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Abstract. Recent years have witnessed remarkable performance
improvements in maximum satisfiability (MaxSAT) solvers. In practice,
MaxSAT algorithms often target the most generic MaxSAT formulation,
whereas dedicated solvers, which address specific subclasses of MaxSAT,
have not been investigated. This paper shows that a wide range of
optimization and decision problems are either naturally formulated as
MaxSAT over Horn formulas, or permit simple encodings using Horn-
MaxSAT. Furthermore, the paper also shows how linear time decision
procedures for Horn formulas can be used for developing novel algorithms
for the HornMaxSAT problem.

1 Introduction

Recent years have seen very significant improvements in MaxSAT solving tech-
nology [2,13,28,33]. Currently, the most effective MaxSAT algorithms propose
different ways for iteratively finding and blocking unsatisfiable cores (or sub-
formulas). However, and despite the promising results of MaxSAT in practical
settings, past work has not investigated dedicated approaches for solving sub-
classes of the MaxSAT problem, with one concrete example being the MaxSAT
problem over Horn formulas, i.e. HornMaxSAT1. The HornMaxSAT optimiza-
tion problem is well-known to be NP-hard [23]. In contrast to HornMaxSAT,
the decision problem for Horn formulas is well-known to be in P, with linear
time algorithms proposed in the 80s [15,27]. This paper investigates practical
uses of MaxSAT subject to Horn formulas, and shows that a vast number of
decision and optimization problems are naturally formulated as HornMaxSAT.
More importantly, as this paper also shows, a vast number of other decision
and optimization problems admit simple HornMaxSAT encodings. One should
observe that HornMaxSAT is NP-hard and so, by definition, any decision prob-
lem in NP admits a polynomial time reduction to HornMaxSAT. However, for
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many problems in NP, such reductions are not known, and may result in large
(although polynomial) encodings.

With the purpose of exploiting the observation that many optimization and
decision problems have natural (and simple) reductions to HornMaxSAT, this
paper also proposes a novel algorithm for HornMaxSAT. The new algorithm
mimics recent Implicit Hitting Set algorithms2 proposed for MaxSAT [13,33],
which exploiting the fact that Horn formulas can be decided in polynomial (lin-
ear) time [27], and for which minimal unsatisfiable cores (or MUSes) can be
computed in polynomial time [26].

The paper is organized as follows. Section 2 introduces the definitions and
notation used in the remainder of the paper. Section 3 shows that a large num-
ber of well-known optimization, but also decision problems already have simple
HornMaxSAT formulations which, to the best of our knowledge, have not been
exploited before. Section 4 proposes a variant of recent general-purpose MaxSAT
algorithms, that is dedicated to the HornMaxSAT problem. This section also
shows that the new algorithm can elicit automatic abstraction mechanisms.
Section 5 overviews additional applications and generic reductions to Horn-
MaxSAT. The potential of the work proposed in this paper is assessed in Sects. 6,
and 7 concludes the paper.

2 Preliminaries

The paper assumes definitions and notation standard in propositional satisfi-
ability (SAT) and MaxSAT [8]. Propositional variables are taken from a set
X = {x1, x2, . . .}. A Conjunctive Normal Form (CNF) formula is defined as a
conjunction of disjunctions of literals, where a literal is a variable or its com-
plement. CNF formulas can also be viewed as sets of sets of literals, and are
represented with letters in calligraphic font, A, F , H, etc. Given a formula F ,
the set of variables is vars(F) ⊆ X. A clause is a goal clause if all of its literals
are negative. A clause is a definite clause if it has exactly one positive literal and
all the other literals are negative; the number of negative literals may be 0. A
clause is Horn if it is either a goal or a definite clause. A truth assignment ν is
a map from variables to {0, 1}. Given a truth assignment, a clause is satisfied if
at least one of its literals is assigned value 1; otherwise it is falsified. A formula
is satisfied if all of its clauses are satisfied; otherwise it is falsified. If there exists
no assignment that satisfies a CNF formula F , then F is referred to as unsat-
isfiable. (Boolean) Satisfiability (SAT) is the decision problem for propositional
formulas, i.e. to decide whether a given propositional formula is satisfiable. Since
the paper only considers propositional formulas in CNF, throughout the paper
SAT refers to the decision problem for propositional formulas in CNF. Modern
SAT solvers instantiate the Conflict-Driven Clause Learning paradigm [8]. For
unsatisfiable (or inconsistent) formulas, MUSes (minimal unsatisfiable subsets)
represent subset-minimal subformulas that are unsatisfiable (or inconsistent),

2 Throughout the paper, these are referred to as MaxHS-family of MaxSAT algorithms.
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and MCSes (minimal correction subsets) represent subset-minimal subformulas
such that the complement is satisfiable [8].

To simplify modeling with propositional logic, one often represents more
expressive constraints. Concrete examples are cardinality constraints and
pseudo-Boolean constraints [8]. A cardinality constraint of the form

∑
xi ≤ k

is referred to as an AtMostk constraint, whereas a cardinality constraint of the
form

∑
xi ≥ k is referred to as an AtLeastk constraint. Propositional encodings

of cardinality and pseudo-Boolean constraints is an area of active research [1,4–
8,10,16,29,35,37]. The (plain) MaxSAT problem is to find a truth assignment
that maximizes the number of satisfied clauses. For the plain MaxSAT problem,
all clauses are soft, meaning that these may not be satisfied. Variants of the
MaxSAT can consider the existence of hard clauses, meaning that these must be
satisfied, and also assign weights to the soft clauses, denoting the cost of falsi-
fying the clause; this is referred as the weighted MaxSAT problem, WMaxSAT.
When addressing MaxSAT problems with weights, hard clauses are assigned a
large weight �. The HornMaxSAT problem corresponds to the MaxSAT prob-
lem when all clauses are Horn. If clauses have weights, then HornWMaxSAT
denotes the Horn MaxSAT problem when the soft clauses have weights.

Throughout the paper, standard graph and set notations will be used. An
undirected graph G = (V,E) is defined by a set V of vertices and a set
E ⊆ {{u, v} |u, v ∈ V, u �= v}. Given G = (V,E), the complement graph
G = (V,EC) is the graph with edges {{u, v} |u, v ∈ V, u �= v, {u, v} �∈ E}.
Moreover, it is assumed some familiarity with optimization problems defined
on graphs, including minimum vertex cover, maximum independent set, max-
imum clique, among others. Finally, ≤P is used to represent polynomial time
reducibility between problems [12, Sect. 34.3].

3 Basic Reductions

This section shows that a number of well-known problems can be reduced in
polynomial time to the HornMaxSAT problem. Some of the reductions are well-
known; we simply highlight that the resulting propositional formulas are Horn.

3.1 Optimization Problems on Graphs

Definition 1 (Minimum Vertex Cover, MinVC). Given an undirected graph
G = (V,E), a vertex cover T ⊆ V is such that for each {u, v} ∈ E, {u, v}∩T �= ∅.
A minimum (or cardinality minimal) vertex cover T ⊆ V is a vertex cover of
minimum size3.

Reduction 1 (MinVC ≤P HornMaxSAT). For u ∈ V , let xu = 1 iff u is not
included in a vertex cover. For any {u, v} ∈ E, add a hard clause (¬xu ∨ ¬xv).

3 This corresponds to requiring T ⊆ V to be such that ∀U⊆V |U | < |T | →
∃{u,v}∈E , {u, v} ∩ U = ∅. Throughout the paper, we will skip the mathematical
representation of minimum (but also maximum) size sets.
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For each u ∈ V , add a soft clause (xu). (Any non-excluded vertex u ∈ V (i.e.
xu = 0) is in the vertex cover.)

Remark 1. The proposed reduction differs substantially from the one originally
used for proving HornMaxSAT to be NP-hard [23], but our working assumptions
are also distinct, in that we consider hard and soft clauses.

Definition 2 (Maximum Independent Set, MaxIS). Given an undirected graph
G = (V,E), an independent set I ⊆ V is such that for each {u, v} ∈ E either
u �∈ I or v �∈ I. A maximum independent set is an independent set of maximum
size.

Reduction 2 (MaxIS ≤P HornMaxSAT). One can simply use the previous
encoding, by noting the relationship between vertex covers and independent sets.
For any {u, v} ∈ E, add a hard clause (¬xu ∨ ¬xv). For each u ∈ V , add a soft
clause (xu).

Definition 3 (Maximum Clique, MaxClique). Given an undirected graph G =
(V,E), a clique (or complete subgraph) C ⊆ V is such that for two vertices
{u, v} ⊆ C, {u, v} ∈ E. A maximum clique is a clique of maximum size.

Reduction 3 (MaxClique ≤P HornMaxSAT). A MaxSAT encoding for Max-
Clique is the following. For any {u, v} ∈ EC , add a hard clause (¬xu ∨ ¬xv).
For each u ∈ V , add a soft clause (xu).

Definition 4 (Minimum Dominating Set, MinDS). Let G = (V,E) be an undi-
rected graph. D ⊆ V is a dominating set if any v ∈ V \ D is adjacent to at least
one vertex in D. A minimum dominating set is a dominating set of minimum
size.

Reduction 4 (MinDS ≤P HornMaxSAT). Let xu = 1 iff u ∈ V is excluded
from a dominating set D. For each vertex u ∈ V add a hard Horn clause
(¬xu ∨{u,v}∈E ¬xv). The soft clauses are (xu), for u ∈ V .

3.2 Optimization Problems on Sets

Definition 5 (Minimum Hitting Set, MinHS). Let C be a collection of sets of
some set S. A hitting set H ⊆ S is such that for any D ∈ C, H ∩ D �= ∅. A
minimum hitting set is a hitting set of minimum size.

Reduction 5 (MinHS ≤P HornMaxSAT). For each a ∈ S let xa = 1 iff a is
excluded from H. For each D ∈ C, create a hard Horn clause (∨a∈D¬xa). The
soft clauses are (xa), for a ∈ S.

Remark 2. The minimum set cover (MinSC) is well-known to be equivalent to
the minimum hitting set problem. Thus, the same reduction to HornMaxSAT
can be applied.
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Definition 6 (Maximum Set Packing, MaxSP). Let T = {T1, . . . , Tk} be a
family of sets. R ⊆ T is a set packing if ∀Ti,Tj∈RTi ∩ Tj = ∅. A maximum set
packing is a set packing of maxim size.

Reduction 6 (MaxSP ≤P HornMaxSAT). Let xi = 1 iff Ti is included in the
set packing. For each pair Ti, Tj, such that Ti∩Tj �= ∅, create a hard Horn clause
(¬xi ∨ ¬xj). The soft clauses are (xi), for Ti ∈ T .

Remark 3. It is well-known that the maximum set packing problem can be
reduced to the maximum clique problem. The reduction above exploits this
result.

It also immediate to conclude that the weighted version of any of the opti-
mization problems described in this and the previous sections can be reduced to
HornWMaxSAT.

3.3 Handling Linear Constraints

This section argues that the propositional encodings of a number of linear con-
straints are Horn. In turn, this enables solving a number of optimization prob-
lems with HornMaxSAT.

The first observation is that any of the most widely used CNF encodings of
AtMostk constraints are composed exclusively of Horn clauses4:

Proposition 1 (CNF Encodings of AtMostk constraints). The following CNF
encodings of AtMostk constraints are composed solely of Horn clauses: pairwise
and bitwise encodings [8, Chap. 2], totalizers [6], sequential counters [35], sorting
networks [16], cardinality networks [4,5], pairwise cardinality networks [10], and
modulo totalizers [29].

Proof. Immediate by inspection of each encoding [4–6,8,10,16,29,35]. �


For the case of the more general pseudo-Boolean constraints,
∑

aixi ≤ b, with
ai, b non-negative, there also exist Horn encodings:

Proposition 2 (CNF Encodings of Pseudo-Boolean Constraints). The Local
Polynomial Watchdog [7] encoding for PB constraints is composed solely of Horn
clauses.

Proof. Immediate by inspection of the encoding in [7]. �


These observations have immediate impact on the range of problems that
can be solved with HornMaxSAT and HornWMaxSAT. One concrete example
is the Knapsack problem [12].

4 To our best knowledge, this property of propositional encodings has not been inves-
tigated before.
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Algorithm 1. HMaxHS, a MaxHS-like [13] HornMaxSAT algorithm
Input: F = 〈A,H〉, HornMaxSAT formula
Output: (µ, Cost(µ)), MaxSAT assignment and cost

1 begin
2 K ← ∅
3 while true do
4 S ← MinimumHS(K)
5 (st, µ,U) ← LTUR(H ∪ (A \ S))

// If st, then µ is a satisfying assignment

// Otherwise, U is a core/MUS

6 if st then return (µ, Cost(µ))
7 K ← K ∪ {U}
8 end

Definition 7 (Knapsack problem). Let {1, . . . , n} denote a set of n objects,
each with value vi and weight wi, 1 ≤ i ≤ n, and a maximum weight value W .
The knapsack problem is to pick a subset of objects of maximum value that is
consistent with the weight constraint. By letting xi = 1 iff object i is picked, we
get the well-known 0–1 ILP formulation max

∑
i vixi; s.t.

∑
i wixi ≤ W .

Reduction 7 (Knapsack ≤P HornMaxSAT). From Proposition 2, there exist
Horn encodings for Pseudo-Boolean constraints. Thus, the hard constraint∑

i wixi ≤ W can be encoded with Horn clauses. The soft clauses are (xi) for
each object i, each with cost vi. Both the soft and the hard clauses in the reduction
are Horn.

4 HornMaxSAT Algorithm with Hitting Sets

This section develops a MaxHS-like [13,33] algorithm for HornMaxSAT. In addi-
tion, the section shows that this MaxHS-like algorithm elicits the possibility of
solving large scale problems with abstraction.

4.1 A MaxHS-Like HornMaxSAT Algorithm

With the goal of exploiting the special structure of HornMaxSAT, a MaxHS-like
algorithm is envisioned [13,33]. Algorithm 1 summarizes the proposed approach.
The key observation is that each call to LTUR [27] runs in linear time. (Unit
propagation as implemented in modern SAT solvers, will also run in polyno-
mial time, but it will be less efficient in practice.) The original motivation for
MaxHS is that finding a minimum hitting set of S is expected to be much easier
than solving the MaxSAT problem. This is also the motivation for HMaxHS.
As observed in recent work [3,26], MUSes (minimal unsatisfiable subsets) can
be computed in polynomial time in the case of Horn formulas. MUS extrac-
tion, but also MCS (minimal correction subset) extraction [26], are based on
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the original LTUR algorithm [27]. It should be noted that some implementa-
tions of MaxHS use an ILP (Integer Linear Programming) package (e.g. CPLEX
or SCIP) [13,33]5, whereas others exploit SAT solvers for computing minimum
hitting sets [19,21].

4.2 Automatic Abstraction-Based Problem Solving

For some of the problems described in Sect. 3 a possible criticism of Algorithm 1
is that it will iteratively find sets U consisting of a single clause, and it will
essentially add to K all the clauses in H. Although this is in fact a possibility for
some problems (but not all, as investigated in Sect. 5), this section shows that
even for these problems, Algorithm 1 can provide an effective problem solving
approach.

Consider the example graph in Fig. 1, where the goal is to compute a maxi-
mum independent set (or alternatively a minimum vertex cover). From the figure,
we can conclude that the number of vertices is (1 + m)k, the number of edges
is (k(k − 1)/2 + km), the size of the maximum independent set is km and the
size of the minimum vertex cover is k. From the inspection of the reduction
from MaxIS (or MinVC) to HornMaxSAT, and the operation of Algorithm1,
one might anticipate that Algorithm1 would iteratively declare each hard clause
as an unsatisfiable core, and replicate the clause in the list K of sets to hit, thus
requiring a number of iterations no smaller than the number of edges. (More
importantly, for a MaxHS-like algorithm, the number of iterations is worst-case
exponential [13].) However, and as shown below, the operation of the HMaxHS
actually ensures this is not the case.

Without loss of generality, consider any of the vertices in the clique, i.e.
v1, . . . , vk, say vi. For this vertex, no more than k(k − 1)/2 + 2k edges will be
replicated, i.e. added to K. Observe that, as soon as two edges {vi, uij1} and
{vi, uij2} are replicated, a minimum hitting set will necessarily pick vi. As a
result, after at most k(k−1)/2+2k iterations, the algorithm will terminate with
the answer mk. Essentially, the algorithm is capable of abstracting away (m−2)k
clauses when computing the maximum independent set. Observe that m can be
made arbitrarily large. Abstraction is a well-known topic in AI, with important
applications [17]. The example in this section suggests that HornMaxSAT and
the HMaxHS algorithm can effectively enable automatic abstraction for solving
large scale (graph) optimization problems. This remark is further investigated
in Sect. 6.

It should be noted that the result above highlights what seems to be a
fundamental property of the original MaxHS algorithm [13]. Although in the
worst case, the algorithm can require an exponential number of steps to find
the required set of clauses to remove to achieve consistency, the result above
illustrates how the MaxHS can be effective at discarding irrelevant clauses, and
focusing on the key parts of the formula, thus being able to compute solutions

5 SCIP and CPLEX are available, respectively, from http://scip.zib.de/ and https://
www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

http://scip.zib.de/
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/


688 J. Marques-Silva et al.

v1

v2

v3

v4 vk

uk1 ukm

u41

u4m

u31

u3m

u21 u2m

u11

u1m

(a) Example graph
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Fig. 1. Example graph for computing MaxIS and MinVC

in a number of iterations not much larger than the minimum number of falsi-
fied clauses in the MaxHS solution. Results from recent MaxSAT Evaluations6

confirm the practical effectiveness of MaxHS-like algorithms.

5 HornMaxSAT in Practice

Besides the reference optimization problems analyzed in Sect. 3, a number of
practical applications can also be shown to correspond to solving HornMaxSAT
or can be reduced to HornMaxSAT. This section investigates some of these
problems, but also proposes generic HornMaxSAT encodings for SAT and CSP.

5.1 Sample Problems

Different optimization problems in practical settings are encoded as
HornMaxSAT. The winner determination problem (WDP) finds important appli-
6 http://www.maxsat.udl.cat/.

http://www.maxsat.udl.cat/


Horn Maximum Satisfiability: Reductions, Algorithms and Applications 689

cations in combinatorial auctions. An immediate observation is that the encoding
proposed in [18] corresponds to HornMaxSAT. The problem of coalition struc-
ture generation (CSG) also finds important applications in multi-agent systems.
An immediate observation is that some of the encodings proposed in [24] corre-
spond to HornMaxSAT. HornMaxSAT also finds application in the area of axiom
pinpointing for EL+ description logic, but also for other lightweight description
logics. For the concrete case of EL+, the problem encoding is well-known to
be Horn [34], with the soft clauses being unit positive. The use of LTUR-like
algorithms has been investigated in [3].

As shown in the sections below, it is actually simple to reduce different deci-
sion (and optimization7) problems into HornMaxSAT.

5.2 Reducing SAT to HornMaxSAT

Let F be a CNF formula, with N variables {x1 . . . , xN} and M clauses
{c1, . . . , cM}. Given F , the reduction creates a Horn MaxSAT problem with
hard clauses H and soft clauses S, 〈H,S〉 = HEnc(F). For each variable xi ∈ X,
create new variables pi and ni, where pi = 1 iff xi = 1, and ni = 1 iff xi = 0.
Thus, we need a hard clause (¬pi∨¬ni), to ensure that we do not simultaneously
assign xi = 1 and xi = 0. (Observe that the added clause is Horn.) For each
clause cj we require cj to be satisfied, by requiring that one of its literals not to
be falsified. For each literal xi use ¬ni and for each literal ¬xi use ¬pi. Thus, cj
is encoded with a new (hard) clause c′

j with the same number of literals as ci,
but with only negative literals on the pi and ni variables, and so the resulting
clause is also Horn. The set of soft clauses S is given by (pi) and (ni) for each
of the original variables xi. If the resulting Horn formula has a HornMaxSAT
solution with at least N variables assigned value 1, then the original formula
is satisfiable; otherwise the original formula is unsatisfiable. (Observe that, by
construction, the HornMaxSAT solution cannot assign value 1 to more than
N variables.) Clearly, the encoding outlined in this section can be subject to
different improvements, e.g. not all clauses need to be goal clauses.

The transformation proposed can be related with the well-known dual-rail
encoding, used in different settings [9,22,25,30,31]. To our best knowledge, the
use of a dual-rail encoding for deriving a pure Horn formula has not been pro-
posed in earlier work.

5.3 Reducing CSP to HornMaxSAT

This section investigates reductions of Constraint Satisfaction Problems (CSP)
into HornMaxSAT. Standard definitions are assumed [32]. A CSP is a triple
〈X,D,C〉, where X = 〈x1, . . . , xN 〉 is an n-tuple of variables, D is a correspond-
ing N -tuple of domains D = 〈D1, . . . , DN 〉, such that xi ∈ Di, and C is a t tuple
of constraints C = 〈C1, . . . , Ct〉. Cj is a pair 〈RSj

, Sj〉, where RSj
is a relation

7 Due to lack of space, details are omitted.
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on the variables in Sj , and represents a subset of the Cartesian product of the
domains of the variables in Sj .

One approach to encode CSPs as HornMaxSAT is to translate the CSP to
SAT (e.g. [36]), and then apply the Horn encoder outlined in Sect. 5.2. There are
however, alternative approaches, one of which we now detail. We show how to
adapt the well-known direct encoding of CSP into SAT [36]. The set of variables
is xiv, such that xiv = 1 iff xi is assigned value v ∈ Di. Moreover, we consider
the disallowed combinations of values of each constraint Cj . For example, if the
combination of values xi1 = vi1 ∧ xi2 = vi2 ∧ · · · ∧ xiq = viq is disallowed, i.e.
no tuple of the relation Sj associated with Cj contains these values, then add a
(Horn) clause (¬xi1vi1

∨· · ·∨¬xiqviq
). For each xi, require that no more than one

value can be used:
∑

v∈Di
xiv ≤ 1; this AtMost1 constraint can be encoded with

Horn clauses as shown in Proposition 1. Finally, the goal is to assign as many
variables as possible, and so add a soft clause (xi,v) for each xi and each v ∈ Di.
It is immediate that the CSP is satisfiable iff the HornMaxSAT formulation has
a solution with at least N satisfied soft clauses (and by construction it cannot
assign value 1 to more than N variables).

5.4 Reducing PHP to HornMaxSAT

The previous sections show that the optimization and decision problems with
simple reductions to HornMaxSAT are essentially endless, as any decision prob-
lem that can be reduced to SAT or CSP can also be reduced to HornMaxSAT.
However, it is also possible to develop specific reductions, that exploit the origi-
nal problem formulation. This section investigates how to encode the representa-
tion of the pigeonhole principle (PHP) as HornMaxSAT, for which propositional
encodings are well-known and extensively investigated [11].

Definition 8 (Pigeonhole Principle, PHP [11]). The pigeonhole principle states
that if m + 1 pigeons are distributed by m holes, then at least one hole contains
more than one pigeon. A more formal formulation is that there exists no injective
function mapping {1, 2, . . . ,m + 1} to {1, 2, . . . ,m}, for m ≥ 1.

Propositional formulations of PHP encode the negation of the principle, and ask
for an assignment such that the m+1 pigeons are placed into m holes [11]. Given
a propositional encoding and the reduction proposed in Sect. 5.2, we can encode
PHP formulas into HornMaxSAT. We describe below an alternative reduction.

Reduction 8 (PHP ≤P HornMaxSAT). Let xij = 1 iff pigeon i, with 1 ≤ i ≤
m + 1, is placed in hole j, with 1 ≤ j ≤ m. For each hole j, 1 ≤ j ≤ m, at most
1 pigeon can be placed in hole j:

∑m+1
i=1 xij ≤ 1 1 ≤ j ≤ m (1)

which can be encoded with Horn clauses, by Proposition 1.
For each pigeon i, 1 ≤ i ≤ m + 1, the pigeon is placed in at most 1 hole:

∑m
j=1 xij ≤ 1 1 ≤ i ≤ m + 1 (2)



Horn Maximum Satisfiability: Reductions, Algorithms and Applications 691

which can also be encoded with Horn clauses, by Proposition 1.
The soft clauses are (xij), with 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m. The PHP problem is
satisfiable iff the HornMaxSAT problem has a solution satisfying at least m + 1
soft clauses, i.e. m + 1 are placed.

6 Experimental Results

This section provides a preliminary investigation into exploiting reductions to
HornMaxSAT in practice. All the experiments were run in Ubuntu Linux on
an Intel Xeon E5-2630 2.60 GHz processor with 64 GByte of memory. The time
limit was set to 1800 s and the memory limit to 10GByte for each process to
run. Two classes of problem instances were considered. The first being a set
of 46 PHP instances that were generated ranging the number of holes from 10
up to 100. The second set of benchmarks corresponds to 100 instances generated
according to the example in Fig. 1, with k ranging from 10 to 100 and m ranging
from k to 20k. In the experiments six different MaxSAT solvers were considered.
Some solvers are core-guide [28] (namely, OpenWBO16, WPM3, MSCG and
Eva), whereas others are based on implicit hitting sets (namely, MaxHS and
LMHS) [28]. Additionally, a variant of LMHS was considered for which the option
“–no-equiv-seed” was set (LMHS-nes). The results are summarized in the cactus
plot shown in Fig. 2. As can be observed, solvers based on implicit hitting sets
(i.e. the MaxHS family of MaxSAT algorithms), but also OpenWBO16, perform
very well on the instances considered8. The differences to the other solvers are

Fig. 2. Cactus plot for selected solvers on PHP and MaxIS benchmarks.

8 Any implementation of the MaxHS-family of MaxSAT algorithms, by using a CDCL
SAT solver, implements a basic version of the algorithm proposed in Sect. 4.
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solely due to the PHP instances. While propositional encodings of PHP are well-
known to be extremely hard for SAT solvers, the proposed MaxSAT encoding
scales well for MaxHS-like algorithms, but also for the core-guided MaxSAT
solver OpenWBO16.
Analysis of the Number of Iterations. In order to validate the abstraction
mechanism described in Sect. 4.2, we considered the LMHS-nes variant, and the
benchmarks generated according to the example in Fig. 1. The reason to consider
LMHS-nes is that soft clauses are all unit and the set of soft clauses includes the
complete set of variables of the formula. If the option is not set, then the complete
CNF formula is replicated inside the MIP solver (CPLEX), as a preprocessing
step, which results in exactly one call to CPLEX [14].

Table 1. Statistics on benchmarks generated according to the example in Fig. 1.

k 10 20 30 40 50 60 70 80 90

m 100 200 200 400 300 600 400 800 500 1000 600 1200 700 1400 800 1600 900 1800

UB 65 65 230 230 495 495 860 860 1325 1325 1890 1890 2555 2555 3320 3320 4185 4185

#DC 9 7 13 13 27 26 25 25 50 50 49 36 70 70 48 49 63 63

#I 19 35 71 132 53 72 211 356 50 50 225 693 70 70 2140 768 747 812

Table 1 presents the results obtained, where first and second row show the
k and the m parameters of the instance. The third row (UB) shows the upper
bound on the number of iterations presented in Sect. 4.2. The fourth and fifth
rows show the number of disjoint cores (#DC) and the number of iterations
(#I) reported by LMHS-nes. As can be concluded from the table, the number of
iterations is always smaller than the upper bound, suggesting that the algorithm
is able to abstract clauses more effectively than in the worst case scenario. The
ability of HMaxHS algorithms to find good abstractions is expected to represent
a significant step into deploying HornMaxSAT problem solvers.

7 Conclusions and Research Directions

The practical success of recent MaxSAT solvers not only motivates investigat-
ing novel applications, but it also justifies considering subclasses of the general
MaxSAT problem. This paper investigates the subclass of MaxSAT restricted
to Horn clauses, i.e. HornMaxSAT. The paper shows that a comprehensive set
of optimization and decision problems are either formulated as HornMaxSAT or
admit simple reductions to HornMaxSAT. The paper also shows that fundamen-
tal decision problems, including SAT and CSP, can be reduced to HornMaxSAT.
The role of HornMaxSAT in tackling the limits of resolution is investigated in
recent work [20]. Although NP-hardness of HornMaxSAT guarantees that such
reductions must exist, the paper develops simple reductions, some of which were
unknown to our best knowledge. The paper also proposes a HornMaxSAT algo-
rithm, based on a well-known family of MaxSAT algorithms [13,33], but which
exploits the fact that the formulas to be analyzed are Horn. The experimental
results show the promise of reductions of HornMaxSAT and motivate investigat-
ing further the use of HornMaxSAT as a generic problem solving approach.
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This also motivates the development of more efficient implementations of
HMaxHS and of alternative approaches to HMaxHS.
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