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Abstract. Logistic Regression and Genetic Programming (GP) have already
been compared to each other in classification tasks. In this paper, Econometric
Genetic Programming (EGP), first introduced as a regression methodology, is
extended to binary classification tasks and evolves logistic regressions through
GP, aiming to generate high accuracy classifications with potential inter-
pretability of parameters, while uses statistical significance as a feature-selection
tool and GP for model selection. EGP-Classification (or EGP-C), the name of
this proposed EGP’s extension, was tested against a large group of algorithms in
three cross-sectional datasets, showing competitive results in most of them.
EGP-C successfully competed against highly non-linear algorithms, like Sup-
port Vector Machines and Multilayer Perceptron with Back Propagation, and
still allows interpretability of parameters and models generated.

Keywords: Genetic programming � Binary classification � Logistic regression �
Model selection

1 Introduction

Logistic Regression (LR or logit regression) and Genetic Programming (GP) have
already been compared to each other in classification tasks [1–3].

The work on [4] is pioneer in evolving LR models through GP. As they state, their
approach merges the ability of LR to deal with dichotomous data and provide quan-
titative results with the optimization characteristic of GP to search the entire hypothesis
space for the “most fit” hypothesis. GP modifies, using an iterative trial and error
process, LR models formed by vegetation indices built from basic function blocks
defined in the function and terminal sets. Each candidate model is refined with a
stepwise backward elimination using the level of significance associated with
Chi-square test of each term and then evaluated based on the fitness function which is
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defined by the model’s Kappa statistics and the number of terms in the model. Figure 1
shows a possible individual generated by its algorithm.

Kaizen Programming (KP) [18] is an interesting evolutionary tool based on con-
cepts of continuous improvement from Kaizen methodology, which was successfully
tested against traditional SR benchmark functions. In [19], KP was coupled with LR
models to extract useful features from a widely studied credit scoring dataset, aiming at
improving the prediction performance of LR.

EGP, which was first introduced in [5] for regression tasks and tested against
traditional feature-selection econometric algorithms, is carefully constructed consid-
ering econometric theory on cross-sectional datasets, aiming to generate high accuracy
regressions with potential interpretability of parameters.

EGP is now extended to binary classification tasks, evolving logistic regressions
through GP, aiming to improve the approach proposed by its predecessors, [4, 19],
particularly on interpretation of parameters. Predictors 1, 2 and 3, in Fig. 1, when
components in a logit model, offer just a few or even none interpretation of parameters.
To perceive this, it is sufficient to try an interpretation on B5B3ð Þ= B3 þB1ð Þ, a coef-
ficient in a LR model of [4]. EGP-C uses just polynomials in the Xb part of LR and to
see why this kind of approach is beneficial to parameter interpretation, see [6]. EGP-C
is interpretation-oriented and also aims to generate high accuracy models.

This paper is organized as follows: Sect. 2 describes the elements of econometrics
used by EGP-C: there is no intention to fully exhaust the theme; justification on these
elements is presented when necessary. Section 3 succinctly describes EGP-C. Sec-
tions 4 proposes experiments and discuss results. Conclusion is done in Sect. 5, with
mention to future work.

Fig. 1. Example of a proposed candidate model representation for the GP and LR integrated
model. (Source: [4])
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2 Econometrics

2.1 Logistic Regression, Maximum Likelihood, Newton’s Method

The Logistic Regression (LR) aims to model Pt, the conditional probability of yt ¼ 1 to
X, with t 2 1½ ; n�. Only possible outcomes for yt are 0 or 1. The matrix X ¼
x1. . .xi. . .xk½ � is constructed by xi n� 1 vectors, i 2 1½ ; k�. Mathematically:

Pt � Pr yt ¼ 1jXð Þ ¼ E ytjXð Þ ð1Þ

Multiple linear regressions are inadequate to model (1) and [7] shows the reason.
Logit or probit models [8] are well recognized methods for binary classification tasks.
Both methods consist of modelling E ytjXð Þ with a transformation function, F xð Þ,
applied to an index function, h Xt; bð Þ:

E ytjXð Þ ¼ F h Xt; bð Þð Þ ¼ F Xtbð Þ ð2Þ

with h Xt; bð Þ ¼ Xtb. The expected value E ytjXð Þ is a typical cumulative probability
distribution, a monotonically growing linear transformation that maps from the real line
to 0; 1½ �, with properties F �1ð Þ ¼ 0, F 1ð Þ ¼ 1 and @F xð Þ=@xð Þ[ 0.

Logit and probit models are usually preferred over other econometric classification
models mainly due linearity on h Xt; bð Þ. For probit regressions, E ytjXð Þ ¼ / Xtbð Þ, the
cumulative normal probability distribution, which has not closed formula but is easily
calculated numerically. For the logit regression:

E ytjXð Þ ¼ K Xtbð Þ ¼ eXtb

1þ eXtb
ð3Þ

which has closed formula. K Xtbð Þ is called logistic function.

Maximum Likelihood (ML) is commonly used to estimate bb on (3) [9]. ML esti-
mation proposes the maximization of the ML function, which gives the likelihood of
the sample y to be observed as realizations of n independent Bernoulli random vari-

ables. The vector bb is the solution of this maximization, which usually occurs on the
logarithm of ML function, because it involves a sum instead of a product:

l y; bð Þ ¼
Xn

t¼1
½yt log K Xtbð Þð Þþ 1� ytð Þ log 1� K Xtbð Þð Þ� ð4Þ

which is globally concave whenever log K Xtbð Þð Þ and log 1� K Xtbð Þð Þ are concave

functions of Xt: in such case, bb is unique. However, [10] states that the presence of

non-linear elements, crossed feature terms (like x3x211), will not permit oneness of bb.
First order conditions of (4) are:

Xn

t¼1
ðyt � K Xt

bb
� �

ÞXti ð5Þ
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Conditions in (5) are just solved numerically, due non-linearity in parameters bb,
and Newton’s Method (NM) is an interactive method that possibly solves it, per-
forming as follows:

b sþ 1ð Þ ¼ b sð Þ �H�1 b sð Þ
� �

rl b sð Þ
� �

ð6Þ

with H the Hessian Matrix and rl the gradient of l bð Þ. Even if there is no global
maximum for l bð Þ, [11] guarantees it always increases by NM.

2.2 Hypothesis Test

Hypothesis Test (HT) is applied in EGP-C in the same way it is applied in EGP and it is
only possible due satisfiability of three regularity conditions, as described in [12].
Under these conditions and n sufficiently large, the following verifies:

bb!d N b; I bð Þ½ ��1
� �

ð7Þ

bbi � bi

SE bbi

� � �N 0; 1ð Þ ð8Þ

with I bð Þ, the Fisher Information, equals to r2b, the asymptotic variance. For a brief
review on HT and how it is applied in EGP, see [5].

3 Econometric Genetic Programming – Classification:
EGP-C

EGP-C is the EGP algorithm applied to classifications tasks, when logit models are
evolved. The main difference between EGP and EGP-C lies in Accuracy and related
metrics, showed in Sect. 3.3.

EGP-C evolves models in format of (3) through GP, which is responsible for model
selection. GP is mainly based in [13] configuration.

3.1 Representation

Individuals are multigenic. Any constant in any program comes from NM in (6), i.e.
there are no ephemeral constants. The terminal set, namely X, is purely composed by
variables. The primitive set, namely 0, is composed just by variables and operations of
sum and multiplication, due Xb format.

Search space for EGP-C is the number of models, nmod , which is function of the
number of regressors created for an individual, nreg.
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nreg ¼
XK

qvar¼1

K � 1þ qvarð Þ!
K � 1ð Þ!qvar! ð9Þ

nmod ¼
Xnreg

qreg¼1

nreg!

nreg � qreg
� �

!
ð10Þ

In (9), qvar is the number of variables on X necessary to create a regressor; in (10),
qreg is the number of regressors required to build a model. (9) is the sum of possible
combinations with repetitions, qvar to qvar . (10) is the sum of possible arrangements of
nreg regressors, qreg to qreg. Supposing K ¼ 3 for a particular dataset, nmod rounds 1017.

3.2 Initial Population

EGP-C uses a probabilistic version of ramped half-and-half method. Figure 2 shows a
possible individual generated by EGP-C.

Set X is composed by K features (independent variables). Every individual has its
own set of regressors, forming its own X, composed by simple or combined elements
of X. As an example, it is possible that x1, x3x211 and x3x4x6 are regressors of a particular
individual, formed by features x1, x3, x4, x6 and x11.

3.3 Accuracy

In EGP, RMSE is the objective function and R
2
is used to compare models. In EGP-C,

the percentage of correctly classified instances (“% corr”) has been chosen as
objective function (accuracy measure), due benchmarks were evaluated using such
metric. Experiments and Results will fully describe the comparison methodology.

To calculate accuracy in an EGP-C individual, the following procedure needs to be
done (Fig. 3).

Fig. 2. A possible individual generated by EGP-C.
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EGP-C will solve (5) for Xb ¼ b1x7 þ b2x9x12 þ b3x18x25. If any of the regressors
are not statistically significant, they will be removed from (5). In sequence, (6) is
recalculated just with statistically significant regressors from (5). % corr is finally

calculated using bb after these steps. This routine is traditional in econometric studies,
ensuring statistical significance over a determined significance level a. Modifications
described are necessary just for accuracy calculation, therefore individuals will keep
their multigene structure to mutation, crossover and elitism (Fig. 4).

EGP-C does not estimate on genes, just on regressors, by two main reasons:
possible multicollinearity problem, interfering on HT for bi, and lack of interpretation

for bbi when it is related to a gene.

3.4 Selection

Tournament selection with ntourn ¼ 7 and repetitions allowed, with a variation on
lexicographic parsimony pressure of [14], is used. Individuals with a large number of
statistically significant regressors will be preferred over others with a few number, in
the same range of fitness. Therefore, EGP-C is parsimonious in its nature, because it
avoids the individuals with a large amount of introns (in this case, non statistically
significant regressors).

Fig. 3. The multigenic individual is written as a set of regressors. Repetitions will be discarded.

Fig. 4. Individual ready for accuracy calculation.
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3.5 Mutation, Crossover and Elitism

Types of mutation used: traditional mutation proposed by [15] and mutation by
regressors’ substitution. Types of crossover used: intergenic and intragenic crossovers.
Mutation and crossover rates vary through evolution following automatic adaptation of
operators as described in [16]. Elitism rate is set to 5% of individuals by generation.

3.6 Tools and Parameters

EGP-C is implemented through a modification on GPTIPS, a Matlab toolbox, pre-
sented in [17]. Information on EGP-C parameters are shown in Table 1.

4 Experiments and Results

EGP-C can be used in different forms, e.g. for model selection or interpretation of
parameters. For the reasoning of this article, EGP-C was submitted to generate high
accuracy models, with potential interpretability of parameters, and tested against a large
group of algorithms in three classification cross-sectional datasets, namely: “Breast
Cancer Wisconsin (Original) Data Set”; “Pima Indians Diabetes Data Set”; “Iono-
sphere Data Set”. All information on datasets can be found in UCI Machine Learning
Repository [20].

To fully test EGP-C’s capability to generate high accuracy models, a generous list
of algorithms to compare it was required. The Computational Intelligence Laboratory
in Informatics’ Department of Nicolaus Copernicus University holds results on a list of
algorithms for datasets used in this article. Their comparison methodology is based on a
10-fold cross validation on the entire dataset and that is the reason EGP-C is evaluated
in the same manner. Authors of each algorithm are responsible for every result
divulgated at Computational Intelligence Laboratory in Informatics’ Department of
Nicolaus Copernicus University domain [21].

Tables 2, 3 and 4 present the results. Results for EGP-C are identified as
“EGP-Classification” in Tables. Algorithms are ordered by % corr, the percentage of
correct hits, while standard deviation works as the next sorting criteria.

Table 1. EGP-C Parameters

Parameters

- Population size 150
- Generations 50
- Maximum gene depth 5
- Maximum number of genes by individual 5
- Probability of traditional mutation [15] 95%.
- Probability of intragenic crossover 50%.
- Threshold for classification in LR E ytjXð Þ ¼ 0:5

388 A.L.F. Novaes et al.



Table 2. Results for Wisconsin Dataset

Position Algorithm % of correct
hits ± standard deviation

Reference

1 NB + kernel est 97,5 ± 1,8 WD, WEKA,
10�10CV

2 SVM (5xCV) 97,2 Bennet and Blue
3 kNN with DVDM distance 97,1 our (KG)
4 GM k-NN, k = 3, raw, Manh 97,0 ± 2,1 WD, 10�10CV
5 GM k-NN, k = opt, raw, Manh 97,0 ± 1,7 WD, 10CV only
6 VSS, 8 it/2 neurons 96,9 ± 1,8 WD/MK; 98.1% train
7 FSM-Feature Space Mapping 96,9 ± 1,4 RA/WD, a = .99

Gaussian
8 Fisher linear discr. anal 96,8 Ster, Dobnikar
9 MLP + BP 96,7 Ster, Dobnikar
10 MLP + BP (Tooldiag) 96,6 Rafał Adamczak
11 LVQ 96,6 Ster, Dobnikar
12 kNN, Euclidean/Manhattan f. 96,6 Ster, Dobnikar
13 SNB, semi-naive Bayes

(pairwise dependent)
96,6 Ster, Dobnikar

14 EGP-Classification 96,43 – 2,88
15 SVM lin, opt C 96,4 ± 1,2 WD-GM, 16 missing

with −10
16 VSS, 8 it/1 neuron! 96,4 ± 2,0 WD/MK, train 98.0%
17 GM IncNet 96,4 ± 2,1 NJ/WD; FKF, max.

3 neurons
18 NB - naive Bayes (completly

independent)
96,4 Ster, Dobnikar

19 SSV opt nodes, 3CV int 96,3 ± 2,2 WD/GM; training
96.6 ± 0.5

20 IB1 96,3 ± 1,9 Zarndt
21 DB-CART (decision tree) 96,2 Shang, Breiman
22 GM SSV Tree, opt nodes BFS 96,0 ± 2,9 WD/KG (beam

search 94.0)
23 LDA - linear discriminant

analysis
96 Ster, Dobnikar

24 OC1 DT (5xCV) 95,9 Bennet and Blue
25 RBF (Tooldiag) 95,9 Rafał Adamczak
26 GTO DT (5xCV) 95,7 Bennet and Blue
27 ASI - Assistant I tree 95,6 Ster, Dobnikar
28 MLP + BP (Weka) 95,4 ± 0,2 TW/WD
29 OCN2 95,2 ± 2,1 Zarndt
30 IB3 95,0 ± 4,0 Zarndt
31 MML tree 94,8 ± 1,8 Zarndt

(continued)
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Table 2. (continued)

Position Algorithm % of correct
hits ± standard deviation

Reference

32 ASR - Assistant R (RELIEF
criterion) tree

94,7 Ster, Dobnikar

33 C4.5 tree 94,7 ± 2,0 Zarndt
34 LFC, Lookahead Feature

Constr binary tree
94,4 Ster, Dobnikar

35 CART tree 94,4 ± 2,4 Zarndt
36 ID3 94,3 ± 2,6 Zarndt
37 C4.5 (5xCV) 93,4 Bennet and Blue
38 C4.5 rules 86,7 ± 5,9 Zarndt
39 Default, majority 65,5 –

40 QDA - quadratic discr anal 34,5 Ster, Dobnikar

Table 3. Results for Diabetes Dataset

Position Algorithm % of correct hits ± standard
deviation

Reference

1 Logdisc 77,7 Statlog
2 IncNet 77,6 Norbert Jankowski
3 DIPOL92 77,6 Statlog
4 Linear Discr. Anal. 77,5 − 77,2 Statlog; Ster &

Dobnikar
5 SVM, linear,

C = 0.01
77,5 ± 4,2 WD-GM, 10XCV

averaged 10x
6 SVM, Gauss, C,

sigma opt
77,4 ± 4,3 WD-GM, 10XCV

averaged 10x
7 EGP-Classification 76,95 – 6,00
8 SMART 76,8 Statlog
9 GTO DT (5xCV) 76,8 Bennet and Blue
10 kNN, k = 23, Manh,

raw, W
76,7 ± 4,0 WD-GM, feature

weighting 3CV
11 kNN, k = 1:25,

Manh, raw
76,6 ± 3,4 WD-GM, most cases

k = 23
12 ASI 76,6 Ster & Dobnikar
13 Fisher discr. analysis 76,5 Ster & Dobnikar
14 MLP + BP 76,4 Ster & Dobnikar
15 MLP + BP 75,8 ± 6,2 Zarndt
16 LVQ 75,8 Ster & Dobnikar
17 LFC 75,8 Ster & Dobnikar

(continued)
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Table 3. (continued)

Position Algorithm % of correct hits ± standard
deviation

Reference

18 RBF 75,7 Statlog
19 NB 75,5 − 73,8 Ster & Dobnikar;

Statlog
20 kNN, k = 22, Manh 75,5 Karol Grudziński
21 MML 75,5 ± 6,3 Zarndt
22 FSM stand. 5 feat. 75,4 ± 4,9 WD, 10x10 test,

CC > 0.15
23 SNB 75,4 Ster & Dobnikar
24 BP 75,2 Statlog
25 SSV DT 75,0 ± 3,6 WD-GM, SSV BS,

node 5CV MC
26 kNN, k = 18, Euclid,

raw
74,8 ± 4,8 WD-GM

27 CART DT 74,7 ± 5,4 Zarndt
28 CART DT 74,5 Stalog
29 DB-CART 74,4 Shang & Breiman
30 ASR 74,3 Ster & Dobnikar
31 FSM standard 74,1 ± 1,1 WD, 10x10 test
32 ODT, dyadic trees 74,0 ± 2,3 Blanchard
33 Cluster means, 2

prototypes
73,7 ± 3,7 MB

34 SSV DT 73,7 ± 4,7 WD-GM, SSV BS,
node 10CV strat

35 SFC, stacking filters 73,3 ± 1,9 Porter
36 C4.5 DT 73 Stalog
37 C4.5 DT 72,7 ± 6,6 Zarndt
38 Bayes 72,2 ± 6,9 Zarndt
39 C4.5 (5xCV) 72 Bennet and Blue
40 CART 72,8 Ster & Dobnikar
41 Kohonen 72,7 Statlog
42 C4.5 DT 72,1 ± 2,6 Blanchard (average in

100 runs)
43 kNN 71,9 Ster & Dobnikar
44 ID3 71,7 ± 6,6 Zarndt
45 IB3 71,7 ± 5,0 Zarndt
46 IB1 70,4 ± 6,2 Zarndt
47 kNN, k = 1,

Euclides, raw
69,4 ± 4,4 WD-GM

48 kNN 67,6 Statlog
49 C4.5 rules 67,0 ± 2,9 Zarndt
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EGP-C was competitive in Wisconsin and Diabetes datasets, performing in 14th (40
algorithms in total) and 7th (49 in total), respectively. Support Vector Machines
(SVMs) and Multilayer Perceptron with Back Propagation (MLP + BP), which are
highly non-linear in structure, using more complex non-linear functions like trigono-
metric ones, presented results just a little better than EGP-C (in average, 0.5% above).
Additionally, SVMs and MLP + BP permits low or none interpretability of parameters.

In logit models, the coefficient bbi can be interpreted as the effect of a unit of change
in xi on the predicted logits with other regressors considered constants in the model.
(11) is a model generated by EGP-C.

e�7:12þ 0:14x4�0:25x6

1þ e�7:12þ 0:14x4�0:25x6
ð11Þ

Table 4. Results for Ionosphere Dataset

Position Algorithm % of correct
hits ± standard
deviation

Reference

1 3-NN + simplex 98,7 Our own weighted kNN
2 VSS 2 epochs 96,7 MLP with numerical

gradient
3 3-NN 96,7 KG, GM with or without

weights
4 IB3 96,7 Aha, 5 errors on test
5 1-NN, Manhattan 96 GM kNN (our)
6 MLP + BP 96 Sigillito
7 SVM Gaussian 94,9 ± 2,6 GM (our), defaults, similar

for C = 1 − 100
8 C4.5 94,9 Hamilton
9 3-NN Canberra 94,7 GM kNN (our)
10 RIAC 94,6 Hamilton
11 C4 (no windowing) 94 Aha
12 C4.5 93,7 Bennet and Blue
13 SVM 93,2 Bennet and Blue
14 Non-lin perceptron 92 Sigillito
15 FSM + rotation 92,8 our
16 1-NN, Euclidean 92,1 Aha, GM kNN (our)
17 DB-CART 91,3 Shang, Breiman
18 Linear perceptron 90,7 Sigillito
19 OC1 DT 89,5 Bennet and Blue
20 CART 88,9 Shang, Breiman
21 SVM linear 87,1 ± 3,9 GM (our), defaults
22 EGP-Classification 86,9 + 5,21
23 GTO DT 86 Bennet and Blue
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with Xb ¼ �7:12þ 0:14x4 � 0:25x6. The effect on the odds of a 1-unit increase in x4 is
e0:14 ¼ 1:15, meaning the odds of an instance to be classified as yt ¼ 1 increase
approximately 15% when x4 is added by one unit (of x4), regardless of the x6 value.

In Ionosphere dataset, EGP-C was not competitive. Ionosphere has a binary attri-
bute with 89.17% of its values equals to 1 and the rest, 10.83%, equals 0. When
combining features to generate regressors, this attribute (suppose it is x1) can easily
form a regressor that is collinear with other. For example, x1 and x21 composing the
same individual. In such cases, X has not full rank and thus the variant of NM used to
solve (5) will fail to find a maximum (even it is local) to (4), because this version of
NM has not a protection against linear dependent columns. That is why EGP-C, in
some circumstances like highly unbalanced datasets, is purposely set to do not generate
too large individuals, consequently compromising accuracy. EGP-C controls individ-
uals’ growth by parsimoniously regulating GP parameters as population size, number
of generations or maximum gene height for trees.

5 Conclusion and Future Work

EGP-C was successful in achieving its objective of generating high accuracy logit
models. Although non-linear, logit models generated by EGP-C hold a linear portion
on its structure, Xb, which permits potential interpretability of parameters.

Future work points out in designing EGP for time series forecast. High collinearity
between columns of X requires a distinct approach to prediction, depending on the
model someone is interested in.

References

1. Nourani, V., Pradhan, B., Ghaffari, H., Sharifi, H.: Landslide susceptibility mapping at
Zonouz plain, Iran using genetic programming and comparison with frequency ratio, logistic
regression, and artificial neural network models. Commun. J. Int. Soc. Prev. Mitig. Nat.
Hazards 71(1), 523–547 (2014)

2. Ritchie, M.D., Motsinger, A.A., Bush, W.S., Coffey, C.S., Moore, J.H.: Genetic
programming neural networks: a powerful bioinformatics tool for human genetics. Commun.
Appl. Soft Computing J. 7(1), 471–479 (2007)

3. Ong, C.-S., Huang, J.-J., Tzeng, G.-H.: Building credit scoring models using genetic
programming. Commun. Expert Syst. Appl.: Int. J. 29(1), 41–47 (2005)

4. Momm, H.G., Easson, G., Kuszmaul, J.: Integration of logistic regression and genetic
programming to model coastal Louisiana land loss using remote sensing. In: Proceedings of
the American Society for Photogrammetry and Remote Sensing 2007 Annual Conference,
ASPRS 2007, Tampa, FL, USA (2007)

5. Novaes, A.L.F., Tanscheit, R., Dias, D.M.: Programação Genética Econométrica Aplicada a
Problemas de Regressão em Conjuntos de Dados Seccionais. In: Proceedings of XIII
Encontro Nacional de Inteligência Artificial, ENIAC 2016, Recife, PE, Brazil (2016)

6. Wooldridge, J.: Introductory Econometrics: A Modern Approach, 4th edn. Cengage
Learning, Boston (2009)

Econometric Genetic Programming in Binary Classification 393



7. Novaes, A.L.F.: Programação Genética Econométrica: uma Nova Abordagem para
Problemas de Regressão e Classificação em Conjuntos de Dados Seccionais. Master’s
thesis. Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
(2015)

8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 1st edn.
Springer New York Inc., New York (2001)

9. Davidson, R., MacKinnon, J.: Estimation and Inference in Econometrics, 1st edn. Oxford
University Press, Oxford (1993)

10. Pratt, J.W.: Concavity of the log likelihood. J. Am. Stat. Assoc. 76(1), 103–106 (1981)
11. Murray, W.: Newton-Type Methods. 1st edn. Stanford (2010)
12. Greene, W.H.: Econometric Analysis, 7th edn. Prentice Hall, Upper Saddle River (2011)
13. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming, 1st edn.

Lulu Enterprises, Raleigh (2008)
14. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of the 2002

Conference on Genetic and Evolutionary Computation, GECCO 2002, pp. 829–836. ACM,
San Francisco (2002)

15. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection (Complex Adaptive Systems), 1st edn. The MIT Press, Cambridge (1992)

16. Silva, S., Almeida, J.: Gplab – a genetic programming toolbox for matlab. In: Proceedings of
the Nordic MATLAB Conference, pp. 273–278 (2003)

17. Searson, D.P., Leahy, D.E., Willis, M.J.: GPTIPS: an open source genetic programming
toolbox for multigene symbolic regression. In: Proceedings of The International Multicon-
ference of Engineers and Computer Scientists 2010, IMECS 2010, Hong Kong, pp. 77–80
(2010)

18. De Melo, V.V.: Kaizen programming. In: Proceedings of the 2014 Conference on Genetic
and Evolutionary Computation, GECCO 2014, pp. 895–902. ACM, New York (2014)

19. De Melo, V.V., Banzhaf, W.: Improving logistic regression classification of credit approval
with features constructed by Kaizen programming. In: Proceedings of the 2016 Conference
on Genetic and Evolutionary Computation, GECCO 2016, pp. 61–62. ACM, New York
(2016)

20. UCI Machine Learning Repository. University of California, School of Information and
Computer Science, Irvine, CA. http://archive.ics.uci.edu/ml. Accessed 24 Feb 2015

21. Datasets used for classification: comparison of results. Nicolaus Copernicus University,
Department of Informatics, Computational Intelligence Laboratory, Toruń, Poland. http://
www.springer.com/lncs. Accessed 24 Feb 2015

394 A.L.F. Novaes et al.

http://archive.ics.uci.edu/ml
http://www.springer.com/lncs
http://www.springer.com/lncs

	Econometric Genetic Programming in Binary Classification: Evolving Logistic Regressions Through Genetic Programming
	Abstract
	1 Introduction
	2 Econometrics
	2.1 Logistic Regression, Maximum Likelihood, Newton’s Method
	2.2 Hypothesis Test

	3 Econometric Genetic Programming – Classification: EGP-C
	3.1 Representation
	3.2 Initial Population
	3.3 Accuracy
	3.4 Selection
	3.5 Mutation, Crossover and Elitism
	3.6 Tools and Parameters

	4 Experiments and Results
	5 Conclusion and Future Work
	References




