
Chapter 1
Prelude: A General Overview

Alexander Cardona, Sylvie Paycha and Andrés F. Reyes Lega

Abstract This chapter provides the reader with a general overview of the various
topics discussed in this volume, emphasizing the deep relations existing between
them. Following a brief historical account of the emergence of the concept of “quan-
tization” both in physics and mathematics, a description of the main concepts and
tools appearing in subsequent chapters is presented.

1.1 Introduction

This volume presents various ongoing approaches to the vast topic of quantization,
namely to the process of forming a quantum mechanical system starting from a
classical one and discusses their numerous fruitful interactions with mathematics.

In its early years, quantum theory was understood in terms of a set of empir-
ical rules that would allow to make sense—to a certain extent—of experimental
results. Thus, for instance, in the old quantum theory, an electron would still orbit
the nucleus obeying the laws of classical dynamics, but an additional condition, the
Bohr–Sommerfeld quantization condition, had to be fulfilled. This reduced the set
of allowed orbits to a discrete one, providing a way to explain the quantization of
energy levels. The subsequent development of wave mechanics by de Broglie, the
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introduction of Schrödinger’s equation and the development of Heisenberg’s “matrix
mechanics”, eventually led to the formulation based on operators in Hilbert space,
as presented by Dirac and von Neumann.

In particular, Dirac emphasized that quantum observables—described by opera-
tors acting on a Hilbert space—can be obtained by replacing classical observables
(i.e., smooth functions on phase space) by self-adjoint operators, in such a way that
the Poisson bracket of two classical observables becomes, up to a constant, the com-
mutator of the corresponding quantum observables. Thus, the quantum analogue of
the classical Poisson bracket {x, p} = 1 of classical mechanics is given by the canon-
ical commutation relations [x̂, p̂] = i�, with � the Planck constant. So quantization
brings in non-commuting operator algebras due to the presence of the parameter �.

Afirst approach to quantization presented in this volume, called deformation quan-
tization, an approach initiated by M. Flato, A. Lichnerowicz, and D. Sternheimer,
in viewing the Planck constant � as a small parameter, provides a deformation of
the structure of the algebra of classical observables rather than a radical change in
the nature of the observables. It is defined in terms of a star product viewed as a
formal deformation in the parameter � of the algebraic structure of the space of
smooth functions on a Poisson manifold. When symmetries come into play, defor-
mation quantization needs to be merged with group actions, the topic of Chap.2, by
Simone Gutt.

The non-commutativity arising from quantization is the main concern of non-
commutative geometry, which has become an autonomous area of research under
the impulse of A. Connes. His and Chamseddine’s spectral action principle applied
to an appropriate non-commutative space yields the standardmodel action coupled to
Einstein and Weyl gravity. Allowing for the presence of symmetries requires work-
ing with principal fiber bundles in a non-commutative setup, the topic of Chap.3,
by Christian Kassel. Non-commutativity is central to N. Andruskiewitsch’s contri-
bution which presents Nichols algebras that provide a unifying concept for various
viewpoints on the quantized enveloping algebra of a simple finite-dimensional Lie
algebra g at a generic parameter q.

An alternative quantization procedure which claims to encompass gravity was
born in the late 1960s and early 1970s under the name of string theory. Indeed, one
of the many vibrational states of the string is supposed to correspond to the graviton,
a quantum mechanical particle that carries gravitational force. It went through a
first golden age in the late 1980s and early 1990s known as the first string theory
revolution, and a revival around the concept of duality in the late 1990s and early
2000, known as the second string theory revolution. In Chap.6, N. Berkovits and
H. Gomez present its supersymmetric version which encodes both the bosons and
the fermions. Superstrings have drawn the attention of many a mathematician, due to
its various fruitful interactions with algebraic geometry, some of which are described
here by M. Esole.

The quantization of gauge theories entails many subtleties, in great part due to the
presence of gauge invariance. From the point of view of classical dynamics, in gauge
theories we are faced with the problem that the theory, initially defined in terms of
a Lagrangian density, cannot be described in a Hamiltonian setting without taking
into account the presence of constraints. An appropriate treatment of the quantum
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problem leads to BRST symmetry, as illustrated in the example of the superstring
in Berkovits’ lectures. The quantization of a field theory can also be performed in a
Lagrangian setting, making use of path integrals. In the case of gauge theories, the
problems reappear in the form of the Gribov ambiguity [1]. A very general approach
devised to properly dealing with the gauge-fixing problem is the Batalin–Vilkovisky
formalism, which is the topic of Chaps. 8 and 9.

Reflecting the deep relations between the various topics discussed in the lectures
to follow are the many common mathematical or physical concepts and tools they
bring into play. Let us name a few transversal concepts to various lectures that can
serve as guiding threads for the reader:

• Group actions which arise wherever there are symmetries, so in any quanti-
zation procedure which claim to take symmetries into account, such as defor-
mation quantization in a G-equivariant setup in Simone Gutt’s contribution. In
Ch. Kassel’s lectures, group actions are generalized to the non-commutative
world in the form of comodule algebras over a Hopf algebra. In N. Berkovits’
lectures, which uses the BRST formalism, the local symmetries are fixed and
ghost and antighost parameters (parameters with inverse statistics) are introduced,
thus giving rise to global symmetries and an associated conserved charge, the
BRST charge.

• Hopf algebras, the dual counterparts of groups, that correspond to structures
encoding simultaneously an (unital associative) algebra and a (counital coassocia-
tive) coalgebra, with compatibility conditions between these structures together
with an antiautomorphism satisfying a certain property. Hopf algebras naturally
occur in algebraic topology, in group theory (via the concept of a group ring),
quantum groups as can be seen from the lectures by Ch. Kassel where they are
used to quantize homogeneous spaces and in the context of Nichols algebras pre-
sented by N. Andruskiewitsch, that play a crucial role in the classification program
of Hopf algebras. They also have diverse applications ranging from condensed-
matter physics and quantum field theory to string theory.

• Fibrations that arise wherever quantizationmeets geometry, here in the form of (i)
elliptic fibrations, describing an elliptic curve moving along a variety, the topic of
M. Esole’s lectures, whose physical background lies in the realm of strings where
elliptic curves arise naturally via conformal field theory, (ii) the non-commutative
principal fiber bundles discussed in Ch. Kassel’s lectures, a non-commutative
generalization of ordinary principal fiber bundles that developedwith gauge theory,
(iii) theWeyl bundle, a bundle used in S. Gutt’s lectures, whose fibers are modeled
on theWeyl algebra, and on whose flat sections one builds a star product, (iv) as an
instance of the more general concept of foliation arising in A. Ashtekar’s lectures
as globally hyperbolic space-time in the context of quantum field theory on curved
space-time.

• Supersymmetrywhich takes different forms depending on the context, e.g., that of
a supersymmetric action in N. Berkovits’ lectures. Supersymmetry is a key ingre-
dient in string theory; there are various string theories in ten dimensions related
by dualities which give rise to challenging questions in mathematics requiring
sophisticated tools such as the elliptic fibrations of M. Esole’s lectures.

http://dx.doi.org/10.1007/978-3-319-65427-0_8
http://dx.doi.org/10.1007/978-3-319-65427-0_9


4 A. Cardona et al.

• Quantization, a deep and rich concept which is a unifying thread throughout these
lectures where it comes up in various disguises, in the form of BRST quantiza-
tion in Berkovits’ lectures, in that of functional quantization used to quantize the
strings that serve as one of the motivations for M. Esole’s study of elliptic fibra-
tions, as a deformation quantization in S. Gutt’s lectures, in the form of unitary
representations of the Weyl algebra of an infinite-dimensional symplectic vector
space discussed in A. Ashtekar’s lectures.

• Non-commutativity and deformation inherent in quantization procedures that
typically bring—possibly deformed—non-commuting operators into the scene, is
reflected in the canonical commutation relations obeyed by the annihilation and
creation operators in A. Astekar’s lectures and lies behind the operator product
expansions in conformal field theory used in N. Berkovits’ presentation. In the
framework of quantization by deformation discussed in S. Gutt’s lectures, Pois-
son brackets are substituted by �-deformed operator brackets, � being the Planck
constant. Similarly, in Ch. Kassel’s lectures, the coordinate algebraC[X, Y ] of the
complex plane is deformed to the q-deformed “coordinate algebra” Cq [X, Y ] of a
hypothetical quantum space and symmetry groups such as SL(2) are deformed to
quantum groups SLq(2). Such quantum groups relate to Nichols algebras cen-
tral to N. Andruskiewitsch’s lectures and that appear as the invariant part of
Woronowicz’s non-commutative differential calculus.

In view of their importance in this volume, the concept of “quantization” and the
related concept of non-commutativity deserve further explanations.

The word quantization is commonly used to describe a procedure to link the
“classical” description of a dynamical system with its “quantum” description. In
some cases, such a quantization can be reached exploiting geometric features of the
system, but approaches involving rather algebraic or analytical tools are also used
when the “quantization rules” can be read of the classical description of the system
in algebraic or analytic terms. There is by far no unified approach to quantization,
even when only very simple dynamical systems are considered, and in general it is
not clear either that such procedure may exist. In any case, the quest for a bridge
between the mathematical structures used to describe classical dynamical systems
and those used to come upwith a quantum description of them gave rise tomany deep
and interesting ideas in mathematical physics and, in particular, to newmathematical
theories.

From the point of view of mathematics, classical dynamics can be achieved
using tools borrowed from differential equations, classical analysis, and differen-
tial geometry and whenever symmetries are involved, group theory comes into play
in more or less sophisticated ways (from special functions and representation theory
to the geometry of Lie groups and fiber bundles). Quantum descriptions of dynamics
involve functional analysis in an essential way, but they also use non-commutative
algebras and shed light on the role of topology for systems sensitive to such type of
constraints. In addition, in recent times, new mathematical tools arise from theories
inspired by the principles and rules of quantum physics, and by the heuristics of what
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one expects of a mathematical quantization of the classical structures. Among many
others, theories motivated by quantization are non-commutative geometry, quantum
groups, and algebraic deformation theory discussed in this volume.

1.2 Poisson Geometry and Classical Dynamics

The basic objects in the commonly used geometric approaches to classical dynam-
ics are smooth manifolds equipped with 2-tensors in terms of which a Lie algebra
structure (compatible with differentiation) can be given to the space of functions on
the manifold. Alternatively, the starting point can be the operation

{·, ·} : C∞(M) × C∞(M) → C∞(M)

providing the space of smooth functions (here, we consider real-valued functions
on the manifold M , although complex-valued functions can also be considered as
observables, see, e.g., Simone Gutt’s lectures) with a Lie algebra structure. In other
words, the bracket {·, ·} enjoys the following properties

1. Linearity,
{α f + βg, h} = α{ f, h} + β{g, h},

2. Antisymmetry,
{ f, g} = −{g, f },

3. Jacobi identity,
{ f, {g, h}} + {g, {h, f }} + {h, { f, g}} = 0

for all f , g and h ∈ C∞(M), and any scalars α and β, to which we add the compat-
ibility with the usual product of functions, i.e.

4. Leibniz rule,
{ f, gh} = g{ f, h} + { f, g}h.

These four identities define the aPoisson bracket onC∞(M), andwe call M equipped
with such a bracket a Poisson manifold.

Symplectic manifolds, which are Poisson manifolds for which the Poisson tensor
is non-degenerate, are the most popular ground used to model dynamical systems.
A symplectic manifold is a pair (M, ω), where ω is a closed and non-degenerate
differential 2-form on M (in the context of Poisson geometry, the dual of the Poisson
2-tensor). For example, cotangent bundles are symplectic manifolds particularly well
adapted to model phase spaces: If Q is a smooth manifold with local coordinates
(q1, . . . , qn), its cotangent bundle T ∗ Q is a 2n-dimensional symplectic manifold
with local coordinates (q1, . . . , qn, p1, . . . , pn) whose first n coordinates define the
position in the configuration space Q and last n coordinates correspond to their
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associated generalized momenta. The symplectic structure in this case is canonical,
since the cotangent bundle projection onto the configuration space T ∗ Q

π→ Q defines
a 1-form θ in terms of which the symplectic form can bewrittenω = dθ . This 1-form
is called the symplectic potential, and in local coordinates it has the form

θ =
n∑

i=1

pi dqi .

On a general symplectic manifold (M, ω), given that ω is closed, by the Poincaré
lemma such a symplectic potential exists locally (and it is not unique in general).
However, Darboux’s theorem shows that every symplectic manifold locally has the
structure of a cotangent bundle, so that any two symplectic manifolds with the same
dimension are locally diffeomorphic since, locally, every symplectic 2-form looks
like

ω =
n∑

i=1

dpi ∧ dqi .

To illustrate how the symplectic structure can be used to model the classical dynam-
ics of a physical system, let us consider a system whose phase space is the sym-
plectic manifold (M = T ∗ Q, ω). A physical observable is, by definition, any real-
valued smooth function f ∈ C∞(M); examples are usual physical quantities—
energy, momentum, etc. Since the symplectic 2-form ω is non-degenerate, there
is a natural linear isomorphism

i· : T·M → T ∗
· M

given by contraction i(X) = iXω = ω(X, ·). This isomorphism can be used to iden-
tify tangent and cotangent vectors and in particular, to associate to each smooth
function f ∈ C∞(M) a vector field X f on M by the relation

iX f ω = −d f.

Such a vector field X f is called the Hamiltonian vector field associated with f , in
terms of which the Poisson bracket operation is given by

{ f, g} = ω(X f , Xg).

Since the exterior derivative of f can locally be written as

d f =
n∑

i=1

∂ f

∂qi
dqi + ∂ f

∂pi
dpi ,
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the Hamiltonian vector field defined by this function is the one given in local coor-
dinates by

X f =
n∑

i=1

∂ f

∂pi

∂

∂qi
− ∂ f

∂qi

∂

∂pi
. (1.1)

In local coordinates, the Poisson bracket of two functions f, g ∈ C∞(M) is the
smooth function defined by

{ f, g} =
n∑

i=1

∂ f

∂qi

∂g

∂pi
− ∂g

∂qi

∂ f

∂pi
, (1.2)

where 2n is the dimension of M , which is the usual expression for such an operation
used in physics.

Poisson brackets are useful to describe the dynamics of physical systems because,
given a Hamiltonian function H for the system, the evolution of classical observables
is given by their bracket with the corresponding Hamiltonian [2], i.e.

d f

dt
= { f, H}, (1.3)

for any smooth function f ∈ C∞(M). Notice that, if γ (t) = (pi (t), qi (t)) is an
integral curve of the Hamiltonian vector field (1.1) associated with a function H , the
time evolution of the canonical variables on the symplectic manifold is given by

−∂ H

∂qi
= ṗi = {pi , H} ,

∂ H

∂pi
= q̇i = {qi , H},

which are precisely the Hamilton equations in the case in which H is a Hamiltonian
for the system. Thus, once aHamiltonian function is given, dynamics follows directly
from the Poisson bracket defined by the 2-form ω in (1.2).

Remark. All the facts illustrated here in the context of symplectic manifolds hold
in the more general context of Poisson manifolds, where the expressions before in
terms of the 2-form ω must be replaced by their counterparts in terms of the Poisson
tensor (see, e.g., Simone Gutt’s lectures).

Some years after the birth of quantum mechanics, Paul Dirac realized that the
Hamiltonian description of the dynamics, and in particular, the algebraic structure
defined by the Poisson bracket {·, ·} on the algebra of classical observables, is crucial
to understand the relationship between classical and quantum dynamics. One of the
main features of the quantum description of a physical system is the use of self-
adjoint operators acting on Hilbert spaces as quantum observables, highlighting the
non-commutative nature of this algebra of observables. Since, with respect to the
Poisson bracket operation, classical observables as position and momenta already
satisfy commutation relations of the form {qi , p j } = δi j , Dirac noticed that to a
certain extent, the non-commutativity of quantum observables was already present
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in the classical setting and, as a consequence, the quantization process should be
understood as a morphism between similar algebraic structures in very different
contexts. On the one hand the differential-geometric approach of the dynamics in
terms of smooth functions on amanifold (as classical observables) a Hamiltonian and
a Poisson bracket and, on the other hand, the functional-analytic approach in terms of
self-adjoint operators (as quantum observables) acting on a Hilbert space (of “wave
functions”) with the usual commutator of operators as natural bracket [3]. In this
sense, one can think of Poisson manifolds as “maximal noncommutative spaces”
between the world of classical physics (commutative algebras of smooth functions
on smoothmanifolds) and the quantumworld of non-commutative algebras, the triple
(C∞(M), {·, ·}, H)—the algebra of observables plus a distinguished object in terms
of which the evolution can be given, see (1.3), often called dynamical system—being
the starting point of any quantization model.

1.3 Geometric and Deformation Quantization

Quantizing a dynamical system (C∞(M), {·, ·}, H) corresponds to a rule which
assigns to the system a representation f �→ f̂ of the algebra of classical observ-
ables in the algebra of self-adjoint operators A acting on certain Hilbert space H .
How to build the Hilbert space and the representation itself can vary according to
the physical system or the mathematical purpose, and in some cases a “complete”
quantization cannot be achieved. From the point of view of mathematics, there are
two methods which have been successfully studied and given rise to very stimulating
ideas beyond their relationshipwith physics, geometric quantization and deformation
quantization. Both methods strive to fulfill the Dirac quantization conditions [3]:

1. The application f �→ f̂ must be linear

2. If f is constant then f̂ must be the multiplication (by the constant f ) operator

3. If, for three classical observables, { f, g} = h then

[ f̂ , ĝ] = −i�ĥ (1.4)

must be verified by their quantum counterparts.

1.3.1 Geometric Quantization

The goal of geometric quantization is to build both a Hilbert space and a representa-
tion of observables from the geometry and the topology of the dynamical system one
started from. If ones starts from a symplectic manifold (M, ω), which models the
classical phase space for a dynamical system, to quantize geometrically such system
means finding a map
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C∞(M) × Γ (L ) → Γ (L )

( f, ψ) �→ f̂ ψ,

where Γ (L ) denotes the space of sections of a Hermitian line bundle L → M ,
modeling “wave functions”, satisfying the Dirac quantization conditions. The idea
goes back to Kostant and Souriau [4, 5], for whom the “prequantization bundle”
L is a complex line bundle over M , endowed with a connection ∇ with curvature
prescribed by the symplectic form, namely equal to �

−1ω. Such a bundle exists if and
only if the class of (2π�)−1ω in H 2(M, R) is in the image of H 2(M, Z) under the
inclusion (see, e.g., [6]) and, if this integrality condition is verified, the Hilbert space
of prequantization H (M,L ) is the completion of the space of square integrable
sections s : M → L , denoted by Γ (L ), with inner product

(
s, s ′) =

∫

M

〈
s, s ′〉 ε

where ε = 1
2π�

dp1 ∧ · · · ∧ dpn ∧ dq1 ∧ · · · ∧ dqn is the volume element defined by
the symplectic form on the manifold M .

Beyond the obvious theoretical importance of this construction, a very relevant
feature of this approach is the integrality condition on the symplectic form it involves,
namely the topological restriction [(2π�)−1] ∈ H 2(M, Z), which can be used to
explain the quantization of certain numbers associated with elementary physical
systems (the so-called quantum numbers, see, e.g., [6]). Regarding the representation
of observables, in this setting, to each smooth function f ∈ C∞(M), we associate
an Hermitian operator according to the Konstant–Souriau representation

f̂ = f − i�∇X f ,

where X f denotes the Hamiltonian vector field generated by f . Both the Hilbert
space and the representation of observables are determined by the symplectic form;
from this point of view, in this quantization, the quantum dynamics is completely
determined by the classical dynamics of the system, via a topological condition.

In order to illustrate how this constructionworks, let us compute a simple example,
namely the operators corresponding to position qi and momentum pi in the phase
space M = T ∗

R
n with canonical symplectic form. In this case, the correspondent line

bundle associated is M × C and the representation corresponding to the observables
gives f̂ = f − i�X f − (pi dqi )(X f ) so that, since X pi = ∂

∂qi
and Xqi = − ∂

∂pi
,

p̂i = pi − i�

(
∂

∂qi

)
− pi = −i�

∂

∂qi

and

q̂i = qi − i�

(
− ∂

∂pi

)
= qi + i�

∂

∂pi
.
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This result disagrees with the usual rules of quantum mechanics (Scrhödinger’s ver-
sion) that read p̂i = −i� ∂

∂qi
and q̂i = qi , and this is why we use the name “prequan-

tization” at this stage for this procedure, which should be promoted to a quantization
by means of a polarization (see [6] for details). Both, the geometric prequantization
and the polarization procedures, can be carried out on Poisson manifolds, see [7].

1.3.2 Deformation Quantization

The appearance of the Planck constant � in the course of the last few paragraphs
is completely incidental, and more related with the wish of recovering the usual
commutation rules of quantum mechanics as an output of the quantization process.
In contrast, for the deformation theory of quantization, it is the main parameter
(actually it is, in this context, everything but a constant), the one in terms of which
the algebra of quantum observables will be built as a deformation of the algebra of
classic observables Ao = (C∞(M), {, }).

The algebraAo = C∞(M) of classical observables is replaced byA� = C∞(M)

[[�]], the algebra of formal power series in � of elements inAo, whose elements have
the form f = ∑∞

k=0 �
k fk . Viewing this formal power series as analogues of symbols in

the theory of pseudo-differential operators gives an idea of the composition formula
of the corresponding elements in A� (Weyl’s quantization). A formal deformation
quantization of a Poisson manifold M is a couple (A� = C∞(M)[[�]], ∗), where

∗ : A� ⊗ A� → A�

denotes a star product defined on the algebra of formal power series of elements in
Ao such that, for any f, g ∈ Ao,

f ∗ g =
∑

l≥0

�
kCk( f, g),

where the Ck are defined by bidifferential operators (and define Hochschild 2-
cochains onAo) satisfying ( f ∗ g) ∗ h = f ∗ (g ∗ h). Thus, for any f = ∑∞

k=0 �
k fk

and g = ∑∞
k=0 �

k gk in A�, with fk, gk ∈ Ao for all k,

f ∗ g =
∑

l+i+ j≥0

�
lCl( fi , g j ), (1.5)

where it is assumed that the first two cochains satisfy C0( f, g) = f g (the usual
commutative product of smooth functions) and C1( f, g) − C1(g, f ) = { f, g}, so
that

f ∗ g = f g + O(�)
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and
f ∗ g − g ∗ f = −i�{ f, g} + O(�2),

a week version of (1.4).
This theory was initiated in the 1970s by F. Bayen, M. Flato, C. Fronsdal,

A. Lichnerowicz, and D. Sternheimer [8], in the context of symplectic manifolds,
and revisited by B. Fedosov in the 1980s [9] in the same context but in a much
richer geometric approach. Since then many aspects of the theory have been studied
(e.g., classification issues, generalizations to Poisson manifolds and more general
differential-geometric/algebraic structures, index theory, etc.) giving rise to very
important advances in different areas of mathematical physics. Chapter 2 offers
a complete exposition of these and other aspects of deformation quantization by
Simone Gutt, a leading expert in the subject who contributed with the theory from
an early stage, reaching important developments of the theory such as Kontsevich’s
formality theorem, the concept of reduction in the formal deformation setting and
convergence issues in the deformation quantization programme. Professor Gutt’s
lectures on deformation quantization, aimed at graduate students in physics or math-
ematics, are self-contained and contain a very complete list of references to the
abundant literature on the subject; we refer the reader to that chapter for more on this
interesting point of view on quantization.

1.4 Non-commutative Geometry and Quantum Groups

Asmentioned before, the starting point for a description of the dynamics of a classical
system is a triple (Ao, {·, ·}, H), whereAo = C∞(M) denotes the algebra of classical
observables and {·, ·} the Poisson bracket of smooth functions. Instead of a “construc-
tive” quantization of such dynamical system by a deformation as indicated before, or
an explicit construction of the quantum algebra of observables from geometric data,
there are methods involving mathematical objects supposed to represent the quan-
tum counterparts of classical dynamical systems without explicit mention to some
particular quantization process. From these points of view, the non-commutative
algebras involved in the description of the quantum dynamics of a system must, in
some appropriate limit, give back the classic algebraic setting of classical dynamics,
but they must not necessarily be built from them. Among these theories, we want
to mention Alain Connes’ non-commutative differential geometry and the theory of
quantum groups.

The basic object in non-commutative geometry is a spectral triple (A ,H , D)

(also called unbounded Fredholm module), and it involves an involutive algebra A
represented in a Hilbert spaceH , together with a self-adjoint operator D with com-
pact resolvent in H such that [D, a] is bounded for any a ∈ A [10]. This triple is
the non-commutative generalization of the natural triple (C∞(M), L2(S, M), D) of
classical differential spin geometry, where the algebra is the one of smooth functions
on a (spin) manifold M , which is commutative with respect to the usual product

http://dx.doi.org/10.1007/978-3-319-65427-0_2
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of functions, the Hilbert space is the one of L2-spinors (sections of the spin bun-
dle S → M over M) and D is the classical Dirac operator (the square root of the
Laplacian). Thus, the algebra A models the algebra of functions of a “noncommu-
tative space” which we only see through the spectral properties of the operator D the
same way as, for example, the Riemannian metric on M is encoded in the operator
spectrum of D in classical global analysis. Conditions can be imposed on a spectral
triple to generalize many important features of the usual spectral theory of pseudo-
differential operators on manifolds to these non-commutative spaces, obtaining in
addition to the usual notions of differential geometry (distances, scalar curvature,
etc.) more involved constructions as index theory (see B. Iochum’s lectures in [11],
and references therein).

In physics, non-commutative spectral triples have been used to describe elemen-
tary particle models over non-commutative space-times, conformal field theories,
and dualities among many other uses (see M. Marcolli’s lectures in [11]). Many
interesting examples of non-commutative spaces in mathematics come from the the-
ory of quantum groups, objects which are deformations of (algebras of functions on)
groups, but still have a very similar representation theory. The notion of quantum
group comes from the one of Hopf algebras, which are algebraic structures often
used to describe deformations of the function algebras on semisimple Lie groups
or enveloping algebras of semisimple Lie algebras (see Christian Kassel’s lectures
in this volume). These deformations are commonly parametrized by a parameter q
which, for some authors, is related to � as q = exp(c�) for some appropriate scalar c
and is used to exhibit explicit deformations of their classical counterparts. For exam-
ple, the algebra of the quantum group SUq(2) is the polynomial algebra generated
by four elements a, b, c and d satisfying the following relations, for a parameter
0 < q < 1,

ba = qab, ca = qac,

db = qbd, dc = qcd,

bc = cb; ad − q−1bc = da − qbc = 1,

so that the case q = 1would correspond to the classicalmatrix representation

(
a b
c d

)

of elements of the Lie group SU (2) in terms of the (commuting) coordinates a, b, c
and d.

It is interesting to notice that, if we forget the group-like features of these objects,
it has been possible to use the representation theory of many classes of quantum
groups to define appropriate Dirac operators and, as a consequence, it is possible to
realize them as a class of non-commutative spaces in the context of spectral triples.
Although the spectral triples (Aq ,Hq , D) associated with such classes of quantum
groups often use the classical Dirac operator on the corresponding classical group,
they have interesting properties with potential applications both in mathematics and
theoretical physics (see, e.g., [12, 13]).
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In classical field theory, principal fiber bundles play a very important role tomodel
gauge symmetries, i.e., internal symmetries of classical systems modeled by the
fiber (a Lie group) of a fibration over the space-time manifold; when these classical
objects are replaced by their quantum analogues, we obtain different types of objects
which appear often in the following pages. First, in Fedosov’s approach to deforma-
tion quantization, fibrations of non-commutative algebras over symplectic manifolds
appear in a natural way (theWeyl bundle) and their geometry is used to build up start
products as explained in SimoneGutt’s lecture notes. Fibrations in the context of non-
commutative geometry play an important role in applications in physics and come
in very different flavors which can be used in different situations: classical fibrations
on non-commutative spaces (i.e., classical fibers on non-commutative base mani-
folds), parametrized families of non-commutative spaces or fibrations with quantum
fibers on non-commutative spaces. The role of quantum groups in equivariant non-
commutative algebraic geometry, in particular the notion of non-commutative prin-
cipal bundle, or Hopf–Galois extension, will be discussed by Christian Kassel in this
volume. Many other examples of fibrations involving Hopf algebras can be studied
from the spectral point of view of non-commutative differential geometry; let us just
quote the case of non-commutative Hopf fibrations considered by Giovanni Landi
and Walter van Suijlekom in [14] and the non-commutative homogeneous spaces
studied by Joseph Várilly in [15].

1.5 Quantum Fields

Quantization of a classical field theory brings new features, such as the existence
of inequivalent representations of the algebra generated by creation and annihilation
operators. This is due to the fact that (by definition) such a theory is a dynamical
system with an infinite number of degrees of freedom.

As an example, let us consider the Klein–Gordon equation

(∂μ∂μ + m2)ϕ(x) = 0, (1.6)

which is the simplest one compatible with the Poincaré symmetry of Minkowski
spaceM . This equation can be obtained from a Lagrangian densityL (ϕ, ∂μϕ) as a
solution of the corresponding Euler–Lagrange equations, but the dynamics can also
be described in terms of a symplectic structure that is naturally associated with the
differential equation (1.6). In fact, let V denote the space of real smooth solutions
of the Klein–Gordon equation, in a suitable topology. Then, given a choice of a
space-like hypersurface Σ , we can define a symplectic form on V ,

σ(ϕ1, ϕ2) :=
∫

Σ

(ϕ1∇αϕ2 − ϕ2∇αϕ1) nαdvolΣ,
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which is independent of the choice of Σ . Let E
± : C∞

0 (M ) → C∞(M ) denote the
retarded/advanced fundamental solutions of (1.6). Then, for any f ∈ C∞

0 (M ), it is
easy to see that E f is a solution to the field Eq. (1.6), where E = E

− − E
+. From

this, we obtain an isomorphism V ∼= C∞
0 (M )/ ker(E). Under this isomorphism, the

symplectic form can be written as follows:

σ([ f ], [g]) =
∫

M
f (x)(Eg)(x)d4x .

The quantized field corresponding to this dynamical system can be described in terms
of a unital ∗-algebra generated by symbols Φ( f ) (with f in the complexification of
C∞
0 (M )), that are subject to the following relations:

Φ( f̄ ) = Φ( f )∗, (1.7)

Φ((∂μ∂μ + m2) f ) = 0, (1.8)

[Φ( f ),Φ(g)] = iσ([ f ], [g]). (1.9)

Physically, the generators Φ( f ) can be regarded as “smeared” field operators. In
terms of the more familiar operator-valued distribution ϕ̂(x) (“the quantum field”)
we have, at least formally,

Φ( f ) =
∫

ϕ̂(x) f (x)d4x .

Thus, Eq. (1.8) expresses the idea that the quantized field is still a solution of the
field equation, whereas (1.9), when written in terms of the quantum field ϕ̂(x), takes
the more familiar form of the canonical commutation relations (CCR):

[ϕ̂(x), ϕ̂(y)] = iΔ(x, y). (1.10)

Here, Δ(x, y) denotes the Pauli–Jordan function, a distributional solution of (1.6)
with causal support [16]. The relation between (1.9) and (1.10) is due to the fact that
Δ(x, y) is also the kernel of the (integral) operator E.

An alternative point of view consists in starting with the symplectic vector space
(V, σ ) and constructing the correspondingWeyl algebra. The commutation relations
obeyed by the generators of theWeyl algebra can be understood as the exponentiated
form of the CCR (1.10)

One of the main differences between (standard) quantummechanics and quantum
field theory comes from the Stone–von Neumann theorem, which asserts that, up to
unitary equivalence, there is only one irreducible representation of the CCR,

[q̂i , p̂ j ] = i�δi, j . (1.11)
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In this case, the symplectic space is T ∗
R

n , a finite dimensional symplectic vector
space. These two assumptions (that the symplectic manifold is a vector space and of
finite dimensionality) are essential for the proof of the Stone–von Neumann theorem.
Its failure in the case of finite dimensional symplectic manifolds leads to the richness
of interplay between topology and symplectic geometry, as discussed previously. In
the case of a (free, scalar) quantum field, we are still working with a symplectic
vector space, but now of infinite dimensionality.

For the example of the scalar field discussed here, the Hilbert space where the
CCR are represented is a bosonic Fock space. It can be described in terms of the
symmetric tensor algebra of V .

On the other hand, quantization of fermionic fields (such as the one described by
the Dirac equation) differs from its bosonic counterpart for commutation relations
have to be substituted by anticommutation relations due to the spin-statistics connec-
tion. The Fock space is then accordingly related to the exterior algebra of the space
of solutions of the classical equation [17]. As mentioned in Sect. 1.1, quantization of
a gauge theory entails new difficulties, since the Lagrangian describing such a theory
is singular, meaning that there are constraints that have to be dealt with in a proper
way. Examples of such theories and their quantization are the subject of Chap.6 (in
the context of string theory) and Chaps. 8 and 9 (dealing with different aspects of the
Batalin–Vilkovisky formalism).

From the point of view of both mathematics and physics, the appearance of renor-
malization is perhaps one of the most intriguing, as well as interesting, aspects of
quantum field theory. Although not discussed in this volume, it is convenient to
observe that, at the core of renormalization calculations arising in perturbative quan-
tum field theory, there is a Hopf algebra structure, known as the Connes–Kreimer
Hopf algebra [17, 18], which provides an algebraic interpretation of the mechanisms
underlying the “forest formula” used by physicists. Another point of view, stemming
from the algebraic approach to quantum field theory, uses ideas from deformation
quantization to study perturbative renormalization [19]. These two examples provide
further illustrations as to how deeply interconnected are the topics discussed in this
volume.
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