
Image Matching Algorithm Based
on Hashes Extraction

Alberto Rivas1, Pablo Chamoso1, Javier J. Mart́ın-Limorti1,
Sara Rodŕıguez1(B), Fernando de la Prieta1, and Javier Bajo2

1 BISITE Research Group, Edificio I+D+i, University of Salamanca,
Calle Espejo 2, 37007 Salamanca, Spain

{rivis,chamoso,limorti,srg,fer}@usal.es
2 Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid,

Campus Montegancedo, 28660 Boadilla del Monte, Madrid, Spain
jbajo@fi.upm.es

Abstract. Nowadays, the rise of social networks and the continuous
storage of large of information are topical issue. But the main problem is
not the storage itself, is the ability to process most of this information,
so that it is not stored in vain. In this way, using the shared images
within the scope of social networks, possible relationships between users
could be identified. From this idea arises the present work, which focuses
on identifying similar images even if they have been modified (apply-
ing color filters, rotations or even watermarks). The solution involves
preprocessing to eliminate possible filters and then apply hashing tech-
niques, just to obtain hashes that are unique for each image and allow
the comparison of an abstract but effective way for the user.

Keywords: Image matching · Visual analysis · Social networks

1 Introduction

This article is focused on the analysis of images published in social networks.
It has been developed to be integrated in a social network focused on work
environments and job searches. The intention of this social network is to connect
users with the same interests based on the contents they share. These contents
can be published in different ways, for example images (which may or may not be
accompanied by a descriptive text, so that text will not be taken into account).

Therefore, the problem that this article faces is the identification of images
which are the same from a human point of view, but not from a computational
point of view for one or more reasons: (a) the quality has been reduced or the
image format has been changed; (b) a watermark has been included; (c) some
changes in tonality have been applied; (d) a border has been added or removed;
(e) the image has been rotated.

The solution presented in this article tries to solve this problem with an
algorithm based on obtaining hashes from the images, so that the system is able
c© Springer International Publishing AG 2017
E. Oliveira et al. (Eds.): EPIA 2017, LNAI 10423, pp. 87–94, 2017.
DOI: 10.1007/978-3-319-65340-2 8



88 A. Rivas et al.

to quickly compare the existing images and the new image at the moment it is
sent by the user.

The rest of the article describes existing methodologies used in image match-
ing and the mechanisms involved in processing large amounts of information in
real time. Next, the proposed algorithm for image processing and matching is
described, as well as the platform that supports real-time processing. This sys-
tem is evaluated in the results section with a set of images. Finally, the article
present the conclusions drawn and the lines of future work.

2 Background

As stated, the main focus of this article is to identify images that are the same
from a human point of view but differ computationally, in order to put people
who publish similar images in contact, as they may share common interests.

When identifying whether two images are the same, it is necessary to perform
a series of checks because two apparently identical images may be computation-
ally different due to problems of compression, different quality of the image,
number of colors, size, slight modification of the image with filters or water-
marks, changes in the tonality, insertion of borders, or rotations.

In the computer vision and the image processing fields, different methodolo-
gies have been presented to extract relevant information with an image as input.
These techniques are catalogued under the concept of feature detection.

There are different types of image features including edges, corners or interest
points, and blobs or region of interest. In this regard, there are multiple algo-
rithms used to process images in search of features, the most common of which
are:

– Edges: Canny, Sobel, Harris & Stephens, SUSAN [12].
– Corners: Harris & Stephens, SUSAN, Shi & Tomasi, Level curve curva-

ture, FAST, Laplacian of Gaussian, Difference of Gaussians, Determinant of
Hessian.

– Blobs: FAST, Laplacian of Gaussian, Difference of Gaussians, Determinant of
Hessian, Maximally stable extremal regions (MSER) [8], Principal curvature-
based region detector (PCBR) [3], Gray-level blobs and others algorithms
[2,5].

The concept of perceptual hashing is similar to that of the classical para-
digm of cryptographic hashes, where the tiniest changes quickly evolve into an
entirely different hash. In perceptual hashing the image content is used to try to
fingerprint the image, so that even if hashes are not identical they can be used
to determine how “close” the images are to one and other.

Another important concept that has been applied when comparing different
images is the Hamming distance [9]. It can be used on most of the resulting
hashes to determine the perceived difference between two images, so that a
perceptually similar image would have a short hamming distance, 0, for the
same image. A quick definition for hamming distance, d(x, y), is the number of



Image Matching Algorithm Based on Hashes Extraction 89

ways in which x and y differ. In other words, the hamming distance is simply
the number of positions in which they are different.

There are different proposed algorithms based on the hash value generation
technique: pHash (also called “Perceptive Hash”, with different variations) [6],
aHash (also called Average Hash or Mean Hash) and dHash Also called Difference
Hash) [7]. The typical hash-based algorithms flow diagram is shown in Fig. 1.

Fig. 1. Typical hash-based algorithms flow diagram.

However, all variations of this methodology present different problems when
dealing with an image to which a border has been added, or one which has been
rotated.

For the latter problem, a modification of these steps is proposed in [1,4] by
introducing a rotational system whereby it is possible to differentiate images
rotated 22.5◦; however, this implies a loss of precision in the corners when the
original images are rectangular or square, the most common situations with
images uploaded to social networks, so its solution is not applicable to the present
problem.

There are online platforms dedicated to the search of images that exist on
the Internet and are similar to those provided by a user, without taking into
account the meta-data or associated text. Their applicability is oriented to the
search of image plagiarism. This is the case of TinEye [13], whose algorithm is
not public, but is based on the analysis of hashes.

3 Proposed System

The proposed methodology is based on the application of techniques of image
matching based on hash value generation, with certain transformations and pre-
processing that are able to discriminate the possible transformations that a social
network user may have applied to the image prior to uploading it.

One of the main characteristics of the proposed system, which makes it pos-
sible to improve the result of similar systems, is the preprocessing stage. This
stage is focused on applying a series of transformations to the images that are
received as input by the user. This is followed by a scheme similar to hash-based
algorithms.

3.1 Preprocessing

The strategy followed in this first stage ensures that images which have been
slightly transformed are stored in the system in the same way. This allows the
system to start comparing the same or most similar image.



90 A. Rivas et al.

The present study considered the following possible transformations that a
user could perform on an image, after which the image would still be considered
the same: (i) insertion of an outer uniform border; (ii) rotation of the image; and
(iii) insertion of a watermark. It should be noted that all hash-based algorithms
are really robust if a uniform change is applied to the tonality. Therefore, such
modifications were not considered for the comparison.

When a watermark is inserted, a hash-based algorithm application can be
sufficient to determine if it is the same image or not despite the modification.
Therefore, in this first stage of preprocessing, the proposed system focuses only
on any modifications based on the insertion of an outer uniform border, and the
rotation of the image.

– Solid border addition: The proposed system applies the Algorithm 1, allow-
ing the following steps of the methodology to be performed without consider-
ing the uniform outer border. The first step is to transform the original image
provided by the social network user I to a grayscale image gI, which will also
be used in the following steps.

Algorithm 1. Solid border removal algorithm
1: function borderRemoval(I)
2: gI = grayscale(I)
3: if hasBorder(gI) then � Check border
4: value = getBorderTonality(gI) � Get border tonality value
5: bI = toBinary(gI, value) � Border tonality as threshold
6: cnt = findContour(bI) � Get contour
7: 〈 x,y,width,height 〉 = boundingRect(cnt) � Find bounding rectangle
8: gI = gI[x : x + width, y : y + height] � Crop grayscale image
9: end if

10: return gI
11: end function

– Image rotation: The most common rotations that a user applies to an image
are based on 90◦ modifications. This part of the preprocessing is centered on
precisely this type of rotation. The objective is for the images to follow a
rotation pattern so that they always have the same orientation in the system.
Different solutions are possible, depending on whether the shape of the image
is rectangular or square.
If the image is rectangular, the system will always work with the image in
landscape mode (the two longest sides are in the x-axis) The system must then
determine which side is placed on the top and which is placed on the bottom.
If the image is square, the previous logic cannot be applied, since the four
sides are the same length. In both cases, the key of the final orientation will
be the tonality of the image, as described by the Algorithm2. Although this
step appears in the preprocessing section, it is applied in an intermediate step
of the Algorithm 3, which will be detailed below, to avoid possible changes in
the tonality resulting from the insertion of a watermark.



Image Matching Algorithm Based on Hashes Extraction 91

Algorithm 2. Image rotation algorithm
1: function imageRotation(gI,sI)
2: width = getWidth(gI)
3: height = getHeight(gI)
4: if width == height then � Square image
5: nsI = sI[0 : width, 0 : height/2] � Get North middle
6: ssI = sI[0 : width, height/2 : height] � Get South middle
7: wsI = sI[0 : width/2, 0 : height] � Get West middle
8: esI = sI[width/2 : width, height/2 : height] � Get East middle
9: highestMean = getHighestValue(nsI, ssI, wsI, esI)

10: if highestMean == nsI then � Highest tonality on top
11: rI = rotate(sI,180)
12: else if highestMean == wgI then
13: rI = rotate(sI,270)
14: else if highestMean == egI then
15: rI = rotate(sI,90)
16: else
17: rI = sI
18: end if
19: else � Rectangular image
20: if width < height then
21: gI = rotate(sI,90) � Longest image side over x-axis (landscape)
22: end if
23: nsI = sI[0 : width, 0 : height/2] � Get North middle
24: ssI = sI[0 : width, height/2 : height] � Get South middle
25: if ngI < sgI then � Highest tonality on top
26: rI = rotate(sI,180)
27: else
28: rI = sI
29: end if
30: end if
31: return rI
32: end function

3.2 Hash-Based Transformations

Hash-based algorithms are the most suited for the problem of image matching
because they are very fast. The pHash algorithm extends the aHash approach by
using discrete cosine transform (DCT) [11] to reduce the frequencies. We have
followed a similar schema; we defined the Algorithm as 3 and used it to obtain
the hash associated with the image I, which is provided by a user of a social
network. The input of this algorithm is the grayscale image gI, obtained in the
preprocessing step.

Top-left 12 × 12 values are obtained because they represent the lowest fre-
quency range. In contrast, the bottom right is the highest frequency range. The
human eye is not very sensitive to high frequencies.



92 A. Rivas et al.

Algorithm 3. pHash-based algorithm
1: function getImageHash(gI)
2: sI = reduceSize(gI, 32, 32) � Reduce size to 32x32 pixels
3: rI = imageRotation(gI,sI) � Rotate as defined in Algorithm 2
4: DCT = computeDCT(rI, 32, 32) � Get a collection of frequencies and scalars
5: sDCT = reduceDCT(DCT, 12, 12) � Get the lowest freq. (top-left 12x12)
6: for each px ∈ sDCT do
7: if px > sDCT then � Compare every pixel with sDCT mean
8: hash = hash + 1
9: else

10: hash = hash + 0
11: end if
12: end for
13: return hash
14: end function

As a result, we have the value of the hash composed of 144 values (12×12) 1
or 0 in order to evaluate the distance by using the Hamming distance algorithm,
which simply compares each bit position and counts the number of differences.

4 Results

To perform the tests of the proposed system, a set of 200,000 images available
in the public repository of Pixbay [10] was used as image dataset.

Figure 2 presents an example of the processing of two images obtained from
the original. On the left side, there is an image with a yellowish hue, rotated
90◦, with an outer border, and a watermark in the lower left corner. On the
right, the processing of an image obtained directly from the original is shown.
The result in both cases is a 144-digit value composed of 1 and 0, as detailed in
the Algorithm 3. After calculating the Hamming distance, the system determines
that both images are 99.3% equal.

To evaluate the performance of the algorithm, it was compared with the
different implementations of hash-based algorithms. 1,000 images were obtained
from the total set of the images to which different transformations were applied.
The success rate was evaluated by considering the result a success for those cases
in which the system associates the modified image with the original image of the
dataset as the most similar, having a similarity value greater than 99%. The
applied transformations and the images used are shown in Table 1.

All of these images were provided as input using the implementations of
the pHash, aHas, and dHash algorithms, the proposed algorithm. Regarding to
Tineye, whose algorithm is not public (although it has been published that it is
based on hash), images have been processed by using its public API [13].

Following these indications, the results obtained are reflected in Table 2,
where all images that have been catalogued as equal, and indeed were, are con-
sidered a success.



Image Matching Algorithm Based on Hashes Extraction 93

I

I

gI’

gI’

gI

gI

sI

rI

hash

sI

rI

hash

Fig. 2. Example of the system process. (Color figure online)

Table 1. Test dataset

n b w r b +w b + r w + r b + w + r Total

Images 125 125 125 125 125 125 125 125 1000

Legend: n= none; b = border; w = watermark; r = rotation

Table 2. Hit rate for hash based algorithms

n b w r b + w b+ r w + r b + w + r Avg

pHash 100% 0% 75% 0% 0% 0% 0% 0% 22%

aHash 100% 0% 74% 0% 0% 0% 0% 0% 21%

dHash 100% 0% 75% 0% 0% 0% 0% 0% 22%

Tineye 100% 0% 80% 0% 0% 0% 0% 0% 22%

Proposed 100% 90% 75% 100% 74% 90% 74% 74% 84%

Legend: n = none; b= border; w = watermark; r = rotation; avg = average

It can be observed that the proposed system shows a better result in all trans-
formations except when a watermark is included. In that case, Tineye and pHash
show a higher success rate. In the case of Tineye, the details of its algorithm
are not known. With respect to pHash, the improvement in the success rate is
mainly due to the number of frequencies obtained when the DST is reduced
(8 × 8), lower than for the proposed system (12 × 12).

5 Conclusion and Future Work

The proposed system improves current state of the art of image matching, by
including images which have been slightly modified by the inclusion of a water-
mark, outer borders, or rotations of 90◦, 180◦, and 270◦.

The results are robust in terms of the insertion of edges and rotations. How-
ever, with the insertion of watermarks which have considerably altered the image,



94 A. Rivas et al.

none of the algorithms was able to associate the images with precision. In fact,
in order not to introduce false positives (identify images as equal images when
they are in fact not), it is necessary to compromise the detail with which one
wants to perform the analysis.

As a future line of work, this solution will be incorporated into an existing job
search social network in order to suggest contacts to users who have published or
shared equal images. Regarding the image matching system, different solutions
capable of associating images whose proportions have been modified by the user,
either by trimming and removing part of the exterior of the image or by having
deformed the image, are being evaluated. This evolution could make it possible
to check rotations in each of the possible 360◦.

Acknowledgments. This work was carried out under the frame of the project with ID
RTC-2016-5642-6. The research of Pablo Chamoso has been financed by the Regional
Ministry of Education in Castilla y León and the European Social Fund.

References

1. Aghav, S., Kumar, A., Gadakar, G., Mehta, A., Mhaisane, A.: Mitigation of rota-
tional constraints in image based plagiarism detection using perceptual hash. Int.
J. Comput. Sci. Trends Technol. 2, 28–32 (2014)

2. De Paz, J.F., Rodŕıguez, S., Bajo, J., Corchado, J.M.: Mathematical model for
dynamic case-based planning. Int. J. Comput. Math. 86(10–11), 1719–1730 (2009)

3. Deng, H., Zhang, W., Mortensen, E., Dietterich, T., Shapiro, L.: Principal
curvature-based region detector for object recognition. In: 2007 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1–8. IEEE, June 2007

4. Hernandez, R.A.P., Miyatake, M.N., Kurkoski, B.M.: Robust image hashing using
image normalization and SVD decomposition. In: 2011 IEEE 54th International
Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4. IEEE, August
2011

5. Kamaruddin, S., Ghanib, N., Liong, C., Jemain, A.: Firearm classification using
neural networks on ring of firing pin impression images. ADCAIJ: Adv. Distrib.
Comput. Artif. Intell. J. 1(3), 27–34 (2013). doi:10.14201/ADCAIJ20121312734

6. Krawetz, N.: Looks Like It (2011). http://www.hackerfactor.com/blog/index.
php?/archives/432-Looks-LikeIt.html. Accessed 12 Jan 2017

7. Krawetz, N.: Kind of Like That (2013). http://www.hackerfactor.com/blog/?/
archives/529-Kind-of-Like-That.html. Accessed 12 Jan 2017

8. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from
maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

9. Norouzi, M., Fleet, D.J., Salakhutdinov, R.R.: Hamming distance metric learning.
In: Advances in Neural Information Processing Systems, pp. 1061–1069 (2012)

10. Pixabay.com. Free Images - Pixabay (2017). https://pixabay.com/. Accessed 17
Jan 2017

11. Rao, K.R., Yip, P.: Discrete Cosine Transform: Algorithms, Advantages, Applica-
tions. Academic Press, San Diego (2014)

12. Smith, S.M., Brady, J.M.: SUSAN—a new approach to low level image processing.
Int. J. Comput. Vis. 23(1), 45–78 (1997)

13. Tineye.com. TinEye Reverse Image Search (2017). https://www.tineye.com/.
Accessed 12 Jan 2017

http://dx.doi.org/10.14201/ADCAIJ20121312734
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-LikeIt.html
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-LikeIt.html
http://www.hackerfactor.com/blog/?/archives/529-Kind-of-Like-That.html
http://www.hackerfactor.com/blog/?/archives/529-Kind-of-Like-That.html
https://pixabay.com/
https://www.tineye.com/

	Image Matching Algorithm Based on Hashes Extraction
	1 Introduction
	2 Background
	3 Proposed System
	3.1 Preprocessing
	3.2 Hash-Based Transformations

	4 Results
	5 Conclusion and Future Work
	References




