
A Meta-Genetic Algorithm for Hybridizing
Metaheuristics

Ahmed Hassan(B) and Nelishia Pillay

University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
ahmedhassan@aims.ac.za, pillayn32@ukzn.ac.za

Abstract. The research presented in this paper forms part of the ini-
tiative aimed at automating the design of intelligent techniques to make
them more accessible to non-experts. This study focuses on automating
the hybridization of metaheuristics and parameter tuning of the indi-
vidual metaheuristics. It is an initial attempt at testing the feasibility
to automate this design process. A genetic algorithm is used for this
purpose. Each hybrid metaheuristic is a combination of metaheuristics
and corresponding parameter values. The genetic algorithm explores the
space of these combinations. The genetic algorithm is evaluated by apply-
ing it to solve the symmetric travelling salesman problem. The evolved
hybrid metaheuristics are found to perform competitively with the man-
ually designed hybrid approaches from previous studies and outperform
the metaheuristics applied individually. The study has also revealed the
potential reusability of the evolved hybrids. Based on the success of
this initial study, different problem domains shall be used to verify the
automation approach to the design of hybrid metaheuristics.

Keywords: Metaheuristics · Hybrid metaheuristics · Meta-genetic algo-
rithm

1 Introduction

Hybrid metaheuristics have proven to be effective at solving combinatorial opti-
mization problems [4,27]. However, designing hybrid metaheuristics is a very
challenging task [4,27] involving various critical design decisions, including which
metaheuristics to combine, how to combine these and which parameter values to
use for each metaheuristic. The research presented in this paper aims at inves-
tigating the possibility of automating these design decisions.

A genetic algorithm is used to automate these design decisions. The meta-
heuristics are combined linearly and each chromosome is a sequence of meta-
heuristics, with each gene containing a character representing a metaheuristic
and the relevant parameter values for that metaheuristic. A steady-state genetic
algorithm employing tournament selection, crossover and mutation is used to
explore the space of metaheuristics and their parameter values. The metaheuris-
tics comprising the chromosomes include iterated local search, tabu search, sim-
ulated annealing and a memetic algorithm.
c© Springer International Publishing AG 2017
E. Oliveira et al. (Eds.): EPIA 2017, LNAI 10423, pp. 369–381, 2017.
DOI: 10.1007/978-3-319-65340-2 31



370 A. Hassan and N. Pillay

The automatically designed hybrid metaheuristics (adhms) evolved by the
meta-genetic algorithm (mga) are evaluated using the symmetric traveling sales-
man problem (tsp) and their performance is compared to manually designed
hybrid approaches. The adhms are found to be very competitive to the manu-
ally designed approaches. The adhms are also found to outperform the meta-
heuristics when they are used separately. The main contributions of this research
are:

– This study has shown a simple, yet effective, approach to the automation of
hybrid metaheuristics. This has been illustrated using the symmetric travel-
ing salesman problem, however the approach can be applied to solving any
combinatorial optimization problem; see Sect. 7.

– The research has shown the potential of automating the design of hybrid
metaheuristics. The approach performs competitively with carefully crafted,
manually designed hybrid heuristics. The approach is also found to have bet-
ter performance than the standard metaheuristic when applied individually.

The rest of the paper is organized as follows. In Sect. 2, the motivation of the
paper is stated. Section 4 describes the proposed meta-genetic algorithm. The
experimental setup is specified in Sect. 5. In Sect. 6, the results are presented
and discussed. Section 7 provides the conclusion and the future work.

2 Motivation

The best known results in many optimization problems are found by hybrid
metaheuristics [27]. The design of hybrid metaheuristics is challenging, requir-
ing expert knowledge in algorithm design, data structures and statistics [4].
The design of metaheuristics involves many hard-to-make design choices such as
whether to use a single method or to hybridize a number of methods; which meth-
ods/components to include; how to synthesize the hybridization; how to prune
the space of all possible design choices; how to configure the hybrid method
and/or each of its components. The main aim of this research is to investigate
the possibility of automating this design process which will give researchers the
time to focus on other aspects, with a long-term goal of providing tools for
non-experts to use, hence facilitating multidisciplinary research.

Analogous to the way experts come up with hybrid solvers, in this paper the
design phase is separated from the application phase. The design phase involves
designing a hybrid metaheuristic for solving a particular optimization problem.
In the application phase, the algorithm crafted in the design phase is applied
to the optimization problem at hand. The design phase is usually conducted
manually by the researcher. In this study we investigate automating this process
thereby relieving the researcher from carrying it out manually.

Please note that the aim of this research is not to compete with or improve
on the state of the art techniques for solving a particular problem. The main
focus is to show how the design process can be automated and to investigate the
difference in performance of the automatically designed and manually designed



A Meta-Genetic Algorithm for Hybridizing Metaheuristics 371

hybrid metaheuristics, with the aim of producing hybrids that perform at least
as good as the manually designed hybrids.

3 Related Work

The automation of the design of metaheuristics is tackled from many
aspects using different approaches: algorithm selection [25], algorithm portfo-
lios [15], reactive search [2], automatic algorithm configuration [18] and hyper-
heuristics [5].

In a narrower sense, prior work includes that of Adriaensen et al. [1] in which
a focused ILS is used for automating hyper-heuristics. Kanda et al. [19] use meta-
learning to choose, based on the problem features, the most effective metaheuris-
tic. Bhanu and Gopalan [3] use a great deluge hyper-heuristic to control a set of
hybrid genetic algorithms. Grobler et al. [16] use a selection hyper-heuristic to
manage a number of population-based metaheuristics. Maashi et al. [21] use a
choice function hyper-heuristic to intelligently select the most appropriate multi-
objective evolutionary algorithm at each point of solving the problem. Pillay [24]
uses an evolutionary algorithm hyper-heuristic to evolve sequences of classical
artificial intelligent search methods.

To the best of our knowledge, this the first study which uses a multipoint
metaheuristic to automatically hybridize and tune single point and population-
based metaheuristics. The success of using genetic algorithms for parameter
tuning in evolutionary algorithms [13] as well as determining the control flow in
evolutionary algorithms [11] motivates the use of the genetic algorithm in this
paper. Please note that the subject of this work is to hybridize metaheuristics;
not to select the most suitable metaheuristic based on the instance features.

4 Meta-genetic Algorithm for Hybridizing Metaheuristics

The mga is a steady state genetic algorithm evolving a population of metaheuris-
tic hybrids consisting of the standard metaheuristics (smhs); namely, simulated
annealing (sa), tabu search (ts), iterated local search (ils) and a memetic algo-
rithm (ma). Along with finding appropriate metaheuristic hybrids, the mga also
finds suitable parameter settings for the smhs in an online fashion.

4.1 Standard Metaheuristics

Please refers to [14] for the description of the smhs used in this paper. The
details that are specific to our implementation are only presented here.

ils: The perturbation of the ils is done by executing random moves for a
number of times determined by the perturbation strength. The local search used
by the ils is the best improvement local search which makes the best move
at each step and stops when there is no further improvement. The acceptance
criterion accepts improving moves only.



372 A. Hassan and N. Pillay

ts: The ts used in this paper is the best improvement tabu search which
makes the best non-tabu move at each iteration. A move is allowed by the
aspiration criterion if it is the best move seen so far in the neighborhood and it
produces a solution better than the best solution. The tabu list is ruled by: first
enters, first leaves. The tabu condition is defined in Sect. 5.2.

sa: The temperature decreases geometrically, i.e. Tk+1 = c × Tk where c ∈
(0, 1) is the cooling rate. The length of the repetition schedule is equal to the
size of the neighborhood. The probability function is defined as:

Pr(s, s′, T ) = exp
(−100 × [f(s′) − f(s)] /f(s′)

T

)
,

where f(.) denotes the objective function, T denotes the temperature and s is
the current solution and s′ is a candidate solution.

ma: The ma is a steady state genetic algorithm combined with local search.
At each generation, the maximum preservative crossover operator [22] is used
to produce one offspring. Then, the local search is applied to the offspring. The
worse individual in the population is replaced by the offspring if the offspring is
better. The local search is the first improvement local search which makes the
first improving move it finds and stops when there is no further improvement.

4.2 Chromosome Representation and Initial Population Generation

The chromosomes are represented by strings of the form h1 : s1, h2 : s2,
. . .,,hn : sn where n is the chromosome length and each gene is of the form
hi : si for i = 1, 2, . . . , n where hi can be simulated annealing S, tabu search
T, iterated local search I, or the memetic algorithm M and si is the specification
for running hi. For instance, if hi is the tabu search T, then si could be (10,
75) which means running the tabu search for 10 iterations and the length of
tabu list is 75. An example of a chromosome is M:(50,100,2),S:(45, 0.5,
0.95) which is interpreted as running the memetic algorithm for 50 generations
with a population of size of 100 and a tournament of size 2 followed by running
simulated annealing with an initial temperature of 45, a final temperature of
0.5 and a cooling rate of 0.95.

The chromosomes of the initial population are created at random where
each gene is created by selecting one of the smhs along with its parameters
at random. The parameters are chosen from predetermined ranges. The length
of each chromosome is also randomly chosen. The shortest chromosome is of
length one and the longest chromosome is bounded by a limit. Duplicates are
not allowed in the initial population.

4.3 Fitness Evaluation and Selection

The fitness of each chromosome is calculated by executing the specified smh at
each gene using the corresponding specification. Each chromosome is evaluated
on one problem instance. All elements of a population are applied to the same



A Meta-Genetic Algorithm for Hybridizing Metaheuristics 373

initial solution of the same problem instance. The execution of the chromosomes
is handled sequentially, i.e. once the execution of a gene ends, the execution of
the subsequent gene starts using the output of the preceding gene as an input.
The execution of the chromosome is terminated once an optimal solution is found
or until the last gene is executed. The fitness of the chromosome is the cost of
the best solution found by the chromosome. To facilitate the transition from one
gene to the next, the best solution found by the preceding gene is passed to the
subsequent gene if it encodes a single point search. When the subsequent gene
encodes a population-based method, seventy percent of the initial population is
made of randomly created solutions and the rest of the population is comprised
of the solutions created by the preceding genes inserted with equal proportions.

Tournament selection is used which involves choosing a few individuals at
random from the population which compete based on fitness. The fittest indi-
vidual is the winner of the tournament. The winner of the tournament is used
to create offspring.

4.4 Regeneration

The crossover operator is used to produce the offspring. Two crossover points are
chosen independently at random in both parents and the chromosomal substrings
are swapped at the crossover points so that two offspring are generated. Then
the offspring are mutated at one gene chosen at random. The mutation is done
by choosing a smh along with its parameter values at random. The two fittest
individuals out of the two parents and the two offspring survive and they are
inserted into the next generation.

5 Experimental Setup

5.1 Evaluation of the MGA

The symmetric tsp is used to evaluate the performance of the proposed mga.
The tsp has been used extensively to benchmark newly proposed methods due
to its rich complexity and wide applications.

The proposed mga is an automated approach for designing metaheuristic
hybrids and thus it is compared to recently proposed manually designed hybrid
systems; namely, the method of Wu et al. [28] (gcga), the method of Créput
and Koukam [7] (msom), the method of Chen and Chien [6] (gsaacpso) and
the two methods of Lin et al. [20] (ahsats-dcm and ahsats-2opt).

The problem set consists of 30 problem instances chosen from tsplib.1 The
number of cities in these instances ranges from 51 to 724. It is worth noting
that although instances of these sizes can be solved up to optimality using exact
techniques, they are still challenging for recent hybrid metaheuristics and approx-
imate hybrid methods; see for instance [9,23,26]. Furthermore, the aim of the
proposed study is not to develop a specialized large-scale tsp solver.2

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
2 Large-scale tsp solvers require special data structures and heuristics [17] which falls

out of the scope of this study.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/


374 A. Hassan and N. Pillay

5.2 TSP Specific Details

The solutions are tours represented as permutations of integers where each city
is identified by a unique number from 0 to n − 1 assuming there are n cities.
The initial solutions are created uniformly at random using the algorithm of
Durstenfeld [12]. The length of tours is calculated as specified in the tsplib.
The 2-opt operator [8] is used to facilitate the transition from one solution to a
neighboring solution during the search. The perturbation of the ils described in
Sect. 4.1 is done by executing random 2-opt moves determined by the perturba-
tion strength. The tabu condition of the ts described in Sect. 4.1 is based on the
2-opt moves. A 2-opt move is declared tabu if both cities involved in the 2-opt
move are in the tabu list.

5.3 Parameter Settings

The parameter values of the smhs are chosen by the mga from specific ranges.
The ranges are chosen to be wide enough to give the mga the flexibility of deter-
mining the appropriate values for each parameter. The ranges of the parameters
for each smh are documented online.3

5.4 Experiments

There are three experiments conducted.
Experiment I: The main aim of Experiment I is to compare the automated

design with the manual design. The automatically designed hybrid metaheuris-
tics evolved by the mga are compared to the manually designed approaches
mentioned in Sect. 5.1 in terms of the best and the average performance. Please
note that there is a clear separation between the design phase and the application
phase; thus, unlike the hyper-heuristic studies [5], the mga replaces the human
designer and thus it is not directly compared with the published methods; rather,
the performance of the hybrid metaheuristics that are designed by the mga is
compared with the performance of the manually designed hybrid methods. The
Friedman test is used to detect whether there are significant differences in the
performance of the adhms and the other methods. Then, the Wilcoxon signed
ranks test is used to perform the pairwise comparisons involving the adhms and
the manually designed approaches. The Holm procedure is used to control the
family-wise error associated with multiple comparisons.

Experiment II: The aim of Experiment II is to compare the performance of the
hybrid solvers to the individual metaheuristics, i.e. the ts, ils, sa and ma. Each
metaheuristic is tuned automatically offline using Iterated Race for Automatic
Algorithm Configuration (irace).4 The details of the offline parameter tuning
can be found online.5 The performance of the evolved hybrid metaheuristics is

3 https://www.dropbox.com/s/2cyeywtxvd56rjr/parameter settings.rtf?dl=0.
4 http://iridia.ulb.ac.be/irace/.
5 https://www.dropbox.com/s/01imrwvtc48ce18/offline tuning.rtf?dl=0.

https://www.dropbox.com/s/2cyeywtxvd56rjr/parameter_settings.rtf?dl=0
http://iridia.ulb.ac.be/irace/
https://www.dropbox.com/s/01imrwvtc48ce18/offline_tuning.rtf?dl=0


A Meta-Genetic Algorithm for Hybridizing Metaheuristics 375

compared to each of the metaheuristics individually applied to solve the problem
instance. The Friedman test and the Holm procedure are used.

Experiment III: This experiment is an initial investigation of the reusability of
the adhms. A set of 22 instances is used. The instances are divided into “hidden”
and “seen” instances. The hidden instances are grouped into two classes: ClassA
comprised of 10 instances with sizes less than 300 cities and ClassB comprised of
10 instances with sizes larger than 300 cities. For each class, one “seen” instance
is used by the mga to evolve a hybrid solver. Then, that hybrid solver is used
to solve all the hidden instances belonging to the corresponding class. The best
and average objective value over 30 runs are used to evaluate the performance
of the hybrid solvers on the hidden instances.

5.5 Implementation Platform

The simulations are run on a cluster consisting of Intel 5th generation CPUs
(2.6 GHz). The cluster is interconnected with FDR 56 GHz InfiniBand. The
OS is CentOS 7.0. The programming language is the OpenJDK Java version
1.7.0−111.

6 Results and Discussion

6.1 Experiment I

In Experiment I, the performance of the adhms is compared to that of the
manually designed approaches. The best and the mean performance of the adhms
over 30 independent runs are shown in Table 1. For each method shown in the
table, the first column gives the percentage deviation of the best solutions from
the best known solutions where the percentage deviation (denoted by Δ) of a
solution S from the best known solution S∗ is defined as

Δ = 100 × S − S∗

S∗ . (1)

The second column gives the mean performance. The third column gives the
runtime measured in seconds. From Table 1, the adhms find the best known
solutions for 22 instances out of 30. The adhms perform better in terms of both
the best and mean performance compared to gcga, msom, gsaacpso; perform
slightly better than ahsats-2opt in terms of the best performance and slightly
worse in terms of the mean performance; perform equally with the ahsats-
dcm in terms of the best performance and slightly worse in terms of the mean
performance.

The statistical analysis is used to detect whether the differences in the per-
formance of the adhms and the other published methods are significant. The
Friedman test is used. The average rankings computed by the Friedman test are
ahsats-cdm: 1.53, ahsats-2opt: 2.22, adhms: 2.25, gsaacpso: 4.06, msom:
5.44 and gcga: 5.5. High ranks correspond to poor performance. The Friedman



376 A. Hassan and N. Pillay
T
a
b
le

1
.
C

o
m

p
a
ri

so
n

o
f
th

e
p
er

fo
rm

a
n
ce

o
f
th

e
a
d
h
m
s

w
it

h
p
re

v
io

u
sl

y
p
u
b
li
sh

ed
w

o
rk

.
B

K
S

st
a
n
d
s

fo
r

th
e

b
es

t
k
n
ow

n
so

lu
ti

o
n
.

In
st
a
n
c
e

B
K
S

M
G
A

A
H
S
A
T
S
-D

C
M

A
H
S
A
T
S
-2

o
p
t

G
S
A
A
C
P
S
O

M
S
O
M

G
C
G
A

Δ
∗

M
e
a
n

T
Δ

∗
M

e
a
n

T
Δ

∗
M

e
a
n

T
Δ

∗
M

e
a
n

T
Δ

∗
M

e
a
n

T
Δ

∗
M

e
a
n

T

e
il
5
1

4
2
6

0
4
2
6

0
.2

0
4
2
6

2
.7

0
4
2
6

4
.9

0
.2
3

4
2
7
.2
7

-
1
.6
4

4
3
5
.1
2

0
.2
5

0
.2
3

4
3
0

0
.9
8

b
e
rl
in

5
2

7
5
4
2

0
7
5
4
2

0
.7

0
7
5
4
2

4
.6

0
7
5
4
2

5
.1

0
7
5
4
2

-
0

7
6
9
3
.5
9

0
.3

-
-

-

e
il
7
6

5
3
8

0
5
3
8

0
.5

0
5
3
8

4
.3

0
5
3
8

7
.7

0
5
4
0
.2

-
2
.0
4

5
5
3
.4
9

0
.3
9

2
.2
3

5
5
1

2
.4
2

k
ro

A
1
0
0

2
1
2
8
2

0
2
1
2
8
2

2
.4

0
2
1
2
8
2

4
.7

0
2
1
2
8
4
.3
3

1
0

0
2
1
3
7
0
.4
7

-
0
.2
4

2
1
5
2
4
.6
1

0
.5
3

0
.0
5

2
1
5
4
3

2
.5
7

k
ro

B
1
0
0

2
2
1
4
1

0
2
2
1
5
9

4
.2

0
2
2
1
6
0
.5

5
.1

0
2
2
1
6
0
.6
7

1
0

0
2
2
2
8
2
.8
7

-
0
.9
2

2
2
5
2
8
.4
7

0
.5
2

0
.2
4

2
2
5
4
2

2
.5
5

k
ro

C
1
0
0

2
0
7
4
9

0
2
0
7
6
2

2
.2

0
2
0
7
4
9

4
.4

0
2
0
7
4
9
.3
3

1
0
.3

0
2
0
8
7
8
.9
7

-
0
.3
2

2
0
8
9
6
.3
2

0
.5

0
.3
2

2
1
0
2
5

2
.8
8

k
ro

D
1
0
0

2
1
2
9
4

0
2
1
3
1
5

1
.2

0
2
1
2
9
4

4
.9

0
2
1
2
9
4

9
.5

0
.0
7

2
1
6
2
0
.4
7

-
0
.8

2
1
5
3
6
.7
5

0
.5
1

1
.2
2

2
1
8
0
9

2
.5
3

k
ro

E
1
0
0

2
2
0
6
8

0
2
2
1
1
1

2
.1

0
2
2
1
1
3
.1
7

5
.3

0
2
2
1
2
5
.2

1
0
.1

0
2
2
1
8
3
.4
7

-
1
.1
2

2
2
5
0
7
.1
5

0
.5
2

0
.2
4

2
2
3
7
9

2
.5
3

rd
1
0
0

7
9
1
0

0
7
9
2
8

1
.5

0
7
9
1
0

4
.6

0
7
9
1
0

9
.7

0
7
9
8
7
.5
7

-
0
.9
9

8
1
1
9
.6
2

0
.5

0
.9
6

8
0
3
1

2
.5
5

e
il
1
0
1

6
2
9

0
6
3
2

3
.3

0
6
2
9

5
.6

0
6
2
9

1
0
.1

0
.1
6

6
3
5
.2
3

-
2
.0
7

6
4
8
.8
1

0
.5
1

1
.5
9

6
4
6

2
.2
2

li
n
1
0
5

1
4
3
7
9

0
1
4
3
7
9

1
.8

0
1
4
3
7
9

5
.5

0
1
4
3
8
2
.6
7

1
1
.1

0
1
4
4
0
6
.3
7

-
0

1
4
4
2
7
.8
9

0
.5
5

0
.5
6

1
4
5
4
4

2
.5
5

p
r1

2
4

5
9
0
3
0

0
5
9
0
3
4

3
.7

0
5
9
0
3
7
.6
7

5
.6

0
5
9
0
3
0

1
2
.6

-
-

-
0
.2
6

5
9
9
2
7
.2
6

0
.6
2

0
5
9
1
4
1

4
.2
3

b
ie
r1

2
7

1
1
8
2
8
2

0
1
1
8
3
6
9

3
.2

0
1
1
8
2
9
1
.5

1
5
.2

0
1
1
8
3
2
2
.1
7

1
7
.6

0
1
1
9
4
2
1
.8
3

-
1
.2
5

1
2
1
5
7
0
.2
4

0
.8

0
.9
1

1
2
0
4
1
2

2
.5
2

c
h
1
3
0

6
1
1
0

0
6
1
5
3

5
.4

0
6
1
1
3
.1
7

5
.2

0
6
1
1
9
.8
3

1
2
.6

0
.5
1

6
2
0
5
.6
3

-
0
.8

6
2
8
2
.9
1

0
.6
6

-
-

-

p
r1

3
6

9
6
7
7
2

0
.0
2

9
7
1
6
8

8
.8

0
.0
1

9
6
9
4
6
.8
3

5
.5

0
.1
5

9
6
9
8
4
.1
7

1
3
.1

-
-

-
0
.7
3

9
9
7
7
1
.9
3

0
.7
6

0
.4
7

9
9
5
0
5

3
.0
2

p
r1

4
4

5
8
5
3
7

0
5
8
5
3
7

5
.3

0
5
8
5
8
1
.1
7

6
.2

0
5
8
5
6
3
.5

1
3
.8

-
-

-
-

-
0

5
8
5
6
0

4
.2
6

c
h
1
5
0

6
5
2
8

0
6
5
4
6

5
.5

0
6
5
5
0

6
.3

0
.3
2

6
5
5
3
.3
3

1
5
.6

0
6
5
6
3
.7

-
1
.6
7

6
7
2
0
.5
8

0
.7
8

-
-

k
ro

A
1
5
0

2
6
5
2
4

0
2
6
5
6
7

7
.8

0
2
6
5
3
6

6
.3

0
2
6
5
4
8
.5

1
5
.9

0
2
6
8
9
9
.2

-
1
.6
4

2
7
2
4
8
.1
1

0
.7
6

1
.4

2
7
2
9
8

3
.8
3

k
ro

B
1
5
0

2
6
1
3
0

0
2
6
1
6
8

8
.9

0
.0
1

2
6
1
5
6
.6
7

6
.7

0
.0
2

2
6
1
7
3
.3
3

1
5
.8

0
2
6
4
4
8
.3
3

-
0
.7
4

2
6
5
5
0
.6
9

0
.7
7

1
.6
3

2
6
6
8
2

3
.5
8

p
r1

5
2

7
3
6
8
2

0
7
3
7
4
1

5
.5

0
7
3
7
5
4
.6
7

6
.7

0
7
3
8
2
5

1
6

-
-

-
1
.5
7

7
5
5
9
7
.7
3

0
.8
9

0
.1
9

7
4
5
8
2

4
.1
9

d
1
9
8

1
5
7
8
0

0
.1
4

1
5
8
2
6

2
0
.1

0
.0
7

1
5
8
0
0
.3
3

5
7
.8

0
.0
7

1
5
8
0
5
.3
3

5
6
.9

-
-

-
-

-
-

1
.0
1

1
6
0
8
4

3
.7
8

k
ro

A
2
0
0

2
9
3
6
8

0
2
9
4
3
2

1
3
.2

0
.0
5

2
9
4
9
8

8
.5

0
2
9
4
6
6
.3
3

2
0
.7

0
.0
5

2
9
7
3
8
.7
3

-
1
.0
8

3
0
0
1
4
.1

1
.0
6

1
.3
3

2
9
9
1
0

4
.4
8

k
ro

B
2
0
0

2
9
4
3
7

0
.0
4

2
9
5
7
7

7
.3

0
2
9
4
6
9
.3
3

8
.1

0
.0
3

2
9
4
8
8
.5

2
0
.4

0
.3
5

3
0
0
3
5
.2
3

-
1
.8
2

3
0
5
9
0
.9
3

1
.0
7

2
.0
9

3
0
6
2
7

4
.5
5

p
r2

2
6

8
0
3
6
9

0
8
0
3
9
9

3
0
.1

0
8
0
5
7
7
.6
7

2
4
.1

0
.1
2

8
0
7
0
2
.6
7

3
5
.3

-
-

-
-

-
-

0
.3
5

8
0
9
6
9

8
.0
8

p
r2

6
4

4
9
1
3
5

0
4
9
2
8
3

1
1
.9

0
4
9
1
3
5

1
4
.8

0
4
9
1
4
2
.5

2
8
.2

-
-

-
-

-
-

0
.6
2

5
0
3
4
4

8
.6
4

p
r2

9
9

4
8
1
9
1

0
.1
1

4
8
5
6
2

1
1
.2

0
4
8
2
5
1
.8
3

1
2
.1

0
4
8
2
2
5
.8
3

3
1
.6

-
-

-
-

-
-

4
.1
1

5
0
8
1
2

5
.3
7

li
n
3
1
8

4
2
0
2
9

0
.3

4
2
5
8
2

2
9
.2

0
.3
5

4
2
3
0
1
.8
3

1
2
.5

0
.2
8

4
2
3
7
5
.5

3
4
.1

1
.0
9

4
3
0
0
2
.9

-
3
.6
3

4
4
3
4
4
.8

1
.8
6

3
.7
4

4
4
1
9
1

5
.4
8

rd
4
0
0

1
5
2
8
1

0
.5
2

1
5
5
6
8

6
9
.1

0
.0
9

1
5
3
3
9
.3
3

1
5
.5

0
.1
8

1
5
3
6
3
.3
3

4
3
.2

-
-

-
-

-
-

6
.1
1

1
6
4
2
0

5
.6

p
r4

3
9

1
0
7
2
1
7

0
.2

1
0
8
0
0
0

8
6
.7

0
.1
6

1
0
8
0
3
9
.1
7

2
7
.3

0
.3
1

1
0
8
8
0
8
.8
3

4
7
.6

-
-

-
-

-
-

5
.1
9

1
1
3
7
8
7

4
.6
4

ra
t5

7
5

6
7
7
3

2
.2
4

6
9
7
3

8
6
.1

0
.2
7

6
8
1
2
.5

2
4
.2

0
.5

6
8
2
2
.1
7

6
0
.1

1
.7
4

6
9
3
3

-
4
.3

7
1
4
3
.4
8

3
.6
2

-
-

-



A Meta-Genetic Algorithm for Hybridizing Metaheuristics 377

statistic is 69.26 and the p-value is 4.86E−11 which strongly suggests there is
at least two methods with significantly different performance [10]. The Holm
procedure is used to control the family-wise error associated with multiple com-
parisons. The p-values, the adjusted p-values and the adjusted significance levels
computed by the Holm procedure are documented online.6 The pairwise compar-
iosns reveal that the adhms achieve statistically significant improvement over
gcga, msom, gsaacpso. However, the difference in the performance of the
adhms and (ahsats-2opt and ahsats-dcm) is not statistically significant.

6.2 Experiment II

The second experiment evaluates the performance of the adhms in compari-
son with the individual smh tuned using the irace package. For each problem
instance, the smh is run for the same amount of time required for the execution of
the adhms. The results are averaged over 30 independent runs. The percentage
deviations of the mean performance of the smhs and the adhms from the best
known solutions are shown in Table 2 which demonstrates the superior perfor-
mance of the adhms. The Friedman test is used to detect whether performance
of the adhms and the smhs is significantly different. The average rankings of

Table 2. The percentage deviation of the mean solutions from the optimal solutions.

Instance ADHMs SA TS ILS MA Instance ADHMs SA TS ILS MA

eil51 0 9.35 2.13 0.52 1.22 ch150 0.28 2.74 4.99 0.72 1.24

berlin52 0 1.91 0.63 0 0.46 kroA150 0.16 2.4 5.91 0.21 1.06

eil76 0 6.4 1.12 0.35 0.45 kroB150 0.15 2.23 6.04 0.23 1.45

kroA100 0 1.13 3.65 0.01 0.48 pr152 0.08 4.86 3.02 0.18 0.76

kroB100 0.08 1.94 4.51 0.2 0.63 d198 0.29 1.54 1.45 0.23 0.97

kroC100 0.06 1.84 4.92 0.85 0.92 kroA200 0.22 3.18 7.31 0.29 1.43

kroD100 0.1 4.14 5.14 1.89 0.98 kroB200 0.48 3.77 8.07 0.69 1.79

kroE100 0.19 1.96 3.42 1.49 0.98 pr226 0.04 1.49 4.3 0.14 0.8

rd100 0.23 3.34 5.02 2.27 1.01 pr264 0.3 19.37 5.6 0.93 1.5

eil101 0.48 3.12 1.81 1.34 1.56 pr299 0.77 5.15 8.63 1.05 2.26

lin105 0 2.35 3.02 0.83 0.64 lin318 1.32 4.3 6.43 1.38 1.88

pr124 0.01 1.31 2.2 0.38 0.26 rd400 1.88 2.84 7.69 1.48 2.1

bier127 0.07 3.09 4.52 1.08 0.58 pr439 0.73 3.13 8.02 0.97 1.38

ch130 0.7 2.47 6.31 1.03 1.29 pcb442 1.75 2.91 6.06 1.87 2.4

pr136 0.41 2.64 3.47 0.8 1.39 rat575 2.95 5.96 8.93 2.5 3.48

pr144 0 2.99 2.8 0.07 0.12 - - - - - -

6 https://www.dropbox.com/s/0c7gtcijdlbx5w4/stat analysis.rtf?dl=0.

https://www.dropbox.com/s/0c7gtcijdlbx5w4/stat_analysis.rtf?dl=0


378 A. Hassan and N. Pillay

the methods are adhms: 1.11, ils: 2.08, ma: 2.80, sa: 4.26 and ts: 4.75. Which
indicates that the adhms are the best. The Friedman statistic is 112.35 and the
p-value is 7.18E−11 which indicates the differences are significant. The unad-
justed p-values are computed from the Friedman rankings. The Holm procedure
is used. The results of the statistical analysis is documented online.7 All the
pairwise comparisons are found to be significant which indicates that the adhms
outperform each of the smhs when used individually.

6.3 Experiment III

The third experiment tests the reusability of the evolved hybrid solvers by eval-
uating the performance of hybrid solvers evolved for seen instances on hidden
instances. The hidden instances are divided into two classes (ClassA & ClassB)
as mentioned in Sect. 5.4. For each class, a training instance is chosen and a
hybrid solver is evolved for it. Then, the performance of the hybrid solver is
tested on the hidden instances belonging to that class. The best and the mean
performance over 30 runs are used to verify the quality of the “trained” solvers
on the hidden instances. The results are shown in Table 3 in which Δ∗ and Δ
represent the percentage deviations from the best known solutions of the best
and mean solutions respectively. In the table, ch130 and rd400 are the training
instances.

Table 3. The percentage deviation from the best known solutions of the best and the
mean performance of the hybrid solvers applied to the hidden instances.

ClassA ClassB

Instance Δ∗ Δ QL Instance Δ∗ Δ QL

berlin52 0 0 0 lin318 0.1 0.83 −0.48

kroA100 0 0.01 0.01 rd400 - - -

kroC100 0 0.03 −0.03 fl417 0.32 0.65 0.22

ch130 - - - pr439 0.17 1.03 0.6

ch150 0 0.34 0.06 pcb442 1.03 1.75 0.26

kroB150 0 0.37 0.23 d498 0.95 1.81 0.3

kroA200 0 0.35 0.13 u574 1.3 2.35 0.8

kroB200 0 0.71 0.23 rat575 1.96 2.78 0.11

pr226 0 0.21 0.18 p654 0.37 0.56 0.13

pr264 0 0.41 0.11 d657 1.32 2.11 0.31

pr299 0.02 0.68 −0.09 u724 1.33 2.32 0.27

7 https://www.dropbox.com/s/0c7gtcijdlbx5w4/stat analysis.rtf?dl=0.

https://www.dropbox.com/s/0c7gtcijdlbx5w4/stat_analysis.rtf?dl=0


A Meta-Genetic Algorithm for Hybridizing Metaheuristics 379

From Table 3, the “trained” adhm finds the best known solution for 9
instances out of 10 for ClassA. For ClassB, the deviation of best solution found
by the trained solver is less than 2%. The fourth column (QL) is the quality loss
which is the difference between the mean performance of the trained adhms and
the actual adhms evolved for each of the hidden instances. A negative difference
indicates that the trained adhms perform better. In general, the quality loss is
less than 1% which implies that the trained adhms are reusable since there is not
much deterioration in their performance. It is worth noting that by combining
Tables 1 and 3 that the trained adhms perform better than gcga, msom and
gsaacpso and perform slightly worse than ahsats-dcm and ahsats-2opt. In
particular, the difference in the mean performance of the trained adhms and the
ahsats-dcm (the best performer) is less than 1% for ClassA and less than 2%
for ClassB (except for rat575). This demonstrates that the trained adhms are
competitive to the manually crafted hybrid metaheuristics.

7 Conclusion and Future Work

The research presented in this paper is an initial attempt to ascertain the feasibil-
ity of automating the design of hybrid metaheuristics. The paper illustrates how a
meta-genetic algorithm can be used to hybridize metaheuristics and dynamically
tune the parameters of the individual metaheuristics. The study has revealed the
potential of automating the design of metaheuristics. The evolved hybrids were
found to perform competitively with manually designed hybrids and perform
better than the metaheuristics applied individually. The evolved hybrid solvers
were also found to be reusable. The meta-genetic algorithm is readily applicable
to other domains. Technically, only three aspects need to be changed in order
to apply the meta-genetic algorithm to a new problem domain: the representa-
tion of the solution; the problem-specific heuristic (the move operator) and the
objective function.

Given the success in this initial study, future research will be conducted
to extend this work further. In this study, the metaheuristics were combined
linearly. In future work, other mechanisms for combining the metaheuristics will
be investigated on different problem domains.

References

1. Adriaensen, S., Brys, T., Nowé, A.: Designing reusable metaheuristic methods: a
semi-automated approach. In: 2014 IEEE Congress on Evolutionary Computation
(CEC), pp. 2969–2976. IEEE (2014)

2. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization,
vol. 45. Springer Science & Business Media, Heidelebrg (2008)

3. Bhanu, S.M.S., Gopalan, N.: A hyper-heuristic approach for efficient resource
scheduling in grid. Int. J. Comput. Commun. Control 3(3), 249–258 (2008)

4. Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combina-
torial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)



380 A. Hassan and N. Pillay

5. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu,
R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12),
1695–1724 (2013)

6. Chen, S.M., Chien, C.Y.: Solving the traveling salesman problem based on the
genetic simulated annealing ant colony system with particle swarm optimization
techniques. Expert Syst. Appl. 38(12), 14439–14450 (2011)

7. Créput, J.C., Koukam, A.: A memetic neural network for the euclidean traveling
salesman problem. Neurocomputing 72(4), 1250–1264 (2009)

8. Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6),
791–812 (1958)

9. Deng, W., Chen, R., He, B., Liu, Y., Yin, L., Guo, J.: A novel two-stage hybrid
swarm intelligence optimization algorithm and application. Soft. Comput. 16(10),
1707–1722 (2012)

10. Derrac, J., Garćıa, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

11. Dioşan, L., Oltean, M.: Evolutionary design of evolutionary algorithms. Genet.
Program Evolvable Mach. 10(3), 263–306 (2009)

12. Durstenfeld, R.: Algorithm 235: random permutation. Commun. ACM 7(7), 420
(1964)

13. Eiben, Á.E., Smit, S.K.: Evolutionary algorithm parameters and methods to tune
them. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp.
15–36. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21434-9 2

14. Gendreau, M., Potvin, J.: Handbook of Metaheuristics. International Series in
Operations Research & Management Science. Springer, Heidelberg (2010)

15. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1), 43–62 (2001)
16. Grobler, J., Engelbrecht, A.P., Kendall, G., Yadavalli, V.: Alternative hyper-

heuristic strategies for multi-method global optimization. In: IEEE Congress on
Evolutionary Computation, pp. 1–8. IEEE (2010)

17. Helsgaun, K.: An effective implementation of the lin-kernighan traveling salesman
heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

18. Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on
local search. AAAI 7, 1152–1157 (2007)

19. Kanda, J., de Carvalho, A., Hruschka, E., Soares, C., Brazdil, P.: Meta-learning to
select the best meta-heuristic for the traveling salesman problem: a comparison of
meta-features. Neurocomputing 205, 393–406 (2016)

20. Lin, Y., Bian, Z., Liu, X.: Developing a dynamic neighborhood structure for an
adaptive hybrid simulated annealing-tabu search algorithm to solve the symmet-
rical traveling salesman problem. Appl. Soft Comput. 49, 937–952 (2016)

21. Maashi, M., Özcan, E., Kendall, G.: A multi-objective hyper-heuristic based on
choice function. Expert Syst. Appl. 41(9), 4475–4493 (2014)

22. Mühlenbein, H., Gorges-Schleuter, M., Krämer, O.: Evolution algorithms in com-
binatorial optimization. Parallel Comput. 7(1), 65–85 (1988)

23. Osaba, E., Yang, X.S., Diaz, F., Lopez-Garcia, P., Carballedo, R.: An improved
discrete bat algorithm for symmetric and asymmetric traveling salesman problems.
Eng. Appl. Artif. Intell. 48, 59–71 (2016)

24. Pillay, N.: Intelligent system design using hyper-heuristics. S. Afr. Comput. J.
56(1), 107–119 (2015)

25. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

http://dx.doi.org/10.1007/978-3-642-21434-9_2


A Meta-Genetic Algorithm for Hybridizing Metaheuristics 381

26. Saenphon, T., Phimoltares, S., Lursinsap, C.: Combining new fast opposite gradi-
ent search with ant colony optimization for solving travelling salesman problem.
Eng. Appl. Artif. Intell. 35, 324–334 (2014)

27. Talbi, E.G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–564
(2002)

28. Wu, C., Liang, Y., Lee, H.P., Lu, C.: Generalized chromosome genetic algorithm
for generalized traveling salesman problems and its applications for machining.
Phys. Rev. E 70(1), 016701 (2004)


	A Meta-Genetic Algorithm for Hybridizing Metaheuristics
	1 Introduction
	2 Motivation
	3 Related Work
	4 Meta-genetic Algorithm for Hybridizing Metaheuristics
	4.1 Standard Metaheuristics
	4.2 Chromosome Representation and Initial Population Generation
	4.3 Fitness Evaluation and Selection
	4.4 Regeneration

	5 Experimental Setup
	5.1 Evaluation of the MGA
	5.2 TSP Specific Details
	5.3 Parameter Settings
	5.4 Experiments
	5.5 Implementation Platform

	6 Results and Discussion
	6.1 Experiment I
	6.2 Experiment II
	6.3 Experiment III

	7 Conclusion and Future Work
	References




