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Abstract. Online recommender systems often deal with continuous,
potentially fast and unbounded flows of data. Ensemble methods for
recommender systems have been used in the past in batch algorithms,
however they have never been studied with incremental algorithms that
learn from data streams. We evaluate online bagging with an incremental
matrix factorization algorithm for top-N recommendation with positive-
only user feedback, often known as binary ratings. Our results show that
online bagging is able to improve accuracy up to 35% over the baseline,
with small computational overhead.
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1 Introduction

In many real world recommender systems, user feedback is continuously gener-
ated at unpredictable rates and order, and is potentially unbounded. In large
scale systems, the rate at which user feedback is generated can be very fast.
Building predictive models from these continuous flows of data is a problem
actively studied in the field of data stream mining. Ideally, algorithms that learn
from data streams should be able to process data at least as fast as it arrives, in
a single pass, while maintaining an always-available model [3]. Most incremental
algorithms naturally have these properties, and are thus a viable solution.

Incremental algorithms for recommendation also treat user feedback data
as a data stream, immediately incorporating new data in the recommendation
model. In many – if not most – recommendation applications this is a desirable
feature, since it gives the model the ability to evolve over time. This is important,
because the task of a recommender system is to find the most relevant items to
each user, individually. Naturally, users are human beings, whose preferences
change over time. Moreover, in large scale systems, new users and items are
permanently entering the system. A model that is immediately updated with
fresh data has the capability of adjusting faster to such changes.
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1.1 Related Work

Ensemble methods in machine learning are convenient techniques to improve
the accuracy of algorithms. Typically, this is achieved by combining results from
a number of weaker sub-models. Bagging [1], Boosting [4] and Stacking [13]
are three well-known ensemble methods used with recommendation algorithms.
Boosting is experimented in [2,7,9,10], bagging is studied also in [7,10], and
stacking in [11]. In all of these contributions, ensemble methods work with batch
learning algorithms only.

In this paper we propose online bagging for incremental recommendation
algorithms designed to deal with streams of positive user feedback. To our best
knowledge this is the first ensemble method proposed for incremental recom-
mender systems in the literature.

This paper is organized as follows. After this introductory section, we describe
online bagging for common data mining tasks in Sect. 2. Section 3 describes our
online bagging approach in recommendation problems. In Sect. 4 we present our
experiments and results, along with a short discussion. Finally, we conclude in
Sect. 5.

2 Online Bagging

Bagging [1] is an ensemble technique that takes a number of bootstrap samples
of a dataset and trains a model on each one of the samples. Predictions from the
various sub-models are then aggregated in a final prediction. This is known to
improve the performance of algorithms by reducing variance, which is especially
useful with unstable algorithms that are very sensitive to small changes in the
data. The diversity offered by training several models with slightly different
bootstrap samples of the data helps in giving more importance to the main
concepts being learned – since they must be present in most bootstrap samples
of the data, and less importance to noise or irrelevant phenomena that may
mislead the learning algorithm.

To obtain a bootstrap sample of a dataset with size N , we perform N trials,
sampling a random example with replacement from the dataset. Each example
has probability of 1/N to be sampled at each trial. The resulting dataset will
have the same size as the original dataset, however some examples will not be
present whereas some others will occur multiple times. To obtain M samples,
we simply repeat the process M times.

In its original proposal [1], bagging is a batch procedure requiring N × M
passes through the dataset. However, it has been shown in [8] that this can be
done incrementally in a single pass, if the number of examples is very large –
a natural assumption when learning from data streams. Looking at the batch
method above, we observe that each bootstrap sample contains K occurrences
of each example, with K ∈ {0, 1, 2, . . .}, and:

P (K = k) =
(
N

k

)(
1
N

)k (
1 − 1

N

)N−k

(1)
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In an incremental setting, one could just initialize M sub-models – or boot-
strap nodes – and then use (1) to train new examples K times, redrawing K for
each node. The problem is that this would still require knowing N beforehand.
However, if we assume that N → ∞, then the distribution of K tends to a
Poisson(1) distribution, and therefore

P (K = k) =
e−1

k!
(2)

eliminating the need of any prior knowledge about the data, allowing the usage
of bagging in a single pass over data.

3 Online Recommendation with Bagging

To assess the potential of online bagging, we use ISGD [12], a simple online
matrix factorization algorithm for positive-only data. ISGD (Algorithm1) uses
Stochastic Gradient Descent in one pass through the data, which is convenient for
data stream processing. It is designed for positive-only streams of user-item pairs
(u, i) that indicate a positive interaction between user u and item i. Examples of
positive interactions are users buying items in an online store, streaming music
tracks from an online music streaming service, or simply visiting web pages. This
is a much more widely available form of user feedback, than for example, ratings
data, which is only available from systems with user rating features.

Algorithm 1. ISGD - Incremental SGD for positive-only user feedback [12]
Data: a finite set or a data stream D = {(u, i)1, (u, i)2, . . .}
input : no. of latent features feat, no. of iterations iter, regularization factor

λ, learn rate η
output: user and item factor matrices A and B

for (u, i) ∈ D do
if u �∈ Rows(A) then

Au ← Vector(size : feat)
Au ∼ N (0, 0.1)

if i �∈ Rows(B) then
Bi ← Vector(size : feat)
Bi ∼ N (0, 0.1)

for n ← 1 to iter do
errui ← 1 − Au · Bi

Au ← Au + η(erruiBi − λAu)
Bi ← Bi + η(erruiAu − λBi)

ISGD continuously updates factor matrices A – the user factors matrix – and
B – the item factors matrix –, correcting the model to adapt to the incoming user-
item pairs. If (u, i) occurs in the stream, then the model prediction R̂ui = Au ·Bi
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should be close to 1. Top-N recommendations to any user u is obtained by a
ranking function f = |1 − R̂ui| for all items i in ascending order, and taking the
top N items.

The online bagging approach described in Sect. 2, can be easily applied to
ISGD, resulting in Algorithm2 – BaggedISGD.

Algorithm 2. BaggedISGD - Bagging version of ISGD (training algorithm)
Data: a finite set or a data stream of user-item pairs D = {(u, i)1, (u, i)2, . . .}
input : no. of latent features feat, no. of iterations iter, regularization factor

λ, learn rate η, no. of bootstrap nodes M
output: M user and item factor matrices Am and Bm

for (u, i) ∈ D do
for m ← 1 to M do

k ∼ Poisson(1) // eq. (2)

if k > 0 then
for l ← 1 to k do

if u �∈ Rows(Am) then
Am

u ← Vector(size : feat)
Am

u ∼ N (0, 0.1)

if i �∈ Rows(Bm) then
Bm

i ← Vector(size : feat)
Bm

i ∼ N (0, 0.1)

for n ← 1 to iter do
errui ← 1 − Am

u · Bm
i

Am
u ← Am

u + η(erruiB
m
i − λAm

u )
Bm

i ← Bm
i + η(erruiA

m
u − λBm

i )

BaggedISGD learns M models on M bootstrap nodes, each of them based on
the online bootstrap sampling method described in Sect. 2. Similarly to ISGD,
to perform the actual list of recommendations for a user u, items i are sorted by
a function f = |1 − R̂ui|. However, the scores R̂ui are actually the average score
of all nodes:

R̂ui =
∑M

m=1 A
m
u · Bm

i

M
(3)

At training time, this algorithm requires at least M times the computational
resources needed for ISGD, with M bootstrap nodes. Recommendation also has
the overhead of aggregating M predictions from the submodels. In our experi-
ments, we also measure update and recommendation times, for several values of
M .

4 Evaluation

To simulate a streaming environment we need datasets that maintain the nat-
ural order of the data points, as they were generated. Additionally, we need
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Table 1. Dataset description

Dataset Events Users Items Sparsity

PLC-STR 588 851 7 580 30 092 99.74%

LFM-50U 1 121 520 50 159 208 85.91%

YHM-6KU 476 886 6 000 127 448 99.94%

ML1M 226 310 6 014 3 232 98.84%

positive-only data, since the tested algorithm is not designed to deal with rat-
ings. We use 4 datasets that conciliate these two requirements – positive-only
and naturally ordered, described in Table 1. ML1M is based on the Movielens-1M
movie rating dataset1. To obtain the YHM-6KU, we sample 6000 users randomly
from the Yahoo! Music dataset2. LFM-50U is a subset consisting of a random
sample of 50 users taken from the Last.fm3 dataset4. PLC-STR5 consists of
the music streaming history taken from Palco Principal6, a Portuguese social
network for non-mainstream artists and fans.

All of the 4 datasets consist of a chronologically ordered sequence of positive
user-item interactions. However, ML1M and YHM-50U are obtained from rat-
ings datasets. To use them as positive-only data, we retain the user-item pairs for
which the rating is in the top 20% of the rating scale. This means retaining only
the rating 5 in ML1M and rating of 80 or more in the YHM-6KU dataset. Nat-
urally, only single occurrences of user-item pairs are available in these datasets,
since users do not rate the same item more than once. PLC-STR and LFM-50
have multiple occurrences of the same user-item pairs.

We run a set of experiments using the prequential approach [5] as described
in [12]. Each observation in the dataset consists of a simple user-item pair (u, i)
that indicates a positive interaction between user u and item i. The following
steps are performed in the prequential evaluation process:

1. If u is a known user, use the current model to recommend a list of items to
u, otherwise go to step 3;

2. Score the recommended list given the observed item i;
3. Update the model with (u, i) (optionally);
4. Proceed to – or wait for – the next observation

This process is entirely applicable to algorithms that learn either incremen-
tally or in batch mode. This is the reason why step 3 is annotated as optional.
For example, instead of performing this step, the system can store the data to
perform batch retraining periodically.
1 http://www.grouplens.org/data [Jan 2013].
2 https://webscope.sandbox.yahoo.com/catalog.php?datatype=r [Jan 2013].
3 http://last.fm/.
4 http://ocelma.net/MusicRecommendationDataset [Jan 2013].
5 https://rdm.inesctec.pt/dataset/cs-2017-003, file: playlisted tracks.tsv.
6 http://www.palcoprincipal.com/.

http://www.grouplens.org/data
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
http://last.fm/
http://ocelma.net/MusicRecommendationDataset
https://rdm.inesctec.pt/dataset/cs-2017-003
http://www.palcoprincipal.com/
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Table 2. Average performance of ISGD with and without bagging. M is the number
of bootstrap nodes. The last two columns contain the average update times and the
average recommendation times.

Dataset M Rec@1 Rec@5 Rec@10 Rec@20 Upd. (ms) Rec. (ms)

PLC-STR ISGD 0.127 0.241 0.277 0.302 0.237 21.736

8 0.076 0.194 0.257 0.316 2.563 64.793

16 0.081 0.215 0.284 0.349 4.732 132.812

32 0.088 0.229 0.302 0.370 9.508 264.846

64 0.092 0.237 0.313 0.384 18.012 517.479

LFM-50U ISGD 0.034 0.049 0.052 0.055 2.625 94.177

8 0.023 0.044 0.052 0.058 21.449 241.452

16 0.026 0.050 0.059 0.066 43.094 491.689

32 0.028 0.055 0.064 0.071 84.536 984.060

64 0.030 0.057 0.067 0.075 168.781 1.958s

YHM-6KU ISGD 0.030 0.063 0.082 0.103 4.462 89.321

8 0.011 0.033 0.051 0.076 28.529 347.422

16 0.012 0.037 0.058 0.086 54.723 667.898

32 0.019 0.055 0.082 0.117 158.744 990.551

64 0.021 0.059 0.087 0.123 328.924 1.934s

ML1M ISGD 0.005 0.021 0.034 0.055 0.069 2.557

8 0.005 0.019 0.033 0.056 0.517 7.208

16 0.006 0.022 0.038 0.063 1.390 21.816

32 0.006 0.025 0.042 0.071 1.866 33.496

64 0.007 0.026 0.045 0.074 3.999 41.090

To kickstart the evaluation process we use 10% the available data to train a
base model in batch, and use the remaining 90% to perform incremental training
and evaluation. We do this initial batch training to avoid cold-start problems,
which are not the subject of our research.

In our setting, the items that users have already co-occurred with – i.e. items
that users know – are not recommended. This has one important implication in
the prequential evaluation process, specifically on datasets that have multiple
occurrences of the same user-item pair. Evaluation at these points is necessarily
penalized, since the observed item will not be within the recommendations. In
such cases, we bypass the scoring step, but still use the observation to update
the model.

We measure two dimensions on the evaluation process: accuracy and time.
In the prequential process described above, we need to make a prediction and
evaluate it at every new user-item pair (u, i) that arrives in the data stream.
To do this, we use the current model to recommend a list of items to user u.
We then score this recommendation list, by matching it to the actually observed
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item i. We use a recommendation list with at most 20 items, and then score this
list as 1 if i is within the recommended items, and 0 otherwise, using Recall@C
with cutoffs C ∈ {1, 5, 10, 20}. Using these cutoffs, we only consider the top C
items in the list. For example, Recall@1 only checks whether the first item in the
list matches the actual observed item i. Regardless of C, we only have one item
to test against the list, which means that Recall@C can only take the values
{0, 1}. We can calculate the overall Recall@C by averaging the scores at every
step, which in practice gives us the hit ratio. Additionally, we can also depict it
using a moving average. We also measure the update time, in milliseconds, at
every step which can depicted using a moving average as well.

All experiments were run in Intel Haswell 4-core machines, with CentOS
Linux 7 64 bit. The algorithms and prequential evaluation code is implemented
on top of MyMediaLite [6]. The recommendation step is implemented with multi-
core code – predictions from nodes are computed in parallel.

4.1 Results

To evaluate bagging, we experiment with four levels of bootstrapping M ∈
{8, 16, 32, 64}. Table 2 summarizes the results of our experiments. Values in
Table 2 are obtained by averaging Recall and time obtained at all prequential
evaluation steps. With all datasets except YHM-6KU, bagging improves the
Recall, especially with M ≥ 32. One interesting observation is that bagging has
a bigger influence on higher Recall cutoffs, which suggests that improvements
of the predictive ability are typically not obtained in the top 5 recommended
items.

The model update times increase approximately in proportion to the number
of bootstrap nodes M , which is not surprising, since the algorithm performs the
update operations one time (in average) in each one of the M bootstrap nodes.
However, since the baseline update time is very small, this overhead is also small.
The last column of Table 2 contains the recommendation time, specifically the
average time required to produce a recommendation list. The bagging algorithm
needs to aggregate predictions coming from all M nodes, which is an important
overhead. Results show that both the update times and recommendation times
increase proportionally to M . However, the recommendation step is a far more
expensive operation, even when computed in parallel. For example, using M = 64
with LFM-50U and YHM-6KU, recommendations are computed in nearly two
seconds in average, in 4-core machines, which can reasonably be considered too
much in many applications.

A useful feature of prequential evaluation is that it allows us also to depict
the evolution of the outcome of Recall. In Figs. 1, 2, 3 and 4, we depict the
evolution of Recall@C with C ∈ {1, 5, 10, 20}. This visualization reveals how
the predictive ability of the algorithm performs over time, as the incremental
learning process occurs.
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Fig. 1. Prequential evaluation of Recall@1 with ISGD with and without bagging. Lines
are drawn using a moving average of Recall@1 with n = 10000. The first 10 000 points
are drawn using the accumulated average.

Fig. 2. Prequential evaluation of Recall@5 with ISGD with and without bagging. Lines
are drawn using a moving average of Recall@5 with n = 10000. The first 10 000 points
are drawn using the accumulated average.
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Fig. 3. Prequential evaluation of Recall@10 with ISGD with and without bagging.
Lines are drawn using a moving average of Recall@10 with n = 10000. The first 10 000
points are drawn using the accumulated average.

Fig. 4. Prequential evaluation of Recall@20 with ISGD with and without bagging.
Lines are drawn using a moving average of Recall@20 with n = 10000. The first 10 000
points are drawn using the accumulated average.
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4.2 Discussion

Results in Table 2 and Figs. 1, 2, 3 and 4 show that bagging is able to improve
the accuracy of ISGD, with improvements of 35% over the baseline (see Table 2
LFM-50U and ML1M). This improvement is mainly observable with cutoffs C ≥
5 of Recall. Given that bagging reduces variance [1], this suggests that ISGD
is more stable in the top few recommendations. Another observation is that
improvements are not consistent with all datasets. With LFM-50U, for example,
bagging only slightly outperforms the baseline ISGD – and only with M ≥ 32,
while with PLC-STR, the improvement is much higher in proportion, even with
lower M .

One other observation that is particularly visible in the plotted lines in
Figs. 1, 2, 3 and 4 is that as we increase the number of nodes M , the improve-
ment potential becomes lower. In almost all experiments, regardless of the Recall
cutoff and the dataset, the improvement achieved when doubling M from 16 to
32 is higher than the improvement we get when doubling M from 32 to 64,
although the computational overhead in the latter case is twice as high. The
optimal number of nodes is dependent on the desired trade-off between accu-
racy improvement and computational cost. Note that with some datasets – e.g.
YHM-6KU, improvements may only be obtained with a relatively large M .

It is also clear that the time overheads grow linearly with the number of boot-
strap models. However, the overhead in model update times is not very relevant
in practice, given that the baseline update times are very low in ISGD – with
M = 64 the highest update time falls below 400 ms. The overhead at recommen-
dation time is more evident, when aggregating results from the M bootstrap
nodes. Fortunately, as with most ensemble techniques, parallel processing can
be trivially used to alleviate this overhead. Additionally, there may be room
for code optimization or approximate methods that require less and/or more
efficient computations.

5 Conclusions

Bagging is an ensemble technique successfully used with many machine learn-
ing algorithms, however it has not been thoroughly studied in recommendation
problems, and particularly with incremental algorithms. In this paper, we exper-
iment online bagging with an incremental matrix factorization algorithm that
learns from unbounded streams of positive-only data. Our results suggest that
with manageable overheads, accuracy clearly improves – more than 35% in some
cases, especially as the number of recommended items increases. In the near
future, we intend to experiment this and other online ensemble methods in a
larger number of stream-based recommendation algorithms.
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