
Chapter 7
Introduction to Elliptic Fibrations

Mboyo Esole

Abstract The modern study of elliptic fibrations started in the early 1960s with
seminal works by Kodaira and by Néron. Elliptic fibrations play a central role in the
classification of algebraic surfaces, in many aspects of arithmetic geometry, theoret-
ical physics, and string geometry. In these notes, we introduce the reader to basic
geometric properties of elliptic fibrations over the complex numbers.We start with an
introduction to the geometry of elliptic curves defined over the complex numbers.We
then discussWeierstrass models, Kodaira’s classification of singular fibers of elliptic
surfaces, Tate’s algorithm, and Miranda’s regularization of elliptic threefolds.

7.1 Introduction

The theory of elliptic curves is an elegant and vast subject in mathematics that can
be traced back to ancient Greece and beyond. An elliptic curve is a non-singular
projective curve of genus one, with a choice of a rational point. The chosen rational
point plays the role of the neutral element of the Mordell–Weil group of the elliptic
curve. An elliptic fibration is the relative case of an elliptic curve. Intuitively, an
elliptic fibration is the variety swapped by an elliptic curve moving over a base
variety. The study of elliptic fibrations started in 1962–1963 with Kodaira’s work
on compact complex analytic surfaces [12] followed in 1964 by Néron’s paper on
minimal models of Abelian varieties [19].

Elliptic curves are a pillar of number theory; they are instrumental in cryptography
and geometric modeling. Elliptic curves have also invaded many branches of theo-
retical physics through their modular properties. Elliptic fibrations are at the heart of
F-theory, the theory that describes (among other things) the non-perturbative regime
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of type IIB string theory. Elliptic fibrations also provide geometric constructions of
certain superconformal field theories including some that do not have a Lagrangian
description.

In these notes, we will focus on the basic properties of elliptic fibrations over
the complex numbers. We do not have space for complete proofs, but we will give
appropriate references. In Sect. 7.2, we review the theory of elliptic curves over the
complex numbers. In Sect. 7.3, we study the theory of elliptic fibrations. In partic-
ular, we start in Sect. 7.3.1 by reviewing the Riemann–Roch argument to derive the
Weierstrass model of an elliptic curve. In Sects. 7.3.2 and 7.3.3, we explain in detail
how the Riemann–Roch argument is combined with an appropriate base change the-
orem to obtainWeierstrass models for an elliptic fibrations. In Sect. 7.4, we introduce
the Kodaira–Néron classification of singular fibers of a minimal elliptic surface and
discuss Tate’s algorithm. In Sect. 7.5, we study Miranda’s regularization of elliptic
threefolds and the notion of collisions of singularities.

There are many important questions that we will not address. As an apology, we
give the following reading list for elliptic fibrations and Weierstrass models:

• The classical reference for Weierstrass models is the original paper of Deligne (in
French) known as the “Formulaire” [4]. Deligne beautifully explains how to derive
aWeierstrass model for an elliptic fibration with a ration section. It also introduces
Tate’s notation widely used today. The construction of Weierstrass models is also
discussed in detail by Mumford and Suominen in [16, Chap.3] and Nakayama
[17, 18].

• The original paper of Kodaira on elliptic surfaces [12], Néron [19], and Tate [28]
contain significant details not usually covered in reviews.

• In [21], Schütt andShioda give a short introduction to the theory of elliptic surfaces.
• Chapter3 of the book of Mumford and Suominen on the theory of moduli [16] has
a self-contained section on elliptic curves and elliptic fibrations where the authors
carefully derive the existence of a Weierstrass model for an elliptic fibration with
a rational section.

• For more advanced topics, we refer to Liu’s book on arithmetic geometry [13].
• Miranda’s lecture notes on elliptic surfaces [15] are another classic review for the
study of elliptic surfaces over an algebraically closed field.

• Nakayama analyzes the global and local structure of elliptic fibrations [17, 18]. He
takes the interesting point of view of the variation of Hodge structure to describe
elliptic fibrations. He shows that a polarized variation of Hodge structures of rank
two, weight one over a base B is equivalent to a Weierstrass model.

• In [14], Miranda studies the problem of finding regular models for Weierstrass
models over a smooth surface.Hediscusses the phenomena of collisions ofKodaira
fibers and classifies the singular fibers that appear over codimension two points
after the specific regularization that he considers. These are some of the first
examples of non-Kodaira singular fibers.

• In his Ph.D. thesis [26], Szydlo generalizes the regularization of Miranda to the
case of elliptic n-folds under the same assumptions as Miranda. He also considers
the arithmetic case, when the field is not of characteristic zero and provides a

http://dx.doi.org/10.1007/978-3-319-65427-0_3
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generalization of Tate’s algorithm to the case of a complete discrete valuation ring
with non-perfect residue field [27].

• Dolgachev and Gross have computed the Ogg–Shfarevich Theory of elliptic three-
folds using Miranda’s models [7].

• Conrad has an elegant unpublished paper on minimal models for elliptic curves
with a strong EGA flavor in which he promises to “free the theory of elliptic
curves from the curse of Weierstrass equations” [2]. However, before doing this,
he presents a systematic derivation of the Weierstrass equation over Spec(R).

• In Chapter IX of [1], Beauville gives a short introduction to the theory of elliptic
surfaces from the point of view of the Kodaira dimension. Cossec and Dolgachev
study genus-one fibration in Chap.5 of [3].

7.2 Elliptic Curves over C

In this section, we collect basic facts about elliptic curves over the complex numbers.
This topic is elegantly covered in numerous books. For the proofs, we refer to Chap.1
(Sects. 1–6) of [23], Chap. 3 of [11], and Chap. VII of [22].

We denote by C the field of complex numbers and by Z the ring of integers.

7.2.1 Modular Group and Complex Tori

Modulo similitude transformations, an elliptic curve over the complex numbers is
equivalent to a complex torusC/(Z + τZ), that is, the quotient of the complex plane
by the double-lattice Z + τZ generated by 1 and the complex number τ (the period).
The Abelian group structure on the elliptic curve is then induced from the addition
in C. Geometrically, the period τ characterizes the shape of the complex torus. By
convention, τ is restricted to be in the upper-half plane:

H = {τ ∈ C| Im(τ ) > 0}. (7.1)

More generally, for a complex torus C/(ω1Z + ω2Z) with periods (ω1, ω2), after a
rescaling by ω−1

1 , we get C/(Z + τZ) with τ = ω2
ω1
. We can permute ω1 and ω2 if

necessary to ensure that Im(τ ) > 0 (Fig. 7.1).

Fig. 7.1 Torus seen as the
quotient C/(Z + τZ) τ τ +1

1 0
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Theorem 7.1 Two 2-tori are equivalent modulo similitudes if and only if their peri-
ods are related by a modular transformation:

(
a b
c d

)
· τ = aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z). (7.2)

Proof See Lemmas 1.1 and 1.2 in Chap.1. Sect. 1 of [23].

In particular, if g =
(
a b
c d

)
∈ SL(2,Z), Im(τ ) (the imaginary part of τ ) transforms

as

Im(g · τ) = Imτ

|cτ + d|2 . (7.3)

We denote by I2 the 2 × 2 identity matrix. Since the matrix (−I2) acts trivially on τ ,
to have a faithful action, we consider the modular group to be the quotient

Γ (1) := SL(2,Z)/{±I2}. (7.4)

We use the same symbol for a matrix in SL(2,Z) and its projection to Γ (1).

Theorem 7.2 The group SL(2,Z) is generated by the following two elements:

S :=
(
0 −1
1 0

)
, T :=

(
1 1
0 1

)
. (7.5)

They act as

S · τ = −1

τ
, T · τ = τ + 1. (7.6)

S and T satisfy the following relations in SL(2,Z):

S2 = (ST )3 = −I2. (7.7)

Proof See Remark 1.3 on p. 10 of [23].

When S and T are considered as elements of Γ (1), we have S2 = (ST )3 = Id so
that Γ (1) can be considered as the free group Z/2Z ∗ Z/3Z:

Γ (1) ∼= 〈a, b : a2 = b3 = 1〉. (7.8)

7.2.2 The Weierstrass Equation

TheWeierstrass℘-function provides a natural description of a complex torusC/(Z +
τZ) as a cubic curve in P2 in Weierstrass form. It is defined as follows:

http://dx.doi.org/10.1007/978-3-319-65427-0_1
http://dx.doi.org/10.1007/978-3-319-65427-0_1
http://dx.doi.org/10.1007/978-3-319-65427-0_1
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℘(z, τ ) = 1

z2
+

∑
w ∈ Λτ
w �= 0

( 1

(z − w)2
− 1

w2

)
, (7.9)

where Λτ = Z + τZ. The Weierstrass ℘-function is a meromorphic function with
double poles at the lattice points w ∈ Λτ , and doubly periodic:

℘(z + 1, τ ) = ℘(z, τ ), ℘ (z + τ, τ ) = ℘(z, τ ). (7.10)

The Weierstrass ℘-function has a pole of order 2 at the origin, while its derivative
℘ ′ (with respect to z) has a pole of order 3. Together, they satisfy the Weierstrass
equation

(℘ ′)2 = 4℘3 − g2℘ − g3, where g2(τ ) := 60G4(τ ) and g3(τ ) := 140G6(τ ).

(7.11)
For a given lattice Λτ , the Eisenstein series G2k of weight 2k are by definition

G2k(τ ) =
∑
w ∈ Λτ
w �= 0

w−2k (7.12)

Theorem 7.3 The map

C/(Z + τZ) → P
2 : z 
→

[
℘ : 1

2
℘ ′ : 1

]
, (7.13)

provides an analytic isomorphism between the complex torus C/(Z + τZ) and the
following cubic in P

2:
E : zy2 = x3 + f xz2 + gz3, (7.14)

with f = −g2/4, g = −g3/4, y = ℘ ′/2, x = ℘. For a regular curve E : y2 = x3 +
f x + g, there is a unique latticeΛτ (up to modular transformation on τ ) such that E
andC/(Z + τZ) are analytic isomorphic as complex Lie groups through the previous
map.

Proof Corollary 4.3 on p. 35 of [23].

7.2.3 Moduli Space of Smooth Elliptic Curves

To classify smooth elliptic curves up to isomorphisms, we introduce the Klein j-
invariant (also called the modular invariant).The j-invariant is a rational function
of G3

4/G
2
6, which ensures that it is a modular invariant. Any modular invariant is a

rational function ofG3
4/G

2
6 or equivalently a rational function of the j-invariant. The

j-invariant maps bijectively the moduli space of complex tori modulo similitudes
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(and therefore the moduli space of smooth elliptic curves) to the complex plane
C. Two elliptic curves over C are isomorphic if and only if they have the same
j-invariant.

Definition 7.1 The j-invariant of a Weierstrass equation y2 = x3 + f x + g is
defined as follows:

j (τ ) = 1728
4 f 3

4 f 3 + 27g2
= 1728 − 27g2

4 f 3 + 27g2
. (7.15)

The coefficient 1728 is chosen to ensure that the j-invariant has residue 1 at infinity.

Theorem 7.4 The j-invariant can be expressed (as a function of τ ) by a Laurent
series in q = exp(2π iτ) of the form:

j (τ ) = 1

q
+ 744 +

∑
n>0

cnq
n, cn ∈ N. (7.16)

Since Imτ > 0, q = exp(2π iτ) is in the unit disk |q| < 1. Themodular group admits
as a fundamental domain the closure of the open region:

RΓ = {τ ∈ H : |τ + τ | < 1 and |τ | > 1}, (7.17)

with aZ/2Z identification on the boundary given by τ ∼= −τ .Whenwe have tomake
a choice between two points on the boundary, we will take the one with negative real
part. We recall some additional properties of the j-invariant:

j (i) = 1728, j (e
2π
3 i) = 0, j (−τ) = j (τ ), lim

Im(τ )→+∞
| j (τ )| = ∞. (7.18)

Geometrically, the moduli space of complex tori modulo similitude is the orbifold

Y (1) := H/Γ (1). (7.19)

If is useful to also include tori admitting an infinite value for the j-invariant. This
corresponds to allowing an infinite value for the imaginary part of τ . By the action
of the modular group, we should then also include all the rational points of the real
line. This defines the extended upper-half plane

H ∗ := H ∪ P
1(Q) = H ∪ Q ∪ {∞} and X (1) := H ∗/Γ (1). (7.20)

X (1) is called themodular curve. The points of X (1)\Y (1) are called the cups. They
are the orbit of τ = i∞ under the action of Γ (1). The name cusp can be confusing
as τ = i∞ actually corresponds to a nodal elliptic curve, but the name cusp in this
context refers to the singularities of X (1) and not to a singular elliptic curve.
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The following classical theorem is proven, for example, in Sect. 4.1 of Chap.1
of [23].

Theorem 7.5 The j-invariant is an isomorphism between X (1) and the Riemann
sphere P1:

j : X (1) → P
1 : τ 
→ [U : V ] = [1728 · 4 f 3 : 4 f 3 + 27g2], (7.21)

where [U : V ] denotes the projective coordinates of P1. The value of the j-invariant
at τ = i∞ is the point at infinity [1 : 0].

One can define an appropriate topology and complex structure on the modular
curve X (1). This is explained in Chap.1 of [23]. Every meromorphic function on
X (1) is then a rational function of j . For this reason, the j-invariant is also called
the modular invariant.

Theorem 7.6 There is an elliptic curve with a given j-invariant for any j0 ∈ C:

y2z = x3 + gz3, g �= 0, j0 = 0, (7.22)

y2z = x3 + f xz2, f �= 0, j0 = 1728, (7.23)

y2z = x3 − 27 j0λ2

4( j0 − 1728)
xz2 − 27λ3 j0

4( j0 − 1728)
z3, λ �= 0, j0 �= 0, 1728. (7.24)

Proof Direct computation using the definition of the j-invariant.

Remark 7.1 A Weierstrass equation with a nodal singularity is given, for example,
by the following equation:

zy2 = x3 − 3xz2 + 2z3. (7.25)

The presence of a node can be seen by factorizing the r.h.s. to get

zy2 = (x − z)2(x + 2z). (7.26)

Such a curve has an infinite j-invariant since f and g are nonzero, while the dis-
criminant vanishes.

Theorem 7.7 (Automorphism of an elliptic curve) The group of automorphisms
of an elliptic curve E j with invariant j is Z/2Z for j �= 0, 1728. It is Z/4Z
for j = 1728 and Z/6Z for j = 0.

Proof See [11, Chap.3 Sect. 4].

Remark 7.2 (Ramifications and Automorphisms of elliptic curves) Since the j-
invariant can be expressed as j = 1728(4 f 3)/(4 f 3 + 27g2), it has a ramifica-
tion of degree 3 at f = 0 for which j = 0. As we can also write j − 1728 =
−27g2/(4 f 3 + 27g2), there is also a ramification of degree 2 at g = 0 for which



254 M. Esole

j = 1728. An elliptic curve with invariant j = 0 is given by E : y2 = x3 + g with
g �= 0. An elliptic curve with invariant j = 1728 is E : y2 = x3 + f x with f �= 0.
The Z/2Z automorphism of an elliptic curve with invariant j �= 0, 1728 is given
by (x, y) → (x,−y). It is the inverse of the group law. For j = 0, it is induced by
(x, y) → (ωx,−y) where ω is a choice of a cubic root of the unit (ω3 = 1). For
j = 1728, it is generated by (x, y) → (−x, iy) where i2 = −1.

Remark 7.3 (Cusps and jumpphenomena) Consider a regular elliptic curve inWeier-
strass form E : y2 = x3 + f x + g defined over a field k. For any nonvanishingλ ∈ k,
we can define the curve Eλ : y2 = x3 + f λ4x + gλ6. For λ �= 0, Eλ is isomorphic
to E after the redefinition (x, y) 
→ (λ2x, λ3y). However, at λ = 0 we always have
the cusp E0 : y2 = x3. It follows that an elliptic curve with an arbitrary j-invariant
can jump to a cusp. For this reason, cusps are excluded in the moduli space of ellip-
tic curves. When considering only smooth curves, the j-invariant maps the space
of elliptic curve modulo isomorphism onto C. This space can be compactified by
allowing curves of arithmetic genus one with a nodal singularity.

7.3 Elliptic Fibrations

We work over an algebraically closed field k of characteristic zero. The reader is
welcome to think of the base field k as the field of complex numbers C. Most of
the results do not require the field to be algebraically closed nor of characteristic
zero. But we still assume it out of convenience. We denote by Z the ring of relative
integers. By a variety we mean a reduced and irreducible algebraic scheme [10].
Given a variety X , we denote by OX the sheaf of regular functions of X . Given a
Cartier divisor D in a normal variety X , we denote by OX (−D) the normal bundle
of D in X . The sheaf OX (nD) (n ∈ Z) is the sheaf of rational functions with a pole
of degree n over the divisor D. The dual sheaf of OX (nD) is denoted OX (−nD). In
particular, D is the vanishing locus of a section of OX (D).

Definition 7.2 (Genus-one fibration) A genus-one fibration is a surjective proper
morphism ϕ : Y → B between algebraic varieties such that the generic fiber is a
regular projective curve of genus one. The variety B is called the base of the fibration.

Definition 7.3 (Discriminant locus) The locus of singular fibers of the fibration
π : Y → B is called the discriminant locus of π and is denoted Δ.

To avoid trivialities, we assume that a genus-one fibration has a non-trivial dis-
criminant locus (there is at least one singular fiber).

Definition 7.4 (Rational section) A rational section of a fibration ϕ : Y → B is a
rational map σ : B → Y such that ϕ ◦ σ is the identity away from a Zariski closed
set of B.

Definition 7.5 (Elliptic fibration) An elliptic fibration is a genus-one fibration
endowed with a rational section.
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7.3.1 Weierstrass Models for Elliptic Curves

Before discussing elliptic fibrations, we first review the classical argument to get a
Weierstrass equation for a regular curve of arithmetic genus 1 with a choice of a
rational point S. We follow Mumford and Suominen [16].

Let Y be a non-singular projective curve of genus one over k. Denote by S the
divisor associated with a fixed base k-rational point O of Y . The Riemann–Roch
theorem asserts that dimk H 0(Y,OY (nS)) = n for n > 0. Hence, the vector space
H 0(Y,OY (2S)) has dimension two. Since the only rational functions with at most a
pole of degree one on an elliptic curve are the constants, there exists a rational function
x with a double pole at O such that {1, x} is a basis of H 0(Y,OY (2S)). In the same
way, since dimk H 0(Y,OY (3S)) = 3, there is a rational function y ∈ H 0(Y,OY (3S))

with a triple pole at O . Using the basis {1, x, y} of H 0(Y,OY (3S)), we can prove
the following lemma:

Lemma 7.1 The set {1, x, x2, . . . , xm, y, xy, yx2, . . . , yxm−2} is a basis of H 0(Y,

OY (nS)) for n = 2m. We get a basis for H 0(Y,OY (nS)) for n = 2m + 1 by adding
the monomial yxm−1.

Proof By Riemann–Roch, H 0(Y,OY (nS)) has dimension n for n > 0. The basis
presented in the lemma contains n elements that are linearly independent since each
function has a pole at the origin with a different order.

For a curve of genus g, any divisor of degree 2g + 1 or bigger is a very ample divisor.
For a curve of genus 1, any divisor of degree 3 is very ample. It follows that the divisor
3S provides a closed embedding of the elliptic curve into P

2. All is left is to give
the equation of that curve. Since H 0(Y,OY (3S)) is generated by {1, x, y}, there is a
unique embedding Y → P

2 such that OY (3S) is the pullback of the tautological line
bundleOP2(1) and (x, y, 1) are the affine coordinates. The punch line of the proof of
the existence of an isomorphic cubic curve inWeierstrass form for an elliptic curve is
the following. Since y2 ∈ H 0(Y,OY (6S)), there are constants a0, a1, a3, a4, a6 ∈ k
such that

y2 + a1xy + a3y = a0x
3 + a2x

2 + a4x + a6. (7.27)

Finally, we have to show that a0 cannot be zero. If a0 = 0, {y2, xy, y, x2, x, 1}
would be linearly dependent. But this is not possible since there is no terms to cancel
out the pole (of order 6) of y2. We can then redefine (x, y, a1, a2, a3, a4, a6) →
(a0x, a20 y, a0a1, a

2
0a3, a2, a

3
0a4, a

4
0a6) and eliminate the overall factor of a40 to get

the Weierstrass equation in Tate form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (7.28)
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7.3.2 Preparation for the Relative Case

Given an elliptic fibration ϕ : Y −→ B with a section σ : B → Y , we construct a
Weierstrass model birational to Y . We assume the following conditions:

1. ϕ is a flat projective morphism between (quasi)-projective varieties.
2. Y is normal, and the base B is smooth.
3. The section σ is a morphism.
4. All fibers are irreducible projective curves.

As varieties, Y and B are in particular Noetherian schemes. Hence, the projectivity of
ϕ implies that ϕ is also a proper morphism by [10, Chap. II, Theorem 4.9]. Since we
work over an algebraically closed field, ϕ is flat if and only if ϕ is equidimensional
(every fiber has the same dimension). Hence, the assumption (4) implies that ϕ is
also a flat morphism.

Sinceϕ : Y → B is a propermorphism,ϕ is in particular separated and the section
σ defines a closed immersion of B in Y (an isomorphism from B onto a closed sub-
scheme of Y ) by [5, Corollary 5.4.6]. LetI denote the ideal sheaf of that subscheme;
its support is a Cartier divisor S of Y . We denote byNS/Y the normal sheaf of S in Y .

Using the Riemann–Roch Theorem, we can write a Weierstrass equation for each
smooth fiber Yp as in the previous section by studying the cohomology of the fiber.
The challenge is now to understand how the cohomology along the fiber varies as a
function of the fiber. This is a question of cohomology and base change, an important
topic in algebraic geometry covered, for example, in Chap.3 of [10].

In algebraic geometry, a family of schemes is simply a morphism f : X → Y
and the members of the family are the fibers Xy = X ×Y Spec k(y), where k(y) is
the residue field at the point y ∈ Y . To study the cohomology of family of schemes,
the higher direct image functors Ri f∗ are introduced. They describe the “relative
cohomology of X over Y ”.

Definition 7.6 Let X be any topological space, we denote byU (X) the category of
sheaves of Abelian groups on X . Given a continuous function f : X → Y between
topological spaces, for any integer i ≥ 0, we define Ri f∗ : U(X) → U (Y ) as the
right derived functors of the direct image function f∗.

The following theorem gives a local description of Ri f∗(F ):

Theorem 7.8 (Chapter III. Proposition 8.1 of [10]) For each i ≥ 0 and each F ∈
U (X), Ri f∗(F ) is the sheaf associated to the presheaf V 
→ Hi ( f −1(V ),F | f −1(V ))

on Y .

Given a fibration f : X → Y , one would like to find some relation between the
fiber cohomology groups Hi (Xy,Fy) and the globally defined sheaves Ri f∗(F ).
The Proper Base Change Theorem is discussed by Mumford in Sect. 5 of Chap.2 of
“Abelian Varieties.”

http://dx.doi.org/10.1007/978-3-319-65427-0_2
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In the case of an elliptic fibration ϕ : Y → B, the crucial step is the introduction
of the fundamental line bundle L (over the base of the elliptic fibration) which
provides a splitting of ϕ∗OY (nS) where S is a Cartier divisor defined by the section.
When this is established, one can just follow the usual Riemann–Roch argument and
define an embedding of the fibration in a projective bundle P2 → B using the fact
that ϕ∗OY (3S) is very ample relatively to the base B. The projective bundle will be
defined by the projectivation of ϕ∗OY (3S).

Lemma 7.2 (See [16] Chap.3 Lemma 2)

1. The ideal sheafI corresponding to the subscheme S defined by the section is an
invertible sheaf.

2. The sheaf of functionsOY (nS)with n-fold poles along S is isomorphic toI ⊗(−n)

for any integer n > 0.

Working fiber by fiber, we get the following lemma summarizing the (cohomo-
logical) properties of the pushforward of OY (nS):

Lemma 7.3 For an elliptic fibration ϕ : Y → B with a section σ : B → Y defining
a closed subscheme S of Y , R1ϕ∗(nS) and ϕ∗OY (nS) are both locally free for all n
and we have:

1. ϕ∗OY = OB

2. ϕ∗OY (nS) is locally free of rank n for all n > 0.
3. R1ϕ∗OY (nS) = 0, for all n > 0, and locally free for of rank one for n = 0.
4. R1ϕ∗OY

∼= ϕ∗NS/Y is an invertible sheaf.
5. Riϕ∗OY (nS) = 0, for all i > 1, and all integers n.

Proof See Mumford–Suominen [16, Chap.3], Deligne [4], or Miranda [15, Lecture
II Sect. 3].

The line bundle R1ϕ∗OY is a fundamental invariant of the elliptic fibration ϕ :
Y −→ B. This motivates the following definition [15].

Definition 7.7 (Fundamental line bundle of an elliptic fibration) The fundamental
line bundle of an elliptic fibration ϕ : Y → B is the invertible sheaf L defined as:

L :=
(
R1ϕ∗OY

)−1
. (7.29)

Remark 7.4 The fundamental line bundleL is often defined as (ϕ∗NS/Y )−1. By the
previous Lemma, the two definitions agree since ϕ∗NS/Y � R1ϕ∗OY . It also follows
from the Lemma that the sheaf NS/Y does not depend on the section S.

For an elliptic fibrationwith a section, the fundamental line bundle provides a splitting
of ϕ∗OY (nS) for n > 1:

Theorem 7.9 For n > 1, we have

ϕ∗OY (nS) ∼= OB ⊕ L −2 ⊕ L −3 ⊕ · · · ⊕ L −n. (7.30)
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Proof See Lemma II.4.3 of [15].

Equippedwith Theorem7.9,we can now apply the familiar Riemann–Roch argument
to derive the Weierstrass equation in the relative case.

7.3.3 Weierstrass Models for Elliptic Fibrations

Lemma 7.4 (Deligne [4]) Given an invertible section μ of L , there exists locally
for Zariski topology a basis {1, x, y} of ϕ∗OY (3S) such that:

1. 1 is a generator of OB.
2. {1, x} is a basis of ϕ∗OY (2S), and the image of x along L −2 is μ−2.
3. y belongs to ϕ∗OY (3S) and the image of y along L −3 is μ−3.
4. {1, x, x2, . . . , xn, y, yx, . . . , yxn−2} is a basis for ϕ∗OY (mS) if m = 2n with

n > 1.
5. {1, x, x2, . . . , xn, y, yx, . . . , yxn−2, yxn−1} is a basis for ϕ∗OY (mS) if m =

2n + 1 with n > 1.

Given a different choice μ′ of an invertible section of L , there exists well-defined
u, r, s, t such that the new basis (1, x ′, y′) is related to the previous one as follows:

⎧⎪⎨
⎪⎩
x ′ = u2x + r

y′ = u3y + su2x + t

μ′ = uμ

(7.31)

These transformations (7.31) will be called admissible transformations of a Weies-
trass model. For ϕ∗OY (6S), we have the basis {1, x, x2, x3, y, yx} composed of six
generators, but the space of monomials generated by {1, x, y} in ϕ∗OY (6S) is seven-
dimensional. The missing monomial is y2, and its image along L −⊗6 is μ6, which
matches the image of x3. It follows that y2 − x3 can be uniquely written as a linear
combination of generators of ϕ∗OY (5S). This gives the Weierstrass equation in Tate
form:

y2 + a1xy + a3 = x3 + a2x
2 + a4x + a6. (7.32)

For each index i , the coefficient ai is a section ofL ⊗i . The line bundleOY (3S) is very
ample relatively to the base B. The basis (1, x, y) can be seen as affine coordinates of
a P2 in which each fiber is embedded. We have an immersion of the elliptic fibration
Y into a P2 projective bundle over the base B:

Y → P(E ) := Proj(Sym E ∗), where E := ϕ∗OY (3S), (7.33)

and (x, y, 1) are the affine coordinates as they generate ϕ∗OY (3S). When the char-
acteristic is different from 2 and 3, the Weierstrass equation can be reduced to the
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shorter form: y2 = x3 + f x + g where f and g are, respectively, sections of L ⊗4

and L ⊗6. We quickly review our conventions for projective bundles.

Remark 7.5 (Conventions for projective bundles)

• We use the classical convention for the projectivization π : P(E ) → B of a locally
free sheaf E over B: The fibers of P(E ) are the lines of E passing through the
origin and not the hyperplanes. In our conventions P(E ) := Proj(Sym E ∗). In
other words, what we call P(E ) corresponds to P(E ∗) in the convention of EGA
II.4.1.1 or Hartshorne.

• Wedenote the tautological line bundle of the projective bundleP(E ) byOP(E )(−1).
Its dual is the canonical line bundle OP(E )(1). By an abuse of notation, we will
write O(−1) and O(1), respectively, for OP(E )(−1) and OP(E )(1). We also write
O(−n) (for n > 0) for the nth tensor product of O(−1). Its dual is O(n), the nth
tensor product of O(1). In particular, in our notation π∗

(
OP(E )(1)

) = E ∗.
• Given a locally free sheaf E = OB ⊕ L ⊗a ⊕ L ⊗b, there are natural embeddings
OB ↪→ E , L ⊗a ↪→ E , and L ⊗b ↪→ E . We use these embeddings to define pro-
jective coordinates [z : x : y] for P(E ):

⎧⎨
⎩
z is a section ofO(1)
x is a section ofO(1) ⊗ π∗L ⊗a

y is a section ofO(1) ⊗ π∗L ⊗b

We can now introduce the definition of a Weierstrass model.

Definition 7.8 (Weierstrass models) Given a base B endowed with a line bundleL ,
the Weierstrass model WB(L | f, g) defines an elliptic fibration Y → B where Y is
the zero-scheme of a section of O(3) ⊗ π∗L ⊗6 in P[OB ⊕ L ⊗2 ⊕ L ⊗3] cuts by
the Weierstrass normal equation:

y2z = x3 + f xz2 + gz3. (7.34)

In the previous equation, [z : x : y] are projective coordinates of the projective bundle
as explained earlier. The coefficient f is a section ofL ⊗4 and g a section ofL ⊗6. It
is assumed that the discriminant Δ := −16(4 f 3 + 27g2) is not identically zero and
defines a Cartier divisor in the base B.

Definition 7.9 (Canonical section of a Weierstrass model) A Weierstrass model
admits a section given by x = z = 0 which is always in the smooth locus of the
elliptic fibration. It is called the canonical section.

Definition 7.10 (Discriminant locus) The discriminant locus of the Weierstrass
model WB(L | f, g) is given by the zero-scheme of the following section of L ⊗12:

Δ = −16(4 f 3 + 27g2), Δ ∈ H 0(B,L ⊗12). (7.35)
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Remark 7.6 The factor of (−16) is there to match the definition of the discriminant
for a Weierstrass model in Tate form as it is given in the formulaire of Deligne and
Tate. It also matches the definition Δ(τ) = g32 − 27g23 of the cusp form associated
to the Weierstrass equation (℘ ′)2 = 4℘3 − g2℘ − g3.

Theorem 7.10 (Equivalence of Weierstrass models) Two Weierstrass models WB

(L1| f1, g1) and WB(L2| f2, g2) over the same base B are equivalent if and only
if there is a nowhere vanishing u ∈ H 0(B,L2 ⊗ L −1

1 ) such that f2 = u4 f1 and
g2 = u6g1.

We have proven the following.

Theorem 7.11 ([4, 15, 16]) Let ϕ : Y → B be a smooth elliptic fibration admitting
a section σ : B → Y . Then, there exists a triplet (L , f, g) and an isomorphism
μ : Y → WB(L | f, g) over B such that μ ◦ σ is the canonical section and L −1 �
R1ϕ∗OY . Moreover, the discriminant Δ is invertible over the locus of regular fibers.

One can have a similar result in the presence of mild singularities.

Theorem 7.12 (Nakayama)An elliptic fibrationϕ : X → B with a sectionσ : B →
X is birationally equivalent to a Weierstrass model WB(L | f, g) with canonical
singularities and such thatL is the fundamental line bundle associated to the elliptic
fibration.

As a direct consequence of the adjunction formula,we have the following theorem.

Theorem 7.13 The canonical bundle of a smooth Weierstrass model WB(L | f, g)
for a smooth elliptic fibration ϕ : Y → B is

ωY
∼= ϕ∗(ωB ⊗ L ). (7.36)

Lemma 7.5 (EllipticallyfiberedCalabi–Yau)AWeierstrassmodel Y =WB(L | f, g)
has a trivial canonical divisor if and only the dual of its fundamental line bundle is
the canonical line bundle of the base. That is

KY = 0 ⇐⇒ L −1 = ωB .

7.3.4 The j-Invariant

Given a Weierstrass model WB(L | f, g), for any nonvanishing section μ of OB , we
can rescale ( f, g) 
→ (u4 f, u6g) and get an equivalent Weierstrass model with the
same fundamental line bundle L . It follows that there is a unique invariant f 3/g2

that we can write. However, it is more convenient to use f 3/(4 f 3 + 27g2) since
4 f 3 + 27g2 is nonvanishing over regular fibers.
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Definition 7.11 ( j -invariant) To aWeierstrassmodelWB(L | f, g), we associate the
j-invariant:

j ( f, g) := 1728
4 f 3

4 f 3 + 27g2
∈ H 0(B,OB). (7.37)

Remark 7.7 Kodaira uses the normalization j = 4 f 3/(4 f 3 + 27g2). The one we
use here with the extra factor of 1728 = 123 is the normalization used by number
theorists. It matches the conventions of Deligne and Tate.

Remark 7.8 (The j-map is not injective) Let K be a field containing a nonzero
element λ which has no square root in K . Two elliptic curves with the same j-
invariant are isomorphic in a quadratic or cubic extension of the field. The elliptic
curves E1 : y2 = x3 + f x + g and E2 : y2 = x3 + λ2 f x + λ3g are not isomorphic
over K even though they have the same j-invariant. They become isomorphic over
any field extension K ′ of K containing a square root of λ.

7.3.5 Deligne’s Formulaire

In this section, we would like to collect important definitions and formulas for an
elliptic curve in Weierstrass form:

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3. (7.38)

We follow Tate’s notation [4, 29]. Geometrically, the marked point of theWeierstrass
form of an elliptic curve is its intersection point with the line at infinity z = 0, namely
the point [x : y : z] = [0 : 1 : 0], which is a point of inflection and the only point
at infinity of the curve. The curve is called a Weierstrass normal form since (in
characteristic different from 2 and 3) after the change of variables:

℘ = x + 1

12
(a21 + 4a2), ℘ ′ = 2y + a1x + a3, (7.39)

it reduces to the traditional cubic equation satisfied by the Weierstrass ℘-function
and its derivative:

E : (℘ ′)2 = 4℘3 − g2℘ − g3. (7.40)

The Néron differential associated to the elliptic curve is the the differential invariant
under translations in the group law and defined as follows:

ω = dx

2y + a1x + a3
= dy

3x2 + 2a2x + a4 − a1y
=

(
= d℘(z)

℘ ′(z)
= dz

)
. (7.41)

A curve given by a Weierstrass equation is singular if and only if its discriminant
Δ is zero. If we denote by k̄ the algebraic closure of k, two smooth elliptic curves



262 M. Esole

are isomorphic over k̄ if and only if they have the same j-invariant. We recall the
formulaire of Deligne and Tate which is useful to express the discriminant Δ, the
j-invariant and to reduce the Weierstrass equation into simpler forms:

b2 = a21 + 4a2, b4 = a1a3 + 2a4, b6 = a23 + 4a6, (7.42)

b8 = b2a6 − a1a3a4 + a2a
2
3 − a24, (7.43)

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6, (7.44)

Δ = −b22b8 − 8b34 − 27b26 + 9b2b4b6, (7.45)

j = c34
Δ

(7.46)

These quantities are related by the following relations:

4b8 = b2b6 − b24 and 1728Δ = c34 − c26. (7.47)

The variables b2, b4, b6 are used to express theWeierstrass equation after completing
the square in y by a redefinition

y 
→ y − 1

2
(a1x + a3z), (7.48)

which gives

zy2 = x3 + 1

4
b2x

2z + 1

2
b4xz

2 + 1

4
b6z

3. (7.49)

The variables c2, c4, and c6 are then obtained after eliminating the term in x2 by the
redefinition

x 
→ x − 1

12
b2z, (7.50)

which finally gives the short form of the Weierstrass equation:

zy2 = x3 − 1
48c4xz

2 − 1
864c6z

3. (7.51)

We will use the following normalization of the short Weierstrass equation (obtained
by introducing f = − 1

48c4 and g = − 1
864c6):

E : zy2 = x3 + f xz2 + gz3, Δ = −16(4 f 3 + 27g2), j = 1728
4 f 3

4 f 3 + 27g2
.

(7.52)

AWeierstrass equation is unique up to the following admissible coordinate trans-
formation - (with r, s, t, u ∈ k and u �= 0):
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x = u2x ′ + r, y = u3y′ + su2x ′ + t, (7.53)

under which we have

ua′
1 = a1 + 2s,

u2a′
2 = a2 − sa1 + 3r − s2,

u3a′
3 = a3 + ra1 + 2t,

u4a′
4 = a4 − sa3 + 2ra2 − (t + rs)a1 + 3r2 − 2st,

u6a′
6 = a6 + ra4 + r2a2 + r3 − ta3 − r ta1 − t2, (7.54a)

u2b′
2 = b2 + 12r,

u4b′
4 = b4 + rb2 + 6r2,

u6b′
6 = b6 + 2rb4 + r2b2 + 4r3,

u8b′
8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4, (7.54b)

u4c′
4 = c4, u6c′

6 = c6, (7.54c)

u12Δ′ = Δ, uω′ = ω, j ′ = j. (7.54d)

7.4 Kodaira–Néron Classification of Singular Fibers

For an elliptic fibration ϕ : Y → B, a smooth fiber is isomorphic to a torus C/(Z +
τZ) where τ lives in the upper-half planeH . Two elliptic curves with period τ and
τ ′ are isomorphic if and only if they are related by a modular transformation:

τ ′ = aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z). (7.55)

The elliptic fibration admits a discriminant locus over which the fibers are singular.
Let B∗ be the locus of points p of B such that the fiber Yp over p is a smooth curve.
By considering the ambiguity, we have a period mapping function τ : U → H from
the universal covering spaceU of B∗ into the upper-half planeH and a monodromy
representation

μ : π1(B
∗) → SL(2,Z), (7.56)

such that for γ ∈ π1(B∗) and p ∈ U

τ(γ p) = aγ τ + bγ

cγ τ + dγ

, μ(γ ) =
(
aγ bγ

cγ dγ

)
∈ SL(2,Z). (7.57)
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Table 7.1 Quasi-unipotent matrices in SL(2,Z)

Ia (a ∈ Z) II III IV(
1 a

0 1

)
= T⊗a

(
1 1

−1 0

)
= −(ST )2

(
0 1

−1 0

)
= −S

(
0 1

−1 −1

)
= −ST

I∗b (b ∈ Z) II∗ III∗ IV∗
(

−1 −b

0 −1

)
= −T−b

(
0 −1

1 1

)
= ST

(
0 −1

1 0

)
= S

(
−1 −1

1 0

)
= (ST )2

7.4.1 Monodromy

For a proper map ϕ : Y → B between smooth projective varieties, the monodromy
around a point of the discriminant locus with at most normal crossing singularity is
a quasi-unipotent matrix by Borel’s lemma [20]. We recall the definition of quasi-
unipotent and give a classification for SL(2,Z) following Kodaira.

Definition 7.12 A matrix M is said to be quasi-unipotent if all its eigenvalues are
roots of the unit. That is, there are integers n, k ≥ 1 such that (Mk − Id)n = 0.

In the case of SL(2,Z), quasi-unipotent matrices up to conjugation form eight dif-
ferent classes:

Lemma 7.6 (Kodaira [12]) A quasi-unipotent matrix in SL(2,Z) is conjugated
exactly to one of the matrices in Table7.1.

These eight conjugation classes provide a classification of the type of singular
fibers over a general point of a component of the discriminant locus assuming that
the singularity at that point is at most a normal crossing singularity.

7.4.2 Fiber Type

The local ring of a subvariety S of X is denotedOX,S , its maximal ideal isMX,S , and
the quotient field is the residue field κ(V ) = OX,S/MX,S . The local ring OX,S is the
stalk of the structure sheaf of X at the generic point ηS of S, and κ(S) is the function
field of S. If S is a divisor, OX,S is a one-dimensional local domain. In case X is
non-singular along S, OX,S is a discrete valuation ring and the order of vanishing is
given by the usual valuation.

Definition 7.13 (Fiber over a point) Let ϕ : Y −→ B be a morphism of schemes.
For any p ∈ B, the fiber over p is denoted Yp and defined using a fibral product1 as

1Given three sets (A1, A2, and S) and two maps ϕ1 : A1 → B and ϕ2 : A2 → B, we define the
fibral product A1 ×S A2 as the subset of A1 × A2 composed of couples (a1, a2) such that ϕ1(a1) =
ϕ2(a2).
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Table 7.2 Allowed collisions
of a Miranda model

j = ∞ j = 0 j = 1728

IM1 + IM2

IM1 + I ∗
M2

II + IV

II + I ∗
0

II + IV∗

IV + I ∗
0

III + I∗0

Yp = Y ×B Spec κ(p).

The first projection Yp −→ Y induces an homeomorphism from Yp onto f −1(p)
[13, Sect. 3.1 Proposition 1.16]. The second projection gives Yp the structure of a
scheme over the residue field κ(p).

If p is not a closed point,2 the residue field κ(p) is not necessarily algebraically
closed. Certain components of Yp could be κ(p)-irreducible (i.e., irreducible when
defined over κ(p)), while they become reducible after an appropriate field extension.
An irreducible scheme over a field k is said to be geometrically irreducible when
it stays irreducible after any field extension. The most refined description of the
fiber Yp is always the one corresponding to the algebraic closure κ(p) of κ(p). This
motivates the following definition (Table7.2).

Definition 7.14 The geometric fiber over p is the fiber Yp ×κ(p) κ(p), the fiber Yp

after the base change induced by the field extension κ(p) → κ(p) to the algebraic
closure of κ(p).

By construction, a geometric fiber is always composed of geometrically irreducible
components.

Definition 7.15 We say that the type of a fiber Yp is geometric if it does not change
after a field extension.

For an elliptic n-fold, the Kodaira fibers are also the geometric generic fibers of
the irreducible components of the reduced discriminant locus.

Definition 7.16 (Algebraic cycle) An algebraic cycle of a Noetherian scheme X is
a finite formal sum

∑
i ni Vi of subvarieties Vi with integer coefficients ni . If all the

subvarieties Vi have the same dimension d, the cycle is called a d-cycle. The free
group generated by subvarieties of dimension d is denoted Zd(X). The group of
all cycles, denoted Z(X) = ⊕

d Zd(X), is the free group generated by subvarieties
of X .

Definition 7.17 (Degree of a zero-cycle [9, Chap. 1, Definition 1.4, p. 13]) Let X
be a complete scheme. The degree of a zero-cycle

∑
ni pi of X is deg(

∑
i ni pi ) =∑

i ni [κ(pi ) : k], where [κ(pi ) : k] is the degree of the field extension κ(pi ) → k.

Let Θ be an algebraic one-cycle with irreducible decomposition Θ = ∑
i miΘi .

We denote by Θi · Θ j the zero-cycle defined by the intersection of Θi and Θ j for

2For example, if p is the generic point of a subvariety of B.



266 M. Esole

i �= j . A n-point of an algebraic one-cycle Θ is a point in
⋃

i Θi , which belongs to
exactly n distinct irreducible components Θi . An algebraic one-cycle Θ is said to
be a tree if it does not have n-points for n > 2. Two curves intersect transversally if
their intersection consists of isolated reduced closed points.

Following Kodaira [12], we introduce the following definition:

Definition 7.18 (Fiber type) By the type of an algebraic one-cycle Θ ∈ Z1(X) with
irreducible decomposition Θ = ∑

i miΘi , we mean the isomorphism class of each
irreducible curve Θi , together with the topological structure of the reduced polyhe-
dron

∑
Θi (that is, the collection of zero-cycles Θi · Θ j (i �= j)), and the homology

class of Θ = ∑
i miΘi in the Chow group A1(X).

Example 7.1 For instance, Θ1 · Θ2 = 2p1 + 3p2 indicates that the two curves Θ1

andΘ2 meet at two points p1 and p2 with respective intersectionmultiplicity 2 and 3.

Definition 7.19 (Dual graph) To an algebraic one-cycle Θ with irreducible decom-
position Θ = ∑

i miΘi , we associate a weighted graph (called the dual graph of Θ)
such that:

• The vertices are the irreducible components of the fiber.
• The weight of a vertex corresponding to the irreducible component Θi is its mul-
tiplicity mi . When the multiplicity is one, it can be omitted.

• The vertices corresponding to the irreducible components Θi and Θ j (i �= j) are
connected by Θ̂i, j = deg(Θi · Θ j ) edges.

Definition 7.20 (Kodaira symbols, See [12]) Kodaira has introduced the following
symbols characterizing the type of one-cycles appearing in the study of minimal
elliptic surfaces. See Table7.3 for a visualization of these fibers.

1. Type I0: a smooth curve of genus 1.
2. Type I1: an irreducible nodal rational curve.
3. Type II: an irreducible cuspidal rational curve.
4. Type I2: Θ = Θ1 + Θ2 and Θ1 · Θ2 = p1 + p2: two smooth rational curves

intersecting transversally at two distinct points p1 and p2. The dual graph of
I2 is Ã1.

5. Type III: Θ = Θ1 + Θ2 and Θ1 · Θ2 = 2p: two smooth rational curves inter-
secting at a double point. Its dual graph is Ã1.

6. Type IV: Θ = Θ1 + Θ2 + Θ3 and Θ1 · Θ2 = Θ1 · Θ3 = Θ2 · Θ3 = p: a 3-star
composed of smooth rational curves. Its dual graph is Ã2.

7. Type In (n ≥ 3): Θ = Θ0 + · · · Θn with Θi · Θi+1 = pi i = 0, . . . , n − 1 and
Θn · Θ0 = pn . Its dual graph is the affine Dynkin diagram Ãn−1.

8. Type I∗n (n ≥ 0): Θ = Θ0 + Θ1 + 2Θ2 + · · · + 2Θn+2 + Θn+3 + Θn+4, with
Θi · Θi+1 = pi (i = 1, . . . , n + 2), Θ0 · Θ2 = p0, Θn+4 · Θn+2 = pn+4. The
dual graph is the affine Dynkin diagram D̃4+n .

9. Type IV∗: Θ = Θ0 + Θ1 + 2Θ2 + 2Θ3 + 3Θ4 + 2Θ5 + Θ6 with Θi · Θi+1 =
pi (i = 3, . . . , 6), Θ1 · Θ3 = p1, Θ0 · Θ2 = p0, Θ2 · Θ4 = p2. The dual graph
is the affine Dynkin diagram Ẽ6.
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Table 7.3 Kodaira–Néron classification of geometric fibers over codimension-one points of the
base of an elliptic fibration [12, 19]. The type of the fiber is given by its Kodaira symbol. In the
second, third, and fourth column, ν(A) is the valuation of A. The j-invariant of the I∗0 is never ∞
and can take any finite value

Type v(c4) v(c6) v(Δ) j Monodromy Fiber
Dual
Graph

I0 ≥ 0 ≥ 0 0 I2 Smooth Elliptic Curve -

I1 0 0 1 ∞
(
1 1
0 1

)
(curve of arithmetic genus 1 with a nodal singularity)

Ã0

II ≥ 1 1 2 0

(
1 1

−1 0

)
(curve of arithmetic genus 1 with a cuspidal singularity)

Ã0

III 1 ≥ 2 3 1728

(
0 1

−1 0

)
Two rational curves intersecting at a double point

Ã1

IV ≥ 2 2 4 0

(
0 1

−1 −1

)
Ã2

In 0 0 n > 1 ∞
(
1 n
0 1

) 1

1 1 1 1

n nodes

Ãn−1

I∗n 2 ≥ 3 n+6 ∞
(−1 −n

0 −1

) 1

1

2 2 2

1

1

n+5 nodes

D̃n+4

≥ 2 3 n+6

IV∗ ≥ 3 4 8 0

(−1 −1
1 0

) 1 2 3 2 1

2

1

Ẽ6

III∗ 3 ≥ 5 9 1728

(
0 −1
1 0

)
1 2 3 4 3 2 1

2

Ẽ7

II∗ ≥ 4 5 10 0

(
0 −1
1 1

)
1 2 3 4 5 6 4

3

2
Ẽ8



268 M. Esole

10. Type III∗: Θ = Θ0 + 2Θ1 + 2Θ2 + 3Θ3 + 4Θ4 + 3Θ5 + 2Θ6 + Θ7 with Θi ·
Θi+1 = pi (i = 3, . . . , 6),Θ1 · Θ3 = p1,Θ0 · Θ1 = p0,Θ2 · Θ4 = p2. The dual
graph is the affine Dynkin diagram Ẽ7.

11. Type II∗: Θ = 2Θ1 + 3Θ2 + 4Θ3 + 6Θ4 + 5Θ5 + 4Θ6 + 3Θ7 + 2Θ8 + Θ0,

withΘi · Θi+1 = pi (i = 3, . . . , 7),Θ1 · Θ3 = p1,Θ8 · Θ0 = p8, andΘ2 · Θ4 =
p2. The dual graph is the affine Dynkin diagram Ẽ8.

While the dual graph of a Kodaira fiber is an affine Dynkin diagram of type Ãk ,
D̃4+k , Ẽ6, Ẽ7, or Ẽ8, the dual graph of the generic (arithmetic) fiber itself can also
be a twisted Dynkin diagram of type B̃t

3+k , C̃
t
2+k , G̃

t
2, or F̃ t

4 . This is reviewed in
Table7.5. These dual graphs are not geometric in the sense that after an appropriate
base change, they become D̃4+n , Ã2+2k or Ã1+2k , and Ẽ6, respectively. The Kodaira
fibers of the following type never need a field extension: I1, II, III, III∗, and II∗.

The remaining Kodaira fibers (IV, In>1, I∗n , and IV∗) can come from fibers Yp

whose types are not geometric and require at least a field extension of degree 2 to
describe a fiber with a geometric type. When the fiber Yp has a geometric type, the
type of the fiber is said to be split. Otherwise, the type of Yp is said to be non-split.
When that is the case we mark the fiber with an “ns” superscript: IVns, Insn , I

∗ns
n ,

(n ≥ 2) and IV∗ns. When a field extension is not needed, the fibers are marked with
an “s” superscript (“split”): IVs, Isn , I

∗s
n , (n ≥ 2) and IV∗s. The fiber of type I∗0 can

be split, semi-split, or non-split if the Kodaira types require no field extension, at
field extension of degree 2, or a field extension of degree 3. The corresponding dual
graphs are, respectively, G̃t

2, B̃
t
3, and D̃4.

7.4.3 Tate’s Algorithm

Let R be a complete discrete valuation ring with valuation v, uniformizing parameter
s, and perfect residue field κ = R/(s). We are interested in the case where κ has
characteristic zero. We recall that a discrete valuation ring has only three ideals,
the zero ideal, the ring itself, and the principal ideal sR. It follows that the scheme
Spec(R) has only two points3: the generic point (defined by the zero ideal) and the
closed point (defined by the principal ideal sR).

Let E/R be an elliptic curve over R with Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ R.

The generic fiber is a regular elliptic curve. After a resolution of singularities, we
have a regular model E over R and the special fiber is the fiber over the closed point
of Spec R.

Tate’s algorithm determines the type of the geometric special fiber over the closed
point of Spec(R) by manipulating the valuations of the coefficients and the discrim-
inant and the arithmetic properties of some auxiliary polynomials. The type of the

3As usual we take the convention in which the ring itself is not a prime ideal.
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geometric fiber is given by its Kodaira’s symbol. The special fiber becomes geometric
after a quadratic or a cubic field extension κ ′/κ . Keeping track of the field exten-
sion used gives a classification of the special fiber as a κ-scheme as discussed, for
example, in [13, Sect. 10.2]. The information on the required field extension needed
to have geometrically irreducible components is already carefully encoded in Tate’s
original algorithm, as it is needed to compute the local index.

Tate’s algorithm consists of the following eleven steps (see [28],
[23, Sect. IV.9], [6]).

Step 1. v(Δ) = 0 =⇒ I0.
Step 2. If v(Δ) ≥ 1, change coordinates so that v(a3) ≥ 1, v(a4) ≥ 1, and

v(a6) ≥ 1.
If v(b2) = 0, the type is Iv(Δ). To have a fiber with geometric irreducible
components, it is enough to work in the splitting field κ ′ of the following
polynomial of κ[T ]:

T 2 + a1T − a2.

The discriminant of this quadric is b2. If b2 is a square in κ , then κ ′ = κ ,
otherwise κ ′ �= κ:
(a) κ ′ = κ =⇒ Isn (b) κ ′ �= κ =⇒ Insn

Step 3. v(b2) ≥ 1, v(a3) ≥ 1, v(a4) ≥ 1, and v(a6) = 1 =⇒ II.
Step 4. v(b2) ≥ 1, v(a3) ≥ 1, v(a4) = 1, and v(a6) ≥ 2 =⇒ III.
Step 5. v(b2) ≥ 1, v(a3) ≥ 1, v(a4) ≥ 2, v(a6) ≥ 2, and v(b6) = 2 =⇒ IV.

The fiber has geometric irreducible components over the splitting field κ ′
of the polynomial

T 2 + a3,1T − a6,2

Its discriminant is b6,2. If b6,2 is a square in κ , then κ ′ = κ otherwise κ ′ �= κ .
(a) κ ′ = κ =⇒ IVs (b) κ ′ �= κ =⇒ IVns

Step 6. v(b2) ≥ 1, v(a3) ≥ 1, v(a4) ≥ 2, v(a6) ≥ 3, v(b6) ≥ 3, v(b8) ≥ 3. Then,
make a change of coordinates such that v(a1) ≥ 1, v(a2) ≥ 1, v(a3) ≥ 2,
v(a4) ≥ 2, and v(a6) ≥ 3. Let

P(T ) = T 3 + a2,1T
2 + a4,2T + a6,3

If P(T ) is a separable polynomial in κ , that is, if P(T ) has three distinct
roots in a field extension of κ , then the type is I∗0. The geometric fiber is
defined over the splitting field κ ′ of P(T ) in κ . The type of the special
fiber before to go to the splitting field depends on the degree of the field
extension κ ′ → κ:

• [κ ′ : κ] = 3 or 6 =⇒ I∗ns0 with dual graph G̃t
2.

• [κ ′ : κ] = 2 =⇒ I∗ss0 with dual graph B̃t
3.

• [κ ′ : κ] = 1 =⇒ I∗s0 with dual graph D̃4.
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where “ns”, “ss”, and “s” stand, respectively, for “non-split”, “semi-split”,
and “split”. In the notation of Liu, these fibers are, respectively, I∗0,3, I∗0,2,
and I∗0.

Step 7. If P(T ) has a double root, then the type is I∗n .
Make a change of coordinates such that the double root is at the origin. Then
v(a1) ≥ 1, v(a2) = 1, v(a3) ≥ 2, v(a4) ≥ 3, v(a6) ≥ 4, and v(Δ) =
n + 6 (n ≥ 1).

Step 8. If P(T ) has a triple root, change coordinates such that the triple root is
zero. Then, v(a1) ≥ 1, v(a2) ≥ 2, v(a3) ≥ 2, v(a4) ≥ 3, v(a6) ≥ 4.
Let

Q(T ) = T 2 + a3,2T − a6,4

If Q has two distinct roots (v(b6) = 4 or equivalently v(Δ) = 8), the type
is IV∗. The split type depends on the rationality of the roots. If b6,4 is a
perfect square modulo s, the fiber is IV∗s, otherwise the fiber is IV∗ns.
The split form can be enforced with v(a6) ≥ 5 and hence v(a3) = 2 to
ensure that v(b6) = 4.

Step 9. If Q has a double root, we change coordinates so that the double root is at
the origin. Then:
v(a1) ≥ 1, v(a2) ≥ 2, v(a3) ≥ 3, v(a4) = 3, v(a6) ≥ 5 =⇒ type III∗.

Step 10. v(a1) ≥ 1, v(a2) ≥ 2, v(a3) ≥ 3, v(a4) ≥ 4, v(a6) = 5 =⇒ type II∗.
Step 11. Else v(ai ) ≥ i and the equation is not minimal. Divide all the ai by si and

start again with the new equation.

7.5 Miranda Models

The theory of elliptic surfaces has been treated by Kodaira. The geometry of the
singular fibers is specially elegant. Singular fibers appear over isolated points on the
base where their positions are given by the zeros scheme of the reduced discriminant.
The complete list of singular fibers encompassed two infinite series (In and I ∗

n ) and
six exceptional cases (II, III, IV, IV∗, III∗, II∗). They can also be classified by their
monodromies, and they can be attributed a well-defined value for the j-invariant.
Namely j = 0 for the two infinite series (In, I ∗

n with n > 0), arbitrary for I ∗
0 , j = 0

for II, IV, IV∗, II∗ and j = 1728 for III and III∗. If a Weierstrass model is given, the
singular fibers can also be classified purely algebraically by Tate’s algorithm.

If the base of the fibration is higher dimensional, we can still use Kodaira results
and Tate’s algorithm over codimension-one loci in the base. But there is a new
challenge in determining the structure of singular fibers over higher codimensional
loci in the base, for example, at the collisions of several components of the discrim-
inant locus.
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Miranda has given an explicit algorithm for finding a resolution of an elliptic
threefold given by a (singular)Weierstrassmodels. Blowup the base until the reduced
discriminant locus has simple normal crossings. Continue further so that only one
of a small list of possible collisions between component of the discriminant locus
occurs. Namely the following seven possibilities:

This list of collisions is obtained by requiring three conditions:

1. The reduced discriminant has simple normal crossing.
2. Only fibers with the same j-invariant are allowed to collide. This ensures that

after the resolution, the j-invariant is a morphism.
3. Collisions that do not admit a small resolution are excluded. This ensures that the

resolution gives a flat fibration.

The only places where one leaves the category of schemes in Miranda’s resolution
is in using a small resolution of an ordinary double point in resolving the collision
IM1 + IM2 when M1 and M2 are both odd. One has to contract a ruled surface to a P1

to ensure that the fibers are unidimensional. However, if one blows up such a collision
point, one obtains over the exceptional curve a fiber of type IM1+M2 . Since M1 + M2

would be even, we can avoid collisions IM1 + IM2 with M1 and M2 odd. Miranda’s
construction is purely local. But he also shows that it is well defined globally.

Following Dolgachev and Gross [7], we define a Miranda elliptic fibrations as
follows:

Definition 7.21 (Miranda elliptic fibrations) AMiranda elliptic fibration is an ellip-
tic fibration ϕ : Y → B such that (1) Y and B are regular and ϕ is flat and admits
a section. (2) The discriminant locus has simple normal crossing. (3) All collisions
are of the following seven types IM1 + IM2 , IM1 + I ∗

M2
, II+IV, II+I ∗

0 , II+IV
∗, IV+I ∗

0
or III+I∗0.

7.5.1 Fibers at the Collisions of a Miranda Model

In Miranda models, in addition to the usual Kodaira fibers, there are new fibers
that appear in higher codimensions. For an elliptic threefold, we have fibers in
codimension-2 that could be one of the five exceptional types that are essentially
sequences chains of 3, 4 or 5 rational curves with multiplicities (see Table7.4).
There is also the fibers In and I ∗

n that can appear and a new infinite family called I ∗+
n

which admits as a dual graph the Dynkin diagram of Dn+5 (we recall that a fiber I ∗
n

has a dual graph D̃n+4. It consists of two rational curves ofmultiplicity one connected
to a chain of n + 2 rational curves of multiplicity 2. One can think of a I ∗+

n fiber
as a I ∗

n fiber in the limit in which one of the two pairs of curves of multiplicity one
is identified. Since there is a section, it is necessary the pair that does not intersect
the section.
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Table 7.4 Colliding singularities in an elliptic threefold as constructed by Miranda. The non-
Kodaira fiber I ∗+

n has the shape of a diagram of type Dn+4. The last column shows the fiber that
would be obtained for an elliptic with base a smooth curve passing through the point of collision.
The last column is what would be predicted by “applying” Tate algorithm in higher codimension

j-inv Collision Dual graph
if the base was a smooth curve
through the collision point

∞ IM1 + IM2

1

1 1 1 1

IM1+M2 nodes

same

∞ I2n+ I∗m

1

1

2 2 2

1

1
I∗n+m

1

1

2 2 2

1

1
I∗2n+m

∞ I2n+1+ I∗m

1

1

2 2 2

I∗+n+m

(n+m+4 components)

1

1

2 2 2

1

1
I∗2n+m+1

0
II+ IV

1 2 1 2 1

1

1I∗0

0
II+ I∗0 1 2 3

1 2 3 2 1

2

1

IV ∗

0
II+ IV ∗

1 2 3 4 2
1 2 3 4 5 6 4

3

2

II∗

0
IV + I∗0

1 2 4 2
1 2 3 4 5 6 4

3

2

II∗

1728
III+ I∗0

1 2 3 2 1
1 2 3 4 3 2 1

3III∗
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Table 7.5 Dual graphs for elliptic fibrations. The fiber type follows the notation of Liu [13,
Sect. 10.2]. A fiber type is called Td if the corresponding geometric fiber has Kodaira type T
and a field extension of at least degree d is necessary to make all the components of the fiber geo-
metrically irreducible. This indicates some nodes are not geometrically irreducible and split into d
geometrically irreducible curves after a field extension of degree d

fibrecirtemoegehtfohparglauDhparglauDepyTrebiF

IV2

Ã1

1 1
1

1

1

I∗�−3,2

B̃
t
�

(� ≥ 3)

1

1

2 2 2 1

1

1

2 2 2

1

1

I2�+2,1

C̃
t
�+1

(� ≥ 1)

1 1 1 1 1 1
1

1 1 1 1

1 1 1 1

1

I2�+3,2

C̃
t
�+1

(� ≥ 1)

1 1 1 1 1 1
1

1 1 1 1

1 1 1 1

1

1

IV∗
2

F̃
t
4

1 2 3 2 1

1 2 3 2 1

2

1

I∗2
B̃
t
3

1

2 1

1

2

1 1

1

1

I∗0,3
G̃
t
2

1 2 1 21
1

1

1
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7.5.2 Szydlo’s Generalization of Miranda Models

Assuming the same conditions as Miranda, Szydlo has analyzed the general case of
collisions in higher codimensions [26]. He assumes that the base scheme of the fibra-
tion is Noetherian, n-dimensional, regular, integral, and separated. He also allows
mixed characteristic.

Szydlo does not assume that the residue field is perfect, it follows that an irre-
ducible polynomial can have roots with multiplicity so that the roots only exist in
non-separable extension of the residue field. The translation needed in Tate’s algo-
rithm translates the singular point of aWeierstrassmodel to the origin and themultiple
root of certain quadratic polynomial to the origin (Table7.5).

Interestingly, starting from codimension-three, the only collisions possible are
those with J = ∞ (type In and I ∗

n ) with the following restrictions: There are at most
one fiber of type I ∗

n and at most one fiber of type I2m+1, and the number of fiber of
type I2n is bounded by the codimension of the collision. Taking this into account, we
have the following four types of collisions:

J = ∞ : I2n1 + · · · I2nk −→ I2n, n = n1 + · · · + nk
I2n1 + · · · + I2nk + I2r+1 −→ I2n+2r+1,

I2n1 + · · · + I2nk + I ∗
m −→ I ∗

n+m+1,

I2n1 + · · · + I2nk + I2r+1 + I ∗
m −→ I ∗+

n+r+m+1.

(7.58)

The resolution of the singularities at the collisions depends on some discrete
choices. In particular, the order in which the blowups are performed is crucial for
the final result. For example, Miranda and Szydlo don’t have the same results for the
collision I V + I ∗

0 and the justification can be traced back to different conventions
on how to order the blowups:

(Miranda) (Szydlo)

IV + I∗0 :
� � � �1 2 4 2 I∗0 + IV :

� � � �1 2 3 2

(7.59)
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