
Chapter 9
Split Chern–Simons Theory in the BV-BFV
Formalism

Alberto S. Cattaneo, Pavel Mnev and Konstantin Wernli

Abstract The goal of this note is to give a brief overview of the BV-BFV formalism
developed by the first two authors and Reshetikhin in (Cattaneo et al., Commun
Math Phys 332(2), 535–603, 2014) [9], (Cattaneo et al., PerturbativeQuantumGauge
Theories on Manifolds with Boundary, 2015) [10] in order to perform perturbative
quantisation of Lagrangian field theories on manifolds with boundary, and present a
special case of Chern–Simons theory as a new example.

9.1 Introduction

Since the proposal of functorial quantum field theory by Atiyah and Segal [1, 25]
mathematical research in this topic has progressed far and inmany directions (see e.g.
the books [17, 27], or the review article [22]). Recently, the first two authors together
with Reshetikhin introduced the BV-BFV formalism, which can be seen either as an
extension of functorial QFT to perturbative quantisation or, from another viewpoint,
as a method to perturbatively quantise gauge theory in the presence of a boundary.
The main idea is to unify the Lagrangian Batalin-Vilkovisky (BV) formalism [2, 4]
in the bulk and the Hamiltonian Batalin-Fradkin-Vilkovisky (BFV) formalism [3] on
the boundary.
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One possible application is to shed new light on the relation between perturbative
techniques andmathematical ideas that are concepts of non-perturbative quantisation,
like the Reshitikhin-Turaev invariants ([21], see also [14]), and thus ultimately about
non-perturbative results to the path integral itself. In this note, a very first step on this
road is taken by applying the formalism to a special form of Chern–Simons theory.

The note is structured as follows: Sect. 9.2 delivers a short overview of the relevant
formal concepts via the example of abelian BF theory. Section9.3 discusses a variant
of Chern–Simons theory known as split Chern–Simons theory, in its BV-BFV for-
mulation. Section9.4 computes the state of this theory explicitly in lowest orders on
the solid torus, which is a first step towards constructing the Chern–Simons invariant
for lens spaces.

9.2 Overview of the BV and BV-BFV Formalisms

The goal of this section is to give a very brief introduction to the BV-formalism on
manifolds without boundary, see also [11] in the present volume, and the BV-BFV
formalism on manifolds with boundary, for two special examples. For the technical
details we will refer to the papers [9, 10] where the Classical and Quantum BV-BFV
formalisms were discussed in depth.

9.2.1 Perturbative Quantisation of Lagrangian Field
Theories

Fix a dimension d. A Lagrangian field theory assigns to every closed d-dimensional
manifold a space of fields FM and an action functional SM : FM → R. This action
functional is required to be local, i.e. of the form

SM [φ] =
∫
M
L [φ(x), ∂φ(x), . . .],

whereL , the so-called Lagrangian density, should depend only on the fields φ and
finitelymany of their derivatives. The critical points of the action functional are called
the classical solutions of the theory, and are obtained by solving the Euler-Lagrange
equations, also called equations of motion.

One way of quantising such a theory, suggested by the path integral from quantum
mechanics, is to compute “integrals” of the form

∫
FM

O[φ]e i
�
SM [φ]Dφ,
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where O is an “observable”, over the space of fields FM (these integrals are usually
also called path integrals, even though they do not involve any paths). In this note
we are only interested in the so-called vaccuum state or partition function

ψ =
∫
FM

e
i
�
SM [φ]Dφ. (9.1)

However, in almost all relevant examples the spaces of fields have infinite dimension,
and there is no sensible integration theory at hand.Oneway to still make sense of such
expressions in the limit � → 0 is to use (formally) the principle of stationary phase.
This produces an expansion in powers of � around critical points of the action. The
terms in such an expansion can conveniently be labelled by diagrams, which after
their inventor are called Feynman diagrams. A concise introduction can be found in
[19].

Remark 1 (Perturbative expansion) We will only consider actions of the form S =
S0 + Sint where S0 is the quadratic part (also called “free” or “kinetic” part). In this
case one usually considers the interaction or perturbation term to be small (“weak
coupling”) so we can expand the action around critical points of S0 in powers of the
interaction (“coupling constant”), and the integral then can be formally computed
from the theory of Gaussian moments,1 usually referred to as Wick’s theorem in
quantum field theory. Details can be found e.g. in the Book by Peskin and Schroeder
[18] or lecture notes such as [5, 26].

9.2.2 Perturbative Quantisation of Gauge Theories

In many cases important for physics and mathematics, the Lagrangian is actually
degenerate, i.e. its critical points are not isolated, and we cannot apply the stationary
phase expansion, see e.g. [20]. This is usually due to the presence of symmetries on
the space of fields that leave the action invariant.

This problemcanoften be solved by so-calledgauge-fixingprocedures (a thorough
introduction to gauge theories from a physical viewpoint can be found in [13], a
concise introduction to the mathematical formalisms in [15]). The common idea is
to add more fields, corresponding to the generators of those symmetries, to remove
the degeneracies in theLagrangian. Themost powerful gauge-fixing procedure (in the
sense that it deals with themost general situation) is the Batalin-Vilkovsky formalism
([2, 4], for a short introduction to the mathematics see [12]). We will not discuss it
in full generality, but rather explain the idea using the example of abelian BF theory,
which will be important later in this note.

1Slight abuse of language as we are actually considering Fresnel integrals, i.e. with complex expo-
nent.
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9.2.2.1 Abelian BF Theory

Let M be a closed manifold, i.e. a compact manifold without boundary. Abelian BF
theory has the space of fields

FM = Ω1(M, R) ⊕ Ωd−2(M, R) � (A, B).

Here Ω p(M, R) denotes the vector space of real-valued differential p-forms on M .
The action functional is

SM [A, B] =
∫
M
B ∧ dA

and the critical points are simply closed forms dA = 0, dB = 0. Clearly, the critical
points are not isolated. In fact, adding any exact form to either A or B will leave
the action invariant by Stokes’ theorem. Therefore, the symmetries of the theory
are generated by A := C∞(M) ⊕ Ωd−3(M). An element (c, τ ) ∈ A acts on FM

by (A, B) �→ (A + dc, B + dτ). Since both the space of fields and the space of
symmetries are linear here, the space of symmetries can be identified with the space
of generators of the symmetries. We then declare the new space of fields to be

F1
M := FM ⊕ A [1].

Here A [1] means that we give the fields in A ghost number 1.

Remark 2 (Reducible symmetries) In this note we will only be concerned with
dimension d = 3, which we fix from now. However, in dimension D ≥ 4, the sym-
metries of BF theory are reducible, that is, “the symmetries have some symmetries
themselves”: We do not change the symmetry of the action given by (c, τ ) if we add
to τ the differential of a D − 4-form τ2. In this case one has to introduce the so-
called “ghosts-for-ghosts” of ghost number 2, which amounts to adding to the space
of fields ΩD−4(M)[2], and continue all the way until we reach ΩD−D(M)[D − 2].
Remark 3 (Total degree) Forms commute or anticommute according to their form
degree, i.e. if ω is a p-form and τ is a q-form we have ω ∧ τ = (−1)pqτ ∧ ω. If
we introduce ghost fields, fields commute or anticommute according to their total
degree, which is defined to be the form degree plus the ghost number. In BF theory
in 3 dimensions, all fields have total degree 1, so all fields anticommute.

These new fields are not enough to make the action nondegenerate. One way to
resolve the situation is to pass to the BV space of fields

FM := T ∗[−1]F1
M = F1

M ⊕ (F1
M)∗[−1] = FM ⊕ A [1] ⊕ F∗

M [−1] ⊕ A ∗[−2].
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Table 9.1 The fields involved in BV version of abelian BF theory in dimension 3, with their form
degree, ghost number and total degree

Field Form degree Ghost number Total degree = ghost number + form degree

A 1 0 1

B d–2 = 1 0 d–2 = 1

c 0 1 1

τ d–3 = 0 1 d–2 = 1

A+ d–1 = 2 –1 1

B+ 2 –1 1

c+ d = 3 –2 1

τ+ 3 –2 1

The prescription to use cotangent bundle comes from finite dimensions where the
dual of a vector space is always unique. Here we will not use the real dual spaces of
differential forms (i.e. currents2), but use the Poincaré pairing

(·, ·) : Ω p(M, R) × ΩD−p(M, R) → R

(α, β) �→
∫
M

α ∧ β

to set F(M)∗ = (Ω1(M) ⊕ Ωd−2(M))∗ = Ωd−1(M) ⊕ Ω2(M) andA ∗ = (Ω0(M)

⊕Ωd−3(M))∗ = Ωd(M) ⊕ Ω3(M). Denoting the dual fieldswith a+, we summarise
the fields and their degrees in Table9.1.

The new (BV) action is then

SM =
∫
M
B ∧ dA + A+ ∧ dc + B+ ∧ dτ

which leads to Euler-Lagrange equations

dA = dB = dc = dA+ = dB+ = dc+ = 0.

Of course, right now it seems we only introduced more degeneracy, but this is where
the gauge fixing comes into play. First, however, we shall need a couple of remarks.

Remark 4 (Superfields) At this point it is very convenient to introduce the “super-
fields”

A = c + A + B+ + τ+ ∈ Ω•(M),

B = τ + B + A+ + c+ ∈ Ω•(M).

2This leads to another theory with a larger space of fiels called canonical BF theory, see [15].
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The action now simply reads

SM =
∫
M
B ∧ dA,

where only the integral of the top-degree part is non-zero, and the Euler-Lagrange
equations can be summarised as

dB = dA = 0.

Remark 5 (Structure of the space of fields) The grading by ghost number endows
FM with the structure of a graded vector space. The pairing of fields and anti-fields
endows FM with a so-called odd symplectic structure (odd because it pairs fields
whose degrees add up to –1, rather than to 0). If δ denotes the de Rham differential
onFM , it is given by

ωM =
∫
M

δA ∧ δB. (9.2)

As every odd symplectic structure it induces an odd Poisson bracket on Fun(FM),
which in this case is called the BV bracket. It is well defined on the subspace of
local functionals (see the discussion of BV formalism in [7]). Also, one has the BV
Laplacian

Δ =
3∑

k=0

(−1)k+1
∫
M

δ2

δA(k)(x)δB(k)(x)
,

where A(k) denotes the k-form part of A. Together with the BV bracket, it gives
Fun(FM) the structure of a so-called BV algebra. However, in the infinite dimen-
sional setting this expression for the BV Laplacian is very singular and needs to be
regularised carefully.

The BV formalism to compute integral (9.1) now proceeds as follows: one picks
a Lagrangian subspaceL ofFM such that the BV action has isolated critical points
onL . This is the gauge fixing in the BV formalism. The integral

ψ =
∫
L

e
i
�
S [φ]Dφ

can be computed by methods of Feynman diagrams. If the BV action satisfies the
Quantum Master Equation Δ(e

i
�
S) = 0, then under deformations of L , the result

changes by a Δ-exact term.

Remark 6 (Quantum and Classical Master Equations) The Quantum Master equa-
tion Δ(e

i
�
S ) = 0 is equivalent to (S ,S ) − 2i�ΔS = 0, where (·, ·) is the BV

bracket. Expanding S as a power series in �, the degree 0 part S0 has to satisfy
(S0, S0) = 0. This is called the Classical Master Equation.
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Remark 7 The statements above can be made entirely precise and rigorously proven
for finite-dimensional spaces of fields (see e.g. [11] in this volume, [12] or [10],
Chap. 2). In the infinite-dimensional setting, the BV formalism produces a number
of postulates that one has to prove a posteriori. An example (for the extension to
manifolds with boundary, the BV-BFV formalism) in this note is the mQME (9.4)
which is proven for abelian BF theory. In [10] a general procedure to prove the
mQME is described.

Remark 8 (Perturbative expansion of interacting gauge theories) Abelian BF the-
ory is an example for a free theory (i.e. Sint ≡ 0). For theories that are perturbations of
free theories, the gauge-fixing for the free part of the theory can be used to compute
the expansion in powers of the coupling constant. We will call theories that are per-
turbations of abelian BF theory “BF-like”. Examples are the Poisson Sigma model
and non-abelian BF theory, and, most importantly for this note, split Chern–Simons
theory.

9.2.2.2 Residual Fields

It can happen that the degeneracy in the quadratic part of the action does not stem
from the gauge symmetries alone. This is the case when the operator in the quadratic
part of the action has non-trivial “zero modes” i.e. it has zeros that are not related
under gauge symmetries. In the case of abelian BF theory, the operator in question is
the de Rham differential, while the gauge symmetries are given by shifting the fields
by exact forms. It follows that the space of inequivalent zero modes is precisely the
de Rham cohomology of M .

In this case the procedure is as follows. One splits the space of fields FM =
Y ′ × Y ′′ into a space of residual fields3 Y ′, consisting of representatives of the
zero modes, and a complement Y ′′ that we will call fluctuations.4 Then one only
integrates over a Lagrangian subspace L of Y ′′, so that the result depends on the
residual fields. This yields the definition of the effective action:

e
i
�
S eff(φ ′) =

∫
φ′′∈L⊂Y ′′

e
i
�
S(φ ′,φ′′)Dφ′′.

To be compatible with the BV formalism, Y ′ and Y ′′ should be odd symplectic
themselves, such thatFM has the product structure. In this case, one can prove that
in the finite-dimensional case, the QME for the action on F induces the QME for
the effective action. In the case at hand of abelian BF theory, we choose a finite-
dimensional space of residual fields, the de Rham cohomology, and one can prove
explicitly that the effective action satisfies the QME. Therefore Y ′ should be given
by representatives of the de Rham cohomology of M . Such a splitting (and a suitable

3Also known as background fields, slow fields, infrared fields.
4Otherwise known as fast fields or ultraviolet fields.
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choice of Lagrangian) can then be found e.g. by Hodge decomposition. Choosing a
Riemannianmetric g, the spaceY ′ is given by g-harmonic forms and the Lagrangian
L by the Lorentz gauge condition d∗φ = 0. On this space d has no kernel and there-
fore the restriction of the BV extension of the abelian BF action to this Lagrangian
subspace is non-degenerate.

9.2.3 On Manifolds with Boundary

We will now consider the case of manifolds with boundary. The strategy that is
compatible with the mathematical idea of gluing of manifolds along boundary
components is not to fix boundary conditions, but instead to think of the state as
a functional on the possible boundary fields.

Consider first the case of a theorywithout gauge symmetries. Under some assump-
tions, one can show that a d-dimensional field theory induces a space of fields F∂

Σ

on (d − 1)-dimensional manifolds Σ that has a natural even symplectic structure.
The space of states should be a quantisation of this symplectic manifold. In many
examples, F∂

Σ is actually an affine space, and one can define a quantisation from a
Lagrangian polarisation5 with a smooth leaf space (examples of this are the position
or momentum space) BΣ . In this case, the space of states is the space of functionals
on BΣ . IfΣ = ∂M , there is a surjective submersion FM → F∂

∂M given by restriction
of fields to the boundary. If we denote by p the composition of this map with the
projection F∂

∂M → B∂M , we can define the state by the “integral”

ψ̂M(β) =
∫
p−1(β)

e
i
�
S[φ]Dφ

for β ∈ B∂M .

9.2.4 The BV-BFV Formalism

Now we want to combine this with the method used to deal with gauge theories
discussed above. Given a space of BV fields FM for every d-dimensional manifold
M , there is again an induced space of fields F ∂

Σ on d − 1-dimensional manifolds
endowed with what is called a BFV structure (see [24] for a mathematical discussion
of BFV structure). The result is what is called a BV-BFV manifold, whose definition
we will now recall.

Definition 9.2.1 (BFV manifold) A BFV manifold is a triple (F , ω, Q), where

• F is a Z-graded manifold,

5This is basically a choice of coordinates and canonically conjugate momenta, similar to the p and
q variables in quantum mechanics.
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• ω = δα is an exact degree 0 symplectic form on F ,
• Q is a degree +1 vector field on F ,

such that

• Q is symplectic for ω, i.e. LQω = 0,
• Q is cohomological, i.e. Q2 = 0 or equivalently [Q, Q] = 0.

For degree reasons this implies the existence of a degree 1 Hamiltonian function
S for Q, i.e. ιQω = δS (and the datum of such function specifies a cohomological
symplectic vector field) and this function S automatically satisfies the Classical
Master Equation (S, S) = 2ιQιQω = 0. The Z-grading of the manifold is the ghost
number we briefly explained above.

Definition 9.2.2 (BV-BFV manifold) A BV-BFV manifold over a given BFV mani-
fold (F ∂ , ω∂ = δα∂, Q∂ is a quintuple (F , ω, Q,S , π) where

• F is a Z-graded manifold,
• ω is a degree −1 symplectic form,
• Q is a degree +1 cohomological vector field,
• S is a degree 0 function on F ,
• π is a surjective submersion F → F ∂ ,

such that6

• δπ(Q) = Q∂ ,
• ιQω = δS + π∗α∂ .

The axioms imply the modified Classical Master Equation (mCME)

1

2
ιQιQω − π∗S ∂ = 0. (9.3)

Remark 9 (Shifting α) Given a BV-BFV theory and a functional f on the space
of boundary fields, we can define a new BV-BFV theory by αδ �→ α∂ + δ f,S �→
S − π∗ f . It will coincide with the previous theory on closed manifolds.

In many cases, the BV structure on the bulk and the BFV structure on the boundary
look very similar in the superfield formalism.

Let us look at the example of abelian BF theory on a 3-manifold M with boundary
∂M that is included via ι : ∂M → M . LetFM be the space of BV fieldsΩ•(M)[1] ⊕
Ω•(M)[1] � (A,B). Denote by A∂ := ι∗A,B∂ := ι∗B the restrictions of these fields
to the boundary. Then the space of boundary BFV fields is F ∂

∂M = Ω•(∂M)[1] ⊕
Ω•(∂M)[1] � (A∂ ,B∂ ). The symplectic form and action have the same form as
before

6This definition differs from the one in [9] by a purely conventional sign (−1)n in front of δS.
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ω∂
∂M =

∫
∂M

δA∂ ∧ δB∂ ,

S∂
∂M =

∫
∂M

B∂ ∧ dA∂ ,

and the corresponding Hamiltonian vector field on F ∂
∂M is

Q∂
∂M =

∫
∂M

dA∂ δ

δA∂
+ dB∂ δ

δB∂
.

However, considering Table9.1 and that the dimension of ∂M is 2, notice that ω∂
∂M

pairs fields of opposite ghost number, and thus has degree 0. I.e., (F ∂
∂M , ω∂

∂M , Q∂
∂M)

is a BFV manifold.

Claim 1 If we denote

QM =
∫
M
dA

δ

δA
+ dB

δ

δB

and πM = ι∗ : FM → F ∂
∂M the restriction of fields to the boundary, then in abelian

BF theory the quintuple (FM , ωM , QM , SM , πM) is a BV-BFV manifold over the
BFV manifold (F ∂

∂M , ω∂
∂M , Q∂

∂M).

Proof We will just prove the central BV-BFV identity ιQMωM = δSM + π∗α∂
∂M .

Notice that the de Rham differential on FM is given by

δ =
∫
M

δA
δ

δA
+ δB

δ

δB

and one choice of α∂
∂M is

α∂
∂M =

∫
∂M

B ∧ δA.

On the one hand,

ιQMωM =
∫
M
dA ∧ δB + δA ∧ dB.

On the other hand, integrating by parts yields

δSM = δ

∫
M
B ∧ dA =

∫
M
B ∧ dδA +

∫
M

δB ∧ dA

=
∫
M
dB ∧ δA +

∫
M

δB ∧ dA −
∫

∂M
B ∧ δA = ιQMωM − π∗

Mα∂
∂M .
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9.2.5 The Quantum BV-BFV Formalism

We now explain the data of a quantum BV-BFV theory and show how to quantise in
the example of abelian BF theory, before turning to the example of Chern–Simons
theory. The perturbative quantisation of a BV-BFV theory consists of the following
data:

1. A cochain complex (H P
Σ ,ΩP

Σ ) for every (d − 1)-manifold Σ with a choice of
polarisation inF ∂

Σ .
2. A finite-dimensional BVmanifold (VM ,ΔVM ) - called the space of residual fields

- associated to every d-manifold M and polarisation P onF ∂
∂M .

3. Let Ĥ P
M := H P

∂M ⊗̂C∞(VM) and endow it with the two commuting coboundary
operators Ω̂P

M := ΩP
∂M ⊗ id and Δ̂P

M = id⊗ΔVM . Then we require the existence
of a state ψ̂M satisfying the modified Quantum Master Equation (mQME)

(�2Δ̂P
M + Ω̂P

M )ψ̂M = 0, (9.4)

the quantum counterpart of the mCME (9.3).

Some comments are in order. The cochain complex (H P
Σ ,ΩP

Σ ) is to be constructed
as a sort of geometric quantisation of the symplectic manifoldF ∂

∂M with the polari-
sationP and the actionS ∂

∂M . The general construction of the boundary quantisation
is not important in this note. More important is the idea of residual fields that was
explained in Sect. 9.2.2.2. The state is then computed by combining the methods of
Sects. 9.2.2 and 9.2.3. Again, assume we have a polarisationP ofF ∂

∂M with smooth
leaf spaceBP

∂M . In this caseH
P

Σ ⊂ Fun(BP
∂M) is a certain subspace of functionals

on boundary conditions defined in detail in Sects. 3.5.1 and 4.1.1 to 4.1.3 in [10].7

We will further assume that actually FM = BP
∂M × Y so that the fibers of the pro-

jection p : FM → BP
∂M are just {b} × Y . Moreover, we assume there is a functional

fP∂M such that α∂M − δ f P∂M vanishes when restricted to the fibers, i.e. on Y , and then
adapt the bulk action as in Remark 9. We then split Y = VM × Y ′′ into a space of
residual fields and fluctuations Y ′′. Then we can finally define the state ψ̂M by

ψ̂M(b, φ) =
∫
L⊂Y ′′

e
i
�
SM (b,φ,φ′′)Dφ′′ ∈ Ĥ P

M = H P
∂M ⊗̂C∞(VM).

Again, we define the BV effective action by

ψ̂M(b, φ) = e
i
�
Seff(b,φ).

Instead of entering a general discussion of the above, let us continue the example of
abelian BF theory.

7There are some subtleties arising from the regularisation of higher functional derivatives that would
be too much for the purpose of this note.
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9.2.6 Abelian BF Theory in the Quantum BV-BFV
Formalism

9.2.6.1 Polarisations

Here there are two easy polarisations onF ∂
∂M = Ω•(∂M)[1] ⊕ Ω•(∂M)[1], namely

the ones given by δ
δA∂ (whose leaf space can be identified with the B∂ fields) and δ

δB∂

(whose leaf space can be identified with the A∂ fields).
Let now M be a manifold with boundary ∂M = ∂1M � ∂2M . We then define the

polarisation P to be the δ
δB∂ -polarisation on ∂1M and the δ

δA∂ -polarisation on ∂2M ,
so that we have the leaf space BP

∂M = Ω•(∂1M)[1] ⊕ Ω•(∂2M)[1], we denote the
coordinates on it by (A, B). The correct way to adapt the boundary 1-form is to
subtract the differential fP∂M = ∫

∂2M
B∂ ∧ A∂ from it.

9.2.6.2 Choosing a Splitting

We now split the space of fields FM by choosing extensions Ã, B̃ of A and B from
the boundary to the bulk of the manifold and splittingA = Ã + Â,B = B̃ + B̂where
Â and B̂ restrict to 0 on ∂1M resp. ∂2M . As discussed in [10], one needs to require
the extensions to be discontinuous extensions by 0 outside of the boundaries. One
way to make this more precise is to work with a family of regular decompositions
approximating this singular one, resulting a family of states that only in the limit
will satisfy the mQME. We will therefore choose these extensions and identify Ã =
A, B̃ = B. This is our splitting FM = BP

∂M × Y .

9.2.6.3 Residual Fields and Fluctuations, Gauge Fixing

We now want to split Y into residual fields and fluctuations. As discussed above, in
abelian BF theory the residual fields should contain the de Rham cohomology of M .
In the case with boundary, for our polarisation, the space of residual fields is

VM = H •(M, ∂1M)[1] ⊕ H •(M, ∂2M)[1].

We choose representatives χi ∈ Ω•
closed(M, ∂1M) and χ j ∈ Ω•

closed(M, ∂2M) such
that their cohomology classes form a basis of H •(M, ∂1M) resp. H •(M, ∂2M) and∫
M χi ∧ χ j = δ

j
i . Then, we write a = ∑

i z
iχi ,b = ∑

i z
+
i χ i for elements of VM ⊂

FM . The BV Laplacian ΔVM is then

ΔVM =
∑
i

− ∂

∂zi
∂

∂z+
i

.
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A possible way to choose such a basis, a complementY ′′ and a LagrangianL ⊂ Y ′′
is to pick a Riemannian metric and use Hodge decomposition on manifolds with
boundary (see [6]). This is the choice of gauge fixing (it is a variant of the Lorentz
Gauge Fixing mentioned earlier). Its most important feature is that the gauge-fixing
Lagrangian does not depend the boundary and background fields. We will avoid
the details of this lengthy discussion, referring the interested reader again to [10]
(Sect. 3.3 and Appendix A), and simply assume we can decompose the fields Â =
a + α, B̂ = b + β into residual fields and fluctuations.

Remark 10 (Decomposition of the action) The decomposition of the fields also
induces a decomposition of the adapted action

SP
M = ŜM,0 + S back

M + S source
M , (9.5)

where

ŜM,0 =
∫
M

β ∧ dα,

S back
M = −

(∫
∂2M

B ∧ a +
∫

∂1M
b ∧ A

)
,

S source
M = −

(∫
∂2M

B ∧ α +
∫

∂1M
β ∧ A

)
.

Proof Assumewe have chosen non-singular extensions Ã, B̃ and splitA = Ã + a +
α,B = B̃ + b + β. The action then reads

SP
M =

∫
M

(B̃ + b + β) ∧ d(Ã + a + α) −
∫

∂2M
ι∗2((B̃ + b + β) ∧ (Ã + a + α))

where ι2 denotes the inclusion ∂2M ↪→ M . We can assume the supports of B̃ and Ã

are disjoint. Furthermore, we have that ι∗2b = ι∗2β = ι∗2Ã = 0 and da = db = 0. We
then get

SP
M =

∫
b ∧ dÃ + β ∧ dÃ + B̃ ∧ dα + b ∧ dα + β ∧ dα −

(∫
∂2M

B̃ ∧ a + B̃ ∧ α

)

The integral of b ∧ dα vanishes by integration by parts since b is closed and b ∧ dα
is zero restricted to ∂M . Now integrate the Ã terms by parts, resulting in

SP
M =

∫
M
dβ ∧ Ã + B̃ ∧ dα + β ∧ dα −

(∫
∂1M

b ∧ Ã + βÃ

)
−

(∫
∂2M

B̃ ∧ a + B̃ ∧ α

)

Sending Ã, B̃ to singular extensions proves the claim as the first two terms will
vanish.
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9.2.6.4 The State

We now would like to compute the state

ψ̂M(A, B,a,b) =
∫

(α,β)∈L
e

i
�
SP

M (A+a+α,B+b+β)DαDβ

∈ Ĥ P
M ⊂ Fun(BP

∂M)⊗̂C∞(VM). (9.6)

as a formal Gaussian integral. Applying decomposition (9.5) of the action, and the
general theory of performing such Gaussian integrals in quantum field theory (see
[19, 20]), we need to understand the integral

TM :=
∫
L

e
i
�
ŜMDαDβ. (9.7)

as a regularised determinant of the inverse of the operator d in the quadratic part of
the action. This is not an easy task (see [16, 23]), but for our purposes it is enough to
say that TM is a number independent of the choice ofL (but that can depend on our
choice of representatives of cohomology). The integral (9.6) can then be expressed
in terms of the so-called propagator8

η(x1, x2) = −1

TM

1

i�

∫
L

e
i
�
ŜMα(x1)β(x2)DαDβ. (9.8)

Namely,
ψ̂M(A, B,a,b) = TMe

i
�
Seff(A,B,a,b), (9.9)

with

Seff(A, B,a,b) = −
(∫

∂2M
B ∧ a −

∫
∂1M

b ∧ A

)
−

∫
∂2M×∂1M

π∗
1 A ∧ η ∧ π∗

2 B.

(9.10)

9.2.6.5 The Propagator

The propagator η is a (d − 1)-form on the configuration space C0
2 (M) = {(x1, x2) ∈

M × M : x1 �= x2} that vanishes for x2 ∈ ∂1M or x1 ∈ ∂2M . It is determined by our
choice of gauge fixing Lagrangian. It has two important properties:

• Its differential satisfies

dη =
∑
i

(−1)degχi π∗
1χiπ

∗
2χ i . (9.11)

8Also known to physicists as 2-point function or - slightly abusing language - Green’s function.
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• For any x ∈ M , if we fix a chart φ : U → R
3 satisfying φ(x) = 0, then

lim
ε→0

∫
y∈∂Bε(0)

η(φ−1(y), x) = 1 = − lim
ε→0

∫
y∈∂Bε(0)

η(x, φ−1(y)). (9.12)

A choice of such a propagator (and representatives of cohomology) also leads to the
definition of a gauge-fixing Lagrangian. For computations with Feynman diagrams
it is often desirable to have a propagator satisfying also

• ∫
y∈M

η(x, y)χi (y) =
∫
x∈M

χ i (x)η(x, y) = 0, (9.13)

• ∫
y∈M

η(x, y)η(y, z) =
∫
x∈M

η(z, x)η(x, y) = 0. (9.14)

These properties do not automatically follow from the definition but they can always
be satisfied by picking a suitableL (see Sect. 4 in [8] for a discussion on manifolds
without boundary, arguments there can be adapted to the case with boundary using
machinery in [10]).

9.2.6.6 mQME

In the case of abelian BF theory, the quantisation of the boundary is simply the
“standard” or “canonical” quantisation. It is obtained by the following recipe: In the
boundary action, on ∂1M we have to replace every occurence of B̂ by (−i� δ

δA
), on

∂2M , Â has to replaced by (−i� δ
δB

). Here we have to integrate by parts to do so. The
result is

ΩP
∂M = (−i�)

(∫
∂1M

dA
δ

δA
+

∫
∂2M

dB
δ

δB

)
. (9.15)

Claim 2 The state ψ̂M defined by (9.9) satisfies the mQME (9.4)

(�2Δ̂P
M + Ω̂P

M )ψ̂M = 0. (9.16)

Proof Since the effective action Seff given in (9.10) is only linear in coordi-
nates on VM , it is immediate that ΔSeff = 0. In this case (�2Δ + Ω)e

i
�
Seff =

− 1
2 (S

eff, Seff)e
i
�
Seff + Ωe

i
�
Seff . Only the first two terms in the action depend on the

residual fields and hence contribute to the BV bracket. Also, only the bracket of b
with a is nontrivial, so we have
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1

2
(S eff,S eff) =

(∫
∂2M

B ∧ a,

∫
∂1M

b ∧ A

)
=

∑
i, j

(∫
∂2M

B ∧ ziχi ,
∫
∂1M

z+j χ j ∧ A

)

=
∑
i

(−1)deg z
i
∫
∂2M

B ∧ χi

∫
∂1M

χ j ∧ A,

since (zi , z+
j ) = (−1)deg z

i
Δ(zi z+

j ) = (−1)deg z
i
. On the other hand,

Ωe
i
�
Seff =

((∫
∂1M

dA
δ

δA
+

∫
∂2M

dB
δ

δB

)
S eff

)
e

i
�
S eff

=
(∫

∂2M×∂1M
π∗
1 A ∧ dη ∧ π∗

2 B

)
e

i
�
S eff

=
∑
i

(−1)degχ i+1
∫

∂2M
B ∧ χi

∫
∂1M

χ j ∧ A,

where we integrated by parts and used property (9.11). Now the claim follows from
the fact that deg zi = 1 − degχ i .

9.2.6.7 Dependence of the State on the Gauge-Fixing.

Clearly, the state defined in (9.9) depends on the choice of the gauge-fixing. However,
one can show (and, by finite-dimensional arguments, this is supposed to hold in any
quantum BV-BFV theory) that, upon deformations of the gauge fixing, the state
changes as

d

dt
ψ̂ = (�2Δ̂M + Ω̂P

M )̂ζ (9.17)

for some ζ̂ ∈ Ĥ P
M .

9.2.6.8 Gluing

Suppose we have two manifolds M1 and M2 that share a boundary component Σ .
Then we can glue them together alongΣ to obtain a newmanifold M = M1 ∪Σ M2.
The state ψ̂M can nowbe computed from the states ψ̂M1 and ψ̂M2 in the followingway:
Fix polarisations such that Σ ⊆ ∂1M1 on M1 and Σ ⊆ ∂2M2 on M2. Denote by A

Σ

coordinates on Ω•(Σ)[1] ⊆ BP
∂M1

and by B
Σ coordinates on Ω•(Σ)[1] ⊆ BP

∂M2
.

Then we define ψ̃M by

ψ̃M =
∫

AΣ ,BΣ

e
i
�

∫
Σ

B
Σ

A
Σ

ψ̂M1ψ̂M2 .
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Again, this integration is defined by a variant of Wick’s theorem9: The integral of a
term in the product of the states is nonzero if we can contract every A

Σ with to a
B

Σ . In this case, we sum over all possibilities to do so, and every contraction of a
A

Σ(x) with a B
Σ(y) yields a δ

(2)
∂M(x, y).

One also has to take care of the residual fields: This glued state will usually depend
on a non-minimal amount of residual fields, and one can pass to the minimal amount
of residual fields by a BV pushforward, yielding the “correct” state ψ̂M .

9.2.6.9 BF-like Theories

As above, we call “BF-like” those theories whose action can be decomposed as
SBF + Sint. It is useful to also allow for the free part to consist of several copies
of abelian BF theories. One way to do this is to change the space of fields toFM =
(Ω•(M) ⊗ V [1]) ⊕ (Ω•(M) ⊗ V ∗[1]) with action

SM,0 =
∫
M

〈B, dA〉

where V is a finite-dimensional vector space and 〈·, ·〉 denotes the pairing between
V and V ∗. The above discussion goes through. The only thing that changes in the
gauge fixing is that we should replace η by η̃ = η ⊗ idV ∈ Ω(C0

2 (M)) ⊗ (V ⊗ V ∗),
so that in any basis ξi of V with dual basis ξ i it is given by

η̃(x1, x2) =
∑
i, j

η(x1, x2)δ
i
jξi ⊗ ξ j .

9.3 Chern–Simons Theory as a BF-like Theory

9.3.1 Split BV Chern–Simons Theory

Let g be a Lie algebra with an non-degenerate ad-invariant pairing 〈·, ·〉 : g × g → R,
i.e. we have for all x, y, z ∈ g that 〈x, [y, z]〉 = 〈[x, y], z〉. Let M be a 3-manifold,
and C ∈ Ω•(M) ⊗ g[1]. Then the BV Chern–Simons action is [9]

S[C] =
∫
M

1

2
〈C, dC〉 + 1

6
〈C, [C,C]〉,

where for homogeneous elements A ⊗ v, B ⊗ w ∈ Ω•(M) ⊗ g the bracket and the
pairing are defined by

9In the sense that we compute it formally as a Gaussian (or rather, Fresnel) integral.
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[A ⊗ v, B ⊗ w] = A ∧ B ⊗ [v,w]

and
〈A ⊗ v, B ⊗ w〉 = 〈v,w〉A ∧ B

respectively. Now assume that the Lie Algebra g admits a splitting g = V ⊕ W into
maximally isotropic subspaces, i.e. the pairing restricts to 0 on V andW and dim V =
dimW = dim g

2 . Then we can identify W ∼= V ∗ via the pairing and decompose C =
A + B, whereA ∈ Ω•(M) ⊗ V [1]andB ∈ Ω•(M) ⊗ W [1]. The action decomposes
into a “free” or “kinetic” part

S f ree =
∫
M

1

2
〈C, dC〉 =

∫
M

1

2
〈A + B, dA + dB〉

=
∫
M

1

2
〈A, dB〉 + 1

2
〈B, dA〉 =

∫
M

〈B, dA〉

(where 〈A, dA〉 = 0 = 〈B, dB〉 by isotropy and we integrate by parts) and an “inter-
action” term

V 〈A,B〉 = 1

6
〈A + B, [A + B,A + B]〉.

Hence, the theory is “BF-like”.

9.3.2 Perturbative Expansion

Let M be a 3-manifold, possibly with boundary. We want to compute the state
ψ̂M . As described above for the BF example, we choose a decomposition of the
boundary ∂M = ∂1M � ∂2M and get a polarisation on the space of boundary fields
such thatBP

∂M = B1 × B2 � (A, B). Decomposing A = A + a + α,B = B + b +
β, we can decompose the action as explained in Remark 10:

SP
M = ŜM,0 + ŜM,pert + S back

M + S source
M ,

where

ŜM,0 =
∫
M

〈β, dα〉,

ŜM,pert =
∫
M
V ( Â, B̂),

S back
M = −

(∫
∂2M

〈B,a〉 +
∫

∂1M
〈b, A〉

)
,
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S source
M = −

(∫
∂2M

〈B, α〉 +
∫

∂1M
〈β, A〉

)
.

The state is given by

ψ̂M = ψ̂M(A, B,a,b) =
∫
L

e
i
�
SP

M ,

whereL � (α, β), the gauge-fixing Lagrangian, is the same as for abelian BF theory
(cf. Remark 8). Therefore it does not depend on the boundary and background fields.
By virtue of the above decomposition, we can rewrite this as

ψ̂M(A, B,a,b) = e
i
�

S
back
M

∫
L

e
i
�

ŜM,0e
i
�

ŜM,perte
i
�

S
source
M .

To do a perturbative (power series) expansion,10 expand the exponentials

ψ̂M (A, B, a, b) =

=
∑
k

1

k!
(

− i

�

)k (∫
∂2M

〈B, a〉 +
∫

∂1M
〈bA〉

)k ∫
L

ei ŜM,0
∑
l

1

l!
(
i

�

)l (∫
M
V ( Â, B̂)

)l

×
∑
m

1

m!
(

− i

�

)m (∫
∂2M

〈B, α〉 +
∫

∂1M
〈β, A〉

)m

=
∑
k,l,m

1

k!l!m! (−1)k+m

(
i

�

)k+l+m (∫
∂2M

〈B,a〉 +
∫

∂1M
〈b, A〉

)k

×
∫
L

ei ŜM,0

(∫
M
V (Â, B̂)

)l (∫
∂2M

〈B, α〉 +
∫

∂1M
〈β, A〉

)m

=
∑
l,k,m

1

k!l!m! (−1)k+m

(
i

�

)k+l+m (∫
∂2M

〈B,a〉 +
∫

∂1M
〈b, A〉

)k

×
∫
L

ei ŜM,0

(∫
M

1

6

〈
Â + B̂,

[
Â + B̂, Â + B̂

]〉)l (∫
∂2M

〈B, α〉 +
∫

∂1M
〈β, A〉

)m

.

Now we choose a basis ξi of V and let ξ i be the corresponding dual basis of W . We
expand our fields11 A = Aiξi ,B = Biξ

i and also their decompositions accordingly,
i.e. α = αiξi , and so on. We then get e.g. 〈B, dA〉 = BidAi . We now want to expand
the perturbation term in this basis. For this purpose we make use of the fact that
〈X, [Y, Z ]〉 = 〈Z , [X,Y ]〉 = 〈Y, [Z , X ]〉 for any X,Y, Z ∈ Ω•(M) ⊗ g[1], so we
can decompose the interaction term as

10Actually, a semiclassical expansion around the classical solution given by the trivial connection.
11From now on, we will make use of Einstein summation (sums over repeated indices are implied).
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V (Â, B̂) = 1

6
〈Â, [Â, Â]〉 + 1

2
〈B̂, [Â, Â]〉 + 1

2
〈Â, [B̂, B̂]〉 + 1

6
〈B̂, [B̂, B̂]〉.

Now we make the following simplifying assumption on g.

Assumption 1 The splitting g = V ⊕ W is actually a splitting into Lie subalgebras,
i.e. (g, V,W ) is a Manin triple.

By isotropy of the subspaces, this implies that the terms 〈Â, [Â, Â]〉 and 〈B̂, [B̂, B̂]〉
vanish. Splitting Â = a + α, B̂ = b + β, we expand the perturbation term in terms
of the type 〈γ1, [γ2, γ3]〉, where γi ∈ {a, α,b, β}. These we can express as

∑
i, j,k

fi jkγ
i
1γ

j
2 γ k

3 ,

where fi jk are the structure constans of g in the basis ξ1, . . . ξn, ξ
1, . . . ξ n . Integra-

tion over L can then be performed using Wick’s theorem. Let η be an abelian BF
propagator on M as discussed above. We exchange integrals over M, ∂i M and L
and get an integrand which is a sum of products of forms γ . By the Wick theorem,
the integral vanishes except for the case where there are precisely as many α’s as
β’s, in which case

∫
L

ei ŜM,0α j1(x1) · · · α jn (xn)β
k1(y1) · · · βkn (yn) =

= TM(−i�)n
∑
σ∈Sn

δ j1kσ(1)η(x1, yσ(1)) · · · δ jnkσ(n)η(xn, yσ(n)),

where TM = ∫
L ei ŜM,0 .

9.3.3 Feynman Graphs and Rules

After integration over L , we can label the terms in the perturbative expansion by
graphs as follows. Fix k, l,m ∈ N0.We consider graphs�with three types of vertices:

• Boundary background vertices: There are k of these distributed on ∂M . They are
labelled by Ba if they lie on ∂2M and bA if they lie on ∂1M .

• Boundary source vertices: There are m boundary source vertices distributed on
∂M . They are labelled by Bα on ∂2M and Aβ on ∂1M . Vertices on ∂2M have
an arrow tail originating from them, whereas vertices on ∂1M have an arrowhead
pointing towards them.

• Internal interaction vertices: There are l internal vertices. They come with three
half-edges which are labelled by γi ’s in {a, α,b, β}. These half-edges are either
marked as leaves if they are labelled by a background, as an arrow tail if they are
labelled by α, or an arrowhead if they are labelled by β.
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If it is possible to connect every arrow tail α to an arrowhead β (possibly at the same
vertex), then the graph resulting from this procedure is called an admissible graph.
To such a graph we can associate a functional on the space of boundary fields as
follows:

• For every background boundary vertex, multiply by (−i/�) times the label and
integrate over the corresponding boundary point.

• For every internal vertex multiply by (−i/�) times the correct structure constants
(specified by the half-edge labels) and integrate over M .

• For every leaf, multiply by the corresponding background field evaluated at the
point.

• For every arrow between vertices in different positions i �= j , with tail labelled by
αk and head βl , multiply by a propagator (−i�)δkl η(xi , y j ).

• For every short loop (also called tadpole), i.e. an arrow issueing and ending at the
same vertex i , with tail labelled by αk and head βl , multiply by (−i�)δkl α(xi ),
where α ∈ Ω2(M) is a so-called “tadpole form”.12

• For every source boundary vertex, we multiply by (−i/�) times the corresponding
boundary field and integrate over the corresponding boundary point.

We denote the result by ψ̂� . Denoting the set of all admissible graphs for k, l,m by
�k,l,m , we get

ψ̂M(A, B,a,b) = TM

∑
k,l,m

∑
�∈�k,l,m

ψ̂�.

Remark 11 We can factor out the non-interacting diagram parts (background bound-
ary vertices and source boundary vertices connecting to other source boundary ver-
tices). This will yield a prefactor of e

i
�
S eff

0 where S eff
0 is the free effective action

S eff
0 = −

(∫
∂2M

〈B,a〉 +
∫

∂1M
〈b, A〉

)
−

∫
∂2M×∂1M

π∗
1 BiηA

i (9.18)

i.e. the effective action of the unperturbed theory.

The remaining interaction diagramshave l ≥ 1 internal vertices andm ≤ 3l boundary
vertices. Denoting the set of admissible interaction diagrams by �int

l,m , the above
expression becomes

ψ̂M(A, B,a,b) = TMe
i
�
S eff

0

⎛
⎝1 +

∞∑
l=1

3l∑
m=0

∑
�∈�int

l,m

ψ̂�

⎞
⎠ .

Our goal is now to give an asymptotic expansion of the state of the form

12These contributions can be ignored if the Lie algebra is unimodular (i.e. the structure constants
satisfy f iik = 0) or the Euler characteristic of M is 0. We will restrict ourselves to these cases.
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ψ̂M(A, B,a,b) = TMe
i
�
S eff

M

∑
j≥1

�
j R j ,

where S eff
M is the so-called tree effective action, i.e. the sum of all diagrams whose

underlying graphs are trees, and R j denotes the sum of all diagrams that contain at
least one loop.

9.4 Split Chern–Simons Theory on the Solid Torus

In this section we compute a first approximation for the state on the solid torus K :=
D × S1 with boundary ∂M = S1 × S1 =: T

2. Here we think of D = {z ∈ C, |z|
≤ 1} as the closed unit disk in the complex plane. This is not just a simple exercise:
Note that since the quantum BV-BFV formalism allows also for the gluing of states,
given a state on the solid torus one can compute it also for any manifold that can be
glued together from tori (namely, all lens spaces).

Since the boundary T
2 is connected, there are only two possible choices for ∂1M

and ∂2M , we choose ∂1M := ∂M and ∂2M := ∅. In a future paper we plan to do a
similar computation for handlebodies, and due to Heegard decomposition this would
lead to state for general 3-folds. This leads to the following space of backgrounds:

VM = H•
D1(M)[1] ⊗ V ⊕ H•

D2(M)[1] ⊗ W = H•(M, ∂M)[1] ⊗ V ⊕ H•(M) ⊗ W

∼= (H•(D, ∂D) ⊗ H•(S1)) ⊗ V ⊕ H•(S1))[1] ⊗ W.

Let μ be a normalised generator of H •(D, ∂D), i.e.
∫
D μ = 1. Denoting t the coor-

dinate on S1, we get that χ1 = μdt, χ2 = μ is a basis of H •
D1(M)[1], with dual basis

χ1 = 1, χ2 = dt of H •
D2(M)[1]. We can then expand

ai = z1iμdt + z2iμ,

bi = z+
1i1 + z+

2i dt.

The canonical BV Laplacian on VM is then given by

ΔVM = −
(

∂

∂z1
∂

∂z+
1

+ ∂

∂z2
∂

∂z+
2

)
.

9.4.1 Effective Action on the Solid Torus

Assume as above that g = V ⊕ W is a Manin triple, i.e.

• V ∼= W ∗ as vector spaces
• V,W Lie algebras.
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a

b b

(a)

b a

(b)

b

(c)

Fig. 9.1 Graphs in the solid torus (depicted in a cross-section) with 1 interaction vertex. A bullet
denotes a point we integrate over, a long arrow denotes a propagator

Let us introduce bases ξ1, . . . , ξn of V , ξ 1, . . . , ξ n of W such that 〈ξi , ξ j 〉 = δ
j
i and

structure constants in these bases: [ξi , ξ j ]V = f ki jξk, [ξ i , ξ j ]W = gi jk ξ k . We can then
also decompose the fields

B = Biξ
i = biξ i + βiξ

i + Biξ
i ,

A = Aiξi = aiξi + αiξi + A
iξi .

The fact we have a Manin triple means that in terms of the structure constants we
have

f ki j g
lm
k = f likg

km
j − f ljkg

km
i + f mik g

lk
j − f mjkg

lk
i . (9.19)

We nowwant to compute an approximation to the tree effective action by considering
tree diagrams that have at most two interaction vertices and at most two boundary
vertices.

We will proceed by the number of interaction vertices. There is only a single
connected diagram with no interaction vertices, consisting of a single point on the
boundary. It yields the free effective action (9.18) for ∂2M = ∅, namely

Seff0 = −
∫

∂1M
bkAk .

9.4.1.1 1-Point Contribution

Let us continue with diagrams containing a single interaction vertex. It is now impor-
tant that the solid torus has zero Euler characteristic, so we do not need to consider
tadpoles. Since there can be no arrows issuing from ∂1M , diagrams with a half-edge
labelled by β at the interaction point are not admissible. Also notice that a ∧ a = 0
(it is a 4-form on a 3-manifold). In the end, there are only three contributing diagrams
(see Fig. 9.1):
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(a) The single interaction vertex with three leaves labelled by a,b and b, corre-
sponding to

Seff1 := 1

2

∫
M

〈a, [b,b]〉.

We should explain some notation. We denote by Cm,n(M, ∂M) (a suitable com-
pactification of) the configuration space of m points in the bulk and n in the
boundary. It comes with natural projections

πi : Cm,n(M, ∂M) →
{

M i ≤ m

∂M i ≥ m

and

πi j : Ci, j (M, ∂M) →

⎧⎪⎨
⎪⎩

C2(M) i, j ≤ m

C1,1(M, ∂M) i ≤ m, j ≤ n

C2(∂M) i, j ≥ m

.

By writing γi resp. γi j we mean the pullback of γ under the corresponding
projection.

(b) The single interaction vertex with two leaves labelled b and a and an arrow
connecting to a boundary source vertex βA. It evaluates to

Seff2 := −
∫
C1,1(M,∂1M)

f ijkb1,ia
j
1η12A

k
2.

(c) The single interaction vertex with a leaf labelled by b and two arrows connecting
to two different boundary source vertices. This evaluates to

Seff,3 := 1

2

∫
C1,2(M,∂1M)

f ijkb1,iη12η13A
j
2A

k
3.

9.4.1.2 2-Point Contribution

Now we consider tree diagrams with two interaction vertices. Since the diagrams
have to be connected, there has to be at least one arrow between the vertices. Since
we are only considering trees, there is exactly one arrow between them. Also, we are
considering only diagrams that have at most two boundary vertices. The diagrams
in Fig. 9.2 below show the admissible graphs in the relevant degrees. (admissible
graphs with no boundary vertices all evaluate to 0 because of property 9.13) We will
discuss the results below.



9 Split Chern–Simons Theory in the BV-BFV Formalism 317

b

a

b

(a)

b

a

a

(b)

b a

(c)

b b

(d)

b a

(e)

Fig. 9.2 Graphs with 2 interaction vertices. A bullet denotes a point we integrate over, long arrow
denotes a propagator

9.4.1.3 Performing Integration over M

We now want to perform the integration over the bulk points. There are two possi-
bilities to proceed:

1. One constructs an explicit propagator on M and computes the integrals analyti-
cally.

2. One analyses how the resulting form on the boundary behaves under de Rham
differential and integration of points, and picks a form which is a product of
propagators and representatives of cohomology on the boundary that has the
same properties. Since only these properties enter into the proof of the mQME,
this produces a valid state. We will discuss this procedure and the question of
uniqueness in more depth in a future paper.

With the second approach, choosing a propagator satisfying also (9.13) and (9.14),
one can see that the only non-vanishing contributions from two-point diagrams come
from diagrams Fig. 9.2c and e. Denoting the results by Seff4 and Seff5 respectively, we
obtain
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Seff0 = −z+
1,k

∫
∂1M

A
k − z+

2,k

∫
∂1M

dtAk,

Seff1 = 1

2
g jk
i (z1i z+

1 j z
+
1k + 2z2i z+

1 j z
+
2k),

Seff2 = f ijk z
+
1i z

2 j
∫

∂1M
dθA

k + f ijk(z
+
1i z

1 j − z+
2i z

2 j )

∫
∂1M

dtdθA
k,

Seff3 = 1

2
f ijk z

+
1i

∫
C2(∂1M)

ηT
12A

j
1A

k
2,

+ 1

2
f ijk z

+
2i

∫
C2(∂1M)

ηT
12
dt1 + dt2

2
A

j
1A

k
2,

Seff4 = f ijk f
j
lmz

+
1i z

2l
∫
C2(∂1M)

dθ1η
T
12A

k
1A

m
2

+ f ijk f
j
lm(z+

1i z
1l − z+

2i z
2l)

∫
C2(∂1M)

dt1dθ1η
T
12A

k
1A

m
2 ,

Seff5 = f ijk f
k
lmz

+
1i z

2 j
∫
C2(∂1M)

dθ1η
T
12A

l
1A

m
2

+ f ijk f
k
lm(z+

1i z
1 j − z+

2i z
2 j )

∫
C2(∂1M)

dt1dθ1η
T
12A

l
1A

m
2 ,

where t denotes the parallel (longitudinal) and θ the meridian coordinate on the
boundary torus (i.e. in the solid torus [dθ ] = 0), and ηT is a propagator for abelian
BF theory on the boundary torus.

9.4.2 mQME

Our goal in this section is to prove the modified Quantum Master Equation

(�2Δ + Ω)e
i
�
Seff = 0,

ignoring terms of nonzero order in �, more than two boundary vertices or more than
second power in the interaction. Here Ω is given by the standard quantisation of

S∂ =
∫

∂M
〈B, dA〉 + 1

2
〈B, [A,A]〉 + 1

2
〈A, [B,B]〉,

which (on the solid torus) is

Ωst = −i�
∫

∂1M
dA

k δ

δAk
+ 1

2
gbca

∫
∂1M

−�
2
A

a δ

δAb

δ

δAc
− i�

2
f abc

∫
∂1M

A
b
A

c δ

δAa
.
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Remark 12 The second term containing two derivatives yields possibly singular
results when applied to a single term in the effective action. Therefore the two deriv-
atives are allowed to act only on different terms in a product of terms of the effective
action. With this regularisation one can also check that Ω2

st = 0.

One can check that ΔSeff = 0 and therefore (�2Δ + Ω)e
i
�
Seff = − 1

2 (S
eff, Seff)

e
i
�
Seff + Ωe

i
�
Seff . So we should check that 1

2 (S
eff, Seff)e

i
�
Seff = Ωe

i
�
Seff up to higher

order corrections.

9.4.2.1 BV Bracket

Let us compute first (Seff, Seff). Abbreviating Seffi =: Si , we get that (Seff, Seff) =∑
i (Si , Si ) + 2

∑
i< j (Si , Sj ).

We have that (z+
1i , z

1 j ) = δi j = −(z+
2i , z

2 j ), and all other brackets vanish.
Since S0 and S3 only contain z+ variables, we get that (S0, S0) = (S3, S3) =

(S0, S3) = 0. Also, (S2, S3) contains three boundary fields, so we neglect it. The
same is true for any bracket of S4 with the rest, except (S1, S4), which is third power
in the structure constants. So the only contributing brackets are (S0, S1), (S0, S2),
(S1, S1), (S1, S2), (S1, S3) and (S2, S2).

9.4.2.2 Ω Part

Now let us compute Ωste
i
�
Seff . At first, we will consider only contributions of order

0 in � and less than two A
′s. Let us split Ω into the following 3 terms:

Ω0 := −i�
∫

∂1M
dA

k δ

δAk
,

Ω1 := − i�

2
f abc

∫
∂1M

A
b
A

c δ

δAa
,

Ω2 := −�
2

2
gbca

∫
∂1M

A
a δ

δAb

δ

δAc
.

By the usual rules of derivatives we will have

Ωst e
i
�
Seff =

(
(Ω0 + Ω1)

i

�
Seff + Ω2

(
i

�

)2 1

2
(Seff)2

)
e

i
�
Seff .

Let us look at the linear termfirst. Notice thatΩ0(S0) = Ω0(S1) = Ω0(S2) = 0, since
we can integrate by parts, and the forms appearing in these integrals are closed. Also,
since we are ignoring terms with more than two boundary fields, andΩ1(S1) = 0, we
only need to considerΩ1(S0) andΩ1(S2).Nowweneed to considerΩ2

(
i
�

)2 1
2! (S

eff)2.
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Since Ω2 removes one A, but adds one power in the interaction, we have to consider
terms in (Seff)2 with two or three A’s and at most first power in the interaction. One
can easily check that the only products to consider are S20 , S0S2 and S0S3.

9.4.2.3 Proving the mQME

Proposition 1 To prove the mQME in the chosen degrees one can equivalently prove
that

(S0, S1) + (S0, S2) + 1

2
(S1, S1) + (S1, S2) + (S1, S3) + 1

2
(S2, S2) =

= i

�
(Ω0(S3) + Ω0(S4) + Ω0(S5) + Ω1(S0) + Ω1(S2))

+ 1

2

(
i

�

)2

Ω2(S
2
0 + 2S0S2 + 2S0S3).

This can be shown using a direct computation, which we summarise as follows.

Lemma 7 The following identities hold:

(i) (S0, S1) = 1
2

(
i
�

)2
Ω2(S20 ),

(ii) (S1, S1) = 0,
(iii) (S0, S2) = i

�
(Ω0(S3) + Ω1(S0)) ,

(iv) (S1, S2) = (
i
�

)2
Ω2(S0S2),

(v) (S1, S3) = (
i
�

)2
Ω2(S0S3),

(vi) (S2, S2) = i
�

(Ω0(S4) + Ω0(S5) + Ω1(S2)) .

Corollary 8 The state defined by ψ̂ = e
i
�
Seff satisfies the mQME on the solid torus

at zeroth order in �, considering terms with at most two boundary fields and at most
second order in the interaction.

9.4.3 Change of Data

Now we will analyse how the state behaves under an infinitesimal change of gauge-
fixing, i.e. the representatives of cohomology and the propagator. Such a change
can be described by the action of a vector field X on M on these forms by the Lie
derivative

χ̇i = LXχi , χ̇
i = LXχ i , η̇ = LXη
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(we will always write X to mean the vector field (X, . . . , X) ∈ T M ⊕ · · · ⊕ T M ∼=
T (M × · · · × M)). Clearly we have

d

dt
ψ̂ = i

�

d

dt
(Seff)e

i
�
Seff .

Proposition 2 If we expand Seff as a sum of terms of the form

Seff =
∑ ∫

Cn(∂1M)

γ π∗
1 A · · · π∗

n A,

then its time derivative is given by

d

dt
(Seff) =

∑ ∫
Cn(∂1M)

(LX ∂ γ )π∗
1 A · · · π∗

n A,

where X ∂ denotes restriction of X to the boundary.

Proof Seff is a sum of terms of the form

∫
Cm,n(M,∂1M)

γ̂ π∗
1 A · · · π∗

n A,

where γ̂ is a product of background fields and propagators on M . Since LX is a
derivation,wehave d

dt γ̂ = LX γ̂ . But theLie derivative commuteswith the integration
over the bulk vertices, so we have proved the statement.

We are now going to define a state ζ such that

(�2Δ + Ω)(ψ̂ζ ) = d

dt
ψ̂

(as in (9.17)) for our example on the torus. Namely, we define γi ∈ Ωki (Cni (∂1M))

by

Seff =
∑
i

Fi ( f, g, z, z
+) j1··· jni

∫
Cni (∂1M)

γiπ
∗
1 A

j1 · · · π∗
ni A

jni .

Then ζ is defined by

ζ =
∑
i

Fi ( f, g, z, z
+) j1··· jni

∫
Cni (∂1M)

(ιX ∂ γi )π
∗
1 A

j1 · · · π∗
ni A

jni ,

i.e. we replace every differential form γi by its contraction with X .



322 A.S. Cattaneo et al.

Proposition 3 For the change of data described above and the effective action
described in the last paragraph, we have that

(�2Δ + Ω)(ψ̂ζ ) = d

dt
ψ̂

at zeroth order in �, considering only terms of at most two boundary fields and at
most second power in the interaction.

Proof (Sketch of the proof ) We have that

Δ((ψ̂ζ )) = Δ(ψ̂)ζ ± ψ̂Δ(ζ ) ± (ψ, ζ ) = Δ(ψ̂)ζ ± (ψ, ζ ),

since Δ(ζ) = 0. On the other hand, using that Ω0 and Ω1 are first-order differential
operators and Ω2 is a second-order differential operator,

Ω(ψ̂ζ ) = Ω0(ψ̂ζ ) + Ω1(ψ̂ζ ) + Ω2(ψ̂ζ )

= Ω0(ψ̂)ζ + ψ̂Ω0(ζ ) + Ω1(ψ̂)ζ + ψ̂Ω1(ζ ) + Ω2(ψ̂)ζ + ψ̂Ω2(ζ ) + (ψ̂ζ )′

= Ω(ψ̂)ζ + ψ̂Ω(ζ ) + (ψ̂ζ )′,

where (ψ̂ζ )′ denotes the term where one derivative in Ω2 acts on ψ̂ and the other
acts on ζ . By the mQME, terms where Δ and Ω act on ψ only cancel. Let us first
consider the term where Ω acts on ζ only. After integrating by parts, Ω0(ζ ) replaces
ιX ∂ γi by dιX ∂ γi , plus contributions from the boundary of the configuration space. As
in the proof of the mQME, those are cancelled by Ω1(ζ ). Since Ω2 can only act on
products of terms, Ω2(ζ ) = 0. Next, notice that by properties of BV brackets and
derivatives we have

(ψ, ζ ) = (Seff, ζ )ψ and (ψζ )′ = (Seffζ )′ψ.

We are left to prove that (Seff, ζ ) + (Seffζ )′ produces all the terms of the form ιX ∂dγ ,
then the result follows fromProposition 2 andCartan’smagic formula.We summarise
this as follows.

Lemma 9 Let Si be the parts of the effective action as above. Denote by ιX ∂ Si , dSi
the operation of replacing all differential forms γ appearing in Si by ιX ∂ γ or dγ
respectively. Then the following identities hold:

Ω2(S0ιX ∂ S0) = (S1, ιX ∂ S0), (9.20)

Ω2(S0ιX ∂ S2) + Ω2(S2ιX ∂ S0) = (S1, ιX ∂ S2), (9.21)

Ω2(S0ιX ∂ S3) + Ω2(S3ιX ∂ S0) = (S1, ιX ∂ S3), (9.22)

(S2, ιX ∂ S0) + (S0, ιX ∂ S2) = ιX ∂dS3, (9.23)

(S2, ιX ∂ S2) = ιX ∂dS4 + ιX ∂dS5. (9.24)
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As in the proof of the mQME, these are all the relevant brackets and products for our
choice of degrees. Since S3 and S4 are the only terms with differential forms that are
not closed, all the terms we need are produced and we conclude the statement. �

9.5 Conclusions and Outlook

We have shown that the BV-BFV formalism can be applied to split Chern–Simons
theory and produces a non-trivial example. Using the method applied in Sect. 9.4.1.3
it is possible to make statements about the effective action to all orders. Furthermore,
the structure of the identities in Lemmas 7 and 9 seems to hint to the structure of
the effective action being governed by the mQME alone, i.e. to the fact that one can
recover the state in the perturbed theory from the state in the unperturbed theory
requiring only that the mQME is satisfied. A natural question to consider would be:
to what extent one can make such a statement rigorous, and in what generality one
can prove it.

In another direction, the next step is to use the state on the solid torus to compute the
Chern–Simons theta invariants of lens spaces via the gluing operation. The relatively
simple expression for the effective action in termsof a propagator and the cohomology
on the boundary should also allow for an extension to higher genus handlebodies and
other backgroundflat connections, and thereby the computation of theChern–Simons
invariants for all 3-manifolds.
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