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Abstract Short fibre reinforced plastic (SFRP)materials are intensively used in sev-
eral engineering sectors due to their excellent mechanical properties and production
rates. In this investigation, an invariant-based transversely isotropic elasto-plastic
model for finite strain applications and its corresponding numerical treatment are
presented. The current model is based on the multiplicative decomposition of the
deformation gradient. The main characteristic of the formulation is the mathematical
realization of the incompressibility assumption with regard to the plastic behaviour
in anisotropic finite strain setting. The proposed model is complying with thermo-
dynamic restrictions and allows robust reliable numerical simulations. The accuracy
of the model is verified by comparison against experimental data, showing a very
satisfactory level of agreement.

1 Introduction

Short fiber-reinforced plastics (SFRPs) are materials which exhibit excellent spe-
cific strength and stiffness ratios. These materials are especially suitable for their
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Fig. 1 Micro-computed
tomography of SFRP
PA6GF-30 processed by
injection moulding
procedure
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incorporation into mass production, since they usually generate low manufacturing
costs. In the last years, suchmaterials have been extensively used in several industrial
sectors, in particular in the automotive industry with special interest, among many
others. In practical applications, one of the most relevant production techniques to
manufacture engineering products made from SFRPs, is injection molding (IM),
which leads to very complex internal arrangements of the reinforcing fibers, see
Fig. 1. Of particular concern are SFRPs made of a polymer matrix with reinforcing
short glass fibers, which are denominated as PAxGF-y, where x and y denote the
polyamide-type and the fiber content, respectively.

Due to this intricate nature, the determination of the characteristic mechanical
properties, which depend on the preferential fiber orientation, is of crucial impor-
tance. This characterization can be carried out using different experimental tech-
niques such as optical observations, radiography procedures, CT scans, among oth-
ers [3, 5, 30]. In this context, in the last three decades, several studies have been
conducted in order to characterize the response of SFRP composites under different
loading (static and fatigue) [4, 10, 11, 18, 21] and environmental scenarios [12].

From the mechanical point of view, as a consequence of the complex heteroge-
neous arrangement, the effectivemodeling of SFRP composites faces various notable
difficulties. Original investigations in this area are due to Advani and Tucker [1, 2],
whoenvisaged a tensorial formulation to approximate the probability function regard-
ing the fiber orientation within the domain. Alternative methodologies regard multi-
scale FE-based (FE2) procedures using experimental data from 3D tomographies
[15, 28, 34]. However, such FE2-methods are tremendously expensive in large-scale
simulations.

In order to avoid such computational demands, phenomenological anisotropic
elasto-plastic models can be considered as a modeling alternative providing mechan-
ical accuracy and numerical efficiency. In the related literature, a high number of
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investigations focused on the development of anisotropic elasto-plastic formulations
under different modeling assumptions, especially within the finite deformation set-
ting invoking the multiplicative decomposition of the deformation gradient between
elastic and plastic counterparts [13, 17, 19, 20, 22, 24, 25, 32].

Inspired by these previous investigations, the current investigation presents the
development of a novel phenomenological elasto-plastic invariant-based finite strain
anisotropic material model for SFRP composites. Differing from previous studies
[7, 8, 33], the current model incorporates the assumption of plastic incompressibility
within the large deformation setting, accounting for the anisotropic character of SFRP
composites through a structural tensorial representation. The proposed formulation
is derived following a thermodynamic framework, which guarantees its consistency.
On the computational side, specific aspects regarding the numerical integration of
the evolution equations corresponding to the internal variables and the consistent
elasto-plastic tangent moduli are outlined. Finally, the predictive capability of the
model is examined through several applications.

The manuscript is organized as follows. Section2 describes the basic arguments
with regard to the continuous formulation. The constitutive model according to
invariant-based formulation is given in Sect. 3. The numerical treatment of the pro-
posed model within the context of a fully implicit nonlinear Finite Element Method
(FEM) is addressed in Sect. 4. The applicability of the material model is confirmed
through the examination of the experimental-numerical correlation regarding several
applications (Sect. 5). Finally, the main conclusions of the current investigation are
drawn in Sect. 6.

2 Continuous Formulation

This section presents the fundamental aspects of the novel finite deformation model
for SFRP composites within the finite deformation setting. The current formulation
uses an invariant-based formulation to account for the directional character of SFRPs
composites using a tensorial representation in line with [7–9].

2.1 Basic Kinematics

Following the standard setting of finite inelasticity, consider a continuous three
dimensional body which occupies the reference placementB0 ⊂ R

3, whereX ∈ B0

denotes an arbitrary material point in this configuration. At time t ∈ R+, the corre-
sponding spatially deformed configuration is denoted by Bt ⊂ R

3. An individual
material point at time t is located at the position x ∈ Bt . Both configurations are
related via the nonlinear deformation mapping ϕ : B0 × [0, t] → R

3, where [0, t]
denotes the time interval elapsed. This operator maps the reference material points
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Fig. 2 Motion of a
continuum body: reference
and current configurations,
the nonlinear mapping
concept, deformation
gradient

(X ∈ B0) onto the current material points (x ∈ Bt ), i.e. x = ϕ(X, t), see Fig. 2.
Therefore, the displacement vector at material point level is given by: u := x − X.

As ameasure of the deformation process experienced by the body, we consider the
deformation gradient F that represents the linear mapping between tangent vectors
in the reference and current configurations:

F := ∂ϕ(X, t)

∂X
= 1 + H(X, t); H(X, t) = ∇Xu(X, t), (1)

where 1 is the second-order identity tensor and ∇X[•] identifies the gradient of the
quantity • with respect to the reference setting. The Jacobian of the transformation
J = det[F]has to satisfy J ≥ 0. The polar decomposition of the deformation gradient
is given by F = RU, where R and U respectively denote the rotation tensor and the
stretch tensor.

The definition of the symmetric right and left Cauchy-Green deformation tensors,
C and b, respectively, and the Green-Lagrange strain tensor, E, is given by:

C := FTF; b := FFT; E := 1

2
[C − 1] , (2)

A central point of the proposed constitutive model for SFRPs is the adoption of
the classical multiplicative decomposition of the deformation gradient into elastic
and plastic counterparts considering a stress-free intermediate configuration B̄ [27],
see Fig. 3:

F = FeFp. (3)

Based on Eq. (3), the elastic part Ee of the Green-Lagrange strain tensor in the
intermediate configuration is defined as:

Ee = 1

2

[
Ce − 1

]
, (4)
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Fig. 3 Intermediate
configuration definition:
multiplicative decomposition
of the deformation gradient
F = FeFp for large
deformation elasto-plasticity

where Ce := FeTFe is the elastic right Cauchy-Green strain tensor. Finally, the
assumption of plastic incompressibility requires the satisfaction of the following
constraint:

detFp = 1. (5)

2.2 Balance Laws

The local formof the balance of linearmomentum,which governs the initial boundary
value problem (IBVP) of the body’s deformation process, takes the following form
neglecting the inertia terms:

DIVP(X, t) + ϒ̄(X) = 0, (6)

where the operator DIV[•] stands for the divergence of the tensor field •with respect
to the reference frame, ϒ̄ denotes the body forces (per unit reference volume) of
the continuum. In Eq. (6), P is the first Piola-Kirchhoff stress tensor, which can be
associatedwith the symmetric second Piola-Kirchhoff stress tensor S as follows:P =
FS. The complete (IBVP) is defined with the suitable boundary conditions in terms
of displacements ū : �u × [0, t] → R

3 and nominal tractions T̄ : �t × [0, t] → R
3

which are prescribed on the corresponding subsets of the body boundary.
The balance of angular momentum implies the symmetry condition of the second

Piola-Kirchhoff stress tensor in the reference configuration S = ST. The balance of
energy (first law of thermodynamics) postulates the energy preservation during the
deformation process. The material version of the balance of energy reads:

ρ0ė = S : Ė + R − DIV [Q] , (7)
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where e denotes the specific internal energy, ρ0 is the reference density, Q is the
reference heat flux, and finally R refers to the internal heat source measured per unit
reference volume.

The thermodynamic consistency of the proposed formulation is assessed via the
evaluation of the Clausius-Planck inequality [31]:

Dint = S : Ė − ė + ϑη̇ ≥ 0, (8)

where Dint is the local dissipation per unit of volume, Ė stands for the material
time derivative of the Green-Lagrange strain tensor. The symbol ė identifies the time
derivative of the specific internal energy, whereas ϑ and η̇ denote the temperature
and the time derivative of the entropy of the system η. Under isothermal conditions
and recalling the Legendre transformation [16], Eq. (8) is reduced to:

Dint = S : Ė − �̇ ≥ 0, (9)

where � is the Helmholtz free energy function that characterizes the material
response.

3 Constitutive Model: Invariant-Based Formulation

3.1 Fundamental Aspects

The mechanical performance of SFRP composites exhibits relevant nonlinear effects
along the deformation process prior to failure with a pronounced anisotropic charac-
ter. This complex behavior arises from the molding flow production process which
is employed for manufacturing purposes leading to nonuniform fiber distribution
within the specimen. From the modeling standpoint, this directional dependency
can be accounted for by means of a purely phenomenological anisotropic plasticity
model at finite strains [7–9]. Assuming a tensorial representation of such anisotropic
effects, we define a second-order structural tensor A in the reference configuration:

A := a ⊗ a, (10)

where a is the direction with the highest aligned fiber content, coinciding with the
molding direction. Consequently, the material response is invariant (symmetry trans-
formations) with respect to: (i) arbitrary rotations around a, (ii) reflections at planes
parallel to a and, (iii) planes whose normal vector is aligned with a [6, 29].

Relying on the previous considerations, theHelmholtz free energy function� that
characterizes the mechanical response of SFRPs is assumed to allow the following
decomposition:

�(Ee, ς ,A) = �e(Ee,A) + � p(ς,A), (11)
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where �e(Ee,A) and � p(ς ,A) identify the elastic and plastic counterparts, respec-
tively, and ς stands for the vector of internal variables that trigger the evolution of the
inelastic response. The anisotropic mechanical behavior is modeled through the con-
sideration of the following irreducible integrity basis of invariantsP := [J1, ..., J4].
The invariants J1 and J2 are given by:

J1 := tr
[
Ee
]
, J2 := tr

[(
Ee
)2]

, (12)

whereas the mixed invariants J3 and J4 render:

J3 := tr
[
AEe

]
, J4 := tr

[
A
(
Ee
)2]

. (13)

Then, assuming a quadratic form, the elastic free energy function can be expressed
as [8]:

�e(Ee,A) = λ

2
J 2
1 + μT J2 + α J3 J1 + 2 (μL − μT ) J4 + β

2
J 2
3 = 1

2
Ee : Ce : Ee,

(14)

where λ, μL , μT , α, β identify the elastic constants [33].
The second Piola-Kirchhoff stress tensor S and its corresponding elasticity tensor

C
e adopt the form:

S(Ee,A) := ∂Ee� = λtr[Ee]1 + 2μTEe + α
(
tr[AEe] + tr[EeA]) 1+

2(μL − μT )
(
EeA + AEe

)+ βtr[AEe]A (15)

C
e := ∂2�e

∂Ee ⊗ ∂Ee = λ1⊗1 + 2μT I + α (1 ⊗ A + A⊗1) + 2 (μL − μT ) IA + βA⊗A, (16)

where I stands for the fourth-order symmetric identity tensor and IA takes the form:

IA ⇒ IA,i jkl = AimI jmkl + A jmImikl . (17)

Exploiting the multiplicative decomposition of the deformation gradient, Eq. (3),
the internal dissipation under isothermal conditions yields:

Dint = S :
(
1

2
FpT ĊeFp + FpT

(
CeLp

)
sym Fp

)
− �̇ ≥ 0, (18)

where the operator (•)sym stands for the symmetric part of the tensor field • . The
symbol Lp = ḞpFp−1 identifies the plastic velocity gradient, which can be split into
its symmetricDp (plastic deformation rate) and skew-symmetricWp (plasticmaterial
spin) parts:

Lp = Dp + Wp. (19)
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The insertion of the previous definitions into Eq. (18) yields:

Dint = 1

2
S̄ : Ċe + S̄ : (CeLp

)
sym − �̇e − �̇ p ≥ 0, (20)

where S̄ = FpSFpT identifies the second Piola-Kirchhoff stress tensor counterpart
in the intermediate configuration. The result is:

Dint =
(
1

2
S̄ − ∂�e

∂Ce

)
: Ċe + (CeS̄

) : Lp − �̇ p ≥ 0. (21)

Based on the previous procedure, the restriction with regard to the local internal
dissipation in order to fulfill the second law of thermodynamics reads:

Dint = �̄ : Lp − �̇ p ≥ 0, (22)

where �̄ = CeS̄ identifies the so-called Mandel stress tensor.

3.2 Transversely Isotropic Yield Function

This section outlines the construction of the transversely isotropic yield function
which characterizes the plastic locus of the current anisotropic finite strain elasto-
plastic model [7, 8]. The elastic domain E is defined in terms of the symmetric part
of Mandel stress tensor �̄s as follows:

E = {(ς, ε̄ p
) | f (�̄s,A, ε̄ p

) ≤ 0
}
, (23)

where ε̄ p identifies the equivalent plastic strain (hardening variable). The evolution
equation of ε̄ p reads:

.

ε̄ p =
√
2

3
Dp : Dp. (24)

The proposed pressure-dependent, transversely isotropic and asymmetric yield
surface f

(
�̄s,A, ε̄ p

) ≤ 0 follows a quadratic construction, which can be expressed
in terms of the invariant set as:

f
(
�̄s,A, ε̄ p

) = ζ1 I1 + ζ2 I2 + ζ3 I3 + ζ4 I
2
3 + ζ5 I4 + ζ6 I

2
4 − 1 ≤ 0, (25)

where Ii (i = 1, ..., 4) denote the integrity basis (invariants) taking the form:

I1 := tr

[(
�̄

pind
s

)2]− tr

[
A
(
�̄

pind
s

)2] ; I2 := tr

[
A
(
�̄

pind
s

)2] ; (26)



Invariant-Based Finite Strain Anisotropic Material Model … 91

I3 := tr
[
�̄s
]− tr

[
A�̄s

] ; I4 := 3

2
tr
[
A�̄

dev
s

]
. (27)

In Eqs. (26)–(27), �̄
dev
s denotes the deviatoric part of the symmetric Mandel stress

tensor and �̄
pind
s is the basic stress that induces plasticity [33]:

�̄
pind
s = �̄s − 1

2

(
tr
[
�̄s
]− tr

[
A�̄s

])
1 + 1

2

(
tr
[
�̄s
]− 3tr

[
A�̄s

])
A. (28)

In condensed format, the yield function renders:

f
(
�̄s,A, ε̄ p

) = 1

2
�̄s : K : �̄s + L : �̄s − 1 ≤ 0, (29)

with

K := ζ1P
pind + (ζ2 − ζ1)P

pind
A + 2ζ4 (1 − A) ⊗ (1 − A) + 9

2
ζ6Adev ⊗ Adev, (30)

L := ζ3 (1 − A) + 3

2
ζ5Adev, (31)

P
pind := I − 1

2
(1 ⊗ 1) + 1

2
(1 ⊗ A + A⊗1) − 3

2
A⊗A, (32)

P
pind
A ⇒ P

pind
A,i jkl = AimP

pind
mjkl + AmjP

pind
imkl , (33)

Adev being the deviatoric part of A.
Figure4 portraits a schematic 3D representation of the previous yield function

in the principle stress and invariant space where an appropriate convex form can be
observed.

Finally, the six parameters ζi (ε̄
p) , (i = 1, ..., 6) and their corresponding invari-

ants are correlated with different loading states. In particular, the following physical
interpretation of these parameters can be regarded [7, 8]: (1) ζ1 concerns transverse
shear loading states, (2) ζ2 is associated with in-plane shear loadings, (3) ζ3 and ζ4
account for loading states transverse to the fiber direction, and finally (4) ζ5 and ζ6
involve the material response subjected to longitudinal loading aligned with the fiber
direction.

3.3 Plastic Potential Function

Recalling the plastic incompressibility assumption, Eq. (5), the current model intro-
duces the definition of a non-associative flow rule. The use of a non-associative
flow rule results from the need for an accurate capturing of plastic deformations [8].
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Fig. 4 Transversely isotropic yield function: 3D representation in the principal stress space and
cross sections in the invariant space

Accordingly, the following anisotropic plastic potential function g = g
(
�̄s,A

)
is

formulated:
g
(
�̄s,A

) = ι1 Ī1 + ι2 Ī2 − 1 ≤ 0, (34)

where Ī1 and Ī2 are the integrity basis (invariants):

Ī1 := tr

[(
�̄

dev
s

)2] ; Ī2 := tr

[
A
(
�̄

dev
s

)2]
, (35)

where ι1 and ι2 denote the plastic potential parameters [7]. In condensed format, g
yields:

g
(
�̄s,A

) = 1

2
�̄s : M : �̄s − 1 ≤ 0, (36)

with

M := 2ι1I
dev + ι2I

dev
A ; I

dev := I − 1

3
1 ⊗ 1; I

dev
A ⇒ I

dev
A,klmn = Ai j

(
I
dev
jsmnI

dev
sikl + I

dev
jskl I

dev
simn

)
.

(37)

Figure5 depicts a cross section of the plastic potential in the invariant space and a
3D representation in the principal stress space.

3.4 Evolution Equations of the Internal Variables

Recalling the maximum energy dissipation principle [27] and using the non-
associative flow rule introduced in Sect. 3.3, the evolution equations of the inter-
nal variables, namely the plastic velocity gradient Lp and the hardening variable ε̄ p,
are defined in the following.
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Fig. 5 Plastic potential function: 3D representation in the principal stress space and cross sections
in the invariant space

Regarding the plastic velocity gradient, its corresponding evolution equation
reads:

Lp = Dp = γ̇
∂g
(
�̄s,A

)

∂�̄s
= γ̇ng with ng = M : �̄s. (38)

Referring to the equivalent plastic strain, the evolution equation takes the form:

.

ε̄ p =
√
2

3
Dp : Dp = γ̇

√
2

3

∥
∥ng

∥
∥ , (39)

γ̇ identifying the so-called plastic multiplier.
It is worth mentioning that the symmetric part of the Mandel stress tensor is

the unique operator that enters into the plastic potential function, and, therefore,
evolution of the plastic material spin Wp vanishes. Consequently, the constitutive
model is invariant with respect to any arbitrary rigid body rotation Q̄.

Finally, the standard Kuhn-Tucker loading/unloading conditions, which ensure
the coherence of the model, take the form:

γ̇ ≥ 0; f
(
�̄s,A, ε̄ p

) ≤ 0; γ̇ f
(
�̄s,A, ε̄ p

) = 0. (40)

Finally, the consistency condition is given by:

γ̇ ḟ
(
�̄s,A, ε̄ p

) = 0. (41)

3.5 Parameter Identification

The yield function Eq. (25) and the plastic potential Eq. (34) are matched to actual
materials via the coefficients of the invariants ζi and ιi , respectively. A detailed
description of the procedure to adjust these coefficients to experimental data is given
in [7, 33], and the main points are outlined below.
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The coefficients ζi control the size and shape of the elastic region as a function
of the equivalent plastic strain variable ε̄ p. For each coefficient, the relation ζi (ε̄

p)

should be determined from an independent experiment. Typically, this relation is
obtained from experiments realizing a simple, controlled stress state with only one
nonzero stress component Y j (ε̄

p) while yielding. In the present case, the following
tests can be employed for this purpose: (i) in-plane shear test, (ii) transverse shear
test, (iii) uniaxial longitudinal tension and (iv) compression tests, and (v) uniaxial
transverse tension and (vi) compression tests. The relation ζi (Yft,Yfc,Ytt,Ytc,Yis,Yts)
can then be derived from inserting the stress tensor corresponding to the test in
Eq. (25) and setting f = 0. The symbols Yft, Yfc, Ytt and Ytc represent the uniaxial
yield stresses in fiber direction, first index ‘f’, and transverse direction, first index
‘t’. The second index indicates tension (‘t’) or compression (‘c’). The symbols Yis
and Yts stand for the transverse and in-plane shear yield stresses, respectively.

To comply with the maximum dissipation principle, the yield surface must be
convex, which imposes a restriction to the allowable relations ζi (ε̄

p) which can be
used in Eq. (25). Convexity is ensured, if the quadratic term in Eq. (29) is positive
definite, and this requirement can be reduced to an inequality in terms of the yield
stresses, c.f. Eq. (42), which must hold for any ε̄ p.

YftYfc
(
4Y 2

ts − YttYtc
) ≥ YtcY

2
tsYtt (42)

The main motivation to adopt a non-associated plasticity scheme is the ability to
optimize the plastic deformation behaviour independently of the yield strengths. The
form of the plastic potential adopted in Eq. (34) has two adjustable coefficients ιi .
However, one of them is a scaling parameter associated with the size of the potential
surface. The size of the plastic potential has no inherent meaning and can be set at
will. This leaves only one remaining parameter to match with experimental data in
the present case, but, if needed, extra parameters could be introduced by choosing a
more complex form of g. Here, ι1 is arbitrarily set to unity and ι2 is used to enforce
a certain plastic Poisson’s ratio ν

p
23 = ε

p
22/ε

p
33 for uniaxial transverse tension.

ι1 = 1, ν
p
23 :=

∂g
∂σ22

∂g
∂σ33

‖σ33=Ytt = −3ι1 + ι2

6ι1 + ι2
⇒ ι2 = 3 + 6ν p

23

−1 + ν
p
23

Unlike the yield function coefficients, usually no evolution of ιi with respect to the
equivalent plastic strain is considered.

4 Numerical Treatment

This section presents the numerical treatment of the constitutive model given in
Sect. 3. The construction of a numerical scheme for the solution of the initial bound-
ary value problem (IBVP) associated involves two general steps [8]: (i) the local
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integration of the transversely isotropic elasto-plastic model via the corresponding
return mapping algorithm, (ii) the introduction of the resulting stress and constitutive
elasto-plastic operator into the weak form of the IBVP, which is discretized in space
by means of standard brick elements and solved through a standard incremental-
iterative Newton-Raphson scheme, see Appendix.

4.1 Numerical Time Integration: General Return Mapping
Algorithm

The classical backward Euler scheme is the most extensively used implicit algorithm
for the integration of the evolution equations into elasto-plastic constitutive models.
This numerical procedure is carried out at integration point level within a standard
nonlinear FE code.

The basic integration scheme comprises two fundamental stages: (1) an initial
elastic predictor phase, and (2) a subsequent corrector step using a general return
mapping [14, 27]. Let us consider a time interval [tn, t (i)n+1], with t ∈ R+, where tn
and t (i)n+1 identify the previously converged time step and the current prospective time
step at the global FE Newton-Raphson iteration i , respectively. In the sequel, the
superscript i is omitted in order to alleviate the notation. Additionally, we assume
that all variables of the problem at tn are known, denoting the incremental time
step as �t = t (i)n+1 − tn . According to this scheme, the temporal rates of the plastic
deformation gradient and the equivalent plastic strain renders:

.

Fp = Fp
n+1 − Fp

n

�t
;

.

ε̄ p = ε̄
p
n+1 − ε̄

p
n

�t
. (43)

For time integration of the evolution equations (Sect. 3.4), the discrete incremental
forms according to the backward Euler algorithm take the form:

Fp
n+1 = Fp

n + γn+1ng,n+1F
p
n+1, (44)

ε̄
p
n+1 = ε̄ p

n + γn+1

√
2

3

∥∥ng,n+1,
∥∥ (45)

fn+1 = f
(
�̄s,n+1,A, ε̄

p
n+1

) = 0, (46)

where γn+1 identifies the plastic multiplier.
To start the predictor-corrector procedure discussed above, within the predictor

phase, initial purely elastic trial increment (denoted by the superscript ‘tr’ in the
sequel) is assumed. Then, the trial elastic deformation gradient Fe,tr

n+1 reads:

Fe,tr
n+1 = Fn+1Fp−1

n . (47)
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Accordingly, the following operators can be computed:

Ce,tr
n+1 = Fe,trT

n+1 F
e,tr
n+1; Ee,tr

n+1 = 1

2

[
Ce,tr

n+1 − 1
]
, (48)

S̄trn+1 = C
e : Ee,tr

n+1; �̄
tr
n+1 = Ce,tr

n+1S̄
tr
n+1. (49)

Then, the trial elastic deformation gradient renders:

Fe
n+1 = Fe,tr

n+1

(
1 − γn+1ng,n+1

)
. (50)

The corresponding trial yield function reads:

f trn+1

(
�̄
tr
s,n+1,A, ε̄

p,tr
n+1

)
= 1

2
�̄
tr
s,n+1 : Ktr

n+1 : �̄
tr
s,n+1 + Ltr

n+1 : �̄
tr
s,n+1 − 1 ≤ 0, (51)

where the operatorsKtr andLtr depend on the parameters ζ tr
i = ζi

(
ε̄
p,tr
n+1

)
, (i = 1, ..., 6).

If the predictor elastic trial state lies within the elastic domain E, i.e. f trn+1 ≤ 0
(where we omit the explicit dependencies), this state is a solution of the constitutive
problem stated above. Conversely, a plastic corrector step is required for f trn+1 > 0,
which is constructed as follows:

Fe
n+1 = Fe,tr

n+1

(
1 − γn+1ng,n+1

)
, (52)

ε̄
p
n+1 = ε̄ p

n + γn+1

√
2

3

∥∥ng,n+1,
∥∥ (53)

fn+1 = f
(
�̄s,n+1,A, ε̄

p
n+1

) = 0, (54)

where Eq. (54) stands for the yield criterion. Eqs. (52)–(54) identifies a discrete sys-
tem of 11 nonlinear equations with 11 unknowns, which are solved simultaneously
using a standard local Newton-Raphson procedure at integration point level. Thus,

the corresponding residual equations Rn+1 =
{
RFe

n+1
,Rε̄

p
n+1

,R fn+1

}
are arranged as

follows:
RFe

n+1
= Fe

n+1 − Fe,tr
n+1

(
1 − γn+1ng,n+1

) = 0, (55)

Rε̄
p
n+1

= ε̄
p
n+1 −

(

ε̄ p
n + γn+1

√
2

3

∥∥ng,n+1

∥∥
)

= 0, (56)

R fn+1 = fn+1 = f
(
�̄s,n+1,A, ε̄

p
n+1

) = 0, (57)

which are solved for the variables χn+1 = {Fe
n+1, ε̄

p
n+1, γn+1

}
. The linearization of

the residual equations Rn+1 for the nonlinear solution procedure with respect to
corresponding unknowns χn+1 can be computed as follows:
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Rn+1
(
χ k+1
n+1

) := Rn+1
(
χ k
n+1

)+ J
(
χ k
n+1

) [
χ k+1
n+1 − χ k

n+1

] = 0, (58)

where the superscript k identifies the Newton-Raphson iteration index corresponding
to the plastic corrector step of the present procedure. The Jacobian J matrix takes
the form:

J =
⎡

⎢
⎣

∂RFe

∂Fe
∂RFe

∂ε̄

∂RFe

∂γ
∂Rε̄

∂Fe
∂Rε̄

∂ε̄

∂Rε̄

∂γ
∂R f

∂Fe
∂R f

∂ε̄

∂R f

∂γ

⎤

⎥
⎦ . (59)

The increment of the unknowns can be computed as:

�χ k+1
n+1 := χ k+1

n+1 − χ k
n+1 = −J−1

(
χ k
n+1

)
Rn+1

(
χ k
n+1

)
, (60)

where the initial values for the plastic corrector procedure correspond to the results
of the elastic predictor phase:

χ k=0
n+1 =

⎡

⎣
Fe,tr
n+1
ε̄n
0

⎤

⎦ . (61)

A representation of the current return mapping algorithm is shown in Fig. 6.
The closed form of the derivatives in Eq. (59) is outlined in the sequel. Thus, if

Fe = Fe,tr
(
1 − γng

)
, the increment of the elastic part of the deformation gradient

�Fe yields:

�Fe = Fe,tr

⎛

⎜
⎝−�γng − γ

∂ng

∂Fe
: �Fe − γ

�
�
��
0

∂ng

∂ε̄
�ε̄

⎞

⎟
⎠ . (62)

Consequently, the entries of the first row of J can be expressed as:

Fig. 6 Return mapping
algorithm: graphical
description in the invariant
space
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∂RFe

∂Fe
= V

∗, (63)

with

V
∗ ⇒ V

∗
i jkl =

(
δikδ jl + γFe,tr

im

∂ng,mj

Fe
kl

)
. (64)

Furthermore, it is noting that:

∂RFe

∂ε̄ p
= 0; ∂RFe

∂γ
= Fe,trng. (65)

Therefore, the increment of the equivalent plastic strain �ε̄ p reads:

�ε̄ p =
√
2

3
�γ

∥∥ng

∥∥+
√
2

3
γ

∂
∥∥ng

∥∥

∂Fe
: �Fe. (66)

Then, the corresponding entries of the second row of J renders:

∂Rε̄ p

∂Fe
= −

√
2

3
γ

∂
∥
∥ng

∥
∥

∂Fe
, (67)

where
∂
∥∥ng

∥∥

∂Fe
= ng∥
∥ng

∥
∥ : ∂ng

∂Fe
. (68)

Moreover, since ng = M : �̄s, this leads:

∂ng

∂Fe
= M : ∂�̄s

∂Fe
⇒
(

∂ng

∂Fe

)

i jkl

= Mi jab

(
∂�̄s

∂Fe

)

abkl

, (69)

where

∂�̄s

∂Fe
= 1

2

∂
(
�̄ + �̄

T
)

∂Fe
⇒
(

∂�̄s

∂Fe

)

i jkl

= 1

2
C

∗
imkl S̄mj + 1

2
C

∗
mjkl S̄im +

1

4
Ce

imC
e
mjabC

∗
abkl + 1

4
Ce

mjC
e
imabC

∗
abkl . (70)

In index notation yields:

C
∗ ⇒ C

∗
i jkl =

(
∂Ce

∂Fe

)

i jkl

= δilFe
k j + δ jlFe

ki . (71)

Operating in a similar way:
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∂Rε̄ p

∂ε̄ p
= 1; ∂Rε̄ p

∂γ
= −

√
2

3

∥∥ng

∥∥ . (72)

Finally, the increment of the yield function � f can be computed as:

� f = ∂ f

∂Fe
: �Fe + ∂ f

∂ε̄ p
�ε̄ +

�
�
��
0

∂ f

∂γ
�γ = 0. (73)

Thus, the corresponding derivatives read (which concern entries of the third row of
J) yield:

∂ f

∂Fe
= (K : �̄s + L

) : ∂�̄s

∂Fe
, (74)

∂ f

∂ε̄ p
= 1

2
�̄s : ∂K

∂ε̄ p
: �̄s + ∂L

∂ε̄ p
: �̄s. (75)

This novel material model is implemented into extended versions of the FE code
FEAP and ABAQUS through user-defined material models, which operate at inte-
gration point level.

4.2 Algorithmic-Consistent Tangent Moduli

For fully implicit FE computations, the calculation of the tangential stiffnessmatrix at
element level requires the derivation of the algorithmic tangent moduli which guar-
antees the quadratic convergence along the incremental-iterative solution process.
We commence the derivation through the exploitation of Eq. (52). Accordingly, this
results in:

Fe = Fe,tr (1 − γng
) = Fe,trFp

∗ ; with Fp−1
∗ Fp

n = Fp. (76)

Then, the incremental form of the plastic counterpart of the deformation gradient
�Fp

∗ renders:

�Fp
∗ = −�γng − γ

∂ng

∂ϑ
�ϑ − γ

∂ng

∂Fe
: �Fe. (77)

The increment of the elastic part of the deformation gradient can be expressed as:

�Fe = �FFp−1 − �γFe,trng − γFe,tr ∂ng

∂Fe
: �Fe, (78)

and the consistency condition renders:

� f = ∂ f

∂Fe
: �Fe + ∂ f

∂ε̄ p
�ε̄ p = 0. (79)
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with

�ε̄ p =
√
2

3
�γ

∥∥ng

∥∥+
√
2

3
γ

∂
∥∥ng

∥∥

∂Fe
: �Fe. (80)

The increment of the yield function takes the form:

� f =
(

∂ f

∂ε̄ p

√
2

3

∥∥ng

∥∥
)

�γ +
(

∂ f

∂ε̄ p

√
2

3
γ

∂
∥
∥ng

∥
∥

∂Fe
+ ∂ f

∂Fe

)

: �Fe = 0. (81)

Based on the previous expression, the increment of the plastic multiplier is computed
as:

�γ = −
∂ f
∂ε̄ p

√
2
3γ

∂‖ng‖
∂Fe + ∂ f

∂Fe

∂ f
∂ε̄ p

√
2
3

∥∥ng

∥∥
:

︸ ︷︷ ︸
∂γ

∂Fe

�Fe = ∂γ

∂Fe
: �Fe. (82)

Based on the previous derivations, �Fp
∗ yields:

�Fp
∗ = −

(
ng ⊗ ∂γ

∂Fe
+ γ

∂ng

∂Fe

)

︸ ︷︷ ︸
Hp

: �Fe = H
p : �Fe. (83)

To accomplish the following steps, recalling Ī ⇒ Īi jkl = δikδ jl , we define:

N = Ī + γFe,tr ∂ng

∂Fe
; N

∗ = N + (Fe,trng
)⊗ ∂γ

∂Fe
. (84)

Inserting Eq. (82) into Eq. (78) yields:

N : �Fe = �FFp−1 − Fe,trng

(
∂γ

∂Fe
: �Fe

)
. (85)

Then, it is possible to obtain:

�Fe = N
∗−1 : (�FFp−1

)
. (86)

An additional computation that should be performed is the increment of �S̄:

�S̄ =
(

∂S̄
∂Ee

: ∂Ee

∂Fe

)

: �Fe =
(
C

e : ∂Ee

∂Fe

)

︸ ︷︷ ︸
C

e
F

: �Fe, (87)

Then, �Fp−1 takes the form:
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�Fp−1 = �
(
Fp−1
n Fp

∗
) = Fp−1

n �Fp
∗ , (88)

and correspondingly:

�Fp−T = �
(
Fp

∗F
p−T
n

) = �Fp
∗F

p−T
n . (89)

The increment of the first Piola-Kirchhoff stress tensor (P := FS) can be computed
as:

�P = �(FS) , (90)

with P standing for the first Piola-Kirchhoff stress tensor. Expanding the previous
expression yields:

�(FS) = �FS + F�S = �F
(
Fp−1S̄Fp−T

)+ F�
(
Fp−1S̄Fp−T

)
, (91)

where

�(FS) = �F
(
Fp−1S̄Fp−T

)
+ F�Fp−1S̄Fp−T + FFp−1�S̄Fp−T + FFp−1S̄�Fp−T , (92)

and

�Fp−T = �
(
Fp

∗F
p−T
n

) = �Fp
∗F

p−T
n . (93)

Eq. (92) can be expanded as:

�(FS) = �F
(
Fp−1S̄Fp−T

)+
FFp−1

n

(
H

p : �Fe
)
S̄Fp−T +

FFp−1
(
C

e
F : �Fe

)
Fp−T +

FFp−1S̄
(
H

p : �Fe
)
Fp−T
n . (94)

Inserting the results from Eq. (86) into Eq. (93) yields:

�(FS) = �F
(
Fp−1S̄Fp−T

)+
FFp−1

n

(
H

p : (N∗−1 : (�FFp−1
)))

S̄Fp−T +
FFp−1

(
C

e
F : (N∗−1 : (�FFp−1

)))
Fp−T +

FFp−1S̄
(
H

p : (N∗−1 : (�FFp−1
)))

Fp−T
n , (95)

which in index notation reads:
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�(FS)i j =
(
δikF

p−1
ln S̄nsF

p−T
s j

)
�Fkl + (96)

(
FimFp−1

n,mxH
p
xnabN

∗−1
abkyF

p−1
ly S̄nsF

p−T
s j

)
�Fkl + (97)

(
FimFp−1

mn C
e
F,nsabN

∗−1
abkyF

p−1
ly Fp−T

s j

)
�Fkl + (98)

(
FimFp−1

mn S̄nsH
p
sxabN

∗−1
abkyF

p−1
ly Fp−T

n,x j

)
�Fkl . (99)

Finally, in condensed format, it can be expressed:

�(FS) = C
ep : �F ⇒ �(FS)i j = C

ep
i jkl�Fkl, (100)

which closed form in index notation renders:

C
ep ⇒ C

ep
i jkl = δikF

p−1
ln S̄nsF

p−T
s j +

FimFp−1
n,mxH

p
xnabN

∗−1
abkyF

p−1
ly S̄nsF

p−T
s j +

FimFp−1
mn C

e
F,nsabN

∗−1
abkyF

p−1
ly Fp−T

s j +
FimFp−1

mn S̄nsH
p
sxabN

∗−1
abkyF

p−1
ly Fp−T

n,x j , (101)

To finish the current derivations, the following computations are also required:

∂
∥∥ng

∥∥

∂Fe
= ∂

∥∥ng

∥∥

∂ng
: ∂ng

∂Fe
= ng∥∥ng

∥∥ : ∂ng

∂Fe
. (102)

Given that ng = M : �̄s, so:

�ng = M : ��̄s = M : ∂�̄s

∂Fe
: �Fe, (103)

and therefore:
∂ng

∂Fe
= M : ∂�̄s

∂Fe
. (104)

5 Applications

In this section, several numerical results are presented in order to examine the perfor-
mance of the constitutive model herein developed. The applications henceforth pre-
sented are: (i) a verification case concerning dog-bone specimen types under tensile
loading with different preferential fibre orientations (Sect. 5.1), and (ii) a validation
through a three-point bending test (Sect. 5.2).
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5.1 Model Verification and Validation

In the first application, dog-bone specimen-types with different preferential fiber
orientations are subjected to uniform tensile loading. These specimens are manu-
factured from the short fiber-reinforced thermoplastic PA6GF-30 and were experi-
mentally investigated at the Institute of Forming Technology and Machines (IFUM,
Hannover) [10]. The corresponding mechanical properties are given in Table1. Note
that averaged fiber distribution over the cross section of the specimen is considered
complying with the so-called Equivalent Single Layer (ESL) approach [23].

The geometry of the specimen is shown in Fig. 7a, identifying the zero-degree ref-
erence material orientation. The specimen is discretized using 4860 first-order solid

Table 1 PA6GF-30: mechanical properties

E11 (MPa) E22 (MPa) G12 (MPa) ν12 ν23

7893.550 3348.17 1800.94 0.23 0.62
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Fig. 7 Dog-bone specimens PA6GF-30 under uniaxial loading conditions. a Specimen definition
b Experimental–numerical correlation for different preferential fiber orientations (0◦ and 90◦)
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elements. To reproduce the experimental conditions, the following boundary condi-
tions are defined [7]: (i) fully restrained displacements at the clamped edge, and (ii)
constrained displacements at the loaded edge, except the longitudinal displacement
coinciding with the 0◦-direction.

The initial yielding parameters, ζi , are reported in Table2, whereas the plastic
potential parameters ιi are listed in Table3. The geometry of the specimen is shown
in Fig. 7a, identifying the zero-degree reference material orientation. Fig. 8 depicts
the convex form of the yield surface.

Figures7b shows the experimental–numerical correlation between the current
simulations and the data reported in [10], whereby a satisfactory agreement can be
observed.

Table 2 PA6GF-30: initial yielding parameters ζi

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

2.648 × 10−4 2.648 × 10−4 3.272 × 10−3 2.523 × 10−5 1.338 × 10−3 2.588 × 10−4

Table 3 PA66GF-35: plastic potential parameters ιi

ι1 ι2

1.0 -17.684
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Fig. 8 PA6GF30: Characterization of the yield surface and plastic potential
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Table 4 PA6GF-30: Mechanical properties

E11 (MPa) E22 (MPa) G12 (MPa) ν12 ν23

5211.43 2262.86 1601.7 0.39 0.6

Table 5 PA6GF-30: initial yielding parameters ζi

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

4.521 × 10−4 4.521 × 10−4 6.624 × 10−3 9.429 × 10−5 3.899 × 10−3 2.196 × 10−4

Table 6 PA6GF-30: plastic potential parameters ιi

ι1 ι2

1.0 -17.684

5.2 Structural Application: Three-Point Bending Test

The second application studied concerns the 3-point bending test previously reported
in [26]. In particular, we restrict our analysis to the case of a loading velocity of
1.0 m/s to prevent incongruities with the quasi-static character of the current for-
mulation. The material properties corresponding to the present case are listed in
Table4, whereas the plastic data are reported in Tables5 and 6, respectively, com-
plying with the ISO standard value corresponding to this material. Similarly to the
previous application, we exploit the ESL approach to compute the corresponding
mechanical properties over the plate thickness. This example is of special interest to
characterize themechanical performance and to trigger the fiber orientation along the
loading procedure. Therefore, this application is herein used to assess the proposed
formulation.

Figure9a shows the geometric description of the current application, identifying
the preferential fibre orientation with the longitudinal direction of the specimen and
with the following geometric dimensions: (i) length L = 50 mm, (ii) width B = 5
mm, and (iii) thickness t = 2 mm. The plate is discretized using 7200 first-order
solid elements. The pin for the loading application is meshed using 2100 elements
with the same interpolation order and setting very high mechanical properties to
prevent its deformation. The computations are performed prescribing the downward
vertical displacement at the central pin equal to 9mm using 1000 equal pseudo-
time increments. It should be noted that ABAQUS simulations are performed using
automatic time stepping. Figure9b shows the longitudinal stress distribution over
the plate thickness, featuring a nonuniform distribution over the thickness due to the
imposed loading.

Simulations are conducted imposing a prescribed vertical displacement down-
wards at the central pin equal to 9mm, see Fig. 9a ,b. In each increment, the global
solution scheme is employed. Figure9b shows the stress distribution due to the pre-
scribed loading, where, as expected, a nonuniform strain distribution over the plate
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Fig. 9 Three-point bending test of PA6GF-30. a Specimen definition b Stress distribution c Map-
ping of the preferential material direction after the computation d Experimental–numerical corre-
lation

thickness is estimated. Figure 9c displays the preferential material orientation along
the thickness direction, whereby the mapping of the fibre alignments along the defor-
mation process is mapped.

Finally, Fig. 9d shows the experimental-numerical correlation corresponding to
the load–central displacement evolution curve of the application. In this graph, the
experimental data are represented through discrete square symbols, whereas the sim-
ulation results are plotted using a solid line. Examining this evolution, it is interesting
to see that a very good correlation is obtained along the whole loading procedure. In
this respect, note that the mechanical performance of the systems is characterized by
an initial linear evolution followed by a subsequent stage where notable nonlinear
effects become appreciable.

6 Concluding Remarks

In this investigation, a new elasto-plastic invariant-based finite strain anisotropic
material model for SFRP composites has been presented. The proposed formulation
is suitable for arbitrarily large elastic and plastic deformations, assuming plastic
incompressibility.

On the theoretical side, the model incorporates a non-associate flow rule to char-
acterize the plastic evolution, which relies on the multiplicative decomposition of
the deformation gradient. The constitutive equations are derived in a thermodynami-
cally consistent format. On the computational side, the current investigation provides
a comprehensive presentation of the numerical treatment within the context of non-
linear FEM. In particular, a closed form of the algorithmic tangent moduli is derived.
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The reliability of the current formulation has been examined by verification and
validation examples, showing a very satisfactory level of accuracy with respect to
the experimental data.

Finally, further research activities will comprise the application of the proposed
formulation to hybrid metal-composite clinching manufacturing processes.
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Appendix

This appendix addresses the weak formulation of the IBVP presented in Eq. (6)
(Sect. 2), which represents the most convenient setting to formulate the correspond-
ing numerical approximation based on FEM (Finite Element Method) through the
exploitation of the standard Galerkin procedure.

Assume that the reference body boundary ∂B0 is subdivided into the disjointed
parts ∂B0,u ⊂ ∂B0 and ∂B0,t ⊂ ∂B0, with ∂B0 = ∂B0,u ∪ ∂B0,t and ∂B0,u ∩
∂B0,t = ∅. As customary, appropriate boundary conditions must be defined in order
to guarantee the well-posedness of the IBVP. The weak form of the balance of linear
momentum reads:

Gu (u, δu) = ∫B0

(
DIV [P] + ϒ̄

)
δudV = ∫B0

(
DIV [δuP] − P : ∇Xδu + ϒ̄δu

)
dV

= ∫B0
P : δFdV − ∫

∂B0
TδudA − ∫B0

ϒ̄δudV = Gu
int + Gu

ext = 0, (105)

where δu renders the virtual displacement and δF = ∇Xδu and T = PN denotes the
first Piola-Kirchhoff traction vector. Note that to achieve the present form of Eq.105,
the following rules are used:

DIV [P] δu = DIV [δuP] − P : ∇Xδu, (106)

and the Gauss-Green theorem:
∫

B0

DIV [δuP] dV =
∫

∂B0

(PN) δudA. (107)

The virtual internal work Gu
int and the virtual work of external actions G

u
ext are given

by:

Gu
int (u, δu) =

∫

B0

P : δFdV, (108)
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Gu
ext (u, δu) = −

∫

∂B0

TδudA −
∫

B0

ϒ̄δudV. (109)

The resulting set of nonlinear equations of the mechanical problem, Eq. 105, can
be solved numerically through the use of the incremental and iterative Newton-
Raphson solution scheme, which shows a quadratic convergence near the solution
point. The consistent linearization of the given time integration algorithm, also called
stress-update algorithm, leads to the derivation of the consistent tangent moduli,
which describes in an incremental manner the stress sensitivity with respect to the
deformation gradient increment. Following the directional derivative concept [16],
the consistent linearization of Eq.105 takes the following representation:

Lin
[
Gu (ū, δu,�u)

] = Gu (ū, δū) + DGu (ū, δu) �u. (110)

In Eq.105, the term P : δF has to be linearized yielding:

�(P : δF) = �P : δF, (111)

where �P is derived in Sect. 4.2, with:

�P = �(FS) = C
ep : �F, (112)

where Cep denotes the algorithmic elasto-plastic constitutive operator.
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