. Using a pipeline facilitates the
data path and, once loaded, executes the same number of operations at a given
time as a fully parallel version.

The general data flow is the following: The sequences are sent to the first
FPGA for processing, they are then forwarded to the next FPGA for further
processing until reaching the last FPGA of the pipeline. The last FPGA checks
if the sequence is a reference, a matched sequence, or an unmatched sequence.
For every reference or matched sequence a notification is sent back to the PC.
In order to limit the number of transfers between the FPGAs and the PC a
memory local to the FPGAs is used, a high bandwidth Hybrid Memory Cube

562 R. Wertenbroek et al.

(HMC). To optimize the design the processing already starts when the PC begins
transferring sequences, and once all the sequences are transferred the data only
moves between the FPGAs and the HMC. To achieve this result the processing
algorithm is split in two phases (Fig. 2):

First FPGA 2nd FPGA Last FPGA

HM
C

Clustering Pipeline Clustering Pipeline Clustering Pipeline

Fig. 2. Data path during phase one.

Phase one. The first FPGA receives sequences from the PC. The sequences go
through its clustering pipeline and traverse the next FPGAs until they reach
the last FPGA. Each stage in the clustering pipeline represents a cluster, which
is initially unseeded and needs a reference sequence. This sequence cannot be a
member or reference of another cluster. Seeded clusters will then compare every
non reference sequence to their reference, and if a sequence can be a member of
the given cluster, it will be marked as such. If a sequence was already part of
another cluster it will only be updated if the distance to the new cluster refer-
ence is smaller. When reaching the last FPGA, sequences are either references,
members of a cluster, or do not belong to any cluster yet. Each reference and
member sequence is sent back to the PC and removed from the FPGAs. Thus
only the sequences that do not belong to any cluster created so far are stored
inside the HMC (Fig. 3).

First FPGA 2nd FPGA Last FPGA

HM
C

Clustering Pipeline Clustering Pipeline Clustering Pipeline

Fig. 3. Data path during phase two.

Phase two. Once all the sequences have been transferred from the PC a signal is
sent to change the data flow, and sequences are now read from the HMC and sent
back to the first FPGA in a loop. For each iteration of this loop the clusters are
cleared to be reseeded with new sequences. All other sequences are then checked
against the clusters to see if they belong to them. This is done exactly the same
way as in phase one, as just the data flow has been changed. The second phase

Pipelined Multi-FPGA Genomic Data Clustering 563

is repeated until all sequences become either a reference or member of a cluster,
leaving the HMC empty.

Although phase one is executed only once, phase two is repeated a certain
number of times. This high number of executions will imply a heavy utiliza-
tion of the HMC memory and will generate a huge amount of communications
between the FPGAs in the system. Using the maximum number of matching
units (checking for membership) possible decreases the number of executions of
phase two, since there will be less sequences after each run of phase two.

3.3 FPGA Internal Architecture

This section details the hardware architecture, and specifically the internal data
flow. Figure 4 shows the top hierarchy of our implementation.

1

0

Clustering
Pipeline

HMC
Controller

Result
Checker

1

0

To CPU

Phase 2 Last

HMC
Link

To next FPGA

To first FPGA

From CPU

From FPGA

Fig. 4. Top hierarchy of the FPGA implementation.

The internal architecture of each FPGA was made to be the same on each
FPGA to generate a unique and modular design. There are two main parameters
that can be set from the software to change the data flow inside an FPGA. The
first one is for selecting the input stream and the second one is to activate HMC
storage. HMC storage can be seen as a FIFO and is only required by the last
FPGA to store the huge amount of unmatched sequences between loops. If the
number of sequences is so big that it exceeds the capacity of the HMC on the
last FPGA any other FPGA in the chain can be set to use its HMC as a FIFO
to increase the total capacity.

The data flow outside the FPGA connecting their inputs and outputs is also
software programmable. This is made possible by the presence of a PCIe Switch
on the backplane holding the FPGAs. Every stream coming either from an FPGA
or the PC can be connected to any input. With our modular approach we are
capable of chaining any number of FPGAs together, and this is reconfigurable
via software. With our current setup we chained 6 FPGAs but it is possible,
for instance, to make two separate chains of 3 FPGAs. Another advantage of
having an on-board PCIe switch is that the communication between FPGAs
never interferes with the PCIe bus of the PC. The only packets traveling on
the PC’s PCIe bus are the sequences being sent to the FPGAs and the results
coming back.

564 R. Wertenbroek et al.

3.4 The Clustering Pipeline

As shown in Fig. 4, the core of the FPGA design is composed of a cluster-
ing pipeline. Each pipeline is encased between two FIFOs that act as a buffer
when the input and output stream rates vary. Each stage of the pipeline is
an autonomous machine representing a cluster. Each machine is responsible for
sequence transfer, cluster management, and can communicate with the previ-
ous and next stage to schedule a sequence transfer. This allows for distributed
pipeline management, e.g. preventing stages from transferring data when the
pipeline stalls because of back-pressure (output FIFO full). Each stage also
knows when to use a sequence as a reference, check for membership using the
internal matching unit, or simply transfer the sequence because it is already
matched. This kind of autonomy removes the need for global management of
the pipeline and allows us to span the pipeline on multiple FPGAs easily. Each
stage is also responsible for updating a sequence when it becomes a reference,
when it is considered to be a member of a cluster, or is updated because it fits
the current cluster better.

3.5 The Matching Units

The matching unit checks the distance of a sequence in relation to the cluster
center reference. It does this by aligning the sequence to the reference in several
positions, from 16 bases shifted to the left up to 16 bases shifted to the right.
If the overlapping parts match each other, i.e. they have the same bases (the
use of wild card bases is allowed, a ‘N’ base being used for this), the distance is
the lowest number of shifts that match. Two identical sequences would therefore
match with a distance of 0. The matching unit also checks the reverse comple-
ment of a sequence against the reference in all positions. Checking the reverse
complement makes sense because DNA is a double helix with one side being the
reverse complement of the other. If the sequence does not match within the 16
shift limit it is considered that the distance is more than the threshold and that
the sequence cannot be a member of the current cluster.

The matching unit needs seven clock cycles to check a sequence up to 126
bases long in every position from being shifted 16 bases to the left up to 16 bases
to the right with reverse complement checking.

3.6 Resources Usage

The final design is implemented on an Micron Pico Computing EX-700 backplane
bearing six AC-510 modules with a Xilinx Kintex Ultrascale 60 FPGA and 4 GB
of HMC each. This setup realizes a global clustering pipeline composed of 420
clustering units (70 per FPGA).

Pipelined Multi-FPGA Genomic Data Clustering 565

Table 1. Resource usage per FPGA. Kintex Ultrascale 60 with 70 internal matching
units (±16 shifts and reverse complement matching capability)

Logic utilization Used Avail. Usage

Number of Slice registers 240,352 663,360 36.23%

Number of Slice LUTs 257,087 331,680 77.51%

Number of occupied Slices 41,220 41,460 99.42%

Number of BlockRAM/FIFO 323.5 1,080 29.95%

The resource utilization of the design presented in Fig. 4 for each FPGA is
summarized in Table 1. Note: The pipeline runs at 125 MHz while the HMC and
PCIe controllers run at 250 MHz.

4 Tests and Results

This section summarizes the performance results and shows the speed gain
achieved by the new FPGA architecture compared to the old version presented
in [10]. The last implementation made possible the clustering of FASTQ files
composed of ∼100 × 106 unmapped sequences that would take years in soft-
ware thanks to parallelization and fast memories. With the expansion of the
clustering pipeline on 6 FPGAs and the usage of direct communication links,
a speed-up of 5 was measured. Moreover, this section will discuss the efficiency
of the clustering compression method against one of the best state-of-the-art
compression tools called SCALCE3 [6]. In the first implementation, the match-
ing units were grouped in a unique pipeline on a single FPGA. This limited the
maximum pipeline size to 70 matching units. Furthermore the first implementa-
tion did not take the HMC controller internal read and write request reordering
into account and could not guarantee a fixed order in the clustering. This made
the first hardware implementation non deterministic. Memory request reorder-
ing is now taken into account, granting a total reproducibility of the algorithm.
The new modular approach makes it possible to distribute the pipeline on any
number of FPGAs giving high flexibility and accelerating the execution of the
clustering task. To quantify the difference between the old and the new imple-
mentation, several FASTQ files were used, each composed of different amounts
of reads. Figure 5 shows the performances achieved by the two FPGA designs.
The sequences used during these experiments are unmapped paired reads of 126
bp. They were generated using an Illumina sequencer on a real human sample.

Figure 5 shows a measured speed-up between the old and the new design of
roughly 5 times. Theoretically the expected speed-up should exceed 6 because of
the number of matching units implemented and the fact that a bigger pipeline is
supposed to match more reads with each pass of phase two, which will decrease
the number of reads that need to be compared on all subsequent iterations of

3 http://sfu-compbio.github.io/scalce/.

http://sfu-compbio.github.io/scalce/

566 R. Wertenbroek et al.

Fig. 5. New versus last implementation running datasets with up to 1,200,000 reads.

phase two. However, the huge amount of communications between the FPGAs
and a more complex pipeline synchronization system are the reason the theoret-
ical speed-up could not be achieved. Nevertheless, thanks to this speed-up the
clustering of ∼100 × 106 unmapped sequences now takes less than a day.

At the compression stage, after clustering, results are composed of two sets
of reads, cluster references, and cluster members. The references are stored in
a FASTQ file, while the cluster members are encoded in a new file, with for
each cluster an ID linking to the reference followed by all the member sequences
encoded as differences to the reference. The FASTQ file of references will be
compressed by SCALCE and the encoded file will be compressed by a standard
compressor such as gzip. To evaluate the cost of adding clustering information,
files of ∼16 × 106 reads (∼1.58 GB of raw sequences), coming from a real human
sample, were compared on average resulting file sizes using three different com-
pression methods. First, using a standard compressor. Secondly, using SCALCE
for the references and adding the clustering information using a standard com-
pressor. Finally, with SCALCE alone. As shown in Table 2.

Table 2. Clustering compression efficiency compared to gzip and SCALCE

Original file Compressed by gzip Clustered and compressed Compressed by SCALCE

1.58 GBytes 274 MBytes 125 MBytes 114 MBytes

100% 17.3% 7.9% 7.2%

As we can see, adding the clustering information adds a cost of less than 10%
in terms of final file size compared to compressing the sequences with SCALCE.
This extra information can save a lot of time for the end user. Having the reads

Pipelined Multi-FPGA Genomic Data Clustering 567

clustered makes it possible to query the set for overlapping and related sequences
in a really short time, removing the need to do an all-vs-all comparison. This
could speed up processes such as de novo assembly in which a big part of process-
ing time is comprised of finding overlapping sequences to make contigs and exam-
ining the relations between ends to make scaffolds [9]. Most of the overlaps would
already be found by clustering. It is in the general interest to do hard work before
encoding, if the impact on file size is reasonable, because these files need to be
encoded once and will provide benefits for multiple applications.

5 Conclusions and Future Works

Using hardware accelerators made clustering possible even for big FASTQ files
(over 100×106 sequences) and the addition of the resulting clustering information
to the sequences resulted in a reasonable increase in storage cost (∼10%). The
clustering results can potentially speed up consuming tasks done on unmapped
reads. The encoded file makes it possible to query for overlapping reads on a given
sequence almost instantaneously, helps for graph extraction, and can also speed
up many statistical queries. The most time consuming part in most algorithms
is an all-vs-all comparison phase and our clustering method relieves this duty
from any subsequent user. The clustering information helps considerably even for
applications using other all-vs-all comparisons criteria than overlaps by already
creating smaller subsets with highly correlated data on which assertions are easily
tested. Allowing the total number comparisons needed to be highly reduced.

Future work includes quantifying the advantages of this information in com-
putational genomics, creating an API for ease of use of the enriched files, and
refining the implementation to reduce processing time. The authors are also cur-
rently working on an algorithm creating bigger artificial internal references on
which the unmapped reads could be located by position and length in order to
reduce the encoded file size even more.

Acknowledgments. The research presented in this paper was funded by the Swiss
PASC initiative in the framework of the PoSeNoGap (Portable Scalable Concurrency
for Genomic Data Processing) project. The authors would like to thank all the partic-
ipants for the fruitful discussions, namely Ioannis Xenarios, Nicolas Guex, Christian
Iseli, Thierry Schüpbach and Daniel Zerzion from SIB, Marco Mattavelli, and Claudio
Alberti from EPFL, Flavio Capitao, and Roberto Rigamonti from HEIG-VD.

References

1. Cox, A.J., Bauer, M.J., Jakobi, T., Rosone, G.: Large-scale compression of genomic
sequence databases with the Burrows-Wheeler transform. Bioinformatics 28, 1415–
1419 (2012)

2. Deorowicz, S., Grabowski, S.: Compression of DNA sequence reads in FASTQ
format. Bioinformatics 27, 860–862 (2011)

3. Du, K.L.: Clustering: a neural network approach. Neural Networks 23, 89–107
(2010)

568 R. Wertenbroek et al.

4. Fritz, M.H.Y., Leinonen, R., Cochrane, G., Birney, E.: Efficient storage of high
throughput DNA sequencing data using reference-based compression. Genome Res.
21, 734–740 (2011)

5. Gouin, A., Nouhaud, P., Legeai, F., Rizk, G., Simon, J.C., Lemaitre, C.: Whole
genome re-sequencing: lessons from unmapped reads. Journées Ouvertes Biologie
Informatique Mathématiques (2013)

6. Guerra, A., Lotero, J., Isaza, S.: Performance comparison of sequential and parallel
compression applications for DNA raw data. J. Supercomput. 72, 4696–4717 (2016)

7. Hussain, H.M., Benkrid, K., Seker, H., Erdogan, A.T.: FPGA implementation of
K-means algorithm for bioinformatics application: An accelerated approach to clus-
tering Microarray data. In: Adaptive Hardware and Systems, pp. 248–255 (2011)

8. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31,
651–666 (2010)

9. Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G.,
Kristiansen, K., Li, S., Yang, H., Wang, J., Wang, J.: De novo assembly of human
genomes with massively parallel short read sequencing. Genome Res. 20(2), 265–
272 (2010)

10. Petraglio, E., Wertenbroek, R., Capitao, F., Guex, N., Iseli, C., Thoma, Y.:
Genomic data clustering on FPGAs for compression. In: Wong, S., Beck, A.C.,
Bertels, K., Carro, L. (eds.) ARC 2017. LNCS, vol. 10216, pp. 229–240. Springer,
Cham (2017). doi:10.1007/978-3-319-56258-2 20

11. Pinho, A.J., Pratas, D., Garcia, S.P.: GReEn: a tool for efficient compression of
genome resequencing data. Nucleic Acids Res. 40(4), e27 (2011)

12. Pollard, K.S., van der Laan, M.J.: Cluster analysis of genomic data. Bioinformatics
and Computational Biology Solutions Using R and Bioconductor, pp. 208–228.
Springer, New York (2005)

13. Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron, M.J., Iyer,
R., Schatz, M.C., Sinha, S., Robinson, G.E.: Big data: astronomical or genomical?
PLoS Biol. 13, e1002195 (2015)

14. Winterstein, F., Bayliss, S., Constantinides, G.A.: FPGA-based K-means cluster-
ing using tree-based data structures. In: 23rd International Conference on Field
Programmable Logic and Applications, pp. 1–6 (2013)

http://dx.doi.org/10.1007/978-3-319-56258-2_20

First Experiences Accelerating Smith-Waterman
on Intel’s Knights Landing Processor

Enzo Rucci1, Carlos Garcia2(B), Guillermo Botella2, Armando De Giusti1,
Marcelo Naiouf3, and Manuel Prieto-Matias2

1 III-LIDI, CONICET, Facultad de Informática,
Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina

{erucci,degiusti}@lidi.info.unlp.edu.ar
2 Depto. Arquitectura de Computadores y Automática,

Universidad Complutense de Madrid, 28040 Madrid, Spain
{garsanca,gbotella,mpmatias}@ucm.es

3 III-LIDI, Facultad de Informática, Universidad Nacional de La Plata,
1900 La Plata, Buenos Aires, Argentina

mnaiouf@lidi.info.unlp.edu.ar

Abstract. The well-known Smith-Waterman (SW) algorithm is the
most commonly used method for local sequence alignments. However,
SW is very computationally demanding for large protein databases.
There are several implementations that take advantage of parallel capac-
ities on many-cores, FPGAs or GPUs, in order to increase the align-
ment throughtput. In this paper, we have explored SW acceleration on
Intel KNL processor. The novelty of this architecture requires the revi-
sion of previous programming and optimization techniques on many-
core architectures. To the best of authors knowledge, this is the first
KNL architecture assessment for SW algorithm. Our evaluation, using
the renowned Environmental NR database as benchmark, has shown that
multi-threading and SIMD exploitation showed competitive performance
(351 GCUPS) in comparison with other implementations.

Keywords: Bioinformatics · Smith-Waterman · Xeon-Phi · Intel-KNL ·
SIMD

1 Introduction

Nowadays the greatest challenge of Bioinformatics is no longer data genera-
tion, it is efficient information analysis and interpretation. In fact, sequencing
technology [9] is currently considered one of the most successful instruments in
Bioinformatics, basically solved by heuristic methods.

The key aspect of Smith-Waterman (SW) algorithm [15] is that it always
finds the optimal local alignment between two sequences. This characteristic
makes this method the basis of more sophisticated alignment technologies, so
its study and acceleration in different platforms has motivated a great interest
for the scientific community. Although many approaches, such as BLAST and
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 569–579, 2017.
DOI: 10.1007/978-3-319-65482-9 42

570 E. Rucci et al.

FASTA are more efficient in terms of execution time, they do not guarantee the
optimal alignment.

SW establishes similar regions between two DNA or protein sequences. A
score matrix must be built in order to determine the best alignment. Besides,
matrix size depends on sequence lengths which determines the parallel scal-
ability. From a parallel processing perspective, regarding DNA alignment with
sequences up to hundreds of million nucleotide, the huge matrix created only per-
mits performing a single sequence pair, so the low-level parallelism available in
the alignment can be exploited by means of the intra-task scheme. Nevertheless,
protein sequences which are shorter requires small matrices. This aspect permits
exploiting coarse level parallelism computing multiple independent alignments
simultaneously in an inter-task approach way.

The computational complexity of the SW algorithm has motivated a large
amount of research in order to reduce execution time by means of acceleration on
a great variety of architectures. In the last years, in the context of SW protein
alignment, we have witnessed SIMD exploitation available on modern CPUs,
highlighting the recently released Parasail library [2]. In the field of heteroge-
neous computing, the most successful solution is the CUDASW++ software [7]
for multi CUDA-enabled GPUs with concurrent CPU computing. Moreover, for
Intel’s co-processors based on Xeon Phi, we highlight both optimized hand-tuned
SW implementations denominated as SWAPHI [8] and LSBDS [5]. Also center-
ing on the Intel Xeon Phi alternative, Rucci et al. [13] have recently studied also
energy efficiency on a hybrid implementation that exploits both CPU and co-
processors simultaneously. Using FPGAs as accelerators, we can find linear sys-
tolic array implementations for Xilinx Virtex FPGAs [4], custom instructions [6]
and the proposal of Rucci et al. [14] where the behavior of the novel paradigm of
OpenCL on Altera’s FPGAs is studied, whose most relevant results show that
these devices are the most efficient from an energy footprint perspective.

Our paper proposes and evaluates a SW algorithm using the last generation
of Intel’s Xeon Phi with the Knights Landing (KNL) architecture. We would like
to highlight that although there exist SW studies in old Xeon Phi with Knights
Corner (KNC) architecture [5,8,13], to the best of authors knowledge there are
not related works in Bioinformatics scenarios with KNL architecture due to
its recent commercialization. Among the main differences of KNL regarding its
predecessor, there are the incorporation of AVX-512 extensions, a remarkable
number of vector units increment and new on-package high-bandwidth memory.
These aspects require the revision of the previous optimization proposals for the
SW algorithm.

Section 2 introduces the basic concepts of the Smith-Waterman algorithm.
Section 3 briefly introduces the Intel’s Xeon Phi architecture and in Sect. 4 we
describe our implementation of the SW algorithm. In Sect. 5 we discuss per-
formance results and finally, in Sect. 6, we conclude with some ideas for future
research.

First Experiences Accelerating Smith-Waterman 571

2 Smith-Waterman Algorithm

Given two sequences S1 and S2, with sizes |S1| = m and |S2| = n, the recurrence
relations for the SW algorithm with affine gap penalties [3] are defined below.

Hi,j = max{0,Hi−1,j−1 + SM(S1[i], S2[j]), Ei,j , Fi,j} (1)

Ei,j = max{Hi,j−1 − Goe, Ei,j−1 − Ge} (2)

Fi,j = max{Hi−1,j − Goe, Fi−1,j − Ge} (3)

Hi,j contains the score for aligning the prefixes S1[1..i] and S2[1..j]. Ei,j and
Fi,j are the scores of prefix S1[1..i] aligned to a gap and prefix S2[1..j] aligned
to a gap, respectively. SM is the scoring matrix which defines the substitution
scores for all residue pairs. Generally, SM rewards with a positive value when qi
and dj are identical or relatives, and punishes with a negative value otherwise.
Goe is the sum of gap open and gap extension penalties while Ge is the gap
extension penalty. The recurrences should be calculated with 1 ≤ i ≤ m and
1 ≤ j ≤ n, after initializing H, E and F with 0 when i = 0 or j = 0. The
maximum value in the alignment matrix H is the optimal local alignment score.

3 Intel’s Xeon Phi

With the Exascale challenge as a target in High Performance Computing (HPC),
accelerators seem to be the alternative to achieve such goals due to consumption
constrains in general-purpose processors. Xeon Phi (Phi) is the code brand name
given by Intel to a series of massively many-core processors designed for HPC
purposes. In 2012, Intel launches the first Phi generation (KNC) which mainly
features up to 61× 86 pentium cores with extended vector units (512-bit) and
simultaneous multithreading (four hardware threads per core). While the first
Phi was attached to the host processor via PCI Express bus, second generation
(KNL) can operate as standalone processor.

KNL architecture corresponds up to 36 Tiles interconnected by 2D mesh.
Each Tile includes 2 cores based on the out-of-order Intel’s Atom micro-
architecture (4 threads per core), 2 Vector Processing Units (VPUs) with AVX-
512 support and a shared L2 cache of 1 MByte.

One of the main differences of the KNL architecture regarding its predecessor
is the availability of on-package high-bandwidth memory (HBM). This particu-
lar technology permits three configuration modes: Cache Mode, Flat mode and
Hybrid mode. In Cache mode, HBM is used as classical cache with lower perfor-
mance rates and null source code changes. In Flat mode, the HBM is used as
addressable memory requiring the programmer intervention to manually indicate
which part of the data is allocated to this memory. It is important to note that in
Flat mode, MCDRAM is treated as Non-Uniform-Memory-Access architectures
(NUMA), thus programmers should take special care for achieving efficient mem-
ory access from the cores [1]. Finally, in the Hybrid mode, HBM is divided in
two parts: one part in Cache mode and one in Flat mode.

572 E. Rucci et al.

KNL supports not only old Intel’s multimedia extensions such as 128-bit
SSEx and 256-bit AVXx, but also modern 512-bit AVX-512. In fact, Intel will
unify the SIMD instruction-set on both general purpose (it announced its sup-
port on Xeon E5-26xx V5 at 2017) and KNL processors by means of AVX-512.
AVX-512 performs 512-bit SIMD capabilities, 32 logical registers, vector predi-
cation via eight new mask registers and gather/scatter indirect vector accesses.
Currently, modern Phi has two VPUs per core allowing SIMD parallelism which
acts as 32 SIMD-lanes for single-precision (512 bits registers/32 bits in SP × 2
VPUs = 32 lanes) and 16 SIMD-lanes for double-precision [16]. Although Intel
AVX-512 instructions contains several categories, Xeon Phi KNL architecture
only supports four: AVX-512F (foundation instructions); AVX-512CD (conflict-
detection); AVX-512ER (exponential and reciprocal); and AVX-512PF (prefetch
instructions).

From a programming point of view, one of the main goals of this platform is
the support of existing parallel programming models traditionally used on HPC
scenario such as the OpenMP, MPI or TBB paradigms [10], which simplifies
code development and improves portability over other alternatives based on
accelerator-specific programming languages such as CUDA or OpenCL. In fact,
although it should not be the most efficient way, KNL allows binary compatibility
with Xeon families.

4 SW Implementation

In this section, we will address the optimizations performed on the Intel Xeon
Phi KNL processor. Before describing them in detail, we would like to point out
the algorithm flow which can be summarized in the following steps:

1. Pre-processing stage: database sequences are pre-processed to allow subse-
quent parallel computation.

2. SW stage: alignments are carried out.
3. Sorting stage: alignment scores are sorted in descending order.

The inter-task parallelism approach is performed in order to exploit the SIMD
vector capabilities available on the Xeon Phi KNL processor. In that sense, data-
base sequences are processed in groups and the size of the groups is determined by
the number of SIMD vector lanes. Before grouping sequences, database sequences
are sorted by their lengths in ascending order and padded with dummy symbols.
This is so in order to favour memory pattern access and minimize workload
imbalances.

4.1 Multiple Parallelism Levels

Our implementation exploits both data and thread parallelism levels. On the one
hand, we have used SIMD instructions by means of hand-tuned intrinsic func-
tions. In particular, we have explored the usage of SSE4.1, AVX2 and AVX-512

First Experiences Accelerating Smith-Waterman 573

Fig. 1. Schematic representation of the
inter-task matrix computation

Fig. 2. SSE4.1 core instructions

Fig. 3. AVX2 core instructions Fig. 4. AVX-512 core instructions

extensions. On the other hand, we take advantage of the OpenMP programming
model to express parallelism across multiple cores. The database sequences are
dinamically distributed among the cores as soon as the threads become idle. Each
alignment matrix is divided into vertical blocks and computed in a row-by-row
manner (see Fig. 1). This blocking technique improves data locality reducing the
number of cache misses. In addition, the inner loop is fully unrolled to increase
performance.

Figures 2, 3 and 4 show the core instructions of SSE4.1, AVX2 and AVX-512
extensions, respectively. vCur is the block row being calculated while vPrev
is the previous one. After computing the current block row, vCur and vPrev
are swapped to process the next row. Besides, vSub represents the substitution
scores for the database sequence residues against the query residue. vE and vF
are the score vectors for alignments ending in a gap in the query and the database
sequence, respectively. vGoe represents the vector for the sum of gap open and
gap extension penalties while vGe is the vector for gap extension penalty. Last,
vS keeps the current optimal alignment score.

574 E. Rucci et al.

4.2 Instruction Set and Integer Range Selection

Although almost all alignment scores can be represented using an 8-bit integer
range in order to express as much SIMD parallelism as possible, there are some
alignments that cannot be expressed with this integer range so a wider range
should be used. In the context of KNL processors, the instructions sets supported
are SSEx, AVXx and AVX-512. While SSE4.1 extensions allow the computation
of 16 alignments in parallel, AVX2 instructions double this number. Saturated
arithmetic operations are used in additions operations to detect overflow com-
putation. When potential overflow is detected (i.e. the alignment score is equal
to the maximum value of the integer representation employed), the alignment is
recalculated using the next wider integer range. Overflow checking is performed
to verify if the overflow occurred in the lower/upper half or in both halves of the
score vector in order to avoid unnecessary recalculations. Unfortunately, Xeon
Phi KNL processors do not include AVX-512BW subset (byte and word version
of instructions in AVX-512F). This fact means that the narrowest integer range
in these devices is 32 bit for AVX-512. So AVX-512 cannot compute more align-
ments simultaneously than SSE4.1 or AVX2. In contrast, operations for overflow
detection are not required.

4.3 Substitution Scores

Our code also implements other well-known optimizations of the SW algorithm
that have been proposed in previous works, such as the Query Profile (QP) [12]
and Score Profile (SP) [11] optimisations:

– The QP strategy is based on creating an auxiliary two-dimensional array
of size |q| × |∑ |, where q is the query sequence and

∑
is the alphabet.

Each row of this array contains the scores of the corresponding query residue
against each possible residue in the alphabet. Since each thread compares the
same query residue against different ones from the database, this optimiza-
tion improves data locality at the cost of a negligible increment in memory
requirements.

– The SP technique is based on constructing an auxiliary n×L×∑
score array,

where n is the length of the database sequence, L is the number of vector
lanes and

∑
is the alphabet. This array contains the substitutions scores for

each query-database residue combination and is constructed before matrix
computation. SP reduces the number of operations in the innermost loop
since its values can be gathered using a single vector load. However, because
the score array must be re-built for each database sequence, its suitability
must be evaluated, especially for short queries.

5 Experimental Results

5.1 Experimental Design

All tests have been performed on an Intel server running CentOS 7.2 equipped
with a Xeon Phi 7250 processor 68-core 1.40 GHz (4 hw thread per core and

First Experiences Accelerating Smith-Waterman 575

16 GB HBW memory) and 64 GB main memory. The processor was run in Flat
memory mode and Quadrant cluster mode.

We have used Intel’s ICC compiler (version 17.0.1.132) with the -O3 opti-
mization level by default. The experiments used to assess performance are sim-
ilar to those in previous work [7,11,13,14]. We have evaluated our implementa-
tion by searching 20 query protein sequences against the well-known Environ-
mental NR database (release 2016 11)1. This database comprises 1384686404
amino acid residues in 6962291 sequences (maximum length of 11944). The
input queries come from the Swiss-Prot database2 (accession numbers: P02232,
P05013, P14942, P07327, P01008, P03435, P42357, P21177, Q38941, P27895,
P07756, P04775, P19096, P28167, P0C6B8, P20930, P08519, Q7TMA5, P33450,
and Q9UKN1), ranging in length from 144 to 5478. The scoring matrix selected
was BLOSUM62, and gap insertion and extension penalties were set to 10 and
2, respectively.

5.2 Performance Results

GCUPS (billion cell updates per second) is commonly used as performance met-
ric in the SW context and its value is calculated using the formula |Q|×|D|

t×109 , where
|Q| is the total number of residues in the query sequence, |D| is the total number
of residues in the database and t is the runtime in seconds [11].

Fig. 5. Performance for the different instruction sets used varying the number of
threads.

1 Environmental NR: ftp://ftp.ncbi.nih.gov/blast/db/FASTA/env nr.gz.
2 Swiss-Prot: http://web.expasy.org/docs/swiss-prot guideline.html.

ftp://ncbi.nih.gov/blast/db/FASTA/env_nr.gz
http://web.expasy.org/docs/swiss-prot_guideline.html

576 E. Rucci et al.

Figure 5 shows the performance for the different instruction sets used varying
the number of threads3. The best performances are achieved by AVX2 extensions
(340.3 GCUPS) followed by AVX-512 (157.8 GCUPS) and, last, SSE4.1 (97.6
GCUPS). As mentioned before, data level exploitation is critical to achieve max-
imum performance in this application. Even though AVX-512 doubles vectorial
width of AVX2 instructions, the lack of low-range integer operations imposes a
strong limit to its performance taking into account that almost all alignment
scores can be represented using 8-bit integer data. Despite the fact that the
SSE4.1 version computes 16 alignments in parallel as the AVX-512 counter-
parts, the performance of the former is slower compared to the latter. As only
one of the VPUs of each core has support for a subset of byte and word SSE
instructions, codes that use these operations suffer performance losses.

In relation to the number of threads, AVX2 implementation reaches top per-
formance using 136 threads, although performance with 68 threads is very close
(just 1% slower). Similar behaviors are presented with AVX-512 and SSE4.1
intrinsics. In the AVX-512 case, performance with 68 threads is 3% higher than
the corresponding to 136 threads; while SSE4.1 version is slightly better (1%)
employing 204 threads compared to 272 threads.

Lastly, this figure also allows us to evaluate the performance gains obtained
by HBM usage. As the entire application fits in the MCDRAM, we can get a
benefit from placing all data in that memory using the numactl utility (without
source code modification). In particular, MCDRAM exploitation achieves an
average speedup of 1.04× and a maximum speedup of 1.1×.

Fig. 6. Performance evolution varying query length.

3 SSE4.1 and AVX2 versions using QP technique were excluded from the analysis to
improve figure readability since we found that SP scheme always achieved the best
performance, as in previous work [13].

First Experiences Accelerating Smith-Waterman 577

Figure 6 illustrates performance evolution varying query length with the
most favorable configuration for each implementation: 204, 136 and 68 threads
for SSE4.1, AVX2 and AVX-512 intrinsics, respectively. Also, data is placed
in MCDRAM memory. SSE4.1 and AVX-512 implementations have an almost
constant performance achievement. As expected, this behavior is motivated by
the exploitation of inter-task parallelism scheme. AVX2 version achieves an
increasing performance tendency that becomes soft with larger query sequences
(m ≥ 2504). For AVX-512, the behavior of QP and SP differ, observing better
performance for short sequences in QP. This aspect, also observed in previous
research for the Xeon Phi KNC [8,13], is due to the additional overhead incurred
by the SP construction, which does not compensate for the indexation benefits
in shorter queries. As a summary, peak performances achieved are 351.2, 162.8,
157.2 and 98.9 GCUPS for AVX2, AVX-512 (SP), AVX-512 (QP) and SSE4.1
implementations.

6 Conclusions

The SW algorithm is a critical application in bioinformatics scenario and has
become the base of more sophisticated alignment technologies, so its study and
acceleration in different platforms has motivated a great interest for the scientific
community. In this paper, we have explored SW acceleration on the last gener-
ation of Intel’s Xeon Phi processors with the KNL architecture. To the best of
the authors knowledge, this is the first study of this kind.

Among the main contributions of this research we can summarize:

– Exploitation of low-range integer vectors is crucial to achieve top performance
in this application. Even though AVX-512 doubles vectorial width of AVX2
instructions, the latter reach the maximal performance. The lack of AVX-
512BW instructions in Xeon Phi KNL processors imposes a strong limit to
its performance.

– Multi-threading must be carefully evaluated. Different number of threads pro-
duced the best results for each instruction set.

– MCDRAM usage demonstrated to be an effective way to increase performance
with practically null programmer intervention. In particular, it produced an
average speedup of 1.04× and a maximum speedup of 1.1×.

– Peak performances are 351.2, 162.8, 157.2 and 98.9 GCUPS for AVX2, AVX-
512 (SP), AVX-512 (QP) and SSE4.1 implementations.

In view of the obtained results, as future works we will consider:

– Xeon Phi KNL processors offer different cluster and memory modes. We are
interested in exploring the Flat mode with larger genomic databases that do
not fit in MCDRAM. Also, we will evaluate programming and optimization
techniques in other available modes as a way to extract more performance.

– As Xeon Phi KNL processors reported competitive performance, we plan
to perform a comparison with other accelerators not only from performance
perspective but also from power efficiency point of view.

578 E. Rucci et al.

– Future Xeon KNL processors will include AVX-512BW set. As this charac-
teristic enables more SIMD parallelism, we see a promising opportunity in
accelerating SW database searches on these devices.

Acknowledgments. This work has been partially supported by Spanish government
through research contract TIN2015-65277-R and CAPAP-H6 network (TIN2016-81840-
REDT).

References

1. Asai, R.: MCDRAM as high-bandidth memory (HBM) in knights landing proces-
sors: developer’s guide (2016). https://goparallel.sourceforge.net/wp-content/
uploads/2016/05/Colfax KNL MCDRAM Guide.pdf

2. Daily, J.: Parasail: SIMD C library for global, semi-global, and local pairwise
sequence alignments. BMC Bioinform. 17, 81 (2016)

3. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol.
162, 705–708 (1981)

4. Isa, M., Benkrid, K., Clayton, T., Ling, C., Erdogan, A.: An FPGA-based para-
meterised and scalable optimal solutions for pairwise biological sequence analysis.
In: 2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp.
344–351, June 2011

5. Lan, H., Liu, W., Schmidt, B., Wang, B.: Accelerating large-scale biological data-
base search on xeon phi-based neo-heterogeneous architectures. In: 2015 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), pp. 503–
510, November 2015

6. Li, T.I., Shum, W., Truong, K.: 160-fold acceleration of the Smith-Waterman algo-
rithm using a field programmable gate array (FPGA). BMC Bioinform. 8, I85
(2007)

7. Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: accelerating Smith-
Waterman protein database search by coupling CPU and GPU SIMD instructions.
BMC Bioinform. 14, 117 (2013)

8. Liu, Y., Schmidt, B.: Swaphi: Smith-waterman protein database search on xeon
phi coprocessors. In: 25th IEEE International Conference on Application-Specific
Systems, Architectures and Processors (ASAP 2014) (2014)

9. Mount, D.W.: Bioinformatics: Sequence and Genome Analysis. Mount Bioinfor-
matics. Cold Spring Harbor Laboratory Press, New York (2004)

10. Reinders, J., Jeffers, J., Sodani, A.: Intel Xeon Phi Processor High Performance
Programming Knights, Landing edn. Morgan Kaufmann Publishers Inc., Boston
(2016)

11. Rognes, T.: Faster Smith-Waterman database searches with inter-
sequence SIMD parallelisation. BMC Bioinform. 12(1), 221 (2011).
http://dx.doi.org/10.1186/1471-2105-12-221

12. Rognes, T., Seeberg, E.: Six-fold speed-up of Smith-Waterman sequence data-
base searches using parallel processing on common microprocessors. Bioinformatics
16(8), 699 (2000). http://dx.doi.org/10.1093/bioinformatics/16.8.699

13. Rucci, E., Garcia, C., Botella, G., De Giusti, A., Naiouf, M., Prieto-Matas, M.: An
energy-aware performance analysis of SWIMM: Smith Waterman implementation
on Intel’s Multicore and Manycore architectures. Concurr. Comput. Pract. Exp.
27(18), 5517–5537 (2015). http://dx.doi.org/10.1002/cpe.3598

https://goparallel.sourceforge.net/wp-content/uploads/2016/05/Colfax_KNL_MCDRAM_Guide.pdf
https://goparallel.sourceforge.net/wp-content/uploads/2016/05/Colfax_KNL_MCDRAM_Guide.pdf
http://dx.doi.org/10.1186/1471-2105-12-221
http://dx.doi.org/10.1093/bioinformatics/16.8.699
http://dx.doi.org/10.1002/cpe.3598

First Experiences Accelerating Smith-Waterman 579

14. Rucci, E., Garcia, C., Botella, G., De Giusti, A., Naiouf, M., Prieto-Matas, M.:
OSWALD: OpenCL Smith-Waterman algorithm on altera FPGA for large protein
databases. Int. J. High Perform. Comput. Appl. (2016). http://dx.doi.org/10.1177/
1094342016654215

15. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147(1), 195–197 (1981)

16. Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K., Chinthamani, S., Hut-
sell, S., Agarwal, R., Liu, Y.C.: Knights landing: second-generation intel xeon phi
product. IEEE Micro 36(2), 34–46 (2016)

http://dx.doi.org/10.1177/1094342016654215
http://dx.doi.org/10.1177/1094342016654215

Power-Performance Evaluation of Parallel
Multi-objective EEG Feature Selection

on CPU-GPU Platforms

Juan José Escobar, Julio Ortega(B), Antonio Francisco Dı́az, Jesús González,
and Miguel Damas

Department of Computer Architecture and Technology, CITIC,
University of Granada, Granada, Spain

{jjescobar,jortega,afdiaz,jesusgonzalez,mdamas}@ugr.es

Abstract. Heterogeneous CPU-GPU platforms include resources to
benefit from different kinds of parallelism present in many data mining
applications based on evolutionary algorithms that evolve solutions with
time-demanding fitness evaluation. This paper describes an evolutionary
parallel multi-objective feature selection procedure with subpopulations
using two scheduling alternatives for evaluation of individuals accord-
ing to the number of subpopulations. Evolving subpopulations usually
provides good diversity properties and avoids premature convergence in
evolutionary algorithms. The proposed procedure has been implemented
in OpenMP to distribute dynamically either subpopulations or individ-
uals among devices and OpenCL to evaluate the individuals taking into
account the devices characteristics, providing two parallelism levels in
CPU and up to three levels in GPUs. Different configurations of the
proposed procedure have been evaluated and compared with a master-
worker approach considering not only the runtime and achieved speedups
but also the energy consumption between both scheduling models.

Keywords: Heterogeneous subpopulations scheduling · Energy-aware
computing · EEG classification · Multi-objective feature selection · GPU

1 Introduction

Many data mining applications involve high-dimensional classification, cluster-
ing, feature selection and optimization problems that can take advantage of
evolutionary algorithms. Although these algorithms could require big runtime
in high-dimensional problems, they are amenable to be accelerated by present
parallel computer architectures in several ways.

The contribution of this paper is twofold. On the one side we provide a
subpopulation-based evolutionary algorithm to take advantage of parallel archi-
tectures involving multiple general-purpose superscalar multicore CPUs and
GPUs for accelerating an electroencephalogram (EEG) classification problem.
Precisely, EEG is a good example of the applications that can benefit from evo-
lutionary computation as it deals with high-dimensional patterns and requires
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 580–590, 2017.
DOI: 10.1007/978-3-319-65482-9 43

Power-Performance Evaluation of Parallel Multi-objective EEG 581

feature selection techniques to remove noisy, irrelevant features or to improve the
learning accuracy and result comprehensibility, especially whenever the number
of features in the input patterns is higher than the number of available patterns.
In our previous papers [1–3] we describe the benefits of GPUs to accelerate EEG
classification for Brain Computing Interface tasks (BCI) [4], which requires solv-
ing problems with different parallelism types.

On the other side, the second contribution of the paper deals with the power-
performance assessment of the here provided subpopulation-based evolutionary
algorithm in comparison with a master-worker parallel implementation. Energy-
saving has become an important issue in computer science and engineering
for economic and environmental reasons and should be considered at par with
decreasing the program running times. To the best of our knowledge, there is
not any paper that compares different implementations of parallel evolutionary
algorithms according to their energy consumption. For example, paper [5] deals
more with the analysis of the energy consumption in different platforms of a
sequential evolutionary procedure.

After this introduction, Sect. 2 describes the problem of feature selection
by evolutionary multi-objective optimization and summarizes both alterna-
tives to implement parallel evolutionary algorithms in heterogeneous CPU-GPU
architectures. Section 3 gives the details of our proposed codes to implement
a subpopulation-based parallel evolutionary procedure for multi-objective fea-
ture selection. Then, Sect. 4 describes and analyses the experimental results and
finally, Sect. 5 summarizes the conclusions.

2 Multi-objective Feature Selection on CPU-GPU
Platforms

The application here considered deals with feature selection in classification
problems involving patterns with high number of features and curse of dimen-
sionality problems. In [1], Fig. 1 describes our multi-objective approach to feature
selection in unsupervised classification of EEG patterns, which can be used in
data mining applications [6,7], and its benefits in both supervised and unsu-
pervised classification have been reported elsewhere [8]. A multi-objective evo-
lutionary procedure, in our case the well-known NSGA-II algorithm [9], evolves
subpopulations of individuals that codify different feature selections.

Given a feature selection (an individual in the subpopulation), the NP pat-
terns included in the database, DS, will be the set of training patterns by
choosing the components corresponding to the number of selected features,
NF . This way, the K-means algorithm has been applied to the NP patterns
Pi = (p1i , ..., p

NF
i)(i = 1, ..., NP) to determine the centroids Kt(j)(j = 1, ..,W)

of the W possible clusters (W is known in our EEG classification problem, and
it is equal to the number of classes). Once the clusters are built by including
each pattern in its nearest centroid, the fitness of each individual in the subpop-
ulation is evaluated by using two Clustering Validation Indices (CVIs), defined
by the intraclass f1 and the interclass f2 distances (details given in [3]). In our

582 J.J. Escobar et al.

codes, the evaluation of the fitness function for each individual requires between
97.36% (with 30,000 individuals) and 99.93% (for 120 individuals) of runtime.

As GPU architectures constitute the present mainstream approach to take
advantage of technology improvements, their use has been described in many
previous papers on parallel metaheuristics and evolutionary computation [10].
The vast majority of papers on parallel implementations of evolutionary algo-
rithms involving CPU-GPU heterogeneous architectures deals with the acceler-
ation rates attained by the GPUs with respect to a base parallel or even sequen-
tial implementation that only use CPU cores. As it is indicated in [11], the most
direct alternative to use a GPU is to evaluate the fitness of a given individual
in the subpopulation taking advantage of the data parallelism that could be
present in the fitness function to be computed. The speedups achieved by this
approach depend on the matching between the data parallelism of the fitness
function and the characteristics of the GPU architecture and also on the time
required by the data transference between the GPU and the host GPU through a
bus with a limited bandwidth. The alternative of complete GPU implementation
of the evolutionary algorithm [12–14] could alleviate these problems. Neverthe-
less, these approaches have to take into account the memory requirements of
the application, as not only the individuals of the subpopulation but also the
whole datasets required to compute their fitness should be located in the GPU
memory.

An alternative GPU implementation of the non-dominance rank used
in NSGA-II, the Archived-based Stochastic Ranking Evolutionary Algorithm
(ASREA) is provided in [15]. Nevertheless, works analysing the effect in the par-
allel performances of heavy fitness functions requiring high-volume datasets and
the parallelization on a heterogeneous platform of a whole data mining applica-
tion with similar characteristics to our target application are less frequent.

In our previous papers [1–3] we propose a multi-objective feature selection
scheme that implements both functional and data parallelism and can be exe-
cuted either in a GPU or in multiple CPU superscalar cores. The first version
of our GPU code provided in [1] has been improved by coalescing of memory
accesses and minimization of memory bank conflicts optimization [2]. The rele-
vance of taking into account the memory access patterns of the algorithms and
a more detailed analysis of the use of resources to extract the data parallelism
available in the codes are shown in [3]. Here we propose a subpopulation-based
approach in addition to implementing two dynamic distributions of workload
among the CPU and GPU according to the number of subpopulations used.
The different alternatives of the procedure have been evaluated not only by the
runtime but also by considering the energy consumptions.

3 A Subpopulation-Based OpenMP-OpenCL Parallel
Code

In this section, we describe a new parallel multi-objective evolutionary proce-
dure, implemented in OpenMP and OpenCL, that dynamically distributes sub-
populations of individuals among both the GPU and the CPU cores. In our

Power-Performance Evaluation of Parallel Multi-objective EEG 583

platform, the GPU plays the role of a coprocessor connected, through a bus, to
a host including multiple superscalar CPU cores that share the main memory.
In OpenCL terms, the basic computing cores of the GPU are the so-called work-
items. Several work-items along with multiple instruction units and a register
file comprise a Streaming Multiprocessor (SMX). A GPU can include multiple
SMXs, allowing simultaneous executions of the same program on different data,
i.e. Single Program Multiple Data (SPMD) model. The threads are organized
within thread blocks and all threads in a block are assigned to a single SMX.

Fig. 1. Two dynamic scheduling alternatives for evaluation of individuals. The proce-
dure schedules individuals when only one subpopulation is detected or subpopulations
otherwise. Two parallelism levels can be achieved in a CPU and up to three in a GPU

Algorithm 1 describes our parallel multi-objective evolutionary algorithm
based on subpopulations, named D2S NSGAII (Dynamic Distribution of Subpop-
ulations using NSGA-II), corresponding to the “Yes” decision shown in Fig. 1.

As many CPU threads as available OpenCL devices, ND, are created through
the corresponding OpenMP pragma to parallelise the loop which iterates over
all subpopulations (lines 3–15 of Algorithm1). This way, the subpopulations
are dynamically allocated to one of these CPU threads, which implements the
evolutionary operators (crossover in line 5, replacement in lines 11–13 and the
migration in line 16) while the evaluation of the individuals of the correspond-
ing subpopulation are executed either on a CPU thread (call evaluationsCPU
in line 7) or on GPU (call evaluationsGPU in line 9). A migration implies to

584 J.J. Escobar et al.

Algorithm 1. Subpopulations scheduler pseudocode. The evaluation of subpopulations is
distributed among all OpenCL devices, where each of them is assigned to one OpenMP thread

1 Function D2S NSGAII(Sp,ND, D,NSpop,M,DS,K,DSt)

Input : The initial subpopulations, Spi; ∀i = 1, ..., NSpop

Input : Number of available OpenCL devices, ND

Input : Object Dj containing the OpenCL devices, ∀j = 1, ..., ND

Input : Number of subpopulations NSpop to be evolved
Input : Number of individuals in each subpopulation, M
Input : Dataset DS: NP training patterns of NF features
Input : Set K of W centroids randomly chosen from DS
Input : Dataset DSt is DS in column-major order
Output: S, the new solution for the problem

2 repeat

// OpenMP parallel section with ND devices

3 repeat

// Start the evolution process

4 repeat

5 Offspr ← UniformCrossover(Spi)
6 if Dj is a CPU then
7 Offspr ← evaluationsCPU(Offspr,M,DS,K)
8 else
9 Offspr ← evaluationsGPU(Offspr,M,DS,K,DSt)

10 end

// Replacement process

11 Aux ← Join Spi and Offspr in one array
12 Aux ← nonDominatedSorting(Aux,M + NOffspr)
13 Spi ← Copy the first M individuals from Aux

14 until the number of subpopulations generations is reached;

15 until all NSpop subpopulations are evaluated;

16 Sp ← migration(Sp,NSpop,M)

17 until the number of desired migrations is reached;

// Recombination process

18 Sp ← nonDominatedSorting(Sp,NSpop × M)
19 S ← Copy the first M individuals from Sp

20 return S

21 End

build a new set of subpopulations. To define a new subpopulation the given set
of solutions in the subpopulation receives solutions from the rest of subpopula-
tions. More specifically, each subpopulation contributes with half of its solutions
in its present Pareto front at most. Finally, the solutions obtained by the differ-
ent subpopulations are recombined by the main CPU thread (lines 18–19) and

Power-Performance Evaluation of Parallel Multi-objective EEG 585

returned at the end of the function (line 20). Algorithm1 is repeated according
to the required number of subpopulation generations and migrations.

4 Experimental Results

In this section, we analyse the performance of our OpenMP-OpenCL codes run-
ning on Linux CentOS 6.7 operating system, in a node with 32 GB of DDR3 mem-
ory and two Intel Xeon E5-2620 v4 processors at 2.1 GHz including eight cores
per socket with Hyper-Threading, thus comprising 32 threads. The node also
has a Tesla K40m with 12 GB of global memory, 288 GB/s as maximum memory
bandwidth and 2880 CUDA cores at 745 MHz, distributed into 15 SMXs, thus
including 192 cores per SMX. In our experiments, we have used three dataset
from the BCI Laboratory at the University of Essex and described in [16]. They
correspond to subjects coded as 104, 107 and 110, and each include 178 EEG
patterns with 3600 features per patterns.

The implemented NSGA-II algorithm uses uniform crossover with a prob-
ability of 0.75, a mutation by inversion of the selected bit with probability of
0.025, and selection by binary tournament. The hyper volumes are obtained with
(1,1) as reference point, and the minimum values of the cost functions f1 and
f2 are respectively 0 and −1. Thus, the maximum value for the hypervolume is
2. Due to space limitations, in this paper we do not provide an analysis of the
influence of the procedure characteristics in the hypervolume results. However,
we have observed that the different procedures provide good enough solutions
included in Pareto fronts with average hyper volumes between 1.89 and 1.97 and
standard deviations among 0.001 and 0.01. Although our subpopulation algo-
rithms are not equivalent to the sequential evolutionary algorithms with only
population, they provide similar hypervolume results to those obtained by the
base algorithm with one subpopulation.

Figure 2 provides the averages of the speedups obtained for the dataset of
subject 110 by different platform configurations with 32 CPU threads and/or 15
GPU SMXs. The speedup characteristics for subjects 104 and 107 are similar
to those shown in Fig. 2. In the Figs. 2a, b and c, populations of 480 individu-
als are used distributed into 2, 4, 8 and 16 subpopulations of, respectively, 240,
120, 60 and 30 individuals. Each subpopulation independently executes genera-
tions among migrations. In addition, Fig. 2 shows results for 1 to 5 migrations
and, as all algorithms execute 60 generations, respectively 60, 30, 20, 15 and
12 generations of independent evolutions are executed by each subpopulation
between migrations and also show improvements in the speedups as the number
of individuals in the subpopulations increases, or the number of subpopulations
decreases (is the same, as the number of individuals in the population is the same
in all cases, i.e. 480). With respect to changes in the number of migrations, the
speedups remain approximately constant. It has to be taken into account that a
migration implies to send individuals and cost functions among subpopulations
and thus, its cost increases with the number of individuals in the population
and the number of subpopulations. Nevertheless, the communications are indeed

586 J.J. Escobar et al.

(a) (b)

(c) (d)

Fig. 2. Averages of speedups achieved with different platform configurations and sub-
populations: (a) GPU (15 SMXs); (b) CPU (32 cores); (c) CPU + GPU; (d) Compar-
ison of platforms for different subpopulations and individuals per subpopulation

done through the shared memory that stores the information about individuals
and their fitness and their costs should not be more costly that the replacement
process (lines 11–13 in Algorithm 1). The main changes shown in the speedups of
Figs. 2a, b and c seems to be determined by the number of subpopulations and
their size (as more subpopulations means less individuals per subpopulation). As
the number of subpopulations grows, the number of calls to the GPU or CPU
kernels that allocates a subpopulation to the corresponding device also grows.
Moreover, as the device then distributes the individuals in the subpopulation
among the corresponding GPU or CPU cores, as less individuals are included in
the subpopulation more unbalanced workloads are possible.

Fig. 3. Power measured along the execution of 600 generations. Four execution modes
with 480 individuals, 2 subpopulations and subject 110

Power-Performance Evaluation of Parallel Multi-objective EEG 587

By comparing Figs. 2a, b and c is apparent that the speedups obtained by
using only the 32 CPU cores are quite similar to those obtained by the 15 SMXs
of the GPU. The two levels of parallelism provided by the GPU to accelerate the
fitness computation make possible this similar performance even with respect to
a much higher number of CPU cores. The effect of using both GPU and CPU
cores is shown in Figs. 2c and d. As Fig. 2d shows, the speedup grows as the
number of subpopulations decreases except for using only one subpopulation.
In this case, the CPU kernel and the GPU kernel respectively take 32 and 15
individuals and thus, among 15 (480/32 = 15) and 32 (480/15 = 32) calls to the
CPU or GPU kernels are required. Consequently, the number of calls is higher
in the case of one subpopulation than in the case of multiple subpopulations.

Figure 3 provides the evolution of the instantaneous power consumed along
the execution of our procedure, in four different situations: the sequential version
in only one CPU core, and a parallel version with a population of 480 individuals
and 2 subpopulations (240 individuals per subpopulation) executed only by the
32 CPU cores of the platform, only by the 15 SMX of the GPU, or by using both
GPU and CPU cores. The power (and the energy) consumption in each node

Table 1. Running times and energy-aware measures in different computation modes,
multiple number of subpopulations NSpop and M individuals per subpopulation

NSpop M Mode Time (s) E(W × h) % Sequential time % Sequential energy

1 480 Seq 83.08 0.8 - -

Tesla 7.52 0.36 9.07 45.66

Xeon 6.55 0.46 7.89 56.21

He 4.97 0.41 5.99 50.34

2 240 Seq 89.36 0.91 - -

Tesla 7.64 0.37 8.56 40.88

Xeon 6.53 0.42 7.31 45.88

He 4.12 0.34 4.62 40.26

4 120 Seq 83.13 0.85 - -

Tesla 7.92 0.38 9.53 46.14

Xeon 6.86 0.42 8.25 49.61

He 4.19 0.34 5.04 39.93

8 60 Seq 82.85 0.86 - -

Tesla 8.51 0.42 10.27 48.74

Xeon 7.42 0.41 8.96 47.76

Het 4.58 0.36 5.53 42.62

16 30 Seq 79.61 0.84 - -

Tesla 8.59 0.43 10.78 51.74

Xeon 8.12 0.44 10.2 52.8

Het 4.45 0.37 5.58 44.44

588 J.J. Escobar et al.

has been measured by using a data acquisition system we have devised, based
on Arduino Mega, which gives four real-time measures per second and per node
of power and energy consumption. Figure 3 clearly shows the beginning and the
end of each alternative. It is also clear that the highest power consumption corre-
sponds to the “CPU+CPU” configuration, followed by the configurations includ-
ing only GPU SMXs and only CPU cores. The sequential alternative presents
the lowest power consumptions. Nevertheless, the energy consumption depends
on the time required to complete the task, as Table 1 shows. This table provides,
for different number of subpopulations and configurations and 60 generations,
the running time and the energy consumed along with the percentage of run-
ning time and energy consumed by each parallel configuration, with respect to
those values of the sequential execution. The energy that the node would con-
sume in idle mode is not included. As can be seen, except for the case of using
only one subpopulation, the best results on energy consumption correspond to
the heterogeneous configuration involving CPU and GPU cores. Although the
instantaneous power consumed is higher, the achieved speedup allows better
consumption figures. It has to be noticed that the energy measures corresponds
to the whole node including the energy consumption of buses and memories.
Nevertheless, differences are still apparent for different parallel alternatives.

5 Conclusions

This paper proposes and analyses a parallel heterogeneous implementation of a
multi-objective feature selection procedure based on subpopulations that takes
advantage of both superscalar multicore CPU and GPU architectures. It starts
OpenMP threads corresponding to the devices in the platform. Each of these
threads distributes the fitness evaluation of the individuals (through a K-means
algorithm) in each subpopulation either to GPU SMXs or to CPU cores by
launching the corresponding OpenCL kernel (CPU or GPU [2]).

The experimental evaluation has been done in terms of speedup and energy
consumption for different alternatives of subpopulations, migrations, and plat-
form configurations. It has been shown that the heterogeneous configuration,
including GPU and CPU cores, provides not only better speedups results but also
lower energy consumption. Compared with a master-worker parallel implementa-
tion without subpopulations (the alternative using only one subpopulation) the
heterogeneous “CPU+GPU” configuration still provides the highest speedups,
although the GPU configuration provides the lowest energy consumption.

Among the alternatives that should be also explored to take advantage
of both superscalar CPU and GPU cores available in present platforms, a
message-passing implementation of co evolutionary subpopulations could offer
new insights about the possibilities of heterogeneous parallel architectures to
tackle machine learning and data mining applications that demand a high
amount of heterogeneous parallelism.

Acknowledgements. Work funded by project TIN2015-67020-P (Spanish “Ministe-
rio de Economı́a y Competitividad” and ERDF funds). We would also like to thank

Power-Performance Evaluation of Parallel Multi-objective EEG 589

the BCI laboratory of the University of Essex, and especially prof. John Q. Gan, for
allowing us to use their databases.

References

1. Escobar, J.J., Ortega, J., González, J., Damas, M.: Assessing parallel heterogeneous
computer architectures for multiobjective feature selection on EEG classification.
In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2016. LNCS, vol. 9656, pp. 277–289.
Springer, Cham (2016). doi:10.1007/978-3-319-31744-1 25

2. Escobar, J., Ortega, J., González, J., Damas, M.: Improving memory accesses for
heterogeneous parallel multi-objective feature selection on EEG classification. In:
Proceedings of the 4th International Workshop on Parallelism in Bioinformatics,
PBIO 2016, pp. 372–383. Springer, Grenoble, August 2016

3. Escobar, J., Ortega, J., González, J., Damas, M., Prieto, B.: Issues on GPU parallel
implementation of evolutionary high-dimensional multi-objective feature selection.
In: Proceedings of the 20th European Conference on Applications of Evolutionary
Computation, Part I, EVOSTAR 2017, pp. 773–788. Springer, Amsterdam, April
2017

4. Rupp, R., Kleih, S., Leeb, R., Millan, J., Kübler, A., Müller-Putz, G.: Brain-
computer interfaces and assistive technology. In: Grübler, G., Hildt, E. (eds.)
Brain-Computer-Interfaces in their Ethical, Social and Cultural Contexts. The
International Library of Ethics, Law and Technology, pp. 7–38. Springer, Heidel-
berg (2014)

5. Vega, F.F., Chávez, F., Dı́az, J., Garćıa, J.A., Castillo, P.A., Merelo, J.J., Cotta, C.:
A cross-platform assessment of energy consumption in evolutionary algorithms. In:
Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.)
PPSN 2016. LNCS, vol. 9921, pp. 548–557. Springer, Cham (2016). doi:10.1007/
978-3-319-45823-6 51

6. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello, C.: A survey of
multiobjective evolutionary algorithms for data mining: Part I. IEEE Trans. Evol.
Comput. 18(1), 4–19 (2014)

7. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello, C.: A survey
of multiobjective evolutionary algorithms for data mining: Part II. IEEE Trans.
Evol. Comput. 18(1), 20–35 (2014)

8. Handl, J., Knowles, J.: Feature subset selection in unsupervised learning via mul-
tiobjective optimization. Int. J. Comput. Intell. Res. 2(3), 217–238 (2006)

9. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-dominated
Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In: Schoe-
nauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P.
(eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000).
doi:10.1007/3-540-45356-3 83

10. Collet, P.: Why GPGPUS for evolutionary computation? In: Tsutsui, S., Collet, P.
(eds.) Massively Parallel Evolutionary Computation on GPGPUs. Natural Com-
puting Series, pp. 3–14. Springer, Heidelberg (2013)

11. Jähne, P.: Overview of the current state of research on parallelisation of evolution-
ary algorithms on graphic cards. In: GI-Jahrestagung, INFORMATIK 2016, LNI,
Bonn, Germany, pp. 2163–2174, September 2016

12. Luong, T., Melab, N., Talbi, E.G.: GPU-based island model for evolutionary algo-
rithms. In: Proceedings of the 12th Annual Conference on Genetic and Evolution-
ary Computation, GECCO 2010, pp. 1089–1096. ACM, Portland, July 2010

http://dx.doi.org/10.1007/978-3-319-31744-1_25
http://dx.doi.org/10.1007/978-3-319-45823-6_51
http://dx.doi.org/10.1007/978-3-319-45823-6_51
http://dx.doi.org/10.1007/3-540-45356-3_83

590 J.J. Escobar et al.

13. Pospichal, P., Jaros, J., Schwarz, J.: Parallel genetic algorithm on the CUDA archi-
tecture. In: Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-
Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yan-
nakakis, G.N. (eds.) EvoApplications 2010. LNCS, vol. 6024, pp. 442–451. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-12239-2 46

14. Wong, M., Cui, G.: Data mining using parallel multi-objective evolutionary algo-
rithms on graphics processing units. In: Tsutsui, S., Collet, P. (eds.) Massively
Parallel Evolutionary Computation on GPGPUs. Natural Computing Series, pp.
287–307. Springer, Heidelberg (2013)

15. Sharma, D., Collet, P.: Implementation techniques for massively parallel multi-
objective optimization. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evo-
lutionary Computation on GPGPUs. Natural Computing Series, pp. 267–286.
Springer, Heidelberg (2013)

16. Asensio-Cubero, J., Gan, J., Palaniappan, R.: Multiresolution analysis over simple
graphs for brain computer interfaces. J. Neural Eng. 10(4), 046014 (2013)

http://dx.doi.org/10.1007/978-3-642-12239-2_46

Using Spark and GraphX to Parallelize
Large-Scale Simulations of Bacterial Populations

over Host Contact Networks

Andreia Sofia Teixeira1,2(B), Pedro T. Monteiro1,2, João A. Carriço3,
Francisco C. Santos1,2, and Alexandre P. Francisco1,2

1 INESC-ID Lisboa, Lisboa, Portugal
2 Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

sofia.teixeira@tecnico.ulisboa.pt
3 Faculdade de Medicina, Instituto de Microbiologia

and Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal

Abstract. Large-scale population genetics studies are fundamental for
phylogenetic and epidemiology analysis of pathogens. And the validation
of both evolutionary models and methods used in such studies depend on
large data analysis. It is, however, unrealistic to work with large datasets
as only rather small samples of the real pathogen population are avail-
able. On the other hand, given model complexity and required population
sizes, large-scale simulations are the only way to address this issue. In this
paper we study how to efficiently parallelize such extensive simulations
on top of Apache Spark, making use of both the MapReduce program-
ming model and the GraphX API. We propose a simulation framework
for large bacterial populations, over host contact networks, implement-
ing the Wright-Fisher model. The experimental evaluation shows that we
can effectively speedup simulations. We also evaluate inherent parallelism
limits, drawing conclusions on the relation between cluster computing
power and simulations speedup.

Keywords: Population genetics · Large-scale simulations · Graph-
parallel computations · Spark · GraphX

1 Introduction

Understanding bacterial population genetics is vital for interpreting the response
of bacterial populations to selection pressures, as antibiotic treatment or vaccines
targeted at only a subset of strains [15]. In this context, large-scale studies are
fundamental not only for such understanding, but also for validating both models
and methods, such as phylogenetic inference algorithms. But we cannot validate
them with real pathogen populations as only rather small population samples are
available and accessible. Hence, given model complexity and required population
sizes, large-scale simulations are the only way to address this issue.

c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 591–600, 2017.
DOI: 10.1007/978-3-319-65482-9 44

592 A.S. Teixeira et al.

Previous studies have shown that observed population genetic structure of
several important human pathogens, such as Streptococcus pneumoniae and
Neisseria meningitidis, can be explained using a simple evolutionary model [6–9].
This model is based on neutral mutational drift and modulated by recombina-
tion, but incorporating the impact of epidemic transmission only for panmictic
populations. Although this simple evolutionary model works well for local popu-
lations, at a “microepidemic” level, its predictions no longer seem to fit observed
genetic relationships of large and widely distributed bacterial populations. With
the increasing volume of data obtained with sequence based typing methods,
namely by Multi-Locus Sequence Typing (MLST) [12], currently the gold stan-
dard for epidemiological surveillance, a much more complex pattern emerges,
that cannot be explained solely by the simple “microepidemic” assumption.

The evolution of transmissible bacteria occurs by mutation and recombina-
tion, and is influenced by epidemiological as well as molecular processes. These
aspects are fundamental in the process of strain diversification [16], and as a
mechanism by which strains acquire virulence factors or resistance determi-
nants [13]. On the other hand, bacterial population evolution is also influenced
by the environment and by host contact networks, through which bacterial popu-
lations spread. The study of the impact of host contact network topologies, and
associated transmission ratios, on bacterial population evolution and genetic
diversity becomes then relevant, increasing the model complexity.

Large-scale simulations are, however, computationally demanding, in partic-
ular when model complexity increases. In this work, considering an extension
of the above simple evolutionary model by incorporating the underlying host
contact network, we propose a simulation framework for large bacterial popula-
tions, implementing the Wright-Fisher model [17], on top of Apache Spark [21]
and making use of both MapReduce programming model and GraphX API [19].
Then we discuss how such large simulations can benefit from parallelization. We
conducted several experiments on Google Cloud Platform and results show that
we can effectively speedup simulations. We also evaluate inherent parallelism
limits, drawing conclusions on the relation between cluster computing power
and simulations speedup.

The paper is organized as follows. We describe the simulation and computa-
tional models in Sect. 2. Implementations details are discussed in Sect. 3. Finally,
we present and discuss experimental evaluation results in Sect. 4.

2 Simulation and Computational Models

The simulation framework proposed in this paper allows us to observe the evolu-
tion of a bacterial population through a host contact network, while parametriz-
ing different simulation aspects. We focus on bacterial population genetics where
isolates are represented as MLST profiles. MLST is a technique in which DNA
sequences are obtained for a set of housekeeping loci, and different sequences at
each locus are assigned as different alleles [12]. From an abstract point of view,
each isolate/pathogen is just characterized through a profile that may be subject

Using Spark and GraphX to Parallelize Large-Scale Simulations 593

to transformations along time, under the influence of genetic events, environment
and host contact networks.

Let each strain in a bacterial population be then characterized by a MLST
profile, where each sequence type (ST), or MLST profile, is defined by the com-
bination of its alleles, a vector of labels, where different labels mean different
alleles. Given an underlying host contact network, we simulate a bacterial popu-
lation at each host, or vertex, with a neutral evolutionary model [5]. This model
is based on a previous null model for evolutionary change, the neutral infinite
alleles model (IAM) [10]. Under IAM, mutation always generates a new allele,
leading to new STs. Recombination, on the other hand, introduces an existing
allele randomly selected from the isolates present in the previous generation,
which may lead to novel allelic profiles, or to the reappearance of existing ones.
Mutation or recombination occur independently, with each event being rare and
mutation taking precedence over recombination. When a new ST is produced, it
is given a new ST number, and the parental ST is recorded. For recombination,
the allele donor is also recorded.

We assume non-overlapping generations and, at each step of evolution, a new
generation is obtained. The probability of an ST to occur in the next generation
is proportional to its frequency in the current generation after migration among
hosts. The interactions between hosts, over the network, takes place by allowing
pathogens to migrate from one vertex to another accordingly to some frequency
and edge transmission probabilities, defined by the user, followed by selection at
each host through sampling with replacement from the current host generation.

The model just described, based on the IAM, is also known as the Wright-
Fisher model [17]. Neutral evolution means that all individuals have the same
fitness. Fitness, in population genetics, is a measure of the expected number of
offspring. In the neutral Wright-Fisher model, equal fitness is implemented by
equal probabilities for all individuals to be picked as a parent.

We rely on Apache Spark [21] and GraphX [19] to parallelize our simulations.
Apache Spark came up with an extended MapReduce model that enables the
creation of iterative programs, maintaining the scalability and fault tolerance
of MapReduce, through its Resilient Distributed Datasets (RDD) [20]. MapRe-
duce [11] is a high-level programming model originally proposed by Google [4]
and it was designed to address embarrassingly parallel data processing prob-
lems using cheap commodity hardware. Apache Hadoop is probably the best
well known MapReduce open source implementation, on top of which Apache
Spark is built. Apache Spark provides new levels of abstraction exceeding some
limitations of Apache Hadoop and a high-level API, usable through several pro-
gramming languages such as Scala, Java or Python. It provides also the GraphX
API [19] to address graph-parallel problems, relying also on RDDs. We will rely
on both the MapReduce programming model and the GraphX API.

The MapReduce programming model has two main steps: map and reduce.
The map phase processes the input as key-value pairs and applies a user defined
function to each one, generating a set of intermediate key-value pairs. The reduce
phase takes those intermediate key-value pairs, aggregate them by key and then

594 A.S. Teixeira et al.

apply a user defined function to the values, merging them, and generating new
key-value pairs.

When thinking about applying the MapReduce programming model for solv-
ing a problem, since many mappers and reducers run in parallel, and the dis-
tributed file system is a shared global resource, special care must be taken to
ensure that such operations avoid synchronization conflicts. It is then impor-
tant to analyze some basic requirements. Taking a careful look into the model
described above, we observe that the problem is composed by two main tasks:
(1) the evolution of each population at each node where mutation and recom-
bination take place, and (2) the exchanges between nodes and the replacement
of each population taking into account the samples of the populations from the
neighbourhoods.

Even with each node having its own population, and hence being able to
evolve independently from one another, one must take into consideration the
fact that each mutation requires the creation of a new allele, because of the
IAM, demanding a unique global identifier. Thus, for the first task we find two
challenges: (a) mutation process assumes that there is a central memory/data-
base for generating/requesting new alleles; (b) recombination demands that the
populations of each node must be in the same memory space—if we are to recom-
bine an allele we must choose, randomly, other ST to provide an already existing
allele, i.e., to be its parent. To avoid implementing a shared database, one solu-
tion is modifying how a new allele is generated and identified. If we guarantee
that at each mutation a new allele is created and the individual gets a unique
identifier, then we can have different populations evolving at the same time in
independent nodes. For solving both (a) and (b) problems, we had to create a
new way to identify uniquely each ST and also to make sure that after the first
mapping task we group each population at the same memory space, at the cost
of losing some efficiency of the MapReduce model.

For the second task, each node just has to receive a sample of the current
population of its neighbours, mix with its own population, and create a new
population through sampling. Besides being a simple problem when thinking
about the MapReduce model, we can identify some similarities between this
process and PageRank [14] or Label Propagation [22] problems. Both rely on
exchanging information among neighbours to update their state, and both have
already been implemented using MapReduce and, in particular, making use of
GraphX. Hence we will use GraphX and a similar approach for this second task.

3 Implementation

Let G = (V,E) be a connected and weighted graph, with n = |V | vertices and
m = |E| edges, and with an edge transmission probability function w : E → IR.
Let t be the number of times that the sequence of number of evolutions followed
by the number of exchanges happens.

The simulator takes eight parameters: (1) the population size of each node;
(2) the file containing the populations; (3) the file containing the network;

Using Spark and GraphX to Parallelize Large-Scale Simulations 595

(4) mutation rate; (5) recombination rate; (6) number of evolutions; (7) number
of exchanges; (8) number of times for the cycle (6) followed by (7) to happen;
(9) frequency of writing on disk. Each iteration of evolution is considered one
generation.

The general workflow consists in iterating t times the following two steps:
(i) perform the sequence of evolutions for each population, and (ii) perform the
sequence of exchanges between nodes.

The interaction between host populations is as follows: each host copies a
given proportion of its population, corresponding to the edge transmission prob-
ability w(u, v), and sends it to each corresponding neighbour; each host receives
the amount of population sent by the neighbours and create a pool with those
bacteria mixed with its own population; a new population is built, with the same
size as the previous one, but the individuals are chosen randomly from the pool.

3.1 Using MapReduce with Spark and GraphX

Adapting an algorithm into a MapReduce programming model implies some
modifications in the way the input is processed and how the data is man-
aged through the Map and Reduce phases. Frameworks based on this model,
as Hadoop or Apache Spark, read the input from a file in HDFS, where each line
is a pair 〈key , value〉.

We rely on Apache Spark not only because of its flexibility and easiness of use,
but also because RDDs allow to develop iterative programs in a light manner.
These RDDs are fault-tolerant, parallel data structures that make it possible
to persist intermediate results in memory, manage how they are partitioned to
optimize data placement among workers, and provide a rich set of operators to
apply on data processing. Apache Spark has also an embedded API, the GraphX
API, that allows the user to work with graphs in a transparent manner. With
GraphX, graph-parallel and data-parallel computations are possible with a single
composable API. Graphs can be viewed as collections (RDDs) without data
duplication and one can attribute properties to the vertices or edges through
the PropertyGraph. It also allows to access vertices, edges, or both (triplets)
separately.

Let us not discuss how the two main tasks defined before can be parallelized.
The first input file contains the bacterial population of all the host contact
network. This file has an individual per line in which the key corresponds to a
vertex identifier to which it belongs, and the value corresponds to the sequence
of its alleles, and also a global unique identifier. This global unique identifier is
needed to guarantee that, at each mutation event, a completely new individual
is generated, as demanded in IAM. We must also modify the characterization
of each allele. Although in traditional MLST data we have an array of integers,
in our approach each individual is characterized by an array of strings in the
form X.Y.Z where X is the id of the node where the mutation occurs, Y is the
generation id, and Z is the individual unique identifier. With this change we
guarantee the requirements of the IAM regarding allele uniqueness on mutation
events. The second input file is the network file. This file contains an edge list

596 A.S. Teixeira et al.

Listing 1.1. Evolutionary process.

val nextpop = populationRDD.map{ i =>

val idpop = i._1

val population = i._2

for (each indidivual in population){

// Recombintation | // Mutation

population.update(i, individual)}

(idpop , population)}

populationRDD = nextpop

with the transmission probabilities: source, destination and the probability of
transmission w(source, destination). If the network is undirected the edge list
must contain edges in both directions. Another requirement is that each node
must have an edge to itself with a probability of transmission 1.0. The reason
is explained later on. We load the input files with the SparkContext .textFile
method, which maps the inputs into RDDs. With this method we are able to
explicitly define how data should be partitioned.

Evolutions in each population and exchanges between the nodes can be imple-
mented as independent Map and Reduce tasks as follows. For the evolution
process, after loading the input into an RDD, we use the (groupByKey) trans-
formation to guarantee that each population is in the same memory space. As
explained before, recombination demands elements from the same population
to recombine. This transformation, when called on a dataset of (K,V) pairs,
returns a dataset of (K, Iterable〈V 〉) pairs. With this we have each population
gathered in the same data structure. This is the major drawback of approach,
we can not have each individual evolving independently and groupByKey uses
shuffle operations that have some costs. After this, the approach is straightfor-
ward. Having the populations RDD, we do the Map transformation to make each
population evolve in parallel (Listing 1.1).

In what concerns the exchange process we have an explicit notion of graph
structure. For the nodes (populations) to communicate with their neighbours we
use the GraphX API. By making use of the GraphX API and its PropertyGraph,
we can use both the populations RDDs and the network (edge list) RDD to create
the graph.

After the PropertyGraph is created, we use the triplets view to access all
EdgeTriplet [V,E] that contain information about the source and destination
vertices, with their properties (populations), and also information about the edge
and its property (transmission probability). With this we have all the information
needed to generate the samples from each source node to each destination node.
Regarding the fact that each node must have an edge to itself with a probability
of 1.0 associated, this is necessary for the reduceByKey operation. After the
samples are generated and emitted, the reduceByKey function is applied on the
values with the concatenation operator (++) that joins all the collections with
the same key, providing a collection with all the elements to be sampled for the

Using Spark and GraphX to Parallelize Large-Scale Simulations 597

Listing 1.2. Exchanging process.

val result = graphpopulation.triplets.map{ t =>

// generate a collection with the proportion

//of population to send

(dest , fractionofpopulation)

}. reduceByKey(_ ++ _).map{ i =>

// create the new populations by sampling

(key , newpopulation)}

new population: its own population and the samples sent from the connected
populations. Each new population is then generated through sampling with a
Map transformation (Listing 1.2).

4 Results and Discussion

Apache Spark can run either in local mode or in a cluster. We relied on both for
our experiments to compare how running time scales, parametrizing simulations
with different population sizes and different graphs. Experiments were conducted
in a cluster hosted at Google Cloud Platform1, configured with different number
of workers: 2, 4, 8 and 16. Each worker is an Intel(R) Xeon(R) CPU @ 2.50 GHz
with 4 cores and 16 GB of RAM, where only 2 cores were usable by Apapche
Spark. To achieve the best results possible, in each experiment we partitioned
the input in as many partitions as the number of the cores available. The local
setup is equivalent to a worker node.

Given the evolution model coupled with a host contact network, leading to
both evolutions and interactions between populations, the operations in local
mode, with each step being executed sequentially, take considerable time. And
it scales reasonably well when in cluster mode. For a precise comparison, in what
concerns time scale, we fixed almost all parameters of the simulator: the size of
the population per node is 1000; the mutation rate is 0.001; the recombination
rate is 0.01; the number of evolutions per time step is 25; the number of exchanges
per time step is 1; the number of time steps is 10; the frequency for writing on
disk is 10 generations; and the transmission probability is 0.01. This means that
each dataset will evolve in a cycle of 25 evolutions followed by one exchange
between nodes 10 times. We also write on disk every time we have exchanges
to track how STs are transversing the network. This information is relevant in
most biological analyses, which are however out of the scope of this paper.

The first observation is that writing on disk is the operation that takes an
higher cost. We address this issue by using the saveAsTextFile method available
in Apache Spark, exploiting the ability of parallelize write operations on HDFS.

1 https://cloud.google.com/.

https://cloud.google.com/

598 A.S. Teixeira et al.

Table 1. Running time in seconds for different topologies and network sizes.

Topology Size (N) Mode
Local 2 workers 4 workers 8 workers 16 workers

Clique 100 170 60 53 48 43
200 411 109 74 59 50
500 1052 338 202 118 97

1000 2538 796 485 267 169
Scale-free 1000 916 480 403 221 152

2000 1807 897 519 341 292
8000 6293 3020 1902 1300 912

We consider two different network topologies, cliques (or fully connected
networks) and scale-free networks [2]. Clique topology leads to highest compu-
tational cost while performing exchanges. Scale-free networks are more realistic
for host contact networks, but being very sparse lead to much less work dur-
ing exchanges. We consider random scale-free networks generated with a partial
duplication model, with parameter 0.5 and different number of vertices [3]. Tests
were run for both topologies and different network sizes. The results averaged
over 10 runs are presented in Table 1 and in Fig. 1.

We note that we used a graph partitioning schema available in
GraphX designed specifically for scale-free networks. The PartitionStrat-
egy.EdgePartition2D was proposed by Verma et al. [18] as the best for these

Fig. 1. Speedup as a function of the number of available cores for cliques (left) and
scale-free networks (right), with different network sizes (N). The curves are provided
by Amdahl’s law [1], where the percentage corresponds to the fraction that is infinitely
parallelizable.

Using Spark and GraphX to Parallelize Large-Scale Simulations 599

networks. And we confirmed their results while running our experiments and
comparing with other partitioning strategies.

We can observe that the speedup becomes more evident as networks grow in
size. Running in cluster mode, and increasing the number of workers, results in
a significantly boost in the running time. The fact that we can compute the pop-
ulation evolution at each node independently seems to be exploited as expected.
The same happens with the exchange process among nodes populations.

When designing parallel algorithms, one of the analyses that should be done is
to estimate the relation between achievable speedups and the number of workers.
Amdahl’s law is crucial here to both interpret the results and project expected
speedups [1]. On one hand it points out that one should only optimize if the frac-
tion that can be optimized constitutes a large portion of the overall time. On
the other hand, if the optimization is effective the speedup we obtain is largely
determined by the strictly sequential fraction, which cannot be optimized and
initially constituted only a small fraction of the time. Given k workers (cores)
and a program that spends a fraction f of time on operations that are infinitely
parallelizable, and the remaining fraction 1−f on strictly sequential operations,
the overall speedup is given by 1/((1− f)+ f/m). In Fig. 1 we can observe that,
as we increase the size of the clique networks, we obtain a higher speedup as we
increase the number of workers. According to Amdahl’s law, we are observing
about f = 97% for a clique of 1000 nodes. For the scale-free networks, because
they are much sparser than cliques, with less work performed on exchange, we
observe about f = 90% and speedups are small above 16 processing cores. This
seems to point out that the exchange process is highly parallelizable, indepen-
dently of the network size, which is an important observation if simulations with
much larger networks are desirable. We should also note that the running time
grows almost linearly as we increase the number of nodes (see Table 1). This is
expected as the evolution of each population can be done independently and,
even not being fully parallelized due to recombinations as explained before, we
can still benefit from parallelization in simulations over large networks.

As a final remark, we must note that since most real host contact networks
are scale-free, according to Amdahl’s law, using more than 16 processing cores
does not lead to significant improvements for realistic simulations.

Acknowledgments. This work was partly supported by DEI, IST, Universidade
de Lisboa, and national funds through FCT – Fundação para a Ciência e Tecnolo-
gia, under projects TUBITACK/0004/2014, LISBOA-01-0145-FEDER-016394, PTD-
C/EEISII/5081/2014, PTDC/MAT/STA/3358/2014, and UID/CE C/500021/2013.

References

1. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the Spring Joint Computer Conference,
AFIPS 1967 (Spring), pp. 483–485. ACM, 18–20, April 1967

2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

600 A.S. Teixeira et al.

3. Chung, F., Lu, L., Dewey, T.G., Galas, D.J.: Duplication models for biological
networks. J. Comput. Biol. 10(5), 677–687 (2003)

4. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

5. Fraser, C., Hanage, W., Spratt, B.: Neutral microepidemic evolution of bacterial
pathogens. PNAS 102(6), 1968–1973 (2005)

6. Fraser, C., Alm, E.J., Polz, M.F., Spratt, B.G., Hanage, W.P.: The bacterial species
challenge: making sense of genetic and ecological diversity. Science 323(5915), 741–
746 (2009)

7. Fraser, C., Hanage, W.P., Spratt, B.G.: Neutral microepidemic evolution of bacte-
rial pathogens. Proc. Natl. Acad. Sci. U.S.A. 102(6), 1968–1973 (2005)

8. Fraser, C., Hanage, W.P., Spratt, B.G.: Recombination and the nature of bacterial
speciation. Science 315(5811), 476–480 (2007)

9. Hanage, W.P., Spratt, B.G., Turner, K.M., Fraser, C.: Modelling bacterial specia-
tion. Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 361(1475), 2039–2044 (2006)

10. Kimura, M.: Evolutionary rate at the molecular level. Nature 217, 624–626 (1968)
11. Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Morgan and

Claypool Publishers (2010)
12. Maiden, M., Bygraves, J., Feil, E., Morelli, G., Russell, J., Urwin, R., Zhang, Q.,

Zhou, J., Zurth, K., Caugant, D., et al.: Multilocus sequence typing: a portable
approach to the identification of clones within populations of pathogenic microor-
ganisms. PNAS 95(6), 3140–3145 (1998)

13. Ochman, H., Lawrence, J.G., Groisman, E.A.: Lateral gene transfer and the nature
of bacterial innovation. Nature 405, 299–304 (2000)

14. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report 1999–66, Stanford InfoLab (1999)

15. Robinson, D.A., Falush, D., Feil, E.J.: Bacterial Population Genetics in Infectious
Disease. John Wiley & Sons, Hoboken (2010)

16. Spratt, B.G., Hanage, W.P., Feil, E.J.: The relative contributions of recombination
and point mutation to the diversification of bacterial clones. Curr. Opin. Microbiol.
4(5), 602–606 (2001)

17. Tran, T.D., Hofrichter, J., Jost, J.: An introduction to the mathematical structure
of the Wright-Fisher model of population genetics. Theory Biosci. 132(2), 73–82
(2013)

18. Verma, S., Leslie, L.M., Shin, Y., Gupta, I.: An experimental comparison of par-
titioning strategies in distributed graph processing. Proc. VLDB Endow. 10(5),
493–504 (2017)

19. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: Graphx: a resilient distributed
graph system on spark. In: First International Workshop on Graph Data Manage-
ment Experiences and Systems, GRADES 2013, pp. 2:1–2:6. ACM (2013)

20. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation, NSDI 2012, p. 2. USENIX
Association (2012)

21. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing, HotCloud 2010, p. 10. USENIX Association
(2010)

22. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label
propagation (2002)

PPCAS: Implementation of a Probabilistic
Pairwise Model for Consistency-Based Multiple

Alignment in Apache Spark

Jordi Lladós(B) , Fernando Guirado , and Fernando Cores

INSPIRES Research Center, Universitat de Lleida, Jaume II, 69, 25001 Lleida, Spain
{jordi.llados,f.guirado,fcores}@diei.udl.cat

Abstract. Large-scale data processing techniques, currently known as
Big-Data, are used to manage the huge amount of data that are generated
by sequencers. Although these techniques have significant advantages,
few biological applications have adopted them. In the Bioinformatic sci-
entific area, Multiple Sequence Alignment (MSA) tools are widely applied
for evolution and phylogenetic analysis, homology and domain structure
prediction. Highly-rated MSA tools, such as MAFFT, ProbCons and
T-Coffee (TC), use the probabilistic consistency as a prior step to the
progressive alignment stage in order to improve the final accuracy. In this
paper, a novel approach named PPCAS (Probabilistic Pairwise model
for Consistency-based multiple alignment in Apache Spark) is presented.
PPCAS is based on the MapReduce processing paradigm in order to
enable large datasets to be processed with the aim of improving the
performance and scalability of the original algorithm.

Keywords: Multiple Sequence Alignment · Consistency · Spark ·
MapReduce

1 Introduction

The probabilistic pairwise model [10] is an important step in all consistency-
based MSA tools. A probabilistic model can simulate a whole class of objects,
assigning an associated probability to each one. In the multiple alignment field,
the objects are defined as a pair of residues from the input set of sequences,
and the associated weight is the probability of being aligned [14]. For any two
sequences, there are many possibilities of residue matches, Length(sequence1) ∗
Length(sequence2). The probabilistic model assigns each residue match a score.
The higher this is, the better. For a complete dataset of sequences, the collection
of the all the residue matches, which implies all the pairs of sequence evaluations,
is known as the Consistency Library. This library is used to guide the progressive
alignment and thus improve the final pairwise accuracy. A well-known MSA tool
that uses consistency is T-Coffee [3].

The computation of the consistency library evaluates N ∗ (N − 1)/2 com-
binations, N being the number of sequences, and that may be cataloged as
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 601–610, 2017.
DOI: 10.1007/978-3-319-65482-9 45

http://orcid.org/0000-0001-9007-0085
http://orcid.org/0000-0003-1352-9555
http://orcid.org/0000-0003-2910-6709

602 J. Lladós et al.

embarrassingly parallel [3]. With the advent of the Next-Gen Sequencing, the
number of sequences to align and their length have grown exponentially, with
the corresponding negative impact on execution time and memory requirements.
The use of massive data processing techniques can provide a solution to these
limitations.

High Performance Computing (HPC) is the way to aggregate computer
resources to provide parallel processing features for advanced applications. How-
ever, the fixed memory resources on each computational node and the fact that
data is distributed through the interconnection network mean it is unviable for
easy application to the Multiple Sequence Alignment problem. Currently, new
computing technologies have been designed to manage and store huge amounts
of data. These technologies, such as Hadoop [23] or Spark [17], are commonly
applied to Big-Data processing and can be used to deal with this challenge. The
main advantage is the ability to partition the whole data between all the nodes.

However, the increase in the number of sequences in the dataset to be treated
could finally exceed the global distributed memory. The solution is the use of
specialized distributed databases, such as HBase or Cassandra [1], that provide
enough storage capacity to allocate any consistency library.

Thus, in the present paper, the authors present a new tool, the Probabilis-
tic Pairwise model for Consistency-based multiple alignment in Apache Spark
(PPCAS). This is able to generate the parallel probabilistic pairwise model for
large datasets of proteins and can also store it in a distributed platform using
the T-Coffee format.

The paper is organized as follows: Sect. 2 presents a brief state of the art of
consistency-based MSA tools. In Sect. 3, we outline the development of PPCAS.
In Sect. 4, the performance and accuracy evaluation are shown and finally, the
main conclusions are presented in Sect. 5.

2 State of Art

Traditional aligners, like ClustalW [7], MAFFT [6] and T-Coffee [3], are based on
Gotoh [5] or Myers & Miller’s [11] dynamic programming techniques, using scores
from two different sources (a consistency library or substitution matrices such
as PAM and BLOSUM [9]) to perform the optimal alignment of two sequences.

Unfortunately, the application of dynamic programming is inefficient for
alignments consisting of many (10–100) sequences. Instead, a variety of heuris-
tic strategies have been proposed, the most popular, progressive alignment [12],
builds up a final alignment by combining pairwise alignments following a guide
tree (beginning with the most similar sequences to the most distantly related).
However, errors in the early stages not only propagate to the final alignment but
may also increase the likelihood of misalignment due to incorrect conservation
signals.

To lessen these early errors, consistency-based methods, such as T-Coffee
[3], MAFFT [6], ProbCons [4] or DIALIGN [21], introduce consistency as a col-
lection of pairwise alignments obtained from computing all-against-all pairwise

PPCAS: Implementation of a Probabilistic Pairwise Model 603

alignments. T-Coffee uses this via a process called library extension1. MAFFT
uses a new objective function combining the WSP score from Gotoh and the
COFFEE-like score [14] that evaluates the consistency between multiple and
pairwise alignments. ProbCons improves the traditional sum-of-pairs scoring sys-
tem by incorporating Hidden Markov Models to specify the probability distribu-
tion over all alignments between a pair of sequences. Furthermore, DIALIGN-T
reformulates consistency by finding ungapped local alignments via segment-to-
segment comparisons that determine new weights using consistency.

The main drawback of consistency-based aligners is the high computational
resources (CPU and memory) required to calculate and store the consistency
information. For example, the consistency library in T-Coffee has a complexity
of O(N2L2), N being the number of sequences and L their average length. These
requirements mean the method is not scalable, it being limited to aligning a few
hundred sequences on a typical desktop computer. Therefore, these aligners are
not feasible for large-scale alignments with thousands of sequences.

This problem of scalability is common to other tools and algorithms. Nowa-
days, Bioinformatics is challenged by the fact that traditional analysis tools have
difficulties in processing large-scale data from high-throughput sequencing [24].
The utilization of HPC and BigData infrastructures has recently given bioin-
formatics researchers an opportunity to achieve scalable, efficient and reliable
computing performance on Linux clusters and cloud computing services. The
open-source Apache Hadoop project [23], which adopts the MapReduce frame-
work [2] and a distributed file system, is able to store and process Petabytes of
information efficiently. Moreover, Hadoop has a complete stack of services and
frameworks (Spark, Cassandra, Mahout, Pig, etc.) that provides a wide range of
machine-learning and data-analysis tools to process any type of workflow.

Over recent years, new tools have been developed in the bioinformatics field
to improve the performance and scalability of massive data processing in current
applications. In [16], a novel approach is proposed that combines the dynamic
programming algorithm with the computational parallelism of Hadoop data grids
to improve accuracy and accelerate Multiple Sequence Alignment. In [25], the
authors developed a DNA MSA tool based on trie trees to accelerate the centre
star MSA strategy. It was implemented using the MapReduce distributed frame-
work. The use of the MapReduce paradigm and Hadoop infrastructures enabled
the scalability and the alignment time to be improved.

There are more MapReduce solutions in the area of mapping short reads
against a reference genome. These applications, CloudBurst [18], SEAL [15] and
CloudAligner [13], implement traditional algorithms like RMAP [20] and BWA
[8] using the MapReduce paradigm.

1 Given a MSA containing three sequences x, y, and z, if position xi aligns with position
zk and position zk aligns with yj in the projected x-z and z-y alignments, then to
be consistent the xi must align with yj in the projected x-y alignment.

604 J. Lladós et al.

3 PPCAS Method

The programming language selected was Python with the Ctypes extension that
provides C language compatibility data types and also the ability to call external
shared libraries. Thus, it is possible to obtain similar performance to native
compiled code in CPU-intensive applications.

The main step in the development was to adapt the probabilistic pairwise
algorithm to the MapReduce paradigm used in the big data frameworks [2]. The
MapReduce paradigm enables the parallel/distributed computational resources
(processors, memory and disks) to be exploited in a simple and scalable way.
The MapReduce paradigm breaks down the problem into multiple Map tasks
that can be executed in parallel on multiple computers/processors. After this
initial Map stage, all the partial results obtained are merged and then processed
by several Reduce tasks, in order to finally aggregate them.

Spark is a fast engine for large-scale data processing in real-time executed over
Hadoop. Spark has a master/slave architecture. It has one central coordinator
(Driver) that communicates with many distributed workers (Executors). The
driver is the process where the main method runs and the executors are those
that process the data received.

In the implementation of PPCAS, the map stage is responsible for defining
all the tasks in charge of computing the probability score for a set of pairs of
sequences. In Algorithm 1, the driver generates these tasks for all the N ∗ (N −
1)/2 pair combinations (line 1) and distributes them in a balanced way among all
the Map tasks using a Resilient Distributed Dataset (RDD) (line 2). Then, in line
3, the map tasks are launched and scheduled for processing on the executors. As
a result, each map generates a portion of the library in parallel, and this persists
in the HDFS file system.

Driver
1: tasks list = generate tasks();
2: rdd tasks = sc.parallelize(tasks list, len(tasks list));
3: rdd tasks.map(executor function).saveAsTextFile(hdfs path);

Executor
4: for each sequence Si ∈ taski do
5: for each sequence Sj ∈ taskj do
6: libraryC = ctypes.CDLL(”./PPCAS.so”)
7: libraryC.pair wise(Si, Sj)
8: end for
9: end for

Algorithm 1. Spark parallel pairwise probability calculation

The executor, lines 4–9, performs a subset of the pairwise combinations.
This is done in the double-nested loop in lines 4–5, which obtains the different
combinations of sequences assigned to the task. It calculates the library for each

PPCAS: Implementation of a Probabilistic Pairwise Model 605

of these combinations by calling the pair wise(Si, Sj) function of the shared
library (PPCAS.so). This function calculates the probabilistic pairwise model
for these two sequences and writes this portion of the library to the disk (HDFS).

4 Results and Discussion

In this section we evaluate PPCAS2. The experimental study is focused on (1)
the use of PPCAS as the main consistency library of T-Coffee by comparing the
accuracy achieved and the corresponding execution time, (2) the scalability of
the PPCAS when the number of nodes increases and finally, (3) the performance
behavior when the number of sequences grows.

To perform the tests, we used two different multiple alignment benchmarking
suites:

– BALiBASE [22] is a database of high-quality documented and manually-
refined reference alignments based on 3D structural superpositions. The accu-
racy of the alignments is measured using two metrics: the Sum-of-Pairs (SP)
and the Total Column Score (TCS), which are obtained by comparing the
user alignment against a reference alignment.

– HomFam [19]: The existing benchmark datasets are very small (150 and 50
sequences in BALiBASE and Prefab respectively). Homfam provides large
datasets using Pfam families with thousands of sequences. In order to vali-
date the results of aligning a Pfam family, the Homstrad site contains some
reference alignments and the corresponding Pfam family. These references
are previously de-aligned and shuffled into the dataset. After the alignment
process, the reference sequences are extracted and compared with the origi-
nals in Homstrad.

HomFam contains almost one hundred sets. We selected the top five manually,
sorted by size (Acetyltransf, rrm, rvp, sdr and zf-CCHH) to evaluate the method.
The results for the execution time presented in this section represent the average
results obtained after evaluating the corresponding family. Furthermore, each
experiment corresponds to five iterations in order to show the robustness of the
results. The execution environment is a distributed memory cluster made up of
20 nodes, each one characterized in Table 1.

4.1 Evaluating the PPCAS Consistency Library

To assess the correctness of PPCAS, a final alignment must be done. To this end,
an MSA tool is needed. TC allows the input of an externally-generated consis-
tency library using its −lib flag, so a library was built for each set with PPCAS
and introduced into TC via the parameter, which generates the alignment.

This study compares the results obtained from executing T-Coffee using its
own consistency library, and the same T-Coffee using the library generated with
PPCAS by processing the same dataset. The experimentation focused on the
differences in accuracy and the possible execution time penalties.
2 PPCAS is available on https://github.com/jllados/PPCAS.

https://github.com/jllados/PPCAS

606 J. Lladós et al.

Table 1. Hardware and software used in the experimentation

Software Version

Apache Spark 1.6.3
Apache Hadoop 2.6
Python 2.7.13
Numpy 1.11.2
GCC 4.1.2

Hardware Model

CPU Intel Core 2 Quad at 2.4GHz
RAM 8GB DDR2

The BAliBASE benchmark was used for the accuracy test. The results
obtained are shown in Table 2. The first column indicates the library algorithm
used and the Sum-of-Pairs (SP) produced using the Bali score appears in columns
2–7. The average score over all the families is given in the last column.

Table 2. Comparison between T-Coffee and PPCAS library with BAliBASE.

Library RV11 RV12 RV20 RV30 RV40 RV50 Total SP

T-Coffee 0.534 0.879 0.827 0.718 0.758 0.759 0.743

PPCAS 0.535 0.879 0.826 0.720 0.754 0.758 0.745

The results demonstrate that using the PPCAS library, T-Coffee is able to
obtain an equivalent accuracy. The slightly differences in accuracy are due to the
fact that, unlike PPCAS, T-coffee removes the smallest weighted library. This
validates using the new library instead of the original one from T-Coffee.

Next, the execution time required to calculate the consistency library in
T-Coffee (using the −lib only flag) was compared with the time obtained with
PPCAS, only using a single node with a quad-core processor in both cases and
increasing the number of sequences. The results obtained are shown in Fig. 1.

As can be observed, PPCAS always outperforms T-Coffee for execution time.
However, when the number of sequences is low (100–200), the improvement is
not very large, because there is not enough parallel work to obtain the maximum
infrastructure performance. Nevertheless, with a large number of sequences (over
200), the PPCAS execution time improvement increases, meaning that the code
is more efficient in PPCAS than in T-Coffee.

Moreover, we verified that, with 8 GB of memory, it is only possible to cal-
culate the consistency library for a dataset with a maximum of 1,000 sequences
using T-Coffee, and this takes more than 5,000 s. Meanwhile, PPCAS takes
only 3,338 s to calculate the same library, which implies a 1.62× improvement.
Attempts to evaluate more sequences in TC failed because the library size did
not fit into the local memory.

Both the accuracy and execution time tests demonstrate that PPCAS can be
used as a new method to provide the consistency library required by TC without
any penalty, and furthermore, simultaneously increasing its performance.

PPCAS: Implementation of a Probabilistic Pairwise Model 607

 0

 1000

 2000

 3000

 4000

 5000

 6000

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)

#Added sequences

T-Coffee -libonly
PPCAS

Fig. 1. Comparison of library building under a single node with HomFam sets.

4.2 Scalability Study of PPCAS

To demonstrate the real benefits of using a Big-Data infrastructure, the scala-
bility of the method when more nodes are added must be measured. We also
compare the results with the original T-Coffee to have a reference point. Thus,
in this test, a fixed size of 1,000 sequences (HomFam) was used, this being the
maximum number of sequences TC can handle.

Figure 2 depicts the results obtained. The left axis shows the execution time,
and the right one depicts the speedup obtained. It can be seen that the PPCAS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 0

 5

 10

 15

 20

 25

 30

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)

S
pe

ed
up

#Added nodes

PPCAS time
PPCAS speedup

PPCAS vs T-Coffee speedup

Fig. 2. Scalability of PPCAS with HomFam sets

608 J. Lladós et al.

speedup tends to be almost linear, taking 3,338 s with a single node, while it can
be reduced to 183 s when using 20 nodes. This represents an 18.18× speedup
over the single node execution time and 29.45× over the TC version presented
in the previous section (5,409 s). These speedups are linear, denoting a good
scalability as the theoretical maximum is 20×.

4.3 PPCAS Scalability Increasing the Number of Sequences

This final experimentation evaluates the behavior of PPCAS with the same
computational resources when the number of sequences increases.

Table 3 compares the execution time required to calculate the library in
T-Coffee using a single node with a quad-core processor, (using the −lib only
parameter) with PPCAS using the complete cluster infrastructure with 20 quad-
core nodes. We also analyzed the speed-up and efficiency (speedup/nodes, which
rates the improvement against cost) as the number of sequences increases.

It is important to note that it is possible to calculate bigger libraries with
PPCAS because there is no limitation to the main memory of a single node. The
last column shows that the library size does not fit in the memory of a single
traditional computer. Thus, it was possible to calculate the library with up to
20,000 sequences, which took 64,012 s.

When the number of sequences is low (100–200), the speedup and efficiency
are not good, although the lack of parallel work mitigates the infrastructure
performance. However, with a large number of sequences (more than 500), both
of them achieve good values. Thus, they improve as more sequences are added.

Figure 3 shows the scalability of PPCAS on a logarithmic scale for the number
of sequences to be aligned. We can observe the correlation between the size of
the resulting consistency library and the time required to calculate it as the
number of sequences increases. It can also be seen that the growth in execution
time is proportionally smaller than the increase in size, which demonstrates the
efficiency of PPCAS for calculating the library.

Table 3. Library building comparison between a single TC node and PPCAS multi
node with HomFam sets.

N◦ of seq T-Coffee time(s) PPCAS time(s) Speedup Efficiency Library size (Mb)

100 63.06 20.79 3.03 0.15 39

200 202.73 33.90 5.98 0.30 135

500 1,206.07 63.95 18.86 0.94 760

1,000 5,409.28 183.66 29.45 1.47 2,956

2,000 — 676.83 — — 11,702

5,000 — 4,080.02 — — 72,357

10,000 — 16,100.69 — — 289,006

20,000 — 64,012.79 — — 1,151,736

PPCAS: Implementation of a Probabilistic Pairwise Model 609

 1

 32

 1024

 32768

 1.04858x106

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)

Li
br

ar
y

si
ze

 (
M

b)

#Added sequences

PPCAS time
PPCAS size

Fig. 3. Scalability of PPCAS regarding the execution time and output size.

5 Conclusions

In this paper, the authors present a scalable method to compute the probabilistic
pairwise model for consistency-based multiple alignment.

We show that PPCAS is able to produce a quality library relying on a Hadoop
infrastructure with Spark. In terms of execution time, the method behaves bet-
ter under the same environment (single node) and benefits from almost linear
speedups when more nodes are added to the ecosystem. It is also capable of
computing more sequences with the same memory requirements.

In the future, we will integrate PPCAS with an aligner with a distributed
database like Apache Cassandra as the interface. Storing the constraints in
a high-performance database will completely eliminate the memory problems,
while supplying the progressive stage with the required data. Our other aim
is to reduce the execution time of the progressive itself, this being the other
problematic half of an MSA with consistency.

Acknowledgments. This work was supported by the MEyC-Spain [contract
TIN2014-53234-C2-2-R].

References

1. Abramova, V., Bernardino, J., Furtado, P.: Which NoSQL database? A perfor-
mance overview. Open J. Databases (OJDB) 1(2), 17–24 (2014)

2. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun.
ACM 53(1), 72–77 (2010)

3. Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang,
J.-M., Taly, J.-F., Notredame, C.: T-Coffee: a web server for the multiple sequence
alignment of protein and RNA sequences using structural information and homol-
ogy extension. Nucleic Acids Res. 39(2), 13–17 (2011)

4. Do, C.B., Mahabhashyam, M.S., Brudno, M., Batzoglou, S.: ProbCons: probabilis-
tic consistency-based multiple sequence alignment. Genome Res. 15(2), 330–340
(2005)

610 J. Lladós et al.

5. Gotoh, O.: Heuristic Alignment Methods. Multiple Sequence Alignment Methods,
vol. 1079, pp. 29–43. Springer, Heidelberg (2014)

6. Katoh, K., Standley, D.M.: MAFFT multiple sequence alignment software version
7: improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780
(2013)

7. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A.,
McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D.,
Gibson, T.J., Higgins, D.G.: Clustal W and Clustal X version 2.0. Bioinformatics
23(21), 2947–2948 (2007)

8. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows–Wheeler
transform. Bioinformatics 25(14), 1754–1760 (2009)

9. Mount, D.W.: Comparison of the PAM and BLOSUM amino acid substitution
matrices. Cold Spring Harbor Protoc. 6 (2008). doi:10.1101/pdb.ip59

10. Miyazawa, S.: A reliable sequence alignment method based on probabilities of
residue correspondences. Protein Eng. Des. Sel. 8(10), 999–1009 (1995)

11. Myers, E.W., Miller, W.: Optimal alignments in linear space. Bioinformatics 4(1),
11–17 (1988)

12. Nguyen, K., Guo, X., Pan, Y.: Multiple sequences alignment algorithms. In: Multi-
ple Biological Sequence Alignment Scoring Functions, Algorithms and Applications
(2016)

13. Nguyen, T., Shi, W., Ruden, D.: CloudAligner: a fast and full-featured MapReduce
based tool for sequence mapping. BMC Res. Notes 4(1), 171 (2011)

14. Notredame, C., Holm, L., Higgins, D.G.: COFFEE: an objective function for mul-
tiple sequence alignments. Bioinformatics 14(5), 407–422 (1998)

15. Pireddu, L., Leo, S., Zanetti, G.: SEAL: a distributed short read mapping and
duplicate removal tool. Bioinformatics 27(15), 2159–2160 (2011)

16. Sadasivam, G., Baktavatchalam, G.: A novel approach to Multiple Sequence Align-
ment using hadoop data grids. Int. J. Bioinform. Res. Appl. 6(5), 472–483 (2010)

17. Sakr, S.: Big data processing stacks. IT Prof. 19(1), 34–41 (2017)
18. Schatz, M.: CloudBurst: highly sensitive read mapping with MapReduce. Bioin-

formatics 25(11), 1363–1369 (2009)
19. Sievers, F., Dineen, D., Wilm, A., Higgins, D.G.: Making automated multiple align-

ments of very large numbers of protein sequences. Bioinformatics 29(8), 989–995
(2013)

20. Smith, A.D., Xuan, Z., Zhang, M.Q.: Using quality scores and longer reads
improves accuracy of Solexa read mapping. BMC Bioinform. 9(1), 128 (2008)

21. Subramanian, A.R., Weyer-Menkhoff, J., Kaufmann, M., Morgenstern, B.:
DIALIGN-T: an improved algorithm for segment-based multiple sequence align-
ment. BMC Bioinform. 6(1), 66 (2005)

22. Thompson, J.D., Koehl, P., Ripp, R., Poch, O.: BAliBASE 3.0: latest developments
of the multiple sequence alignment benchmark. Proteins Struct. Funct. Bioinf.
61(1), 127–136 (2005)

23. Zhang, Y., Cao, T., Li, S., Tian, X., Yuan, L., Jia, H., Vasilakos, A.V.: Parallel
processing systems for big data: a survey. Proc. IEEE 104(11), 2114–2136 (2016)

24. Zou, Q.: Survey of MapReduce frame operation in bioinformatics. Brief. Bioinform.
15(4), 637–647 (2014)

25. Zou, Q., Hu, Q., Guo, M., Wang, G.: HAlign: fast multiple similar DNA/RNA
sequence alignment based on the centre star strategy. Bioinformatics 31(15), 2475–
2481 (2015)

http://dx.doi.org/10.1101/pdb.ip59

Accelerating Exhaustive Pairwise
Metagenomic Comparisons

Esteban Pérez-Wohlfeil, Oscar Torreno, and Oswaldo Trelles(B)

Department of Computer Architecture, University of Malaga,
Boulevard Louis Pasteur 35, Malaga, Spain
{estebanpw,oscart,ortrelles}@uma.es

Abstract. In this manuscript, we present an optimized and parallel
version of our previous work IMSAME, an exhaustive gapped aligner
for the pairwise and accurate comparison of metagenomes. Paralleliza-
tion strategies are applied to take advantage of modern multiprocessor
architectures. In addition, sequential optimizations in CPU time and
memory consumption are provided. These algorithmic and computa-
tional enhancements enable IMSAME to calculate near optimal align-
ments which are used to directly assess similarity between metagenomes
without requiring reference databases. We show that the overall efficiency
of the parallel implementation is superior to 80% while retaining scala-
bility as the number of parallel cores used increases. Moreover, we also
show that sequential optimizations yield up to 8× speedup for scenarios
with larger data.

Keywords: High Performance Computing · Pairwise comparison · Par-
allel computing · Next Generation Sequencing · Metagenome comparison

1 Background

A metagenome is defined as a collection of genetic material directly recovered
from the environment. In particular, a metagenome is composed of a large num-
ber of reads (DNA strings) drawn from the species present in the original popu-
lation. To this day, the field of comparative metagenomics has become big-data
driven [1] due to new technological improvements in high-throughput sequenc-
ing. However, the analysis of large metagenomic datasets represents a computa-
tional challenge and poses several processing bottlenecks, specially to sequence
comparison algorithms.

Traditional metagenomics comparison involve intermediate pairwise (and
individual) comparisons against a reference database. This procedure allows to
extract a mapping distribution between reads and species, and thus enables to
later on compare these distributions. A similarity measure can then be computed
from the two distributions. However, due to the unknown and complex composi-
tion of metagenomes, traditional comparisons based on a reference require data-
bases to be large, which often introduce bias and drastically increase execution
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 611–620, 2017.
DOI: 10.1007/978-3-319-65482-9 46

612 E. Pérez-Wohlfeil et al.

times. In this line, direct comparisons between metagenomes to assess overall
similarity gain interest as running times can be shortened and bias avoided.
Furthermore, there is yet no accepted consensus on how similarity should be
assessed, and in several scenarios certainty comes at the expense of exhaustive
and optimal alignments. Still, optimal alignment of large datasets is not feasible
without making use of parallel infrastructure and optimization techniques.

Next Generation Sequencing platforms are generating larger amounts of data
per run, of higher quality and at a lower price. However, the performance of
computational approaches used to process metagenomic data suffer inversely
proportional to that of the size of generated samples. High Performance Com-
puting techniques can be applied in order to overcome the processing bottlenecks
and accelerate running times.

Several parallelism strategies have been already applied to software for both
comparative genomics and metagenomics, such as the multipurpose BLAST [2]
family, where different types of architectures have been exploited (e.g. mpi-
BLAST [3] for distributed memory or TERABLAST [4] for its use on FPGAs).
Parallelization of sequence alignment algorithms have also been applied to GPUs
such as GSWABE [5] or CUSHAW2-GPU [6]. FPGAs have also been employed to
accelerate sequence comparisons (e.g. SWAPHI [7]). However, GPUs and FPGAs
are expensive and their specificity often force the use of a reduced subset of pro-
grams due to platform dependence restrictions. Other general parallel approaches
which make use of CPU multithreading such as BOWTIE [8] or PARALLEL-
META3 [10] use POSIX threads [11] for UNIX-based environments in a shared
memory architecture.

However, the above mentioned sequence aligners are not specifically designed
to compare read to reads or contigs and particularly not to assess similarity
between metagenomes. For instance, BOWTIE works best when aligning short
reads to large reference genomes. Moreover, in [12] the effect of introducing
intermediary agents to ultimately assess similarity between metagenomes was
argued. In this line, alternative approaches that were capable of direct compar-
isons were discussed (e.g. MASH [13], SIMKA [14]) and when possible (BLAST,
COMMET [15]), compared to IMSAME. Additionally, it was shown that coarse-
grained approaches to metagenomics comparison could lead to results that were
highly dependent on hyperparameters (such as the initial seed size).

To fulfill the gap, IMSAME was presented as a parallel, fine-grained, and
exhaustive gapped read-to-read (including contigs and scaffolds) aligner. In this
manuscript, we present an optimized version of IMSAME which is able to com-
pute faster while using a linear and controlled amount of memory. Moreover,
High Performance Computing techniques have been applied to balance the work-
load among threads to reduce thread synchronization.

2 Methods

IMSAME (“Incremental Multi-Stage Alignment of MEtagenomes”) is intended
to compare reads to reads directly, i.e. without using a reference database,

Accelerating Exhaustive Pairwise Metagenomic Comparisons 613

and to assess similarity between them while providing a confident level of cer-
tainty. It proceeds by combining a different set of alignment-free, gapped-free
and gapped alignments. Each of these procedures is intended to yield a different
level of speed and sensitivity, depending on the alignment stage. For instance,
the initial detection of seeds between reads (to be referred as hits) is performed
using k-mers (words of length k), whereas probabilistic filtering is applied when
hits are extended into High-scoring Segment Pairs (HSPs). HSPs with sufficiently
small probability of belonging by chance to the underlying distribution are kept
and used as anchors for a bounded Needleman-Wunsch (NW in advance) global
alignment [16]. Figure 1 shows the overall architecture of IMSAME. The follow-
ing sections illustrate each of the methods employed in IMSAME.

Fig. 1. Traditional metagenomics comparison (left) and overall diagram of the working
procedure of IMSAME (right). Left: (a) Both metagenomes are compared individually
against a chosen reference (b) Database. (c) Individual results are merged into a uni-
fied (d) result which propagates individual biases. Right: (a) and (b) Represent the
input metagenomes. (c) Computation of the hash table of initial seeds. (d) Workload
distribution to threads. (e) Each thread asks for a job (i.e. block of reads). (f) Each
thread detects hits between reads. (g) After detection of hits, an HSP is computed by
extending the hit linearly. (h) If the computed HSP has not been generated by chance,
then a gapped alignment between the two reads is performed.

The computation of hits, extended fragments (HSPs) and gapped alignments
will often represent more than 85% of the computation time. Therefore the
parallel strategy in IMSAME is focused in these stages, whereas loading the
database and workload generation and distribution is performed sequentially.

614 E. Pérez-Wohlfeil et al.

2.1 Computation of Alignments

This section depicts the internal procedure followed by IMSAME to compute
pairwise alignments between the sequences contained within the inputs.

Hash Table Generation and Diagonal Filtering. A hash table is built for
words of size 12 (i.e. 12-mers) for the reference metagenome. This procedure
starts by linearly scanning the reference metagenome and adding an entry in
the hash table for each 12-mer. The position in the file and the read number to
which it belongs is stored. Each entry in the hash table will hold a linked list
in order to handle collisions. Since the reference metagenome is considered as a
large sequence (i.e. the coordinates of reads is global in respect to the file), then
the insertion of 12-mers in the hash-table is sorted in terms of the diagonal (as
in [17]) between query and reference metagenome.

Hits Detection and Extension of Fragments. Once the hash table is built
for the reference metagenome, the algorithm proceeds by loading the query
metagenome and matching 12-mer words to those stored in the hash table. These
hits serve as seeds to extend the alignments. For every hit, a linear, ungapped
extension which allows mutations -but not indels- is performed in both direc-
tions, forward and backward respective to the sequence. This extension works
by optimizing a scoring function that takes into account the length and number
of shared identities.

Anchored Gapped Alignment. In order to apply a bounded computation
for both CPU time and memory requirements, it is necessary to use heuristic
methods to explore a reduced subspace of the whole search space. Hence, the
quality of the results will be directly affected by the used heuristic method.
IMSAME uses a simple yet powerful anchoring procedure, which is illustrated
as follows: Once a hit has been detected and extended, the expected value of
the resulting extended fragment is computed. If the expected value is sufficiently
small, then it is used as anchor for the alignment. A straight line is computed
between the global start (0,0) of the two sequences and the anchored fragment.
Another line is computed from the ending of the anchored fragment to that
of the two sequences. These two lines are then discretized using Bresenhams
[18] algorithm. The Bresenhams algorithm will define a discrete succession of
numbers that represent the guides for the alignment procedure. A window of
variable size is used to explore a subset of cells in the NW matrix to the left and to
the right respective to the center of the guides (and thus conforming a window).
This procedure enables a much faster computation based on the reduced search
space. At the same time, high quality alignments are still produced due to the
anchored computation over regions that are known to be similar.

Bounded Computation in CPU Time and Memory. Since only a sub-
set of the search space is explored, less memory is required to store the table

Accelerating Exhaustive Pairwise Metagenomic Comparisons 615

computed in the dynamic programming algorithm. Therefore, the size of the
bounded window will determine the reduction in memory and CPU time over
the algorithm. Generally, a NW algorithm will require O(n2) time and space in
the size of the input. In this case, for sequences of length n and m, O(nm) will
be required, which grows quadratically. Using a bounded window in the com-
putation reduces one of the variables to a constant. Therefore if we take n as
the size of one of the inputs and k as the size of the window, we will have that
k � n. Hence, the space and time complexity drops from quadratic to linear in
the size of the input. However, in certain cases the difference in length between
the sequences to be aligned can be considerably large. For example, consider two
sequences whose length difference is of one order of magnitude. If this difference
is not taken into account, the algorithm will probably explore matrix cells that
are outside the boundaries of the anchoring, and thus resulting in more com-
putation time. In this sense, we propose using the geometric mean (

√
nm) to

produce a mapping between sequences length ratio and window size. Moreover,
k is further adjusted applying a user-defined parameter. Notice that the geomet-
ric mean will not assign the same window size to two different sets of sequences
s1 and s2 of length 10l+1, 10l+1 and s3, s4 of length 10l+2, 10l, although the size
of the search space would be equal.

2.2 Dynamic Workload Partitioning and Distribution to Threads

IMSAME uses a modified Guided Self Scheduling (GSS) [19] to handle workload
assignment. In this line, the query metagenome (the reference metagenome is
only processed to generate the hash table) is separated into M partitions each of
which will contain mi subpartitions, with i ranging from 1 to M . Each of these
subpartitions will hold a number of reads that will be dynamically assigned to
threads using a thread-safe queue when these run out of work. Moreover, the
number of partitions is user-defined, and can be adjusted depending on the size
of the inputs. Each subpartition is likewise divided by the number of threads
t into blocks of reads. Thus, the number of reads contained in each block is
determined by the current level of partitioning i, the total number of reads R
and the number of threads t. The expression to calculate the number of reads
assigned to a block at partition i is as follows:

Bi =
R
M

t ∗ i
=

R

M ∗ t ∗ i
(1)

Where R is the total number of reads in the metagenome, M is the number
of partitions, t is the number of available threads and i is the current partition.
That is, the metagenome is firstly divided by the number of partitions, and each
of these is then divided by the number of threads multiplied by the subpartition
depth. Figure 2 shows how the query metagenome is decomposed per partition.

The workload distribution function belongs to the family of 1/x functions
and shows a decay in the size of blocks in the early partitions in order to assign
smaller jobs to the threads as these are consumed. Additionally, the function

616 E. Pérez-Wohlfeil et al.

Fig. 2. Query decomposition into workload blocks. Initially, the query metagenome is
divided into partitions (red solid lines). Each partition is again divided by the cur-
rent partitioning level (vertical dashed lines). Finally, each subpartition is divided into
blocks of equal number of reads depending of the number of threads available. (Color
figure online)

shows a horizontal asymptote that guarantees blocks of reads of a minimum size
despite the number of partitions chosen.

3 Results and Discussion

Two separate comparisons were carried out in order to test the two differ-
ent aspects that have been improved over the original IMSAME version. All
sequences used in the comparisons belong the to the Human Microbiome Project1

(HMP), in particular to the Illumina WGS Assemblies. The run identifiers are
provided at each comparison performed in order to allow reproducibility. The
testing scenario is set up as follows:

1. A single comparison involving scaffolds to test sequential with optimizations.
2. A comparison involving three different datasets varying in sizes, from small

to large. These comparisons will serve to account for the scalability of the
parallel improvements in respect to the sequential version.

At last, the speedup from both optimization perspectives are discussed and
addressed.

3.1 Infrastructure

The Picasso supercomputer located at the University of Malaga (Malaga, Spain)
[20] was used to test the parallelization strategies. The computation was per-
formed using only the fat nodes which contain 8 Intel E7-4870 processors and 2
TB of RAM each. The storage is managed by a Lustre file system supported by
a DDN storage rack with five three-dimensional disk enclosures and two redun-
dant SFA10000 controllers. The executions described in this manuscript range
from 1 to 32 cores increasing by steps of powers of two. Runtime executions were
measured using the time command from UNIX-based environments.
1 http://hmpdacc.org/HMASM/.

http://hmpdacc.org/HMASM/

Accelerating Exhaustive Pairwise Metagenomic Comparisons 617

3.2 Comparison Between the Original and Bounded IMSAME

Besides the improved parallelization strategies, IMSAME has additionally been
improved with bounded CPU time and memory usage. In order to perform com-
parisons to measure the speedup produced by the parallelization techniques, the
improvements are tested between the original IMSAME and the bounded in a
sequential fashion. For this purpose, two runs composed of scaffolds, namely
SRS016105 and SRS017451 were taken from the HMP database and compared
using both versions. Since scaffolds are longer than reads, higher penalties were
used for affine gap model (−8 for insertion of gap and −4 for extension of gap).
Results remained equal for both executions, although variations can be observed
if large-scale rearrangements take place (e.g. long range transpositions). The
original version of IMSAME took 7 min and 29 s, whereas the bounded version
took 55 s, representing a speedup of approximately 8×. This speedup is mostly
produced by two facts (1) the diagonal filtering procedure reducing the number
of linear extensions performed prior to a gapped alignment and (2) the bounded
window applied to the NW algorithm, which substantially reduces the space
search. However, it is important to note that the latter speedup is directly pro-
portional to the size of the reads (i.e. smaller reads, smaller speedup).

3.3 Speedup Evaluation of the Parallelization Strategy

The speedup introduced by the parallelization strategy is measured by using
three datasets: (1) a small-sized one, (2) a medium-sized one and (3) a large-
sized one. Table 1 summarizes the three datasets. This procedure enables us to
evaluate the stability of the speedup as a function of the input size.

Table 1. Summary of the dataset used for the speedup evaluation. From left to right:
(1) Metagenome pairs compared, (2) Sum of reads from both metagenomes, (3) Sum
of the size of both metagenomes in megabytes and (4) Average size of reads in base
pairs.

Dataset (Run ID) Number of reads Size (MB) Average read length (bp)

SRS017697 613,983 77 91

SRS019119

SRS064376 3,401,514 463 100

SRS065347

SRS018359 14,295,910 1809 99

SRS057022

Table 2 shows the execution times for each of the datasets along with the
speedup and efficiency of each execution. In the same line, Fig. 3 shows the
speedup evaluation plot. The speedup is calculated as the time needed by the
algorithm run using only one core divided by the time needed using more cores.

618 E. Pérez-Wohlfeil et al.

Table 2. Execution times, speedup and efficiency for the executions of IMSAME using
from 1 to 32 cores. The rows indicate the number of cores whereas the columns refer
to time consumption (in seconds), speedup and efficiency per each of the datasets.

Cores Small Medium Large

Time (s) Speedup Efficiency Time (s) Speedup Efficiency Time (s) Speedup Efficiency

1 425 1.00 1.00 8, 634 1.00 1.00 76, 253 1.00 1.00

2 252 1.69 0.84 4, 770 1.81 0.91 38, 009 2.01 1.00

4 126 3.37 0.84 2, 571 3.36 0.84 18, 867 4.04 1.00

8 76 5.59 0.70 1, 262 6.84 0.86 9, 838 7.75 0.97

16 42 10.12 0.63 683 12.64 0.79 5, 282 14.44 0.90

32 30 14.17 0.44 388 22.25 0.70 2, 937 25.96 0.81

Fig. 3. The speedup is shown for the different datasets (in purple, green and red) along
with the optimal speedup (in blue). The x-axis shows the number of cores used per
comparison, whereas the y-axis shows the calculated speedup in respect to the number
of cores used. (Color figure online)

The efficiency is calculated as the ratio between the achieved speedup and the
optimal speedup (equal to the number of cores). As can be seen in Table 2 and
Fig. 3, the speedup is nearly optimal in the scenario of enough data, i.e. the
large dataset. However, in the case of the small and mid-sized dataset, a decay
in efficiency can be observed due to the size of data not being large enough for
the number of cores. Moreover:

1. Small dataset (in purple in Fig. 3): The peak of efficiency is achieved using
2 and 4 cores (reaching 84% efficiency). When using more than 4 cores, the
dataset size becomes too small and some threads become inactive while others
are still processing. To improve efficiency on the small dataset, a higher num-
ber of partitions should be used to remove thread balance synchronization at
the end of the computation.

2. Medium dataset (in red in Fig. 3): The medium dataset represents a 143%
increase in size over the small dataset, and shows a much higher efficiency,

Accelerating Exhaustive Pairwise Metagenomic Comparisons 619

with a peak at 86% using 8 cores. However, similarly to the smaller case, the
efficiency (and thus the speedup) decays when using 32 cores.

3. Large dataset (in green in Fig. 3): The larger dataset shows the overall best
efficiency and speedup, with a peak at 8 cores and slow decay up to 32 cores,
where 81% efficiency is achieved. However, the fact that the speedup is opti-
mal at 2 and 4 cores indicates that probably still more partitioning levels are
required in order to avoid thread synchronization.

4 Conclusions

In this manuscript, we have shown an optimized version of IMSAME in which
we applied two parallelization strategies, namely (1) a dynamic scheduler for
the distribution of work and (2) an n-level parallelization in the computation of
alignments using POSIX threads in a shared-memory environment. We have also
applied several sequential improvements over the original version, which have
improved the overall algorithm complexity and efficiency. Additionally, we have
carried out two separate comparisons to prove the performance of IMSAME,
that is, firstly, one to validate the sequential improvements over the original
version and secondly, another one using three different datasets ranging in sizes
to evaluate the achieved speedup and the parallel efficiency.

In order to keep developing IMSAME, we are currently working on:

1. Parallelization of the loading stage.
2. Improve workload distribution by building a regression model to automati-

cally set the number of partitioning levels.
3. Use ROC curves [21] to set the optimal percentage thresholds.
4. Use genetic algorithms to determine optimal scheduling.

Acknowledgments. This work has been partially supported by the European project
ELIXIR- EXCELERATE (grant no. 676559), the Spanish national projects Plataforma
de Recursos Biomoleculares y Bioinformticos (ISCIII-PT13.0001.0012) and RIRAAF
(ISCIII-RD12/0013/0006) and the University of Malaga.

References

1. Alyass, A., Turcotte, M., Meyre, D.: From big data analysis to personalized medi-
cine for all: challenges and opportunities. BMC Med. Genomics 8(1), 33 (2015)

2. Altschul, S.F., Madden, T.L., Schffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lip-
man, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

3. Darling, A., Carey, L., Feng, W.C.: The design, implementation, and evaluation of
mpiBLAST. In: Proceedings of ClusterWorld, pp. 13–15 (2003)

4. http://www.timelogic.com/catalog/757. Accessed 9 May 2017
5. Liu, Y., Schmidt, B.: GSWABE: faster GPU accelerated sequence alignment with

optimal alignment retrieval for short DNA sequences. Concurr. Comput. Pract.
Exp. 27(4), 958–972 (2015)

http://www.timelogic.com/catalog/757

620 E. Pérez-Wohlfeil et al.

6. Liu, Y., Schmidt, B.: CUSHAW2-GPU: empowering faster gapped short-read align-
ment using GPU computing. IEEE Design Test 31(1), 31–39 (2014)

7. Liu, Y., Tran, T.T., Lauenroth, F., Schmidt, B.: SWAPHI-LS: Smith-Waterman
algorithm on Xeon Phi coprocessors for long DNA sequences. In: Cluster Comput-
ing (CLUSTER), 2014 IEEE IC, pp. 257–265, September 2014

8. Langmead, B.: Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioin-
form. 11–17 (2010)

9. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows Wheeler
transform. Bioinformatics 25(14), 1754–1760 (2009)

10. Jing, G., Sun, Z., Wang, H., Gong, Y., Huang, S., Ning, K., Su, X.: Parallel-
META 3: comprehensive taxonomical and functional analysis platform for efficient
comparison of microbial communities. Sci. Rep. 7, 40371 (2017)

11. Nichols, B., Buttlar, D., Farrell, J.: A POSIX standard for better multiprocessing.
O’Reilly Media Inc., Sebastopol (1996)

12. Perez-Wohlfeil, E., Torreno, O., Trelles, O.: Pairwise and incremental multi-stage
alignment of metagenomes: a new proposal. In: International Conference on Bioin-
formatics and Biomedical Engineering, pp. 74–80, April 2017

13. Ondov, B.D., Treangen, T.J., Melsted, P., Mallonee, A.B., Bergman, N.H., Koren,
S., Phillippy, A.M.: Mash: fast genome and metagenome distance estimation using
MinHash. Genome Biol. 17(1), 132 (2016)

14. Benoit, G., Peterlongo, P., Mariadassou, M., Drezen, E., Schbath, S., Lavenier, D.,
Lemaitre, C.: Multiple comparative metagenomics using multiset k-mer counting.
PeerJ Comput. Sci. 2, e94 (2016)

15. Maillet, N., Collet, G., Vannier, T., Lavenier, D., Peterlongo, P.: COMMET: com-
paring and combining multiple metagenomic datasets. In: Bioinformatics and Bio-
medicine (BIBM), 2014 IEEE IC, pp. 94–98, November 2014

16. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol.
162(3), 705–708 (1982)

17. Torreno, O., Trelles, O.: Breaking the computational barriers of pairwise genome
comparison. BMC Bioinform. 16(1), 250 (2015)

18. Pitteway, M.L.V., Watkinson, D.J.: Bresenham’s algorithm with Grey scale. Com-
mun. ACM 23(11), 625–626 (1980)

19. Polychronopoulos, C.D., Kuck, D.J.: Guided self-scheduling: a practical scheduling
scheme for parallel supercomputers. IEEE Trans. Comput. 100(12), 1425–1439
(1987)

20. http://www.scbi.uma.es/site/scbi/hardware. Accessed 9 May 2017
21. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver

operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

http://www.scbi.uma.es/site/scbi/hardware

The First International Workshop on
Distributed Autonomous Computing in

Smart City (DACSC 2017)

The Impact of International Inter-City
Investment on Enterprises Performance:

Pluralistic Interpretation of Geographical Death

Yanghao Zhan(B), Yan Chen, and Ruirui Zhai

Beijing University of Posts and Telecommunications, Beijing, China
zhanyanghaoceline@163.com

Abstract. This paper aims to test the impact of inter-city investment
on enterprises performance. By using a panel dataset of Chinese firms
which have invested in 43 countries and regions over the of 2003–2009 and
gravity model, we find that institutional distance is favorable to Chinas
outward direct investment, which implies that the Chinese multination-
als dont seem willing to enter those countries that have similar institu-
tions with their home country, in this sense, Chinese enterprises outward
direct investment can be interpreted as being driven by the motivation of
institutional escape. Technology distance displays an Inversed-U shape
which suggests some technical distance is the premise for ODI and may
reflect the fact of simultaneous existence of both the technology uti-
lization ODI and the technology-seeking ODI of China. Geographical
distance has no significant impact on Chinas outward direct investment
which supports the proposition of death of distance. These findings point
to the importance of going beyond firm boundary to consider various dis-
tances between home and host countries in making investment decisions,
which not only overcome the defects of the existing studies, but also
propose new theoretical explanations for the phenomenon that Chinese
enterprises are still capable of ODI even when the ownership advantages
are missing. According to the results of this paper, Chinese enterprises
should choose to invest in the countries with large institutional distance,
small economic and medium technical distance from the home country,
and, at the same time, they should not bother geographical distance too
much.

Keywords: ODI · Enterprises performance · Geographical distance

1 Introduction

Since 2002, when China officially launched the “going out” strategy, the scale
of China’s outward direct investment (hereinafter referred to as ODI) has been
rising rapidly. According to the “Annual Statistical Bulletin of China’s Outward
Direct In-vestment in 2011, 82% of China’s ODI flew to developing countries
(regions), while only 18% to developed economies. It is difficult to explain this
kind of ODI distribution only by any single traditional theory of competitive
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 623–632, 2017.
DOI: 10.1007/978-3-319-65482-9 47

624 Y. Zhan et al.

advantage or the home countrys pushing factors or the host countrys pulling
factors, because these factors may play a role together [1].

As we all know, OLI paradigm argues that the premise of an enterprises for-
eign investment which has some specific ownership advantages, such as patents,
brands, management skills, etc. Although OLI considers the importance of the
host country’s location factors, it doesn’t take into account the relative impor-
tance of the host country’s location factors in combination with home coun-
try’s location factors. So it is difficult for the OLI paradigm to make valuable
explanations to justify Chinese enterprises’ reverse investment behaviors in the
case of lacking of ownership advantages, which is the “paradox of ownership
advantages”. The paper goes beyond enterprises’ own factors to examine the
impacts of various dimensional distances between China and host countries on
Chinese enterprises’ ODI. Its academic contributions are mainly reflected in the
following aspects. First, the probe of the impacts of various distances on ODI
can provide important theoretical and practical explanations for the “ownership
paradox” and, to some extent, answer the question why Chinese companies can
still achieve internationalization when they are short of ownership advantages.
Second, although some literature has analyzed the impacts of various dimen-
sional gaps on China’s ODI decisions, such as cultural and geographic distance,
institutional differences, trade liberalization distance and financial freedom dis-
tance between the home and host countries, but from the standpoint of economic
metrology, only when the impacts of other distances on ODI are put under con-
trol can we accurately single out the impact of a particular distance factor on
corporate ODI. In view of the fact that there has been no literature has compre-
hensively analyzed the impacts of the distance dimensions on ODI, we attempt
to carry out a comprehensive analysis to extend the existing work and enrich
the theoretical interpretation of corporate ODI. Third, some scholars believe
the development of technology and transport has made geographical distance no
longer important, and put forward the proposition of “distance death” [2]. Our
results provide an empirical basis for the exploration of whether the distances
are already “dead” or are still affecting the strategic choice of ODI.

2 Literature Review

Traditionally, existing studies of ODI determinants mainly focus on validating
OLI paradigm. Qiu and Wang [3] have analyzed the impact of domestic macro-
economic factors (export, resource requirement, wage level, etc.) on China’s ODI
growth. Some literature express particular concern over how ODI decisions are
subject to multinational companies own advantages in configuration with vari-
ous types of regional advantages [4]. In recent years, several studies have started
to pay attention to the promotional or inhibition roles of the home country’s
institutional factors in ODI [5].

In fact, in addition to the factors of the enterprises themselves, any analysis
on ODI determinants must take into account home and host country factors and
the synergy. Judging from the empirical research, they have emphatically ana-
lyzed the impact of cultural and geographical distances on ODI. The research

The Impact of International Inter-City Investment 625

results of Flores and Aguilera [6] about U.S. multinationals show that cultural
distance and ODI flow direction have a significantly negative correlation. While
others have proven a significantly complicated relationship between cultural dis-
tance and ODI flow direction. For example, Yin and Lu [7] identified the S-
curve relationship between cultural distance and ODI flow direction. Regarding
to geographical distance, the literature has found negative effects of geographical
distance on ODI [8]. Buckley et al. [1] found cultural distance and geographi-
cal distance between China and host country is an important factor to affect
Chinese enterprises’ ODI.

In general, the existing studies on the impact of distances on ODI are limited
and fragmented, and there is no way to draw any convincing conclusions from
them. The existing empirical work usually looks into one type of distance fac-
tors only, assuming that the other distance factors have no effect on ODI or the
impact is a constant. This approach leads to the possibility that the impact of
certain distance factors on ODI may be caused by other distance factors excluded
in the models. We integrate the ODI determinants into a multivariate dis-
tance model and empirically validates the impacts of economic distance, institu-
tional distance, cultural distance, geographic distance, technical distance, etc. on
Chinas ODI, to reveal the impacts of the factors of China and the host countries’
factors and the extent of their discrepancies on Chinese enterprises’ ODI. Hence,
we are not only to overcome the defects of the existing studies, but also propose
new theoretical explanations for the phenomenon that Chinese enterprises are
still capable of ODI even when the ownership advantages are missing.

3 Theories and Hypotheses

Distances include not only geographical distance, but also dimensions of culture,
administration, politics, economy, etc. [9]. Due to distance types affect ODI in
different way, we examine the impacts of various distances separately. Economic
distance shows the differences of economic conditions between the home and
host country. The convergence of the economic conditions in the market-place
enables enterprises to make use of the competitive advantage developed in the
home country. Jain found that the homogeneity of economic conditions reflects
the convergence of income levels and lifestyles. However, given the fact that
many Chinese enterprises invest in developed countries with large economic dis-
tances from China to seek strategic assets, the economic distance may also gen-
erate positive effects on ODI. As a result, we propose the following competitive
hypotheses:

H1a: Economic distance has a negative effect on China’s ODI.
H1b: Economic distance has a positive effect on China’s ODI.

Traditional ODI theories deem host country’s institution as an important
location factor, emphasizing that higher quality of the institutional environment
will result in higher efficiency of resource allocations and greater attractiveness to
foreign investors. However, we should consider institutional quality and environ-
mental difference between the host and home country, i.e. institutional distance.

626 Y. Zhan et al.

Institutional distance is the management’s subjective perception of the cost and
uncertainties in its operations in the host country. Some of the home country’s
institutional factors (high tax rates, corruption, regulatory uncertainty, etc.) may
result institution-based ODI escape [10]. Greater institutional distance between
the home and host countries will bring multinationals more opportunities for
institutional arbitrage, so we propose:

H2: Institutional distance has a positive effect on China’s ODI.
To the Uppsala Model, enterprise ODI usually first enters countries in a

shorter geographical distance, followed gradually by countries in a longer dis-
tance. Investing in a country with a shorter geographical distance will reduce
uncertainty in the prospects of returns, and, simultaneously, facilitate learning
experiences in the host country. Geographical distance is not merely a measure
of material distance; it has an implication on transport cost as well. The geo-
distance cost of bulk products such as steel and cement is significantly higher
than that of other products, and the cost is exceptionally high for transporting
fragile and fresh products. Therefore, geographical distance between the host and
home country reduces the efficiency-seeking ODI [12]. Therefore, we propose:

H3: Geographical distance has a negative effect on China’s ODI.
Traditional ODI researches are conducted mainly on the hypothesis that the

home-country enterprise owns technical advantages and the premise for ODI is
that there exists certain technical distance between the home and host country.
Developing countries have witnessed the emergence of learning-oriented ODI and
strategy-oriented ODI to seek strategic resources represented by knowledge and
technology on a global scale [6]. However, in accordance with “Technological
Accumulation Hypothesis” [14], when there is quite a long distance between the
home and host, ODI will decrease due to the poor absorption capacity. Therefore,
foreign investment occurs out of technical distance to a certain extent. However,
when technical distance is too large, ODI will decrease. Thus, we propose:

H4: The effect of technology distance on China’s ODI is in an inverted U-
shape.

4 Research Methodology and Data

4.1 Definitions of the Variables

Dependent variable. It determined by the ODI/GDP proportion. It can elim-
inate the influence of home country’s economic size on ODI. ODI data from
Bulletin of Ministry of Commerce on China’s ODI (2010) and GDP (in current
US$ 100 million) from World Development Indicator Database of the World
Bank (2010).

Independent variables. Economic distance (ED). We adopt the per capita
GDP difference of the host and home country as an indicator to reflect the
inter-state economic distance.

Institutional distance (ID). Institution can be divided into formal rule-
governed institutions and normative institutions. Based on the data availability,

The Impact of International Inter-City Investment 627

we intend to adopt the distance of the economic system as a proxy in combina-
tion with 10 major categories of indicators from the Economic Freedom Index
(EFI) released annually by the American Heritage Foundation and the Wall
Street Journal. The Index of Economic Freedom is the simple mean value of the
10 categories of indicators, which will exert impacts on China’s ODI. Therefore,
the paper takes it to represent institutional distance.

Geographical distance (GD). We use the geographical mileage between the
capital city of home country and that of host country to represent geographi-
cal distance, which automatically calculated from geographical distance on the
Internet.

Technical distance (TD). We select the commonly-accepted R&D/GDP as an
indicator for a country’s level of technology, which from http://stats.uis.unesco.
org/.

Control variables. RTG. We use the ratio of the bilateral trade flows and the
GDP of the two countries as the measurement indicator to gauge economic and
trade relations between China and the host country. The bilateral trade data is
obtained from the website of Minis-try of Commerce of China.

Two dummy variables - the Bilateral Investment Treaty (BIP) and the Agree-
ment on Avoidance of Double Taxation (ADT), BIP, ADT are dummy variables
which obtained from “Guide to Foreign Investment” by Ministry of Commerce
of China (2011).

4.2 Empirical Model

In order to use the gravity model for analysis of the relationship between dis-
tances and China’s ODI, we assumed the aforementioned variables are major
factors affecting the location selection of China’s ODI. And in order to con-
vert the non-linear relationship into a linear relationship, we take the log-linear
conversion. The modified gravity model equation is as follows:

Ln (ODIict) = αt + β1tLn (RTGict) + β2tLn (BIPict) + β3tLn (ADTict)
+ β4tLn (VARjt) + μict.

(1)

The following empirical model is obtained from Eq. (1):

Model 1 Ln (ODIict) = α0 + β01Ln (RTGict) + β02Ln (BIPict) + β03Ln
(ADTict) + μict

Model 2–4 Ln (ODIict) = αt + β1tLn (RTGict) + β2tLn (BIPict) +
β3tLn (ADTict) + β4tLn (VARjt) + μict, where VAR = ED, ID, GD

Model 5 Ln (ODIict) = αt + β1tLn (RTGict) + β2tLn (BIPict) +
β3tLn (ADTict) +

∑
β4tLn (VARjt) + μict, where VAR = TD,TD2

Model 6 Ln (ODIict) = αt + β1tLn (RTGict) + β2tLn (BIPict) +
β3tLn (ADTict) +

∑
β4tLn (VARjt) + μict, where VAR = ED, ID, GD, TD

Where α denotes the constant terms and μ residuals.

http://stats.uis.unesco.org/
http://stats.uis.unesco.org/

628 Y. Zhan et al.

4.3 Data

In view of the availability and continuity of the data, we select 301 sample
data from 43 countries over the period of 2003–2009. The basis for the sample
selection interval is that China’s ODI started to increase substantially on the
annual basis in 2003 under the influence of China’s “going out” strategy which
was officially launched for implemented in 2002. Sample countries or regions
are mainly the top-ranking economies in receiving of China’s outward direct
investments. Samples cover Asia, Europe, North America, South America and
Oceania, including both developed economies and developing countries or regions
which has enough representation.

5 Results

5.1 Estimation Results

As we use a panel data set, problems associated with autocorrelation may bias
the estimated results. In order to avoid the problem of multicollinearity, we
use the variance inflation factor method (VIF) and correlation matrix. From
Table 1, we find VIF are all significantly less than 10, and there exists a slight
multicollinearity among the independent variables, so, the sample data can be
used for the regression analysis.

We use the generalized least square (GLS) estimator to estimate our models.
Due to panel data necessitates a choice between fixed effects (FE) or random
effects (RE) models, so we implemented a Hausman test which indicated that
the RE model is preferred to the FE model at 1% level of significance.

Table 2 shows the results. Model 1 shows that the coefficient of ED is nega-
tive and statistically significant, corroborating H1a but leading no for support
H1b. Model 2 shows the coefficient of ID is negative and statistically significant,
supporting H2. Model 4 shows GD is not significant and doesn’t support H3.
Finally, the coefficient of TD in Model 5 is negative and highly significant, while
the coefficient of TD2 is positive and significant and supports H4, indicating an

Table 1. Correlation coefficient matrix and VIF

Mean S.D. BIP ADT RD ID GD TD VIF

RTG −5.808 1.406 −0.089 0.204 0.485 0.435 −0.307 0.014 3.405

BIP 0.742 0.363 −0.042 0.018 0.009 −0.274 −0.011 1.3252

ADT 0.737 0.440 0.125 0.010 −0.001 −0.235 1.276

RD 7.451 1.456 0.618 −0.104 −0.003 6.054

ID 2.251 1.173 −0.138 0.051 2.397

GD 6.834 0.652 −0.357 2.194

ID −0.226 0.723 2.935

The Impact of International Inter-City Investment 629

inverted U-shaped relationship between technical distance and Chinese enter-
prises ODI. Regarding the results of control variables, although the BIP and
the ADT variables in the model are not significant, the impact of the RTG has
been significantly positive, which is consistent with interpretations of the OLI
paradigm and the gravity model.

5.2 Robustness Test

We have performed certain robustness tests to examine the reliability and sta-
bility of the results in Table 2. First, we estimate the full model that includes
all variables except the technical distance squared item, and the results are pre-
sented in the last column in Table 2. Model 6 shows no qualitative difference
between the main results and the results in Models 1–4. Second, in theory, the
inverse relationship is established between foreign investments and multiple dis-
tances. Namely, ODI shortens the distances between the home and host country
(except GD). However, it is a relatively long process to shorten the distances,
and ODI is just one of the factors, so it is unlikely for the distance variables
to become endogenous. Despite this, we still use the instrumental variables and
re-estimate the models. We select “bilateral trade volume (ST)” and “religious
differences (DR)” as the instrumental variables for technical distance (TD). The
bilateral trade volume between the two countries will affect the technical distance
between the two countries: the greater the volume of bilateral trade between
the two countries is, the smaller the technical distance will be. In addition,
the “bilateral trade volume (ST)” and the “religious differences (DR)” as two

Table 2. GLS results

Independent variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ED −0.237***

(−6.162)

−0.172***

(−4.480)

ID 0.526*

(1.721)

0.064***

(2.286)

GD −0.203

(−1.441)

0.236

(1.096)

TD −0.479***

(−2.016)

−1.121

(−1.966)

TD2 −0.326***

(−3.158)

Control variables

RTG 0.985***

(16.215)

0.880***

(13.130)

0.808***

(15.974)

0.891***

(11.992)

1.731***

(56.795)

0.540***

(5.526)

BIP −0.152

(−0.681)

−0.255

(−1.194)

−0.320

(−1.001)

−0.317

(−1.281)

−0.642

(−1.627)

−0.983

(0.885)

ADT 0.065

(0.377)

−0.147

(−0.605)

0.312*

(1.841)

−0.266

(−1.133)

0.614***

(2.138)

0.728***

(2.911)

R2 0.564 0.489 0.609 0.510 0.631 0.699

F 90.733 67.125 109.245 73.189 60.471 55.678

N 286 286 286 286 183 183

630 Y. Zhan et al.

Table 3. IV results

Independent variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ED −0.311**

(−3.021)

−0.721***

(−3.561)

ID 0.624*

(2.114)

1.812***

(3.100)

GD −0.020

(−0.102)

0.329

(1.136)

TD −0.301***

(−4.726)

−0.256

(−0.412)

TD2 −0.304***

(−3.001)

Control variables

RTG 1.001***

(−9.216)

0.745***

(−7.789)

0.846***

(−10.2)

0.880***

(−6.231)

2.008***

(−10.232)

0.981***

(−6.859)

BIP −0.398

(−1.319)

−0.685

(−1.539)

−0.395

(−1.601)

−0.425

(−0.571)

−0.169

(−0.368)

0.651

(−1.681)

ADT 0.270

(−0.845)

0.051

(−0.137)

0.563

(−1.643)

−0.112

(−0.225)

0.532*

(−1.541)

0.752***

(2.984)

R2 0.501 0.51 0.514 0.41 0.54 0.56

F 45.231 40.67 52.303 40.521 56.836 35.004

N 286 286 286 286 183 183

instrumental variables do not directly affect the proportion of ODI in GDP, so
these two variables are suitable as instrumental variables. Refer to Table 3 for the
estimation results with the instrumental variables. We have noted that although
there is some change about the significance level of some variables. Nevertheless,
in general, the results in Tables 2 and 3 are highly consistent, which indicates
that the estimation results of the paper are relatively stable.

6 Discussions and Conclusions

6.1 Discussions

From the results, we find that economic distance has a negative rather than pos-
itive effect on Chinas ODI, which indicates that greater economic distance leads
to less ODI of Chinese enterprises. This result is consistent with that of Jain [10],
who found the economic homogeneity of the home and host country conducive to
ODI. Our samples capture the average effect, and the empirical results show that,
in general, greater distance results in less ODI of Chinese enterprises. And we
find that institutional distance has a significant role in promoting China’s ODI.
Geographical distance has no significant impact on China’s ODI. It’s generally
believed that geo-graphical distance will incur the “iceberg cost”. A bigger geo-
graphical distance leads to bigger iceberg costs which in turn results in greater
transaction costs to generate greater impediment to investments. However, the
development of modern means of transport and communication technologies,

The Impact of International Inter-City Investment 631

geographical distance less and less important. Our results support the proposi-
tion of “death of distance” [2]. It should be noted that, in the context of economic
globalization, enterprises’ international behaviors have undergone tremendous
changes, which cannot be explained by the Uppsala model [15]. It is the same
case with Chinese companies as well. In terms of the purpose of enterprises enter-
ing the international market, the traditional and progressive route is not the only
international stage model; in terms of the enterprises’ external marketing order,
many Chinese enterprises dont necessarily follow the geographical distance in a
step-by-step manner in their expansion. Finally, we find that technical distance
between the host country and China has an inverted U-shaped impact on Chi-
nas ODI. This suggests that some technical distance is the premise for ODI. The
inverted U-shaped relation-ship may reflect the fact of simultaneous existence of
both the technology utilization ODI and the technology-seeking ODI of China,
which harbors very complex relation-ships between the technical distance and
China’s ODI. It is easy to understand the impact of technical distance on ODI
may be subject to a series of corporate factors beyond the control of the models
in this paper, such as industrial characteristics and other factors. Due to data
limitations, there is no control over these factors in the paper.

6.2 Conclusions

Generally, the main innovation of this paper lies in its efforts to incorporate
the home and host country factors into a unified framework for the purpose of
analyzing the impact of the difference between the two on the location selection
of China’s ODI. Our results show that, when selecting locations for ODI, Chinas
enterprises need to take full account of the docking and the relative levels of the
home and host country factors. The empirical results are of important reference
significance for potential foreign-investing enterprises. First of all, when making
foreign investment decisions, managers have to consider not only their own level
of competitive advantage, the home country’s policy support and a variety of
regional advantages of the host country, but also the various distances between
the home and host country, and they must balance both the internal and external
factors of the two enterprise boundaries. Second, when selecting locations by
means of distance factors, managers should consider a variety of distance factors
in a systematic way. According to the results of this paper, Chinese enterprises
should choose to invest in the countries with large institutional distance, small
economic and cultural distances and medium technical distance from the home
country, and, at the same time, they should not bother geo-graphical distance
too much.

632 Y. Zhan et al.

References

1. Buckley, P.J., Clegg, L.J., Cross, A.R., et al.: The determinants of Chinese out-
ward foreign direct investment. J. Int. Bus. Stud. 38(4), 499–518 (2007)

2. Nijkamp, P.: The death of distance. In: Frey, B.S., Iselin, D. (eds.) Eco-
nomic Ideas You Should Forget, pp. 93–94. Springer, Cham (2017). doi:10.1007/
978-3-319-47458-8 40

3. Qiu, L.C., Wang, F.L.: Empirical study of the main macro influencing factors on
China’s direct investment abroad. J. Int. Trade (6), 78–80 (2008)

4. Cheng, S., Stough, R.R.: Location decisions of Japanese new manufacturing plants
in China: a discrete-choice analysis. Ann. Reg. Sci. 40(2), 369–387 (2006)

5. Luo, Y., Xue, Q., Han, B.: How emerging market governments promote out-ward
FDI: experience from China. J. World Bus. 45(1), 68–79 (2010)

6. Flores, R.G., Aguilera, R.V.: Globalization and location choice: an analysis of US
multinational firms in 1980 and 2000. J. Int. Bus. Stud. 38(7), 1187–1210 (2007)

7. Yin, H.F., Lu, M.H.: Cultural distance and foreign direct investment flows: the
S-curve hypothesis. South Econ. (1), 26–38 (2011)

8. Eichengreen, B., Tong, H.: Is China’s FDI coming at the expense of other countries?
J. Jap. Int. Econ. 21(2), 153–172 (2007)

9. Luostarinen, R.: Internationalization of the Firm. Helsinki School of Economics,
Helsinki (1980)

10. Jain, S.C.: Standardization of international marketing strategy: some research
hypotheses. J. Mark. 53(1), 70–79 (1989)

11. Rugman, A.M., Verbeke, A.: Multinational enterprises and public policy. J. Int.
Bus. Stud. 29(1), 115–136 (1998)

12. O’Grady, S., Henry, W.L.: The psychic distance paradox. J. Int. Bus. Stud. 27(2),
309–333 (1996)

13. Dunning, J.H.: Location and the multinational enterprise: a neglected factor? J.
Int. Bus. Stud. 20(1), 45–66 (1998)

14. Cantwell, J.: Technological Innovation and Multinational Corporations. Basil
Black-well, Oxford (1989)

15. Axinn, C.N., Matthyssens, P.: Limits of Internationalization theories in an unlim-
ited world. Int. Mark. Rev. 19(5), 436–449 (2002)

http://dx.doi.org/10.1007/978-3-319-47458-8_40
http://dx.doi.org/10.1007/978-3-319-47458-8_40

Energy Efficient Manycast Routing, Modulation
Level and Spectrum Assignment in Elastic

Optical Networks for Smart City Applications

Xiao Luo(B), Xue Chen, and Lei Wang

State Key Laboratory of Information Photonics and Optical Communications,
Beijing University of Posts and Telecommunications, Beijing, China

{luoxiao1218,xuechen,wang.lei}@bupt.edu.com

Abstract. As one of key technologies for supporting smart city, distrib-
uted computing provides huge networking resources for smart city appli-
cations. Manycast, as a point to multi-point communication scheme, is
particularly applicable for dealing with massive data simultaneously in
distributed computing. Moreover, elastic optical networks (EONs) are
emerging as attractive candidates to achieve high throughput distrib-
uted computing. However, the rapid development of smart optical net-
works brings about substantial energy consumption which becomes a
critical problem currently. In this paper, we present an energy efficient
manycast routing, modulation level and spectrum assignment (EEM-
RMLSA) algorithm in EONs supporting smart city applications. Firstly,
a new gene encoding scheme is proposed to encapsulate incoming many-
cast demands in an efficient way. Then, the corresponding genetic algo-
rithm based heuristic is proposed to solve dynamic EEM-RMLSA prob-
lem. Simulation results clearly demonstrate that the proposed heuristic
achieves significant energy saving and request blocking probability reduc-
tion compared to benchmark algorithms.

Keywords: Energy efficient ·Manycast · RMLSA · Elastic Optical Net-
work · Smart city

1 Introduction

By 2050, 70% of world population which means over 6 billion people will live in
urban regions [1]. To guarantee sustainable development of city, efficient man-
agement of resource and high quality of life, comprehensive information and
communication infrastructure which makes critical components and services of
a city more interactive should be established. With this trend, the concept of
smart city [2] is proposed to achieve a seamless connection among people, edu-
cation, healthcare, public safety, commercial activity and transportation, which
calls for communication system and technology innovations to deal with the
great emergence of high speed, heterogeneous and distributed data transmis-
sion. Specially, distributed computing technology could be applied for network
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 633–641, 2017.
DOI: 10.1007/978-3-319-65482-9 48

634 X. Luo et al.

resources provisioning with flexible-bandwidth traffics among smart city appli-
cations, such as data-centric computing, parallel computing and transactional
applications communication.

Recently, the demonstration of flexible-grid elastic optical networks (EONs)
[3] realizes efficient and flexible access to vast bandwidths in optical fibers. The
EONs with much finer spectrum granularity (e.g., 6.25 GHz or 12.5 GHz) dynam-
ically provide just-enough bandwidth for arriving demands which has been con-
sidered as a promising candidate to support high-throughput and cost-effective
distributed computing. Routing, modulation level and spectrum assignment
(RMLSA or simply RSA) is a fundamental problem in EONs [4]. The basic
constraints to RSA/RMLSA in EONs are spectrum contiguity and spectrum
continuity, which states the allocated frequency slots (FSs) on one optical fiber
stay contiguously on frequency axis and light path must use the same FSs in
each fiber link along the entire route without wavelength conversion, respectively.
Moreover, RSA/RMLSA problem is known as NP-complete [5] and massive lit-
eratures have investigated both static and dynamic RSA/RMLSA schemes in
EONs [5].

In EONs, manycast [6] is a new type of point to multi-point communication
framework which destination nodes are chosen from a set of candidate destination
nodes (any k out of D, where D > k). By contrast to traditional multicast com-
munication scheme, i.e., destination nodes are specified ahead of time, manycast
has ability to dynamically determine destination nodes based on the current state
of network which brings about the better network load balance. Basically, desti-
nation nodes selection criteria could depend on metrics of service needs, such as
distance between source and destinations, computational power of network, and
degree of traffic load on each network node. Manycast has become one of main
communication schemes dealing with high bitrates and flexible traffic under big
data and smart city background, particularly used in inter datacenter disaster
backup, cloud computing and e-Science. Manycast routing, modulation level and
spectrum assignment (MA-RMLSA) problem essentially aims to find highly effi-
cient manycast light tree that modulation format and spectrum resources keep
the same along the entire light tree, to maintain favorable network transmission
performance and network resource utilization.

According to an up-to-date survey, energy consumption of global networks
accounts for about 8% of total energy consumption, and the proportion will
reach up to 20% by 2020 [7]. Specially, the dramatic increase of optical traffic in
various bitrates and capacities leads to rapid growth of optical network energy
consumption. Energy consumption of optical network has become an essential
influence factor to optical network planning and management. Therefore, the
energy efficient RMLSA, which can provide energy saving network provisioning
approaches to serve overall traffics in light-paths with activating minimum idle
equipments in networks, is the key to solve massive energy consumption problem
in optical networks [8].

In this paper, we focus on energy efficiency in EONs with manycast traffic
for smart city applications. To solve energy efficient manycast routing, mod-
ulation level and spectrum assignment (EEM-RMLSA) problem, we propose

Energy Efficient Manycast Routing 635

a new gene encoding scheme and a corresponding heuristic algorithm under
genetic algorithm framework with the goal of minimizing the overall network
energy consumption, called unicast requests decomposing gene encoding based
genetic algorithm (URD-GA). Comparing with referenced EEM-RMLSA algo-
rithms, URD-GA can obtain better performance in network energy efficiency
and request blocking probability reduction.

The rest of the paper is organized as follows. Section 2 describes EEM-
RMLSA in EONs. In Sect. 3, the gene encoding scheme is described and Sect. 4
introduces the proposed algorithm. The evaluation of proposed algorithm with
numerical simulations is presented in Sect. 5. Finally, Sect. 6 summarizes the
paper.

2 EEM-RMLSA in EONs

2.1 Network Model

The physical network topology of EONs is structured as a graph G(V, E), where
V denotes node set and E denotes fiber link set. Moreover, we assume all nodes
in EONs are able to split an input optical signal to any number of output ports
which is achieved by multicast-capable optical cross connect (MC-OXC) [6].

We denote a manycast request as MaR=s, D, k, C, where s is source node,
and D = {d1, d2, , dj} is candidate destination node set and dj represents the
j th candidate destination node, k (k < |D|) is the number of destination nodes
which must be connected to source node, C is capacity of manycast request. We
assume manycast request is routed by light tree without spectrum conversion
that starts from source node to all selected destination nodes.

For manycast destination node selection, the number of candidate routing
light trees for each manycast request is significant rising with the increment
of network scale and the number of candidate destination nodes. Different des-
tination node combinations lead to a large number of available MA-RMLSA
schemes, it is important to choose the optimum one according to the current
state of network and the aim of request. For modulation level allocation, trans-
mission adaptive modulation level allocation policy is utilized in EONs which
depends on distance of the longest branch in manycast light tree. To achieve
the highest spectral efficiency, we always choose the highest modulation level
for manycast light tree as long as transmission distance permits [9]. There are
four modulation formats, i.e., binary phase-shifted keying (BPSK), quadrature
phase shift keying (QPSK), 8 quadrature amplitude modulation (8-QAM) and
16-QAM, which correspond to modulation levels from 1 to 4. Modulation for-
mat and the maximum transmission reach can be mapped with respect to the
relationship shown in Table 1 [6].

For spectrum resource assignment, with the allocated modulation level and
the given request capacity, we can calculate the number of continuous FSs that
assigned to manycast light tree as follows.

N =
⌈

C

m · CBPSK

⌉
+ nb. (1)

636 X. Luo et al.

Table 1. The relationship between modulation format and transmission reach.

Modulation format Transmission reach

BPSK 10,000 km

QPSK 5000 km

8-QAM 2500 km

16-QAM 1250 km

Where N is the number of FSs, m denotes modulation level, and CBPSK is
the capacity of a FS with BPSK modulation format which equals 12.5 Gbit/s. nb

represents the number of FSs used for guard band which equals 1 in this paper.

2.2 Energy Consumption Model

In this section, we model the energy consumption of EONs by considering four
main energy-consuming network elements, IP router port, bandwidth variable
optical transponder (BV-OPT), bandwidth variable optical cross connect (BV-
OXC) and optical amplifier (OA), respectively. Furthermore, we assume that
network elements can be turned off when they are idle to reach the maximum
network energy efficiency.

IP router port and BV-OPT are main energy consumption elements in source
and destination nodes. In this paper, we assume the energy consumption of each
IP router port consists of fixed energy consumption part and traffic-variable
energy consumption part, denoted as PCipF ixed and PCipV aria. The energy con-
sumption of BV-OPT also consists of fixed energy consumption part and traffic-
variable energy consumption part, denoted as PCOPTFixed and PCOPTV aria.
BV-OXC and OA are main energy consumption elements in intermediate nodes
and transmission links, respectively. We use PCOXC and PCOA to represent
corresponding energy consumption of them. The typical values of these four net-
work elements that presented in [8,10] are shown in Table 2, where d indicates
node degree, a indicates the number of add/drop capable ports.

Table 2. Typical energy consumption values.

Definition Value of energy consumption

PCipFixed 1329.33W

PCipV aria 0.465 W/Gbit/s

PCOPTFixed 120W

PCOPTV aria 0.180 W/Gbit/s

PCOXC (150 + 85d + 50a) W

PCOA 110W

Energy Efficient Manycast Routing 637

3 Gene Encoding Scheme

In genetic algorithm, one of the most essential steps is gene encoding. An effi-
cient gene encoding scheme named unicast requests decomposing (URD) gene
encoding is proposed to constitute candidate solution set in a try to cover all way
for searching possible optimal solutions. The example of URD gene encoding is
shown in Fig. 1. There is an arrived manycast request, which source node is A
and destination nodes should be chosen two from node B, C and D. The URD
gene encoding scheme decomposes manycast request into three candidate unicast
requests and selects any two of them to form a candidate unicast request com-
bination. Then encode all candidate unicast request combinations with random
selection of candidate light-path L, modulation level m and spectrum resource
N to form a gene. Note that we calculate all available light-paths for each node
pair in EONs ahead of time. Modulation level allocation and spectrum resource
assignment are followed the rules mentioned in Sect. 2.1. We regard the set of
genes as a chromosome and the set of chromosomes as a population. To keep
diversity of population, we change candidate light-path of a gene to form a new
one. The corresponding values of m and N may be changed along with candi-
date light-path changing in new gene. Finally, a large scale candidate solution
set which contains various gene combinations is constituted.

Gene1

Gene2

Gene3

L{A,B}n

L{A,C}n

L{A,B}n

L{A,D}n

L{A,C}n

L{A,D}n

Gene1

Gene2

Gene3

Gene1

Gene2

Gene3

M1

N1

M2

N2

M3

N3

...

L{A,B}1

L{A,C}1

L{A,B}1

L{A,D}1

L{A,C}1

L{A,D}1

L{A,B}2

L{A,C}2

M1

N1

L{A,B}2 M2

L{A,D}2 N2

L{A,C}3 M3

L{A,D}3 N3

M1

N1

M2

N2

M3

N3

Manycast Request

Chromosome 1

2A (B,C,D)

A BA D A C

Chromosome 2 Chromosome n

Candidate unicast
requests

Population

Fig. 1. The example of URD mechanism.

4 EEM-RMLSA Heuristic Algorithm

In this section, we propose a heuristic algorithm according to genetic algorithm
framework based on URD gene encoding scheme, which is abbreviated to URD-
GA. There are five fundamental procedures in genetic algorithm framework,

638 X. Luo et al.

gene encoding, selection, crossover, mutation and fitness value calculation, in
order. For URD-GA, after gene encoding, genetic evolution operations are ini-
tiated with the first generation of population. Roulette wheel algorithm [11] is
used in selection operation to get all chromosomes we need. Then crossover and
mutation operations randomly happen on genes of selected chromosomes with
specific rates. The fitness value of gene is calculated by fitness function at last.
We assume that fitness function of URD-GA is the total energy consumption of
manycast light tree, which can be expressed as follows.

FitV al = PCtree. (2)

Where FitVal and PCtree denotes fitness value of a gene and energy con-
sumption of manycast light tree, respectively. Fitness function can reflect energy
consumption degree of a gene and the smaller fitness value leads to a better EEM-
RMLSA solution. Moreover, the detailed energy consumption of manycast light
tree can be calculated by summing energy consumption of source node, destina-
tion nodes, intermediate nodes and intermediate optical links in manycast light
tree, as follows.

PCtree = PCip(s) + PCOPT (s) +
∑k

j=1 (PCip(dj) + PCOPT (dj))

+
∑

n∈tree,n�=s,dj
PCOXC(n) + τOA · PCOA

= PCipFixed(s) + PCipV aria(s) + PCOPTFixed(s) + PCOPTV aria(s)

+
∑k

j=1

(
PCipFixed(dj) + PCipV aria(dj) + PCOPTFixed(dj) + PCOPTV aria(dj)

)

+
∑

n∈tree,n�=s,dj
PCOXC(n) + τOA · PCOA.

(3)

Where n denotes intermediate node of manycast request, OA stands for the
number of optical amplifiers in manycast light tree. PCip and PCOPT denote
the energy consumption of IP router port and BV-OPT, respectively. The fixed
energy consumption of IP router port and OPT will not be repeatedly calculated
if they have been in working state already. The above evolution operations will
iterate to produce new generation of population until fitness value of genes has
stabilized or termination condition of algorithm has been reached. Finally, we
select the gene with the smallest fitness value in the last generation of population
to be EEM-RMLSA solution.

5 Performance Evaluation

We evaluate performance of the proposed URD-GA in 14-node NSFNET, with
12.5 GHz for each FS capacity. The capacity of each manycast request is ran-
domly chosen within the range [10–100] Gbits/s. All candidate light-paths and
light trees are pre-calculated. Furthermore, the multicast requests decompos-
ing gene encoding based genetic algorithm (MRD-GA) is also proposed to be
a benchmark. MRD gene encoding scheme decomposes a manycast request into
a few multicast requests and encodes each multicast request with its candidate
light tree, modulation level and spectrum resource to form a gene. By changing
manycast light tree in a gene to form a new one, we can constitute diverse genes.

Energy Efficient Manycast Routing 639

After MRD gene encoding, there are a few small scale populations corresponding
to each multicast request. The total numbers of genes in all populations which
are constituted by MRD gene encoding are equal to the numbers of genes in the
population constituted by URD gene encoding. The genetic operations for each
population in MRD-GA are the same as URD-GA. The only difference between
URD-GA and MRD-GA is gene encoding scheme. Energy efficient manycast
routing and spectrum algorithm (P-EEM) and the blocking aware-EEM (BA-
EEM) routing and spectrum algorithm presented in [8] are also simulated as
benchmarks under our network model.

Figure 2(a) shows network energy consumption with five candidate destina-
tion nodes in each manycast request, of which three should be reached (D = 5
and k = 3). Its demonstrated that URD-GA can reach the maximum network
energy saving under different traffic loads. URD-GA can reduce network energy
consumption in 3.5% 8.4%, 2.5% 12.9% and 13.6% 22.8% compared to MRD-GA,
P-EEM and BA-EEM, respectively. This is because URD-GA searches possible
optimal EEM-RMLSA solution from the larger scale candidate solution set, while
MRD-GA optimizes possible multicast solutions separately in a few small scale
populations and then chooses the best one from them. The P-EEM and BA-
EEM choose the energy efficient manycast light tree in a number of candidate
multicast shortest path spanning trees and optimize it to be the final solution,
which narrows searching scope of candidate manycast light trees as well.

The comparison results of request blocking probability among four algorithms
are shown in Fig. 2(b). It is observed that URD-GA has the best performance in
request blocking probability reduction and the trend comes more obviously with
traffic load increase. This is due to the highly efficient solution searching ability
from large scale candidate solutions and reliable sub-optimal solution selection
ability of URD-GA.

It is worthy to mention that simulation results of URD-GA are slightly better
than MRD-GA shown in Fig. 2(a) and (b). It can be explained in two aspects,
searching scale and searching diversity. The population scale in URD-GA is a few
times as each population scale in MRD-GA. The larger population scale leads to

100 200 300 400 500

0.00

0.05

0.10

0.15

0.20

0.25

R
eq

ue
st

 B
lo

ck
in

g
P

ro
ba

bi
li

ty

Traffic Load (Erlang)

 URD-GA
 MRD-GA
 P-EEM
 BA-EEM

100 200 300 400 500
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

×106

E
ne

rg
y

C
on

su
m

pt
io

n
(W

)

Traffic Load (Erlang)

 URD-GA
 MRD-GA
 P-EEM
 BA-EEM

(a) (b)

Fig. 2. (a) Energy consumption comparison and (b) blocking probability comparison.

640 X. Luo et al.

100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
×106

E
ne

rg
y

C
on

su
m

pt
io

n
(W

)

Traffic Load (Erlang)

 D=3

 D=4

 D=5

100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 ×106

E
ne

rg
y

C
on

su
m

pt
io

n
(W

)

Traffic Load (Erlang)

 k=2
 k=3
 k=4

(a) (b)

Fig. 3. (a) Energy consumption comparison of URD-GA in different D and (b) in
different k.

the wider search range which further brings about a higher possibility to find the
better solution. Moreover, gene crossover and mutation operations in URD-GA
may change manycast routing light paths in genes which could generate different
kinds of genes, while these operations in MRD-GA may change manycast light
tree in genes which leads to less diversity degree of genes. The higher diversity
degree of genes also makes the higher possibility to find the better solution.

Figure 3(a) shows the impact of D on total network energy consumption (let
k = 3). It is observed that with the increase of D, network energy consumption
is decreasing at each specific traffic load. This is because the freedom degree
of destination node selection rising with the increase of D and more energy
efficient manycast light tree may be found. In Fig. 3(b), the energy consumption
under different k are shown (let D = 5). The similar simulation result trend can
be drawn with the decrease of k. This is due to available network spectrum
resource could be allocated to each manycast request increase with the decrease
of k.

In Table 3, we evaluate running time of four algorithms with k = 3, D = 5
of each manycast request. Its demonstrated that P-EEM consumes the least
running time due to the simplest algorithm complexity. MRD-GA has less run-
ning time than URD-GA. This is because MRD-GA encodes multicast requests
as a few small scale populations leading to faster solution searching. URD-GA
encodes all candidate unicast request combinations as one large scale population
which needs taking more time to search the appropriate solution.

Table 3. Running time comparison.

Number of requests URD-GA MRD-GA P-EEM BA-EEM

10 0.1682 s 0.1037 s 0.0035 s 0.0039 s

20 0.3735 s 0.1988 s 0.0059 s 0.0062 s

50 0.7381 s 0.5166 s 0.0155 s 0.0178 s

100 1.6478 s 1.3024 s 0.0284 s 0.0364 s

Energy Efficient Manycast Routing 641

6 Conclusion

To solve EEM-RMLSA problem in EONs for smart city applications, the unicast
requests decomposing gene encoding based genetic algorithm (URD-GA) with
the goal of minimizing the overall network energy consumption is proposed.
URD gene encoding scheme constitutes a large scale population which tries to
cover available EEM-RMLSA solutions as many as possible. Extensive candidate
EEM-RMLSA solutions in population and efficient searching ability of URD-GA
lead to better EEM-RMLSA solutions. Simulation results show that URD-GA
achieves 22.8% energy saving at the best with the cost of acceptable algorithm
complexity increase. Therefore, URD-GA is suitable for solving EEM-RMLSA
problem in EONs, which has great value to smart city development.

Acknowledgments. This study is supported by National Natural Science Foundation
of China (No. 61571061).

References

1. Jin, J., et al.: Network architecture and QoS issues in the internet of things for a
smart city. In: Proceedings of ISCIT 2012, pp. 956–961. IEEE, Australia (2012)

2. Nam, T., Pardo, T.A.: Conceptualizing smart city with dimensions of technology,
people, and institutions. In: Proceedings of the 12th Annual International Confer-
ence on Digital Government Research 2011, pp. 282–291. ACM, USA (2011)

3. Ji, Y., Zhang, J., et al.: Prospects and research issues in multi-dimensional all
optical networks. Sci. China Inf. Sci. 59(10), 101301:1–101301:14 (2016)

4. Wang, C., Shen, G., Bose, S.K.: Distance adaptive dynamic routing and spectrum
allocation in elastic optical networks with shared backup path protection. J. Light-
weight. Technol. 33(14), 2955–2964 (2015)

5. Chatterjee, B.C., Sarma, N., Oki, E.: Routing and spectrum allocation in elastic
optical networks: a tutorial. IEEE Commun. Surv. Tutor. 17(3), 1776–1800 (2015)

6. Luo, X., et al.: Manycast routing, modulation level and spectrum assignment over
elastic optical networks. Opt. Fiber Technol. 33, 317–326 (2017)

7. Wu, J., Ning, Z., Guo, L.: Energy-efficient survivable grooming in software-defined.
IEEE Access 5, 6454–6463 (2017)

8. Fallahpour, A., Beyranvand, H., Salehi, J.A.: Energy-efficient manycast routing
and spectrum assignment in elastic optical networks for cloud computing environ-
ment. J. Lightweight Technol. 33(19), 4008–4018 (2015)

9. Yang, T., Liu, W., Chen, X., et al.: Modulation format independent blind polar-
ization demultiplexing algorithms for elastic optical networks. Sci. China Inf. Sci.
60(2), 022305:1–022305:9 (2017)

10. Zhang, S., Mukherjee, B.: Energy-efficient dynamic provisioning for spectrum elas-
tic optical networks. In: Proceedings of IEEE International Conference on Com-
munications 2012, pp. 3031–3035. IEEE, Canada (2012)

11. Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance.
Phys. A Stat. Mech. Appl. 391(6), 2193–2196 (2012)

An Advanced Random Forest
Algorithm Targeting the Big Data

with Redundant Features

Ying Zhang, Bin Song(&), Yue Zhang, and Sijia Chen

The State Key Laboratory of Integrated Services Networks,
Xidian University, Xi’an 710071, China
bsong@mail.xidian.edu.cn

Abstract. Recently, methods to big data are gaining a growing number of
popularity, as we are entering the age of big data. As a result, novel methods
keep emerging, among which stands random forest method. Random forest
fuses multiple sub decision trees for classification and regression, with high
accuracy and generalization. It, however, has unsatisfactory performance when
facing data sets with more noise and redundant features. This phenomenon is
mainly caused by inaccuracy from some sub decision trees, and fusing all of
them directly cannot decrease their negative effect. Therefore, we proposed
advanced random forest to assign less probability to those negative sub decision
trees, meaning they are less likely to be chosen at fusion process. Thus, the
capability of prediction is improved. Dropout and roulette method we used in
the process ensures a good generalization capability, and maintains a higher
accuracy simultaneously. We sample the original data set following the method
of K-fold division which will increase the differences between sub decision
trees, making the prediction more credible. Finally, our proposed method is
validated on several data sets. Experimental results show that compared to
traditional random forest method, our method has higher classification accuracy
on data sets with noise and data sets with more redundant features.

Keywords: Big data � Dropout � Random forest � Redundant features

1 Introduction

Data have been accumulating at an unprecedented velocity, with the development of
industry, finance, internet and other fields [1]. According to International Data Cor-
poration (IDC), data are generated exponentially, doubling every two years, reaching
35ZB in 2020 [2]. Averagely, two million users are searching through Google every
second. Facebook has over one billion users, creating over 300 TB log data every day.
Meanwhile, the development of the Internet of Things, cloud computing and sensing
technology facilitates the generalization and accumulation of data. Data have contained
a great value, which is very necessary to be mined and applied reasonably [3].

Due to complexity, high-dimension, and variation, extracting useful patterns and
knowledge from real and complicated big data requires theoretical guidance, such as

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 642–651, 2017.
DOI: 10.1007/978-3-319-65482-9_49

data mining and machine learning [4]. Currently, the most popular methods in machine
learning are XGBoost [5], SVM [6], deep learning [7], and random forest [8, 9].

Random forest method has gained an increasing popularity recently. Compared to
traditional machine learning methods, random forest has higher accuracy and higher
generalization, and it is easier to be parallelized. Compared to deep learning, training
random forest has lower requirement of time and hardware. It performs outstanding on
classification and regression problems, also being suitable for data mining process.

Real data is more complicated, which may be involving a number of redundant
features, reducing the performance and accuracy of random forest. Therefore, we
propose advanced random forest to guide the fusion process and to improve general-
ization. Experimental results suggest that our proposed method exceeds traditional
random forest on data sets with noise and data sets with more noise and redundant
features.

The remaining of this paper is organized as follows: Sect. 2 presents some related
work. Details of our method are introduced in Sect. 3 and the experimental results are
shown in Sect. 4. The final section concludes the whole paper.

2 Related Work

The random forest is a common machine learning algorithm, which applies decision
trees as base classifier to construct an integrated classification model. As a mature
ensemble learning method, the random forest possesses such ability of classification
that it has received extensive attention from the academic and industrial circles.
Moreover, it is now becoming increasingly widespread application in realistic scenes of
the random forest, which is a popular topic in many fields such as data mining, pattern
recognition, target detection [10]. The random forest algorithm was first proposed in
2001 [8], and introduced it in detail from both theoretical and experimental aspects.
Experimental results present that the random forest can overcome the problem of
over-fitting better and it is easy to implement, powerful in performance and suitable for
big data sets.

Due to the good performance and varies advantages, the random forest has been
applied and developed in many areas. In medical science, the random forest was
applied to the prediction of heart disease [11]. In industrial area, random forest was
used to predict failures in the air pressure system of Scania Trucks, in order to farthest
reduce overall maintenance costs of the system to a maximum extent [12]. Moreover,
an article introduce a novel method combined with random forest to predict protein
domain linkers and boundaries [13]. In addition, random forest was applied to 3D
object recognition and achieved fairly good results [14].

It is a fact that the random forest is one of the most successful machine learning
algorithms, thus theoretical research on random forest has never been stopped. An
integrated method called rotation forest (RotRF) was proposed [15]. The main idea of
the RotRF is to construct decision trees based on method of principle component
analysis (PCA) Then, rotation forest algorithm was improved and introduced a new
integrated method called RotBoost [16]. The RotBoost applied sample weighting from
Adaboost to retrain sample improperly classified with re-weighting. Based on research

An Advanced Random Forest Algorithm Targeting the Big Data 643

towards different levels of contribution from features to classification, a method of
weighting training samples randomly was used to produce different decision trees [17].
In a similar way, a new concept was proposed, survival trees, from the perspective of
construction process of decision trees, and finally proposed the random survival forests
algorithm (RSF) [18]. As the result, the RSF integrates the content of survival analysis
trees and the prediction results. Later, based on consideration for applying different
levels of pre-treatment to training sets for constructing decision trees, presented an
improved random forest algorithm called Ensemble Feature Forest (EFF) was present
[19], involving PCA and Linear Discriminant Analysis (LDA), mapping the raw data to
different rotation spaces and then cascading the original features. It is also worth
mentioning that random forest is easy to be parallelized, which means it can be used in
processing big scale of data.

The random forest has been widely applied and has achieved remarkable results.
However, it still has some limits and drawbacks while facing the realistic data sets with
more noise and redundant features. Therefore, we intend to improve the flexibility and
performance of random forest. Accordingly, researching on improved algorithm of
random forest may have significant value for enhancing the classifying quality and
more practical applications.

3 The Proposed Method

In this section, we will give a brief description of traditional random forest method.
Then we will provide details of our proposed method, as a comparison.

3.1 A Subsection Sample Random Forest Algorithm

The random forest algorithm is an extended variant of bagging method, which is a
combination of decision tree with the same distribution. In detail, the random forest
takes n sample from raw data D using bootstrap sampling method, as
Di �D; i ¼ 1; 2; . . .n, then a sub decision tree will be constructed for every single
sample set. Eventually, all decisions trees will be combined and forecast results toward
the test set will be based on a vote among all results of sub trees [8]. The main structure
of a random forest is shown in Fig. 1.

Data set Draw will be sampled using bootstrap. Firstly, we define a function Draw
i ¼

F Drawð Þ; i ¼ 1; 2; . . .nð Þ that sample n times from raw data, with m samples in each,
constructing n subsets, as Draw

i �Draw; i ¼ 1; 2; . . .n; Draw
i

�� �� ¼ m
� �

. Specifically, In
each sampling process, a sample set with m samples will be generated with return,
meaning the same elements may occur more than once in each Draw

i , and relationship
Draw

i \Draw
j ¼ ;; i; j ¼ 1; 2; . . .nji 6¼ jð Þ does not hold.

Next, we train a decision tree for every single sample set. The general decision tree
will choose the optimal division feature of the attribute domain on a particular node.

The decision trees in a random forest, however, will first take a sub-set contains d
features randomly, and choose an optimal one for division. Eventually, n decision trees
h1; h2; . . .; hnf g will be constructed.

644 Y. Zhang et al.

The random forest model is the combination of the n sub decision trees. The final
classification result is an integration of results from the n independent classifier.
Therefore, a fusion algorithm is required to integrate all information and output the
result. The voting method, as the simplest fusion method, is often used. The output is
the majority results among all sub classifiers in a classification problem.

One drawback of traditional random forest is its limitation of the realistic data sets
with more noise and redundant features. Therefore, we propose advanced random
forest algorithm to increase its flexibility.

3.2 Advanced Random Forest Algorithm

The general random forest algorithm just simply combines all sub decision trees
without selection, which can lead to low performance on real data sets of more
redundant features and features with low correlation. In this section, we will propose an
advanced random forest algorithm, which can improve RF’s accuracy rate of forecast
on data set with redundant features and noise while keep its high generalization
capability. The main structure of the advanced random forest algorithm is shown in
Fig. 2, consisting of two parts, constructing sub decision trees and selection.

Fig. 1. The structure of random forest

Fig. 2. Architecture of advanced random forest algorithm. (1) and (2) indicate two main
processes, with detailed in this subsection.

An Advanced Random Forest Algorithm Targeting the Big Data 645

Constructing Sub Decision Trees Process
Firstly, we divide the original data set D into K sub sets following the method of K-fold
division, which is inspired by K-fold Cross Validation, as in Fig. 3. Then, K � 1 sets of
data will be used as training set Dtr to train n decision trees. Normally, we can use
CART or C4.5 tree in this step. Finally, the last set of data will be the test set Dte, which
can verify the accuracy of the n sub decision trees Pt, as Pt ¼ p1; p2; . . .; pkf g. We
repeat the steps above until every sub set plays the role as a test set in one iteration.

Selection Process
After obtaining all sub decision trees, we propose selection process so that superior
candidates, which may improve the performance of random forest, can be chosen with
higher probability. Thus, we apply the dropout and roulette method to random forest.
During the dropout process, we just let the trees with rates equal to Pd . Dropout is a
generalization method from deep learning, which means that a model randomly dis-
ables some nodes in hidden layers to improve the performance and generalization
ability of neural networks [20, 21]. In every iteration, we firstly calculate the weight
Wi i ¼ 1; 2; . . .; nð Þ of every sub decision tree, as

Wi ¼ pi �min Ptð Þ ð1Þ

Next, we dropout some of the sub decision trees using the roulette method, and
calculate the cumulative weight of every sub decision tree according to the following
formula

qi ¼
Xi

j¼1
Wi ð2Þ

Here, qi is the cumulative weight of decision tree hi.
A pseudo-random number r will be generated from a uniform distribution on

interval 0;
Pn

i¼1 Wi
� �

. Then, If r\ q1, we choose first decision tree, otherwise we
choose the i-th tree satisfying qi�1 \ r\ qi. Following the steps above, we can pick up
n� Pd decision trees meanwhile dropout the others.

Fig. 3. The method to divide the original data set

646 Y. Zhang et al.

The last step is to merge the sub decision trees from the K iterations shown above in
order to obtain an optimized random forest model. A method of weighted voting is
used in the merging process.

A single detailed iteration will be shown in following pseudo-codes (Table 1):

4 Experiments and Results

In this section, we will evaluate our optimized model on varies data sets, and compare
it with the random forest on its classification accuracy. Specifically, the data sets we
apply is presented as Table 2, with detailed explanation followed.

Sparse-cnf: This data from mlcomp contains 10000 instances and 100 dimensions of
features. In order to test our algorithm performance on data sets with redundant features
and noise, we preprocess the data set, adding another 100 dimensions of features with
random values.

Table 1. Pseudo-code of selection process in advanced random forest

An Advanced Random Forest Algorithm Targeting the Big Data 647

Madelon: This data set is downloaded from openml, is an artificial data set, which was
part of the NIPS 2003 feature selection challenge, containing 2600 instances and 501
dimensions.

Waveform: This data set is downloaded from openml, which contains 5000 instances
and 41 dimensions of features. The same processed, adding another 100 dimensions of
features which have random values, is executed.

Fri_c0_1000_50: This data set is downloaded from openml, which contains 1000
instances and 50 dimensions of features. The same processed, adding another 100
dimensions of features involving have random values, is executed.

Before adding another features with random values, we compare the classification
accuracy of advanced random forest and traditional random forest on raw data set, as in
Table 3.

Then we compare the performance of our proposed method and traditional random
forest on all the data sets above, as in Tables 4 and 5. In Table 4, we conduct ten
experiments on each dataset, and calculated the average and the standard deviation of
accuracy. It is straightforward to find that our method exceeds traditional random forest
in terms of accuracy on all four data sets. It is straightforward to find that our method
exceeds traditional random forest in terms of accuracy on all four data sets with noise
and redundant features. Furthermore, the gap between the two methods on data sets
Sparse-cnf and Fri_c0_1000_50 is large, indicating the outstanding improvement.
Relatively, the improvement on data sets Madelon and Waveform is mere. The reason
may be related to the performances of sub decision trees. Thus, we validate the
accuracy of each of them, and calculate the dissimilarities, as the last column in
Table 4.

The dissimilarities in Table 4 is calculated as the difference between the best and
worst decision trees, may also indicate deviation among them. Compared to the rest
two data sets, Madelon and Waveform have smaller dissimilarities, meaning all sub

Table 2. Comparison of data sets.

Data set Number of instances Number of dimensions

Sparse-cnf 10000 100
Madelon 2600 501
Waveform 5000 41
Fri_c0_1000_50 1000 50

Table 3. Classification accuracy on data sets without adding noise

Data set Random forest Advanced random forest

Sparse-cnf 91.2% 96%
Madelon 65.9% 67.9%
Waveform 88.9% 88.7%
Fri_c0_1000_50 85.6% 86.7%

648 Y. Zhang et al.

trees of them have similar performance. Therefore, even if we assign inferior trees less
probability to be chosen, the remaining ones still provide similar answers. Thus,
roulette selecting is not always a functional method among similar candidates. On the
other hand, when all sub trees perform differently, depressing inferior trees has direct
effect on the outcomes. This explains the different improvements in Table 4.

In Table 5, we calculate the AUC on each data set, and get the same conclusion as
Table 4.

Table 4. Classification accuracy on data sets (The average of accuracy � standard deviation)
and dissimilarities among sub decision trees.

Data set Random forest Advanced random forest Dissimilarities

Sparse-cnf (85.3 � 0.79)% (90.4 � 0.65)% 0.208
Madelon (65.9 � 1.34)% (67.9 � 0.68)% 0.133
Waveform (87.2 � 0.46)% (88.2 � 0.28)% 0.102
Fri_c0_1000_50 (81.8 � 1.57)% (87.1 � 0.85)% 0.223

Table 5. AUC on data sets

Data set Random forest Advanced random forest

Sparse-cnf 0.78 0.84
Madelon 0.66 0.68
Waveform 0.83 0.84
Fri_c0_1000_50 0.82 0.85

Fig. 4. The comparison of random forest (RF) and advanced random forest (ARF) on data set
Sparse-cnf (a), data set Madelon (b), data set Waveform (c) and data set fri_c0_1000_50 (d).

An Advanced Random Forest Algorithm Targeting the Big Data 649

Further, we consider the influences of number of sub decision trees on both
methods. Theoretically, larger number of sub decision trees has higher probability of
containing trees with high performance, less dependent on trees of low classification
capability. Thus, with more trees being introduced, both methods tend to improve their
accuracy until convergence, as in Fig. 4. Besides, the proportion of the dropout is
usually set to 0.5. The parameter K = 9 in K-ford, as an experimental result.

From Fig. 4 we can find that with the growing number of trees, both methods tend
to converge on all data sets. Meanwhile, our proposed method almost keeps higher
accuracy than that of random forest, indicating its superior performance.

The results above show that our algorithm have better performance and classifi-
cation ability applied to real big data sets with redundant features and noise, compared
with general random forest algorithm, which means much more capable for realistic
demand.

5 Conclusion

In this paper, we have proposed an advanced random forest method, to handle sce-
narios where realistic data sets with more noise and redundant features are involved.
Firstly, we have randomly divided the original data set into K groups, according to K-
fold division. For each iteration, K-1 groups of data are applied as training set, and the
remaining one is as validation, in order to increase the dissimilarities among all sub
decision trees. Then, we have assigned weights to each sub decision tree based on their
accuracy, which further provide guidance to roulette method to select nodes in dropout
method. Thus, sub decision trees with higher accuracy have a higher probability to
survive, increasing their effects and improving the generalization of the whole system.
At last, we have integrated the results every time dropout method is applied, obtaining
the final advanced random forest model. Experimental results have proved our method
is capable of data sets with more noise and redundant features, which is popular among
realistic data sets. At present, the running time of the program will grow as the
parameter k increases, and longer than the random forest algorithm. Future work will
target on further improvement and parallelization, it is estimated that the calculation
performance of the improved algorithm will be greatly improved after parallelization,
which is closer to the random forest, and hoping to be suitable and flexible for larger
scale of data.

Acknowledgement. This work has been supported by the National Natural Science Foundation
of China (61372068, 61672410), the National Key Research and Development Program of China
(grant 2016YFB0800704), and is also supported by the ISN State Key Laboratory.

650 Y. Zhang et al.

References

1. Mayer-Schönberger, V., Cukier, K.: Big Data: A Revolution that will Transform How we
Live, Work and Think. Eamon Dolan/Houghton Mifflin Harcourt, Boston (2013)

2. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014)
3. Tsai, C-W., Lai, C-F., Chao, H., Vasilakos, A.V.: Big data technologies and applications. In:

Big Data Analytics, pp. 13–52 (2016)
4. Sowmya, R., Suneetha, K.R.: Data mining with big data. In: 2017 11th International

Conference on Intelligent Systems and Control (ISCO). IEEE (2017)
5. Chen, T., Guestrin, C.: XGBoost: A Scalable Tree Boosting System. ArXiv e-prints (2016)
6. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995)
7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
9. Witten, I.H., Frank, E., Hall, M.A., et al.: Data Mining: Practical Machine Learning Tools

and Techniques. Morgan Kaufmann, Burlington (2016)
10. Biau, G., Scornet, E.: Rejoinder on: a random forest guided tour. TEST 25(2), 264–268

(2016)
11. Jabbar, M.A., Deekshatulu, B.L., Chandra, P.: Prediction of heart disease using random

forest and feature subset selection. In: Snášel, V., Abraham, A., Krömer, P., Pant, M., Muda,
A.K. (eds.) Innovations in Bio-Inspired Computing and Applications. Advances in
Intelligent Systems and Computing, pp. 187–196. (2015)

12. Gondek, C., Hafner, D., Sampson, O.R.: Prediction of failures in the air pressure system of
scania trucks using a random forest and feature engineering. In: Boström, H., Knobbe, A.,
Soares, C., Papapetrou, P. (eds.) IDA 2016. LNCS, vol. 9897, pp. 398–402. Springer, Cham
(2016). doi:10.1007/978-3-319-46349-0_36

13. Shatnawi, M., Zaki, N., Yoo, P.D.: Protein inter-domain linker prediction using random
forest and amino acid physiochemical properties. BMC Bioinform. 15, S8 (2014)

14. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A.,
Blake, A.: Real-time human pose recognition in parts from single depth images. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1297–1304 (2011)

15. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble
method. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1619–1630 (2006)

16. Zhang, C.X., Zhang, J.S.: RotBoost: a technique for combining rotation forest and adaBoost.
Pattern Recogn. Lett. 29, 1524–1536 (2008)

17. Maudes, J., Rodríguez, J.J., García-Osorio, C., et al.: Random feature weights for decision
tree ensemble construction. Inf. Fusion 13, 20–30 (2012)

18. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., et al.: Random survival forests. Ann. Appl.
Stat. 2, 841–860 (2008)

19. Zhang, L., Suganthan, P.N.: Random forests with ensemble of feature spaces. Pattern
Recogn. 47, 3429–3437 (2014)

20. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving
neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.
0580 (2012)

21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958
(2014)

An Advanced Random Forest Algorithm Targeting the Big Data 651

http://dx.doi.org/10.1007/978-3-319-46349-0_36
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580

En-Eye: A Cooperative Video Fusion Framework
for Traffic Safety in Intelligent Transportation Systems

Tianhao Wu(✉) and Lin Zhang

Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road,
Beijing, Haidian District, China
wu.tianhao@bupt.edu.cn

Abstract. Limited vision is a one of the most essential cause in traffic accidents.
To guarantee the safety of vehicle operating, a series of matured assistance
systems choose to deploy many special sensors. These solutions, however, only
emphasize the equipment on a single vehicle. In some complex environment,
detecting range would be limited within 50 m by various obstacles. Exchanging
data among vehicles would be useful. But most current systems transfer a small
amount of data, like vehicle operating states. In this paper, a smart-terminal-based
framework named En-Eye is developed to enhance the traffic safety. En-Eye is
proposed as a framework use smart terminals to construct a small-scope-network
to exchange video data captured by camera in real time. Furthermore, video fusion
is developed inside the framework for further analysis. Finally, an Android-based
implementation of En-Eye framework has been achieved and work well in real
environments.

Keywords: Cooperative video network · Multicast · Shared video · Video fusion

1 Introduction

Traffic security becomes one of the crucial problems in the transportation systems. As the
road is crowded with more vehicles, the drivers’ vision is more easily limited by other
vehicle. As a result, more traffic accidents take place in the situation that potential threat is
hided in the shadow of other vehicles. According to [1], traffic accidents resulted in more
than 500 thousand deaths and 14 million injures worldwide by the end of May in 2016. One
of the main reasons for traffic accidents is that the drivers cannot notice the behaviors of
surrounding vehicles, pedestrians and cyclists on time. To reduce the traffic accidents, it is
essential to assist the drivers to have a wider vision about the surrounding environments
including the coming vehicles and adjacent pedestrians and cyclists.

To enable the safety of transportations, many strategies are proposed. There are some
works using the vehicle-mounted device for driving assistance system. Cameras and
other sensors are used to monitor the variable environment. Although the cost of cameras
and radars based safety technology is decreasing, these safety technologies have not
been deployed in economy vehicles. It still needs time before the majority of vehicles
are deployed with these safety technologies. Furthermore, due to lack of communication,
vehicles need to make judgement by themselves.

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 652–657, 2017.
DOI: 10.1007/978-3-319-65482-9_50

In this paper, we propose En-Eye, a smart-terminal-based framework for traffic
safety by sharing video streams and video fusion, which overcomes the limitations of
drivers’ vision to detect potential traffic threat.

En-Eye is a novel framework which only utilizes the smart terminals to improve the
transportation safety. It enlarges drivers’ visual range by sharing video streams produced
by every vehicle. And the further video fusion improve the convenience, for drivers just
need to see one video screen rather than two or more.

We highlight our main contributions as follows:

1. A driving-video shared platform is provided which can run on commodity smart
terminals.

2. A video fusion mechanism is proposed to integrate the video streams on the shared
platform.

3. An Android-based implementation of En-Eye has been achieved and work well in
real environments.

2 Framework Overview

This section depicts the high level overview of the framework En-Eye that we proposed for
traffic security. En-Eye is focused on the vehicle and pedestrian security. One of the main
causes for the traffic accident is that some of vehicle and pedestrian behaviors are out of the
drivers’ visual range, for some vehicles might become visual obstacle to others. En-Eye
considers take advantage of the smart terminal which is widespread to enlarge the vision
of drivers. And finally it would help to reduce the potential threat to traffic safety.

As is shown in Fig. 1, the vision of the vehicle 0 is limited by the other three vehicles.
But En-Eye allows these vehicles to deliver their video streams to others over the plat‐
form. And any one of the vehicles on the platform can obtain other vehicles’ video

Fig. 1. Application scenarios. The forward sight of vehicle 0 is blocked by vehicle 1–3. However,
vehicle 1–3 transmit their scene to vehicle 0 to help it construct a larger scene.

En-Eye: A Cooperative Video Fusion Framework 653

streams from the platform. Using the video information, the driver could get a relatively
overall understanding of environment. Besides, both drivers and other systems obtain
the ability of further analysis and processing on these video information.

System architecture is presented in Fig. 2, and data flow diagram is presented in
Fig. 3. The framework can be divided into two parts: source and destination. The part
of source takes charge of capturing video from outside, encoding the video into H.264
format and sending the H.264 streams into Multicast Network. The part of destination
would receive the video streams and assign them into different decoders corresponding
with specified video sources. Finally, the fusion part inside the destination device would

Fig. 2. System architecture. The source part captures the video, encodes it into H.264 and send
it into a multicast network. The destination part gets data from the multicast network, decode them
and continues the process of fusion.

Fig. 3. Data flow diagram. The process of data change is shown clearly.

654 T. Wu and L. Zhang

integrate the video streams from different decoders into a large one. What should be
emphasized is that each terminal is equipped both source part and destination part.

2.1 Capturing Video Stream

During a vehicle operating, the terminal captures video from camera and push the raw
image data into encoder to transform them into H.264 data streams. The section details
the process.

The camera is composed of millions of photosensitive units. Each unit turns the
optical signal into electric signal unit called pixel. Terminal store these electric units in
the format of YUV, which requires big storage space to represent a pixel. It would
increase the transmission pressure. To decrease the pressure, the video needs to be
compressed into the format of H.264, known as a common format for transmission. We
utilize the hardware codec to finish the work.

2.2 Collecting Video Streams

We use multicast for communication. Generally, there are two main protocols in trans‐
mission layer, TCP and UDP. TCP is a stable and reliable transmission protocol.
However, its retransmission mechanism would not only make the video stream not
playing smoothly, but also cost a period of time to let the video chase the present content.
We need deliver video data from one to multiple devices. So TCP and common UDP
would not be applicable in this situation. As for UDP broadcast, it could exposed all the
information in the local area network, which do harm to the privacy protection. Consid‐
ering the above reasons, multicast is the best choice in this transmission task.

To distinguish the different sources of video, we make an additional head at the start
of each packet transmitting data streams. The head contains the information labeling the
source device. Before the destination device pushes the data streams into the decoder,

Fig. 4. We can see from the picture that the four tablets are transmit the video streams among
them, and the application are running well.

En-Eye: A Cooperative Video Fusion Framework 655

head would be take out to judge the target decoders where the data streams to enter.
After decoding, the output can be displayed on the screen directly.

We have completed the Android application to realize the framework. The
performace is shown in Fig. 4.

2.3 Video Fusion

The process of video fusion is composed of four steps: Image acquisition, Feature point
extraction and matching, Image registration and Image fusion. The order is shown in
Fig. 5. The feature extracting algorithm SIFT is used for feature extraction and matching.
In order to improve the accuracy of matching, guided complementary matching and
voting filter is used. And finally image mosaic is completed with smoothing algorithm.

Fig. 5. The process of video fusion.

3 Conclusion

In this paper, we develop a smart-terminal-based framework for traffic safety named En-
Eye, which can obtain real-time video streams to merge them into a completed scene.
Firstly, a driving-video shared platform is provided which can run on commodity smart
terminals. Secondly, a video fusion mechanism is proposed to integrate the video streams
on the shared platform. Thirdly, we realize a real-time fusion algorithms on smart termi‐
nals. Finally, an Android-based implementation of En-Eye has been achieved and work
well in real environments.

Acknowledgements. This work was supported by the National Key R&D Program of China
(2016YFB0100902)

656 T. Wu and L. Zhang

References

1. Real time traffic accidents statistics. http://www.icebike.org/real-time-traffic-accident-
statistics/ Accessed 23 May 2017

2. Intelligent transportation systems-dedicated short range communications. http://
www.its.dot.gov/DSRC/ Accessed 23 May 2017

3. Qin Z, Meng Z, Zhang X, et al.: Performance evaluation of 802.11 p WAVE system on
embedded board. In: 2014 International Conference on. Information Networking (ICOIN),
Phuket, Thailand, pp. 356–360 (2014)

4. Santa, J., Fernández, P.J., Pereñíguez, F., Bernal, F., Skarmeta, A.F.: A vehicular network mobility
framework: Architecture, deployment and evaluation. In: 2015 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pp. 127–132. IEEE, Hong Kong, China
(2015)

5. Noguchi, S., Tsukada, M., Ernst, T., Inomata, A., Fujikawa, K.: Location-aware service
discovery on IPv6 GeoNetworking for VANET. In: 2011 11th International Conference on
ITS Telecommunications (ITST), pp. 224–229. IEEE, St. Petersburg, Russia (2011)

6. Vinel, A., Belyaev, E., Lamotte, O., Gabbouj, M., Koucheryavy, Y., Egiazarian, K.: Video
transmission over IEEE 802.11 p: real-world measurements. In: 2013 IEEE International
Conference on Communications Workshops (ICC), pp. 505–509. IEEE, Budapest, Hungary
(2013)

7. Zhou, L., Zhang, Y., Song, K., Jing, W., Vasilakos, A.V.: Distributed media services in P2P-
based vehicular networks. IEEE Trans. Veh. Technol. 60(2), 692–703 (2011)

8. Gozálvez, J., Sepulcre, M., Bauza, R.: IEEE 802.11 p vehicle to infrastructure
communications in urban environments. IEEE Commun. Mag. 50(5) (2012)

9. Xie, H., Boukerche, A., Loureiro, A.A.: A multipath video streaming solution for vehicular
networks with link disjoint and node-disjoint. IEEE Trans. Parallel Distrib. Syst. 26(12),
3223–3235 (2015)

10. Seferoglu, H., Keller, L., Cici, B., Le, A., Markopoulou, A.: Cooperative video streaming on
smartphones. In: 2011 49th Annual Allerton Conference on Communication, Control, and
Computing, pp. 220–227. IEEE, Allerton, England (2011)

En-Eye: A Cooperative Video Fusion Framework 657

http://www.icebike.org/real-time-traffic-accident-statistics/
http://www.icebike.org/real-time-traffic-accident-statistics/
http://www.its.dot.gov/DSRC/
http://www.its.dot.gov/DSRC/

Comparing Electricity Consumer Categories
Based on Load Pattern Clustering

with Their Natural Types

Zigui Jiang1(B), Rongheng Lin1, Fangchun Yang1, Zhihan Liu1,
and Qiqi Zhang2

1 State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

{ziguijiang,rhlin,fcyang,zhihan}@bupt.edu.cn
2 State Grid Shanghai Municipal Electric Power Company, Shanghai, China

Abstract. As one aspect of smart city, smart gird has similar situation
such as big data issue. Data analysis of daily load data generated by
smart meters can benefit both electricity suppliers and end consumers.
Electricity consumer categorization based on load pattern clustering is
one of research subjects. This paper aims to achieve a better understand-
ing of electricity consumer categorization by detecting the relationships
among consumer categories and their natural types. A two-stage clus-
tering based on multi-level 1D discrete wavelet transform and K-means
algorithm is applied to perform daily load curve clustering and load
pattern clustering. Additionally, to obtain distinct consumer categories,
method of category identification based on association rule mining and
characteristic similarity is also proposed in this paper. Experiment is con-
ducted on data set of 24-value daily load data with labels of consumer
types. Based on the comparison of experimental results, both relation-
ships and differences exist among consumer categories and consumer
types but consumer types cannot determine consumer categories.

Keywords: Smart Grid · Consumer category · Consumer type · Load
pattern · Clustering

1 Introduction

As information and communication technologies (ICTs) and Internet of thongs
(IoT) technologies are widely applied with the development of smart cities, big
data are increasingly produced in every part of the cities. Such big data Analysis
is beneficial for understanding, monitoring, regulating and planing the cities [1].
This situation also exits in smart grid which is one aspect of smart city. For
instance, smart meters in consumer side record power consumption of electricity
consumers in a high frequency. Based on the analysis of these detailed measure-
ments, electricity suppliers can enable their operations such as energy control,
demand side management and flexible pricing schemes [2,3]. Diverse power con-
sumption behaviors refer to distinctive characteristics of electricity consumers,
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 658–667, 2017.
DOI: 10.1007/978-3-319-65482-9 51

Comparing Electricity Consumer Categories 659

which drive consumer categorization based on their load pattern similarity. End
consumers can choose suitable payment programs offered by electricity suppliers
specifically for their categories. Furthermore, electricity consumers have their
own characteristics such as natural type and location. Do these characteristics
have relationships with power consumption behaviors? Thus, this paper focuses
on sophisticated data analysis of daily load data generated by smart meters to
detect the relationships among consumer categories and their natural types.

Every electricity consumer belongs to a type which refers to the sort that the
consumer naturally is. For example, school, restaurant, hotel or normal resident.
On the other hand, consumers also can be categorized into different groups
based on the similarity of their electricity power consumption behaviors. Such
groups are called consumer categories. Without further analysis, it cannot be
ensure that electricity consumers in the same types have similar consumption
behaviors or consumers in different types belong to different categories. Since
consumer types are usually apparent, achieving consumer categorization is the
primary task in this paper.

Following an analysis of the relevant literature dealing with consumer cat-
egorization, it is noted that there are two main research aspects, which are
categorization algorithm and multi-stage categorization framework. Clustering
algorithms such as self-organizing maps (SOM) and K-means are widely adopted
in consumer categorization [3–7]. Moreover, consumer categorization framework
generally contains a two-stage clustering [2,8–11]. The first stage is to extract
load patterns for each individual consumer by daily load curves clustering. Then
the next stage conducts a second clustering based on the selected representative
load patterns. Panapakidis et al. [9] used K-means algorithm in the two-stage
clustering. In their approach, load pattern with the largest cluster, the maximum
daily energy or the peak load can be selected as the representative load pattern
of each consumer for the second clustering. This simplifies consumer categoriza-
tion so that the final clustering result does generate the consumer categories
directly. However, those unselected load patterns lead to information loss. Mets
et al. [2] adopted fast wavelet transformation and g-means algorithm for the two-
stage clustering. They also mentioned the limitation of load pattern selection.
Therefore, all load patterns rather than one representative are employed for the
second clustering. However, this also leads to another problem which is indis-
tinct consumer categories. The final clustering result may show that a consumer
belongs to several categories.

According to this review of the literature, this paper enhance the detailed
analysis of clustering results to identify the distinct consumer categories. An
approach including a two-stage clustering and category identification is pro-
posed. Power consumption characteristics of different consumer types are also
be identified based on the same two-stage clustering. Additionally, this paper
compares the characteristics of consumer categories and consumer types, and
finds out relationships and differences among them. According to the compar-
ison and findings, it can achieve a better understanding of power consumption

660 Z. Jiang et al.

characteristics which are helpful for improving consumer categorization and con-
ducting new consumer classification.

The rest of this paper is structured as follows. Section 2 explains the pro-
posed approach and describes the algorithms adopted in the approach. Section 3
presents the experimental results with comparison and evaluation. Finally, the
paper is concluded in Sect. 4.

2 Approach

In order to compare consumer category with consumer type, it is essential to
obtain the representative load patterns of every consumer category and consumer
type, which present its typical electricity power consumption characteristics. As
mentioned in Sect. 1, load pattern extraction and consumer categorization are
based on daily load curve clustering and load pattern clustering, respectively.
Thus, this section explains the main approach to achieve the two-stage clustering
and consumer category identification.

The procedure of the proposed approach is described in Fig. 1. First, daily
load curve clustering is applied to every individual consumer to extract load
patterns. Second, another clustering is applied to the overall load patterns of
all consumers to achieve fuzzy categories. Finally, consumer categories are iden-
tified based on the fuzzy categories. Characteristics are the representative load
patterns of consumer categories.

Fig. 1. The procedure of electricity consumer categorization based on a two-stage clus-
tering and category identification.

2.1 Daily Load Curve Clustering

The load data of one day can be drawn as a curve so-called daily load curve.
A daily load curve presents the power consumption of an electricity consumer
in one day. It is supposed that every consumer has her/his typical consumption
behaviors which can be presented by several load patterns. In general, load
patterns are extracted by clustering of daily load curves in a certain period. The
two-stage clustering in this paper applies a fused load curve clustering algorithm
based on multi-level 1D discrete wavelet transform (DWT) and K-means. This
clustering algorithm is specially designed for load curve clustering and proposed
in a previous paper which is under review now. In the previous paper, it is proved
that this algorithm improves curve clustering performance with less information
loss of dimensionality reduction.

Comparing Electricity Consumer Categories 661

The curve clustering algorithm has two main steps. The first step is to reduce
the dimensions of daily load curves by multi-level 1D DWT. Two types of out-
put, approximation signals and detail signals, are produced in the first step.
In the second step, two types of signals are processed separately. Taking into
consideration the different properties of two signals, approximation signals are
normalized with z-score to ignore the distance difference while detail signals are
used directly. Then, normalized approximation signals and original detail signals
are clustered separately by K-means to produce two groups of clusters, which
are fused into one group of clusters finally.

Since Haar wavelet is simple and can compress a discrete signal into half,
it is adopted in the multi-level 1D DWT. The mother wavelet function of Haar
wavelet is described as follows:

ψ(t) =

⎧
⎪⎨

⎪⎩

1 0 ≤ t < 1/2,

−1 1/2 ≤ t < 1,

0 otherwise.
(1)

Furthermore, the optimal Ks of K-means for two signals are determined by
the Simplified Silhouette Width Criterion (SSWC) [12].

2.2 Load Pattern Clustering

After the daily load curve clustering, each consumer has several load patterns
that can present her/his typical power consumption behaviors. All load patterns
of consumers are employed in the load pattern clustering in order to keep as much
information as possible. Since load patterns are also load curves, the clustering
algorithm adopted in this stage is the same as the one adopted in daily load
curve clustering.

As mentioned in the former section, the result of load pattern clustering is
indistinct in terms of consumer categories. This means that several load pat-
terns of a consumer belong to various clusters that refer to different consumer
categories. Thus, the consumer categories obtained in this stage are called fuzzy
consumer categories, which are required to be further analysis.

2.3 Consumer Category Identification

Based on the fuzzy consumer categories from the two-stage clustering, consumer
category identification aims to obtain distinct consumer categories with diverse
consumption characteristics. Generally, consumers who have several load pat-
terns belonging to the same groups of fuzzy consumer categories are in the same
consumer categories. Therefore, it is a problem of finding association rules in
fuzzy consumer categories. Regarding each load pattern as an item, consumer
category identification is to find all frequent itemsets using minimum support
[13,14]. Apriori algorithm is adopted in this stage because it is the key algorithm
for an extraction of association rules [15].

662 Z. Jiang et al.

Let a couple (A,B) be an association rule, where A �= ∅, B �= ∅ and A∩B = ∅,
then this rule is noted as: A → B. The support of an association rule Sup(A →
B) is defined as the support of the itemset A∪B, which refers to the percentage
of transactions containing both A and B. The definition fellows the equation
below:

Sup(A → B) = Sup(A ∪ B) =
|t(A ∪ B)|

t(A)
. (2)

For Apriori, it is to find the items with a support ≥ minsup. In this paper,
minsup = 0 is set in order to find out all frequent itemsets of load patterns.
Moreover, all frequent itemsets are then combined based on their similarity.

For electricity consumers with n-dimensional daily load curves, let X =
{x1, x2, · · · , xm} and Y = {y1, y2, · · · , yr} be two frequent itemsets of load pat-
terns, where xi = 〈xi1, xi2, · · · , xin〉, 1 ≤ i ≤ m and yj = 〈yj1, yj2, · · · , yjn〉,
1 ≤ j ≤ r. The most common way to calculate similarity is based on distance
measure. As Euclidean distance is the default distance measure of K-means and
it is also adopted in the former clustering algorithm in the proposed approach,
the similarity calculation in the stage also adopts it. However, in order to ignore
the distance difference and achieve curve similarity of shape variation, z-score
normalization is applied to each xi ∈ X and yj ∈ Y before the calculation. Let
x′
i and y′

j be the normalized xi and yj , respectively. Then, the similarity of one
load pattern xi and the frequent itemset Y is calculated as follows:

Sxi,Y = min
yj∈C

{dist(x′
i, y

′
j)}, (3)

where dist(xi, yj) is the distance between x′
i and y′

j . The similarity of X and Y
is calculated as the average of Sxi

over i = 1, 2, · · · ,m:

Sim(X,Y) =
1
m

m∑

i=1

Sxi
. (4)

A parameter mindis is set to determine whether combine two frequent item-
sets or not. X and Y are combined into one set when Sim(X,Y) ≤ mindis. After
the combination, the remaining frequent itemsets refer to the characteristics of
consumer categories.

3 Results and Evaluation

This section presents the experimental results of the proposed approach to con-
sumer categories and consumer types with detailed comparison and discussion.

3.1 Data Set

The data set used in the experiment contains 24-value daily load data of 657
electricity consumers in a one-year period. It records the electricity power con-
sumption at every 1 h so that the daily load data have 24 values from 1:00 to
24:00. Moreover, these consumers are labeled with nine consumer types which
are full service restaurant, large hotel, small hotel, hospital, outpatient, midrise
apartment, primary school, super market and warehouse.

Comparing Electricity Consumer Categories 663

3.2 Results

Experimental results include load patterns of individual consumer and the rep-
resentative load patterns, also called consumption characteristics, of both con-
sumer types and consumer categories. The characteristics of consumer categories
are obtained by the proposed approach while the characteristics of consumer
types are obtained by a similar two-stage clustering using the same clustering
algorithm.

Load Patterns. In the first stage, daily load curve clustering is performed for
every individual consumer to obtain their load patterns. Examples are shown in
Fig. 2 to present the similarity and difference among consumers in the same type.
The consumers are randomly selected from warehouses. In Fig. 2, each warehouse
has at least one or several similar load patterns in terms of shape variation.
Comparing all load patterns of 657 consumers, it is found that consumers in
the same types do have similar load patterns while certain differences also exit
among them.

Consumer Type. The consumption characteristics of consumer types are also
obtained by a two-stage clustering. The first clustering is the same as the one
in daily load curve clustering. After load pattern extraction for each consumer,
the load patterns are grouped based on the labeled types of consumers. Then
the second clustering is performed separately for different groups. Simply, the
clustering results shown in Fig. 3 are consumption characteristics of different
consumer types. Although the characteristics of the same types seems unique,
part of load patterns in different characteristics also have similarity which may
lead to different results of consumer categories.

Fig. 2. Load patterns of six consumers who are randomly selected from warehouses.

664 Z. Jiang et al.

Fig. 3. Electricity power consumption characteristics of nine consumer types, which
are extracted based on the load pattern clustering of consumer types.

Consumer Category. Based on the proposed approach, a group of consumer
categories are identified from the daily load data of 657 electricity consumers.
Figure 4 shows the consumption characteristics of nine identified consumer cat-
egories when mindis = 2. Each curve in Fig. 4 denotes a representative load
pattern of a consumer category. It is noticed that most of characteristics show
unique load patterns except for Category 4 and Category 5. Load patterns with
similar shape variation but diverse power degrees are grouped in the same cat-
egories such as Category 6. This result basically meets the requirement of con-
sumer categorization. Furthermore, these consumption characteristics can be
regarded as labels and training samples to classify new electricity consumers.
In that case, unsupervised clustering problem becomes supervised classification
which is easier to be conducted and evaluated.

Comparing the characteristics shown in Figs. 3 and 4, some consumer types
are grouped into same categories due to the similar shape variation of their load
patterns. It is concluded that the natural types of electricity consumers cannot
determine the categorization that based on load pattern similarity. It is highly

Comparing Electricity Consumer Categories 665

Fig. 4. Nine identified consumer categories when mindis = 2. Each subfigure denotes
the electricity power consumption characteristic of one consumer category.

possible that grouping electricity consumers based on their natural types leads to
excessively meticulous division result. On the contrary, consumer categorization
can preferably describe their shared power consumption characteristics.

3.3 Parameter Estimation

Due to the normalization before similarity calculation, the value of parameter
mindis is small. To estimate parameter mindis, the experiment conducts cate-
gory identification with the value of parameter mindis from 0 to 5 with a step
size of 0.1. Figure 5 indicates the curve of numbers of consumer categories based
on parameter mindis. According to Fig. 5, it can be noted that the number of
consumer categories decreases with the raise of parameter mindis value. The
decrease of the curve tends to change smoothly after around mindis = 3.

In the former experiment, mindis = 2 is set for category identification. The
selection of parameter mindis is based on the observation of identified categories
and their characteristics. Similar load patterns should be grouped into one con-
sumer category. On the other hand, the number of consumer categories should

666 Z. Jiang et al.

Fig. 5. Number of consumer categories vs. parameter mindis from 0 to 5 with a step
size of 0.1.

be appropriate. Based on these two ideas, mindis = 2 is selected so that nine
categories are identified. Actually, it would be better that parameter mindis is
set depending on the accuracy if the characteristics are used for new consumer
classification. However, classification is not included in this paper due to the
limitation of time and paper length.

4 Conclusion

This paper presents a two-stage clustering that contains daily load curve clus-
tering and load pattern clustering, and a proposed method of distinct consumer
identification based on association rule mining and characteristic similarity. The
approach is implemented on the data set of 24-value daily load data of 657 elec-
tricity consumers with nine labeled consumer types. Comparing the power con-
sumption characteristics of consumer categories with those of consumer types,
the natural types of electricity consumers cannot fully determine the consumer
categorization that based on load pattern similarity. Additionally, consumers can
be labelled once the categorization is achieved. Thus, regarding the consumption
characteristics of consumer categories as training sample, it is simple to perform
new consumer classification.

Due to the limitation of time and paper length, this paper does not present
a sophisticated work. As a result, the future work contains improvement of the
proposed approach, experiments on various data sets and new consumer classi-
fication.

Acknowledgments. This work is supported by the National High Technology
Research and Development Program (863 Program) of China (2015AA050203) and
Beijing Natural Science Foundation (4174099).

Comparing Electricity Consumer Categories 667

References

1. Kitchin, R.: The real-time city? big data and smart urbanism. GeoJournal 79(1),
1–14 (2014)

2. Mets, K., Depuydt, F., Develder, C.: Two-stage load pattern clustering using fast
wavelet transformation. IEEE Trans. Smart Grid 7(5), 2250–2259 (2016)

3. Kwac, J., Flora, J., Rajagopal, R.: Household energy consumption segmentation
using hourly data. IEEE Trans. Smart Grid 5(1), 420–430 (2014)

4. Figueiredo, V., Rodrigues, F., Vale, Z., Gouveia, J.B.: An electric energy consumer
characterization framework based on data mining techniques. IEEE Trans. Power
Syst. 20(2), 596–602 (2005)

5. Albert, A., Rajagopal, R.: Smart meter driven segmentation: what your consump-
tion says about you. IEEE Trans. Power Syst. 28(4), 4019–4030 (2013)

6. Alahakoon, D., Yu, X.: Smart electricity meter data intelligence for future energy
systems: a survey. IEEE Trans. Ind. Inform. 12(1), 425–436 (2016)

7. Haben, S., Singleton, C., Grindrod, P.: Analysis and clustering of residential cus-
tomers energy behavioral demand using smart meter data. IEEE Trans. Smart
Grid 7(1), 136–144 (2016)

8. Chicco, G.: Overview and performance assessment of the clustering methods for
electrical load pattern grouping. Energy 42(1), 68–80 (2012)

9. Panapakidis, I.P., Alexiadis, M.C., Papagiannis, G.K.: Electricity customer charac-
terization based on different representative load curves. In: 2012 9th International
Conference on the European Energy Market, pp. 1–8. IEEE (2012)

10. Khumchoo, K.Y., Kongprawechnon, W.: Cluster analysis for primary feeder identi-
fication using metering data. In: 2015 6th International Conference of Information
and Communication Technology for Embedded Systems, pp. 1–6. IEEE (2015)

11. Wang, Y., Chen, Q., Kang, C., Zhang, M., Wang, K., Zhao, Y.: Load profiling
and its application to demand response: a review. Tsinghua Sci. Technol. 20(2),
117–129 (2015)

12. Vendramin, L., Campello, R.J., Hruschka, E.R.: On the comparison of relative
clustering validity criteria. In: SDM, pp. 73–744. SIAM (2009)

13. Rohit, S.: Association rule mining algorithms: survey. Int. Res. J. Eng. Technol.
3(10), 500–505 (2016)

14. Rathod, R.R., Garg, R.D.: Regional electricity consumption analysis for consumers
using data mining techniques and consumer meter reading data. Int. J. Electr.
Power Energy Syst. 78, 368–374 (2016)

15. Addi, A.M., Tarik, A., Fatima, G.: Comparative survey of association rule min-
ing algorithms based on multiple-criteria decision analysis approach. In: 2015 3rd
International Conference on Control, Engineering & Information Technology, pp.
1–6. IEEE (2015)

When Clutter Reduction Meets Machine
Learning for People Counting

Using IR-UWB Radar

Xiuzhu Yang and Lin Zhang(B)

Beijing University of Posts and Telecommunications,
No.10 Xitucheng Road, Haidian District, Beijing, China

zhanglin@bupt.edu.cn

Abstract. People counting provides key information in sensing applica-
tions. Impulse radio ultra-wideband (IR-UWB) radar, which has strong
penetration and high-range resolution, has been extensively applied to
detect and count people. Current signal processing methods that rely on
IR-UWB radar require to establish an environment-dependent thresh-
old manually. Due to the high sensitivity of the IR-UWB radar, the
wide diversity of scattered waveforms would bring false alarms. Clut-
ter reduction serves a vital role in signal processing steps to obtain the
signal reflected only from the target, while it may also eliminate sig-
nificant information. In this paper, data-driven solutions based on two
machine learning algorithms, the random forest and convolutional neural
network (CNN), are proposed to address the challenge of counting peo-
ple with complex changing scatters. These data-driven methods learn
from selected features from radar signals or directly obtain features from
radar data and analyze them to automatically produce results. A series
of experiments are conducted in the Orange and Caffe platform, and
the results indicate that: (i) In data-driven solutions, clutter reduction
methods are harmful rather than beneficial for data analysis, verified by
discussing four representative clutter reduction methods. (ii) Random
forest classification for selected time-domain features in radar signals
before complex clutter reduction reaches 91.5% accuracy in testing envi-
ronment. (iii) CNN provides an automatic counting solution learning
directly from radar data.

Keywords: People counting · IR-UWB radar · Random forest · Con-
volutional neural networks

1 Introduction

In intelligence systems, the number of people serves a vital role in providing
statistical information and determining the status in an area of interest. People
counting has a large number of applications in various areas, from energy sav-
ing to traffic control. More generally, it is also the basis of locating and tracking
human presence in sensing applications. Many approaches have been proposed to
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 668–677, 2017.
DOI: 10.1007/978-3-319-65482-9 52

When Clutter Reduction Meets Machine Learning 669

address challenges of people counting. Impulse radio ultra-wideband (IR-UWB)
radar is an important technique, with outstanding application performance in
indoor positioning, vital sign monitoring and people counting. IR-UWB radar
transmits and receives a narrow impulse signal that occupies a wide bandwidth
in the frequency domain, with fine resolution and excellent penetration [1]. In
[1], a multi-human detection algorithm was proposed using IR-UWB radar to
divide clutter-subtracted received signals into numerous coherent clusters to
detect effective peaks and count people. Sample guidelines were developed to
solve the problem of adjusting the threshold to select effective peaks in different
environments.

Research efforts that focus on solving the problem of people counting can
be categorized as sensor-based systems and vision-based systems. Vision-based
methods [2–4] have excellent accuracy in people counting applications; however,
improvements are needed, especially with respect to sightline obstruction and
insufficient light scenes. Sensor-based systems overcome the challenge of low-
light scenes. In addition to radar, sensor types include radio frequency sensors
[5], infrared sensors, ultrasonic sensors and Wi-Fi sensors [6].

Due to their superior detection and localization performance, radar-based
systems for people counting have been investigated. Most UWB radar researches
have employed signal processing methods. Received radar signals contain target
signal from moving people and unwanted clutter signals composed by the direct
wave and reflected signals from static objects. So to obtain cleaner signals, clut-
ter reduction is significantly important for further detection and counting in
applications. Many clutter-reduction methods have been proposed, for exam-
ple, the running average method [1], the singular value decomposition (SVD)
method [7], the Kalman Filter based method [8] and the linear least-squares
method [9]. After clutter removal, signal processing methods adequately distin-
guish traces from different people and counting; however, the clutter reduction
which is vital to obtain cleaner signals also eliminates useful information from the
received signals. Although sample guidelines for setting a threshold have been
proposed, the normalized amplitude of clutter signals should be calculated before
manually selecting the optimal threshold. In addition, complex environments
would influence the performance of people counting with a manually established
environment-dependent threshold.

Random forest is an ensemble of classification or regression trees [10]. Moti-
vated by the successful application of a regression-based radar system using
support vector regression to count people proposed in [11], the random forest is
employed with the IR-UWB radar in this paper for people counting. To make up
the drawback of the random forest, with which the features should be extracted,
the convolutional neural network (CNN) method is proposed. The main contri-
butions of this paper are based on the following three aspects:

(i) The relationship between clutter reduction methods and machine learn-
ing algorithms is discussed based on the results of a set of experiments.
Four representative clutter-reduction methods are considered and discussed.
They may decrease the valuable information in the radar data, and are

670 X. Yang and L. Zhang

proven to be more harmful than beneficial when using machine learning
algorithms for data analysis.

(ii) The random forest is employed with the IR-UWB radar to learn from
extracted time-domain features of the radar signals. It is proved to have con-
siderably good accuracy in testing environment, without manually estab-
lishing the environment-dependent threshold.

(iii) The AlexNet is applied to provide a new solution in people counting that
directly learns counting information from the radar data and automatically
produces classifying results.

The remainder of this paper is organized as follows: Sect. 2 describes the
structure of the solutions. The clutter reduction methods are discussed in Sect. 3,
while Sect. 4 describes machine learning algorithms. Experimental settings and
results are discussed in Sect. 5. The conclusions are summarized in Sect. 6.

2 Solutions Architecture

The architecture of the proposed people counting solutions is illustrated in Fig. 1.
It is composed of three main elements: the IR-UWB radar acquisition module, the
clutter reduction methods module and the machine learning algorithms module.

IR-UWB radar collects count information, transmits signals with narrow
pulses and receives echo signals. In this paper, the radar data from a select
number of people in a space is acquired by an NVA-R661 radar module with a
center frequency of 6.8 GHz. The received radar samples are stored in a received

Fig. 1. Architecture of the proposed solutions, including radar acquisition, clutter
reduction methods and machine learning algorithms. (Color figure online)

When Clutter Reduction Meets Machine Learning 671

signal matrix by radar scans for 1280 points in each scan that represent the 5 m
detection range. Several basic signal processing steps are applied to clean the
raw input data. As presented in Fig. 1, the signal waves prior to each process are
blue, whereas the processed signals at every step are shown in red. Before clutter
reduction, the direct current (DC) component is calculated and subtracted from
the raw signal. Then a Hamming window is designed as a filter to obtain the
bandpass signal.

3 Clutter Reduction Methods

Clutter signals include the direct wave from radar transmitter to receiver and
the signal reflected from static objects. Clutter reduction is a vital part in signal
processing steps to remove all unwanted clutter signals, clean the raw input sig-
nals and obtain refined signals for additional operations to determine the number
of people. In this paper, four representative methods for clutter reduction are
considered to discuss the performance and relationship between clutter reduction
and machine learning algorithms.

3.1 Running Average Method

Consider that the variance of the clutter signal is smaller than the signal reflected
from moving people, the running average method evaluates the mean value as a
clutter signal and subsequently subtracts it from the received signals [1].

C(t) = α · C(t − 1) + (1 − α) · R(t) (1)

s′(t) = R(t) − C(t) (2)

In these formulas, C(t) is the modeled clutter signal. R(t) is the input signal
before clutter reduction, and s’(t) represents the background subtracted signal.
α is a designed parameter that determines the ratio of the raw received signal
to the clutter signal.

3.2 Singular Value Decomposition Method

Singular Value Decomposition splits the data matrix into subspaces that corre-
spond to clutter, target and noise, then the clutter can be rejected easily. The
received signal matrix R is decomposed [7].

R = USV T (3)

Since that clutter signals consist of direct waves caused by antenna coupling and
reflected signals from static objects, which change little on the same time point,
the energy of clutters is usually larger than the energy from moving people.
The diagonal singular values in S are arrayed with the amount of energy in
descending order, so the energy of clutters is mainly distributed in the first few
singular values. Based on the results of various experiments, energy contribution
of the first singular value is removed, and then the data matrix is reconstructed.

672 X. Yang and L. Zhang

3.3 Kalman Filter Method

In [8], Kalman Filter is applied to estimate points of clutter in a radar scan
independently. Equations in Kalman Filter are divided into two parts, by which
the clutter C is estimated and modificated respectively. Since that the clutter
consists of signal reflected from static objects and direct wave, it is considered
to be constant in time. Then the equations could be simplified and the clutter
could be estimated and subtracted from received signals.

3.4 Linear Least-Squares Method

In [9], the means of a linear least-squares fit to estimate clutter is proposed to
eliminate linear trend resulted by the amplitude instability in data acquisition in
the slow-time dimension. The clutter is then subtracted from the received signal
matrix R.

R̂T = RT − x(xTx)−1xT · RT (4)

In this formula, x= [k/K lK], k = [0, ...,K − 1]T . lK is a K x 1 vector containing
unit values, while K is the collected radar scans.

4 Machine Learning Algorithms

Machine learning enables the computer itself to utilize and learn from exist-
ing data to establish a model, and make predictions with this model. It is a
data-driven solution on handling data to contain information, which provides a
different manner in people counting compared with the signal processing meth-
ods, extracting and learning directly from the data. In this section, two distinct
machine learning algorithms are discussed based on people counting.

4.1 Random Forest

The random forest classifier constructs multiple decision trees to train samples
and make predictions. Each tree serves as a classifier, of which the training set
is a random vector sampled independently from the total training set. And each
tree casts a unit vote for the most popular class to complete classification.

Design of Key Features. Different choices of features would represent differ-
ent data characteristics and result in different performance. Since that in most
of the signal processing methods for people counting, the threshold is used to
determine the boundary for distinguishing the presence or absence of a per-
son. It is important and meanwhile difficult to establish the value. The use of
multiple features corresponding to different parameters values is of particular
importance, as lower threshold would produce more active samples and higher
threshold yields less active samples [11]. In the people counting system, four
terms of features are selected. These selected features are defined more clearly
in Table 1.

When Clutter Reduction Meets Machine Learning 673

Table 1. Extracted features definitions

Terms Definition

Global features Mean and variance of a signal in a radar scan

thr Threshold parameter, with domain {0.1, 0.15, 0.2, 0.25,
0.3}

Features of active samples Number of points in a radar scan of which the
amplitude > thr. Mean and variance of these amplitudes

Features of activity events Number of local maximum points in a radar scan of
which the amplitude > thr in a fixed window size. Mean
and variance of these amplitudes

Event count Amplitudes and locations of the signal peaks in each
activity events

4.2 Convolutional Neural Network

CNNs have deep architectures that are divided into a convolutional module,
which consists of convolutional layers and activation layers that are employed
to transform the input into features, and a linear classification module, which
consists of connected layers and a softmax layer to output the class probabilities
[12]. In this paper, the AlexNet is investigated and discussed to obtain counting
information from the gray-scale maps of the radar data of size 1 × 1280 and the
class probabilities to determine the quantity of people. AlexNet has a deep and
complex architecture with Dropout [13] layer working for preventing overfitting.

5 Experiments

IR-UWB radar data acquired by NVA-R661 are employed to validate the perfor-
mance of the proposed solutions in experiments. (i) Experiments with received
data from different clutter reduction methods are performed to prove that clutter
reduction is not necessary, even harmful when using a machine learning solution.
The performance of classification by the random forest is compared with other
machine learning algorithms and the performance is validated. (ii) The effective-
ness of CNN as an automatic solution is verified.

5.1 Relationship Between Clutter Reduction Methods and Machine
Learning Algorithms

A set of experiments have been conducted using different inputs to machine
learning algorithms to explore the relationship between clutter reduction and
machine learning.

Experimental Setup. Radar data are collected from an open lobby, shown in
Fig. 2. A total of 12,000 radar samples of size 1 × 1280 from different people are
collected. Four situations are considered: space with 0, 1, 2 or 3 people, where the

674 X. Yang and L. Zhang

Fig. 2. Experimental environment: an open lobby

testers randomly walk in the space. Shown in Fig. 1, five datasets exist for the
feature selection input: the bandpass data without clutter reduction (Bandpass),
the data after singular value decomposition based clutter reduction (SVD), lin-
ear least-squares based clutter reduction (LLS), running average based clutter
reduction (RA) and Kalman filter based clutter reduction (KF). Then features
described in Sect. 4.1 are extracted from these different datasets respectively,
as the input to machine learning algorithms. 10-fold cross validation is applied
to validate the accuracy of the classification. The data mining toolkit Orange
is used to learn the random forest for people counting estimation. Besides the
random forest, other three machine learning algorithms, the stochastic gradient
descent (SGD), logistic regression (LR), and naive bayes (NB) are applied to
make comparison.

Results. The detection accuracy (Ac) (i.e., the ratio of the number of correctly
predicted samples and the total number of testing data points) is employed
to evaluate the performance [14]. Table 2 shows the accuracies of these four
machine learning algorithms applied on five different input datasets. Random
forest performs the highest accuracies on all of the five datasets, compared with
other three machine learning algorithms. It could be concluded that the bandpass
data get the highest accuracy in all of the four machine learning algorithms.

Table 2. Accuracy (%) of the machine learning algorithms on different datasets

Bandpass SVD LLS RA KF

Random forest 91.5% 87.8% 87.2% 81.9% 79.9%

SGD 89.2% 80.8% 81.1% 75.9% 74.4%

Logistic regression 81.4% 76.2% 75.8% 72.3% 71.2%

Naive bayes 84.3% 77.7% 78% 71.2% 69%

When Clutter Reduction Meets Machine Learning 675

Actually, for people counting in signal processing manner, the effectiveness
of clutter reduction serves a significant role in getting the counting informa-
tion. To compare the four representative clutter reduction methods, the differ-
ences between amplitudes are used. On the data with given number of n people,
amplitudes of peaks in n-th activity events and in (n + 1)-th activity events are
calculated. If the normalized difference between them is larger, the threshold is
considered to be set more easily, then the clutter reduction performs in a better
way. Several tests have been done among these four clutter reduction methods
on the collected radar data, and the averaging results show that Kalman filter
clutter reduction works in the best way, following is the running average method.
The linear least-squares and singular value decomposition methods have similar
performance.

Since that clutters composed by direct waves and reflections from static
objects occupy most energy in the bandpass data, it is impossible to detect
and count effective peaks caused by moving humans in the bandpass data by
the threshold-based signal processing methods. While clutter reduction is crucial
in signal processing methods, it results in a significant decline in the accuracy
with these four machine learning algorithms. And more effective clutter reduc-
tion methods, like KF method and running average method, result in much lower
accuracies. It is considered that machine learning algorithms count in a different
manner with the signal processing methods. Signal processing methods aim to
extract crucial signals as clean as possible, and may eliminate valuable informa-
tion as well. In machine learning, the clutter signals occupy most of the energy
in the signals, and the model learns the changes in the clutter signals rather than
that of moving objects. However, after clutter reduction, the amount of informa-
tion from which the model can learn is reduced. Therefore, the smaller amount
of information included in the cleaner input signal produces worse classification
results.

5.2 Performance on Convolutional Neural Network

Convolutional neural network is applied to provide another data-driven solution,
directly learning from the radar data without feature selection.

Experimental Setup. Radar data collected in an open lobby are expanded to
32,000 radar samples in the CNN experiment to avoid overfitting. All samples
in five datasets are converted to gray-scale images of size 1 × 1280, and the
average value of the training set is deducted from all input pixels to centralize
the dimensions of the input data to zero. The AlexNet is employed to train and
learn the five datasets using the Caffe deep learning framework.

Results. Figure 3 shows a comparison of the accuracies obtained by AlexNet
using different input datasets. The bandpass data without clutter reduction
reaches the highest accuracy, which proves that omitting clutter reduction pro-
duces better results when using machine learning algorithm. Though CNN has
strong ability to extract features automatically and learn directly from the radar

676 X. Yang and L. Zhang

Fig. 3. Accuracy (%) of the AlexNet on different datasets.

data, the accuracy is lower than that of the random forest with feature selection.
It’s caused by radar data from different testers, so improving the generalization
ability of CNN is important.

6 Conclusion

This paper proposes two machine learning solutions for people counting based
on IR-UWB radar. By employing these data-driven algorithms, the relationship
between clutter reduction and machine learning is discussed, and the results indi-
cate that clutter reduction degrades performance of machine learning in people
counting. Considerably good accuracy and stability has been achieved by ran-
dom forest with selected time-domain features in radar signals. CNN provides a
solution to learn and directly obtain features from radar data and analyze them
to automatically produce results.

Future research will focus on improving the generalization ability of CNN
to adapt this method to additional scenarios. Because radar signals are time-
dependent, long short-term memory, which is a recurrent neural network model,
will be applied to process radar signals.

Acknowledgments. This work was supported by the National Key R&D Program
of China (2016YFB0100902).

References

1. Choi, J.W., Nam, S.S., Cho, S.H.: Multi-human detection algorithm based on an
impulse radio ultra-wideband radar system. IEEE Access PP(99), 1 (2016)

2. Panda, D.K., Meher, S.: Detection of moving objects using fuzzy color difference
histogram based background subtraction. IEEE Sig. Process. Lett. 23(1), 45–49
(2016)

When Clutter Reduction Meets Machine Learning 677

3. Zhang, C., Li, H., Wang, X., Yang, X.: Cross-scene crowd counting via deep con-
volutional neural networks. In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, pp. 833–841 (2015)

4. Chan, A.B., Vasconcelos, N.: Counting people with low-level features and Bayesian
regression. IEEE Trans. Image Process. 21(4), 2160–2177 (2012)

5. Yuan, Y., Zhao, J., Qiu, C., Xi, W.: Estimating crowd density in an RF-based
dynamic environment. IEEE Sens. J. 13(10), 3837–3845 (2013)

6. Li, H., Chan, E.C.L., Guo, X., Xiao, J., Wu, K., Ni, L.M.: Wi-counter: smartphone-
based people counter using crowdsourced wi-fi signal data. IEEE Trans. Hum.
Mach. Syst. 45(4), 442–452 (2015)

7. Rane, S.A., Gaurav, A., Sarkar, S., Clement, J.C., Sardana, H.K.: Clutter sup-
pression techniques to detect behind the wall static human using UWB radar. In:
IEEE International Conference on Proceedings of Recent Trends in Electronics,
Information Communication Technology (RTEICT), May 2016

8. Nguyen, V.H., Pyun, J.Y.: Location detection and tracking of moving targets by
a 2D IR-UWB radar system. Sensors 15(3), 6740–6762 (2015)

9. Nezirovic, A., Yarovoy, A.G., Ligthart, L.P.: Signal processing for improved detec-
tion of trapped victims using UWB radar. IEEE Trans. Geosci. Remote Sens.
48(4), 2005–2014 (2010)

10. Dapogny, A., Bailly, K., Dubuisson, S.: Dynamic pose-robust facial expression
recognition by multi-view pairwise conditional random forests. IEEE Trans. Affect.
Comput. PP(99), 1 (2017)

11. He, J., Arora, A.: A regression-based radar-mote system for people counting. In:
2014 IEEE International Conference on Pervasive Computing and Communications
(PerCom), Budapest, pp. 95–102 (2014)

12. Xu, G., Wu, H.Z., Shi, Y.Q.: Structural design of convolutional neural networks
for steganalysis. IEEE Sig. Process. Lett. 23(5), 708–712 (2016)

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: International Conference on Neural Information
Processing Systems, pp. 1097–1105. Curran Associates Inc. (2012)

14. Chen, J., Kang, X., Liu, Y., Wang, Z.J.: Median filtering forensics based on con-
volutional neural networks. IEEE Sig. Process. Lett. 22(11), 1849–1853 (2015)

Fine-Grained Infer PM2.5 Using Images
from Crowdsourcing

Shuai Li(B), Teng Xi, Xirong Que, and Wendong Wang

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

shli@bupt.edu.cn

Abstract. Among all air pollutants, PM2.5, which can be inhaled into
lungs, is most harmful for peoples’ health. However, the number of fixed
air quality measurement stations is insufficient. In order to make people
be more aware of the air quality around them, this paper have proposed a
method to infer fine-grained PM2.5 concentration. We leverage different
type of collected by crowdsourcing for data mining. Then, features which
have strong correlation with PM2.5 concentration are extracted. Further-
more, we train the proposed model using integrated radial basis function
(rbf) kernel based ridge regression. The performance of the proposed
method is evaluated thoroughly by real dataset collected by crowdsourc-
ing. The results show that, our method can accurate infer the PM2.5

concentration.

Keywords: Crowdsourcing · Fine-grained inference · PM2.5 Concentra-
tion · Features extract

1 Introduction

Air pollution seriously affects people’s health and social work [1]. Among all air
pollutants, PM2.5 is one of the principal contamination causing air pollution.
As the diameter of PM2.5 is less than 2.5 micron, it is easy to induce disease
and haze. To monitor the fine particle concentrations, many areas in the world
have established fixed air quality measurement stations. However, the number
of fixed air quality measurement stations is insufficient due to the expensive cost
of building and maintaining such a station [2].

Fortunately, there are different type of data that we can use to infer PM2.5

concentration. For example, zheng et al. have proposed a method to infer real-
time and fine-grained air quality based on the data of air quality, trajectory,
POI and so on [2]. Similarly, Donkelaar et al. have proposed an approach to
infer air pollution using the data from satellite [3]. Nowadays, as the emerge

W. Wang—This work was supported in part by the National High Technol-
ogy Research and Development Program (863 Program) of China (Grant No.
2015AA016101, 2015AA015601), National Natural Science Foundation of China
(Grant No. 61370197, 61402045).

c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 678–686, 2017.
DOI: 10.1007/978-3-319-65482-9 53

Fine-Grained Infer PM2:5 Using Images from Crowdsourcing 679

Fig. 1. PM2.5 inference framework

of crowdsourcing system, it is easy to collect a variety of data through mobile
phones. In this paper, we propose a general framework for inferring fine-grained
PM2.5. Figure 1 shows the proposed framework. As shown in the figure, five dif-
ferent type of data are collected through our established crowdsourcing system.
Then, we extract features of images taken at the same scene, such as pixels,
taken time, magnetic sensor and gps information. Furthermore, we study the
relationship between the extracted features and PM2.5 concentration. Finally,
we use the integrated rbf kernel based ridge regression to generate the inference
model.

The contributions of this paper are summarized as follows:

– A general framework for inferring fine-grained PM2.5 is proposed, which lever-
age different type of data collected by crowdsourcing system.

– The collected data has been mined thoroughly and features which have strong
correlation with PM2.5 concentration are extracted.

– The performance of the proposed method is evaluated thoroughly by real
dataset collected by our established crowdsourcing. The results show that,
the proposed approach can accurate infer the PM2.5 concentration.

The rest of the paper is organized as follows. Section 2 presents the related
work. Section 3 explains the features we extract. Section 4 describes our proposed
method. Section 5 evaluates the performance of our proposed method using real
dataset. Finally, Sect. 6 concludes the paper.

2 Related Works

Using the satellite remote sensing to analysis the atmospheric condition has
been studied intensively in past decades. Some researchers have studied the air
pollution using images taken by satellite [4,5] and have made some achievements.

Other than that, some researchers have studied the physical models of air
pollutants [6,7]. For example, Rakowska [7] assumes that the concentrations of

680 S. Li et al.

air pollutant are dispersed in a gaussian manner and wind speed equals to 1 m/s
at certain height. Tominaga [6] have taken emission density, street width, and
vertical dispersion parameters of the receptor point into consideration in their
model. Recently, there are some researchers infer the air pollution using big data
[2,8], and achieve better results.

Different from above approaches, we propose a general framework for infer-
ring fine-grained PM2.5 concentration with the dataset collected from crowd-
sourcing. Our proposed model leverage different type of data such as images,
time, magnetic sensor and gps information, which can inference PM2.5 concen-
tration accurately.

3 Features

3.1 Image Features

The light will be refracted by fine particles in the air. In computer vision and
computer graphics, the following model is widely used to describe the affect of
the fine particles to the image [9].

I(p) = trans(p)R(p) + (1 − trans(p))A (1)

where I(.) is the luminance of image, R(.) is the scene radiation intensity, A is
the global atmospheric light, p is the location of pixel and trans(.) is the medium
transmission describing the portion of the light that is not refracted and reaches
the camera.

PM2.5 contains all the particles whose diameter is similar to the wavelength
of visible light. So it is the main cause of light scattering in the air particles.
Based on this model, we extract the following features of the image.

Undersample Directly: The refracted of light reduce the brilliance of color
in scene’s image. We extract the image’s feature directly by following equation.

fud = min
p∈Ω(p)

(
min

c∈C(p)
Ic(p)

)
(2)

where Ω(.) is the set of pixels in local region, Fud is the features extracted in
region Ω, C(.) is {R,G,B} that is the set of channels of pixel in image, c is an
channel.

Image Convolution: The refracted of light also make the image become blur,
and reduce the edge of the image. We use Laplasse operator to convolute the
image, then undersampling by the calculated variance in regions and get the
mean of three channels. This feature can express the range of frequency spec-
trum.

Zc = Ic ∗ H (3)

Fine-Grained Infer PM2:5 Using Images from Crowdsourcing 681

fcu =

∑
c∈C

∑
p∈Ω(p)

(Zc(p) −
∑

p∈Ω(p)
Zc(p)

N)2

3N
(4)

where H is the Laplasse operator [0,−1,0;−1,4,−1;0,−1,0], Z is the matrix after
image convolution, fcu is the features extracted in region Ω, N is the numbers
of pixels in region Ω.

3.2 Other Features

Taken Time. The illumination direction of the scene is different at different
time of one day. We get the time of sunrise and sunset, then calculate feature
using

ft =
(t − tsunrise(t))

(tsunset(t) − tsunrise(t))
(5)

Where ft is the time feature we get, t is the time when image taken, tsunrise(.)
is the sunrise time in the day when image taken, tsunset(.) is the sunset time in
the day when image taken.

Taken Season. The color of the scene is different when there are trees or
rivers in the scene in different seasons. For example, most of the trees are green
in spring and summer, while are gray in autumn and winter. We use different
numbers represent different seasons as feature fs.

4 Our Method

4.1 Data Preprocessing

Our image data is collected based on crowdsourcing. Since some images may not
meet the requirements, it is necessary to preprocess data.

Time Filter. Images taken at night are difficult to analysis because of the dim
light. They will through an time filter when the images are uploaded. Images
taken not between the time of sunrise and sunset in the day will be tagged.

Spatial Classifier. When user upload images using smart mobilephone, the
images contain gps and attitude transducer information. Images taken to differ-
ent scene will be classed into different categories according to their location and
attitude information.

However, the images are collected by crowdsourcing, so there may be some
small differences among images taken the same scene. To reduce the differences,
the images will be registered. Every scene will choice the first image as the tem-
plate image. We extract speeded up robust features (surf) [10] of the new images

682 S. Li et al.

Fig. 2. Image registration

and template image as their descriptor. Then match them, and get the homog-
raphy matrix from new images to template image using the random sample
consensus methods. If the translation transformation and the rotation transfor-
mation are lower than threshold according to the homography matrix, we will
make transformation to the new image. As shown in Fig. 2, they are template
image, new image and the new image after registered of one scene. Final, we
remove black edges of the image after registered through cutting.

4.2 Features Extraction

We set the region in Sect. 3 using sliding window. In every window we extract
the fud and fcu features, then get an feature vectors Fud and Fcu. To reduce the
influences of season and solar incidence angle, we also use Ft and Fs features to
infer the PM2.5 concentration.

(a) The original distribution of labels (b) The distribution of labels after trans-
formed

Fig. 3. The effect of label transformed

Fine-Grained Infer PM2:5 Using Images from Crowdsourcing 683

4.3 Relational Model

In our statistical analysis, The distribution of PM2.5 concentration we get as
groundtruth in each scene is uneven. As shown in Fig. 3(a) is the distribution of
PM2.5 concentration in one scene. There are more small values. We transform the
date by taking logarithm as ln(y + 1) when we training model. The distribution
of PM2.5 concentration after transformation is shown in Fig. 3(b), which is like
flat gaussian distribution.

Let x ∈ R
D be the feature vector, X be the corresponding N × D features

matrix, y ∈ R be the groundtruth, Y be the corresponding N × 1 label matrix,
and W be the weight-coefficients matrix. The loss function of the ridge regression
is as following:

J(W) = (Y − XW)T (Y − XW) + λ‖W‖2 (6)

Get the optimal solution:

W = XT (XT X + λIN)−1Y (7)

We solve by changing from primal to dual variables:

α � (K + λIN)−1Y (8)

The primal variables can be rewrite as:

W = XT α =
N∑

i=1

αixi (9)

This is just a linear sum of the N training vector. Then we use kernel function,
we get:

f̂(x) = WT X =
N∑

i=1

αix
T
i x =

N∑
i=1

αiκ(x, xi) (10)

where (.) is the result inferred, κ(x, xi) is the kernel function, and we use the rbf
kernel as following:

κ(xi, xj) = exp(γ ‖xi − xj‖2) (11)

where γ is an hyper parameter representing the degree of nonlinear mapping.
Finally, we get the result by simple integration method:

f̂(x) = (f̂ud(x) + f̂ud(x))/2 (12)

where f̂ud(.) is the result inferred by Fud, Ft and Fs, f̂cu(.) is the result inferred
by Fcu, Ft and Fs.

684 S. Li et al.

5 Experiments

5.1 Dataset

To evaluate the performance of the proposed method, we choice samples which
belong to the same site as shown in Fig. 2. The samples are collected by our
established crowdsourcing system from January 2016 to May 2017, which contain
images, time, attitude and gps informations. There are 440 images in this site.
The image resolution is 1080 × 1441. The sliding window is set with size of
200 × 200 and step of 100 × 100. Then, we can get two features vectors each of
which has 66 parameters.

Ground Truth: The values of PM2.5 measured at fixed air quality monitoring
station in Olympic Sports Center, which is close to the site, are taken as ground
truth.

5.2 Result

We evaluate the performance of the proposed method using different numbers
of training set. The number of testing set is 80 and remain unchanged while
the number of training range from 5 to 320. We repeat the experiment for 1000
times and randomly select the training set and testing set every time. Figure 4
shows the box plot of the independent experiments. Figure 4(a) shows the Mean
absolute error (MAE). Figure 4(b) shows the fitting coefficient(R2), which is also
know as the coefficient of determination range from 0 to 1. As shown in the figure,
as the number of training set increases, the inferences error decreases. When the
number of training set reaches 320, the median of test MAE decreases to 19.07,
and the median of R2 increases to 0.7484.

(a) The original distribution of labels (b) The distribution of labels after trans-
formed

Fig. 4. The results distribution when using different numbers of training set

To show the effect of the proposed approach in practical applications, we
use samples collected from January 2016 to June 2016 as training set and use

Fine-Grained Infer PM2:5 Using Images from Crowdsourcing 685

Fig. 5. The result of inferring

the samples collected after this time as testing set. Figure 5 shows the inference
results. As shown in the figure, the inference values are close to the ground truth
in most cases.

6 Conclusions and Future Work

In this paper, we proposed a general method to infer fine-grained PM2.5 concen-
tration using the images collected by crowdsourcing. The proposed method also
take informations of time, gps, and the attitude of phone into consideration. We
use the real dataset collected by our established crowdsourcing to evaluate the
proposed method. The results show that, our proposed approach can infer fine-
grained PM2.5 concentration accurately. In the future, we will study the influence
of different type of camera lens and further improve the inference accuracy.

References

1. Lim, S.S., Vos, T., Flaxman, A.D., Danaei, G., Shibuya, K., Adair-Rohani, M.,
Amann, M., Anderson, H.R., Andrews, K.G., Aryee, M.: A comparative risk assess-
ment of burden of disease and injury attributable to 67 risk factors and risk factor
clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of
disease study 2010. Lancet 380(9859), 2224–2260 (2012)

2. Zheng, Y., Liu, F., Hsieh, H.P.: U-air: when urban air quality inference meets big
data. In: Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), Chicago, Illinois, USA, pp. 1436–1444, 11th–
14th August 2013

3. Van Donkelaar, A., Martin, R.V., Brauer, M., Boys, B.L.: Use of satellite observa-
tions for long-term exposure assessment of global concentrations of fine particulate
matter. Environ. Health Perspect. 123(2), 135 (2015)

4. Martin, R.V.: Satellite remote sensing of surface air quality. Atmos. Environ.
42(34), 7823–7843 (2008)

5. Van Donkelaar, A., Martin, R.V., Levy, R.C., da Silva, A.M., Krzyzanowski,
M., Chubarova, N.E., Semutnikova, E., Cohen, A.J.: Satellite-based estimates of
ground-level fine particulate matter during extreme events: a case study of the
moscow fires in 2010. Atmos. Environ. 45(34), 6225–6232 (2011)

686 S. Li et al.

6. Scaar, H., Teodorov, T., Ziegler, T., Mellmann, J.: Computational fluid dynamics
(CFD) analysis of air flow uniformity in a fixed-bed dryer for medicinal plants. In:
Ist International Symposium on CFD Applications in Agriculture, vol. 1008, pp.
119–126 (2012)

7. Rakowska, A., Wong, K.C., Townsend, T., Chan, K.L., Westerdahl, D., Ng, S.,
Močnik, G., Drinovec, L., Ning, Z.: Impact of traffic volume and composition on
the air quality and pedestrian exposure in urban street canyon. Atmos. Environ.
98, 260–270 (2014)

8. Chen, L., Cai, Y., Ding, Y., Lv, M., Yuan, C., Chen, G.: Spatially fine-grained
urban air quality estimation using ensemble semi-supervised learning and pruning.
In: ACM International Joint Conference on Pervasive and Ubiquitous Computing,
pp. 1076–1087 (2016)

9. Raanan, F.: Single image dehazing. ACM (2008)
10. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In:

Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–
417. Springer, Heidelberg (2006). doi:10.1007/11744023 32

http://dx.doi.org/10.1007/11744023_32

Security/Reliability-Aware Relay Selection
with Connection Duration Constraints

for Vehicular Networks

Zhenyu Liu and Lin Zhang(B)

Beijing University of Posts and Telecommunications,
Xitucheng Road. 10, Haidian District, Beijing 100876, China

zhanglin@bupt.edu.cn

Abstract. The vehicular network technology is developed to serve as
a solution for traffic safety and traffic efficiency. However, if the user
privacy and data security of the driver is compromised, connected vehi-
cle cannot widely be accepted by the public. According to the security
requirements of connected vehicles and the limitations of cryptographic
encryption technologies, in this paper, a security/reliability-aware relay
selection scheme with connection duration constraint is proposed for
vehicular environments. We derive the closed-form expressions of reli-
able secrecy transmission probability (RSTP) for relay selection. The
RSTP is proposed to serve as the performance metrics combine phys-
ical layer security with reliability. Based on the network topology and
the velocity of the moving vehicles, the proposed scheme generates relay
candidate sets with the connection duration constraint. Finally, based
on both the RSTP and relay candidate sets, we propose a flexible route
selection scheme, which enables us to select the relay according to dif-
ferent security and reliability requirement.

Keywords: Vehicular networks · Physical layer security · Reliability ·
Relay selection · Connection duration

1 Introduction

As the number of the vehicles is growing, traffic safety and traffic efficiency
be-come the most serious challenges faced in the transportation systems. The
connected vehicle technology is developed to serve as a solution which can pro-
vide a wide range of applications including active driving safety applications,
traffic efficiency applications, location-based service applications, etc. These
applications require the vehicles involved in V2V (vehicle-to-vehicle) communi-
cation, V2I (vehicle-to-infrastructure), and V2P (vehicle-to-pedestrian) to trans-
mit necessary information which will involve the user’s data security and privacy.
If the user privacy and data security of the driver are compromised, connected
vehicle cannot widely be accepted by the public. Therefore, it is of great necessity
to protect security as well as reliability.
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 687–694, 2017.
DOI: 10.1007/978-3-319-65482-9 54

688 Z. Liu and L. Zhang

Although many communication technologies have been proposed for wireless
networks, the combination of security and reliability in multi-hop vehicular net-
works still remains an open technical challenge. The main challenge comes from
the unique feature of the vehicular networks. First, compared with other wire-
less net-works, the connectivity among the vehicle nodes may change frequently
due to the fast movement of vehicles. Second, network security requires time
efficiency and low complexity method due to the limited connection duration.

The applications of cooperative relay are studied to provide reliable end-
to-end data delivery in vehicular networks [1–3].However, the openness of the
wireless vehicular channels makes the transmitted data available to unautho-
rized users as well as the intended receiver. Thus, data security should be well-
protected in the routing of vehicular networks.

Traditionally, cryptographic encryption and decryption technologies are
exploited to protect the confidentiality of information [4]. The basic idea of
cryptographic encryption is based on a secret key, which should be distributed
secretly among the legitimate users. However, applying cryptographic encryption
technologies is not suitable in vehicular communications. First, the secret key
distribution and management are very vulnerable due to the dynamic topology
and the open nature of the wireless medium in vehicular networks. Second, as
encryption relies on the mathematical calculation complexity, it requires consid-
erable computational resources and time, which is rigorous due to the limited
connection duration of vehicular communications.

Fortunately, physical layer security approaches eliminate the key generation
and distribution issues, thereby resulting in significantly lower complexity and
savings in computational resources. Physical layer security approaches take con-
sideration of the characteristic of wireless channels, and the theoretical basis of
physical security is information theory.

There are some physical layer security related works, which take advantage of
node cooperation to enhance data security and privacy protection. The authors
explore the physical-layer security in cooperative wireless networks with mul-
tiple relays and provide optimal relay selection schemes to improve the wire-
less security [5]. A comprehensive investigation on the secrecy performance of
opportunistic relay selection systems is proposed considering the decode-and-
forward protocol over Rayleigh fading channels [6]. However, these works focus
on security without reliability. Although the authors use weighted sum of the
secrecy outage probability (SOP) and connection outage probability (COP) for
routing selection [7], the SOP is influenced by COP and they should be consid-
ered jointly. Besides, compared with these works, vehicular network has its own
characteristics, e.g., fast movement of vehicles and dynamic network topology.
However, these works hardly take the characteristic of the vehicular network into
consideration.

Considering the security and reliability requirements of vehicular networks,
a security/reliability-aware relay selection scheme with connection duration con-
straint is proposed for vehicular environments. Our contributions are summa-
rized as follow:

Security/Reliability-Aware Relay Selection 689

• The RSTP is proposed to serve as the performance metrics which combines
physical layer security with reliability. The closed-form expressions of RSTP
is derived for a relay selection.

• The proposed scheme generates the relay candidate set based on the net-
work topology and the velocity of the moving vehicles to connection duration
requirement.

• We propose a flexible relay selection scheme to select the optimal relay accord-
ing to different security and reliability requirement. Besides, our scheme does
not require instantaneous channel state information (CSI).

The rest of this paper is organized as follows. In Sect. 2, system model is provided.
The secure routing design are explained in Sect. 3. Finally, this paper is concluded
in Sect. 4.

2 System Model

2.1 Network Model

As is shown in Fig. 1, we consider a two-way highway scenario, which consists of
several straight lanes in each direction. Within the considered rectangular area,
M vehicles are uniformly distributed. As the vehicles broadcast their locations
and speeds to protect their safety, we assume that each vehicle knows others’
speeds and locations. There might be several vehicles having data to transmit in a

Fig. 1. An example of network model

690 Z. Liu and L. Zhang

special time. As the interference characterization depends heavily on the network
behavior and related MAC protocols, we assume that this scenario happens in a
network where there is a time division multiple address (TDMA) scheduler. And
only one source destination pair is allowed to communicate with each other in
this area, so the interference is ignorable. The transmitter and the corresponding
receiver are marked as S and D, respectively. Meanwhile, there is a malicious
node E existing in the area, which tries to eavesdrop the information. We assume
that the direct link between S and D does not exist, i.e., the communications need
the help of other vehicles serving as relays. The transmission scheme of relays
is decode-and-forward (DF). To focus on the design of the relaying protocol, we
also assume that the broadcast phase is secure, i.e., the direct link between S
and E is not available, and corresponding scenarios have been explained in [6].

2.2 Channel Model

Considering that signals suffer from small-scale fading and large-scale path loss
(power law attenuation with respect to the path distance), both the main chan-
nels and wiretap channels are assumed to undergo quasi-static independent and
identically distributed (i.i.d) Rayleigh fading together with a large-scale path
loss governed by exponent α. The power gain can be characterized as

gij = hij
√

ϕij (1)

where i and j denote the indexes of transmitter and receiver, hij denotes the
small-scale fading gain with independent and identically distributed entries hij ∼
CN(0, 1). ϕij denotes the path loss which can be written as ϕij = Lr−α

ij , where
rij denotes the path distance between i and j, and L denotes the pass loss
evaluated at a reference distance 1.

The received signal at node j is given by

yij = gijx + nij , (2)

where x is the Gaussian distributed information signal satisfying E[|x|2] = P
(P is the total transmit power), and nil is the additive white Gaussian noise
of the main channel with zero mean and variance σ2

ij . Thus, the instantaneous
signal-to-noise ratios (SNRs) at j is given by γij = P |gij |2/σ2

ij , each having an
exponential distribution given by

fij

(
γij

)
=

1
γij

exp
(

γ

γij

)
(3)

where is γij are the average SNRs at j for the signal from i. The channel capacity
can be given by

Cij = log

(

1 +
P |gij |2

σ2
ij

)

(4)

Security/Reliability-Aware Relay Selection 691

3 Secure Routing Design

3.1 Decode-and-Forward

During the broadcast phase, S broadcasts its message and all possible relays
receive the message. The received signal at Rj , denoted by ysj , is expressed as

ysj = gsjx + nsj . (5)

Under the DF transmission scheme, each node first decodes the signal from
source node. Considering the massage can be decoded when the SNR is great
than a given threshold β, we can compute the successful decoding probability at
Rj as

pd
sj = P (γsj > β) = exp

(
− β

γsj

)
(6)

If the decoding is successful, then the relay transmits the recoded original
signal to the next hop node. Suppose that node Rj decodes the signal from S
successfully, then it will transmit the original signal using the same power. Thus,
the received signals at D and the corresponding eavesdropper E are given by

yjd = gjdx + njd, (7)

yje = gjex + nje (8)

and the secrecy capacity is

Cs
jd = [Cjd − Cje]

+ = [log (1 + γjd) − log (1 + γje)]
+ (9)

where [x]+ Δ= max {0, x}

3.2 Relay Candidate Set Generation

As potential relays should be inside the transmission ranges of both the source
and the destination, for a given SNR threshold β, we need to get the corre-
sponding transmission range. As the successful transmission can be achieved
when γij > β, i.e.

γij = P |gij |2/σ2
ij = P

∣
∣hij

√
ϕij

∣
∣2/σ2

ij =PLr−α
ij |hij |2/σ2

ij > β (10)

Thus, the average transmission range can be formed as

R < α

√
PL

βσ2
(11)

To keep the stability of a selected routes, potential relays should be inside the
transmission ranges of both the source S and the destination D for a duration

692 Z. Liu and L. Zhang

which is equal or greater than a threshold T and dependent on the transmission
rate size of the transmitted messages.

Define the duration of S → j link and j → D link as tsj and tjd, respectively.
Define the projection distance of S → j link and j → D in the road direction as
as dsj and djd, respectively. And the projection distance can be calculated using
the locations and the driving direction of corresponding vehicles. The duration
tsj of S → j link can be approximated as

tsj =

⎧
⎨

⎩

(
R∓dsj

|vs−vj |
)+

, same − direction
(

R±dsj

vs+vj

)+

, opposite − direction
(12)

When j is in front of S, the sign “∓” becomes “-” and the sign “±” becomes
“+”, otherwise , “∓” becomes “+” and the sign “±” becomes “−”, respectively.
Similarly, the duration tjd of j → D link can be estimated by replacing s with d.

The duration of the link S → D can be expressed by min{tsj , tjd}, and the
vehicle j belongs to the relay candidate set only if min{tsj , tjd} > T . Assume
that the relay candidate set is Φ , and the size of the relay candidate set is N .

3.3 Route Selection

Reliability-Oriented Selection. For the reliability-oriented selection, the
relay node is selected based on the connection probability of the S → j → D.
Although it is an effective solution for non-eavesdropper environments, this
solution does not take into account the eavesdrop-per channels. The reliability-
oriented selection is written as

js = arg max
j∈Φ

pd
sd (13)

where pd
sd = pd

sjp
d
jd = exp

(
−β

(
1

γsj
+ 1

γjd

))
.

Security-Oriented Selection. As a secrecy outage happens when the instan-
taneous secrecy capacity Cs is less than a target secrecy rate Rs, the secrecy
outage probability is defined as pso = P (Cs < Rs) [7], the secrecy outage prob-
ability from j to D is given by

pso
jd = P

(
Cso

jd < Rs

)
=

∫ ∞

0

(∫ ∞

2Rs (1+γje)−1

fjd (γjd) dγjd

)

fje (γje) dγje

= 1 − γjd

γje2Rs + γjd

exp
(

−2Rs − 1
γjd

) (14)

Thus, the secrecy transmission probability can be defined as

ps= 1 − pso = P (Cs ≥ Rs) . (15)

Security/Reliability-Aware Relay Selection 693

The security-oriented selection scheme takes into account the relay-
eavesdropper links and chooses the relay node based on the secrecy transmission
probability. The optimal selection maximizes the secrecy transmission probabil-
ity and is given as

js = arg max
j∈Φ

ps
jd (16)

where ps
jd = γjd

γje2
Rs+γjd

exp
(
− 2Rs−1

γjd

)
.

Security/Reliability-Aware Selection. However, the secrecy transmission is
not enough. If the secrecy transmission message cannot be decoded, it is mean-
ingless. As a result, we present an alternative secrecy transmission formulation,
which directly measures the probability that a transmitted message can achieve
perfect secrecy.

As a result, we take the security and reliability into consideration at the
same time. The reliable secrecy transmission probability is defined as follow,
which combines the secrecy with reliability:

prs = P (Cs ≥ Rs, γ > β) . (17)

Thus, the reliable secrecy transmission probability from j to D is given by

prs
jd = P

(
Cs

jd ≥ Rs, γjd > β
)

= P
(
Cs

jd ≥ Rs|γjd > β
) × P (γjd > β)

=
[
1 − P

(
Cs

jd < Rs|γjd > β
)] × P (γjd > β)

= [1 − P (Cje > Cjd − Rs|γjd > β)] × P (γjd > β)

=
[
1 − P

(
γjd < 2Rs (1 + γje) − 1|γjd > β

)] × P (γjd > β)

=

[

1 − P
(
β < γjd<2Rs (1 + γje) − 1

)

P (γjd > β)

]

× P (γjd > β)

= P (γjd > β) − P
(
β < γjd<2Rs (1 + γje) − 1

)

= P (γjd > β) −
∫ ∞

β+1
2Rs

−1

(∫ 2Rs (1+γje)−1

β

fjd (γjd) dγjd

)

fje (γje) dγje

= exp
(

− β

γjd

) [

1 − γje2Rs

γje2Rs + γjd

exp
(

−β + 1 − 2Rs

γje2Rs

)]

(18)

Thus, when the selected relay is j, the reliable secrecy transmission proba-
bility from S to D is

prs
sd = prs

sjp
rs
jd = pd

sjp
rs
jd

= exp
(

− β

γsj

− β

γjd

)[

1 − γje2Rs

γje2Rs + γjd

exp
(

−β + 1 − 2Rs

γje2Rs

)]
(19)

694 Z. Liu and L. Zhang

where β can adapt to the reliability requirement, and Rs can be set according
to the secrecy requirement. Now, we formulate the design problem of finding the
relay j that maximize the reliable secrecy transmission probability

js = arg max
j∈Φ

prs
sd

s.t.β ≥ 2Rs − 1, Rs > 0
(20)

4 Conclusion

In this paper, a security/reliability-aware relay selection scheme with connec-
tion duration constraint is proposed to the security requirements of vehicular
environments. We propose RSTP to serve as the performance metrics combine
physical layer security with reliability, and derive the closed-form expressions of
reliable secrecy transmission probability (RSTP) for relay selection. The relay
candidate sets with the connection duration constraint are generated based on
the network topology and the velocity of the moving vehicles. Finally, based on
both the RSTP and relay candidate sets, we propose a flexible route selection
scheme, which enables us to select the relay according to different security and
reliability requirement.

Acknowledgements. This work was supported by the National Key R&D Program
of China (2016YFB0100902).

References

1. Xing, M., Cai, L.: Adaptive video streaming with inter-vehicle relay for highway
VANET scenario. In: 2012 IEEE International Conference on Communications, pp.
5168–5172. IEEE Press, Ottawa (2012)

2. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J.
Mol. Biol. 147, 195–197 (1981)

3. Zhou, T., et al.: A novel adaptive distributed cooperative relaying MAC protocol
for vehicular networks. IEEE J. Sel. Areas Commun. 29(1), 72–82 (2011)

4. Zhang, Z., et al.: Cooperative information forwarding in vehicular networks subject
to channel randomness. In: 2014 IEEE International Conference on Communica-
tions, pp. 324–329. IEEE Press, Sydney (2014)

5. Wang, H.-M., Zheng, T.-X.: Physical Layer Security in Random Cellular Networks.
SpringerBriefs in computer science. Springer, Singapore (2016)

6. Zou, Y., Wang, X., Shen, W.: Optimal relay selection for physical-layer security
in cooperative wireless networks. IEEE J. Sel. Areas Commun. 31(10), 2099–2111
(2013)

7. Al-Qahtani, F.S., Zhong, C., Hussein, M.: Alnuweiri.: Opportunistic relay selection
for secrecy enhancement in cooperative networks. IEEE Trans. Commun. 63(5),
1756–1770 (2015)

8. Yang, X., et al.: Security/QoS-aware route selection in multi-hop wireless ad hoc
net-works. In: 2016 IEEE International Conference on Communications, pp. 1–6.
IEEE Press, Kuala Lumpur (2016)

9. Krikidis, I., Thompson, J.S., McLaughlin, S.: Relay selection for secure cooperative
networks with jamming. IEEE Trans. Wirel. Commun. 8(10), 5003–5011 (2009)

Smart City Environmental Perception
from Ambient Cellular Signals

Isha Singh(B) and Stephan Sigg

Aalto University, Espoo, Finland
{isha.singh,stephan.sigg}@aalto.fi

Abstract. Smart cities require perception of environmental situation
and peoples activities in order to trigger smart response and interaction.
A seamless, non-intrusive means of environmental perception is Radio-
based recognition since it promises ubiquitous reach and does not require
any on-body worn devices or any form of active collaboration from the
monitored subjects. Previous work has considered high-accuracy recogni-
tion from specialized equipment as well as utilization of WiFi CSI signals.
However, these solutions can only generate silos within which recognition
is performed, limited to building or organization scale.

For true, city-scale environmental perception, we propose to exploit
ubiquitously deployed cellular systems. In this paper, we investigate the
use of cellular signals for environmental perception.

Keywords: Smart city · Device free perception · Cellular systems

1 Introduction

Recent development in Radio-vision [23] has shown remarkable progress so that
location [13], presence [28], crowd [7], activities [30], gestures [1] and even breath-
ing [34], sentiment [19,21,35] or lip movement [33] can be accurately detected
from RF-fluctuation.

The signals exploited in these systems range from specialized, custom-built
hardware [3], over RSSI in sensor nodes [31] or smartphones [28] and CSI in
ofdm devices [18], to broadcasted FM radio [26]. From these, however, only FM-
radio can provide truly city-scale coverage. However, FM radio is soon to meet
is best before date and is gradually being replaced. An alternative are cellular
mobile communication systems due to the dense deployment of cellular base
stations and ubiquitous availability of cellular handsets. In addition and in con-
trast to FM radio, the cellular handsets boast significant computational and
storage capabilities so that classification algorithms can be run on these devices
that analyse and interpret the stimuli from environmental RF. In this paper we
investigate the recognition capabilities of cellular systems for smart city environ-
mental perception. With the introduction of 5G for IoT devices, the penetration
of Smart city environments with devices operating in cellular systems will signif-
icantly increase and thus result in an environment where sensing infrastructure
is ubiquitously available.
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 695–704, 2017.
DOI: 10.1007/978-3-319-65482-9 55

696 I. Singh and S. Sigg

2 Related Work

In the following, we briefly sketch related work on smart city and RF-based
environmental perception.

2.1 Smart City

The concept of a smart City has been first introduced by Gibson in 1992 [9].
Originally, the term Smart City was loosely coined to express how urban
development was turning towards technology, innovation and globalisation [25].
Over defining aspects of a Smart City such as Economy, Infrastructure and
Governance [25], the discussion, utilising various diverse definitions of Smart
Cities [5,10,11], gradually matured to cover six main axes, namely Smart Econ-
omy, Smart Governance, Smart Mobility, Smart Environment, Smart People and
Smart Living [6,14] which are woven around an omnipresent Information and
Communication Technology (ICT). This ICT is seldom discussed in great detail
but should generally cover sensors and real-time awareness [16]. Objects, services
and people in a smart city are linked together by a networked infrastructure so
that the Internet of Things (IoT), the Internet of Services (IoS) and the Internet
of People (IoP) and in general the Future Internet are mere sub-topics of Smart
Cities [12]. Smart City therefore needs to connect all parties in a city, in partic-
ular, objects, services, people and environmental sensors [27,29] and place the
individual at the nerve center and in control of this orchestration of the enor-
mous amount of incoming information flows and actuation and communication
opportunities.

A number of frameworks and architectures has been proposed for Smart
Cities [4]. A good overview and comparison is given in [32]. The authors survey
17 Smart City architectures and compare them with respect to 11 requirements
identified for Smart Cities. Among others, these requirements cover interoper-
ability between objects, real-time monitoring, Mobility, Privacy, and also Social
aspects.

For these, radio-based perception from cellular systems can provide a ubiqui-
tous, densely deployed sensing infrastructure which is also exploited to support
connectivity and social interaction between smart city actors. We remark that
RF-based environmental sensing, e.g. via cellular systems is among the least
intrusive sensing mechanisms since it does not require people to be equipped
with any hardware and naturally lowers the risk of privacy intrusion by obscur-
ing privacy related information better than, for instance, video.

2.2 RF-based Environmental Perception

RF-based sensing of activities and gestures has been prominently studied in
recent years, ranging from the recognition of gestures via Doppler fluctua-
tion [3,17] or CSI signal envelope [2], respiration rate exploiting Fresnel zones [34]
as well as emotion recognition from phase and time-domain signal strength fluc-
tuation [20,22,35]. Recognition of environmental stimuli via radio frequency

Smart City Environmental Perception from Ambient Cellular Signals 697

fluctuation has become undemanding, as pre-installed infrastructure can be
exploited [17]. This situation will further improve with upcoming 5G communi-
cation standards as it is expected that this technology will support a significantly
larger number of devices to generate RF-traffic and will partly operate at higher
frequency and larger bandwidth [15]. It will add continuous activity recognition
capabilities to virtually all environments.

The above mentioned systems consider point-to-point indoor installations
while our work in contrast focuses on cellular systems.

Closely related studies have recently been conducted in [8,24]. The authors
of [8] present a preliminary investigation of a custom-built 5G system for radio
vision, while [24] present a first investigation of presence detection in the prox-
imity of a cellular handset device. In contrast, we investigate various sensing
conditions and parameters for environmental perception from cellular systems.
In particular, we investigate the detection of presence, impact of distance on the
recognition accuracy, and the capability of recognizing walking speed of subjects
in proximity.

3 RF-based Recognition from Cellular Systems

Unlike classical RF-sensing approaches that exploit WiFi, the distance between
transmit and receive components is magnitudes larger in cellular systems, where
the base station is likely located outside and on top of buildings. the larger dis-
tance and necessary penetration of building walls and other obstacles results in
reduced signal strength at a receiver, and consequently lower recognition accu-
racy. We study environmental perception in cellular systems.

3.1 System Description

The current GSM-band is expected to be occupied as part of the 5G frequency
bands. Especially, the lower frequency bands are reserved for resource-restricted
devices and will establish the backbone of the IoT. To investigate environmen-
tal perception in these frequency bands, we use the OsmocomBB open source
GSM baseband implementation. The firmware realizes the GSM protocol stack
together with device drivers for the baseband chipsets. It runs on the host
machine and the connected mobile device to access the wireless interface. We
used Motorola C123 mobile devices as phone hardware. In particular, the Osmo-
comBB network monitor is capable to capture the RSSI of overheard packages.
We use this information for environmental perception.

3.2 Experimental Study

The measurements were done in a room that is approximately 10 m by 10 m
(cf. Fig. 1). Two tables were used, one had height of 65 cm and the other 111 cm,
on which the receiver has been placed. Firstly, the readings were taken in an

698 I. Singh and S. Sigg

Fig. 1. Experimental setup for the three scenarios (empty, presence at a certain dis-
tance and circular motion around the device).

empty room for 5 min which were used to train the basic case. Later, we recorded
another 3 min in the empty scenario for testing.

The following cases have been considered:

1. distinguishing the presence of a subject in the environment
2. distinguishing the distance from the phone in which a moving person was

located
3. distinguishing different walking speeds of a person in the proximity of the

receive device.

The room utilized is the study hub of Otakaari 1, Aalto University. It consists
of furniture which was not moved during the observations. The test and training
data were collected on different days and for different duration of time. Tables of
different height were used to see the effect of height on the recognition accuracy.

To detect the presence of a person at different distances, a subject would
stand at different distances from the device and conduct moderate movement
with her upper body. To distinguish walking speed, a circular mat of diameter
4m was used and markers were placed around the mat at 1 m distance. Using a
stopwatch, the subject then adapted her walking speed to approximately match
two distinct walking speeds (60 cm per second and 130 cm per second). The
receive device has been placed in the center of the table.

3.3 Results

The outcome of the experiments is described in the following, divided for the
respective cases considered.

Detection of presence. Simple interaction in smart cities and smart envi-
ronments can be enabled by detecting presence of subjects within a measured
space. We distinguish the basic case (empty environment) from the cases where
a person is standing at any distance to the receiver.

Figure 2a shows the scatterplot over Entropy and mean received signal
strength (RSS) for the two presence and empty cases while the receive device

Smart City Environmental Perception from Ambient Cellular Signals 699

(a) Scatterplot: presence and empty room for various
heights of the receive device

(b) Confusion matrix for the recognition
of presence of a subject.

Fig. 2. Impact of antenna height and accuracy for presence detection

is placed on tables at two different heights. We observe that, non-surprisingly,
the two cases whithout presence (empty) can hardly be distinguished since no
dominant activity is conducted in proximity of the receive device. On the con-
trary, the two presence cases, which differed in the height in which the receive
device has been placed, can be well distinguished from each other. We attribute
this to the different impact a person can have by blocking the transmitted signal
with respect to the receive device. In particular, when the device is placed at
the lower table, the mean RSS increased.

The confusion matrix, distinguishing between the two cases presence and
empty room is depticted in Fig. 2b.

In particular, we grouped to gether the respective cases at 65 cm and 111 cm
height so that only two distinct cases are to be distinguished between. Recall
and precision values achieved are close to 100% in both cases with a slight bias
towards detecting presence case as empty .

Distance of a subject to the receive device. Next, we investigated whether
we are able to distinguish the distance of a subject to the receive device. This
property would be useful in smart cities to localize subjects within an environ-
ment. Since the recognition accuracy has been more pronounced for this case,
we placed the receiver on the lower table. Still, as visible from the scatterplot
in Fig. 3a, the respective cases partly overlap, and, even more significantly, their
mean RSS does not decrease linearly with distance. Consequently, under realis-
tic conditions in a smart city, accurate detection of distance to a single receive
device is unlikely. We remark that fingerprinting might result in better accu-
racy, but since the RSS computation differs between device vendors and might
be impacted by hardware specialities, we believe that fingerprinting-based pas-
sive localization would be a very difficult and likely inaccurate undertaking. For
completeness, the confusion matrix for this case is depicted in Fig. 3b.

700 I. Singh and S. Sigg

(a)Scatter plot: impact of the distance to the receive
device

(b) Confusion in signal strengths at dif-
ferent distances.

Fig. 3. RSSI in presence of a person at different distances from the device.

While some cases have good recognition accuracy, the overall accuracy is not
accpetable for practical application.

Distinction of various walking speeds. The distinction of walking speeds
in smart cities and smart environments is valuable for a number of advanced
interaction cases. For instance, walking speed matters in emergency cases and
also in sentiment sensing e.g. to distinguish haste from relaxed mood. The speed
of a walking subject effects the effects the variation of the RSS as signal paths
change more drastically with higher speed. We therefore consider variance of the
RSS as another feature for the recognition in this case.

We considered two different walking speeds (60 cm per second and 130 cm
per second) of a moving subject that was circling the receive device at a con-
stant distance. The slower speed corresponds to normal walking while the faster
speed resembles running. In addition, we distinguished from the basic empty
environment as a third case in this scenario.

As depicted in Fig. 4a, the three cases are well distinguished from each other.
Consequently, the trained classification algorithm is well able to differentiate the
different walking speeds and to achieve a model accuracy of 73.63%. Figure 4b
depicts the confusion matrix for this case.

We observe that the recognition accuracy and precision are good in general,
but the recall is low for the recognition of the empty case since this is confused
with the slower walking speed. We are currently further investigating this prob-
lem and believe that tuning of the feature values and sample windows might
suffice to improve the recall for the empty case.

Distinction between empty, occupied and active subjects. Finally, for
smart city environments, we believe that the recognition of the activity state
of the person occupying the environment is a valuable information to improve

Smart City Environmental Perception from Ambient Cellular Signals 701

(a) Scatter plot: detection of various walking speeds (b) Confusion matrix

Fig. 4. Detection of various walking speeds of a moving subject, respective the empty
room scenario.

environmental interaction. To investicate this case, we distinguish between an
empty environment, a scenario where a person is present and moving slightly but
not walking and the case that a subject is walking at any speed in the proximity
of the recive device. As depicted in the scatterplot in Fig. 5a, the classifier is again
able to well distinguish between the respective cases, although the presence and
moving cases are close.

Consequently, the classifier is able to receive a recognition accuracy of 66.1%.
The confusion matrix of this case is depicted in Fig. 5b

While the overall confusion is ok, we observe a low recall and precision for
the empty and presence cases respectively. As a result of the closeness of the
points in the feature space, the classifier developed a bias towards the presence
case.

(a) Scatter plot: empty vs. occupied vs. walking. (b) Confusion matrix

Fig. 5. Empty environment, occupied environment and subject walking at any speed.

702 I. Singh and S. Sigg

Table 1. Accuracy achieved for different environmental situations

Cases Accuracy

Presence at different distances 0.42

Presence test 0.98

Movement(speed) test 0.74

Environmental perception 0.67

4 Conclusion

Summarizing, we have presented a study on the feasibility of using signals from
cellular systems for environmental perception. In particular, our instrumentation
covered an indoor environment with thee distinct scenarios: (1) detection of pres-
ence, (2) consideration of the impact of distance on the recognition accuracy, and
(3) the capability to detect walking speed. The instrumentation exploited the
Osmocom-BB baseband implementation. Overall, we confirm acceptable recog-
nition accuracy from ubiquitously deployed cellular systems as summarized in
Table 1. While it was not able for us to distinguish diverse distance of a subject
to the receive device, especially the presence detection was possible with high
accuracy and we suggest to integrate such recognition into smart city and smart
environments. For the other two, more complex cases, the recognition accuracy
degraded and feasibility for a concrete case is dependent on the respective appli-
cation. For smart city instrumentations, device-free recognition from cellular
systems is a promising supporting technology to achieve ubiquitous environmen-
tal perception.

References

1. Abdelnasser, H., Youssef, M., Harras, K.A.: Wigest: a ubiquitous WiFi-based ges-
ture recognition system. In: Proceedings of the 2015 INFOCOM (2015)

2. Abdelnasser, H., Youssef, M., Harras, K.A.: Wigest: a ubiquitous WiFi-based ges-
ture recognition system. In: 2015 IEEE Conference on Computer Communications,
pp. 1472–1480. IEEE (2015)

3. Adib, F., Katabi, D.: See through walls with WiFi! In: Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM 2013, pp. 75–86. ACM,
New York (2013). http://doi.acm.org/10.1145/2486001.2486039

4. Al-Hader, M., Rodzi, A., Sharif, A.R., Ahmad, N.: Smart city components architec-
ture. In: International Conference on Computational Intelligence, Modelling and
Simulation, CSSim 2009, pp. 93–97. IEEE (2009)

5. Bowerman, B., Braverman, J., Taylor, J., Todosow, H., Von Wimmersperg, U.: The
vision of a smart city. In: 2nd International Life Extension Technology Workshop,
Paris (2000)

6. Caragliu, A., Del Bo, C., Nijkamp, P.: Smart cities in europe. J. Urban Technol.
18(2), 65–82 (2011)

http://doi.acm.org/10.1145/2486001.2486039

Smart City Environmental Perception from Ambient Cellular Signals 703

7. Domenico, S.D., Pecoraro, G., Cianca, E., Sanctis, M.D.: Trained-once device-free
crowd counting and occupancy estimation using WiFi: a doppler spectrum based
approach. In: 2016 IEEE 12th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob). pp. 1–8 (2016)

8. Gholampooryazdi, B., Singh, I., Sigg, S.: 5G ubiquitous sensing: passive environ-
mental perception in cellular systems. In: 2017 IEEE Vehicular Technology Con-
ference (2017)

9. Gibson, D.V., Kozmetsky, G., Smilor, R.W.: The Technopolis Phenomenon: Smart
Cities, Fast Systems, Global Networks. Rowman & Littlefield, New York (1992)

10. Giffinger, R., Pichler-Milanović, N.: Smart Cities: Ranking of European Medium-
Sized Cities. Centre of Regional Science, Vienna University of Technology (2007)

11. Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J.,
Paraszczak, J., Williams, P.: Foundations for smarter cities. IBM J. Res. Dev.
54(4), 1–16 (2010)

12. Hernández-Muñoz, J.M., Vercher, J.B., Muñoz, L., Galache, J.A., Presser, M.,
Gómez, L.A.H., Pettersson, J.: Smart cities at the forefront of the future internet.
In: The future internet, pp. 447–462. Springer, Berlin (2011)

13. Kaltiokallio, O., Jantti, R., Patwari, N.: An adaptive radio tomographic imaging
system. IEEE Trans. Veh. Technol. 99, 1 (2017)

14. Manville, C., Cochrane, G., Cave, J., Millard, J., Pederson, J.K., Thaarup, R.K.,
Liebe, A., Wissner, M., Massink, R., Kotterink, B.: Mapping smart cities in the
EU (2014)

15. Mogensen, P., Pajukoski, K., Tiirola, E., Lahetkangas, E., Vihriala, J., Vesterinen,
S., Laitila, M., Berardinelli, G., Da Costa, G.W., Garcia, L.G., et al.: 5G small
cell optimized radio design. In: Globecom Workshops, IEEE, pp. 111–116. IEEE
(2013)

16. Nam, T., Pardo, T.A.: Conceptualizing smart city with dimensions of technology,
people, and institutions. In: Proceedings of the 12th Annual International Digital
Government Research Conference: Digital Government Innovation in Challenging
Times, pp. 282–291. ACM, Berlin (2011)

17. Pu, Q., Gupta, S., Gollakota, S., Patel, S.: Whole-home gesture recognition using
wireless signals. In: Proceedings of the 19th Annual International Conference on
Mobile Computing & Networking, pp. 27–38. ACM, New York (2013)

18. Qian, K., Wu, C., Zhou, Z., Zheng, Y., Yang, Z., Liu, Y.: Inferring motion direction
using commodity Wi-Fi for interactive exergames. In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, CHI2017, pp. 1961–1972
(2017). http://doi.acm.org/10.1145/3025453.3025678

19. Raja, M., Exler, A., Hemminki, S., Konomi, S., Sigg, S., Inoue, S.: Towards perva-
sive geospatial affect perception. Springer GeoInformatica (2017). http://dx.doi.
org/10.1007/s10707-017-0294-1

20. Raja, M., Sigg, S.: Applicability of RF-based methods for emotion recognition:
a survey. In: 2016 IEEE International Conference on Pervasive Computing and
Communication Workshops, pp. 1–6 (2016)

21. Raja, M., Sigg, S.: RFexpress! - RF emotion recognition in the wild. In: 2017 IEEE
International Conference on Pervasive Computing and Communication (WiP)
(2017)

22. Raja, M., Sigg, S.: RFexpress! - exploiting the wireless network edge for RF-based
emotion sensing. In: 22nd IEEE International Conference on Emerging Technolo-
gies and Factory Automation (2017)

http://doi.acm.org/10.1145/3025453.3025678
http://dx.doi.org/10.1007/s10707-017-0294-1
http://dx.doi.org/10.1007/s10707-017-0294-1

704 I. Singh and S. Sigg

23. Savazzi, S., Sigg, S., Nicoli, M., Rampa, V., Kianoush, S., Spagnolini, U.: Device-
free radio vision for assisted living: leveraging wireless channel quality information
for human sensing. IEEE Signal Proc. Mag. 33(2), 45–58 (2016)

24. Savazzi, S., Kianoush, S., Rampa, V., Spagnolini, U.: Is someone moving around
my cell-phone? tracing cellular signals for passive motion detection. In: 2017 IEEE
International Conference on Pervasive Computing and Communications Work-
shops, pp. 10–13. IEEE (2017)

25. Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M., Oliveira, A.:
Smart cities and the future internet: towards cooperation frameworks for open
innovation. In: The Future Internet, pp. 431–446. Springer, Berlin (2011)

26. Shi, S., Sigg, S., Ji, Y.: Activitune: a multi-stage system for activity recognition of
passive entities from ambient FM-radio signals. In: 8th International Conference
on Wireless Algorithms, Systems, and Applications (2013)

27. Sigg, S., Beigl, M.: Algorithms for closed-loop feedback based distributed adaptive
beamforming in wireless sensor networks. In: Proceedings of the Fifth International
Conference on Intelligent Sensors, Sensor Networks and Information Processing -
Symposium on Adaptive Sensing, Control, and Optimization in Sensor Networks
(2009)

28. Sigg, S., Blanke, U., Troester, G.: The telepathic phone: frictionless activity recog-
nition from WiFi-RSSI. In: IEEE International Conference on Pervasive Comput-
ing and Communications, PerCom 2014 (2014)

29. Sigg, S., Masri, R.M.E., Beigl, M.: Feedback based closed-loop carrier synchronisa-
tion: a sharp asymptotic bound, an asymptotically optimal approach, simulations
and experiments. Trans. Mob. Comput. 10(11), 1605–1617 (2011)

30. Sigg, S., Scholz, M., Shi, S., Ji, Y., Beigl, M.: RF-sensing of activities from non-
cooperative subjects in device-free recognition systems using ambient and local
signals. IEEE Trans. Mob. Comput. 13(4), 907–920 (2013)

31. Sigg, S., Shi, S., Buesching, F., Ji, Y., Wolf, L.: Leveraging RF-channel fluctuation
for activity recognition. In: Proceedings of the 11th International Conference on
Advances in Mobile Computing and Multimedia (2013)

32. da Silva, W.M., Alvaro, A., Tomas, G.H., Afonso, R.A., Dias, K.L., Garcia, V.C.:
Smart cities software architectures: a survey. In: Proceedings of the 28th Annual
ACM Symposium on Applied Computing, pp. 1722–1727. ACM, Berlin (2013)

33. Wang, G., Zou, Y., Zhou, Z., Wu, K., Ni, L.M.: We can hear you with Wi-Fi! In:
Proceedings of the 20th Annual International Conference on Mobile Computing
and Networking, MobiCom 2014, pp. 593–604 (2014). http://doi.acm.org/10.1145/
2639108.2639112

34. Wang, H., Zhang, D., Ma, J., Wang, Y., Wang, Y., Wu, D., Gu, T., Xie, B.: Human
respiration detection with commodity WiFi devices: do user location and body ori-
entation matter? In: Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, pp. 25–36. ACM, Berlin (2016)

35. Zhao, M., Adib, F., Katabi, D.: Emotion recognition using wireless signals. In:
Proceedings of the 22nd Annual International Conference on Mobile Computing
and Networking, pp. 95–108. ACM, Berlin (2016)

http://doi.acm.org/10.1145/2639108.2639112
http://doi.acm.org/10.1145/2639108.2639112

A Multi-task Oriented Selection Strategy
for Efficient Cooperation of Collocated

Mobile Devices

Hui Gao1(B), Jun Feng2, Ruidong Wang2, and Wendong Wang2

1 School of Software Engineering,
Beijing University of Posts and Telecommunications, Beijing, China

gaohui786@bupt.edu.cn
2 State Key Laboratory of Networking and Switching Technology,

Beijing University of Posts and Telecommunications, Beijing, China

Abstract. As the resource consumption of mobile applications contin-
ues to outweigh the hardware capacities of mobile devices, the user expe-
rience can be improved by leveraging the resources of the nearby mobile
devices. In other words, a mobile device should be able to request sur-
rounding devices to execute tasks on its behalf. By treating the resources
of the devices in the vicinity collectively, one can orchestrate a distrib-
uted interaction that uses these resources efficiently, thereby improving
individual user experiences. In this paper, we study the problem of allo-
cating multiple tasks across multiple mobile devices with the goal of
reducing the collective execution time, while limiting the resources con-
sumed by each participating device. Our selection strategy uses a set of
heuristics to allocate the task execution in the aforementioned type of
distributed interaction scenarios. The results of our experimental eval-
uation indicate that this strategy can be successfully applied in Mobile
Device Cloud applications.

Keywords: Mobile device · Collocated cooperation · Device selection

1 Introduction

Mobile device users are continuously increasing their expectations on the func-
tionality and quality of service of mobile applications. Meeting these expectations
requires actively engaging high accuracy sensors, large volumes of multimedia
data, and complex artificial intelligence algorithms. Unfortunately, mobile appli-
cations incorporating these features consume inordinate amounts of computa-
tional power, battery budgets, high network bandwidth, and extensive sensory

This work was supported in part by the National High Technology Research
and Development Program (863 Program) of China (Grant No. 2015AA016101,
2015AA015601), National Natural Science Foundation of China (Grant No.
61370197, 61402045).

c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 705–714, 2017.
DOI: 10.1007/978-3-319-65482-9 56

706 H. Gao et al.

resources. Consequently, a mobile application may rely on functionality that
cannot be delivered by its host device for resource scarcity reasons [2].

Cloud-based execution has been traditionally used as a mechanism for
extending the resources of mobile devices [6]. This extension of resources can
not only provide additional functionality, but also improve the quality of ser-
vice. Unfortunately, under certain execution scenarios, high-quality network con-
nections may not be available to access cloud-based resources. Accessing these
resources over limited networks can easily negate any potential benefits of using
them. As an example, transferring data between a mobile device and the cloud
server through a limited cellular network is known to consume an inordinate
amount of energy [5]. As an alternative, additional resources can be obtained
from collocated mobile devices [4]. Orchestrating the execution of such collo-
cated mobile devices into distributed resource sharing scenarios is known as
“Mobile Device Clouds” (MDC).

A major technical issue that stands on the way of effective MDCs is the
problem of locating collocated devices most suitable for executing given tasks.
As depicted in Fig. 1(a), multiple mobile devices are operated simultaneously in
everyday environments, including restaurants, classrooms, and conference rooms.
These devices differ in terms of their respective hardware, software, and runtime
status, thus offering dissimilar capabilities to provide the resources required by
external requests. The client requirements are not uniform either, placing differ-
ent constraints on the expected latency, accuracy, and completeness. All these
factors make it non-trivial to select a set of optimal target devices for a set of
tasks.

In this paper, we present a solution to the above mentioned device selection
problem. We present a strategy that selects a set of target devices for tasks
that can provide the best collective execution time with the lowest resource
consumption. Hence, we formulate the problem as a multi-objective optimal
one, and use the execution time and resource consumption on target devices
to evaluate the performance and cost of each task. We then propose a multi-
task oriented device selection algorithm to find the sub-optimal solution for the
problem. We present the effectiveness of our solution via simulation. Future work
will evaluate our solution in realistic deployment environments.

Fig. 1. (a) Target device selection problem of MDC. (b) System architecture.

A Multi-task Oriented Selection Strategy for Efficient Cooperation 707

2 Related Work

Popovici et al. and Mukhtar et al. presented device selection algorithms that
considered user preferences and might not select the most suitable device for
service composition [8]. El et al. proposed solutions for service selection where
QoS was considered [3]. Ahmed et al. presented a device selection algorithm that
considered the factor of Quality Of Service (QoS) and catered for user prefer-
ences [1]. They considered the device QoS, Network QoS, and user preferences,
but left out dynamic device resources, which might affect device selection deci-
sions. Xu et al. presented a device selection algorithm based on the consideration
of device location [9]. In the area of optimal service composition, several solu-
tions addressed the problem of matching services and devices. In mobile cloud
computing, Zhou et al. presented a device selection method that was status- and
stability-aware [10]. Parmar et al. took infrastructure-specific parameters into
account to discover and select cloudlets [7]. Compared with these approaches,
this paper studies the problem of device selection in the context of collocated
mobile device cooperation with multiple tasks and multiple devices, while taking
both the task execution time and resource consumption into account.

3 System Model

Figure 1(b) depicts the system architecture. It contains a set of source devices
(Device A, B), a set of target devices (Device C, D and E), and a registration
center (which can either be a mobile device, or be a piece of stationary network
infrastructure, like a WiFi router). Because the task execution time should be
short, we disregard the mobility of devices during the task execution.

We further describe the details of the task execution: (a) First, all of the tar-
get devices register with the registration center, storing their device information
and getting a device id from the registration center. (b) Then, the target devices
broadcast their device ids using Bluetooth Low Energy (BLE) channel. (c) Once
source devices need to delegate other devices to execute their tasks, they scan
for nearby devices using the BLE channel and collect the target devices’ ids,
uploading the collected device ids and tasks information to the registration cen-
ter. (d) The registration center runs the device selection algorithm and returns
the selected devices for each task of the source devices. (e) Each source device
connects to the selected target devices via WiFi or BLE, and delegates the tasks
to the selected target devices.

We also make the following assumptions: (a) One task can only be executed
by one device. For example, if device A wants to send more than one HTTP
requests, each request is treated as a single task. (b) One device can be the
selected target device for multiple tasks. For simplicity, we assume that the
delegated tasks are executed in sequence on each target device. So the overall
time used to execute a certain task contains two parts: (1) The time needed to
execute the task; (2) The time taken to wait for the task to be executed by the
target device.

708 H. Gao et al.

As Fig. 1(b) depicted, source devices A and B need to delegate four tasks
to other devices. After the device discovery phase, device C, D and E comprise
the collection of target devices. By sending requests to the registration center,
source devices A and B get their device selection results from the registration
center and delegate their tasks to device C and D accordingly. Because it will
take a long time to execute the tasks on device E, or for the reason that device
E has limited capabilities and resources, device E is not assigned any tasks to
execute.

4 Problem Formulation

In the proposed system above, we use M = {m = 1, 2, ...M} to denote the tasks,
and N = {n = 1, 2, ...N} to denote the target devices. For each device n, the
available resources for task execution is R = {Rn | ∀n ∈ N}.

For each task m ∈ M, we use Tm,n,∀n ∈ N to express its estimated exe-
cution time on device n. Therefore, T is a M × N matrix. When task m is
executed on device n, it will consume many kinds of resources of device n. The
resources consumed by task m when being executed on device n is abstracted
as Cm,n,∀m ∈ M,∀n ∈ N , therefore C is also a M × N matrix.

T =

⎡
⎢⎢⎢⎣

T1,1 T1,2 · · · T1,N

T2,1 T2,2 · · · T2,N

...
...

. . .
...

TM,1 TM,2 · · · TM,N

⎤
⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎣

C1,1 C1,2 · · · C1,N

C2,1 C2,2 · · · C2,N

...
...

. . .
...

CM,1 CM,2 · · · CM,N

⎤
⎥⎥⎥⎦ .

Here we further define the resource impact on target devices when executing
delegated tasks. The resource impact is not equal to the resource consumption on
each target device, and we give an example to demonstrate this distinction: When
executing an HTTP delegation task consumes 20% of the entire battery power
of a device, executing this task on a device with 30% remaining battery disturbs
the device owners much more than executing the task on a device with 60%
remaining battery. Therefore, we define the resource impact as: e

Cn
Rn×M −1,∀n ∈

N , where Cn is the summed up resources consumed on device n to execute
the delegated tasks. When more resources Cn are consumed on a device with
limited available resources Rn, its resource impact increases rapidly. However, to
prevent the ratio from increasing too fast when the overall resource consumption
of delegated tasks is close to the available resources, we use Rn ×M to constrain
the value of e

Cn
Rn×M within [1, e).

Here, we assume that the device selection matrix is A, where A =
[Am,n]M×N , Am,n ∈ {0, 1}. Am,n = 1 means that task m is delegated to device
n, otherwise, Am,n = 0. Therefore, the total task execution time of device n can
be denoted as τn(A) =

∑
m∈M Am,n × Tm,n.

Similarly, the total resource impact to device n can be calculated as:

φn(A) = e

∑
m∈M Am,n×Cm,n

R(n)×M − 1. (1)

A Multi-task Oriented Selection Strategy for Efficient Cooperation 709

The objective of our work is to find a set of target devices for all tasks, so
that the overall task execution time and the overall resource impact on target
devices are minimized. We compare the execution time on all devices, and use
the longest time for a device to finish executing all delegated tasks as the overall
task execution time, which is denoted as: max

n∈N
(τn(A)). For all the N devices, the

overall resource impact on target devices can be further calculated as φ(A) =∑
n∈N φn(A).
Therefore, the optimization objective of this paper can be represented as to

find a device selection matrix A∗ that:

A∗ = arg min
A

max
n∈N

(τn(A)) and arg min
A

φ(A), (2)

subject to

A = [Am,n]M×N ;Am,n ∈ {0, 1}; ∀n ∈ N , ∀m ∈ M, ∃!n, let Am,n = 1 (3)

5 Selection Strategy

Problem (2) is a multi-objective optimal problem, and the two optimal objectives
arg min

A
max
n∈N

(τn(A)) and arg min
A

φ(A) are not independent. It is hard to find a

set of target devices A that can provide the optimal value for both optimization
objectives. To solve this multi-objective optimization problem, we need to find
a Pareto solution, which cannot provide a better value for one optimal objective
without providing a worse value for the other optimization objectives. Therefore,
we convert the original two-objective optimization problem to a single-objective
optimization problem using weight functions, and the solution of the single-
objective problem is a Pareto solution of the original two-objective optimization
problem. (4) shows the new optimization objective.

D(A) = λ ×
max
n∈N

τn(A)

max
n∈N

τn(A′)
+ (1 − λ) ×

∑
n∈N φn(A)∑
n∈N φn(A′′)

, A∗ = arg min
A

(D(A)),

(4)
where λ is a weight function. The bigger λ is, the more concern is given to
minimize the overall task execution time. A′, A′′ denote two devices selection
matrices, that can lead to the longest overall execution time, and the biggest
overall resource impact, respectively.

In (2), the two optimization objectives have different value ranges. There-
fore, to be able to treat the ranges uniformly, we use the ratio between the opti-
mization objective and its upper bound in (4). The upper bound of max

n∈N
τn(A)

can be reached only when all the tasks are delegated to a certain target
device. Therefore, max

n∈N
τn(A′) = max

n∈N
∑

m∈M Tm,n. In the following discus-

sion, Tr(A) is used to reference the overall task execution time ratio, where
Tr(A) = max

n∈N
τn(A)/max

n∈N
τn(A′).

710 H. Gao et al.

Calculating the upper bound of
∑

n∈N φn(A) is a global optimal problem,
because assigning all the tasks to a certain device can not get the maximal overall
resource impact. Therefore, we develop an algorithm for calculating the upper
bound of

∑
n∈N φn(A), which will be described later. We use Rr(A) to reference

the overall resource impact ratio, where Rr(A) =
∑

n∈N φn(A)/
∑

n∈N φn(A′′).
To verify that Tr(A) and Rr(A) can be added together, we randomly generate

some experimental data and calculate the difference between Tr(A) and Rr(A).
Experimental results show that the maximum and average differences between
Tr(A) and Rr(A) are 0.98 and 0.13, respectively, which implies that Tr(A) and
Rr(A) are in the same order of magnitude, and thus can be added together.

In summary, the final single optimization objective can be denoted as:

A∗ = arg min
A

D(A) = arg min
A

{λ × Tr(A) + (1 − λ) × Rr(A)}

= arg min
A

{λ ×
max
n∈N

τn(A)

max
n∈N

∑
m∈M Tm,n

+ (1 − λ) ×
∑

n∈N φn(A)∑
n∈N φn(A′′)

}
(5)

subject to

A = [Am,n]M×N ;A′′ = [A′′
m,n]M×N ;Am,n ∈ {0, 1};A′′

m,n ∈ {0, 1}
∀m ∈ M, ∃!n, let Am,n = 1, A′′

m,n = 1

Which means that to find a device selection matrix A∗ from all the possi-
ble device selection matrices, letting D(A∗) get the minimum value. Obviously,
the final single optimization objective can guarantee that Pareto optimality is
obtained when considering with the original optimal objective in (2). Consid-
ering that the greedy algorithm can obtain a suboptimal result with greatly
reduced execution time. Therefore, in this paper we proposed a solution with
the mindset of greedy, which can be described as follows:

1. Let all elements in A∗ equal zero, meaning that no tasks are delegated to
target devices, and initiate D(A∗) with ∞.

2. For all tasks m ∈ M, iterate all target devices n ∈ N . For each iteration,
assume that task m is delegated to device n and calculate the optimization
objective value according to Eq. 5. If the calculated result is less than D(A∗),
update the value of D(A∗) and save the target device n as tar dev.

3. Let A∗
m,tar dev = 1, which means that task m should be delegated to device

tar dev so D(A∗) can get the minimum value.
4. When iteration is done, output the device selection matrix A∗ and optimiza-

tion objective value D(A∗).

The device selection algorithm described above can be expressed as
Algorithm 1 with ds parameter set to true.

When calculating the value of optimization objective according to (5), we
need to find a device selection matrix A′′ to get the upper bound of overall

A Multi-task Oriented Selection Strategy for Efficient Cooperation 711

Algorithm 1. Greedy algorithm for device selection (
∑

n∈N φn(A′′) in (4))
Input:
M , N - the number of task and target devices
T , C - task execution time and resource consumption matrix
R - available resources of target devices, λ = weight value
ds - the algorithm parameter
Output:
A∗, D(A∗) - the optimal device selection matrix and upper bound

1 A∗ = {0}; D(A∗) = ∞; Wri = 0;
2 for i = 1; i ≤ M ; i + + do
3 idx = 0;
4 for j = 1; j ≤ N ; j + + do
5 A∗[i][j] = 1;
6 if ds then
7 t = calTargetV alue(A, M, N, T, C, λ, R);
8 if t < D(A∗) or j == 1 then
9 D(A∗) = t; idx = j;

10 else
11 t = calRImpact(A, M, N, T, C, R);
12 if t > Wri then
13 Wri = t; idx = j;

14 A∗[i][j] = 0;

15 A∗[i][idx] = 1;

16 if ds then
17 return {A∗, D(A∗)};

18 else
19 return Wri;
20

resource impact (
∑

n∈N φn(A′′)), which is just similar to find the optimal device
selection matrix A∗, so the greedy algorithm is used and can be described as
Algorithm 1 with ds parameter set to false.

6 Experimental Evaluation

6.1 Experimental Design

To illustrate the effectiveness of the proposed device selection algorithm, we
simulate the process of device selection on the Linux platform by writing experi-
mental code in C language. The steps of the simulation experiment are as follows:

(1) Let the weight value λ be 0;
(2) Randomly generate experimental data. First of all, the number of task M

and target device N are generated, then the corresponding task execution time
matrix, resource consumption matrix and available resources of target devices

712 H. Gao et al.

are generated. When randomly generating the data, the maximal value of all the
generated elements is constrained, so as to make the simulation closer to reality.
For example, in the context of collocated mobile device collaboration, we assume
the number of devices is no more than 60. More experimental configurations are
listed in Table 1.

(3) When configuring the available resources of target devices, the resource
consumption matrix C is generated firstly. The average resource consumption
value of all the tasks, which is denoted as AvgTskCon, is calculated accord-
ingly. Assuming that the max value of Cm,j ,m ∈ M is CMj , then the available
resources of target device j is: Rj = CMj + rand()%AvgNTsk × AvgTskCon.
AvgNTsk means that how many tasks device j can execute at most when aver-
age resource consumption value of tasks is AvgTskCon. CMj is added to Rj so
that device j has sufficient resources to execute any of the tasks, even though
that rand()%AvgNTsk × AvgTskCon is equal to zero.

Table 1. Simulation configurations

Configuration Value

Max Device Number(N), Max Task Number(M) 60, 40

Max value of elements in T , Max value of elements in R 60, 40

Test count for one weight value, Weight value increasing interval 10000, 0.01

AvgNTsk 5

(4) Using the proposed algorithm to calculate the optimal device selection
matrix A∗ and the optimization objective value D(A∗), overall task execution
time ratio Tr(A∗) and overall resource impact ratio Rr(A∗). In order to compare
with traditional random device selection method, we randomly delegate tasks to
target devices and the device selection matrix is denoted as A1, with which the
optimization objective value D(A1), overall task execution time ratio Tr(A1)
and overall resource impact ratio Rr(A1) can be calculated accordingly;

(5) Repeat steps 2, 3 for 10000 times, then calculate the average value of
D(A∗), T r(A∗), Rr(A∗) and D(A1), T r(A1), Rr(A1);

(6) Increase λ by 0.01 and go to step 2 when λ is less than or equal to 1.

6.2 Experimental Results

The simulation results appear in Fig. 2. The improved performance denotes the
relatively decreased values of D(A), T r(A) and Rr(A), when the greedy algo-
rithm is used compared with the random device selection method. For exam-
ple, the improved performance of D(A) can be calculated as: D(A1)−D(A∗)

D(A1) .
Similarly, the improved performance of Rr(A) and Tr(A) can be calculated
as: Rr(A1)−Rr(A∗)

Rr(A1) , Tr(A1)−Tr(A∗)
Tr(A1) . It can be seen from Figs. 2(a) and (d) that

the greedy algorithm has a great advantage over the random device selection

A Multi-task Oriented Selection Strategy for Efficient Cooperation 713

Fig. 2. D(A), Tr(A), Rr(A) and the corresponding improved performance with differ-
ent value of λ

method, with the maximum optimization factor of about 13. Figure 2(b), (e)
and (c), (f) illustrate that the optimization objective of the greedy algorithm
is different when different weight values are selected. For example, when the
weight value is small, the greedy algorithm focuses on the optimization of the
overall resource impact ratio Rr(A), the improved performance of Rr(A) (related
to overall resource impact on target devices) is bigger than the improved per-
formance of Tr(A) (related to overall task execution time). So different weight
values can be used to express the users’ preference for optimizing the overall task
execution time or the overall resource impact on target devices. Besides, from
Fig. 2(e) and (f), we can also draw the conclusion that when using the proposed
device selection algorithm in this paper, both of Rr(A) and Tr(A) are optimized
compared with the random device selection method.

7 Conclusions

This paper presented a multi-task oriented device selection strategy for MDCs.
First, we modeled the device selection problem as a multi-objective optimal
problem, with the overall task execution time and the overall resource impact on
mobile users as two objective targets. Then we proposed a device selection algo-
rithm that considered the overall task execution time and the resource impact
on target devices. Experimental simulation results indicated that the presented
device selection algorithm in this paper could become a practical solution to
selecting devices in MDC applications.

714 H. Gao et al.

References

1. Ahmed, M.E., Mukhtar, H., Beläıd, D., Song, J.B.: Qos-aware device selection
using user preferences for tasks in ubiquitous environments. In: Proceedings of the
IEEE ICET’11. pp. 1–6 (2011).

2. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execution
between mobile device and cloud. In: Proceedings of the ACM Computer systems.
pp. 301–314. ACM, New York (2011).

3. El Haddad, J., Manouvrier, M., Ramirez, G., Rukoz, M.: Qos-driven selection of
web services for transactional composition. In: Proceedings of the IEEE ICWS’08.
pp. 653–660 (2008).

4. Habak, K., Ammar, M., Harras, K.A., Zegura, E.: Femto clouds: leveraging mobile
devices to provide cloud service at the edge. In: Proceedings of the IEEE Cloud-
Com’15. pp. 9–16 (2015).

5. Hans, R., Burgstahler, D., Mueller, A., Zahn, M., Stingl, D.: Knowledge for a
longer life: development impetus for energy-efficient smartphone applications. In:
Proceedings of the IEEE Mobile Services. pp. 128–133 (2015).

6. Kwon, Y.W., Tilevich, E.: Energy-efficient and fault-tolerant distributed mobile
execution. In: Proceedings of the IEEE ICDCS’12. pp. 586–595 (2012).

7. Parmar, D., Kumar, A.S., Nivangune, A., Joshi, P., Rao, U.P.: Discovery and selec-
tion mechanism of cloudlets in a decentralized MCC environment. In: Proceedings
of the ACM Workshop on Mobile Software Engineering and Systems. pp. 15–16
(2016)

8. Popovici, D., Desertot, M., Lecomte, S., Peon, N.: Context-aware transportation
services (cats) framework for mobile environments. Int. J. Next-Generation Com-
put. 2(1), 12 (2011)

9. Xu, Y., Li, S., Wu, Z., Pan, G.: An intensive location-aware framework for device-
involved human tasks. In: Proceedings of the IEEE HPCC EUC’13. pp. 2135–2142
(2013)

10. Zhou, A., Wang, S., Li, J., Sun, Q., Yang, F.: Optimal mobile device selection for
mobile cloud service providing. J. Supercomput. 72, 1–14 (2016)

Research on Properties of Nodes Distribution
on Internet of Vehicles

Cheng Jiujun1, Shang Zheng1(✉), Mi Hao1, Cheng Cheng2, and Huang Zhenhua1

1 Key Laboratory of Embedded, System and Service Computing of Ministry of Education,
Tongji University, Shanghai 201804, China

{chengjj,Huangzhenhua}@tongji.edu.cn, 18817871216@163.com,
18045012868@163.com

2 Suzhou University of Science and Technology, Suzhou 215009, China
chengcheng_lcc@163.com

Abstract. In the environment of vehicle network, due to the high-speed move‐
ment of vehicle nodes, the network topology of vehicle nodes will change
frequently, and the network between vehicles will be continuously connected and
disconnected. All these factors lead to the instability of the whole network and
cause a great impact on the network routing performance. Based on the large-
scale dataset of TAPASCologne, this paper studies the node distribution charac‐
teristics in the complex form of vehicle network by simulation experiments,
including: the influence of node mobility model on the vehicle node distribution
characteristics, the long tail effect of node degree distribution in the network, as
well as the sparseness and density of node distribution in the urban road network.
These experimental results of the node distribution characteristics will be helpful
for the design of routing protocol.

Keywords: Vehicle network · Node distribution characteristics ·
TAPASCologne dataset · Long tail effect

1 Introduction

1.1 A Subsection Sample

Vehicle network is a complex network composed of the wireless network environment
and realistic road conditions. It needs to take vehicle node status, moving trajectory and
moving mode into account. In the vehicle network, the highway scene can usually be
regarded as a one-dimensional traffic scene, in which the vehicles can only travel along
the highway. Therefore, the movement trajectory and node distribution have a certain
regularity. However, due to the reasons that traffic accidents, rain and snow weather and
etc., it will result in node congestion in some road sections, toll gates and service areas.
The urban scene is different from the highway scene. The road traffic is more complicated
and some uncertain factors like traffic accidents and rush hour will block the road, but
in some remote road sections, the vehicle density will be sparse. These all factors will
lead to the interconnection problems of the vehicle network.

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 715–724, 2017.
DOI: 10.1007/978-3-319-65482-9_57

In the analysis of vehicle routing protocol [1], the existing routing protocol doesn’t
make a systematic study of the node distribution characteristics. Based on the large-scale
data set of TAPASCologne, this paper studies distribution characteristics of nodes in
the complicated vehicle network through simulation experiments. It includes the influ‐
ence of node mobility model on the distribution characteristics of vehicles nodes, the
sparseness and density of nodes distribution in the urban road network. The experimental
results are given to provide the experimental basis of node distribution for the vehicle
network routing protocol.

The remainder of this paper is organized as follows. Section 2 introduces data
collection methods and results of the vehicle network. Section 3 firstly discusses the
influence of node mobility model on the vehicles distribution characteristics, then gives
the long tail effect of network node degree distribution, and analyses the sparseness and
density of node distribution in the urban scenes. Finally, Sect. 4 draws concluding
remarks.

2 Vehicle Network Data Collection Methods and Results

2.1 Simulation Platform

Generally, vehicle network simulation will involve traffic simulation and network simu‐
lation. Traffic simulation is a method of simulating the real road condition by software
method. It can simulate and evaluate urban planning and traffic management. However,
Network simulation simulates the data transmission in a network group and the behavior
of each member by software method, which can analyze network performance using
statistical methods.

Commonly used traffic simulation software is: SUMO [3], VISSIM [4], Paramics [5],
TransModeler [6] and so on. SUMO is an open source micro-traffic simulator. It takes
a single vehicle on the road as a basic unit of simulation and simulates the relationship
between vehicles, the relationship between vehicles and roads, as well as the relationship
between vehicles and pedestrians.

SUMO’s open source and usability make us choose SUMO and network simulation
software OMNET++ as the traffic and network co-simulation. Besides, we use Veins
[7] to achieve the information exchange and two-way communication, and accomplish
the traffic simulation and data collection. Among them, OMNET++ is a simulation
software for discrete event simulation, Veins is an open source simulation framework
for the realization of vehicle communication.

Veins is a bridge between two simulators, in which SUMO as a server is responsible
for traffic flow simulation and controls vehicle movement; OMNET++ as a client is
responsible for network simulation, and controls message packet transmission and
delivery, as shown in Fig. 1. It uses TCP connection between SUMO and OMNET++,
and uses Socket to achieve the exchange of information.

At the same time, Veins uses the new IEEE 802.11p protocol and DSRC/WAVE
simulation model, it can fully simulate all the features of WAVE, such as multi-channel
and QoS support. Therefore, Veins meets the requirements, and the final experimental
platform is composed of SUMO, Veins and OMENET++.

716 C. Jiujun et al.

In this paper, SUMO version is 0.21.0, OMNET++ version is 4.3.1, and Veins
version is 3.0. The development environment is Eclipse integrated OMNET++ running
on Windows 7.

2.2 Data Set

The data set used in this paper is the TAPASCologne large-scale dataset. This data set
is the largest data set available nowadays. It collects road information and vehicle
movement information within 400 km2 of Cologne, Germany, and generates vehicle
node movement in the region in 24 h. Besides, compared to other datasets, TAPASCo‐
logne data set has the larger amount of data and is closer to physical reality, thus we
choose this data set. The collected data is shown in Table 1.

Table 1. SUMO simulation data.

Name Type Note
timestep@ti
me

(simulation)
seconds

Simulation time

timestep@id id Simulator id
Vtype id Vehicle type
vehicle@id (vehicle) id Vehicle id
Lane (lane) id Road id
Pos m Vehicle’s location
X m x-coordinate of the vehicle on the road
Y m y-coordinate of the vehicle on the road
Lat degrees * 100,000 Latitude
Lon degrees * 100,000 Longitude
Speed m/s Speed

vehicle@id, x, y, lat, lon, speed, is the main basis for the subsequent data processing.
vehicle@id is used to distinguish between different vehicles, x and y correspond to the

Fig. 1. Simulation experiment platform

Research on Properties of Nodes Distribution on Internet of Vehicles 717

location coordinates on the map, lat and lon are used to calculate the distance between
vehicles, speed is the key data of vehicle driving.

3 The Study on Node Distribution Characteristics of Vehicle
Network

Because that TAPASCologne has a huge amount of data in 24 h, we use the data from
6 am to 8 am. Figure 2 shows the number of vehicles from 6:00 to 8:00 after the simu‐
lation on SUMO. As 6 am is at the initial stage of the simulation, the simulation nodes
add slowly, and don’t enter the peak of work at 6 am, besides, there are not many cars
on the road. This is consistent with the real situation. After 6:15, because of rush hour,
the number of urban road vehicles is growing at a high speed. This high speed growing
slowly at 6:30, but it would still last for about one hour. At about 7:30, the number of
vehicles in the city reaches its peak, there are about 8600 cars in the city. After this time,
the number of vehicles declines rapidly and the condition of urban road tends to level
off steadily.

Fig. 2. Time-Car Num variation trend on TAPASCologne

3.1 The Influence of Node Moving Model on Vehicle Node Distribution

The rules of nodes movement have a great influence on the network interconnection
problem in the vehicle network. It can provide the experimental basis for the research
of the interconnection routing mechanism, by studying the moving rules of the vehicle
network. The rules of nodes movement are called following model in the simulation
platform. According to the size of the simulation scale, it can be divided into three
models: Marco model, Mesoscopic model, and Micro model. The Macro model
considers the overall road traffic density, the average speed, and other macro indicators.
The Micro model simulates the movement of each vehicle on the road, generally
assuming that the vehicle behavior depends on both the physical properties of the vehicle
and the driver’s control behavior [43]. The Mesoscopic model is the compromise

718 C. Jiujun et al.

between the Macro model and the Micro model, and its granularity is between the Micro
model and the Macro model.

Because of the interconnection problem research is mainly aimed at the problem
among nodes, it belongs to the category of the Micro model. The Micro-models include
GM (General Motor) model, Krauss model, psychological-physiological driving
behavior model, IDM (Intelligent Driving Model) and IDM evolution model. The
vehicle simulation platform SUMO uses the SUMOKrauβ model which is the evolution
of the Krauss model. It assumes that in this model, the driver has about 1 s of reaction
time and uses five parameters in Table 2.

Table 2. SUMOKrauβ model parameter.

Parameter Unit Note
Accel m/s2 Maximum acceleration
Decal m/s2 Maximum deceleration
V

max
m/s Maximum speed

L m Vehicle length
€ € ∈ (0, 1) Defect in the desired speed of driver

The model uses the following formula (1) [4] to calculate the safety vehicle speed.

vsafe = vl(t) +
g(t) − vl(t) ∗ 𝜏

vl(t) + vf (t)

2 ∗ b
+ 𝜏

(1)

The safety speed is the current speed that is set to accommodate the vehicle’s decel‐
eration behavior. In this formula, vl(t) is the forward vehicle speed at time t, vf (t) is the
rear vehicle speed at time t, g(t) is the distance between forward the vehicle and rear
vehicle, and means the reaction time of the driver.

Of course, the model used in SUMO has been improved to make it more suitable for
the real situation. It can be seen from Eq. 1, in SUMO, the calculated safety vehicle
speed, which is the estimated speed of the simulation. And the estimated speed is only
related to the speed and distance between the front cars and the rear cars. Therefore, in
the general simulation of vehicle network, the nodes mobility model could only influence
the speed of the front and rear cars, so that it can affect the aggregation degree of vehicles
in the local area, thus affect the entire network state.

In the highway, as the scene is single, the vehicles generally drive toward the same
direction. If we need to send the message to the front vehicle, we just need to forward
the message to the fast cars with same direction or the front cars. And if we want to send
the message to the rear cars, we need to forward it to the vehicles in the reverse lane.
Figure 3 shows the Time-Car variation trend between 6:00 and 8:00, which is simulated
on the suburban road section of 400 m highway in SUMO. The number of vehicle nodes
is generally maintained at 20–50, and the network state is stable.

Research on Properties of Nodes Distribution on Internet of Vehicles 719

Fig. 3. Time-Car Num variation trend on highway road

3.2 The Long Tail Effect of Network Node Degree Distribution

Definition 1 network node degree D: Given a network area, the network node degree is
the number of network nodes within its communication radius, for any one node i.

Using TAPASCologne data set, we collect the status information of all the vehicles
at three time points: 6:03, 7:17, 7:45, and then calculate each network node degree and
measure the frequency of the vehicles corresponds to the corresponding degree. It is
shown in Fig. 4.

As shown from the above figure, at 6:30, although there are not enough vehicles so
that it does not obey the long tail distribution, it still shows a certain long tail distribution
characteristics. At 7:17 and 7:45, it clearly shows the characteristics of the long tail
distribution. The nodes with a degree less than 20 occupy most of the nodes, while nodes
with a degree greater than 80 occupy the small parts of the nodes at 7:17, besides, at
6:03 and 7:45, the nodes are nearly almost nonexistent. This is also consistent with the
related scale-free network characteristics, which means that most of the nodes in the
network connect with only few nodes, and few nodes connect with a lot of nodes.

Therefore, in the design of vehicle network routing protocol, we can screen the
excellent nodes from the nodes in the network. And most of the information can be
forwarded by these excellent nodes to improve the network information delivery rate.
In addition, the vehicle network satisfies the local world evolution model. When a new
vehicle joins in, the new vehicle communicates with local world vehicles in priority.
We can choose the excellent nodes of the local world to forward the current node data,
thus enhance the network interconnection.

3.3 Sparseness and Densities of Node Distribution in Urban Road Network

Modern urban road networks are becoming more and more complex. Any slight muta‐
tion in the network will cause the network to fluctuate in a large area. When a traffic
accident occurs on a road, the number of vehicles near the accident will increase

720 C. Jiujun et al.

dramatically, resulting in traffic congestion. At this moment, the vehicle network will
show a dense state. But as the accident information is broadcast out, most drivers choose

(a)6:03 not obey the Gaussian Distribution

(b)7:17 obey the Gaussian Distribution

(c)7:45 obey the Gaussian Distribution

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

450

Degree

N
um

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

Degree

N
um

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

450

500

550

Degree

N
um

Fig. 4. Degree-Num distribution chart of 3 time points

Research on Properties of Nodes Distribution on Internet of Vehicles 721

to detour and the number of vehicles near the accident increases slowly. When the traffic
accident is over, the road state will return to normal slowly.

As shown in Fig. 5, the four roads are all in a sparse state. Figure 5 shows some roads
the static states and Fig. 6 shows the number of vehicles collected at an intersection. We
can see that from 6:00 to 8:00, the highest number of vehicles at the junction is 6:00,
and the number of road vehicles is in low volatility. The above information shows that
this intersection is not a traffic artery, rush hour almost has no effect on the road state.
And most of the time, the number of vehicles at this intersection is 0, which will produce
a communication blind spot.

Figure 7 shows some dense roads. Due to the rush hour or traffic accidents, a large
number of vehicles are gathered in some traffic arteries. There are multiple relay node
selections when the message is transmitted through this intersection. The general routing
algorithm can maximize the transmission of information based on the map information
and location information. But it will bring some problems such as loopback, and message

Fig. 5. Sparse network

6:00 6:15 6:30 6:45 7:00 7:15 7:30 7:45 8:00
0

1

2

3

4

5

6

Time(hh:mm)

C
ar

 N
um

Fig. 6. Time-Car Num variation trend of intersection A

722 C. Jiujun et al.

broadcasts will generate broadcast storms as well. Therefore, we need the appropriate
methods to reduce the probability of these problems.

Fig. 7. Dense network

Figure 8 shows the variation trend of vehicles at an important intersection. From the
figure, we can find that there are always vehicles passing through this intersection from
6:00, and the number is generally maintained at about 20–40. At about 7:20, the number
of vehicles rose sharply and then fell. This may be caused by a brief traffic accident. The
network state of this intersection is generally in a dense state.

6:00 6:15 6:30 6:45 7:00 7:15 7:30 7:45 8:00
0

10

20

30

40

50

60

70

80

90

100

Time(hh:mm)

C
ar

 N
um

Fig. 8. Time-Car Num variation trend of intersection B

Therefore, in the design of routing vehicle network, when the car network is in a
sparse state, as it cannot communicate through the vehicle nodes, messages need to be
relayed via RSU, 3G/4G base station. When the vehicle network is in a dense state, the

Research on Properties of Nodes Distribution on Internet of Vehicles 723

appropriate methods are required to reduce the frequency of message forwarding, as
well as the probability of broadcast storms.

4 Conclusion

In this paper, we mainly study the distribution characteristics of nodes in the vehicle
network. The experimental results show that, in the vehicle network which is the scale-
free network, most vehicles only communicate with only a few vehicles, and these key
vehicle nodes are important for the forwarding of network information. In addition, the
traffic flow of the highway scene can be maintained at a stable level, while the urban
road state always changes dramatically, besides, the network nodes are sometimes dense,
and sometimes sparse. Therefore, in the design of routing protocols, special approaches
should be taken to deal with urban road scenes.

Acknowledgments. This work was supported in part by NSFC under Grants 61472284, and the
Natural Science Foundation of Shanghai under Grants 17ZR1445900.

References

1. Cheng, J., Cheng, J., Zhou, M., Liu, F., Gao, S., Liu, C.: Routing in internet of vehicles: a
review. IEEE Trans. Intell. Transp. Syst. 16(5), 2339–2352 (2015)

2. Sommer, C., German, R.: Falko Dressler.: bidirectionally coupled network and road traffic
simulation for improved IVC analysis. IEEE Trans. Mob. Comput. 10(1), 3–15 (2011)

3. Lownes, N., Machemehl, R.: Vissim: a multi-parameter sensitivity analysis. In: Proceedings
of the Winter IEEE Simulation Conference, WSC 2006, pp. 1406–1413 (2006)

4. Choi S, Kim E, Oh S.: Human behavior prediction for smart homes using deep learning, pp.
173–179. IEEE, Roman (2013)

5. Paramics Microsimulation. http://www.sias.com/2013/sp/sparamicshome.htm. Accessed 16
Apr 2015

6. TransModeler Traffic Simulation Software. http://www.caliper.com/transmodeler/
default.htm. Accessed 06 May 2015

7. Sumo official Websites. http://sumo.dlr.de/wiki/Simulation. Accessed 04 Mar 2014
8. Sherman, M., McNeill, K.M., Conner, K., Khuu, P., McNevin, T.: A PMP-Friendly MANET

networking approach for WiMAX/IEEE 802.16TM. In: IEEE Military Communication
Conference, pp. 1–7. Milcom IEEE (2006)

724 C. Jiujun et al.

http://www.sias.com/2013/sp/sparamicshome.htm
http://www.caliper.com/transmodeler/default.htm
http://www.caliper.com/transmodeler/default.htm
http://sumo.dlr.de/wiki/Simulation

Application of Batch and Stream Collaborative Computing
in Urban Traffic Data Processing

Tao Zhang(✉) and Shuai Zhao

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing 100876, China

{zhangtao89,zhaoshuaiby}@bupt.edu.cn

Abstract. Analysis of urban traffic data has obtained a great attention in recent
years. In the study of urban traffic data processing, the batch computing based on
historical data and the stream computing based on real-time data are isolated, and
the two computing frameworks are not synergized. Therefore, a method of urban
traffic data processing based on batch and stream collaborative computing is
proposed. Batch computing has the advantage of high throughput, so it is more
suitable for calculating the historical data of urban traffic and the results of stream
computing deeply. Stream computing with the advantage of low delay can be
used to calculate the traffic data in real time, combined with the results of batch
computing, then the conclusion of urban traffic data processing are more compre‐
hensive and accurate.

Keywords: Batch computing · Stream computing · Collaborative computing ·
Urban traffic data processing

1 Introduction

With the development of economy and technology, the number of urban vehicles
continued to grow, followed by a large number of traffic data. The effective handling of
these data allows us analyze the status of urban traffic accurately and forecast traffic
conditions timely, so as to plan the traffic better. Then the city’s intelligent level can be
improved.

At present, in the study of urban traffic data processing, mainly related to batch
computing based on the historical data and stream computing based on real-time data.
The batch computing use the batch computing framework (such as Hadoop) to handle
the city’s historical traffic data, the main contents include analysis of vehicle trajectories,
analysis of vehicle illegal grade and traffic congestion model training, the literature [1]
using MapReduce framework to forecast traffic data flow. Literature [2] find the accu‐
racy and time consuming of genetic neural network short-term traffic flow prediction
algorithm based on Hadoop platform are improved significantly. The stream computing
use stream computing framework (such as Storm) on the city’s real-time traffic data
processing, mainly involved the optimal path searching, real-time information querying
and analysis of real-time traffic data, etc. Literature [3, 4] design and implement traffic
data real-time processing system based on the stream computing framework Storm. At

© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 725–734, 2017.
DOI: 10.1007/978-3-319-65482-9_58

the present stage, the batch computing and the stream computing are isolated, and the
two computing frameworks are not combined. Therefore, this paper presents a method
of urban traffic data processing based on batch and stream collaborative computing.
Specifically, this paper makes the following contributions:

(1) It designs the overall architecture of collaborative computing, including technical
support layer, collaborative computing layer and system application layer. Collab‐
orative computing combines high throughput batch computing and low latency
stream computing, then makes full use of historical data in the process of traffic
data analysis to make the results more comprehensive.

(2) The technical framework is proposed to achieve the interaction between batch
computing and stream computing. The interaction between computing frameworks
is bi-directional and requires message queues, memory databases and other related
technologies.

(3) It has done several simulation experiments, the results show that the interaction
between the stream computing framework Storm and the batch computing frame‐
work Hadoop can be achieved by using memory database REDIS, and the conclu‐
sion of traffic data analysis is more reasonable based on collaborative computing.

This method proposed in the paper make full use of the advantages of two frame‐
works by realizing the interaction of data using message queue or memory database, so
that the results of traffic data processing are more comprehensive and accurate.

2 Related Work

The development of batch computing and stream computing provides a theoretical basis
and practical framework for the research of this paper. The batch computing framework is
represented by the MapReduce processing model [5] proposed by Google. The MapRe‐
duce process uses the idea of “divide and conquer”, dividing the data to be processed into
multiple processing nodes, then the MapReduce summarizes the results of each processing
node and continuously executes the above process until the desired result is achieved. The
development of batch computing is relatively long, the relevant theory is also more mature,
for example, there are Apache Hadoop [6] and Microsoft’s Dryad [7] in architecture and
platform area, there are Apache Mahout, Jaspersoft BI suite, Pentaho Business Analytics
in data analysis and mining area, there are Tableau in visualization area. The stream
computing is starting later than the batch computing, but the development speed is very
fast, the corresponding processing framework has also been widely used, representative
products are Storm [8], Apache Kafka [9], S4 [10, 11] and so on.

3 The Architecture of Collaborative Computing

The overall structure of this paper can be divided into three layers from bottom to top:
technical support layer, collaborative computing layer and system application layer. In
the technical support layer, the research contents are mainly the choice and improvement
of the stream and batch computing framework, the timing control, fault-tolerant and data

726 T. Zhang and S. Zhao

buffer technology in stream computing, and the data and model sharing techniques. The
main content of the collaborative computing layer is the interaction between stream
computing and batch computing. The main content of system application layer is based
on the actual demand of smart traffic, including the illegal vehicle marking, urban traffic
congestion warning, and urban traffic forecasting, as shown in Fig. 1.

Fig. 1. The structure of collaborative computing

3.1 Batch and Stream Collaborative Computing

Batch computing has many features, for example: The amount of data processed is large;
the type of data is diversified (structured data, semi-structured data, unstructured data);
the processing speed is slow; the accuracy of the processing results is high. Batch
computing first stores the traffic data, and then analyzes and mines the data. Therefore,
the batch computing mainly involves the accumulation of the trajectories of the vehicles
generated by the stream computing in real time, analysis of the historical trajectories of
the vehicles, and calculation of the probability of each route the vehicle travels.
According to the cumulative data of the vehicles’ illegal records, the illegal grade of the
vehicles can be counted. Based on the accumulated vehicle and environment data, the
urban traffic congestion model can be trained by artificial neural network with feedback.
The basic idea of stream computing is that the value of the data will continue to decrease

Application of Batch and Stream Collaborative Computing 727

over time, and the stream computing must ensure that the data is processed before the
next data flow arrives. Stream computing is usually carried out memory processing on
traffic data, while the data is stored in shared memory. The results of data processing
can be used in real time, and obsolete data is directly discarded to save processing nodes’
resources. Therefore, the stream computing include the following content: marking the
vehicles whose illegal grade exceed a certain threshold; predicting the urban traffic
conditions, in this process, mainly involved two parts, the first part is the real-time
information (including vehicles, weather related) collected, the second part is the prob‐
ability of each route the vehicle travels. These two kinds of data can be used to predict
future urban traffic conditions. At the same time, according to the urban traffic congestion
model, the urban traffic congestion warning can be carried out.

In the stream and batch computing frameworks, on the one hand, the stream
computing framework needs to send vehicle’s illegal type, real-time trajectory and traffic
congestion prediction feedback to the batch computing framework through the message
queue; on the other hand, the batch computing framework carry out data mining based
on the results of stream computing and the full amount of urban traffic data, and the
results are sent to the stream computing through the memory database to guide the further
work of the stream computing. At the same time, the batch computing framework adjusts
the training algorithms and parameters according to the feedback of urban traffic conges‐
tion model’s prediction. The entire process requires message queues and memory data‐
bases and other related technologies to complete the interaction between the two
computing framework.

3.2 Related Technical Difficulties

The Timing Control in the Stream Computing. Urban traffic data is generated in
chronological order, which is time series data. Time series data streams are a set of
sequential data sets that continue to be generated over a period of time, and these data
arrive in the order of time attributes, so time series data is represented not only by its
value but also by a certain time. But every vehicle is independent, the transmission of
cars’ GPS data also have different delay, so the order data arrives at the center cannot
be guaranteed. And the data is valuable only with time attributes, which requires the
system with a good ability of data analysis and law discovery in the process of data
calculation. Timing control in stream computing is an urgent problem to be solved.

Data Buffering Technology. The generation of urban traffic data is a continuous
process, and according to the actual application of the scene, we can see that the urban
traffic data is prone to dynamic changes when they are collected in different time and
space, resulting in the data stream has burst characteristics. The data rate at the previous
time and the data rate at a later time may be very different. Therefore, the system should
have good scalability and dynamic matching ability on large amount of data, and can
dynamically adapt to the instream of uncertain data. In the case of burst high data flow
rates, it should ensure that data is not discarded, or that unimportant data is identified
and selectively cached, and important data is preferentially calculated, and in the case
of low data rates, then the cached data can be re-played and calculated.

728 T. Zhang and S. Zhao

In order to improve the scalability of the buffering part of the system, a distributed
caching system for time series data flow should be designed to support the efficient
storage of large-scale traffic data flows, and the time series traffic data which need to
persistent should be saved in time series through the caching system. In order to support
the efficient storage of large-scale urban traffic flow data and to ensure that the sequential
data flow can be written into disk in an orderly manner, we intend to design a distributed
caching system for urban traffic times series data stream based on key-value database
REDIS. All of the data in the system is based on memory storage, which can greatly
reduce disk I/O and support rapid response to large-scale storage requests.

4 The Interaction Between Batch Computing and Stream
Computing

The technical framework of interaction between batch computing and stream computing
is shown in Fig. 2.

Fig. 2. Technical framework

First, the collected city traffic data is sent to the Publish/Subscribe system, the batch
computing framework and the stream computing framework can subscribe to the data
in the system. Batch computing uses the distributed file system to preserve the accu‐
mulated city traffic data. Batch computing, with high throughput and support of complex
logical operations, can carry out deep and detailed calculation and analysis of urban
traffic history data, analyze the historical trajectories of the vehicles, count the vehicles’
illegal records, and train the urban traffic congestion model using the artificial neural
network with feedback, the results of batch computing are stored in memory database,

Application of Batch and Stream Collaborative Computing 729

which is used for real-time processing. Stream computing read the city traffic data from
the Publish/Subscribe system to generate the vehicle trajectory and determine the illegal
type. At the same time, the stream computing framework obtain the results of batch
computing about trajectories and illegal records from the memory database, and combine
the vehicle’s historical characteristics and real-time behavior data effectively, thus the
result of traffic condition forecast can be more comprehensive and accurate. The results
of stream computing also be published to the Publish/subscription system. Batch
computing framework are also subscribed to the results of stream computing for deeper
analysis and mining. At the same time, the stream computing part can also use the urban
traffic congestion model to carry out congestion warning, and send the feedback of the
effect of warning to the batch computing framework, batch computing framework
adjusts the training algorithms and parameters according to the feedback. After some
experiments, the simple interaction between the stream computing framework and the
batch computing framework can be achieved by using REDIS as the memory database
and Kafka cluster as the message queue system, so the above design is feasible.

5 Case Study

5.1 Illegal Vehicle Marking

We simulate the process of illegal vehicle marking with simulation data, batch and
stream computing frameworks, and memory database. For example: The historical
information of vehicles is shown in the Table 1. The real-time information of vehicles
is shown in Table 2. The illegal behavior is divided into five categories, namely, normal,
speeding, running a red light, retrograde motion, and other accidents, the corresponding
illegal grade are 0, 1, 1.5, 2, 3. If we do not consider the historical data of the vehicle,
the result is not comprehensive only to use stream computing framework to mark illegal
vehicles.

Table 1. The historical information of vehicles

The ID of vehicle Illegal grade Illegal time
00001 1 T1
00002 1.5 T2
00004 1 T3
00001 2 T4
00002 1.5 T5
… … …

We use the batch computing framework Hadoop to process the historical illegal data
of vehicles. Firstly, the Map program should be written to extract vehicle ID and illegal
grade from each row of data, then we write Reduce program to calculate the sum of the
illegal grade of each vehicle. Finally, the results are entered into REDIS by implementing
RedisOutputFormat class. The process is shown below (Fig. 3).

730 T. Zhang and S. Zhao

Table 2. The real-time information of vehicles

The ID of vehicle Illegal grade Illegal time
00001 1 T6
00002 1.5 T7
00003 2 T8
00004 3 T9
00006 1 T10
00007 3 T11

Fig. 3. Batch computing process

Stream Computing Framework Storm calculates the final illegal grade of the vehicle based
on historical and real-time vehicle illegal data and updates the latest illegal grade to the
REDIS database. The specific process is shown below. Obviously, the combination of vehi‐
cles’ historical data to determine the illegal grade is more reasonable (Fig. 4).

Fig. 4. Stream computing process

Application of Batch and Stream Collaborative Computing 731

5.2 Urban Traffic Forecast

When we predict the traffic conditions, in addition to the use of weather, vehicle speed,
adjacent road conditions and other conventional factors, the probability of each route
the vehicle travels based on the historical trajectories of the vehicle also should be
considered. Its implementation process is similar to the illegal vehicle marking, here we
only elaborate the idea. For example: a city’s road path is shown in Fig. 5.

Fig. 5. City’s road path

The historical vehicle trajectories of vehicle 00001 and vehicle 00002 are shown in
Table 3.

Table 3. Vehicle trajectories

The ID of vehicle Trajectories Start time End time
00001 BDEGJ T1 T2
00001 BDEGKL T3 T4
00001 ABDEGK T5 T6
00001 BDEGKM T7 T8
00001 CFHN T9 T10
00002 FHNO T11 T12
00002 FHML T13 T14
00002 FHMKJ T15 T16
00002 CFIP T17 T18
00002 CFIQ T19 T20

Therefore, when the traffic condition is predicted, the vehicle trajectories table can
be used, for example, when the information collected by stream computing framework
show that the vehicle 00001 is traveling on the section of G, then traverse the trajectories
table, the number of vehicle 00001’s paths contains G is 4, where the number of paths
converted from G to K is 3 and the number of paths converted from G to J is 1. Therefore,

732 T. Zhang and S. Zhao

we can think that there are 0.75 cars travel into the K section and 0.25 cars travel into
the J section in the next time period. At the same time, we can also use the method with
time weight to calculate, if the time of path is closer to the current time, more weight
can be given.

6 Conclusion

The stream and batch computing framework, due to different design goals, respectively,
are suitable for different algorithms. For logically simple algorithms with real-time
requirements, such as vehicle real-time trajectory generation, vehicle real-time illegal
behavior judgment, should be implemented in the stream computing framework; for
complex algorithms based on large amount of data, such as urban traffic congestion
model training, should be implemented in the batch computing framework. At the
present stage of stream and batch collaborative computing applications, the main content
is that the stream computing make use of the result of batch computing framework, the
data is only one-way flow between the two frameworks. In the urban traffic data
processing, the stream computing framework not only uses the results of the batch
computing framework, the batch computing framework also needs the feedback and
results of the stream computing framework, and the data is bi-directional flow between
the two frameworks. This way makes the results of urban traffic data processing more
comprehensive and accurate.

References

1. Chen, C.: Distributed modeling in a MapReduce framework for data-driven traffic stream
forecasting. IEEE Trans. Intell. Transp. Syst. 14(1), 22–33 (2013)

2. Hu, H.: Research on short-term traffic stream prediction algorithm based on hadoop platform,
Master’s thesis. South China University of Technology, Guangzhou, China (2016,
Unpublished)

3. Situ, S.: Design and implementation of real-time traffic information processing system based
on storm, Master’s thesis. Sun Yat-sen University, Guangzhou, China (2015, Unpublished)

4. Nan, H.: Design and implementation of a traffic stream data real-time processing system based
on STORM, Master’s thesis. North China University of Technology, Beijing, China (2015,
Unpublished)

5. Dean, J.: MapReduce: Simplified data processing on large clusters. Commun. ACM 51(1),
107–113 (2008)

6. Shvachko, K.: The hadoop distributed file system. In: 2010 Proceedings of the IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10. IEEE, Incline
Village (2010)

7. Isard, M.: Dryad: distributed data-parallel programs from sequential building blocks. In:
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems,
pp. 59–72. ACM, Lisbon (2007)

8. Leibiusky, J., Eisbruch, G., Simonassi, D.: Getting Started with Storm. O’Reilly, Ireland
(2012)

9. Auradkar, A.: Data infrastructure at linkedin. In: 2012 IEEE 28th International Conference
on Data Engineering (ICDE), pp. 1370–1381. IEEE, Washington, D.C. (2012)

Application of Batch and Stream Collaborative Computing 733

10. Neumeyer, L.: S4: distributed stream computing platform. In: 2010 IEEE International
Conference on Data Mining Workshops (ICDMW), pp. 170–177. IEEE, Sydney, TBD,
Australia (2010)

11. Chauhan, J.: Performance evaluation of Yahoo! S4: a first look. In: 2012 Seventh International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 58–65.
IEEE, Victoria (2012)

734 T. Zhang and S. Zhao

ESD-WSN: An Efficient SDN-Based Wireless
Sensor Network Architecture

for IoT Applications

Zhiwei Zhang1, Zhiyong Zhang1, Rui Wang1, Zhiping Jia1(B), Haijun Lei2,3,
and Xiaojun Cai1

1 School of Computer Science and Technology, Shandong University, Jinan, China
jzp@sdu.edu.cn

2 Guangdong Key Laboratory of Popular High Performance Computers,
Shenzhen, China

3 Shenzhen Key Laboratory of Service Computing and Applications, Shenzhen, China

Abstract. Wireless sensor networks (WSNs) are considered as a key
enabler for the paradigm of Internet of Things (IoT). With increasing
number of devices connected to the IoT environments, traditional solu-
tions for WSNs tend to be costly in terms of network maintenance and
management. Software-Defined Networking (SDN) appears as a viable
alternative network architecture since it enables new services and poli-
cies to be deployed flexibly and easily. However, SDN brings excessive
control overhead which significantly degrades the network performance.
To relieve this problem, in this paper, we propose an Efficient Software-
Defined Wireless Sensor Network (ESD-WSN) architecture to make full
use of the advantages of SDN while overcoming its constraints. In the
proposed architecture, the controller dynamically selects certain nodes
as proxies for control traffic processing and aggregating. To this end, a
Dynamic Proxy Management (DPM) strategy is presented to select the
optimal subset of network nodes as proxies. Experimental results show
that our scheme achieves considerable performance improvement com-
pared with the SDN-WISE scheme [1].

Keywords: Wireless sensor networks · Internet of Things · Software
Defined Network · Control overhead · Proxy management

1 Introduction

In recent years, the Internet of Things (IoT) paradigm has attracted wide atten-
tions both in academia and in industry. In the meantime, wireless sensor net-
works (WSNs) are widely used as an effective medium in IoT environments to
connect the physical world and the information world. However, WSNs are gen-
erally considered to be application-specific [2], thus resulting in resource under-
utilization and high deployment costs. Moreover, the network policy is rigid to
change, which further increases the difficulty of network management.

The above problems can be solved by making WSNs programmable. The
Software Defined Networking (SDN) and OpenFlow [3] which currently is the
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 735–745, 2017.
DOI: 10.1007/978-3-319-65482-9 59

736 Z. Zhang et al.

most popular southbound interface for SDN, offer the possibility of this vision.
SDN is a promising network paradigm that decouples the data plane and the
control plane and it allows network administrators to manage network services
through abstraction of low-level network functionality.

Several works have recently investigated to extend the SDN concepts to
WSNs [1,4,5]. These works make significant contributions as they provide con-
vincing proof of the benefits of applying the SDN concept to WSNs. However, the
introduction of SDN brings excessive control overhead. As pointed out in Sensor
OpenFlow [4], the control overhead is a challenging issue in the software-defined
wireless sensor networks since each node needs to constantly report information
about its status to the controller for maintaining the network topology. More-
over, when a node has no idea about how to process an incoming packet, it will
interact with the controller by the packet-in and packet-out messages. In IoT
environments, this situation is exacerbated by the fact that all nodes may have
the demands to communicate with each other. The excessive control overhead
may lead to the energy exhausted within a short period of time, so how to build
an energy-efficient network is a critical problem to be addressed.

In this paper, we propose an Efficient Software-Defined Wireless Sensor Net-
work (ESD-WSN) architecture for IoT applications. In this architecture, we aim
to establish a stable and energy-efficient control plane to reduce the control over-
head. To this end, we propose the concept of proxy for control traffic processing
and aggregating. Meanwhile, to better utilize the proxy node, a Dynamic Proxy
Management (DPM) strategy is presented to select the optimal proxy-set and
to balance the energy consumption of the whole network.

The remainder of this paper is organized as follows. Section 2 provides a sur-
vey of the related work. The architecture design of ESD-WSN and DPM strategy
are described in Sects. 3 and 4, respectively. Section 5 analyzes the experimental
results and finally, this paper is concluded in Sect. 6.

2 Related Work

Recently, WSNs have led to many studies for IoT applications [6–8]. However,
WSNs are considered to be application-specific and hard to manage which tend
to adversely impact the overall solution complexity and cost. Therefore, many
works have been devoted to applying SDN principle to WSNs domain to simplify
the network management.

Costanzo et al. [5] propose a Software Defined Wireless Network (SDWN)
solution to introduce the SDN approach to wireless networks. SDWN offers a
flexible specification of the rules to classify packets and supports the use of duty
cycle to achieve energy efficiency. In [9], the proposed architecture consists of
three types of nodes: center node, master node and sensor node. The master node
acts as a controller. The center node is similar to the forwarding element of the
wired network, so its location is limited. The emergence of SDN-WISE [1] can be
seen as a milestone of the software-defined WSNs domain since it allows software
developers to implement their network services in an intuitive and flexible way.

ESD-WSN 737

Meanwhile, it implements a prototype on a real platform. In order to fully exploit
the resources of WSNs, Zeng et al. adopt an SDN architecture to solve the multi-
task scheduling problem [10]. This study makes WSNs become versatile which
promotes the development of WSNs for IoT applications.

In addition, there are still many studies that fully demonstrate the advantages
of SDN, as described in [11–13]. Although these studies emphasize the benefits
of SDN, they don’t pay more attention to the excessive control overhead issue.

3 Architecture Design

In this section, we present the general design of the proposed architecture. First,
we give the overview of our architecture, and then we describe the detailed design
of the Software-Defined Sensor (SDS) node and the controller.

3.1 Overview

The proposed architecture consists of a base station, a plurality of SDS nodes and
a gateway, as shown in Fig. 1. The gateway is a functional device that manages
the connection of the WSNs to the Internet. Since the base station has adequate
energy supply, we run an SDN controller on it.

The SDS node acts as both monitoring node and routing node. It performs
sensing tasks and conducts data forwarding according to the rules installed by
the controller. More specifically, the SDS nodes are divided into two categories:
sensor nodes and proxy nodes. Compared with the sensor node, the proxy node
takes on more functionalities such as the control message processing and aggre-
gating. Meanwhile, all the control packets of the sensor nodes will send to its
assigned proxy node. Therefore, the existence of proxy nodes effectively reduces
the number of control packets. It is worth noting that when a sensor node is
within one-hop distance of multiple proxy nodes, the sensor node is called an
overlap member.

Fig. 1. A deployment scenario of ESD-WSN.

738 Z. Zhang et al.

3.2 Software-Defined Sensor Node

Figure 2 shows the detailed functional design of our architecture. As a typical
WSN node, the SDS node reserves the monitoring module to collect data for
various sensing tasks. The topology discovery module and the flow table are
necessary modules for the implementation of SDN features. In our design, the
topology discovery module conducts neighbor discovery and report the topology
information to the controller. The flow table contains all the rules (flow table
entries) installed by the controller. When a packet matches one flow table entry,
it will be processed according to action field of this entry. Otherwise, the SDS
node will interact with the controller with packet-in and packet-out messages.

Furthermore, we add a queue scheduling module to avoid the control traffic
being congested by the data traffic. The queue scheduling module keeps three
kinds of queues for different packets: network information queue, control queue
and data queue. The network information queue has the highest priority. It holds
the topology packets which report the energy, neighbor list and other information
to the controller (i.e. report packets). The main rationale of this assignment is
that the report packets are critical to the construction of the global network
topology. In addition to the report packets, the packet-in messages have the
second highest priority which are placed in the control queue. Different from the
control traffic, the data traffic records the application-related information, e.g.
sensing packets. Therefore, we assign the lowest priority to them and cache them
in the data queue.

Moreover, we adopt the finite state machine mechanism to extend the seman-
tics of OpenFlow. The presence of the finite state machine module allows an SDS
node to switch its role between the sensor node and the proxy node. The proxy
node treats part of its one-hop neighbors as its member nodes and performs

Fig. 2. The architecture design of ESD-WSN.

ESD-WSN 739

the control messages aggregating for these members. In addition, a local net-
work can be built by the proxy and its members, so that some routing decisions
can be made locally. The proxy node uses the LRD (Local Routing Decision)
module to take over the routing selections of the local network from the con-
troller. Therefore, the controller and the LRD module work together for the data
communication among all the nodes.

3.3 Controller

The centralized controller implements the intelligence of the ESD-WSN archi-
tecture. As shown in Fig. 2, the topology management module maintains the
network topology according to the received report packets. Based on the global
network topology, the routing decision module and the control channel module
are responsible for finding the optimal path for the data packets and the control
packets, respectively.

In addition, we add the dynamic proxy management (DPM) module to reduce
the control overhead. The DPM module includes proxy selection, proxy alloca-
tion and proxy rotation. The proxy selection aims to select the optimal nodes set
to obtain the best effect of aggregation, while the proxy allocation is designed
for the proxy allocation of the mentioned overlap members. Taking the energy
balance issue into account, the proxy rotation is used to achieve balanced energy
consumption, thus improving the lifetime of the whole network.

Finally, the controller provides an open programmable interface to the net-
work administrators to make more fine-grained control policies.

4 Dynamic Proxy Management Strategy

In this section, we describe our DPM strategy for the proposed architecture. We
first present the requirements of the proxy selection, followed by the notations
used in this paper. Then, an ILP-based proxy selection mechanism is detailed.
Finally, we discuss the proxy allocation and proxy rotation mechanism.

4.1 Requirements and Notations

In order to reduce the control overhead and prolong the network lifetime as much
as possible, the proxy selection should meet the following requirements.

1. Since the proxy nodes are burdened with more tasks, the nodes selected as
proxy nodes should have sufficient energy to avoid premature death.

2. The proxy selection should guarantee that all the SDS nodes in the network
are under the control of the proxy nodes, which means that all the SDS nodes
can find a proxy node within one-hop. By this way, all the nodes can easily
communicate with the control plane of the network.

3. To achieve the best effect of aggregation, the proxy selection should minimize
the control traffic overhead between the selected nodes and the other nodes
under the above constraints.

For the ease of reading, Table 1 summarizes the notations to be used later.

740 Z. Zhang et al.

Table 1. Notations in this paper.

Notation Definition

C The set of candidates

Etx Energy consumption of transmitting a 1-byte packet

Erx Energy consumption of receiving a 1-byte packet

Ei Residual energy of node i

nbs(i) Number of neighbors of node i

Nbr(i) The neighbor set of node i

queue load(i) Total bytes of the unprocessed packets in the queue of node i

Adj The adjacency matrix of graph G

EDA Energy consumption of aggregation per byte

Agg Aggregation coefficient

di The optimal number of hops to reach the base station

4.2 Proxy Selection

Consider an ESD-WSN G = (N,E) consisting of a controller and |N | −1 SDS
nodes. We aim to find a subset N ′ under the requirements mentioned above, so
that the total control overhead between each node in subset N ′ and its neighbors
is minimized.

Step 1. Suppose all the nodes are marked as 1, . . . , n and the controller is node
1. We first screen out the high-energy nodes that are eligible to be the proxy
nodes and put them in set C. These nodes are called candidate and should meet
the following conditions:

Ei − Eeec(i) ≥
∑

j∈Nbr(i)(Ej − Eeec(j))

nbs(i)
(1)

Formula 1 means that the expected residual energy of node i needs to be
greater than or equal to the average expected residual energy of its neighbors.
Eeec(i) represents the energy consumption of the packets to be sent in the queue,
it can be calculated by queue load(i) as follows:

Eeec(i) = queue load(i) · Etx (2)

Step 2. After constructing the set C, a check will be performed to see whether C
is a dominating set. If not, the following additional operations will be performed
to find a set C ′ such that the union of set C and set C ′ is a dominating set.

1. Find the uncovered nodes that are not dominated by set C. Use U to represent
the set of uncovered nodes and k to represent the number of uncovered nodes.

ESD-WSN 741

2. Find the complement M of set C. For each node in M , count the number of
uncovered nodes dominated by it and remove it from M if the number is 0.

3. If there are more than one node that dominates the same uncovered nodes,
only the node with highest energy is retained in M .

4. Define a binary variable mi to indicate whether the i-th node in set M is
placed in set C ′ or not. Use mi[j] = 1 to represent the i-th node in set
M dominates the j-th node in set U (Otherwise, mi[j] = 0) and solve the
following ILP problem:

mi =
{

1, if node i in M is placed in C ′,
0, otherwise. (3)

min:
|M |∑

i=1

mi (4)

s.t.:
k∏

j=1

|M |∑

i=1

mi · mi[j] ≥ 1 (5)

5. Place the obtained result in set C ′, then remove the nodes in set C ′ and the
nodes in set U from graph G.

6. Update the node set N , edge set E and adjacency matrix A of graph G.

Step 3. After the above processing, we model the proxy selection problem as an
ILP formulation. The binary variable vi used in formulation is defined as follows:

vi =
{

1, if vi is selected as the proxy.
0, otherwise. (6)

Since only nodes in set C can become proxies and the controller must be a
proxy node, the partial value of {vi} can be determined as follows:

vi = 0, if vi is not in set C. (7)

v1 = 1 (8)

As discussed above, we should ensure that all the nodes either in the final
solution set, or adjacent to some nodes of the final solution set, which is expressed
as follows:

|N |∏

i=1

(vi +
|N |∑

j=1

vj · Adjj,i) ≥ 1 (9)

We define the control overhead of the proxy nodes and the normal nodes as
follows:

Epro(i) =Erx · nbs(i) + (nbs(i) + 1) · EDA · Agg + (di − 1) · Erx + di · Etx
(10)

Enor = Etx (11)

742 Z. Zhang et al.

Erx · nbs(i) is the cost of the proxy node receiving 1-byte packets from its
neighbors. (nbs(i) + 1) · EDA · Agg is the aggregation cost. Since packets are
transmitted in a multi-hop way, we use (di−1)·Erx+di ·Etx to represent the cost
of sending the aggregated packet to the controller. It includes the transmission
cost of the proxy node and the transmission and reception cost of the di − 1
relay nodes. The normal nodes only need to send control messages to the proxy
nodes, so the cost of them is Etx.

Finally, we get the objective function as follows:

min:
|N |∑

i=1

(vi · Epro(i)) + (|N | −
|N |∑

i=1

vi) · Enor (12)

Let F be the optimal solution of the ILP problem, if C is not a dominating set,
the final solution N ′ is the union of F and C ′. Otherwise, the N ′ is equal to F .

4.3 Proxy Allocation and Proxy Rotation

The overlap members should be assigned to an appropriate proxy node to trans-
mit control messages correctly, i.e., the overlap member nodes exactly know
which proxy node to send the control packets to, thus we build the following
evaluation function. EPi and dpi represent the expected residual energy of the
proxy node i and the distance to the proxy node i. EPavg and dpavg are the
average of EPi and dpi, respectively. γ is a factor to trade off the significance of
expected residual energy and distance. If an overlap member is in one-hop range
of the controller, it is assigned to the controller. Otherwise, it is assigned to the
proxy node that maximizes the value of the function.

f = γ
EPi

EPavg
+ (1 − γ)(1 − dpi

dpavg
) (13)

Since the proxy nodes take on more tasks, they are easier to drain energy
ahead of time, so the proxy rotation is essential to prolonging the network life-
time. In our strategy, the controller continuously monitors the nodes, and con-
ducts proxy rotation if there is a proxy node that satisfies Formula 14.

Ei <
1
2

·
∑

j∈Nbr(i) Ej

nbs(i)
(14)

In addition, since the global rotation will bring excessive computational over-
head to the control plane and excessive communication overhead to the data
plane, we should try to avoid the global rotation. The controller can partially
update the proxy nodes. In our strategy, the controller still performs the proxy
selection when the proxy rotation occurs but the search space of the ILP problem
is limited to a subgraph of graph G.

ESD-WSN 743

5 Experiments

Due to the deployment space constraints, we conduct simulation experiments to
test the performance of our solution. We implement the data plane on the Cooja
platform of Contiki 2.7 and only one controller runs on a laptop to implement
the control plane. In order to simulate the actual energy consumption of WSNs
devices, we measured the energy consumption of Texas Instruments CC2530.
The measured results together with experimental parameters are presented in
Table 2.

Table 2. Simulation parameters

Parameter Value

Initial energy 1.5 J

Etx 0.0087 mJ/byte

Erx 0.0072 mJ/byte

EDA 40 nJ/byte

Agg 0.5

γ 0.5

We compare the performance of our scheme with SDN-WISE in terms of
control overhead, end-to-end latency and network lifetime. In each measurement,
we set the data packet size to 30 bytes and make the nodes send packets randomly
to simulate an IoT environment. Moreover, we set the data packet generation
interval to 1, 5, 10 s to test the performance of our scheme and SDN-WISE under
different workloads.

Control overhead is the average energy consumption due to transmission
and reception of control packets. Figures 3 and 4 show the control overhead of

Fig. 3. Control overhead in smaller net-
work.

Fig. 4. Control overhead in larger net-
work.

744 Z. Zhang et al.

Fig. 5. End-to-end latency of control packets. Fig. 6. Network lifetime.

varied network scale with 30 nodes and 80 nodes, respectively. As expected,
control overhead increases as the data generation interval decreases. For the
same data generation interval, the control overhead of our scheme is much less
than the control overhead of SDN-WISE. This is due to the fact that our scheme
aggregates most of the control traffic in the network. Meanwhile, the reduction
of the control traffic can reduce the collision probability, thereby further reduce
the control overhead caused by retransmission.

The average end-to-end latency of control packets is shown in Fig. 5. We can
see that the latency increases as the network scale and data frequency increase.
Obviously, the latency of our scheme outperforms that of SDN-WISE. The rea-
son behind the results is that our scheme assigns the control packets a higher
priority so that the control packets can be forwarded to the controller much
faster. Meanwhile, the reduction of control overhead achieved by proxies further
reduces the latency since collisions and queuing delays are effectively relieved.

Finally, we show the network lifetime in Fig. 6. The network lifetime is defined
as the time period of the network when the first node dies. Compared with SDN-
WISE, our scheme extends the network lifetime by 70.3% to 127.7%. This is
because our scheme greatly reduces the energy consumption of control packets.
Moreover, the proxy rotation mechanism effectively balances the traffic load
among all the nodes.

6 Conclusion

In this paper we have introduced ESD-WSN, an SDN-based WSN solution for
IoT applications. Aiming at establishing a stable and energy-efficient control
plane, we propose a DPM strategy for our architecture, including an ILP-based
proxy selection mechanism, a proxy allocation mechanism and a proxy rotation
mechanism. Experimental results show that our scheme achieves considerable
performance improvement.

ESD-WSN 745

Acknowledgement. This research is sponsored by the State Key Program of National
Natural Science Foundation of China No. 61533011, Shandong Provincial Natural Sci-
ence Foundation under Grant No. ZR2015FM001 and the Fundamental Research Funds
of Shandong University No. 2015JC030.

References

1. Galluccio, L.A., Milardo, S., Morabito, G., et al.: SDN-WISE: design, prototyping
and experimentation of a stateful SDN solution for WIreless SEnsor networks. In:
2015 IEEE Conference on Computer Communications (INFOCOM), pp. 513–521
IEEE (2015)

2. Heinzelman, W.B.: Application-Specific Protocol Architectures for Wireless Net-
works. Massachusetts Institute of Technology, Cambridge (2000)

3. McKeown, N., Anderson, T., Balakrishnan, H., et al.: OpenFlow: enabling innova-
tion in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74
(2008)

4. Luo, T., Tan, H.P., Quek, T.Q.S.: Sensor OpenFlow: enabling software-defined
wireless sensor networks. IEEE Commun. Lett. 16(11), 1896–1899 (2012)

5. Costanzo, S., Galluccio, L., Morabito, G., et al.: Software defined wireless net-
works: unbridling SDNs. In: European Workshop on Software Defined Networking
(EWSDN), pp. 1–6. IEEE (2012)

6. Bellavista, P., Cardone, G., Corradi, A., et al.: Convergence of MANET and WSN
in IoT urban scenarios. IEEE Sens. J. 13(10), 3558–3567 (2013)

7. Fantacci, R., Pecorella, T., Viti, R., et al.: A network architecture solution for effi-
cient IoT WSN backhauling: challenges and opportunities. IEEE Wirel. Commun.
21(4), 113–119 (2014)

8. Da Xu, L., Viriyasitavat, W.: A novel architecture for requirement-oriented partic-
ipation decision in service workflows. IEEE Trans. Industr. Inf. 10(2), 1478–1485
(2014)

9. Han, Z., Ren, W.: A novel wireless sensor networks structure based on the SDN.
Int. J. Distrib. Sens. Netw. 10(3), 874047 (2014)

10. Zeng, D., Li, P., Guo, S., et al.: Energy minimization in multi-task software-defined
sensor networks. IEEE Trans. Comput. 64(11), 3128–3139 (2015)

11. De Gante, A., Aslan, M., Matrawy A.: Smart wireless sensor network manage-
ment based on software-defined networking. In: 2014 27th Biennial Symposium on
Communications (QBSC), pp. 71–75. IEEE (2014)

12. Wang, Y., Chen, H., Wu, X., et al.: An energy-efficient SDN based sleep scheduling
algorithm for WSNs. J. Network Comput. Appl. 59, 39–45 (2016)

13. Bera, S., Misra, S., Roy, S.K., et al.: Soft-WSN: software-defined WSN management
system for IoT applications. IEEE Syst. J. (2016)

The 2nd International Workshop on
Ultrascale Computing for Early

Researchers (UCER 2017)

Probabilistic-Based Selection of Alternate
Implementations for Heterogeneous Platforms

Javier Fernández(B), Andrés Sánchez Cuadrado, David del Rio Astorga,
Manuel F. Dolz, and J. Daniel Garćıa

Computer Science and Engineering Department,
University Carlos III of Madrid, 28911 Leganés, Spain

{jfmunoz,andrsanc,mdolz,jdgarcia}@inf.uc3m.es, david.rio@uc3m.es

Abstract. Over the last years, heterogeneous architectures have become
a de facto approach for improving the performance of numerous scientific
and industrial applications. However, developing for these architectures
is not straightforward: each processor demands its specific programming
paradigm and, often, certain applications are only well-suited to run on a
particular processing unit. Therefore, a major challenge arises when pro-
gramming for these platforms: to select the most suitable device and rou-
tine implementation to solve a given problem. To deal with this issue, this
paper proposes a novel probabilistic-based selector that uses the prob-
lem size to automatically choose the most appropriate version of a same
kernel. In order to analyze this approach, we have developed this selector
within the OmpSs programming framework and evaluated its accuracy
and performance gains when executing different implementations of the
general matrix-matrix multiplication. Finally, we also demonstrate how
this solution delivers a comparable performance with respect to a run-
time approach from the state-of-the-art.

Keywords: Implementation selector · Heterogeneous platforms · Auto-
tuning · Probabilistic modeling

1 Introduction

In the recent years, the evolution of high performance computing has moved
towards heterogeneous platforms comprising multiple processing units with dif-
ferent features and programming models [12]. Therefore, according to the needs,
application developers are able to benefit from the specific characteristics pro-
vided by these architectures, e.g., SIMD capabilities of GPUs or low power
consumption of FPGAs. While the benefits of using these platforms have been
clearly defined, the challenges of exploiting heterogeneity have discouraged the

J. Fernández—This work was partially supported by the EU project ICT 644235
“RePhrase: REfactoring Parallel Heterogeneous Resource-Aware Applications”
and the project TIN2013-41350-P “Scalable Data Management Techniques for High-
End Computing Systems” from the Ministerio de Economı́a y Competitividad, Spain.

c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 749–758, 2017.
DOI: 10.1007/978-3-319-65482-9 60

750 J. Fernández et al.

adoption of heterogeneous programming models. These challenges include the
inherent difficulties of diverse programming paradigms and the fact that cer-
tain processors are only well-suited for applications with special demands. This
has led to a progressive development of multiple architecture-specific implemen-
tations [5]. Thus, an additional challenge arises when programming for these
platforms: to select the most convenient device and implementation to solve a
given problem.

While a naive approach is to manually map tasks onto the underlying parallel
processors, runtime schedulers have demonstrated to be a better solution in these
scenarios [4]. Indeed, recent schedulers help in improving performance, since they
learn incrementally from past executions. This mechanism allows them to self-
tune applications by means of selecting the most appropriate kernel version and
processor [7]. To pave the way, this paper extends the current literature with a
novel probabilistic-based selector of alternate implementations for heterogeneous
platforms (PrISe). In order to implement and evaluate this selector, we have
leveraged the OmpSs programming framework instead of other solutions (such
as StarPU [2]), given that OmpSs is more usable and allows to easily integrate
new scheduling modules. Specifically, this work contributes with the following:

– We present an implementation selector that allows automatically choosing
the most suitable implementation of a same kernel using a probabilistic and
profile-guided approach.

– We incorporate the probabilistic selector as a scheduler into the OmpSs pro-
gramming framework and detail which modifications have been required in
its Mercurium compiler and Nanos++ runtime.

– We evaluate the proposed scheduler by analyzing the accuracy of the selec-
tions made and the performance gains using the general matrix-matrix mul-
tiplication as use case.

– We demonstrate how our scheduler self-tunes and delivers a comparable per-
formance with respect to a runtime approach from the state-of-the-art.

The rest of this document is organized as follows. Section 2 reviews a few
related works in the area. Section 3 describes the OmpSs programming frame-
work along with its two major components: the Mercurium compiler and the
Nanos++ runtime. Section 4 presents the probabilistic implementation selector
as for the main contribution of this paper. In Sect. 5, we evaluate our approach
using the general matrix-matrix multiplication and compare it with an already
existing OmpSs scheduler. Finally, Sect. 6 closes this paper with a few concluding
remarks and future works.

2 Related Work

Heterogeneous architectures, combining different processing units, have become a
very common scenario across the scientific community. Given that these process-
ing units have inherent advantages and drawbacks, highly-tuned implementa-
tions of a same algorithm have been developed to fully exploit them. For exam-
ple, several numerical libraries comprising highly tuned kernels, from BLAS

Probabilistic-Based Selection of Alternate Implementations 751

and LAPACK, are available for diverse computing architectures: clBLAS [1] has
support for OpenCL processors, GSL [8] is targeted to multi-/many-core proces-
sors, etc. This fact poses the need of selecting the most suitable pair device–
implementation to solve a given problem. To deal with this issue, the solutions
in the state-of-the-art have generally taken two directions: (i) runtime sched-
ulers, which are able to map and execute kernels from multiple libraries on the
available processing units; and (ii) static approaches, which allow selecting at
compile time the most appropriate implementation according to historical data.
In the following, we review some works adopting these approaches.

Regarding the approaches making static selections, we find the work by Jun
et al. [13], which proposes an automatic system based on source code analysis
that maps user calls to optimized kernels. Similarly, Jie Shen et al. [11] propose
an analytic system for determining which hybrid programming configuration is
optimal to solve a given problem. Alternatively, the approach by Rio et al. [10]
presents an adaptive implementation selector that chooses, at compile time, the
tuple device-implementation that delivers the best performance.

In contrast with static approaches, dynamic solutions are also widely
extended in the community. A well-known runtime selector is the version-
ing scheduler [9] from the OmpSs programming framework [7]. This scheduler
chooses the most appropriate task version among those marked as implementa-
tion alternatives. Another solution is the extension for the SkePu framework [6],
which leverages machine learning techniques to decide which of the available
versions of a given function offers the lowest execution time. Following a similar
approach, the selector presented in this paper uses a novel technique based on
probabilities and problem sizes that allows determining the best implementation
at runtime.

3 The OmpSs Programming Model

The OmpSs programming model [3] is an effort to complement OpenMP with
new directives to support asynchronous parallelism on homogeneous and hetero-
geneous architectures. OmpSs extends the execution and memory models of the
OpenMP programming model in two main aspects. First, it leverages a runtime
based on thread-pool instead of the traditional fork-join model. Second, it is
designed to handle multiple physical addresses of the available processing units
of a heterogeneous platform. Therefore, the runtime takes care of where the data
resides and manages data transfers as tasks consume or produce them.

One of the key features of OmpSs is its support for pragma annotations in
function declarations or definitions with the well-known task directive. With
it, each time the OmpSs runtime encounters a function annotated with this
directive, a worker thread will run its associated code onto one of the available
processors. Furthermore, to provide heterogeneity, the target directive in task
declaration allows specifying the processor that must run its code.

In general, the OmpSs environment is mainly built on top of two major com-
ponents: the Mercurium compiler and Nanos++ runtime system. These compo-
nents are described as follows:

752 J. Fernández et al.

Mercurium is a source-to-source compilation infrastructure targeted to the C,
C++ and Fortran languages. The main goal of Mercurium is to detect the
OmpSs pragmas and substitute them with calls to the Nanos++ runtime.
The compiling phases of Mercurium are implemented as plugins, therefore
new modules can be included for supporting new features. Code modifications
can be performed by introducing raw source code instead of using its internal
syntactic representation.

Nanos++ has been designed to serve as runtime to deal with the OmpSs pro-
gramming model. Its main goal is to manage asynchronous parallelism by
means of controlling data dependencies of tasks specified in the pragma-
annotated source codes. A remarkable feature of Nanos++ is the multiple
scheduling policies available for deciding the order of execution of tasks and
the resource where the tasks will be executed. These scheduling policies are
implemented as independent modules that are dynamically loaded at run-
time. An example of module supporting heterogeneity is the versioning sched-
uler [9]. This module allows selecting the most appropriate implementation of
a same task depending on the target device or the execution circumstances.
This is enabled via the implements clause, which allows marking alternate
implementations of a same task targeted to different processing units in a
heterogeneous platform.

All in all, thanks to the flexible design and implementation of OmpSs pro-
gramming framework, it is very easy to extend any of its features, like adding
new directives and clauses to the OmpSs pragma annotations in the Mercurium
compiler or extending the Nanos++ runtime modules with a scheduler. In the
following section, we detail how we have leveraged these features to implement
PrISe within this framework.

4 The Probabilistic Implementation Selector

This section introduces the probabilistic implementation selector (PrISe) as
for the main contribution of this paper. Specifically, we describe how we have
integrated this selector as a scheduling module into the OmpSs programming
framework and detail which modifications have been required in its Mercurium
compiler and Nanos++ runtime.

Figure 1 depicts the compilation and execution framework of an OmpSs appli-
cation that is executed using the Nanos++ runtime along with PrISe. In a first
step, the Mercurium compiler performs a source-to-source transformation of the
pragma-annotated source codes and introduces the corresponding calls to the
Nanos++ runtime. Then, the resulting source code is compiled with a regular
C/C++ compiler, which finally generates the binary of the OmpSs application.
Afterwards, during the execution, the PrISe scheduler selects an implementa-
tion each time the task is run depending on the probabilities that are calculated
using historical data. These probabilities are accordingly updated by the corre-
sponding module at the end of the application run. Finally, the probabilities and
a summary of the historical data is dumped onto disk to guide future executions.

Probabilistic-Based Selection of Alternate Implementations 753

Fig. 1. Workflow from source code to execution.

In the following sections, we explain in detail the implementation selection
algorithm and the probabilities updating module that have been included in the
original OmpSs framework to support the new PrISe scheduler.

4.1 Implementation Selector Algorithm

The PrISe scheduler has been developed as a new module in the Nanos++ run-
time. As stated in Sect. 3, the OmpSs pragmas allow specifying alternate imple-
mentations for a same task which can be selected internally by the supported
scheduling modules. Specifically, this algorithm selects an alternate implemen-
tation based on the probabilities calculated for each of them. It is important
to note that the weights of these probabilities depend on the version execution
time and problem size. Particularly, the algorithm divides the range of problem
sizes into intervals of the same length, where each might have different proba-
bilities. With that, it uses the probabilities assigned to the interval where the
input problem size belongs to.

Listing 1.1. Example of OmpSs application using different implementations.

1 #pragma omp target device (smp) psize (2) // The second parameter contains the problem
size

2 #pragma omp task
3 void func(int **m, int problemSize);
4
5 #pragma omp target device (smp) implements(func)
6 #pragma omp task
7 void func_v2(int **m, int problemSize);
8
9 #pragma omp target device (smp) implements(func)

10 #pragma omp task
11 void func_v3(int **m, int problemSize);
12
13 int main() {
14 ...
15 for(int i=0; i<10; i++) {
16 func(matrix, problemSize);
17 #pragma omp taskwait
18 }
19 return 0;
20 }

754 J. Fernández et al.

Concretely, the algorithm takes the following steps. First, it retrieves the
input problem size and obtains the probabilities of the corresponding size inter-
val. To obtain the problem size, we have modified the Mercurium compiler in
order to implement the new psize clause, which extends the supported clauses of
the OmpSs target directive. This clause is basically leveraged to indicate which
parameter in the function call should be used as for the problem size. Listing 1.1
shows an example of an OmpSs application where three different implementa-
tions of the function func are annotated as tasks using the implements and
psize clauses on the target directive. In this code, psize(2) indicates the
scheduler that the second parameter contains the problem size.

Next, the algorithm chooses a candidate implementation using a roulette-
wheel selection approach. This approach basically divides a line segment of length∑N

i=0 Pi in subsegments whose size correspond to the probability Pi calculated
for the i-th implementation. Finally, it selects an implementation depending on
the location in the segment of a previously generated pseudo-random number
between 0 and 1.

4.2 Probabilities Updating Module

In this section, we describe the probabilities updating module, which is in charge
of recalculating, after the application run, the degree of certainty that each
version provides the best performance. The computation of these probabilities is
mainly based on the average execution time of the different versions. Therefore,
the version having the lowest execution time will lead to a higher probability and
be finally preferred by the scheduler. In order to support further explanations,
Eq. 1 defines that a version A provides the best performance when its expected
execution time E(A) is lower than any other available version in the set S.

Best(A,S) = ∀i ∈ S : E(A) ≤ E(i). (1)

The methodology to calculate the probabilities is as follows. First of all,
the confidence intervals of the available implementations are computed using
the averages and standard deviations of their execution time. Next, these con-
fidence intervals are compared among them in order to determine their prob-
abilities. For instance, if two intervals are disjointed, the option providing the
best performance has a probability of 100% of being selected. On the contrary,
the probability is split between both versions. If this occurs, these versions are
accordingly executed until their confidence intervals become narrow enough to
avoid the overlapping. This methodology makes two general assumptions when
calculating the expected execution time of a version: (i) it is always within the
confidence interval, and (ii) it is distributed equally along the confidence inter-
val, i.e., following a uniform distribution. For these reasons, the results obtained
are not exact but accurate enough for our purposes.

Figure 2 shows an example of three versions (X, Y and Z) with their corre-
sponding confidence intervals along the time axis. As observed, the three con-
fidence intervals overlap among them in some degree. In a first step, the time

Probabilistic-Based Selection of Alternate Implementations 755

Fig. 2. Example of overlapping confidence intervals for different versions.

axis is divided into intervals that begin each time a confidence interval starts or
ends. Note that in the example we obtained 4 time intervals. With this, we select
those time intervals finishing at the same time or before any confidence interval,
i.e., time intervals 0 and 1. This way, we can ensure that the expected execution
time of the best version is within those intervals. Next, we apply the law of total
probability in order to compute the versions probabilities by accumulating their
marginal probabilities on the selected time intervals. As can be seen, the version
Z does not contain any selected interval, hence, its probability is zero.

To calculate the marginal probabilities of each time interval and version,
we apply again the law of total probability for other versions involved in the
same time interval. We decompose the marginal probability into three different
addends: when the expected execution time of the compared versions is lower,
within or greater than the considered time interval. To illustrate the aforemen-
tioned explanation, Eqs. 2, 3, 4 calculate respectively the probability of the ver-
sions X, Y and Z, shown in Fig. 2, to be better than the rest. In these formulas,
Ii denotes the i-th time interval, CIj the confidence interval of the version j,
and Bt and Et represent the begin and the end of a given interval t. Applying
these equations, we get that the highest probability is assigned to version X.

P
(
Best(X, {X,Y, Z})) = P

(
Best(X, ∅) ∣∣ E(X) ∈ I0

)
P
(
E(X) ∈ I0

)
+

P
(
Best(X, {Y }) ∣∣ E(X) ∈ I1,E(Y) ∈ I1

)
P
(
E(X) ∈ I1

)
P
(
E(Y) ∈ I1

)
+

P
(
Best(X, {Y }) ∣∣ E(X) ∈ I1,E(Y) > I1

)
P
(
E(X) ∈ I1

)
P
(
E(Y) > I1

)
=

1 · EI0−BI0

ECIX
−BCIX

+
1

2
· EI1−BI1

ECIX
−BCIX

· EI1−BI1

ECIY
−BCIY

+ 1 · EI1−BI1

ECIX
−BCIX

· ECIY
−EI1

ECIY
−BCIY

=

1 · 3 − 1

5 − 1
+

1

2
· 5 − 3

5 − 1
· 5 − 3

7 − 3
+ 1 · 5 − 3

5 − 1
· 7 − 5

7 − 3
=

28

32
= 0.875.

(2)

P
(
Best(Y, {X,Y, Z})) =

P
(
Best(Y, {X}) ∣∣ E(Y) ∈ I1,E(X) ∈ I1

)
P
(
E(Y) ∈ I1

)
P
(
E(X) ∈ I1

)
=

1

2
· EI1 − BI1

ECIY
− BCIY

· EI1 − BI1

ECIX
− BCIX

=
1

2
· 5 − 3

7 − 3
· 5 − 3

5 − 1
=

4

32
= 0.125.

(3)

P
(
Best(Z, {X,Y, Z})

)
= P

(
Best(Y, ∅)

∣
∣
E(Z) ∈ ∅

)
= 0. (4)

5 Evaluation

In this section, we evaluate the behavior of the PrISe scheduler using the general
matrix-matrix multiplication (Gemm) as for the use case. First, we perform an

756 J. Fernández et al.

evaluation of the accuracy and convergence of the selector algorithm using the
Gemm case. Finally, we compare the performance of the PrISe and the OmpSs
versioning schedulers.

As for the heterogeneous platform, we employ a machine consisting of two
multi-core Intel Xeon E5-2695 processor (Xeon) with a total of 24 physical
cores running at 2.40 GHz and equipped with 128 GB of RAM. This platform
is also equipped with two AMD Radeon GPUs, R9 290X (Amd1) and R9 285
series (Amd2), and an Intel Xeon Phi 3120 co-processor (Mic). On the other
hand, the PrISe scheduler has been developed into the Mercurium compiler v2.0
and the Nanos++ runtime v0.12a, part of the OmpSs programming framework.
Additionally, the source codes generated by Mercurium have been compiled with
GCC 5.1 using the -O3 flag.

5.1 Analysis with the GEMM Use Case

In this section, we analyze the dgemm kernel performance and the selector accu-
racy using the implementations from the clBLAS [1] and MKL libraries on the
target machine. While the clBLAS dgemm implementation runs on all the plat-
form processors, the MKL implementation only runs on the Xeon processor.

Figure 3 shows the accuracy progress of PrISe and the dgemm kernel per-
formance rates for increasing number of training iterations. Note that the per-
formance rates were obtained dividing the execution time of the fastest and
the selected implementation. For each of these iterations, we train the system
running an instance of the dgemm kernel using square matrices of random sizes,
ranging between 64× 64 and 4,096 × 4,096. Afterwards, we evaluate the knowl-
edge gained by the selector performing 100 runs of the same kernel.

As can be seen in Fig. 3a, these percentages increase in a smooth curve until
reaching, after 170 training iterations, roughly 99.8 % of the total accuracy. This
behavior is mainly because the confidence intervals in that iteration are narrow
enough, so that, on average, the selections made are already adequate. Focusing
on the progress of performance rate, shown in Fig. 3b, we notice that it grows
in a similar fashion than the accuracy progress. Nevertheless, each time that
PrISe does not make an accurate selection, the impact in the run time is more
notorious than that represented by the accuracy rate.

5.2 Comparison with an Alternative Scheduler

In this section, we compare the performance benefits of both PrISe and ver-
sioning OmpSs schedulers. To assess them, we developed a synthetic benchmark
consisting of two consecutive 30-iteration loops that run, in each iteration, the
dgemm kernel using square matrices of size 1,024 and random sizes, respectively.

Figure 4 depicts the execution progress of this application. As can be seen,
PrISe starts from the first iteration of each loop selecting the implementations
that perform best. This is because our scheduler uses an external file of historical
data, which was collected during previous executions. (It is important to note

Probabilistic-Based Selection of Alternate Implementations 757

Fig. 3. Progress of the selector accuracy and performance over training iterations using
the dgemm kernel.

Fig. 4. Execution progress of two 30-iteration loops computing the dgemm kernel and
using both PrISe and versioning schedulers.

that PrISe was previously trained performing 300 executions of the dgemm ker-
nel with random matrix sizes.) On the contrary, we detect that the versioning
scheduler does not keep any performance data among executions, so it needs
a few trial runs of the different implementations until it finds the fastest one.
Afterwards, the versioning scheduler keeps selecting the same implementation,
regardless of the problem size, even if it is not the optimal. Therefore, when
the matrix size varies among iterations, this scheduler is not able to self-adapt.
In contrast, PrISe relies on the problem size to select the most suitable ver-
sion, and thus, improves the overall performance. All in all, the presented PrISe
scheduler is more adaptive and gains knowledge within application runs, while
the versioning counterpart does not keep historical data and, therefore, needs
to adapt in each execution.

6 Conclusions

In this paper, we have presented PrISe, a novel implementation selector that
uses a probabilistic and profile-guided approach to choose the most appropriate
implementation of a same kernel. To develop this selector we have leveraged the
two main components of the OmpSs programming framework: the Mercurium
compiler, to interpret a new pragma clause, and the Nanos++ runtime, to intro-
duce a new scheduling module that implements this approach. To assess the
proposed scheduler, we have evaluated its accuracy and performance using dif-
ferent versions of the general matrix-matrix multiplication.

758 J. Fernández et al.

Through the experimental results, we demonstrated that PrISe is able to
select the fastest implementation of the dgemm kernel for varying square matrix
sizes. We observed that the selector probabilities converges in roughly 170 train-
ing iterations and leads to sufficient accuracy and performance figures. Finally,
we proved that our PrISe scheduler outperforms, in some cases, the performance
delivered by the OmpSs versioning scheduler.

As future work, we plan to extend this approach for supporting high-level
parallel patterns, such as the Pipeline and Farm constructions. Also, we intend
to introduce a mechanism to update the probabilities during application run.

References

1. clBLAS, April 2015. https://github.com/clMathLibraries/clBLAS
2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-

form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put.: Pract. Exper. 23(2), 187–198 (2011)

3. Ayguadé, E., Badia, R.M., Bellens, P., Cabrera, D., Duran, A., Ferrer, R.,
Gonzàlez, M., Igual, F., Jiménez-González, D., Labarta, J., Martinell, L., Martorell,
X., Mayo, R., Pérez, J.M., Planas, J., Quintana-Ort́ı, E.S.: Extending OpenMP to
survive the heterogeneous multi-core era. Int. J. Parallel Prog. 38(5), 440–459
(2010)

4. Belikov, E., Deligiannis, P., Totoo, P., Aljabri, M., Loidl, H.W.: A survey of
high-level parallel programming models. Technical report, HW-MACS-TR-0103,
Department of Computer Science, Heriot-Watt University, December 2013

5. Brodtkorb, A.R., Dyken, C., Hagen, T.R., Hjelmervik, J.M., Storaasli, O.O.: State-
of-the-art in heterogeneous computing. Sci. Program. 18(1), 1–33 (2010)

6. Dastgeer, U., Li, L., Kessler, C.: Adaptive implementation selection in the SkePU
skeleton programming, library. In: Advanced Parallel Processing Technologies:
10th International Symposium, APPT 2013, Revised Selected Papers, Stockholm,
Sweden, 27–28 August 2013, pp. 170–183 (2013)

7. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: OmpSs: a proposal for programming heterogeneous multi-core architec-
tures. Parallel Process. Lett. 21, 173–193 (2011)

8. Gough, B.: GNU Scientific Library Reference Manual, 3rd edn. Network Theory
Ltd., Cambridge (2009)

9. Planas, J., Badia, R.M., Ayguad, E., Labarta, J.: Self-adaptive OmpSs tasks in het-
erogeneous environments. In: 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing, pp. 138–149, May 2013

10. del Rio Astorga, D., Dolz, M.F., Sanchez, L.M., Fernández, J., Garćıa, J.D.: An
adaptive offline implementation selector for heterogeneous parallel platforms. Int.
J. High Perform. Comput. Appl. (2017)

11. Shen, J., Varbanescu, A., Sips, H.: Look before you leap: using the right hardware
resources to accelerate applications. In: IEEE International Conference on High
Performance Computing and Communications, pp. 383–391, August 2014

12. Su, L.T.: Architecting the future through heterogeneous computing. In: 2013 IEEE
International Solid-State Circuits Conference Digest of Technical Papers, pp. 8–11,
February 2013

13. Tan, W.J., Tang, W.T., Goh, R., Turner, S., Wong, W.F.: A code generation
framework for targeting optimized library calls for multiple platforms. IEEE Trans.
Parallel Distribut. Syst. 26(7), 1789–1799 (2015)

https://github.com/clMathLibraries/clBLAS

Accelerating Processing of Scale-Free Graphs
on Massively-Parallel Architectures

Mikhail Chernoskutov(B)

Krasovskii Institute of Mathematics and Mechanics,
Ural Federal University, Yekaterinburg, Russia

mach@imm.uran.ru

Abstract. Processing of big scale-free graphs on parallel architectures
with high parallelization opportunities connected with a lot of overheads.
Due to skewed degree distribution each thread receives different amount
of computational workload. In this paper we present a method devoted to
address this challenge by modificating CSR data structure and redistrib-
uting work across threads. The method was implemented in breadth-first
search and single source shortest path algorithms for GPU architecture.

Keywords: Parallel processing · Graph algorithms · Workload
balancing

1 Introduction

Graphs are a mathematical abstraction, which allows to investigate objects and
links between them [9]. In particular, using the mathematical apparatus of graph
theory, it is possible to explore a wide variety of systems of interrelated objects,
such as neural networks in the brain [2], traffic flows in the city [7], etc. Nowadays,
graph algorithms are widely used in the social networks analysis [12].

With the rapid development of computational and data storage hardware,
there is also an ongoing growth in the volume of data obtained from real-world
problems. At the same time, the size of graphs describing the systems of inter-
acting objects is also growing. However, the use of parallel computations for
processing large graphs involves a number of obstacles. In particular, it is known
that graph algorithms are kind of “data intensive” [4] tasks. This means that
the distribution of data in memory is determined by the internal structure of
the data itself.

Due to the fact that real-world graphs have skewed degree distribution [1],
their processing on parallel computing systems can be burdened with a large
amount of overheads [10], particularly the uneven distribution of computational
workload among threads (or processes). This drawback is especially acute when
dealing with massively parallel computing systems, such as GPGPU accelerators.
The distribution of the computational workload between thousands, and even
tens of thousands of threads leads to a decrease in the amount of computations
per thread. In this case, the uneven distribution of computational workload can
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 759–765, 2017.
DOI: 10.1007/978-3-319-65482-9 61

760 M. Chernoskutov

lead to the situation when one bunch of the threads is idle, while the other works
hard.

In this paper, we describe a method of workload balancing that makes it
possible to accelerate the computation of graph algorithms on massively parallel
computing systems (the results for the CPU and GPGPU are given). Accelera-
tion is achieved due to the fact that the computation workload is evenly distrib-
uted between threads. The paper is organized as follows. In Sect. 2 we describe a
motivating example of workload distribution during traversal of scale-free graph.
In Sect. 3 we describe our method of workload balancing. We show performance
results in Sect. 4 and conclude with future remarks in Sect. 5.

2 Computational Workload Distribution During
Processing of Scale-Free Graphs

Parallel processing of large scale-free graphs has two key features:

– the degree of each vertex is unknown in advance and can differ significantly
from one vertex to another;

– it is difficult to predict neighbors of each vertex (in comparison with, for
instance, grid graphs).

Thus, relying on the two aforementioned features, it can be concluded that
even in the case of uniform distribution of all the vertices among the threads, the
number of all incident edges that each thread should process can be different.
Moreover, with the increase in the number of threads, the relative difference in
the computational workload between threads only increases. Figure 1 shows the
amount of computational workload per thread during the traversal of scale-free
graph with 64 threads. This graph has 8 182 vertices (213) and 18 184 edges and
generated using the NetworkX system [8]. The amount of computational work-
load in this case is the number of edges that each thread should pass through.
Even with the fact that each thread has the same number of vertices, the total
number of incident edges for each thread is different in most of the cases.

In this paper, we deal with level-synchronous graph algorithms (based on
bulk-synchronous model [13]). The main feature of such kind of algorithms is
the fact that the iteration N + 1 of the algorithm can be performed if and only
if the iteration N is fully complete. This computational model naturally fits into
the existing parallel computing architectures, such as CPU and GPGPU.

Thus, the performance of every iteration of level-synchronous algorithms dur-
ing processing of scale-free graphs depends on the processing time of the thread
having the biggest number of incident edges. In the case of strong skewed degree
distribution of the vertices, the performance of parallel graph algorithms may
possibly be less than the performance of its sequential counterparts.

3 Method of Workload Balancing

The method presented in this section designed to balance the computational
workload among threads by dissipate it between threads while processing

Accelerating Processing of Scale-Free Graphs 761

Fig. 1. Total number of incident edges for each thread for scale-free graph. Each thread
has same number of vertices)

“heavyweight” vertices and, conversely, combining processing of “lightweight”
vertices using a single thread.

The workload balancing method is oriented on Compress Sparse Row (CSR)
graph storage format. CSR is one of the most well-known and convenient format
for storing and processing static graphs. CSR (and its modifications) is used in
various popular graph processing systems [5,6,14]. The graph representation in
this format consists of several arrays:

– row pointers contains the offsets in the rows of the corresponding adjacency
matrix;

– column ids contains data about the end of each edge;
– weights contains weights of edges.

From i to (i+1) element of the row pointers array there are the ranges of vertex
numbers in the array column ids, which contains outgoing edges incident to i
vertex.

To avoid workload imbalance during CSR processing, we suggest a transi-
tion from “looking” through a row pointers array to “looking” through an
column ids array. For this purpose, we logically divide the column ids array
into equal pieces holding max edges elements. Each thread determines the cor-
responding vertex for all edges in every part of the column ids array by using
the part column array, which contains the numbers of vertices incident to the
first edge in the corresponding part of the column ids array. The pseudocode
for parallel filling of the part column array is presented on Fig. 2.

Pseudocode of an improved versions of breadth-first search and single source
shortest path (Bellman-Ford) algorithms that uses the part column array is
presented on Figs. 3 and 4.

The main distinguishing feature of the modified BFS and SSSP algorithms
is the limitation of the number of edges processed by single thread. As seen

762 M. Chernoskutov

Fig. 2. Parallel filling of part column array pseudocode

Fig. 3. Parallel breadth-first search algorithm pseudocode (with workload balancing)

Fig. 4. Parallel single source shortest path algorithm pseudocode (with workload bal-
ancing)

Accelerating Processing of Scale-Free Graphs 763

from line 6 in Fig. 3 and line 7 in Fig. 4, each thread processes no more than
max edges edges.

It should be noted that the use of this method in most cases results in
increasing number of computational threads. However, this makes it suitable for
implementation on massively parallel architectures, such as GPGPU.

4 Benchmarking

The benchmarking was carried out on a single node of the computational cluster
located at the Ural Federal University (Yekaterinburg, Russia). The node is
equipped with two processors Intel Xeon E5-2620 v2 and GPU accelerator Nvidia
Tesla K20Xm (with 6 GB DRAM). For the development of algorithms, the ICC
16.0 compiler was used, as well as the CUDA 8.0 platform for development on
GPGPU.

RMAT-graphs [3], which modeling real-world scale-free networks was used
for benchmarking. RMAT-graphs can be described by two parameters (like in
the Graph500 benchmark [11]):

– scale is the logarithm base 2 of the number of vertices in the graph.
– the average degree of all vertices in the graph.

Benchmarks performed for the BFS and SSSP (Bellman-Ford) algorithms
with scale parameter ranging from 16 to 22 (to fit each graph into the GPGPU
DRAM), and average vertex connectivity of 16 and 32 edges per vertex. As
seen from the Table 1, both workload balanced implementations of algorithms
demonstrate least execution time with max edges = 128. Hence, we choose
max edges = 128 for subsequent computations as a best option for hardware
used and as a trade-off between size of part column array and granularity of
computing.

Table 1. Execution time (in seconds) for GPGPU implementations of graph algorithms
with workload balancing (for different max edges values)

Algorithm max edges

16 32 64 128 256 512 1024

BFS 0.073 0.073 0.074 0.064 0.065 0.071 0.079

SSSP 2.14 2.34 1.95 1.75 2.48 2.38 2.59

Each of the algorithms was implemented on the CPU (using OpenMP) and
on GPGPU (using CUDA). Workload balancing method was built-in in each of
the algorithms on each of the architectures. The results of performance testing
are shown in the Figs. 5 and 6 (each result is averaged over the five independent
runs of each variation of the algorithm).

764 M. Chernoskutov

Fig. 5. Performance comparison for BFS implementations

Fig. 6. Performance comparison for SSSP implementations

As seen from the figures, for both algorithms the developed method shows a
steady increase in performance for the GPGPU architecture in comparison with
its naive parallelization (without workload balancing). For the CPU architecture,
a significant increase in performance is not observed. This is due to the fact
that when using OpenMP, parallelization occurred for only 12 threads. With
so few threads, the side effects of workload imbalance are not yet apparent
(unlike the massively parallel GPGPU architecture). In addition, the GPGPU
implementation outperforms two Intel Xeon E5-2620 v2 processors on graphs
with a scale parameter equals 22 for all run configurations.

5 Conclusion

Attempts at efficient parallelization of the graph algorithms with skewed degree
distribution are hampered by the workload imbalance amongst computational
threads. This forms a bottleneck that makes it much more hard to make a high-
performance implementation for such algorithms.

In this paper, we suggest a methods for workload balancing, which allows to
increase the performance of the parallel level-synchronous breadth-first search
and single-source shortest path by efficient utilization of GPGPU architecture.

In our future work, we intend to focus on the research in scalability of the
suggested algorithms and testing it on RMAT graphs with bigger and graphs

Accelerating Processing of Scale-Free Graphs 765

obtained from real-world applications. Another important task is to modify our
custom implementation to use other computational architectures such as Intel
MIC.

Acknowledgments. The research was supported by the Ministry of Education and
Science of the Russian Federation Agreement no. 02.A03.21.0006.

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999). http://science.sciencemag.org/content/286/5439/509

2. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

3. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: a recursive model for graph min-
ing. In: Proceedings of the 2004 SIAM International Conference on Data Mining,
pp. 442–446. SIAM (2004)

4. Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques
and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014).
http://www.sciencedirect.com/science/article/pii/S0020025514000346

5. Ediger, D., Jiang, K., Riedy, E.J., Bader, D.A.: Graphct: multithreaded algorithms
for massive graph analysis. IEEE Trans. Parallel Distrib. Syst. 24(11), 2220–2229
(2013)

6. Gregor, D., Lumsdaine, A.: The parallel BGL: a generic library for distributed
graph computations

7. Guimera, R., Mossa, S., Turtschi, A., Amaral, L.N.: The worldwide air transporta-
tion network: anomalous centrality, community structure, and cities’ global roles.
Proc. Nat. Acad. Sci. 102(22), 7794–7799 (2005)

8. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics,
and function using networkx. In: Varoquaux, G., Vaught, T., Millman, J. (eds.)
Proceedings of the 7th Python in Science Conference, Pasadena, CA USA, pp.
11–15 (2008)

9. Kepner, J., Gilbert, J.: Graph Algorithms in the Language of Linear Algebra.
Society for Industrial and Applied Mathematics (2011). http://epubs.siam.org/
doi/abs/10.1137/1.9780898719918

10. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.: Challenges in
parallel graph processing. Parallel Process. Lett. 17(01), 5–20 (2007).
http://www.worldscientific.com/doi/abs/10.1142/S0129626407002843

11. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the graph
500. Cray Users Group (CUG) (2010)

12. Otte, E., Rousseau, R.: Social network analysis: a powerful strategy,
also for the information sciences. J. Inf. Sci. 28(6), 441–453 (2002).
http://dx.doi.org/10.1177/016555150202800601

13. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990). http://doi.acm.org/10.1145/79173.79181

14. Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: a
high-performance graph processing library on the GPU. In: Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2016, pp. 11:1–11:12. ACM, New York (2016). http://doi.acm.org/10.1145/
2851141.2851145

http://science.sciencemag.org/content/286/5439/509
http://www.sciencedirect.com/science/article/pii/S0020025514000346
http://epubs.siam.org/doi/abs/10.1137/1.9780898719918
http://epubs.siam.org/doi/abs/10.1137/1.9780898719918
http://www.worldscientific.com/doi/abs/10.1142/S0129626407002843
http://dx.doi.org/10.1177/016555150202800601
http://doi.acm.org/10.1145/79173.79181
http://doi.acm.org/10.1145/2851141.2851145
http://doi.acm.org/10.1145/2851141.2851145

A Hybrid Parallel Search Algorithm for Solving
Combinatorial Optimization Problems

on Multicore Clusters

Victoria Sanz1,2(B), Armando De Giusti1,3, and Marcelo Naiouf1

1 School of Computer Sciences, III-LIDI, National University of La Plata,
La Plata, Argentina

{vsanz,degiusti,mnaiouf}@lidi.info.unlp.edu.ar
2 CIC, Buenos Aires, Argentina

3 CONICET, Buenos Aires, Argentina

Abstract. Multicore clusters are widely used to solve combinatorial
optimization problems, which require high computing power and a large
amount of memory. In this sense, Hash Distributed A* (HDA*) paral-
lelizes A*, a combinatorial optimization algorithm, using the MPI library.
HDA* scales well on multicore clusters and on multicore machines. Addi-
tionally, there exist several versions of HDA* that were adapted for mul-
ticore machines, using the Pthreads library. In this paper, we present
Hybrid HDA* (HHDA*), a hybrid parallel search algorithm based on
HDA* that combines message-passing (MPI) with shared-memory pro-
gramming (Pthreads) to better exploit the computing power and memory
of multicore clusters. We evaluate the performance and memory con-
sumption of HHDA* on a multicore cluster, using the 15-puzzle as a
case study. The results reveal that HHDA* achieves a slightly higher
average performance and uses considerably less memory than HDA*.
These improvements allowed HHDA* to solve one of the hardest 15-
Puzzle instances.

Keywords: Parallel search algorithms ·Hybrid programming ·Multicore
cluster · Combinatorial optimization problems · Hash Distributed A*

1 Introduction

Several search algorithms require high computing power and a large amount
of memory, thus, different parallel approaches have been proposed in order to
take advantage of the resources of multicore clusters. This is the case of the A*
algorithm, a variant of Best-First Search, which is used for solving combinatorial
optimization problems. These problems require finding a sequence of actions that
minimizes a goal function and allows transforming an initial configuration (i.e.,
the problem to be solved) into a final configuration (i.e., the solution).

A* [1,2] explores the graph that represents the state space of the prob-
lem using a cost function f̂ to value the nodes, which is defined as follows:

ˆf(n) = ˆg(n) + ˆh(n), where ˆg(n) is the known cost of the path from the initial
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 766–775, 2017.
DOI: 10.1007/978-3-319-65482-9 62

A Hybrid Parallel Search Algorithm 767

node to the current node n and ˆh(n) is a heuristic estimate that represents the
unknown cost of the path from the current node n to the solution node. In
this algorithm the search tree is generated as the search progresses. During the
process, it keeps two data structures: one for the unexplored nodes sorted by f̂
(open list), and another for the already explored nodes (closed list) used to avoid
processing the same state multiple times. In each iteration, the most promising
node (according to f̂) available on the open list is removed, it is added to the
closed list, and legal actions are applied to it to generate successor nodes, that
will be added to the open list under certain conditions (verification known as
duplicate detection). The search process continues until the node that represents
the solution is removed from the open list.

Hash Distributed A* (HDA*) [3,4] is a parallel A* algorithm in which each
processor has its own open/closed lists and performs a quasi-independent search.
It uses a standard hash function to assign each state of the problem to a sin-
gle processor. This hash-based node distribution scheme allows balancing the
load and pruning duplicate nodes (i.e., nodes representing the same state) in
an absolute way, as they are always sent to the same processor. This version of
HDA* was implemented using the MPI library, thus, it can be run on distributed-
memory, shared-memory, or hybrid systems.

Other authors [5–7] adapted HDA* for multicore machines, using the
Pthreads library. In this way, it is possible to eliminate some inefficiencies that
arise when the original HDA* algorithm is run on a shared-memory machine.

Since current clusters are composed of shared-memory nodes, some applica-
tions may benefit from hybrid programming, i.e. by combining message-passing
(MPI) with shared-memory programming (Pthreads or OpenMP) [8,9]. To our
best knowledge, no hybrid version of HDA* has been proposed until now, to
better exploit the computing power and memory of multicore clusters.

In this paper, we present Hybrid HDA* (HHDA*), a hybrid MPI/Pthreads
parallel search algorithm based on HDA*. We evaluate the performance and
memory consumption of HHDA* on a multicore cluster, using the 15-puzzle as a
case study. The results reveal that HHDA* achieves a slightly higher average per-
formance and uses considerably less memory than HDA*. These improvements
allowed HHDA* to solve one of the hardest 15-Puzzle instances.

The rest of the paper is organized as follows. Section 2 discusses background
and related work. Section 3 introduces HDA* (HDA* MPI) and HDA* for
shared-memory architectures (HDA* Pthreads). Section 4 describes the Hybrid
HDA* algorithm. Section 5 shows our experimental evaluation. Finally, Sect. 6
presents the main conclusions and some ideas for future research.

2 Related Work

Today, many commodity clusters are composed of shared-memory machines.
Applications to be run on these systems can be developed by using only message-
passing or by combining message-passing with shared-memory programming
(hybrid programming). While the former approach requires less programming
effort, the latter may improve performance and reduce the memory used [10].

768 V. Sanz et al.

The most common and efficient way to parallelize A* is to use a decen-
tralized strategy [11]: each process/thread (processor) is equipped with its own
local open and closed lists and performs a quasi-independent search. This strat-
egy is suitable both for shared-memory and distributed-memory architectures.
However, communication among the processors is needed due to the following
reasons: the workload should be distributed dynamically; duplicate nodes can
be generated by different processors and should be pruned in order to prevent
processors from performing duplicated work; the termination criterion should be
modified because if the search is ended when the first solution is found, there
will be no guarantee that such solution is the best one; the costs of the partial
solutions found so far should be communicated in order to use them to prune
the paths that lead to suboptimal cost solutions.

Hash Distributed A* (HDA*) [3] parallelizes A* by applying a decentralized
strategy. It was implemented using only MPI and asynchronous communication.
It uses a standard hash function to assign states to processors. This hash-based
node distribution scheme allows balancing the load and pruning duplicate nodes
in an absolute way, as the nodes representing the same state are always sent
to the same processor, which performs the duplicate detection procedure. The
algorithm works as follows. Periodically, each process P performs the following
steps until a global optimal solution is reached: (1) P checks if a message with
nodes has arrived. (2) If so, for each node, P determines if the node must be
added to the open list or if it should be discarded. (3) If no messages were
received, P selects a node from its open list (the one with the lowest f̂ -value).
Then, P expands the node and, for each successor, it calculates the hash value
to identify the owner process. If the node belongs to another process Q, P sends
a message with the node to Q. To reduce the communication overhead, a given
number of nodes whose recipient is the same are packed into a single message.

On the other hand, in [5] the authors adapted HDA* for multicore machines.
This version does not have the extra overhead of message-passing between
processors (threads) on a shared-memory architecture. Also, it uses less memory
as threads share common data structures. The algorithm works as follows. Each
thread is given an input queue, where the rest of the threads will deposit nodes
that must be processed by this thread, and a local output queue for each peer
thread. When a thread ti generates a node that belongs to another thread tj , ti
tries to acquire the lock associated with tj ’s input queue. If the lock is obtained
immediately, the node is transferred and the lock is released. Otherwise, the
node is added to the local output queue for tj . After ti carries out a certain
number of node expansions from its open list: (1) It tries to communicate the
nodes stored in each non-empty output queue to the respective thread, but it is
never forced to wait on a lock (2) It tries to consume nodes from its input queue
(it is only forced to wait when its open list is empty).

We developed our own versions of HDA* (HDA* MPI) and HDA* for mul-
ticore machines (HDA* Pthreads), which are summarized in Sect. 3. Implemen-
tation details can be found in [4,6] respectively. The former differs from the
original version in that it includes a parameter which indicates the maximum

A Hybrid Parallel Search Algorithm 769

number of nodes to be processed per algorithm iteration. We noted that perfor-
mance does not improve by processing one node per algorithm iteration, as done
in the original version. The latter includes a technique to group several nodes
before transferring them to the corresponding thread. We observed that this
technique reduces the amount of node transfers and mitigates communication
and contention.

From the above it can be concluded that significant efforts were made to
parallelize the A* algorithm on different parallel architectures. However, nei-
ther of the known algorithms considers hybrid programming to better utilize
the resources of multicore clusters. It should be noted that, although in [12] a
hybrid parallel algorithm is presented for solving combinatorial problems, the
parallelization is based on the Weighted A* algorithm (a suboptimal version of
A* that trades-off solution quality for search time). However, Hybrid HDA* is
based on the A* algorithm and it aims to find optimal solutions.

3 Implementation of the HDA* Algorithms

3.1 HDA* (HDA* MPI)

Each process carries out an A* search locally and communicates with its peers
for sending/receiving messages containing nodes, the costs of solutions found
and messages that allow detecting termination.

Each process maintains its own open/closed lists, the cost of the best global
solution known so far (best solution cost), the best solution found by the process
(best solution), among others. In order to pack several nodes into a single mes-
sage, the process is equipped with a buffer (send buffer) for each peer process.

Each process P performs the following stages until a global optimal solution
is reached:

1. Work message reception stage: P checks if work messages containing nodes
have arrived. If so, P receives each message and, for each node with
f̂ < best solution cost, it performs the duplicate detection and adds the node
to the open list as appropriate.

2. Cost message reception stage: P checks if cost messages containing the
cost of a solution have arrived. If so, P receives the messages and updates
best solution cost as appropriate.

3. Processing stage: P extracts nodes from its open list, discarding those with
f̂ >= best solution cost. When the extracted node represents a solution, P
updates best solution and best solution cost and sends the solution cost to
the other processes. Otherwise, P adds the node to its closed list and expands
the node. Then, for each successor, P calculates the hash value to determine
the owner process. When the successor belongs to P, it adds the node to
its open list as appropriate. Otherwise, P adds the node to the send buffer
for the destination process and, if the buffer became full, it sends the work
message asynchronously.

770 V. Sanz et al.

4. Idle stage: P enters this stage when its open list is empty. Firstly, it sends
work messages to those destination processes whose send buffer is non-empty.
Then, it remains waiting for: (1) work messages, (2) cost messages, (3) mes-
sages that allow detecting termination. P ends this stage when its open list
is non-empty, as a result of having received a work message, or when it
receives the termination notification message. Messages of types (1) and (2)
are processed in a similar way as described above; messages of type (3) are
processed based on Dijkstra’s termination detection algorithm [13].

When computation ends, the optimal solution (i.e. the sequence of actions
that allows transforming the initial state into the final state) is retrieved in a
distributed manner.

3.2 HDA* for Multicore Machines (HDA* Pthreads)

Each thread has its own open/closed lists. The node communication strategy
is based on the use of input/output queues. All threads share the best global
solution found so far (best solution), its cost (best solution cost), among others.

Each thread ti performs the following stages until a global optimal solution
is reached:

1. Work reception stage: ti tries to consume nodes from its input queue. If
it obtains the lock immediately, it takes all the nodes stored in the queue,
releases the lock, and then for each node with f̂ < best solution cost, ti per-
forms the duplicate detection procedure adding the node to the open list as
appropriate.

2. Processing stage: the main difference with HDA* MPI is the way in which
nodes are communicated between threads. When ti generates a node that
belongs to another thread tj , it stores the node in the local output queue
for tj ; when the amount of stored nodes reaches a certain limit, ti tries to
acquire the lock associated with tj ’s input queue and, if it obtains the lock
immediately, it transfers the stored nodes.

3. Idle stage: ti enters this stage when its open list is empty. Firstly, it transfers
the nodes stored in each non-empty output queue. Then, it remains waiting
until it receives work or it receives a termination notification from the master
thread (to this end, we adapted Dijkstra’s termination detection algorithm
for shared-memory machines [6]).

When computation ends, the optimal solution is retrieved by the master
thread.

4 Hybrid HDA* (HHDA*)

Hybrid HDA* (HHDA*) is based on the HDA* algorithm and its version for
multicore machines. HHDA* assigns only one process per machine. Each process
(master thread) creates threads that will perform the search procedure, along

A Hybrid Parallel Search Algorithm 771

with the master thread. The proposed algorithm uses communication via shared-
variables, among threads on the same machine, and communication via message-
passing, among processes on different machines.

All threads on the same machine share the best solution found locally by
these threads (best solution), the cost of the best global solution known so far
(best solution cost), among others.

Each thread has: its own open/closed lists, a global input queue, an output
queue for each peer thread on the machine, message buffers for inter-process
communication, among others.

Each thread ti performs the following stages until a global optimal solution
is reached:

1. Message reception stage: any thread on the machine can receive messages
addressed to its process, containing either (1) nodes or (2) the cost of a
solution found. In the first case, for each received node, ti identifies the owner
thread and, depending on whether the node belongs to ti or not (a) it carries
out the duplicate detection and adds the node to its open list (as appropriate)
or (b) it stores the node in the local output queue for the destination thread.
In the second case, ti updates best solution cost, as appropriate.

2. Work reception stage (from the input queue): the thread checks the state of
its input queue, in order to consume the nodes left by other threads, as in
HDA* Pthreads.

3. Processing stage: the main difference with HDA* MPI and HDA* Pthreads is
the way in which nodes are communicated among threads. When a generated
node belongs to another thread on the same machine, the node is communi-
cated via shared-memory, using input/output queues, as in HDA* Pthreads.
When a generated node belongs to a thread running on a different machine,
the node is communicated via message-passing. In the last case, each thread
has a send buffer for each process in the system, where nodes that must be
communicated are stored, as in HDA* MPI.

4. Idle stage: ti enters this stage when its open list is empty. Firstly, it transfers
the nodes stored in each non-empty output queue and each non-empty send
buffer to its owner thread/process, via shared-memory or message-passing,
respectively. Then, ti remains waiting until it receives nodes in its input queue
or it receives a termination notification from the master thread. The mas-
ter thread behaves differently: when it detects local termination (i.e., on the
machine, using Dijkstra’s termination detection algorithm for shared-memory
machines [6]), it will wait for: (1) work messages (2) cost messages (3) mes-
sages that allow detecting global termination. Messages of types (1) and (2)
are processed in a similar way as described above; messages of type (3) are
processed based on Dijkstra’s termination detection algorithm [13].

When computation ends, the master thread on each machine remains active.
Together, they will retrieve the optimal solution in a distributed manner.

772 V. Sanz et al.

5 Experimental Results

Experimental tests were carried out on a cluster composed of 7 machines con-
nected through 1 GB Ethernet. Each machine has two Intel Xeon E5620 proces-
sors and 32 GB RAM. Each processor has four 2.4 Ghz physical cores.

The tests considered sixteen 15-Puzzle instances presented in [14] (numbered
3, 15, 17, 21, 26, 32, 33, 49, 53, 56, 59, 60, 66, 82, 88, 100) and six of the
10 configurations proposed by [15] (numbered 101–106 in this paper). These
configurations present different levels of complexity.

A* was run on a single machine of the previous cluster. HDA* MPI and
HHDA* were run on the cluster, varying the number of machines used between
2 and 7. In HDA* MPI, 4 processes/workers were assigned to each machine. In
HHDA*, 1 process (master thread) was assigned to each machine, each one will
create 3 threads (4 threads/workers per machine).

In this section, we compare the performance achieved (speedup and effi-
ciency1) and the amount of memory consumed by HDA* MPI and HHDA*.

5.1 Performance Analysis

Figures 1a and b illustrate the average Speedup and the average Efficiency
achieved by HDA* MPI and HHDA*, for different number of workers. The results
reveal that, on average, the speedup of HHDA* is similar for 8 and 12 workers,
and slightly better for 16, 20, 24 and 28 workers, compared to HDA* MPI. Also,
HHDA* exhibits an almost constant average Efficiency, which ranges between
0.71 and 0.73, whereas HDA* MPI shows a decreasing average Efficiency, with
values ranging between 0.64 and 0.74.

To clarify the improvement in the performance of HHDA*, Figs. 2a and b
show the average Search Overhead (SO) and the average Load Balance (LB)

Fig. 1. Performance of HDA* MPI and HHDA*

1 Efficiency is defined as Sp/N, where Sp is the speedup of the parallel algorithm over
the sequential algorithm and N is the number of workers/cores used.

A Hybrid Parallel Search Algorithm 773

Fig. 2. Search Overhead and Load Balance of HDA* MPI and HHDA*

Fig. 3. Speedup of HDA* MPI and HHDA*, sorted by problem complexity

achieved by HDA* MPI and HHDA*, for different number of workers. The defin-
itions of SO and LB can be found in [3]. In general, the results show that HDA*
MPI exhibits a higher average SO, compared to HHDA*, which augments as
the number of workers increases, and ranges between 29% and 44%. However,
HHDA* presents an almost constant average SO, which varies between 23% and
27%. SO arises as a side effect of using multiple inconsistent open lists in a paral-
lel A* algorithm. Since each worker performs a local A*, the nodes expanded by
a worker do not necessary represent a global best selection. This occurs because
the access to global knowledge is restricted. This, however, has less impact on
HHDA*, because threads on the same machine share best solution cost. When a
thread finds a solution or receives a cost message, it updates best solution cost,
so threads on the same machine immediately know this information and use
it to prune nodes. Consequently, in HHDA*, the last iterations of the search
explore less nodes, compared to HDA* MPI. On the other hand, the average LB
is similar for both algorithms.

774 V. Sanz et al.

Fig. 4. Reduction in memory consumption: HHDA* vs HDA* MPI

In order to determine the improvement in the performance of HHDA* by
problem complexity, Figs. 3a and b illustrate the Speedup obtained by both
algorithms, for different number of workers and instances (sorted by complex-
ity). As it can be observed, when the problem scales up and the number of
workers remains constant, similar values of speedup are obtained for 8 and 12
workers. However, for 16, 20, 24, and 28 workers, HHDA* performs better for
some instances. Furthermore, as the number of workers increases, the number of
instances which are solved more efficiently by HHDA* increases. Similar conclu-
sions for Efficiency were reached. We observed that a lower SO is obtained by
HHDA* for these instances and workers.

5.2 Memory Consumption Analysis

Figure 4a shows the average reduction in memory usage for HHDA*, with respect
to HDA* MPI. We observe that the average reduction ranges between 46% and
62%, and it augments as the number of workers increases. Figure 4b illustrates
the reduction in memory usage for each instance (sorted by complexity). As it can
be seen, when the number of workers is constant, a higher reduction is achieved
for the easier instances, and the reduction decreases as the problem scales up.
In general, for hard instances, the reduction ranges between 20% and 40%.

The reduction in memory requirements for HHDA* over HDA* MPI allowed
solving one of the hardest 15-Puzzle instances2, presented in [16]. HHDA* solved
this instance using 7 machines (224 GB RAM) and 28 workers. A* (1 machine,
32 GB RAM) and HDA* MPI (7 machines, 224 GB RAM, 28 workers) did not
solve this instance since both algorithms ran out of memory.

6 Conclusions and Future Work

In this paper we presented HHDA*, a hybrid MPI/Pthread version of the HDA*
algorithm for solving combinatorial problems. We compared the performance
2 15 14 13 12 10 11 8 9 2 6 5 1 3 7 4 0.

A Hybrid Parallel Search Algorithm 775

achieved and the amount of memory consumed by HDA* (pure MPI) and
HHDA* (MPI/Pthreads). The results revealed that HHDA* achieves a slightly
higher performance and consumes less memory, compared to HDA* (pure MPI).
These improvements allowed HHDA* to solve one of the hardest 15-Puzzle
instances.

As for future work, we plan to parallelize suboptimal search algorithms using
our hybrid parallelization strategy.

References

1. Hart, P., et al.: A formal basis for the heuristic determination of minimum cost
paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

2. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pren-
tice Hall, Upper Saddle River (2003)

3. Kishimoto, A., et al.: Evaluation of a simple, scalable, parallel best-first search
strategy. Artif. Intell. 195, 222–248 (2013)

4. Sanz, V., et al.: Scalability analysis of Hash Distributed A* on commodity clus-
ter: results on the 15-puzzle problem. In: Proceedings of PDPTA 2016, 221–230.
CSREA Press, Georgia (2016)

5. Burns, E., et al.: Best-first heuristic search for multicore machines. J. Artif. Intell.
Res. 39(1), 689–743 (2010)

6. Sanz, V., et al.: On the optimization of HDA* for multicore machines. Performance
analysis. In: Proceedings of PDPTA 2014, pp. 625–631. CSREA Press, Georgia
(2014)

7. Sanz, V., et al.: Performance tuning of the HDA* algorithm for multicore machines.
In: Computer Science and Technology Series 2015. EDULP, La Plata (2015)

8. Chow, E., et al.: Assessing performance of hybrid MPI/OpenMP programs on
SMP clusters. Technical report, UCRL-JC-143957. Lawrence Livermore National
Laboratory, California (2001)

9. Rabenseifner, R., et al.: Hybrid MPI, OpenMP parallel programming on clusters of
multi-core SMP nodes. In: Proceedings of PDP 2009, pp. 427–436. IEEE Computer
Society, Washington, D.C. (2009)

10. Hager, G., et al.: Introduction to High Performance Computing for Scientists and
Engineers, 1st edn. CRC Press, Boca Raton (2010)

11. Kumar, V., et al.: Parallel best-first search of state-space graphs: a summary of
results. In: Proceedings of AAAI 1988, pp. 122–127. AAAI Press, California (1988)

12. Vidal, V., et al.: Parallel AI planning on the SCC. In: 4th Many-Core Applications
Research Community (MARC) Symposium, pp. 15–20. Postsdam University Press
(2011)

13. Dijkstra, E.W.: Shmuel Safra’s version of termination detection. EWD-Note 998.
Department of Computer Sciences, University of Texas, Austin (1987)

14. Korf, R.: Depth-first iterative-deepening: an optimal admissible tree search. Artif.
Intell. 27(1), 97–109 (1985)

15. Brüngger, A.: Solving hard combinatorial optimization problems in parallel: two
cases studies. Ph.D. thesis, ETH Zurich, Dissertation ETH No. 12358 (1998)

16. Brüngger, A., et al.: The parallel search bench ZRAM and its applications. Ann.
Oper. Res. 90, 45–63 (1999)

Concurrent Treaps

Praveen Alapati(B), Swamy Saranam, and Madhu Mutyam

Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
{praveena,srswamy,madhu}@cse.iitm.ac.in

Abstract. We propose algorithms to perform operations concurrently
on treaps in a shared memory multi-core and multi-processor environ-
ment. Concurrent treaps hold the advantage of nodes’ priority for main-
taining height of treaps. Concurrent treaps make use of logical ordering
and physical ordering of nodes’ keys, and pessimistic locking mecha-
nism to achieve synchronization. We observe that our concurrent treap
implementations scale well as compared to the state-of-the-art imple-
mentations. We also study the impact of different locking objects on
throughput of concurrent treaps. Our experimental results show that
the concurrent treap implementation that uses AtomicInteger locking
object provides better throughput and utilizes less memory footprint.

Keywords: Concurrent data structures · Trees · Treaps

1 Introduction and Related Work

Importance of scalable and efficient concurrent data structures is increasing with
growth in the area of multi-core and multi-processors [20]. The ease of per-
forming concurrent operations is heavily dependent on the type of data struc-
ture. For example, concurrent operations on data structures like linked lists and
hash tables are easier than performing them on structures like binary search
trees (BSTs) and AVL trees. Most frequently used data structures in sequential
context are BSTs and its variations. Simple and efficient algorithms to per-
form basic operations, such as insert(), delete(), and contains(), on concurrent
binary search trees are useful for developers, that require a concurrent tree-like
structure.

The lock based AVL-tree implementation of a BST, proposed by Drachsler
et al. [10], maintains strict height balancing. Though the update operation
(insert() or delete()) is local to a few nodes, balancing the height is global.
Strict height balancing condition on each update operation creates contention
on the tree. A contention friendly tree proposed in [9] is a partially external
concurrent binary search tree (CBST). It runs an explicit thread to remove the
logically deleted nodes and balance the height of the tree. This method is not
always effective, for example, for sorted input distributions, height of the tree
increases linearly with the number of nodes, leading to performance degradation.
The search operation on CBST suggested by Bronson et al. [8] needs a hand-
over-hand optimistic validation, which impacts performance as the size of the
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 776–790, 2017.
DOI: 10.1007/978-3-319-65482-9 63

Concurrent Treaps 777

tree increases. Afek et al. [5] explained a counting based self adjusting binary
search tree, that is built using Bronson et al. [8] implementation. Though concur-
rency is often managed through locks, few lock-free implementations of binary
search trees are also available in the literature [11,17,18].

Ellen et al. [11] proposed an external unbalanced CBST. External trees con-
sume more storage space as compared to that of internal trees and also have
a high average access path length in successful searches, leading to further
impact on performance for large trees. A fast CBST suggested by Natarajan and
Mittal [17] is also an external CBST and it does not maintain height balance. An
alternative to lock-free implementations of BSTs is a lock-free skiplist [18]. Even
though an update operation on the skiplist is performed in logarithmic time,
a thread has to update nodes at different levels, which results in performance
degradation.

From the literature we observe that: (i) for high contention workloads, the
strict height balancing condition of AVL trees affects concurrency negatively.
Because while performing an update operation, the number of rotations is pro-
portional to the height of a tree [21], this causes for a change in the structure of
the tree and affects all the other threads working in that vicinity; (ii) Unbalanced
CBST implementations suffer with skewness for sorted inputs. To overcome the
problems of the existing implementations, a treap data structure can be a better
candidate of interest.

Treap [6] is a collection of nodes and each node contains a key and a priority.
Treap satisfies two properties: (i) binary search tree (BST) property, and (ii)
heap order property. BST property states that for every node X, the key of X is
greater than all the keys in the left subtree of X, and it is less than all the keys
in the right subtree of X. Heap order property states that for every node X, the
priority of X is maximal (minimal) of its children. The priority of nodes’ is used
for maintaining the height balance in a treap and no need to maintain strict
height balancing condition at each internal node. Treap height is O(log n) (with
high probability), where n is the number of nodes in a treap. In the expected
case, an update operation on a treap requires less than two rotations [6]. For
treaps, the expected time complexity of the basic operations such as insert(),
delete(), and contains() is O(log n), where n is the number of nodes in a treap. In
this paper, we propose algorithms to perform the basic operations concurrently
on treaps.

In concurrent implementations, synchronization provides a solution to update
the shared data using multiple threads without any data races [13]. Synchroniza-
tion objects for the state-of-the-art concurrent data structure implementations

Table 1. Synchronization objects for different state-of-the-art implementations.

Synchronization object Implementations

ReentrantLock CVM tree [9], DVY tree [10]

synchronized keyword BCCO tree [8]

AtomicReferenceFieldUpdater EFRB tree [11], Skiplist [15]

778 P. Alapati et al.

are shown in Table 1. Lock-free skiplist [15] and EFRB tree [11] are implemented
using AtomicReferenceFieldUpdater . Lock based CBSTs [8–10] are implemented
using either ReentrantLock or synchronized keyword. ReentrantLock is a kind
of lock using that a thread can lock a particular node any number of times [3].
In [9,10], concurrent binary search trees are implemented using ReentrantLocks.
Drachsler et al. [10] use two ReentrantLock objects per node: (i) to acquire a
lock on a node using tree ordering, and (ii) to acquire a lock on a node using
logical ordering. Bronson et al. [8] use a synchronized keyword to provide syn-
chronization among multiple threads while executing a code block [1].

In this paper, we first discuss algorithms for concurrent implementation of
treaps using two ReentrantLock objects per node (2-RL). Result analysis shows
that, our 2-RL based concurrent treap implementation provides better through-
put as compared to that of the state-of-the-art implementations. The 2-RL imple-
mentation achieves average speedup of 1.25×, 1.31×, 1.4×, 3.5×, and 1.31×,
respectively, as compared to the state-of-the-art implementations, DVY tree
[10], BCCO tree [8], CVM tree [9], Skiplist [15], and EFRB tree [11]. Further,
we explore two other implementations of concurrent treaps: (i) using one Reen-
trantLock object per node (1-RL), and (ii) using one AtomicInteger object per
node (1-AI). We observe that the 1-AI implementation provides better through-
put and has smaller memory footprint as compared to the remaining concurrent
treap implementations.

Note that Blelloch et al. [7] discussed concurrent treaps to perform union,
join and intersection operations, whereas our work considers insert, delete, and
contains on treaps.

2 Background

Treap [6] is a kind of search tree that satisfies both the BST property and
the heap order property. Treap for the set of (key, priority) pairs: {(D, 31),
(E, 15), (M, 55), (N, 45), (T, 65), (V, 41), (Z, 54)} is shown in Fig. 1(a). An
insert operation on a treap is performed in two steps: (i) a node is inserted into
the treap using the BST property, and (ii) the newly inserted node checks for
heap order property, if the heap order property is not satisfied, single rotations
are performed until the property is satisfied. To insert a node: (W, 60), into a
treap as shown in Fig. 1(a), first the node is inserted using the BST property,
shown in Fig. 1(b). Now the newly inserted node results in violation of the heap
order property. To satisfy the property, first a left rotation is applied on this
node followed by a right rotation, shown in Fig. 1(c) and (d), respectively. In
Fig. 1(d), all the nodes satisfy both the properties of a treap.

To remove a node: (M, 55), first the node that has the key value M is searched
using the BST property. If the node exists, it is deleted logically, shown in
Fig. 1(e). If the logically deleted node has two children, the maximum priority
child is pushed as the root of the subtree by performing appropriate single rota-
tions. The above step is repeated until the logically deleted node has only one
child. If the logically deleted node has only one child, it is deleted physically by
updating its child. The resultant treap is shown in Fig. 1(f).

Concurrent Treaps 779

Fig. 1. Operations on treaps: an insert (b, c, d) followed by a delete (e, f).

While implementing the algorithms for concurrent treaps, we use the concept
of logical ordering, as discussed in [10]. In the logical ordering, the nodes are
ordered based on respective keys. For example, the logical ordering of the nodes
of the treap (i.e., in-order traversal of the treap), shown in Fig. 1(f) is: (D, 31),
(E, 15), (N, 45), (T, 65), (V, 41), (W, 60), (Z, 54). Every node in the logical
ordering has a unique predecessor and a unique successor. The predecessor and
successor relationships among the nodes are useful when multiple threads are
performing operations on the nodes of a treap concurrently.

3 Concurrent Treaps

In this section we present fields of a concurrent treap node, sketch on synchro-
nization, and algorithms to perform the basic operations on a concurrent treap.

Fields of a typical concurrent treap node are shown in Table 2. The key is
immutable and it is used to store an item in a node. The priority field is used to
assign priority to a node. The fields transit1 and transit2 are used to identify
the nodes that are in transit phase of insertion and deletion, respectively. If a
node is in the transit phase, the corresponding boolean value is set to true. The
mark field of a node is set to true just before the node is going to be deleted phys-
ically from the tree. The fields left, right, and parent contain the addresses

Table 2. Fields of a concurrent treap node.

class TreapNode {
final K key
final int priority
volatile boolean transit1, transit2, mark
volatile TreapNode left, right, parent, pred, succ
ReentrantLock succLock, treeLock
}

780 P. Alapati et al.

of left subtree, right subtree, and parent of a node, respectively. The fields pred
and succ contain the addresses of predecessor and successor nodes, respectively.
The fields succLock and treeLock are ReentrantLocks. ReentrantLock is a kind
of lock that enables a thread to lock a particular node any number of times [3].
A succLock is used to protect the pred and succ fields of a node. A treeLock
is used to modify left, right, and parent fields of a node. As two reentrant
locks are used, we consider the implementation as 2-reentrant lock (2-RL) based
concurrent treap implementation.

3.1 Sketch on Synchronization

While performing update operations on a treap, threads achieve synchronization
by applying locks at node level. During locking phase, the threads make use of
two layouts: (i) logical ordering layout, and (ii) treap physical layout. Logical
ordering layout is achieved using the pred and succ fields of the TreapNode class.
Treap physical layout is formed using the left, right, and parent fields of the
TreapNode class. A thread performs an update operation using four steps: (i)
acquire locks using the logical ordering, (ii) acquire locks using a treap physical
structure, (iii) update the logical ordering layout and release the locks acquired
using the logical ordering, and (iv) update the physical structure and release the
locks acquired using the physical layout.

To find a required treap node using lookup operation, first a thread traverses
using a physical layout of a treap. During this process it may stray from its path
due to concurrent updates of other threads. Later, the thread uses the logical
ordering layout to identify the required node. Because different physical layouts
for a set of treap nodes will have one logical ordering layout [10] and if a thread
traverses using the logical ordering, it does not stray from its path due to the
mutations from other threads. So, a lookup operation can proceed along with
other operations without need for acquiring any locks.

3.2 Operations on a Concurrent Treap

The following subsections deal with algorithms to perform basic operations on
a concurrent treap using 2-RL implementation.

3.2.1 Contains() Operation
Algorithm 1 explains contains(x) operation and returns true if x is found in a
treap and false, otherwise. Initially, a thread calls search(x) method to identify
a treap node that consists of key x with the help of a treap physical layout. If
the required treap node exists, the search(x) returns that node otherwise returns
a treap node (tnode) where it is terminated. If tnode.key is not equal to x, the
thread uses the logical ordering layout (i.e., lines 3–8) to find a treap node with
the required key. Finally, if tnode.key is equal to x and tnode.transit2 is false,
the thread returns true.

Concurrent Treaps 781

Algorithm 1. contains(x)

1: tnode ← search(x)
2: if (tnode.key ! = x) then
3: while tnode.key > x do
4: tnode ← tnode.pred
5: end while

6: while tnode.key < x do
7: tnode ← tnode.succ
8: end while
9: end if
10: return ((tnode.key=x) and

!(tnode.transit2))

3.2.2 Insert() Operation
Algorithm 2 explains insert() operation on a treap and returns true on successful
insert and false, otherwise. To insert a new node with (key, priority): (x, pri)
into a treap, first a thread calls search(x), that returns a treap node (tnode). The
thread identifies a predecessor (p) of x using tnode and locks p using succLock.
The thread identifies whether the treap consists of x or not. If x does not exist
in the treap, the thread locks tnode using treeLock and inserts a new treap
node (x, pri) using Algorithm 3, otherwise the thread releases the lock on the
predecessor and returns false.

Algorithm 3: insertIntoTreap(p, tnode, x, pri) returns true on successful
insertion and false, otherwise. A thread inserts a new treap node (x, pri)
by updating the logical ordering layout followed by the physical ordering lay-
out of the treap. If no other concurrent thread is inserting a new node either
as a left child of tnode or a right child of tnode (i.e. satisfies condition at
line 2 of Algorithm 3), the thread inserts the new treap node. Finally, the
thread calls Algorithm 4: adjustHeap(tnode), to push the newly inserted treap
node to the appropriate level with the help of left or right single rotations to

Algorithm 2. insert(x, pri)

1: while (true) do
2: tnode ← search(x)
3: parent ← tnode.parent
4: if tnode.key ≥ x then
5: p ← tnode.pred
6: else
7: p ← tnode
8: end if
9: if (!p.trySuccLock()) then
10: repeat //starts from the while loop
11: end if
12: s←p.succ
13: if (p.transit2) or (s.mark) then
14: unLock(p)
15: repeat
16: end if
17: if ((x > p.key) and (x ≤ s.key)) then
18: if (x = s.key) then
19: unLock(p)
20: return false
21: end if

22: if (!tnode.tryTreeLock()) then
23: unLock(p)
24: repeat
25: end if
26: if (tnode.transit1) or (tnode.transit2)

or (parent! =tnode.parent) then
27: unLock(p,tnode)
28: repeat
29: end if
30: flag ← insertIntoTreap(p,tnode, x,pri)

31: if (flag = true) then
32: return true
33: else
34: unLock(p, tnode)
35: end if
36: end if
37: unLock(p)
38: repeat
39: end while

782 P. Alapati et al.

Algorithm 3. insertIntoTreap(p, tnode, x, pri)

1: s ← p.succ
2: if ((x < tnode.key and tnode.left = null)

or (x > tnode.key and tnode.right = null))
then

3: newTNode ← new Node(x,pri)
4: newTNode.parent ← tnode
5: newTNode.succ ← s
6: newTNode.pred ← p
7: s.pred ← newTNode
8: p.succ ← newTNode

9: if (x < tnode.key) then
10: tnode.left ← newTNode
11: else
12: tnode.right ← newTNode
13: end if
14: unLock(p, tnode)
15: adjustHeap(newTNode)
16: return true
17: end if
18: return false

Algorithm 4. adjustHeap(tnode)

1: while (true) do

2: tnParentParent ← tnode.parent.parent

3: if (!tnParentParent.tryTreeLock()) then

4: repeat //starts from the while loop

5: end if

6: tnParent ← tnode.parent

7: if (tnParentParent.mark or

!tnParent.tryTreeLock()) then

8: unLock(tnParentParent)

9: repeat

10: end if

11: if (tnParent.transit1 or tnParent.transit2

or !tnode.tryTreeLock()) then

12: unLock(nParentParent, nParent)

13: repeat

14: end if

15: if (tnParentParent �=tnode.parent.parent) or

(tnParent �=tnode.parent) then

16: unLock(tnParentParent, tnParent, tnode)

17: repeat

18: end if

19: if (tnParent.pri ≤ tnode.pri) then

20: boolean flag ← false

21: if (tnParent.left = tnode) then

22: if tnode.right �= null then

23: tnRight ← tnode.right

24: tnRightParent ← tnode.

right.parent

25: if !tnRight.tryTreeLock() then

26: unLock(tnParentParent,

tnParent, tnode)

27: repeat

28: end if

29: if (tnRight �= tnode.right) or

(tnRight.mark) or

(tnRightParent �= tnode) then

30: unLock(tnParentParent,

tnParent, tnode, tnRight)

31: repeat

32: end if

33: flag=true

34: end if

35: singleRotateRight(tnParent,tnode)

36: if (flag=true) then

37: unLock(tnParent.left)

38: end if

39: else

40: Symmetric to tnode.right

41: end if

42: unLock(tnParentParent, tnParent, tnode)

43: else

44: tnode.transit1 ← false

45: unLock(tnParentParent, tnParent, tnode)

46: break

47: end if

48: end while

satisfy the heap order property. Using Algorithm4, a thread acquires locks on
few treap nodes while performing rotations to prevent concurrent updates on
left, right, and parent fields of treap nodes. To perform a rotation between a
treap node (tnode) and it’s parent (tnode.parent), the thread has to acquire locks
on tnode.parent.parent, tnode.parent, and tnode, respectively. If a thread acquires
locks on required treap nodes, it performs an appropriate single rotation. In the
lock acquisition process, if a thread fails to acquire any lock, it releases all the
acquired locks and repeats the lock acquisition process.

Concurrent Treaps 783

Algorithm 5. delete(x)

1: while (true) do

2: tnode ← search(x)

3: if tnode.key = x then

4: p ← tnode.pred

5: else

6: p ← tnode

7: end if

8: if (!p.trySuccLock()) then

9: repeat //starts from the while loop

10: end if

11: if (p.mark) then

12: unLock(p)

13: repeat

14: end if

15: s ← p.succ

16: if ((x > p.key) and (x ≤ s.key)) then

17: if (s.key > x) then

18: unLock(p)

19: return false

20: end if

21: if (!s.trySuccLock()) then

22: unLock(p)

23: repeat

24: end if

25: s.transit2 ← true

26: tnode ← s

27: boolean flag←acquireTreeLocks(tnode)

28: while (flag) do

29: if (tnode.left �= null) and

(tnode.right �= null) then

30: child ← maxPriorityNode(

tnode.left, tnode.right)

31: if (child = tnode.left) and

(child.right �= null) then

32: tnodeChild ← child.right;

33: else if (child = tnode.right) and

(child.left �= null) then

34: tnodeChild ← child.left

35: end if

36: if (child = tnode.left) then

37: singleRotateRight(tnode,

tnode.left)

38: else

39: singleRotateLeft(tnode,

tnode.right)

40: end if

41: if (tnodeChild �= null) then

42: unLock(tnodeChild)

43: end if

44: unLock(tnode.parent.parent,

tnode.parent, tnode)

45: flag ← acquireTreeLocks(tnode)

46: else

47: tnode.mark ← true

48: sSucc ← s.succ

49: sSucc.pred ← p

50: p.succ ← sSucc

51: unLock(p, s)

52: removeFromTreap(tnode)

53: return true

54: end if

55: end while

56: if !flag then

57: unLock(p,s)

58: repeat

59: end if

60: end if

61: unLock(p)

62: end while

3.2.3 Delete() Operation
Algorithm 5 explains delete() operation on a concurrent treap. It returns true
on successful delete and false, otherwise. In successful delete, first, a thread
logically deletes a treap node (tnode) by acquiring necessary succLocks on the
required treap nodes. Further, the thread acquires the necessary treeLocks on
the treap nodes and updates the logical ordering layout followed by the physical
layout of a treap. A thread uses acquireTreeLocks(tnode) to acquire treeLocks
returns true, if it acquires the locks successfully and false, otherwise. First,
the thread locks the parent of tnode (tnode.parent). Further, the thread acquires
the necessary locks based on the number of children the tnode contains. It is
classified into two cases: (i) if the tnode has at most one child, the thread locks
the child; (ii) if the tnode has two children, the thread locks the child node that
has the maximum priority. If the maximum priority child is left (right) child of
its parent, the thread locks right (left) child of the maximum priority child, if
exists.

784 P. Alapati et al.

If the node to be deleted (tnode) has two children, the thread pushes the
tnode towards leaf nodes by performing single left/right rotations until it has a
single child. Suppose the tnode has a single child, it sets the mark field of the
tnode to true (i.e., tnode is just going to be deleted physically from the treap),
and updates the logical ordering. Finally, the thread calls removeFromTreap()
to remove the tnode from the treap and updates the physical layout.

4 Correctness

To show that our concurrent implementation of treaps is correct, we provide
a sketch of proof. It shows that our implementation is deadlock free and it
generates linearizable executions.

4.1 Safety Property

In our implementation, update operations (insert() and delete()) need locks
to achieve synchronization among multiple threads. While performing update
operations, threads acquire locks on the nodes of a treap in a specific order
to avoid deadlock. First, threads get locks on the nodes of a treap using the
treap logical ordering layout with smallest key first. If more than one thread
is contending for the same predecessor, only one thread gets a lock and the
remaining threads spin in a while loop without holding a lock on any treap
node. Later, threads acquire locks using the treap physical layout, following
the level order from root to leaves (lock the node closer to the root first). In
the locking process, if a thread is unable to acquire a lock either in the logical
ordering layout or in the treap physical layout, it releases all the locks that it
is currently holding and restarts the locking process. Hence threads working on
update operations do not create any deadlock.

4.2 Linearizability

Linearizability is a correctness condition for concurrent objects [14]. To show
linearizability, we provide linearization points (LPs) for each operation.

The LP of successful insert(x, pri) operation depends on where the new
treap node is added to its parent. If the new treap node is added as a left child
of its parent, the LP is line 7 of Algorithm3, where the predecessor field of the
successor, s.pred, is updated with new treap node. Otherwise if the new treap
node is added as a right child of its parent, the LP is line 8 of Algorithm3, where
the successor field of the predecessor, p.succ, is updated with new treap node.
The LP of unsuccessful insert(x, pri) is where it returns false, i.e., line 20 of
Algorithm 2. The LP of successful delete(x) operation is line 25 of Algorithm 5,
where s’s transit2 field is set to true. The LP of unsuccessful delete(x) is where
it returns false, i.e., line 19 of Algorithm 5.

The LP of successful contains(x) is when the transit2 field of the treap node
is observed to be false (i.e., at line 10 of Algorithm 1). The LP of unsuccessful

Concurrent Treaps 785

contains(x) is upon observing bigger key in line 6 or when the transit2 of the
treap node is observed to be true. However, it is possible that other concurrent
threads may insert new nodes with key x and these updates may not be observed
at line 6. In such cases, the LP of unsuccessful contains(x) is just before the LP
of new insert.

4.3 Progress Guarantee

The contains() operation is lock-free and it has two phases: (i) traverse using
a treap physical layout; (ii) traverse using the logical ordering of a treap. In
the first phase, a thread may stray from its path due to concurrent insert() or
delete() operations of other threads. So at least one of the other threads makes
progress by updating the structure of a treap. In the second phase, the thread
traverses using the logical ordering of keys in the treap. This operation either
will be completed in finite number of steps if there are no concurrent updates or
it may be delayed due to other concurrent updates, but other concurrent threads
update the treap. Hence progress is guaranteed.

5 Experimental Evaluation

5.1 Experimental Setup

To evaluate performance of our implementations, we conduct experiments on
an AMD Opteron processor 6376 with frequency 2.3 GHz, 64 GB RAM, and 64
cores spread across 8 NUMA nodes. Each NUMA node has 8 cores: 16KB L1
D-cache is local to each core, 64KB L1 I-cache and 2MB L2 cache are shared by
two consecutive cores, and 6MB L3 cache is shared by all the cores in a NUMA
node. The AMD 6376 has CentOS release 6.4 and OpenJDK Runtime version
1.7.0 09 using 64-bit Server VM (build 23.03 -b09, mixed mode). We focus on
three types of workloads:
– Low contention: 70%Contains - 20%Insert - 10%Delete (70C-20I-10D)
– Medium contention: 50%Contains - 25%Insert - 25%Delete (50C-25I-25D)
– High contention: 30%Contains - 35%Insert - 35%Delete (30C-35I-35D)

For our experimental analysis, we consider keys from three different range sizes
(2 × 105, 2 × 106, and 2 × 107) and priorities are randomly generated from
a large discrete set (range of 32-bit integers) using uniform distribution. Before
each trial, we prefill the data structure to the size of half of its keys range and
set the trial duration for hundred seconds. We vary the number of threads in
powers of 2 (from 1 to 64) and calculate the sum of operations performed by all
the threads together. The average of 10 trials is considered. For our analysis, we
use the source code provided by Synchrobench [4] and compare throughput of
our implementation with the following state-of-the-art implementations:
– DVY tree – Lock-based AVL tree via logical ordering by Drachsler et al. [10].
– BCCO tree – Lock-based relaxed AVL tree by Bronson et al. [8].
– Skiplist – Lea’s lock-free skipslist [15] implemented using the work of Fraser [12].
– CVM tree – Lock-based partially external relaxed AVL tree by Crain et al. [9].
– EFRB tree – A non-blocking, external BST by Ellen et al. [11].

786 P. Alapati et al.

5.2 Results Analysis

Table 3 shows average speedup of concurrent treaps as compared to the sequen-
tial implementation for different workloads when the number of threads is 64.
Speedup of concurrent treaps increases with the increase in keys range because
the probability of overlapping operations decreases with the increase in keys
range. It increases as we move from high contention workload to low contention
workload because the contains operation is lock-free.

Table 3. Average speedup of concurrent treaps as compared to sequential implemen-
tation for different workloads when the number of threads is 64.

Keys range Average speedup

30C-35I-35D 50C-25I-25D 70C-20I-10D

2 × 105 6.42 7.50 11.56

2 × 106 15.14 16.55 19.88

2 × 107 21.69 22.38 23.75

Figure 2 shows throughput of different tree implementations with varying
number of threads under different workloads. From the figure we observe that
for larger keys range (2×107) and for all the workloads, concurrent treap imple-
mentation provides better throughput. Because concurrent treap implementa-
tion does not maintain strict height balance condition on every non-leaf node
and on expectation it maintains O(log n) height [16], contention reduces as the
number of threads increases. In concurrent treaps while deleting a treap node, a
thread moves the logically deleted node from top (root) to bottom (leaves) until
the node has at most one child. In DVY tree, a thread replaces the logically
deleted node with the smallest key in the right subtree and adjusts the height of
BST by performing rotations on the access path from bottom to top, to satisfy
AVL tree property. While performing operations on a treap, the probability of
overlapping nodes on concurrent treap is less as compared to that of DVY tree.
As a result, concurrent treaps provide better throughput as compared to DVY
tree. BCCO tree needs hand-over-hand optimistic validation while performing a
search operation and that impacts performance as the tree size increases. EFRB
tree is an external BST and its average access path length is more as compared
to that of the internal BSTs, which causes degradation in performance for large
keys range. For high contention workloads (30C-35I-35D) and smaller keys range
(2×105), CVM and EFRB trees provide better throughput because their update
operations do not need any rotations, which results in less contention.

Figure 3 shows throughput of different tree implementations when keys are
inserted in sorted order. For all the workloads, our concurrent treap implemen-
tation provides better throughput because heap property of a treap keeps the
height of a concurrent treap to be O(log n) on expectation [16]. CVM tree and
EFRB tree implementations provide very less throughput as the implementa-
tions create skewed trees if the input is in sorted order.

Concurrent Treaps 787

Fig. 2. Throughput of different tree implementations with varying number of threads
under different workloads. Higher is better.

Fig. 3. Throughput of different tree implementations for sorted keys with varying
number of threads under different workloads and for 2 × 106 keys. Higher is better.

5.3 Impact of Different Locking Objects

Thus far we consider a concurrent treap implementation using two Reentrant-
Lock objects per node (2-RL). We now explore the impact of different locking
objects used in concurrent treap implementation on throughput. We implement
concurrent treaps using two other synchronization mechanisms: (i) One Reen-
trantLock object per node (1-RL), and (ii) One AtomicInteger object per node
(1-AI). Figure 4 shows throughput of different concurrent treap implementa-

788 P. Alapati et al.

Fig. 4. Throughput of concurrent treap implementation with locking objects for vary-
ing number of threads under different workloads. Higher is better.

tions. From the figure, we observe that throughput of 2-RL based concurrent
treap implementation is less than that of 1-RL based implementation. Note that
throughput of 1-RL is in turn less than that of 1-AI based implementation. To
identify the reasons behind these variations in throughput, first we calculate
cache-misses per operation (cache-misses) using perf tool [2], shown in Fig. 5.

From Fig. 5, we observe that in majority of the cases the number of cache-
misses of 2-RL implementation is more than that of 1-RL implementation; 1-RL
is in turn more than that of 1-AI based implementation. Because 2-RL based
implementation consumes more memory than 1-RL based implementation, it

Table 4. Footprint (in MB) of different treap implementations. Lower is better.

Number of keys Average memory footprint (in MB)

2-RL 1-RL 1-AI

105 22 17 14

106 155 107 74

107 1522 1044 724

Concurrent Treaps 789

Fig. 5. Cache Misses of concurrent treap implementation with locking objects for
varying number of threads under different workloads. Lower is better.

incurs more cache misses than 1-RL. Similarly, 1-AI based implementation has
fewer cache misses because it consumes less memory than ReentrantLock imple-
mentations (refer Table 4). That is, footprint per node of 2-RL, 1-RL, and 1-AI
implementations is in the decreasing order and hence, their cache misses. As a
result the number of cache-line evictions of 2-RL, 1-RL, and 1-AI implemen-
tations also is in the decreasing order and it helps to improve the throughput.
Reduced memory footprint helps in decreasing the memory response time and
increasing the stability of the implementation [19]. Later we calculate the time
taken by a thread (i.e., average over one billion times) to acquire and release a
lock on a node. We observe that a thread takes 33.7 ns and 26.3 ns using Reen-
trantLock and AtomicInteger, respectively. Hence concurrent treap implementa-
tion with AtomicInteger locking object is a good choice to get better throughput.

6 Conclusion

In this work, we proposed algorithms for concurrent treap implementation. We
observed that for large tree sizes and different workloads, our concurrent treap
implementation provides better throughput as compared with the state-of-the-
art implementations. For small tree sizes and high contention workloads, exist-
ing implementations EFRB and CVM trees yield better throughput. For sorted

790 P. Alapati et al.

inputs, our concurrent treap implementation scales well with the number of
threads. We also observed the impact of locking objects on throughput of con-
current treaps. Among different concurrent treap implementations, the imple-
mentation that uses AtomicInteger provides better throughput as compared with
ReentrantLocks. Finally, we conclude that our concurrent treap implementations
are better candidates of interest for end users.

References

1. Java programming. https://en.wikibooks.org/wiki/Java Programming
2. Perf tool. https://perf.wiki.kernel.org/index.php
3. Reentrant locks. http://docs.oracle.com/java7/api/
4. Synchrobench. https://github.com/gramoli/synchrobench
5. Afek, Y., Kaplan, H., Korenfeld, B., Morrison, A., Tarjan, R.E.: Cbtree: a practical

concurrent self-adjusting search tree. DISC 27(6), 393–417 (2014)
6. Aragon, C.R., Seidel, R.G.: Randomized search trees. In: FOCS, pp. 450–454 (1989)
7. Blelloch, G.E., Reid-Miller, M.: Fast set operations using treaps. In: SPAA, pp.

16–26 (1998)
8. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary

search tree. In: PPoPP, pp. 257–268 (2010)
9. Crain, T., Gramoli, V., Raynal, M.: A contention-friendly binary search tree. In:

ICPP, pp. 229–240 (2013)
10. Drachsler, D., Vechev, M., Yahav, E.: Practical concurrent binary search trees via

logical ordering. In: PPoPP, pp. 343–356 (2014)
11. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search

trees. In: PODC, pp. 131–140 (2010)
12. Fraser: Practical lock freedom. Ph.D. thesis, University of Cambridge (2003)
13. Herlihy, M.P., Shavit, N.: The Art of Multiprocessor Programming. Morgan

Kaufmann Publishers, San Francisco (2008)
14. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent

objects. TOPLAS 12(3), 463–492 (1990)
15. Lea, D.: Concurrent skip list (2005)
16. Mart́ınez, C., Roura, S.: Randomized binary search trees. JACM 45(2), 288–323

(1998)
17. Natarajan, A., Mittal, N.: Fast concurrent lock-free binary search trees. In: PPoPP,

pp. 317–328 (2014)
18. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. CACM 33(6),

668–676 (1990)
19. Reitbauer, A.: Java Enterprise Performance. entwickler Press, Frankfurt (2011)
20. Shavit, N.: Data structures in the multicore age. CACM 54(3), 76–84 (2011)
21. Weiss, M.A.: Data Structures and Algorithm Analysis in C++, 3rd edn. Pearson

Press, Boston (2009)

https://en.wikibooks.org/wiki/Java_Programming
https://perf.wiki.kernel.org/index.php
http://docs.oracle.com/java7/api/
https://github.com/gramoli/synchrobench

Survey on Energy-Saving Technologies
for Disk-Based Storage Systems

Ce Yu(B), Jianmei Wang, Chao Sun, Xiaoxiao Lu, Jian Xiao, and Jizhou Sun

School of Computer Science and Technology,
Tianjin University, Tianjin 300350, China

{yuce,wangjianmei,sch,mldssr,xiaojian,jzsun}@tju.edu.cn

Abstract. The explosive growth of data from various research fields has
led to increasing requirement and serious energy consumption of data
storage in big data era. As a component of a data center, the storage
system consumes almost 27% of the total energy. Therefore, increasing
attention has been drawn to the research on energy conservation. In this
paper, existing energy-saving methods for disk drives are summarized,
which include disk power management, cache management, workload
skew and RAID configuration. We find that power management is the
basic strategy widely used in other models. Workload skew is efficient
for energy saving although it could cause response delay due to the load
concentration. Multiple models based on RAID are also developed for
energy conservation. In the end, this paper forecasts the development of
energy-saving technologies and come to the conclusion that a co-design
scheme of hardware and software is necessary for the application-oriented
system.

Keywords: Big data · Disk array · Energy saving · Power-aware · Stor-
age system

1 Introduction

Nowadays the explosive growth of data has led to the increasing requirement of
data storage. The storage form varies from single disk to massive disk storage
system. The amount of energy consumed by a data center can be equivalent
to a medium-sized town. Among varieties of components in data center, the
energy consumption of storage system is nonnegligible - the energy consumption
of the storage system is close to 27%. How to reduce the energy consumption
of the storage system has become a significant issue and hot topic in the field
of computer science and technology. Consequently, the research in this field has
important academic value and practical significance to promote the development
and application of energy-saving technologies of storage system.

Research on data accessing to different data centers shows that the total
accessed data is less than 5% of the total storage data in most of the storage
systems in any given day, which indicates that the average workload of disk is low,

c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 791–800, 2017.
DOI: 10.1007/978-3-319-65482-9 64

792 C. Yu et al.

and there is plenty of idle time able to be used for energy savings. Accordingly,
the energy-saving principle of disk storage system is as follows: the disk without
data access can enter low power state to save energy and when a new request
arrives will be woken up to serve it. Relevant survey has been conducted before
[6], and we expand the content in this paper. According to the different energy-
saving ways, energy-saving techniques are divided into power management, cache
management, workload skew and RAID configuration.

2 Disk Power Management

In order to reduce the energy consumption of the storage system, kinds of energy-
saving schemes are proposed. Among these, disk power management is frequently
used as an approach to saving energy. The related research is mainly divided into
two types: one is the traditional power management, the other is dynamic power
management.

2.1 Traditional Power Management (TPM)

A disk is roughly consist of disc, magnetic head, magnetic head arm, motor
and electronic control circuit etc. Motor and electronic control circuit are the
two main energy components of the disk drive. Power management is the basic
technique for energy saving based on disk storage system. Traditional power
management can save energy by switching disk between the states of spinning
down and up. There are generally three states of a disk: active state, idle state
and standby state. The energy consumption is the largest in the active state
and the smallest in the standby state. The usual energy-efficient idea is to trans-
form the disk in the long idle state to a lower power state. Traditional power
management is limited to desktop, laptop and mobile devices.

2.2 DRPM

Multi-speed disk system is proposed in order to adapt to the various workload of
the real environment and each disk has a plurality of rotation speeds. DRPM is
an energy-efficient strategy which uses multi-speed disks [8]. The disk in DRPM
rotates at a low speed in light load and high speed in heavy load, instead of com-
pletely spinning down disks which can incur significant time and power costs.
The main value of DRPM is that it breaks the disk model with single speed.
DRPM dynamically select a suitable disk speed according to the current work-
load, even the short idle interval can save energy by reducing speed. Besides,
DRPM also provides the option of serving the request at a lower RPM (revolu-
tions per minute) if performance is not very important to gain additional energy
savings. The deficiency of DRPM is the great difficulty to implement the multi-
speed disks. There are only a few disk manufactures to launch a two-speed disk,
while the large scale applications in the actual storage system need to wait.

Survey on Energy-Saving Technologies for Disk-Based Storage Systems 793

3 Cache Management and Workload Skew

A great many technologies conserve energy by cache management and workload
skew. Specifically, the workload is concentrated on a few disks, so that other disks
can be in the low power state to save energy. Relocating data and redirecting
request are two main research directions for workload skew.

3.1 Caching and Buffering Across Disks

An available idea for energy savings is to divide the disks into the cache disks
which store the copied of frequently accessed data and data disks which have
opportunities to get into a low power state.

MAID. MAID (Massive Arrays of Idle Disks) is a typical representative of
this kind of energy-saving technology [4]. The disk array is divided into one
or a plurality of active drives which are served as read/write cache and the
others are passive drives. Read requests have a priority to search the data in the
cache. Similarly, write requests are served by cache if the target disk is in the
standby state. MAID is suitable for archiving storage systems, namely, massive
storage system with a large number of disks. MAID has both advantages and
disadvantages: the advantage is the obvious energy-saving effect because of the
concentration of workload; the disadvantage is the response delay resulted from
the high frequency of request towards active drives. There are a number of related
research on MAID, such as DT-MAID [27], MCS-SSD [30], Eco-storage [1].

WO. Write off-loading (WO) is proposed on the idea of buffering writes across
disk to avoid disk spin-ups, which writes from a logical volume in standby mode
to an active volume [17]. It believes that buffering writes is more important than
caching data for the data-center workload. WO is suitable for write-dominated
workload, which means write is dominant for a relatively long period of time.
Other buffering schemes are as follows: [20,28].

3.2 Caching and Buffering in Memory

Caching and buffering in memory is another cache policy.

Power-Aware Cache Replacement Policies. Power-Aware LRU(PA-LRU)
is an on-line caching algorithm which is proposed to improve the energy efficiency
of storage systems based on the observation that different disks have different
workload characteristics such as time interval distribution of request arrival [32].
Its main idea is to dynamically keep track of workload characteristics for each
disk, including the percentage of cold misses and the cumulative distribution of
interval lengths.

Partition-Based LRU(PB-LRU) is a new power-aware on-line algorithm that
requires little parameter tuning [33]. PB-LRU partitions the total system cache
according to the characteristics of each disk.

794 C. Yu et al.

Energy-Efficient Cache Write Policies. Two cache write policies based on
memory are presented to save energy: write-back with eager update (WBEU) and
write-through with deferred update (WTDU) [34]. WBEU writes all modified
data blocks to disk whenever the target disk is active, which reduces the number
of disk spin-ups. In WTDU, modified data blocks are written to a log temporarily
if the target disk is in the standby state. Logs could reside in any persistent
storage device, such as NVRAM or dedicated log disks.

Power-Aware Prefetching. Based on spatial locality – data close to access
data have a high probability to be accessed soon after, adjacent data blocks
are prefetched to memory in advance to improve performance. Moreover, energy
could be saved due to the change of access time. EEFS (energy-efficient file
system) is a typical representative which applies power-aware prefetching at the
file rather than block level [14].

3.3 Data Migration

PDC(Popular Data Concentration) is another technique to shape workload [19],
the core idea of which is to concentrate the popular data which are accessed
frequently to a subset of the disk system. PDC migrates data according to their
priorities, the most popular data are migrated to the first disk, then to the sec-
ond and so on, such that other disks have more opportunities to spin down.
PDC is suitable for the application with high access frequency, such as Web
applications. The advantage is the same as MAID. The disadvantage is com-
putational complexity and heavy workload due to the regular data migration.
Besides, response delay is also a disadvantage because of load concentration.
There are many improved algorithms: PDC-NH [12], other schemes:[3,18].

3.4 Hibernator

Hibernator is an energy management system of disk array [31]. The storage
system is consist of multiple RAID which have different rotation speeds. Hiber-
nator provides better energy savings while guaranteeing performance. Several
techniques are used to support Hibernator: the use of multi-speed disks; a coarse-
grained approach called CR to dynamically deciding rotation speed for each disk;
an efficient data migration strategy to select the proper data and an appropriate-
speed disk; automatic performance boosts while there is a risk that performance
may not be met because of disk energy management.

4 RAID Configuration

RAID is mostly used to improve performance and reliability in the storage sys-
tem. There are also some studies on RAID from the point of energy conserva-
tion. The energy-saving strategy of the software and the architecture of hardware
based on RAID are both introduced in this paper, such as eRAID, PARAID,
EERAID.

Survey on Energy-Saving Technologies for Disk-Based Storage Systems 795

4.1 eRAID

The eRAID (energy-efficient RAID) model makes full use of the redundant char-
acteristic of RAID1 to redirect the I/O request [23]. The main idea of eRAID is
to spin down partial or entire mirror groups to low power state to save energy
while guaranteeing acceptable performance. Read requests towards the standby
disks are redirected to data copies in the primary disks, while write requests are
buffered to controller cache and served after the standby disks are spun up.

4.2 PARAID

Weddle et al. proposed PARAID (Power-Aware RAID) model based on the char-
acteristics of periodic fluctuation of specific workload using the experience of car
shift principle [24]. Each RAID in PARAID contains a different number of disks
and is similar to a gear of a car, different RAID provide different degrees of
parallelism, that is, different read and write performance. Reliability can be
guaranteed by the constraint of disk power cycles as well as the application of
various RAID coding methods.

4.3 RAIS

SSD (Solid State Driver) has great potential for energy saving based on RAID
group. Compared to HDD (Hard Disk Driver), SSD possess multiple advan-
tages, such as lower power consumption, lighter weight, and smaller I/O access
times. Replacing some HDD with SSD can improve the performance while reduce
energy consumption. Therefore, RAIS (Redundant Array of Independent Solid-
State Drivers) is proposed for energy conservation [9]. Besides, studies related
to RAIS have been enriched and developed recently, such as CGC-RAIS [10],
CD-RAIS [5], MC-RAIS [25].

4.4 EERAID

Cache structure is a common way to save energy. D. Li et al. made full use of
the redundant information in the disk array, combined the redundant informa-
tion with the I/O scheduling policy and cache management strategy, and put
forward the high efficiency disk array called EERAID (Energy-Efficient RAID)
[13]. EERAID adopts non-volatile cache for write back policy to optimize the
write request.

4.5 RIMAC

On the basis of EERAID, a redundancy-based, two-level I/O cache architecture
called RIMAC is proposed [29]. RIMAC combines memory cache and NVRAM
of RAID 5 to store data block information and parity block information respec-
tively. The idea of RIMAC is to enable data on the standby disk to be recovered
by accessing data in the two-level I/O cache or on currently active/idle disks.

Except these, there are other types of models based on RAID, such as
S-RAID (Semi-RAID) [26], ThinRAID [22], GRAID [15].

796 C. Yu et al.

5 Power-Proportional Distributed File System

In this section, two power-proportional strategies based on Distributed File Sys-
tem (DFS) will be presented. Instead of saving energy across disk, DFS save
energy across node.

5.1 Rabbit

Rabbit is a power-proportional distributed file system (PPDFS), based on
Hadoop distributed file system (HDFS) [2]. Rabbit explicates the idea of a cover-
ing set (CS) – at least one replica of a data block must be stored in the subset of
nodes. Rabbit alleviates the node failure rates through data layouts, which min-
imize the number of nodes that need to be spin-up after a failure. For a shared
infrastructure, Rabbit also allows different datasets to use different subsets of
nodes as a building block to avoid interference.

5.2 Sierra

Sierra is also a power-proportional DFS [21]. While Rabbit is focused on read-
only workloads, Sierra is targeted at general workloads, including read and write.
Sierra uses redundant data to divert accesses and serves write request by inte-
grating write off-loading, as described above. Sierra allows spinning down a sub-
stantial part of servers during light loads without data migration and extra
capacity requirements.

6 Research Prospect

In the above, many techniques for energy conservation are introduced that
mainly include the improvements of hardware device and the use of software
strategy. The major research direction in future is also considered from the two
aspects. For the strategy of software, it is potential to make a breakthrough
from multiple aspects, such as disk power management, dynamic workload, data
placement etc. Besides, the combination of some energy-efficient strategies is
able to get a better effect. From a hardware perspective, energy can be saved by
using more energy-efficient storage devices to replace previously ordinary devices.
Therefore it is workable to adopt novel storage architectures or apply new energy-
efficient devices, like NVMs (non-volatile memories) [7], such as STT-RAM (spin
transfer torque RAM) [11], PCM (phase change memory) [16]. Considering the
improvement of disk drive, Ultrastar He disk is a new technique proposed by
HGST, which is filled with helium inside instead of ordinary air such that the
distance between the discs is shortened and the capacity of disk is expanded.
Hardware and software co-design is the developing trend in future. It is essential
to combine effective or novel algorithms and new hardware device, such as PCM,
Ultrastar He.

Survey on Energy-Saving Technologies for Disk-Based Storage Systems 797

Table 1. Classification of power-reduction techniques according to the storage-stack
layer to which they are applied

Storage-stack layer Techniques

Storage-server cluster WO, Rabbit, Sierra

RAID Hibernator, eRAID, PARAID, S-RAID, RAIS, EERAID,
RIMAC

JBOD (non-RAID) DRPM, MAID, PDC, PA/PB-LRU

Single disk TPM, Cache, PA prefetch, PA buffer, EEFS

Table 2. Power-reduction techniques classified according to targeted workload

Targeted workload Techniques

Read-many/write-many PARAID, PDC, Hibernator, EERAID, RIMAC, eRAID,
DPRM, Sierra

Read-dominated cache, PA/PB-LRU, PA prefetch, EEFS, Rabbit

Write-once/read-maybe MAID, TPM

Write-dominated PA buffer, WO

Table 3. Comparison of typical energy saving technologies

Energy-

saving

strategy

Redundancy Multi-speed Cache Workload skew Comprehensive

performance

TPM NO NO NO NO General

DRPM NO YES NO NO High

MAID NO NO YES YES(Relocating

Data)

General

PA/PB-LRU NO YES YES NO High

WO NO NO YES NO High

PDC NO NO NO YES(Relocating

data)

Low

Hibernator NO YES NO YES(Relocating

data)

High

eRAID YES NO NO NO High

PARAID YES NO NO YES High

S-RAID YES NO NO NO High

EERAID YES YES YES NO High

RIMAC YES NO YES YES(Redirecting

request)

High

RAIS YES NO NO NO High

7 Conclusions

Modern storage systems vary from single disk to large scale many-disk systems
because of the fast-growing data, and the energy consumption of data storage

798 C. Yu et al.

has increased rapidly. Studies have shown that the energy consumption of a
data center could be equivalent to a medium-sized town, and the storage system
accounts for 27% which can not be ignored. Therefore, an increasing number
of research concerning energy conservation emerged. In this paper, we make a
survey on energy-saving methods for disk drives and classify them into power
management, cache management and workload skew and RAID configuration,
and analyze the advantages and disadvantages of these methods as well as their
possible applications. Besides, we discuss the prospects for future studies from
both hardware and software aspects, and provide insights to future research
possibilities.

In Table 1, all of the existing energy-saving techniques for data-center storage
are classified according to the storage-stack layer they were originally targeted at.
The more specific a technique, the more it is tied to a specific layer of the storage
stack. Many existing techniques target a specific type of workload. Table 2 maps
every technique into one of four quadrants according to the targeted read and
write request arrival rate. In view of the energy-saving techniques mentioned
above, the comparison and summary are given in Table 3.

All in all, we can draw the following conclusions. Firstly, improvements in
the storage device and system architecture are useful to save energy for univer-
sal storage system. A variety of energy-efficient storage media have been used
for energy conservation, such as SSD, multi-speed disks, PCM, RM, Ultrastar
He. Caching and tiering are also effective approaches for energy savings, such
as MAID, PA/PB-LRU, EERAID and RIMAC. Secondly, software strategy is
also an available option for universal storage system, such as algorithms used in
DRPM, PDC, PARAID, Hibernator. Thirdly, hardware and software co-design
is a better alternative for application-oriented storage systems. Different applica-
tion scenarios have different requirements. For instance, astronomical data and
financial data make different demands on storage system. Combination of cus-
tomized storage device and the special file system is a better alternative for these
special applications.

Acknowledgments. This work is supported by the National Natural Science Founda-
tion of China (11573019, 61602336), the Joint Research Fund in Astronomy (U1531111)
under cooperative agreement between the National Natural Science Foundation of
China (NSFC) and Chinese Academy of Sciences (CAS).

References

1. Al Assaf, M.M., Jiang, X., Abid, M.R., Qin, X.: Eco-storage: A hybrid storage
system with energy-efficient informed prefetching. J. Signal Process. Syst. 72(3),
165–180 (2013)

2. Amur, H., Cipar, J., Gupta, V., Ganger, G.R., Kozuch, M.A., Schwan, K.: Robust
and flexible power-proportional storage. In: Proceedings of the 1st ACM sympo-
sium on Cloud computing, pp. 217–228. ACM (2010)

3. Chai, Y., Du, Z., Bader, D.A., Qin, X.: Efficient data migration to conserve
energy in streaming media storage systems. IEEE Trans. Parallel and Distrib.
Syst. 23(11), 2081–2093 (2012)

Survey on Energy-Saving Technologies for Disk-Based Storage Systems 799

4. Colarelli, D., Grunwald, D.: Massive arrays of idle disks for storage archives. In:
Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pp. 1–11.
IEEE Computer Society Press (2002)

5. Du, Y., Zhang, Y., Xiao, N., Liu, F.: Cd-rais: Constrained dynamic striping in
redundant array of independent SSDS. In: 2014 IEEE International Conference on
Cluster Computing (CLUSTER), pp. 212–220. IEEE (2014)

6. Jian, S., Zhanhuai, L., Xiao, Z., Huifeng, W., Qinlu, H.: Review in power con-
sumption of disk based storage systems. In: 2013 8th International Conference on
Computer Science and Education (ICCSE), pp. 47–50. IEEE (2013)

7. Kim, H., Seshadri, S., Dickey, C.L., Chiu, L.: Evaluating phase change memory for
enterprise storage systems: a study of caching and tiering approaches. In: Proceed-
ings of the 12th USENIX Conference on File and Storage Technologies (FAST 14),
pp. 33–45 (2014)

8. Kim, M., Song, M.: Saving energy in video servers by the use of multispeed disks.
IEEE Trans. Circuits Syst. Video Technol. 22(4), 567–580 (2012)

9. Kim, Y.: An empirical study of redundant array of independent solid-state drives
(rais). Cluster Comput. 18(2), 963–977 (2015)

10. Kim, Y., Oral, S., Shipman, G.M., Lee, J., Dillow, D.A., Wang, F.: Harmonia:
A globally coordinated garbage collector for arrays of solid-state drives. In: 2011
IEEE 27th Symposium on Mass Storage Systems and Technologies (MSST), pp.
1–12. IEEE (2011)

11. Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory as a
scalable dram alternative. In: ACM SIGARCH Computer Architecture News, vol.
37, pp. 2–13. ACM (2009)

12. Lee, D., Koh, K.: PDC-NH: Popular data concentration on nand flash and hard
disk drive. In: 2009 10th IEEE/ACM International Conference on Grid Computing,
pp. 196–200. IEEE (2009)

13. Li, D., Wang, J.: Eeraid: energy efficient redundant and inexpensive disk array. In:
Proceedings of the 11th workshop on ACM SIGOPS European workshop, p. 29.
ACM (2004)

14. Li, D., Wang, J.: A performance-oriented energy efficient file system. In: Proceed-
ings of the international workshop on Storage network architecture and parallel
I/Os, pp. 58–65. ACM (2004)

15. Mao, B., Feng, D., Jiang, H., Wu, S., Chen, J., Zeng, L.: Graid: A green raid
storage architecture with improved energy efficiency and reliability. In: 2008 IEEE
International Symposium on Modeling, Analysis and Simulation of Computers and
Telecommunication Systems, pp. 1–8. IEEE (2008)

16. Mao, W., Liu, J.N., Tong, W., Feng, D., Li, Z., Zhou, W., Zhang, S.W.: A review of
storage technology research based on phase change memory. Jisuanji Xuebao/Chin.
J. Comput. 38(5), 944–960 (2015)

17. Narayanan, D., Donnelly, A., Rowstron, A.: Write off-loading: Practical power
management for enterprise storage. ACM Trans. Storage 4(3), 10 (2008)

18. Ou, J., Shu, J., Lu, Y., Yi, L., Wang, W.: Edm: An endurance-aware data migration
scheme for load balancing in ssd storage clusters. In: 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pp. 787–796. IEEE (2014)

19. Pinheiro, E., Bianchini, R.: Energy conservation techniques for disk array-based
servers. In: Proceedings of the International Conference on Supercomputing (2004)

20. Tarihi, M., Asadi, H., Haghdoost, A., Arjomand, M., Sarbazi-Azad, H.: A hybrid
non-volatile cache design for solid-state drives using comprehensive i/o character-
ization. IEEE Trans. Comput. 65(6), 1678–1691 (2016)

800 C. Yu et al.

21. Thereska, E., Donnelly, A., Narayanan, D.: Sierra: practical power-proportionality
for data center storage. In: Proceedings of the sixth conference on Computer sys-
tems, pp. 169–182. ACM (2011)

22. Wan, J., Qu, X., Zhao, N., Wang, J., Xie, C.: Thinraid: Thinning down raid array
for energy conservation. IEEE Trans. Parallel Distrib. Syst. 26(10), 2903–2915
(2015)

23. Wang, J., Zhu, H., Li, D.: eraid: Conserving energy in conventional disk-based raid
system. IEEE Trans. Comput. 57(3), 359–374 (2008)

24. Weddle, C., Oldham, M., Qian, J., Wang, A.I.A., Reiher, P., Kuenning, G.: Paraid:
a gear-shifting power-aware raid. ACM Trans. Storage 3(3), 13 (2007)

25. Wu, S., Yang, W., Mao, B., Lin, Y.: MC-RAIS: multi-chunk redundant array of
independent ssds with improved performance. In: Wang, G., Zomaya, A., Perez,
G.M., Li, K. (eds.) ICA3PP 2015. LNCS, vol. 9531, pp. 18–32. Springer, Cham
(2015). doi:10.1007/978-3-319-27140-8 2

26. Xiao, L., Yu-An, T., Zhizhuo, S.: Semi-raid: A reliable energy-aware raid data
layout for sequential data access. In: 2011 IEEE 27th Symposium on Mass Storage
Systems and Technologies (MSST), pp. 1–11. IEEE (2011)

27. Xie, X., Zhao, Y., Zhu, W., Long, S.: Design of a novel energy-aware storage system
named dt-maid. J. Converg. Inf. Technol. 7(2), 293–301 (2012)

28. Yang, L.H., Zhou, J., Gong, W., Zhao, J., Chen, L.: Lifetime and Qos-aware energy-
saving buffering schemes. J. Syst. Softw. 86(5), 1408–1425 (2013)

29. Yao, X., Wang, J.: Rimac: a novel redundancy-based hierarchical cache architecture
for energy efficient, high performance storage systems. In: ACM SIGOPS Operating
Systems Review, vol. 40, pp. 249–262. ACM (2006)

30. Yuan, Z., Yu, C., Sun, J., Xiao, J., Wang, J., Shang, Z., Hu, Y.: An energy effi-
cient storage system for astronomical observation data on dome A. In: Wang, G.,
Zomaya, A., Perez, G.M., Li, K. (eds.) ICA3PP 2015. LNCS, vol. 9531, pp. 33–46.
Springer, Cham (2015). doi:10.1007/978-3-319-27140-8 3

31. Zhu, Q., Chen, Z., Tan, L., Zhou, Y., Keeton, K., Wilkes, J.: Hibernator: helping
disk arrays sleep through the winter. ACM SIGOPS Oper. Syst. Rev. 39(5), 177–
190 (2005)

32. Zhu, Q., David, F.M., Devaraj, C.F., Li, Z., Zhou, Y., Cao, P.: Reducing energy
consumption of disk storage using power-aware cache management. In: Software,
IEEE Proceedings, p. 118. IEEE (2004)

33. Zhu, Q., Shankar, A., Zhou, Y.: Pb-lru: a self-tuning power aware storage cache
replacement algorithm for conserving disk energy. In: Proceedings of the 18th
annual international conference on Supercomputing, pp. 79–88. ACM (2004)

34. Zhu, Q., Zhou, Y.: Power-aware storage cache management. IEEE Trans. Comput.
54(5), 587–602 (2005)

http://dx.doi.org/10.1007/978-3-319-27140-8_2
http://dx.doi.org/10.1007/978-3-319-27140-8_3

The Open Community Runtime on the Intel
Knights Landing Architecture

Jiri Dokulil1(B), Siegfried Benkner1, and Jakub Yaghob2

1 Faculty of Computer Science, University of Vienna, Vienna, Austria
{jiri.dokulil,siegfried.benkner}@univie.ac.at

2 Department of Software Engineering, Charles University, Prague, Czech Republic
yaghob@ksi.mff.cuni.cz

Abstract. The Intel Xeon Phi Knights Landing manycore processor
comes with new interesting features: on-chip high-bandwidth memory
and several user-selectable NUMA configurations. In this paper, we look
into how these affect applications that target the Open Community Run-
time (OCR), an asynchronous tasked-based runtime system for future
parallel architectures. We have extended our OCR runtime to make it
NUMA aware and to allow it to use the high-bandwidth memory. We
have conducted a range of experiments, comparing OpenMP, TBB, our
OCR implementation, and the reference OCR implementation on differ-
ent machine configurations using a memory intensive seismic simulation.

Keywords: Open Community Runtime · Knights Landing · Intel Xeon
Phi · High-bandwidth memory · Parallel runtime systems · NUMA

1 Introduction

Given the ever increasing complexity and architectural variety of parallel sys-
tems, asynchronous task-based programming systems have gained a lot of
momentum since they facilitate decoupling the specification of parallelism from
its actual implementation. With a task-based programming model the user
exposes the potential parallelism by decomposing a problem into tasks with
well-defined inputs and outputs and delegates to the runtime system how tasks
are scheduled for parallel execution to the available hardware resources. Such
an approach not only allows a program to be dynamically adapted to a spe-
cific architecture, but also to reorganize parallel execution in case of changing
workloads or varying hardware performance characteristics.

The Open Community Runtime (OCR) [11] is an open specification of a low-
level runtime system for future extreme-scale architectures. OCR has been devel-
oped in the context of the US X-Stack program in order to provide a common
foundation for research on runtime systems and higher-level parallel program-
ming models. OCR relies on an event-driven, asynchronous task-based model
where the potential parallelism available in an application is expressed by a
large number of tasks (referred to as event driven tasks) with explicit depen-
dences. All data is organized in data blocks, which are relocatable, contiguous
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 801–813, 2017.
DOI: 10.1007/978-3-319-65482-9 65

802 J. Dokulil et al.

chunks of memory managed by the OCR runtime. Coordination and synchro-
nization is expressed by means of events, which are used to establish control and
data dependences.

A task can only access data in a data block if the data block was explicitly
passed to it or if it created the data block. As a result, the runtime is aware
of all the data a task can possibly access. Once all data blocks a task depends
on are available and all events are satisfied, a task becomes runnable and will
eventually be executed on some execution unit and run to completion regardless
of the behavior of other tasks.

At runtime an OCR program forms a dynamically created directed acyclic
graph (DAG) of tasks, with explicit information about which data blocks are
used (consumed and produced) by which tasks. This gives the runtime system
the ability to relocate tasks and data blocks to achieve a better load balance, to
optimize memory and energy consumption, and to deal with failures.

In this paper, we report on the extensions of OCR-Vx (our implementa-
tion of the OCR specification [6]) for the new Intel Xeon Phi Knights Landing
processor (KNL). Our contributions are: First, a NUMA-aware task scheduler
for OCR-Vx, which is also beneficial on other NUMA machines, not just the
KNL. Second, enabling OCR-Vx to use the on-chip high-bandwidth MCDRAM
of the KNL. Finally, we have evaluated the performance of the runtime on six
different configurations of the KNL, using a seismic simulation code. To provide
a wider context, the same code was tested with the reference OCR implemen-
tation [10] and rewritten in OpenMP. We also compare our OCR and OpenMP
codes to the original native TBB application. In total, five application variants
were tested.

This paper is organized as follows: Sect. 2 briefly presents the new fea-
tures of the KNL architecture. Section 3 describes relevant components of our
OCR implementation and the extensions to support NUMA systems and high-
bandwidth memory. Experimental results are provided in Sect. 4. Section 5 dis-
cusses related work followed by a conclusion and discussion of future work.

2 Knights Landing Architecture

Knights Landing is the latest release in the Intel Xeon Phi product range.
Formerly known as MIC (Many Integrated Cores), Xeon Phi is a family of
high-performance many-core architectures. Unlike the previous architecture, the
Knights Corner (KNC), which was available as a coprocessor PCIe card, the
KNL is a “full” CPU, which is used as the only processor of a server. In our
experiments, we use a machine with one Intel Xeon Phi Processor 7230, which
has 64 cores, four way hyperthreading (256 threads), it runs at 1.30 GHz, and it
has 16 GB of on-chip high-bandwidth MCDRAM. The main memory (DDR4) is
96 GB. Each core has 32 KB data cache and 32 KB instruction cache and there
are two vector processing units with AVX-512 support attached to each core.
The cores are arranged into tiles, with each tile containing two cores and 1 MB
L2 cache shared by the two cores. The tiles are laid out as a 2D mesh. Since 64
cores occupy 32 tiles, there is 32 MB of L2 cache in total.

The Open Community Runtime on the Intel Knights Landing Architecture 803

The whole processor is fully cache coherent. To maintain cache coherency,
it has a distributed tag directory, organized as a set of per-tile tag directories
(TDs), which identify the state and the location on the chip of any cache line.
For any memory address, the hardware can identify (using a hash function) the
TD responsible for that address. If there is a cache miss, the tile where the cache
miss occurred must send a message to the tile with the TD corresponding to
the accessed memory address. Depending on whether the cache line is cached
somewhere (this is determined from the TD), the message is forwarded to the
tile with the cached data or to the memory. To support different workloads, the
KNL chip can be configured (in BIOS) to use different ways of organizing the
tag directories. These are called clustering modes.

With the all-to-all clustering mode, memory addresses are uniformly distrib-
uted across all TDs on the chip. As a result, there is a high probability that
when a tag directory needs to be used (e.g., a cache miss), the corresponding tag
directory may be far away from the core that needs it, causing a high latency of
the cache operation. In the quadrant clustering mode, the tiles are divided into
four parts called quadrants, which are spatially local to four groups of memory
controllers. Memory addresses served by a memory controller in a quadrant are
guaranteed to be mapped only to TDs contained in that quadrant. On average,
this provides a much lower latency than in the all-to-all mode. In hemisphere
mode, two groups are used instead of four. The division of the cores is hidden
from the operating system and the whole system is presented as a single NUMA
node, except for the MCDRAM, which is shown as one separate NUMA node.
The SNC-4 (Sub-NUMA Clustering) mode uses the same tile partitioning as the
quadrant mode, but each quadrant is exposed as a separate NUMA node. The
MCDRAM is also split into four NUMA nodes. The SNC-2 mode is the same
as SNC-4, except that only two groups of cores are used. If cache traffic crosses
the boundary between two NUMA nodes in SNC-2/4, it is more expensive than
in the corresponding hemisphere/quadrant mode.

In our experiments, we only use the quadrant and SNC-4 modes. The all-to-
all mode should only be used as a failsafe and not in production. We did some
tests with the hemisphere and SNC-2 modes, but they did not bring any new
interesting results, so we will only present the numbers for quadrant and SNC-4.

Another configuration option is the usage model of the MCDRAM. There are
three options, independent of the clustering modes. First, the MCDRAM can be
used in the flat mode, where it is available as a separate NUMA node (or nodes,
depending on the clustering mode), which can be used by the application to
allocate memory. MCDRAM and the machine’s main memory (DDR) share the
same physical address space. Aside from possibly different memory allocation
calls, both memory types can be used by the application in exactly the same
way. Another mode for the MCDRAM is the cache mode. In that case, the
MCDRAM is used as a last level cache for the main memory. This cache is
completely transparent to software. The last available mode is the hybrid mode,
where part of the MCDRAM is available in the flat mode and the rest is used
as cache. The core organization and NUMA nodes for the flat MCDRAM mode

804 J. Dokulil et al.

Fig. 1. KNL clustering modes. Displayed are cores, memory (MCDRAM and DDR),
and NUMA nodes. Both configurations are shown with MCDRAM switched to flat
mode. In cache modes, the NUMA nodes with the MCDRAM (node 1 in quadrant
mode and nodes 4–7 in SNC-4 mode) would not be present.

with quadrant and SNC-4 clustering modes are shown in Fig. 1. Note that the
MCDRAM NUMA nodes don’t contain any cores, only memory.

In the flat mode, the MCDRAM can be allocated using the hbw_malloc call,
which is part of the memkind library. Since the MCDRAM is available as one
or more separate NUMA nodes (node 1 in quadrant, nodes 4–7 in SNC-4), it
is also possible to use numa_alloc_onnode, which is part of libnuma. In SNC-
4 mode, numa_alloc_onnode can be used to directly specify which of the four
MCDRAM nodes to use, giving the application more control. This is not possible
with hbw_malloc.

3 OCR-Vx

OCR-Vx is a collection of open source1 OCR implementations that we created at
the University of Vienna [6]. For this paper, the relevant implementation is OCR-
Vsm, which is a shared-memory implementation. Originally, it was built on top
of the task scheduler from Intel Threading Building Blocks (TBB). The latest
version can be configured to use different schedulers (see Sect. 3.1 for details).
OCR-Vsm is similar to OCR-Vdm, the distributed-memory implementation, but
it uses several optimizations, which are much easier to do in a shared memory
environment and we have yet not implemented them in the distributed runtime.

Eventually, the optimized shared-memory runtime will be used within the
distributed runtime, to control a single node. This approach is already being
used by the XSOCR runtime [10], which was created by Intel and Rice University
as part of the XStack project (hence the “XS” in the name) as a reference
implementation of the OCR specification.

1 Stable releases of the runtime are available at http://www.univie.ac.at/ocr-vx/.

http://www.univie.ac.at/ocr-vx/

The Open Community Runtime on the Intel Knights Landing Architecture 805

3.1 NUMA Support

Most of today’s high performance computing systems can be characterized as
Non-Uniform Memory Architectures (NUMA). In NUMA systems, the different
CPU cores don’t have uniform access to the system memory. Usually, different
parts of memory are “closer” to certain cores, giving them faster access compared
to the rest of the memory. Overall, a NUMA machine consists of several NUMA
nodes. A NUMA node contains zero or more CPU cores and some portion of
the total system memory. In a typical four socket NUMA server, there are four
NUMA nodes, each containing cores from one of the four CPUs and a quarter
of the main memory. The KNL configured as SNC-4 with MCDRAM as cache
looks the same way.

In OCR, task and data placement is handled by the runtime. The OCR API
provides a way to influence the placement using affinities. An affinity is an OCR
abstraction which represents the hardware architecture. The OCR specification
leaves the actual organization of affinities to the runtime implementation. It
only provides a way to list all affinities, to get the affinity of the current task,
and to set an affinity for data blocks and tasks. The runtime is also allowed to
ignore any affinity specified by the application. A common solution is to make
the affinities correspond to machines in a cluster. This way, if a task has the
same affinity as a data block, it should have direct access to the data block’s
data. If two tasks share an affinity, they should be able to efficiently share data.
The data and task placement within the affinity (the machine) is completely
handled by the runtime.

An alternative is to use finer grained affinities. We have modified our runtime
to provide one affinity per NUMA node, making the application more involved
in data and task placement even within a node. Even a single machine may now
have multiple affinities, making it look more like a distributed-memory system
from the application’s point of view. The OCR runtime uses the hwloc library
to explore the hardware architecture and determine the number of affinities to
provide.

However, the TBB task scheduler which we used within our OCR imple-
mentation cannot be used to execute tasks on a specified NUMA node. Thus, we
have created our own NUMA-aware scheduler, which uses the same task-stealing
principles as the TBB scheduler, but the threads are split into several groups
corresponding to NUMA nodes. For example, in a four socket server capable of
supporting 16 threads per core, the runtime uses 64 threads split into four groups
with 16 threads per group. Each group is pinned (using OS thread affinities) to
a different NUMA node. Task stealing is only done within a NUMA node, not
across the boundaries. Therefore, if a task is spawned to a NUMA node, it is
guaranteed to be executed by that NUMA node.

The same approach applies also to the KNL. If 128 worker threads are used
on KNL configured as SNC-4, there will be four groups with 32 threads each.
Naturally, only the four NUMA nodes that contain the cores are used, not the
NUMA nodes with MCDRAM and zero cores.

806 J. Dokulil et al.

3.2 High-Bandwidth Memory Support

Another issue is the high-bandwidth MCDRAM memory of the KNL. If it’s con-
figured as cache, no changes to the code are necessary. But to use the MCDRAM
in flat mode, it is necessary to change the way memory is allocated by the appli-
cation if the memory needs to be placed in the MCDRAM. Two options are
available in that case. First, the hbw_malloc call can be used instead of the
normal malloc function to allocate data in the MCDRAM. The way this data is
placed in the MCDRAM (in which of the four MCDRAM nodes) is determined
by the OS. The second alternative is to use numa_alloc_onnode and specify one
of the NUMA nodes that correspond to the MCDRAM. In SNC-4 mode, this
allows the application to specify which of the four nodes to use, giving it more
control. Note that numa_alloc_onnode could also be used as an alternative to
malloc to allocate data in a specific part of the DDR memory. In SNC-4 mode,
allocating data on nodes 0 to 3 results in the data being placed in DDR, while
allocating on nodes 4 to 7 places it in MCDRAM.

The modified OCR-Vsm runtime can be configured in four different ways:
to use malloc, to use hbw_malloc, to use numa_alloc_onnode to place data
in DDR, and to use to use numa_alloc_onnode to place data in MCDRAM. If
the NUMA allocator is used to target DDR, the data is placed to the NUMA
node that corresponds to the affinity provided by the user when the data block
is created. If no affinity is given, it’s placed in the NUMA node local to the
task that created the data block. If the NUMA allocator targets MCDRAM,
the placement algorithm is the same, except it places the data in the adjacent
MCDRAM. For example, in SNC-4 mode, it uses NUMA node 4 instead of 0, 5
instead of 1, etc.

4 Experimental Evaluation

We have used the Seismic application, which was also used in our earlier work
evaluating OCR on KNC, the previous Xeon Phi architecture [5]. However, the
application was substantially updated, to better reflect the task nature of OCR.

4.1 Seismic Application

The original Seismic application is distributed as an example with the TBB
library. It simulates propagation of seismic waves through 2D terrain. There are
several properties associated with each grid point (stress, velocity, dampening,
etc.). All values are stored as double precision floating point numbers and they
are always processed in double precision. For our earlier experiments on the
KNC, we modified the code to make it more computationally intense. No such
modification was used this time. The code performs a comparable number of
arithmetic operations and memory (load/store) operations. This makes the per-
formance of the memory subsystem much more important. At the same time, the
smaller amount of computation performed by each iteration makes any runtime
overhead more pronounced.

The Open Community Runtime on the Intel Knights Landing Architecture 807

Seismic runs in several iterations and each iteration comprises two phases.
First, horizontal and vertical stress is updated for each grid point based on values
of properties (other than the stresses) of the point and its neighbors to the right
and below. Second, the seismic wave velocity is updated for each point based
on properties (not including the velocity) of the point and its neighbors to the
left and above. There are no dependences within a phase, just between phases.
These dependences are limited only to dependences between neighbors. We have
created three implementation variants of the Seismic code: using TBB, OpenMP,
and OCR.

The TBB version is the code distributed as an example with the TBB library,
with minimal modifications required to make it usable as a benchmark. The
original Seismic is an interactive graphical application, with fixed problem size.
We have removed the GUI code and put the simulation iterations into a simple for
loop. We also modified the data structures to make the problem size configurable
at runtime.

The OpenMP variant is very similar to the TBB code. The two phases of the
simulation are performed by a parallel for loop. Although a different OpenMP
parallelization strategy might be more efficient on the KNL, especially in the
SNC-4 mode, we decided to use parallel for loops, because our goal is to investi-
gate how common parallelization techniques compare to their OCR alternative.

In both codes, there are three levels of nested for loops. The outermost loop
advances the iterations of the simulation. The middle loop iterates over the y-
dimension. It is repeated two times, one after the other, doing the two phases in
sequence. These two middle loops are the ones being parallelized using TBB par-
allel algorithms and OpenMP parallel for. The innermost loop (present in both
middle loops) iterates over the x-dimension. Hints are provided for compiler auto-
vectorization, so that the innermost loop is vectorized, i.e., SIMD instructions
are used to perform several consecutive iterations of the loop together.

Due to the nature of the OCR programming model, the OCR code needs to
be structured differently. To allow for distributed execution, the data is split into
smaller blocks, each containing the same number of (consecutive) rows. These
are distributed evenly across the available OCR affinities. Initially, one task is
created for each block. This task is responsible for generating all tasks that
are needed to perform one iteration step on the data block. If it is not the last
iteration, another copy of this generator task is added at the end of the iteration.
All tasks that process a certain block of data are bound (using OCR affinities) to
the compute node where the data is located. The tasks that process neighboring
blocks are synchronized using channel events, a new experimental extension of
the OCR specification, which simplifies implementation of synchronization where
the same pattern is repeated multiple times.

An example of the tasks and their dependences for one iteration is shown in
Fig. 2. In the example, the data is split into two blocks. The tasks are labeled with
their type, which corresponds to the C function they execute as their body. There
are two phases per iteration and two worker tasks are used per block in each
phase. The number of blocks and the number of tasks per block is configurable.

808 J. Dokulil et al.

Fig. 2. An example of tasks (boxes) and their dependences (arrows) within one itera-
tion of the Seismic on OCR, with data split into two blocks and with two tasks working
on each block in every phase in parallel.

The create task creates all of the following tasks, up to (and including) the
next create. A task called phase 1 creates two worker tasks (of the worker 1
type) to process the data block in parallel. The phase 1 task is a finish task,
which means that any further tasks it creates (denoted by the finish scope boxes)
have to finish before the original finish task considered to be finished. Therefore,
the phase 2 task, which depends on the phase 1 task, cannot start before both
worker tasks finish. For this reason, the dependence is drawn going from the finish
scope to the phase 2 task. The dependences going across the block boundary
(the vertical line in the middle of the picture) are used to exchange data and
synchronize tasks that process neighboring blocks.

In the TBB and OpenMP codes, there is an (implicit) barrier at the end
of each phase. There is no such barrier in the OCR code, except for the very
end of the computation. This allows some tasks from the next phase to start
before all of the tasks from the current phase have finished, which is not the case
with the more coarsely synchronized TBB and OpenMP codes. Of course, the
fine-grain synchronization could also be used with the TBB and OpenMP codes.
While this style of programming is a natural fit for the OCR code, the high-level
parallel for (pragma in OpenMP, parallel algorithm in TBB) is the first choice
in OpenMP and TBB.

4.2 Application and Runtime Configuration

The applications provide several configuration options, depending on the imple-
mentation variant. The size of the data and number of iterations can be config-
ured in all cases. We have used 8192 × 8192 as the data size, which translates
to memory footprint of around 3 GB. With 1000 iterations, this provides a good
reasonably long execution times (tens of seconds), but the data still easily fits
into the MCDRAM, which we needed for some of the experiments. All source
codes were compiled with GCC 6.3, with AVX-512 instruction set enabled.

The OpenMP runtime used in the OpenMP variant can be configured using
environment variables. We have experimented with different thread placement,
but the default option turned out to be the most efficient, so only the number of

The Open Community Runtime on the Intel Knights Landing Architecture 809

threads is adjusted by setting OMP_NUM_THREADS. Using 128 threads provided the
fastest execution times. The task-based runtimes (TBB and all OCR variants)
also performed best with 128 threads, except for the XSOCR, which performed
best with 256 threads.

The TBB variant uses automatic task granularity selection provided by the
parallel_for construct. The task granularity of the OCR Seismic code can
be configured using command line parameters. For OCR-Vsm, the data was
split into 128 equally-sized horizontal blocks and there was one task per block
in each phase. In total, there are worker 128 tasks per phase. For XSOCR,
we used 256 tasks per phase and 256 blocks. The task and block counts were
obtained by manual tuning, where the relevant search space was exhaustively
searched. The 128 and 256 tasks provided the best performance on the respective
runtimes. Other configurations consistently resulted in a significant performance
degradation (>30%).

The OpenMP and TBB applications can be configured to either use malloc
or hbw_malloc. malloc is used in cache mode and in flat mode to avoid using
the MCDRAM. hbw_malloc is used only in flat mode, to allocate application
data in MCDRAM. The OCR-Vsm runtime can be configured in several ways.
It’s possible to either use the TBB scheduler or the new NUMA scheduler. The
internal structures of the runtime are always allocated using malloc, but the
data blocks (the application data) can be allocated using malloc, hbw_malloc,
or numa_alloc_onnode.

The fastest options turned out to be malloc and hbw_malloc (i.e., the same
allocators as the ones used in OpenMP and native TBB) when combined with
the TBB scheduler. In quadrant mode, this was also the best option for the
NUMA scheduler. The only exception is the NUMA scheduler on SNC-4, where
numa_alloc_onnode was used with all MCDRAM modes. In flat mode, it can
either be used to allocate data in the nearest DDR NUMA node or nearest
MCDRAM node. In cache mode, it always targets the nearest DDR NUMA
node, but the data is also automatically cached in the nearest MCDRAM.

4.3 Results

An overview of the results obtained by executing 1000 iterations of the different
variants of the Seismic application is shown in Table 1. Note that in all cases,
only the actual computation is timed. The measurements exclude application
setup, where the runtimes are started, memory for application data is allocated
and the data is filled with initial values. However, it does include task creation
in the task-based variants. This is not only fair, it is also unavoidable since the
tasks are created on the fly, not upfront (which was the case with our earlier
Seismic OCR code [5]).

As you can see, the fastest version is either the native TBB application on
a KNL configured in quadrant cluster mode and explicitly using the MCDRAM
to store the data, or the OpenMP code on a KNL in quadrant mode with the
MCDRAM serving as an automatic cache. The difference is too small to declare
a clear winner.

810 J. Dokulil et al.

Table 1. The execution time in seconds for 1000 iterations of the Seismic application,
using different clustering modes (quadrant and SNC-4) and MCDRAM usage models
(none, flat, cache). Mode none means that the machine was switched to flat (explicit)
MCDRAM mode, but the data was allocated in DDR, not MCDRAM.

Quadrant SNC-4

None Flat Cache None Flat Cache

OpenMP 92.44 20.69 17.38 100.01 80.94 25.56

TBB 92.72 17.32 18.53 110.23 78.80 40.24

OCR-Vsm TBB 93.83 20.93 19.33 95.29 34.04 25.48

OCR-Vsm NUMA 93.56 20.76 19.42 92.27 19.53 20.75

XSOCR 98.66 20.68 19.19 99.08 20.66 31.66

Table 2. The difference (in percent) between the slowest and fastest run. Each config-
uration was executed 10 times. A value of 0 would mean that every run had exactly the
same execution time. A value of 100 would indicate that the longest run took double
the time needed by the fastest run.

Quadrant SNC-4

None Flat Cache None Flat Cache

OpenMP 0.13 2.38 2.09 5.28 2.82 10.46

TBB 0.43 1.35 2.72 3.16 10.56 7.84

OCR-Vsm TBB 0.34 1.08 1.56 2.36 38.02 10.93

OCR-Vsm NUMA 0.37 0.68 2.07 0.34 2.13 2.71

XSOCR 0.51 3.75 4.79 4.78 3.39 7.53

The results clearly show that it’s essential to use the MCDRAM in codes
like Seismic, which require high memory bandwidth. This is an expected result,
but it’s interesting to note the scale of the potential performance benefit. For
example, the TBB variant is over 5.3x faster when hbw_malloc is used on the
quadrant/flat configuration instead of plain malloc.

Using MCDRAM either directly or as a cache always provided some perfor-
mance improvement. In most cases, the cache was more efficient than manual
allocation, although there were several cases where it is the other way round
(TBB on quadrant, OCR-Vsm NUMA on SNC-4, and XSOCR on SNC-4).
The automatic and explicit MCDRAM management is not the only difference
between the two modes. If the MCDRAM is used as cache, all memory accesses
are cached, including data used by the runtime, like the memory used to store the
tasks. In flat mode, OpenMP, TBB, and both OCR-Vsm variants only store the
application data in MCDRAM. To make the XSOCR use the MCDRAM, we’ve
changed the runtime source codes to make all allocations using hbw_malloc.
This moves both application data and runtime data into the MCDRAM.

The Open Community Runtime on the Intel Knights Landing Architecture 811

All application variants that use the MCDRAM run reasonably fast in the
quadrant mode of the KNL. If we switch the KNL to SNC-4, this is no longer
the case. It’s important to note at this point that in SNC-4, the cost for memory
accesses that cross the boundaries between the four core groups is significantly
higher than in the quadrant mode. As a result, the codes that are not NUMA
aware (all except for OCR-Vsm NUMA) suffer from a significant performance
penalty. For example, the native TBB application is 2.2x slower in cache mode
and 4.5x slower if hbw_malloc is used. OCR-Vsm NUMA provides similar results
on quadrant and SNC-4, running even slightly faster on SNC-4 if MCDRAM is
not used as cache. It’s interesting to compare the performance of native TBB
and OCR TBB on SNC-4/flat. The OCR-based code is 2.3x faster, despite using
the same task scheduler. This shows that even a small change to the way data is
allocated and the way tasks are created and submitted for execution can cause
a significant difference in performance.

Each software/hardware configuration was executed 10 times. Table 2 shows
the difference (in percent) between the slowest and fastest runs. If you look at
the values for the TBB and OCR-Vsm TBB codes on SNC-4/flat, you can see
a significant performance fluctuation (10.56% and 38.02%, respectively). This
suggests that a necessary condition for a good result in these cases is that the
TBB scheduler and numad manage to line up correctly. In quadrant mode, no
automatic memory movement is performed (all MCDRAM is just one NUMA
node), and the results are stable. The differences are just 1.35% and 1.08%.

5 Related Work

In the following, we briefly discuss a few related task-based runtimes and pro-
gramming systems. We are not yet aware of any such system that would be tuned
specifically for the KNL. However, of the three main optimization directions (vec-
torization, NUMA-aware parallelism, and MCDRAM) two were already relevant
on existing systems. Vectorization is usually relevant inside of the tasks, so the
runtimes are mostly concerned with efficient NUMA-aware task scheduling.

StarPU [1] was among the first task-based runtime systems that specifically
targeted single-node heterogeneous architectures comprised of CPUs and GPUs.
StarPU uses the hwloc library to explore the machine architecture and it creates
combined workers based on this topology. The workers are then used by different
schedulers provided by StarPU. Since StarPU is already used with architectures
that combine different memories (e.g., local memory of a GPU), it should be
possible to extend it to also deal with the MCDRAM. The schedulers could then
also explicitly move data from DDR to MCDRAM.

OmpSs [4] extends the OpenMP shared-memory programming model with
directives for task-parallel programming. The underlying runtime (Nanos++)
also relies on the hwloc library. The socket-aware scheduler uses this information
to keep tasks local (inside a NUMA node). It can be configured not to steal tasks
from other NUMA nodes (like our scheduler) or to steal from neighboring nodes.

ParalleX [8] is a parallel and distributed programming model around the
concept of message-driven work-queues supporting fine-grained parallel execu-
tion through cooperative lightweight threads within a global address space.

812 J. Dokulil et al.

The HPX runtime system [9] is a C++-based implementation of ParalleX within
an active global address space, which supports migration of objects between the
nodes of clusters. HPX provides different schedulers and some of the schedulers
can be configured to be NUMA sensitive, in which case they first try to steal
work from the local NUMA node, before going to other nodes.

Legion [2] is a data-centric, task-based programming system that supports
dynamic hierarchical data partitioning based on the concept of logical regions.
Tasks are bound to regions and may access regions with different privileges
and subject to different coherence modes. Legion provides a mapping interface
that enables programmers to control the mapping of tasks and data regions to a
specific parallel architecture. This mapping allows processors to be combined into
processor groups and let the whole group serve a single work-queue. Processor
groups can be created to mirror the NUMA nodes. An implementation of Legion
on top of OCR is being realized within the US X-Stack program.

PaRSEC [3] is a generic framework for task-scheduling on heterogeneous
many-core architectures. PaRSEC relies on a symbolic representations of task
graphs that can be enhanced with user-provided priorities and data/task map-
pings that can take into account the NUMA characteristics of an architecture.

The Bobox system [7] is also a parallel and distributed programming model,
but it is focused on applications that are close to database query evaluation.
Yet it also successfully employs a task-based runtime. Its task scheduler is also
NUMA-aware and, like most of the other systems, it first tries to steal tasks
locally, before stealing across NUMA node boundaries.

6 Conclusion and Future Work

We have evaluated different implementations of the Seismic application on the
KNL. We managed to extract very good performance from the KNL, using all
of the programming models and runtimes. Native TBB and OpenMP variants
were the fastest, but they were followed closely by the three OCR variants. This
is a good result for the OCR, since the Seismic application is almost a textbook
example of an application which can be parallelized with OpenMP.

For most variants, we achieved better performance on the non-NUMA quad-
rant clustering mode. The NUMA-aware OCR-Vsm runtime was slightly faster
on SNC-4 (except when MCDRAM was used as cache), but the other variants,
which are NUMA-oblivious, suffered a significant performance penalty. In our
experience, mapping the four NUMA nodes of the KNL to four OCR affinities
and treating it like a distributed system with four nodes is a reasonable solution.
Overall, it seems the non-NUMA clustering mode is a better choice, except for
very well-tuned NUMA-aware codes.

For a memory intensive application like Seismic, the MCDRAM is critical
for achieving good performance. However, that may not always be the case. In
our case, the application data is way too large to fit into L1 and L2 caches, but
small enough to fit into the MCDRAM. Using the MCDRAM as cache worked
very well as a result. However, if the data is very small (and mostly fits into L1

The Open Community Runtime on the Intel Knights Landing Architecture 813

and L2 caches) or larger than the available MCDRAM, the application could
suffer from the higher latency of cache misses caused by the extra cache level.

In the future, we plan to extend our NUMA-aware scheduler for the
distributed-memory OCR implementation and to investigate hierarchical
scheduling approaches and automatic means for utilizing the MCDRAM.

Acknowledgments. The work was supported in part by the Austrian Science Fund
(FWF) project P 29783 Dynamic Runtime System for Future Parallel Architectures
and by Charles University project PROGRES Q48.

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
Comput. Pract. Exp. Euro-Par 2009(23), 187–198 (2011)

2. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC 2012, pp.
66:1–66:11. IEEE Computer Society Press, Los Alamitos (2012)

3. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Lemariner, P.,
Dongarra, J.: PaRSEC: exploiting heterogeneity to enhance scalability. IEEE Com-
put. Sci. Eng. 15(6), 36–45 (2013)

4. Bueno, J., Planas, J., Duran, A., Badia, R., Martorell, X., Ayguade, E., Labarta,
J.: Productive programming of GPU clusters with OmpSs. In: IPDPS 2012 Parallel
Distributed Processing Symposium (2012)

5. Dokulil, J., Benkner, S.: Retargeting of the open community runtime to intel xeon
phi. In: International Conference On Computational Science, ICCS 2015, pp. 1453–
1462. Procedia Computer Science (2015)

6. Dokulil, J., Sandrieser, M., Benkner, S.: OCR-Vx - an alternative implementation
of the open community runtime. In: International Workshop on Runtime Systems
for Extreme Scale Programming Models and Architectures, in Conjunction with
SC 2015, Austin, Texas (2015)

7. Falt, Z., Krulis, M., Bednarek, D., Yaghob, J., Zavoral, F.: Towards efficient locality
aware parallel data stream processing. J. Univ. Comput. Sci. 21(6), 816–841 (2015)

8. Hartmut, K., Brodowicz, M., Sterling, T.: Parallex an advanced parallel execution
model for scaling-impaired applications. In: Proceedings of the 2009 International
Conference on Parallel Processing Workshops (ICPPW 2009), pp. 94–401 (2009)

9. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX - a task based
programming model in a global address space. In: The 8th International Conference
on Partitioned Global Address Space Programming Models (PGAS) (2014)

10. Mattson, T.G., et al.: The open community runtime: a runtime system for extreme
scale computing. In: 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–7 (2016)

11. Mattson, T., Cledat, R. (eds.): The Open Community Runtime Interface, April
2016. https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=ocr/spec/
ocr-1.1.0.pdf

https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=ocr/spec/ocr-1.1.0.pdf
https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=ocr/spec/ocr-1.1.0.pdf

High-Performance Graphics
in Racket with DirectX

Antoine Bossard(B)

Graduate School of Science, Kanagawa University,
2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan

abossard@kanagawa-u.ac.jp

Abstract. Nowadays, modern computer systems rely heavily on parallel
processing, and not only because of the multicore CPUs bundled with any
machine, even mobile devices, but more and more thanks to the parallel
processing capacities of graphics processing units (GPU), general-purpose
computing on graphics processing units (GPGPU) being one example. In
this paper, relying on the DirectX 12 framework, we propose an innova-
tive approach to enable parallel processing for graphical rendering on both
the CPU and GPU for the popular Racket functional programming lan-
guage (formerly PLT Scheme), and importantly without compromising
Racket’s usability and programmer-friendliness. Our performance evalu-
ations show significant improvements with respect to execution time (×3
speed-up in some cases), CPU utilisation time (reduced by as much as 80%
in some scenarios) and the frame rate when using moving graphics.

Keywords: GPU · Parallel processing · Functional · Programming ·
Scheme

1 Introduction

Advances in semiconductors enable to embed numerous processing cores onto
graphics processing units (GPU), and the optimized parallel structures of GPUs
make them suitable for parallel processing [1]. From a computer system point of
view, this results in more parallel processing by offloading tasks from the CPU
to the graphics hardware, recent GPUs embodying thousands of cores (e.g. 2560
for the Nvidia GTX 1080 [1]), compared with a few only for CPUs. In order
to fully benefit from such hardware capacities, system vendors provide APIs
to programmatically interact with the GPU, and in user mode (i.e. indirect
but secured access to hardware). For instance, Nvidia has the CUDA parallel
computing platform, and Microsoft provides the DirectX framework.

Direct2D is built on top of Direct3D in order to benefit from graphics hard-
ware acceleration, Direct3D (from Direct3D 10) being itself built on top of the
DirectX Graphics Infrastructure (DXGI). DXGI is the lowest layer of the user
mode and is in charge of communicating with the kernel mode (drivers) [2].
In addition, Direct2D provides fallback to software rendering in case hardware
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 814–825, 2017.
DOI: 10.1007/978-3-319-65482-9 66

High-Performance Graphics in Racket with DirectX 815

acceleration is unavailable. It is important to note that the software rasterizer
provided by Direct2D performs significantly better than the legacy Graphics
Device Interface (GDI, GDI+) software rendering solutions.

In this paper, our objective is to provide such parallel processing capac-
ity for graphics on both the CPU and GPU to the popular Racket (previously
PLT Scheme) functional programming language and development environment
[3] with DirectX. More precisely, we shall propose for the first time an imple-
mentation of Direct2D into Racket and evaluate the induced performance. In
addition, we aim at showing the high usability of such approach, compared to
existing solutions. By focusing on DirectX, this research is obviously applicable
to the Microsoft Windows implementation of Racket.

Racket provides the <dc%> interface to realise 2D graphics via a device con-
text. The merit of this approach is its simplicity. Technically, it relies on the
legacy GDI software renderer. In addition, Racket provides minimal support
for 3D graphics with OpenGL. However, OpenGL’s usability in Racket is very
low: the function bindings are merely declared, thus inducing low usability due
to complexity, especially for users targeting 2D graphics. Hence, currently, the
Racket user is given the choice of either relying on the easy-to-use <dc%> interface
which has poor performances, or switching to the overpowered OpenGL bind-
ings which are not well suited for 2D graphics. And this is precisely to solve this
dilemma for Windows native applications that Microsoft introduced Direct2D: it
was too cumbersome to use Direct3D to “only” do 2D graphics. Hence, Direct2D,
similarly to Racket’s <dc%> interface, works in immediate mode, that is without
handling graphics through a scene, as OpenGL and Direct3D do.

2 Preliminaries: The <dc%> Interface

Let us briefly recall the conventional method to render graphics inside a Racket
window: canvas painting. This method relies on the legacy GDI software ren-
derer. A frame (a.k.a. window) is first created, then a canvas is added onto it.
The canvas object has a paint callback function which is called when its parent
window requests repaint. Canvas drawing is conducted via the drawing con-
text <dc%> interface, an instance of which is given as second parameter of the
paint callback. Drawing commands such as draw-rectangle and set-brush are
methods of the <dc%> interface; see Listing 1.1.

Listing 1.1. Conventional window painting with the <dc%> interface.
1 (define (dc-paint canvas dc) ; paint callback
2 (send dc set-pen"" 0 ’transparent)
3 (send dc set-brush "blue" ’solid)
4 (send dc draw-rectangle 40 40 260 160))
5 (define classic-frame (new frame% [label "Classic"] [width 320] [height 240]))
6 (define classic-canvas (new canvas% [parent classic-frame] [paint-callback dc-paint]))
7 (send classic-canvas set-canvas-background (make-object color%))
8 (send classic-frame show #t) ; display window

816 A. Bossard

3 Direct2D from Within Racket

3.1 Foreign Function Interface and COM

Racket enables the programmer to call foreign functions through the Foreign
Function Interface (FFI). Amongst others, this library allows for easy exter-
nal library loading, and makes data types that are originally absent from
Racket, such as pointers, available. C structures are also accessible with the
define-cstruct function; a structure of type A is then initialized with the
main-A function which returns a pointer to the newly created structure.

The DirectX subsystem is accessible through the Component Object
Model (COM) [4]. Yet, DirectX allows to abbreviate COM’s CoCreate-
Instance and QueryInterface calls to instantiate Direct2D interfaces by
conveniently providing the D2D1CreateFactory function. Indeed, directly
from the interface identifier of the ID2D1Factory interface (IID, here
{06152247-6f50-465a-9245-118bfd3b6007}), this function will provide us
with a pointer to a ID2D1Factory instance, the gate to Direct2D interfacing.
Before being accessible from within Racket, the D2D1CreateFactory function
needs to be loaded from the dynamic-linked library (DLL) d2d1.dll, which is
done with the two functions of Listing 1.2.

Listing 1.2. Retrieving an instance of the ID2D1Factory COM interface.
1 (define-ffi-definer define-d2d1 (ffi-lib "d2d1.dll")) ; load library
2 (define-d2d1 D2D1CreateFactory ; import library function
3 (_hfun _int
4 (_ptr i _GUID) ; pointer to IID’s value
5 _D2D1_FACTORY_OPTIONS-pointer/null
6 (pIFactory : (_ptr o _ID2D1Factory-pointer))
7 -> D2D1CreateFactory pIFactory)) ; return ID2D1Factory*

The FFI library also provides helper functions for COM. They are used in
our implementation to manipulate interface’s instances, like declaring and calling
interface methods. For example, the previously retrieved ID2D1Factory instance
requires to first declare the corresponding interface. Because interface methods
are function pointers, the method declaration order within an interface has to
be strictly reproduced. To obtain such information, it is required to investigate
the Windows SDK header files. ID2D1Factory interface declaration is shown as
example in Listing 1.3.

Interface methods that are not called in our program are simply declared as
fpointer. The only method we will call from this interface is CreateHwndRen-
derTarget, which is explained below. The #:release-with-function statement
(l.10) indicates that the FFI library Release method is automatically called on
the resulting instance (ID2D1HwndRenderTarget).

The next step is to use the factory instance to bind a Direct2D render target
to a window. This is done by calling the CreateHwndRenderTarget method of
the ID2D1Factory interface, specifying amongst others the handle (HWND) of

High-Performance Graphics in Racket with DirectX 817

Listing 1.3. Declaring the ID2D1Factory COM interface.
1 (define-com-interface (_ID2D1Factory _IUnknown)
2 ([ReloadSystemMetrics _fpointer]
3 [GetDesktopDpi _fpointer]
4 ... ; the declaration of the other methods is abbreviated
5 [CreateHwndRenderTarget ; return ID2D1HwndRenderTarget*
6 (_hmfun _D2D1_RENDER_TARGET_PROPERTIES-pointer
7 _D2D1_HWND_RENDER_TARGET_PROPERTIES-pointer
8 (pHwndRenderTarget : (_ptr o _ID2D1HwndRenderTarget-pointer))
9 -> CreateHwndRenderTarget pHwndRenderTarget)

10 #:release-with-function Release]
11 [CreateDxgiSurfaceRenderTarget _fpointer]
12 [CreateDCRenderTarget _fpointer]))

the window to be bound. Window creation in Racket has been overviewed in
Sect. 2; calling the window method get-handle returns the desired HWND. The
other parameters are setting structures, which include the window dimensions.
The first member of the D2D1 RENDER TARGET PROPERTIES structure is
an important setting: it specifies whether to use hardware, software, or default
rendering, the latter letting DirectX decide: hardware rendering if available,
software rendering otherwise. The main result of the CreateHwndRenderTarget
method is a pointer to a render target, in this case a pointer to an instance of the
ID2D1HwndRenderTarget interface, which inherits from ID2D1RenderTarget.
Henceforth, all Direct2D drawing primitives called on our render target instance
shall be reflected in the window. This is illustrated in the next section.

3.2 Sample Application Implementation

In Listing 1.4 is a sample Racket application relying on Direct2D graphics. COM
source code as introduced earlier is abbreviated. Line 8 shows that the first mem-
ber of the D2D1 RENDER TARGET PROPERTIES structure is set to default
rendering, hence letting DirectX choose between hardware and software render-
ing. Lines 10–12 correspond to Direct2D resources creation, like a blue brush.

Listing 1.4. Sample racket application relying on Direct2D graphics.
1 (define d2d-frame (new frame% [label "Direct2D"] [width 320] [height 240]))
2 (define d2d-hwnd (send d2d-frame get-handle))
3 (define-values (client-w client-h) (send d2d-frame get-client-size))
4 (define pDirect2dFactory (D2D1CreateFactory 0 IID_ID2D1Factory #f))
5 (define pRenderTarget
6 (CreateHwndRenderTarget
7 pDirect2dFactory
8 (make-D2D1_RENDER_TARGET_PROPERTIES 0 (make-D2D1_PIXEL_FORMAT 0 0) 0.0 0.0 0 0)
9 (make-D2D1_HWND_RENDER_TARGET_PROPERTIES d2d-hwnd (make-D2D_SIZE_U client-w client-h)

0)))
10 (define pBlueColor (make-D3DCOLORVALUE 0.0 0.0 1.0 1.0))
11 (define pSolidColorBrush (CreateSolidColorBrush pRenderTarget pBlueColor #f))
12 (define pIdentityMatrix (make-D2D_MATRIX_3X2_F 1.0 0.0 0.0 1.0 0.0 0.0))
13 (send d2d-frame show #t) ; make the window visible

818 A. Bossard

Listing 1.5. Function executing Direct2D actual drawing operations.
1 (define (d2d-paint)
2 (BeginDraw pRenderTarget)
3 (SetTransform pRenderTarget pIdentityMatrix)
4 (Clear pRenderTarget #f) ; black by default
5 (FillRectangle pRenderTarget (make-D2D_RECT_F 40.0 40.0 260.0 160.0) pSolidColorBrush)
6 (EndDraw pRenderTarget))

In addition, we define the d2d-paint function to conduct Direct2D actual
operations such as drawing (see Listing 1.5). Direct2D enforces immediate mode
rendering; its operations are delimited by the BeginDraw and EndDraw methods
of the ID2D1RenderTarget interface. Once the window created and displayed,
evaluating in the Racket REPL the d2d-paint function updates the window.

3.3 Window Interaction Improvement

In the previous section, we have shown with a sample application that once the
window created by Racket, it is possible to emit Direct2D commands which will
update and render graphics inside the window. Yet, the common approach is to
render graphics at window creation time, that is, not first displaying a blank
window. The conventional approach is to execute drawing commands when the
application receives the WM PAINT message. In Racket, as illustrated in Sect. 2,
this is done by adding a canvas to the window (for drawing operations), and by
providing a paint callback to the canvas, the callback providing access to the
<dc%> for drawing. This callback function would be called each time the system
needs to update the window content.

If we follow the same approach of adding a canvas to the window and con-
ducting Direct2D graphical operations onto this canvas (through the canvas’
HWND handle, a canvas being a child window), we run into the following issue.
Since a canvas is double-buffered [5], any change made inside canvas’ paint call-
back function by Direct2D, that is directly through the canvas’ HWND handle,
and not through its <dc%>, is ineffective as the very last operation once the
paint callback function completed is the buffer swap between the back buffer
and the front buffer (this buffer swap operation is an implicit finalisation oper-
ation by a canvas). So, we have to use the window’s HWND handle directly as
we unfortunately can not rely on a canvas’ HWND handle.

This is indeed unfortunate as, unlike for a canvas object, there is no easy way
to catch the painting event for a window created in Racket. One solution to catch
the WM PAINT message for our Racket window is to subclass the window. This
can be done by using the comctl32.dll library function SetWindowSubclass to
install a new layer of WindowProc callback for message catching and process-
ing. Messages not handled by the newly installed WindowProc are directly
forwarded to the next WindowProc callback with a call to DefSubclassProc.
See Listing 1.6. Even though we successfully subclassed the Racket window to
catch messages, it was at the cost of application stability and responsiveness.

High-Performance Graphics in Racket with DirectX 819

Listing 1.6. Subclassing a racket window to catch repaint events.
1 (define-comctl32 SetWindowSubclass ; import library function
2 (_wfun _pointer
3 (_wfun _pointer _uint _long _long _intptr _intptr -> _long)
4 _intptr _intptr -> _int))
5 (define-comctl32 DefSubclassProc ; import library function
6 (_wfun _pointer _uint _long _long -> _long))
7 (define (my-proc hWnd uMsg wParam lParam uIdSubClass dwRefData)
8 (if (= uMsg 15) ; WM_PAINT message
9 (begin (d2d-paint) 0) ; message processed, return 0

10 (DefSubclassProc hWnd uMsg wParam lParam))) ; forward other messages
11 (SetWindowSubclass d2d-hwnd my-proc 0 0) ; subclass the window

As the subclassing approach was not satisfactory, we considered to instead
rely on a canvas for its paint callback which catches repaint messages, but forcing
the canvas to stay transparent so that the double-buffering issue does not erase
Direct2D renderings made on the canvas’ underlying window (see Fig. 1). This
can be achieved by specifying the ’no-autoclear canvas style when instantiating
the canvas% class. Yet, at window display time the canvas would still erase
underlying window graphics. To address this remaining issue, one trick is to
use the ’gl canvas style in addition to ’no-autoclear, this time completely
preventing canvas underlying content erasing. Eventually, the window is created
as in Listing 1.7.

Listing 1.7. Window creation for repaint event catching with DirectX rendering.
1 (define d2d-frame (new frame% [label "Direct2D"] [width 320] [height 240]))
2 (new canvas% [parent d2d-frame] [style ’(no-autoclear gl)]
3 [paint-callback (lambda (cv dc) (d2d-paint))])

Another satisfactory approach is to use a canvas with the ’no-autoclear
style only and with the same paint callback, and make a trade-off to catch
repaint messages with the on-superwindow-show message which is triggered
upon window visibility changes, including the window creation event. Still, vis-
ibility change events are not identical to repaint events, hence the trade-off.
The merit here is clarity (no ’gl canvas style trick). This is done by deriving
the frame% class and calling the refresh method to trigger the canvas paint
callback (see Listing 1.8).

Fig. 1. Catching repaint events with a canvas but directly drawing onto the window.

820 A. Bossard

Listing 1.8. Deriving the frame% class to catch visibility change events.
1 (define d2d-frame%
2 (class frame% ; base class
3 (define/override (on-superwindow-show shown?) ; catch visibility changes
4 (when shown? (send this refresh))) ; request a repaint
5 (super-new))) ; base class constructor

As a result, we solved all the repainting issues so that our DirectX-enabled
window behaves fully as a normal Racket window, and as a normal window
in general. Now, the COM interfacing, COM interface method calls and other
various technical issues of the proposed Direct2D Racket system must induce
computational overhead. It is thus important to evaluate the performance that
can be achieved with this system. This is the purpose of the next section.

4 Performance Evaluation

We quantitatively measure the performance of our DirectX implementation and
the gains made compared to the conventional <dc%> approach with several exper-
iments. The results were obtained with the time Racket function and reported
as CPU time (i.e. actual CPU time taken to run the program), real time (i.e.
actual execution time of the program) and garbage collection time. We conducted
experiments with both hardware and software Direct2D rendering modes.

The experiments were conducted on a computer equipped with a 4-core (8-
thread) Intel Core i7-4510U CPU (mobile processors) and its embedded GPU
Intel HD 4400 (GT2) which includes 20 cores. Importantly as our implementation
relies on DirectX 12, hardware acceleration is available and this GPU supports
the Direct3D device driver interface (DDI) 12 and has feature levels up to 11 1.

4.1 Experiment 1 - Simple Shapes

The first performance evaluation experiment focused on drawing simple shapes,
precisely a large amount of rectangles (10,000) inside a 640× 480 pixels window,
measuring the time required for rendering. The drawing function d2d-paint for
our Direct2D approach, and dc-paint for the conventional <dc%> one are given
in Listing 1.9. Each of the two programs was run 3 times consecutively.

Both interpreted (i.e. run from within the Racket development environment
DrRacket) and compiled (i.e. run from an executable file) versions of these exper-
iment programs were tested. First, the results obtained with the conventional
<dc%> approach and the Direct2D software rendering mode are given in Table 1.

Next, the results obtained with the Direct2D hardware rendering mode are
given in Table 2. In this table, the results obtained with the conventional <dc%>
approach are those from Table 1 as they are indeed not impacted by the soft-
ware/hardware rendering modes of Direct2D.

High-Performance Graphics in Racket with DirectX 821

Listing 1.9. Drawing functions for Experiment 1.
1 (define (d2d-paint)
2 (BeginDraw pRenderTarget)
3 (SetTransform pRenderTarget pIdentityMatrix)
4 (Clear pRenderTarget #f)
5 (for ([i (in-range 1 10000)]) ; 1 <= i < 10000 (integers)
6 (FillRectangle pRenderTarget (make-D2D_RECT_F 0.0 0.0 (exact->inexact i)

(exact->inexact i)) pSolidColorBrush))
7 (EndDraw pRenderTarget))
8 (define (dc-paint canvas dc)
9 (send dc set-pen "" 0 ’transparent)

10 (send dc set-brush "blue" ’solid)
11 (for ([i (in-range 1 10000)]) (send dc draw-rectangle 0 0 i i)))

Table 1. Performance comparison of the conventional <dc%> approach and the
Direct2D software rendering mode (Experiment 1). Units: milliseconds.

Table 2. Performance comparison of the conventional <dc%> approach and the
Direct2D hardware rendering mode (Experiment 1). Units: milliseconds.

4.2 Experiment 2 - Animation

While Experiment 1 focused on the rendering of still simple shapes, in this sec-
ond experiment, we measure the performance of our approach in the case of
animations. Concretely, using the same machine as in Experiment 1, we render
numerous small shapes in a grid fashion, and the animation consists in rotat-
ing the whole by 0.1 radian at each frame. The performance is quantitatively

822 A. Bossard

measured with the frame per second (FPS, a.k.a. frame rate) metric which is
commonly used by various graphics benchmarks.

More precisely, the animation involved 8× 8 pixels circles, filled according to
a linear gradient brush horizontal and 100 pixels wide, with three stops: red at
0.0, green at 0.5 and blue at 1.0. Anti-aliasing was used (default anti-aliasing for
Direct2D, and set-smoothing set to ’smoothed for the device context of the
conventional <dc%> approach). The drawing functions used in the <dc%> and
Direct2D cases are shown in Listing 1.10. It can be observed that the two func-
tions are as similar as possible for fair evaluation. In the <dc%> case, the trans-
lation transformation is already applied as preprocessing, hence not appearing
in the drawing function (this can thus be seen as a slight performance disadvan-
tage for our approach; we will see that our approach anyway beats clearly the
conventional one).

Listing 1.10. Drawing functions for Experiment 2.
1 (define (dc-paint canvas dc)
2 (send dc clear)
3 (send dc rotate 0.1)
4 (for* ([x (in-range -320 320 10)] [y (in-range -240 240 10)])
5 (send dc draw-ellipse x y 8 8)))
6
7 (define (d2d-paint)
8 (BeginDraw pRenderTarget)
9 (Clear pRenderTarget #f)

10 (mat32-multiply! pMatrix pRotMatrix) ; rotation
11 (SetTransform pRenderTarget (mat32-multiply pMatrix pTranslateMatrix)) ; translation
12 (for* ([x (in-range -320 320 10)] [y (in-range -240 240 10)])
13 (FillEllipse pRenderTarget (make-D2D1_ELLIPSE (make-D2D_POINT_2F (exact->inexact x)

(exact->inexact y)) 4.0 4.0) pGradientBrush))
14 (EndDraw pRenderTarget))

The animation loop in the <dc%> case is given in Listing 1.11. It is exactly the
same for the Direct2D case, except that d2d-paint is called instead of dc-paint,
and d2d-frame instead of classic-frame. See Fig. 2 for a screenshot of the
animation. The frame rates for the first 50 frames of the animation are given in
Table 3.

Listing 1.11. Animation loop for Experiment 2.
1 (define (run-classic)
2 (send classic-frame show #t)
3 (let run ([t (current-milliseconds)])
4 (yield)
5 (dc-paint classic-canvas dc)
6 (let ([t2 (current-milliseconds)])
7 (displayln (/ 1 (* 0.001 (- t2 t)))) ; FPS value
8 (run t2))))

High-Performance Graphics in Racket with DirectX 823

Fig. 2. Screenshot of the rotating animation in Experiment 2.

Table 3. Performance comparison of the conventional <dc%> approach and the
Direct2D one with animation (Experiment 2). Units: FPS (the higher the better).

5 Results Discussion

First, we notice from Experiment 1 results that there is no significant perfor-
mance difference between interpreted and compiled versions of the programs.
Then, it is important to observe that the conventional approach induces longest
(or near-longest) times in both CPU time and real time. Now, when using
Direct2D in software mode, the CPU time stays similar to that of the con-
ventional approach (an average time increase of +6% for the Direct2D approach
with respect to the <dc%> approach) while the real time is reduced by about 70%
(an average time decrease of 72% for the Direct2D approach with respect to the
<dc%> approach), which is a first significant positive result. That the CPU time
is not improved is no surprise since the rendering, even though using Direct2D,
is done in software-mode, that is without any support by GPU hardware. Hence
the time taken by the CPU in total is similar to the <dc%> approach. The execu-
tion time (real time) significant improvement can be explained by the multicore
architecture of the CPU used for the experiment.

Regarding the hardware rendering experiment, this is the reversed situation.
Effectively, while the execution time (real time) remains similar to that of the
conventional approach (an average time increase of +8% for the Direct2D app-
roach with respect to the <dc%> approach), the CPU time taken in total by
the hardware-accelerated Direct2D program is reduced by about 80% (an aver-
age time decrease of 81% for the Direct2D approach with respect to the <dc%>

824 A. Bossard

approach), which a second significant positive result. In Direct2D hardware ren-
dering mode, graphics-related processing is mainly conducted on the GPU, so the
total CPU time taken stays very low. Yet, the execution time remains high since
the GPU used in this experiment is low-end (CPU embedded), and the graphics
involved are simple. Still, being able to achieve such a CPU usage reduction (bal-
anced with GPU usage obviously) is an important achievement for at least two
reasons: (1) CPU time is made available for other system applications, especially
those that do not rely on the GPU (they are a majority), and (2) CPUs have a
much lower GFLOP/Watt ratio than GPUs [7], especially when considering the
GFLOP per second per processing element (core) ratio [6], and are thus much
less environment-friendly (see Green 500 [8]) than GPUs.

The positive results of Experiment 1 were confirmed by Experiment 2. Effec-
tively, from the frame rate measurements obtained in the second experiment, it
is easy to assess the large performance increase when using our Direct2D app-
roach compared to the conventional <dc%> approach. We would observe a jump
from an average 6 FPS for the <dc%> approach to full animation fluidity with
Direct2D. Also, when measuring the average frame rate of the first 50 frames,
we noticed a 40% FPS increase when using the hardware mode of Direct2D com-
pared to its software mode. Qualitatively, it is also important to mention that
the conventional <dc%> approach produced severe ickering during the animation.

6 Conclusions

Parallel processing is ubiquitous nowadays. Furthermore, with advances in GPU
multicore technologies, parallel processing has become essential for graphical ren-
dering. In this paper, we have proposed an innovative approach to enable parallel
processing for graphical rendering inside the Racket development environment.
We showed (1) that it is possible to use DirectX within a Racket program,
even interpreted; (2) that it is easy: we proposed an elegant implementation;
and (3) that it gives excellent results thanks to parallel processing capacities of
the CPU and GPU chips. Precisely, we managed to reduce the CPU time for
graphics by more than 80% in average with the Direct2D hardware rendering
mode compared to the legacy approach. Also, by using the Direct2D software
rendering mode instead of the legacy <dc%> approach of Racket, we were able
to achieve in average a ×3 execution speed-up. Eventually, we confirmed that
the animation frame rate was significantly higher when using Direct2D instead
of <dc%>. Regarding future work, accessing Nvidia’s CUDA from within Racket
is meaningful.

References

1. Nvidia, GeForce GTX 1080 user guide (2016)
2. Luna, F.: 3D game programming with DirectX 12 (Chapter 4). Mercury Learning

and Information, Dulles (2016)
3. Flatt, M.: Creating languages in Racket. Comm. ACM 55(1), 48–56 (2012)

High-Performance Graphics in Racket with DirectX 825

4. Box, D.: Essential COM. Addison-Wesley Professional, Boston (1998)
5. Sheeparamatti, R.B., Sheeparamatti, B.G., Bharamagoudar, M., Ambali, N.:

Simulink model for double buffering. In: Proceedings of the 32nd Conference on
IEEE Industrial Electronics, pp. 4593–4597. Paris (2006)

6. Rupp, K.: CPU, GPU and MIC Hardware Characteristics over Time (2013–2016).
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-
over-time/. Accessed 29 June 2017

7. Hindriksen, V.: Processors that can do 20+ GFLOPS per Watt (2012). https://
streamcomputing.eu/blog/2012-08-27/processors-that-can-do-20-gflops-watt/.
Accessed 29 June 2017

8. Feng, W.-C., Cameron, K.: The green500 list: Encouraging sustainable supercom-
puting. Computer 40(12), 50–55 (2007)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://streamcomputing.eu/blog/2012-08-27/processors-that-can-do-20-gflops-watt/
https://streamcomputing.eu/blog/2012-08-27/processors-that-can-do-20-gflops-watt/

Author Index

Acevedo, César 489
Acosta, Alejandro 81
Afonso, Sergio 81
Alapati, Praveen 776
Almeida, Francisco 81
An, Hong 18
Ayres, Daniel L. 533

Badosa, Ferran 489
Bała, Piotr 503
Barrachina, Sergio 548
Benkner, Siegfried 801
Bossard, Antoine 814
Botella, Guillermo 569
Bzhalava, Davit 503

Cai, Xiaojun 115, 735
Cao, Liang 165
Cao, Pengfei 387, 420
Carriço, João A. 591
Castillo, Maribel 548
Chai, Zhilei 65
Challal, Yacine 149
Chaves, Javier 513
Chen, Hanhua 180
Chen, Jing 285
Chen, Junshi 18
Chen, Mingsong 65
Chen, Sijia 642
Chen, Wenjie 65
Chen, Wenzhi 51
Chen, Xin 345
Chen, Xue 633
Chen, Yan 623
Chen, Yijie 441
Chen, Yong 18, 180
Cheng, Cheng 715
Cheng, Yanxiao 476
Chernoskutov, Mikhail 759
Cores, Fernando 601
Crockett, Keeley 407
Cuadrado, Andrés Sánchez 749
Cummings, Michael P. 533

Damas, Miguel 580
Daniel García, J. 749
De Argila, Jordi Rambla 548
De Giusti, Armando 569, 766
del Rio Astorga, David 749
Deng, Robert H. 297
Díaz Redondo, Rebeca P. 407
Díaz, Antonio Francisco 580
Ding, Wenxiu 297
Dokulil, Jiri 801
Dolz, Manuel F. 749
Dong, Bo 465

E, Haihong 359, 372
Escobar, Juan José 580
Espinosa, Antonio 489
Evans, Lewis 407

Fang, Binxing 313
Farkas, Lóránt 452
Farré, Xavier 548
Feng, Jinghua 431
Feng, Jun 705
Feng, Yongquan 268
Fernández, Javier 749
Fernández-Vilas, Ana 407
Finta, István 452
Fonal, Krzysztof 211
Francisco, Alexandre P. 591
Fu, Hao 239

Gallego-Sánchez, Daniel 523
Gao, Hui 705
García, Ana-Bárbara 513
Garcia, Carlos 569
Gheid, Zakaria 149
González, César 513
González, Jesús 580
Granado-Criado, José M. 523
Guirado, Fernando 601
Guo, Yunchuan 313

Hagihara, Kenichi 254
Hao, Mi 715

Haudebourg, Timothée 132
He, Chunjiang 180
He, Daojing 65
Holmbacka, Simon 3
Hu, Xiaoteng 239
Hu, Yi 431
Hu, Yingxi 372
Huang, Haibing 225
Huang, Kai 33
Huang, Yanyan 239

Ino, Fumihiko 254

Ji, Ke 397
Jia, Zhiping 115, 735
Jiang, Zigui 658
Jin, Hai 180
Jiujun, Cheng 715

Keller, Jörg 3
Knoll, Alois 33

Lei, Haijun 735
Li, Chen 239
Li, Fenghua 313
Li, Guoxi 51
Li, Kun 239
Li, Shuai 678
Li, Xiaole 99
Liang, Weihao 18
Liao, Chung-Yu 197
Lin, Changwei 359
Lin, Cheng-Hung 197
Lin, Rongheng 658
Liu, Linlin 33
Liu, Luning 345
Liu, Weiyu 345
Liu, Xiaoguang 225
Liu, Zhenyu 687
Liu, Zhihan 658
Lladós, Jordi 601
Lu, Xiaoxiao 791
Lu, Zhaoming 345
Lu, Zhongyong 51
Luo, Xiao 633

Ma, Kun 397
Ma, Yangyang 65
Martínez, Héctor 548

Meng, Jia 165
Monteiro, Pedro T. 591
Mutyam, Madhu 776

Naiouf, Marcelo 569, 766
Navarro, Arcadi 548
Niu, Xiangyang 331
Nowicki, Marek 503

Orduña, Juan M. 513
Orgerie, Anne-Cécile 132
Ortega, Julio 580
Ou, Zhonghong 359, 372
Owda, Majdi 407

Pérez, Mariano 513
Pérez-Wohlfeil, Esteban 611
Petraglio, Enrico 558
Prieto-Matias, Manuel 569

Qin, Hao 115
Que, Xirong 678
Quintana-Ortí, Enrique S. 548

Ren, Mingming 225
Ripoll, Ana 489
Ruan, Jianfei 465
Ruan, Ou 285
Rubio-Largo, Álvaro 523
Rucci, Enzo 569

Santander-Jiménez, Sergio 523
Santos, Francisco C. 591
Sanz, Victoria 766
Saranam, Swamy 776
Sergyán, Szabolcs 452
Shang, Zhaohui 431
Shen, Jingcheng 254
Shigeoka, Kentaro 254
Sigg, Stephan 695
Singh, Isha 695
Song, Bin 642
Song, Meina 359, 372
Stones, Rebecca J. 225
Su, Kui 51
Sun, Chao 431, 791
Sun, Jizhou 431, 791
Sun, Yanwei 313
Szénási, Sándor 452

828 Author Index

Tang, Yuhua 268
Tao, Jing 387, 420
Teixeira, Andreia Sofia 591
Thoma, Yann 558
Torreno, Oscar 611
Trelles, Oswaldo 611

Vega-Rodríguez, Miguel A. 523
Vera, Gonzalo 489

Wang, Dongbin 441
Wang, Gang 225
Wang, Hua 99
Wang, Jianmei 791
Wang, Lei 633
Wang, Rui 115, 735
Wang, Ruidong 705
Wang, Wendong 678, 705
Wang, XianChao 331
Wang, Xiebing 33
Wang, Xinrui 372
Wang, Zheng 387, 420
Wang, Zonghui 51
Wei, Wenda 465
Wen, Xiangming 345
Wertenbroek, Rick 558
Wu, Tianhao 652

Xi, Teng 678
Xiao, Jian 239, 431, 791
Xu, Liyang 268
Xu, Qingqing 18
Xu, Xinhai 268

Yaghob, Jakub 801
Yan, Jie 431
Yan, Zheng 297, 465, 476
Yang, Bo 397

Yang, Fangchun 658
Yang, Xiuzhu 668
Yao, Juncheng 180
Yao, Wenbin 441
Yao, Xibo 99
Yi, Shanwen 99
Yin, Lihua 313
Yu, Ce 239, 431, 791
Yu, Huashan 165
Yu, Yang 18
Yu, Ziqiang 397

Zdunek, Rafał 211
Zhai, Linbo 99
Zhai, Ruirui 623
Zhan, Yanghao 623
Zhang, Lin 652, 668, 687
Zhang, Mian 331
Zhang, Mingwu 285
Zhang, Qiqi 658
Zhang, Rui 225
Zhang, Sulan 331
Zhang, Tao 725
Zhang, Yan 387, 420
Zhang, Ying 642
Zhang, Yongjun 268
Zhang, Yue 642
Zhang, Zhiwei 735
Zhang, Zhiyong 115, 735
Zhao, Jia 331
Zhao, Qiqi 387, 420
Zhao, Shuai 725
Zhao, Yue 225
Zheng, Qinghua 465
Zheng, Shang 715
Zhenhua, Huang 715
Zhu, Fangjin 99

Author Index 829

	Preface
	ICA3PP 2017 Organization
	Contents
	Parallel and Distributed Architectures
	Workload Type-Aware Scheduling on big.LITTLE Platforms
	1 Introduction
	2 Related Work
	3 Power Breakdown
	4 Influence of Workload Type
	5 Type Based Schedule Optimization
	5.1 Workload Types
	5.2 Schedule Generation

	6 Evaluation
	6.1 Case Studies
	6.2 Experimental Results

	7 Conclusions
	References

	Pipelining Computation and Optimization Strategies for Scaling GROMACS on the Sunway Many-Core Processor
	Abstract
	1 Introduction
	2 The Sunway TaihuLight System
	2.1 Overview
	2.2 The SW26010 Processor

	3 GROMACS
	3.1 Application Introduction
	3.2 The Nonbonded Kernel

	4 Refactoring GROMACS for the Sunway System
	4.1 Parallelization Using CPEs
	4.2 The Efficient Use of SPM
	4.3 The Software-Emulated Cache
	4.4 A Hybrid Parallel Algorithm for Computing and Scheduling

	5 Results and Analysis
	5.1 Single CG Performance
	5.2 Strong Scaling
	5.3 Analysis

	6 Related Work
	7 Conclusions and Future Work
	References

	Exploring FPGA-GPU Heterogeneous Architecture for ADAS: Towards Performance and Energy
	1 Introduction
	2 Related Work
	3 Particle-Filter Based LDA
	3.1 Algorithm Overview
	3.2 Initial Design

	4 Heterogeneous Design
	4.1 Data-Level Parallelism
	4.2 Workload Balance
	4.3 Performance and Energy Evaluation

	5 Experiment and Analysis
	5.1 Experimental Setup
	5.2 Results and Analysis

	6 Conclusion and Future Work
	References

	Software Systems and Programming Models
	Hzmem: New Huge Page Allocator with Main Memory Compression
	1 Introduction
	2 Related Work
	3 Motivation
	4 Architecture and Implementation
	4.1 Hugepage Physical Memory Allocator
	4.2 Page Fault Handler
	4.3 Page Reclaiming
	4.4 Hugepage Compression Data Management

	5 Evaluation
	5.1 Overheads of Hzmem
	5.2 Throughputs of Hzmem
	5.3 Effective Memory Increasing
	5.4 Overhead of Page Fault and Performance Isolation

	6 Conclusion
	References

	An FPGA-Based Real-Time Moving Object Tracking Approach
	1 Introduction
	2 Methodology
	2.1 Feature Points
	2.2 The KLT Approach
	2.3 The KLT Procedure and Its Deficiency
	2.4 Our Improvement of KLT--MKLT

	3 Hardware Design of MKLT
	3.1 Workflow of MKLT
	3.2 Parallelism Analysis
	3.3 Hardware Architecture Design for MKLT

	4 Evaluation
	4.1 Implementation
	4.2 Comparison Between KLT and MKLT
	4.3 Performance and Energy Consumption Comparison

	5 Conclusion
	References

	Automatic Acceleration of Stencil Codes in Android Devices
	1 Introduction
	2 Paralldroid
	3 Stencil Codes
	4 Methodology
	5 Computational Results
	5.1 Hardware Testbed
	5.2 Testing Methodology
	5.3 Benchmarks

	6 Conclusion and Future Work
	References

	Distributed and Network-based Computing
	Optimizing Concurrent Evacuation Transfers for Geo-Distributed Datacenters in SDN
	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Topology Description
	2.2 Mathematical Model

	3 Algorithm Design
	3.1 Basic Idea
	3.2 Transition Probability
	3.3 Pheromone Trail and Heuristic Information
	3.4 Bandwidth Proportion Adjustment Rules
	3.5 Algorithm Implementation

	4 Performance Evaluation
	4.1 Environment and Configuration
	4.2 Evacuation Time Comparison
	4.3 Network Utilization Comparison

	5 Conclusion
	Acknowledgment
	References

	Energy-Balanced and Depth-Controlled Routing Protocol for Underwater Wireless Sensor Networks
	1 Introduction
	2 Related Work
	3 Energy-Balanced and Depth-Controlled Routing Protocol
	3.1 Network Architecture
	3.2 Network Initialization Phase
	3.3 Data Forwarding Phase
	3.4 Node Replacement Strategy and Algorithm

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusion
	References

	On the Energy Efficiency of Sleeping and Rate Adaptation for Network Devices
	1 Introduction
	2 State of the Art
	2.1 Rate Adaptation: Adaptive Link Rate (ALR)
	2.2 Sleeping: Low Power Idle (LPI)

	3 Experimentation Conditions
	3.1 Energy Consumption
	3.2 Traffic Characteristics

	4 Energy Savings and Performance Degradation of Sleeping and Rate Adaptation Techniques
	4.1 Energy Consumption
	4.2 Quality of Service
	4.3 Heterogeneous Network

	5 Conclusion
	References

	Big Data and its Applications
	Private and Efficient Set Intersection Protocol for Big Data Analytics
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Private Set Intersection
	3.2 Multi-Party Computation
	3.3 Privacy Threat Model

	4 A Novel Private and Efficient Set Intersection Protocol
	4.1 Overview and Motivation
	4.2 Notational Conventions
	4.3 Protocol Design
	4.4 Generalization

	5 Security Analysis
	5.1 Real/Ideal Model
	5.2 Security Proof

	6 Complexity Analysis
	6.1 Analysis
	6.2 Discussion

	7 Empirical Evaluation
	7.1 Experimental Environment and Scenarios
	7.2 Results and Discussion

	8 Conclusion
	References

	A Topology-Aware Framework for Graph Traversals
	Abstract
	1 Introduction
	2 Problem Statement and Analysis
	2.1 Complexity Analysis
	2.2 Efficiency Analysis

	3 A Topology-Aware Value-Propagating Framework
	3.1 A Topology-Based Edge Partitioning Strategy
	3.2 A Locality-Based Vertex Partitioning Strategy
	3.3 A Double-Queue Task Scheduling Strategy

	4 Implementation
	5 Experimental Evaluation
	5.1 Experimental Results for Estimating Graph Diameter
	5.2 Experimental Results for BFS

	6 Related Work
	7 Conclusion
	Acknowledgements
	References

	Adaptive Traffic Signal Control with Network-Wide Coordination
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Description
	3.2 The MARL Approach
	3.3 Delay Estimation Model

	4 Experiment
	5 Conclusion
	References

	Parallel and Distributed Algorithms
	A Novel Parallel Dual-Character String Matching Algorithm on Graphical Processing Units
	1 Introduction
	2 Related Works
	2.1 Review of Aho-Corasick Algorithm
	2.2 Review of Parallel Failureless Aho-Corasick Algorithm
	2.3 Review of Perfect Hashing Algorithm

	3 Parallel Dual-Character String Matching Algorithm
	3.1 Dual-Character State Machine
	3.2 Trie Compression

	4 Experimental Results
	5 Conclusion
	References

	Distributed Nonnegative Matrix Factorization with HALS Algorithm on MapReduce
	1 Introduction
	2 Single Node HALS Algorithm
	3 Distributed HALS Algorithm
	4 Experiments
	5 Conclusions
	References

	Applications of Parallel and Distributed Computing
	GPU-Accelerated Block-Max Query Processing
	1 Introduction
	2 Background and Related Work
	2.1 Block-Max Index
	2.2 Query Processing
	2.3 Scoring
	2.4 GPUs
	2.5 Related Work

	3 The Proposed Method
	3.1 Overview
	3.2 CPU-GPU Cooperative Version

	4 Experimental Testing
	4.1 Experimental Setup
	4.2 Query Processing Time
	4.3 CPU-GPU Cooperative Version
	4.4 Extensions

	5 Conclusion and Future Work
	References

	KD-Tree and HEALPix-Based Distributed Cone Search Indexing System for Multi-Band Astronomical Catalogs
	1 Introduction
	2 Related Work
	3 Proposed Distributed Cone Search Indexing System
	3.1 Define a New Meta File Format for Astronomical Catalogs
	3.2 Design a Distributed Query System for Cone Search
	3.3 Flexibly Add Incremental Data into Index System

	4 Implement and Performance Evaluation
	4.1 Implement
	4.2 Evaluation Results

	5 Conclusion and Future Work
	References

	An Out-of-Core Branch and Bound Method for Solving the 0-1 Knapsack Problem on a GPU
	1 Introduction
	2 Related Work
	3 B&B Approach for Solving Knapsack Problem
	4 Proposed Method
	4.1 CPU-Centric Subproblem Management
	4.2 Stream Compaction Strategy
	4.3 Double Buffering Strategy

	5 Experimental Results
	5.1 Robustness Against the Increase of Problem Size
	5.2 Performance Comparison
	5.3 Comparison of Separated and Unified Schemes

	6 Conclusion
	References

	The Curve Boundary Design and Performance Analysis for DGM Based on OpenFOAM
	1 Introduction
	2 Background
	2.1 Original OpenFOAM and DGM
	2.2 Simulation Accuracy and Discretization Error

	3 Design and Implementation of Curve Boundary
	3.1 DGM Discretization and Curve Boundary Requirement
	3.2 Design and Implementation of Curve Boundary Interface
	3.3 Design and Implementation of Moving Rule

	4 Experiment and Analysis
	4.1 Platform and Test Cases
	4.2 Methodology
	4.3 Experimental Results and Analysis

	5 Conclusion
	References

	Service Dependability and Security in Distributed and Parallel Systems
	Leakage-Resilient Password-Based Authenticated Key Exchange
	Abstract
	1 Introduction
	2 Related Works
	3 The \uplambda -CAFLR eCK Security Model for PAKE
	3.1 Adversarial Powers
	3.2 \uplambda -CAFLR eCK Security Model
	3.3 Security Game and Security Definition

	4 A New \uplambda -CAFLR eCK-Secure PAKE Protocol
	4.1 Dziembowski-Faust(DF) LRS Scheme
	4.2 The Proposed Protocol:
	4.3 Mutual Authentication
	4.4 Security Proof
	4.5 Security and Performance Comparison

	5 Conclusion and Future Works
	Acknowledgement
	References

	Secure Encrypted Data Deduplication with Ownership Proof and User Revocation
	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statements
	3.1 System Model and Security Model
	3.2 Preliminary and Notations

	4 Algorithm and Scheme Design
	4.1 Additive Homomorphic Re-Encryption (AHRE)
	4.2 Ownership Check
	4.3 Data Deduplication Management
	4.4 Encrypted Data Update
	4.5 User Revocation Management

	5 Security Analysis and Performance Evaluation
	5.1 Security Analysis
	5.2 Computation Complexity
	5.3 Performance Analysis

	6 Conclusion
	Acknowledgment
	References

	Optimally Selecting the Timing of Zero-Day Attack via Spatial Evolutionary Game
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Challenge
	1.4 Contribution

	2 Related Work
	2.1 Zero-Day Attack Protection
	2.2 The Use of Evolutionary Game Against Cyber-Security

	3 Computing Defender's Protecting Ability via Evolutionary Game
	3.1 Problem Description
	3.2 Game Formulation

	4 Specification of Player's Pay-off
	5 Experiment
	6 Conclusion
	References

	Performance Modeling and Evaluation
	Performance Analysis of a Ternary Optical Computer Based on M/M/1 Queueing System
	Abstract
	1 Introduction
	2 Related Work
	2.1 Task Management System of Ternary Optical Computer
	2.2 Brief Introduction to Queueing System

	3 Service Model of the Ternary Optical Computer
	3.1 Service Model of the Ternary Optical Computer
	3.2 Obtaining TRA
	3.3 Obtaining TDPP
	3.4 Obtaining TRS
	3.5 Obtaining TRT

	4 Simulation
	4.1 System Metrics
	4.2 Response Time
	4.3 System Bottlenecks

	5 Conclusions
	Acknowledgements
	References

	Efficient Computation Offloading for Various Tasks of Multiple Users in Mobile Edge Clouds
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Local Execution
	3.2 Remote Execution
	3.3 Offloading Utility Function

	4 Resource Allocation Offloading Problem
	4.1 Offloading Qualification Judgement
	4.2 Resource Allocation Offloading Problem

	5 Resource Allocation Offloading Mechanism
	6 Numerical Results
	6.1 Comparison of System Utility and Task Completion Time
	6.2 Extension to Wirelessinterference Model

	7 Conclusion
	References

	A CNN-Based Supermarket Auto-Counting System
	1 Introduction
	2 Background
	2.1 Faster R-CNN
	2.2 Hard Example Mining
	2.3 Multi-scale Feature Maps for Object Detection

	3 Design and Implementation
	3.1 Training Model
	3.2 Design and Implementation of Our System

	4 Performance Evaluation
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Results

	5 Related Work
	6 Conclusion
	References

	Research and Implementation of Question Classification Model in Q&A System
	Abstract
	1 Introduction
	2 Related Work
	2.1 Traditional Question Classification Methods
	2.2 Deep Learning Question Classification Methods

	3 MC-BLSTM-MGCNN Neural Network Question Classification Model
	3.1 Characteristics
	3.2 Architecture

	4 Experiment
	4.1 Dataset
	4.2 Environment
	4.3 Word Vector
	4.4 Hyper-parameter Setting
	4.5 Experiment Result
	4.6 Discussion

	5 Conclusion
	References

	The 4th International Workshop on Data, Text, Web, and Social Network Mining (DTWSM 2017)
	An Android Malware Detection System Based on Behavior Comparison Analysis
	Abstract
	1 Introduction
	2 Related Works
	3 Background and Thread Model
	4 Android Application Behavior Model
	5 EmuProtect Detection System
	6 System Implementation
	6.1 Dynamic Analysis and Application Behavior Triggering Technique
	6.2 Operating Environment Feature Setting Technique
	6.3 Behavior Record Generation and Comparison Technique

	7 Evaluation
	7.1 Experiment I
	7.2 Experiment II
	7.3 Experiment III

	8 Discussion
	References

	Stream-Based Live Probabilistic Topic Computing and Matching
	1 Introduction
	1.1 Background

	2 Related Work
	3 Stream-Based Live Probabilistic Topic Computing and Matching
	3.1 Architecture
	3.2 Method

	4 Experiment Results
	4.1 Experiment Setup
	4.2 Topic Computing
	4.3 Topic Matching

	5 Conclusions
	References

	Experiment for Analysing the Impact of Financial Events on Twitter
	Abstract
	1 Introduction
	2 Twitter and Financial Information
	2.1 Twitter Mining

	3 The Experiment and the Data
	3.1 Data Extraction

	4 Impact on Twitter Volume
	5 Impact on Geographical Distribution
	6 Rapidness
	7 Discussion
	Acknowledgement
	References

	APK-DFS: An Automatic Interaction System Based on Depth-First-Search for APK
	Abstract
	1 Introduction
	2 The Framework of APK-DFS
	3 Design and Implementation of Automated Interaction
	3.1 Automatic Interaction Process
	3.2 Depth First Search Traversal Algorithm
	3.3 UI Page Fingerprint
	3.4 UI Storage Stack and UI Trash Can
	3.5 User Operation Simulation

	4 Experiments and Results
	4.1 Experimental Results
	4.2 Result Analysis

	5 Summary
	References

	Optimized Data Layout for Spatio-temporal Data in Time Domain Astronomy
	1 Introduction
	2 Related Work
	3 Design
	3.1 Partitioned Layout
	3.2 Binary Tree Layout
	3.3 Redundant Layout

	4 Simulation Results Analysis
	4.1 Simulation Parameter Settings
	4.2 Non-uniform Data Model

	5 Conclusion and Future Work
	References

	Cloud Multimedia Files Assured Deletion Based on Bit Stream Transformation with Chaos Sequence
	Abstract
	1 Introduction
	2 Security Assumptions and Threat Model
	2.1 Security Assumptions
	2.2 Threat Model

	3 System Design
	3.1 Logistic Chaotic Mapping
	3.2 Original Data Transformation
	3.3 Data Encryption, Recovery and Assured Deletion

	4 Security Analysis and Implementation
	4.1 Security Analysis
	4.2 Time Costs for this System

	5 Conclusion and Future Works
	Acknowledgment
	References

	Interval Merging Binary Tree
	1 Introduction
	2 Problem
	3 Methodology
	3.1 Concept of the Data Structure
	3.2 Data Structure for Interval Merging

	4 Analysis of Interval Merging Binary Tree
	4.1 Input Pattern Series
	4.2 Comparison of Balanced BST with IMBT

	5 Conclusion
	References

	Mining Suspicious Tax Evasion Groups in a Corporate Governance Network
	1 Introduction
	2 Related Work
	3 Definitions of Controller Interlock and Corporate Governance Network
	3.1 Controller Interlock
	3.2 Corporate Governance Network

	4 Suspicious Groups of ITE Identification Method
	4.1 Controller Interlock Pattern Recognition Algorithm
	4.2 Suspicious Groups Identification Algorithm

	5 Experimental Evaluation
	5.1 Experimental Design
	5.2 Experimental Results

	6 Conclusion
	References

	PerRec: A Permission Configuration Recommender System for Mobile Apps
	Abstract
	1 Introduction
	2 Related Work
	3 System Design
	3.1 PerRec System Structure
	3.2 Permission Risk Level
	3.3 Recommendation on Permission Configuration

	4 System Implementation and Performance Evaluation
	4.1 System Implementation
	4.2 Performance Evaluation

	5 Conclusion
	Acknowledgments
	References

	The 5th International Workshop on Parallelism in Bioinformatics (PBio 2017)
	A Resource Manager for Maximizing the Performance of Bioinformatics Workflows in Shared Clusters
	1 Introduction
	2 Related Work
	3 Proposed Resource Manager
	3.1 Application Characterization Model
	3.2 Multivariate Regression Prediction Model
	3.3 Resource-Sharing Model and Multicriteria Scheduler

	4 Experiments
	5 Conclusions and Future Work
	References

	Massively Parallel Sequence Alignment with BLAST Through Work Distribution Implemented Using PCJ Library
	1 Introduction
	2 Related Work
	3 PCJ Library
	4 PCJ-BLAST
	4.1 Input Data
	4.2 Parallel Sequence Alignment
	4.3 Multithreaded NCBI-BLAST

	5 PCJ-BLAST Performance Results
	6 Conclusion
	References

	On the Use of Binary Trees for DNA Hydroxymethylation Analysis
	1 Introduction
	2 Binary Trees for DNA Hydroxymethylation Analysis
	2.1 Pipeline Design
	2.2 Methylation and Hydroxymethylation Mapping

	3 Performance Evaluation
	4 Conclusions
	References

	Parallel Multi-objective Optimization for High-Order Epistasis Detection
	1 Introduction
	2 Problem Definition
	3 Parallelizing NSGA-II
	4 Experiments and Results
	4.1 Parametric Study
	4.2 Parallel Study
	4.3 Biological Comparison

	5 Conclusions
	References

	Configuring Concurrent Computation of Phylogenetic Partial Likelihoods: Accelerating Analyses Using the BEAGLE Library
	1 Introduction
	1.1 The BEAGLE Library and API
	1.2 Concurrent Computation: Independent Likelihood Estimates

	2 Methods
	2.1 Benchmarking and Testing
	2.2 Pattern Partition Concurrency
	2.3 Independent Subtree Concurrency
	2.4 Extending Concurrency Gains to OpenCL
	2.5 Memory Transfer Optimizations
	2.6 Combining Pattern Partition and Independent Subtree Concurrency
	2.7 Other Aspects
	2.8 Modifications to MrBayes
	2.9 Library Availability

	3 Results
	3.1 Pattern Partition Concurrency Gains
	3.2 Independent Subtree Concurrency Gains
	3.3 Application-Level Results

	4 Conclusion
	References

	Accelerating FaST-LMM for Epistasis Tests
	1 Motivation
	2 Related Work on Two-Way Epistasis Software
	3 Analysis of FaST-LMM Epistasis Test
	4 FaST-LMM Enhancements
	5 Conclusions
	References

	Pipelined Multi-FPGA Genomic Data Clustering
	1 Introduction
	2 Clustering
	3 Design Implementation
	3.1 Software Setup
	3.2 Multi-FPGA Architecture
	3.3 FPGA Internal Architecture
	3.4 The Clustering Pipeline
	3.5 The Matching Units
	3.6 Resources Usage

	4 Tests and Results
	5 Conclusions and Future Works
	References

	First Experiences Accelerating Smith-Waterman on Intel's Knights Landing Processor
	1 Introduction
	2 Smith-Waterman Algorithm
	3 Intel's Xeon Phi
	4 SW Implementation
	4.1 Multiple Parallelism Levels
	4.2 Instruction Set and Integer Range Selection
	4.3 Substitution Scores

	5 Experimental Results
	5.1 Experimental Design
	5.2 Performance Results

	6 Conclusions
	References

	Power-Performance Evaluation of Parallel Multi-objective EEG Feature Selection on CPU-GPU Platforms
	1 Introduction
	2 Multi-objective Feature Selection on CPU-GPU Platforms
	3 A Subpopulation-Based OpenMP-OpenCL Parallel Code
	4 Experimental Results
	5 Conclusions
	References

	Using Spark and GraphX to Parallelize Large-Scale Simulations of Bacterial Populations over Host Contact Networks
	1 Introduction
	2 Simulation and Computational Models
	3 Implementation
	3.1 Using MapReduce with Spark and GraphX

	4 Results and Discussion
	References

	PPCAS: Implementation of a Probabilistic Pairwise Model for Consistency-Based Multiple Alignment in Apache Spark
	1 Introduction
	2 State of Art
	3 PPCAS Method
	4 Results and Discussion
	4.1 Evaluating the PPCAS Consistency Library
	4.2 Scalability Study of PPCAS
	4.3 PPCAS Scalability Increasing the Number of Sequences

	5 Conclusions
	References

	Accelerating Exhaustive Pairwise Metagenomic Comparisons
	1 Background
	2 Methods
	2.1 Computation of Alignments
	2.2 Dynamic Workload Partitioning and Distribution to Threads

	3 Results and Discussion
	3.1 Infrastructure
	3.2 Comparison Between the Original and Bounded IMSAME
	3.3 Speedup Evaluation of the Parallelization Strategy

	4 Conclusions
	References

	The First International Workshop on Distributed Autonomous Computing in Smart City (DACSC 2017)
	The Impact of International Inter-City Investment on Enterprises Performance: Pluralistic Interpretation of Geographical Death
	1 Introduction
	2 Literature Review
	3 Theories and Hypotheses
	4 Research Methodology and Data
	4.1 Definitions of the Variables
	4.2 Empirical Model
	4.3 Data

	5 Results
	5.1 Estimation Results
	5.2 Robustness Test

	6 Discussions and Conclusions
	6.1 Discussions
	6.2 Conclusions

	References

	Energy Efficient Manycast Routing, Modulation Level and Spectrum Assignment in Elastic Optical Networks for Smart City Applications
	1 Introduction
	2 EEM-RMLSA in EONs
	2.1 Network Model
	2.2 Energy Consumption Model

	3 Gene Encoding Scheme
	4 EEM-RMLSA Heuristic Algorithm
	5 Performance Evaluation
	6 Conclusion
	References

	An Advanced Random Forest Algorithm Targeting the Big Data with Redundant Features
	Abstract
	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 A Subsection Sample Random Forest Algorithm
	3.2 Advanced Random Forest Algorithm

	4 Experiments and Results
	5 Conclusion
	Acknowledgement
	References

	En-Eye: A Cooperative Video Fusion Framework for Traffic Safety in Intelligent Transportation Systems
	Abstract
	1 Introduction
	2 Framework Overview
	2.1 Capturing Video Stream
	2.2 Collecting Video Streams
	2.3 Video Fusion

	3 Conclusion
	Acknowledgements
	References

	Comparing Electricity Consumer Categories Based on Load Pattern Clustering with Their Natural Types
	1 Introduction
	2 Approach
	2.1 Daily Load Curve Clustering
	2.2 Load Pattern Clustering
	2.3 Consumer Category Identification

	3 Results and Evaluation
	3.1 Data Set
	3.2 Results
	3.3 Parameter Estimation

	4 Conclusion
	References

	When Clutter Reduction Meets Machine Learning for People Counting Using IR-UWB Radar
	1 Introduction
	2 Solutions Architecture
	3 Clutter Reduction Methods
	3.1 Running Average Method
	3.2 Singular Value Decomposition Method
	3.3 Kalman Filter Method
	3.4 Linear Least-Squares Method

	4 Machine Learning Algorithms
	4.1 Random Forest
	4.2 Convolutional Neural Network

	5 Experiments
	5.1 Relationship Between Clutter Reduction Methods and Machine Learning Algorithms
	5.2 Performance on Convolutional Neural Network

	6 Conclusion
	References

	Fine-Grained Infer PM2.5 Using Images from Crowdsourcing
	1 Introduction
	2 Related Works
	3 Features
	3.1 Image Features
	3.2 Other Features

	4 Our Method
	4.1 Data Preprocessing
	4.2 Features Extraction
	4.3 Relational Model

	5 Experiments
	5.1 Dataset
	5.2 Result

	6 Conclusions and Future Work
	References

	Security/Reliability-Aware Relay Selection with Connection Duration Constraints for Vehicular Networks
	1 Introduction
	2 System Model
	2.1 Network Model
	2.2 Channel Model

	3 Secure Routing Design
	3.1 Decode-and-Forward
	3.2 Relay Candidate Set Generation
	3.3 Route Selection

	4 Conclusion
	References

	Smart City Environmental Perception from Ambient Cellular Signals
	1 Introduction
	2 Related Work
	2.1 Smart City
	2.2 RF-based Environmental Perception

	3 RF-based Recognition from Cellular Systems
	3.1 System Description
	3.2 Experimental Study
	3.3 Results

	4 Conclusion
	References

	A Multi-task Oriented Selection Strategy for Efficient Cooperation of Collocated Mobile Devices
	1 Introduction
	2 Related Work
	3 System Model
	4 Problem Formulation
	5 Selection Strategy
	6 Experimental Evaluation
	6.1 Experimental Design
	6.2 Experimental Results

	7 Conclusions
	References

	Research on Properties of Nodes Distribution on Internet of Vehicles
	Abstract
	1 Introduction
	1.1 A Subsection Sample

	2 Vehicle Network Data Collection Methods and Results
	2.1 Simulation Platform
	2.2 Data Set

	3 The Study on Node Distribution Characteristics of Vehicle Network
	3.1 The Influence of Node Moving Model on Vehicle Node Distribution
	3.2 The Long Tail Effect of Network Node Degree Distribution
	3.3 Sparseness and Densities of Node Distribution in Urban Road Network

	4 Conclusion
	Acknowledgments
	References

	Application of Batch and Stream Collaborative Computing in Urban Traffic Data Processing
	Abstract
	1 Introduction
	2 Related Work
	3 The Architecture of Collaborative Computing
	3.1 Batch and Stream Collaborative Computing
	3.2 Related Technical Difficulties

	4 The Interaction Between Batch Computing and Stream Computing
	5 Case Study
	5.1 Illegal Vehicle Marking
	5.2 Urban Traffic Forecast

	6 Conclusion
	References

	ESD-WSN: An Efficient SDN-Based Wireless Sensor Network Architecture for IoT Applications
	1 Introduction
	2 Related Work
	3 Architecture Design
	3.1 Overview
	3.2 Software-Defined Sensor Node
	3.3 Controller

	4 Dynamic Proxy Management Strategy
	4.1 Requirements and Notations
	4.2 Proxy Selection
	4.3 Proxy Allocation and Proxy Rotation

	5 Experiments
	6 Conclusion
	References

	The 2nd International Workshop on Ultrascale Computing for Early Researchers (UCER 2017)
	Probabilistic-Based Selection of Alternate Implementations for Heterogeneous Platforms
	1 Introduction
	2 Related Work
	3 The OmpSs Programming Model
	4 The Probabilistic Implementation Selector
	4.1 Implementation Selector Algorithm
	4.2 Probabilities Updating Module

	5 Evaluation
	5.1 Analysis with the GEMM Use Case
	5.2 Comparison with an Alternative Scheduler

	6 Conclusions
	References

	Accelerating Processing of Scale-Free Graphs on Massively-Parallel Architectures
	1 Introduction
	2 Computational Workload Distribution During Processing of Scale-Free Graphs
	3 Method of Workload Balancing
	4 Benchmarking
	5 Conclusion
	References

	A Hybrid Parallel Search Algorithm for Solving Combinatorial Optimization Problems on Multicore Clusters
	1 Introduction
	2 Related Work
	3 Implementation of the HDA* Algorithms
	3.1 HDA* (HDA* MPI)
	3.2 HDA* for Multicore Machines (HDA* Pthreads)

	4 Hybrid HDA* (HHDA*)
	5 Experimental Results
	5.1 Performance Analysis
	5.2 Memory Consumption Analysis

	6 Conclusions and Future Work
	References

	Concurrent Treaps
	1 Introduction and Related Work
	2 Background
	3 Concurrent Treaps
	3.1 Sketch on Synchronization
	3.2 Operations on a Concurrent Treap

	4 Correctness
	4.1 Safety Property
	4.2 Linearizability
	4.3 Progress Guarantee

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Results Analysis
	5.3 Impact of Different Locking Objects

	6 Conclusion
	References

	Survey on Energy-Saving Technologies for Disk-Based Storage Systems
	1 Introduction
	2 Disk Power Management
	2.1 Traditional Power Management (TPM)
	2.2 DRPM

	3 Cache Management and Workload Skew
	3.1 Caching and Buffering Across Disks
	3.2 Caching and Buffering in Memory
	3.3 Data Migration
	3.4 Hibernator

	4 RAID Configuration
	4.1 eRAID
	4.2 PARAID
	4.3 RAIS
	4.4 EERAID
	4.5 RIMAC

	5 Power-Proportional Distributed File System
	5.1 Rabbit
	5.2 Sierra

	6 Research Prospect
	7 Conclusions
	References

	The Open Community Runtime on the Intel Knights Landing Architecture
	1 Introduction
	2 Knights Landing Architecture
	3 OCR-Vx
	3.1 NUMA Support
	3.2 High-Bandwidth Memory Support

	4 Experimental Evaluation
	4.1 Seismic Application
	4.2 Application and Runtime Configuration
	4.3 Results

	5 Related Work
	6 Conclusion and Future Work
	References

	High-Performance Graphics in Racket with DirectX
	1 Introduction
	2 Preliminaries: The <dc%> Interface
	3 Direct2D from Within Racket
	3.1 Foreign Function Interface and COM
	3.2 Sample Application Implementation
	3.3 Window Interaction Improvement

	4 Performance Evaluation
	4.1 Experiment 1 - Simple Shapes
	4.2 Experiment 2 - Animation

	5 Results Discussion
	6 Conclusions
	References

	Author Index

