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Preface

Many engineering materials have a heterogeneous structure, especially at the
microscopic scale. These are often referred to as multiphase materials, composite or
heterogeneous materials. From an engineering point of view, multiphase materials
are desirable because they can be tailor-made to take advantage of particular
properties of each constituent. The size, shape, spatial distribution, volume fraction,
and properties of the constituents at microstructural level have a significant impact
on the behavior of material properties observed at the macroscale. Additionally, the
external loading applied at macroscale might cause changes in the microstructural
morphology, e.g., void formation, damage as well as cracking, which can put
structural integrity at risk. In order to assess structural integrity and to predict
structural lifetime, an analysis of the evolving microstructure is necessary. An
efficient computational strategy enabling more realistic material description as well
as deformation response is still a challenge in computational mechanics. Various
multiscale techniques have been developed that model materials at multiple levels.
Moreover, various modern experimental techniques provide access to a detailed
characterization of the internal structure and processes taking place in materials at
small scales, paving the way to new routes for model validation.

This book contains 18 papers that resulted from selected presentations at the
workshop “Multiscale Modeling of Heterogeneous Structures” held September 21–
23, 2016 in Dubrovnik, Croatia. The workshop focused on multiscale approaches
and homogenization procedures as well as damage evaluation and crack initiation.
Recent advances in the analysis and discretization of heterogeneous materials were
addressed. The state of the art in this research area was highlighted with respect to
different computational methods, software development, and applications to engi-
neering structures.

The papers were allotted to four topics: Composites, Computational Solution
Approaches, Gradient Enhanced Modeling, and Multiphysics and associated
experimental techniques. The topic Composites covers defects in composite
materials including their numerical and experimental investigations. Elastic as well
as elastoplastic constitutive models are considered, where the modeling has been
performed at macro- and microlevels. The second group of the papers is more
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focused on novel computational schemes applied at the different scales. The vali-
dation of numerical results has been discussed. The quasi-brittle and the ductile
damage using the gradient enhanced approach are considered in the frame of the
topic Gradient Enhanced Modeling. Finally, the thermoplasticity, the solid-liquid
mixture as well as the ferroelectric models are discussed in the fourth topic.

The workshop was held under the auspices of the German Association for
Computational Mechanics (GACM), the Central European Association for
Computational Mechanics (CEACM), the ENS Cachan, the Leibniz Universität
Hannover, the Faculty of Mechanical Engineering, and Naval Architecture of the
University of Zagreb. It was supported by the Alexander von Humboldt
Foundation, the Deutsch-Französische Hochschule, and the Deutsche
Forschungsgemeinschaft. The editors express their deep gratitude to all sponsoring
institutions. Furthermore, the editors would like to thank Ms. Schulte and Dr.
Lesičar for their engagement in the organization of the workshop as well as Dr.
Weißenfels for his valuable assistance in preparing the book.

Zagreb, Croatia Jurica Sorić
Hannover, Germany Peter Wriggers
Cachan, France Olivier Allix
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Part I
Composites



Evolution of Failure Mechanisms
in Composite Shell Structures Using
Different Models

Werner Wagner and Friedrich Gruttmann

Abstract Modelling of structures on different scales has been a popular subject in
the past. Within such a strategy the structural behaviour is modeled on a macro-level,
describing the structure itself, whereas thematerial behaviour is modeled on amicro-
level. Here typically RVEs are used. The proper choice of boundary conditions for
the RVE is a difficult task in case of shell structures. Here, results have been presented
for homogeneous and layered structures for composite materials in (Gruttmann &
Wagner, Int J Num Meth Eng 94:1233–1254, 2013) [10]. In the present paper we
discuss the influence of material nonlinear behaviour, especially the damage behav-
iour of fiber reinforced polymers, within the above described setting in comparison
to other modeling techniques.

1 Introduction

Finite shell elements which are based on the first–order shear deformation theory are
in general able to describe the global deformation behaviour of thin plate and shell
structures. In [20] we presented results that show remarkable robustness of mixed
formulations in nonlinear applications. Modifications of such mixed formulations to
layered structures are developed in [9]. With respect to damage behaviour a layer-
wise numerical integration has to be used. A similar approach can be achieved in case
of solid shell elements, e.g. [14, 15]. Choosing one element in thickness direction
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4 W. Wagner and F. Gruttmann

again a layerwise approach has to be added. However for some stress components
only an average shape through the thickness can be obtained. Various methods have
been developed to obtain the complicated local stress state in inhomogeneous thin
structures. So-called multi-director shell formulations with an appropriate number
of global degrees of freedom at the nodes yield approximate solutions of the three-
dimensional boundary value problem, e.g. [8, 18]. The application of brick elements
or solid shell elements provides likewise a computationally expensive approach, e.g.
[14, 15], but allow the description of warping or other effects in the cross section
of the shell. For laminates each layer must be discretised with several elements in
thickness direction to obtain satisfactory results. The enhancement of the displace-
ment field by layer-wise linear (zig-zag) functions through the thickness, see e.g. [1],
could be another option, which leads to a more precise deformation behaviour. New
actual promising results for locally extended shell formulations can be found in [11]
for the elastic case. A further alternative is the treatment of shells as a homogeneous
continuum in a 2D shell environment with effective properties obtained through a
homogenisation procedure to avoid large-scale computations. A large number of
papers exists on computational homogenisation methods for general heterogeneous
materials, see e.g. [5, 23] for a survey and new developments. Based on the formula-
tion in [20] we have derived a two-scale model with a variational formulation and an
associated linearisation for the coupled global–local boundary value problem in [10]
and an adaptive application to local elasto-plastic material in [22]. In this paper we
present the applicability to damaged composite shell structures. For that we compare
different discretisation models

• layered solid shell models [14, 15]
• layerwise solid shell models [14, 15]
• layerwise shell models [9, 20]
• shell models with an internal FE2-approach [2, 6, 10].

To do this we describe in the next two sections briefly the main equations of
a two-scale shell model and the main equations of damage models of Hashin, e.g.
[7, 12], Puck, e.g. [16] and Cuntze, e.g. [3, 4].

2 Two-Scale Shell Model

2.1 Theoretical Background

At first the basic equations of a Reissner-Mindlin shell model are summarised. Based
on a reference surface the thickness coordinate ξ3 = z is defined, where h− and h+
are the z-coordinates of the outer surfaces. The shell is loaded statically by loads p̄ in
Ω and by boundary forces t̄ on �σ. The displacement field of the Reissner-Mindlin
theory is obtained with
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ū = ū0 + z (d̄ − D̄) ū0 = x − X , (1)

where x,X denote the position vectors of the initial and current reference surface,
respectively. The unit director vectors are denoted by D̄, d̄, where d̄ is a function of
the rotational parameters ω̄.

The shell strains are derived from the Green-Lagrangian strain tensor using kine-
matic assumption (1) and are arranged in a vector as

ε(ū0, ω̄) = [ε11, ε22, 2 ε12,κ11,κ22, 2κ12, γ1, γ2]T . (2)

Furthermore the vector of stress resultants σ with membrane forces nαβ , bending
moments mαβ and shear forces qα is introduced via

σ = [n11, n22, n12,m11,m22,m12, q1, q2]T . (3)

Further details on the remarkable robust mixed formulation are described in [20] and
[9].According to Fig. 1 a representative volume element (RVE) at an integration point
i of a particular finite shell element is introduced. The domain Bi extends through
the total thickness h of the shell and has the size lx × ly × h. The displacement field
is split in an averaged part ū and a fluctuation part ũ.

u = ū + ũ . (4)

The averaged displacements ū according to (1) exhibit a linear shape of the thickness
coordinate, whereas ũ describes warping and thickness change. The weak form of
equilibrium of the coupled problem can now be written with v = [ū0, ω̄,u]T and
associated admissible variations

Fig. 1 Computational
homogenisation of a layered shell

h

h

εDσ

F

Ω

BiBi

h+
h-



6 W. Wagner and F. Gruttmann

g(v, δv) =
∫

Ω1

(σ · δε − p̄ · δū0) d A1 +
∫

Ω2

(σ · δε − p̄ · δū0) d A2

+
ne2∑
e=1

NGP∑
i=1

1

Ai

∫

Ωi

h+∫

h−

S · δE μ̄ dz d A −
∫

�σ

t̄ · δū0 ds = 0 .

(5)

The structure is divided in parts Ω1 without and Ω2 with a two-scale model, respec-
tively. Furthermore ne1 and ne2 denote the associated number of shell elements
within a discretisation. NGP is the number of Gauss points for each element and
Ai = lx ly is the reference area of the RVE. On the RVE S denotes the Second Piola-
Kirchhoff stress tensor with P = FS and the virtual Green-Lagrangian strain tensor
is introduced via δE = 1

2 (δF
TF + FT δF). For the finite element formulation of the

next section we need to derive the linearisation of Eq. (5). With conservative loads p̄
and t̄ one obtains

L [g(v, δv),Δv] := g(v, δv) + Dg · Δv (6)

where g(v, δv) is given in (5) and

Dg · Δv =
∫

Ω1

(Δσ · δε + σ · Δδε) d A1 +
∫

Ω2

(Δσ · δε + σ · Δδε) d A2

+
ne2∑
e=1

NGP∑
i=1

1

Ai

∫

Ωi

h+∫

h−

(ΔS : δE + S : ΔδE) dz d A

(7)

with Δσ = DΔε, ΔS = CΔE and ΔδE = 1
2 (δF

TΔF + ΔFT δF). The material
matrixC is a standard output of a library of constitutive laws in amaterial description.
The linearised virtual shell strains Δδε are derived for finite rotations in [20]. The
stress resultant vector σ and the matrix of linearised stress resultants D are specified
within the finite element formulation in the next section.

2.2 Finite Element Formulation

The reference surface of the shell is discretised with ne = ne1 + ne2 quadrilat-
eral isoparametric shell elements, using bilinear shape functions NI (ξ, η) which are
arranged in the matrix N. The nodal degrees of freedom are three displacements and
two or three rotations. Inserting these interpolation functions into the linearised weak
form (6) considering (5) and (7) yields
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L [g(vh, δvh),Δvh] =
ne1∑
e=1

δvGe k
G
e ΔvGe + fGe +

ne2∑
e=1⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

δvG

δV1
...

δVi
...

δVNGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

e

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kG 0
... 0

... 0

0 KL
1

... 0
... 0

. . . . . .
. . . 0 . . . . . .

0 0 0 KL
i 0 0

. . . . . . . . . 0
. . . . . .

0 0 . . . 0 . . . KL
NGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔvG

ΔV1
...

ΔVi
...

ΔVNGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

e

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

fG(σi )

FL
1
...

FL
i
...

FL
NGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

e

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8)

The indices G and L refer to the global and local boundary value problems, respec-
tively. The matrices of the first row in (8) follow from the global part of the linearised
weak form. The element residual vector and the tangential element stiffness matrix
read

fG(σi ) =
∫

Ωe

(BTσ − NT p̄) d A −
∫

�σe

NT t̄ dskG(Di )

=
∫

Ωe

(BTDB + G) d A
(9)

where the matrices B and G are derived in [20]. The vector of stress resultants σi

and linearised stress resultants Di are specified below. The matrices of the second to
the last row in (8) are associated with the local boundary value problems at Gauss
points 1 ≤ i ≤ NGP of shell element e and occur only, if a two-scale model is used.
A local boundary value problem can be defined at Gauss point i

δVT
i (KL

i ΔVi + FL
i ) = 1

Ai

Ne∑
e=1

δvTe (kL
e Δve + f Le ) . (10)

Here, the total number of elements used for the discretisation of the RVE is denoted
by Ne. The element residual vector f Le and the tangential element stiffness matrix
kL
e read

f Le =
∫

(Ve)

B̃TS dV kL
e =

∫

(Ve)

(B̃TC B̃ + G̃) dV (11)

where B̃ and G̃ are the virtual strain displacement matrix and the geometrical matrix
of 8-noded solid shell elements, respectively. The element displacement vector ve
is now split in a part vΩ with internal displacements and a part v� which contains
displacements on the boundary �u of the RVE

ve =
[
vΩ

v�

]
=
[
ae Vi

Ae εi

]
. (12)



8 W. Wagner and F. Gruttmann

In Eq. (12) ae is a standard assembly matrix. Ae is defined for nel nodes on the
element with

Ae = [δ1 A1, . . . , δI AI , . . . , δnel Anel ]
T (13)

with δI = 0 for internal nodes and δI = 1 for boundary nodes. Assuming small
strains the relation of the boundary displacements to the shell strains ε can be written
as

[
vx
vy

]
I

= AI (x, y, z) εi =
[
x 0 1

2 y xz 0 1
2 yz z 0

0 y 1
2 x 0 yz 1

2 xz 0 z

]

I

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
2ε12
κ11

κ22

2κ12

γ1
γ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i

(14)

Based on the element displacement split (12) one can introduce submatrices of kL
e

and f Le in (10)

δVT
i (KL

i ΔVi + FL
i )

= 1

Ai

Ne∑
e=1

[
δVi

δεi

]T {[ aTe kΩΩ ae aTe kΩ� Ae

AT
e k�Ω ae AT

e k�� Ae

]
e

[
ΔVi

Δεi

]
+
[
aTe fΩ
AT

e f�

]
e

}

= 1

Ai

[
δVi

δεi

]T {[ K L
LT M

] [
ΔVi

Δεi

]
+
[
FΩ

F�

]}
.

(15)

The internal degrees of freedomΔVi can now be eliminated from the set of equations
which yields the final form of Eq. (15)

δVT
i (KL

i ΔVi + FL
i ) = δεTi (Di Δεi + σi ) (16)

where the stress resultants and linearised stress resultants of Gauss point i are defined
using KX = L and KY = FΩ

σi = 1

Ai
(F� − LTY) Di = 1

Ai
(M − LTX) . (17)

Finally (16) is inserted into the linearised coupled global-local boundary value prob-
lem (8)
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L [g(vh, δvh),Δvh] =
ne1∑
e=1

δvGe k
G
e ΔvGe + fGe +

ne2∑
e=1⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

δvG

δε1
...

δεi
...

δεNGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

e

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kG(Di ) 0
... 0

... 0

0 D1
... 0

... 0

. . . . . .
. . . 0 . . . . . .

0 0 0 Di 0 0

. . . . . . . . . 0
. . . . . .

0 0 . . . 0 . . . DNGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔvG

Δε1
...

Δεi
...

ΔεNGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

e

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

fG(σi )

σ1
...

σi
...

σNGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

e

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(18)

It has been shown, see e.g. [21], that the equivalence of macroscopic andmicroscopic
stress power for shell structures, the so called Hill condition, holds

1

h
σε̇ = 1

V

∫

V

S : Ė dV = 1

V

∫

A

t · ˙̄u d A with ˙̄uI =
[ ˙̄ux˙̄uy

]
I

= AI ε̇ (19)

3 Failure Models of Hashin, Puck and Cuntze

For fiber reinforced composite structures a range of failure mechanisms as fiber
fracture (FF), inter fiber failure (IFF) and delamination may occur. Several failure
models are proposed to describe FF (Fig. 2a, b) and IFF, usually each distinct in a
tensile(t) and compressive(c) mode, (Fig. 2c, d). Improved models subdivide the IFF
compressive mode in a shear dominant (Fig. 2d) and purely compression dominant
mode (Fig. 2e). FF is themost severe failure and generally leads to structural collapse.
Based on a large number of models we choose themodifiedHashin-model [7] as one
of the most commercial ones. Furthermore we employ the Puck-model [16] and the
Cuntze-model [3], which provide approaches to the physical aspects of the fracture.
We describe the main equations. For a further discussion we refer to the original
references.

3.1 The Modified Hashin-Model

Oneof the used failuremodels is themodifiedHashin-model [7], based on the original
version in [12]. Themodel consists of five failure criteriawhere the equations separate
tensile and compressive matrix(M)- and fiber(F)-failure (Mt is used if S22 > 0, Mc

if S22 < 0).
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(a) (b)

(c) (d) (e)

Fig. 2 Possible failure modes of a single ply of composite laminates: a tensile FF b compressive
FF c tensile IFF d shear-dominant IFF e compressive IFF

Ft :
(
S11
Rt‖

)2

= 1, S11 > 0

Fc :
(
S11
Rc‖

)2

= 1, S11 < 0

Mt :
(
S22
Rt⊥

)2

+
(

S12
R⊥‖

)2
+
(

S13
R⊥‖

)2
+
(

S23
R⊥⊥

)2
= 1

Mc :
(

S22
2R⊥⊥

)2
+
[(

Rc⊥
2R⊥⊥

)2

− 1

]
S22
Rc⊥

+
(

S12
R⊥‖

)2
+
(

S13
R⊥‖

)2
+
(

S23
R⊥⊥

)2
= 1

FMS :
(

〈−S11〉
Rc‖

)2

+
(

S12
R⊥‖

)2
+
(

S13
R⊥‖

)2
= 1

(20)
The most important modification is the fiber-matrix-shear (FMS)-condition. This
cut-off considers the shear load additional via

〈−S11〉 =
{
0, S11 ≥ 0
S11, S11 < 0

. (21)

The failuremodel is used ply-by-ply, thus every single layer is treated exclusively. Si j
are stresses referring to a local coordinate system, where the 1-direction specifies the
fiber-direction, the 2-direction the in-plane direction normal to the fibers and the 3-
direction is the through-thickness direction. Associated material strength values are
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defined typically with Rt
‖, R

c
‖, R

t
⊥, Rc

⊥, R⊥‖, R⊥⊥ where subscripts ‖ and ⊥ denote
the directions parallel and transverse to the fiber direction.

3.2 The Puck-Model

The Puck-model is used as a second model to predict failure of composite laminates.
All equations and contents of this subsection refer to [16]. To describe the individual
failure mode Puck introduces four different failure conditions. Each layer can fail
in different modes, a FF and three IFF-conditions with tensile (IFFA), compressive
(IFFC) and shear dominant inter fiber failure (IFFB).

FF: εFF =
(

〈S11〉
Rt‖

)2

+
(

〈−S11〉
Rc‖

)2

= 1

IFFA: εI FF A =
√√√√(

S12
R⊥‖

)2
+
(
1 − pt⊥‖

Rt⊥
R⊥‖

)2 (
S22
Rt⊥

)2

+ pt⊥‖
S22
R⊥‖

= 1, S22 > 0

IFFB: εI FF B = 1

R⊥‖

(√
S212 +

(
pc⊥‖S22

)2 + pc⊥‖S22
)

= 1

IFFC: εI FF C =
⎡
⎣
(

S12
2
(
1 + pc⊥⊥

)
R⊥‖

)2

+
(
S22
Rc⊥

)2
⎤
⎦ Rc⊥

(−S22)
= 1

(22)

Equation (22) defines efforts Eff (mode). Failure occur for Eff i > 1. Curve fitting
parameters appear which can be used to fit the failure model to a single material or
an experiment. For carbon fiber reinforced plastics Puck [17] proposes pt⊥‖ = 0.35,
pc⊥‖ = 0.30, pt⊥⊥ = 0.25 − 0.30, pc⊥⊥ = 0.25 − 0.30.

3.3 The Cuntze-Model

As a third model for composite laminates the Cuntze failure model is used. All
equations and contents of this subsection refer to [3, 4]. To describe an individual
failure mode Cuntze [3] introduces five failure conditions. Each layer can fail in
different modes, two FF and three IFF-conditions. The FF-conditions distinguish
tensile (FF1) and compressive fiber failure (FF2), and the IFF-conditions can be
divided into tensile (IFF1), compressive (IFF3) and shear dominant inter fiber failure
(IFF2).
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FF1:
I1
Rt

‖
= 1

FF2:
−I1
Rc

‖
= 1

IFF1:
I2 + √

I4
Rt

⊥
= 1

IFF2:

√
I 33 + b⊥‖(I2 I3 − I5)

(R⊥‖)3
= 1

IFF3:
(bτ

⊥ − 1)I2 + bτ
⊥
√
I4

Rt
⊥

= 1

(23)

with
I1 = S11 I2 = S22
I3 = S222 + S213 I4 = S222 + 4S223
I5 = S22(S213 − S212) − 4S12S13S23

(24)

In Eq. (24) two curve fitting parameters appear which can be used to fit the failure
model to a single material or an experiment. For carbon fiber reinforced plastics
Cuntze [4] propose 0.05 < b⊥‖ < 0.15, and 1.0 < bτ

⊥ < 1.15). Equation (23) defines
stress efforts Eff (mode) for each failure mode which depends only on one material
strength. They can be combined to a more realistic numerical model via

E f f ṁ(res) =
5∑

i=1

E f f ṁ(i). (25)

Here, a third curve fitting parameter ṁ (‘rounding-off-parameter’) is used, which
considers an interaction of the failure modes. A value of ṁ ≈ 3.0 is recommended,
see [4].

4 Example-Four Point Bending Test

4.1 Problem Description

The developed algorithms and elements are implemented in an extended version of
the general finite element program FEAP [19]. The investigated example is a four
point bending test, depicted in Fig. 3. The geometrical data are L = 400mm, B =
12.5mm, D = 20mm and a layer thickness of t = 2.5mm together with a stack-
ing sequence [0◦/90◦]2s . With respect to symmetry only one half of the structure is



Evolution of Failure Mechanisms in Composite Shell Structures … 13

1 2

3

Fig. 3 Four point bending test: geometry, loading and discretisation options

discretised. A discretisation with solid shell elements [15] is chosen with 32×1 ele-
ments in x-y-plane. Furthermore the 1-Element-8-Layer model (‘Solid Shell 1(8)’)
has one element in thickness direction and 8 layers, whereas the 8-Element-1-Layer
model (‘Solid Shell 8(1)’) has for each layer one element in thickness direction.
The discretisation with shell elements [20] is chosen with 32×1 elements in x-y-
plane (‘Shell (8)’). The thickness direction is modeled within a layerwise approach.
With respect to the multi-scale approach the same shell model is used. Here, on
RVE-level, discretisations using solid shell elements are applied. Again an option
with 1-Element-8-Layer (8×8×1(8) named ‘Shell FE2 1(8)’) and an option with 8-
Element-1-Layer (8×8×8(1) named ‘Shell FE2 8(1)’) in thickness direction could
be used. The global boundary conditions are chosen as uz = 0 at x = 0 and symmetry
conditions at x = L . Furthermore plain strain conditions are assumed with uy = 0 at
y = 0 and y = B. It is well known, that in case of local stress based failure models
a mesh dependency of solutions may occur. This is not topic of present paper. As
stated above, we compare different discretisation options but introduce comparable
meshes. The underlying material data for A-S Epoxy1 are depicted in Tables1 and 2.
Results are presented for the different shell and failure models in the following.
The analysis is performed geometrically and material nonlinear on global as well as
on local level. An arc-length scheme with displacement control is adopted. Load-
deflection curves and damage distributions are depicted for the different cases. Dif-
ferent failure modes are shown with values between 0 (no damage) and 1 (fully

Table 1 A-S Epoxy1 stiffness values

E‖ [MPa] E⊥ [MPa] ν‖⊥ [-] G‖⊥ [MPa] G⊥⊥ [MPa]

140000 10000 0.3 6000 3335

Table 2 A-S Epoxy1 strength values

Rt‖ [MPa] Rc‖ [MPa] Rt⊥ [MPa] Rc⊥ [MPa] R⊥‖ [MPa]

1990 1500 38 150 70
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damaged) for solid shell and multi-scale models. The failure behaviour is plotted
layerwise since no averaging in thickness direction is allowed.

The general deformation behaviour, see Fig. 5, is as follows. A nearly linear load-
deflection behaviour occurs until a value of approximately w = 70mm. The failure
modes start with a matrix-failure in the 90◦-layer at bottom in the loading region,
when reaching Rt

⊥. The drastic reduction of the load is then based mainly on the fiber
failure in the 0◦-layer at top in the loading region, when reaching Rc

‖. Note R
c
‖ < Rt

‖.
Further loading leads to another matrix-failure in the 90◦-layer at top in the loading
region, with respect to Rc

⊥. Further minor mixed shear failure modes occur.

4.2 Hashin-Model

Figure4 presents the deformedmeshes at the final deformation of w=100mm for the
different models. Figure5 depicts load-deflection curves for different discretisation
models for the case of the Hashin failure model. Depicted are results for the external
load p [N/mm2] with respect to the center deflection w [mm], see Fig. 3. Relatively
similar results are produced for a discretisation ‘Solid Shell 1(8) and a standard shell
formulation ‘Shell (8)’. Results for ‘Solid Shell 1(8)’ and ‘Solid Shell 8(1)’ differ in
the post-failure region. ‘Solid Shell 8(1)’ and ‘Shell (8)’ lead to nearly similar results,
even in the post-failure region. The multi-scale solutions ‘Shell FE2 1(8)’ and ‘Shell
FE2 8(1)’ deviate from the ‘Solid Shell 8(1)’ solutions. A lower failure load and
different post-failure paths are reached. This will be discussed in more detail in the
following. Figure6 presents the failure behaviour at w =100mm in the solid model
‘Solid Shell 8(1)’, which is dominated by failures Mc(0◦) and Mt (90◦), Mc(90◦). A
muchmore detailed analysis is possible for themulti-scale model, which is presented
in Fig. 7. Here different failure modes are presented on the RVE, chosen here for

Fig. 4 Hashin. Deformed mesh Solid Shell 8(1), Solid Shell 1(8) versus Shell+FE2 at w=100mm
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Fig. 5 Hashin-Failure model. Load-deflection curves for different discretisation models

(a)

(b)

(c)

(d)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fig. 6 Hashin-Failure model in Solid Shell at w=100mm a FF(0◦), b Mt (0◦), c Mt (90◦), d
Mc(90◦)
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(a) (b)

(c) (d)
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1.0

Fig. 7 Hashin-Failure model in Shell-FE2 at w=100mm a FF(0◦), b FMS(0◦), c Mt (90◦), d
Mc(90◦)

element 24, Gauss-point 1, which is near the loading area. As can be seen from
Fig. 7, the failure behaviour in the ‘Shell-FE2 8(1)’ model, is dominated by failure
FF(0◦) at top (c) and bottom (t), FMS(0◦) and Mt (90◦), Mc(90◦).

4.3 Puck-Model

Again load-deflection curves for different discretisation models, now in case of the
Puck failure model, are depicted in Fig. 8. As can be seen from the diagram sim-
ilar results are produced for a discretisation ‘Solid Shell 1(8) and a standard shell
formulation ‘Shell (8)’. These results deviate from the model ‘Solid Shell 8(1)’,
where a more complex post-failure region occurs. The multi-scale solutions ‘Shell
FE2 1(8)’ and ‘Shell FE2 8(1)’ have lower failure loads than ‘Solid Shell 8(1)’
but a similar post-critical behaviour. The distribution of damaged areas can be seen
again in Figs. 9 and 10. The detailed failure behaviour is similar to the Hashin-
model. Failure modes occur for FF(0◦) at top (c) and bottom (t), I FF B(0◦) and
I FF A = Mt (90◦), I FF C = Mc(90◦).

4.4 Cuntze-Model

The Cuntze-model is based on similar concepts as the Puck-model. Thus it could be
expected, that the load-deflection behaviour for this model lies in the same range,
see Fig. 11. Again similar results are produced for discretisation ‘Solid Shell 1(8)’
and ‘Shell (8)’. Also these results do not show the more complex post failure behav-
iour, which occur for model ‘Solid Shell 8(1)’. The multi-scale solutions ‘Shell
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Fig. 8 Puck-Failure model. Load-deflection curves for different discretisation models
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Fig. 9 Puck-Failure model in Solid Shell at w=100mm a FF(0◦), b I FF A(0◦), c I FF A =
Mt (90◦), d I FF C = Mc(90◦)
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(a) (b)

(c) (d)
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Fig. 10 Puck-Failure model in Shell-FE2 at w = 100mm a FF(0◦), b I FF B(0◦), c I FF A =
Mt (90◦), d I FF C = Mc(90◦)

Fig. 11 Cuntze-Failure model. Load-deflection curves for different discretisation models

FE2 1(8)’ and ‘Shell FE2 8(1)’ have lower failure loads than ‘Solid Shell 8(1)’
but describe the post-critical behaviour in a similar way. The distribution of dam-
aged areas can be seen again in Figs. 12 and 13. The detailed failure behaviour for
the Cuntze-model is governed by FF(0◦) at top (c) and bottom (t), I FF1(0◦) and
I FF1 = Mt (90◦), I FF3 = Mc(90◦) and is close to the results of the Puck-model.
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Fig. 12 Cuntze-Failure model in Solid Shell at w=100mm a FF(0◦), b I FF1 = Mt (0◦), c
I FF1 = Mt (90◦), d I FF3 = Mc(90◦)
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Fig. 13 Cuntze-Failure model in Shell-FE2 at w=100mm a FF(0◦), b I FF1 = Mt (0◦), c
I FF1 = Mt (90◦), d I FF3 = Mc(90◦)
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5 Conclusions

Different discretisation concepts for thin shell structures with respect to damage
behaviour have been discussed in this paper. These concepts are layered solid shell
models, layerwise solid shell models, layerwise shell models and shell models with
a FE2-approach. Layerwise solid shell and shell models possess a similar number
of unknowns. The layered solid shell models allows the studying of possible warp-
ing in thickness direction. The multi-scale models are chosen with associated RVE
discretisations. Results for the pre-damage behaviour are very close together for all
models. No influences of different kinematic models occur for the chosen exam-
ple, see Figs. 5, 8 and 11. Damage behaviour is described via three different failure
models. Obviously these models lead to different estimations for the post-failure
behaviour. Nevertheless the general failure behaviour could be described with all
models, when matrix-failure in the 90◦-layer at bottom, fiber failure in the 0◦-layer
at top and another matrix-failure in the 90◦-layer at top occur. However, in detail,
different load deflection curves are predicted in the post-failure region. The influence
of the failure models are presented in Fig. 14. Results using layerwise solid shell ele-
ments for the Puck- and Cuntze-model are comparable, whereas the Hashin-model
leads to a more conservative interpretation in the post-failure region. This is also
reflected when choosing the shell-FE2 approach. With respect to Figs. 7, 10 and 13
it could be stated that the shell-FE2-approach gives much more insight into the local
behaviour at integration points. Finally it should be stated that such detailed results
could be reached only after time-consuming calculations. Improvements are adaptive
schemes, see e.g. [22] as well as parallelisation techniques, see e.g. [13], for which
multi-scale models are well suited ([2, 6]).

Fig. 14 Load-deflection curves for different discretisation and failure models
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Micro-Macro Modelling of Metallic
Composites

Rex Bedzra, Stefanie Reese and Jaan-Willem Simon

Abstract This contribution describes a scale bridging approach for modelling
pressure independent elastoplastic unidirectional metallic composite materials by
making use of an anisotropic elastoplastic constitutive model. The material under
investigation is tungsten fiber reinforced copper (W/Cu) composite. To identify the
yield surface of the composite, a finite elementmodel of a repeating unit cell (RUC) is
set-up (micro-model). Through virtual experiments, the yield surface of the compos-
ite is identified.Ananisotropic elastoplastic constitutivemodel basedon the identified
yield surface, whichmakes use of the concept of structural tensors, is developed. This
material model serves as the material model for macro computations. To ensure a
good agreement between constitutive model and RUC during plastic evolution, mul-
tiple hardening functions are employed. The parameters of the constitutive model are
identified and the constitutive model is validated against the response of the RUC.

1 Introduction

Metal matrix composite (MMC) such as tungsten fiber reinforced copper (W/Cu)
composites, are being considered for use in high temperature propulsion environ-
ments due to their ability to withstand high thermal loads and their relatively low
density [1, 2].
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To model such a material, different length scales have to be taken into account
in order to capture the influence of the intrinsic microstructure of the composite
material on the macro-scale. A method to accomplish this is to employ a compu-
tational homogenization scheme [3–5]. This method is based on the construction
of a micro-scale boundary value problem which is used to determine the governing
behaviour of thematerial on themacro-scale. If the boundary value problem is solved
simultaneously, a fully nested solution of two boundary value problems is obtained,
often referred to as the FE2 method. Although this method allows one to asses the
macroscopic influence on the microscopic parameters, it is computationally expen-
sive and time consuming. An alternative approach, which is less computationally
expensive, is to develop a constitutive model which is able to predict the response
of the micro-scale boundary value problem. This approach has been exploited in
[6] for modelling the elastoplastic behaviour of pneumatic membranes and also in
[7, 8] for modelling layered fiber reinforced composites. In the current contribution,
it is used tomodel the elastoplastic response of a unidirectional fiber reinforcedmetal
matrix composite.

The developed anisotropic elastoplastic model employs the concept of structural
tensors to describe the initial yield surface of the composite. The structural tensors are
second order tensors which are characterized by unit vectors pointing in privileged
directions of the material. The structural tensors may be fixed [9–11] or may evolve
with plastic flow [12–14]. In the present case, they are considered to be fixed.

The paper is organized as follows: In Sect. 2, a finite element model of the unidi-
rectional composite model is set-up, and the yield surface of the composite is iden-
tified by performing virtual experiments. In Sect. 3, the derivation of the anisotropic
constitutive model is briefly described and validated.

2 Unidirectional Composite (Micro-scale)

To identify the yield surface of the composite as well as the material parameters of
the continuum anisotropic constitutivemodel and for later validation, a repeating unit
cell (RUC) of a unidirectional composite with random fiber distribution is generated.

2.1 Geometry Generation

The fiber distribution in the RUC is generated through a uniform random point gen-
erator function in matlab. The length of the RUC in longitudinal fiber direction as
well as in transverse fiber direction is 33.98µm. The diameter of the fibers is 7µm,
the fiber volume ratio is 50% and the total number of fibers is 10. The RUC is
assumed to be part of a much larger material specimen. Therefore, periodic bound-
ary conditions are applied through equation constraints in the finite element package
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Fig. 1 Geometry of
unidirectional composite
RUC with random fiber
distribution

ABAQUS/standard [15]. For details on the application of periodic boundary condi-
tion in ABAQUS/standard, see [16].

For efficiency reasons, reduced integration eight node linear solid elements
(C3D8R) are used to descritize the RUC. In total, the model is made up of 104, 192
number of elements. The meshed geometry of the unidirectional composite RUC is
shown in Fig. 1.

2.2 Fiber and Matrix Material

The fibers are modelled as General Electric 218CS (GE218CS) continuous tungsten
wire and the matrix is modelled as a cold worked oxygen free high conductivity
copper (OFHC) material. The constitutive model for both GE218CS and OFHC
is summarized in Table1 where σD represents the devatoric part of the Cauchy
stress tensor σ which in turn is related to the elastic part of the strain tensor εe
through the fourth-order isotropic elastic stiffness tensorC, which is a function of the
Poisson’s ratio ν and the Young’s modulus E, ε is the total strain which is additively
decomposed into an elastic part εe and a plastic part εp. The yield function Φ is
assumed to be a standard von Mises yield function. The isotropic hardening stress
R is chosen as a Voce’s exponential hardening function, where κ is the isotropic
hardening variable. Furthermore, β and Q0 are material parameters which describe
isotropic hardening. Also, the Kuhn-Tucker conditions for loading and unloading as
well as the consistency condition are listed.

The fit of the constitutive model to experimental uniaxial stress-strain curves,
obtained from [2] for GE218CS and OFHC, is shown in Figs. 2 and 3, respectively.
Also, the material parameters identified through fitting the constitutive model to the
experimental results is given in Table2.
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Fig. 2 Fit to experimentally obtained uniaxial stress-strain curve of copper, from [Sanfeliz]

Fig. 3 Fit to experimentally obtained stress-strain curve of tungsten wire, from [Sanfeliz]

Table 1 Fiber and matrix material model

Elastic law σ = C [εe] Hardening law R = Q0(1 − e−βκ)

Strain ε = εe + εp Flowrule ε̇p = λ̇
∂Φ

∂σ
,

κ̇ = λ̇
∂Φ

∂R
Yield function Φ = √

σD · σD −√
2

3
(σY − R)

K.T conditions λ̇ ≥ 0,
Φ ≤ 0, λ̇Φ = 0
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Table 2 Tow and matrix material constants

Fit E [MPa] ν [−] σy [MPa] Q0 [MPa] β [−]

Tungsten 677887 0.28 1368.87 987.20 52.60

Copper 135248 0.34 272.76 148.10 2994

2.3 Determination of Unidirectional Composite Yield Surface

To obtain a profile of the composite yield surface, the unidirectional fiber reinforced
composite RUC is subjected to a series of biaxial tensile tests as well as combined
shear tension tests. The load ratios,σxx/σyy ,σxy/σxx ,σxx/σzz ,σxz/σxx ,σxy/σyy , and
σxz/σzz , employed to identify the yield surface of the composite in 11/22- and 11/33-
principal stress space, are summarized in Table3. Due to geometrical and material
symmetry, there is no need to identify the yield surface in 22/33-principal stress
space since it will result in the same yield surface as identified in 11/33-principal
stress space. The obtained yield surface in 11/22- and 22/33-principal stress space
respectively, are displayed in Figs. 4 and 5.

Table 3 Load ratios for biaxial and combined shear-tension virtual experiments

σxx/σyy σxx/σzz 1/0 4/1 2/1 4/3 1/1

σxx/σyy σxx/σzz 0/1 1/4 1/2 3/4 1/1

σxy/σxx σxz/σzz 1/0 4/1 2/1 4/3 0/1

σxy/σyy σxz/σxx 1/0 4/1 2/1 4/3 0/1

Fig. 4 Yield surface in
11/22-principal stress space
normalized by uniaxial yield
stress in x-direction σy1
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Fig. 5 Yield surface in
22/33-principal stress space
normalized by uniaxial yield
stress in z-direction σy3

3 Macro-model

To capture the identified yield surface of the unidirectional composite RUC, a con-
stitutive model is developed.

3.1 Constitutive Model of Unidirectional Composite

The Helmholtz free energy per unit volume is given in the form

ψ = ψe (εe, M1, M2) +
6∑

i=1

ψiso
i (κ) (1)

The first part ψe of the energy terms describes the macroscopic anisotropic elastic
properties of the material. εe represents the elastic strain which is obtained from the
additive decomposition of the total strain tensor ε into an elastic part and a plastic
part εp

ε = εe + εp (2)

and Mi (i = 1, 2) are structural tensors, more details to follow. The terms ψiso
i rep-

resent the additional amount of stored energy due to isotropic hardening and they
are a function of the accumulated plastic strain κ.

Utilizing the Clausius-Duhem second law of thermodynamics, −ψ̇ + σ · ε̇ � 0,
a relation for the Cauchy stress tensor σ and the isotropic hardening stresses Ri are
obtained as:
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σ = ∂ψe

∂ε
, Ri = −∂ψiso

i

∂κ
= −Qi (1 − e−βiκ) (3)

The expression for the isotropic hardening stresses corresponds toVoce’s exponential
hardening as given in [17], where Qi and βi are material parameters used to describe
nonlinear isotropic hardening. Furthermore, to ensure thermodynamic consistency,
the following evolution equations for associative plastic flow and accumulated plastic
strain are specified.

ε̇p = λ̇
K

‖K‖ where K = ∂Φ

∂σ
, κ̇ = ∥∥ε̇p

∥∥ = λ̇ (4)

where Φ and λ̇ are the yield function and the plastic multiplier, respectively.
To capture the yield surface obtained from the virtual experiments carried out

on the unidirectional composite RUC, a yield surface corresponding to Hill [18] is
employed and is given here as:

Φ = 1

2
σD · A [

σD
] − 1 (5)

The superscript D denotes the deviator of a second-order tensor, which produce
BD = B − 1

3 (trB) 1. The fourth order anisotropy tensor A written in terms of struc-
tural tensors has the form:

A = 3 (a1I + a2M1 ⊗ M1 + a3M2 ⊗ M2 + a4 (M1 ⊗ M2 + M2 ⊗ M1) + a5D1 + a6D2) (6)

A second-order structural tensor as developed by [19–21] is defined as:

Mi = ni ⊗ ni , i = 1, 2, 3 (7)

where ni are unit vectors pointing in privileged directions of the material. Addi-
tionally, these unit vectors ni are orthogonal to each other, and hence the following
relations hold

3∑
i=1

Mi = n1 ⊗ n1 + n2 ⊗ n2 + n3 ⊗ n3 = 1, ni · n j = δi j , i, j = 1, 2, 3 (8)

δi j refers to the Kronecker symbol and 1 is the second order identity tensor. Further-
more, the fourth order tensors D1 and D2 are defined as:

D
α
i jkl = Mα

ikδ jl + Mα
jkδil , α = 1, 2 (9)

The tensor I represents the fourth order identity tensor.
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The coefficients ai (i = 1, ..., 6), which describe the initial state of anisotropy, are
obtained by setting them in relation to the classical Hill coefficients F,G, H, L , M,

and N , see [22] for details:

a1 = 2

3
(L + M − N )

a2 = 2

3
(F + 4G + H − 2M)

a3 = 2

3
(4F + G + H − 2L)

a4 = 2

3
(2F + 2G − H − L − M + N )

a5 = 2

3
(N − L)

a6 = 2

3
(N − M) (10)

To take into account anisotropic plastic evolution, the classical Hill coefficients are
redefined as:

F = 1

2

[
1(

σy2 − R2
)2 + 1(

σy3 − R3
)2 − 1(

σy1 − R1
)2

]

G = 1

2

[
1(

σy3 − R3
)2 + 1(

σy1 − R1
)2 − 1(

σy2 − R2
)2

]

H = 1

2

[
1(

σy1 − R1
)2 + 1(

σy2 − R2
)2 − 1(

σy3 − R3
)2

]

L = 1

2

[
1(

σy23 − R23
)2

]

M = 1

2

[
1(

σy13 − R13
)2

]

N = 1

2

[
1(

σy12 − R12
)2

]
(11)

where σy1,σy2,σy3,σy23,σy13 and σy12 are the initial yield stresses. It should be
noted that the isotropic hardening stresses R4, R5, and R6 correspond to R23, R13,
and R12, respectively.

The final form of the constitutive equations of the model is summarized below:

• Stress tensor

σ = ∂ψe

∂ε
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• Yield function

Φ = 1

2
σD · A [

σD
] − 1

• Evolution equations

ε̇p = λ̇
P : A [

σD
]

∥∥P : A [
σD

]∥∥ where P = I − 1

3
(1 ⊗ 1) κ̇ = λ̇

• Kuhn-Tucker conditions

λ̇ � 0, Φ � 0, λ̇Φ = 0

The energy termψe is specified as a linearized version of the strain energy function
proposed in [23] for modelling bidirectional composite materials and is given as:

ψe (εe, M1, M2) = 4K iso
1 (I1)

2 + 4K iso
2 (I2 + I1) + 4Kani1

1 (I4)
2 + 4Kani1

2 (I5 + I4)

+ 4Kani2
1 (I6)

2 + 4Kani2
2 (I7 + I6) + 4Kkop1 (I1) (I4) + 4Kkop2 (I1) (I6)

+ 4Kkop12 (I4) (I6) (12)

where I1 and I2 represent the first and second invariant of the elastic strain tensor.
Additionally, I4, I5, I6, and I7 denote the first invariant of εeM1, ε2eM1, εeM2, and
ε2eM2, respectively.

I1 := trεe I2 := 1

2

[
(trεe)

2 − tr
(
ε2e

)]
I4 := tr (εeM1) I5 := tr

(
ε2eM1

)
I6 := tr (εeM2) I7 := tr

(
ε2eM2

)
(13)

Furthermore, the coefficients K iso
1 , K iso

2 , K ani1
1 , K ani1

2 , K ani2
1 , K ani2

2 , K kop1, K kop2, and
K kop12 are related to theYoung’smoduli E1, E2, E3, the Poisson’s ratios ν12, ν13, ν23,
and the shear moduli G12,G13,G23. Also, the energy terms ψiso

i are specified as:

ψiso
i (κ) = Qi

(
κ + e−βiκ

βi

)
(14)

In total, the constitutive model has 27 material parameters which are E1, E2, E3,
ν12, ν13, ν23, G12, G13, G23, σy1, σy2, σy3, σy23, σy13, σy12, Qi (i = 1, . . . , 6), and
βi (i = 1, . . . , 6). The material parameters can be obtained by performing virtual
experiments on the unidirectional composite RUC.

The numerical integration of the evolution equations is performed bymeans of the
backward Euler integration scheme at the Gauss point level. The integrated plastic
flow rule and the yield function in a residuum format reads
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r = εp − εp
n − λ̄

P : A [
σD

]
∥∥P : A [

σD
]∥∥

r = Φ (15)

where λ̄ := λ̇�t . The system of equations consists of 7 nonlinear scalar equations
which are solved iteratively by means of the Newton method. The integration of
the evolution equation for isotropic hardening is also descritized by means of the
backward Euler integration scheme as:

κ = κn + λ̄ (16)

The accumulated plastic strainκ is computed at the end of each localNewton iteration
via the converged value of the plastic multiplier λ̄.

3.2 Parameter Identification and Validation

To identify the parameters of the constitutivemodel, thefibers are assumed to coincide
with the z-direction of the cartesian coordinate system. The unidirectional composite
RUC is subjected to uniaxial tension in the direction of the fibers (z-direction) and
in the transverse direction of the fibers (x- or y-direction). Furthermore, the RUC is
subjected to shearing in the plane of the fibers (xz- or yz-plane) and shearing in the
plane transverse to the direction of the fibers (xy-plane). From the obtained stress-
strain curves, the elasticity constants E1, E2, E3, ν12, ν13, ν23, G12, G13, and G23 are
identified. Also the uniaxial yield stresses σy1, σy2, σy3 as well as the shear yield
stresses σy23, σy13, σy12 are identified.

Next, the constants of the six exponential hardening functions are identified by
manually fitting the isotropic hardening stresses Ri to the flow curves obtained
from the six virtual experiments. From the fits, the constants Qi (i = 1, . . . , 6)
and βi (i = 1, . . . , 6) are identified. To confirm the fit, simulations are performed
using the identified material parameters and are compared to the stress-strain curves
obtained from virtual experiment. The plot of the fit is shown in Figs. 6 and 7 for
uniaxial tensile test in the principal material directions and shear directions, respec-
tively. Also summarized in Tables4 and 5 are the identified anisotropic elasticity
constants and plasticity constants respectively.

To validate the constitutive model, a geometry similar to the unidirectional com-
posite RUC with the same mesh is generated. The geometry is assigned the consti-
tutive model and it is subjected to periodic boundary conditions as well as the load
ratios given in Table3. The obtained yield surfaces resulting from the constitutive
model are compared to the yield surfaces obtained from the unidirectional composite
RUC. Displayed in Figs. 8 and 9 are plots comparing the yield surfaces obtained from
the constitutive model to those obtained from the unidirectional composite RUC in
11/22- and 22/33-principal stress space, respectively.
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Fig. 6 Fit of the constitutive
model to uniaxial
stress-strain curves

Fig. 7 Fit of the constitutive
model to shear yield stresses

Table 4 Anisotropic elasticity constants

Youngs
modulus
[MPa]

Shear
modulus
[MPa]

Poisson’s ratio
[−]

E1 304319.78 G12 220220.03 ν12 0.3525

E2 304319.78 G13 251178.75 ν13 0.2297

E3 407914.16 G23 251178.75 ν23 0.2297

From Figs. 8 and 9, it can be observed that although the yield surface profile
obtained from the constitutive model is in a good agreement with that obtained from
the unidirectional composite RUC in the region corresponding to combined shear
tensile test, some discrepancies are observed in the region corresponding to biaxial
tensile test. This can be attributed to the fact that the yield function does not allow
control of biaxial yielding. An extension of the yield function to take into account
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Table 5 Plasticity constants

σyi [MPa] Qi [MPa] βi [−]

1 619.99 220.60 420.50

2 619.99 220.60 420.50

3 822.55 189.60 469.60

32 320.71 80.00 1435.00

13 320.71 80.00 1435.00

12 307.73 84.04 1380.00

Fig. 8 Comparison between
yield surface of constitutive
model and RUC in
11/22-principal stress space
normalized by unidirectional
yield stress in x-direction σy1

Fig. 9 Comparison between
yieldsurface of constitutive
model and RUC in
22/33-principal stress space
normalized by unidirectional
yield stress in z-direction σy3
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Fig. 10 Comparison
between predicted lateral
strain versus axial strain for
uniaxial tension in x- and
z-direction to that generated
from the unidirectional
composite RUC

biaxial yielding could result in a better agreement between the constitutive model
and the unidirectional composite RUC.

Furthermore to study the ability of the constitutive model to accurately predict
lateral contraction during uniaxial tension in the principal material directions, the
comparison between predicted lateral contraction versus axial strain to that generated
from the unidirectional composite RUC is given in Fig. 10.

From the plot, it can be observed that the constitutive model is able to predict the
response of the unidirectional composite RUC for lateral contraction in x-direction
versus axial strain in z-direction and also to some extent for lateral contraction in
y-direction versus axial strain in x-direction. However, for lateral contraction in z-
direction versus axial strain in x-direction, the curve obtained from the constitutive
model differs from that obtained from the unidirectional compositeRUC in the plastic
flow regime. This discrepancy can be resolved by employing a non-associative flow
rule which allows the plastic Poisson’s ratios to be controlled.

4 Conclusion

The goal of this contribution, was to develop a general anisotropic elastoplastic mate-
rial model which is able to accurately describe the pressure independent elastoplastic
response of a unidirectional metallic composite RUC.

For this purpose, a finite element model of the RUC was setup. It was subjected
to various biaxial tensile test as well as combine shear tensile tests. From these
virtual experiments, the initial yield surface of the RUC was identified in principal
stress-space. To capture the yield surface, a Hill type yield function was employed.
Furthermore, to capture the anisotropic hardening behaviour of the yield surface,
multiple isotropic hardening functionswere employed.After parameter identification
through fitting the constitutivemodel to stress-strain curves generated from the RUC,
it was validated by comparing the predicted yield surface to that obtained from
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the RUC. Although the yield surface predicted by the constitutive model was in
good agreement with the yield surface of the RUC in the region corresponding to
combined shear tensile test, the same could not be said for the region corresponding
to biaxial tensile test. This was attributed to the fact that the yield function could
not be controlled in biaxial yielding. An extension of the yield function to take into
account biaxial yielding may rectify this problem. Also, the ability of the constitutive
model to capture lateral strain versus axial strain response obtained from the RUC
for uniaxial tension in x- and z-direction was investigated. Here, the response of the
constitutive model was in an excellent agreement with the RUC response for lateral
contraction in x-direction versus axial strain in z-direction and in a good agreement
for lateral contraction in y-direction versus axial strain in x-direction. However, for
lateral contraction in z-direction versus axial strain in x-direction, the response of
the constitutive model differed from the RUC response in the plastic regime. This
was attributed to lack of control of the plastic Poisson’s ratios. By employing a
non-associative flow rule, this problem can be rectified.
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Comparison of Mechanical Tests
for the Identification of Composite Defects
Using Full-Field Measurements and the
Modified Constitutive Relation Error

E. Barbarella, O. Allix, F. Daghia, E. Jansen and R. Rolfes

Abstract Composite parts manufactured in large batches always present defects.
These may not influence the behavior of the structure or might on the contrary be
seriously detrimental to the performance of the component. In the first case, their
presence is negligible, in the other case it is fundamental to be aware of their presence
to foresee countermeasures. In this framework, being able to localize and estimate
the intensities of flaws is extremely interesting. In this article, we present an approach
based on theModified Constitutive Relation Error to characterize defects, employing
as input the displacements field measured from simple static and dynamic tests. The
identification capabilities from tensile, bending, vibration and compression tests are
compared using pseudo-experimental results as input data; then the identification is
shown on a real case for buckling experiments to show the potential of the method.

1 Introduction

Inverse approaches [1] can be exploited in the framework of defect characterization.
Historically, a large number of works exist, which address the issue of material
identification exploiting experimental results. The material identification techniques

E. Barbarella (B) · O. Allix · F. Daghia
LMT Cachan (ENS Cachan, CNRS, Univ Paris-Saclay), 61 avenue du Président Wilson,
94230 Cachan, France
e-mail: elena.barbarella@gmail.com

O. Allix
e-mail: olivier.allix@ens-paris-saclay.fr

F. Daghia
e-mail: federica.daghia@ens-paris-saclay.fr

E. Jansen · R. Rolfes
ISD, Leibniz Universität Hanover, Appelstraße 9A, 30167 Hanover, Germany
e-mail: e.jansen@isd.uni-hannover.de

R. Rolfes
e-mail: r.rolfes@isd.uni-hannover.de

© Springer International Publishing AG 2018
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[2] can be successfully employed for determining the intensity of a distributed flaw
affecting the material properties.

However, when dealing with localized macro-defects it is also required to deter-
mine the position of the flaws: macro-defect characterization requires, in addition to
the intensity, to determine the position of each defect. For the purpose of character-
izing the flaw position, another family of inverse problems can be used: the model
updating techniques [3]. These are originally exploited to identify modeling errors,
by evaluating the discrepancy between measurements and the model behavior.

Those two methods, material identification and model updating, shall be used
in synergy to guarantee to determine both position and intensity of the defects. A
technique that couples the two, providing, in addition to the correction (intensity),
also its geometric support (position and dimensions), is the Modified Constitutive
Relation Error (MCRE).

Born as a model updating technique [4], the Constitutive Relation Error (CRE)
has been extended to the field of identification problems [5–7]. In its modified form
it shows increased robustness and it is less influenced by measurement errors [8–11].

The defects we will focus on in this work are macro-defects, that is localized
flaws that affect the macro or meso-scales, for instance macro-pores or fibre wavi-
ness. In particular the focus is set on material flaws: flaws which can be modeled
as local modifications in material properties. Geometric effect, as for instance an
initial crookedness, even if not characterized in this work, will be considered, being
unavoidable.

The first section of the article deals with the description of the technique used to
categorize the effects based on the Modified Constitutive Relation Error. A special
focus is set on the methodology and on the formulation of the MCRE. The general
technique is explained and specific details on the formulation are given for each type
of test: tensile and bending static tests, vibration tests and compressive (buckling)
tests.

Then the second section is devoted to present the identification results employ-
ing pseudo-experimental measurements, simulated using the finite element software
Cast3M.A comparison of the identification results and of their quality is proposed for
two cases: for a specimen affected by a small geometric defect and for one presenting
a bigger geometric imperfection (specifically an initial crookedness of amplitude 5%
and 50% of the thickness respectively).

The third section presents the identification results on a real specimen for the case
of compressive tests. This type of experiment is themost tricky and the one presenting
the greatest difficulties, due to the necessity to deal with instability and therefore
large out-of-plane displacements. In this section the entire process is explained.
Specimens manufactured with an induced fibre waviness are tested. The out of plane
displacement is obtained employing StereoDIC [12, 13]: this technique turns out to
be extremely powerful and accurate in reconstructing the full fieldmeasurement even
for a specimen buckling considerably out of plane. The complete post-processing of
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the experimental data is presented, in order to obtain the inputs for the identification.
To conclude, the identification results are presented and compared to the flaws visible
on the surface of the specimen.

Remarks on the method and the results conclude the paper.

2 MCRE Method and Formulation

The Modified Constitutive Relation Error measures the discrepancy between the
response of a real body (in our case a specimen affected by material defects) and
the model of the body (defect free). The specificity of this technique, which enables
us to localize the position of the flaws, is the use of an energetic functional—the
modified constitutive relation error functional. Due to its formulation, the areas of
the body in reality containing defects—which have not been included in the “defect
free” model—correspond to higher values of the MCRE functional.

The identification procedure is an iterative procedure. Each iteration consists in
two steps:

1. Localization step: through the computation of the error functional the geometric
support, the position of the defects is obtained

2. Regularization and parameter updating step: the material parameters, corre-
sponding to the areas detected at the preceding step, are updated, in this way the
intensity of the defect is determined.

The high regularization property is first given by the fact that the correction of
the parameter is limited to the zones that are localized as defective and second that
each of these zones, thus each detected flaw, is updated as a unique entity; these
two factors reduce the number of unknowns and therefore the ill-posedness of the
problem.

2.1 The MCRE Functional

The first principle of the Modified Constitutive Relation Error is to divide the prob-
lem equations and available experimental information into two sets: the reliable ones,
which are prescribed exactly, and the non reliable ones. In particular, the compat-
ibility and equilibrium equations are considered reliable. Among the non reliable
information one distinguish the one associated with the model itself:

• displacement and stress fields, parameters of the model, which will be iteratively
modified according to the minimization of a specific functional;

• the one associated with the experiments.

For the latter two cases have to be distinguished. In the first case the measurement
provides a valuable information even though possibly affected by some noise or
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Table 1 Fundamentals of the constitutive relation error formulation

Reliable Non reliable

Theoretical • Compatibility
• Equilibrium

Parameters of the Hooke’s
tensor (σσσ , uuu) stress and
displacement fields

Experimental Initial shape �0, prescribed
forces and displacements

Measured displacements ũ̃ũu

uncertainty. In that case those values are not taken as possible unknowns and are not
prone to possible modification. In the second case important measurements error can
affect the data and a specific treatment of the uncertain experimental information can
be included in the formulation as proposed in [9, 10]. In this paper the material is
supposed to be elastic and the associated model error is defined by a strain energy
measure term. The experimental measurement of displacement although not strongly
prescribed will not be modified at all. Table1 summarizes these choices.

Starting from this concept, an energy functional can be defined and the MCRE is
formulated as follows:

Find the displacement field uuu, the stress field σσσ and the parameters ppp that
minimize :

E2
m (uuu,σσσ , ppp) =

∫
�

(σσσ −KKK (ppp) : εεε(uuu)) : KKK (ppp)−1 : (σσσ −KKK (ppp) : εεε(uuu)) d�

+ r

1 − r
‖ ���uuu − ũ̃ũu ‖2KKK

(1)

where εεε is the strain tensor, ppp are the parameters of the Hooke’s tensor KKK , ũ̃ũu are
the experimental displacement measurements and r is a weighting factor. Here, the
two terms of the MCRE functional measure the constitutive relation error and the
discrepancy between the measurements and the model response, respectively.

To solve the problem, a constraint condition is imposed. For the four loadings
studied in this paper, the equilibrium equation is employed for linear static tests
(tensile and bending), the eigenvalue equation for vibrations and the linear buckling
equation for compressive tests (buckling).

In the following section, we specify the formulation of the modified constitutive
relation error for buckling for which specific simplifications have to be made and
will be discussed. For the other load cases the equilibrium equations are the usual
ones applied in the infinitesimal regime and will therefore not be detailed.
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2.2 The MCRE Formulation for Linearized Buckling

For the sake of simplification it has been decided in the first instance to analyze the
buckling experiments in the framework of the linearized theory of buckling. This
of course has also some drawbacks which will be discussed along the paper. The
detailed theory behind the buckling formulation and the formulation itself can be
found in [14, 15]. In particular, it should be noted that two types of experimental
information can be obtained from a compressive test: in addition to the deformed
shape at different instants during the test, the critical buckling load of the geometri-
cally perfect specimen can be extracted from the experimental measurements using
the Southwell plot. Of these two information, the deformed shape is considered non
reliable in the following: indeed, the deformed shape is the result of a full geomet-
rically non-linear problem, and it does not necessarily correspond to the buckling
mode shape as required by the linear buckling model used in the present formula-
tion. The experimental critical load, on the other hand, can be obtained with great
precision from the Southwell plot: for this reason, it is considered to be reliable and
it is enforced directly in the constraint condition.

The MCRE problem for linearized buckling can be written as follows:

Find the kinematically admissible field uuu(x) ∈ U K A(ũ̃ũu) and the statically
admissible field σσσ(x) ∈ S SA( f̃̃f̃f , P,�0�0�0) that minimize:

E2
m(uuu,σσσ , ppp) =

∫
�

(σσσ −KKK (ppp) : εεε(uuu)) : KKK (ppp)−1 : (σσσ −KKK (ppp) : εεε(uuu)) d�

+ r

1 − r
‖ ���uuu − ũ̃ũu ‖2KKK

(2)
under the constraint: ∀u∗u∗u∗ ∈ U K A(0)

∫
�0

Tr
〈
σσσεεε(u∗u∗u∗)

〉
d�0 = P̃cr

∫
�0

Tr

〈
���0

t∂uuu

∂M0M0M0

∂u∗u∗u∗

∂M0M0M0

〉
d�0 (3)

where the constraint condition Eq. (3) is the the linearized buckling equation, with
P̃cr the experimental critical load and���0 the pre-stress operator.

To be able to solve the inverse problem, the mixed formulation has to be trans-
formed into a pure displacement one, suited for the finite element framework. The
MCRE problem can therefore be written by dualization, after discretization over a
finite element subspace, as follows:
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Find the kinematically admissible nodal displacementsU andVVV that minimize:

E 2
m (U,V, ppp) = 1

2
{U − V}T [K (ppp)]{U − V} + 1

2

r

1 − r
{U − Ũ}T [Gũ (ppp)]{U − Ũ} (4)

under the constraint:

[K (ppp)]{V} = P̃cr [Kσ (ppp)]{U} (5)

2.2.1 The Localization Step

The purpose of this step is to determine the geometric support for the updating of
the parameters, namely the position of the flaws. The defective areas correspond to
high values of the MCRE functional of Eq. (4), it is thus necessary to compute the
error distribution, i.e. the local values of E 2

m(U,V, ppp) over the finite elements.
In order to compute the error values, taken an initial set of parameter ppp supposed

known, it is necessary to compute the nodal displacement U and V.
The admissible displacements fields of the finite element problem U and V are

solutions of the constrained minimization problem (Eqs. (4), (5)). This can be solved
by introducing a Lagrange multiplier 			, as an additional vector of unknowns. The
corresponding Lagrangian writes:

L(U,V,			) =1

2
{U − V}T [K ]{U − V} + 1

2

r

1 − r
{U − Ũ}T [Gũ]{U − Ũ}+

{			}T ([K ]{V} − P̃cr [Kσ ]{U})
(6)

where the dependence on the sought-after parameters ppp is implied. The three
unknowns can be obtained by imposing the stationarity of L:

δL ={δU − δV}T [K ]{U − V} + r

1 − r
{δU}T [Gũ]{U − Ũ}+

{			}T ([K ]{δV} − P̃cr [Kσ ]{δU }) + {δ			}T ([K ]{V} − P̃cr [Kσ ]{U}) = 0(∀ δU, δV ∈ U K A
)
(∀ δ			)

(7)

Since the value of the critical load can be obtained from the experiment and is
considered reliable, the system obtained to solve Eq. (7) with respect to the three
unknowns (U, V,			) is linear,
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⎧⎪⎨
⎪⎩

δU : [K ]{U − V} + r
1−r [Gũ]{U − Ũ} − P̃cr [Kσ ]{			} = 0

δV : −[K ]{U − V} + [K ]{			} = 0

δ			 : [K ]{V} − P̃cr [Kσ ]{U} = 0

(8)

The elimination of the Lagrange multipliers			, using the second equation, yields:

[[K ] + r
1−r [Gũ] − P̃cr [Kσ ] −[K ] + P̃cr [Kσ ]
−P̃cr [Kσ ] [K ]

] {
U
V

}
=

{
r

1−r [Gũ]Ũ
0

}
(9)

which leads to the computation of U and V and thus of the error distribution.
When different loading conditions are employed, what changes is the constraint

condition in Eq. (5), which is replaced

• for static tests by
[K (ppp)]{V} = {F̃} (10)

where F̃ is the vector of imposed loads (either tensile or bending).
• for vibrations by

[K (ppp)]{V} = ω2[M]{U} (11)

where the stiffness matrix K is considered non-reliable, and the mass matrix M is
considered reliable.

Therefore also the system (9) changes but the method of obtainingU andV does not.
To switch from the error distribution to the location of defects it was decided to

use a threshold eth . This is defined as the ratio between the local error value and the
maximum value of the local error. All the elements whose normalized error value
exceeds the threshold eth contribute to compose the defective area. If a low eth is
chosen, the algorithm tends to over-localize the defect amplitude, while if the value
is too high the identification tends to be long and more computational expensive.
Commonly eth = 0.5 or eth = 0.7 are a good compromise.

2.2.2 Regularization and Parameter Updating Step

The regularization andparameter updating step introduces a strong regularization into
the problem by reducing the number of unknowns and therefore the ill-posednesss
of the problem. As output of the preceding step, the high error elements are selected
to be corrected. The parameters tune the Young‘s moduli: p1 = E11/E0

11 define the
Young’s modulus in fiber direction normalized with respect to the nominal value and
p2 = E22/E0

22 the normalized one in the perpendicular direction. A possibilitywould
be to update the parameters element by element. This choice, although giving high
flexibility, increases the number of unknowns (two parameters for each element) and
drastically increase the ill-posedness of the inverse problem.
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It has instead been decided to gather together adjacent elements and consider
them a flaw. All the elements belonging to a flaw are corrected as a unique entity.
This choice has the advantage of simplicity but presents a main drawback: when the
defective area is over-localized in terms of dimensions it is not possible to determine
the proper intensity. This is why the choice of the threshold plays here an important
role in terms of quality of the identification.

The parameter updating step can now be detailed. A gradient steepest descent
methods is employed to correct the parameters ppp. The set of good parameters is the
one minimizing the cost function. With respect to the parameters at the step k, the
updated values are computed:

p(k+1) = p(k) + α(k)g(k) (12)

where α(k) is the step length, an objective manner to estimate its value is given by
the Armijo rule, g(k) = ∇ J (ppp(k)) is the search direction, with J (ppp) being the cost
function. The particularity is in the choice of the cost function J to minimize. This
is taken equal to the error functional E 2

m , choice which guarantees robustness of the
correction and which eases the computation thanks to the stationarity properties of
(U, VVV ,			) leading to:

∂ J = dE 2
m =

�
��∂E 2
m

∂U
dU +

�
��∂E 2
m

∂V
dV +

�
��∂E 2
m

∂			
d			 + ∂E 2

m

∂pi
dpi (13)

Even if an analytic estimation of the cost function would be possible when consid-
ering as defect a drop in theYoung’smodulus (linearly proportional to the parameters
of theHooke’s tensor), it is here decided for the sake of generality to compute numeri-
cally the gradient of the cost function (in general this is necessarywhen dealingwith a
more complex description of the defects or when the Young’s modulus is not directly
updated).

Once the new set of parameters computed, the accuracy of the correction is eval-
uated by subjecting the updated model to a successive identification step. For the
purpose of evaluating the defectiveness of the model, a global error indicator is
employed. It has been decided to use for the purpose the modified constitutive rela-
tion error functional normalized by its initial value:

GE I =
√
Em
E 0
m

(14)

3 Comparison of the Identification Results for Different
Loading Conditions

In this section we deal with the results of the identification for different loading
conditions. In order to test the potential of the different loading schemes, the MCRE
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Fig. 1 Simulated specimen
with two material defects (a
50% drop in Young’s
Modulus) and a geometric
defect of initial crookedness

approach is carried out using, as pseudo-experimental measurements, the responses
of a specimen with known defect as simulated using the finite element software
Cast3M. To enable the comparison of the defect characterization, both in terms of
position and intensity of the material defects, the specimen employed is the same for
every loading conditions.

3.1 The Simulated Specimen

The pseudo-experimental specimen has the shape of an elongated plate of dimensions
200 × 20 × 2 (in mm). It is affected by twomaterial defects, the black areas in Fig. 1,
that simulate a 10◦ fiber misalignment: E11 = 0.5E0

11 and E22 � E0
22.

To performnon-linear analysis and to increase the verisimilitude of the simulation,
a geometric defect is introduced. It consists in an initial crookedness in the form
of an half sine wave. Two cases are considered, with different amplitude of the
initial imperfection, respectively an almost negligible geometric defect of maximum
amplitude z0 of 5% of the thickness, and one of relatively big size, of z0/t of 50%.

3.2 Pseudo-experimental Tests: Simulated Responses
of the Specimen

In this paragraph, we present the response of the two configurations of the pseudo-
experimental specimen (same material defects and different amplitude of the geo-
metric defect) under the different loading cases and we treat the post-processing of
the experimental data in order to obtain the inputs required for the identification
procedure.

Vibration tests are, both theoretically and experimentally, an eigenvalue problem.
For this reason, the direct output of the experiments are couples frequency-mode,
which can be directly introduced in the identification procedure. In our case, no
synthetic noise—noise error adedd to the simulated measurements- was introduced
(even if noise may affect real measurements) and we make use of only one couple
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Fig. 2 Non-linear results of the pseudo-experiments for the static loadings

frequency-mode for the identification. Commonly, for identification purposes, up to
a dozen couples can be employed.

For all of the other tests considered here, on the other hand, the data that can
be retrieved from experiments is the global load-displacement response (see Fig. 2),
as well as the deformed shapes corresponding to different load levels, if a full-field
measurement technique is used. The pseudo-experimental data for tension, bending
and compressive tests are obtained here using geometrically non-linear simulations,
in order to best take into account the initial geometric defect. As it can be seen in
Fig. 2, the non-linearity of the response increases with the amplitude of the geometric
defect; particularly exemplary is the case of compressive tests, where, in presence
of a big geometric defect, the specimen’s performances drop considerably (cfr. the
blue line in Fig. 2c).

For tensile and bending tests, the constraint condition considered within the
MCRE formulation is the linear static equilibrium equation. For this reason, it is
enough to extract from the pseudo-experimental response the load vector F̃, as well
as the deformed shape Ũ for the same load level. Here, a load of 20 N and the
corresponding deformed shape are chosen.

For compressive tests, the MCRE formulation considers as a constraint condition
the linearized buckling, which is an eigenvalue problem. The required information
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is thus the critical load P̃cr of the structure with material defects and the correspond-
ing eigenmode. This data cannot be directly obtained from experiments, since for
imperfect structures the eigenvalue solution is never obtained and the behaviour in
compression is non-linear [16].

When dealing with beam like structures, a tool of the linearized buckling theory
can be employed: the Southwell Plot [17]. This enables to obtain the first critical load
of the geometrically perfect structure by post-treating appropriately the experimental
data (load and out of plane displacement). In addition it also provides the amplitude
of the initial imperfection. If the load P—deflectionw data are plotted on a (w-w/P)
plane, they tend to follow a linear trend. The data diverge from the linear trend at
the extremities of the curve: for small values of P/Pcr and for big values of the
out-of plane displacement w, which is outside the range of validity of the linearized
theory. The best fit curve of the data carries the information of Pcr and of z0; the
slope is proportional to the eigenvalue, i.e. the first critical load, and the intercept is
proportional to the amplitude of the initial imperfection. It is possible to find all the
theory and the assumption behind the Southwell plot in [16].

The Pcr and z0 evaluated thisway showanhigh accuracy, in [14] the value obtained
from the Southwell plot are compared to the output of an eigenvalue calculation,
showing for the Pcr an error below 1%. Therefore the Pcr evaluated thanks to the
post-processing of the experimental data is used here as a reliable input of theMCRE
identification procedure based on linearized buckling.

An issuewhich remains open concerns the reconstruction of themodal shape from
experiments: a way of obtaining it from non-linear experimental data has not yet been
found. For this reason, the non-linear deformed shape taken from the experiment
is here used as mode, i.e. the second input of the identification procedure. Every
deflected shape inside the range of validity of the linearized theory can be used as
modal shape. For coherence with the choice made for the other types of test, the one
relative to 20 N load is employed.

Now that the post-processing of the experimental results has been explained and
that the inputs are available, it is possible to present the identification results.

3.3 Identification Results: The Case of a Small Geometric
Defect

This section treats the identification of a specimen affected by an unknown geometric
defect with a comparatively small size. The procedure proves its ability to identify
defects even in presence of an imperfection.

In presence of a small unknown geometric defect, the procedure works well for
all the loading cases analyzed.

The first identification step for all methods is summarized in Table2. The initial
values of the global error indicator and the first error density maps are shown and
the resulting localization and updating are reported. Considering the error density
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Table 2 Identification results for the specimen of Fig. 1 affected by a small geometric defect.
Comparison of the four loading conditions, initial step

Initial Error Map First
localization

Tension
1 0.4375

Bending
1 0.547

Buckling
0.592 0.375

Vibration
1 0.531

map, the local error appear to be negligible everywhere except for the defects areas,
the peak corresponding to the central flaw being particularly enhanced. For tension,
bending and vibrations, the choice of fixing the threshold eth at 0.7 brings to the
localization of elements of the central flaw. For compression, on the other hand, the
error map displays higher value in the second defective zone. Fixing the threshold
at 0.7 entails the localization of elements on both areas: the entire defect 2 and one
element of defect 1.

Table3 displays the final results of the identification. The fastest technique is the
one based on buckling, which also gives the best localization results. Instead, the
parameters defining the intensity of the defects are overestimated in the correction
procedure. This is supposed to be due to the strong geometrical non-linearity of the
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Table 3 Identification results for the specimen of Fig. 1 affected by a small geometric defect.
Comparison of the four loading conditions, final step

Final
localization

Updated pde f11
Error map after

correction

Tension
Step 3

0.521 0.501

0.326

Bending
Step 3

0.5 0.498

0.579

Buckling
Step 2

0.307 0.375

0.768

Vibration
Step 5

0.519 0.488

0.430

compressive test, and to their use as input of a technique formulated employing the
linearized buckling theory.

The other three methods need a higher number of iterations: one more for tension
and bending and three more for vibrations. For all these techniques the localization
is acceptable and the updating is more accurate, the best results being obtained for
bending.
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Table 4 Identification results for the specimen of Fig. 1 affected by a big geometric defect. Com-
parison of the four loading conditions, initial step

Initial Error Map First
localization

Tension
0.433 0.437

Bending
0.441 0.375

Buckling
0.787 0.4375

Vibration
0.708 0.379

3.4 Identification Results: The Case of a Big Geometric
Defect

Compared to the others, this example is particularly extreme, as a geometric defect
of this intensity strongly changes the behavior. This can be observed from the load-
displacement curves of Fig. 2. A presentation of the different identification results is
proposed in Table4.

A comparison of the initial step for the different tests is proposed in Table4.
After inspection of the first error density maps, one may notice that in all cases the
defective areas are not detected. Instead two wider zones, adjacent to the boundaries,
are the ones showing a higher local error. For all loading cases, the subsequent steps
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of the procedure identify and correct larger and larger portions of the specimen,
until almost all of the specimen is involved in the correction. This behavior of the
algorithm denoted an overall error in the initial model, which corresponds to not
accounting for the large initial geometric defect.

Referring to the complete identification procedure, buckling is the only technique
that warns the user of the wrong updating: through the iterations the global error
indicator (Eq. (14)) increases to signal that the correction carried on is incorrect.

To conclude, the identification procedure is not able to handle the presence of a big
geometric defect. A possibility would be either to reconstruct the initial geometry
thanks to the digital image correlation or to introduce in the procedure a step of
geometry correction. In this eventuality, buckling would bring an advantage as the
Southwell plot computed z0 can serve as aid for geometry reconstruction.

3.5 Conclusions on the Comparison

In this section the effectiveness of the identification procedure is inspected for dif-
ferent experimental tests. In this simple case of unidirectional composite plies with
the defect affecting the whole thickness, all the methods show, for the case of small
unknown geometric defect, the capability to accurately identify and correct the flaws.
The best results in terms of parameter estimation are obtained for bending and in
terms of localization are retrieved for buckling. The fact of employing as inputs
the results of strongly non-linear experiments is responsible of the poorer buckling
updating results. It is also important to state that, in presence of intense geometric
defect, none of these techniques is suited, without introducing a step of geometry
correction.

As perspectives, two points should be assessed. First, one may want to inquire
how the four techniques reacts when a more complex description of the defect is
proposed, namely in presence of a laminate with a general stacking sequence and a
flaw affecting only some plies through the thickness. Then, another aspect to take
into account is also the simplicity of the test. In that case tension and bending are
particularly appealing.

One of the advantages of buckling is given by the possibility to estimate z0, made
possible by the use of the Southwell plot. This value can be used to have an a priori
knowledge of the identifiability, i.e. to be able even before the procedure to have a
feedback on the quality of the identification. This is one of the reason for choosing
buckling as the type of experiment to tests in this work, even if the intensity is in
general overestimated.
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4 Real Tests: Identification Employing Buckling
Experimental Results

At last, we tackle the issue of identification of material defects on real specimens
using buckling tests. Two types of specimen have been manufactured and tested:
nominally perfect specimens, presenting no visible material defect, and defective
specimens, which present a visible defect in the form of a fiber waviness induced
during manufacturing.

The inputs required to perform the identification procedure are: the critical load
and the modal shape. As it has been discussed in the previous chapter this translate
into requiring:

• load and out-of plane displacement data to evaluate the Pcr using the Southwell
plot

• full field measurements of the deformed shape shape, used as modal shape

The first two, load and deflection, can be obtained as direct output of the test machine
and of a linear variable differential transducer (LVDT) that follows the out-of-plane
displacement of a measurement point. Reconstructing the deformed shape means to
be able to reconstruct the displacement through all the test of a considerable amount
of measurement points on the surface: the StereoDIC is a powerful tool for this
purpose.

Therefore in addition to the standard tension/compression testing machine, an
LVDT and an optical system composed of lights and two cameras have been added
to the rig.

The results of the tests are shown in Fig. 3 for four specimens (two nominally
perfect and two defective).

Fig. 3 Experimental results
of the compression tests
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Fig. 4 Post-processing via Southwell plot

One specimen of each type, in particular specimens 2 and 4 are selected. These
two will further undergo the procedure for defect identification. Before that, it is
necessary to present the post-processing of the experimental results.

Let us start with the critical load. Figure4 shows the value of the Pcr obtained
from the Southwell plot. In addition to the critical load, the Southwell plot provides
also the amplitude of the initial imperfection z0, which can give a hint on the quality
of the identification results. In both cases z0 < 5% of the thickness, guaranteeing the
identifiability.

Concerning the modal shape, Fig. 5 shows one of the deformed shape of the
defective specimen during the test reconstructed using the StereoDIC. In addition
to the deflected shape obtained from the full field displacements during the entire
test, this technique also provides a measure of the noise. The principle is simple:
by performing the StereoDIC between multiple couples of pictures taken for the
unloaded specimens, the deformation obtained (supposed to be zero) is instead the
noise. What is obtained for our specimens is a noise in the range [−4, 4] ×10−3 mm.
This value, in addition to showing the low noise, is employed in the choice of the
deflected shape to use as input of the identification procedure: it is decided to use
a deformed shape at the initial stages of buckling but whose amplitude overpasses
the noise value, to be sure that the influence of the noise is limited and that the
identification results are not misrepresented.
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Fig. 5 Deformed shape of the deflected specimen reconstructed using StereoDIC (in mm)

Fig. 6 Defective specimen

4.1 Identification Results for a Defective Specimen
(Specimen 4)

Let us treat first the specimen where a defect of fiber waviness has been induced.
The defective specimen 4 is shown in Fig. 6, where particular emphasis is given to
the position of the flaws on the surface. In particular, the most important is the fibre
waviness that occupies almost half of the surface. In the area where the undulation
shows the bigger extent, an angular misalignment of the fibers of 14◦ is measured.
This corresponds to a drop in Young’s Modulus E11 of roughly 50–60%. In addition
to this major flaw, other defects are visible: an higher porosity through the thickness
in the area where the fibre undulation is present, a poor surface quality zone and a
notch-like defect. To verify the latter, visual control is not sufficient and a technique
as tomography would be required.



Comparison of Mechanical Tests … 57

Fig. 7 Identification results for a defective specimen

The identification results are shown in Fig. 7, together with and superposed to the
surface of the specimen affected by the flaw. This juxtaposition of the results enables
to verify the quality of the localization: a good agreement between the position of
the wavy fibers area and the zone detected by the MCRE algorithm can be found. In
addition, the intensity is well estimated: a value of p1 of 0.4 is obtained, a 60% drop
in the Young’s modulus, which corresponds to a 10◦–20◦ fiber misalignment, fairly
close to the 14◦ measured on the surface.

To conclude, bot the localization and the intensity are in good accordance with
what can be visually verified. TheMCRE is able to satisfactorily identify flaws when
employing experimental results obtained from buckling tests.

4.2 Identification Results for a Nominally Perfect Specimen
(Specimen 2)

Let us nowdealwith the nominally perfect specimen. Themanufacturing of this batch
of specimen is a particularly controlled one and, as a result, no flaws are visible on
the surface. Nevertheless the identification procedure on this specimen is performed.

Figure8 shows the identification results both at steps 3 and 4 of the identification
procedure, again in comparison with the specimen surface.

At Step 3, the algorithm clearly detects that the actual, realistic boundary condi-
tions are not represented by the boundary conditions of the defect-free model (see
Fig. 8), this is plausible due to the decision of simulating perfect fixed ends boundary
conditions for the identification procedure. At Step 4, the specimen is completely
localized but with a very feeble correction of the parameter p1 = E11/E0

11.
These two successive identifications highlight a unique thing: no defects are

detected. This finding are in good accordance with the observation of the surface
which do not show any flaw.

Both for the nominally perfect and defective specimen, the identification results
correspond well with the knowledge of the defect we have. The results are therefore
absolutely satisfactory.
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Fig. 8 Identification results for the nominally perfect specimen: surface of the specimen, identifi-
cation at Step 3 and identification at Step 4

5 Conclusions

At first, the formulation of the MCRE in the field of identification has been proposed
for different loading conditions. The different tests: tension, bending, buckling and
vibrations, are simulated and the identification performed.All behave in a comparable
way: the position and the intensity arewell estimated.Only buckling presents an over-
estimation of the flaw intensity, due to the fact of employing measures obtained form
a strongly non-linear experiment in the framework of the linearized buckling theory.

It has therefore been intentionally decided to use buckling as loading condition
for real tests, this to show the big potential of the technique. Buckling is indeed one
of the trickiest test type, it requires post-processing of the results and due to the
strong non-linearity leads to an overestimation of the defect intensity. Nonetheless,
even with these evident difficulties, the identifications are in good accordance with
the presence/absence of the flaw.

To conclude, it stems from the analysis that the MCRE is a powerful tool to
localize and identify defects from simple non-destructive experimental results.
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Snap-Through of Bistable Configurations
Generated from Variable Stiffness
Composites

Ayan Haldar, José Reinoso, Eelco Jansen and Raimund Rolfes

Abstract Structures made of variable stiffness (VS) composites possess a rich
design space for bistable configurations that demonstrate different values of cur-
vatures and out-of-plane displacements. In this study, several VS composites are
investigated which can yield cylindrical bistable shapes similar to those generated
from unsymmetrical cross-plies. Such configurations have been found favorable as a
component for certain morphing applications. A semi-analytical model based on the
Rayleigh-Ritz approach is presented to calculate the thermally induced multistable
shapes as well as the snap-through forces particularly taking into account the curvi-
linear paths of VS composites. A nonlinear finite element analysis is performed to
check the accuracy of the semi-analytical method. Cylindrical shapes generated from
VS laminates and the corresponding straight fiber cross-ply laminates are analyzed
and compared. The snap-through forces are subsequently calculated and compared
for different VS laminates and the straight fiber cross-ply. It is observed that cer-
tain VS composites have a significant reduction of snap-through forces but with a
marginal difference in out-of-plane displacement as compared to the corresponding
straight fiber cross-ply laminate.

1 Introduction

In the field of aerospace and wind industry, multistable or bistable structures have
shown a great potential in morphing applications [1–5]. This is especially due to
the existence of multiple stable shapes and their ability to remain in these stable
states without any external forces. Several concepts have been investigated to include
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multistable components in morphing aerofoils. Diaconu et al. [6] explored three
concepts using bistable elements in a morphing aerofoil by changing the camber,
the chord length of the section and also by using it as an adaptive flap. Arrieta et al.
[7] studied several composites with different layups to obtain stiffness variability to
achieve a distributed compliance for passive load alleviation in a morphing airfoil.
Conventionally, such bistable shapes are constructed using unsymmetrical cross-
plies.

It is known that an ideal morphing system asks for a structure with highly
anisotropic internal architecture to fulfill the contradictory requirements of com-
pliance and stiffness [8]. With the advancement of fiber placement technology, it
is possible to manufacture fibers even with curvilinear paths or so-called variable
stiffness (VS) composites. This ability to locally tailor the fiber orientation provides
a much wider design space and allows composite structures with desired optimal
properties to be developed.

Previous studies regarding themechanical performance of VS composites demon-
strated their higher critical buckling loads in comparison to those complying with
conventional straight fibers. This capability directly stems from their ability to redis-
tribute the pre-buckling stresses [9]. The enhanced postbuckling behavior of VS
composites was also demonstrated by Wu et al. [10] and Coburn et al. [11] for plates
with different boundary conditions under uniform edge-compressive displacements
and in-plane shear loading [12], among others.

VS laminates similar to those of unsymmetric straight fiber laminates exhibit
multistable shapes when cured from high temperature to room temperature [13, 14].
Panesar et al. [15] used bistable tow steered blended laminates to study the behavior of
the stable states in the trailing edgeflap, and also found the optimumfiber direction for
maximum out-of-plane displacement and maximum angle of attack. The optimized
results showed varying values of fiber orientation at every discrete part of the flap.
Sousa et al. [13] modified the structural example presented byMattioni et al. [16] that
contained a rectangular plate consisting of partly symmetric and unsymmetric layup,
withVScomposites. Themultistable shapes of theVScompositewere analyzedusing
a commercial FE package and were compared with straight fibers. The curvilinear
fiber path used by Sousa et al. ensured much smoother fiber continuity between the
two adjacent regions, thus avoiding stress concentrations at the delimiting interface.
This aspect is quite advantageous when a multistable part is integrated into a larger
structure for morphing applications. Further, the FE calculations predicted that the
VS laminates required lower snap-through forces for changing from one stable shape
to another, which could be beneficial for morphing structures [13, 17]. Recently,
Haldar et al. [14] conducted a comprehensive parametric study to determine the
relation between different angle parameters and the resulting bistable shapes of a VS
composite plate. From this study, it was seen that certain VS laminates that satisfy
the condition φ = 45◦ and T0 + T1 = 90◦ generated cylindrical bistable shapes with
low twisting curvatures similar to the bistable shapes produced from unsymmetric
cross-plies (Fig. 1).

It has been seen from previous works [2, 3, 6] that the stable shapes generated
from cross-plies have attracted attention in applications to morphing in the aerospace
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Fig. 1 Cured shapes of unsymmetrical cross-ply laminate, [0◦/90◦]T

industry. This is particularly because of its excellent bistable characteristics. There-
fore, in this work equivalent VS laminates are investigated that yields similar cylin-
drical bistable shapes. The bistable shapes are predicted and compared using the
semi-analytical techniques and the FE approach. Further, the snap-through forces of
the investigated VS and the cross-ply laminates are also calculated using the semi-
analytical and the FE approach. The primary objective this work is to check the effect
on the out-of-plane displacements and the snap-through forces of the bistable shapes
by changing the fiber orientation of the VS laminates.

The manuscript is organized as follows. Section2 briefly describes the curvilinear
fiber path definition and defines various angle parameters. The extended CLT for
VS composites is outlined in Sect. 3. Key aspects concerning the FE computations
of VS composites like the cool-down and the snap-through process are given in
Sect. 4. Section5 presents the semi-analytical results and their correlation with the
corresponding FE simulations. The calculated snap-through from semi-analytical
and FE calculations are presented in Sect. 6. Finally, the concluding remarks of this
investigation are given in Sect. 7.

2 Variable Stiffness Model

In this study instead of straight fiber, a curvilinear fiber path definition for the com-
posite laminate is employed. Although there exist different ways to vary the fiber path
in a curvilinear pattern, the linear variation of the fiber orientation angle proposed
by Gürdal et al. [9] is considered in this work. Such linear variation is more practical
due to its adaptability to manufacturing constraints, and also gives the possibility to
build simpler analytical models.

The fiber orientation angle θ is defined as follows:

θ(x ′) = φ + (T1 − T0) |x ′|
d

+ T0 (1)
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Fig. 2 Parameters defining the curvilinear fiber path [9]

where
x ′ = x cosφ + y sin φ (2)

Here, the fiber orientation linearly varies from angle T0 at Point A to angle T1 at
Point B (Eq.2). The points A and B are separated by a distance d on the x ′ axis,
referred as the characteristic length (Fig. 2). The angle parameters T0 and T1 are
defined with respect to the x ′ and y′ axes, which are rotated by angle φ with respect
to the reference Cartesian coordinate axes (Fig. 2). The value d can be determined
from the coordinates of point A(X0,Y0) and B(X1,Y1) where the angles T0 and T1
are defined.

In Fig. 2, the fiber marked in red is the reference fiber path. All the other fiber
paths can be generated by shifting the reference fiber path in the y′ direction (known
as the shifted fiber method [18]. Although the fiber is changing its orientation along
x ′ direction, if viewed from the perspective of Cartesian coordinate axes, the fiber
orientation is a function of x and y: θ = θ(x, y). The standard notation to define
a particular VS laminate with the above-mentioned three parameters is as follows:
φ〈T0|T1〉. Throughout this work, T0 is defined as the angle at the center of the plate,
whereas T1 is defined as the angle at the characteristic length of the plate.

3 Semi-analytical Approach

3.1 Governing Equations

In the present study, the Dano and Hyer model [19] is extended, whereby the fiber
orientation is defined according to Eq. (1). An unsymmetric square plate of side
length L and thickness t is considered as reference structural definition, where neither
external mechanical forces nor hygroscopic effects are accounted for in the analysis.
It should also be noted that as the fiber orientation is a function of x and y, the
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ABD matrix also varies along the coordinates of a plate. This flexibility to change
the stiffness terms of the plate as a function of the coordinates of the composite
gives the designer a wide range of tailoring possibilities. The following equations
systematically derive the total potential energy with an assumed polynomial for the
out-of-plane displacement and strain field and follow the Rayleigh-Ritz approach to
determine the coefficients of the displacement functions.

A material point in the deformed configuration can be expressed as x = X +
u, where u(u, v, w) denotes the displacement vector in the x , y and z direction,
whereas x, X identify the position vectors in the undeformed and in the reference
configuration, respectively. The components of the displacement vector are defined
accordingly as:

u(x, y, z) = u0(x, y) − z
∂w0

∂x
, v(x, y, z) = v0(x, y) − z

∂w0

∂y
, w(x, y, z) = w0(x, y)

(3)
where the subscript 0 identifies the mid-plane displacements.
The strain components include non-linear von Kármán strains under the assump-

tion of small strains and moderate rotations are given by:

εxx = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

, εyy = ∂v

∂y
+ 1

2

(
∂w

∂y

)2

, γxy = ∂u

∂y
+ ∂v

∂x
+ ∂w

∂x

∂w

∂y
(4)

which shows the non-linear strain displacement relationships. By inserting Eq. (3)
into Eq. (4), the strain relations can be rearranged as:

ε =
⎡
⎣εxx

εyy
γxy

⎤
⎦ =

⎡
⎣εxx

εyy
εxy

⎤
⎦ + z

⎡
⎣κxx

κyy
κxy

⎤
⎦ =

⎡
⎢⎢⎢⎣

∂u0
∂x + 1

2

(
∂w0
∂x

)2
∂v0
∂y + 1

2

(
∂w0
∂y

)2
∂u0
∂y + ∂v0

∂x + ∂w0
∂x

∂w0
∂y

⎤
⎥⎥⎥⎦ + z

⎡
⎢⎢⎢⎣

−∂2w0
∂x2

−∂2w0
∂y2

−2 ∂2w0
∂x∂y

⎤
⎥⎥⎥⎦ = ε + zκ,

(5)
where ε and κ represent the mid-plane strain and curvature vectors, respectively.
The kinematic field proposed by Dano and Hyer [20] is considered in this study

which accounts for both the bending and the twisting curvature in its kinematic
description. Particularly, the mid-plane strains are approximated as the following set
of complete polynomials:

ε0x = c1 + c2x
2 + c3y

2 + c4xy

ε0y = c5 + c6x
2 + c7y

2 + c8xy

w0 = 1

2
(c9x

2 + c10y
2 + c11xy)

(6)

The following function leads to the development of constant curvatures through the
plate. The curvatures can therefore be written as:
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κxx = ∂2w0

∂x2
= −c9, κyy = ∂2w0

∂y2
= −c10, κxy = 2

∂2w0

∂x∂y
= −c11 (7)

It is important to note that the assumed strain and displacement fields satisfy the
compatibility equation of a curved surface, as given in [21]:

detκ = κxxκyy − κ2
xy = ∂2εy

∂x2
+ ∂2εx

∂y2
− 2

∂2εxy

∂x∂y
(8)

Using Eq. (6) in the expression for extensional strains ε0x , ε0y , the in-plane dis-
placements can be computed as:

u0(x, y) =
∫ [

ε0x − 1

2

(
∂w0

∂x

)2
]
dx + c12y + c13y

3

v0(x, y) =
∫ [

ε0y − 1

2

(
∂w0

∂y

)2
]
dy + c15x + c14x

3

(9)

Solving Eq. (9) the in-plane displacement field can be expressed as:

u0(x, y) = c1x + c12y + 1

2

(
c4 − c9c11

2

)
x2y +

(
c3 − c211

2

)
xy2+

1

3

(
c2 − c29

2

)
x3 + 1

3
c13y

3

v0(x, y) = c15x + c5y +
(
c6 − c211

8

)
x2y + 1

2

(
c8 − c10c11

2

)
xy2+

1

3

(
c7 − c210

2

)
y3 + 1

3
c14y

3

(10)

In order to remove rigid body motion from the assumed displacement field, the
first order terms of the variable x and y are needed to be equated, which results in
c15 = c12. The shear strain can simply be calculated from the expression:

γ0 = ∂u0

∂y
+ ∂v0

∂x
+ ∂w0

∂y

∂w0

∂x
(11)

Based on the above derivations, it can be seen that the coefficients from c1 to
c14 correspond to the set of unknowns, which are determined using Rayleigh–Ritz
method.

Integrating the stress-strain relation over the thickness, one obtains force and
moments resultant vectors as follows
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[
N
M

]
=

[
A(x, y) B(x, y)
B(x, y) D(x, y)

] [
ε
κ

]
−

[
Nth

Mth

]
, (12)

where N andM are the vectors containing the resultant forces and moments respec-
tively and A, B and D represent the in-plane, coupling and bending matrices respec-
tively. The main difference between the formulation used in a typical straight fiber
laminate and the one corresponding to VS composites are the terms present in theA,
B andDmatrices, which are constants for straight fiber while they vary as a function
of spatial coordinates in case of VS composites as shown in Eq. (12). The resul-
tant quantities with the superscript th in Eq. (12) denote the thermal contributions.
Therefore, one can express

[
Ai j (x, y), Bi j (x, y), Di j (x, y)

] =
∫ t/2

−t/2
�Qi j

[
1, z, z2

]
dz

=
Nply∑
k=1

�Q(k)
i j (x, y)

[
zk+1 − zk , z

2
k+1 − z2k , z

3
k+1 − z3k

]

(13)
where Nply identifies the total number of plies for each laminate configuration.

The value of �Q(k)
i j can also be written as a function of invariants of orthotropic

material Ui [9, 22].

Q̄11 = U1 +U2 cos [2θ (x, y)] +U3 cos [4θ (x, y)]

Q̄12 = U4 −U3 cos [4θ (x, y)]

Q̄22 = U1 −U2 cos [2θ (x, y)] +U3 cos [4θ (x, y)]

Q̄66 = U5 −U3 cos [4θ (x, y)]

Q̄16 = 1

2
U2 sin [2θ (x, y)] +U3 sin [4θ (x, y)]

Q̄26 = 1

2
U2 sin [2θ (x, y)] −U3 sin [4θ (x, y)]

(14)

The ABD matrix can be written in terms of the material invariants, whose details
can be found in Haldar et al. [14]. This splitting of stiffness coefficients �Qi j in
terms of invariants makes the computations much faster and avoids higher powers
of trigonometric terms in the formulation. This is especially suitable for this work
where the fiber orientation angle depends on the spatial coordinates of the plate.

The response of the laminated structure is determined through the Minimum
Potential Energy Theorem, where the potential energy of the structure in the absence
of external mechanical actions is given by:
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� =
∫ L/2

−L/2

∫ L/2

−L/2

(
1

2

[
ε
κ

]T [
A(x, y) B(x, y)
B(x, y) D(x, y)

] [
ε
κ

]
−

[
Nth(x, y)
Mth(x, y)

]T [
ε
κ

])
dx dy

(15)
For square plates, the Rayleigh-Ritz method can be applied using Eq. (15) as

starting point, minimizing the potential energy of the structure (δ� = 0). The dis-
placements depend on a certain number of unknowns denoted as ci (i = 1, nn being
the total number of unknowns) that need to be determined. For a particular �T , the
total potential energy can be expressed in terms of unknowns ci as shown in Eq. (16).

� ≈ �N (c), c = {ci } , i = 1, . . . , nn (16)

Using the Principle of Minimum Potential Energy, the final deformed shapes of
the multistable unsymmetric laminates are calculated, as it is cooled down from its
cure temperature.

3.2 Snap-Through Force

The cool-down from the curing temperature to working or room temperature leads
to the generation of one of the stable shapes. Snap-through from one stable shape to
another can be achieved using actuators, smart memory alloys or simply a mechan-
ical force. In this work, a concentrated force is applied at each corner of the plate
to facilitate snap-through. Therefore, the external force contribution due to these
concentrated forces to the virtual energy equation can be written as:

δV = Fx .δu + Fy .δv + Fz .δw (17)

As the force is applied at the z-direction, the components Fx = Fy = 0. The values
of the displacement fields can be directly computed using the kinematic relation
described in Sect. 3.1. Substituting Eq. (6) in Eq. (17), one obtains:

δV = L2

8
Fz (δc9 + δc10 + δc11) (18)

Accordingly, the modified virtual work principle with the external force contribution
V and internal strain energy � can be written as follows:

δWT = δ� − δV = 0 (19)

∂WT (c)
∂ci

= 0 (20)
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(
∂�N

∂c9
− L2

8
Fz

)
δc9 +

(
∂�N

∂c10
− L2

8
Fz

)
δc10 +

(
∂�N

∂c11
− L2

8
Fz

)
δc11

+ · · · ∂�N

∂ci
δci = 0

(21)

This results in a set of highly non-linear system of equations (Eq. 20) which are
solved using the Newton-Raphson technique. Finally, the stability of the solution is
evaluated by means of the construction of the Jacobian matrix J, that reads:

J = ∂2WT

∂ci∂c j
, i, j=1, …, nn (22)

An equilibrium configuration is stable, if and only if the corresponding Jacobian
matrix Eq. (22) is positive definite. All the symbolic computation described were
accomplished using the routines written in Mathematica.

The bistable shapes obtained after the cool down process can be determined by
setting the value of the applied force to zero. The snap-through force can subsequently
be found by gradually increasing the value of the applied force until a single solution
is found. It should be noted that Dano and Hyer [19] and Diaconu et al. [23] describes
this approach for straight fiber laminates.

4 Finite Element Analysis

In this section, the procedure tomodelmultistable variable stiffness composites using
FEM is described. As outlined in the previous section, it is clear that with the semi-
analytical method can be used to analyze simple geometries. Through the use of
finite elements, there is no restriction on the complexity of the laminate geometry.
Although being accurate, finite elements are computationally much more expensive
and therefore unsuitable for carrying out parametric or optimization studies.

In this study, a nonlinear FE analysis is performed in ABAQUS using 2304 four-
node quadrilateral shell elements (S4R) for all the results presented in the next
sections. The curing process is simulated by using a predefined uniform temperature
field over the entire domain under analysis. The composite plate is allowed to cool
down from curing temperature to room temperature, resulting in a curved bistable
configuration. The plate is considered to be fixed at the center node during the cool-
down process to preclude rigid body motions.

The curvilinear fiber path in the variable stiffness composite is approximated
by considering a piecewise function, where each element assumes a straight fiber
orientation. The corresponding fiber angle at each element is computed at its centroid
from Eq. (1). Figure3 illustrates the adopted approach, where the fiber orientation
within an individual element, remains constant but varies from one element to the
other in a linearly piecewise manner. It is quite obvious that with finer meshes the
current approximation of the curved fiber paths is improved. Mesh convergence
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Fig. 3 FE modeling of variable stiffness composites

studies were carried out, and this particular mesh size (2304 elements) was chosen
to achieve a good balance between the computational efforts and accuracy of the
analysis.

To model the fibers using shifted method [18] a reference fiber path passing
through the origin is defined. The other fiber paths are generated by directly trans-
lating the reference fiber path in the direction of the y′ axis. However, for φ = 0,
the set of elements that have the same fiber orientation is parallel to the rectangular
Cartesian y axis. However, forφ = 45◦, the new coordinate axes (x ′ and y′) are rotated
by 45◦ with the Cartesian coordinate axes. Therefore, all the diagonal elements in
the FE element model have the same fiber orientation (as shown in Fig. 3).

4.1 Cool-Down Process

The cool down process is simulated for the given composite plate using a commer-
cial FE package from the curing temperature to room temperature. No temperature
dependence on the material properties is considered. It is assumed that the temper-
ature is distributed uniformly on the plate surface. The following steps obtain the
cooling down process for VS composites:

1. The curvilinear fiber path is defined by φ, T0 and T1 values. The fiber orientation
at the centroid of each element is assigned using Eq. (1). The coordinates of the
centroid can be transformed in terms of Cartesian coordinate axes using Eq. (2).
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2. A linear eigenvalue buckling problem is solved under the uniform prescribed
thermal loading over the plate domain.

3. The resulting eigenmodes are subsequently applied as an initial geometrical
imperfection to the real composite laminates resulting in one of the stable states.
Using a different eigenmode as initial geometrical imperfection may lead to the
other stable shape.

4. The cool down process is simulated by using static finite element method consid-
ering geometrical nonlinear effects. The analysis is carried out using stabilization
with artificial damping or viscous forces in order to facilitate converged equilib-
rium solutions along the loading path.

During the cool down process, the plate is considered to be initially in a stress-
free state. Environmental effects like moisture absorption and shrinkage are not
considered in this analysis. However, to obtain the stable shapes, it is important to
check that the tangent stiffness matrix does not have negative eigenvalues. If negative
eigenvalues are found, the numerical scheme jumps over the bifurcation point, and an
unstable solution is found. The problem is assumed as quasi-static, and an automatic
stabilization with constant damping factor is applied [24] to achieve convergence in
the FE simulation. In particular, viscous forces are added in the form of:

Fv = cM∗v (23)

where c is the damping factor,M is the artificial mass matrix, v is the vector for nodal
velocities. The viscous force vector is added to the global equilibrium equations as
follows:

Fext − Fint − Fv = 0 (24)

where Fext and Fint are the external and the internal force vectors. To replicate
the results of [23] for straight fibers, a certain damping factor was used during the
analysis. The damping factor is high enough to reduce the local instabilities when
convergence is not achieved. However, it should not be chosen too high as this
results in inaccurate solutions. The artificial damping factor equal to 10−7 is found
to be appropriate upon some preliminary FE computations and lead to solutions with
positive eigenvalues, without deteriorating the accuracy of the solution.

4.2 Snap-Through Process

In order to characterize a multistable laminate, it is important to study its snap-
through behavior. To use it in the context of morphing applications, it is important
that snap-through forces are low enough so that it can be realistically achieved.
The transition from one stable solution to the other stable configuration can also be
achieved through mechanical actions, as is the case of the present investigation. In
particular, all the described steps are well illustrated in Fig. 4, where the transition
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Step-0 Step-1 Step-2 Step-3

Fig. 4 Performed steps in the FE analysis of the snap-through process

between stable shapes is depicted. This procedure consists of different steps, which
are outlined as follows:

1. After identifying the first stable configuration resulting from the cool-down
process (Step-1 in Fig. 4), the snap-through phenomenon is investigated by chang-
ing the boundary conditions of the FE simulation from the cool-down step. In
particular, the displacements along the ‘z’ direction are restrained at the corner
nodes. Additionally, the center node is restrained from translational motion in ‘x’
and ‘y’ direction and rotational motion in the ‘z’ direction.

2. The second step concerns on the application of the external load on the obtained
cured shape. This force should be greater than the required snap-through force so
that the analysis crosses the limit point (Step-2 in Fig. 4).

3. Subsequently, at the final stage, the applied load is removed from the center node,
so that the plate comes to equilibrium and returns to the second stable shape
(Step-3 in Fig. 4).

5 Results and Discussion

The multistable shapes of VS composite subjected to thermal loading with tempera-
ture difference �T = 180 ◦C, are calculated using the semi–analytical approach as
described in Sect. 3. The corresponding results are compared with the FE simula-
tions following the modeling guidelines outlined in Sect. 4. The laminates studied
are square and have a length L equal to 200mm, with eight layers each of 0.131mm-
thick plies of graphite-epoxy prepreg. The material properties at ply-level are given
as:

E1 = 164 GPa, E2 = 12 GPa, G12 = 4.6 GPa

ν12 = 0.3, α1 = −1.8 × 10−8/◦C, α2 = 3 × 10−5/◦C
(25)

The layup data and the values of angle parameters φ, T0 and T1 of the investigated
VS laminates are given in Table1. As reported in Haldar et al. [14], all the VS
composites satisfyingφ = 45◦ and T0 + T1 = 90◦ leads to cylindrical bistable shapes
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Table 1 Fiber orientation and layup data for the investigated straight cross-ply and various VS
composites

Type φ T0 T1 Layup

Straight 45 ±45 ±45 [04/904]T
VS-1 45 ±15 ±75 [45〈15|75〉4/45〈−15| − 75〉4]T
VS-2 45 ±30 ±60 [45〈30|60〉4/45〈−30| − 60〉4]T
VS-3 45 ±60 ±30 [45〈60|30〉4/45〈−60| − 30〉4]T
VS-4 45 ±75 ±15 [45〈75|15〉4/45〈−75| − 15〉4]T

(a) (b)

(c) (d)

Fig. 5 Investigated VS composites a VS-1 b VS-2 c VS-3 d VS-4. All of them yield cylindrical
bistable shapes similar to unsymmetric cross-ply laminate

with low twisting curvatures, similar to those obtained from cross-ply laminates.
The VS laminates considered in this study satisfy this particular condition. The
investigated VS composites are then compared with [04/904] straight fiber laminate,
which generates a similar shape as seen in [23].

The fiber paths of all the investigated VS laminates are illustrated in Fig. 5. For
VS-1 andVS-2, the value of angle parameter T0 < T1 and thus the fiber concentration
is more localized at the edges and decreases at the center. On the other hand, for VS-3
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Fig. 6 Comparison between
finite element and
semi-analytical results for
VS laminate with T0 = 60◦,
T1 = 30◦, φ = 60◦

and VS-4, the angle parameters satisfy T0 > T1 where the largest fiber concentration
is localized at the center of the plate and is thus, reduced towards the edges.

As was previously stated, all the investigated VS composite laminates generate
two stable shapes. The proposed semi-analytical method is assessed by comparing
the stable configurations at the room temperature with the FE results. Figure6 shows
the out-of-plane displacement of one of the stable shapes at room temperature for the
laminate VS-3 (φ = 45◦, T0 = 60◦ and T1 = 30◦). The FE results (dotted line) are
superimposed over the semi–analytical solutions (solid line) to depict the difference.
Analyzing this graph, it can be observed that the FE results do not a show a constant
curvature throughout the composite plate and manifest a reverse curvature near the
edges. Similar observations are made by Gidding et al. [25] for the straight fiber
composites and Haldar et al. [14] for VS laminates. All the investigated VS laminates
show good agreement between semi-analytical and FE results.

Details of the semi-analytical and FE comparison at the corner and middle edge
point can be found in Table2, which reports the corner displacement and the edge
displacements, measured in mm, (at x = Lx/2, y = 0 and x = 0, y = Ly/2) of all
the two stables shapes of [04/904] cross-ply and the VS laminates. In this table, w1

and w2 are the out-of-plane displacements of the two stable shapes. The unstable
shape is not investigated in this study, and therefore its corresponding displacements
are not calculated. The difference between the FE and semi-analytical results at the
corners in case of the straight fiber cross-ply is 13.9, and 21.8% for VS-1, 18.7%
for VS-2, 11.9% for VS-3 and 10.5% for VS-4. At the edge point x = Lx/2, y = 0,
laminates exhibit discrepancies of 1.4% for the straight cross-ply, and 8.8% for VS-1,
8.6% for VS-2, 1.3% for VS-3 and 2.8% for VS-4. Therefore, it can be observed that
the differences are lower at the edges of the plate than at the corner points. According
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Table 2 Out-of-plane displacement of cross-ply and VS plates–in (mm)

Laminate [04/904]T VS-1 VS-2 VS-3 VS-4

Displ. at (Lx/2, Ly/2)

Analytical

w1 −21.07 −16.15 −18.23 −21.65 −19.73

w2 21.07 16.15 18.23 21.65 19.73

FEM

w1 −18.5 −13.26 −15.36 −19.34 −17.86

w2 18.5 13.26 15.36 19.34 17.86

Displ. at (0, Ly/2); (Lx/2, 0)

Analytical

w1 −21.20 −16.75 −19.09 −20.54 −18.48

0.13 0.54 0.55 −0.76 −1.17

w2 −0.13 −0.54 −0.55 0.76 1.17

21.20 16.75 19.09 20.54 18.48

FEM

w1 −21.90 −15.39 −17.58 −20.82 −19.02

−0.08 −2.84 −1.88 1.18 1.53

w2 0.08 2.84 1.88 −1.18 −1.53

21.90 15.39 17.58 20.82 19.02

to the previous results, it can be concluded that the edge effects are more prominent
near the corners points than the center of the edges. This observation can also be
verified from Fig. 6.

The analysis is complemented throughperforming a comparisonbetweendifferent
stable configurations for several VS laminates. Figure7a compares the FE result
of the two stable shapes of the straight fiber cross-ply laminate Fig. 7. Figure7b
depicts the two stable shapes of VS-1 where the value of T0 < T1, whereas Fig. 7c
depicts the two stable shapes of VS-4 where the value of T0 > T1 computed using
the FE analysis. Based on these results, it is observed that the straight fiber cross-
ply exhibits a uniform distribution of out-of-plane displacement at the center of the
plate. However, VS-1 and VS-4 shows non-uniform curvature at the center region on
the plate. In order of further analyze the distribution of out-of-plane displacements
at the center region of the plate, a graph is constructed which depicts the value of
out-of-plane displacement of the first stable shape against the x-axis (Fig. 8). For the
straight fiber cross-ply, the value of out-of-plane displacement does not vary much
along the x-axis. On the other hand, for VS-1 the value of out-of-plane displacement
varies from zero at the center of the plate to negative values at the edge of the plate.
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Fig. 7 Two stable shapes with out-of-plane displacement plots–in (mm) of a straight fiber cross-ply
and bVS laminate with T0 < T1 (VS-1) c VS laminate with T0 > T1 (VS-4) calculated using FEM
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Fig. 8 Plot of out-of-plane displacement with x-axis. The graph shows the formation of local
curvatures in VS composites

This results in a dip at the center of the plate. Such local deformation makes the plate
conducive to snap-through to the second stable shape. An opposite effect is observed
for the laminate VS-4, where values of out-of-plane displacement changes from zero
at the center to positive values of out-of-plane displacement at the edges, making it
unfavorable for the snap-through process.

6 Calculation of Snap-Through Forces

The first stable shape is generated when the laminate is cooled from curing to room
temperature. In order to snap from this stable shape to another, a certain load is
applied at the center of the plate.As described in Sect. 4.2 a geometrically nonlinear
FE calculation was carried out in ABAQUS to simulate the snap-through process.
The snap-through is a dynamic process and requires a stabilization technique to damp
the local instabilities. Therefore, numerical stabilization is introduced in the form of
viscous forces when instabilities are detected at the stiffness matrix of the system.
This method is equivalent to the load-controlled test performed in experiments.

The out-of-plane displacement at the center of the plate is measured at each load
increment of all the VS laminates and the straight fiber cross-ply. The resultant load-
displacement curve is shown in Fig. 9. It can be seen that with the applied load,
the structure deforms elastically featuring linear load-displacement curves. Once the
critical point is detected, the structure snaps from one stable shape to another.
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Fig. 9 Stabilised load-displacement diagram depicting snap-through phenomenon

The snap-through force can be directly determined from the load-displacement
curve. It can be observed from the figure that among all the laminates investigated,
VS-4 requires the maximum snap-through force (76.5 N) followed by VS-3 (71.0
N), VS-1 (25.7 N) and VS-2 (20.2 N). The straight fiber cross-ply [04/904] requires
a snap-through force of 36.8N, the value of whose are verified from the calculation
carried out by Diaconu et al. [23]. It can be observed that laminate VS-2 has 45%
lower snap-through forces than the straight cross-ply laminate, with a just 14% lower
out-of-plane displacement. Figure10 depicts the variation of the reaction forces at
the corners of the plate and the out-of-plane displacement. Through this curve, the
unstable equilibrium path after the limit point can also be observed. The difference
between the curve depicted in Figs. 9 and 10 shows the effect of viscous damping
in the nonlinear FE analysis. The intermediate unstable shape described previously
by Hyer [26] in the performed semi-analytical can be seen in this unstable equilib-
rium path. Furthermore, as previously described by Potter and Weaver [27], such
snap-through behavior is not a single event, but it corresponds to a multiple event
phenomenon. Similar phenomena can also be observed in the case of VS composites.

The snap-through forces calculated from the semi-analytical approach is com-
pared with FE results in Table3. Analyzing these data, some deviation between
the FE and the semi-analytical predictions can be observed. These differences are
attributed to the development of complex intermediate unstable shapes during the
snap-through process. However, such complex, unstable geometries cannot be cap-
tured using the current semi-analytical procedure since this model restricts the plate
to deform only within the cylindrical modes, which is incorrect as observed in the
FE analysis.
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Fig. 10 Reaction force-displacement diagram showing the intermediate unstable path

Table 3 Comparison of snap-through loads for various VS laminates and straight fiber laminate

Laminate [04/904]T VS-1 VS-2 VS-3 VS-4

Analytical (N) 54.4 33.6 38.0 92.0 106.0

FEM (N) 36.8 25.7 20.2 71.0 76.4

Figure11 shows an exaggerated picture of the snap-through process for VS-1
(T0 < T1) and VS-4 (T1 < T0) involving complex intermediate shapes prior to snap-
through. This graph also illustrates the formation of a dip at the center-line of the
VS-1 laminate as described in Sect. 5 which favors the snap-through process, and
requires a lower external force for the corresponding transition between stable shapes.
On the other hand, VS-4 laminate shows a bulge at the center of the plate making
the snap-through process unfavorable. This leads to higher snap-through forces for
VS-4. A similar argument can be made for VS-2 and VS-3 laminates.

From this study, an important aspect of using VS composite as a multistable
structure can yet be noticed. Due to a large design space owing to huge tailoring
options, VS composites possess the capability to allow large out-of-plane displace-
ment with lower snap-through loads than the straight fiber laminates. Multistable
VS composites can thus be used in morphing applications enabling large deflections
with lower snap-through forces than what is achieved using conventional straight
fiber laminates.
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(a)

(b)

Fig. 11 Transition from one stable shape to another when subjected to concentrated force at the
center of the VS plates with a T0 < T1 b T0 > T1

7 Conclusion

In this work, VS composites that yield bistable cylindrical shapes with low twisting
curvatures were thoroughly investigated. A semi-analytical tool based on Rayleigh-
Ritz approach is used for calculating the thermally induced multistable behavior of
unsymmetric laminates with curvilinear fiber paths. The framework of the current
approach builds on the Dano-Hyer model, which assumes in-plane strains and out-
of-plane displacement fields with polynomial functions. The fiber angle of the VS
composite used in this work is considered to vary linearly from the center of the plate
to the edge.

The developed technique proves to be an efficient and a relatively simple tool,
providing accurate estimations of all the stable shapes for the unsymmetric composite
plates under investigation. Four different VS laminates were considered satisfying
the condition: φ = 45◦ and T0 + T1 = 90◦. All of them generated a bistable cylindrical
shape similar to that produced from a cross-ply laminate. VS-1 and VS-2 had angle
parameter T0 < T1 whereas laminates VS-3 and VS-4 satisfied T1 < T0. Unlike the
cross-ply laminate, the VS laminate exhibited local deformations at the center region
of the plate. The stable shape of VS-1 and VS-2 have a dip in a direction favorable
for the snap-through phenomenon, whereas VS-3 and VS-4 have a bulged out local
deformation at the center counteracting the snap-through process.

Local deformations occurring in VS composites at the center region of the plate
and deviation at the edges may not be accurately captured by the Rayleigh-Ritz
method as it assumes constant curvatures. However, finite element computations can
handle such complexities and can accurately predict the local deformations.The snap-
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through forces were also calculated using the semi-analytical method. However, due
to the development of complex intermediate unstable shapes during the snap-through
process, the current semi-analytical method yield some deviations in comparison to
the FE predictions of the snap-through forces. Such differences are attributed to the
fact that the proposed semi-analytical model restricts the plate to deform only within
the cylindrical modes, which is incorrect as observed in the FE analysis.

From the non-linear FE analysis, it was observed that the snap through force
varies with different VS composites. As expected the snap-through forces weremuch
higher for the laminates VS-3 and VS-4, where the fibers are more concentrated at
the center of the plate. The laminates VS-1 and VS-2, on the other hand, required
lower snap-through forces than the straight fiber cross-ply with a marginal reduction
of corner displacements. Such VS composites can advantageously be embedded as a
component in a larger structure to achieve morphing, with low snap-through forces.
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Invariant-Based Finite Strain Anisotropic
Material Model for Fiber-Reinforced
Composites

Aamir Dean, José Reinoso, Shahab Sahraee, Benedikt Daum
and Raimund Rolfes

Abstract Short fibre reinforced plastic (SFRP)materials are intensively used in sev-
eral engineering sectors due to their excellent mechanical properties and production
rates. In this investigation, an invariant-based transversely isotropic elasto-plastic
model for finite strain applications and its corresponding numerical treatment are
presented. The current model is based on the multiplicative decomposition of the
deformation gradient. The main characteristic of the formulation is the mathematical
realization of the incompressibility assumption with regard to the plastic behaviour
in anisotropic finite strain setting. The proposed model is complying with thermo-
dynamic restrictions and allows robust reliable numerical simulations. The accuracy
of the model is verified by comparison against experimental data, showing a very
satisfactory level of agreement.

1 Introduction

Short fiber-reinforced plastics (SFRPs) are materials which exhibit excellent spe-
cific strength and stiffness ratios. These materials are especially suitable for their
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Fig. 1 Micro-computed
tomography of SFRP
PA6GF-30 processed by
injection moulding
procedure
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incorporation into mass production, since they usually generate low manufacturing
costs. In the last years, suchmaterials have been extensively used in several industrial
sectors, in particular in the automotive industry with special interest, among many
others. In practical applications, one of the most relevant production techniques to
manufacture engineering products made from SFRPs, is injection molding (IM),
which leads to very complex internal arrangements of the reinforcing fibers, see
Fig. 1. Of particular concern are SFRPs made of a polymer matrix with reinforcing
short glass fibers, which are denominated as PAxGF-y, where x and y denote the
polyamide-type and the fiber content, respectively.

Due to this intricate nature, the determination of the characteristic mechanical
properties, which depend on the preferential fiber orientation, is of crucial impor-
tance. This characterization can be carried out using different experimental tech-
niques such as optical observations, radiography procedures, CT scans, among oth-
ers [3, 5, 30]. In this context, in the last three decades, several studies have been
conducted in order to characterize the response of SFRP composites under different
loading (static and fatigue) [4, 10, 11, 18, 21] and environmental scenarios [12].

From the mechanical point of view, as a consequence of the complex heteroge-
neous arrangement, the effectivemodeling of SFRP composites faces various notable
difficulties. Original investigations in this area are due to Advani and Tucker [1, 2],
whoenvisaged a tensorial formulation to approximate the probability function regard-
ing the fiber orientation within the domain. Alternative methodologies regard multi-
scale FE-based (FE2) procedures using experimental data from 3D tomographies
[15, 28, 34]. However, such FE2-methods are tremendously expensive in large-scale
simulations.

In order to avoid such computational demands, phenomenological anisotropic
elasto-plastic models can be considered as a modeling alternative providing mechan-
ical accuracy and numerical efficiency. In the related literature, a high number of
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investigations focused on the development of anisotropic elasto-plastic formulations
under different modeling assumptions, especially within the finite deformation set-
ting invoking the multiplicative decomposition of the deformation gradient between
elastic and plastic counterparts [13, 17, 19, 20, 22, 24, 25, 32].

Inspired by these previous investigations, the current investigation presents the
development of a novel phenomenological elasto-plastic invariant-based finite strain
anisotropic material model for SFRP composites. Differing from previous studies
[7, 8, 33], the current model incorporates the assumption of plastic incompressibility
within the large deformation setting, accounting for the anisotropic character of SFRP
composites through a structural tensorial representation. The proposed formulation
is derived following a thermodynamic framework, which guarantees its consistency.
On the computational side, specific aspects regarding the numerical integration of
the evolution equations corresponding to the internal variables and the consistent
elasto-plastic tangent moduli are outlined. Finally, the predictive capability of the
model is examined through several applications.

The manuscript is organized as follows. Section2 describes the basic arguments
with regard to the continuous formulation. The constitutive model according to
invariant-based formulation is given in Sect. 3. The numerical treatment of the pro-
posed model within the context of a fully implicit nonlinear Finite Element Method
(FEM) is addressed in Sect. 4. The applicability of the material model is confirmed
through the examination of the experimental-numerical correlation regarding several
applications (Sect. 5). Finally, the main conclusions of the current investigation are
drawn in Sect. 6.

2 Continuous Formulation

This section presents the fundamental aspects of the novel finite deformation model
for SFRP composites within the finite deformation setting. The current formulation
uses an invariant-based formulation to account for the directional character of SFRPs
composites using a tensorial representation in line with [7–9].

2.1 Basic Kinematics

Following the standard setting of finite inelasticity, consider a continuous three
dimensional body which occupies the reference placementB0 ⊂ R

3, whereX ∈ B0

denotes an arbitrary material point in this configuration. At time t ∈ R+, the corre-
sponding spatially deformed configuration is denoted by Bt ⊂ R

3. An individual
material point at time t is located at the position x ∈ Bt . Both configurations are
related via the nonlinear deformation mapping ϕ : B0 × [0, t] → R

3, where [0, t]
denotes the time interval elapsed. This operator maps the reference material points
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Fig. 2 Motion of a
continuum body: reference
and current configurations,
the nonlinear mapping
concept, deformation
gradient

(X ∈ B0) onto the current material points (x ∈ Bt ), i.e. x = ϕ(X, t), see Fig. 2.
Therefore, the displacement vector at material point level is given by: u := x − X.

As ameasure of the deformation process experienced by the body, we consider the
deformation gradient F that represents the linear mapping between tangent vectors
in the reference and current configurations:

F := ∂ϕ(X, t)

∂X
= 1 + H(X, t); H(X, t) = ∇Xu(X, t), (1)

where 1 is the second-order identity tensor and ∇X[•] identifies the gradient of the
quantity • with respect to the reference setting. The Jacobian of the transformation
J = det[F]has to satisfy J ≥ 0. The polar decomposition of the deformation gradient
is given by F = RU, where R and U respectively denote the rotation tensor and the
stretch tensor.

The definition of the symmetric right and left Cauchy-Green deformation tensors,
C and b, respectively, and the Green-Lagrange strain tensor, E, is given by:

C := FTF; b := FFT; E := 1

2
[C − 1] , (2)

A central point of the proposed constitutive model for SFRPs is the adoption of
the classical multiplicative decomposition of the deformation gradient into elastic
and plastic counterparts considering a stress-free intermediate configuration B̄ [27],
see Fig. 3:

F = FeFp. (3)

Based on Eq. (3), the elastic part Ee of the Green-Lagrange strain tensor in the
intermediate configuration is defined as:

Ee = 1

2

[
Ce − 1

]
, (4)
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Fig. 3 Intermediate
configuration definition:
multiplicative decomposition
of the deformation gradient
F = FeFp for large
deformation elasto-plasticity

where Ce := FeTFe is the elastic right Cauchy-Green strain tensor. Finally, the
assumption of plastic incompressibility requires the satisfaction of the following
constraint:

detFp = 1. (5)

2.2 Balance Laws

The local formof the balance of linearmomentum,which governs the initial boundary
value problem (IBVP) of the body’s deformation process, takes the following form
neglecting the inertia terms:

DIVP(X, t) + ϒ̄(X) = 0, (6)

where the operator DIV[•] stands for the divergence of the tensor field •with respect
to the reference frame, ϒ̄ denotes the body forces (per unit reference volume) of
the continuum. In Eq. (6), P is the first Piola-Kirchhoff stress tensor, which can be
associatedwith the symmetric second Piola-Kirchhoff stress tensor S as follows:P =
FS. The complete (IBVP) is defined with the suitable boundary conditions in terms
of displacements ū : �u × [0, t] → R

3 and nominal tractions T̄ : �t × [0, t] → R
3

which are prescribed on the corresponding subsets of the body boundary.
The balance of angular momentum implies the symmetry condition of the second

Piola-Kirchhoff stress tensor in the reference configuration S = ST. The balance of
energy (first law of thermodynamics) postulates the energy preservation during the
deformation process. The material version of the balance of energy reads:

ρ0ė = S : Ė + R − DIV [Q] , (7)
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where e denotes the specific internal energy, ρ0 is the reference density, Q is the
reference heat flux, and finally R refers to the internal heat source measured per unit
reference volume.

The thermodynamic consistency of the proposed formulation is assessed via the
evaluation of the Clausius-Planck inequality [31]:

Dint = S : Ė − ė + ϑη̇ ≥ 0, (8)

where Dint is the local dissipation per unit of volume, Ė stands for the material
time derivative of the Green-Lagrange strain tensor. The symbol ė identifies the time
derivative of the specific internal energy, whereas ϑ and η̇ denote the temperature
and the time derivative of the entropy of the system η. Under isothermal conditions
and recalling the Legendre transformation [16], Eq. (8) is reduced to:

Dint = S : Ė − �̇ ≥ 0, (9)

where � is the Helmholtz free energy function that characterizes the material
response.

3 Constitutive Model: Invariant-Based Formulation

3.1 Fundamental Aspects

The mechanical performance of SFRP composites exhibits relevant nonlinear effects
along the deformation process prior to failure with a pronounced anisotropic charac-
ter. This complex behavior arises from the molding flow production process which
is employed for manufacturing purposes leading to nonuniform fiber distribution
within the specimen. From the modeling standpoint, this directional dependency
can be accounted for by means of a purely phenomenological anisotropic plasticity
model at finite strains [7–9]. Assuming a tensorial representation of such anisotropic
effects, we define a second-order structural tensor A in the reference configuration:

A := a ⊗ a, (10)

where a is the direction with the highest aligned fiber content, coinciding with the
molding direction. Consequently, the material response is invariant (symmetry trans-
formations) with respect to: (i) arbitrary rotations around a, (ii) reflections at planes
parallel to a and, (iii) planes whose normal vector is aligned with a [6, 29].

Relying on the previous considerations, theHelmholtz free energy function� that
characterizes the mechanical response of SFRPs is assumed to allow the following
decomposition:

�(Ee, ς ,A) = �e(Ee,A) + � p(ς,A), (11)
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where �e(Ee,A) and � p(ς ,A) identify the elastic and plastic counterparts, respec-
tively, and ς stands for the vector of internal variables that trigger the evolution of the
inelastic response. The anisotropic mechanical behavior is modeled through the con-
sideration of the following irreducible integrity basis of invariantsP := [J1, ..., J4].
The invariants J1 and J2 are given by:

J1 := tr
[
Ee
]
, J2 := tr

[(
Ee
)2]

, (12)

whereas the mixed invariants J3 and J4 render:

J3 := tr
[
AEe

]
, J4 := tr

[
A
(
Ee
)2]

. (13)

Then, assuming a quadratic form, the elastic free energy function can be expressed
as [8]:

�e(Ee,A) = λ

2
J 2
1 + μT J2 + α J3 J1 + 2 (μL − μT ) J4 + β

2
J 2
3 = 1

2
Ee : Ce : Ee,

(14)

where λ, μL , μT , α, β identify the elastic constants [33].
The second Piola-Kirchhoff stress tensor S and its corresponding elasticity tensor

C
e adopt the form:

S(Ee,A) := ∂Ee� = λtr[Ee]1 + 2μTEe + α
(
tr[AEe] + tr[EeA]) 1+

2(μL − μT )
(
EeA + AEe

)+ βtr[AEe]A (15)

C
e := ∂2�e

∂Ee ⊗ ∂Ee = λ1⊗1 + 2μT I + α (1 ⊗ A + A⊗1) + 2 (μL − μT ) IA + βA⊗A, (16)

where I stands for the fourth-order symmetric identity tensor and IA takes the form:

IA ⇒ IA,i jkl = AimI jmkl + A jmImikl . (17)

Exploiting the multiplicative decomposition of the deformation gradient, Eq. (3),
the internal dissipation under isothermal conditions yields:

Dint = S :
(
1

2
FpT ĊeFp + FpT

(
CeLp

)
sym Fp

)
− �̇ ≥ 0, (18)

where the operator (•)sym stands for the symmetric part of the tensor field • . The
symbol Lp = ḞpFp−1 identifies the plastic velocity gradient, which can be split into
its symmetricDp (plastic deformation rate) and skew-symmetricWp (plasticmaterial
spin) parts:

Lp = Dp + Wp. (19)
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The insertion of the previous definitions into Eq. (18) yields:

Dint = 1

2
S̄ : Ċe + S̄ : (CeLp

)
sym − �̇e − �̇ p ≥ 0, (20)

where S̄ = FpSFpT identifies the second Piola-Kirchhoff stress tensor counterpart
in the intermediate configuration. The result is:

Dint =
(
1

2
S̄ − ∂�e

∂Ce

)
: Ċe + (CeS̄

) : Lp − �̇ p ≥ 0. (21)

Based on the previous procedure, the restriction with regard to the local internal
dissipation in order to fulfill the second law of thermodynamics reads:

Dint = �̄ : Lp − �̇ p ≥ 0, (22)

where �̄ = CeS̄ identifies the so-called Mandel stress tensor.

3.2 Transversely Isotropic Yield Function

This section outlines the construction of the transversely isotropic yield function
which characterizes the plastic locus of the current anisotropic finite strain elasto-
plastic model [7, 8]. The elastic domain E is defined in terms of the symmetric part
of Mandel stress tensor �̄s as follows:

E = {(ς, ε̄ p
) | f (�̄s,A, ε̄ p

) ≤ 0
}
, (23)

where ε̄ p identifies the equivalent plastic strain (hardening variable). The evolution
equation of ε̄ p reads:

.

ε̄ p =
√
2

3
Dp : Dp. (24)

The proposed pressure-dependent, transversely isotropic and asymmetric yield
surface f

(
�̄s,A, ε̄ p

) ≤ 0 follows a quadratic construction, which can be expressed
in terms of the invariant set as:

f
(
�̄s,A, ε̄ p

) = ζ1 I1 + ζ2 I2 + ζ3 I3 + ζ4 I
2
3 + ζ5 I4 + ζ6 I

2
4 − 1 ≤ 0, (25)

where Ii (i = 1, ..., 4) denote the integrity basis (invariants) taking the form:

I1 := tr

[(
�̄

pind
s

)2]− tr

[
A
(
�̄

pind
s

)2] ; I2 := tr

[
A
(
�̄

pind
s

)2] ; (26)
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I3 := tr
[
�̄s
]− tr

[
A�̄s

] ; I4 := 3

2
tr
[
A�̄

dev
s

]
. (27)

In Eqs. (26)–(27), �̄
dev
s denotes the deviatoric part of the symmetric Mandel stress

tensor and �̄
pind
s is the basic stress that induces plasticity [33]:

�̄
pind
s = �̄s − 1

2

(
tr
[
�̄s
]− tr

[
A�̄s

])
1 + 1

2

(
tr
[
�̄s
]− 3tr

[
A�̄s

])
A. (28)

In condensed format, the yield function renders:

f
(
�̄s,A, ε̄ p

) = 1

2
�̄s : K : �̄s + L : �̄s − 1 ≤ 0, (29)

with

K := ζ1P
pind + (ζ2 − ζ1)P

pind
A + 2ζ4 (1 − A) ⊗ (1 − A) + 9

2
ζ6Adev ⊗ Adev, (30)

L := ζ3 (1 − A) + 3

2
ζ5Adev, (31)

P
pind := I − 1

2
(1 ⊗ 1) + 1

2
(1 ⊗ A + A⊗1) − 3

2
A⊗A, (32)

P
pind
A ⇒ P

pind
A,i jkl = AimP

pind
mjkl + AmjP

pind
imkl , (33)

Adev being the deviatoric part of A.
Figure4 portraits a schematic 3D representation of the previous yield function

in the principle stress and invariant space where an appropriate convex form can be
observed.

Finally, the six parameters ζi (ε̄
p) , (i = 1, ..., 6) and their corresponding invari-

ants are correlated with different loading states. In particular, the following physical
interpretation of these parameters can be regarded [7, 8]: (1) ζ1 concerns transverse
shear loading states, (2) ζ2 is associated with in-plane shear loadings, (3) ζ3 and ζ4
account for loading states transverse to the fiber direction, and finally (4) ζ5 and ζ6
involve the material response subjected to longitudinal loading aligned with the fiber
direction.

3.3 Plastic Potential Function

Recalling the plastic incompressibility assumption, Eq. (5), the current model intro-
duces the definition of a non-associative flow rule. The use of a non-associative
flow rule results from the need for an accurate capturing of plastic deformations [8].
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Fig. 4 Transversely isotropic yield function: 3D representation in the principal stress space and
cross sections in the invariant space

Accordingly, the following anisotropic plastic potential function g = g
(
�̄s,A

)
is

formulated:
g
(
�̄s,A

) = ι1 Ī1 + ι2 Ī2 − 1 ≤ 0, (34)

where Ī1 and Ī2 are the integrity basis (invariants):

Ī1 := tr

[(
�̄

dev
s

)2] ; Ī2 := tr

[
A
(
�̄

dev
s

)2]
, (35)

where ι1 and ι2 denote the plastic potential parameters [7]. In condensed format, g
yields:

g
(
�̄s,A

) = 1

2
�̄s : M : �̄s − 1 ≤ 0, (36)

with

M := 2ι1I
dev + ι2I

dev
A ; I

dev := I − 1

3
1 ⊗ 1; I

dev
A ⇒ I

dev
A,klmn = Ai j

(
I
dev
jsmnI

dev
sikl + I

dev
jskl I

dev
simn

)
.

(37)

Figure5 depicts a cross section of the plastic potential in the invariant space and a
3D representation in the principal stress space.

3.4 Evolution Equations of the Internal Variables

Recalling the maximum energy dissipation principle [27] and using the non-
associative flow rule introduced in Sect. 3.3, the evolution equations of the inter-
nal variables, namely the plastic velocity gradient Lp and the hardening variable ε̄ p,
are defined in the following.
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Fig. 5 Plastic potential function: 3D representation in the principal stress space and cross sections
in the invariant space

Regarding the plastic velocity gradient, its corresponding evolution equation
reads:

Lp = Dp = γ̇
∂g
(
�̄s,A

)

∂�̄s
= γ̇ng with ng = M : �̄s. (38)

Referring to the equivalent plastic strain, the evolution equation takes the form:

.

ε̄ p =
√
2

3
Dp : Dp = γ̇

√
2

3

∥
∥ng

∥
∥ , (39)

γ̇ identifying the so-called plastic multiplier.
It is worth mentioning that the symmetric part of the Mandel stress tensor is

the unique operator that enters into the plastic potential function, and, therefore,
evolution of the plastic material spin Wp vanishes. Consequently, the constitutive
model is invariant with respect to any arbitrary rigid body rotation Q̄.

Finally, the standard Kuhn-Tucker loading/unloading conditions, which ensure
the coherence of the model, take the form:

γ̇ ≥ 0; f
(
�̄s,A, ε̄ p

) ≤ 0; γ̇ f
(
�̄s,A, ε̄ p

) = 0. (40)

Finally, the consistency condition is given by:

γ̇ ḟ
(
�̄s,A, ε̄ p

) = 0. (41)

3.5 Parameter Identification

The yield function Eq. (25) and the plastic potential Eq. (34) are matched to actual
materials via the coefficients of the invariants ζi and ιi , respectively. A detailed
description of the procedure to adjust these coefficients to experimental data is given
in [7, 33], and the main points are outlined below.
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The coefficients ζi control the size and shape of the elastic region as a function
of the equivalent plastic strain variable ε̄ p. For each coefficient, the relation ζi (ε̄

p)

should be determined from an independent experiment. Typically, this relation is
obtained from experiments realizing a simple, controlled stress state with only one
nonzero stress component Y j (ε̄

p) while yielding. In the present case, the following
tests can be employed for this purpose: (i) in-plane shear test, (ii) transverse shear
test, (iii) uniaxial longitudinal tension and (iv) compression tests, and (v) uniaxial
transverse tension and (vi) compression tests. The relation ζi (Yft,Yfc,Ytt,Ytc,Yis,Yts)
can then be derived from inserting the stress tensor corresponding to the test in
Eq. (25) and setting f = 0. The symbols Yft, Yfc, Ytt and Ytc represent the uniaxial
yield stresses in fiber direction, first index ‘f’, and transverse direction, first index
‘t’. The second index indicates tension (‘t’) or compression (‘c’). The symbols Yis
and Yts stand for the transverse and in-plane shear yield stresses, respectively.

To comply with the maximum dissipation principle, the yield surface must be
convex, which imposes a restriction to the allowable relations ζi (ε̄

p) which can be
used in Eq. (25). Convexity is ensured, if the quadratic term in Eq. (29) is positive
definite, and this requirement can be reduced to an inequality in terms of the yield
stresses, c.f. Eq. (42), which must hold for any ε̄ p.

YftYfc
(
4Y 2

ts − YttYtc
) ≥ YtcY

2
tsYtt (42)

The main motivation to adopt a non-associated plasticity scheme is the ability to
optimize the plastic deformation behaviour independently of the yield strengths. The
form of the plastic potential adopted in Eq. (34) has two adjustable coefficients ιi .
However, one of them is a scaling parameter associated with the size of the potential
surface. The size of the plastic potential has no inherent meaning and can be set at
will. This leaves only one remaining parameter to match with experimental data in
the present case, but, if needed, extra parameters could be introduced by choosing a
more complex form of g. Here, ι1 is arbitrarily set to unity and ι2 is used to enforce
a certain plastic Poisson’s ratio ν

p
23 = ε

p
22/ε

p
33 for uniaxial transverse tension.

ι1 = 1, ν
p
23 :=

∂g
∂σ22

∂g
∂σ33

‖σ33=Ytt = −3ι1 + ι2

6ι1 + ι2
⇒ ι2 = 3 + 6ν p

23

−1 + ν
p
23

Unlike the yield function coefficients, usually no evolution of ιi with respect to the
equivalent plastic strain is considered.

4 Numerical Treatment

This section presents the numerical treatment of the constitutive model given in
Sect. 3. The construction of a numerical scheme for the solution of the initial bound-
ary value problem (IBVP) associated involves two general steps [8]: (i) the local
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integration of the transversely isotropic elasto-plastic model via the corresponding
return mapping algorithm, (ii) the introduction of the resulting stress and constitutive
elasto-plastic operator into the weak form of the IBVP, which is discretized in space
by means of standard brick elements and solved through a standard incremental-
iterative Newton-Raphson scheme, see Appendix.

4.1 Numerical Time Integration: General Return Mapping
Algorithm

The classical backward Euler scheme is the most extensively used implicit algorithm
for the integration of the evolution equations into elasto-plastic constitutive models.
This numerical procedure is carried out at integration point level within a standard
nonlinear FE code.

The basic integration scheme comprises two fundamental stages: (1) an initial
elastic predictor phase, and (2) a subsequent corrector step using a general return
mapping [14, 27]. Let us consider a time interval [tn, t (i)n+1], with t ∈ R+, where tn
and t (i)n+1 identify the previously converged time step and the current prospective time
step at the global FE Newton-Raphson iteration i , respectively. In the sequel, the
superscript i is omitted in order to alleviate the notation. Additionally, we assume
that all variables of the problem at tn are known, denoting the incremental time
step as �t = t (i)n+1 − tn . According to this scheme, the temporal rates of the plastic
deformation gradient and the equivalent plastic strain renders:

.

Fp = Fp
n+1 − Fp

n

�t
;

.

ε̄ p = ε̄
p
n+1 − ε̄

p
n

�t
. (43)

For time integration of the evolution equations (Sect. 3.4), the discrete incremental
forms according to the backward Euler algorithm take the form:

Fp
n+1 = Fp

n + γn+1ng,n+1F
p
n+1, (44)

ε̄
p
n+1 = ε̄ p

n + γn+1

√
2

3

∥∥ng,n+1,
∥∥ (45)

fn+1 = f
(
�̄s,n+1,A, ε̄

p
n+1

) = 0, (46)

where γn+1 identifies the plastic multiplier.
To start the predictor-corrector procedure discussed above, within the predictor

phase, initial purely elastic trial increment (denoted by the superscript ‘tr’ in the
sequel) is assumed. Then, the trial elastic deformation gradient Fe,tr

n+1 reads:

Fe,tr
n+1 = Fn+1Fp−1

n . (47)
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Accordingly, the following operators can be computed:

Ce,tr
n+1 = Fe,trT

n+1 F
e,tr
n+1; Ee,tr

n+1 = 1

2

[
Ce,tr

n+1 − 1
]
, (48)

S̄trn+1 = C
e : Ee,tr

n+1; �̄
tr
n+1 = Ce,tr

n+1S̄
tr
n+1. (49)

Then, the trial elastic deformation gradient renders:

Fe
n+1 = Fe,tr

n+1

(
1 − γn+1ng,n+1

)
. (50)

The corresponding trial yield function reads:

f trn+1

(
�̄
tr
s,n+1,A, ε̄

p,tr
n+1

)
= 1

2
�̄
tr
s,n+1 : Ktr

n+1 : �̄
tr
s,n+1 + Ltr

n+1 : �̄
tr
s,n+1 − 1 ≤ 0, (51)

where the operatorsKtr andLtr depend on the parameters ζ tr
i = ζi

(
ε̄
p,tr
n+1

)
, (i = 1, ..., 6).

If the predictor elastic trial state lies within the elastic domain E, i.e. f trn+1 ≤ 0
(where we omit the explicit dependencies), this state is a solution of the constitutive
problem stated above. Conversely, a plastic corrector step is required for f trn+1 > 0,
which is constructed as follows:

Fe
n+1 = Fe,tr

n+1

(
1 − γn+1ng,n+1

)
, (52)

ε̄
p
n+1 = ε̄ p

n + γn+1

√
2

3

∥∥ng,n+1,
∥∥ (53)

fn+1 = f
(
�̄s,n+1,A, ε̄

p
n+1

) = 0, (54)

where Eq. (54) stands for the yield criterion. Eqs. (52)–(54) identifies a discrete sys-
tem of 11 nonlinear equations with 11 unknowns, which are solved simultaneously
using a standard local Newton-Raphson procedure at integration point level. Thus,

the corresponding residual equations Rn+1 =
{
RFe

n+1
,Rε̄

p
n+1

,R fn+1

}
are arranged as

follows:
RFe

n+1
= Fe

n+1 − Fe,tr
n+1

(
1 − γn+1ng,n+1

) = 0, (55)

Rε̄
p
n+1

= ε̄
p
n+1 −

(

ε̄ p
n + γn+1

√
2

3

∥∥ng,n+1

∥∥
)

= 0, (56)

R fn+1 = fn+1 = f
(
�̄s,n+1,A, ε̄

p
n+1

) = 0, (57)

which are solved for the variables χn+1 = {Fe
n+1, ε̄

p
n+1, γn+1

}
. The linearization of

the residual equations Rn+1 for the nonlinear solution procedure with respect to
corresponding unknowns χn+1 can be computed as follows:
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Rn+1
(
χ k+1
n+1

) := Rn+1
(
χ k
n+1

)+ J
(
χ k
n+1

) [
χ k+1
n+1 − χ k

n+1

] = 0, (58)

where the superscript k identifies the Newton-Raphson iteration index corresponding
to the plastic corrector step of the present procedure. The Jacobian J matrix takes
the form:

J =
⎡

⎢
⎣

∂RFe

∂Fe
∂RFe

∂ε̄

∂RFe

∂γ
∂Rε̄

∂Fe
∂Rε̄

∂ε̄

∂Rε̄

∂γ
∂R f

∂Fe
∂R f

∂ε̄

∂R f

∂γ

⎤

⎥
⎦ . (59)

The increment of the unknowns can be computed as:

�χ k+1
n+1 := χ k+1

n+1 − χ k
n+1 = −J−1

(
χ k
n+1

)
Rn+1

(
χ k
n+1

)
, (60)

where the initial values for the plastic corrector procedure correspond to the results
of the elastic predictor phase:

χ k=0
n+1 =

⎡

⎣
Fe,tr
n+1
ε̄n
0

⎤

⎦ . (61)

A representation of the current return mapping algorithm is shown in Fig. 6.
The closed form of the derivatives in Eq. (59) is outlined in the sequel. Thus, if

Fe = Fe,tr
(
1 − γng

)
, the increment of the elastic part of the deformation gradient

�Fe yields:

�Fe = Fe,tr

⎛

⎜
⎝−�γng − γ

∂ng

∂Fe
: �Fe − γ

�
�
��
0

∂ng

∂ε̄
�ε̄

⎞

⎟
⎠ . (62)

Consequently, the entries of the first row of J can be expressed as:

Fig. 6 Return mapping
algorithm: graphical
description in the invariant
space
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∂RFe

∂Fe
= V

∗, (63)

with

V
∗ ⇒ V

∗
i jkl =

(
δikδ jl + γFe,tr

im

∂ng,mj

Fe
kl

)
. (64)

Furthermore, it is noting that:

∂RFe

∂ε̄ p
= 0; ∂RFe

∂γ
= Fe,trng. (65)

Therefore, the increment of the equivalent plastic strain �ε̄ p reads:

�ε̄ p =
√
2

3
�γ

∥∥ng

∥∥+
√
2

3
γ

∂
∥∥ng

∥∥

∂Fe
: �Fe. (66)

Then, the corresponding entries of the second row of J renders:

∂Rε̄ p

∂Fe
= −

√
2

3
γ

∂
∥
∥ng

∥
∥

∂Fe
, (67)

where
∂
∥∥ng

∥∥

∂Fe
= ng∥
∥ng

∥
∥ : ∂ng

∂Fe
. (68)

Moreover, since ng = M : �̄s, this leads:

∂ng

∂Fe
= M : ∂�̄s

∂Fe
⇒
(

∂ng

∂Fe

)

i jkl

= Mi jab

(
∂�̄s

∂Fe

)

abkl

, (69)

where

∂�̄s

∂Fe
= 1

2

∂
(
�̄ + �̄

T
)

∂Fe
⇒
(

∂�̄s

∂Fe

)

i jkl

= 1

2
C

∗
imkl S̄mj + 1

2
C

∗
mjkl S̄im +

1

4
Ce

imC
e
mjabC

∗
abkl + 1

4
Ce

mjC
e
imabC

∗
abkl . (70)

In index notation yields:

C
∗ ⇒ C

∗
i jkl =

(
∂Ce

∂Fe

)

i jkl

= δilFe
k j + δ jlFe

ki . (71)

Operating in a similar way:
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∂Rε̄ p

∂ε̄ p
= 1; ∂Rε̄ p

∂γ
= −

√
2

3

∥∥ng

∥∥ . (72)

Finally, the increment of the yield function � f can be computed as:

� f = ∂ f

∂Fe
: �Fe + ∂ f

∂ε̄ p
�ε̄ +

�
�
��
0

∂ f

∂γ
�γ = 0. (73)

Thus, the corresponding derivatives read (which concern entries of the third row of
J) yield:

∂ f

∂Fe
= (K : �̄s + L

) : ∂�̄s

∂Fe
, (74)

∂ f

∂ε̄ p
= 1

2
�̄s : ∂K

∂ε̄ p
: �̄s + ∂L

∂ε̄ p
: �̄s. (75)

This novel material model is implemented into extended versions of the FE code
FEAP and ABAQUS through user-defined material models, which operate at inte-
gration point level.

4.2 Algorithmic-Consistent Tangent Moduli

For fully implicit FE computations, the calculation of the tangential stiffnessmatrix at
element level requires the derivation of the algorithmic tangent moduli which guar-
antees the quadratic convergence along the incremental-iterative solution process.
We commence the derivation through the exploitation of Eq. (52). Accordingly, this
results in:

Fe = Fe,tr (1 − γng
) = Fe,trFp

∗ ; with Fp−1
∗ Fp

n = Fp. (76)

Then, the incremental form of the plastic counterpart of the deformation gradient
�Fp

∗ renders:

�Fp
∗ = −�γng − γ

∂ng

∂ϑ
�ϑ − γ

∂ng

∂Fe
: �Fe. (77)

The increment of the elastic part of the deformation gradient can be expressed as:

�Fe = �FFp−1 − �γFe,trng − γFe,tr ∂ng

∂Fe
: �Fe, (78)

and the consistency condition renders:

� f = ∂ f

∂Fe
: �Fe + ∂ f

∂ε̄ p
�ε̄ p = 0. (79)



100 A. Dean et al.

with

�ε̄ p =
√
2

3
�γ

∥∥ng

∥∥+
√
2

3
γ

∂
∥∥ng

∥∥

∂Fe
: �Fe. (80)

The increment of the yield function takes the form:

� f =
(

∂ f

∂ε̄ p

√
2

3

∥∥ng

∥∥
)

�γ +
(

∂ f

∂ε̄ p

√
2

3
γ

∂
∥
∥ng

∥
∥

∂Fe
+ ∂ f

∂Fe

)

: �Fe = 0. (81)

Based on the previous expression, the increment of the plastic multiplier is computed
as:

�γ = −
∂ f
∂ε̄ p

√
2
3γ

∂‖ng‖
∂Fe + ∂ f

∂Fe

∂ f
∂ε̄ p

√
2
3

∥∥ng

∥∥
:

︸ ︷︷ ︸
∂γ

∂Fe

�Fe = ∂γ

∂Fe
: �Fe. (82)

Based on the previous derivations, �Fp
∗ yields:

�Fp
∗ = −

(
ng ⊗ ∂γ

∂Fe
+ γ

∂ng

∂Fe

)

︸ ︷︷ ︸
Hp

: �Fe = H
p : �Fe. (83)

To accomplish the following steps, recalling Ī ⇒ Īi jkl = δikδ jl , we define:

N = Ī + γFe,tr ∂ng

∂Fe
; N

∗ = N + (Fe,trng
)⊗ ∂γ

∂Fe
. (84)

Inserting Eq. (82) into Eq. (78) yields:

N : �Fe = �FFp−1 − Fe,trng

(
∂γ

∂Fe
: �Fe

)
. (85)

Then, it is possible to obtain:

�Fe = N
∗−1 : (�FFp−1

)
. (86)

An additional computation that should be performed is the increment of �S̄:

�S̄ =
(

∂S̄
∂Ee

: ∂Ee

∂Fe

)

: �Fe =
(
C

e : ∂Ee

∂Fe

)

︸ ︷︷ ︸
C

e
F

: �Fe, (87)

Then, �Fp−1 takes the form:
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�Fp−1 = �
(
Fp−1
n Fp

∗
) = Fp−1

n �Fp
∗ , (88)

and correspondingly:

�Fp−T = �
(
Fp

∗F
p−T
n

) = �Fp
∗F

p−T
n . (89)

The increment of the first Piola-Kirchhoff stress tensor (P := FS) can be computed
as:

�P = �(FS) , (90)

with P standing for the first Piola-Kirchhoff stress tensor. Expanding the previous
expression yields:

�(FS) = �FS + F�S = �F
(
Fp−1S̄Fp−T

)+ F�
(
Fp−1S̄Fp−T

)
, (91)

where

�(FS) = �F
(
Fp−1S̄Fp−T

)
+ F�Fp−1S̄Fp−T + FFp−1�S̄Fp−T + FFp−1S̄�Fp−T , (92)

and

�Fp−T = �
(
Fp

∗F
p−T
n

) = �Fp
∗F

p−T
n . (93)

Eq. (92) can be expanded as:

�(FS) = �F
(
Fp−1S̄Fp−T

)+
FFp−1

n

(
H

p : �Fe
)
S̄Fp−T +

FFp−1
(
C

e
F : �Fe

)
Fp−T +

FFp−1S̄
(
H

p : �Fe
)
Fp−T
n . (94)

Inserting the results from Eq. (86) into Eq. (93) yields:

�(FS) = �F
(
Fp−1S̄Fp−T

)+
FFp−1

n

(
H

p : (N∗−1 : (�FFp−1
)))

S̄Fp−T +
FFp−1

(
C

e
F : (N∗−1 : (�FFp−1

)))
Fp−T +

FFp−1S̄
(
H

p : (N∗−1 : (�FFp−1
)))

Fp−T
n , (95)

which in index notation reads:
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�(FS)i j =
(
δikF

p−1
ln S̄nsF

p−T
s j

)
�Fkl + (96)

(
FimFp−1

n,mxH
p
xnabN

∗−1
abkyF

p−1
ly S̄nsF

p−T
s j

)
�Fkl + (97)

(
FimFp−1

mn C
e
F,nsabN

∗−1
abkyF

p−1
ly Fp−T

s j

)
�Fkl + (98)

(
FimFp−1

mn S̄nsH
p
sxabN

∗−1
abkyF

p−1
ly Fp−T

n,x j

)
�Fkl . (99)

Finally, in condensed format, it can be expressed:

�(FS) = C
ep : �F ⇒ �(FS)i j = C

ep
i jkl�Fkl, (100)

which closed form in index notation renders:

C
ep ⇒ C

ep
i jkl = δikF

p−1
ln S̄nsF

p−T
s j +

FimFp−1
n,mxH

p
xnabN

∗−1
abkyF

p−1
ly S̄nsF

p−T
s j +

FimFp−1
mn C

e
F,nsabN

∗−1
abkyF

p−1
ly Fp−T

s j +
FimFp−1

mn S̄nsH
p
sxabN

∗−1
abkyF

p−1
ly Fp−T

n,x j , (101)

To finish the current derivations, the following computations are also required:

∂
∥∥ng

∥∥

∂Fe
= ∂

∥∥ng

∥∥

∂ng
: ∂ng

∂Fe
= ng∥∥ng

∥∥ : ∂ng

∂Fe
. (102)

Given that ng = M : �̄s, so:

�ng = M : ��̄s = M : ∂�̄s

∂Fe
: �Fe, (103)

and therefore:
∂ng

∂Fe
= M : ∂�̄s

∂Fe
. (104)

5 Applications

In this section, several numerical results are presented in order to examine the perfor-
mance of the constitutive model herein developed. The applications henceforth pre-
sented are: (i) a verification case concerning dog-bone specimen types under tensile
loading with different preferential fibre orientations (Sect. 5.1), and (ii) a validation
through a three-point bending test (Sect. 5.2).
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5.1 Model Verification and Validation

In the first application, dog-bone specimen-types with different preferential fiber
orientations are subjected to uniform tensile loading. These specimens are manu-
factured from the short fiber-reinforced thermoplastic PA6GF-30 and were experi-
mentally investigated at the Institute of Forming Technology and Machines (IFUM,
Hannover) [10]. The corresponding mechanical properties are given in Table1. Note
that averaged fiber distribution over the cross section of the specimen is considered
complying with the so-called Equivalent Single Layer (ESL) approach [23].

The geometry of the specimen is shown in Fig. 7a, identifying the zero-degree ref-
erence material orientation. The specimen is discretized using 4860 first-order solid

Table 1 PA6GF-30: mechanical properties

E11 (MPa) E22 (MPa) G12 (MPa) ν12 ν23

7893.550 3348.17 1800.94 0.23 0.62
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Fig. 7 Dog-bone specimens PA6GF-30 under uniaxial loading conditions. a Specimen definition
b Experimental–numerical correlation for different preferential fiber orientations (0◦ and 90◦)



104 A. Dean et al.

elements. To reproduce the experimental conditions, the following boundary condi-
tions are defined [7]: (i) fully restrained displacements at the clamped edge, and (ii)
constrained displacements at the loaded edge, except the longitudinal displacement
coinciding with the 0◦-direction.

The initial yielding parameters, ζi , are reported in Table2, whereas the plastic
potential parameters ιi are listed in Table3. The geometry of the specimen is shown
in Fig. 7a, identifying the zero-degree reference material orientation. Fig. 8 depicts
the convex form of the yield surface.

Figures7b shows the experimental–numerical correlation between the current
simulations and the data reported in [10], whereby a satisfactory agreement can be
observed.

Table 2 PA6GF-30: initial yielding parameters ζi

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

2.648 × 10−4 2.648 × 10−4 3.272 × 10−3 2.523 × 10−5 1.338 × 10−3 2.588 × 10−4

Table 3 PA66GF-35: plastic potential parameters ιi

ι1 ι2

1.0 -17.684
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Fig. 8 PA6GF30: Characterization of the yield surface and plastic potential
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Table 4 PA6GF-30: Mechanical properties

E11 (MPa) E22 (MPa) G12 (MPa) ν12 ν23

5211.43 2262.86 1601.7 0.39 0.6

Table 5 PA6GF-30: initial yielding parameters ζi

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

4.521 × 10−4 4.521 × 10−4 6.624 × 10−3 9.429 × 10−5 3.899 × 10−3 2.196 × 10−4

Table 6 PA6GF-30: plastic potential parameters ιi

ι1 ι2

1.0 -17.684

5.2 Structural Application: Three-Point Bending Test

The second application studied concerns the 3-point bending test previously reported
in [26]. In particular, we restrict our analysis to the case of a loading velocity of
1.0 m/s to prevent incongruities with the quasi-static character of the current for-
mulation. The material properties corresponding to the present case are listed in
Table4, whereas the plastic data are reported in Tables5 and 6, respectively, com-
plying with the ISO standard value corresponding to this material. Similarly to the
previous application, we exploit the ESL approach to compute the corresponding
mechanical properties over the plate thickness. This example is of special interest to
characterize themechanical performance and to trigger the fiber orientation along the
loading procedure. Therefore, this application is herein used to assess the proposed
formulation.

Figure9a shows the geometric description of the current application, identifying
the preferential fibre orientation with the longitudinal direction of the specimen and
with the following geometric dimensions: (i) length L = 50 mm, (ii) width B = 5
mm, and (iii) thickness t = 2 mm. The plate is discretized using 7200 first-order
solid elements. The pin for the loading application is meshed using 2100 elements
with the same interpolation order and setting very high mechanical properties to
prevent its deformation. The computations are performed prescribing the downward
vertical displacement at the central pin equal to 9mm using 1000 equal pseudo-
time increments. It should be noted that ABAQUS simulations are performed using
automatic time stepping. Figure9b shows the longitudinal stress distribution over
the plate thickness, featuring a nonuniform distribution over the thickness due to the
imposed loading.

Simulations are conducted imposing a prescribed vertical displacement down-
wards at the central pin equal to 9mm, see Fig. 9a ,b. In each increment, the global
solution scheme is employed. Figure9b shows the stress distribution due to the pre-
scribed loading, where, as expected, a nonuniform strain distribution over the plate
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Fig. 9 Three-point bending test of PA6GF-30. a Specimen definition b Stress distribution c Map-
ping of the preferential material direction after the computation d Experimental–numerical corre-
lation

thickness is estimated. Figure 9c displays the preferential material orientation along
the thickness direction, whereby the mapping of the fibre alignments along the defor-
mation process is mapped.

Finally, Fig. 9d shows the experimental-numerical correlation corresponding to
the load–central displacement evolution curve of the application. In this graph, the
experimental data are represented through discrete square symbols, whereas the sim-
ulation results are plotted using a solid line. Examining this evolution, it is interesting
to see that a very good correlation is obtained along the whole loading procedure. In
this respect, note that the mechanical performance of the systems is characterized by
an initial linear evolution followed by a subsequent stage where notable nonlinear
effects become appreciable.

6 Concluding Remarks

In this investigation, a new elasto-plastic invariant-based finite strain anisotropic
material model for SFRP composites has been presented. The proposed formulation
is suitable for arbitrarily large elastic and plastic deformations, assuming plastic
incompressibility.

On the theoretical side, the model incorporates a non-associate flow rule to char-
acterize the plastic evolution, which relies on the multiplicative decomposition of
the deformation gradient. The constitutive equations are derived in a thermodynami-
cally consistent format. On the computational side, the current investigation provides
a comprehensive presentation of the numerical treatment within the context of non-
linear FEM. In particular, a closed form of the algorithmic tangent moduli is derived.
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The reliability of the current formulation has been examined by verification and
validation examples, showing a very satisfactory level of accuracy with respect to
the experimental data.

Finally, further research activities will comprise the application of the proposed
formulation to hybrid metal-composite clinching manufacturing processes.
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Appendix

This appendix addresses the weak formulation of the IBVP presented in Eq. (6)
(Sect. 2), which represents the most convenient setting to formulate the correspond-
ing numerical approximation based on FEM (Finite Element Method) through the
exploitation of the standard Galerkin procedure.

Assume that the reference body boundary ∂B0 is subdivided into the disjointed
parts ∂B0,u ⊂ ∂B0 and ∂B0,t ⊂ ∂B0, with ∂B0 = ∂B0,u ∪ ∂B0,t and ∂B0,u ∩
∂B0,t = ∅. As customary, appropriate boundary conditions must be defined in order
to guarantee the well-posedness of the IBVP. The weak form of the balance of linear
momentum reads:

Gu (u, δu) = ∫B0

(
DIV [P] + ϒ̄

)
δudV = ∫B0

(
DIV [δuP] − P : ∇Xδu + ϒ̄δu

)
dV

= ∫B0
P : δFdV − ∫

∂B0
TδudA − ∫B0

ϒ̄δudV = Gu
int + Gu

ext = 0, (105)

where δu renders the virtual displacement and δF = ∇Xδu and T = PN denotes the
first Piola-Kirchhoff traction vector. Note that to achieve the present form of Eq.105,
the following rules are used:

DIV [P] δu = DIV [δuP] − P : ∇Xδu, (106)

and the Gauss-Green theorem:
∫

B0

DIV [δuP] dV =
∫

∂B0

(PN) δudA. (107)

The virtual internal work Gu
int and the virtual work of external actions G

u
ext are given

by:

Gu
int (u, δu) =

∫

B0

P : δFdV, (108)
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Gu
ext (u, δu) = −

∫

∂B0

TδudA −
∫

B0

ϒ̄δudV. (109)

The resulting set of nonlinear equations of the mechanical problem, Eq. 105, can
be solved numerically through the use of the incremental and iterative Newton-
Raphson solution scheme, which shows a quadratic convergence near the solution
point. The consistent linearization of the given time integration algorithm, also called
stress-update algorithm, leads to the derivation of the consistent tangent moduli,
which describes in an incremental manner the stress sensitivity with respect to the
deformation gradient increment. Following the directional derivative concept [16],
the consistent linearization of Eq.105 takes the following representation:

Lin
[
Gu (ū, δu,�u)

] = Gu (ū, δū) + DGu (ū, δu) �u. (110)

In Eq.105, the term P : δF has to be linearized yielding:

�(P : δF) = �P : δF, (111)

where �P is derived in Sect. 4.2, with:

�P = �(FS) = C
ep : �F, (112)

where Cep denotes the algorithmic elasto-plastic constitutive operator.
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Unified Approach to Sensitivity Analysis
Based Automation of Multi-scale Modelling

N. Zupan and J. Korelc

Abstract Use of different kinds of multi-scale methods is limited with specifica-
tions of the problem to be solved. Standard two-level finite element homogenization
approach FE2 is appropriate for problems with weakly coupled scales. If the differ-
ence between two scales is finite, or in the region of high gradients the FE2 multi-scale
approach fails, then some sort of domain decomposition method can be applied. Our
motivation was to create computational environment, where the multi-scale code
is automatically derived and various types of multi-scale approaches can be freely
mixed. The described approach uses an advanced feature of software tools AceGen
and AceFEM, that is automatic generation of the finite element codes for analytical
first and second order sensitivity analysis with respect to prescribed essential bound-
ary conditions as a unifying factor. The automatic-differentiation-based formulation
(ADB) enables unification and automation of various multi-scale approaches for
an arbitrary nonlinear, time dependent, coupled problem (e.g. general finite strain
plasticity).

1 Multi-scale Methods

Multi-scale methods are nowadays widespread in computational mechanics. They
are a good alternative, when for computing on one scale, very refinedmesh is needed.
Many of the multi-scale methods originate from the demand to model heterogeneous
materials, like fiber reinforced composites, particle reinforced adhesives, concrete
and even metal. A short overview of different multi-scale methods with their pros,
cons and possible applications can be found in [2], while fundamentals of the com-
putational micromechanics are described in [16]. Use of different kinds of meth-
ods is limited by the characteristics of the problem to be solved. Roughly, we can
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separate multi-scale methods in two groups: on methods that are based on homog-
enization techniques and on domain decomposition methods. A basic hypothesis of
homogenisation techniques is the complete separation of scales, where the size of
heterogeneities is assumed to be infinitely smaller than the structural dimensions.
Homogenized material behaviour of representative volume elements (RVEs), which
contain microstructure, is considered to be representative for the entire or part of the
structure. This approach is not correct in case of localisation, because homogenised
material behaviour is influenced by cracks or instabilities within the RVE. In recent
years some specialisedmulti-scalemethods for fracture applications have been devel-
oped [10].

Standard two-level finite element homogenization approach FE2 is appropriate
for the problems where scales are separated far enough and are only weakly coupled,
see [1, 13]. In this approach we have one FE model for the macro scale and the
second one at each material integration point. The material response is obtained
from the micro level FE analysis. If the difference between two scales is finite, or
in the region of high gradients the FE2 multi-scale approach fails, then some sort of
domain decomposition method can be applied. One such method is mesh-in-element
(MIEL) scheme described by Markovič and Ibrahimbegović in [11]. The aim of the
paper is to present a unified approach to the development and implementation of FE2

and MIEL multi-scale schemes based on boundary condition sensitivity analysis.

2 Automation of Multi-scale Methods

Our motivation was to create computational environment, where the multi-scale
program code is automatically derived and various types of multi-scale and single-
scale approaches can be freely mixed, while retaining quadratic convergence of
the Newton-Raphson procedure. The described method uses an advanced feature of
software tool [6], that is automatic generation of the finite element codes for analytical
first and second order sensitivity analysis based on a specialized implementation
of automatic differentiation technique. The automatic-differentiation-based (ADB)
formulation enables unification and automation of various multi-scale approaches
for an arbitrary nonlinear, time dependent coupled problem (e.g. general finite strain
plasticity).

2.1 Automation of Boundary Condition Sensitivity Analysis

Automation of primal and sensitivity analysis is achieved through the hybrid
symbolic-numeric approach to automation of finite element method that combines
symbolic and algebraic capabilities of a general computer algebra system, e.g. Math-
ematica [12], an automatic differentiation technique (AD) and an automatic code
generation with the general purpose finite element environment. The AD method is
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used for the evaluation of the exact derivatives of any arbitrary complex function via
chain rule and represents an alternative solution to the numerical differentiation and
symbolic differentiation. The result of the AD procedure is called “computational

derivative” and is written as δ̂ f (a)
δ̂a

. The AD operator δ̂ f (a)
δ̂a

represents partial differen-
tiation of a function f (a) with respect to variables a. If, for example, alternative or
additional dependencies for a set of intermediate variables b have to be considered
for differentiation, then the AD exception is indicated by the following formalism

δ̂ f (a,b)

δ̂a

∣
∣
∣
∣
∣ Db
Da=M

, (1)

which indicates that during theADprocedure, the total derivatives of variables bwith
respect to variables a are set to be equal to matrix M. The automatic differentiation
exceptions are the basis for the automatic differentiation or ADB formulation of
computational problem. The ADB notation can be directly translated to the AceFEM
code and is part of numerically efficient code automation. Details of the method and
of the corresponding software AceGen can be found in [4, 5, 7].

The automation of multi-scale analysis requires the automation of primal and
sensitivity analysis. In primal analysis the response of the system is evaluated, while
in sensitivity analysis the derivatives of the response, e.g. displacements, strains,
stresses or work, with respect to arbitrary design parameter φi are sought. Design
parameter can be any parameter that influences the response, e.g. material constants,
load intensity and distribution, shape parameters or boundary conditions. For the
automation of the multi-scale methods sensitivity analysis with respect to prescribed
essential boundary conditions is important.

The procedures for solving the primal and sensitivity analysis are for an arbitrary
coupled path dependent problem presented in detail in [5]. Here, a summary of
the primal and sensitivity analysis of hyperelastic problems is given. Let us define a
primal problemwith the residual equationR(p) = 0, wherep represents a set of nodal
unknowns of the problem. The primal problem is solved by the standard Newton-
Raphson iterative procedure (see e.g. [5]). For the boundary condition sensitivity
analysis we define the residuals and the vectors of unknown as a function of a vector
of design parameters φ by

R(p(φ), p̄(φ)) = 0 (2)

where p̄ represents a set of nodal unknowns with prescribed essential boundary
conditions. The sensitivity problem can be obtained from the primal problem by
differentiating (2) with respect to design parameters (3). Equation (3) represents a
system of linear equations (5) for the unknown sensitivities of the primal unknowns
of the problem Dp

Dφi
. The right hand side is called “first order sensitivity pseudo load

vector”. The vector Dp̄
Dφi

represents the rate of the change of the prescribed essential
boundary conditions with respect to the change of design parameter and is called
“prescribed boundary condition velocity field”.
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∂R
∂p

Dp
Dφi

+ ∂R
∂p̄

Dp̄
Dφi

= 0 (3)

I R̃ = −∂R
∂p̄

Dp̄
Dφi

(4)

K
Dp
Dφi

= −I R̃ (5)

The sensitivity problem is solved after the convergence of the primal problem has
been reached. For the automation we need only the ADB form of pseudo load vector
I R̃ evaluated at the integration point of the individual finite element I R̃g . The global
pseudo load vector is then obtained by the standard integration over the element
domain and the standard finite element assembly procedure of element contributions
to global vector I R̃g .

In the ADB form partial derivative is replaced with computational derivative and
AD exceptions for the indirect dependencies p̄(φ) have to be added, leading to

I R̃g = δ̂Rg

δ̂φi

∣
∣
∣
∣
∣ Dp̂e
Dφi

=Dφi p̄e

(6)

where Dφi p̄e represents data structure of the first order prescribed boundary condition
velocity field.

The second order sensitivity problem is obtained from the first order problem, by
differentiating (3) with respect to design parameter φi . It results in

∂2R
∂p2

Dp
Dφi

Dp
Dφ j

+ ∂2R
∂p∂p̄

Dp̄
Dφ j

Dp
Dφi

+ ∂R
∂p

D2p
Dφi Dφ j

+ ∂2R
∂p̄∂p

Dp
Dφ j

Dp̄
Dφi

+
+ ∂2R

∂p̄2
Dp̄
Dφi

Dp̄
Dφ j

+ DR
Dp̄

∂2p̄
∂φi ∂φ j

= 0 (7)

K
D2p

Dφi Dφ j
= −I I R̃ (8)

where I I R̃ represents the second order sensitivity pseudo load vector. The ADB form
of the integration point contribution to I I R̃ can be derived from (7) as

I I R̃g = δ̂

δ̂φ j

⎛

⎜
⎝

δ̂Rg

δ̂φi

∣
∣
∣
∣
∣ Dp̂e
Dφi

=Dφi p̂e

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣ Dp̂e
Dφ j

=Dφ j p̂e,
D(Dφi p̂e)

Dφ j
=Dφi φ j p̄e

(9)

where Dφiφ j p̄e represents data structure of the second order prescribed boundary
condition velocity field. All first order sensitivities have to be calculated in order to
be able to calculate the second order sensitivities. Equation (3) represents a system
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of linear equations (8) for the unknown sensitivities of the primal unknowns of the
problem D2p

Dφi Dφ j
.

2.2 Automation of FE2

The FE2 method is a two-level scheme inwhich all information aboutmicro-structure
is obtained from computations on RVE-level by averaging the material response
characterized by an appropriate stress measure and constitutive tangent matrix over
RVE. RVE is attached to each integration point of the macroscopic FE problem, as
shown in Fig. 1. For a typical finite strain problem that leads to PM = {Pm} and
AM = { ∂ Pm

∂FM
}, where PM and Pm are the first Piola-Kirchoff stress tensors at macro

and micro level, FM is the macroscopic deformation gradient andAM a macroscopic
constitutivematrix. This information is then used at themacro level for the evaluation
of integration point contribution to element residual RMg and tangent matrixKMg at
the macro level, as follows

RMg = PM : ∂FM
∂pMe

(10)

KMg = ∂RM

∂pMe
+ ∂RM

∂PM

DPM

DFM

∂FM

∂pMe
(11)

where pMe represents a set of nodal unknowns of macro element. Prescribed dis-
placements ūm at the corner nodes of the RVE are computed from macroscopic
deformation gradient FM by

ūm = (FM − I)Xm . (12)

Fig. 1 Macroscopic finite element problem and RVE attached to each integration point
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For the unconstrained boundary nodes periodicity of boundary conditions is adopted
with the use of Lagrange multipliers.

The FE2 method can be implemented in different ways (see e.g. [8]). For effi-
ciency of the method efficient calculation of the macroscopic constitutive matrixAM

is important. In a conventional way of computing macroscopic constitutive tangent,
computation of a Schur complement of RVEs tangent matrix is needed. Some opti-
misations of efficiency were already made with a tangent computation technique that
is based on perturbation approach [15].

An alternative for the calculation of macroscopic tangent is calculation of con-
sistent macroscopic stiffness matrix via direct differentiation sensitivity analysis of
the micro-structure with respect to macro strain measure used to impose boundary
conditions on RVE. It was described in [9] and [14] for time-independent problems.
Sensitivity parameters of the problem are components of the macro deformation gra-
dient FM , thus φ = {FM,11, FM,12, FM,13, FM,21, . . . }. For the complete formulation
of the prescribed boundary condition sensitivity problem, as presented in Sect. 2.1,
we also need prescribed boundary condition velocity field Dφi p̄e, see Table1. The
components of Dφi p̄e are obtained by the differentiation of (12) with respect to φ

(13)

Table 1 Comparison between FE2 and MIEL

Method Micro-scale Characteristic velocity field

FE2

periodic
BC

MIEL
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∂ ūm i

∂FM j k
= δi j Xm k (13)

and evaluated at the RVEs corner nodes. The result of the sensitivity analysis is deriv-
atives Dp

Dφ
that can be used to evaluate an integration point contribution tomacroscopic

constitutive matrix

Ag = ∂Pm

∂FM
= δ̂Pm

δ̂FM

∣
∣
∣
∣
∣ Dp̂m e

Dφ
=Dφp̂m e

(14)

At the end the automation of the integration point contribution to the residual and
tangent matrix of macro element leads from (10) and (11) to

RMg = δ̂WM

δ̂pMe

∣
∣
∣
∣
∣
PM=const.

(15)

KMg = δ̂RMg

δ̂pMe

∣
∣
∣
∣
∣ DPM
DFM

=AM

(16)

where a pseudo-potential scalar functionWM = PM : FM was introduced in order to
make automatic differentiation more efficient (see e.g. [5]). Output of the Newton-
Raphson iteration at the macro level is a new macro deformation gradient FM that is
used within the next iteration at the macro level. The analytical sensitivity analysis
ensures consistent tangent matrix and a quadratic convergence rates on both scales,
RVE-level and macro-level.

In [14] a step forward was made with the introduction of symmetric stretch tensor
UM as strain measure at macro level instead of asymmetric deformation gradient
FM , to determine boundary conditions on embedded micro-structure. Stretch tensor
UM can be calculated as matrix square root of Cauchy-Green tensor CM , for which
efficient, automatedwayof evaluation togetherwith its derivatives canbe found in [3].
Use of symmetric stretch tensor UM that has only 6 components instead of FM with
9, significantly reduces computational cost of boundary condition related sensitivity
analysis of micro-structure and with it the evaluation of local macroscopic stress
tensors and tangent matrices. The following equations summarize the alternative
formulation.

CM = FT
M · FM , UM = √

CM (17)

φ = {UM,11,UM,12,UM,13,UM,22, . . . } (18)

ūm = (UM − I)Xm,
∂ ūm i

∂UM j k
= δi j Xm k (19)
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Ag = ∂Pm

∂UM
= δ̂Pm

δ̂UM

∣
∣
∣
∣
∣ Dp̂m e

Dφ
=Dφp̂m e

(20)

RMg = PM : ∂UM

∂pMe
= δ̂WM

δ̂pMe

∣
∣
∣
∣
∣
PM=const.

(21)

KMg = ∂RM

∂pMe
+ ∂RM

∂PM

DPM

DUM

∂UM

∂pMe
= δ̂RMg

δ̂pMe

∣
∣
∣
∣
∣ DPM
DFM

=AM

(22)

Again, only the first order sensitivity analysis of the micro problem unknowns pm
with respect to the components of the macro stretch tensor Dpm

Dφ
is needed and it can

be automatically obtained using procedures from Sect. 2.1.

2.3 Automation of MIEL

When the difference between two scales is finite, or in the region of high gradi-
ents the FE2 multi scale approach fails, then we need to use some sort of domain
decomposition method. One possibility is the mesh-in-element or MIEL scheme
described e.g. by Markovič and Ibrahimbegović in [11]. We used it as a starting
point for the development of an automatized multi-scale method. The FE models of
different scales communicate between each other through degrees of freedom of the
finite element at the macro-scale. The residual and tangent matrix are for each macro
element obtained directly from micro-scale problem. Each macro element thus rep-
resents one micro problem, see Fig. 2. Macro element performs only proper transfer
of components of the macro element residual vector and tangent matrix from micro
scale to macro scale finite element assembly procedure. At the macro level residual
and tangent are assembled from individual macro elements and macro response is
calculated. Originally the Schur complement of the micro problem global tangent
matrix is used to calculate components of the macro element tangent matrix. Here
the boundary condition sensitivity analysis will be used again to obtain the same. For
densely meshed micro-structure calculations of the Schur complement inflicts high
memory allocation and is time consuming, which is not the case for the sensitivity
analysis based implementation of the MIEL method. This is due to the fact that the
number of sensitivity parameters remains the same, regardless of the density of the
micro mesh, whereas the size of the Schur complement grows with the number of
the nodes on the boundary of the micro problem.

Let pM e be a vector of unknowns in the nodes of the macro element, pm e a
vector of unknowns in the nodes of the characteristic micro problem element and
W strain energy function. The outer shape of the micro problem is the same as
the shape of the corresponding macro element. The prescribed essential boundary
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Fig. 2 Macro and micro scale for MIEL

conditions (displacements) are identical to the displacements at the boundary of the
corresponding macro element. The integration point contribution (g-th integration
point in the e-th element of the micro mesh) to the macro residual and macro tangent
matrix is then

RMg = ∂W (pm e(pM e))

∂pM e
= ∂W

∂pm e

Dpm e

DpM e
(23)

KMg = ∂RMg

∂pM e
= ∂2W

∂pm e
2

Dpm e

DpM e
+ ∂W

∂pm e

D2pm e

Dp2M e

(24)

The implicit dependencies Dpm e

DpM e
and D2pm e

Dp2M e
are obtained by the first and second

order sensitivity analysis. Thus, the sensitivity analysis based automation of the
MIEL scheme requires the second order sensitivity analysis for a set of sensitivity
parameters pM e, as presented in Sect. 2.1. The ADB form of (23) and (24) then leads
to

RMg = δ̂W
δ̂pM e

∣
∣
∣ Dpm e

DpM e
=DpM epm e

(25)

KMg = δ̂RMg

δ̂pM e

∣
∣
∣
∣
∣ Dpm e

DpM e
=DpM epm e,

D(DpM epm )

DpM e
=DpM epM epm e

(26)

where data structures DpM epm e = Dpm e

DpM e
and DpM epM epm e = D2pm e

Dp2M e
are the results

of the first and second order sensitivity analysis.
For the complete formulation of the prescribed boundary condition sensitivity

problem, as presented in Sect. 2.1, we need the first and second order prescribed
boundary conditionvelocityfields Dφi p̄e andDφiφ j p̄e. Let p̄m be avector of unknowns
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at the boundary of micro problems with prescribed essential boundary conditions,
thus p̄m = p̄m(pM e). The set of sensitivity parameters of the MIEL problem is φ =
pM e. The components of Dφi p̄e are obtained by the differentiation of p̄m(pM e) with
respect to pM e. Let us assume the standard interpolation of the unknown field u
on the boundary of the macro element u = ∑

Ni (Ξ) ui , where Ni (Ξ) is the shape
functions and ui the nodal unknowns and ∂u

∂ui
= Ni (Ξ). Thus, the components of

the first order boundary condition velocity field Dφi p̄e are the values of the macro
element shape functions at the position of the boundary nodes of the micro mesh,
see Table1. The second order velocity field is in this case zero Dφiφ j p̄e = 0.

3 Unified Approach

The automatic-differentiation-based (ADB) formulation enables unification and
automation of various multi-scale approaches for an arbitrary nonlinear, time depen-
dent coupled problem (e.g. general finite strain plasticity). For all methods we need
individual finite element codes that support the first and second order sensitivity
analysis that is used for the evaluation of implicit derivatives, that is derivatives of
unknowns of the problem. Sensitivity related codes are general, thus problem unde-
pendent. Additional problem dependent user subroutines are required to evaluate
homogenized constitutive matrix and macro stress for FE2 and residual and macro
tangent matrix for MIEL.

Differences between the methods are in essential boundary conditions at micro
mesh and in essential boundary conditions velocity fields needed for the sensitivity
analysis. Macro element used in FE2 evaluates residual and tangent matrix (see
Eqs. (15) and (16)), whereas macro element used for MIEL is used just for the
transformation of data. The implemented FE2 and MIEL schemes together represent
unified approach to the automation ofmulti-scalemodelling. The use of this approach
is presented on an example.

Implementation of the presented multi-scale computational approach in AceFEM
is fully parallelized for multi-core processors. Micro problems are distributed on
kernels by evaluating each individual micro problem always at the same kernel.
For FE2 each RVE is associated with individual Gauss point and can be calculated
on individual kernel. The same goes for MIEL, where each micro problem can be
distributed to individual kernel. With parallelized computation, computational time
for complex problems can be significantly reduced. The setup is also appropriate for
the implementation on clusters.

4 Two-Level Path-Following Procedure

InAceFEMsolving of nonlinear problems is done implicitlywith aNewton-Raphson
type iterative solution procedure. Different path-following procedures can be used
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Fig. 3 Two-level path-following procedure

Table 2 Comparison of simulations
FE2 MIEL Mixed

No. micro
problems

800 200 488

No. macro
elements

216 216 216

Total DOF 1.030.881 132.881 563.921

Total time (s) 192.4 50.2 127.3

for implicit solution procedure of the parametrized system of nonlinear equations.
In the paper the path is parametrized by load level (λ). For every load step at macro
level (�λM ), several substeps can be done at micro level (�λm). Since we have two
scales, we have in general a path following procedure at both levels, resulting in
two-level path following procedure presented in Fig. 3. Traditionally, each step at
macro level is followed by only one step at micro level. Sensitivity analysis based
multi-scale analysis allows extension to more general case, where each macro step
can be followed by an arbitrary number of micro substeps (Fig. 3).

5 Numerical Example

As a numerical example, bending of a beam with enforced vertical displacement
was investigated for various multi-scale methods and material models. In Table2
different combinations of multi-scale schemes are presented. The first presented in
Fig. 4, is mixed, where both FE2 and MIEL are used. In the next two examples only



124 N. Zupan and J. Korelc

Fig. 4 Mixed multi-scale model

one method, either FE2 or MIEL, is used. Supports are in all cases modelled with 16
macro solid elements. For these three combinations in Table2 the numbers of micro
and macro elements and total DOF are compared. In case of MIEL, the number of
micro problems is equal to that of macro elements, whereas for FE2 the number of
micro problems for one macro element is equal to that of integration points, in this
case 4. Total DOF represents the number of equations that need to be solved and is the
biggest for sole use of FE2 method. The example was run for two material models.
First, a Neo-Hookean type hyperelastic material was used. The computational times
for different schemes are compared in Table2 and the distribution of strain Exx for
mixed case is shown in Fig. 5.

Next, a finite strain JC plasticity material was used. Since the elasto-plastic prob-
lems are path dependent, the influence of the implementation of the two-level path
following procedure on the convergence rate of the Newton-Raphson iterative pro-
cedure was additionally investigated.

In the two-level path following algorithm it is important that the sensitivity analysis
is carried out correctly. For path dependent problems only correct sensitivity analysis
at micro level leads to macro tangent matrix, which is algorithmically consistent and
leads to quadratically convergent scheme. Sensitivity analysis is done correctly, if
it is integrated along the whole path of micro sub-increment. For every substep at
micro level the sensitivity has to be updated.

In Table3 convergence rate of theNRmethod is compared for the FE2 scheme:HY
1/1—hyperelastic material, each macro load step is followed by one micro load step;
HY 1/5 uncons.
—hyperelastic material, each micro increment is divided into 5 substeps, sensitivity
is not updated; PL 1/1—elasto-plastic material, each macro load step is followed by
onemicro load step; PL 1/5—elasto-plasticmaterial, eachmicro increment is divided
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Fig. 5 Results for strains Exx for mixed scheme

Table 3 Comparison of convergences for FE2 scheme

it. HY 1/1 HY 1/5
uncons.

PL 1/1 PL 1/5 PL 1/5
uncons.

1 9.79× 10−4 9.79× 10−4 8.92× 10−4 8.92× 10−4 8.92× 10−4

2 2.18× 10−7 2.18× 10−7 2.30× 10−4 2.30× 10−4 2.30× 10−4

3 8.45× 10−14 8.45× 10−14 2.01× 10−5 1.76× 10−5 1.81× 10−5

4 / / 2.21× 10−8 2.10× 10−8 2.57× 10−6

5 / / 1.45× 10−13 4.68× 10−14 6.11× 10−7

6 / / / / 1.53× 10−7

− − − − − −
15 / / / / 7.37× 10−13

into 5 substeps, sensitivity is updated; PL 1/5 uncons.—elasto-plastic material, each
micro increment is divided into 5 substeps, sensitivity is not updated.

For hyperelastic material convergence rate is quadratic also for inconsistent sen-
sitivity analysis, regardless of the number of micro substeps, because the problem
is not path dependent. For elasto-plastic material the quadratic convergence is lost,
unless the sensitivity is properly updated (PL 1/5 uncons.). The same is valid also
for MIEL and mixed schemes. Results for MEIL and mixed models are presented in
Tables4 and 5.
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6 Conclusions

Unified approach to the automation of various multi-scale approaches through the
automatic-differentiation-based (ADB) formulation enables mixed use of different
multi-scale and one-scale methods in one model for an arbitrary nonlinear, time
dependent coupled problem (e.g. general finite strain plasticity). Codes of the finite
element for analytical first and second order sensitivity analysis are generated auto-
matically. Multi-scale FE2 and MIEL schemes are implemented based on boundary
condition sensitivity analysis. The differences between the FE2 and MIEL are in
essential boundary condition at micro mesh and in essential boundary condition
velocity fields needed for the sensitivity analysis. For FE2 first order sensitivity is
enough, whereas for MIEL second order sensitivity is needed.

In a conventional way of computing macroscopic tangent matrix for MIEL a
Schur complement is needed. We used the boundary condition sensitivity analysis to
obtain macroscopic constitutive tangent matrix, which is numerically more efficient

Table 4 Comparison of convergences for MIEL scheme

it. HY 1/1 HY 1/5
uncons.

PL 1/1 PL 1/5 PL 1/5
uncons.

1 9.80× 10−4 9.80× 10−4 1.76× 10−3 1.76× 10−3 1.76× 10−3

2 2.21× 10−7 2.21× 10−7 1.48× 10−4 1.52× 10−4 2.03× 10−4

3 8.23× 10−14 8.20× 10−14 1.12× 10−4 1.12× 10−4 1.67× 10−4

4 / / 5.78× 10−7 8.86× 10−7 6.03× 10−5

5 / / 5.47× 10−11 9.52× 10−11 1.83× 10−5

6 / / / / 1.53× 10−7

− − − − − −
16 / / / / 4.33× 10−11

Table 5 Comparison of convergences for mixed FE2 and MIEL model

it. HY 1/1 HY 1/5
uncons.

PL 1/1 PL 1/5 PL 1/5
uncons.

1 1.01× 10−3 1.01× 10−3 1.54× 10−3 1.54× 10−3 1.54× 10−3

2 2.38× 10−7 2.38× 10−7 24.10× 10−4 4.12× 10−4 5.00× 10−4

3 1.47× 10−13 1.48× 10−13 1.95× 10−4 1.92× 10−4 1.38× 10−4

4 / / 4.26× 10−6 3.98× 10−6 1.38× 10−5

5 / / 1.33× 10−9 81.51× 10−9 5.51× 10−7

6 / / 1.25× 10−16 9.74× 10−17 2.99× 10−8

7 / / / / 1.51× 10−9

− − − − − −
10 / / / / 2.02× 10−13
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for densely meshed micro-structures. This is due to the fact that the number of
sensitivity parameters remains the same regardless of the density of the micro mesh,
while the size of the Schur complement grows with the number of the nodes on the
boundary of the micro problem.

Traditionally in multi-scale methods one macro time step is followed by one
micro time step. Sensitivity analysis based multi-scale analysis allows that each
macro step can be followed by an arbitrary number of micro substeps. For path-
dependent problems only correctly done sensitivity analysis at micro level leads
to algorithmically consistent macro tangent matrix and to quadratic convergence.
For every substep at micro level, sensitivity has to be updated, otherwise for path
dependent problems the quadratic convergence is lost.
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Efficient Multiscale FE-FFT-Based Modeling
and Simulation of Macroscopic Deformation
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Microstructures
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Bob Svendsen and Stefanie Reese

Abstract The purpose of this work is the prediction of micromechanical fields
and the overall material behavior of heterogeneous materials using an efficient and
robust two-scale FE-FFT-based computational approach. Themacroscopic boundary
value problem is solved using the finite element (FE) method. The constitutively
dependent quantities such as the stress tensor are determined by the solution of
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the local boundary value problem. The latter is represented by a periodic unit cell
attached to each macroscopic integration point. The local algorithmic formulation
is based on fast Fourier transforms (FFT), fixed-point and Newton-Krylov subspace
methods (e.g. conjugate gradients). The handshake between both scales is defined
through the Hill-Mandel condition. In order to ensure accurate results for the local
fields as well as feasible overall computation times, an efficient solution strategy for
two-scale full-field simulations is employed. As an example, the local and effective
mechanical behavior of ferrit-perlit annealed elasto-viscoplastic 42CrMo4 steel is
studied for three-point-bending tests. For simplicity, attention is restricted to the
geometrically linear case and quasi-static processes.

1 Introduction

Themacroscopicmechanical behavior ofmostmaterials of technological importance
(e.g. polycrystalline materials, fiber-reinforced composites, high-strength ceramics)
is to a large extent dictated by theirmicrostructurewhich varies in the distribution, ori-
entation, size and morphology of individual grains and different phase constituents.
The derivation of appropriate phenomenological constitutive laws for such complex
materials is often difficult or even not possible.

Instead, assuming scale separation, the phenomenological model might be
replaced by an additional boundary value problem (BVP) which is attached as a
representative volume element (RVE) (e.g. [10, 11]) to each macroscopic integra-
tion point (e.g. Gauss point). The handshake between both scales is then given by the
mean RVE response in the sense of Hill-Mandel [11].Most common in the context of
computational scale bridging methods is the multilevel finite element or FE2 method
(e.g. [6, 18, 33, 35]) which is based on computational homogenization (e.g. [19, 32,
41]) and finite element-based algorithmic formulations at both scales. Compared to
finite element (FE)methods, the computational efficiency of the local solution proce-
dure can be significantly increased (e.g. [4, 27]) using fast Fourier transforms (FFT),
fixed-point and Green’s function methods (e.g. [23, 24]). First, employing FFT, or
more generally speaking spectral methods, periodic boundary conditions are implic-
itly given by global higher-order periodic shape functions. Compared to other types of
boundary conditions (e.g. displacement, traction, mixed), periodic boundary condi-
tions have been proven to be optimal for RVE-based computational homogenization
methods (see e.g. [25]). Second, such meshfree methods operate on regular voxel
grids which makes the discretization of complex and fine scale microstructures ‘eas-
ily’ possible (see e.g. [4, 12]). Third, the fixed-point-based iterative solution scheme
avoids the assembly procedure and the computation and inversion of the tangent stiff-
ness matrix which are classical features of implicit FE methods and often represent
time-consuming numerical operations. Fourth, efficient and powerful FFT software
libraries (e.g. FFTW) and simulation kits (e.g. DAMASK, OpenPhase) are available
that make the implementation and application of new and complex material mod-
els ‘straightforward’. However, there are of course drawbacks to be mentioned, as
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well. First, spectral methods are accompanied by non-physical spurious oscillations
that negatively affect the spatial resolution and convergence behavior (e.g. [39]).
Second, the basic fixed-point scheme by Moulinec and Suquet [23, 24] is only con-
ditionally convergent depending on the choice of a homogeneous reference material
and suffers from ‘many’ fixed-point iterations for high contrasts in mechanical fields
(e.g. stiffness). Different computational schemes have been developed to tackle these
problems (e.g. [1, 13, 22, 31, 38]). Among other methods (e.g. [13, 31]), using finite
difference (FD) approximations of the divergence and gradient operators (e.g. [39])
leads to a tremendous improvement of the spatial resolution by reducing the strength
of higher-order frequencies. Replacing the fixed-point-based scheme by Newton-
Krylov subspace methods (e.g. conjugate gradients [7, 12, 38, 42], GMRES [34])
leads to quadratic convergence independently of the choice of the homogeneous
reference material [42].

Despite such recent improvements, the two-scale FE-FFT method has only been
addressed in a fewworks. First, Spahn et al. [36] proposed such a two-scale computa-
tional approach for themodeling of progressive damage in fiber-reinforced composite
materials. Recently, Kochmann et al. [14] presented an FE-FFT- and phase-field-
based method to model martensitic phase transformations in elastic polycrystalline
materials. In both cases, the macroscopic BVP was rather simple and fine local dis-
cretizations lead to unsatisfactory computation times. The purpose of this work is
the extension to viscoplastic polycrystals, realistic EBSD-based virtual grain struc-
tures and the establishment of process-microstructure-property relations (e.g. yield
strength, hardness) for virtual three-point-bending tests. An efficient solution strat-
egy for two-scale full-field simulations [15] is adapted which ensures both, feasible
overall CPU-times and accurate micromechanical fields.

2 Material Model Formulation

In this section the two-scalematerialmodel is presented in a nutshell,more details can
be found e.g. in [14]. The continuum and scale briding relations are summarized in
Sect. 2.1 and local field relations in Sect. 2.2. In what follows, macroscopic quantities
are denoted by the index ‘M’ and local fields by no index. Quantities which are
referred to the current time step are denoted by the superscript t + 1. Further notations
will be introduced when needed.

2.1 Macroscopic Relations and Scale-Bridging

Let us consider the macroscopic structure ΩM and boundary ∂ΩM on which dis-
placement ∂Ωu

M and/or traction boundary conditions (BC) ∂Ω t
M are applied such

that ∂ΩM = ∂Ωu
M ∪ ∂Ω t

M and ∂Ωu
M ∩ ∂Ω t

M = ∅. The macroscopic linearized strain
tensor
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εM(xM) = ∇symuM(xM) = 1

2

(∇uM(xM) + (∇uM(xM))�
)

(1)

is introduced at each material point xM ∈ ΩM in terms of the displacement vector
uM(xM) to define the macroscopic stress tensor σM(xM) which is assumed to fullfill
the quasi-static linear momentum balance

divσM(xM) = 0. (2)

The solution of (2) is directly correlated to the local problemwhich is embedded as a
periodic unit cell (UC) of the domain Ω at each xM ∈ ΩM. Let g(x; xM) represent an
arbitrary local field (e.g. strain, stress) corresponding to the macroscopic counterpart
gM(xM). The fluctuation field

g̃(x) := g(x; xM) − gM(xM) (3)

is defined as the deviation from gM(xM) at each xM ∈ ΩM. Per definition, gM(xM) =
1
Ω

∫
Ω
g(x; xM) dΩ(x) holds which implies satisfaction of

1

Ω

∫

Ω

g̃(x; xM) dΩ(x) = 0 (4)

and represents the energy consistency Hill-Mandel [11] condition. In particular, this
means that the handshake between both scales is solely accomplished through

εM(xM) := 1

Ω

∫

Ω

ε(x; xM) dΩ(x) (5)

σM(xM) := 1

Ω

∫

Ω

σ(x; xM) dΩ(x). (6)

2.2 Local Problem

As alluded above, the material behavior at the macro scale is dictated by the solution
of the local problem

divσ(x, εe) = 0 (7)

which is formulated in terms of the elastic strain field εe(x; xM) = ε(x; xM) − εp(x).
Irreversible deformations due to dislocation slip are characterized by the plastic strain
tensor εp(x). Note that internal variables such as εp(x) or the accumulated plastic
slip γacc(x) are purely local, whereas strains ε(x; xM) and stresses σ(x; xM) vary on
both length scales.
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= +ε(x;xM) εM(xM) ε̃(x)

Fig. 1 Additive decomposition of local strain field (black) into volume average part (blue) and
fluctuation field (red)

Since εM(xM) is prescribed by the kinematic relations (1) at the continuum level,
the fluctuation field ε̃(x) (see Fig. 1) represents the primary unknown of the non-
linear equilibrium equations (7). For better readability, the dependence on x and xM
is omitted henceforth.

3 Crystal Plasticity Constitutive Law

Restricting ourselves to elasto-viscoplastic polycrystalline aggregates (e.g. [3, 20,
28, 30]), the stress-strain relation is defined as:

σ = Cεe = C(ε − εp). (8)

The evolution of the plastic strain

ε̇p =
nslip∑

α

γ̇α msym
α (9)

is assumed to be governed by the following flow rule:

γ̇α = sgn(τα) γ̇0 fα(σ, τ c
α). (10)

The plastic shear rate γ̇α, the critical resolved shear stress (CRSS) and the symmetric
Schmid tensormsym

α = 1
2 (dα ⊗ nα + nα ⊗ dα) are defined on the slip systems α =

1, . . . , nslip which are characterized by the slip directions dα and plane normals nα.
The specific form of (10) is adapted from [40]

fα(σ, τ c
α) =

⎧
⎪⎨

⎪⎩

〈 |τα| − τ c
α

τ D

〉p |τα| ≤ τ R

β
(|τα| − τ R

) +
〈τ R − τ c

α

τ D

〉p |τα| > τ R,

(11)
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where 〈•〉 = (| • | + •)/2, τ D and τ c
0 define the McAuley brackets drag stress and

initial CRSS, respectively. The specific form of (11) makes use of a linear reg-
ularized problem with slope β which serves as an improved initial guess for the
non-regularized problem yielding robust numerical computations. The influence of
the loading speed on the local material response is described by the rate sensitivity
parameter p. Using a backward Euler time discretization, the accumulated plastic
slip γacc = ∑

α

∫ |γ̇α|dt , the material constant τ R = τ c
α(γacc) + �τ and yield stress

τ c
α(γacc) = τ c

0 + g(γacc) are defined. The hardening function is assumed to be of
Voce-type behavior

g(γacc) = τ c
0 + (τ∞ − τ c

0 )

(
1 − exp

[
− Hγacc

τ∞ − τ c
0

])
+ θ∞γacc (12)

where τ∞, H and θ∞ are the saturation stress (for θ∞ = 0), hardening modulus and
parameter, respectively. The constitutive relation (8) is given by the solution of the
following set of non-linear equilibrium equations in terms of the unknows (σ, τ c

α)

rξ =
(
rσ

rτ c

)
=

(
C

−1σ − ε + εt
p + �t ε̇p(σ, τ c)

(g(γacc) − τ c
α)/τ0

)
= 0. (13)

The parameter τ0 is introduced to obtain a dimensionless residual rξ.

4 Algorithmic Formulation

The algorithmic formulation at the macro scale is based on the FE method which
is rather standard and thus not presented in this work. Details can be found e.g. in
[14]. The local solution algorithm is based on fast Fourier transforms, fixed-point
and Green’s function methods (e.g. [23, 24]) and derived in Sect. 4.1.

4.1 Fast Fourier Transforms

The transform of an arbitrary local field g(x) in real space x ∈ Ω to Fourier space
k ∈ Ω̂ is denoted by

ĝ(k) = F {g(x)} =
∑

x∈Ω

g(x) exp (−ık · x) (14)

and its inverse transform by

g(x) = F−1 {
ĝ(k)

} = 1

|Ω|
∑

k∈Ω̂

ĝ(k) exp (ık · x) (15)
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in terms of the complex number ı = √−1 and wave vector ki = (2πı/N )/

�x (i = −N/2, . . . , N/2 − 1 for N even and i= − (N − 1)/2, . . . , (N − 1)/2−
1 for odd N ). The number of grid points is denoted by N and grid spacing by �x ,
respectively. The Fourier representation of the gradient and divergence operators is
defined as:

F {∇ g(x)} = ĝ(k) ⊗ ık, F {div g(x)} = ĝ(k) · ık. (16)

Let us introduce the so-called ‘polarization stress’ (see e.g. [8, 9, 37])

τ = σ(εe) − C
(0)∇symu (17)

relative to an homogeneous reference material with elastic stiffness C(0) to rewrite
(7) in the following form:

divC(0)∇u + div τ = 0. (18)

Introducing the Green function tensor

Ĝ(0)
jm = (C

(0)
jkmnkkkn)

−1 for k �= 0, (19)

Fourier transform of (18) leads to

û = Ĝ(0)τ̂ ı k for k �= 0. (20)

Assuming an isotropic reference material with Lamé parameters μ(0) and λ(0), the
symmetric fourth order Lippmann-Schwinger operator

�̂
(0)
i jkl = 1

4μ(0)|k|2 (δki klk j + δli kkk j + δk j klki + δl j kkki )

− λ(0) + μ(0)

μ(0)(λ(0) + 2μ(0))

ki k j kkkl
|k|4

(21)

is introduced to transform (20) into

ε̂ = −�̂
(0)

τ̂ for k �= 0 (22)

which represents the fundamental equation of the basic-fixed point scheme by
Moulinec and Suquet [23, 24]. Since the right-hand side of (22) depends on ε via
(17), an iterative solution scheme is required, in general (see e.g. [12, 24]). Note that
k = 0 represents the mean value in Fourier space and is exploited to apply εM to
the UC which means in turn that k = 0 defines the interface between the local and
continuum scale.
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Algorithm 1 Basic algorithm for fixed-point-based iterative solution of the micro-
scopic mechanical BVP

1. initialization (i = 0): ε(i) = εM;

2. repeat until convergence

a. τ (i) = σ(ε(i)
e ) − C

(0)ε(i) from (17);
b. τ̂ (i) = F

{
τ (i)

}
from (14);

c. ε̂(i+1) =
{

−�̂
(0)

τ̂ (i) for k �= 0
εM for k = 0

from (22);

d. ε(i+1) = F−1
{
ε̂(i+1)

}
from (15);

e. constitutive relation:
solve (13) at each x ∈ Ω with accuracy tolξ;

f. convergence check:
if ||ε(i+1) − ε(i)||/||εM|| � tolε,

g. else i++, repeat starting at a.;

The fixed-point algorithm for the basic scheme is given by Algorithm 1. As indi-
cated above, the basic fixed-point scheme is only conditionally convergent and suffers
from ‘many’ fixed-point iterations for high stiffness contrasts. Using Newton-Krylov
solvers (e.g. conjugate gradients [7, 12, 42], GMRES [34]) instead, has the possi-
bility of quadratic convergence independent of the choice of C(0) [42]. To this end,
σ(i+1) is linearized around ε(i) yielding

σ(i+1) = σ(i)(ε(i)) + C
(i)
alg�ε(i+1), (23)

whereC(i)
alg = ∂ε(i)σ(i) represents the algorithmic tangent modulus. Inserting (23) and

ε(i+1) = ε(i) + �ε(i+1) into (22) leads to the following system of equations

�ε̂(i+1) + �̂
(0)

(
[C(i)

alg − C
(0)]�ε(i+1)

∧)
= �̂

(0)
σ̂(i) (24)

which has to be solved numerically for �ε(i+1).1 In this work, a conjugate gradient
(Polak-Ribière) solver with accuracy tolω is used for the solution of (24). The small
strain algorithm for the solution of (24) was formulated based on the finite strain
documentation by [12] and implemented analogously.

5 Solution Procedure

Within the two-scale model (see Fig. 2) three different ‘computational levels’ can be
identified:

1Note that the identity ε(i) = εM + �̂
(0) ∗ [C(0)ε(i)] was used to arrive at (24), where f ∗ g =∫ ∞

−∞ f(ξ) g(x − ξ) dξ denotes the convolution integral of two arbitrary fields f and g.
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micro scale - FFT, fixed-point and Newton -Krylov subspace methods

xM

x

∂ Ω

Ω

apply: εM(xM)

ε(x;xM)

σM(xM), M(xM)

macro scale - FE method

σ (x; M)

local material point

x

Fig. 2 Schematic of FE-FFT-based micro-to-macro transition with polycrystalline microstructure

• The continuum (FE) level,
• the local (FFT) level,
• and the local material point level.

At the FE-level (1), an implicit solution scheme and reduced FE formulation with
hourglass stabilization (see e.g. [29]) is employed yielding one integration point xM
per element e and locking free element behavior. The overall consistent algorithmic
tangent modulus CM := ∂εMσM is required for the linearization procedure and com-
puted by numerical differentiation for simplicity. This means that at the FFT-level
(2) the local problem has to be solved (i) once for the evaluation of the stress-strain
relation (8) and (ii) three times for the computation of CM by perturbing each coef-
ficient of εM (2D, plane strain). In order to improve the local convergence rate and
reduce the overall computation time, the local fields σ and ε which are available
from (i), are taken as local starting solution for (ii). By doing this, the FFT solver
only requires 1–2 Newton iterations to achieve convergence. In order to reduce the
number of Newton iterations at the FFT-level, npre presteps are performed before
each Newton iteration which improves the initial guess for the local field ε yielding
robust computations andquadratic convergence.At the lowest level, the localmaterial
point level (3), the stabilization technique which was introduced in Sect. 3, ensures
convergence for relatively large time increments �t and rate sensitivity parameter
p. The original power law is replaced by a regularized linear approximation which
serves as an improved starting solution for the numerical solution of (13). The slope
of the regularized problem is adapted depending on the convergence behavior. If the
finally converged solution does not coincide with the original power law, the slope
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is increased and an additional local iteration is performed. If no converged solution
is achieved, the slope is decreased. This procedure is repeated until convergence is
obtainedwhich ensures that the finally converged solution coincides with the original
power law solution.

Since coarse unit cell discretizations are capable of resolving the basic features
of complex microstructures and lead to relatively small errors in terms of effec-
tive properties (e.g. stress) (see e.g. [14, 15]) the following solution procedure is
employed:

• Pre-processing: mesh convergence analysis in terms of effective properties
(e.g. macroscopic stress);

• Processing: run two-scale full-field simulation with coarse unit cell discretization
and save macroscopic strain tensor ε(i+1)

M (xM) for each converged load step i at
each Gauss point of particular interest xM; use time step increment �t ;

• Post-processing: solve local problem (stand-alone computation) for each i by
reading and applying ε(i+1)

M (xM) to unit cell which is characterized by a fine local
mesh discretization with �t∗ = �t ; if �t∗ < �t is required to get converged
solution, decrease �t∗ = �t/2 and linearly interpolate between ε(i+1)

M (xM) and
ε(i)
M (xM).

In a nutshell the solution procedure is based onnon-convergedunit cell discretizations
for two-scale simulations. A mesh convergence analysis beforehand ensures that the
coarse discretization still leads to an error in the effective quantities which is in an
acceptable range. The processing and post-processing lead to feasible overall CPU-
times and accurate micromechanical fields. A detailed and systematic analysis as
well as relevant associated examples can be found in [15].

6 Numerical Examples

The present two-scale model is implemented into the finite element program FEAP
(http://www.ce.berkeley.edu/projects/feap) as a user element routine. Local and
macroscopic fields are visualized using Paraview (http://www.paraview.org). At the
continuum level, the residual force-based convergence tolerance is set to tolf =
10−6 N. At the local level, the tolerance for the Newton algorithm is chosen as
tolε = 10−8 and for the conjugate gradient solver as tolω = 10−14. The Newton-
type solution of (13) is considered to be converged based on tolξ = 10−10. If
not stated otherwise, square grids (N1 = N2 = N ) with equidistant grid spacing
�x1 = �x2 = �x are considered. The material is assumed to consist of body-
centered cubic (BCC) unit cell structures, where two families of slip systems which
are described by almost identical activation energies, are taken into account: the
dα = {110}, sα = [111] and the dα = {210}, sα = [111] systems. The material
parameters used in this work are fitted to experimental data of ferrit-perlit annealed
42CrMo4 steel and are summarized in Table1.

http://www.ce.berkeley.edu/projects/feap
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Table 1 Used elasto-viscoplastic material parameters; also, τ R = τ D = τ0 = 1MPa are set

C11
(GPa)

C12
(GPa)

C44
(GPa)

τ c0 (MPa) H (MPa) γ̇0 (1/s) p (–) τ∞
(MPa)

θ∞
(MPa)

237 141 58 150 1200 0.001 20 200 120

In order to reduce the strength of spurious oscillations, a central finite difference
approximation of the gradient and divergence operator is employed [39]. The effec-
tive Lamé constants μ(0) and λ(0) are determined based on the arithmetic averages

μ(0) = 1

2
(min{μ(x)} + max{μ(x)}) , λ(0) = 1

2
(min{λ(x)} + max{λ(x)}) . (25)

EBSD maps were digitized and edited (e.g. reflection at edges and insertion of
additional virtual grains) to generate periodic boundary conditions and square com-
putational domains. The physical side length of the unit cell was set to L1 = L2 =
L = 250µm. For simplicity the Eulerian angles {θ1,�, θ2} which are shown for
a N = 255 unit cell (UC) discretization in Fig. 3 are prescribed at each macro-
scopic integration point xM. First, uniaxial tension virtual experiments are per-
formed with one element (e = 1) at the macro scale and different UC discretizations
(N = 15, 63, 255) at the Gauss point level are considered. Displacement controlled
boundary conditions are applied at constant displacement rate u̇M11 = 1mm/s until
εM11 = 1% is reached. The effective stress-strain response of the two-scale full-field
simulations which are performed with N = 15 and N = 255 UC discretizations, are
visualized in Fig. 4 by red curves. The stand-alone computations with N = 15, 63
and N = 255 at the Gauss-point level based on the strain history of the two-scale
simulation with N = 15 are described by blue curves in Fig. 4. The Eulerian angle θ1
and local equivalent plastic strain distribution ε

p
eq are visualized for all discretizations

in the bottom part of Fig. 4. The coarsest discretization N = 15 is not even capable

20 40 600.000e+00 9.000e+01100 2000.000e+00 3.600e+02 100 2000.000e+00 3.600e+02

θ1 [◦] Θ [◦] θ2 [◦]

Fig. 3 Visualization of Eulerian angles θ1,� and θ2 obtained from digitized and edited EBSD
maps of ferrit-perlit annealed 42CrMo4 steel
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Fig. 4 Top: effective stress-strain response for uniaxial tension virtual experiments with differ-
ent UC discretizations. Bottom: visualization of grain structure and local equivalent plastic strain
distribution for N = 15, 63 and N = 255 grid points at final load step εM11 = 1%

of resolving the correct distribution and number of grains. However, this coarse rep-
resentation leads to a qualitatively quite good behavior in terms of the effective stress
σM11. Considering a discretization with N = 511 grid points as converged solution,
the error is approximately 7.9% for N = 15. In a post-processing step, local fields
are generated based on N = 255 yielding an effective error of 0.87%. This solution
strategy leads to micromechanical fields which are as accurate as the ones computed
in the two-scale simulation with N = 255. At the same time an overall speed-up of
about 97 is obtained. Different UC discretizations and loading cases (e.g. tension,



Efficient Multiscale FE-FFT-Based Modeling … 141

shear, mixed loading) have been investigated in [15]. For all cases, the magnitude
of the error made by this solution procedure is the approximately the same. Thus,
the following two-scale simulations are performed with N = 15 grid points and the
post-processing generation of local fields is based on N = 255.

6.1 Three Point Bending

Next, a virtual three-point-bending test is considered. The beamwith physical dimen-
sions L1L2 = 25 × 3mm2 is discretized using 300 bilinear quadrilateral elements
with one integration point per element in each of which the EBSD-based grain
structure (see Fig. 3) is embedded. The contact between the rollers and the beam
is described based on an augmented Lagrangean formulation. The hardmetal rollers
are modeled as linear elastic and isotropic with elastic constants E = 640GPa and
ν = 0.23. The left roller is fixed in all spatial directions, symmetry conditions in
x1-direction are applied on the right edge of the beam and the right roller is supposed
to move uM11 = 3mm upwards at fixed displacement rate u̇M11 = 1mm/s. Local
fields and effective properties are visualized and investigated in the element which
is highlighted in black in Fig. 5 and denoted as e∗, in what follows. Using automatic
time stepping, 200 loadsteps are required to move the right roller uM11 = 3mm
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upwards which corresponds to an equivalent macroscopic strain of εMeq=7%. Note
that the number of loadsteps correlates to the size of �t which in turn is limited
mostly by the contact formulation.

On both scales quadratic convergence is observed and the overall CPU-time for the
coarse two-scale full-field simulation + fine post-processing (see Sect. 5) is approxi-
mately 12 h. The effective stress distribution σMeq is visualized in Fig. 5 at loadstep
10, 100 and 200 as well as the local equivalent plastic strain ε

p
eq and stress distribution

σeq. The most critical points in the structure can be found in regions where the cur-
vature is highest. Looking at the micromechanical fields, shear bands are observed
in ε

p
eq and stress concentrations at grain boundaries in σeq.
Assuming that the hardness is proportional to the yield strength of the material,

e.g.
HV ∼ 3σy ∼ 3 · 2τ c (26)

let us analyze the influence of the curvature of the beam on the hardness evolution
in e∗. To this end, two different beams are considered which are defined by the two
different thicknesses L1

2 = 1.5mm and L2
2 = 3mm (see Fig. 6). In order to get a

geometry- and process-independent analysis, the curvature κ which is approximated
based on displacement differences at nodal positions, is multiplied with the thickness
L2 and plotted versus the hardness based on (26). For both thicknesses, similar
hardness-curvature curves are obtained which are visualized in Fig. 6. The difference
between both curves could have been expected since the simple macroscopic FE
discretization does not lead to a fully converged solution. Since this work is about
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the qualitative analysis of local and effective properties, this fact is acceptable at this
point. The results represent a first step towards the solution of an inverse integrity
problem, namely which process parameters have to be set to get a desired surface
layer property. In this case, Fig. 6 can be considered to identify the required curvature
to achieve a desired surface layer property which is the hardness distribution in
this case. Furthermore, an extension of the model to three dimensions allows the
direct comparison of experimentally measured structural (e.g. force-displacement
curves) and local information (e.g. EBSD, REM, TEM data) which leads to a better
understanding of the underlying physics and mechanisms. This will be discussed
in future developments of this work as well as the application of more complex
macroscopic processes (e.g. deep rolling process).

7 Discussion

In this work an efficient two-scale model was presented which couples FE modeling
of the structural material behavior to FFT and Newton-Krylov-based modeling of the
local mechanical behavior of elasto-viscoplastic polycrystalline aggregates. An effi-
cient but simple solution strategy is adapted from [15] which ensures both, accurate
micromechanical fields as well as feasible overall CPU-times. This solution proce-
dure is characterized by a pre-processing, processing and post-processing step and
leads to a tremendous increase of computational efficiency. As an example, EBSD
maps of 42CrMo4 steel are digitized, edited and embedded in each macroscopic
integration point of a three-point-bending specimen. The numerical results allow the
investigationof structural properties (e.g. force-displacement curves) andmicrostruc-
tural information (e.g. local stress and strain distribution). Assuming that the hard-
ness of the material is proportional to the yield strength of the phase constituents
at the micro scale, the hardness distribution at the surface is studied depending on
the curvature of the bending beam. To this end, two different beams with different
thicknesses are considered. Plotting the hardness versus the curvature at the work-
piece surface helps to find the required curvature to achieve a desired surface layer
property, in this case the hardness of the material. The model allows the prediction of
the yield strength and hardness of the material as well as the state of residual stresses,
the prediction of which is still barely possible in manufacture processing as well as
simulation sciences. Future developments will focus on the extension to finite strain
crystal plasticity, texture evolution and three-dimensional problems. Furthermore,
the numerical examples in this work have been performed on a single CPU. There-
fore, it is reasonable to employ parallelization techniques on both scales to decrease
the overall computation time and make the simulation of more complex macroscopic
boundary value problems (e.g. deep rolling) possible in future work.
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Experimental-Numerical Validation
Framework for Micromechanical
Simulations

Ante Buljac, Modesar Shakoor, Jan Neggers, Marc Bernacki,
Pierre-Olivier Bouchard, Lukas Helfen, Thilo F. Morgeneyer
and François Hild

Abstract A combined experimental-numerical framework is presented in order to
validate computations at the microscale. It is illustrated for a flat specimen with two
holes, which is made of cast iron and imaged via in situ synchrotron laminography at
micrometer resolution during a tensile test. The region in the reconstructed volume
between the two holes is analyzed via Digital Volume Correlation (DVC) to measure
displacement fields. Finite Element (FE) simulations, whosemesh ismade consistent
with the studied material microstructure, are driven by measured Dirichlet boundary
conditions. Damage levels and gray level residuals for DVC measurements and FE
simulations are assessed for validation purposes.

1 Introduction

The prediction of forming processes and in-service life of metals and alloys raises
important issues for ductile fracture, which have led researchers to investigate
advanced damage models. A first type of damage models, which is known as macro-
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scopic postulates [1–3], is used to predict not only damage inception but also the
softening and transition to fracture. Due to their macroscopic nature, they are known
to have limited predictive capabilities and are usually calibrated and applied for spe-
cific loading conditions. For applications such as material forming, where loading
may be complex and non proportional, these limitations become problematic [4, 5].

Microscopic models [6, 7] are an alternative where the macroscopic response is
derived from averaged microscale calculations. This scale transition may be purely
analytical [6] or performedvia computations on idealmicrostructures [7]. The predic-
tive capacities of such models are also limited for arbitrary loading conditions [4, 5]
because of restrictive assumptions used in their derivations [6, 7]. Further, the calibra-
tion of these models is challenging since they usually require advanced identification
techniques [8–10]. It is worth noting that some damage variables such as porosity
can now be observed experimentally thanks to X-ray imaging techniques [11–14].
Inclusions and voids can be studied individually based on manual [13, 15] or auto-
matic [14] procedures.

Simulations allow experimentally observed quantities such as porosity and num-
ber of fractured/debonded inclusions to be related to internal variables such as plastic
strain and stress-based criteria. These microscale computations are usually driven
with idealistic microstructures, constitutive behavior, and simplified kinematic or
static boundary conditions that do not capture local strain and stress states that inclu-
sions and voids are subjected to [11, 14, 16, 17]. The principal aim of the present
work is to develop reliable simulations at the microscale using validated models to
describe the three steps of ductile damage (i.e., nucleation, growth and coalescence).
The first step then consists of developing an experimental-numerical framework,
which enables numerical models to be probed with respect to experimental data.

The material of interest is nodular graphite cast iron made of a ferritic matrix,
graphite nodules, and no significant initial porosity. Upon loading, ductile fracture is
caused bynodule/matrix debonding, void growth and coalescence [18–20]. Literature
data [18, 19, 21, 22] show that the nodules can bemodeled as voids since their stress-
carrying capacity is very small in tension. Such hypothesis will be made herein. One
of the present challenges is to test this type of assumption with local error estimators
(i.e., at the microscale). It will also allow microscopic models to be developed in
order to better capture the final stages of failure via calibrated criteria associated
with different mechanisms [23, 24].

The framework followed herein, which was first applied to another test case [25],
quantitatively compares experimental bulk data with 3D computations. It consists of
the following steps (Fig. 1):

• X-ray laminography, which is a non-destructive 3D imaging technique for laterally
extended 3D objects [26–30], to acquire radiographs and subsequently reconstruct
3D volumes of different steps of a mechanical test. By post-processing such bulk
data, the morphology of the two-phase microstructure can be revealed and its
changes can be analyzed.

• Digital volume correlation (DVC) to measure 3D displacement fields [31–34].
Small interrogation volumes are independently registered in the considered Region



Experimental-Numerical Validation Framework … 149

Fig. 1 Schematic representation of themethods used in the present chapter for validating numerical
simulations at the microscale (after Ref. [25])

of Interest (ROI). The only information that is kept is the mean displacement
assigned to each analyzed Zone of Interest (ZOI) center. In the following, FE-
based approaches [35] will be considered. Registrations are performed over the
whole ROI using FE discretizations. Such DVC approaches can be directly linked
with numerical simulations of mechanical tests [36–38]. In particular, DVC mea-
surements serve as Dirichlet boundary conditions to the Finite Element (FE) com-
putations at the microscale.

• FE simulations to explicitly model the actual morphology of cast iron thanks
to laminography data (see e.g., Refs. [39, 40]). The Level-Set (LS) procedure
[41, 42], which is used herein, enables interfaces to be described in FE simulations
under large deformations and complex topological events [43–45]. It is worth
noting that regularity [46] and conservation [47] issues have to be handled with
care.

• FE computations are run with an elastoplastic law to describe the nonlinear behav-
ior of the ferritic matrix. The nodules are modeled as elastic media with very low
Young’s modulus.

• Comparisons between experiments (i.e., DVC measurements) and 3D FE compu-
tations driven by measured displacements (i.e., DVC-FE) are performed for dis-
placement fields and, more importantly, gray level residuals, which were shown
to be very powerful error estimators [25].

• The change of the mean volume fraction of pores is also compared by analyzing
the reconstructed volumes and the predictions with DVC-FE.
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The chapter is structured as follows. The experimental setup and laminography are
first discussed. Digital Volume Correlation is summarized next. Uncertainty quan-
tifications are performed. FE computations including the microstructure meshing
procedure are then described. Last, the results from both methods are compared
relatively via kinematic field subtractions and absolutely by computing gray level
residuals. The predictions of the damage state are also confronted with experimental
evidence.

2 Experimental and Numerical Framework

2.1 Experiments

The studied material is commercial nodular graphite cast iron (serial code: EN-GJS-
400). Figure2a shows the sample geometry, which is inspired by Ref. [48]. The
holes have been machined via Electrical Discharge Machining (EDM). The load is
manually applied to the sample by controlling the global relative displacement via
screw rotation.

After applying each loading step, a set of radiographs is acquired while the sam-
ple is rotated about the laminographic axis (i.e., parallel to the specimen thick-
ness direction). This axis is inclined with respect to the X-ray beam direction

(a) (b)

Fig. 2 a Sample geometrywith the scanned region between pin holes;b section of the reconstructed
volume with ROI position
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Fig. 3 Mid-thickness section of the reconstructed volume for three different loading steps

by an angle θ ≈ 60◦. The series of radiographs is then used to reconstruct 3D
volumes via filtered-back projection [49]. A GPU-accelerated implementation of
this algorithm [50] has been utilized herein. The reconstructed volume size is
1600 × 1600 × 1600 voxels (each voxel has a physical length of 1.1 µm). After
scanning the undeformed state (0) three times, 12 additional scans are performed
upon stepwise loading. The last scan corresponds to the final crack.

The scanned zone encompasses the two holes. The selected ROI for DVC and
FE calculations mainly focuses on the ligament between the two holes (Fig. 2b). The
two machined holes are 500 µm in diameter and the nodule population, which is
assumed to behave as voids in the FE computations, has a characteristic diameter
of 60 µm. It is considered as secondary void population, which can be observed at
micrometer resolutions. Figure3 shows mid-thickness sections of the reconstructed
volume for three different load stages. Classical void coalescence mechanisms are
accompanied by sheet coalescence between the twomachined holes in the last loading
step (deformed state (11)).

2.2 Digital Volume Correlation

Global DVC, which is used herein, is an extension of global 2D DIC [51, 52].
Reconstructed volumes are described by discrete gray level fields of spatial (voxel)
coordinate x. DVC consists in registering the gray levels I0 in the reference configu-
ration with those of the deformed volume It such that their conservation is obtained

I0(x) = It [x + u(x)] (1)

where u is the Lagrangian displacement field. In experiments gray level conservation
(1) is never satisfied in laminography due to acquisition noise and reconstruction arti-
facts [53]. Therefore the gray level residual ρ(x) = I0(x) − It [x + u(x)] is globally
minimized by considering its L2-norm with respect to kinematic unknowns, which
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parameterize the measured displacement field. For global DVC, the whole ROI is
considered and the global residual Φ2

c

Φ2
c ({u}) =

∑

ROI

ρ2(x, {u}) (2)

is minimized with respect to the unknown degrees of freedom u p gathered in the
column vector {u} when the displacement field is written as

u(x, {u}) =
∑

p

u pΨ p(x) (3)

where Ψ p(x) are selected displacement fields associated with the parameterization
of u(x, {u}). Finite element shape functions are of particular interest since they pro-
vide direct links between measured displacement fields and numerical simulations.
DVC based on hexahedral finite elements with trilinear shape functions [35] is uti-
lized herein. Only a part of the reconstructed volume, which is referred to as DVC
ROI, is considered (Fig. 2b). To keep large ROI sizes, the reconstructed volumes are
coarsened (i.e., each 8 neighboring voxels are averaged to form one supervoxel).

The measurement uncertainties are quantified by registering two volumes of
the unloaded sample (0) with (coined “rbm”) and without (i.e., “bis”) rigid body
motion (RBM) applied between acquisitions.Noise and reconstruction artifactsmake
these two volumes non identical. The corresponding displacement fields account for
laminography and DVC effects on the measurement uncertainties [54]. The mea-
surement uncertainties are assessed by the standard deviation of displacement fields.
Figure4 shows the standard displacement uncertainties for different element sizes
�. Decreasing the element size induces an increase of the displacement uncertainty
[55, 56]. The element size used hereafter is set to � = 16 supervoxels and corre-
sponds to a standard displacement uncertainty of 0.25 supervoxel. This level is the
limit below which the estimated displacement levels are no longer trustworthy.

Fig. 4 Standard
displacement uncertainties as
functions of the element size
� expressed in supervoxels
for two different acquisitions
of the reference
configuration



Experimental-Numerical Validation Framework … 153

Table 1 Elastoplastic properties of the ferritic matrix

E (GPa) ν σy (MPa) K (MPa) n

210 0.30 290 382 0.35

SuccessfulDVCregistrationswere achieved for thefirst 9 incremental calculations
(i.e., registrations between step n − 1 and step n). The measured displacement fields
will serve as DVC-FE boundary conditions. The measured displacement fields are
interpolated for each loading step onto the FE mesh of the ROI using the shape
functions of the DVC mesh).

2.3 Simulations

To perform microscale FE simulations the numerical framework discussed in
Refs. [44, 46, 47, 57, 58] is followed. The ROI selected for the FE simulations has
to belong to all DVC ROIs for each analyzed loading step and to be made as large as
possible [25]. To model the experimental microstructure, standard image processing
operations are carried out [59, 60], namely, smoothing the data, applying a gray value
threshold to separate matrix and voids, and then converting these binary data into
signed distance function. The latter is interpolated onto a first mesh of uniform size
of 10 µm of the FE ROI via trilinear interpolation. The corresponding signed dis-
tance function is then regularized with a parallel reinitialization algorithm [46], and
used to locate the interfaces [25, 47]. An adaption step is added to control the local
maximum curvature of the interface [25, 58]. These different steps are exemplified
in Fig. 5 for a 2D laminography section. The final mesh has a size of 10 µm close to
matrix/void interfaces and 50 µm at a distance of 100 µm from any interface with
a linear transition. As shown in Fig. 5 the FE discretization of the microstructure is
very close to the experimental observation.

The graphite nodules are modeled as zones with very low Young’s modulus
[18, 19, 21, 22, 25], while the ferriticmatrix is considered as an elastoplasticmedium
with power law hardening

σ0(p) = σy + Kpn (4)

where p is the equivalent plastic strain, σy the initial yield stress, K the plastic
modulus and n the hardening exponent. The properties of the matrix (Table1) are
deduced from tensile experiments on pure ferrite [21].

The satisfaction of equilibrium equations is obtained with a mixed velocity-
pressure formulation solved with P1+/P1 elements to avoid locking [61]. The non-
linear behavior of the matrix requires Newton-Raphson schemes to be implemented
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(a) (b)

(d) (c)

(e) (f)

Fig. 5 Image immersion and meshing. a Initial laminography 2D section. b Signed distance func-
tion computed thanks to image processing. c Signed distance function interpolated and reinitialized
on the FE mesh [46]. d Conforming FE mesh generated and adapted to interfaces and local maxi-
mum curvature, e Zoom on the FE mesh. f Comparison between initial laminography 2D section
and interfaces in the final FE mesh (in white)



Experimental-Numerical Validation Framework … 155

locally and globally [62]. An updated Lagrangian scheme is used to handle large
deformations. Further, large distortions and possible flip of elements are avoided
with automatic mesh motion and adaption [47].

3 Results

The numerical results using DVC-FE are illustrated in Fig. 6. This computation con-
siders 100 voids meshed with ≈1 million elements. Void growth and equivalent
plastic strains develop as more load is applied.

(a) (b)

(c) (d)

Fig. 6 ROI calculation results using DVC-FE showing the 3D meshed voids and the equivalent
plastic strain on sections when: a u = 0 (undeformed state), b u = 83.4 µm, c u = 192.2 µm,
d u = 320.8 µm
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Fig. 7 Mid-section normal
to z-direction showing
absolute difference between
DVC and DVC-FE
displacement fields. The
displacement difference is
expressed in supervoxels
(1 supervoxel ←→ 2.2 µm)

3.1 Error Estimators

Relative displacement comparisons are first reported. Measured displacement fields
(via DVC) are applied to the boundaries of the FEROI. They are also available within
the whole ROI. Thus, DVC and DVC-FE displacement fields can be interpolated on
the same mesh and directly compared as reported in Fig. 7. The main differences
are concentrated around debond zones between the matrix and the nodules, while
those close to the boundaries are mostly zero. The fact that the differences become
significantly larger than the displacement uncertainty is a first indication of model
error.

The errors in terms of gray level residuals are now discussed. For each pair of con-
secutive loading steps, the volume reconstructed for the second step can be deformed
back with the measured or computed displacement field. This corrected volume
can be compared voxelwise with the volume of the first step. With a newly devel-
oped tetrahedral-DVC code [38, 63] FE computations with tetrahedral meshes can
be imported in the reconstructed volumes frame where the displacement fields are
interpolated voxelwise. The deformed volume It (x) is corrected by the computed
displacement field uFE(x), i.e., It (x + uFE(x)) is obtained. The gray level residuals,
namely, differences between the volume of the reference configuration I0(x) and
the corrected deformed volume It (x + u(x)) are assessed for DVC and FE com-
putations. Quantitative and local error measurements are evaluated for DVC and
DVC-FE procedures. Figure8 shows the standard deviation of residual fields that
are normalized by the dynamic range of the volume (i.e., 256 gray levels). The DVC
residuals remain close to those observed in the uncertainty analysis for which no
strains occurred. Therefore the DVC results are deemed trustworthy.

The errors produced by the micromechanical models inside the DVC-FE domain
also remain low and slightly increase at later loading steps (from ≈15% initially to
≈20% in last loading step). However they are always higher than the DVC residuals.
This observation confirms model errors that become more significant as coalescence
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Fig. 8 Standard deviation for the dimensionless gray level residual fields for all loading steps. For
comparison purposes, the dashed line corresponds to the uncertainty analysis for the so-called “bis”
case (see Sect. 2.2)

Fig. 9 Absolute gray level differences at the z midsection after correction with DVC (a) and
DVC-FE (b) displacements for the ninth loading step

sets in. Figure9 confirms that these differences between DVC-FE simulations and
experiments are mostly concentrated around interfaces.

3.2 Damage Analysis

Damage predictions of DVC-FE are qualitatively compared studying the
x-midsection of the ROIwith experimental images in Fig. 10. Sincemeasured bound-
ary conditions are expected to follow experimental images at the spatial resolution of
DVC, the matrix/void interfaces in the simulation (in white in the figure) are super-
imposed. The interfaces are very accurately meshed on average and tracked during
the simulation up to the last loading step. Quantitatively void growth is defined by
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(a) (b)

(d)(c)

Fig. 10 ROI (blue line) calculation results using DVC-FE comparing the numerical matrix/void
interface (white line) with experimental images for the x-midsection. a u = 0 (undeformed state),
b u = 83.4 µm, c u = 192.2 µm, d u = 320.8 µm

Fig. 11 Void volume change
observed experimentally and
predicted within the present
framework

f = void volume

ROI volume
, void growth = f

f0
(5)

where f0 is the initial void volume fraction. Void growth plots are shown in Fig. 11 in
which the ‘EXP’ curve is obtained in processed laminography volumes (i.e., images
with smooth signed distance functions as shown in Fig. 5b).

The numerical results show a small decrease of porosity p at the first loading step.
This is not observed experimentally. This first loading step is bigger than the subse-
quent ones, which asks for extensive remeshing in the computations. Consequently
interfaces are slightly smoothened and void volume can be diffused. For the other
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loading steps, void growth is overestimated numerically. This may be due to the fact
that nodules are considered as very soft media in the computations, while in reality
only the voids grow after nodule/matrix interface debonding (Fig. 10).

4 Discussion

Although the results using DVC-FE look very promising, several issues need to be
addressed. There still are gaps betweenFE-DVCandDVCresults (see Figs. 9 and 10).
This gap increases when reaching the final loading steps. Similarly, the displacement
difference (Fig. 7) is significantly higher than the displacement uncertainty reported
in Fig. 4. The differences are mainly concentrated around matrix/nodule interfaces.
This observation calls for better models of the nodules and interface debonding.
Further, the increase of the error at later loading steps proves the inability of the
constitutive law used for the ferritic matrix to fully capture the acceleration of void
growth and subsequent coalescence. Better calibrated and more advanced plasticity
models may be considered at the microscale to better capture the multiscale plastic
flow. These additional developments will extensively rely on DVC-FE and its ability
to provide experimentally measured boundary conditions for micromechanical sim-
ulations. The extension of Integrated-DVC to 4D analyses [38] will be utilized to
conduct inverse analyses based on these error measurements and calibrate material
parameters at the microscale.
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Stochastic Upscaling via Linear Bayesian
Updating

Sadiq M. Sarfaraz, Bojana V. Rosić, Hermann G. Matthies
and Adnan Ibrahimbegović

Abstract In this work we present an upscaling technique for multi-scale compu-
tations based on a stochastic model calibration technique. We consider a coarse
scale continuum material model described in the framework of generalised standard
materials. The model parameters are considered uncertain in this approach, and are
approximated using random variables. The update or calibration of these random
variables is performed in a Bayesian framework where the information from a deter-
ministic fine scale model computation is used as observation. The proposed approach
is independent w.r.t. the choice ofmodels on coarse and fine scales. Simple numerical
examples are shown to demonstrate the ability of the proposed approach to calibrate
coarse-scale elastic and inelastic material parameters.

1 Introduction

Heterogeneous microstructures occur in many naturally existing or man-made mate-
rials: rocks/soils and concrete being two well-known examples. The spatial scales
on which these heterogeneities occur are orders of magnitudes smaller than the ones
for which one would like to do response predictions. This means that it is computa-
tionally not possible to resolve the small scales (micro-scale) on the predictive scale
(macro-scale).
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Additionally, models at the micro-scale may be of an entirely different nature than
what is desired on the macro-scale—typically a continuum model—as, for example,
the micro-scale model may be a discrete model. Hence it becomes clear that to
obtain continuum material models on the macro-scale, the pure “homogenisation”
is insufficient. This situation is more broadly described in [18, 26], see also the
references therein.

Thus we are looking at a stochastic upscaling approach. Much of the literature to
this subject has been reviewed in the monograph [31], as well as in [2, 4, 5, 9–11,
23, 37, 40], and [6], to which we refer for the sake of brevity in this exposition.
One way to achieve the coupling between scales with possibly completely different
descriptions is to use concepts of machine learning as in [22], the concept of which
is often, at least conceptually, grounded in Bayesian ideas. Here we directly take a
Bayesian approach.

More information on general Bayesian calibration can be found in [15, 20, 21].
The evaluation of the posterior probability density function (pdf) is often based on
statistically based sampling methods such as Markov Chain Monte Carlo (MCMC)
[8]. To avoid this computationally expensive procedure, we want to take a faster fil-
tering approach, which allows various approximations. One of the most well-known
and simplest methods in this approach is the Kalman filter (KF) and its extensions.
Therefore, here we use a numerical strategy based on the (generalised) polynomial
chaos expansion (gPCE) applied to a new extension of the KF and approximate
Bayesian estimation, which can estimate non-Gaussian distributions without sam-
pling [32, 34, 36].

As is well-known in Bayesian analysis, one generally speaking only obtains
answers in relation to things one asks. Therefore a frame of reference has to be
established a priori within which the identification will take place. The general set-
upwe propose is therefore as follows: on themacro-scale a continuummaterialmodel
is derived which not only covers the mean (i.e. homogenised) behaviour, but also
the possible deviations from it. As the micro-scale mechanical behaviour we have
in mind involves both reversible (i.e. elastic) as well as irreversible (i.e. inelastic)
behaviour, this has to be reflected also in the constitutive models considered on the
macro-scale. Here we only want to show a proof-of-concept, so we will limit our-
selves to a simple but characteristic case. For the sake of simplicity we limit ourselves
to isothermal conditions and we shall exclude strain-rate dependent behaviour, and
for the inelastic or irreversible part we only consider ductile non-softening behaviour,
i.e. strain-rate independent plasticity with hardening.

As this is to be a model for possibly more complex behaviour, we shall assume
that the macro-scale continuum model can be described as a generalised standard
material model [12, 13, 30]. This has the advantage that these materials are com-
pletely characterised by the specification of two scalar functions, the stored energy
resp. Helmholtz free energy, and the dissipation pseudo-potential. In this way the
simple case chosen here can be generalised to more complex material behaviour.
In our view this description is also a key for the connection with the micro-scale
behaviour. No matter how the physical and mathematical/computational description
on the micro-scale has been chosen, in all cases where the description is based on
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physical principles it will be possible to define the stored (Helmholtz free) energy
and the dissipation (entropy production). These two thermodynamic functions will
thus be used to connect the micro—and the macro-structure models.

In a littlemore detail, the identification of themacro-structure generalised standard
material constitutive model proceeds as follows: the micro-structure is exposed to
some external action resp. stimulus, in this purely mechanical case this is large
scale homogeneous deformation. The response is measured in the change of the two
thermodynamic functions alluded to: the stored resp. Helmholtz free energy and the
dissipation resp. entropy production. The main purpose of this note is to show that
this idea is computationally feasible.

The content of this note is as follows: In Sect. 2 the stochastic upscaling will be
described. The identification resp. calibration will use Bayesian ideas [32, 34, 36].
As this topic is only a computational tool, it will only be sketched here briefly in
Sect. 2.1, and more detailed accounts can be found in the literature. The coarse—and
fine-scale model used in this note will be described in Sect. 3 and Sect. 4 respectively.
These theoretical concepts will be numerically applied to a simple but illustrative
example in Sect. 5.

2 Stochastic Upscaling

Bayesian ideas are connected with a probabilistic description of our knowledge,
in this case the parameters which describe a particular instance of a generalised
standardmaterial, and additional information is reflected in conditional probabilities,
conditioned on this additional information. Here this additional information is the
information from the fine-scale model. Our presentation follows [27].

2.1 Bayesian Inverse Problems

Conditional probabilities are rigorously derived from conditional expectations. Here
that foundation will also be taken as the computational starting point, by numerical
approximation of conditional expectation. For nonlinear models, further simplifi-
cations are needed, which give a computationally efficient algorithm, leading via a
generalisation of the well-known Gauss-Markov theorem to something which may
be seen as a substantial extension of the Kalman filter. The resulting filter is therefore
termed the Gauss-Markov-Kalman filter (GMKF). Here we give a short description
of the connection of the GMK-filter with Bayesian updating via conditional expec-
tation.
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2.1.1 Mathematical Set-Up

Assume that one has a computational model—here that will be our coarse-scale
model—symbolically written as

Ac(uc, q) = fc, (1)

where the variable uc ∈ Uc represents a the state of the system in a vector space
Uc, the variables q = [q1, . . . , qn]T are parameters to calibrate the model, fc stands
for the external influences—the loading, action, initial conditions, experimental set-
up—and operator Ac describes the system under consideration. Althoughwritten as a
stationary system, for the sake of simplicity we will tacitly assume that Eq. (1) covers
also time-evolution problems. The parameters q may actually include the state uc

or parts of it, or the initial conditions in case of a time-evolution problem. To keep
things simple, only one update step is described.

In addition there is a second system—in this case the fine-scalemodel—something
we can evaluate at possibly high cost, but which does not need any parameters for
calibration

A f (u f ) = f f , (2)

with state u f ∈ U f , where it is assumed that fc and f f describe the same situation.
Again it iswritten in a simple stationary form, although itmay also cover evolutionary
problems. The model Eq. (2) is to be used to calibrate the parameters q in such a way
that the predictions of Eq. (1) match those of Eq. (2) as well as possible.

As Uc �= U f , the states uc and u f can not be directly compared, and the two
models are to be compared by some observables or measurements y ∈ Y , where Y
is typically some vector space like Rm . This measurement function for Eq. (1)

yc = Yc(q,uc(q, fc)) (3)

will also shortly be denoted as yc = Yc(q). We also assume a similar function

y f = Y f (u f ( f f )), (4)

which models the same observation in relation to Eq. (2). Further assume that yc is
not observed directly, but rather yc + ε, where ε is a random variable, which in the
case of Eq. (2) being reality models the errors of the measurement device, and in case
of Eq. (2) being a computational model can represent the model error of Eq. (2), i.e.
the difference between it and reality. The observation model is hence

z = yc + ε = Yc(q) + ε. (5)

The goal of calibration is now to estimate q such that yc and y f resp. z and y f deviate
as little as possible.
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2.1.2 Synopsis of Bayesian Estimation

The idea is that the observation z, depending on the unknown parameters q, should
give an indication on what q should be. But in general the mapping q �→ Yc(q) is
not invertible, i.e. z does not contain information to uniquely determine q, or there
are many q which give a good fit. Therefore the inverse problem of determining q
from observing z is termed an ill-posed problem.

In the Bayesian view, see e.g. [39], the unknown resp. uncertain parameter q is
modelled as a random variable (RV)—also called the prior model—and additional
information on the system through measurement or observation changes the prob-
abilistic description to the so-called posterior model. It is well-known that such a
Bayesian update is in fact closely related to conditional expectation [3], and this will
be the basis of the method presented. For these and other probabilistic notions see
for example [33] and the references therein. We also show computational procedures
for this update through methods based on functional approximation or spectral rep-
resentation of stochastic problems [29]. These approximations are in the simplest
case known as Wiener’s so-called homogeneous or polynomial chaos expansion,
which are polynomials in independent Gaussian RVs—the “chaos”—and which can
also be used numerically in a Galerkin procedure [29]. Since the parameters of the
model to be estimated are uncertain, all relevant information may be obtained via
their stochastic description.

Formally, assume that the uncertain parameters are given by a random variable
(RV)

q : � → R
n as a RV on a probability space (�,A,P), (6)

where the set of elementary events is �, A a σ-algebra of measurable events, and P

a probability measure. The expectation corresponding to P will be denoted by E (),
e.g. x̄ := E (q) := ∫

�
q(ω)P(dω).

As formally q is a RV, so is the state uc, and also the prediction of the “true”
measurement yc Eq. (1). Also assume that the error ε(ω) is a Y-valued RV, and
in total the prediction of the observation or measurement Eq. (5) z(ω) = yc(ω) +
ε(ω) therefore becomes a RV as well; i.e. we have a probabilistic model of the
observation.

2.1.3 The Theorem of Bayes and Conditional Expectation

We recall Bayes’s theorem as formulated by Laplace, commonly accepted as a con-
sistent way to incorporate new knowledge into a probabilistic description [39]. The
elementary textbook statement of the theorem is

P(Iq |Mz) = P(Mz|Iq)
P(Mz)

P(Iq), if P(Mz) > 0, (7)
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where Iq is some subset of possible q on which we would like to gain some infor-
mation, and Mz is the information provided by the measurement. The term P(Iq)
is the so-called prior, it is what we know before the observation Mz . The quantity
P(Mz|Iq) is the so-called likelihood, the conditional probability of Mz assuming
that Iq is given. The term P(Mz) is the so called evidence, the probability of observ-
ing Mz in the first place. It is necessary to make the right hand side of Eq. (7)
into a real probability—summing to unity—and hence the conditional probability
P(Iq |Mz), the posterior, reflects our knowledge on Iq after observing Mz . This
statement Eq. (7) faces problems if the set of observationsMz has vanishingmeasure,
P(Mz) = 0, as is often the case when we observe continuous random variables, and
the theoremwould have to be formulated in densities, ormore precisely in probability
density functions (pdfs), which may be possible under some additional assumptions.

To avoid the difficulties with conditional probabilities, Kolmogorov defined as a
first and fundamental notion conditional expectation, from which conditional prob-
abilities may easily be recovered. It has to be defined w.r.t sub-σ-algebras B ⊂ A
of the underlying σ-algebra A. The σ-algebra may be loosely seen as the collec-
tion of subsets of � on which we can make statements about their probability. The
sub-σ-algebra B may be seen as the sets on which we learn something through the
observation.

The simplest, although slightly restricted, way to define the conditional expecta-
tion [3] is to just consider RVs with finite variance, i.e. the Hilbert-space

S := L2(�,A,P) := {r : � → R : r measurable w.r.t. A, E
(|r |2) < ∞}.

IfB ⊂ A is a sub-σ-algebra, the space

SB := L2(�,B,P) := {r :∈ S : r measurable w.r.t. B}

is a closed subspace, and hence has a well-defined continuous orthogonal projection
PB : S → SB. The conditional expectation (CE) of a RV r ∈ S w.r.t. a sub-σ-
algebra B is then defined as that orthogonal projection

E (r |B) := PB(r) ∈ SB. (8)

As the CE is an orthogonal projection, it minimises the squared error

E
(|r − E (r |B) |2) = min{E (|r − r̃ |2) : r̃ ∈ SB}, (9)

from which one obtains the variational equation or orthogonality relation

∀r̃ ∈ SB : E (r̃(r − E (r |B))) = 0. (10)

In our case of an observation of a RV z, the sub-σ-algebra B will be the one
generated by the observation z, i.e.B = σ(z), and the corresponding CEwill simply
be denoted asE (r |z) := E (r |σ(z)). According to theDoob-Dynkin lemma [3],Sσ(z)
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is given by
Sσ(z) := {r ∈ S : r(ω) = φ(z(ω)),φ measurable}, (11)

i.e. functions of the observation. This means intuitively that anything we learn from
an observation is a function of the observation, and the subspace Sσ(z) ⊂ S is where
the information from the measurement lies. A RV r may be decomposed into its
orthogonal components w.r.t. Sσ(z) by

r = Pσ(z)(r) + (IS − Pσ(z))(r)

= Pσ(z)(r) + (
r − Pσ(z)(r)

) = E (r |z) + (r − E (r |z)) , (12)

where (IS − Pσ(z))(r) ∈ S⊥
σ(z), the orthogonal complement of Sσ(z). Obviously

Pσ(z)(r) is the best estimator for r measured in the error normsquared‖r − Pσ(z)(r)‖2S
from the subspaceSσ(z). From ameasurement zwe learn something about the compo-
nent Pσ(z)(r) inSσ(z). Hence one simple approach is the least-squares approximation,
which also underlies the Gauss-Markov theorem and its extensions [24].

If q f is our prior knowledge before the measurement, the forecast, we define the
filtered, analysed, or assimilated RV qa after the observation y̌ from Eq. (12) as

qa = E(q f |y̌) + (
q f − E(q f |z)

)

= q f + (
E(q f |y̌) − E(q f |z)

) = q f + q i , (13)

where qi = E(q f |y̌) − E(q f |z) is called the innovation, and asE(qa|y̌) = E(q f |y̌),
it follows that E(qi |y̌) = 0.

Equation (13) is the nonlinear CE-filter [27], but as E(q f |z) can be a complicated
function of z, it may be difficult to compute. A simpler version results if in Eq. (11)
one takes only the affine functions, i.e. a smaller subspace

Sσ(z),1 := {r ∈ S : r(ω) = H(z(ω)) + b, H linear} ⊂ S, (14)

and the minimisation Eq. (9) is performed over this smaller subspace, resulting in
an optimal linear map K q (the so-called Kalman-gain) [24, 27]—the constant b
in Eq. (14) cancels in Eq. (13) and hence does not have to be computed. With this
simplification in Eq. (13) one arrives at the Gauss-Markov-Kalman-filter (GMKF):

qa = q f + (Kq(y̌) − Kq(z))

= q f + Kq(y̌ − z) = q f + Kq(y̌ − (Yc(q f ) + ε)). (15)

This is an equation between RVs—q f = q f (ω) and Kq(z) = Kq(z(ω)) are RVs,
and hence so is qa = qa(ω)—and for a computation it has to be discretised.
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2.1.4 Spectral or Functional Approximation

Our starting point is Eq. (15). As it is a relation between RVs, it certainly also holds
for samples of the RVs, and this is the basis of the ensemble Kalman filter, the EnKF
[7]. The sampling points are sometimes also denoted as particles, and the EnKF is a
simple version of a particle filter.

Here we want to pursue the more promising functional or spectral approximation
[27, 29] for all the RVs in Eq. (15). Thismeans that all RVs, say q(ω), are described as
functions of knownRVs {θ1(ω), . . . , θ�(ω), . . . }. Often, when for example stochastic
processes or random fields are involved, one has to deal here with infinitely many
RVs, which for an actual computation have to be truncated to a finte vector θ(ω) =
[θ1(ω), . . . , θn(ω)] of significant RVs. We shall assume that these have been chosen
such as to be independent. As we want to later approximate q ∈ R

n , we do not need
more than n RVs θ.

One further chooses a finite set of linearly independent functions {�α}α∈JM of the
variables θ(ω), where the index α often is a multi-index, and the setJM is a finite set
ofmulti-indiceswith cardinality (size)M .Many different systems of functions can be
used, classical choices are [29] multivariate polynomials—leading to the polynomial
chaos expansion (PCE).We shall assume that the set {�α}α∈JM includes all the linear
functions of θ. Thus a RV q(ω) would be replaced by a functional approximation

q(ω) =
∑

α∈JM

qα�α(θ(ω)) =
∑

α∈JM

qα�α(θ) = q(θ). (16)

The argumentωwill be omitted from here on, as we transport the probabilitymeasure
P on � to Θ = Θ1 × · · · × Θn , the range of θ, giving Pθ = P1 × · · · × Pn as a
product measure, where P� = (θ�)∗P is the distribution measure of the RV θ�, as
the RVs θ� are independent. All computations following this are performed on Θ ,
typically some subset of Rn . Hence n is the dimension of our problem, and if n is
large, one faces a high-dimensional problem.

The filter Eq. (15) then reads (see [27] for more details)

qa(θ) = q f (θ) + C x f zC
−1
z (y̌ − z(θ)) = q f (θ) + Kq(y̌ − z(θ)). (17)

this has been termed—especially if the approximating functions are polynomials—
as a spectral Kalman filter (SPKF). Inserting the functional approximations into
Eq. (17), one obtains an explicit and easy to evaluate expression for the assimilated
or updated variable in terms of the input.

3 The Coarse-Scale Model

The coarse scale model is a continuummodel, and here we take the simplest case and
assume the displacements and strains to be infinitesimal, and the material properties
to be spatially constant. This is the concrete example of Eq. (1) in Sect. 2.1.1. The
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material is assumed to be of the standard generalised type [12, 13, 30]. The behav-
iour of such materials is completely charcterised by two functions: the stored resp.
Helmholtz free energy densityψc(ε,w, q) for the reversible behaviour, and the dissi-
pation pseudo-potential density ϕc(ε, ε̇,w, ẇ, q) for the irreversible behaviour, and
the assumption of maximal dissipation. Here ε is strain, w is a collection of internal
phenomenological variables (the memory of the material), and q is a collection of
parameters specifing the detailled character of the functions ψc and ϕc.

For the identification the coarse scale model will occupy exactly the domain of a
standard quadrilateral element, and the loadingwill consist of imposed displacements
on the boundary.

We consider the pressure sensitive materials such as concrete and rocks described
in a simplified manner using the Drucker-Prager yield criterion. Here, an associated
rate-independent model with linear hardening is considered for which the Helmholz
free energy and the yield function are defined as

ψc = 1

2
(ε − εp) : C : (ε − εp) + 1

2
Kpν

2, (18)

f (σ,χ) = √
dev(σ) : dev(σ) − 1

3
tr(σ) tan(α) −

√
2

3
(σy − χ), (19)

respectively. In Eq. (18) Kp denotes the isotropic hardening and C is the elastic
constitutive tensor assumed to be isotropic and homogeneous, and hence described
by bulk and shear moduli κ and G, respectively. Similarly, in Eq. (19) σy denotes
the yield stress, α is the friction angle which relates cohesion c and yield stress as
c = tan (α)σy , σ := C : (ε − εp) is the stress, and χ := Kpν is the backstress. The
variable ν is the accumulated hardening, and εp is the total plastic strain; both are
internal phenomenological variables and are components of w.

The model as just described is deterministic, and is to be extended into its proba-
bilistic counterpart as the material properties are unknown and are to be determined
from the energy measurements. By collecting all unknown material parameters, i.e.
the variables in the elastic constitutive tensor namely {κ,G} and inelastic ones in the
yield function:{σy, Kp, c} into the vector

q = [logκ, logG, logσy, log Kp, log c]T ,

one may describe q a priori in a Bayesian manner via a corresponding probability
distribution, e.g. chosen via themaximumentropy principle. As all the parameters are
positive, we actually estimate their logarithms (which are unconstrained, at the same
time producing the proper metric for these positive parameters), and hence take as
prior distributions for these indepedent normally distributed random variables. This
gives the original parameters a log-normal distribution as prior.

In the Bayesian identification the uncertain material parameters are random vari-
ables, and hence the coarse scale material is a stochastic one. This means that the
above mentioned stored energy density ψc and the dissipation density ϕc become
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random variables, and additionally to their spatial dependence on the location x as
densities, they are formally functions of the variable ω ∈ �, i.e. elementary proba-
bility events as described in Sect. 2.1.2. The computation of the coarse scale is hence
a so-called stochastic problem which has similar form to the deterministic one [18,
26]. Computationally, the striking difference upon full discretisation lies in the prob-
lem dimension. Namely, the state variable lives in a space obtained as the tensor
product of the corresponding deterministic space and the space of random variables
S. Thus, the stochastic problem requires a temporal, spatial, and stochastic discreti-
sation, largely increasing the problem dimension and thus the computational effort.
For a full discussion of such computations, see [35].

The probabilistic discretisation is done in a functional approximation setting as
already described in Sect. 2.1.4, i.e. as ansatz are taken the polynomial chaos expan-
sions for all describing variables, like ε, w, and q, as in Eq. (16). Additionally,
the spatial dependence is modelled in a standard manner by finite element shape
functions. Further detailed information on the mathematical description and on the
solution of the whole problem may be found in [35]. Here the coefficients in the
expressions like Eq. (16) were found by pseudo-spectral projection resp. regression.

The measurement for the coarse scale model as described in Eq. (3) in Sect.. 2.1
takes now the concrete form

Yc(ω) =
[

. . . ,

∫
ψc(x,ω, ε,w, q)Nm(x) dx,

∫
ϕc(x,ω, ε, ε̇,w, ẇ, q)Nm(x) dx

]

,

(20)

where {Nm}m are the coarse scale element shape functions. Hence the measurements
Eq. (20) are random variables describing certain spatial averages of the stored and
dissipated energies in the domain—one quad element—of the coarse scale model.

4 The Fine-Scale Model

As the main purpose here is to show that and how the upscaling procedure works,
the fine scale or “micro-scale model” is here taken to be the fine-discretised version
of the coarse-scale continuum model of Sect. 3. But it will become obvious that any
model which allows a “measurement” resp. computation of stored and dissipated
energies could be used.

The notion of the standard generalised material is kept, only the same compu-
tational domain as for the coarse-scale model, which was there discretised by only
one quad element, is here discretised by a high number (50 × 50 block) of finite
elements. The description of the material parameters is not assumed to be constant
as in the coarse-scale model in Sect. 3, but are taken to correspond to a realisation of
random fields.

This means that the material description is similar as in Sect. 3, but the parame-
ters which occur there in the vector q are spatially varying realisations of random
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fields. Also, here they are not random variables, but fixed though spatially varying;
albeit unknown to the coarse-scale model in the identification procedure. They do
not need to be modelled as variables. Hence the fine-scale stored resp. Helmholtz
free energy density is given by ψ f (x, ε f (x),w f (x)), where ε f and w f are the cor-
responding fine-scale fields. Similar considerations hold for the fine scale dissipation
pseudo-potential density ϕ f (x, ε f (x), ε̇ f (x),w f (x), ẇ f (x)). This is the concrete
realisation of the abstract model Eq. (2) in Sect. 2.1.1.

The fine-scale measurements—the concrete realisation of Eq. (4) in Sect.. 2.1—
are hence given by

Y f =
[

. . . ,

∫
ψ f (x, ε f ,w f )Nm(x) dx,

∫
ϕ f (x, ε f , ε̇ f ,w f , ẇ f )Nm(x) dx

]

,

(21)

where again the {Nm(x)}m are the coarse-scale shape functions.

5 Numerical Results

To demonstrate the proposed strategy, we consider the identification of the homoge-
neous material parameters of the coarse-scale Drucker-Prager model given energy
measurements on the fine scale. The spatial domain is a two-dimensional square
block of unit length consisting of one and 50 × 50 finite elements on the coarse and
fine levels, respectively. Both the scales are modelled by the identical continuum
model.

Furthermore we consider strain controlled experiments yielding different
deformed configurations namely:

• case I: bi-axial compression

Fig. 1 Loading paths in
principal strain space
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Table 1 Deformation matrix for different loading cases

H I H I I H I I I[
−0.003 0

0 −0.003

] [
0.0 0.003

0.003 0.0

] [
0.003 0

0 −0.003

]

• case II: bi-axial compression-tension
• case III: pure shear

The corresponding boundary displacements are enforced by specifying the respective
displacement gradient

ub = Hxb (22)

where ub and xb are the boundary displacements and nodal coordinates respec-
tively. The deformation gradient H defines the given loading case, with values spec-
ified in Table1 and the loading paths depicted in Fig. 1. As we are dealing with
different experiments, the update of the coarse-scale model parameters is performed
in a sequential way such that the energy measurements from the first experiment
are used to obtain the intermediate posterior which further serves as a prior for the
second experiment.

5.1 The Homogeneous Case

This trivial case characterised by homogeneous Drucker-Prager material model on
both scales serves as an example for the verification of the proposed strategy. Both
scales are modelled using one element. The measurements used for upscaling are
incremental stored energy and dissipation. The material properties on fine-scale are
given in Table. 2.

Furthermore, we assume that only the value of the measurement is known and
that the true parameter values are unavailable. Hence, as prior on the coarse-scale
we adopt the lognormal distributions characterised by the second order statistics, see
Table. 3.

Note that the prior mean and standard deviation correspond to 10% offset from
fine truth and 5% coefficient of variation.

We first consider the update of the elastic parameters {κ,G} using the first elastic
step from loading configuration I (bi-axial compression) and II (pure shear) in a
sequential manner. In the first loading step, the coarse-scale κ is updated to the fine

Table 2 Fine-scale material parameters

κ G σy K p c

204 GPa 92 GPa 170 MPa 100 MPa 283.33 MPa
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truth shown in Fig. 2a, followed by the update of G in the second step Fig. 2b. This is
expected behaviour, as themeasured elastic energy is a consequence of the volumetric
change (characterising κ) in the first step, and shape distortion (characterising G) in
the second one, respectively.

For the update of the inelastic parameters {σy, Kp, c} we use incremental plastic
dissipation and stored hardening energy as measurements. The update is performed
sequentially in four plastic increments, the first two being from loading case II (pure
shear) and the remaining ones from case III (compression-tension) hence the type
of measurements is kept same during the increments. As can be seen in Fig. 3a–c,
with each new information the posterior distributions of all of three parameters are
getting more narrow, i.e. more information is brought to the update process and we

Table 3 Coarse-scale prior statistics

Property κ G σy K p c

μ 224.89 GPa 101.2 GPa 187 MPa 110 MPa 311.67 MPa

σ 11.2 GPa 5.06 GPa 9.35 MPa 5.5 MPa 15.58 MPa

(a) (b)

Fig. 2 Update of elastic material parameters {κ,G} using elastic step of load case I (bi-axial
compression) followed by elastic step of load case II (pure shear), shown in (a) and (b) respectively

(b)(a) (c)

Fig. 3 Updates for plastic material parameters {σy, Kp, c} for the first 2 plastic steps for loading
II and the latter 2 with loading III shown in (a), (b) and (c) respectively
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are less uncertain about the model parameter values. In addition, the cohesion c in
Fig. 3c is characterised by a posterior mean which equals the true parameter values,
whereas σy and Kp are slightly offset, see Fig. 3a–b.

5.2 The Heterogeneous Case

In order to simulate more realistic multiscale problem, here is considered an example
in which the fine-scale is described by deterministic heterogeneous properties, i.e. a
particular realisations of log-normal random fields described byGaussian covariance
functions.

We restrict our study on upscaling of plastic parameters, keeping elastic values
as known and deterministic for the coarse-scale. The loading sequence is kept the
same as in the homogeneous case. The fine-scale realisations of {σy, Kp, c} are
generated using values from Table2 as mean and 5% coefficient of variation for
varying correlation lengths �c = {5 �e, 10 �e, 50 �e}, where �e = 1/50 is the fine-
scale element length (see Fig. 4a–c). The prior mean values for the coarse-scale
inelastic parameters are taken 5% off from their fine-scale counterpart, with 5% as
coefficient of variation.

The main goal here is to find the unknown equivalent coarse-scale homogeneous
parameters for the given spatially heterogeneous material parameters on fine-scale.
For each step of loading incrementwe obtain a newupdate for the coarse-scale values.
For σy , shown in Fig. 5a–c, from the second increment onwards, the posterior gets
significantly narrower and the shift in distribution is quite small, this becomes more
prominent as one goes to maximum value of �c = 50 �e in Fig. 5c. This shows that
after significant plastic deformation, σy becomes insensitive to the applied loading.
For the cohesion c, referring to Fig. 5d–f, the posterior becomes narrower in the
second increment, however there is no significant reduction with further updates,
moreover the effect of increasing lc is much less pronounced as compared to σy .
In line with the cohesion c, the hardening modulus Kp (Fig. 5g–i) also exhibits a
similar response, however with one striking difference: in the first update the shift
in the distribution is quite significant for �c = {5 �e, 10 �e} cases in Fig. 5g–h. The

(a) (b) (c)

Fig. 4 Random field realisation for the fine-scale σy for different correlation lengths �c =
{5 �e, 10 �e, 50 �e} shown in (a), (b) and (c) respectively
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(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

Fig. 5 Updates using first 2 plastic steps for load case II (pure shear) and the latter 2 with loading
III (compression-tension) shown for yield stress σy in (a)–(c), cohesion c in (d)–(f) and hardening
modulus Kp in (g)–(i) for �c = {5 �e, 10 �e, 50 �e} respectively

variability in the updates for coarse-scale Kp can be substantiated with the following
argument: owing to the higher degree of spatial heterogeneities (small �c cases) at
fine-scale, the imposed homogeneous strain field produces stress field which varies
significantly from one element to the other.

Therefore on the coarse-scale, a linear isotropic hardening relation is apparently
not sufficient to capture fine-scale heterogeneities, one may need a more elaborate
hardening law (e.g. saturation hardening [17]) on coarse-scale. To conclude the dis-
cussion for the heterogeneous case,we show that the distributions of forward energies
computed from the updated posterior on the coarse-scale narrow down on the fine-
scale value. For the sake of brevity, we show two instances in Figs. 6a–b and7a–b
for the updated incremental hardening energy and dissipation as evidence.
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(a) (b)

Fig. 6 Incremental hardening energy (a) and dissipation (b) for the load case II (pure shear) second
increment and �c = 10 �e realisation

(a) (b)

Fig. 7 Incremental hardening (a) and dissipation (b) for the load case III (compression tension)
second increment and �c = 10 �e realisation

6 Conclusion

In this paper we have shown a novel stochastic strategy to upscale fine-scale infor-
mation onto a coarse scale. The lack of knowledge about the coarse-scale renders
it stochastic, which is then updated in a Bayesian framework. The output quanti-
ties of interest (QoI) are updated random variables which give us not just a mean
(deterministic value), but a distribution over it, allowing us to estimate the inherent
uncertainty. The proposed approach is shown to work for non-linear material mod-
els as demonstrated in illustrative numerical examples. The idea of using energy as
measurement to update coarse-scale models provides a promising outlook for using
more complicated fine-scale models. Moreover the method takes advantage of exist-
ing deterministic codes for the mechanical FE-computations and fast sampling-free
Bayesian filters [32, 34, 36] to achieve its objective in a computationally efficient
way.
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AModel Reduction Technique in Space
and Time for Fatigue Simulation
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and Pierre Ladevèze

Abstract The simulation of mechanical responses of structures subjected to cyclic
loadings for a large number of cycles remains a challenge. The goal herein is to
develop an innovative computational scheme for fatigue computations involving non-
linear mechanical behaviour of materials, described by internal variables. The focus
is on the Large Time Increment (LATIN) method coupled with a model reduction
technique, the Proper Generalized Decomposition (PGD). Moreover, a multi-time
scale approach is proposed for the simulation of fatigue involving large number
of cycles. The quantities of interest are calculated only at particular pre-defined
cycles called the “nodal cycles” and a suitable interpolation is used to estimate their
evolution at the intermediate cycles. The proposed framework is exemplified for a
structure subjected to cyclic loading, where damage is considered to be isotropic
and micro-defect closure effects are taken into account. The combination of these
techniques reduce the numerical cost drastically and allows to create virtual S-N
curves for large number of cycles.
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1 Introduction

The phenomenon of fatigue has been of great importance in the design of mechanical
components and civil structures. Fatigue in the most generic case can be defined as
the change in properties of a structure subjected to repetitive loading. The focus
here is on mechanical fatigue involving fluctuations in externally applied load with
respect to time. The nature of the loading however can be completely periodic, non-
periodic, or random.Whatever the nature of fatiguemaybe, the failure of the structure
is composed of three stages [1]:

1. nucleation and growth of micro-voids into a macrocrack,
2. stable propagation of the macro-crack,
3. unstable crack propagation that leads to complete failure.

There are threemain engineering approaches to ensure the safety of a structure [1].
The “safe-life” approach demands that the structure remains safe under a prescribed
load for a certain number of cycles. The “fail-safe” approach requires that a structure
is able to withstand damage without a catastrophic failure of the whole structure.
The “damage tolerance” approach investigates the ability of a structure to survive
with damage before reparation. Whatever the engineering goal, researchers have to
represent the complex phenomena of cyclic fatigue or random fatigue with pertinent
and flexible models.

1.1 Different Modelling Approaches for Fatigue Analysis

Historical approaches for fatigue analysis are based on the exploitation of some
empirical curves introduced by Wöhler [2]. The stress range is plotted against the
experimentally observed number of surviving cycles giving rise to S-N curves. This
may be a straightforward tool for “safe-life” analysis if a perfect periodic loading is
consideredwith the samemean stress as the oneof theS-Ncurve. From the asymptotic
behaviour of the curve, an endurance limit, below which the material will never fail,
may be defined. For loading inducing appreciable plastic deformation e.g. low cycle
fatigue, it is better to introduce a strain-life approach as proposed by Coffin [3] and
Manson [4] for metallic materials. Similar to S-N curves that are used for stress-life
approaches, εa-N or �ε-N curves are generally used for strain-life approaches [5],
where εa and �ε are the total strain amplitude and total strain range respectively.
The empirical method may be extended to different sophisticated cases e.g.:

• taking into account the mean stress effect on fatigue as proposed by Gerber [6],
Goodman [7] and Soderberg [8];

• characterising the fatigue life of a structure when subjected to blocks of cyclic
stresses of different amplitudes by using a cumulative damage rule coupled with
S-N curve. The accumulation damage rule may be linear as the Palmgren-Miner
damage rule [9, 10], or non-linear accumulation rule as proposed by Marco and
Starkey [11];
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• for notched members using the Neuber rule [12], which takes into account the
stress concentration factor and the fatigue notch factor;

• formultiaxial stresses, an effective stress based for example on vonMises criterion,
Crossland criterion [13], Sines criterion [14], or Dang Van criterion [15] is used
together with the Basquin relation. An effective strain or effective plastic strain
may either be estimated according to themaximum shear strain theory or according
to the distortional energy theory;

• for random loading, by cycle counting approach the random load history is rep-
resenting as a discrete number of equivalent cycles, for example using rainflow
counting.

The aforementioned methods, are phenomenological in nature and deal with the
usage of empirical relations that are based on experimental findings. For example,
they do not offer the flexibility to investigate the order in which different levels
of load are applied to the structure. To overcome this limitation, the changes in a
given structure can be described by internal variables using continuum mechanics
approaches. Damage, defined as an internal variable, is used to quantify the initiation
phase of a macro-crack that reduces the load carrying capacity of the material [5].
Continuum damage mechanics to predict fatigue life was introduced by Lemaitre
and Lesne [16] where a non-linear continuous fatigue damage model was used to
describe the different phases of the deterioration process. Various modifications and
developments have been done over the years for the modelling of fatigue damage to
incorporate the physical phenomena as far as possible. For instance, when the load
is large, the structure undergoes appreciable plastic deformation, leading to a fatigue
life less than 105 cycles, which is referred as low-cycle or oligocyclic fatigue. On
the contrary, under high-cycle fatigue (HCF), the loading is much less than the yield
stress. Therefore, nomacro-plastic deformation is involved. The structuremayhandle
a very large number of cycles. The two-scale damage model [17] is an important
development for modelling HCF, and represents the macro-elastic behavior while
the damage is evaluated only at the micro-scale. Different micromechanical models
may be proposed to represent the micro-void growth [18].

To investigatemacro-crack propagation, the premise of fracturemechanics is used
knowing the pre-existence of a crack within the material. The most traditional law
to describe the crack growth is the Paris-Erdogan law [19]. More information on
classical techniques and recent developments on fatigue modelling and simulations
can be found in the review articles [20, 21].

Here, a continuum damage approach is used for modelling the fatigue behaviour.
This allows to consider the chronology of the different cycles or inertial effects due to
high-frequency cycles. However, this approach may lead to very expensive compu-
tational cost. Developments have been done in the light of new and robust numerical
techniques that reduce CPU cost. For example, this problem may be overcome by
using model order reduction techniques.
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1.2 Model Reduction Technique for Fatigue Computation

Model order reduction is a family of numerical strategies which has shown efficiency
for many large size mechanical problems such as parametric studies or real-time
computations [22]. The solution is approximated by solving the Galerkin problem
within a reduced-order basis, whose dimension is much smaller than the size of the
original high-dimensional model. Proper Orthogonal Decomposition (POD) as pro-
posed e.g. in [23] is based on a training stage. From the solution of the full-order
problem at some particular time instants and/or parameter values arbitrarily chosen,
a reduced-order basis is built as the truncation of a singular value decomposition
[24]. In Reduced-Basis approach a greedy algorithm is employed to define the most
relevant calculations within the parametric space to optimise the enrichment of the
reduced-order basis [25]. Using Proper GeneralisedDecomposition (PGD), the prob-
lem is also solved in a relevant reduced-order basis, but the basis is defined on-the-fly
by a greedy algorithm [26–28].

As computations for continuum damage problems may face strain localisation,
numerical response is highly sensible to any modification of the model. Therefore
damage computational strategies using model order reduction are challenging and
may be hazardous. Controlling the accuracy of POD computations with circum-
spection is recommended and adaptive schemes such as A Priori Hyper Reduction
Method [29] or POD coupled with Newton-Krylov algorithms [30] are preferred.
Delamination has been modelled by cohesive zone and PGD by Metoui et al. [31],
PGD-based multi-scale computations for rate-dependent damage model have been
recently proposed by El Halabi et al. [32].

The LATINmethod [26] in its classical sense is employed such that an approxima-
tion of the solution on the whole time-space domain is defined at every iteration, and
the gobal equilibrium is tackled as a linearised problem and the non-linear material
behaviours are considered separately. Therefore, this approach offers a convenient
framework to include model-order reduction techniques even for non-linear compu-
tations. It has been developed for solving plasticity and visco-plasticity problems and
shown a drastic decrease of the computational cost compared to a classical approach
[33–35]. Here an extended version is used for (visco-)plastic problems with damage
that incorporates micro-defects closure effects [36].

For fatigue computation applied to a large number of cycles, advanced numerical
strategies may be required to work around the computational cost due to the large
time domain.

1.3 Efficient Time Schemes for Fatigue Computations

For high or very high cycle fatigue or for combined cycle fatigue in which the load is
a combination of large amplitude low frequency and small amplitude high frequency
loads [1], the computational cost of the time integration scheme may be extremely
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high. The computational cost may be decreased by benefiting from the cyclic loading
to not compute explicitly the full number of cycles.

The jump cycle procedure is a very robust technique [5] which works around full
blocks of cycles. After computing in details a set of cycles, they are used to establish
a trend line and extrapolate the quantities of interest for further evolution. Then,
the extrapolated state is used as initial condition for a further computation such that
the whole time domain is spanned. A control function has been proposed such that
the lengths of cycle jumps are monitored to ensure an accurate approximation [37].
This method is most suitable for quasi-linear systems. However the control function
allows to also consider non-linear behaviour and cycles jumps are automatically
shortened or even cancelled [38, 39].

For combined cycle fatigue, time homogenisation techniques are based on a hy-
pothesis of time scale separation between a large time scale associated with the
low-frequency load and a small time scale associated with the high-frequency load.
The ratio between both of them is assumed to be small enough such that the two
scales can be considered as independent, and the behaviour due to the high fre-
quency is homogenised for a time discretisation scheme consistently defined for the
low-frequency load. Developed initially for plasticity and quasi-static computations
[40], this method has been extended to damage and dynamic effects [41].

In the framework of LATIN method, as the whole time domain is available at
each iteration, a two-time scale in a “finite element like” discretisation of the time
intervals has been proposed for visco-plasticity problems [26, 42]. Some cycles of
interest, called “time nodes” or “nodal cycles”, are computed in the classical time
scheme. The evolution of the quantities of interest in the time slot between two time
nodes is interpolated using shape functions as for space finite-element method.

As empirical methods are based on expensive and cumbersome experiment, the
goal of this project is to provide virtual experiments based on continuum mechanics
approach. To overcome the computational cost due to these models, a sophisticated
model order reduction scheme is proposed which reduces drastically the cost and
allows to compute virtual test even for a very large number of cycles. The proposed
numerical framework is flexible concerning the damagemodel, the global framework
and equations considered are summarised in Sect. 2. Then, the model order reduction
based on the separation of variables is introduced in Sect. 3. Finally, the numerical
treatment of the time problem, which allows to reduce the numerical cost, is detailed
in Sect. 4.

2 Continuum Damage Mechanics Approach

The focus herein is on the methods that deal in quantifying the change in material
properties due to fatigue loading using internal damage variable in a continuum
mechanics framework.

A continuous reference structure for any quasi-static analysis can be considered
in a spatial domain �. For simplistic case, the evolution of the state of the structure
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can be considered to be isothermal within time domain [0, T ]. Such a reference
structure in general is subjected to prescribed body forces f

d
, to traction forces Fd

over a part ∂2� of the boundary ∂�, and to prescribed displacements ud over the
complementary part ∂1�. Thereby the compatibility of the applied forces with the
internal stress is given by the equilibrium equation which in a weak form becomes
the static admissibility condition, which is defined such that ∀u∗ ∈ U∗

∫

[0,T ]×�

σ : ε
(
u∗) d� dt =

∫

[0,T ]×�

f
d

· u∗ d� dt +
∫

[0,T ]× ∂2�

Fd · u∗ dS dt

(1)
with the stress tensor σ being statically admissible, and U∗ being the homogeneous
vector space associated to the space U of kinematically admissible field u. Also,
the compatibility of the prescribed displacement with the generated strain within
the structure is given by the strain-displacement relationship which in weak form
becomes the kinematic admissibility condition, which is defined such that ∀σ ∗ ∈ F∗

∫

[0,T ]×�

σ ∗ : ε d� dt =
∫

[0,T ]× ∂1�

σ ∗n · ud dS dt (2)

with ε being the total strain tensor which is kinematically admissible and can be split
into an elastic part εe and a plastic part ε p additively.F∗ is the homogeneous vector
space associated to the space F of statically admissible field σ .

The mechanical properties of the materials are described by a set of constitu-
tive relations. The equations of state for elasto-(visco)plastic materials subjected to
unilateral damage are obtained from a free energy function, and are given as [5]

εei j = 1 + ν

E

[ 〈σ 〉+i j
1 − D

+ 〈σ 〉−i j
1 − hD

]
− ν

E

[ 〈σkk〉
1 − D

+ 〈−σkk〉
1 − hD

]
δi j , (3a)

βi j = Cαi j , (3b)

R = g′ (r) , (3c)

Y = 1 + ν

2E

[ 〈σ 〉+i j 〈σ 〉+i j
(1 − D)2

+ h
〈σ 〉−i j 〈σ 〉−i j
(1 − hD)2

]
− ν

2E

[ 〈σkk〉2
(1 − D)2

+ h
〈−σkk〉2

(1 − hD)2

]
.

(3d)

Here, Eq. (3a) represents the elastic state law, which because of damage is non-
linear in nature, as it is not described by a linear operator, with E and ν being
the modulus of elasticity and Poisson ratio respectively. D is the isotropic damage
variable and h is the closure parameter representing micro-defects closure effect,
which indicates that the effect of damage is more predominant in tension than in
compression. During compression, some of the micro-defects are closed, thereby
the effective area is increased, the material regains some of the stiffness. This can be
represented by the effective modulus of elasticity during tension Ẽ+, which is given
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by Ẽ+ = E (1 − D), and by the effective elastic modulus during compression Ẽ−
given by Ẽ− = E (1 − hD). The closure parameter h has values between 0 (com-
plete stiffness recovery) and 1 (no stiffness recovery). Equations (3b) and (3c) give
the relationships between the internal variables αi j and r describing kinematic and
isotropic hardening of the material and their corresponding thermodynamic forces
βi j and R, by means of material parameter C for kinematic hardening and through
a function g′ for isotropic hardening. Equation (3d) defines the strain energy release
rate Y , which is the thermodynamic force corresponding to damage and is non-linear
with respect to the stress tensor and the damage variable.

The evolution equations obtained from potential functions are written as

ε̇
p
i j = λ̇p

∂F

∂σi j
, (4a)

α̇i j = λ̇p
∂F

∂βi j
, (4b)

ṙ = λ̇p
∂F

∂R
, (4c)

Ḋ = λ̇D
∂FD

∂Y
. (4d)

This is the normality rule for standard materials. Equation (4a) gives the evolution of
the plastic strain with respect to time, with λ̇p being the plastic multiplier which is
measured from the consistency condition, and F is a potential which can be obtained
from experimental findings. This function has to be convex, non-negative and should
pass through the origin. ∂F

∂σi j
is the flow vector indicating plastic flow is normal to

the potential function F . This potential F , for associative plasticity is considered to
be the yield function. Equations (4b) and (4c) similarly, give the evolution of the
internal variables for kinematic and isotropic hardening respectively. Equation (4d)
describes the evolution of damage with respect to time, where λ̇D is the damage
multiplier and FD is a potential which is also identified from experimental findings.
All the conditions required to formulate F must also be taken into account for FD .
These evolution equations, essentially, take into account the history dependency of
the material.

The initiation of the macro-crack is indicated by the critical damage Dc and the
material is assumed to fail when Dc is reached.

3 LATIN-Based Model Order Reduction Approach
for Damage Computation

The LATIN approach tackles the set of equations on the whole time-space domain
at every iteration. The equations are considered iteratively, namely the global equi-
librium of the structure on one hand, the non-linear elastic law and the non-linear
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evolution equations on another hand. Model reduction is used in the sense of separa-
tion of time and space variables. LATIN-PGD approach allows for visco-plasticity
case to define both quantities of interest which are stress and plastic strain us-
ing a unique time basis. Including damage, a new quantity of interest is added,
which is the elastic strain, the total set of the solution field can be represented
as s = {

ε̇ p, εe, Ẋ, Ḋ, σ , Z,Y
}
, where X represents the set of hardening variables

(kinematic and isotropic) and Z is the conjugate variable of X . The non-linear state
law could be included in the global stage and then the separation of variables tack-
led by using different time functions for stress and strain. Otherwise, as presented
here, the non-linearity due to the state law can be tackled in the local stage, and
the stress can be decoupled in two parts, one defined from the local stage and the
other one which can be written as a time-space decomposition form using the same
time functions as the plastic strain one. The algorithm is only briefly overviewed in
this contribution. Detailed explanation of every step and details about the numerical
implementation may be found in [36].

The algorithm is initialised by solving the problem considering the boundary
conditions of the exact problem but assuming that the material behaviour is perfectly
elastic for the whole loading conditions. Then, plastic and damage corrections are
added to the elastic solution at each subsequent iteration. The set of equations is
divided in two sub-groups, one comprising the global and linear equations whereas
the other one comprises the local and non-linear ones. One LATIN iteration consists
of two parts:

• the global and linear problem is solved in the space Ad which belongs to the
manifold of the admissibility conditions Eqs. (1) and (2), the linear state laws
Eqs. (3b) and (3c), and the non-linear state law for damage Eq. (3d);

• the local and non-linear problem is solved in the space Γ which belongs to the
manifold of the evolution equations Eq. (4) and the elastic state law Eq. (3a) which
was not linearisable due to damage.

It can be noted that Eq. (3d) although being non-linear is tackled with the group of
linear equations as a post-processing step from the knowledge of the stress tensor
and the damage variable at the end of each iteration. The exact solution sex of the
problem is defined as the intersection of the two manifolds by

sex ∈ Ad ∩ Γ . (5)

The approximation of the solution is looked alternatively in the two manifolds until
reaching convergence. From the knowledge of one step, the approximation in the
following manifold is looked for by using certain linear operators called search
direction operators.
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3.1 Local Stage

In the local stage, evolution equations for internal variables, which are local in space
and non-linear, are solved. The elastic state law, being non-linear, is also tackled in
this stage. From the solution set si ∈ Ad at LATIN iteration i , the approximation
ŝi+1/2 ∈ Γ is estimated such that the local search directions are satisfied

⎡
⎢⎢⎢⎢⎣

ˆ̇ε p
i+1/2 − ε̇

p
i

−
( ˆ̇X i+1/2 − Ẋ i

)
ε̂
e
i+1/2 − εe

iˆ̇Di+1/2 − Ḋi

⎤
⎥⎥⎥⎥⎦ + B+

⎡
⎢⎢⎣

σ̂ i+1/2 − σ i

Ẑi+1/2 − Zi

σ̂ i+1/2 − σ i

Ŷi+1/2 − Yi

⎤
⎥⎥⎦ = 0. (6)

Here,B+ is the direction of ascent. Following [26], the search direction is considered
to be vertical such that (

B+)−1 = 0. (7)

The solution of the search direction equation (Eq.6) along with the evolution
equations (Eq.4) and the non-linear elastic law (Eq.3a) constitute ŝi+1/2. From the
approximation at the local stage ŝi+1/2, the solution set si+1 is estimated in the global
stage.

3.2 Global Stage Including Model Order Reduction

In the global stage, the solution set si+1 ∈ Ad satisfies the state laws, the admissibility
conditions and the descent search directions

⎡
⎢⎣

ε̇
p
i+1 − ˆ̇ε p

i+1/2

−
(
Ẋ i+1 − ˆ̇X i+1/2

)
εe
i+1 − ε̂

e
i+1/2

⎤
⎥⎦ − B−

⎡
⎣ σ i+1 − σ̂ i+1/2

Zi+1 − Ẑi+1/2

σ i+1 − σ̂ i+1/2

⎤
⎦ = 0, (8a)

[
Ḋi+1 − ˆ̇Di+1/2

]
− b− [

Yi − Ŷi+1/2

] = 0, (8b)

where B− =
[
H− 0
0 C−1

]
. The operator H− belongs to the tangent space associated

with the solution set ŝi+1/2 in the manifold Γ , and C is the undamaged Hooke
tensor. Considering the damage variable is not updated in the linear stage, the search
direction operator b− is defined as zero.

The first step being the calculation of the hardening variables, the state equations
are combined in the form

Zi+1 = �X i+1, (9)
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where� is a linear operator containing the sate law parameters. The search direction
equation for hardening variables Eq. (8a) combined with the state equation (Eq. 9)
can be written as

− (Ẋ i+1 − ˆ̇X i+1/2) = HZ (�X i+1 − Ẑi+1/2), (10)

with HZ being the decoupled part of H− that relates the internal variables with the
corresponding associated variables. The hardening variables are then obtained by
solving Eq. (8a) in time at each Gauss point.

The difficulty to calculate the stresses and strains, compared to former works
with the LATIN method, is that the elastic state law Eq. (3a) is non-linear due to
the presence of damage, leading to solve a non-linear problem at the global stage.
This point is particularly tricky as it prevents the introduction of a model reduction
strategy at this stage. The idea proposed herein is to transform this non-linear problem
into separate linear equations by decomposing stress and total strain into two parts
depending on plastic deformation and damage respectively.

The quantities of interest at this point σ i+1, εe
i+1 and ε̇

p
i+1 are represented in a

corrective form at iteration i + 1 as

�σ i+1 = σ i+1 − σ i , �εe
i+1 = εe

i+1 − εe
i and �ε̇

p
i+1 = ε̇

p
i+1 − ε̇

p
i . (11)

The stress and total strain corrections in the global stage at iteration i + 1 are sep-
arated into parts depending on plastic deformation (�σ ′

i+1, �ε′
i+1) and on damage

(�σ̃ i+1, �ε̃i+1),

�σ i+1 = �σ ′
i+1 + �σ̃ i+1, (12a)

�εi+1 = �ε′
i+1 + �ε̃i+1. (12b)

From these separations and the search direction equation along with the additive
strain decomposition relation, it can be established that

�σ ′
i+1 + �σ̃ i+1 = C

(
�ε′

i+1 − �ε
p
i+1

) + C
(
�ε̃i+1 − �εR

i+1

)
, (13)

where �εR
i+1 can be interpreted as a residual strain obtained from non-linear state

law at iteration i + 1. �σ̃ i+1 and �ε̃i+1 are thereby obtained from the equilibrium
equation, directly.

On the other hand, if only the plastic part is considered, the search direction can
be re-written as

�ε̇
p
i+1 − Hσ�σ ′

i+1 + �̄i+1 = 0. (14)

with �̄i+1 is a plastic corrective term from the local stage and Hσ represents the
decoupled part of H− that relates stress to plastic strain rate.

The correction terms linked with the plastic behaviour �σ ′
i+1 and �ε′

i+1 are then
written in a separable form using Proper Generalised Decomposition.



A Model Reduction Technique in Space and Time … 193

3.2.1 Separation of Variables

The Proper Generalised Decomposition (PGD) is a flexible model order reduction
technique, which is not based on a training stage. As at every LATIN iteration, the
quantities of interest are approximated on the whole space-time domain by a lin-
ear form of the mechanical equilibrium, the usage of PGD coupled with LATIN is
convenient. As any function dependent on several independent variables can be ap-
proximated as an infinite sum of products of one-variable functions [26, 43], PGD
looks for an approximation of any quantity of interest as a finite sum of products of
low-dimensional functions defined by a greedy algorithm. Therefore, this approxi-
mation includes an error due to the truncation of the series of separable forms. Here
the plastic strain and stress part due to plastic deformation dependent on space and
time variables are approximated as

ε̇ p
(
x, t

) =
μ∑
j=1

λ̇ j (t) ε̄
p
j

(
x
)
,

σ ′ (x, t) =
μ∑
j=1

λ j (t)Cε̄
p
j

(
x
)
,

(15)

where μ is the number of pairs involved in the decomposition, and C is a linear
operator which relates the space functions of stress and plastic strain.

3.2.2 Updating Stage

The greedy algorithm is such that after defining on-the-fly a first pair of space and
time functions, at every iteration a first decomposition is looked using the previously
defined space functions and updating the time functions. This step is equivalent to a
Proper Orthogonal Decomposition on the current space basis. Considering μ space-
time modes have been generated to approximate the stress and plastic strain rate at
iteration i , the corrections of stress and the plastic strain rate at iteration i + 1 are
given as

�ε̇
p
i+1

(
x, t

) =
μ∑
j=1

�λ̇ j (t) ε̄
p
j

(
x
)
,

�σ ′
i+1

(
x, t

) =
μ∑
j=1

�λ j (t)Cε̄
p
j

(
x
)
.

(16)

The updates of the time functions are calculated byminimising amechanical residual
which is defined as the norm of the search direction operator, i.e.
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{
�λ j

}μ

j=1 = argmin
{�λi }μj=1

∥∥∥∥∥∥
μ∑
j=1

�λ̇ j ε̄
p
j − Hσ

μ∑
j=1

�λ jCε̄
p
j + �̄

∥∥∥∥∥∥
H−1

σ

. (17)

Then, if the improvement of the approximation is not efficient enough, a new pair
is added to the decomposition.

3.2.3 Enrichment of Space-Time Bases

The objective of the enrichment phase is to add a new space-time pair. The corrections
of stress and plastic strain for this case are written as

�ε̇
p
i+1

(
x, t

) = λ̇μ+1 (t) ε̄
p
μ+1

(
x
)
,

�σ ′
i+1

(
x, t

) = λμ+1 (t)Cε̄
p
μ+1

(
x
)
,

(18)

with the intention of calculating the separable quantities λ̇μ+1 and ε̄
p
μ+1.

A hybrid strategy is used, the space function ε̄
p
μ+1 is calculated from a Galerkin

formulation, by using the kinematic admissibility condition (Eq. 2) such that ∀σ ∗
which is statically admissible to zero

∫

[0,T ]× �

�ε̇′ : σ ∗ d� dt = 0 (19)

and the static admissibility condition (Eq. 1) such that ∀u∗ which is kinematically
admissible to zero ∫

[0,T ]× �

�σ ′
i+1 : ε

(
u∗) d� dt = 0 (20)

with
�σ ′

i+1 = C
(
�ε′

i+1 − �ε
p
i+1

)
. (21)

Subsequently the time function λμ+1 is solved similarly as in the update stage by
minimising a mechanical residual

λμ+1 = argmin
λμ+1

∥∥λ̇μ+1ε̄
p
μ+1 − Hσ λμ+1Cε̄

p
μ+1 + �̄

∥∥
H−1

σ

. (22)

This fixed point iteration between space and time problems converges quickly.
Once the stress tensor is known at iteration i + 1, the strain energy release rate

for damage is calculated from Eq. (3d).
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3.3 Numerical Example of a Plate Under Cyclic Loading

The proposed usage of LATIN-PGD for damage problem is exemplified for a two-
dimensional problem as depicted in Fig. 1. Material considered is a Cr-Mo steel at
580 ◦C [5]. The variation in material property is represented by the yield stress, with
σy = 80 MPa at x = 0, ∀y ∈ [0,W ] and σy = 85 MPa at x = L , ∀y ∈ [0,W ] and
with a linear variation along the length of the structure.

The distribution of the damage variable D at t = T is depicted in Fig. 2. It
shows localisation,withmaximumnear (x, y) = (L ,W ) andminimumnear (x, y) =
(L , 0).

For fatigue computation, calculation of the time dependent quantities is expensive.
Therefore a peculiar effort is done to reduce the cost of the time-computation.

Fig. 1 Aplate under tractionwith linearly distributed cyclic loading and variablematerial properties

Fig. 2 Damage evolution for the weakest part of the plate and damage distribution at t = T in the
plate under linearly distributed cyclic loading



196 M. Bhattacharyya et al.

4 A Two-Time Scale Approach

In the case of a large number of cycles, the previous strategy can be enhanced by
adding a multi-time scale feature. To describe the time dependent quantities defined
on the whole time domain [0, T ], two time scales are introduced,

• a long time discretisation θ defined on the interval [0, T ] that represents the slow
evolution along the cycles,

• a short time discretisation τ describing the rapid evolution within a cycle.

The idea is to introduce a finite element like description of the temporal quantities
which are calculated only at certain chosen cycles called the “nodal cycles” (Fig. 3).
For any time element

[
θm, θm+1

]
once the nodal cycles m and m + 1 are known a

linear one-dimensional interpolation formula can be used [42]. If χ represents any
temporal quantity over time element

[
θm, θm+1

]
, then

χ (t) = θm+1 − θ

θm+1 − θm
χm (τ ) + θ − θm

θm+1 − θm
χm+1 (τ ) , t ∈ [

θm, θm+1 + �T
]
, (23)

whereχm (τ ) andχm+1 (τ ) are defined∀τ ∈ [θm, θm + �T ] and ∀τ ∈ [
θm+1, θm+1 + �T

]
respectively.

The first few cycles are computed classically. After that the nodal cycles are calcu-
lated progressively. The last classically computed cycle defined over [θ0, θ0 + �T ]
becomes the nodal cycle 0 and thereby the idea is to calculate nodal cycle 1, defined
over [θ1, θ1 + �T ]. Thereafter knowing nodal cycle 1, nodal cycle 2 is calculated.
This computation is continued till the last nodal cycle is calculated.

Fig. 3 Schematic of the two-time scale indicating the nodal cycles
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4.1 Initialisation

The initialisation of the quantities of interest at nodal cyclem, knowing them at nodal
cycle m − 1 depends on the quantities that are being initialised. The quantities that
are cyclic, namely the stress, elastic strain as well as the kinematic variables, are
duplicated from the nodal cycle m − 1 and a transformation is considered such that
they are periodic, preserving the continuity from cycle m − 1. The time functions
representing the plastic strain

{
λ j

}μ

j=1 are also duplicated in a similar manner. The
quantities that are non-cyclic and non-decreasing, namely damage and isotropic
variables, are initialised as constant over nodal cycle m, with the magnitude being
that obtained at θm−1 + �T . The strain energy release rate for damage is calculated
from the damage and the stress tensor. Thereafter the solution field over the nodal
cycle m is calculated iteratively using the two-step algorithm till a convergence is
obtained.

4.2 Local Stage

In the local stage, all the quantities of interest except damage do not need any time
integration and can be calculated directly. The only problem in this stage is while
integrating Ḋ to obtain the damage variable. To integrate Eq. (4d) over the nodal
cycle m the initial condition at θm needs to be known. Considering a general first
order ODE [26]

dχ

dt
+ κχ = υ, (24)

defined over the complete time domain, with κ and υ being time-dependent known
quantities. The idea is to calculateχ (θm) fromχ (θm−1). The time element

[
θm−1, θm

]
is discretised into certain instances �k such that �k = θm−1 + k�T , with k =
0, 1, 2, · · · , p − 1, where p is the number of cycles in the time element

[
θm−1, θm

]
.

This provides �0 = θm−1 and �p−1 = θm . Knowing χ
(
θ k

)
, Eq. (24) can be solved

to obtain χ
(
θ k+1

)
as

χ
(
�k+1

) = χ̌
(
�k+1,�k

) + 
 (
�k+1,�k

)
χ

(
�k

)
, (25)

where χ̌ represents the solution of the ODE with zero initial condition, and 
 repre-
sents the “resolvent” operator [26].

The challenge henceforth is to calculate χ̌ and 
 with minimum numerical cost.
The easiest way is to calculate the quantities only at the nodal cycles m − 1 and m
and then use linear interpolations to obtain χ̌

(
�k+1,�k

)
and 
 (

�k+1,�k
)
, i.e.

χ̌
(
�k+1,�k

) = νm−1χ̌ (θm−1 + �T, θm−1) + νm χ̌ (θm + �T, θm) , (26a)


 (
�k+1,�k

) = νm−1
 (θm−1 + �T, θm) + νm
 (θm + �T, θm) , (26b)
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with ν being the linear shape functions defined as

νm−1 = θm − �k

θm − θm−1
, νm = �k − �m−1

θm − θm−1
. (27)

These interpolated values can be used to rewrite Eq. (25) as

χ
(
�k+1

) = νm−1
[
χ̌ (θm−1 + �T, θm−1) + 
 (θm−1 + �T, θm−1) χ

(
�k

)]
+ νm

[
χ̌ (θm + �T, θm) + 
 (θm + �T, θm) χ

(
�k

)]
.

(28)

Starting from χ
(
�0 = θm−1

)
, χ (�p = θm) is calculated progressively, thereby

Eq. (24) over the nodal cycle m.
The evolution equation of damage Eq. (4d) is solved over cycle m using the

aforementioned technique.

4.3 Global Stage

The spatial modes, calculated for the initial cycles, are reused to compute the time
functions of the PGD modes over the nodal cycle m. The initialisation of the time
functions {λ j }μj=1 is such that continuity is maintained with respect to the nodal
cyclem − 1. Thereafter corrections of the time functions {�λ j }μj=1 are computed by
solving Eq. (17) using zero initial conditions.

The next concern are the kinematic variables, which also being cyclic can be
treated in a similar way. Equation (10) has to be solved for the kinematic variables
over the nodal cycle m. However, an exact measurement of the initial conditions
using the “resolvent” technique, being numerically expensive, is not necessary. The
initialisation of the kinematic variables has been done to maintain continuity with
respect to the nodal cycle m − 1. Thereby the quantities are calculated in terms of
corrections by solving the ODE with zero initial condition.

The isotropic variable, however, being non-cyclic needs an accurate measurement
of the initial condition for time integration of Eq. (10) over the nodal cycle m. This
first order ODE is solved using the “resolvent” technique previously described.

This approach provides a drastic reduction in cost compared to classical LATIN
technique.

4.4 A Numerical Example of a Bar Under Fatigue Loading to
Build Virtual εa-N Curves

The one-dimensional numerical example considered here is a bar under traction
to build virtual εa-N curves. The material considered is Cr-Mo steel at 25 ◦C with
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Fig. 4 εa-N curves for different yield stresses and moduli of elasticity
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Fig. 5 εa-N curves for different initial damage conditions and total mean strains

kinematic hardening.The structure is clamped at one end and subjected to a sinusoidal
displacement of the formUd (t) = U0sin

(
2π t
T

)
at the other end. The most important

material properties in this model are the yield stress σy = 189MPa and the modulus
of elasticity E = 199.74GPa.

Experimental εa-N are generally obtained when a particular specimen is loaded
under a given εa and the number of cycles needed for the specimen to rupture is
measured. This experiment is repeated for several values of εa to obtain different
values of N . For the numerical tests described here, a critical damage value of 0.2 is
considered as a failure point. Similar to the physical experiments, several numerical
tests are conducted by varying εa to obtain different values of N needed by the
structure to reach the critical damage level. Some virtual εa-N curves are depicted in
Figs. 4 and 5. The time domain for each numerical test is discretised uniformly, with
a lesser number of cycles per time element for larger εa . The range of the number of
cycles per element is between 10 and 200. The computation of each curve requires
approximately 1 hr.

The influence of yield stress σy is depicted in Fig. 4. It is observed that, with the
increase in σy , the structure becomes less susceptible to damage for a given strain
amplitude. As the damage threshold considered in the model is directly proportional
to the yield stress, more number of cycles are needed to reach the critical damage.
The influence of elastic modulus E is also shown in Fig. 4. It is witnessed that, with
the increase in E , the stress in the structure increases for a given strain amplitude,
resulting in increased susceptibility to damage. Also, the damage threshold, consid-
ered in the model is inversely proportional to the modulus of elasticity, resulting in
a higher damage for a higher value of E at a given εa . The aforementioned reasons
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culminate in the decrease in the number of cycles to failure with increase in E for a
given strain amplitude. It is also noticed that this decrease is profound at lower strain
amplitudes.

The next sets of tests investigate the influence of initial damage andmean strain on
the εa-N curves, as shown in Fig. 5. The first set of tests investigates the influence of
the presence of initial damage. It can be observed that, with the increase inmagnitude
of the initial damage, less number of cycles are needed to reach the critical damage
for a given strain rate. The subsequent set of tests consists of different total mean
strains εm . For a positive mean strain, the stress is more in the tensile part than in the
compressive part, thereby a higher damage is obtained resulting into a lower N , for a
given εa , than compared to the zero mean strain case. For a negative mean strain, the
stress is more in the compressive region, thereby damage evolution is less compared
to the zero mean stress case, resulting into a higher N for a given εa .

To evaluate the accuracy and the efficiency of the two-time scale approach a
case withU0 = 1.40mm for 2000 cycles is investigated. A mono-scale LATIN-PGD
computation obtained in a CPU time of 19 hrs is considered as a reference. The
performance of the two-time scale approach is analysed using various uniform time
discretisations.

The evolution of damage for different sizes of time elements is plotted in Fig. 6. For
decreasing size of time elements the evaluation converges to the reference solution.
The relative error of the two-time scale approachwith respect to the reference solution
is defined as

Error =
⎡
⎢⎣

∫
[0,T ]×�

(Dms − Dts) · (Dms − Dts) d� dt

∫
[0,T ]×�

(Dms + Dts) · (Dms + Dts) d� dt

⎤
⎥⎦

1/2

, (29)

where Dms and Dts are the damage variables computed using the mono-scale com-
putation and the two-scale methods respectively. The evolution of this error and the
computational time with respect to the size of time elements is depicted in Fig. 6 too.
The multi-scale computational times are represented as percentages of the mono-
scale computational time in Fig. 6. Using only one time element containing 2000

Fig. 6 Accuracy and numerical cost for different time discretisations
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cycles, the computational cost has been decreased to 0.06% of the reference cost,
but the error is 16% of the reference. By increasing the number of time elements, the
computational cost increases but the error decreases. For 40 elements of 50 cycles,
the error is only 0.36% for a computational cost 0.3% of the reference solution. The
calculation time is drastically less compared to a mono-scale LATIN-PGD approach
for acceptable accuracy.

5 Conclusion

An innovative numerical approach has been here presented for the computation of
fatigue damage. A non-incremental technique has been used as numerical framework
and the computational cost has been reduced by the usage of PGD that converts
the actual high dimensional problem into much lower dimension. A multi-scale
approach in time domain has been suggested to extend the LATIN-PGD method for
the simulation of fatigue damage behaviour involving large number of cycles. By
that, the increased numerical efficiency has been demonstrated which paves a way
for physically based high cycle fatigue simulations.
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Finite and Virtual Element Formulations
for Large Strain Anisotropic Material
with Inextensive Fibers

P. Wriggers, B. Hudobivnik and J. Schröder

Abstract Anisotropic material with inextensive or nearly inextensible fibers intro-
duce constraints in themathematical formulations of the underlying differential equa-
tions from mechanics. This is always the case when fibers with high stiffness in a
certain direction are present and a relatively weak matrix material is supporting these
fibers. In numerical solution schemes like the finite element method or the virtual
element method the presence of constraints—in this case associated to a possible
fiber inextensibility compared to a matrix—lead to so called locking-phenomena.
This can be overcome by special interpolation schemes as has been discussed exten-
sively for volume constraints like incompressibility aswell as contact constraints. For
anisotropic material behaviour the most severe case is related to inextensible fibers.
In this paper a mixed method is developed for finite elements and virtual elements
that can handle anisotropic materials with inextensive and nearly inextensive fibers.
For this purpose a classical ansatz, known from the modeling of volume constraint
is adopted leading stable elements that can be used in the finite strain regime.

Keywords Anisotropic material · Finite element analysis · Virtual element
schemes · Mixed methods · Constraints

1 Introduction

Many different approaches were developed over the last decade to formulate finite
elements for anisotropic material with nearly inextensive fibers. This is not the case
for the virtual element method which is a relatively new discretization scheme and
thus only limited applications of this method to anisotropic materials are known. The
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general problem related to the modeling of anisotropic materials is the high stiffness
ratio between fiber and matrix material with the limit case of inextensible fibers
where this ratio tends to infinity. This is physically related to the exact fulfilment
of the kinematic constraint associated with the inextensibility of fibers in certain
directions.

Generally the method of Lagrange multipliers provides a possibility to fulfil such
constraints for small and and finite deformations. In this paper the Lagrange multi-
plier approach is employed to model anisotropic material behaviour at finite strains.
Furthermore a relaxed version, i.e., the perturbed Lagrangian formulation, is used to
model extensible fibers as well.

Boundary value problems that incorporate constraints usually cannot be solved
using standard displacement interpolations. This leads to locking. Its main source is
related to the fact that the constraints eventually restrict the deformationmode present
in the displacement interpolation. This is also true when the constraints are fulfilled
approximately, like in penalty methods. Locking phenomena are well-analyzed for
geometrically linear problems in the case of volume constraints, see e.g. Hughes [19],
Babuska and Suri [4], Zienkiewicz and Taylor [49] and Wriggers [44]. They were
investigated in the mathematical community quite early, see Babuska [3] and Brezzi
[11], and are now well understood. In general the Babuska-Brezzi (BB) condition
can be employed to investigate the stability behaviour of mixed finite elements in
the linear range. Within nonlinear problems the BB condition can only be used at
certain stages of the analysis, see e.g. Chapelle and Bathe [13].

Different strategies were pursued in computational mechanics over the last years
in order to circumvent locking effects. It became evident that element ansatz functions
that interpolate the deformation or displacement field within an element with first
order shape functions (bi- or tri-linear interpolation) do not converge properly when
applied to problems with constraints like incompressibility or anisotropic material
behaviour. Thus different variational formulations were explored in order to con-
struct finite elements that can be used for problems with constraints. Approaches
include reduced integration and stabilization, see e.g. Zienkiewicz et al. [50] for
the linear case. Many variants can be found in the literature. It was shown that the
reduced integration has to be used together with stabilization and can be extended
to nonlinear problems, see e.g. Belytschko et al. [9] and Reese and Wriggers [33]
leading to elements that are in general locking free for incompressible deformations.
Additionally these elements are very efficient due to reduced integration. However
stabilized elements rely on artificial stabilization parameters and thus the numerical
solution can depend on theses parameters in certain cases.

Formulations, based on the mixed variational principle of Hu- Washizu, were
developed, e.g. see Simo and co-workers who introduced the enhanced strain ele-
ments first for the geometrically linear and nonlinear problems, e.g. see Simo and
Rifai [40] and then for large deformations, Simo and Armero [38] and Simo et al.
[39].However, these elements depict non-physical instabilities at certain deformation
states.

Other mixed finite element formulations, that are stable, perform well in the
framework of small deformations and isotropy, e.g. see Bathe [5] and Brezzi and
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Fortin [12]. Extensions to problems undergoing finite deformations are discussed in
Auricchio et al. [1, 2] for the case of incompressibility. For finite strain anisotropic
material behavior it is even more complex to find good finite element formulations.
Many classical approaches that were designed for fiber-reinforced materials depict
non-physical behavior, see e.g. Weiss et al. [43] and Holzapfel et al. [18]. Discus-
sions related to the correct formulations of the mathematical model for anisotropic
behaviour can be found in e.g. Sansour [34] and Helfenstein et al. [17]. These authors
state that all fiber-related terms have to be provided in the energy by the complete
deformation tensor and not by its isochoric part.

Reduced integration schemes using a special stabilization have been successfully
applied to the simulation of composite reinforced material, see Hamila and Boisse
[16]. Also special interpolations eliminated locking behaviour for composite materi-
als, see ten Thjie and Akkerman [42]. Still many researchers use Hu-Washizu-based
displacement, dilatation and pressure formulations, early introduced for incompress-
ible materials by Simo et al. [41], for nearly incompressible materials with highly
stiff fibers (like in arterial walls), see Zdunek et al. [48] and the references therein.
However for strongly anisotropic material with inextensive fibers these approaches
have limited performance, especially at finite strains.

A new formulation was presented in Schröder et al. [37] who introduced a novel
finite element formulation that is developed especially for anisotropic materials,
based on strain energy functions as discussed in Schröder and Neff [36] and Schröder
[35]. There the constraints, associated with the anisotropy, are controlled by an
additional deformation measure. A second-order tensorial Lagrange-multiplier was
introduced via a discontinuous ansatz. This approach offers the opportunity to reduce
the interpolation order of the anisotropic part and thus is able to relax the constraints
due to anisotropy. This formulation leads to a stable methods for the solution of
problems with anisotropic materials undergoing large strains. Another approach that
introduces finite element formulations for anisotropy was discussed in Wriggers
et al. [47] who used a mixed approach for the inclusion of the constraint related to the
inextensive fibers. In this paper the latter approachmodeled by two different different
discretizations schemes. One is related to classical Taylor-Hood finite elements,
see also Wriggers et al. [47] while the other approach is using the virtual element
techniqueswhere a formulation developed inWriggers et al. [45] is employed. In both
approaches a constraint equation is introduced on the basis of a Lagrange multiplier
method. This allows to select ansatz functions as well for the displacement field in
fiber direction as for thefiber forces.Additionally a perturbedLagrangian formulation
is introduced to relax the constraint condition and to be able to introduce real fiber
stiffnesses.

The performance of the developed element formulations is compared to existing
formulations using benchmark problems. All numerical results were obtained with
the AceGen/AceFEM system developed in Korelc [20–22], see also Korelc and
Wriggers [24].
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2 Anisotropic Material with Inextensive Fibers at Large
Strain

In this section a summary of the continuum mechanics background is provided for
the formulation of problems exhibiting anisotropic response in finite elasticity. The
formulation is reduced to the necessary equations that are needed to formulate the
problem in AceGen. This omits many derivations since automatic differentiation
is used. The formulation accounts for transversely isotropic material behaviour by
using a mixed approach. It is assumed that the material is not extendable or only
nearly extansable in a given fiber direction a.

2.1 Continuum Mechanics

All formulations are presented with respect to the initial configuration. For this we
introduce the deformation ϕ(X, t) which maps points in the initial configuration
to the current or deformed configuration. The deformation can be computed using
the coordinates of the initial configuration and the displacement field: ϕ(X , t) =
X + u(X , t).
Using this deformation map, the deformation gradient can be computed as

F = Gradϕ(X , t) = Grad (X + u(X , t)) = 1 + H (1)

whereH = Grad u(X , t). Note that the the volume change J is defined as the deter-
minant of the deformation gradient: J = det F.
Based on the deformation gradient the Cauchy-Green tensor can be formulated as

C = FT F (2)

Based on these kinematical quantities one can formulate a strain energy function for
hyperelastic materials. The following isotropic strain energy function Wiso can be
used to describe the behaviour of the isotropic part of the material:

Wiso(u) = μ

2
( trC − 3 − 2 log J ) + λ

4
( J 2 − 1 − 2 log J ) (3)

whereμ andλ are the Lame constants, see e.g.Wriggers [44]. Any other strain energy
function that describes hyperelastic material behaviour can be selected as well.



Finite and Virtual Element Formulations … 209

2.2 Kinematical Anisotropic Constraint

The enforcement of the constraint that ensures that the material does not extend in
the direction a leads to the following condition

a · Ea = 0 (4)

where E is the Green-Lagrangian strain tensor

E = 1

2
(FTF − 1) = 1

2
(C − 1) . (5)

Since it is simpler to work with the right Cauchy Green tensor, see (2), the constraint
can be written as

2 a · Ea = a · (C − 1) a = a · Ca − 1 for ‖a‖ = 1 (6)

Furthermore we can write

a · Ca = C · M = tr[CM ] with M = a ⊗ a . (7)

Since Eq. (7) defines the stretch in direction of a we have

λ2
c = tr[CM ] (8)

which in case of a fiber constraint in the direction of a leads to λ2
c = 1.

2.3 Lagrange Multiplier Formulation

Based on these kinematical relations different constraints and associated forms of a
Lagrange multiplier approach can be formulated:

• One or two constraints. The Lagrange multiplier term related to the constraints
of a material that is not extendable in the directions ai (i = 1, 2) yields with (7)
and the associated structure tensors Mi

W ti L(C , σc i ) =
2∑

i=1

σc i (tr[CMi ] − 1) (9)

where σc i are the Lagrangian multipliers that physically represent the fiber stress
related to the constraint.

• Constraints for tension only. In case that the response of the fiber system only
occurs in tension states (9) can be re-written by using the Macauley bracket:
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〈x〉 = 1
2 (x + ‖x‖). This choice yields

WtiL(C , σc) =
2∑

i=1

σc i 〈tr[CMi ] − 1〉 (10)

Now one of the two variants of WtiL(C , σc i ), discussed above, can be added to
(3) which leads to the final form of the strain energy

W (C(u) , σ ) = Wiso(C(u)) + WtiL(C(u) , σc i ) . (11)

All different forms of WtiL(C , σc i ) lead to a pure mixed form since unknowns are
the displacement field u and the fiber stresses σc.

2.4 Perturbed Lagrangian and Penalty Formulation

Additionally there is the possibility to use a so called perturbed Lagrangian formu-
lation which can be stated as follows

W (C , σ ) = Wiso(C) + Wti PL(C , σc i ) . (12)

with

Wti PL(C , σc) =
2∑

i=1

[
σc i (tr[CMi ] − 1) − 1

2Cc i
σ 2
c i

]
(13)

here again Cc i is a penalty parameter. For Cc i → ∞ (13) reduces to (11). The per-
turbed Lagrangian formulation leads in the continuous version to a penalty method,
but for different ansatz spaces for σc i and the displacement field u it can lead to a
different finite element scheme. Note, that the perturbed Lagrangian formulation can
also be used to introduce of a fiber stiffness that is related to the physical behaviour
of the anisotropic material. In that case Cc has a physical meaning.

Another possibility is to enforce the constraint via the penalty method. In this
way the constraints are approximated by introducing a penalty term related to the
constraint. The associated formulations includes the constraint (8) in the strain energy
as follows

W p(C) = Wiso(C) + W pen(C) . (14)

with

W pen(C) =
2∑

i=1

[
Cc i

2
(tr[CMi ] − 1)2

]
(15)
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here Cc i are a penalty parameters in fiber direction. For Cc i → ∞ (13) it can be
shown that the constraint is fulfilled exactly.1 The penalty formulation can also be
used to introduce a certain fiber stiffness that is related to the physical behaviour of
the fiber. In that case Cc i has a physical meaning.

3 Mixed Element Formulation

For the mixed interpolation tetrahedral and hexahedral elements are selected and
compared. For both element formulations a quadratic interpolation for the displace-
ment field u and a linear interpolation for the mixed variables σc i is selected. This
choice is motivated by the classical mixed formulation, known as Taylor-Hood ele-
ment, for the incompressibility constraint. For anisotropic material with inextensive
fibers the variables σc i are the stress component related to the constraint, e.g. σc i are
the stresses in direction of ai .
Note that in the mixed form for the incompressibility with the constraint (J − 1),
that is related to the determinant of F, a cubic function of the components of the
deformation gradient describes this constraint. In the case of the constraint (9) for
anisotropic materials this function is only a quadratic form of the components of the
deformation gradient. Thus it is not obvious that the same choice for the interpolation
of σc i will be sufficient.2

Now ansatz functions for the displacement field and the Lagrangian multiplier
(fiber stresses) σc i have to be formulated. The quadratic shape functions that approx-
imate the displacement field

ue =
nu∑

I=1

NI (ξ , η , ζ )uI (16)

are given below for the a tetrahedron with 10 nodes (nu = 10)

N1 = (2ξ − 1)ξ , N2 = (2η − 1)η , N3 = (2ζ − 1)ζ ,

N4 = (2κ − 1)κ , N5 = 4ξη , N6 = 4ηζ , (17)

N7 = 4ζ ξ , N8 = 4ξκ , N9 = 4ηκ , N10 = 4ζκ ,

with κ = 1 − ξ − η − ζ and a hexahedron with 27 nodes (nu = 27)

NI (ξ , η , ζ ) = NI (ξ) NI (η) NI (ζ ) (18)

1It is well known that ill-conditioning can occur when a large penalty parameterCc is selected. Thus
in reality the penalty formulation is only able to approximately enforce the constraint condition (8).
2In the linear case both conditions, while being different, yield a linear dependence on the compo-
nents of the displacement gradient. Thus there the choice of using the same ansatz function for the
pressure (incompressibility) and the fiber stress (anisotropy) is justified.
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Fig. 1 Nodes of the quadratic tetrahedral and hexahedral element

where I = 1, . . . , 27. NI (s) is given for the vertex nodes by

NI (s) = 1

2
(1 − sI )[s(s − 1)] + 1

2
(1 + sI )[s(s + 1)]

for s being either ξ , η or ζ . Here sI is related to a specific coordinate of a vertex
node of the hexahedron in the space of the reference coordinates (ξ , η , ζ ) with
ξI = {−1 ,+1}, ηI = {−1 ,+1} and ζI = {−1 ,+1}, see Fig. 1. For the mid nodes
the shape function NI (s) is given by

NI (s) = (1 − s2)

where now ξI = 0, ηI = 0 and ζI = 0. Furthermore, the linear shape functions for
the interpolation of the Lagrange multipliers σc i are defined for the tetrahedron with
respect to the four edge nodes (nσ = 4)

Nσ 1 = ξ , Nσ 2 = η , Nσ 3 = ζ , Nσ 4 = κ (19)

and for the hexahedron with respect to the eight edge nodes (nσ = 8 and K =
1, . . . , 8) as

Nσ K = 1

8
(1 + ξ ξK )(1 + η ηK )(1 + ζ ζK ) (20)

these will be used to interpolate the Lagrange multipliers (fiber stresses) σc i related
to the constraint within the element

σc i =
nσ∑

K=1

Nσ K (ξ , η , ζ ) σK i . (21)
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Furthermore we need to define the coordinates within the finite element to formulate
the isoparametric mapping. With ζ = (ξ , η , ζ ) it follows

Xe =
nu∑

J=1

NJ (ζ )XJ . (22)

Based on these ansatz functions the deformation gradient within an element e is
computed via

Fe = 1 + Grad ue =
nu∑

I=1

uI ⊗ J−T
e ∇ζ NI (23)

with the Jacobian of the isoparametric map

Je =
nu∑

I=1

XI ⊗ ∇ζ NI .

Now the Jacobian Je of the deformation gradientFe is obtained within the element by
Je = det Fe. Furthermore the Cauchy-Green tensor Ce can be computed at element
level from (2). These kinematical relations can then be used to discretize the strain
energy function in (3).

Now we have to introduce the discrete version of the different constraint formu-
lations (7), (13) and (15). For that the trace of Ce Me i has to be computed. For the
formulation of the mixed finite element we start from Eq. (9). Thus one has to com-
pute the structure tensor Me i that depends on the vector ai providing the direction
of the anisotropy. Vector ai is defined as a unit vector

ai = { axi , ayi , azi } /

√
a2xi + a2yi + a2zi . (24)

With that the complete potential energy for a hyperelastic material is given for the
case of the Lagrangian form by

U (u , σc i ) =
∫

�

[
μ

2
(trCe − 3 − 2 log Je) + λ

4
(J 2

e − 1 − 2 log Je)

]
d�

+
2∑

i=1

∫

�

σc i (tr[CeMe i ] − 1) d� −
∫

	σ

t̂ · u d	 . (25)

where t̂ is the surface traction that is applied at the boundary 	σ of the solid �.
In this contribution we will employ the tool AceGen to produce the finite element

code. Thus (25) can be formulated in terms of the kinematical quantities and interpo-
lations. This is sufficient when AceGen is used to derive the element residual vector
and the tangent matrix.
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4 Formulation of the Virtual Element Projection

Within the virtual element method (VEM) we have two ingredients that have to be
considered. The first is a Galerkin projection of the deformation onto a specific ansatz
space. The second ingredient is the stabilization of the formulation. Thus the virtual
element method relies on the split of the ansatz space into a part 
uh (projection)
and a remainder (stabilization)

uh = 
uh + (uh − 
uh) . (26)

For the stabilization a new concept was introduced in Wriggers et al. [45] which is
used in this paper. The advantage of the method is that a domain� can be partitioned
into non-overlapping polygonal elements which need not be convex.

In this paperwe use a low-order approachwith linear ansatz functionswhere nodes
are placed only at the vertices of the polygonal elements. Furthermore, the restriction
of the element shape functions to the element boundaries are linear function, see
Fig. 2.

4.1 Ansatz Functions for VEM

The first part of a virtual element formulation is related to the computation of the
projection 
uh which is modeled at element level by a linear function


uh = Hc =
[
1 0 x 0 y 0
0 1 0 x 0 y

]
c (27)

where the constants to be determined are c = { c1 , c2 , . . . , c6 }.
Additionally a linear ansatz for the deformation along the element edge is selected

for a boundary segment k of the virtual element, defined by the local nodes (1)–(2)
by, see right side of Fig. 3,

Fig. 2 Comparison of the ansatz functions for FEM and VEM formulations
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Fig. 3 Virtual element with
nV nodes and local boundary
segment of the element

(uh)k = (1 − ξk)u1 + ξk u2 = Mk 1 u1 + Mk 2 u2 with ξk = xk
Lk

. (28)

Here, for example, Mk 1 is the ansatz function along a segment k related to node (1),
ξk is the local dimensionless coordinate and u1 is the nodal value at that node, see
Fig. 3.

The projection 
uh is defined such that it satisfies, see Beirão Da Veiga et al. [7],

∇
uh |e = 1

�e

∫

�e

Grad uh d� = 1

�e

∫

	e

uh ⊗ N d	 (29)

where N is the normal at the boundary 	e of the domain �e. From (27), the gradient
of the projection is constant at element level

∇
uh |e =
[
c3 c5
c4 c6

]
. (30)

The right hand side of (29) yields with (28)

1

�e

∫

	e

uh ⊗ N d	 = 1

�e

nV∑

k=1

∫

	k

[
ux (xk)Nx ux (xk)Ny

uy(xk)Nx uy(xk)Ny

]
Lk d	 (31)

where we have used N = { Nx , Ny }T and u = { ux , uy }T , and nV are the number
of segments of the element. Note that the normal vector N changes from segment
to segment. All quantities are related to the undeformed or initial configuration.
Furthermore we have used a form of Nk that is not normalized since the length Lk

cancels out when the integral in (31) is evaluated over the edges. The integral in (31)
can be evaluated for the ansatz functions (28) exactly by using the trapezoidal or
Gauss-Lobatto rule, see Wriggers et al. [45].

This projection determines the ansatz 
uh on (27) within an element up to a
constant. Thus this result has to be supplemented by a further condition to ensure
uniqueness. For this purpose we adopt the condition that the sum of the nodal values
of uh and of its projection 
uh are equal. This yields for each element �e



216 P. Wriggers et al.

1

nV

nV∑

I=1


uh(xI ) = 1

nV

nV∑

I=1

uh(xI ) , (32)

where xI are the coordinates of the nodal point I and the sum includes all boundary
nodes. Note that the constant gradient ∇
uh |e can be computed directly using (30)
and (31). Thus for the computation of the strain energy it is not necessary to evaluate
Eq. (32).

The Lagrangian parameters are approximated in the virtual element by a constant
value σ̄c i , leading to

σc i = σ̄c i (33)

4.2 Construction of the Virtual Element

A virtual element is based only on the projection 
uh would lead to a rank deficient
element once the number of vertices is greater than 3. Thus the formulation has to
be stabilized like the classical one-point integrated elements developed by Flanagan
and Belytschko [15], Belytschko and Bindeman [8], Reese et al. [32], Reese and
Wriggers [33], Reese [31], Mueller-Hoeppe et al. [29], Korelc et al. [23], Krysl [26].
The anisotropic version, discussed here, is based on the formulation developed in
Wriggers et al. [45]. In the following we will first discuss the formulation of the
element part that stems from the projection, see last section, for the anisotropic case.
Furthermore, the stabilization of the virtual element will be performed as developed
in Wriggers et al. [45]. Thus the anisotropic behaviour is only introduced in the first
term of the potential that is related to the projection.

With this the development of the virtual using the hyperelastic potential function
(25) yields

U (u , σci ) =
ne

A
e=1

[
U (
uh |e , σ̄ci ) +Ustab(uh |e − 
uh |e)

]
. (34)

4.2.1 Constant Part Due to Projection

The simplest possible formulation for a finite deformation virtual element is a split
into a constant part of the deformation gradient and an associated stabilization term.
This was developed for the linear case in Beirão Da Veiga et al. [6] and also in
Wriggers et al. [46] where in the latter work the focus was on contact mechanics.
The same approach can be found in the work of Beirão Da Veiga et al. [7], Chi et al.
[14] and Wriggers et al. [45] for the nonlinear case where different approaches for
the stabilization were introduced.

Now the anisotropic part of the potential in (25) will be used to develop the
constant part of the virtual element. Since σ̄ci ,Mi and C(
uh |e) are constant within
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the virtual element �e the integration of the last two terms in (25) is trivial, leading
with the perturbed Lagrangian formulation, see (13), to

U (
uh |e, σ̄ci ) = Uiso(
uh |e) +
2∑

i=1

[
σ̄ci (tr[C(
uh |e)Mi ] − 1) − 1

2Cci
σ̄ 2
ci

]
�e .

(35)

where Uiso(
uh |e) is the discretized first term in (25) denoting the isotropic matrix
behaviour. This formulation introduces two additional variables σ̄ci which can how-
ever be eliminated at element level in case of the perturbed Lagrangian formulation.
Note that this is not the case for the pure Lagrangian multiplier formulation in (9).

The perturbed Lagrangian formulation in (35) is a regularized method for enforc-
ing the constraint of rigid fibers where the parametersCci are penalty parameters that
can be interpreted as stiffnesses of the fibers in directions ai . Thus this formulation
can also be used for the numerical simulation of anisotropic materials with a given
fiber stiffness that allows for deformation of the fibers.

All derivations with respect to the unknown displacements leading to the resid-
ual vector Rc

e and the tangent matrix Kc
T e were performed with the symbolic tool

AceGen, see Korelc and Wriggers [24]. This yields for (35)

Re = ∂U (
uh |e, σ̄ci )

∂pe
and KT e = ∂Rc

e(pe)
∂pe

(36)

where pe = {ue , σ̄ci } denotes the vector unknowns of the virtual element �e.

4.2.2 Nonlinear Stabilization

In this contibution a novel stabilization approach is applied for virtual elements
which was derived in Wriggers et al. [45]. This stabilization is based on a scheme
proposed inKrysl [25]. This techniques is based on the introduction of a new, positive
definite strain energy �̂. Then the stabilization contribution to the strain energy can
be defined by

Ustab(uh |e − 
uh |e) = Û (uh |e) − Û (
uh |e) . (37)

The second term on the right side ensures consistency of the total potential energy.
This means that once the element size is very small, a constant strain will occur in
each virtual element. In that case Û (uh) will approach Û (
uh) and thus will not
influence the final result. With (37) the total potential yields

U (uh) = U (
uh) + Û (uh) − Û (
uh) . (38)

The choice

Û (uh) =
ne∑

e=1

∫

�e

Ŵ (uh |e) d� . (39)
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results in a purely isotropic strain energy analogous to (3). Following the approach
advocated in Krysl [25], we propose the stabilization strain energy

Û (uh |e) =
∫

�

[
λ̂

2
(Jm − 1)2 + μ̂

2
(trCm − 3 − 2 ln Jm)

]
d� . (40)

The anisotropic part (13) was neglected since the basic physical behaviour has to
be covered by (35) which represents the projection onto the virtual element space.
The terms involving 
uh can be integrated in the same way as (35). It remains to
develop a simple procedure for the integration of the first term in (37) involving the
displacement uh |e.

In Wriggers et al. [45] the displacement field uh |e in (26) was approximated by
an inscribed triangular finite element mesh, see Fig. 4 which then can be used to
compute the stabilization energy. The specific choice of the mesh using nint linear
three-noded triangles that are connected to the nodes of the virtual element does not
introduce extra degrees of freedom. Note, that triangularization is always possible.
Once an ansatz is formulated for the approximation within each triangle �i

m of
the inscribed mesh for the displacement field, here denoted by um the deformation
measures Jm and Cm can be easily computed in the standard way, either by using an
isoparametric formulation for the three noded triangle or by direct evaluation of the
ansatz functions.

The gradient Grad um is constant over each inscribed element �i
m as well as the

deformation gradient Fi
m = 1 + Grad um . The potential (40) can now be evaluated

for the internal triangular mesh. All further derivations leading to the residual vector
Re and the tangent matrixKT e were performed with the symbolic tool AceGen, see
Korelc and Wriggers [24]. This yields for (37)

Rs
e = ∂Ustab(ue)

∂ue
and Ks

T e = ∂Rs
e(ue)
∂ue

. (41)

Fig. 4 Internal triangular
mesh
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Fig. 5 Inner and outer
radius of a virtual element

Thus the total residual and tangent matrix of the virtual element are given by the sum
of expressions (36) and (41): Re = Rc

e + Rs
e and KT e = Kc

T e + Ks
T e.

The values of the Lamé parameters in the strain energy (40) have to be determined
in a proper way. Wriggers et al. [45] used a procedure that takes into account the
element distortion to compute the Lamé parameters λ̂ and μ̂, see also Krysl [27]. The
initial element distortion can be obtained from the geometry of a virtual element,
see Fig. 5. The algorithm to determine the material parameters for the stabilization
energy is as follows, see Krysl [27] and Wriggers et al. [45]:

• Convert the Lamé parameters, related to the problem, to Young’s modulus and
Poisson ratio.

• Compute a geometry parameter by using the inner and outer radii, R2
i , R2

a respec-
tively, see Fig. 5, to obtain

β = 2
√
2 (1 + ν)

R2
i

R2
a − R2

i

. (42)

The inner radius is computed by using the distance from the geometrical centre
to the convex hull of the virtual element while the outer radius is defined by the
maximum distance of nodes related to the virtual element, see Fig. 5.

• Compute the correction

Ê = E
β

1 + β
ν̂ = 0.3 (43)

which is based on a comparison of the bending energy of a rectangular virtual
element with that of a beam in order to enhance the bending behaviour of the
element, see Krysl [27]. Thus the Young’s modulus and the Poisson ratio of the
virtual element can be computed. Note that ν̄ is kept constant since the Poisson
ratio does not influence the convergence behaviour of the element and avoids
locking in the stabilization term for incompressible problems. A similar procedure
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was developed in the work of Nadler and Rubin [30] who stabilized a Cosserat
brick element using 18 deformation modes for bending and torsion and matched
the stiffness related to these modes by comparisons with linear elastic solutions.
Extensions for non-rectangular elements were provided in Loehnert et al. [28] and
Boerner et al. [10].

• The Lamé parameters for the stabilization energy are then obtained from

λ̂ = Ê ν̂

(1 + ν̂)(1 − 2ν̂)
μ̂ = Ê

2(1 + ν̂)
(44)

5 Examples

Several numerical examples are considered to show the performance of the mixed
formulation for anisotropic materials using finite and virtual elements. In the exam-
ples the following discretization schemes are compared:

• Tetrahedral elements for the constraint formulation (9) and (10) with quadratic
ansatz functions (17) for the deformations and linear ansatz, see (19), for the
Lagrangian multiplier σc. These elements are labeled T2-A1 in the following.

• The same ansatz is also used perturbed Lagrangian formulation (13). These ele-
ments are labeled T2-A1-P.

• Hexahedral elements for the constraint formulation (9) and (10) with quadratic
ansatz functions (18) for the deformations and linear ansatz, see (20), for the
Lagrangian multiplier σc. These elements are labeled H2-A1 in the following.

• For the perturbed Lagrangian formulation the same ansatz (18) is used. These
hexahedral elements are labeled H2-A1-P.

For comparison reasons standard displacement elements were formulated as well
based on the penalty method (14). These elements are denoted by T2 and H2.
For the virtual elements different element types are used.

• A sepcial virtual element with 8 nodes is labeled by VEM-T1.
• Additionally Voronoi meshes are used with elements that have arbitrary number
of nodes. This discretization is called VEM-T1-VO.

All examples are subjected to loads that lead to finite deformation strain states.

5.1 Cook’s Membrane Problem

An example that will show a clear anisotropic response is the Cook’s membrane
problem of a tapered cantilever beam, clamped at the left end. The structure is loaded
at the right end by a constant vertical load, as depicted in Fig. 6.
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Fig. 6 Initial configuration of the cantilever beam

The selected dates for the Lame constants are μ = 500 and λ = 1000. The direc-
tion of anisotropy is given by a = 1√

3
{ 1 , 1 , 1 }. The beam is clamped at its left end

thus all displacements at X = 0 all were set to zero in x-, y- and z-direction. The
total load of p0 = 250 was applied in different loading steps.

Different mesh densities where used to compute the solution, see Fig. 7 for the
tetrahedra. For hexahedra elements the same mesh sequence is used. The sequence
of meshes is selected such that the finer meshes are included in the coarser meshes.
This enables convergence studies that will depict differences of the formulations.
The number N denotes the mesh division. Since the membrane has a thickness of
Hz = 10 the number of elements in this direction are reduced which yields a mesh
of N × N × N / 2.

In a first computation a mesh with N = 16 was used to obtain the load displace-
ment curve for Cook’s membrane problem. The element used for this simulation was

Fig. 7 Tetrahedral meshes of the cantilever beam with N = 2, 4, 8, 16
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the H2-A1-P formulation. The load was applied in 10 even load increments λ with
�λ = 0.25. The parameter for the perturbed formulation was selected as Cc = 106.

The deformedmesh on the right in Fig. 8 was computed with a mesh of 16 × 16 ×
8 elements which led to a total number of 59058◦ of freedoms. The deformation at
the final configuration clearly depicts the twist in the deformed shape due to the
anisotopic constraint at large deformations. The solution was computed using 8
load steps for all discretizations reported in Fig. 9. The convergence behaviour was
robust, 6 Newton iterations per load step were needed for all discretizations to obtain
quadratic convergence

A convergence study is performed for the fully constraint case, using the
Lagrangian multiplier formulation (9). The element formulations H2-A1 and T2-

Fig. 8 Load displacement curve: λ versus displacement components in y- and z-direction at point
(48, 52, 5) and deformed shape at final configuration

Fig. 9 Convergence Study,
constraint case
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A1 are compared. Figure9 depicts the convergence of the vertical displacement at
point (48, 60, 0). The load displacement curve, see Fig. 8, is computed for the vertical
displacement of the mid node (X,Y, Z) = (48, 52, 5) of the plane at the right end of
the cantilever beam which is in the direction of the load p0, see Fig. 6. Furthermore
the out-of-plane displacement in z-direction is plotted that shows the out-of-plane
deformation of the cantilever beam due to the anisotropic material. It can be observed
that the hexahedral element performs slightly better for coarse meshes. Here one has
to acknowledge that the coarsest mesh (N = 2) of the triangularization for the tetra-
hedral elements is not symmetric and thus will have a certain bias. Nevertheless the
displacement for the coarsest mesh is close to the final result, being approximately
only 5% off.

In order to show the dependency of the solution on the penalty or fiber stiffness
parameter Cc a series of computations were performed. The perturbed formulation
(12) was used and a mesh division of N = 8 selected. Note that the anisotropic
constraint is not enforced for a penalty parameter Cc ≤ 10. Decreasing Cc leads to
an intermediate stage where the stiffness of the fiber changes the deformation state.
This is observed for parameters between 10 ≤ Cc ≤ 105. Finally from Cc > 105 on
there is no further change, thus the parameter is sufficient to enforce the constraint.
Additionally we note, that for Cc > 107 the result is the same that is obtained with
the pure Lagrangian multiplier formulation (9).

A convergence study is now performed for the perturbed Lagrangian formulation,
see (12) which is comparedwith the penalty formulation (14) for a parameter ofCc =
106. The results can be found in Fig. 11. It can be seen that the penalty formulation
does not converge to the same solution as the perturbedLagrangian formulation. Here
a penalty parameter was used that is sufficient to fulfill the constraint, see Fig. 10.
Thus it is clear from Fig. 11 that the penalty formulation locks. Furthermore it is
interesting to observe that for a penalty parameter of Cc > 107 the penalty method

Fig. 10 Influence of the
stiffness parameter Cc on the
displacement components in
y- and z-direction at point
(48, 60, 5)
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Fig. 11 Convergence Study, penalty versus perturbed Lagrangian, Cp = 106

for the H2 as well as for the T2 element the Newton iteration diverged while the
perturbed Lagrangian formulations H2-A1-P and T2-A1-P still converges. Thus the
different ansatz spaces for u and σ are necessary for a robust element formulation.

5.2 Shear Deformation of a Beam

When a beam that is clamped at one end is subjected to an end load then the beam
will usually bend in the direction of the loading. Here we will investigate the case of
a special anisotropic constraint that allows no deformation in horizontal direction.
In that case the axial movement is constraint and the beam can only undergo shear
deformations. The beam has a length of L = 2, a height of H = 0.5 and a thickness
T = 1 (in dimensionless coordinates), see Fig. 12. The constitutive data for the
Lame constants are μ = 40 and λ = 100. The direction of anisotropy is given by
a = { 1 , 0 } which enforces the constraint in horizontal x-direction. The beam is
clamped at the left end using the boundary conditions: ux = uy = 0 for all nodes at
x = 0. It is loaded by a constant load of py = 1 at the right end.

The loading is such that a moderate strain state occurs for pure shear. This leads
to a deformed state that is reported in Fig. 13. In this figure the deformation is scaled
by a factor of 5. The displacement at the right side of the beam is uy = 0.0531. This
result can be checked using the classical beam theory where the shear deformation
at the end of the beam is

uyB = Q L

μ A
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Fig. 12 Beam under end load

Fig. 13 Pure shear deformation of the beam for a mesh with 32 × 16 elements

Fig. 14 Pure shear deformation two distorted meshes with 32 × 16 elements

with A = 0.5, Q = py A = 0.5 and it follows uyB = 0, 05. A convergence study
shows that the solution converges to uy = 0.05 for a high density mesh with
512 × 256 virtual elements. Figure15 depicts the convergence behaviour of different
meshes. In Fig. 15 a regular mesh with 8-node virtual elements (VEM-8), a distorted
mesh with 8-node elements (VEM-8-D), a Voronoi mesh (VEM-VO) is used as well
as the T2-A1 ansatz. The deformed shapes for the distorted meshes can be found in
Fig. 14. All meshes converge to the correct solution, however at the beginning the
deviation from the converged solution is quite high.

The relatively slow convergence for this simple problem stems from the fact that
the anisotropic constraint in the virtual element formulation is fulfilled as mean
value for an element �e. This is somehow equivalent to a fulfillment at mid point
and actually leads for only one element to pure bending since at a beam axis the
constraint is fulfilled exactly in bending.

The same behaviour can also be observed in Fig. 15 when the computation is
performed with the tetrahedral element T2-A1 using the Taylor-Hood ansatz for
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Fig. 15 Convergence study for the shear beam: VEM-T1- and Q2S-element

Fig. 16 Pure shear deformation of the beam for a mesh with 2 × 3 virtual elements, scaled by a
factor of 5

displacements and pressure where the displacements in the third directions are con-
straint to obtain a plane strain state. However the deviations are smaller since this is
an element with quadratic ansatz for the displacements and the anisotropic constraint
is fulfilled using a linear ansatz for the Lagrangian multipliers.

Thus ifwe use a specialmeshwhere a very thin upper and lower layer is introduced
then the constraint is enforced at the upper and lower side of the beam and the pure
shear mode is recovered, see Fig. 16. The solution is with uy = 0.0511 very close to
the converged solution despite the very coarse mesh with only six virtual elements.
Also note that in this example the very thin upper and lower elements with an element
ratio of 1/100 do not lead to locking.

Hence we can conclude that the shear deformation pattern can be computed for
different mesh types when using the virtual element method. The results clearly
show that the constraint due to anisotropic behaviour can be reproduced which is
also true for the T2-A1 tetrahedral element. Finally it should be noted that the bending
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deformation state related to the given load would lead to large strains and deflections
when no anisotropic constraint is present.

5.3 Bias Extension Test

Aproblemwhere tension locking can occur is the tensile test where fibers are oriented
in ±45◦ in the initial configuration. This bias-extension test was used in ten Thjie
and Akkerman [42] and Hamila and Boisse [16] to investigate behaviour of standard
finite element formulations and special interpolation techniques to avoid locking.
The test is performed on a rectangular specimen, see Fig. 17 for the finite element
mesh in the initial configuration. The length of the specimen is L = 300, its width
is H = 100 and the thickness of the specimen is T = 10. The specimen is clamped
at both ends and pulled using a constant displacement ūx = 65. In order to obtain
a two-dimensional plane strain state, as it was used in Hamila and Boisse [16], the
displacements of all nodes where set to zero in thickness direction at Z = 0 for the
T2-A1 elements. The material properties of the matrix material are described by the
Lame constants λ = 1 and μ = 1. The fiber stiffness is Cc = 4000.

When the specimen is stretched from L to L + ūx different in-plane shear zones
occur, see Hamila and Boisse [16]. As depicted also in this paper, the computation
using a standard element formulation, here a pure displacement formulation using
T2 elements, yields a non physical deformation state, see left side of Fig. 18. On
the other hand the new T2-A1 element yields even with a relatively coarse mesh a
correct deformation pattern, which is depicted on the right side of Fig. 18 and has
the same form as described in Hamila and Boisse [16]. The deformation of the finest
mesh, see Fig. 19, actually shows also the different shear zones.

Fig. 17 Bias extension test of a woven composite

Fig. 18 Deformations states for T2 and T2-A1 element formulations
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Fig. 19 Different shear zones obtained with a T2-A1 mesh of 40960 elements

Fig. 20 Mesh convergence
of the displacement uy in the
midst of the specimen

The plot in Fig. 20 shows the mesh convergence for the T2-A1 and the virtual
element formulations using N = 4, 8, 16, 32 and 64 elements per side. As can be
seen the result is insensitive with respect to the mesh size. The deviation for N = 4
is related to the fact that the mesh cannot model the different shear zones, see Fig. 19.
It can also be observed that the convergence rate in this case is slower for the virtual
element formulation than for the T2-A1 element. This is due to the approximation
which is one order lower for the virtual elements.

It is worth noting that the final displacement can be reached with the T2-A1
element in one single load step for all mesh sizes, while the T2 element needs
about 25 load steps to reach the final configuration. Thus the new T2-A1 element
is a lot more robust than the T2 element for such applications. The virtual element
formulation needs also only one load step.

Figure21 shows the deformed mesh that was computed with the virtual element
formulation using a Voronoi mesh. Again can see the large deformation state of the
specimen after loading. We note that also the virtual element formulation is able to
predict the correct deformed shape of the specimen.
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Fig. 21 Bias-extension: deformed configuration computed with a Voronoi mesh

6 Conclusions

Finite elements for large strain anisotropic behaviour were developed in this paper.
Special emphasis was put on a formulation that was able to enforce inextensible fiber
extensions for anisotropic materials exactly using a constraint formulation. This led
to a Lagrange multiplier method with different ansatz spaces for the deformations
and the Lagrangian multipliers (fiber stresses). The mixed approach shows a robust
convergence behaviour and does not lock. A comparison with standard quadratic ele-
ments depicts the locking behaviour of these elements when the constraint was added
via a penalty term. Furthermore the mixed approach led to a more robust behaviour
in the iterative procedure needed to solve the associated nonlinear problems.

Acknowledgements The first and third author acknowledge the support of the “Deutsche
Forschungsgemeinschaft” under contract of the Priority Program 1748 ‘Reliable simulation tech-
niques in solid mechanics: Development of non-standard discretization methods, mechanical and
mathematical analysis’ under the project WR 19/50-1 and SCHR 570/23-1.

References

1. Auricchio, F., de Veiga, L.B., Lovadina, C., Reali, A.: A stability study of some mixed finite
elements for large deformation elasticity problems. Comput. Methods Appl. Mech. Eng. 194,
1075–1092 (2005)

2. Auricchio, F., daVelga, L.B., Lovadina, C., Reali, A., Taylor, R.L.,Wriggers, P.:Approximation
of incompressible large deformation elastic problems: some unresolved issues. Comput. Mech.
52, 1153–1167 (2013)

3. Babuska, I.: The finite element method with lagrangian multipliers. Numer. Math. 20(3), 179–
192 (1973)

4. Babuska, I., Suri,M.: Locking effects in the finite element approximation of elasticity problems.
Numer. Math. 62(1), 439–463 (1992)

5. Bathe, K.J.: Finite Element Procedures. Prentice Hall (2006)
6. Beirão Da Veiga, L., Brezzi, F., Marini, L.: Virtual elements for linear elasticity problems.

SIAM J. Numer. Anal. 51(2), 794–812 (2013)
7. Beirão Da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic

problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015)



230 P. Wriggers et al.

8. Belytschko, T., Bindeman, L.P.: Assumed strain stabilization of the 4-node quadrilateral with 1-
point quadrature for nonlinear problems. Comput. Methods Appl. Mech. Eng. 88(3), 311–340
(1991)

9. Belytschko, T., Ong, J.S.J., Liu,W.K., Kennedy, J.M.: Hourglass control in linear and nonlinear
problems. Comput. Methods Appl. Mech. Eng. 43, 251–276 (1984)

10. Boerner, E., Loehnert, S., Wriggers, P.: A new finite element based on the theory of a cosserat
point—extension to initially distorted elements for 2D plane strain. Int. J. Numer. Methods
Eng. 71, 454–472 (2007)

11. Brezzi F.On the existence, uniqueness and approximationof saddle-point problems arising from
lagrangianmultipliers. Revue francaise d’automatique, informatique, recherche operationnelle.
Anal. Numer. 8(2), 129–151 (1974)

12. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)
13. Chapelle, D., Bathe, K.J.: The inf-sup test. Comput. Struct. 47, 537–545 (1993)
14. Chi, H., Beirão da Veiga, L., Paulino, G.: Some basic formulations of the virtual element

method (VEM) for finite deformations. Comput. Methods Appl. Mech. Eng. (2016). https://
doi.org/10.1016/j.cma.2016.12.020

15. Flanagan, D., Belytschko, T.: A uniform strain hexahedron and quadrilateral with orthogonal
hour-glass control. Int. J. Num. Methods Eng. 17, 679–706 (1981)

16. Hamila, N., Boisse, P.: Locking in simulation of composite reinforcement deformations. Analy-
sis and treatment. Compos. Part A, 109–117 (2013)

17. Helfenstein, J., Jabareen, M., Mazza, E., Govindjee, S.: On non-physical response in models
for fiber-reinforced hyperelastic materials. Int. J. Solids Struct. 47(16), 2056–2061 (2010)

18. Holzapfel, G., Gasser, T., Ogden, R.: A new constitutive framework for arterial wall mechanics
and a comparative study of material models. J. Elast. Phys. Sci. Solids 61(1–3), 1–48 (2000)

19. Hughes, T.R.J.: The Finite Element Method. Prentice Hall, Englewood Cliffs, New Jersey
(1987)

20. Korelc, J.:Automatic generation of finite-element code by simultaneous optimization of expres-
sions. Theor. Comput. Sci. 187, 231–248 (1997)

21. Korelc, J.: Automatic generation of numerical codes with introduction to AceGen 4.0 symbolic
code generator (2000). http://www.fgg.uni-lj.si/Symech

22. Korelc, J.: Computational Templates (2016). http://www.fgg.uni-lj.si/Symech
23. Korelc, J., Solinc, U., Wriggers, P.: An improved EAS brick element for finite deformation.

Comput. Mech. 46, 641–659 (2010)
24. Korelc, J., Wriggers, P.: Automation of Finite Element Methods. Springer, Berlin (2016)
25. Krysl, P.: Mean-strain eight-node hexahedron with optimized energy-sampling stabilization

for large-strain deformation. Int. J. Num. Methods Eng. 103, 650–670 (2015)
26. Krysl, P.: Mean-strain eight-node hexahedron with stabilization by energy sampling. Int. J.

Numer. Methods Eng. 103, 437–449 (2015)
27. Krysl, P.: Mean-strain 8-node hexahedron with optimized energy-sampling stabilization. Finite

Elem. Anal. Des. 108, 41–53 (2016)
28. Loehnert, S., Boerner, E., Rubin, M., Wriggers, P.: Response of a nonlinear elastic general

cosserat brick element in simulations typically exhibiting locking and hourglassing. Comput.
Mech. 36, 255–265 (2005)

29. Mueller-Hoeppe, D.S., Loehnert, S., Wriggers, P.: A finite deformation brick element with
inhomogeneous mode enhancement. Int. J. Numer. Methods Eng. 78, 1164–1187 (2009)

30. Nadler, B., Rubin, M.: A new 3-D finite element for nonlinear elasticity using the theory of a
cosserat point. Int. J. Solids Struct. 40, 4585–4614 (2003)

31. Reese, S.: On a consistent hourglass stabilization technique to treat large inelastic deformations
and thermo-mechanical coupling in plane strain problems. Int. J. Numer. Methods Eng. 57,
1095–1127 (2003)

32. Reese, S., Kuessner, M., Reddy, B.D.: A new stabilization technique to avoid hourglassing in
finite elasticity. Int. J. Numer. Methods Eng. 44, 1617–1652 (1999)

33. Reese, S., Wriggers, P.: A new stabilization concept for finite elements in large deformation
problems. Int. J. Numer. Methods Eng. 48, 79–110 (2000)

https://doi.org/10.1016/j.cma.2016.12.020
https://doi.org/10.1016/j.cma.2016.12.020
http://www.fgg.uni-lj.si/Symech
http://www.fgg.uni-lj.si/Symech


Finite and Virtual Element Formulations … 231

34. Sansour, C.: On the physical assumptions underlying the volumetric-isochoric split and the
case of anisotropy. Eur. J. Mech. A/Solids 27(1), 28–39 (2008)

35. Schröder, J.: Anisotropic polyconvex energies. In: Schröder, J. (ed.) Polyconvex Analysis, vol.
62, pp. 1–53. CISM, Springer, Wien (2009)

36. Schröder, J., Neff, P.: Invariant formulation of hyperelastic transverse isotropy based on poly-
convex free energy functions. Int. J. Solids Struct. 40(2), 401–445 (2003)

37. Schröder, J., Viebahn, N., Balzani, D., Wriggers, P.: A novel mixed finite element for finite
anisotropic elasticity; the SKA-element simplified kinematics for anisotropy. Comput.Methods
Appl. Mech. Eng. 310, 475–494 (2016)

38. Simo, J.C., Armero, F.: Geometrically non-linear enhanced strain mixed methods and the
method of incompatible modes. Int. J. Numer. Methods Eng. 33, 1413–1449 (1992)

39. Simo, J.C., Armero, F., Taylor, R.L.: Improved versions of assumed enhanced strain tri-linear
elements for 3D finite deformation problems. Comput. Methods Appl. Mech. Eng. 110, 359–
386 (1993)

40. Simo, J.C., Rifai, M.S.: A class of assumed strain methods and the method of incompatible
modes. Int. J. Numer. Methods Eng. 29, 1595–1638 (1990)

41. Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume con-
straint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208
(1985)

42. ten Thjie, R.H.W., Akkerman, R.: Solutions to intra-ply shear locking in finite element analyses
of fibre reinforced materials. Compos. Part A, 1167–1176 (2008)

43. Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible,
transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135(1), 107–128
(1996)

44. Wriggers, P.: Nonlinear Finite Elements. Springer, Berlin (2008)
45. Wriggers, P., Reddy, B., Rust, W., Hudobivnik, B.: Efficient virtual element formulations for

compressible and incompressible finite deformations. Comput. Mech. (2017). https://doi.org/
10.1007/s00466-017-1405-4

46. Wriggers, P., Rust, W., Reddy, B.: A virtual element method for contact. Comput. Mech. 58,
1039–1050 (2016)

47. Wriggers, P., Schröder, J., Auricchio, F.: Finite element formulations for large strain anisotropic
materials. Int. J. Adv. Model. Simul. Eng. Sci. 3(25), 1–18 (2016)

48. Zdunek, A., Rachowicz,W., Eriksson, T.: A novel computational formulation for nearly incom-
pressible and nearly inextensible finite hyperelasticity. Comput. Methods Appl. Mech. Eng.
281, 220–249 (2014)

49. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 2, 5th edn. Butterworth-
Heinemann, Oxford, UK (2000)

50. Zienkiewicz, O.C., Taylor, R.L., Too, J.M.: Reduced integration technique in general analysis
of plates and shells. Int. J. Numer. Methods Eng. 3, 275–290 (1971)

https://doi.org/10.1007/s00466-017-1405-4
https://doi.org/10.1007/s00466-017-1405-4


Part III
Gradient Enhanced Modeling



AMicromorphic Damage-Plasticity Model
to Counteract Mesh Dependence in Finite
Element Simulations Involving Material
Softening

Tim Brepols, Stephan Wulfinghoff and Stefanie Reese

Abstract Agradient-extended damage-plasticitymaterial model is presentedwhich
belongs to the class of micromophic media as proposed by Forest (J Eng Mech
135:117–131, 2009) [17]. A ‘two-surface’ formulation is utilized in which damage
and plasticity are treated as independent but strongly coupled dissipative phenom-
ena. To this end, separate yield and damage criteria as well as loading/unloading
conditions are introduced. The model is thermodynamically consistent and accounts
for both nonlinear kinematic and isotropic hardening as well as damage hardening.
Various theoretical and numerical aspects of the formulation are discussed. Empha-
sis is also put on a procedure to enforce stress constraints at the local integration
point level which provides, for instance, the basis for a straightforward integration
of 3D gradient-extended material models into beam or shell elements or for their
usage in 2D plane stress computations. A structural example problem illustrates the
merits of the model and its ability to deliver mesh-independent results in coupled
damage-plasticity finite element simulations.

1 Introduction

Studying damage and fracture processes within materials and structures is a subject
of major interest in the mechanics community. The availability of today’s computing
power, the ongoing improvement of sophisticated simulation software as well as the
increasing knowledge of the physical backgrounds of the aforementioned phenomena
due to better experimental insights have provided the basis for a steadily growing
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number of interesting numerical studies on this topic in more recent times (among
many others, see e.g. [12, 13, 15, 27, 31, 38, 40, 41, 49]). Naturally, alongwith these
developments has come also a considerable progress in and application of advanced
and ‘non-standard’ material modeling techniques.

A common example is the consideration of ‘nonlocal’ gradient effects in damage
and fracture computations. For long, it has been recognized that finite element sim-
ulations involving conventional ‘local’ continuum damage models may suffer from
strongly mesh-dependent results which are caused by an oversimplified approach to
model material softening (see e.g. [4, 7, 11, 20, 25]). Gradient-enhanced damage
models can provide a way out of this dilemma by incorporating internal material
length scales acting as ‘localization limiters’ in the underlying formulation and thus
restoring its physical and mathematical soundness. For this reason and due to the
above mentioned technical achievements, gradient-extended material models find an
increasing application in more and more practically relevant computational investi-
gations nowadays (e.g. [37, 39, 48, 57], to name only a few).

However, especially with regard to gradient-enhanced models coupling damage
and plasticity, a lot of open questions remain and a need for further clarification
and research is noticeable within the scientific community. In this regard, the present
study aims atmaking a valuable contribution by presenting and discussing a gradient-
extended damage-plasticity model which fits into the rather general framework of
micromorphic media as proposed by Forest [17, 18]. The latter may be considered
an approach for unifying concepts among the various existing types of gradient-
enhancements in the literature that is applied by an increasing number of authors,
see e.g. also [5] or [58]. A ‘two-surface’ formulation is utilized in which damage
and plasticity are modeled as separate dissipative mechanisms using independent
damage and yield criteria and corresponding sets of loading/unloading conditions.
The latter fact makes the model flexibly adaptable to various cases in which the
material’s behavior is either only (quasi-)brittle-like, ductile-like or possibly anything
in between.Nonlinear kinematic and isotropic hardening aswell as damagehardening
are considered and thermodynamical consistency of themodel is ensured via suitable
choices for the evolution equations.

An additional point is the discussion of a procedure to enforce stress constraints
for 3D gradient-extended material models at the local integration point level. The
methodmakes it possible to use thesemodelswithoutmodifications in 2Dplane stress
computations or to integrate the latter e.g. in beam or shell element formulations.
In a variety of different ways, many authors have worked in the past on the subject
of incorporating stress constraints into conventional ‘local’ material models at the
integration point level (among many others, see e.g. [1, 10, 14, 16, 24, 32, 33,
51]). The present study, however, is concerned with gradient-extended materials and
explains e.g. how to appropriately condense the additional material tangent operators
showing up due to a gradient-extension. This makes it possible to retain the quadratic
rate of convergence in aNewton-Raphson iteration scheme at the global finite element
level. To the best knowledge of the authors, this issue has not been presented or
discussed for gradient-extended material models in the literature, yet.
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Finally, the application of the just-mentioned procedure and the mesh regulariza-
tion properties of the presentedmodel are carefully examined bymeans of a structural
2D plane stress benchmark simulation.

2 Constitutive Theory

This section addresses the theoretical details and constitutive theory of the gradient-
extended damage-plasticity model. Starting with a brief explanation of the origin of
the considered type of gradient-extension and a presentation of the model’s strong
and weak form in Sect. 2.1, the fundamental kinematic assumptions and general
thermodynamic considerations are dealt with in Sect. 2.2. In Sect. 2.3, the individ-
ual parts of the underlying Helmholtz free energy are defined, whereas Sect. 2.4
describes the derivation of the state relations and thermodynamic conjugate forces
of the model based on the second law of thermodynamics. Finally, Sects. 2.5 and
2.6 are concerned with a thermodynamically consistent modeling of plasticity and
damage, respectively.

2.1 Micromorphic Extension, Strong and Weak Form of the
Problem

The gradient-extended model under consideration is derived from the micromorphic
theory proposed by Forest [17, 18] which may be regarded as a systematic approach
for constructing higher-order gradient material models from already existing ‘local’
counterparts. In the case of the present study, a scalar ‘micromorphic’ damage vari-
able is introduced as an additional degree of freedom of the model and a further
generalized micromorphic balance equation needs to be solved next to the classical
balance of linear momentum. As will be described in Sect. 2.3, a coupling between
the micromorphic damage variable and its local counterpart is enforced by introduc-
ing a direct dependence of the underlying free energy on the difference between the
just-mentioned quantities. Omitting any details of the derivation process for brevity
(the interested reader is kindly referred to the above mentioned references), the
‘strong form’ of the problem consists of the following partial differential equations
and boundary conditions which are valid in a pointwise sense:

linear momentum balance: micromorphic balance:

div(σ) + f = 0 in� H(D − D̄) + A div(∇ D̄) = 0 in �

σ[n] = t̂ on �t ∇ D̄ · n = 0 on �

u = û on �u

(1)
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In the above,σ denotes the stress tensor,u is the displacement vector, D is the local
damage variable and D̄ its corresponding micromorphic counterpart. Conventional
body forces acting in the domain of body � are represented by f, whereas t̂ and û are
prescribed tractions and displacements at the Dirichlet (�t ) and Neumann (�u) parts
of the boundary, i.e. � = �u ∪ �t , �u ∩ �t = ∅. Moreover, by n appropriate unit
outward normals at the boundary are denoted and A, H are micromorphic material
parameters to be described in more detail in Sect. 2.3. It is noted that the very same
set of Eq. (1) may also be used to model size effects in, for example, gradient crystal
plasticity, if D is replaced by an equivalent plastic strain measure, see [59] and [60].

With (1) at hand, the ‘weak form’ of the problem is obtained in the usual way by
multiplying the partial differential equations (linear momentum balance and micro-
morphic balance) by appropriate vectorial and scalar test functions δu and δ D̄, respec-
tively, and integrating over the domain�. By further consideringGauss’ theorem and
taking into account the boundary conditions, the weak form of the problem follows
as1:

g(u, D̄, δu) :=
∫

�

(σ · ∇sδu − f · δu) d� −
∫

�t

t̂ · δu d� = 0 ∀δu (2)

h(u, D̄, δ D̄) :=
∫

�

(
H (D − D̄) δ D̄ − A∇ D̄ · ∇δ D̄

)
d� = 0 ∀δ D̄ (3)

Since g and h are generally nonlinear, a linearization is carried out with respect to
the unknowns u and D̄ which leads to a coupled system of linear algebraic equations
in the increments Δu and ΔD̄. The latter equation system is then ready for being
solved e.g. by means of an iterative finite element analysis (details are omitted here).

2.2 Kinematic Assumptions and Thermodynamic
Considerations

A geometrically linear theory is assumed. As such, the total strain ε := ∇su is sep-
arable into elastic (εe) and plastic (εp) parts in an additive manner. Furthermore,
in order to model nonlinear kinematic hardening, an additional additive split of the
plastic part into recoverable (εpe ) and irrecoverable (εpi ) parts is considered, leading
to the following relationship:

ε = εe + εp = εe + εpe + εpi (4)

The additional split of the plastic strain is physically motivated. According to Lion
[36], εpe accounts for dislocation-induced lattice rotations and stretches on the
microscale,whereasεpi results from local plastic deformations coming from inelastic
slip on crystallographic slip systems.

1∇s (•) := 1
2

[
(•) + (•)T]

denotes the symmetric part of a quantity (•).
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With regard to the isotropic continuum damage framework considered in this
study, the scalar internal damage variable D measures the degree of material degra-
dation at a certain point in an averaged sense. Furthermore, the model makes use of
the concept of effective stress, originally introduced by Kachanov [28] and Rabot-
nov [43], and the hypothesis of strain equivalence, proposed by Lemaitre [34]. The
effective stress is denoted and defined as

σ̃ := σ

fdam(D)
(5)

where fdam(D) is a scalar-valued positive and decreasing function which is unity
for a virgin material (D = 0) and progressively approaches zero for increasing dam-
age, until a predefined critical value is reached (D = Dcr) that represents complete
material failure.

The model is based on the framework of irreversible thermodynamics (see e.g. [8,
19, 35, 52]). All thermomechanical processes within the material are characterized
by means of state couples (ai ,Ai ) where index i is used to distinguish the various
processes available. Quantity ai is a strain-like state variable and Ai a thermody-
namically conjugated stress-like state variable, both can be tensors of arbitrary order
according to the physical phenomena they represent.

In more detail, the present damage-plasticity model is characterized in every
material point by a set of couples {(εe,σ), (εpe ,Xp), (ξp, qp), (D,Y ), (ξd , qd),
(D̄, ai), (∇ D̄,bi)}. The pairs (εe,σ), (εpe ,Xp) and (ξp, qp) describe the state of
plastic flow, kinematic and isotropic plastic hardening, whereas (D,Y ) and (ξd , qd)
characterize the state of damage anddamagehardening, respectively. The twocouples
(D̄, ai) and (∇ D̄,bi) are related to the micromorphic damage and its first gradient,
respectively.

2.3 State Potential in Terms of the Helmholtz Free Energy

The reversible processes taking place within the material are described by means
of a state potential which is expressed in terms of the Helmholtz free energy ψ.
The latter energy functional depends on the strain-like variables of the model and is
assumed to be additively separable into individual parts. More precisely, there exist
energetic contributions related to elasticity (ψe), plasticity (ψp), damage hardening
(ψd ) and micromorphic damage (ψd̄ ), leading in total to the following expression
and dependencies:

ψ = ψe(εe, D) + ψp(εpe , ξp, D) + ψd(ξd) + ψd̄(D − D̄,∇ D̄) (6)

The elastic part of the energy is defined as

ψe(εe, D) := fdam(D)
1

2
εe · C [εe] (7)
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The quantity C := λ I ⊗ I + 2µI denotes the isotropic fourth-order elasticity ten-
sor in which λ, µ are the Lamé parameters, I is the second-order identity tensor and
I is the fourth-order symmetric identity tensor. The plastic part of the energy is also
affected by damage through function fdam(D) and reads

ψp(εpe , ξp, D) := fdam(D)

(
1

2
aεpe · εpe + e

(
ξp + exp(− f ξp) − 1

f

))
(8)

The first term inside the outer parentheses accounts for kinematic hardening, the
second term is related to nonlinear isotropic hardening. The constants a, e and f
are corresponding plastic material parameters. In simple analogy, the energetic part
related to nonlinear damage hardening is defined as

ψd(ξd) := r

(
ξd + exp(−s ξd) − 1

s

)
(9)

with r and s being damagematerial parameters. Finally, the part of the energy belong-
ing to micromorphic damage is expressed as

ψd̄(D − D̄,∇ D̄) := 1

2
H

(
D − D̄

)2 + 1

2
A∇ D̄ · ∇ D̄ (10)

and consists of two terms.Thefirst termpenalizes the difference between the local and
the micromorphic damage variable with H being a penalty parameter, thus enforcing
a certain degree of coupling between the two quantities. The second term accounts
for the influence of the gradient of D̄ in the free energy. Parameter A introduces
implicitly an ‘internal material length’ into the formulation.

2.4 State Relations and Thermodynamic Conjugate Forces

The second law of thermodynamics in terms of the Clausius-Duhem inequality is
used to derive consistent state relations of themodel. The latter reads in its isothermal
local form (see [17] for further information):

− ψ̇ + σ · ε̇ + ai
˙̄D + bi · ∇ ˙̄D︸ ︷︷ ︸

micromorphic extension

!≥ 0 (11)

Naturally, two additional terms appear in the Clausius-Duhem inequality due to the
micromorphic extension which account for the contributions of the micromorphic
damage and its first gradient to the second law.

With the chain rule of differentiation and expressions (4) and (6) in mind, inequal-
ity (11) can be rewritten as:
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(
σ − ∂ψ

∂εe

)
· ε̇ +

(
ai − ∂ψ

∂ D̄

)
˙̄D +

(
bi − ∂ψ

∂∇ D̄

)
· ∇ ˙̄D +

+ ∂ψ

∂εe
· ε̇p − ∂ψ

∂D
Ḋ − ∂ψ

∂εpe

· ε̇pe − ∂ψ

∂ξp
ξ̇p − ∂ψ

∂ξd
ξ̇d ≥ 0

(12)

The latter expression must hold for arbitrary thermomechanical processes. One pos-
sibility is now to set the expressions in the parentheses intentionally to zero, such
that the state relations of the model follow as:

σ = ∂ψ

∂εe
= fdam(D)C [εe] , ai = ∂ψ

∂ D̄
= −H (D − D̄) , bi = ∂ψ

∂∇ D̄
= A∇ D̄

(13)

As shown, using the micromorphic approach one obtains in addition to the stress-
strain relation further state relations for the thermodynamic conjugate forces ai and
bi to D̄ and ∇ D̄, respectively.

What remains left to be fulfilled is the remaining dissipation inequality which
reads (

σ − Xp
) · ε̇p + Y Ḋ + Xp · ε̇pi − qp ξ̇p − qd ξ̇d ≥ 0 (14)

The abbreviations of the thermodynamic conjugate forces have been introduced for
notational convenience and are defined as:

Y = − ∂ψ

∂D
= −d fdam(D)

dD

(
1

2
εe · C [εe] + 1

2
a εpe · εpe +

+ e

(
ξp + exp(− f ξp) − 1

f

))
− H (D − D̄) (15)

Xp = ∂ψ

∂εpe

= fdam(D) a εpe (16)

qp = ∂ψ

∂ξp
= fdam(D) e

(
1 − exp(− f ξp)

)
(17)

qd = ∂ψ

∂ξd
= r (1 − exp(−s ξd)) (18)

As can be seen from Eq. (15), Y (sometimes loosely referred to as the ‘energy
release rate’) is directly influenced by the micromorphic damage variable D̄ and will
in Sect. 2.6 be used in the definition of the damage loading function. According to this
fact, a ‘nonlocal’ character is introduced into the constitutive equations at the local
integration point level. Further, Y contains both elastic and plastic contributions
which proves to be beneficial since a purely elastic ‘energy release rate’ would
maybe be too restrictive from a physical point of view (for arguments supporting this
hypothesis, see e.g. [8, 9, 26, 29, 47]).
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2.5 Modeling of Plasticity

Deviatoric plastic behavior of thematerial is assumed for simplicitywhich ismodeled
by means of a von Mises-type yield function2:

�p(σ̃, X̃p, q̃p) =
√
3

2

∥∥∥σ̃′ − X̃′
p

∥∥∥ − (
σ0 + q̃p

) ≤ 0 (19)

The initial yield stress is given bymaterial parameterσ0 and nonlinear kinematic and
isotropic hardening are taken into account via X̃p and q̃p, respectively. As indicated,
a further coupling between plasticity and damage is considered in the formulation
since �p is expressed in terms of effective quantities, i.e. in terms of σ̃ as defined in
(5) and

X̃p := Xp

fdam(D)
, q̃p := qp

fdam(D)
(20)

Furthermore, the following thermodynamically consistent plastic evolution equa-
tions for the strain-like plastic internal variables are postulated:

ε̇p = λ̇p
∂�p

∂σ
=

√
3

2

λ̇p

fdam(D)

σ′ − X′
p

‖σ′ − X′
p‖

(21)

ε̇pi = λ̇p

fdam(D)

b

a
X̃′

p = λ̇p

fdam(D)
b εpe (22)

ξ̇p = −λ̇p
∂�p

∂qp
= λ̇p

fdam(D)
(23)

Constant b in expression (22) is an additional plastic material parameter necessary
formodeling nonlinear kinematic hardening. By inspecting the remaining dissipation
inequality (14), it can be easily verified that evolution equations (21)–(23) lead to a
thermodynamically consistent plastic behavior of the model.

As usual, the plastic loading/unloading conditions of the model have to be taken
into account, i.e.

λ̇p ≥ 0, �p ≤ 0, λ̇p �p = 0 (24)

2.6 Modeling of Damage

Damage is modeled by means of the damage loading function

�d(Y, qd) = Y − (Y0 + qd) ≤ 0 (25)

2(•)′ := (•) − 1
3 trace (•) I denotes the deviatoric part of a second-order tensor (•).
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The structural analogy to plasticity is apparent. The onset of damage is represented
by material parameter Y0, whereas qd accounts for nonlinear damage hardening.

Thermodynamically consistent evolution equations for the strain-like damage
variables are postulated as

Ḋ = λ̇d
∂�d

∂Y
= λ̇d (26)

ξ̇d = −λ̇d
∂�d

∂qd
= λ̇d (27)

and, finally, the damage loading/unloading conditions need to be considered, i.e.

λ̇d ≥ 0, �d ≤ 0, λ̇d �d = 0 (28)

As was mentioned in Sect. 2.4, a ‘nonlocal’ character of the constitutive equations
exists due to the dependence of �d on Y which itself is directly influenced by the
micromorphic damage variable D̄.

To summarize, there exist 12 material parameters of the model: λ, μ, σ0, a, b,
e, f , r , s, Y0, A and H . In the present study, constant H plays the role of a penalty
constant controlling the degree of coupling between D and D̄ which is typically
desired to be strong. In other words, H is intentionally chosen as a large number. All
other parameters should be determined via suitable experiments.

3 Numerical and Algorithmic Aspects

The present section discusses some fundamental numerical and algorithmic aspects
which are practically relevant, if the model is to be implemented into, e.g., finite
element codes. More concretely speaking, Sect. 3.1 is concerned with the time-
discretization of the model’s evolution equations and a solution strategy for the
resulting algebraic equation system,whereas Sect. 3.2 explains a procedure to enforce
stress constraints for 3D gradient-extended material models at the local integration
point level in finite elements.

3.1 Discretization of the Evolution Equations and Remarks
on the Incremental Problem

The evolution equations (21)–(23) and (26)–(27) of the model are discretized in time
by means of a fully implicit backward Euler scheme, leading to a coupled system
of nonlinear algebraic equations. Considering a time interval

[
tn, tn+1

]
during the

Newton-Raphson iteration at the global finite element level, this equation system
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needs to be solved iteratively (for given values of ε and D̄) in every integration point
for the following unknowns at time tn+1: εp, εpi , ξp, D, ξd ,Δλp,Δλd , whereΔλp =
Δt λ̇p and Δλd = Δt λ̇d denote the incremental plastic and damage multipliers,
respectively.3 In the actual iteration process, the variables εpi , ξp, D and ξd do
not need to be treated as additional unknowns but can be expressed in terms of
the quantities εp, Δλp, Δλd , thus reducing the computational effort. The stress-like
quantitiesσ,Xp, qp, Y and qd at time tn+1 can be computed according to the formulas
given in Sect. 2.4.

The resulting equation system is additionally subject to the time-discrete version
of the loading/unloading conditions (24) and (28) which leads to four mutually
exclusive scenarios: the step can either be (1) elastic, (2) elastic with concurrently
evolving damage, (3) elastoplastic or (4) elastoplastic with concurrently evolving
damage. In order to determine the correct solution, a suitable algorithmic strategy
needs to be adopted. With regard to monolithic approaches in which the plastic
and damage variables are computed simultaneously, a classical approach would be
e.g. to apply a local active set search strategy similar as in multi-surface plasticity
(see e.g. [50]). Another more recent alternative would be to reformulate the two
sets of loading/unloading conditions by means of the so-called Fischer-Burmeister
functional, thus rigorously eliminating the need for any kind of case differentiation
within the algorithm (see e.g. [2, 3, 6, 30, 31]). Both algorithmic strategies possess
advantages and disadvantages. Further details about this and other numerical issues
(e.g. finite element discretization of the equations, computation of the consistent
tangent operators etc.) are omitted here for brevity but are thoroughly discussed by
Brepols et al. [6].

The final equations which need to be solved in case of an elastoplastic step with
concurrently evolving damage are given below in a residuum format4:

r1 = εp − εpn −
√
3

2

Δλp

fdam(Dn + Δλd)

σ′ − X′
p

‖σ′ − X′
p‖

= 0

r2 = �p = 0

r3 = �d = 0

(29)

Taking symmetry into account, the resulting number of scalar equations and
unknowns to be solved for in this particular case is eight (six components of εp

plus two scalars Δλp and Δλd ).

3In the following, if not explicitly denoted otherwise, any quantity is referred to time tn+1 = tn + Δt .
4The corresponding residuals in case of a purely elastoplastic step or elastic step with concurrently
evolving damage are obtained by deleting either r3 or r1 and r2 in (29), respectively.
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3.2 Enforcing Stress Constraints for 3D Gradient-Extended
Material Models in Finite Elements

In engineering applications, it is frequently desirable and convenient to work with
beam or shell instead of classical solid finite elements. The validity of some of these
element formulations fundamentally depends upon special zero-stress conditions
prevailing within the respective elements, a fact which needs to be considered by
the applied material formulation as well. However, sophisticated material models are
often only available for three-dimensional problems and a consideration of such zero-
stress conditions would necessitate a reformulation of these models which proves to
be complicated. Similar problems can arise, if 2D plane stress computations are to
be performed using a complex 3D material model, as is e.g. the case in the present
study.

In this section, it is shown how arbitrary nonlinear 3D gradient-extended material
models (introducing one additional degree of freedom) can be consistently integrated
into beam, shell or 2D plane stress elements of the above mentioned kind which
rely upon additional zero-stress conditions. For this, an iterative algorithm will be
described which enforces these constraints at the local integration point level. The
style of presentation is very similar to that given by Klinkel and Govindjee [33] who
explained a corresponding strategy for conventional ‘local’ 3D material models. In
the following, the method is extended to account also for gradient-extended material
models of the type presented in this study.

For the development of the procedure, consider the time-discretized version of
the weak form constituted by (2)–(3). During a time interval [tn, tn+1] in a global
Newton-Raphson iteration, the stress σ and the damage variable D are considered
as functions of the strain ε and the micromorphic damage variable D̄ only, i.e.5

σ ≡ σ(ε, D̄), D ≡ D(ε, D̄) (30)

A consistent linearization of the weak form requires to derive σ and D with respect
to ε and D̄, respectively, leading to

Δσ = A [Δε] + BΔD̄, ΔD = E · Δε + F ΔD̄ (31)

where A := ∂σ
∂ε

∣∣
D̄=const (fourth-order tensor), B := ∂σ

∂ D̄

∣∣∣
ε=const

, E := ∂D
∂ε

∣∣
D̄=const

(second-order tensors) and F := ∂D
∂ D̄

∣∣∣
ε=const

(scalar).

5Remember that, during the considered time interval,σ and D do additionally depend on the history
variables at time tn which are, however, constant within [tn, tn+1].
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In all the element formulations considered in this section, certain components of
the stress tensor vanish. Assuming a standard Cartesian frame, these are components{
σ22,σ33,σ23

}
in case of beam formulations, whereas σ33 and

{
σ33,σ13,σ23

}
are

assumed to be zero in case of shell and 2D plane stress elements, respectively. To
describe a single algorithm which is applicable in all cases, a matrix-vector notation
of all quantities is adopted6 and the expressions in (31) are rewritten in the following
partitioned matrix format:

[
Δσm

Δσz

]
=

[
Amm Amz

Azm Azz

] [
Δεm

Δεz

]
+

[
Bm

Bz

]
ΔD̄ (32)

ΔD = [
Em Ez

] [
Δεm

Δεz

]
+ F ΔD̄ (33)

In the respective cases, σm and σz are defined as

beam: σm = [
σ11, σ12, σ13

]T
, σz = [

σ22, σ33, σ23
]T = 0 (34)

shell: σm = [
σ11, σ22, σ12, σ13, σ23

]T
, σz = [

σ33
] = 0 (35)

2D plane stress: σm = [
σ11, σ22, σ12

]T
, σz = [

σ33, σ13, σ23
]T = 0 (36)

The vectors σm and εm contain the components of the stress and strain which are
actually included in the weak form of the underlying formulation.

An algorithm enforcing the stress constraint(s) at the local integration point level
can be obtained by arguing that σz should vanish. Expanding this condition in a
Taylor series in terms of the unknown strain εz delivers

σ(i+1)
z = σ(i)

z + ∂σz

∂εz

∣∣∣∣
(i)

Δεz + · · · != 0 (37)

where a superscript denotes the corresponding local iteration number. By neglecting
higher-order terms and identifying A (i)

zz = (∂σz/∂εz)|(i), expression (37) can then
be rewritten as

Δεz = −A (i)
zz

−1
σ(i)

z (38)

which suggests the following iterative procedure for the calculation of εz at time
tn+1:

ε(i+1)
z ←− ε(i)

z + Δεz, ε(0)
z := εz at time tn (39)

The iteration must be performed until ‖σ(i)
z ‖ ≈ 0; the rate of convergence is

quadratic. As indicated, the algorithm requires to additionally store the converged
components of εz during the computation.

6No extra symbols are introduced to avoid an excessive proliferation of notation. The change in
meaning of the quantities is implicitly understood.
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A new point discussed here is the computation of the appropriate material tangent
moduli in case of gradient-extended material models. The latter are necessary to
retain a quadratic rate of convergence in a Newton-Raphson iteration at the global
finite element level. For this, one needs to compute the variations of σm and D with
respect to εm and D̄, respectively. Since these quantities do implicitly depend on the
complete strain state ε, a proper condensation procedure is necessary as follows:

Remember thatΔσz = 0 and plug this condition into the second equation of (32),
leading to

Δεz = −A −1
zz Azm Δεm − A −1

zz Bz ΔD̄ (40)

Inserting this result both into the first equation of (32) and Eq. (33) delivers, after
simple rearranging, the expressions:

Δσm = Â Δεm + B̂ΔD̄, ΔD = ÊΔεm + F̂ ΔD̄ (41)

where Â , B̂, Ê and F̂ denote the appropriate material tangent moduli of the stress-
constrained problem in matrix format:

Â := ∂σm

∂εm

∣∣∣∣
D̄=const

= Amm − AmzA
−1
zz Azm (42)

B̂ := ∂σm

∂ D̄

∣∣∣∣
ε=const

= Bm − AmzA
−1
zz Bz (43)

Ê := ∂D

∂εm

∣∣∣∣
D̄=const

= Em − EzA
−1
zz Azm (44)

F̂ := ∂D

∂ D̄

∣∣∣∣
ε=const

= F − EzA
−1
zz Bz (45)

The above procedure can equally be applied in case of a geometrically nonlinear
theory. It could furthermore readily be extended to account for more general cases
with multiple gradient variables.

4 Numerical Example

In the following, in order to illustrate the merits of the gradient-extended material
model and to test the functionality of the procedure presented in Sect. 3.2, a 2D plane
stress finite element problem is considered. A tensile specimen with length � =
200 mm, width 80 mm and two sharp vertical notches of 16 mm length (zero width)
located at the upper and lower edges is subjected to a state of uniaxial tension by
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Fig. 1 Double-edge notched specimen

applying a horizontal force F(t) at the left and right ends of the sample, respectively.
Note that the applied force F(t) is (pseudo-)time-dependent: the tensile specimen is
first loaded gradually up to the point of maximum load Fmax and further deformed
afterwards at a decreasing load level (due to evolving damage) until the structure
may essentially be regarded as ‘broken’.

The geometry and its dimensions are shown in Fig. 1a. By exploiting symmetry
conditions, the original boundary-value problem can be reduced to a quarter of its
original size, see Fig. 1b. The loaded edge on the right is constrained such that it
remains straight and perpendicular to the loading direction throughout the analysis.
Moreover, note that, due to the assumed elastoplastic isotropy of the model, the plane
stress condition implies that components σ13, σ23 and ε13, ε23 of the stress and strain
tensor automatically vanish, meaning thatσz in Eq. (36) as well as εz directly reduce
to σz = [σ33] = 0 and εz = [ε33], respectively.

The regularization properties of the model shall be investigated by conducting a
convergence study using different mesh-sizes (640, 1715, 4415 and 8330 elements)
and the following set of material parameters: λ = 5000 MPa, μ = 7500 MPa, a =
1900 MPa, b = 8.5, e = 400 MPa, f = 2.5, r = 0.5 MPa, s = 0.1, σ0 = 20 MPa,
Y0 = 0.1 MPa, H = 105 MPa and A = 10 MPa mm2. The function in Eqs. (5) and
(20) is defined as fdam(D) = (1 − D)2. As will be illustrated below, this choice
allows for very stable computations up to values of D = Dcr ≈ 1. Linear finite ele-
ment approximations of the displacement field and the micromorphic damage field
are considered. The meshes are strongly refined in the region of the notch tip(s) and
the area(s) where damage is expected to develop during the process, see Fig. 2 illus-
trating exemplarily both the coarsest and finest meshes with 640 and 8330 elements,
respectively.7

In the process, damage starts to develop at the notch tip(s) and from there on
progresses into the interior of the specimen until the latter may be regarded as fully
‘broken’, meaning that, practically, no further load can be carried by the structure.

7Quadrilateral elements are preferred in the meshing process, triangular ones are only used rarely
as transitional elements.
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Fig. 2 Mesh refinement

Three different stages during the process are exemplarily illustrated in Fig. 3. The
corresponding accumulated plastic strain is shown as well.8

Figure4 shows the global response of the structure, i.e. the normalized load-
displacement curves obtained by using the different meshes. Here, u denotes again
the horizontal displacements of the loaded ends at the left and right side, respectively.
Mesh convergence is recognized, the curves lie very closely together. The points at
which the damage contours of Fig. 3 were taken are indicated by small rectangular
boxes.

A noticeable snapback of the load-displacement curve is visible shortly after
exceeding the point of maximum load which deserves further clarification. It should
be kept in mind that a quasi-static analysis is performed of a process which is accom-
panied by dynamic effects at the point when severe strain localization sets in and the
‘crack’ starts to run through the specimen. If these effects were taken into account,
the load-displacement curve would show a ‘sudden’ vertical drop when the tangent
to the curve becomes infinite. This usually marks the beginning of dynamic crack
propagation which cannot be modeled using a purely quasi-static framework (see
e.g. [21–23] for more detailed explanations). Instead, an arclength method is used
in the present study to compute the equilibrium solution of the process, practically
considering the ‘crack’ to grow quasi-statically.

8The top and bottom values in the legends of the contour plots always indicate the corresponding
minimum and maximum values attained in the computations.
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Fig. 3 Damage contours D (top) and accumulated plastic strain (bottom) during three different
stages of the process (8330 elements)

Convergence of the local fields is exemplarily demonstrated in Fig. 5 for the case of
the damage variable D. For brevity, only the end states of the process for the coarsest
and finest meshes are shown, respectively. The highly damaged zone (D ≥ 0.9,
marked in red color) is confined to a relatively thin area (representing a crack in
a continuous sense) and slightly wider in case of the coarser mesh; however, the
differences between the plots can be considered negligibly small.
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Fig. 4 Convergence study: load-displacement curves

Fig. 5 Convergence study: damage contours D at the end of the simulation

5 Conclusions

A gradient-enhanced damage-plasticity material model was presented and discussed
in this study which can be considered as a particular instance of the general class
of micromorphic media as proposed by Forest [17, 18]. The gradient-extension is
characterized by aHelmholtz-type partial differential equation for a newly introduced
‘micromorphic’ (i.e. nonlocal) damage variable which needs to be solved in addition
to the classical balance of linear momentum. In finite element computations, this
micromorphic damage variable shows up as a further degree of freedom at the nodes
(similar e.g. to the temperature in thermomechanically coupled problems). Damage
and plasticity are regarded as distinct physical mechanisms which was realized by
postulating individual damage and yield criteria as well as corresponding sets of
loading/unloading conditions. Nonlinear kinematic and isotropic hardening as well
as damage hardening are considered in the formulation.

Besides a detailed description of the model’s equations and some remarks about
its numerical implementation into finite element codes, the present study focused also
on a procedure to locally enforce stress constraints in computations involving 3D
gradient-extendedmaterial models. Special emphasis was put here on a condensation



252 T. Brepols et al.

procedure for the four consistent tangent operators which is necessary to retain the
rate of quadratic convergence in a Newton-Raphson iteration scheme at the global
finite element level. The procedure can e.g. be utilized to easily carry out 2D plane
stress computations using 3D gradient-extended material models or to incorporate
the latter in a straightforward manner in beam or shell elements without the need of
a (possibly) complicated reformulation of the model’s constitutive equations.

Finally, a numerical benchmark test was conducted inwhich the evolution of dam-
age within a 2D double-edge notched specimen was examined. To demonstrate the
practical applicability of the above mentioned procedure, the underlying mechanical
problem was assumed to be plane stress. The results showed that the micromorphic
damage-plasticity model is able to suitably regularize the mesh-dependence which
is otherwise present for finite element simulations involving conventional ‘local’
continuum damage models. Stable computations were performed up to very high
values of the damage variable at which the structure could essentially be regarded as
‘broken’.

The promising results of the study naturally pave the way for further possible
enhancements of the model. Currently, the authors are working on a finite strain
extension which relies upon a multiplicative description of plasticity and nonlinear
kinematic hardening in the spirit of [54, 55]. Furthermore, the incorporation of suit-
able finite element technology (see e.g. [44–46]) into the formulation in order to
avoid artificial locking effects and concurrently reducing the computational effort
seems sensible, especially with regard to large plastic deformations. Another inter-
esting point would be to take account of anisotropic plasticity and/or damage (for
related works of the authors on the mentioned subject, see e.g. [42, 53, 56]).
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accurate modeling at both macroscopic and microscopic scales. Multiscale tech-
niques employing several homogenization schemes are mostly used, in which a
transition between nonlocal and local continuum formulations has been performed.
Therein the transition of state variables is not defined fully consistently. In the present
contribution a novel multiscale approach is proposed, where the same nonlocal the-
ories at both scales are coupled, and discretisation is performed only by means of
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concept at microlevel. Employing the strain gradient continuum theory, a damage
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1 Introduction

High demands on structural integrity in recent years lead to development and appli-
cation of new materials with complex microstructures giving desired material prop-
erties. Numerical analysis of mechanical behavior of this new class of materials
emerges necessity for an advanced numerical tools enabling more realistic material
description. The geometrical and mechanical properties of the constituents making
up the microstructure have a significant impact on the material behavior observed at
macroscale [1]. In addition, the external loading applied at macroscale might cause
changes in the microstructural morphology e.g., void formation, damage as well
as cracking, which can put structural integrity at risk. Therefore, in order to assess
structural integrity and to predict structural lifetime, an analysis of the evolving
microstructure is necessary.

Special attention has been directed to the investigation of relations between the
macroscopic properties of materials and their microstructure. It is well known that
classical continuum mechanics does not consider structural effects in the material at
microlevel. Therefore, to overcome this problem, multiscale techniques have been
developed that model materials at multiple levels using homogenization procedures.
In more recent formulations the computational homogenization approach has mostly
been used [2]. This approach is based on the solution of twoboundary value problems,
one at the macroscopic and one at the microscopic scale. The results obtained by the
simulation of a statistically representative sample of material, named Representative
Volume Element (RVE), at the microscopic scale are used as input data for the model
at the macrolevel. To solve the boundary value problems, the finite element method
(FEM) is mostly applied [2–4], but relatively new meshless methods may also be
employed due to some numerical advantages [5, 6]. Furthermore, small strain and
large strain multi-scale formulations are available, see e.g. [2–4, 7–9].

Based on the micro-macro variable dependence, the first-order and the second-
order homogenization procedures are available. The multiscale analysis using the
first-order computational homogenization scheme allows explicit modeling of the
microstructure, but retains the essential assumptions of continuum mechanics, and
thus gives satisfactory results only for simple loading cases. It includes only the first
gradient of macroscopic displacement field and it is based on the principles of a
local continuum. The local assumption adopted in the classical continuum theory,
whereby the stresses at a point depend only on the strains (and other state variables)
at the same point, is no longer adequate for the problems, where the macroscopic
stress–strain behavior also depends on the characteristic size of the microstructure,
and higher order effects are present.

Due to thementioned shortcomings, thefirst-order computational homogenization
scheme has been extended to the second-order framework, where the second-order
stress and strain are included. The formulation is based on a nonlocal continuum
theory (NL) that takes into account the influence of a surrounding material on the
behavior of a considered material point [10, 11]. For a general case of the nonlinear
material with softening behavior or fracturing, the information about the higher-
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order strains have to be transmitted to the microstructure to get meaningful results.
Moreover, in case of engineering problems for which the computation of stress and
strain distributions at micro level is essential, the second-order approach is necessary
when the size of the microstructure is significant. Furthermore, the multiscale analy-
sis using the second-order homogenization approach may describe more complex
deformation modes. On the other hand, it requires C1 continuity at the macrolevel
discretization, which implicates the requirement that both displacements and dis-
placement gradients must be continuous functions leading to more complex formu-
lations. The RVE discretization at the microlevel is usually performed by assuming
C0 continuity, where the standard local continuum theory (SL) is employed.

Unfortunately, the NL-SL second-order computational homogenization approach
suffers from difficulties in the scale transition methodology due to the coupling
between the nonlocal theory at the macroscale and the local concept on the RVE.
Namely, the second-order macrolevel gradient of state variables cannot be related
to the microlevel higher-order gradient as a true volume average. Therefore, in the
micro-to-macro scale transition, after resolving the Hill-Mandel energy condition,
the homogenized double stress requires a modified definition at the microstructural
level. Furthermore, in case of generalized periodic boundary conditions, an artifi-
cial stress concentration appears at the RVE corner nodes, as result of suppressed
microfluctuations at the RVE corners [2].

In this contribution a new second-order computational homogenization scheme
employing the nonlocal theory at both scales (NL-NL) is considered. Therein the
consistency of the transition methodology is ensured, considering conforming con-
tinuum theories used at different scales. The computational scheme is derived adopt-
ing the gradient elasticity theory and small strain setting. The discretization at both
themacro and themicrolevel is performed by theC1 continuity plane strain triangular
finite element derived in [12, 13]. The macro-to-micro scale transition methodology
is derived using the gradient displacement and gradient generalized periodic bound-
ary conditions. The derived scale transition methodology, as well as homogenization
procedure are embedded into the finite element program ABAQUS [14] by means
of user subroutines. The performance and accuracy of the proposed approach have
been verified by an example considering an elastic plate with a pre-existing crack.

As mentioned above, at microstructural level some voids may appear which can
lead to microcracks and damage initiation, which is macroscopically characterized
by decrease in elastic material stiffness or so-called softening. It may result in crack
development in engineering materials, which can significantly decrease structural
load-carrying capacity and lead to a complete loss of mechanical integrity. It is well-
known that the strain softening cannot be properly resolved with the application of
the classical continuum mechanics, where the local loss of positive definiteness of
the material tangent stiffness arises. The mathematical description of the model then
becomes ill-posed and numerical solutions do not converge to a physically meaning-
ful result [15]. To overcome these problems, various regularization techniques have
been proposed.

Basically, there are two different approaches regarding the implementation of the
material nonlocality in computational model, the integral and the gradient approach.
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The integral approach, introduced in [16], accounts for the influence of microstruc-
tural interactions through the weighted average of a variable driving the damage
process, typically strain. This leads to very complicated constitutive relationsmade of
convolution-type integrals, making the numerical implementation very demanding.
In case of the gradient approach, either the classical constitutive relation is enhanced
with the strain gradients, or both the strain gradients and their stress conjugates are
introduced in the model via the higher-order continuum. When only strain-gradients
are used as an enhancement of the constitutive relation, the explicit and especially
the implicit gradient formulations are usually applied when dealing with softening,
either in elasticity context [17], plasticity context [18, 19] or in analysis of the elastic
wave propagation [20]. Although the structural responses are mesh objective, the
mentioned formulations suffer from the spurious damage growth reported in [21].
This is explained in more detail in [22], where a new model based on the decreasing
microstructural interactions is presented, recognizing that the width of the fracture
process zone localizes towards a macroscopic crack in the quasi-brittle fracture.

Thedevelopment of a damagemodel basedon the strain gradient continuum theory
is presented in this contribution, which includes both the strain gradients and their
stress conjugates. The quasi-brittle damagemodel proposed in [23] under assumption
of homogeneous material is adopted. The isotropic damage law is implemented
into the constitutive relations of the strain gradient theory, whereby the constitutive
matrices, which describe the intensity of the material nonlocal behavior, are directly
decreased by the term involving damage variable. The new proposed constitutive
model is embedded into the sameC1 triangular finite element formulation as applied
in the aforementioned multiscale procedure. All derived numerical algorithms are
implemented into the FE software ABAQUS too. In this way a physically correct
structural response standing behind a fracturing process can be captured, unlike in
the formulation based on the conventional implicit gradient damage model, where
the spurious damage growth can be observed [21, 24]. The accuracy of the damage
evolution is demonstrated by an example where the elastic plate is again considered.

2 Formulation of C1 Continuity Triangular Finite Element

The discretization at macrolevel is performed by using theC1 continuity plane strain
triangular finite element already derived in [25] whose formulation is here briefly
summarized. As shown in Fig. 1, the element consists of three nodes and 36 degrees
of freedom. The displacement field is approximated by the condensed fifth order
polynomial. The nodal degrees of freedom are the two displacements and their first-
and second order derivatives with respect to the Cartesian coordinates. As usually, the
derivation of the element equations is performed by means of the principle of virtual
work, which can be expressed for the strain gradient continuum under assumption
of small strain as
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Fig. 1 C1 triangular finite element [20]

∫
A
δε

TσdA +
∫
A
δη

TμdA =
∫
s
δuT t ds +

∫
s
δ
(
grad uT

)
T ds. (1)

Herein σ is the Cauchy stress tensor, and ε represents the strain tensor. μ stands for
the third-order double-stress tensor, representing an energy conjugate measure to the
strain gradient tensor η. The values t and τ denote the traction and the double surface
traction vectors, respectively, while u is the displacement vector. A is the element sur-
face, and s represents the element perimeter. T is the double traction tensor, T = τ n,
with n as the unit outward surface normal.
The strain and strain gradient tensors are given by

ε =
⎛
⎝ ε11

ε22
2ε12

⎞
⎠ = Bεv,η =

⎛
⎜⎜⎜⎜⎜⎜⎝

η111
η222
η221
η112
2η121
2η212

⎞
⎟⎟⎟⎟⎟⎟⎠

= Bηv, (2)

where Bε and Bη represent the matrices containing first and second derivatives of the
element shape functions, while v is the vector of the nodal degrees of freedom. Since
a nonlinear problem should be considered, Eq. (1) is transformed into the incremental
form. Therefore, the displacement vector u, the stress tensor σ and the double stress
μ are updated according to

u = ui−1 + �u,

σ = σi−1 + �σ,

μ = μi−1 + �μ,

(3)

where the exponent (i − 1) refers to the last converged equilibrium state, and the
symbol � indicates an incremental change. The incremental constitutive relations
are defined as

�σ = Cσε�ε + Cση�η,

�μ = Cμε�ε + Cμη�η
(4)
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with Cσε, Cση , Cμε and Cμη as the constitutive stiffness matrices. By employing Eq.
(2), the strain and the second-order strain increments can be expressed in terms of
the displacement vector increment �v as

�ε = Bε�v,

�η = Bη�v.
(5)

After well-known derivation procedure, the finite element relation is derived and
may be expressed in the standard linearized form

K�v = Fe − Fi (6)

with K as the element stiffness matrix which may be decomposed in the following
parts

K = Kσε + Kση + Kμε + Kμη, (7)

where the particular matrices are written as

Kσε = ∫
A

(
BT

ε CσεBε

)
dA,

Kση = ∫
A

(
BT

ε CσηBη

)
dA,

Kμε = ∫
A

(
BT

η CμεBε

)
dA,

Kμη = ∫
A

(
BT

η CμηBη

)
dA.

(8)

Furthermore, Fe and Fi are the external and internal nodal force vectors, which are
expressed by the relations

Fe = ∫
s

(
NT t + gradNT T

)
ds,

Fi = ∫
A

(
BT

ε σi−1 + BT
η μi−1

)
dA.

(9)

Discretization at microlevel is also performed using the C1 continuity plane strain
triangular finite elements, but their formulation is based on theAifantis strain gradient
theory, where a microstructural length scale parameter is employed. More can be
found in [26].

3 Computational Homogenization and Micro-Macro
Scale Transition

The basic of the second-order computational homogenization procedure, which pre-
serves the nonlocal theory is explained. The geometry of the RVE at microscale is
assumed to be square shaped with the coordinate system placed in the centroid, as
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Fig. 2 Representative
volume element

displayed in Fig. 2. All variables appearing at the microstructural level are denoted
by the subscript “m”, while the macrostructural quantities are referenced by the
index “M”. The RVE displacement field is represented by a Taylor series expansion
depending on the macrolevel strain εM and strain gradient ∇εM. The displacement
imposed along the RVE boundaries is defined as

um= xT εM + 1

2

[
xT (∇εM) x

] + r. (10)

In Eq. (10), x is a spatial coordinate on the RVE, εM denotes the strain tensor at the
macrolevel and r represents the microfluctuation field. In the further derivation, the
following integral relations arise

1

V

∫
V

(∇mum) dV= 1

V

∫
V

εmdV = εM+ 1

V

∫
V

(∇εMx) dV+ 1

V

∫
V

(∇mr) dV ,

(11)

1

V

∫
V

(∇mεm) dV=∇εM+ 1

V

∫
V
[∇m (∇mr)] dV . (12)

Using common mathematical procedures in the homogenization approach, the
following microfluctuation integrals should be explicitly satisfied from Eqs. (11)
and (12) as

1

V

∫
V

(∇mr) dV = 1

V

∫
�

(
nT r

)
d� = 0, (13)

1

V

∫
V
[∇m (∇mr)] dV = 1

V

∫
�

[
nT (∇mr)

]
d� = 0, (14)

where � stands for an outer RVE boundary. Furthermore, by means of Eq. (10) and
introducing the coordinate matrices D, H1 and H2, the nodal degrees of freedom
prescribed on the RVE boundaries are derived from
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u = DT εM + (
HT

1

)
(ε,1)M + (

HT
2

)
(ε,2)M . (15)

The gradient generalized periodic boundary conditions predefine corner nodal
degrees of freedom of the RVE using Eq. (15), while remaining degrees of freedom
of boundary nodes on opposite sides are related by the periodicity equations as

uR − uL = (
DT
R − DT

L

)
εM + [(

HT
1

)
R − (

HT
1

)
L

]
(ε,1)M + [(

HT
2

)
R − (

HT
2

)
L

]
(ε,2)M ,

uT − uB = (
DT
T − DT

B

)
εM + [(

HT
1

)
T − (

HT
1

)
B

]
(ε,1)M + [(

HT
2

)
T − (

HT
2

)
B

]
(ε,2)M .

(16)

As may be observed, the above periodicity equations prescribe constraints not only
on the displacements, but also on the first and second displacement derivatives avail-
able as the nodal degrees of freedom. This gives possibility to prescribe the complete
second-order gradient field from themacrolevel on the RVE boundaries without need
for the microfluctuation integrals, which is not the case in the NL-SL homogeniza-
tion, where the transition between the strain gradient nonlocal formulation at the
macrolevel and the standard local formulation at the microscale is performed.

In the micro-to-macro scale transition the starting point is the Hill-Mandel energy
condition written in the form

1

V

∫
V

[
δεTmσm + ∇mδεTmμm

]
dV = δεTMσM + ∇δεTMμM. (17)

From Eq. (17) the homogenized macroscale stress tensors are extracted and defined
as

σM = 1

V

∫
V

σmdV, (18)

μM = 1

V

∫
V

(
μm + xTσm

)
dV . (19)

To account the contributions of a heterogeneous microstructure at the macrolevel,
the following generalized constitutive behaviour is assumed

�σM = Cσε�εM + Cσεx1
�(ε,1)M + Cσεx2

�(ε,2)M , (20)

�
(
μx1

)
M = Cμx1 ε

�εM + Cμx1 εx1
�(ε,1)M + Cμx1 εx2

�(ε,2)M , (21)

�
(
μx2

)
M = Cμx2 ε

�εM + Cμx2 εx1
�(ε,1)M + Cμx2 εx2

�(ε,2)M . (22)

From Eqs. (20)–(22) it is clear that 9 constitutive material operators are required in
the NL homogenization. Using the static condensation procedure, they are expressed
in terms of the condensed RVE stiffness K̃bb and the coordinate matrices as
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Fig. 3 NL-NL multiscale
computational scheme

Cσε= 1
V DK̃bbDT ; Cσεx1

= 1
V DK̃bbHT

1 ; Cσεx2
= 1

V DK̃bbHT
2 ;

Cμ1ε= 1
V H1K̃bbDT ; Cμ1εx1

= 1
V H1K̃bbHT

1 ; Cμ1εx2
= 1

V H1K̃bbHT
2 ;

Cμ2ε= 1
V H2K̃bbDT ; Cμ2εx1

= 1
V H2K̃bbHT

1 ; Cμ2εx2
= 1

V H2K̃bbHT
2 .

(23)

More details on the here presented homogenization approach can be found in the
authors’ previous publication [27].

3.1 Numerical Implementation of Multiscale Algorithm

The derived micro-macro scheme has been implemented into the FE program
ABAQUS by means of user subroutines, as shown in Fig. 3. In the NL-NL scheme
both scales are discretized by the C1 triangular finite element. Therein the Aifantis
elasticity theory is adopted at the microstructural level. Since only the linear elastic
behaviour is considered, the homogenization of the constitutive matrices is required
only once at the preprocessing step and will be used in the subsequent computations.
But, in order to observe the phenomena of evolving microstructure, the RVE analysis
is necessary, where the stress homogenization has to be conducted. The RVE size
defines some characteristic microstructural size (e.g. the average size of voids) and
captures the nonlocal effects at macroscale. The subroutine of the macrolevel finite
element serves as a master routine. It prescribes the RVE boundary conditions based
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on the macrolevel gradients and runs the microlevel analysis as a new boundary
value problem. The RVE boundary value problem is solved by the UEL subroutine
of the microscale finite element model, where the stress tensors are homogenized
and passed to themacrolevel analysis. Therein, themicrostructural parameter l2 must
be explicitly defined. Once all necessary data are computed, the macrolevel analysis
checks for the convergence and continues.

4 Damage Algorithm Based on Strain Gradient Theory

The reduction of the elastic stiffness properties in an isotropic damage model is
expressed by the following well known relation

Ceff = (1 − D) C, (24)

where D is a scalar damage variable ranging from zero (undamaged material) to one
(fully damaged material), while Ce f f and C are the effective and the elastic stiffness
tensors, respectively. The damage state is governed by the monotonically increasing
scalar history parameter κ which can be determined as an average local equivalent
scalar measure of the strain εeq through Kuhn-Tucker relations

κ ≥ 0, εeq − κ ≤ 0, κ̇
(
εeq − κ

) = 0. (25)

The two different equivalent elastic strain measures are generally used in the context
of the softening behavior of a quasi-brittle material. The first one is defined in [28]
as

εeq =
√√√√ 3∑

i=1

〈εi 〉2 (26)

with εi (i = 1, 2, 3) representing the principal strains. It is clear that, in this case,
the equivalent elastic strain measure depends only on the positive principal strains,
making it more sensitive to tensile than to compressive strains. On the other hand,
the von Mises equivalent strain measure according to [29] and given by

εeq = k − 1

2k (1 − 2ν)
I1 + 1

2k

√
(k − 1)2

(1 − 2ν)2
I 21 − 12k

(1 + ν)2
J2, (27)

includes a parameter k which represents the ratio between uniaxial compressive and
tensile strength of the material. For the k = 1, meaning that both compression and
tension influence the equivalent strain measure equally, Eq. (27) results in

εeq = 1

1 + ν

√−3J2. (28)
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In above expressions I1 and J2 are the first invariant of the strain tensor and the
second invariant of the deviatoric strain tensor, respectively.

The damage evolution is usually governed by the linear softening law [30] as

D =
{ κu(κ−κ0)

κ(κu−κ0)
if κ0 ≤ κ ≤ κu,

1 ifκ > κu,
, (29)

where κ0 and κu are the material parameters representing the threshold strain at
which the damage is initiated, and the strain at which material completely loses its
stiffness, respectively. The softening in the real materials is usually nonlinear, where
the application of the exponential softening law is the most common [30]

D = 1 − κ0

κ
{1 − α + α exp [β (κ0 − κ)]} if κ > κ0 (30)

with α and β as model parameters. As evident from above, the damage-driving
state variable is a local equivalent strain, which differs from most gradient-enhanced
formulations, where the damage is governed by the nonlocal state variable. In this
contribution the nonlocality is incorporated through the strain gradient continuum
theory which is embedded into the finite element formulation.

Applying the isotropic damage model to the incremental constitutive relations
described by Eq. (4), the following incremental expressions may be written

�σ = �
[
(1 − D) Cσεε + (1 − D) Cση

]
,

�μ = �
[
(1 − D) Cμεε + (1 − D) Cμη

]
.

(31)

In addition to (3), now the damage variable is to be updated

D = Di−1 + �D. (32)

Since in this contribution the damage evolution is modeled only under assumption of
material homogeneity, the tangent stiffness matrices Cση and Cμε are equal to zero
[31]. The remaining two matrices can be computed analytically [31, 32], which may
be written symbolically in the form

Cσε = Cσε (E, ν) ,

Cμη = Cμη (E, ν, l) ,
(33)

where l denotes the microstructural length scale. On the other hand, the stiffness
matrices can be also computed numerically using the procedure presented in [25].
Therein the microstructural parameter is expressed by the relation

l2 = L2

12
, (34)
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where L is the RVE side length. As displayed above, the material nonlocality is
included into the second-gradient continuum theory in terms of the microstructural
parameter l through the tangent stiffnessmatrices.When thesematrices aremultiplied
by the term (1 − D) according to Eq. (31), the nonlocality decreases if the damage
rises.

For homogeneous material Eq. (31) can further be written as

�σ = (1 − Di−1)Cσε�ε − �DCσεε
i−1,

�μ = (1 − Di−1)Cμη� − �D Cμη
i−1.

(35)

Here the incremental change of the damage variable may be expressed by

�D =
(
dD

dε

)i−1

�ε (36)

since the damage variable is assumed to be a function only of the strain tensor
D = D (ε).

The substitution of Eqs. (5), (35) and (36) into Eq. (1), after some straightforward
calculus, leads to the following finite element relation

(
Kεε + Kηε + Kηη

)
�v = Fe − Fi, (37)

where the particular element stiffness matrices are defined as

Kεε = ∫
A BT

ε

[(
1 − Di−1

)
Cσε − Cσεε

i−1
(
dD
dε

)i−1
]
BεdA,

Kηε = − ∫
A BT

η Cμη
i−1

(
dD
dε

)i−1
BεdA,

Kηη = ∫
A BT

η

(
1 − Di−1

)
CμηBηdA.

(38)

The external and internal nodal force vectors Fe and Fi are the same as in (9).

5 Numerical Examples

5.1 Multiscale Analysis of Plate Tension with Pre-existing
Crack

The proposed multiscale procedure is tested by the computation of the plate with a
pre-existing crack under tension, as shown in Fig. 4. The presented length has been
taken as h = 100mm. Firstly, the computation is performed under assumption of a
homogeneous material and the Aifantis gradient theory employing a microstructural
parameter. The results are compared with the solution obtained by the standard
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Fig. 4 Plate with a pre-existing crack subjected to tensile load: a geometry and loading b compu-
tational model of half plate

ABAQUS plain strain elements using singular elements at the crack tip. Due to
symmetry, only the upper half of the plate is discretized by 169C1 finite elements and
324CPE8Abaqusfinite elements [14] imposing the appropriate boundary conditions,
as depicted in Fig. 4b. As displayed in Fig. 4, the upper plate edge is subjected to the
vertical displacement of v = 1 mm. The material data are the Young’s modulus
E = 1000MPa and the Poisson’s ratio ν = 0, 2. The von Mises equivalent strain
measure expressed in (27) is computed, where the parameter k is set to k = 10. The
results obtained by the C1continuity strain gradient formulation for two different
values of the microstructural parameter l in comparison with the solutions obtained
by using singular elements are presented in Fig. 5.As evident, the strain concentration
is clearly captured, however the deformation responses vary. Using the strain gradient
theory which employs the nonlocality, the maximum of the equivalent strain at the
crack tip is significantly decreased, as expected. With the increase of parameter l,
the strain concentration at the crack tip drops, which is a direct consequence of an
increase of a surrounding continuum taken into account.

Next an academic example of heterogeneous material is considered, which
is represented by the RVE of the side length L = 0.2mm as shown in Fig. 6.
The material properties of the RVE matrix are the same as in the homogeneous
specimen, while the porosities of 13% are randomly distributed with the aver-
age radius rave = 0.0086mm. For the computation of the microstructural boundary
value problem, the gradient generalized periodic boundary conditions have been
employed. As mentioned above, the nonlocal effect of the strain gradient theory is
employed at the macrolevel through the RVE size L . Besides, due to the Aifantis
strain gradient theory employing in the RVE, another microstructural parameter l
appears at microlevel, which captures a mechanism below the microstructural size.
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Fig. 5 Distribution of
equivalent elastic strain εeq
in front of the crack tip

Fig. 6 RVE for
heterogeneous material

Fig. 7 Distribution of u2,2
in front of the crack tip

Therefore, the nonlocal effect is here expressed by the two microstructural values L
and l, as described in [27]. Figures7 and 8 show the distributions of displacement
gradients u2,2 and u2,12 for the different l and using RVE presented in Fig. 6. The
regularizing effect expressed by the microstructural parameters is clearly displayed.
In the vicinity of the crack tip the displacement gradients are very high, but their
maximal values decrease with the increase of l.

The contour plots of the distribution of the displacement gradients u2,2 and u2,12
over the RVE positioned in front of the crack tip are shown in Figs. 9 and 10.
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Fig. 8 Distribution of u2,12
in front of the crack tip

Fig. 9 Distribution of u2,2
over the RVE

Fig. 10 Distribution of u2,12
over the RVE

As evident, the deformed RVE shapes demonstrate the pure stretch in the loading
direction, as expected. The contribution of the microfluctuation field is more visible
on the top and bottom edge, while the left and right edge remain mostly straight. It
is clearly displayed that the strains and the strain gradients start to grow around the
porosities, which can yield the damage initiation. Here described nonlocal formu-
lation at the microscale could be very useful in the modeling of damage evolution
in the microstructural RVE space, which can lead to the crack development at the
macrolevel.
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5.2 Damage Analysis of Plate Tension with Pre-existing
Crack

In the further consideration of the specimen described above, a damage response
is modelled under assumption of the homogeneous material with the unchanged
material data. The quasi-brittle damagemodel described by the exponential softening
law (30) with the parameters κ0 = 0.0001, α = 0.99 and β = 300 is employed.
The modified von Mises equivalent elastic strain measure (27) for the parameter
k = 10 is used for the computation. The discretization is performed by the previously
describedC1 continuity finite elements. The same specimen has already been studied
in [21] with the adoption of the damage model based on the conventional implicit
gradient enhancement, resulting in a non-physical damage evolution. The damage
distributions over the computational model, Fig. 4b, are shown in Fig. 11 for the
two different internal length scales, of l = 0.08 h and l = 0.2 h. For the sake of
comparison the length scale values are taken from [22].

As obvious, the damage spreads along the line in front of the crack tip, as expected.
It compares well with the experimental observations, of the brittle damage evolution
in concrete specimens in [33] as well as with the damage profile obtained in [22],
where the spurious damage growth is avoided. In this reference the localizing gra-
dient damage model has been derived in the micromorphic framework. The damage
distributions ahead of the crack tip for several loading levels are presented in Fig. 12.
As evident, the maximum values of the damage variable are achieved at the crack
tip, which is physically realistic. The mesh sensitivity is examined using the two
different finite element discretizations. The first of 800 elements is applied for the
results presented above, and the second one comprises 3200 elements. As evident
in Fig. 13, there are no differences in the damage responses. The damage profile is
correctly captured for both discretization sizes.

Fig. 11 Damage
distributions for length
scales l = 8mm (left) and l =
20mm (right)
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Fig. 12 Damage
distributions in front of the
crack tip

Fig. 13 Comparison of
damage distributions for two
uniform discretizations
consisting of 800 (left) and
3200 (right) C1 triangular
finite elements

6 Conclusions

A two-scale computational approach employing the strain gradient elasticity theory
at both macro- and microscale is proposed. The formulation of the nonlocal theory is
embedded into the finite element framework using theC1 three node triangular plane
strain finite element. It has been demonstrated that the employment of the nonlocal
theory at themicrostructural level resolves the inconsistencies arising in the available
multiscale procedure, where the transition between the nonlocal and local theory has
been performed. In the new proposed approach the same strain gradient variables
are defined at both scales, which contributes to the consistency and accuracy in the
homogenization procedure. Herein the nonlocality is described by the RVE size at
macrolevel and using the Aifantis microstructural parameter at microscale.

Furthermore, a computational approach employing the strain gradient continuum
theory formodeling of quasi-brittle damage phenomena in homogeneousmaterials is
presented. The strain gradient constitutive relation comprising the damage variable
is implemented into the formulation of the above mentioned C1 triangular finite
element. In contrast to the results obtained in the literature, where the conventional
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implicit gradient damage formulation is adopted, the proposed damage algorithm
yields a physically realistic softening response.

Further research in damage modeling will be concerned with the consideration
of heterogeneous material at microlevel using the multiscale procedure. It requires
the application of the constitutive relations directly at the microlevel considering all
material constituents of the RVE and, after a homogenization procedure, the transfer
of the state variables to the macrostructural level.
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27. Lesičar, T., Tonković, Z., Sorić, J.: Two-scale computational approach using strain gradient
theory at microlevel. Int. J. Mech. Sci. 126, 67–78 (2017)

28. Mazars, J., Pijaudier-Cabot, G.: Continuum damage theory-application to concrete. J. Eng.
Mech. 115(2), 345–365 (1989)

29. De Vree, J.H.P., Brekelmans, W.A.M., van Gils, M.A.J.: Comparison of nonlocal approaches
in continuum damage mechanics. Comput. Struct. 55, 581–588 (1995)

30. Peerlings, R.H.J.: Enhanced damage modeling for fracture and fatigue. Ph.D. Thesis (1999).
Eindhoven University of Technology, Netherlands
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3D Dynamic Crack Propagation
by the Extended Finite Element Method
and a Gradient-Enhanced Damage Model

M. Pezeshki, S. Loehnert, P. Wriggers, P.A. Guidault and E. Baranger

Abstract A combined continuous-discontinuous approach to fracture is presented
to model crack propagation under dynamic loading. A gradient-enhanced damage
model is used to evaluate degradation of the material ahead of the crack. This type
of model avoids mesh dependency and pathological effects of local damage models.
Discrete cracks are reflected by means of extended finite elements (XFEM) and
level sets. For the transition between damage and discrete fracture a damage based
criterion is utilized. A discrete crack propagates if a critical damage value at the crack
front is reached. The propagation direction is also determined through the damage
field. Finally a dynamic mode II crack propagation example is simulated to show the
capabilities and robustness of the employed approach.

1 Introduction

Dynamic failure in forms of shear band or crack propagation may happen in real
engineering structures under dynamic loading. Modelling these failure phenomena
helps to gain better insight into the involved mechanisms, and to improve the design
and increase the safety of the structure. A fracture process includes material degra-
dation, microcrack and macrocrack formation, crack propagation and final rupture.
Although traditionally material degradation used to be studied within the framework
of continuum mechanics and crack propagation within the framework of fracture
mechanics, there is a close relation between these two. Microcrack formation as a
result of material softening is the onset of macrocrack formation and advancement.

There is a variety of approaches to model fracture in solids which may gen-
erally be divided into discrete and continuum approaches. To recall discrete frac-
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ture methods, apart from the standard finite element with remeshing [1, 2], one
may indicate the cohesive zone or inter-element method [3–6], the embedded dis-
continuity approach [7, 8], peridynamics [9, 10], meshfree methods [11, 12], and
the extended/generalized finite element method (XFEM/GFEM) [13–18] which is
employed in this study. The XFEM incorporates a discontinuity into the displace-
ment field by using additional degrees of freedom and enrichment functions. The
mesh does not require to conform to cracks and with a few exceptions generally
no remeshing is needed. XFEM implementations require additional algorithms to
track the advancement of discontinuities in the domain, and they may face geo-
metrical difficulties in 3D cases for crack branching or coalescence. However, their
advantage compared to many other approaches is their generally high accuracy even
for rather coarse meshes, their relatively low computational effort and their mesh
independence.

To indicate continuum-based approaches to fracture the first candidate is a typ-
ical local damage model. Since these basic models exhibit strong spurious mesh
dependency, several remedies were proposed in literature including rate dependent
continuum models, delayed damage models, non-local [19] and gradient-enhanced
damage models [20]. Non-local and gradient-enhanced models use an additional
parameter as a localization limiter. More recently phase-field approaches to frac-
ture gained a lot of attention among the continuum-based methods. The phase-field
considers cracks as a diffusive type field and avoids the explicit modeling of discon-
tinuities [21, 22]. Although by using phase-field approaches crack branching and
coalescence can easily be modeled, they suffer some disadvantages such as requir-
ing a very fine mesh resolution to achieve accurate results, demanding an extensive
number of Newton-Raphson iterations or even special solution techniques [23], and
needing extreme computational effort for 3D simulations.

For accurate modeling of fracture processes a coupled continuous-discontinuous
approach is a good alternative. In this study a combined approach of gradient-
enhanced damage and XFEM is used. In the continuum part of the model, gradient-
enhanced damage accounts for mesh independent material degradation and softening
and the loss of stiffness of the structure due to microcracking. As damage develops
within the domain, highly-damaged areas show the potential locations where strong
discontinuities may occur in the displacement field.

Discrete crack propagation modeled with the XFEM occurs if the gradient-
enhanced damage value along the discrete crack front exceeds a critical value. A
method is proposed to govern the length of the crack extension increment by the
damage field distribution. Whenever damage in front of the crack is not critical the
crack advancement is stopped until the critical state of damage is reached. In this way
the damage evolution governs the discrete crack advancement until the final failure
of the structure. Although the continuum model is able to predict crack initiation,
the focus in this study is on structures with pre-existing macrocracks. To decide into
which direction a crack may propagate, a strategy based on the maximum damage
value is proposed which is similar to the method used in [24] but extended to the
3D case. The XFEM requires an additional method to represent the crack geometry
and to track crack propagation. For this purpose, here we use a simple and fast level
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set approach where nodal level set values are found without solving an additional
equation for the level set field which makes this method computationally efficient.
The mesh resolution required to obtain an accurate solution for the damage field is
fine enough to ensure an accurate level set representation of the crack.

To obtain a sharp representation of a crack using continuum-based models, highly
refined mesh resolutions are necessary leading to extreme computational expenses
for 3D crack simulations. The proposed approach combining continuum damage
models with discrete crack representations using the XFEM and level sets provides
an acceptable accuracy at a significantly lower computational cost.

The paper is structured as follows: Themomentumbalance and gradient-enhanced
damage equations are expressed in Sects. 2 and 3. The implementation details of the
XFEM are described in Sect. 4 followed by the solution procedure in Sect. 5 and the
damage-based crack propagation criterion and direction in Sect. 6. Finally, a dynamic
fracture test is modeled and discussed in Sect. 7.

2 Governing Equations

The strong form of the linear momentum balance of structural dynamics reads:

ρü = ∇ · σ + ρb (1)

with the Cauchy stress tensor σ , the acceleration ü, the mass density ρ, and the
body force fb = ρb. The boundary conditions for �t , �u and �c which are traction,
displacement and crack boundaries can be written as:

u(x, t) = ū(x, t) on �u, σ · n = t on �t , σ · n = 0 on �c (2)

Here t is the external traction vector. The initial conditions are:

u(x, 0) = ū(0), u̇(x, 0) = ¯̇u(0) (3)

By multiplying with the test function wu , integrating over the domain, applying the
divergence theorem as well as the boundary conditions (Eq. 2) the weak form of Eq.1
becomes

∫

�

ρwu · ü d� = −
∫

�

∇wu : σ d� +
∫

�

wu · b d� +
∫

�

wu · t d� (4)
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3 Gradient-Enhanced Damage Model

Attempts to consider microstructural effects on the deformation and failure of mater-
ial resulted in damage mechanics theory. This theory introduces the damage variable
d which describes the local degradation of the structure:

σ i j = (1 − d)Ci jklεkl (5)

where d = 0 and d = 1 represent the undamaged and fully damaged states, respec-
tively. Typical microstructural defects are microcracks or microvoids which in most
engineering problems are not considered explicitly. Instead, their effect on the mate-
rial behavior is interpreted as degradation or damage. As a result, if microcracks
grow, damage increases. Beyond a certain threshold microcracks coalesce and form
a macrocrack which is large enough to be modeled explicitly. This motivates the
transition between damage and discrete crack modeling.

It is well known that local damage models lead to mesh dependent finite element
solutions. One of the remedies is to replace the local damage model by a non-local
model [19]. Even though a non-local model yields mesh independent results, a draw-
back is the significantly higher numerical effort. In 1996Peerlings et al. [20] proposed
an alternative technique by transforming the integral to evaluate the non-local quan-
tities into a scalar valued partial differential equation. This transformation in general
is not exact, but it yields very similar results for the non-local equivalent quantities
and its advantage compared to the non-local model in [19] is the reduced numerical
effort. The additional partial differential equation for the gradient-enhanced equiva-
lent strain ε̄ is

ε̄ − c∇2ε̄ = ε̃ (6)

with the boundary condition proposed in [20]:

∇ ε̄ · n = 0 (7)

where n is the outward normal vector to the boundary of the problem domain and c is
the gradient parameter which acts as a localization limiter. This parameter cannot be
calibrated directly from experiments but can be found through an inverse approach.
The element size should be adjustedwith respect to this parameter to achieve accurate
numerical results.

For brittle materials in general the driving force for the gradient-enhanced strain
ε̄ is chosen to be a function of the local strain evaluated at each integration point ε̃.
Among multiple options available for this function, we apply [25]:

ε̃ =
√∑3

i=1
< εi >

2
(8)
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Here, εi are the principal strains and < . > are the McAuley brackets < x >=
1
2 (x + |x |). In this formulation only positive eigenvalues of the strain tensor have an
effect.Hence, compressive strains donot contribute to damage and crackpropagation.

After the determination of the gradient-enhanced equivalent strain, the chosen
damage model can be evaluated using ε̄ instead of the local equivalent strain quantity
ε̃. The history data κ associated to the gradient-enhanced strain ε̄ takes the largest
value of ε̄ ever reached by the material at the considered point to retain the previous
loading history and avoid healing effects. In the beginning κ = κ0, where κ0 is a
threshold value. If κ̇ > 0 damage evolves. These update conditions for κ can be
formulated mathematically by means of Kuhn-Tucker conditions:

f (ε̄, κ) = ε̄ − κ (9)

κ̇ ≥ 0, f ≤ 0, κ̇ f = 0

where f represents the equivalent strain space (similar to the yield space in elasto-
plasticity). Then κ can be mapped to a scalar damage value by considering a semi-
monotonic relation between d and κ:

d = d(κ) (10)

Different damage evolution laws that are proposed for local damage models can be
used for gradient-enhanced models as well. Here, we apply a model proposed by
Mazars and Pijaudier-Cabot [25]:

d = 1 − κ0

κ
(1 − α) − αe−β(κ−κ0) (11)

where α and β are the material parameters.

4 Extended Finite Element Method (XFEM)

The XFEM allows us to handle discontinuities within the displacement field almost
independently of the mesh by an explicit construction of a suitable approximation
space. The XFEM employs enrichment functions to account for special features
of the solution in the entire domain. By multiplying the standard finite element
shape functions with a set of chosen enrichment functions a new set of enriched
shape functions is created which is able to represent the desired features of the
primary variable or its derivatives. The enrichment functions we choose for the
displacement field and the gradient-enhanced equivalent strain field are described
further in Sect. 4.2. In general enrichment functions depend on the geometry of the
desired feature. In case a crack needs to be modeled, to capture the discontinuity
within the displacement field the location and geometry of the crack needs to be
known as well as the distance of an arbitrary point to the crack surface or the crack
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front and the angle of the point within a plane perpendicular to the tangential plane at
the crack front. One way to model the crack geometry and to assure a fast evaluation
of the required geometrical data is to use level sets. The following section describes
the level set approach helping us to easily evaluate the enrichment functions and to
track the movement of the discontinuity as it advances within the domain.

4.1 The Level Set Method for Crack Front Tracking

The level set method (LSM) was developed by Osher and Sethian to track the motion
of interfaces [26]. Since an advancing crack can be considered as a moving open
interface, this method is employed widely in the context of the XFEM [16, 27–29].
In this work two level set functions are used, φ which describes the smallest signed
distance to the crack surface �c, and ψ which describes the smallest signed distance
to the surface which is perpendicular to the crack surface and passing through the
crack front line ∂�c:

φ(x) =‖ x − x�c ‖ sign(n�c · (x − x�c))

ψ(x) =‖ x − x∂�c ‖ sign(n∂�c · (x − x∂�c)) (12)

The nearest projection points of the crack surface and the crack front line are x�c

and x∂�c , respectively. The corresponding normal vectors to these interfaces are n�c

and n∂�c . The crack surface �c is the iso-zero surface of the level set function φ. The
location of the crack tip/front, ∂�c can be expressed by means of the intersection of
the zero level sets of φ and ψ :

x ∈ �c \ ∂�c ⇔ ψ < 0 ∧ φ = 0 (13)

x ∈ ∂�c ⇔ φ = 0 ∧ ψ = 0 (14)

The discontinuity always corresponds to the set expressed in Eq.13. The gradients
of the two level set functions are chosen to be orthogonal:

∇φ · ∇ψ = 0. (15)

The level set values can be initialized by using Eq.12. In this study, nodal-wise level
set values are utilized which are interpolated within the domain by using the same
shape functions as for the geometry approximation.

Basedon the crackpropagation criterionwhich is described inSect. 6, the advance-
ment of the crack at each time step is known. Then the level set field must be updated
to be able to represent the new crack location within the domain. There is a variety
of methods available to update the level set values e.g. by solving the Hamilton-
Jacobi equation [28] or by applying the Fast MarchingMethod [30], the global crack
tracking approach [31] or the global geometrical approach [27]. In the global geo-
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metrical approach [27] an explicit representation of the crack is created by meshing
the iso-zero surface of the level set function. Then the new crack surface resulting
from the crack advancement is added to the mesh and after that the updated level
sets are recomputed from the explicit representation of the updated crack geometry.
This may cause some additional cost at each crack propagation step. In the local
geometrical approach employed here, by advancement of the crack in one element,
the level set update is performed locally in the neighboring elements by considering
a small domain within a tube which makes this approach efficient. The radius of this
tube is chosen based on the average element length or the norm of the propagation
vector v:

rtube = max(
√
2lelem, ‖ v ‖) (16)

The orthogonal local basis vectors bk at the crack front can be used to describe the
propagation vector locally at each point along the crack front line. They can easily
be calculated using the two level set fields:

b1 = ∇ψ

‖ ∇ψ ‖ , b2 = ∇φ

‖ ∇φ ‖ , b3 = b1 × b2 (17)

The determination of the crack propagation vector is discussed in Sect. 6.

4.2 XFEM Approximation

From the level set representation, the location of the crack within the desired domain
is known. The approximation space which enables us to model the crack as a dis-
continuity by means of enrichment functions and additional degrees of freedom is
described here. Let N be the set of all nodes in the domain. Then we consider the
following subsets ofN :

• N ∗: nodes belonging to elements completely intersected by the crack surface
• N ∗∗: nodes belonging to elements partially intersected by the crack surface
• N H : nodes inN ∗ \ N ∗∗
• N R: nodes belonging to elements which have at least one node in N ∗∗, i.e.
N ∗∗ ⊂ N R

Based on these nodal sets, which are depicted in Fig. 1 and the C0 continuous
shape functions Ni , we choose the extended displacement approximation

uh(x, t) =
∑
i∈N

Ni ui (t) +
∑

i∈N H

Ni H(φ) ai (t) +
∑

i∈N R

4∑
j=1

Ni B j (φ,ψ) R bi j (t) (18)

Here ui expresses the standard DOF and ai and bi j are the enriched DOF corre-
sponding to the discontinuity/singularity enrichment functions for the crack surface
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Fig. 1 Nodal sets related to the original and corrected XFEM schemes

and crack front, respectively. The dependency on coordinates on the right-hand side
of Eq.18 is dropped for simplicity. H and Bj are the modified Heaviside and front
enrichment functions:

H(x) = H(φ(x)) =
{+1 if φ(x) ≥ 0
−1 if φ(x) < 0

(19)

Bj = [√r sin(θ/2),
√
r cos(θ/2),

√
r sin(θ/2) sin(θ),

√
r cos(θ/2) sin(θ) ] (20)

These functions can be evaluated using the level sets and the definitions of r(φ,ψ),
the distance of the considered point to the crack front, and θ(φ,ψ), the angle of the
point to the tangent of the crack surface at the crack front:

r =
√

φ2 + ψ2 , θ = tan−1(
φ

ψ
) (21)

As it can be seen from Eq.18, the modified Heaviside function is applied to
all the nodes of the completely cracked elements excluding those nodes belonging
to elements partially intersected by the crack. This function allows for a jump in
the displacement field at crack faces. The front enrichment functions are chosen
such that they span a basis for the LEFM-based analytic asymptotic solution and
produce a 1/

√
r singularity in the stress field near the crack tip/front [28, 32]. In

3D cases these functions can represent the analytic asymptotic solution only for
a planar crack with a straight crack front. Even though the four front enrichment
functions may still significantly improve the solution error, using all of them leads
to a significantly higher condition number of the resulting equation system and to a
possibly significantly higher numerical effort. For this reason we only use the first of
the front enrichment functions which is required to reflect the discontinuity ending
within the crack front element.



3D Dynamic Crack Propagation … 285

In the XFEM context, elements which are not completely enriched by the front
enrichment function are often called blending elements. Without any special treat-
ment, the partition of unity is not fulfilled in these elements. One remedy is to define
the ramp function R(x),

R(x) =
∑

i∈N ∗∗
Ni (x) (22)

extend the front enriched domain by one layer of elements, and multiply the ramp
function with all front enrichment functions as it is done in Eq.18. This modification
is called corrected XFEM [13, 29]. The ramp function is equal to 1 in the crack front
elements, resulting in the same approximation as in the original XFEM within the
crack front elements, and it decreases to zero along the boundary of the front enriched
elements. By applying the ramp function, the partition of unity is fulfilled in all
elements of the domain which in most cases improves the solution error significantly.

Similar to the displacement field, it is necessary to enrich the gradient-enhanced
strain field with the modified Heaviside enrichment to account for possible jumps
of the gradient-enhanced strains across the crack surface. To obtain a more accurate
gradient-enhanced strain field in the vicinity of the crack front, the first crack front
enrichment is applied as well. The enriched approximation for the gradient-enhanced
strain field reads:

ε̄(x) =
∑
i∈N

Ni ε̄i +
∑

i∈N H

Ni H(φ) ᾱi +
∑

i∈N R

Ni B1(φ,ψ) R β̄i (23)

Here, ᾱi and β̄i are the enrichedDOF for the gradient-enhanced strain field. The finite
elements containing non-smooth enrichment functions require a special treatment
of the numerical integration since the standard Gauss integration methods are not
able to produce sufficiently accurate results [13]. To resolve this problem, here we
employ sub-element partitioning [14, 29] with a low order quadrature rule for the
sub-elements away from the crack front and a higher order quadrature rule in the
vicinity of the crack front.

4.3 Explicit Time Integration and Mass Lumping for XFEM

Due to usually rather high crack propagation velocities themodeling of a dynamically
propagating crack requires very small time increments in order to accurately resolve
the physics of the involved phenomena. This results in a costly computation and
motivates using an explicit time integrator such as the explicit Newmark scheme
which is only conditionally stable but does not need iterations in non-linear cases
[33]. This leads to a drastic reduction of computational effort per time step. For
time-steps t larger than the critical time-step tc explicit time integration may
lead to numerical instabilities of the solution. For standard finite elements the well
known Courant-Friedrichs-Lewy condition can be used to estimate the critical time
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step size tc. However, due to the enrichments the critical time step size within the
XFEM may be reduced. This is discussed in more detail in [34, 35]. For an efficient
explicit method themass matrix should be lumped. Here we apply a lumping strategy
proposed in [36]:

mdiag = 1

Nnode

∫

�e

ρ[
Nnode∑
i=1

Ni (x)Fi (x)]2d�e (24)

where Fi is the applied enrichment function at the respective node. This relationship
is the equivalent to the one proposed in [34] where only the Heaviside function is
used to enrich the displacement field and it results in a reasonable non-zero critical
time step with 0 < t X FEM

c ≤ t FEM
c .

5 Solution Procedure

The discretized weak form of the momentum balance (Eq.4) reads:

∫

�

NT
uρüNu d� = −

∫

�

BT
uσ d� +

∫

�

NT
u f

b d� +
∫

�t

NT
u t d� (25)

Here Nu and Bu are the corresponding shape function and gradient operator for the
displacement field. The mass matrix that needs to be lumped according to Eq.24 to
obtain an efficient explicit solution scheme is

M =
∫

�

NT
uρNu d� (26)

For the explicit Newmark scheme to integrate the linear momentum balance we use
the Newmark parameters γ = 1/2 and β = 0 [33].

The discretized weak form of Eq.6 to obtain the gradient-enhanced equivalent
strain field is ∫

�

(NT
εNε ε̄ + BT

ε cBε ε̄) d� =
∫

�

NT
ε ε̃ d� (27)

Here, the corresponding shape function and gradient operators for the gradient-
enhanced equivalent strain are Nε and Bε. The linear momentum balance equation
(Eq.1) together with the gradient-enhanced equation (Eq.6) constitute the equation
system for the combined approach to fracture. Their discretized forms are expressed
in Eqs. 25 and 27. Since ε̄ depends non-linearly on the strain state, and the damage
variable depends non-linearly on ε̄ their weak forms are strongly coupled. Instead of
a fully coupled approach, this system of equations can be divided into two boundary
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value problems and solved by using a fixed point (staggered) approach. In an equi-
librium step of the momentum balance with fixed damage value (ε̄ = 0, d = d(k)),
the new displacements and local equivalent strain ε̃ can be obtained. (·)k denotes
the converged value from the previous time step. Then the discretized form for ε̄

with a converged displacement configuration (u = 0) can be solved to update ε̄

and consequently d by considering the conditions in Eq.9 and the evolution law for
damage (Eq.11). Since time steps are really small in the explicit Newmark scheme,
the solution of the implicit Helmholtz-type equation (Eq.27) at each time step can
be costly. If it can be assumed that the damage state does not change too much in
every time step, this equation can be solved only every n time steps. By doing so,
the solution of u and ε̄ at t + t are slightly inconsistent but quite acceptable for
small time increments. When the damage state is known in the model it can be used
to evaluate the advancement of the crack in the body. This issue is discussed in the
next section.

6 Crack Propagation Criterion and Direction Based on
Gradient-Enhanced Damage

Once the solution for the displacement and gradient-enhanced equivalent strain field
are known, the important questions are whether the crack propagates, which parts of
the crack propagate, in which direction does the crack propagate and how far does it
propagate. These questions are addressed in the following sections.

6.1 Using Damage as the Crack Propagation Criterion

Based on the employed approach, the XFEM is used to introduce a discontinuity into
the body as it naturally and physically happens during the fracture process after the
creation of microcracks and degradation of the material. When the nodal solution
of Eq.6 is known by using the described procedure in Sect. 3 damage values are
available at integration points. Therefore, the damage state at any crack front point
can be estimated by using an inverse weighted distance method which considers the
surrounding integration points located within the radius of an average element length
for each crack front point. Now, it should be decided at which front points and towhat
extent the crack will propagate. Based on the the solution of the gradient-enhanced
equation two simple options are available to serve as a crack propagation criterion:
gradient-enhanced equivalent strain values and the damage state.

A gradient-enhanced strain based criterion is used in [37, 38] with the assumption
that the largest gradient-enhanced strain values always appear along the crack front.
This criterion is valid in case of linear elastic fracture without damage which is not
our goal here. The second possibility is a damage-based criterion along the crack
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front. When a critical damage state is detected ahead of the current crack front, the
discontinuity can be advanced. The critical value of damage for this purpose is dc:

d ≥ dc crack propagation

d < dc no crack propagation (28)

The fully damaged material theoretically can be expressed by dc = 1 but based
on Lemaitre [39] in real structures a material can be considered as degenerated for
damage values between 0.2 and 0.5. The critical damage value for the transition from
a non-local damage to discrete response is reported to be dependent on the length-
scale and band-width of the damage for a combined damage-cohesive XFEMmodel
[40]. With the combination of XFEM and a gradient-enhanced damage model, the
critical values between 0.2 and 0.5 are used in [24, 41]. This parameter may depend
on the softening curve as well as the damage evolution law, and can be found through
an inverse analysis. To avoid energy conservation issues, here we use a higher value
which does not lead to a significant difference in crack propagation behavior. The
propagation criterion used here is based on a rather simple and pragmatic choice. One
can use more complicated and possibly more accurate criteria such as the calculation
of the strain tensor eigenvalues and the acoustic tensor [42], the determination of
the loss of stability or loss of strong ellipticity in the quasi-static cases as in [43] or
loss of hyperbolicity in the dynamic cases [3]. These indicators may be employed
for switching to a different dissipation mechanism which is the topic of further
development of the current work.

6.2 Crack Propagation Increment Based on the Damage
Field

Once the points along the crack front at which the crack will propagate are deter-
mined, it is necessary to calculate the crack propagation vector. The determination
of the length of this vector as well as its direction is discussed in the following.

In most cases the length of the crack increment in the context of the XFEM is
unknown. Often it is set as a user-defined parameter which should be consistent with
the crack propagation criterion. In fracture mechanics theory the crack velocity can
be derived such that during the propagation the stress intensity factor is equal to the
dynamic crack growth toughness [44, 45]. Therefore, with a predefined time step the
increment of growth is known. In [3] the crack velocity is derived based on the loss
of hyperbolicity. In contrast to LEFM-based approaches, in damage-based models
usually the velocity of the crack growth is not controlled [44].

Since cracking is considered irreversible in the current study, the crack growth
increments should be small enough to be able to follow the correct path. However, a
compromise is needed since a limitation to very small increments can lead to a costly
computation. If the propagation criterion is met at some of the considered crack front
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points but not at all of them, the new crack surface might become rough. This will
require additional increments with smaller segment lengths to be able to follow the
crack path. To overcome this difficulty, Fries and Baydoun proposed to advance the
crack at all the front points whenever the criterion at a front point is fulfilled [27].
This strategy results in a rather smooth crack path, less propagation increments and
does not affect the final crack path significantly. Fries and Baydoun used different
propagation increments proportional to the element dimensions and reported nearly
analogous crack paths. One may advance the crack at each crack front point with
respect to the energy release rate value at that point [37, 38]:

∃ x ∈ ∂�c : G̃(x) = G(x)
Gc

≥ 1, a = k lelemG̃ (29)

where lelem is the average edge length of elements in the domainN R and 0 < k ≤ 1
is a factor. In this study, the following equation based on damage values at the front
points is used:

∃ x ∈ ∂�c : d̃(x) = d(x)
dc

≥ 1, a = k lelemd̃ (30)

Regarding k, values of 0.3 ≤ k ≤ 0.5 are found to be optimal since they allow for
multiple propagation steps within an element. This is important since the crack can
flexibly change its direction within one finite element. This is discussed further
in Sect. 6.3. Allowing for multiple propagation steps per time increment until the
damage value falls below the propagation criteria in front of the crack ensures a fair
approximation for the crack propagation velocity in the simulations.

6.3 Finding the Propagation Direction from the Damage
Field

After determining the crack propagation increment for each considered crack front
point, it is necessary to calculate the propagation direction. There exist several well
known techniqueswith different theoretical background such as themaximumenergy
release rate, the minimum strain energy density or the maximum hoop stress. Since
in this contribution we persue a transition between damage and discrete fracture we
directly use the damage field to determine the direction of crack propagation.

A number of nDEP Damage Evaluation Points (DEP) can be considered along an
arc with a user defined radius l p and a central angle of 2α (See Fig. 2). The location
of these points can be described by the local polar coordinate pair (r = l p, θ) with
its reference located on the crack front point. At each DEP a damage value dDEP can
be estimated.
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Fig. 2 Finding crack
propagation direction based
on damage at damage
evaluation points

Front enrichments Heaviside enrichment

Damage evaluation point Gauss points

The crack will propagate in the direction θc of the point with the highest damage
value. This strategy is resembling to the method used by Fries and Baydoun [27] to
find the maximum hoop stress, but the evaluated value at each point is damage.

The radius of the arc, l p is found to be an important parameter as reported in [24].
It should not be too big in away that the evaluation points be located outside damaged
domain and not too small which leads to a zigzag crack path and additional number
of iterations. The optimum value found to be l p = 1.2lc, where lc is the length scale
of the damage model. This is close to the factor 1.5 proposed by Broumand and
Khoei for a 2D visco-plastic analysis [24]. It is found that higher or smaller values
can lead to very similar crack path but may cause difficulties by generating a rough
crack surface. The number of the damage evolution points does not affect the results
strongly but too few evaluation points will result in a non-smooth crack surface.
Based on the experimental findings for a pure mode II loaded crack, the maximum
propagation angle can be about ±71◦ [27]. In this study, the central angle of the arc
assumed to be 2α = 90◦ which allows the flexibility of ±45 at each propagation
increment. This assumption does not affect the crack path since within each element
a few crack increments are possible as mentioned in Sect. 6.2. This means that within
a finite element with at least two crack increments an angle of ±71◦ can easily be
achieved and a sharp crack angle can be modeled if needed.

As the crack advances from ∂�c(k) at time tk to ∂�c(k+1) at time tk+1, the crack
front points on ∂�c(k+1) can be located arbitrarily at any location within the element.
In general, these positions do not coincide with the location of the integration points.
Thus, a strategy is required to evaluate damagevalues at the crack front points. For this
purpose damage values di from the surrounding integration points at the distance ri
can be used which provide an accurate and smooth estimation. An inverse weighted
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distance method is employed to evaluate the damage at any DEP. This weighting
approach increases the effects of the closer integration points on the estimateddamage
value at each front point [24]:

dDEPm =
∑

i di/r
2
i∑

i 1/r
2
i

(31)

where dDEPm is the estimated damage value at point xDEPm .
After finding the propagation direction, the propagation vector, vk+1, is known at

each front point x∂�c(k) . The location of the new front points x∂�c(k+1) become:

x∂�c(k+1) = x∂�c(k) + vk+1 =
x∂�c(k) + a cos(θc)b1 + a sin(θc)b2 (32)

wherea and θc are found from Eq.30 and Sect. 6.3, respectively. At each increment
of growth, the orthogonal local basis vectors bk for each crack point are known based
on the the level set fields from Eq.17. The new crack geometry is known from Eq.32
and the enrichment scheme can be updated for nodes located within the level set tube
expressed in Eq.16. After the level set update, the new configuration of the crack is
set. Since the position of the integration points after the propagation may be different
to the position of the integration points before, the state variables (stress, damage,
etc.) should be mapped from the old to the new integration points. For this purpose
again an inverse weighted distance method [46] with a factor of 1/r2 is used. The
procedure is similar to the evaluation of the damage values along the crack front (See
Eq.31).

7 Numerical Example

In this section, the performance and robustness of the proposedmethod is investigated
bymodeling a plate subjected to impulse loading. This experiment was performed by
Kalthoff and is therefore often called the Kalthoff test. [47, 48]. The plate consists of
two edge cracks impacted by a projectile at different initial velocities, V0 (See Fig. 3).
Initially this test represents a pure mode II fracture. It could be found that there is a
transition frombrittle to ductile fracture for increasing V0. At lower strain rates, brittle
failure can be observed with the propagation of two cracks initiated from the notches
at an angle of about 70◦ with respect to the ligament (See path 1 in Fig. 3). At higher
impact speeds, a transition between brittle fracture and shear band propagation with
a propagation angle of −10◦ can be observed which is schematically shown as path
2 in Fig. 3. This change of failure mode with impact speed is called dynamic failure
mode transition. The failure mode transition in Kalthoff’s experiment contradicts the
traditional belief that at higher strain rates failure transition is from ductile to brittle
fracture. This mode transition attracted attention of many researchers to simulate
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(a) (b)

Fig. 3 a Geometry and, b the boundary conditions and two schematic crack paths of Kalthoff’s
experiment

these experiments by using different numerical methods such as XFEM [3, 49],
cohesive zone approach [3, 5], embedded strong discontinuity approach E-FEM [8],
thick level set method [50], smoothed particle hydrodynamics [12], peridynamics
[9], and phase-field methods [21, 51].

7.1 Specimen Geometry, Boundary Conditions and Material
Properties

The geometry of Kalthoff’s test [47] is depicted in Fig. 3a. For the numerical sim-
ulation we discretize only a symmetric part of the 3D structure and apply the cor-
responding symmetry boundary conditions (see Fig. 3b). To avoid frictional contact
between the two surfaces of the crack, notches with a finite gap between the two
crack edges are considered in experiments as well as in our simulations. A sharp
pre-crack is introduced at the end of the notch using the XFEM and level sets.

The projectile is not modeled explicitly. Instead, the impact is modeled by pre-
scribing a constant velocity of V0 = 16.5m/s as shown in Fig. 3c for a time period of
100µs. In the experiment described in [47] the specimen is not mounted anywhere;
therefore, in the simulation traction free boundaries are considered for the remaining
surfaces.

The specimen was made of maraging steel with the material constants shown in
Table1. The damage parameters are taken from [3]. Although the damage model
used by Belytschko et al. was a local damage model, the constants are related to the
damage evolution function which essentially can be used to map an equivalent strain
value to a damage value. The same mapping is needed for the gradient-enhanced
strains ε̄ in our model. The critical damage value serving as a crack propagation
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Table 1 Material parameters for Kalthoff’s experiment

Parameter Value Parameter Value

Young’ modulus E 190Gpa Damage threshold strain 3.0 × 10−3

Poisson’s ratio ν 0.3 Damage law parameter α 1.0

Densityρ 8000Kg/m3 Damage law parameter β 200.0

Characteristic length lc 0.9mm

criterion is considered to be dc = 0.9. Since the damage evolution law used here is
an exponential function it saturates quite fast and the stiffness will be degraded to
nearly zero. In addition, the stresses within elements ahead of the crack front will be
small compared to the stresses in the much less damaged parts of the domain. These
two facts allow for a rather smooth transition between damage and fracture. For the
damage model we applied in this article, we could not find a significant dependence
of the crack propagation behavior for critical damage values beyond dc = 0.7. The
characteristic length for the damage model is set to lc = 0.9mmwhich is bigger than
2lelem.

In those parts of the domain where the crack may propagate and an accurate
damage solution is needed we use uniform hexahedral elements of the size 0.4 ×
0.4 × 0.5mm3 (See region 1 in Fig. 4a). Larger elements are used for other parts
(region 2) as depicted in Fig. 4a. Before the crack propagates we choose a time
increment of t = 4 × 10−8 s. Once the crack propagates we decrease the time
step size to t = 2 × 10−8 s. This is consistent with the Courant-Friedrichs-Lewy
condition considering that the shear and Rayleigh wave speeds in this medium are
cS = 3022m/s and cR = 2799m/s.

7.2 Kalthoff’s Test Simulation Results

For an initial velocity of V0 = 8m/s the crack does not propagate. By increasing the
velocity toV0 = 16.5 m/swe observe a brittle fracturemodewith a crack propagation

(a) (b) (c)

Fig. 4 a Mesh resolution for differnet regions of Kalthoff’s test, 3d simulation of Kalthoff’s test
for two projectile velocities of: b V0 = 16.5 m/s, b V0 = 20.0 m/s
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pattern similar to what Kalthoff has reported (See Fig. 4b). The damage field for
V0 = 20 m/s is shown in Fig. 4c. Due to the higher impact velocity, higher stress
values are imposed and twodamagebranches appear advancing towards the upper and
right edges. For a shear band propagation the impact velocity should be higher than
V0 = 30m/s, and temperature dependent plastic deformation should be considered.
At higher velocities the plastic deformation and thermal softening suppress brittle
fracture response and a shear band propagates through the specimen. This behavior
can be classified as a ductile failure mode which involves a temperature rise of about
900–1200K [52]. This is not within the scope of the current study.

For the case of brittle failure with an impact velocity of V0 = 16.5m/s the crack
pattern is shown in Fig. 5 for four different time steps. The crack starts to propagate
at t = 27µs at an angle of about 37◦ with respect to the initial pre-crack. The overall
propagation angle, from the ligament to the point at which the crack touches the upper
edge is about 69◦. This agrees quite well with the value of 70◦ reported by Kalthoff
[47]. The crack path is very similar to the prediction of the phase-field solution (with
the same mesh resolution) [51] and the solution using the thick level set method in
combination with a non-local damage model [50]. The discrete crack can follow the
damage field successfully which confirms the predicted capabilities of the employed
approach in Sect. 6.3. Due to the formation of a damage band we obtain similar crack
increment lengths in neighboring parts of the crack front line leading to a smooth
crack surface during the simulation. This avoids additional iterations to follow the
crack path.

Once the compressive waves resulting from the impact arrive on the traction free
surfaces of the specimen, they are reflected as tensile waves. Moreover, the diffracted
waves from the bottom surface, which accounts for symmetry, can contribute to
damage. Because of these reflected waves, the model predicts damage on the bottom-
right side of the specimenwhich develops towards the notch as can be seen in Fig. 5a–
d. Since in this contribution we do not consider crack initiation and also we do not
introduce an initial crack at the bottom-right side of the specimen, we do not see any
discrete crack propagation modeled with the XFEM in that part of the domain.

A similar damage field was reported by using other damage-based models such
as local damage [3], phase-field [51] and the thick level set model [50] as well as the
embedded strong discontinuities method (E-FEM) [8]. This additional damaged area
can be regarded as a mode I crack although no evidence of its existence is reported in
the original experiments. Borden reported that for a 2D model with a highly-refined
mesh and element edges of about 0.1mmwhich is four times finer than ourmesh, can
alleviate the damage values in this area [21]. Evidence of the similar mode I crack
was reported by Ravi-Chandar et al. for a failure mode transition experiment. Their
experiment was similar to Kalthoff’s but the specimen had only one notch instead of
two and it was made of Polymethylmethacrylate (PMMA) [53]. Since the original
material for Kalthoff’s experiment is steel, using an elasto-plastic constitutive model
might give a better representation of the material response in the bottom-right side
of the specimen.

The crack propagation speed which is driven by the speed of the development
of the damage field is shown in Fig. 6. The crack starts to propagate at 27µs, a bit
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Fig. 5 Crack propagation for Kalthoff’s double notch experiment using combinedXFEM-gradient-
enhanced damage model at a t = 40µs, b t = 60µs, c t = 80µs, d t = 100µs

later than in 2D models’ predictions and the crack speed is not as high as predicted
in 2D plane stress simulations. This speed is bounded by approximately half of
the Rayleigh wave speed. The crack decelerates after 80 µ and its speed falls below
0.35cR until 110µs atwhich time the simulation finishes. In 3D simulations of the test
at impact velocities higher than V0 = 15m/s with mesh-free [12] and peridynamics
[9] approaches, a simulation time beyond 100µs, and an average crack speed of about
900m/s was reported. The average crack speed, the current crack length devided by
the propagation time, is 980m/s in this study which is slightly lower than 0.4cR .
Batra and Ravinsankar simulated the same test in 3D and reported a delayed crack
propagation in the 3D case compared to 2D plane strain condition simulations [54].
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Fig. 6 Velocity of the propagating crack in Kalthoff’s test

They claimed that the stress triaxiality and the deformations are more severe in the
2D plane strain case than in the 3D case, and neither the plane stress nor the plane
strain assumptions were able to represent the 3D simulation results of the test.

8 Conclusion

A combined continuous-discrete approach is used to model crack propagation under
dynamic loading. A damage-based criterion determines the propagation of a discrete
crack modeled using the XFEM and level sets. In highly damaged crack front ele-
ments the discrete crack is advanced in the direction of the maximum damage value.
For this purpose, a geometrical approach based on the damage distribution is suc-
cessfully used to find the crack propagation direction. The proposed strategy results
in a smooth crack surface. To track the discrete crack in the finite element mesh,
a level set technique is used. The geometrical level set approach does not require
the solution of an additional equation system, and it is found to be computationally
efficient. The combined approach benefits from sharp crack representation by the
XFEMwhich does not require special treatment for the mesh behind the crack front.
Finally, the robustness and the capabilities of the numerical approach are verified
by a numerical example. It is found that the discontinuous crack can successfully
follow the damage field and the prediction for the propagation path agrees well with
experimental results.
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A 3D Magnetostrictive Preisach Model
for the Simulation of Magneto-Electric
Composites on Multiple Scales

J. Schröder and M. Labusch

Abstract In this contribution we derive a three dimensional ferroelectric Preisach
model based on an orientation distribution function. Therefore, the classical scalar
Preisach model is modified and applied on the individual orientations, which are
uniformly distributed in the three dimensional space. This model is used to simu-
late the behavior of magneto-electric (ME) composites. Such effective multiferroic
materials combine two or more ferroic characteristics and can exhibit a coupling
between electric polarization and magnetization. Since most of the single-phase ME
materials exhibit a weak magneto-electric coupling at low temperatures, two-phase
ME composites produce an ME coupling at room temperature. The basic idea for
the manufacturing of ME composites is to use the interaction of the ferroelectric and
magnetostrictive phases in order to generate strain-inducedME properties. However,
in contrast to single-phase multiferroics, the ME coefficient of composites signifi-
cantly depends on the microscopic morphology and the electro- as well as magneto-
mechanical properties of the individual constituents. Therefore, we implemented
the 3D Preisach model into the FE2-method in order to depict the realistic ferro-
electric behavior and directly incorporate the microstructure by the consideration of
underlying representative volume elements.

1 Introduction

Ferroic materials are used in many devices in sensor and actuator technology. They
show interactions between electric fields and mechanical deformations or mag-
netic fields and deformations, respectively. A special phenomenon, which combines
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both properties, is the magneto-electric (ME) coupling. Materials exhibiting a cou-
pling between their magnetization and electric polarization are known as magneto-
electric multiferroics and allow for applications in various fields, such as for instance
Magneto-Electric Random Access Memory (MERAM) devices, see [4, 9, 56]. ME
composites have been investigated intensively, in e.g. [6, 13, 23, 30, 42, 47, 66, 67].
However, due to physical reasons, only very few natural materials with magneto-
electric properties exist and often arise at temperatures far below room temperature,
see for instance [1, 7, 43, 44, 63]. Exceptions aremade, for example, by the synthetic
material chromium(III)-oxide (Cr2O3), which also shows an ME coefficient at room
temperature (293.15 K), but it quickly decreases for slightly higher temperatures
and finally vanishes at a Néel temperature of about Tn = 307 K, see [1]. The still
relatively low coupling coefficient of most of the synthetic single-phase materials,
like bismuth-ferrite (BiFeO3), chromium(III)-oxide (Cr2O3) or lithium manganese
phosphate (LiCoPO4) results in a limitation of technical exploitation, see also [13].
A further constraint in single-phase materials is the upper bound of the magneto-
electric coupling due to their material properties, see [5]. The disadvantage of the
very low coupling temperature has been circumvented successfully bymanufacturing
magneto-electric composites which consist of magneto-mechanically and electro-
mechanically coupled constituents, see [10] or [54] for manufacturing processes and
[2] or [53] for numerical simulations. The basic idea for the development of such
composites is to generate the desired ME effect as a strain-induced product property,
see [8, 37, 38, 41, 46, 57, 64]. In general, a product property of a composite is
defined as an effective property which is not present in its individual phases, but
only appears effectively through their interaction, see [62] for a general treatment on
possible product properties. In the case of ME composites, we distinguish between
the direct and converse ME effect. The converse effect is characterized by an elec-
trically induced magnetization, where an applied electric field yields deformations
of the electric material, which are transferred to the magnetic phase. The magne-
tostrictive material shows a correlation between strains and magnetic fields, such
that the composite exhibits a magnetization. Alternatively, a magnetically induced
electric polarization is denoted as the direct magneto-electric effect. Figure1a shows
characteristic dielectric and butterfly hysteresis curves of the ferroelectric phase and
Fig. 1c magnetization and magnetostriction curves of the ferromagnetic material.
Due to the fact that the effective magneto-electric coupling in composite materials is
a strain-induced property, it is obvious that it strongly depends on the characteristics
of the individual phases and the morphology of the microstructure.

In order to simulate the effective magneto-electric behavior taking account of the
interaction between the different constituents as well as the microscopic morphology
of the composite, wemake use of a two-scale finite element homogenization scheme,
the so called FE2-method. This approach allows for the direct incorporation of repre-
sentative volume elements (RV E s) which reflect the microscopic morphology and
simultaneously the overall macroscopic properties. Due to a homogenization process
over the RV E s a transition between the micro- and the macroscale is performed.
Here, we refer to [53] for magneto-electro-mechanically coupled problems and an
overview of further homogenization methods.
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Fig. 1 Design of two-phase magneto-electric composites: a Typical macroscopic dielectric and
butterfly hysteresis curves of BaTiO3, b Unit cell structure on nanoscopic level and c typical
macroscopic magnetization and magnetostriction of CoFe2O4
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In this contribution we implemented two different material models into the FE2-
method for the simulation of the material behavior of both phases on microscopic
level. For the magnetostrictive phase we restrict ourselves to a purely linear model.
The ferroelectric matrix material is described by a three dimensional Preisachmodel,
which depicts the typical dielectric and butterfly hysteresis loops. The main idea of
this approach is to apply the classical model in each direction of a three dimensional
orientation distribution function (ODF).

In Sect. 2 we start with a brief overview of the theoretical procedure of the two-
scale homogenization scheme within the framework of magneto-electro-mechanical
solids and describe the general treatment of the consistent linearization of the macro-
scopic field equations. The implemented piezomagnetic and ferroelectric material
models are described in Sect. 3. Afterwards, we applied the method to the simulation
of magneto-electrically coupled solids, which are discussed in Sect. 4. Finally, we
will give a short summary of the present contribution and propose some improve-
ments of the implemented models.

2 A Two-Scale Homogenization Scheme

In the FE2-approach the microscopic quantities are homogenized to obtain macro-
scopic constitutive equations instead of defining a macroscopic material model.
Therefore, in the case of magneto-electro-mechanical boundary value problems, the
macroscopic strains, electric and magnetic fields at each macroscopic integration
point are localized to an underlying microstructure, fulfilling suitable boundary con-
ditions. This microstructure should represent the overall material behavior in a suffi-
cient manner and is therefore denoted as a representative volume element (RV E ). In
order to obtain the microscopic quantities such as the stresses, the electric displace-
ment and the magnetic induction, the weak forms of the balance equations have to be
solved on the microscale. Afterwards, a homogenization step is performed, in which
average values of the microscopic quantities are determined. These homogenized
variables have to be transferred to the associated points on the macroscale. Finally,
the macroscopic boundary value problem has to be solved, whereby the entire proce-
dure has to be repeated until an equilibrium state on both scales is reached, see [27,
51–53]. In the sense of multilevel finite element methods and computational homog-
enization frameworks we refer to [11, 21, 22, 24, 33–36, 39, 48, 49, 59–61]. To
ease the readability of the equations, we summarize the magneto-electro-mechanical
quantities in Table1.

2.1 Boundary Value Problem and Scale Transition

The macroscopic bodyB ⊂ R
3 is parameterized in the Cartesian coordinates x. The

macroscopic fundamental balance laws are given by the balance of linear momentum
as well as Gauß’s laws of electro- and magneto-statics as
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Table 1 Overview of the magneto-electro-mechanical quantities and their units

Macro-symbol Micro-symbol Continuum mechanical
description

Unit

u u Displacement vector m

ε ε Linear strain tensor 1

σ σ Cauchy stress tensor N/m2

t t Traction vector N/m2

f f Mechanical body force vector N/m3

φ φ Electric potential V

E E Electric field vector V/m

D D Electric displacement vector C/m2

Q Q Electric surface flux density C/m2

q q Density of free charge carriers C/m3

ϕ ϕ Magnetic potential A

H H Magnetic field vector A/m

B B Magnetic flux density T

ζ ζ Magnetic surface flux density Vs/m2

divx[σ ] + f = 0, divx[D] = q and divx[B] = 0 in B , (1)

with the divergence operator divx with respect to x. In this contribution we neglect
the free charge carriers q . The macroscopic gradient fields, which are the strain as
well as the electric and magnetic field are defined as

ε = sym[gradxu] , E = −gradx φ and H = −gradx ϕ , (2)

with the macroscopic gradient operator gradx defined with respect to x. The macro-
scopic boundary conditions are prescribed through the displacement and the surface
traction

u = ub on ∂Bu and tb = σ · n on ∂Bσ (3)

with the relations ∂Bu ∪ ∂Bσ = ∂B and ∂Bu ∩ ∂Bσ = ∅ , through the electric
potential and the electric surface flux density

φ = φb on ∂Bφ and − Qb = D · n on ∂BD (4)

with the relations ∂Bφ ∪ ∂BD = ∂B and ∂Bφ ∩ ∂BD = ∅, as well as through
the magnetic potential and the magnetic surface flux density

ϕ = ϕb on ∂Bϕ and − ζ b = B · n on ∂BB (5)
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Fig. 2 Boundary conditions on themacroscale: amechanical part,b electrical part and cmagnetical
part

with the relations ∂Bϕ ∪ ∂BB = ∂B and ∂Bϕ ∩ ∂BB = ∅ , where n denotes the
outward unit normal vector of the surfaces ∂BB , see Fig. 2. To solve the macro-
scopic boundary value problem within a Newton-Raphson iteration scheme the
overall material tangent modulus is required. In the sense of the FE2-method the
effective properties are obtained by a homogenization step, requiring the solution of
the microscopic boundary value problem. The representative volume element on the
microscaleRV E ⊂ R

3 is parameterized in x. The balance of momentum as well as
the Gauß’s law of electro- and magneto-statics on microscopic level are given by

divx[σ ] = 0 , divx[D] = q and divx[B] = 0 in RV E . (6)

Analogously to Eq. (1)2 we neglect in (6) onmicroscopic level the free charge carriers
q. The microscopic strains as well as the electric and magnetic fields are defined by

ε = sym[gradxu] , E = −gradx φ and H = −gradx ϕ . (7)

To solve the microscopic boundary value problem, suitable energy functions for the
different phases are defined, which describe the corresponding material moduli. The
considered RV E on the microscale should represent the overall material behavior
and especially, for the purpose of ME composites, the magneto-electric coupling
coefficient. As a consequence, all of the above quantities are defined through an
averaging process over the volume of the RV E . Assuming continuity of the dis-
placements, the electric and magnetic potential, we can express the macroscopic
variables in terms of simple volume integrals as

λ = 〈λ〉V := 1

VRV E

∫

RV E

λ dv with λ := {ε, σ , E, D, H, B} , (8)

see for example [53]. In order to determine the microscopic quantities by solving
the boundary value problem of theRV E , we have to define boundary conditions on
microscopic level. Starting from the fundamental works of [14] and [29] we assume
that the individual parts of a generalized magneto-electro-mechanical Hill-Mandel
condition of the form
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σ : ε̇ − 〈σ : ε̇〉V︸ ︷︷ ︸
Pmech

= 0, D · Ė − 〈D · Ė〉V︸ ︷︷ ︸
Pelec

= 0 and B · Ḣ − 〈B · Ḣ〉V︸ ︷︷ ︸
Pmagn

= 0 ,

(9)
have to be fulfilled independently, see [48] for the electro-mechanical case and
[53] for the magneto-electro-mechanical case. Using the local balance law of linear
momentum as well as the Cauchy theorem t = σ · n we reformulate Pmech to

Pmech = 〈(t − σ · n)(u̇ − ε̇ · x)〉Γ (10)

where 〈•〉Γ denotes the surface average over the representative volume element,
i.e. 〈•〉Γ := 1

VRV E

∫
∂RV E (•) da, and n the outward unit normal on ∂RV E . An

evaluation ofPmech = 0 leads to theReuss- andVoigt bounds (constraint conditions)

σ = σ = const. or ε̇ = ε̇ = const. ∀ x ∈ RV E . (11)

Possible periodic boundary conditions,which fulfillPmech = 0, can be derived effec-
tively by assuming a decomposition of the microscopic strains in an affine part ε and
a fluctuation field ε̃, satisfying 〈ε〉V = ε and 〈̃ε〉V = 0, holding the relation

ε̇ = ε̇ + ˙̃ε . (12)

The associated periodic boundary conditions for the mechanical part are given by

ũ(x+) = ũ(x−) and t(x+) = −t(x−) on x± ∈ Γ ± (13)

respectively, see Fig. 3 for a visualization of the mechanical part. Here, x+ and
x− define associated points at Γ + and Γ −, respectively, satisfying n+ = −n−.
Analogous to the mechanical part, we can derive the boundary conditions for the
electric and magnetic fields by reformulating Eq. (9)2 and (9)3. Using the Maxwell
equations of electro- and magnetostatics and the definitions of the surface tractions
Q and ζ yield

Fig. 3 Possible mechanical periodic boundary conditions on the RV E
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Pelec = 〈(Q + D · n)(φ̇ + Ė · x)〉Γ and Pmagn = 〈(ζ + B · n)(ϕ̇ + Ḣ · x)〉Γ .

(14)

The evaluation of Pelec = 0 and Pmagn = 0 leads to the constraint conditions for
the electric and magnetic fields

D = D = const. or Ė = Ė = const. ∀ x ∈ RV E ,

B = B = const. or Ḣ = Ḣ = const. ∀ x ∈ RV E .
(15)

For the periodic boundary conditions of the electric and magnetic fields we assume
analogous to the mechanic fields the following decompositions

Ė = Ė + ˙̃E and Ḣ = Ḣ + ˙̃H , (16)

and the associated periodic conditions are given by

φ̃(x+) = φ̃(x−) and Q(x+) = −Q(x−) on x± ∈ Γ ± ,

ϕ̃(x+) = ϕ̃(x−) and ζ(x+) = −ζ(x−) on x± ∈ Γ ± ,
(17)

respectively. In the following we introduce the discretizations of the microscopic
boundary value problems. Furthermore, the determination of the macroscopic mate-
rial tangent, obtained by a homogenization over the RV E involving a consistent
linearization of the macroscopic constitutive quantities, is shown.

2.2 Discretizations of the Boundary Value Problems

For the discretizations of the boundary value problem on themicroscale, we apply for
actual, virtual and incremental deformations, electric as well as magnetic potential
the following discretizations

{̃u, δũ,Δũ} =
nnode∑
I=1

N
I
u {̃d I

u, δ d̃
I
u,Δd̃

I
u}

{φ̃, δφ̃,Δφ̃} =
nnode∑
I=1

N
I
φ{d̃ I

φ, δd̃ I
φ,Δd̃ I

φ}

{ϕ̃, δϕ̃,Δϕ̃} =
nnode∑
I=1

N
I
ϕ{d̃ I

ϕ, δd̃ I
ϕ,Δd̃ I

ϕ} ,

(18)

where N
I contains the classical shape-functions associated with node I and the

expressions {̃du, d̃φ, d̃ϕ} denote the nodal displacement, the electric and magnetic
potential. Due to the constant distribution of the macroscopic part we only have to
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discretize the fluctuation fields. We approximate the actual, virtual and incremental
fluctuation fields of the deformation, electric as well as magnetic field with

ε̃ = B
e
u d̃

e
u , δ̃ε = B

e
uδ d̃

e
u , Δ̃ε = B

e
uΔd̃

e
u

Ẽ = B
e
φ d̃

e
φ , δ Ẽ = B

e
φδ d̃

e
φ , ΔẼ = B

e
φΔd̃

e
φ

H̃ = B
e
ϕ d̃

e
ϕ , δ H̃ = B

e
ϕδ d̃

e
ϕ , ΔH̃ = B

e
ϕΔd̃

e
ϕ ,

(19)

with the B
e-matrices containing the partial derivatives of the shape-functions with

respect to the reference coordinates. The following expressions

X̃ = B
e
ξ d̃

e
ξ , δX̃ = B

e
ξ δ d̃

e
ξ , ΔX̃ = B

e
ξΔd̃

e
ξ , (20)

give a general form of the discretizations in order to simplify the following deriva-
tion of the algorithmic consistent tangent moduli. Here, we introduce the abbrevia-
tions X = {ε, E, H} and ξ = {u, φ, ϕ}. In analogy to the discretizations on the
microscale we discretize the macroscopic boundary value problem.

2.3 Consistent Linearization of Macroscopic Field Equations

The boundary value problems on the macroscale as well as on the microscale are
solved using the Finite ElementMethod and involve the derivation of the weak forms
on both scales. To obtain the solution of the problems the Newton-Raphson iteration
scheme is used, where we want to achieve quadratic convergence on both scales.
Therefore, a consistent linearization of the macroscopic constitutive quantities is
required. The incremental macroscopic constitutive equations are given by

⎡
⎣ Δσ

−ΔD
−ΔB

⎤
⎦

︸ ︷︷ ︸
ΔΣ

=
⎡
⎣ C −eT −qT

−e −ε −αT

−q −α −μ

⎤
⎦

︸ ︷︷ ︸
Z

⎡
⎣ Δε

ΔE
ΔH

⎤
⎦

︸ ︷︷ ︸
ΔX

, (21)

with the macroscopic and microscopic tangent modulus C and C, the piezoelectric
tangent moduli e and e, the piezomagnetic tangent moduli q and q, the electric
permittivities ε and ε, the magnetic permeabilities μ and μ, as well as the magneto-
electric tangent moduli α. In the following we use a matrix-notation denoted by an
underline. For the determination of themacroscopic tangentmoduli the increments of
themacroscopic stresses, electric displacement andmagnetic induction are expressed
by the volume averages of the corresponding microscopic variables
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Z = ∂〈Σ〉V
∂X

. (22)

The computation of the macroscopic moduli is obviously not straight-forward. The
macroscopic stresses, electric displacements and magnetic inductions are defined
through volume integrals over the microscopic counterparts. With the application
of the chain rule and the additive decomposition of the microscopic quantities into
a macroscopic and a fluctuation part X = X + X̃, we obtain the overall material
tangent

Z = ∂〈Σ(X)〉V
∂X

=
〈

∂Σ(X)

∂X

∂(X + X̃)

∂X

〉

V

= 〈Z〉V︸︷︷︸
Z
Voigt

+
〈
Z

∂X̃

∂X

〉

V︸ ︷︷ ︸
Z
Soft

.
(23)

The first part of the latter equation ZVoigt is denoted as the Voigt upper bound of the
material tangent and is defined as a simple volume average. The second part ZSoft

is called the softening term of the overall tangent and includes the magneto-electric
coefficient. In order to derive the softening part, we linearize the microscopic weak
forms at an equilibrium state. In the following we define a general weak form for the
balance ofmomentum,Gauß’s law of electrostatics andGauß’s law ofmagnetostatics
on microscopic level as

Gξ = −
∫

RV E

δ̃ξ
T
div[Σ] dv =

∫

RV E

δX̃
T

Σ dv −
∫

∂RV E

δ̃ξ
T

(Σ n) da . (24)

The linearization of the above general weak form with respect to the microscopic
quantities yields

ΔGξ =
∫

RV E

δX̃
T
ZΔX dv =

∫

RV E

δX̃
T
Z (ΔX + ΔX̃) dv = 0 , (25)

where we decomposed the microscopic quantities into a macroscopic and a fluctua-
tion part. After a reformulation and the insertion of the discretizations we obtain

ΔGξ =
∫

RV E

δX̃
T
Z dvΔX +

∫

RV E

δX̃
T
ZΔX̃ dv

=
numele∑
e=1

δ d̃
eT
ξ

{ ∫

RV E

B
eT
ξ Z dv

︸ ︷︷ ︸
le

ΔX +
∫

RV E

B
eT
ξ ZB

e
ξ dv

︸ ︷︷ ︸
ke

Δd̃
e
ξ

}
= 0

(26)
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with the number ofmicroscopic finite elements numele, the element stiffnessmatrices
ke and the sensitivity of the moduli of the finite elements le. The contracted matrix
notation of the latter expression can be reformulatedwith the application of a standard
assembling procedure as

numele∑
e=1

δ d̃
eT
ξ {le ΔX + ke Δd̃

e
ξ } = δ D̃

T
ξ (L ΔX + K Δ D̃ξ ) = 0 . (27)

From this we achieve the microscopic fluctuations depending on the incremental
macroscopic process variables and its partial derivative with respect to X as

Δ D̃ξ = −K−1L ΔX and
∂Δ D̃ξ

∂X
= −K−1L

∂ΔX

∂X
(28)

Inserting the discretizations (20)3 in (23), with the update X̃ ⇐ X̃ + ΔX̃ in consid-
eration of the equilibrium state in the current time step, and the partial derivative
(28)2 yield the final expression of the effective magneto-electro-mechanical moduli
as

Z = 〈Z〉V +
〈 numele∑

e=1

Z
∂Be

ξΔd̃
e
ξ

∂X

〉
V

= 〈Z〉V + 1

V
LT

∂Δ D̃ξ

∂X

= Z
Voigt − 1

V
LT K−1 L

(29)

For a detailed derivative of the effective tangent moduli for magneto-electro-mecha-
nically coupled material response we refer to [53].

3 Material Modeling

In the following section we briefly discuss the material models for both phases,
which are implemented into the FE2-method. We start with a description of the
piezomagnetic model, where we restrict the simulated behavior to the purely linear
case. Afterwards, we describe the nonlinear Preisach model for the ferroelectric
phase, which is extended to the three dimensional space.

3.1 Linear Piezomagnetic Model

For the description of the piezomagnetic material behavior, we use a coordinate-
invariant formulation of a magneto-electro-mechanical enthalpy function ψ1 for
transversely isotropic solids adopted from [50] as
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ψ1 = 1

2
λI 21 + μI2 + ω1 I5 + ω2 I

2
4 + ω3 I1 I4︸ ︷︷ ︸

mechanical

+ κ1 I1 J
m
2 + κ2 I4 J

m
2 + κ3K

m
1︸ ︷︷ ︸

piezomagnetic

+ γ1 J
e
1 + γ2(J

e
2 )2︸ ︷︷ ︸

dielectric

+ ξ1 J
m
1 + ξ2(J

m
2 )2︸ ︷︷ ︸

magnetic

(30)

where the individual parts represent functions for the purely mechanical, the piezo-
magnetic, the purely electric and the purely magnetic behavior, respectively. The
individual functions are formulated in terms of the following invariants

I1 := tr[ε], I2 := tr[ε2], I4 := tr[εm], I5 := tr[ε2m],
Jm
1 := tr[H ⊗ H], Jm

2 := tr[H ⊗ a], Km
1 := tr[ε(H ⊗ a)],

J e
1 := tr[E ⊗ E], J e

2 := tr[E ⊗ a],
(31)

in which a describes the preferred direction of the respective phase and m := a ⊗ a
is the associated structural tensor. In this model, the preferred direction is assumed to
coincide with a defined direction of remanent electric polarization. The constitutive
magneto-electro-mechanical moduli follow consequently as

C = λ1 ⊗ 1 + 2µI + ω3 [1 ⊗ m + m ⊗ 1] + 2ω2 m ⊗ m + ω1 Ξ ,

q = −κ1a ⊗ 1 − κ2a ⊗ m − κ3θ ,

ε = −2γ11 − 2γ2m,

μ = −2ξ11 − 2ξ2m,

(32)

with the second-order identity tensor 1 and the third- and fourth-order tensors

θi jk := 1
2 (a jδik + akδi j ), Ii jkl := 1

2 (δikδ jl + δilδ jk),

and Ξi jkl := aiδ jkal + akδila j .
(33)

Note that in this phase the piezoelectric moduli and the ME-coefficient is zero. In
order to determine the overall ME-coefficient we use the homogenization approach
of the FE2-method. The parameters for the coordinate-invariant formulation can be
related to the experimental parameters, see [53].

3.2 Ferroelectric Preisach Model

Several models for the description of ferroelectric materials have been developed. In
previous works we used a ferroelectric switching model, where a homogenization of
multiple reoriented microscopic remanent polarizations yield the overall hysteresis
loops. See [16, 20] for ferroelectric switching models. In this contribution we use a
Preisach model to depict the ferroelectric characteristics. Therefore, we additively
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decompose the electric polarization and strains into an elastic part (•e) and a remanent
part (•r ). The linear part is described by a transversely isotropic linear material law,
see e.g. [26, 53]. The behavior is characterized by a preferred direction a, describing
the polarization direction. The nonlinear remanent polarization is described by the
Preisach operator. In the followingwegive a brief description of the classical Preisach
model and extend this approach to the three dimensional case.

3.2.1 Classical Preisach Model

The idea of the classical Preisach model goes back to the work of Preisach [40] in the
year 1935 and further approaches using a Preisach model are e.g. given in [3, 12, 15,
17, 31, 32, 45, 55, 58, 65]. Based on this approach the remanent magnetization Mr

or the remanent electric polarization Pr , respectively, can be computed by a scalar
hysteresis operator p, which depends on a finite number of so called hysterons. Each
hysteron is characterized by a square hysteresis cycle with the output value γ , which
is either +1 or −1, depending on the up and down switching thresholds α and β,
see Fig. 4. A superposition of multiple hysterons with different switching thresholds
yield the hystersis loop depending on the input variable, in this case the current
magnetic field H(t), as

p(H) =
∫

β

∫
α

ω(α, β) γ (α, β) H(t)dα dβ , (34)

orwith p(E) depending on the current electric field in the case of electric polarization.
The single hysterons are furthermoremultipliedwith aweighting functionω(α, β) in
order to conincide withmeasured hysteresis loops.Methods to identify the weighting
function from experimental measurements are for example given in [17]. Here, it has
to be mentioned, that the classical approach is a scalar valued model, such that the
input field H is also considered to be a scalar value. Due to the fact, that we consider
closed hysteresis loops, we can visualize the set of possible up and down switching
thresholds to a Preisach plane S = { (α, β) ∈ R

2 | β ≥ α }, see Fig. 4. With
a suitable distribution of switching thresholds it is also possible to depict minor
hysteresis loops.

3.2.2 Application of the Preisach Model to an ODF

Analogously to the linear piezomagnetic material model, we use a generalized
coordinate-invariant formulation of a magneto-electro-mechanical enthalpy function
ψ2 for transversely isotropic solids adopted from Schröder and Gross [50]
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Fig. 4 Visualization of the Preisach plane S with S = { (α, β) ∈ R
2 | β ≥ α } and possible

hysterons with individual switching thresholds α(1−4) and β(1−4), respectively

ψ2 = 1

2
λ Î 21 + μ Î2 + ω1 Î5 + ω2 Î

2
4 + ω3 Î1 Î4︸ ︷︷ ︸

mechanical

+ κ1 Î1 Ĵ
e
2 + κ2 Î4 Ĵ

e
2 + κ3 K̂

e
1︸ ︷︷ ︸

piezoelectric

+ ξ1 Ĵ
m
1 + ξ2( Ĵ

m
2 )2︸ ︷︷ ︸

magnetic

+ γ1 Ĵ
e
1 + γ2( Ĵ

e
2 )2 − ( Ĵ e

2 )P̂e
1︸ ︷︷ ︸

dielectric

(35)

where now the invariants, listed in Eq. (31), depent on the elastic part of the strains
εe. Here, we introduce the electro-mechanical invariant K̂ e

1 := tr[εe (E ⊗ â)] and
the electric invariant P̂e

1 := tr[ P̂r ⊗ â] with the vector of remanent polarization
P̂r . At this point we introduce an additional length scale, the sub-microscale, which
is denoted as (•̂). It is assumed that the individual hysterons switch to their up and
down positions on sub-microscopic level. For the resulting dielectric displacement
as well as the strains we assume an additive decomposition into an elastic part (•e)
and a remanent part (•r ), according to Kamlah and Tsakmakis [19], as

D̂ = D̂e + P̂r and ε̂ = ε̂e + ε̂r , (36)

where the remanent polarization vector P̂r is determined by a Preisach operator p
and the remanent strains ε̂r depend on the current polarization state as

P̂r = p(E) â and ε̂r = 3

2
εs

1

P2
s

dev( P̂r ⊗ P̂r ) , (37)

with the saturation polarization Ps and saturation strains εs . The butterfly hysteresis
curve can also be modeled by an enhanced hysteresis operator, however, we assume
that the strains result proportional to the squared remanent polarization vector P̂r .
Here the Preisach operator depend on the scalar product of the current electric field
and the preferred orientation â as an input variable and is given by
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p(E, â) =
∫

β

∫
α

ω(α, β) γ (α, β) E(t) · â dα dβ . (38)

For a simplification the Preisach weighting functionω(α, β) as well as the switching
thresholds α and β are in this case adjusted to the hyperbolic tangent to obtain the
typical ferroelectric hysteresis loops. A fitting of the switching thresholds to experi-
mental measurements is for example described in Kaltenbacher et al. [17] and will be
done in future works. However, this Preisach operator is defined on a fixed preferred
direction. In order to extend the classical Preisach model to the three dimensional
space, we apply the Preisach operator to multiple orientations on sub-microscopic
level, which are distributed in the three dimensional space. The distribution of the
individual directions is based on the construction of a geodesic dome, see [25]. After
the determination of the individual Preisach operators, which depend on the cur-
rent local electric field in the corresponding direction, the constitutive quantities on
microscopic level are calculated by a homogenization step over all sub-microscopic
orientations norient as

Σ = 1

norient

norient∑
i=1

Σ̂ i with Σ̂ i = {σ̂ i , D̂i , B̂i , Ĉi , êi , ε̂i , μ̂i , ε̂r,i , P̂r,i }. (39)

Then the microscopic constitutive equations of the ferroelectric phase are computed
via (39) with the constitutive equations related to the individual orientations of the
ODF. Thus for each orientation we compute

σ̂ i = Ĉi : (ε − ε̂r,i ) − êTi · E
D̂i = êi : (ε − ε̂r,i ) + ε̂i · E + P̂r,i

B̂i = μ̂i · H
(40)

In order to regard a dependence of the electromechanical coupling on the polarization,
the piezoelectric tensor e is multiplied by ‖Pr‖/Ps , see e.g. [18]. Although, a large
number of relays is necessary to depict a smooth hysteresis loop, it requires large
memory space, especially in the case of using an orientation distribution function,
and reduces strongly the calculation speed.

4 Numerical Examples

The following chapter is divided into three parts, where we consider the response
of the Preisach model for different cases. First, we demonstrate the evolution of the
hystersis curves for an increasing number of relays. For simplicity, a homogeneous
ferroelectricmaterialwith only one orientation is considered. The second part focuses
on the application of the Preisach model to an orientation distribution function and
the influence on the overall hysteresis curves. Analogously to the first example, a
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Table 2 Material parameters of polycrystalline barium titanate (BaTiO3) and cobalt ferrite
(CoFe2O4)

Parameter Unit BaTiO3 CoFe2O4

C1111 N/mm2 16.6 × 104 21.21 × 104

C1122 N/mm2 7.7 × 104 7.45 × 104

C1133 N/mm2 7.8 × 104 7.45 × 104

C3333 N/mm2 16.2 × 104 21.21 × 104

C1212 N/mm2 4.3 × 104 6.88 × 104

ε11 (εr11)
∗ mC/kVm (1) 0.0112 (1264.9) 8 × 10−5 (9.04)

ε33 (εr33) mC/kVm (1) 0.0126 (1423.1) 9.3 × 10−5 (10.5)

μ11 (μr
11)

∗ N/kA2 (1) 1.26 (1) 157.0 (124.9)

μ33 (μr
33) N/kA2 (1) 1.26 (1) 157.0 (124.9)

e311 C/m2 −4.4 0.0

e333 C/m2 18.6 0.0

e113 C/m2 11.6 0.0

q311 N/Am 0.0 580.3

q333 N/Am 0.0 −699.7

q113 N/Am 0.0 550.0

Êc kV/mm 1.0 0.0

σ̂c N/mm2 100.0 0.0

ε̂s 1 0.00834 0.0

P̂s C/m2 0.26 0.0
∗Depending on the permittivity as well as the permeability of free space ε0 ≈ 8.854 · 10−12 As/Vm
and μ0 = 4π · 10−7 N/A2 we determined the relative electric permittivity εr = ε/ε0 and relative
magnetic permeabilityμr = μ/μ0, respectively. For a detailed explanation of the chosen parameters
we refer to [53]

homogeneous microstructure is taken into account, such that we can investigate the
influence of the orientation distribution function on the overall hysteresis curves.
Finally, the 3D Preisach model is used for the simulation of magneto-electric com-
posites. Thereby, theME coefficient is investigated for different types of composites.
In the following Table2, the parameters for the used materials are listed.

4.1 Preisach Model Applied on One Orientation

In the first example, we consider a purely ferroelectric macroscopic cubic body
which is loaded with an alternating electric field in vertical direction E3, see Fig. 5.
Here, only one orientation is attached in each integration point. We increase in each
simulation the number of relays, which approximate the overall hysteresis loops.
Starting with one relay an overall square dielectric hysteresis cycle is obtained, see
Fig. 6a. It can clearly be seen that the switchings to the up and down positions take
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(a) (b)

Fig. 5 a Macroscopic boundary value problem. The ferroelectric phase is loaded with an electric
field E3 in vertical direction and the preferred direction â is also oriented in vertical direction. b
Loading path of the alternating electric field

place when the applied field reaches the coercivity field strength. Furthermore, we
observe a linear behavior of the deformations in vertical direction, see Fig. 6b. In the
initial state the relay is defined to start in neutral position, which is neither up nor
down, such thatwe observe no remanent deformation and polarization.After reaching
the coercivity field, the relay switches into the up position and a further increase of
the applied field result into an elongation of the material. However, a switching of
the polarization direction of only one relay does not influence the magnitude of the
remanent strains.

Figure6c, d depict the dielectric and butterfly hysteresis loops for 10 relays. Due
to the different switching thresholds of the individual relays, a cascade increase of
the dielectric displacement is observed, which slowly approximates to the hyper-
bolic tangent. Depending on the current polarization state, the deformations slowly
increase beyond the coercivity field. In contrast to the example with one relay, the
body exhibits no displacement in the initial state, since the remanent deformations
are canceled out due to the up and down positions of the relays. For an increasing
electric field we can furthermore observe, that the slope of the linear piezoelectric
effect between the switching processes of the single relays increases for a larger num-
ber of switched relays in the same direction. This is caused by the assumption that
the piezoelectric coefficient e is multiplied by the factor ‖Pr‖/Ps , which increases
for higher polarization states.

In the last case, see Fig. 6e, f 1000 relays were used. Here, it can be clearly seen,
that now the shape of the dielectric hysteresis loop coincides with the hyperbolic
tangent. Certainly, also 100 relays are sufficient to depict the hyperbolic tangent.
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(a) (b)

(d)

(f)(e)

(c)

Fig. 6 Dielectric/butterfly hysteresis loop for a/b 1 relay, c/d 10 relays and e/f 1000 relays

4.2 Preisach Model Applied on an ODF

In this example, we consider again a purely ferroelectric body which is loaded with
an alternating electric field, see Fig. 7a, b. Now, we attach in each integration point
an orientation distribution function. On the individual directions the Preisach oper-
ator is applied and the microscopic constitutive quantities are determined through
the homogenization over the number of orientations. Taking a closer look on the
response of the dielectric and butterfly hysteresis curve, shown in Fig. 7c, d, we can
observe a reduction of the maximum polarization and deformation values. Due to
the homogenization over multiple orientations, pointing in different directions in the
three dimensional space, a decrease of the saturation values can be explained, see
for example [25] or [28]. Figures7c, d show the comparison of the hysteresis loops
for 1 and 42 orientations. We can furthermore observe, that in contrast to a single
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(a)

(c) (d)

(b)

Fig. 7 a Macroscopic boundary value problem. The ferroelectric material is loaded with an alter-
nating electric field in vertical direction. b Loading path of the electric field. Comparison of the c
dielectric and d butterfly hysteresis curve for 1 (solid black line) and 42 (dashed blue line) orienta-
tions

orientation, 50 relays on each orientation of the ODF are sufficient to depict smooth
hysteresis curves.

4.3 Simulation of Two-Phase Magneto-Electric Composites

In the last example, we consider two different magneto-electric composites. The
first composite is characterized by a ferroelectric matrix with spherical inclusions,
whereas the second composite has a cylindrical inclusion aligned in vertical direction.
The behavior of the magnetic inclusions is assumed to be piezomagnetic and is
simulated with the model described in Sect. 3.1. For the ferroelectric matrix material
we use the 3D Preisach model based on an orientation distribution function. In
order to investigate the response of the Preisach model on the overall properties,
we consider a macroscopic body and apply an alternating vertical electric field.
In each macroscopic integration point we attached representative volume elements,
where we furthermore attach an orientation distribution function in eachmicroscopic
integration point of the electric material, see Fig. 8. Figure8c, d show the resulting
hysteresis curves for the composite with the spherical inclusions. A reduction of the
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(a)

(b) (c)

Fig. 8 a Macroscopic bvp with attached RV E and further attached ODF. Comparison of the b
dielectric and c butterfly hysteresis loop for a single phase ferroelectric material (solid black line)
and a two-phase composite (dashed blue line)

maximum saturation values compared to a single ferroelectric phase, i.e. replacing
themagnetic inclusion by the ferroelectric material, is observable. The reason for this
decrease is given by the reduced volume fraction of the electric phase. Furthermore,
it can be noted that the slope of the butterfly hysteresis curve after the polarization
process (4 ≥ E3(t) ≥ 2) is flatter than the piezoelectric slope for a single phase
ferroelectric body in the same field region. Due to the inhomogeneous microscopic
morphology, some areas in the microstructure with local electric field minima are
not completely saturated, which explains the reduced piezoelectric slope.

In the followingwe investigate themagneto-electric coupling behaviors of the dif-
ferent composites, which are depicted in Fig. 9. Herewe increased the applied electric
field to reach the saturation polarization in a larger area of the microstructure. Due to
the strain-induced interaction of both phases the magneto-electric coupling depends
on the transferred deformations and therefore including the piezoelectric coupling
modulus e. Depending on the current polarization state, the coupling modulus is fac-
torized by ‖Pr‖/Ps . This dependency can clearly be seen in Fig. 9c, where the ME
response is depicted for a composite with a cylindrical piezomagnetic inclusion. The
shape of the ME curve conform to the shape of the remanent polarization. When the
polarization reaches its saturation, the piezoelectric modulus simultaneously reaches
its highest value, resulting in a saturation of the magneto-electric coefficient. A sub-
sequent unloading in the field region of approximately 1.5 ≤ E3(t) ≤ 6 kV/mm
does not change the ME response, since the piezoelectric response continues due
to the remanent polarization. A similar response for an ME two-phase composite
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(a) (b)

(d)(c)

Fig. 9 a Atteched RV E with a cylindrical magnetic inclusion and c its ME response. b Attached
RV E with spherical magnetic inclusion and d its corresponding ME response

with spherical piezomagnetic inclusions is also obtained in [53], where a detailed
discussion of the resulting ME coefficient can be found.

Figure9d shows the ME response of a composite with spherical piezomagnetic
inclusions. In comparison to the response of a composite with cylindrical inclusions,
we can directly see two main differences. First, the ME response does not reach its
saturation point in the same electric field region. Due to the inhomogeneous electric
field distribution on microscopic level, the piezoelectric modulus is saturated in far
less regions in the ferroelectricmaterial. Second, themaximumvalue of theME coef-
ficient is much lower. However, if we compare the obtained dielectric displacement,
taking a decrease of the value caused by the homogenization over all orientations
into account, with the values given in [53] the also decreasedME coefficient matches
very well with the results obtained in the mentioned work. The homogenization of
the microscopic constitutive quantities over the orientation distribution function is
the reason for the lower maximum values of the hysteresis loops as well as the
magneto-electric coupling coefficient.

4.4 Conclusion

In the present contribution, we presented a two-scale homogenization scheme for
magneto-electro-mechancially coupled boundary value problems. This so called
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FE2-method is used to simulate the response of magneto-electric composites, which
depend on the microscopic morphology and the interaction of the constituents on
microscopic level. Therefore, representative volume elements were attached at each
macroscopic integration point instead of deriving a suitable macroscopic material
model. The interaction of the materials on microscopic level and a homogenization
approach over the microscopic quantities then yield the corresponding macroscopic
variables, especially the magneto-electric coefficient. The latter coefficient is inves-
tigated by considering different composites consist of a ferroelectric matrix with
piezomagnetic inclusions. In order to simulate the realistic behavior of the ferroelec-
tric material and to depict the typical dielectric and butterfly hysteresis curves, we
implemented a three dimensional Preisach model into the FE2-scheme. Therefore,
the cassical scalar model is extended to the three dimensional space through the
application of the model on an orientation distribution function. Numerical exam-
ples, demonstrated the performance of the 3D Preisach model, which is capable of
showing the typical hysteresis curves. Additionally, we investigated the magneto-
electric response of two different composites, one with spherical and the other with
cylindrical magnetic inclusions. The obtained ME curves were similar to the results
of previous works and the typical behavior could be captured. However, due to the
application of the Preisach model on an orientation distribution function and the
homogenization over these orientations, the resulting values of the hysteresis loops
and the magneto-electric coefficient were slightly reduced. Additionally, the large
number of necessary relays to depict smooth hysteresis curves requires large mem-
ory space and reduces strongly the calculation speed. Future works will show one
solution of this problem, by assuming only one orientation, which can change its
direction due to an applied field.
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AMultiscale Framework for
Thermoplasticity

Marko Čanad̄ija and Neven Munjas

Abstract The chapter describes a homogenization procedure for thermoplasticity
problems. The proposed model is suitable for the finite strain regime and supports
a very wide class of plasticity models. The methodology starts from the thermo-
dynamically consistent thermoelastic framework already described in the literature.
The latter framework is now extended to account for inelastic deformations. The
problem is separated by means of the isothermal split into a mechanical and a ther-
mal step, both at the macroscale and the microscale. As demonstrated in an example,
the method does provide a way to successfully homogenize microscale variables as
well as tangent operators. Finally, limitations of the approach are pointed out.

1 Introduction

Thermoplasticity usually involves nonisothermal inelastic problems that are either
dominated by the mechanical effects or the thermal effects. The former is the case
in the metal forming processes that take place at the room temperature. In these
processes, the primary heat source is the internal dissipation due to inelastic defor-
mation. As an example of the latter class of problems, metal forming can be pointed
out once more. In this case, forming takes place at elevated temperature. As known
for a long time, the elevated temperature decreases the yield point of a metal and
such material softening makes it more suitable for shaping operations.

It is well-known that the temperature increase is accompanied by elongation of a
structure. The inverse effect, temperature decrease due to elastic tensile mechanical
loading is frequently disregarded as the heat source since in most cases correspond-
ing temperature change is very small. Nevertheless, the effect can be significant
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if the mechanically triggered thermoplasticity does not involve large strains, espe-
cially if the cyclic loading is concerned [1]. The thermoelastic phenomenon is usu-
ally accounted for in the classical single-scale thermoplasticity [2, 3]. However, as
the physics of the plastic deformation is tightly connected to the microscopic level,
usually in the form of dislocations and other defects, it would be advantageous to
have a procedure that could address these issues as well. Analyses of this sort are
known as multiscale analyses and are performed at two scales. It is assumed that
at the smaller scale—microscale—all constitutive behaviour is defined. Variables of
interest like stresses and heat flux are calculated at the microscale in a representa-
tive volume element by some kind of averaging/homogenizations technique. These
results are transferred to the larger scale, i.e. macroscale, where displacements and
temperatures are determined.

The research on the multiscale thermoplasticity is still rather scarce. Initial con-
tribution was given in [4]. The paper considered adiabatic thermoplasticity in the
case of polycrystalline materials. Under adiabatic conditions, the analysis simpli-
fies considerably since the microscale temperature calculations can be avoided.
Instead, homogenization of the internal dissipation was carried out in the mechan-
ical step and supplied to the macroscale as a heat source. The thermoelastic effect
was neglected. In the similar manner [5] uses the homogenized internal dissipation
as the heat source at the macroscale and specializes the computational procedure
to axisymmetrical problems. An approach more suitable for the thermally triggered
thermoplasticity was presented in [6]. The mechanical dissipation was not consid-
ered in the formulation and thus is not able to capture heat generated by the plastic
deformation. Differently to [4, 5], research [7] includes the microscale thermal step
as a steady-state problem. The internal dissipation was estimated at the microscale
and treated as the external heat source at the macroscale in the manner of [4, 5]. At
the end, a paper on thermoelasticity [8] should be pointed out. The paper presents
a very strict and consistent thermodynamical framework that should be preferred in
multiscale thermomechanical analyses.

The present chapter starts from the mentioned thermoelastic paper [8] and
extends it to the thermoplastic framework. Both the thermoelastic effect and the
internal dissipation generated by plastic deformation are accounted for. The mechan-
ical part of the microscale analysis is based on the variationally consistent formula-
tion [1, 9–12], while the thermal part is identical to the one used in [8]. Verification
of the homogenization procedure is provided on an example.

2 Macroscale Continuum Mechanics Framework

When the multiscale thermomechanical analysis is concerned, there are several
issues regarding consistency between macro- and microscale procedures. These are
carefully elaborated within the thermoelastic framework in [8]. The present manu-
script extends this framework to thermoplasticity. The basics of macroscale contin-
uum mechanics are described first.
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2.1 Deformation and Temperature Gradients at the Macro-
and Microscale

In text that follows, the overline will denote a macroscale quantity, i.e. (•). Absence
of the overline will indicate a microscale quantity. With this notation at hand, a link
between the macroscopic and the microscopic deformation gradient is provided by
[6, 13]:

F = F + GRAD wF , (1)

where wF denotes the microscale fluctuation field of the configuration. In the same
manner, temperature gradients are defined as:

∇� = ∇� + GRAD w�, (2)

where w� denotes the temperature fluctuation field. At the microscale, the config-
uration in a point X of the representative volume element (RVE) B0 can be now
defined as:

ϕ = F · X + wF , (3)

while temperature at the same position �(X) is:

� = ∇� · X + w�. (4)

At this point it should be noted that the macroscopic gradients should be equal to
the volume averages of the microscopic ones [6, 13]:

F = 1
|B0|

∫
B0

FdV,

∇� = 1
|B0|

∫
B0

∇�dV .
(5)

Introducing Eqs. (1) and (2) into Eq. (5) leads toward notion that both fluctuation
fields have to vanish at the RVE boundary, giving:

∫

∂B0

wF ⊗ N dS = 0, (6)

∫

∂B0

w�N dS = 0. (7)

These constraints are enforced by a suitable set of boundary conditions. Although
several options are available at this point, hereby only periodic boundary conditions
will be considered. The application details are pretty much standard nowadays and
will be left out from the present discussion, see [6, 8] for an overview. Note that vol-
ume averages in Eq. (5) introduce notation that will be used for the volume average
of any quantity in text that follows, 〈•〉 = 1/|B0|

∫
B0

(•)dV .
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2.2 Balance Equations at the Macroscale

Standard balance equations should be now rearranged to account for the homog-
enization procedure. To this end, the balance of momentum at the macroscale is
now:

DIVP + ρ0B0 = 0, (8)

where P denotes the macroscopic (homogenized) first Piola-Kirchhoff stress tensor,
ρ0 is the macroscopic specific mass in the reference configuration and B0 are the
macroscopic body forces in the reference configuration. It is assumed that the body
forces do not depend on the intrinsic material response and thus are not homoge-
nized. In the present case, inertial terms are deemed not to be significant and are
disregarded.

In the finite strain thermomechanics, special attention should be given to the first
and the second law of thermodynamics. The balance of energy is stated as:

Ė + DIVH = P : Ḟ + ρ0Q, (9)

where the heat source per unit mass Q is also assumed to be independent of the
intrinsic material response and consequently is not homogenized. The second law
of thermodynamics is introduced as:

D = �Ṅ − Ė + P : Ḟ + H · G ≥ 0. (10)

In Eqs. (9) and (10) the homogenized quantities are denoted as follows. E is the
internally stored energy per unit undeformed volume, � is the absolute tempera-
ture, H is the outward heat flux vector, G = −(GRAD �)/� is the normalized
temperature gradient, D is the dissipation and N denotes entropy. A superimposed
dot implies the time rate.

The second law of thermodynamics places familiar restrictions on every admis-
sible thermodynamical process. Traditionally, the dissipation (10) is additively sep-
arated into the part arising from heat conduction Dcond and internal dissipation Dint

as:
Dcond = H · G ≥ 0, Dint = �Ṅ − Ė + P : Ḟ ≥ 0. (11)

The first constraint regarding heat conduction restrains physically allowable
processes so that heat can spontaneously flow only from the warmer to the colder
environment and not vice-versa. Obviously, the constraint is set on the specific form
of the heat flux H .

In the presence of inelastic deformation, it is assumed that the internal energy is
a function E = E(F, N , α), where α represents a suitable set of internal variables
governing inelastic behaviour of material. It should be emphasized that neither the
nature of internal variables nor the constitutive law are not known at the macroscale,



A Multiscale Framework for Thermoplasticity 333

but merely the existence of these is admitted. The constitutive behaviour for internal
variables are fully specified at the microscale. By means of Legrende transformation

E = � + �N , (12)

the homogenized Helmholtz free energy � = �(F, �, α) is introduced. Standard
arguments [14] now lead toward the following set of relationships:

P = ∂F�, N = −∂��, c = −�∂2
�
�, Q = −∂α�, (13)

where Q is a set of variables conjugated to α and c is the macroscale specific heat
capacity. Internal dissipation Eq. (11) can be rephrased with the aid of Eq. (12) as:

Dint = P : Ḟ − �̇ − �̇N = Q · α̇ ≥ 0. (14)

Thus, a thermodynamically consistent multiscale model should fulfil inequalities
Eqs. (11) and (14) in addition to relationships Eqs. (12) and (13). As it will be
demonstrated in the next section, fulfilment of such requirements is far from being
straightforward.

The standard procedure now yields the temperature evolution equation at the
macroscale:

c�̇ = −DIVH + ρ0Q + Dint + �Hep, (15)

where Hep = (∂�P : Ḟ − ∂� Qα̇) is the structural heating term [3]. The structural
heating describes heating due to the thermoelastic effect and latent plastic struc-
tural changes caused by temperature dependency of hardening parameters. The lat-
ter equation is accompanied by standard boundary conditions and possible heat
conduction and radiation terms.

3 Enforcement of Thermodynamical Consistency

To ensure thermodynamical consistency between scale transitions, fundamental
macroscopic variables should be equal to the equivalent averaged variables at the
microscale. In particular, by extension of the thermoelastic formulation in [8] to
inelastic processes there must be:

E = 〈E〉 , N = 〈N 〉 , ρ0 = 〈ρ0〉 ,

Dint = 〈Dint〉 , Dcond = 〈Dcond〉 , Hep = 〈Hep〉 .
(16)

In the text that follows, some constraints arising from these equalities will be dis-
cussed.
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3.1 Energy and Entropy in Micro-Macro Transition

As it will be shown in this section, equalities of energy and entropy between both
scales set rather strict constraints on the solution procedure [8]. To illustrate these
issues, a simple constitutive model is considered with the following assumptions:

• The model is purely thermal. In this case, the microscale Helmholtz free energy
takes the form: � (�) = c0 [(� − �0 − � ln�/�0)]. Such selection of the free
energy function at microscale, together with Eq. (13)3 gives c = −�∂2

�� = c0.
• The initial temperature field �0 is homogeneous. As a consequence, �0 = �0 in
every point.

• The specific heat capacity is assumed to be constant and independent of deforma-
tion. This ensures c = 〈c〉 = c0.

For the selected form of the microscale Helmholtz energy, the entropy is:

N = −∂��(�) = c0 ln
�

�0
. (17)

With this result at hand, the internal energy can be redefined in terms of temperature:

E(N (�)) = �(�) + N (�)� = �(�) + c0� ln
�

�0
. (18)

Now, note that Eq. (13)3 can be also written in the form:

c = ∂�E = �∂�N , (19)

with the analogous counterpart at the microscale:

c0 = ∂�E = �∂�N . (20)

Consistent scale transitions of energy and entropy requires that Eq. (16)1,2 are simul-
taneously fulfilled. Bearing this in mind, integration of Eqs. (19) and (20) gives

E0 + ∫ �

�0
c0d�′ = 〈E0〉 +

〈∫ �

�0
∂�Ed�′

〉
= E0 +

〈∫ �

�0
c0d�′

〉

N 0 + ∫ �

�0
c0

1
�′ d�

′ = 〈N0〉 +
〈∫ �

�0
∂�Nd�′

〉
= N0 +

〈∫ �

�0
c0

1
�′ d�′

〉 (21)

or
E0 + c0(� − �0) = E0 + c0(〈�〉 − �0)

N 0 + c0 ln�/�0 = N0 + c0(〈ln�〉 − ln�0).
(22)

The only possible solution that does not violate both scale transition constraints is
that the microscale temperature is constant and consequently equal to the macro-
scopic one. This implies that e, η, �, P, c, H,Dcond,Dint,Hep must be calculated
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with respect to the macroscopic temperature �. So, at the microscale the problem
naturally decomposes into two steps. The mechanical step is an isothermal one
in which the temperature increase in each RVE point is equal to the macroscopic
temperature increase. The structural heating, as well as the internal dissipation are
nevertheless homogenized at the microscale, but are accounted for at the macroscale.
The second step—a thermal one—is still needed in order to calculate the homog-
enized heat flux vector. For a more through discussion on the topic, but within the
thermoelastic context, the reader is again refereed to the work [8].

3.2 Internal Dissipation and the Microscale Mechanical Step

As described in Sect. 3.1, the microscale solution involves the mechanical step. This
part of the procedure is based on variationally consistent updates as originally devel-
oped in [15] for the general nonisothermal setting and an adaptation to isothermal
setting in [10–12]. The latter research was also extended to cyclic thermoplasticity
in [9, 16] and later coupled to nonisothermal damage [1]. The method was already
applied to multiscale isothermal plasticity in [13] and relies on postulating a gov-
erning microscale potential E :

Ė(ϕ̇, α̇,�) =
∫

B0

(
�̇(ϕ̇, α̇,�) + Dint(α̇)

)
dV (23)

where α is a set of internal variables governing isotropic and kinematic hardening
at the microscale level. Now, since F is prescribed in the form of boundary con-
ditions at the microlevel, from Eq. (1) follows that the microscale configuration is
fully defined by the fluctuation field wF . Internal variables then follow from the
minimization of the governing potential in each integration point of the microscale
RVE (local level):

α̇ = arg inf
α̇

Ė(ẇF , α̇,�)dV
∣
∣
ẇF=const,�=�=const . (24)

Above, temperature is kept constant in each microscopic integration point and is
equal to the macroscopic temperature � = �. The fluctuation field wF is calculated
at the global level of the microscale problem. With internal variables calculated at
the local level, the fluctuation field wF follows from minimization of the reduced
potential Ėred at the global level:

ẇF = arg inf
ẇF

Ėred (25)
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where the reduced potential Ered is:

Ėred = inf
α̇

Ė(ẇF , α̇,�)

∣
∣
∣
∣
ẇF=const,�=�=const

. (26)

The reduced form of the internal dissipation used in Eq. (23) at the microscale can
be obtained from the microscale counterpart of Eq. (14), by applying Eq. (13):

Dint = −∂�

∂α
α̇ ≥ 0. (27)

The set of internal variables α can be now defined more specifically. Let α ={
Fp,αi

}
, where Fp is the plastic part of the deformation gradient that follows from

the multiplicative decomposition of the deformation gradient F = FeFp. Symbol
αi denotes a scalar variable defining isotropic hardening at the microscale level.
With this choice of internal variables, and with Eq. (13)4, the reduced dissipation
Eq. (27) takes form:

Dint = Σ : Lp + Qiα̇i ≥ 0, (28)

where Σ = 2Ce · ∂Ce� is the Mandel stress, Ce = FeT · Fe is the elastic right
Cauchy-Green strain tensor and Lp = Ḟp · (Fp)−1 the plastic velocity gradient.
Now, existence of the convex yield function φ is postulated as

φ = �eq (Σ) − Qi − Qeq
0 = 0, (29)

where �eq (Σ) is the equivalent stress measure, Qi = −∂αi� and Qeq
0 = Qeq

0 (�) is
the initial yield stress which is influenced by the softening induced by temperature
increase. It is also assumed that the equivalent stress is a positively homogeneous
function of degree one:

�eq (n |Σ |) = n�eq (Σ) (30)

for any positive real number n. This assumption is fulfilled by most yield functions,
von Mises for example. Evolution laws for the internal variables are obtained as
usual by invoking the principle of maximal plastic dissipation:

L p = λ∂�φ, α̇i = λ∂Qiφ, (31)

where λ is the Lagrange multiplier. The dissipation, Eq. (28) is now:

Dint = λ(Σ : ∂�φ + Qi∂Qiφ). (32)

Finally, the assumption of the positively homogeneous yield function of degree one
Eq. (30) and the prototype yield function Eq. (29) give by the application of Euler’s
homogeneous function theorem very simple result:
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Dint
φ = 0= λQeq

0 . (33)

Note that extension to kinematic hardening is straightforward, see [1, 10]. The
thermodynamic consistency with respect to the internal dissipation is now simply
enforced as:

Dint = 〈Dint〉 = Qeq
0 (�) 〈λ〉 , (34)

since the microscale temperature field is homogeneous and equal to the macroscopic
one as described in Sect. 3.1. Thus, to determine the macroscale dissipation, homog-
enization of internal variables α and conjugated quantities Qi is not needed.

The remaining details about the stress averaging follow closely [8], so only main
points will be mentioned. Due to small RVE size assumption, body forces and iner-
tial terms at the microscale can be neglected, resulting in

DIVP = 0 (35)

what leads to:

〈P · F〉 = 〈P〉 · 〈F〉 , P = 〈P〉 , F = 〈F〉 , (36)

which provides the needed link between the microscopic and the macroscopic
stresses.

At the end, the consistency of the specific mass should be addressed. As shown
in [8, 17], the condition:

det F = 1

|B0|
∫

B0

det FdV = 〈det F〉B0 , (37)

leads to:
ρ = 〈ρ〉B, ρ0 = 〈ρ0〉B0 , ρ = 〈det F〉B0ρ0. (38)

Temizer andWriggers show that the mass criterion is fulfilled for the linear deforma-
tion and periodic boundary conditions [17]. For uniform traction the criterion does
not hold in general, but order of violation decreases as the sample size increases.

3.3 Dissipation due to Heat Conduction and the Microscale
Thermal Step

In order to assure that the model is thermodynamically consistent with respect to the
dissipation due to heat conduction, according to Eqs. (11)1 and (16)5, it must be:

H · G = 〈H · G〉 . (39)



338 M. Čanad̄ija and N. Munjas

However, to determine evolution of temperature at the macroscale Eq. (15), the
divergence of the heat flux vector H is needed. The heat flux vector can be con-
veniently obtained if 〈H · G〉 = 〈H〉 · 〈G〉 could be proved. The latter equation is
valid if divergence of the heat flux vector at the microscale vanishes, DIVH = 0,
see the discussion in [8]. This turns out to be a potentially difficult constraint to fulfil
for certain classes of thermoplasticity problems.

To demonstrate these issues, consider the temperature evolution in a point at the
microscale:

c�̇ = −DIVH + ρ0Q + Dint + �Hep, (40)

where
Hep = (

∂�P : Ḟ − ∂�Q
iα̇i

)
. (41)

This is a standard equation used in single-scale thermoplasticity and augmented
with usual boundary conditions. Heat convection and radiation usually do not play
any role at the microscale level so they are dropped out. Furthermore, it can be also
assumed:

• The heat source at microscale is absent, Q = 0.
• The term ∂�Qiα̇i is responsible for possible temperature dependency of the plas-
tic hardening potential and is frequently disregarded in single-scale plasticity. Its
contribution at the microscale can be also safely disregarded in most cases.

• The transient term c�̇ is also very small in most circumstances. The microscale
temperature changes can be considered as instantaneous compared to the
macroscale transient problem.

• The thermoelastic term ∂�P : Ḟ is frequently neglected in the single-scale ther-
moplasticity. However, in some situations, like cyclic thermoplasticity [1], this
term can be somewhat important. If this is the case, acceptability of the error
introduced by neglecting this term at the microscale should be carefully studied.
In thermoplasticity problems that are triggered by the external heat supply or by
means of convection or radiation at the macroscale, these issues can be disre-
garded.

• The internal dissipation term Dint is usually more critical than the thermoelastic
term. Same guidance as for the thermoelastic term is recommended here as well.

It should be emphasized that although the thermoelastic, thermoplastic and inter-
nal dissipation terms have been neglected at the microscale thermal step, they are
accounted for at the macroscale. In [7] these are regarded as external sources of
heat. Hence the thermodynamical consistency Eq. (16)4,6 requires:

Dint = 〈Dint〉 = 1
|B0|

∫
B0

λQ0dV
Hep = 〈Hep〉 = 1

|B0|
∫
B0

(
∂�P : Ḟ − ∂�Qiα̇i

)
dV,

(42)

what follows from Eqs. (33) and (41). Finally, with above assumptions introduced,
the temperature equation Eq. (40) collapses to the steady-state problem DIVH = 0,
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fulfilling the criteria for separation 〈H · G〉 = 〈H〉 · 〈G〉. Consequently, the heat
flux vector H can be conveniently obtained by the averaging procedure H = 〈H〉.

The microscale temperature fluctuation field obtained in this manner is not
relevant. Its solely purpose is to introduce the temperature gradient resulting in
H(F, G, �) = −k · GRAD �. Possible temperature dependency of conductivity
tensor should involve the macroscopic temperature k = k(�), according to the dis-
cussion in Sect. 3.1.

A final note regarding determination of the macroscopic specific heat capacity c.
Although this term is commonly calculated by simple averaging of the microscopic
counterpart c = 〈c〉, such a procedure is not thermodynamically justified. Starting
from the analysis [8] and here extended for the plasticity effects, the correct proce-
dure should be:

c(F, �) = 〈∂FE∂�F + ∂αE∂�α + ∂�E〉
= 〈(∂FE0 + ∫ �

�0
∂Fc d�

′
)∂�F + (∂αE0 + ∫ �

�0
∂αc d�

′
)∂�α + c(F, �).

(43)

Remark 1 Since the heat flux depends on the macroscopic deformation gradient and
the macroscopic temperature gradient, two sets of boundary conditions should be
specified in the microscale thermal step. In this case, periodic boundary conditions
were selected for both deformation and temperature gradients. For an overview and
performance of other possible combinations, see [8].

4 Numerical Aspects

Apart from the above presented multiscale framework, numerical details of analysis
steps involve techniques already described in the literature, so only a short overview
of these will be presented. The whole framework was implemented into finite ele-
ment software Abaqus by means of newly developed UMAT and UMATHT subrou-
tines. In brief, the solution process in each increment is separated into two steps, the
macroscale step and the microscale step.

At the macroscale, the procedure is decoupled by the standard isothermal split
into a mechanical and a thermal phase in all integration points. In the mechanical
phase the UMAT is invoked. Based on the supplied macroscale deformation gradient
and the macroscale temperature, another instance of Abaqus solves the isothermal
microscale problem. Upon solution of the microscale problem, the homogenized
stresses, the dissipation and the structural heating are obtained. The solution proce-
dure requires macroscopic tangent operators as well. These are obtained by means
of numerical differentiation as described in [18].

The thermal phase utilizes the dissipation and the structural heating obtained
in the mechanical step and is coded in a UMATHT subroutine. Again, to obtain
the homogenized heat flux vector, the steady state heat analysis at the microscale
is invoked. The homogenized heat flux vector is obtained. As far as the thermal
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tangent operator is concerned, the identical procedure used in the thermoelastic case
as described in [8] was applied here as well.

Thus, two microscale problems are solved—the mechanical and the steady-state
heat transfer. The numerical treatment of the mechanical step described in Sect. 3.2
closely follows numerical procedures described in [10–13]. To obtain the set of
internal variables αn+1 = {

Fp
n+1,α

i
n+1

}
at some particular time instant tn+1, the

set is rephrased as αn+1 =
{
�λn+1, �̃n+1

}
. Here �λn+1 = ∫ tn+1

tn
λdt , while �̃n+1

are so-called pseudo-stresses. The in-depth presentation of the concept of pseudo
stresses can be found in [10–12]. In short, main property of the pseudo stresses is
that they result in the same flow direction as the usual stress tensor. The advantage
of such approach is that the plastic flow constraints are fulfilled in advance. Time
discretization of the potential in Eq. (23) now leads towards an incremental poten-
tial:

Iinc(wF,n+1,�λn+1, �̃n+1) = ∫ tn+1
tn

∫
B0

ĖdV dt ≈
∫ tn+1
tn

∫
B0

(�n+1 − �n + Dint,n+1)dV dt.
(44)

Minimization of the incremental potential at the microscale local level will provide
a nonlinear system at fixed configuration wF,n+1 = const:

δ�λn+1 Iinc = 0, δ�̃n+1
Iinc = 0. (45)

When the internal variables are determined from the above system, the microscale
fluctuation field can be determined by minimization of the discrete counterpart
Ired,inc of the reduced potential Ered, Eq. (26):

wF,n+1 = arg inf
wF,n+1

Ired,inc (46)

A second UMAT subroutine is developed to implement this step. Periodic boundary
conditions were used; these were prepared at the macroscale and then supplied to
the microscale analysis.

The microscale thermal step is a steady-state heat transfer analysis. As already
mentioned, periodic boundary conditions were considered here for both deformation
gradient and temperature. They were also prepared in the macroscale thermal step
and supplied to the microscale analysis.

5 Example

The present example considers bending of a cantilever plate subjected to the
enforced rotation at the free end. Thus, the problem at hand is mechanically driven
and generated heat is solely due to elastic and plastic deformation. Heat exchange
with the environment, by means of convection or radiation is neglected, resulting in
a thermally insulated system.
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Fig. 1 The macroscale
finite element mesh of the
cantilever plate

Fig. 2 Microscale finite
element mesh. Numbers 1
and 2 indicate component
number

The maximum rotation is prescribed as 1.06 rad and assumed to be linearly
increasing in time. The total duration of the deformation process is 7.05 s. The
plate is 1m long and 0.1m thick. Plane strain conditions are assumed. The problem
is taken to be both geometrically and materially nonlinear.

The finite element mesh at the macroscale consists of 12 CPE4RT finite ele-
ments, Fig. 1. These finite elements account for thermomechanical coupling, plane
strain conditions, bilinear displacements and temperature and reduced integration
with hourglass control. Reduced integration has a beneficial effect on known numer-
ical issues in plasticity problems [19]. Additionally, since the microscale problem is
solved at each macroscale integration point, the procedure also reduces the computa-
tional burden due to lower number of integration points involved. At the microscale
level, the mesh (Fig. 2) consisted of 16 CPE4H elements, suitable for plane strain
conditions with 4 integration points in the mechanical phase and DC2D4 elements
in the thermal phase. At the RVE boundaries, periodic boundary conditions were
enforced as described in Sect. 4. The microscale problem is solved in 5 equal time
increments. Material properties of each microscale component is given in Table 1.

In the problem at hand, the Helmholtz free energy is considered to be of the
form:

� = W
(
Ce

) +U (J ) + M (J,�) + �p,i
(
αi

) + T (�) , (47)

W
(
Ce

) = 1
2μ

[
tr

(
Ce

) − 3
]
, (48)

U (J e) = 1
2κ

[
1
2

(
(J e)2 − 1

) − ln J e
]
, (49)

M (J,�) = (� − �0)
[−3αU ′ (J )

]
, (50)

�p,i = 1
2H(αi)2, (51)

T (�) = c0
[
(� − �0) − � ln �

�0

]
, (52)

where Ce = (detFe)−2/3Ce = (J e)−2/3Ce. The yield function is assumed to be of
standard von Mises type:
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Table 1 Material properties of microscale components

Property Component 1 Component 2

Young’s modulus E 200 GPa 220 GPa

Posson’s ratio ν 0.3 0.3

Yield stress y0 380 MPa 400 MPa

Linear hardening coefficient H 700 MPa 1000 MPa

Coefficient of thermal
expansion α

1.3 × 10−5 1/◦C 1.6 × 10−5 1/◦C

Conductivity k 30 W/Km 55 W/Km

Specific heat c 400 J/kgK 600 J/kgK

Mass density ρ 7800 kg/m3 8000 kg/m3

φ = ∥
∥(

�dev
)∥∥ − Qi − Qeq

0 = 0, (53)

where the initial yield stress is a linearly softening function:

Qeq
0 (�) = y0 (�0) [1 − ω0 (� − �0)] . (54)

Heat conduction of each component is governed by the Fourier’s law of heat con-
duction:

H = −k GRAD �. (55)

Evolution of temperature is given in Fig. 3. In the first step, strains are elastic
so almost a constant temperature is observed (barely visible temperature drop takes
place at the top of the plate and increase at the bottom). The drop is caused by the
tensile stresses and accompanying expansion of material. Similarly, in the central

Fig. 3 Temperature versus time at the midpoint of the plate’s bottom
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point at the bottom of the plate, thermoelastic temperature increase takes place due
to compressive character of the normal stress. In subsequent steps plastic deforma-
tion evolves and heat release due to mechanical dissipation dominates temperature
evolution (in the linear manner).

Distribution of stresses at the macroscale, Fig. 4 shows that stresses are higher
near the centre of the plate. Von Mises stresses seem to be rather equal on the top
and the bottom surface. At the microscale level, Fig. 5, distribution is pretty much
regular and follows the distribution of each component. Throughout all analysis, the

Fig. 4 Distribution of stresses at the macroscale. Left: von Mises stress (max. 414 MPa); Right:
minimal principal stresses (min. −1049 MPa)

(a) (b)

(d)(c)

Fig. 5 Microscale stresses. a Maximal principal stresses at the top row of finite elements of the
plate (dark colour: 203, light colour: 271 MPa, plastic stress state); b von Mises stress in the middle
of the plate (dark: 78.1, light: 78.5 MPa, elastic stress state), c Minimal principal stresses at the
bottom row of the plate (dark: −510, light: −436 MPa, plastic stress state), d Positions of RVEs in
(a–c) at the plate
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centre of the plate remains in the elastic state, while representative volume elements
positioned at the top and the bottom of the plate exhibit plastic deformation. Also,
if absolute values of maximal and minimal principal stresses are considered, the
higher stresses occur in the compressive zone, i.e. at the bottom surface of the plate.

6 Conclusions

The chapter presented a procedure suitable for the homogenization in thermoplas-
ticity. The starting point for the current methodology is an earlier work on mul-
tiscale thermoelasticity [8]. Such a selection is motivated by very careful elabo-
rations ensuring thermodynamical consistency in the latter paper. The transition
between scales takes special care to avoid possible pitfalls frequently met in other
papers on the homogenization in thermomechanics. The present research extended
this approach to the thermoplasticity regime. It is placed into the finite strain setting
and consequently suitable for both geometrically and materially nonlinear problems.
Nevertheless, it should be emphasised that some limitations do arise and that the
cases where the dissipation term strongly dominates heat production the caution is
advocated. The performance of the proposed scheme is verified on an example that
was implemented into finite element software Abaqus by means of user subroutines.
Obtained solutions support anticipated behaviour.

Acknowledgements This work has been partially supported by Croatian Science Foundation
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AMethod of Numerical Viscosity
Measurement for Solid-Liquid Mixture

Reika Nomura, Kenjiro Terada, Shinsuke Takase and Shuji Moriguchi

Abstract Wepresent a space-time homogenization procedure for multiscale model-
ing of solid-liquid mixture. The derived mathematical model enables us to set up two
separate governing equations at bothmacro- andmicro-scales. The fluid in themacro-
scopic governing equation is teated as an equivalent homogeneous medium with
average or homogenized viscosity and is regarded as an incompressible Newtonian
fluid, whose motion is assumed to be governed by the Navier-Stokes equations. The
microscopic equations ofmotion governing the coupling phenomenonof the fluid and
solid particles in a certain local domain and are solved to determine the microscopic
flow fields under adequate boundary and loading conditions. Then the macrosopic
viscosity is determined as the quantity averaged over the microscopic domain and
within a certain time interval. The numerical viscosity measurement (NVM) can be
realized by this space-time homogenization procedure. A set of NVMs is presented
to demonstrate that the solid-liquidmixture considered in this study possibly exhibits
a macroscopic flow characteristics of a special type of non-Newtonian fluids.
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1 Introduction

Huge number of lives were lost in the tsunami induced by the Great East Japan Earth-
quake occurred on 11 March 2011. This tsunami, which is expressed and known as
“unexpected scale”, was an L2 level that indicates an extremely low frequency event
to be realized once in several thousand years. Although the predictions of hitting time
and wave height of next coming tsunamis cannot be ignored, the characterization of
overall flow properties is also a matter of importance. It is indeed pointed out that
the damage and delay of recovery in this disaster were caused by the transport of
various types of suspended solids or sediments [18], whose effects on tsunami’s flow
characteristics have gained recognition accordingly. As the flow involving such trans-
port phenomena exhibits a fully three-dimensional two-phase flow characteristics,
the standard two-dimensional single-phase flow simulations are inadequate. How-
ever, most of tsunami simulations so far have treated tsunami as a single-phase flow
and focused on the maximum wave height or tsunami run-up areas. It is, therefore,
essential to comprehensively characterize the mechanical behavior of a solid-liquid
mixture, when we are concerned with damage prediction by tsunamis.

To take into account the behavior of suspended solids or solid particles, a variety of
numericalmethods havebeendeveloped in thefield of computational engineering and
science and can be classified into two types according to the spatial scales to describe
physical problems under consideration. One of them is a coarse or macroscopic
approach to simulate the overall behavior of a single phase flow with experimental
or semi-experimental formula describing the effects of motions of suspended solids
[9, 10]. Although this approach is capable of dealing with real scale simulations for
tsunami disasters over large areas, the underlying mechanism of the actual motions
of numerous solid particles can merely be reflected in the characterization of flow
properties. In contrast, the other is a direct treatment of motions of solid particles at
fine ormicroscopic scale and often referred to as a direct numerical simulation (DNS).
Although the effects of moving particles on the overall fluid motion can be directly
taken into account in numerical simulations, DNS requires high computational costs.
In fact, DNS has a limitation in the size of analysis regions due to the necessity of high
resolution of meshes or grids and, therefore, is not suitable for disaster simulations
in practical levels.

To reflect themicroscopic coupledmechanisms between a fluid and solid particles
in the macroscopic flow simulations for damage prediction by tsunamis, this study
presents our first trial for a space-time homogenization procedure formultiscalemod-
eling of solid-liquid mixture. By introducing two separate spatial scales to represent
the motions of a solid-liquid mixture, we provide two mathematical models at both
macro- andmicro-scales. The fluid in themacroscopic governing equation is teated as
an incompressible homogeneous Newtonian fluid with average or homogenized vis-
cosity. Also, the microscopic problem describes the motion governing the coupling
phenomenon of the fluid and suspended solid particles in a certain local domain and
its solution under adequate boundary and loading conditions is averaged over over
the microscopic domain and within a certain time interval to evaluate the macrosopic
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viscosity. This averaged procedure, which is called space-time homogenization, is
originally introduced in this study and enables us to realize the numerical viscosity
measurement (NVM) for evaluating the macroscopic viscosity. A set of NVMs on
an ideal solid-liquid mixture is presented to demonstrate that a macroscopic flow
characteristics of a special type of non-Newtonian fluids can be reproduced. In this
particular study, we employ the stabilized finite cover method (FCM) [14, 15] to sim-
ulate the microscopic flow coupled with motions of solid particles whose equations
are solved by the distinct element method (DEM) [4, 5].

2 Multiscale Modeling of Solid-Liquid Mixture

2.1 Separation of Spatial and Temporal Scales

We consider a coupled problem of a solid-liquid mixture as shown in Fig. 1a, which
contains numerous solid particles at micro-scale as depicted in Fig. 1b. Denoting
l and L by representative lengths for the microscopic or macroscopic flow fields,
respectively, we introduce a parameter ε = l/L to express the dependency of the
overall domain on the microscopic domain as �ε, into which the macroscopic coor-
dinate system x = (x1, x2, x3) is introduced. The microscopic domain is regarded as
a representative volume element (RVE) and is denoted by Y = Yf ∪ Ys where Yf and
Ys = ∑

Y i
s (i = 1, 2, . . .) are the domains of the fluid and solid particles, respec-

tively, along with their boundary surfaces denoted by ∂Yf and ∂Ys. To describe the
motions of the fluid and solid particles at micro-scale, the microscopic coordinate
system y = (y1, y2, y3) is introduced in Y .

In this study, the liquid is assumed to be an incompressible Newtonian fluid,
while each solid particle is assumed to be a rigid body that has a smooth external
surface. Then, we assume that the overall flow can be represented by the flow of a
homogeneous liquid equivalent to the original liquid in �ε. Each material point x
in the macroscopic domain of this equivalent homogeneous fluid, which is denoted
by �, can be identified with the corresponding microscopic domain Y ; see Fig. 1c.
Therefore, the macroscopic flow properties are expected to be characterized by aver-
aging the microscopic motions of the fluid and solid particles in a way similar to
that of mathematical homogenization theory [1, 7, 12]. However, it should be noted
that the time variation of the microscopic flow field is more rapid than that of the
macroscopic one. Also, the non-stationary state at micro-scale cannot be averaged
within a certain interval of time so as to become a stationary states. In this regard,
to distinguish between the non-stationary and rapidly varying microscopic flow field
and the macroscopically stationary one, we introduce separate time variables, t and
τ , both of which have the same time scale, but are assumed to have different reso-
lutions. That is, t is a coarse time scale to measure the macroscopic flow, while τ is
the fine time scale to measure the microscopic one.
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(a) Solid-Liquid mixture (b) Microsctructure of

1x
2x

3x

(c) Equivalent homogeneous fluid

1x
2x

3x

1y

y2

y3

Y

uH , pH

vs , s

u, p

Yf

Ys
i

solid-liquid mixture

Fig. 1 Solid-fluid mixture and its equivalent homogeneous fluid

In the subsequent sections, with the setting described above, we present a two-
scale initial-boundary value problem that is composed of micro- and macroscopic
problems.

2.2 Microscopic Problem

Wedescribe the liquid and solidmotions in themicroscopic domainwith the Eulerian
and Lagrangian descriptions, respectively. Since each microscopic domain corre-
sponds to a macroscopic material point x, all the microscopic variables in Y depend
on not only the microscopic coordinate y and microscopic time τ , but also the
coordinate macroscopic x and macroscopic time t . For example, the liquid velocity
and pressure are expressed as u(x, t; y, τ ) and p(x, t; y, τ ), respectively, to clearly
specify such dependencies.
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The liquid motion is described by the following Navier-Stokes and continuity
equations as usual:

ρf

(
∂u
∂τ

+ u · ∇yu
)

− ∇y · σ (u, p) = 0

∇y · u = 0

⎫
⎬

⎭
in Yf (1)

where ∇y is the gradient operator with respect to the microscopic coordinate y,
ρf and σ(x, t; y, τ ) represent the fluid’s mass density and the stress acting on the
fluids, respectively. Here, the body force is missing, as it is negligibly small at micro-
scale. Assuming aNewtonian-fluid atmicro-scale, we have the following constitutive
equation:

σ = −p I + 2μD (2)

along with the shear flow velocity D defined as the symmetric and deviatoric compo-
nent of the velocity gradient. Here, μ is the viscosity, which is assumed be constant
at microscale, I is the 2nd order identigy tensor. Together with appropriate bound-
ary and initial conditions, the microscopic problem can be well-posed to be solved
without any difficulty.

On the other hand, the motion of a solid particle at micro-scale is identified
with the current position ys(Y s, τ ) associated with its initial position Y s so that
the displacement and velocity can be defined as ds = ys − Y s and ḋs. Dividing the
velocity into the translational and rotational components, vs and ωs, we can write
the equations of motions as

d(msvs)

dt
= Fs (3)

d(Jωs)

dt
= T (4)

where ms is the particle’s mass density, J is the inertia moment tensor and ω is the
angular velocity vector. Here, Fs and T are respectively the force and torque acting
on the particle with respect to the centroid. In addition, Fs in Eq. (3) is expressed as
the summation of the contact force Fc and the fluid force Ff such that

Fs =
∑

Fc + Ff (5)

Here, Ff is the external force applied by the surrounding fluid and is computed as

Ff =
∫

∂Ys

σ · ndS (6)
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where ∂Ys represents the interface between the solid particle and the fluid and n is the
unit normal vector on it. Endowed with appropriate boundary, initial and frictional-
contact conditions, the microscopic problem for solid particles reaches completion
by DEM.

2.3 Macroscopic Problem

The macroscopic motion of the equivalent homogeneous liquid is assumed to be
described by the following set of governing equations:

ρH
(

∂uH

∂t
+ uH · ∇xuH

)

− ∇x · σH
(
uH, pH

) = 0

∇x · uH = 0

σH = −pH1 + 2μHDH

DH = 1

2

(
∇xuH + (∇xuH)T

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

in � (7)

along with appropriate boundary and initial conditions, where ∇x is the gradient
operator with respect to the macroscopic coordinate x and superscript H indicates
the macroscopic, averaged or homogenized quantities. Here, the macroscopic mass
density can easily be computed by the rule ofmixture asρH = ρs|Ys|/|Y | + ρf|Yf|/|Y |
where |Yf| and |Ys| are the volumes of the fluid and solid particles, respectively, and
|Y | is the total volume of Y . On the contrary, the macroscopic viscosity μH depends
not only the microscopic configuration, but also the microscopic quantities, such as
velocities of the liquid and solid particles, as

μH = f (Y ; ρf, μ, u, p, ρs, vs) (8)

Thus, the macroscopic problem is nonlinear, since the macroscopic viscosity is a
function of the microscopic velocity and pressure that must be determined according
to the macroscopic flow conditions [3]. To evaluated the macroscopic viscosity, the
present study concerned with a method of numerical viscosity measurement (NVM)
that will be introduced in the next section.

3 Numerical Viscosity Measurement

This section presents a method of NVM for a solid-liquid mixture to calculate the
macroscopic viscosity of an equivalent homogeneous liquid.
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3.1 Viscosity Measurement with Hagen-Poiseuille Equation

Since the macroscopic viscosity is regarded as a resistance against the macroscopic
shear velocity, the NVM is realized by evaluating the relationship between the aver-
aged pressure loss and the macroscopic flow rate or velocity. Therefore, the micro-
scopic analysis must be carried out in a certain microscopic domain to determine the
microscopic velocity and pressure fields so that they are averaged over the domain.
This microscopic domain is referred to as as a representative volume element (RVE)
in the context of homogenization or averaging. In this study, we employ a cylindrical
pipe channel as a RVE which is often used in a standard gravimetric capillary vis-
cometer, and follow the corresponding measurement principle. That is, the so-called
Hagen-Poiseuille’s law is utilized to calculate the macroscopic viscosity by using
the results of microscopic flow simulations in the RVE.

When a steady state flow is given in a pipe channel with a radius of r , the viscosity
μ is determined as

μ = πr4Px
8Q

(9)

where Q is the flow rate and Px is the pressure gradient expressed as �p/�l. Here,
�l is the length and �p is the pressure loss between the test surfaces. It is known
that Ostward viscometer, which is depicted in Fig. 2, was originated based on the
measurement principle represented by this equation. This type of viscometer is also
called a gravimetric viscometer, implying that the pressure gradient Px is always
constant as −ρgh/�l where h is the so-called effective height.

Although the driving force cannot be controlled in actual gravimetric viscometers,
the NVM enables us to apply arbitrary values of macroscopic pressure gradient Px
in the NVM to produce various macroscopic flow rates, as will be seen later. Then,

Capillary g

Sample

(a) Capillary viscometer

1y
2y

3y
r=0.1 cm

0.26 cm0.26 cm0.04 cm
0.04 cm

(b) Pipe channel (RVE)

: gravity

Y 1

Y1

Px

Fig. 2 Viscosity measurement: a Standard gravimetric capillary viscometer (Ostward type);
b Cylindrical RVE used in numerical viscosity measurement
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the viscosity μ and the flow rate Q in Hagen-Poiseuille equation (9) are replaced by
the macroscopic viscosity μHand the macroscopic flow rate QH that can be obtained
in NVMs.

3.2 Microscopic Problem for NVM

Following the idea of actualmeasurement procedurewith a capillary type viscometer,
we present a method of NVM using a cylindrical pipe channel as a RVE. The RVE
employed in this study is illustrated in Fig. 2b,where ∂Y±1 is the positive and negative
boundary surfaces perpendicular to the y1-axis. Both the liquid and solid particles
are assumed to move periodically at the end surfaces of the pipe so that

u|∂Y−1
= u|∂Y1 (10)

Also, the following non-slip condition is imposed on the circumferential wall as

u|∂Yr = 0 (11)

With reference to the homogenization for heterogeneous solid materials [1, 12],
it is assumed that the microscopic pressure gradient appearing in (1) with (2) can be
represented as

∇y p(x, t; y, τ ) = ∇x p
H(x, t) + ∇y p

∗(x, t; y, τ ) (12)

where ∇x pH(x, t) is the macroscopic pressure gradient, whose x1-component cor-
responds to Px in (9). Also, ∇y p∗(x, t; y, τ ) is the fluctuation of the microscopic
pressure gradient and assumed to satisfy the periodic boundary condition as

p∗∣∣
∂Y−1

= p∗∣∣
∂Y1

(13)

as well as the condition
∫
Y p∗(x, y, t, τ )dY = 0. When the dominant macroscopic

flow direction is parallel to the y1-axis, Eq. (12) can be rewritten as

∂ p

∂y1
(x, t; y, τ ) = Px (x, t) + ∂ p∗

∂y1
(x, t; y, τ ) (14)

In above equation (12), the space-mean pressure gradient was defined as macro
pressure gradient Px . Then, we introduce the following special type of space-time
averaging operations:
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1

|Y |
∫

Y

1

T

∫ t+T

t

∂ p

∂y1
(x, t; y, τ ) dτdY

= Px (x, t) + 1

|Y |
∫

Y

1

T

∫ t+T

t

∂ p∗

∂y1
(x, t; y, τ ) dτdY (15)

= Px (x, t)

where Eq. (13) has been utilized. Here,
1

|Y |
∫

Y
•dY indicates the spatial average of

quantity •, while 1

T

∫ t+T

t
•dτ is the temporal average within time interval T that

must be properly set in actual computation.
With the relationship (12), the set of microscopic governing equations, (1) along

with (2), can be rewritten as follows:

ρ

(
∂u
∂τ

+ u · ∇yu
)

− ∇y · σ (u, p∗) = f

f = −∇x pH

∇y · u = 0

σ = −p∗ I + 2μD

D = 1

2

(∇yu + (∇yu)T
)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

in Yf (16)

Note here that f = −∇x pH = [−Px , 0, 0]T, which plays a role of a body force, has
only the y1-component, as we are using the pipe channel as shown in Fig. 2b.

3.3 Space-Time Homogenization

By using the solution of (16) along with the motions of solid particles, we defined
the following mass-density-weighted spatial average of the microscopic velocity
u1(x, t; y, τ ) to calculate the y1-component of themacroscopic non-stationary veloc-
ity, uH1 :

ūH1 (x, t; τ ) = 1

ρf|Yf| + ρs|Ys| ·
⎡

⎣
∫

Yf
ρfu1(x, y, t, τ )dY +

N∑

i=1

∫

Y i
s

ρsv
i
f,1(x, y, t, τ )dY

⎤

⎦

(17)

Thus, the space averaged flow rate Q̄H can be computed as

Q̄H(x, t; τ ) = |∂Y1| · ūH1 (x, t; τ ) (18)
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However, both the macroscopic velocity (17) and flow rate (18) depend on the micro-
scopic time τ , they might be rapidly oscillating within a certain time interval. There-
fore, assuming that the macroscopic flow rate is stationary within [t, t + T ] when
measured by the coarse or macroscopic time scale t , we define the following time-
space averaged flow rate:

QH(x, t) = 1

T

∫ t+T

t
Q̄H(x, t, τ )dτ (19)

Here, T is the same as the one used in Eq. (15) and can be identified with the repre-
sentative time interval to properly evaluate the temporal average.

In summary, by prvoiding the macroscopic pressure gradient as a driving force for
the microscopic problem (16) in the cylindrical RVE, we solve for the microscopic
velocity as well as the microscopic pressure and then apply the space-time averaging
operations, (17)–(19), to compute the macroscopic flow rate QH(x, t). Then, with
the Hagen-Poiseuille equation (9) is used to determine the macroscopic viscosity μH.

4 Results of NVM

The proposed method of NVM is applied to a specific solid-liquid mixture that
contains a number of spherical rigid bodies in the cylindrical RVE introduced in
the previous section. After introducing the macroscopic Reynolds number and the
macroscopic shear strain rate as evaluation indices, we carry our a set of NVMs on the
cylindrical RVE to calculate the macroscopic viscosities with different macroscopic
velocities and different numbers of solid particles involved and then investigate the
macro- and microscopic flow properties and their correlation.

4.1 Numerical Methods and Fixed Conditions in NVM

The motions of rigid particles are calculated by the distinct element method (DEM)
[4, 5], while the fluidmotion and the interaction between liquid and solid particles are
simulated with the help of the stabilized finite cover method (FCM) [2, 14–16]. Also,
the level set method is applied to capture the time evolution of moving interfaces;
see [13] for the details of the employed schemes.

In all the calculation cases presented in this section, the liquid is assumed to be
water at a temperature of 20 ◦C with mass density ρf = 1.0 g/cm3 and viscosity
μf = 0.01 poise. Also, the rotations are suppressed so that ω = 0 all the time in
this particular study, in order to represent the friction effects with perfectly spherical
rigid body. Generally, rolling resistance model [8] is employed to controll particle
rotations but we forced to be zero in this study.
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4.2 Evaluation Indices for Numerical Investigations

Let us define two indices, the macroscopic Reynolds number ReH and the macro-
scopic shear strain rate γH in preparation for the investigation of the macroscopic
viscosity μH.

It is known that theHagen-Poiseuille equation is valid, only if the laminarflowcon-
dition is satisfied. Therefore, the following definition of the macroscopic Reynolds
number is essential for the validation:

ReH = ρHuH1 d

μH
(20)

where d is the diameter of the cylindrical RVE and equal to 2r . Note that the critical
Reynolds number Rec is generally 2300 to 4000 in case of a circular pipe flow [6].

Although the component of the macroscopic shear flow velocity DH can directly
be used for an evaluation index, we introduce the following macroscopic shear strain
rate for the sake of simplicity:

γH(x, t) = 1

|∂Yr |
∫

∂Yr

∫ t+T

t
γ(x, t, y, τ )d Adτ (21)

Here, γ(x, t; y, τ ) is the microscopic shear strain rate defined as

γ(x, t; y, τ ) =
√
2trD2 (22)

4.3 Effect of Macroscopic Strain Rate on Macroscopic
Viscosity

Several NVMs are carried out for various levels of macroscopic pressure gradient
Px . Since the variation of Px implies the variation of the macroscopic strain rate
γH in the proposed NVM, the relationship between macroscopic strain rate γH and
macroscopic viscosity μH can easily be investigated.

The number of solid particles in the cylindrical RVE is fixed at N = 116 and all the
particles have the same diameter of 0.01 [cm]. Then, Px = 0.75, 1.00, 1.50 [b/cm]
are the prepared values of macroscopic pressure gradients.

Figure3 shows the stream line along with particle configurations in the cylin-
drical RVE at the final step obtained in some cases. Although slight disturbance
is observed around the ends where the periodic boundary condition is introduced,
vortices and strong turbulence are not seen in the simulated results. Also, the mar-
coscopic Reynolds numbers calculated with Eq. (20) are provided in Table1. As can
be seen from the figure and the table, it is clear that the laminar flow condition is
satisfied so that the Hagen-Poiseuille formula is valid. The time variation of the spa-
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(a)      = 0.75 b/cmxP (b)     = 1.0 b/cmxP

(c)     = 2.0 b/cmxP

Fig. 3 Stream line with particle configurations (N = 116) in the cylindrical RVE at the final step

Table 1 NVM results with different macroscopic pressure gradientsa

Px (b/cm) QH (cm3/s) uH1 (cm/s) ReH

0.75 0.0027 0.086 1.58

1.00 0.0034 0.108 1.88

2.00 0.0060 0.189 7.95
a N = 116, ρs = 1.5 [g/cm3], particle diameter φs = 0.01 [cm]

tial average of flow rate Q̄H(x, t; τ ) calculated with Eq. (18) is shown in Fig. 4a. The
macroscopic flow rate attains the maximum value immediately after the beginning
of NVM, gradually decreases and tends to become a steady state.

The time t and time length T used for the temporal averaging are set in accordance
with 5000th step and 2000 steps, respectively. The macroscopic flow rate QH(x, t)
evaluated by Eq. (19) along with (18) and the corresponding acroscopic strain rate γH

calculated by Eq. (22) along with (21) are summarized in Table1. With the macro-
flow rate QH, we calculatedthe macroscopic viscosity μH by using (8) and show the
relationship between the macroscopic strain rate and μH in Fig. 4b. As can be seen
from the figure, the viscosity tends to decrease, as the strain rate rises. This is a
typical non-Newtonian behavior, as the viscosity depends on the flow rate.

It is, therefore, safe to conclude that the solid-liquid mixture behaves as a non-
Newtonian fluid at macro-scale due to the motions of solid particles at micro-scale.
However, the tendency that the higher the macroscopic strain rate the larger the
macroscopic viscosity is different from the fact reported for liquefied soils [3]. We
may not be able to deny that certain sorts of microscopic mechanisms have not be
reflected in our NVMs. In fact, since the macroscopic viscosity exceeds the viscosity
μf used for the liquid phase in the RVE, the suppression of the rotational motion
possibly caused much friction effect on the microscopic flow than expected.
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Fig. 4 Effect of macroscopic strain rate on macroscopic viscosity

4.4 Effect of Solid’s Volume Fraction on Macrosopic
Viscosity

It can be generally considered that the fluidity of solid-liquid mixture becomes low
with increase in volume occupancy of a solid phase, and the turbulence induced by
the drastic motion of particles may also affect the fluidity. In this section, a series
of NVMs are performed with different number of solid particles to investigate the
effect of the volume fraction of solid particles on the macroscopic viscosity.

By changing the number of solid particles, we carry out the NVMs and calculate
the macroscopic flow velocity uH(x, t) and the corresponding flow rate QH(x, t)
by (19) along with (18). The results are provided in Table2. With the values in
the table, the relationship between the macroscopic viscosity μH and the number of
solid particles is obtained as shown in Fig. 5a. The vertical axis is the macroscopic
viscosity μH normalized by the liquid viscosity μf, while the horizontal axis is the
volume fraction of solid particles, which is defined as the ratio of |Ys | to the entire
volume of RVE |Y |. In the cases of N ≤ 100 (N = 10, 20, 67), the macroscopic
viscosity μH tends to decrease as the volume fraction of solid particles increases.
However, when N ≥ 100 (N = 116, 243), the tendency becomes opposite.

In order to study this tendency, let us investigate the effect of contacting particles
on the macroscopic viscosity. Figure5b shows the time history of the number of con-
tacting particles with the circumferential wall. As can be seen from the figure, about
80–90 particles always contact with the wall in the case with the largest number
of solid particles (N = 243). Then, the number of contacting particles decreases,
as the volume fraction of solid particles decreases. Since the rotational motion of
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Table 2 NVM results with different numbers of solid particlesa

N QH (mm3/s) uH1 (cm/s) ReH

10 3.47 0.110 1.95

20 3.63 0.115 2.08

67 4.01 0.128 2.61

116 3.35 0.107 1.82

243 2.55 0.081 1.06
a Px = 1.0 [b/cm], ρs = 1.5 [g/cm3] and particle diameter φs = 0.01 [cm]
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Fig. 5 Effect of number of solid particles on macroscopic viscosity

particles are suppressed in the calculations, the resistance against the flow around
the contacting particles may become large and accordingly increases the macro-
scopic viscosity. Also, almost no particles contact with the wall in the cases of
N ≤ 100 (N = 10, 20, 67).

The influence of solid particles on the microscopic flow characteristics is also
investigated. Figure6 shows the distributions of the microscopic flow velocity com-
ponents, uy2 and uy3 , at a certain time in the cases of N = 243 and N = 10. It can be
seen from the figure that the flow regime is fluctuating around the particles, though
these flow velocity components are lower than that of uH1 by two orders of magni-
tude, Since the disturbance and the resulting energy dissipation are caused by the
viscosity that produces the interaction between the particles and the surrounding
fluid at micro-scale, its degree depends on both the number of particles. In fact, the
disturbance of the microscopic velocity components in the case of N = 243 is more
severe than that of N = 10.
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Fig. 6 Spatial distributions of microscopic tangential velocities uy2 and uy3 in y1-y2-plane

5 Conclusion

We have developed a method of numerical viscosity measurement (NVM) for solid-
liquid mixed mixture that can be realized by the space-time homogenization proce-
dure originally proposed in this study.

The governing equations at both macro and microscales were first set up and the
relationships between macro- and microscopic variables are introduced. Here, the
macroscopic fluid was teated as an equivalent homogeneous medium with macro-
scopic or homogenized viscosity, whose motion was assumed to be governed by
the Navier-Stokes equations, while the coupling phenomenon of the fluid with sus-
pended solid particles was described in a microscopic domain. The corresponding
microscopic equations governed the microscopic flow fields under adequate bound-
ary and loading conditions and then the macrosopic viscosity was evaluated by the
space-time homogenization.

The space-time homogenization was nothing but the averaging procedure for
microscopic quantities, which ware supposed to be obtained in NVMs, over the
microscopic domain and within a certain time interval. The microscopic domain for
NVM was regarded as representative volume element (RVE) and was a cylindrical
pipe in this particular study so that the Hagen-Poiseuille’s law can be utilized to
calculate the macroscopic viscosity. Also, the microscopic or fine time scale was
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used to determine the stationary values of macroscopic quantities so that they can be
measured by the macroscopic or coarse time scale.

Case studies of NVMs were conducted with different macroscopic flow rate and
with different volume fractions of solid particles. The obtainedmacroscopic viscosity
exhibited typical non-Newtonianbehavior. Then,we studied the effect ofmicroscopic
flowproperties on themacroscopic viscosity and clarified the underlyingmicroscopic
mechanisms. In particular, we reached the conclusion that, since the microscopic
motion of suspended solid particles in the RVE caused the energy dissipations due
to the fluctuations of microscopic flow regimes and the frictional-contact with the
wall, the increase of the number of suspended particles resulted in the increase of
the macroscopic viscosity.
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Numerical Simulation of Hydrogen
Embrittlement at the Example
of a Cracked Pipeline

Milena Möhle, Udo Nackenhorst and Olivier Allix

Abstract Acontinuummodel for numerical simulation of hydrogen induced embrit-
tlement of pipeline material is discussed within this work. For that, a transient hydro-
genmodel considering trapping is coupled with an elasto-plastic material model con-
sidering von Mises yielding. The hydrogen enhanced plasticity (HELP) mechanism
is assumed to be active within this problem statement and is realized by a hydrogen
dependent reduction of the yield strength. An iterative numerical solution scheme is
applied to solve the coupled problem. At the example of a pipeline with a blunted
crack, the influence of hydrogen is investigated. A localized plastic zone is observed
for high hydrogen concentrations, in line with the inherent phenomena of the HELP
mechanism. However, when applying hydrogen boundary conditions which are con-
sidered to be realistic for an existing natural gas pipeline, no pronounced effect of
hydrogen based on reducing the yield strength could be observed. Nevertheless, this
numerical results do not imply a judgment if the HELP mechanism in general could
be the prevalent mechanism for failure.

1 Introduction

The detrimental effect of hydrogen on steel structures has been investigated for over
one hundred years. As early as in 1875 Johnson [1] showed that hydrogen reduces
the toughness of specimens and that this process is reversible [2, 3]. However, his
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findings did not get high attention until in World War II several of the Liberty ships
broke without warning. Gerberich [2] stated that most text books were incomplete
due to excluding the effect of hydrogen induced during welding on the brittle crack
growth in the trunk of the Liberty ships and referred to a study by Zapffe and Sims
[4]. From that time on, the interest in hydrogen embrittlement evoke [2]. However,
the actual underlying mechanism of hydrogen embrittlement still remains mainly
unexplored. A new field of interest for hydrogen embrittlement was raised within
the last years by discussing how the irregularly produced energy from renewable
sources could effectively be stored. Thus, one idea is to form hydrogen gas from the
redundant energy and transport it through the existing pipeline system for natural
gas. Here, also a mixing of the two gases is feasible [5]. However, when doing so,
problems can arise as hydrogen can diffuse inside the material and subsequently
embrittle the pipeline. This is of special interest if the pipeline is damaged during its
service time by corrosion for example.

The process of hydrogen induced embrittlement starts with the entrance of hydro-
gen into the system. Therefore, the hydrogen has to be debonded from molecular
hydrogen to atomic one to enter the lattice of the material [6]. Within the lattice,
the stress driven diffusion process leads to an accumulation of hydrogen at places of
maximal hydrostatic stresses [7].

Several possible mechanisms of how hydrogen causes material embrittlement are
discussed in literature. In the following, a brief overview of the main mechanisms
shall be given. For a more detailed description it is referred to [8]:

• The mechanism of “hydride induced embrittlement” includes a nucleation of the
latticematerial and the accumulated hydrogen at the crack tip into a brittle hydride.
This mechanism was shown for hydridforming materials within several experi-
ments (see [9, 10]).

• The “hydrogen-enhanced decohesion” (HEDE) mechanism describes the decohe-
sion of atomic bonds in the presence of hydrogen and therefore leads to brittle
failure. Unfortunately, there are no suitable tests to prove the influence of this
mechanism. This is due to the fact that brittleness and plasticity coexist simulta-
neously within experimental surroundings.

• According to the “hydrogen enhanced localized plasticity” (HELP) mechanism,
the hydrogen either shields dislocations from each other leading to dislocation
motion at lower stresses or decreases the interaction between the dislocations.
This enhancement of plastic energy leads to a localized softening of the material
which on macro scale appears like brittle failure.

• The “adsorption-induced dislocation-emission” (AIDE) mechanism adapts the
fundamentals of the HEDE mechanism in a more complex framework. It is
assumed that hydrogen is adsorbed at the first atomic layers on the surface of
the material and thus lowers the atomic bounds in these regions. This leads to
facilitated dislocation nucleation by shearing processes over several atomic dis-
tances. At sufficiently high stresses, it is assumed that the dislocation cores emit
from the surface into the material and form voids. This leads to a more brittle
failure on macro scale.
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It is widely agreed upon that not a single one of the mechanisms described above
suffices to explain hydrogen embrittlement. Still, usually one of the mechanisms is
dominant in different systems under various conditions [11].

In literature different kinds of models for hydrogen embrittlement are described.
One way of modeling the HEDE mechanism is to introduce cohesive elements at a
crack face and modify the traction separation law of these elements in dependency of
hydrogen [12]. However, in this case, the crack surface has to be defined beforehand.

Dadfarnia et al. [13] investigated hydrogen embrittlement at a cracked pipeline
in a continuum sense. The authors used plane strain conditions to transfer the three
dimensional problem to a two dimensional one. Here, the effect of hydrogen on the
mechanical properties was accounted for by introducing a pure dilatation straining,
dependent on the hydrogen concentration. This numerical realization is difficult to
link directly to one of the discussed mechanisms above. The authors’ goal was to
study in a first instance the effect of the applied boundary conditions on the steady
state hydrogen concentration.

Takayama et al. [14] investigated the influence of the varying hydrogen gas pres-
sure within the pipeline on the hydrogen distribution within the material without
considering an effect of hydrogen on the mechanical properties.

Within this study, one possible way of how hydrogen affects the material proper-
ties in a continuum sense is investigated using the example of a pipeline with a radial
crack. It is assumed that within the investigated low carbon steel, local plastic defor-
mations in front of a blunted crack tip under static loading conditions establishes
the conditions for failure, and thus the HELP mechanism dominates the hydrogen
embrittlement process. The HELP mechanism is applied by reducing the materials
yield strength dependent on the present hydrogen concentration.

In afirst step, the physical representationof hydrogen embrittlement is briefly sum-
marized. After the coupled elasto-plastic material model and the transient hydrogen
model are presented, the theoretical embrittlement of a perfect pipeline is discussed.
The analytical observations on a perfect pipeline are then transferred to the numerical
investigation on a cracked pipeline. Here, the numerically determined stress states
and hydrogen concentrations at a blunted crack tip is shown and discussed.

2 Physical Representation of Hydrogen Embrittlement

In this work, a stress driven hydrogen model accounting for trapping effects is used
[13, 15]. This is coupled with an elasto-plastic mechanical model considering the
previously discussed HELP mechanism. In the following, these two coupled models
are summarized.
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2.1 Hydrogen Transport

In the stress-driven hydrogenmodel accounting for trapping effects it is assumed that
the hydrogen can either be trapped at defects like dislocations or grain boundaries,
or remain in the lattice sites of the material. According to Oriani’s theory these two
hydrogen populations are always in equilibrium [16]

θT

1 − θT
= θL

1 − θL
exp

(
WB

RT

)
, (1)

where θT represents the ratio of occupied trapping sites to the total available ones
while θL denotes the ratio of occupied interstitial lattice sites to the total available
ones. The equilibrium constant KT = exp

(WB
RT

)
accounts for the trap binding energy

WB , the universal gas constant R = 8.314 J/molK and the absolute temperature T .
The hydrogen concentration in lattice sites can be defined by

CL = θLβNL (2)

with β defining the number of normal interstitial lattice sites per host atom and NL =
NA/VM represents the number of solvent atoms per unit volume, with Avogadro’s
number NA = 6.0232 × 1023 atoms/mol and the molar volume of the host lattice
VM .

The trapped hydrogen population CT can be expressed accordingly,

CT = θTαNT (ε̄ p) (3)

with the number of hydrogen atoms per trap α and NT (ε̄ p) representing the number
of traps per unit volume as a function of the local equivalent plastic strain ε̄ p.

The governing equation for the transient hydrogen distribution considering hydro-
static stress dependency and trapping reads [13]

D

Def f

dCL

dt
+ αθT

∂NT

∂ε̄ p

∂ε̄ p

dt︸ ︷︷ ︸
trap generation

− D ∇2CL︸ ︷︷ ︸
diffusion

+∇
(
DVH

RT
CL ∇ p

)
︸ ︷︷ ︸

advection

= 0. (4)

The trap generation term depends on the equivalent plastic strain ε̄p. This term is zero
for vanishing equivalent plastic strain rates. The term marked by diffusion accounts
for the normal interstitial lattice side diffusion of the hydrogen concentration. The
advective part includes the gradient of the hydrostatic stress p = σkk/3, which can
be interpreted as the advective flow direction for the hydrogen concentration. Further
details on the definition is given in the following.

The notation ∂�
∂t and

∂�
∂ε̄ p represent the derivatives in time and plastic strain, respec-

tively. Furthermore, VH = 2 cm3/mol represents the partial molar volume of hydro-
gen. The parameter D is the hydrogen diffusion coefficient within the interstitial
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lattice sites whereas the effective diffusion coefficient Def f is taking into account
trapping effects. The coefficient D

Def f
represents the reduction of the hydrogen con-

centration in lattice sites CL while the traps are not filled and can be expressed
like [13]

D

Def f
=

(
1 + ∂CT

∂CL

)
=

(
1 + KTαβNLNT

[βNL + (KT − 1)CL ]
2

)
. (5)

According to Oriani’s theorem, the trap filling kinetics are very rapid. Thus, this
coefficient alters the lattice hydrogen concentration by being less than one, in case
the hydrogen concentrations in lattice and trapping sites are not in equilibrium or in
case of the creation of new traps during plastic processes [13].

With Eqs. 1–3, the concentration of trapped hydrogen is derived,

CT = KT α NT (ε̄p)CL

βNL + (KT − 1)CL
. (6)

Further details can be found in [13, 15].
The trapped hydrogen concentration is strongly dependent on the available trap-

ping sites, represented by NT , which is a function of the equivalent plastic strain ε̄p.
This relation was derived from empirical investigations by Kumnick and Johnson for
α−iron [17] as

log(NT ) = 23.3 − 2.33 e−5.5 ε̄p . (7)

Since no equivalent studies are available for the low carbon steel investigated in this
work, the empiric study for α−iron for the trap density NT is utilized herein.

2.2 Mechanical Model

An elasto-plastic continuum material model under plane strain conditions consider-
ing the von Mises yield criterion is used within this work. The balance equation for
a static problem reads [18]

∇ σ∼ +ρ b∼
= 0, (8)

with the gradient of the stress tensor σ∼ , the mass density 
 and the applied loads b∼
.

The stresses can be determined by the expression [18]

σ∼ = Cep (ε∼ −ε∼
p) (9)

with the elasto plastic tangent modulus Cep, the plastic strain ε∼
p and the total strain

ε∼ = sym ∇ u∼. The plastic deformation is defined by the von Mises yield criterion
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f = || σ̃∼ || − σ0∼
(c) (10)

where σ̃∼ is the deviatoric part of the stress tensor.

The influence of hydrogen is assumed to be dominated by local softening (HELP
mechanism) and can be expressed according to [15] in the linear form

σ0(c) = [(ξ − 1)c + 1]σy (11)

with the material dependent softening parameter ξ ≤ 1, the yield stress σy and the
relative hydrogen concentration is defined as

c = (CL + CT )/NL . (12)

which is measured in atoms per solvent atom. It can be noticed that the hydrogen
concentration within the lattice CL as well as in the traps CT is assumed to alter
the yield stress. The hydrogen concentration is related to the theoretically available
number of solvent atoms per unit volume NL . No isotropic hardening is considered
in Eq.11 but can be extended in a straightforward manner.

The material dependent softening parameter ξ represents the susceptibility of
the material to hydrogen. By choosing ξ = 0, the material is strongly affected by
hydrogen. In the opposite case, materials which are not sensitive to hydrogen can be
numerically modeled with ξ = 1.

3 Numerical Solution Scheme

The numerical realization of the previously discussed coupled elasto-plastic hydro-
gen model is described in the following. To solve the mechanical elasto-plastic prob-
lem, an institute-internal finite element code with von Mises yield condition is used.
The flow rule is integrated using the radial return mapping scheme. The transient
stress driven hydrogen diffusion problem is solved using finite elements for spatial
discretization and the time-discontinuous Galerkin method for the transient part.
This leads to stable results even in the presence of steep gradients resulting from the
hydrostatic stress field.

In order to solve the coupled system of equations, first of all the mechanical part is
calculated considering a zero hydrogen concentration. After the global equilibrium
of the external and internal forces is achieved with the help of the Newton Raph-
son scheme, the required data for the hydrogen distribution calculation, namely the
hydrostatic stress p and the equivalent plastic strain ε̄ p, are provided.

For the advective part of Eq.4 the derivative of the hydrostatic stress∇ p is needed.
Therefore, the gauss point solutions are projected onto the nodes to achieve a smooth
stress field. The gradient of the hydrostatic stress field is attained by using the deriv-
ative of the shape functions. This gradient represents the advective flow direction of
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the hydrogen. In other words, the hydrogen accumulates in regions where the lattice
is volumetrically strained to a maximum. Here, on atomic length scale, more free
space between themolecules exists, where in turn the hydrogen can fit in more easily.

The second parameter for coupling the elasto-plastic model with the hydrogen
distribution is the equivalent plastic strain. The trap generation term of Eq.4 repre-
sents the trap generation and thus the corresponding reduction of the lattice hydrogen
concentration. Only if new plastic strain was accumulated in the previousmechanical
step, this term is nonzero.

When the lattice hydrogen concentrationCL is determined by the transient advec-
tion diffusion relation given in Eq.4, the trapped hydrogen concentration can be cal-
culated by Eq.6. Here, also the equivalent plastic strain ε̄ p is used to determine the
trap density NT . Thus, the trapped hydrogen concentration strongly depends on the
level of the equivalent plastic strain. Using the results of the lattice and trapped hydro-
gen concentration, the value for the reduction of the yield stress c can be determined
by Eq.12. This value is then forwarded to the mechanical calculation.

This procedure is repeated until the mechanical load and the hydrogen concen-
tration are in equilibrium.

4 Numerical Investigations

The effect of hydrogen on the material properties considering the numerical investi-
gation of the HELP mechanism is shown in the following. First of all, the theoretical
effect of hydrogen on the yield strength is considered. On the basis of these theo-
retical and experimental observations, the numerical model of a cracked pipeline is
chosen and the results are discussed.

4.1 Model Setup

Firstly, the influence of hydrogen on a theoretically perfect pipeline tube is investi-
gated. The hydrogen concentration at the surface can be determined by Sivert’s law
[11]

CL ,0 = 6.331 · 1028√P e− �HS
RT , (13)

with the hydrogen gas pressurewithin the tubeP inPa and the heat of solution�HS =
28.6 kJ/mol. In the case of a perfect tube the maximal hydrostatic stress is located
at the inner surface. Consequently, the maximal lattice hydrogen concentration will
also be accumulated at the surface.

In order to study the hydrogen embrittlement effect on the perfect tube, in a first
step the lattice hydrogen concentration at the surface CL ,0 is calculated by using
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Fig. 1 Hydrogen
concentration at the surface
of a perfect pipeline
according to Sievert’s law
CL ,0 plus the trapped
hydrogen concentration CT,0
for ε̄p = 0 (left axis);
Reduction of the yield stress
σy according to the induced
hydrogen concentration
(right axis)

P

Sivert’s law. This result is then used to calculate the trapped hydrogen concentration
CT,0 for the equivalent plastic strain being zero with Eq.3.

The total hydrogen concentration CL ,0 + CT,0 is depicted in Fig. 1 with respect
to the pressure. The corresponding reduction of the yield stress σy is calculated
according to the relation in Eq.12 in percent and depicted as a dashed line, being
equal to zero for all investigated concentrations. Since the usual pressure is up to
16MPa in a natural gas pipelines system [19], an undamaged tube is considered not
to be affected by hydrogen embrittlement under static loading conditions.

This theoretical consideration is in agreement with the experimental findings
of Hoover et al. [20]. The authors investigated different pipeline steels by tensile
testing in a high pressure cell by 6.9MPa and observed that the embrittlement of the
specimens coexists with the formation of surface cracks. According to these findings,
it is unlikely that the accumulated hydrogen at defects, like dislocations and grain
boundaries, causes a pronounced embrittlement effect.

As stated above, the basic idea is to use the existing natural gas pipeline system to
transport hydrogengas.Here, it has to be assumed that these pipelines canbedamaged
during their lifetime by corrosion or small cracks. Consequently, in contrast to the
investigations on a perfect pipeline, in this work the effect of hydrogen on a damaged
pipeline with a crack is investigated.

Figure2 schematically depicts a cracked pipeline. This pipeline can be simpli-
fied into a two dimensional plane strain problem using this symmetry planes and
considering a notch in one of the symmetry planes. Since this full field model is
computationally costly, it is feasible to choose a smaller domain size.

Dadfarnia et al. [13] showed that the two dimensional full fieldmodel provides the
same results in stress and strain states as the surrogate numerical model of a blunted
crack tip. Only the steady state time for the hydrogen diffusion differs, which in the
context of the discussion on the safety of the pipeline in general is not considered to
be a primary parameter. Therefore, the surrogate numerical model of a blunted crack
tip is used in the following analyses.
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Fig. 2 Schematic representation of a pipeline damaged by a radial crack and the numerical plane
strain model of the pipeline wall (full-field model). A further reduction of the investigated domain
leads to a practical surrogate model (adapted from [13])

Fig. 3 Representation of the applied boundary conditions on the surrogate model for the hydrogen
(left) and the mechanical model (right) (adapted from [13])

The surrogate model with the applied mechanical and hydrogen boundary condi-
tions is depicted in Fig. 3. For the mechanical model, the displacement in x2 direction
is set to zero in the symmetry plane.Mode one opening conditions are applied accord-
ing to [21] on the surface with the relation

[
u1
u2

]
= KI

2G

√
r

2π

[
cos

(
θ
2

) (
ψ − 1 + 2 sin2

(
θ
2

))
sin

(
θ
2

) (
ψ + 1 − 2 cos2

(
θ
2

))
]

. (14)

The polar coordinates, the radius r and the angle θ , are marked in Fig. 3. By assuming
plane strain conditions, ψ is equal to 3 − 4ν. The parameter G denotes the shear
modulus and KI the stress intensity factor for mode one opening conditions.

The boundary conditions for the transient hydrogen model are given in Fig. 3, left.
In the symmetry plane, a zero flux boundary condition is applied and for time step
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t = 0 s it is assumed that no hydrogen is within the domain. At the crack surface, a
Dirichlet boundary condition of the concentration CL ,0 is applied.

In the numerical calculation, firstly the load is applied on the blunted crack,
simulating the present stress state in the pipeline while natural gas is ducted through.
Here, it is assumed that no hydrogen is within the material. After reaching the final
load level the Dirichlet boundary condition CL ,0 is applied on the surface of the
crack. Since, according to the assumed HELP mechanism, the hydrogen alters the
yield strength of the material and the stress state alters the hydrogen concentration,
the mechanical and hydrogen model have to be iterated until convergence is reached.

The applied lattice concentration CL ,0 at the crack surface is varied, while the
stress intensity factor KI = 19MPa

√
m is fixed. The aim of this parametric study is

to investigate the influence of the coupling of the mechanical and hydrogen model.

4.2 Results

The results of the numerical simulation for the coupled elasto-plastic and hydrogen
model are discussed in the following. Thematerial properties for a X70/X80 pipeline
steel are given in Table1.

Using the surrogate model presented above, the local reduction of the yield stress
can be determined for different surface hydrogen concentrations CL ,0. In Fig. 4 the
reduction of the yield strength σy is depicted in the symmetry plane (θ = 0). The
higher the hydrogen concentration is at the surface, the higher is also the effect on
the reduction of the yield strength. The effect of a hydrogen concentration in the

Table 1 Material properties of a X70/X80 pipeline steel [13]

Properties Symbol Value

Young’s modulus E 201.88GPa

Poisson’s ratio ν 0.3 [−]
Yield stress σy 595MPa

Material softening parameter ξ 0 [−]
Trap binding energy WB 60 kJ/mol

Diffusion coefficient D 2 10−8 m2/s

Partial molar volume of H VH 2 cm3/mol

Molar volume host material VM 7.116 cm3/mol

No. of H-atoms per trap α 1 [−]
No. of interstitial lattice sides
per host atom

β 1 [−]

Universal gas constant R 8.314 J/mol K

Temperature T 300K

Avogadro’s number NA 6.0232 × 1023 atoms/mol
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Fig. 4 Reduction of the yield stress for varying hydrogen surface concentrations CL ,0 with a
constant stress intensity factor KI = 19MPa

√
m in the symmetry plane (θ = 0)

Fig. 5 Hydrostatic pressure p normalized by the yield strength σy in the vicinity of the blunting
crack tip with a stress intensity factor KI = 19MPa

√
m

range between 1021 and 1025 is considered to be minor. Only when applying higher
hydrogen concentrations the reduction of the yield stress gets more pronounced.
The maximum reduction of the yield stress spatially coexists with the maximum
of the lattice hydrogen concentration. This is shown in more detail for a surface
hydrogen concentration of CL ,0 = 2.084 × 1027 atoms/m3 with a constant stress
intensity factor KI = 19MPa

√
m.

The corresponding hydrostatic pressure for mode one opening displacements nor-
malized by the yield stress σy is depicted in Fig. 5. It is noticed that the maximal
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Fig. 6 Lattice hydrogen concentration CL normalized by C0 the at the blunting crack tip with a
stress intensity factor KI = 19MPa

√
m and material dependent softening parameter ξ = 0 at the

time t = 10s

Fig. 7 Equivalent plastic strain ε̄p with a stress intensity factor KI = 19MPa
√
m and material

dependent softening parameter ξ = 0 at the time t = 10s

hydrostatic stress is about 2.5 times the original crack opening displacement away
from the blunted crack tip. The gradient of the hydrostatic stress p gives the equiv-
alent to an advective direction in the transient hydrogen Eq.4. Therefore, at the
maximal hydrostatic stress also the maximal lattice hydrogen concentration CL can
be found (see Fig. 6). In other words, the hydrogen accumulates in the region where
the lattice is volumetrically strained to a maximum. Here, on atomic length scale,
more free space between the molecules exists, where in turn the hydrogen can fit in
more easily.
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Fig. 8 Trapped hydrogen concentration CT normalized by C0 with a stress intensity factor KI =
19MPa

√
m and material dependent softening parameter ξ = 0 at the time t = 10s

The equivalent plastic strain ε̄p is maximal at the surface of the crack tip, as shown
in Fig. 7. According to Eq.6, the maximal trapped hydrogen concentration CT can
also be found in this region (compare Fig. 8). This is due to the dependence of NT

on the equivalent plastic strain. In other words, the more traps are available, the
more hydrogen can generally be accumulated within that region in form of trapped
hydrogen.

The hydrogen concentration related to the number of solvent atoms per unit vol-
ume c is the parameter influencing the yield stress in Eq.11. For the chosen material
parameter ξ = 0 this factor represents the reduction of the yield stress. In Fig. 9, the
parameter c is depicted in the vicinity of the crack tip and the maximal reduction of
the yield stress can be straightforwardly determined to 4.6%. This is in agreement
with the maximal reduced yield strength shown in Fig. 4. The trend of the lattice
hydrogen concentration can be clearly seen in Fig. 9.

Thus, by applying a stress intensity factor KI = 19 MPa
√
m and the discussed

numerical realization of the HELP mechanism the lattice hydrogen concentration
clearly leads to a slight softening of the material in front of the crack tip.

Since the von Mises yield criterion is used the reduction of the yield stress can
be implicitly seen in the distribution of the von Mises stress σvM . A small area
of reduced yield strength can be found located in the vicinity of the crack tip in
Fig. 10. This agrees well with the location of maximal c, where, according to the
mechanical model, the detrimental effect of the local hydrogen concentration on the
local yield strength should be the highest. Thus, the coupled elasto-plastic model
with the transient hydrogen model can describe in general the theoretical model of
the HELP mechanism.

A hydrogen gas pressure of up to 16MPa can be found for natural gas pipelines
in industrial [19] and this leads according to Siverts law and Eq.3 to a surface
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Fig. 9 The total hydrogen concentration c = (CL + CT )/NL with a stress intensity factor KI =
19MPa

√
m and the material dependent softening parameter ξ = 0 at the time t = 10s

Fig. 10 Von Mises stress σvM with a stress intensity factor KI = 19MPa
√
m at the time t = 10s

hydrogen concentration CL ,0 + CT,0 of about 2.62 × 1022atoms/m3. By applying
this boundary condition on the investigated model the embrittlement effect can be
described as negligible (compare Fig. 4).

Since the link of the internal hydrogen gas pressure and the applied mechanical
boundary conditions of the surrogate model are not straightforward, the numerical
effect of hydrogen needs to be investigated under realistic boundary conditions. It
is possible that higher hydrogen gas pressures within the pipeline result in a more
pronounced effect on the yield stress.



Numerical Simulation of Hydrogen Embrittlement … 379

Therefore, the results of Takayama et al. [14] are used exemplary. The authors
investigated a model similar to the presented full-field model depicted in Fig. 2
under varying gas pressure within the pipeline. Thus the mechanical loading can
be directly linked to the surface hydrogen concentration. For a hydrogen pressure of
60MPa within the tube, a total hydrogen concentration CL + CT of about 105C0

and a surface lattice concentration of about 4.658 × 1022 Hatoms/m3 results in
c = 4.3 × 10−5 withEq.12. This reduction of the yield stress of 4.3 × 10−3% implies
that the numerical approximation of the HELP mechanism does not have an effect
in the numerical calculation for higher gas pressures.

5 Conclusion

To study the effect of hydrogen on the material of a pipeline a transient hydrogen
model considering trapping was coupled with an elasto-plastic material model con-
sidering vonMises plasticity. The HELP mechanism was assumed to be active in the
investigated pipeline andwas numerically realized by defining a hydrogen dependent
reduction of the yield stress. A numerical iterative solution scheme was applied to
achieve equilibrium for the mechanical and hydrogen properties.

In a first step, a perfect pipeline with hydrogen being ducted through was inves-
tigated. The effect on the yield stress was shown to be negligible considering the
numerical realization of the HELP mechanism. A pre-damaged pipeline showed to
be more susceptible to hydrogen embrittlement by accumulating hydrogen in front
of the crack tip, leading to higher hydrogen concentrations than in the case of a
perfect pipeline. The accumulation of hydrogen at the maximal hydrostatic stresses
as well as the enhancement of local plasticity could be observed for high hydrogen
concentrations in front of the blunted crack tip, which is in agreement with the HELP
mechanism.

Nevertheless, for surface hydrogen concentrations under realistic boundary condi-
tions considering Sivert’s law no pronounced embrittlement could be observed. One
reason could be that the applied stress state in the calculation was not high enough
to reach a critical value where hydrogen affects the material properties. Thus, the
results of the hydrogen distribution calculations of Takayama et al. [14] were dis-
cussed exemplarily.However, evenwhen assuming a comparatively high gas pressure
of 60MPa in the pipeline no pronounced effect of hydrogen on the yield stress could
be observed.

It is therefore concluded that the numerical realization of the HELP mechanism
did not cause a pronounced effect on the material properties for a blunted crack in a
pipeline under static mode one opening conditions when applying realistic hydrogen
concentrations. This result however does not allow for a judgment whether or not
the HELP mechanism in general could be the prevalent mechanism for failure.

In a further study, another model of hydrogen altering the mechanical properties
by a pure dilatation straining dependent on the hydrogen concentration could be
investigated (compare Dadfarnia et al. [13]). Since Dadfarnia et al. focused on the
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steady state conditions for the hydrogen concentration and not on how the material
properties are influenced by hydrogen, it could provide further insight to investigate
the magnitude of this effect in the future.
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