
Chapter 4
Mixed Fuzzy Clustering for Deriving Predictive
Models in Intensive Care Units

Cátia M. Salgado, Susana M. Vieira, and João M.C. Sousa

4.1 Introduction

Intensive care unit (ICU) data has grown exponentially in the last decades, making
the ICU a particularly appealing setting for the implementation of data-based
systems (Celi et al. 2013). Such systems acquire large quantities of data to discover
hidden associations and understand patterns and trends in data, which can be used
for diagnostic, prognostic and therapy (Celi et al. 2013; Vieira et al. 2013).

ICU databases contain records of patients’ vital signs, laboratory results,
prescribed and administrated medications, fluid balance, nursing notes, imaging
reports, demographic information and clinical history. The premise of this work is
that the complex and non linear relationship between different types of variables
should be investigated and accounted for when deriving predictive models to support
medical decision making. However, the mixed nature of data in electronic medical
records still poses a daunting challenge for deriving data-based predictive models
in the ICU. In particular, the available options to simultaneously handle static and
time variant data are limited, and traditional methods do not provide the required
means to extract useful knowledge that accounts for correlations between both.

In Izakian et al. (2013), the fuzzy c-means clustering technique is augmented for
spatiotemporal clustering, a form of grouping objects based on their spatial (static)
and temporal similarity. We extend this algorithm to any data set containing both
time variant and time invariant features (mixed datasets) of any size, and use the
knowledge extracted from the identified mixed structures to derive fuzzy models,
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following the work of Ferreira et al. (2015). Fuzzy modeling can provide transparent
predictive models and linguistic interpretations of the decision making process,
showing great potential in dealing with vague information. Hence, it is especially
well suited for health care applications since it can provide clinical insight into
the classifier structure. We propose two different fuzzy modeling strategies based
on the mixed fuzzy clustering algorithm and compare it with similar strategies
based on fuzzy c-means. We show the results in four health care applications,
for the prediction of adverse events of critically ill patients, including medication
administration, mortality and readmissions.

The next section presents an overview of ICU adverse events. The mixed
fuzzy clustering algorithm and the proposed modeling strategies are presented in
Sects. 4.3 and 4.4, respectively. Data description and pre-processing is presented
in Sect. 4.5, while experimental results for each application are shown in Sect. 4.6.
Main conclusions and future work are presented in Sect. 4.7.

4.2 Adverse Events in the ICU

Several studies have focused on determining the predictive value of different types
of numerical information in the prediction of adverse events, for improving the
outcome of patients in the ICU. In particular, studies have focused on the prediction
of mortality (Badawi and Breslow 2012; Clermont et al. 2001; Daly et al. 2001; Frize
et al. 2001; Hug and Szolovits 2009; Ouanes et al. 2012; Reini et al. 2012; Ferreira
et al. 2015), readmissions (Badawi and Breslow 2012; Campbell et al. 2008; Fialho
et al. 2013, 2012; Frost et al. 2010; Gajic et al. 2008; Ouanes et al. 2012; Strand and
Flaatten 2008; Walsh and Hripcsak 2014; Zheng et al. 2015; Ferreira et al. 2015)
and length of stay (Frize et al. 2001; Reini et al. 2012).

Scoring systems in clinical use in the ICU include the Modified Early Warning
Score (MEWS) (Reini et al. 2012), the Stability and Workload Index for Transfer
(SWIFT) (Gajic et al. 2008), the Simplified Acute Physiology Score (SAPS
II) (Le Gall et al. 1993), the Acute Physiology and Chronic Health Evaluation
(APACHE II) (Knaus et al. 1985) and the Sequential Organ Failure Assessment
(SOFA) (Vincent et al. 1996). MEWS attributes a score to each patient based on their
respiratory, circulatory and neurological state, renal function and body temperature.
SWIFT has been specifically developed to predict readmissions to the ICU; it
represents a measure of five parameters: ICU admission source, length of ICU
stay, respiratory impairment and neurological status, using the Glasgow Coma Scale
(GCS) at discharge. APACHE II gives a score of the severity of illness; it is based
on the patient’s age and punctual physiological measurements of temperature, mean
arterial pressure, pH, heart rate, respiratory rate, sodium, potassium, creatinine,
hematocrit, white blood cells counts, GCS and partial pressure of arterial oxygen
(PaO2), taken during the first 24 h after admission.

Currently, there has been an attempt to improve these conventional standard
logistic regression techniques using machine learning algorithms such as artificial
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neural networks, fuzzy logic and decision trees, which resulted in a number of
predictive models in different ICUs (Fialho et al. 2013, 2012; Walsh and Hripcsak
2014; Zheng et al. 2015; Salgado et al. 2016). In spite of the growing popularity
of these models among the research community, the role they play in supporting
the physicians’ decisions and in improving patients’ outcomes remains uncertain
(Allaudeen et al. 2011; Kansagara et al. 2011; Ouanes et al. 2012).

To the best of the authors knowledge, the simultaneous mining of time series
and time invariant data has not been addressed in any of the aforementioned
studies, which suggests that information about the patients may be being lost in
the data mining process. Hence, we developed predictive models based on MFC
using information about variables with more than one record over the patient’ stay,
including vital signs and laboratory results, and information that remains static
throughout the stay, such as gender, weight and admission status. Two main cohorts
of patients are considered: patients in septic shock and patients that were readmitted
within 24–72 h of discharge.

4.2.1 Septic Shock: Vasopressors Administration and Mortality

Sepsis is a systemic whole-body inflammatory response to infection. Septic shock
is an outcome of a sepsis reaction, associated with multiorgan failure and out of
the normal range measurements of blood pressure, temperature, respiratory rate
and white blood cells counts. It is one of the most common reasons of death in
intensive care units, with a mortality rate of about 50%. A patient is considered to
be in septic shock when the hypotensive state related to a sepsis condition persists,
causing severe malfunction of vital organs despite adequate fluid resuscitation.

The initial priority in managing septic shock is to restore blood pressure and
cardiac output by intravenous fluids administration. When fluid resuscitation is
unable to restore an adequate arterial pressure, therapy with vasopressors must be
initiated. Vasopressors are hypotension blood vessels drugs that are very effective
in increasing blood pressure. The procedure of vasopressors administration is risky,
since the catheter insertion involves a surgical procedure that can be associated with
infections. These complications are increased when the procedure is done urgently
such as in the case of unexpected systemic shock. Knowing beforehand which
patients will need vasopressors would reduce the number of times the procedure
is implemented and reduce the associated risk of infection, since clinicians would
have more time to safely initiate the central line insertion protocol. This would in
turn substantially improve the outcomes of these patients.

When the septic shock is caused mainly by abdominal indications it is called
abdominal septic shock. Previous works have applied knowledge-based neural
networks (Paetz 2003) and neuro-fuzzy techniques for predicting the outcome of
these patients. In Fialho et al. (2010), the authors implement ant colony and bottom-
up tree search techniques, combined with fuzzy modeling and neural networks, to
determine the set of features more correlated with the mortality of these patients.
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This study attempts to predict vasopressors administration and mortality of ICU
patients in abdominal septic shock.

4.2.2 Early Readmissions

Patients readmitted to the ICU have increased mortality, morbidity and length of
stay. ICU readmissions are regarded as an indicator of poor care and represent
increased costs to the hospital (Allaudeen et al. 2011; Boudesteijn et al. 2007).
According to Elliott et al. (2014), ICU readmission rates reported in literature vary
between 1.3 and 13.7%. Although patients can have an unplanned readmission for
any reason, from incomplete treatment or poor care to poor coordination of services
at the time of discharge and afterwards, many of these readmissions are potentially
preventable (Goldfield et al. 2008). Adequate risk stratification at the time of
discharge could reduce readmission rates and hence improve patient outcomes.

Risk factors for ICU readmission have been systematically reported in prospec-
tive and retrospective cohort studies. The most commonly identified factors include:
patient location before ICU admission, SAPS II and APACHE II scores at admis-
sion, age, co-morbidities, ICU length of stay, physiologic abnormalities at the time
of ICU discharge or on the ward, ICU discharge at night or after hours, discharge
to another critical care area or hospital, shock index (heart rate/systolic blood
pressure), respiratory rate, Glasgow Coma Score, and higher Nursing Activity Score
at the time of discharge (Rosenberg and Watts 2000; Rosenberg et al. 2001).

4.3 Mixed Fuzzy Clustering

Mixed fuzzy clustering (MFC) is a novel clustering method based on fuzzy c-means
(Bezdek et al. 1984) which deals with both time variant and time invariant features
(Ferreira et al. 2015). This method introduces a generalization of the spatiotemporal
concept to any set of time variant and time invariant features and its extension to the
analysis of multiple time series. Each entity xi, with i D 1; : : : ; N, is characterized
by features that are constant during the sampling time in analysis, xs

i , and by features
that change over time (multiple time series), Xt

i :

xi D .xs
i ; Xt

i/ (4.1)

The time invariant component of the entities is represented by xs
i , where R is the

number of time invariant features:

xs
i D .xs

i1; : : : ; xs
iR/ (4.2)



4 Mixed Fuzzy Clustering for Deriving Predictive Models in Intensive Care Units 85

In order to extend the spatiotemporal clustering method proposed in Izakian et al.
(2013), which only deals with one time series, to the case of multiple time series,
a new dimension is introduced to handle P time variant features. The time variant
component of the entities is represented by the matrix Xt

i :

Xt
i D

0
BBB@

xt
i11 xt

i12 � � � xt
i1P

xt
i21 xt

i22 � � � xt
i2P

:::
:::

: : :
:::

xt
iQ1 xt

iQ2 � � � xt
iQP

1
CCCA ; (4.3)

where Q is the length of time series.
The time invariant prototypes vs

l for each cluster l are given by:

vs
l D

PN
iD1 um

li xs
iPN

iD1 um
li

; (4.4)

where l D 1; : : : ; C. The time variant prototypes vt
lk for each cluster l and feature k

are given by:

vt
lk D

PN
iD1 um

li xt
ikPN

iD1 um
li

(4.5)

The matrix of time variant prototypes for cluster l is represented by Vt
l .

In the above equations, the membership degree uli of entity i to cluster l is
given by:

uli D
1

PC
oD1

�
d2

�.vs
l ;V

t
l ;xi/

d2
�.vs

o;Vt
o;xi/

� 1
m�1

; (4.6)

where m 2�1; 1� is a weighting exponent that controls the degree of fuzziness.
The MFC algorithm clusters the data using an augmented form of the FCM.

The main difference between the augmented and the classical FCM relies on the
distance function. In the augmented FCM a new pondering element � is included,
factoring the importance to be given to the time variant component. The distance
is also calculated separately for each time series. The distance function between a
sample and the time invariant and time variant prototype of a cluster is computed:

d2
�.vs

l ; Vt
l ; xi/ D jjvs

l � xs
i jj

2 C �

PX
kD1

jjvt
lk � xt

ikjj
2 (4.7)

The augmented FCM objective function is given by:

J D

CX
lD1

NX
iD1

um
li d2

�.vs
l ; Vt

l ; xi/ (4.8)
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The MFC is described in Algorithm 1. Its inputs are the time invariant xs and time
variant data Xt, number of clusters C, initial partition matrix U D Œuli�, degree of
fuzziness m and time variant component weight �. It returns the final partition matrix
U D Œuli� and the time invariant Vs and time variant Vt prototypes. Jn represents the
objective function in iteration n.

Algorithm 1 Mixed fuzzy clustering (MFC)
1: Input:
2: C: number of cluster prototypes
3: m: degree of fuzziness
4: �: time variant component weight
5: xs: N � R matrix of time invariant data
6: Xt: N � Q � P matrix of time variant data
7: U: C � N random initial partition matrix
8: �: stop criterion
9: Output:

10: U: C � N partition matrix
11: Vs: C � R matrix of time invariant cluster prototypes
12: Vt: C � Q � P matrix of time variant cluster prototypes
13: while �J > � do
14: Compute the cluster prototypes vs

l
15: for k in f1; : : : ; Pg do
16: Compute the cluster prototypes vt

lk
17: end for
18: Compute the distances d2

�.vs
l ; Vt

l ; xi/

19: Update the partition matrix U
20: Compute �J D Jn � Jn�1

21: n D n C 1

22: end while

4.4 Fuzzy Modeling Based on Mixed Fuzzy Clustering

4.4.1 Takagi-Sugeno Fuzzy Modeling

Fuzzy models are “grey box” and transparent models that allow the approximation
of non linear systems with no previous knowledge of the system to be modeled.
Fuzzy models have the advantage of not only providing transparency, but also
linguistic interpretation in the form of rules.

In this work, Takagi-Sugeno (TS) fuzzy models (FMs) (Takagi and Sugeno 1985)
are derived from data. These consist of fuzzy rules describing a local input-output
relation. With TS FM, each discriminant function consists of rules of the type:

Ri W If x1 is Ai1 and : : : and xM is AiM

then y.x/ D fi.x/; i D 1; 2; : : : ; C; (4.9)
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where Aij are the antecedent fuzzy sets, fi is the consequent function of rule Ri and y
is the output. The degree of activation of the ith rule is given by ˇi D

QM
jD1 �Aij.x/,

where �Aij.x/ W R ! Œ0; 1�. The output is computed by aggregating the individual
rules contributions:

y.x/ D

PC
iD1 ˇifi.x/PC

iD1 ˇi

(4.10)

The number of rules C and the antecedent fuzzy sets Aij are determined by fuzzy
clustering in the space of the input and output variables. The consequent functions
fi.x/ are linear functions determined by ordinary least squares.

For classification, a threshold � is required to turn the continuous output y 2

Œ0; 1� into the binary output y 2 f0; 1g. This way, an entity x is labeled as 1 if
y.x/ > � and as 0 otherwise.

4.4.2 Proposed TS Fuzzy Models

Distinct Takagi Sugeno fuzzy model approaches based on clustering were con-
sidered for this study. The strategies differ in the type of input data and in
the methodology used to determine the antecedent fuzzy sets. In particular, the
antecedent fuzzy sets and the number of rules of the TS fuzzy model are determined
based either on the partition matrix generated by the FCM algorithm (FCM FM),
or in the partition matrix generated by MFC (MFC FM). MFC FM methodology
was developed based on the belief that the identification of the fuzzy membership
functions should be based on a non-conventional clustering algorithm, in the
presence of a mix of time variant and time invariant features. Time variant features
should not be directly mixed with time invariant features when calculating distances,
and different time variant features should also be dealt with separately.

The input variables consist of (1) time variant and time invariant features or (2)
transpose of the partition matrix generated by MFC (UMFC). When time variant and
time invariant data are used as input for the FCM FM, each time stamp of the time
series is treated as one feature, i.e., the input of the model consists of a N�.RCQ�P/

matrix. When using the partition matrix, each feature corresponds to the degree of
membership of the entities to the clusters such that the number of features equals
the number of clusters determined in the clustering step. In particular, the input
becomes uil, where i D 1; 2; : : : ; N and l D 1; 2; : : : ; C, which corresponds to the
transpose of the partition matrix in (4.6). This approach can be seen as a type of
feature transformation method.

Two approaches based on MFC are presented: MFC FM and FCM–UMFC FM,
and compare it with the traditional FCM FM. The approaches listed below are
described in Algorithm 2.
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• FCM FM: Antecedent fuzzy sets determined by FCM in the space of the
input and output variables.

• MFC FM: Antecedent fuzzy sets determined by MFC in the space of the
input and output variables.

• FCM–UMFC FM: Antecedent fuzzy sets determined by FCM in the space
of the partition matrix generated by MFC and output variable.

4.5 Data Description

This paper uses two de-identified publicly available ICU databases, MIMIC II and
MEDAN, which are described in the following.

The MIMIC II (Multi-parameter Intelligent Monitoring for Intensive Care)
database is an ICU database from the Beth Israel Deaconess Medical Center in
the United States (Saeed et al. 2011). Version 2.6 used in this study contains
demographics, medications, laboratory results and other clinical data from 32,535
patients, collected over a 7-year period. Three datasets were built for classification
using clinical, demographic and score information of adult patients (>15 years old
at time of admission).

The MEDAN database (Hanisch et al. 2003) contains data from patients under
abdominal septic shock registered from 1998 to 2002 by medical documentation
staff at 71 ICUs in Germany. This dataset contains demographics and measurements
of physiological variables from 410 patients, collected during their stay in the ICU.

4.5.1 Data Processing

Medical datasets are typically very heterogeneous (Paetz et al. 2004), due to its
multiple and sometimes dissimilar sources. Each patient has different periods of
time staying in medical facilities, during which distinct variables are documented. In
addition, equipment and human faults, as well as seldom measurements are frequent.
Particularly for retrospective evaluations, the quality of results relies heavily on the
preprocessing of original data. Problems commonly associated with these datasets
are the existence of missing data, uneven sampling times and outliers.

Missing data is a common occurrence in ICU databases either due to intentional
reasons, i.e. data is irrelevant for the clinical problem under consideration and thus
is not recorded, or unintentional reasons, when some kind of intervention or activity
renders the data useless. In this work, patients and variables were initially selected
in order to minimize missing data. When recoverable, missing data was filled using
the zero order hold procedure, while unrecoverable data led to patient discarding.
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Algorithm 2 Takagi-Sugeno fuzzy models
1: Data:
2: xs: N � R matrix of time invariant data
3: Xt: N � Q � P matrix of time variant data
4: Y: N � 1 vector of class labels
5: Œxs k Xt�: matrix of concatenated input data
6: [xs k Xt k Y�: matrix of concatenated input and output data
7: Parameters:
8: C: number of cluster prototypes
9: U: C � N initial partition matrix

10: m: degree of fuzziness
11: �: time variant component weight
12: UMFC: C � N final MFC partition matrix
13: .UMFC/T : N � C transpose matrix of UMFC

14: UFCM: C � N final FCM partition matrix
15: function trainFCM:([xs k Xt k Y], C, m)
16: train a TS FM using product-space FCM clustering
17: return model
18: end function
19: function trainMFC:([xs k Xt k Y], C, m, �, UMFC)
20: train a TS FM using product-space MFC clustering
21: return model
22: end function
23: procedure FCM FM
24: [UFCM, V] = FCM([xs k Xt k Y], C, U, m)
25: model=trainFCM([xs k Xt k Y], C, m)
26: Ym=test([xs k Xt], model)
27: end procedure
28: procedure MFC FM
29: [UMFC, vs

l , Vt
l ] = MFC([xs k Y], Xt, C, U, m, �)

30: model=trainMFC([xs k Xt k Y], C, m, UMFC)
31: Ym=test([xs k Xt], model)
32: end procedure
33: procedure FCM–UMFC FM
34: [UMFC, vs

l , Vt
l ] = MFC([xs k Y], Xt, C, U, m, �)

35: model=trainFCM(Œ.UMFC/T k Y�, C, m)
36: Compute distance from xs to vs

l and Xt to Vt
l

37: Update the partition matrix UMFC

38: Ym=test(UMFC, model)
39: end procedure

Since statistical methods rely on measures that consider the spreading of values
and do not consider the nature of data, they often lead to the loss of important
information. In the case of health care data it is important however to consider
variable measurements distant from other observations, since they can represent
sudden variations in a patient physiological condition. In this work, data outliers
were removed using expert knowledge, meaning that values outside the acceptable
physiological ranges were deleted.
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4.5.2 Vasopressors Administration

MIMIC II database was used to derive models to predict the necessity of vaso-
pressors administration in two specific subsets of patients: patients suffering from
pancreatitis and patients suffering from pneumonia. Given that these patients are
usually treated differently in terms of medication and surgery procedures, the
circumstances related to the initiation of vasopressors are also presumably distinct;
therefore models are built for each dataset separately.

The datasets contain data regarding: patients that received one of the following
vasopressors: levophed, dopamine, epinephrine, vasopressin and neosynephrine; the
patients’ first ICU stay (in order to consider the first administration of vasopressors);
a period of at least 6 h between the initiation of data acquisition and the administra-
tion of vasopressors; patients that were on vasopressors for more than 2 h.

The final pancreatitis and pneumonia datasets contain 378 and 1323 patients,
respectively. Time variant features were sampled during the length of stay of the
patient in the ICU, whereas time invariant features were selected from demographic
information and scores records on admission. Time variant variables were selected
based on a previous study (Fialho et al. 2011), where the best predictors of the
need of vasopressors where determined using a combination of fuzzy modeling and
bottom-up for feature selection. In order to predict in a timely manner the initiation
of the vasopressor administration, a window of 2 h of data collected before the
administration was not used neither for modeling nor for validation of the models.
The data was then resampled considering only 10 h before the window with a
sampling time of 1 h. The output consists of a binary classification with positive
value if the patient was on vasopressors.
List of physiological variables, demographics and score records extracted from the
MIMIC II database for vasopressors administration classification in pancreatitis and
pneumonia patients:

Time variant (Pancreatitis):
Sodium (mEq/L)
BUN: Blood urea nitrogen (mg/dL)
WBC: White blood cells (�103cells/�L)

Time variant (Pneumonia):
Lactic acid (mg/dL)
WBC: White blood cells (�103cells/�L)
PaCO2: Arterial carbon dioxide partial pressure (mmHg)
NBP: Non-invasive blood pressure mean (mmHg)

Time invariant (Pneumonia and Pancreatitis):
Age (years)
Weight (kg)
SAPS II on admission: Simplified Acute Physiology Score
SOFA on admission: Sequential Organ Failure Assessment
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4.5.3 Mortality in Abdominal Septic Shock

The MEDAN database was used to develop classification models for mortality
prediction of patients under abdominal septic shock. The pre-processing of the
original data performed by Marques et al. (2011) was used, assuring data quality.

The most relevant features determined by Fialho et al. (2010) were selected,
resulting in a dataset containing records of 12 time variant features measured over
different periods of time, with a global sampling time of 24 h. The time series
resulting from these measurements were used as the time variant input, while
patients’ demographic information, age and weight, formed the time invariant input.
In order to maintain equal lengths of time series regarding each feature, only the last
10 days of patient care were considered, resulting in 10 sample points per feature.
In this approach, patients with less than 10 measures per feature were discarded.
The final dataset comprises 100 patients, from which 44 did not survive (labeled as
class 1).
List of physiological variables and demographic information extracted from the
MEDAN database for mortality classification in abdominal septic shock patients:

Time variant:
Arterial pCO2 (mmHg)
Central venous pressure (cmH2O)
Hematocrit (%)
Hemoglobin (g/dl)
Heart rate (beats/min)
WBC (cells�103=�L)
pH
Serum calcium (mmol/L)
Serum creatinine (mg/dL)
Serum sodium (mmol/L)
Systolic blood pressure (mmHg)
Temperature (ıC)

Time invariant:
Age (years)
Weight (kg)

4.5.4 Readmissions

MIMIC II was used to develop models for the prediction of early readmissions.
Time variant data consists of the time series representing the last 10 measurements
of 7 variables, collected during the patients’ stay at the ICU. The selected variables
were chosen based on previous studies that made use of the same database (Fialho
et al. 2012). Age, weight on admission, SAPS II and SOFA scores on admission
were also collected for each patient and used as time invariant inputs. Patients
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readmitted to the ICU within a period of 24–72 h after discharge and patients who
only experienced one ICU stay and did not die within 1 year after discharge were
respectively labeled as class 1 and class 0. The final dataset includes 2653 patients,
from which 199 were readmitted within 24–72 h after discharge.
List physiological variables and demographic information extracted from the
MIMIC II database for readmissions classification:

Time variant:
Creatinine (mg/dL)
Lactic acid (mg/dL)
NBP: Non-invasive blood pressure mean (mmHg)
Platelets (�103 cells/�L)
Temperature (ıC)
Heart rate (beats per minute)
SpO2: Oxygen saturation in the blood (%)

Time invariant:
Age (years)
Weight (kg)
SAPS II on admission: Simplified Acute Physiology Score
SOFA on admission: Sequential Organ Failure Assessment

4.6 Results

The performance of the models is evaluated in terms of area under the receiver
operating characteristic curve (AUC) (Hanley and McNeil 1982), accuracy (correct
classification rate), sensitivity (true positive classification rate) and specificity (true
negative classification rate).

The datasets are evaluated using fivefold cross validation. For each fold, a grid
search is performed on the training set to find the � that maximizes the AUC; the
training set is randomly divided into two smaller subsets T1 and T2, where T1
represents 50% of the training set. T1 is used for training and T2 for tuning. For this
model, a range of values of the threshold � are evaluated on set training set and the
� that results in the smallest difference between sensitivity and specificity is used.
The model is tested using data the model has not yet used for training or tuning. For
FCM–UMFC, the input U used for testing the models is obtained by computing the
partition matrix using the cluster prototypes obtained in training. For updating the
matrix, the distance d2

�.vs
l ; Vt

l ; xi/ between the test entities and the cluster prototypes
is computed. Cross validation is performed separately for C D f2; 3; : : : ; 10g, and
results are averaged over the folds. In the end, results are shown for the C giving the
best average.

Figure 4.1 shows the average performance in terms of AUC, for each C, whereas
the best average results are shown in Table 4.1.
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Fig. 4.1 Performance of FCM, MFC and FCM–UMFC fuzzy models for different number of
clusters, for MEDAN, readmissions, pancreatitis and pneumonia datasets. (a) Pancreatitis. (b)
Pneumonia. (c) MEDAN. (d) Readmissions

In order to investigate the influence of � in the performance of each method,
boxplots showing the selected values of � for different number of clusters are
presented in Fig. 4.2. Overall, the choice of � seems to be greatly affected by the
data divisions, exception made to the MFC method in MEDAN and pneumonia
datasets.

FCM–UMFC FM performs better than the other methods in all datasets. In
particular, FCM–UMFC FM increases the AUC of MEDAN and pancreatitis by a
factor of approximately 30%, when compared to FCM FM. MFC FM has also
improved the performance of FCM FM in all datasets, due to its ability of creating
rules that adapt to the mixed nature of data. Table 4.1 and Fig. 4.2 show that for all
health care applications investigated, the information contained in the time variant
variables is more relevant in predicting the output than the information contained in
the time invariant variables.

Compared to a previous study using the same datasets (Ferreira et al. 2015),
there is an overall increase in the performance of all FMs. Two main reasons can be
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Table 4.1 Results with fivefold cross validation

Dataset Fuzzy models C AUC ACC Sensitivity Specificity
MEDAN FCM 10 0:73 ˙ 0:09 0:64 ˙ 0:08 0:62 ˙ 0:14 0:66 ˙ 0:11

MFC 7 0:74 ˙ 0:11 0:66 ˙ 0:09 0:61 ˙ 0:12 0:70 ˙ 0:11

FCM–UMFC 2 0:96 ˙ 0:05 0:86 ˙ 0:05 0:91 ˙ 0:09 0:82 ˙ 0:13
Readmissions FCM 6 0:55 ˙ 0:03 0:53 ˙ 0:04 0:54 ˙ 0:05 0:53 ˙ 0:05

MFC 3 0:56 ˙ 0:06 0:53 ˙ 0:04 0:56 ˙ 0:07 0:53 ˙ 0:03

FCM–UMFC 3 0:59 ˙ 0:02 0:55 ˙ 0:02 0:58 ˙ 0:02 0:55 ˙ 0:02
Pancreatitis FCM 3 0:59 ˙ 0:08 0:57 ˙ 0:08 0:57 ˙ 0:14 0:56 ˙ 0:10

MFC 2 0:63 ˙ 0:13 0:58 ˙ 0:12 0:68 ˙ 0:20 0:54 ˙ 0:13

FCM–UMFC 2 0:76 ˙ 0:05 0:70 ˙ 0:07 0:65 ˙ 0:03 0:72 ˙ 0:08
Pneumonia FCM 2 0:72 ˙ 0:05 0:66 ˙ 0:04 0:69 ˙ 0:07 0:64 ˙ 0:04

MFC 8 0:74 ˙ 0:05 0:68 ˙ 0:06 0:72 ˙ 0:05 0:66 ˙ 0:08

FCM–UMFC 8 0:78 ˙ 0:04 0:70 ˙ 0:02 0:70 ˙ 0:09 0:70 ˙ 0:04

attributed to this fact: first, model parameters � and C accept a wider range of values,
and second, in MIMIC II datasets, the gender is no longer used as a time invariant
input variable, which means that the finding of structures based on the distribution
of classes is not hampered by another binary variable.

Previous studies, namely Fialho et al. (2011, 2013), achieved notable results in
the prediction of continuous vasopressors administration. However, these studies do
not provide the means for predicting the initiation of therapy. Hence the comparison
of performance results in Table 4.1 should not be straightforward.

Next follows a more detailed discussion of the results obtained for each dataset.

4.6.1 Vasopressors Administration

In the pancreatitis dataset, the AUC of FCM–UMFC FMs decreases with increasing
number of clusters (see Fig. 4.1a). Results suggest that patients in this group are
better divided in two or three subgroups. In the case of FCM–UMFC, � values are
close to 1, whereas for MFC, � oscillates between 0.5 and 6, as shown in Fig. 4.2a.
When the number of subgroups increases, a higher weight is in general given to the
time variant part of data.

Contrarily to the previous vasopressors dataset, increasing number of clusters
produce little changes in the AUC of pneumonia models (see Fig. 4.1b), showing
that for this particular case, increasing the number of rules does not provide an
added value in the prediction of the output. Thus, C D 2 should be considered for
all FM approaches, with � between 1.5 and 3.
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Fig. 4.2 Boxplots of � associated to different number of clusters C, for MEDAN, readmissions,
pancreatitis and pneumonia datasets. (a) Pancreatitis. (b) Pneumonia. (c) MEDAN. (d) Readmis-
sions

4.6.2 Mortality Prediction

FCM–UMFC tends to select higher values of �, except when C D 2, while MFC
tends to select values close to 1, i.e, it gives the same weight to both time variant and
time invariant components of data, as shown in Fig. 4.2c. The fact that � is different
between the rounds, oscillating between 0 and 2, justifies the differences between
MFC and FCM FM approaches, highlighting the importance of this parameter in the
tuning of the models. If � would equal 1 in all rounds of MFC, results were expected
to deviate less and be more similar between MFC and FCM approaches. The fact
that higher values of � are associated with improved performance also highlights
the importance of this parameter.

Figure 4.1c shows that for both FCM and MFC FM, the C selected by grid
search is not the best option. Smaller values of C achieve nearly the same
performance, at lower computational costs and simplified model interpretability.
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Thus, for this dataset, 2 clusters and 3 clusters (or rules) would be sufficient to
derive FCM and MFC models, respectively. Nonetheless, the best strategy is still to
perform dimensionality reduction by transforming the input variables into degrees
of membership to 2 clusters.

While FCM and MFC FM approaches perform similarly to Fialho et al. (2010)
when using a reduced number of features, FCM–UMFC significantly improved
previous results (AUCD 0:75 ˙ 0:01 vs AUCD 0:96 ˙ 0:05).

4.6.3 Readmissions

For this dataset, varying number of clusters result in small changes in the perfor-
mance, and high values of � are in general selected for both MFC approaches, as
shown in Figs. 4.1d and 4.2d.

Monitoring signals, such as NBP mean, temperature, heart rate and SpO2 are
associated with higher sampling rates than laboratory results such as lactic acid,
platelets and creatinine. Having this in mind, the fact that all time series have
a length of 10 points means that the data used for modeling contains laboratory
measurements that can go up to 10 days of each patient’ stay (when applicable,
otherwise missing data is filled using the ZOH), and measurements of monitoring
signals of the last 10 h of stay, approximately. We point this misalignment as the
main probable reason for the overall poor results in comparison to approaches using
the mean values during the last 24 h (Fialho et al. 2012). Hence, further studies
should be conducted in order to handle unevenly and misaligned time series. Other
reasons may be pointed out to justify the poor results, namely the highly imbalanced
class distribution.

4.7 Conclusions

This work presents two modeling strategies based on the mixed fuzzy clustering
algorithm, in order to handle datasets containing time variant and time invariant
features, converging their information to improve knowledge extraction. One
strategy uses Takagi-Sugeno where the antecedent fuzzy sets are determined by
MFC in the product space of the time variant and time invariant variables and the
other strategy uses Takagi-Sugeno where the antecedents are determined based on
FCM in the product space of the membership degrees derived by MFC.

The performance of models is tested in four health care datasets, for the
classification of critically ill patients, and is compared with Takagi-Sugeno based
on FCM. The best method, FCM–UMFC, is common to all applications: mortality in
abdominal septic shock patients is classified with an AUC of 0:96 ˙ 0:05, readmis-
sions to the ICU with 0:59˙0:02 and vasopressors administration in pancreatitis and
in pneumonia patients with 0:76˙0:05 and 0:78˙0:04, respectively. The findings of
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this work suggest that dimensionality reduction based on the transformation of input
variables into degrees of membership allows the finding of important structures in
data, hence the discover of relevant rules in the knowledge base system.

Future work should focus on finding which time variant and time invariant
features are best predictors of different adverse events in the ICU, using wrapper
feature selection methods for performance improvement.
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