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Abstract. Several studies have shown that there is an important link between
continual monitoring by the teachers and the students’ performance. Unfortu-
nately, the teachers cannot be continuously looking for what the students are
doing. To overcome this situation, we propose the use of CodeInsights, a tool
capable of capturing, in an autonomous, transparent and unobtrusive manner,
information about the students’ performance and then, based on teacher’s
expectations, notify them about possible deviations in the specific context of
programming courses. The decision on whether the system should or should not
notify the teacher is supported by an artificial cognitive selective attention
mechanism. Although CodeInsights, provided with the described mechanism,
hasn’t been fully tested in a real case scenario, we present some specific
examples of how it can be used to assist teachers.

Keywords: Intelligent systems in education � Digital teaching assistant �
Programming � Selective attention

1 Introduction

Now more than ever, programming is becoming more and more part of the student’s
life, even on early stages of their lives [1]. However, programming is not a trivial task,
and the students experience a series of difficulties along the way [2]. Due to factors like
inhibition, the students may be facing difficulties, and the teacher might be totally
unaware of them. As those difficulties can be relevant to their progress, their
non-clarification may lead to drastic consequences in terms of the learning process.
Furthermore, when the students are capable of expressing their problems to the
teachers, it is always difficult trying to understand what the student already knows and
has done to solve the problem in hand. This lack of information sometimes leads the
teachers to solve the problem themselves without explaining its origin to the students.

Finding ways to overcome these barriers between teachers and students, which
includes the problems faced by the teachers in becoming aware whether or not the
students are facing difficulties, as well as their nature, has given rise to research on
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teaching methodologies. As stated by Bloom [3], the most efficient teaching-learning
method is individualized tutoring, since the teacher is more aware of the students’
difficulties and capabilities, and can more easily adapt the teaching pace, as well as the
materials and assignments, proposed to the students. Also, Raabe and Silva [4] claim
that students’ performance is highly coupled with the capacity that the teachers have to
detect their difficulties and react within a useful time. In the specific context of
face-to-face learning with a large number of students, this proximity relationship
between teachers and students may be hard to achieve.

Finding strategies that increase this proximity relationship has driven researchers to
make use of technology. In fact, strategies that include technology in education have
provided a promising solution to overcome this problem. One of those strategies
includes using agent-based technology. For instance, according to Jafari [5], there are
three groups of intelligent agents for teaching and learning applications: digital
classmate, digital teaching assistant, and digital secretary. Among these groups,
especially related to our interests is the group of digital teaching assistants. In this
category, we find those systems whose main purpose is to autonomously collect and
analyze data about the student’s work, and display it to the teacher in the most suitable
way. Eventually, the systems may also generate notifications to the teacher whenever a
deviation from the usual path is found. As examples of this type of systems, we may
find the Logic-ITA system [6], the AVA system proposed by Raabe and Silva [4], the
teaching assistant agent proposed by Choy et al. [7] or the AmI-RIA: Real-Time Tea-
cher Assistant proposed by Mathioudakis et al. [8]. Particularly related to the context of
programming, we may find the ELJT (E-Learning Java Trainer) [9], the Retina system
proposed by Murphy et al. [10], the TestMyCode system [11] or ClockIt [12].

A significant limitation of some of these systems is that theymay be highly coupled to
a specific set of assignments, or the students may need to use a specific development
methodology (e.g. the Test Driven Methodology must be utilized with the TestMyCode
tool). Also relevant is the fact that some tools were designed to analyze the code snap-
shots1 a posteriori, and not in real time, which in our opinion is a significant drawback.

In most cases, these systems are only used to collect and process data coming from
the students and make the resulting information available to the teacher. The teacher
should then browse through the data available and try to make sense of it, which
obviously is very time-consuming. For this purpose, systems should include some
notification system that will alert the teachers about specific aspects of the student’s
performance (e.g. unfinished assignments, plagiarism of code). However, if not care-
fully designed, systems could rapidly start to notify the teachers about everything,
which will lead to a scenario where the overload of information will make the system
impossible to use. To avoid this information overload scenario, systems may include
selective attention mechanisms, capable of identifying the most relevant information to
display to the users.

Although there has been much research in this field, there is not a general
theory/model of selective attention. In spite of this, a number of models of selective

1 A code snapshot is a copy of the source code written by the student to solve a designted assignment
at a given moment in time.
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attention have been proposed in Cognitive Science (e.g., [13–15]). Particularly related
to these models is the issue of measuring the value of information. A considerable
amount of literature has been published on these measures, especially from the fields of
active learning and experimental design. Most of those measures rely on assessing the
utility or the “informativeness” of information (see [16] for more details).

A number of models of selective attention have been proposed in Cognitive Science
(e.g., [17]). Particularly related to these models is the issue of measuring the value of
information. A considerable amount of literature has been published on these measures,
especially from the fields of active learning and experimental design. Most of those
measures rely on assessing the utility or the informativeness of information (e.g.,
[18–21]).

In this paper, we adopt the model of selective attention proposed by Macedo [16].
We integrate it into one digital teaching assistant tool to decide if a certain notification
should or nor be generated. This tool should be capable of autonomously capturing
information about the students’ performance and, based on the teacher’s beliefs, notify
them about possible deviations whenever needed. This way, the teacher can be more
aware of the students’ performance and be capable of making more educated decisions
and at the same time avoid an overabundance of information.

The next section presents Macedo’s model of selective attention while Sect. 3
describes how this model is incorporated in our system, called CodeInsights [22].
Finally, we discuss our approach and present conclusions.

2 Background Macedo’s Model of Selective Attention

The artificial selective attention mechanism that we are using is an implementation of
the model proposed by Macedo [16] which has already been used and validated in
several different scenarios. This artificial selective attention mechanism is comprised of
three distinct components: (i) Surprise Value of Information, (ii) Uncertainty-based
Value of Information and (iii) Motive Congruence/Incongruence-based Value of
Information.

According to the “Principle of Selective Attention” stated by Macedo, “A resource-
bounded rational agent should focus its attention only on the relevant and interesting
information”. Macedo has defined three different real numbers a, b, and c as levels
above which the absolute values of motive congruency (MC), surprise (S) or infor-
mation gain (IG), respectively, should be such that the information can be considered
valuable or interesting according to the following algorithm.

The initial values for the thresholds are automatically defined based on previous
experiments, but the teachers can change them at any time according to their needs.
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The Uncertainty-based Value of Information component consists basically of
determining the gain of information, IG, about the acquisition of new information in an
experiment. It does not matter what event in fact happened. The value for IG can be
determined as described in (1), where m stands for the number of mutually exclusive
events of experiment E, and Hprior and Hpost are, respectively, the entropies before and
after the acquisition of new data that might change the probability distribution of the
event(s) of interest.

IG Eð Þ ¼ Hprior Eð Þ � Hpost Eð Þ
log mð Þ

IG Eð Þ ¼ �Pm
i¼ Pprior Eið Þ � logPprior Eið Þ� �� �Pm

i¼ Ppost Eið Þ � ðlog Ppost Eið Þ� �� �

log mð Þ
ð1Þ

In our particular case, Hpost is equal to zero, because we are assuming that the
experiment has ended (i.e. no more attempts will be received after the deadline has
passed) and therefore all the Ppost(Ei) but one are zero, this one having the value unity.
Thus, only when we are confident of the outcome does Hpost vanish. Otherwise, it is
positive. So the value for IG in these cases is obtained by (2):

IG Eð Þ ¼ �Pm
i¼ Pprior Eið Þ � ðlog Pprior Eið Þ� �

log mð Þ ð2Þ

Next, we will use the Surprise Value of Information component, which is used to
determine the extent of the surprise felt by the agent (representing the teachers) when a
certain event occurs. According to Macedo et al., the intensity of surprise about an
event Eg, from a set of mutually exclusive events E1, E2, …, Em, is a nonlinear function
of the difference, or contrast, between its probability and the probability of the most
expected event Eh in the set of mutually exclusive events E1, E2, …, Em. So, the value
of surprise S of some event Eg, S(Eg), is given by (3);

S Eg
� � ¼ log 1þP Ehð Þ � P Eg

� �� � ð3Þ

For this purpose, we assume that the set of mutually exclusive events has at least one
event whose occurrence is unsurprising (has a higher probability to occur), namely, Eh.

Finally, the Congruence/Incongruence-based Value of Information component is
used to assign different degrees of desirability (satisfaction) for receiving notifications
about the occurrence of each event (i.e. the teacher may have more satisfaction with the
occurrence of some events than with the occurrence of others). Instead of probabilities
or expectations, this component takes as input “desires” that can be satisfied or frus-
trated independently of the probability of occurrence for that event. The “desires” are
expressed as a value between −1 and 1. It is important to notice that the negative value
for D is used to represent “unhappy desires” (i.e. the teacher is not “happy” with that,
but still wants to be notified). In the end, the motive congruence value for the outcome
of an event – MC – is equal to |D|.
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As mentioned previously, the system will only generate notifications about the
occurrence of those events for which MC > a AND (S > b OR IG > c). The “OR”
between surprise and information gain can easily be explained by looking at Fig. 1.
This figure depicts the evolution of the values of S and IG (YY axis) using different
values for the probability of the occurrence of a certain event (XX axis), assuming that
there are only two possibilities.

As can be seen in Fig. 1, the value for the gain of information increases as the
probability of the occurrence of a certain event increases up to 0.5, which means that
the occurrence of an event in a very homogenous scenario is more likely to reduce
uncertainty than otherwise. In contrast, the value of surprise decreases as the difference
between the probability of occurrence of the two events also decreases. Because of this
contrast, the OR is used to accommodate those scenarios where the occurrence of an
event may not represent a huge gain of information, but will definitively be surprising,
and the reverse scenario as well.

3 Using the Selective Attention Mechanism in CodeInsights

Our main goal is to develop a tool capable of automatically collecting and analyzing
data coming from the students in the form of code snapshots (a copy of their code) and
provide the teachers information about how their students are performing.

The code snapshots are automatically sent to a central server each time the students
run the developed code, regardless of where they are (at the classes, at home, etc.).
When received, the snapshots are automatically processed, and various pieces of
information about the students’ performance is extracted and immediately made
available to the teachers in the form of aggregated statistical data and data visualiza-
tions, as well as more individualized information about each student.

Fig. 1. The distribution of the values of surprise and information gain using different values for
the probability of the occurrence of a certain event
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In Fig. 2 is shown a partial view of the main dashboard of CodeInsights from which
the teacher has access to data and visualizations about a series of aspects related to the
student’s performance such as the more/less popular assignments, daily/hourly distri-
bution of the attempts performed by the students, the most common compilation errors,
the amount of attempts made during the classes period (and outside that period), and
several other.

Based on this information, the teacher could “manually” identify some deviations
from the normal learning path and provide feedback or take the appropriate measure,
via the most suitable means: verbally, directly in CodeInsights, via email, Moodle or
any other existing platform. However, the teachers most likely don’t have time to be
constantly looking at the charts or browsing through the data and snapshots within
CodeInsights. So, for this purpose, we have developed an automatic notification sys-
tem, which will notify the teacher about a series of aspects concerning each student’s
performance such as unusual number of lines of code, compilation errors, attempts per
assignment, assignments not even attempted, or a number of “unfinished” assignments.
In reality, CodeInsights is capable of generating notifications about virtually any aspect
that can be observed from the data.

Since there are plenty of situations where the system may automatically generate
notifications to the teachers about different aspects of a student’s performance, it is

Fig. 2. Partial view of the main dashboard of CodeInsights which contains a series of data
visualizations about the students’ performance and behavior
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possible that the system may generate such an overload of information that the teacher
may be unable to process it all in useful time. Because of this potential overload, we
have decided to incorporate into our system the cognitive mechanism of selective
attention previously presented.

Let’s, for instance, assume that the teacher is interested in being notified when the
percentage of students that have attempted to solve a given assignment is unusual.
Additionally, let’s consider that we have two assignments A1 and A2 with the prob-
ability distribution according to the teachers beliefs/expectations of student comple-
tions depicted in Tables 1 and 2.

Estimates for these probabilities can be calculated using aggregated data from
previous editions of the courses, or simply using subjective probabilities defined by the
teachers based on their personal experience.

Applying the Equation nº2 to the two examples presented above, we obtain for A1
an information gain of 0.665 and 0.853 for assignment A2.

As mentioned previously, the teachers can change the value for the c threshold (see
Sect. 2). High value for c mean that the teacher is only interested in receiving notifi-
cations about situations that represent a high gain of information (i.e. that will con-
tribute to decreasing the uncertainty). The exact opposite happens otherwise – a very
low value for c will mean that even if that event does not help to reduce the uncertainty,
the teacher still wants to be informed about its occurrence. This latter scenario should
be avoided, because it may result in receiving huge number of notifications.

Assuming that the system is initiated with 0.65 as the value for c, for the particular
scenarios described above, this would mean that any of the possible outcomes for the
assignments A1 and A2 would be considered valuable. If the value for c is defined to be
0.8, since only IG(A2) > 0.8, only the occurrence of events related with the assignment
A2 would be considered valuable.

Now, let’s assume that after the deadline, the percentage of students that had tried
to solve this assignment A1 is 13% (A occurred), using the Equation nº3 we would
have a surprise value of 0.72. If the percentage of students attempting A1 was, for
instance, 87% (occurrence of C), the value of the surprise would be 0.67.

An event is considered surprising if the value of surprise is higher than the
threshold b previously mentioned (see Sect. 2). Assuming that the value for b is 0.65,
the surprise value for the occurrence of these events is greater than b, so we can
consider that these events are surprising enough that the teacher should be notified of
their occurrence.

Table 1. Example of teacher’s beliefs
for assignment A1

A1

% of students Probability

A <= 20% 0.10
B ]21–79]% 0.75
C >= 80% 0.15

Table 2. Example of teachers’s
beliefs for assignment A2

A2

% of students Probability

A <= 20% 0.60
B ]21–79]% 0.25
C >= 80% 0.15
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If, for the same assignment, the percentage of students that attempted to solve it
was, for example, 55% (occurrence of B), the surprise value would be equal to zero -
the occurrence of the most probable (expected) event generates no surprise at all.

As happens with the other thresholds, the value for b is defined by default to a
certain value, but the teacher can increase or decrease this value at any time. Higher
values of b indicate that only very unexpected events (with high surprise values) are
considered interesting. If a lower value for b is used, the system will consider more
events as being surprising enough. However, that could easily lead to the information
overload situation that we are trying to avoid.

Finally, let’s focus on the motive congruence component. In our particular scenario,
let’s suppose that the teacher has defined a certain desirability value, D, for each event
as shown in Table 3.

These desirabilities indicate that the teacher would feel very satisfied if there is a
large portion of students submitting this assignment A1, and very unsatisfied if there is
a low percentage of students submitting this assignment, and would feel almost
indifferent if the percentage of students submitting is moderate (21-79%).

Assuming the principle that people want to know about situations that are either
consistent or inconsistent with their goals, this might also mean in this particular case
of the teacher, that it doesn’t make sense to notify her/him when the percentage of
students that attempted solving A1 is between 21 and 79%. On the other side, it makes
great sense to be notified about the fact that the number of attempts for this assignment
exceeds 80% or is lower than 20%.

Assuming that the teacher has defined 0.1 as the value for a, in our scenario
regardless of the event that occurs, s/he will always be notified, since MC is always
greater than a. In this case, the teacher could well face a situation of the overflow of
undesired notifications, because the value for the threshold is set to a very low value. If
the value for a is much higher, 0.8 for instance, it means that the teacher only wants to
be notified about the events that really (un)satisfy him/her. In this example, the teacher
will only be notified when the percentage of students is lower than 20.

It is important to reinforce that these tables of desirabilities are defined by the
teachers and can be considerably different for each assignment. For instance, there may
be some assignments for which the teacher may want to be notified, even if the
percentage of students that attempt to solve it is entirely “normal”.

To conclude, let’s have a look on how the system behaves in some of the scenarios
presented previously. In Tables 4, 5 and 6 are shown some examples of how the system

Table 3. Example of a table of desirabilities

A1
% of students D

<= 20% −0.85
]20–79]% 0.40
>= 80% +0.75
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would behave in different scenarios. The heighted values for IG, S and D correspond to
values below the thresholds. In the last column, the “OK/NO” indicate whether or not a
notification on the occurrence of that event should be generated.

As expected, the specific values used for the thresholds are essential for the success
of this artificial selective attention mechanism. Because of that, special attention should
be taken when defining those values.

Specifying the expectations about a certain event in CodeInsights is very easy, the
teacher just needs to decide if s/he wants to define expectations about an event related
to a particular assignment, a particular class or a global event. The teacher can also
define expectations about the occurrence of a certain event concerning a particular
student. In any case, the teacher must specify the date and time when the system will
check if the expectations are met or not; the type of verification to be performed; and
for each possible event, the expectations interval (inferior - superior), the probability of
the occurrence of that event and finally, the value of the desirability - D.

For instance, let’s suppose that the teacher wants to introduce into CodeInsights the
expectations and desirabilities shown in Table 4. To accomplish this, the teacher just
needs to fill a form similar to the one depicted in Fig. 3.

On the specified date and time, CodeInsights will automatically perform the nec-
essary operations to check if the expectations about a certain event are met or not, and

Table 4. Using high values for all the thresholds

Table 5. Using low values for all the thresholds

Table 6. Using moderate values for all the thresholds
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according to these expectations and desirabilities defined by the teacher, determine if a
new notification should be generated or not. If so, the new notification is generated and
presented immediately to the teacher if s/he is using CodeInsights at that moment.
Otherwise, when the teacher logs in the system, a list of all the new notifications will be
available, as shown in Fig. 4.

The teacher can then explore those notifications and take the remedial measures
considered necessary to overcome the problems that some students may be facing.

4 Discussion and Conclusions

In this paper, we have presented CodeInsights, a monitoring tool capable of collecting
data from students in the form of code snapshots and, with the information that results
from processing these snapshots, notify the teachers about the situations where their
intervention may be crucial.

To avoid exposing the teacher to an overload of notifications, we have decided to
integrate into the system a cognitive artificial selective attention mechanism capable of
presenting to the teachers only the most relevant notifications, according to the tea-
cher’s expectations/beliefs.

It is important to notice that the use of the proposed system per se will not have any
direct impact on the students’ performance. The system provides data, visualizations,
and notifications to the teachers, but if they do not check the system regularly and, if
based on the information provided, they do not take the most appropriate measures,
then the impact of using the system will be null.

Fig. 3. The form used to insert the expectations and desires chosen by the teacher

Fig. 4. Example of the notifications list
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Due to academic schedule constraints, we have not yet been able to perform a full
evaluation of CodeInsights with the cognitive artificial selective attention mechanism
integrated. However, preliminary tests that we have performed so far have shown us
that the system is, in fact, working as supposed. The system is selecting only the most
relevant notifications to present to the teacher, according to the criteria defined by the
principle of selective attention.

In the current version of the system, the teacher has to set the values for the
expectations, desirabilities and thresholds manually. Although it can be done in a very
easy way, we plan to develop a “baseline” student model based on data from previous
editions of the course. This way, the teacher would only need to specify the expec-
tations and desirabilities for new assignments or if s/he wants to overwrite certain
values (since the students are not the same, some values may not make sense for the
new group of students).

CodeInsights was planned to be used in the context of face-to-face classes. Nev-
ertheless, it will also be of great (if not greater) importance in the context of distance
learning, where in most cases there is a considerable geographical and even temporal
distance between teachers and students.
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