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Abstract. In this paper the problem of recognition of patient’s intent
to move hand prosthesis is addressed. The proposed method is based
on recognition of electromyographic (EMG) and mechanomyographic
(MMG) biosignals using a multiclassifier (MC) system working with
dynamic ensemble selection scheme and original concept of competence
measure. The concept focuses on developing competence and interclass
cross- competence measures which can be applied as a method for clas-
sifiers combination. The cross-competence measure allows an ensemble
to harness information obtained from incompetent classifiers instead of
removing them from the ensemble. The performance of MC system with
proposed competence measure was experimentally compared against six
state-of-the-art classification methods using real data concerning the
recognition of six types of grasping movements. The system developed
achieved the highest classification accuracies demonstrating the potential
of MC system for the control of bioprosthetic hand.

Keywords: Bioprosthesis · EMG signal · MMG signal · Multiclassifier
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1 Introduction

Hands in a human life play a role not only of a skillful manipulator which allows
grasping and manipulating a variety of objects, but also of the sensor in order
to determine the type of object being touched. The loss of even a single hand
significantly reduces the human activity. The people who have lost their hands
are doomed to permanent care. Restoring to these people even a hand substitute
makes their life less onerous. The hand transplantations are still in a medical
experiment, mainly due to the necessity of immunesuppression [21]. An alter-
native is “cyborgization”, i.e. equipping the armless patient with the prosthetic
hand. At present, the construction of a multi-joint anthropomorphic mechanical
structure that can copy even very complicated movements of the human hand
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poses no problem. Also the motion control of such a structure to accomplish
defined finger postures is well known. The basic problem lies however in control-
ling the movement of prosthetic hands so as to enable their users to grasp and
manipulate objects dexterously [20].

At the decision level this control can be reduced to the recognition of the
patient’s intent on the basis of biosignals coming from the patient’s body. Electri-
cal potentials accompanying skeleton muscles (called EMG signals) are an exam-
ple of such biosignals. Through the tensing of these muscles, the disabled person
may express his/her intentions as to the workings of the prosthesis [3,9,18,24].
Nevertheless, reliable recognition of intended movement is a serious problem.
A natural solution to overcome this difficulty and increase the efficiency of the
recognition stage may be achieved through the following actions [16]:

1. by introducing the concept of simultaneous analysis of different types of
biosignals which are the carrier of information about the performed hand
movement – the fusion of electromyographic signals (EMG signals) and
mechanomyographic signals (MMG signals) is considered in this study;

2. through improving the recognition method – authors propose to use the mul-
ticlassifier system with dynamic ensemble selection scheme [2].

Multiclassifier (MC) systems combine responses of a set of base classifiers.
For the classifier combination two main approaches used are classifiers fusion
and classifiers selection [13]. In the first method, all classifiers in the ensem-
ble contribute to the decision of the MC system, e.g. through sum or majority
voting. In the second approach, a single classifier is selected from the ensem-
ble and its decision is treated as the decision of the MC system. The selection
of classifiers can be either static or dynamic. In the static selection scheme a
classifier is selected for all test objects, whereas the dynamic classifier selection
(DCS) approach explores the use of different classifiers for different test objects
[2]. Recently, dynamic ensemble selection (DES) methods have been developed
which first dynamically select an ensemble of classifiers from the entire set (pool)
and then combine the selected classifiers by majority voting rule [12]. In this way
a DES based system takes advantage of both selection and fusion approaches.
In most of the methods, the base classifiers are selected from the pool on the
basis of their individual accuracy measure called competence in a local region of
the feature space. These methods differ in algorithms for determining classifier
competence and ways of defining the local regions [2,12,13,25,26,30]. Regardless
of the interpretation, competence measure evaluates classifier ability to correct
activity (correct classification) in a defined region.

In this paper a new method for calculating the competence of a classifier
in the feature space is developed and applied to the classifying user’s intent
of upper-limb prosthesis motion based on EMG and MMG biosignals. The pro-
posed competence measure evaluates both the local class-dependent probabilities
of correct classification and probabilities of interclass misclassification using con-
cept of Randomized Reference Classifier [26] and a local fuzzy confusion matrix
[23]. Such idea of cross-competence measure allows the ensemble to exploit even
activity of incompetent classifiers instead of removing them from the ensemble.
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The paper arrangement is as follows. Section 2 includes the concept of pros-
thesis control system based on the recognition of patient’s intention and provides
an insight into biosignals acquisition procedure and the method of feature extrac-
tion. Section 3 presents the key recognition algorithm based on the multiclassifier
system working in dynamic ensemble selection scheme with original concept of
competence measure. The experiments conducted and the results with discussion
are presented in Sect. 4. The paper is concluded in Sect. 5.

2 Bioprosthetic Hand Control System

The bioprosthesis control performed by recognizing patient’s intention involves
three stages:

1. acquisition of signals;
2. reduction of dimensionality of their representation;
3. classification of signals.

As already mentioned, in this study the fusion of electromyography (EMG)
signals and mechanomyography (MMG) signals is the basis for recognition of
patient’s intent. Myopotentials (EMG signals) can be detected through the skin
by means of surface electrodes located above selected muscles. EMG signals mea-
sured on skin are the superposition of electrical potentials generated by recruited
motor units of contracting muscles [4,10]. The MMG signals are mechanical
vibrations propagating in the limb tissue as the muscle contracts. They have
low frequency (up to 200 Hz) and small amplitude and can be registered as a
“muscle sound” on the surface of the skin using microphones [11].

After the acquisition stage, the recorded signals have the form of strings of
discrete samples. Their size is the product of measurement time and sampling
frequency. For a typical motion, that gives a record of size between 3 and 5
thousand of samples (time of the order of 3–5 s, and the sampling of the order of
1 kHz). This “primary” representation of the signals hinders the effective classi-
fication and requires the reduction of dimensionality. This reduction leads to a
representation in the form of a signal feature vector.

Former experimental research showed [14–16,24] that the effective method
as regards to the recognition error and the calculation costs in the biosignal
analysis are the sequence of two techniques: autoregressive (AR) model and
principal component analysis (PCA).

The AR model belongs to a group of linear prediction methods that attempt
to predict an value yn of a time series of data {yn} based on the previous values
(yn−1, yn−2, . . .). Several estimators of AR coefficients are well known in the
field of signal processing. In the experimental investigations we choose the Burg
algorithm because of its many remarkable advantages (it does not apply window
data, minimizes forward and backward prediction errors, gives high resolution
for short data records, always produces a stable model) [22]. The Burg algorithm
estimates the AR coefficients by fitting an auto-regressive linear prediction filter
model of a given order to the signal.
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Although as a classifier construction different methodological paradigms can
be used, we suggest to use multiclassifier systems with the dynamic ensemble
selection method using procedure of fusion/selection based on original compe-
tence measure. Details of the classification stage are presented in the next section.

3 Multiclassifier System

3.1 Preliminaries

In the multiclassifier (MC) system we assume that a set of trained classifiers
Ψ = {ψ1, ψ2, . . . , ψL} called base classifiers is given. A classifier ψl is a function
ψl : X → M from a feature space X ⊆ Rd to a set of class labels M =
{1, 2, . . . ,M}. Classification is made according to the maximum rule

ψl(x) = i ⇔ dli(x) = max
j∈M

dlj(x), (1)

where [dl1(x), dl2(x), . . . , dlM (x)] is a vector of class supports (classifying func-
tions) produced by ψl. Without loss of generality we assume that dlj(x) ≥ 0 and∑

j dlj(x) = 1.
The ensemble Ψ is used for classification through a combination function

which, for example, can select a single classifier or a subset of classifiers from
the ensemble, it can be independent or dependent on the feature vector x (in
the latter case the function is said to be dynamic), and it can be non-trainable
or trainable [13].

In this paper, we propose MC systems which use a dynamic ensemble selec-
tion scheme and trainable combining methods based on a competence measure
cij(ψl|x)(i, j ∈ M) of each base classifier (l = 1, 2, ..., L) evaluating the class-
dependent competence (for i = j) and interclass (cross-) competence (for i �= j)
of classifier ψl at a point x ∈ X . For training methods of combining base classi-
fiers it is assumed that a validation set

V = {(x1, j1), (x2, j2), . . . , (xN , jN )}; xk ∈ X , jk ∈ M (2)

containing pairs of feature vectors and their corresponding class labels is avail-
able. In the MC systems developed in this study, combining algorithm is imple-
mented at the classification function (support) level which allows to determine
supports provided by the MC system to different classes, as a weighted sum of
supports of base classifiers, namely:

dj(x) =
L∑

l=1

M∑

i=1

dli(x)cij(ψl|x), j ∈ M. (3)

In the next section two methods for calculation of competences cij(ψl|x) of base
classifiers will be developed.
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3.2 Competence Measures

A natural concept of competence measure cij(ψl|x) is probability that object
given by the feature vector x belonging to the j-th class is assigned by ψl to the
ith class [27], namely:

cij(ψl|x) = Pl(i|j, x). (4)

In other words, probabilities (4) denote class-dependent probabilities of correct
classification (for i = j) and misclassification (for i �= j). A high value of class-
dependent competence cii(ψl|x) denotes that classifier ψl is capable of providing
the correct classification of objects from the ith class, whereas the high value of
cross-competence cij(ψl|x) clearly shows that the investigated classifier tends to
misclassify objects from the jth class to the ith class. In the proposed method the
above mentioned indicators can be utilized to correct the response of a classifier
that tends to commit systematic errors.

Unfortunately, for deterministic base classifiers ψl probabilities (4) are equal
to 0 or 1, unlike the randomized classifiers for which these probabilities belong
to the interval [0, 1] [1]. We do not accept, however, impractical assumption that
base classifiers assign labels under a stochastic scheme because all classifiers
used in real examples operate in a deterministic manner. For this reason, a
direct approach to calculating probabilities (4) is not used in this study. Instead,
indirect methods for solving this problem and fully utilizing the combining model
(3) are applied. In the first approach classifier ψl is modeled by the equivalent
randomized reference classifier (RRC). In the second approach we will use a
local confusion matrix which is built from the validation objects creating fuzzy
neighborhood of point x. Details are described in the next two subsections.

The Method Using Randomized Reference Classifier (MC1). The pro-
posed method of evaluation of the probabilities (4) is based on the original con-
cept of a hypothetical classifier called Randomized Reference Classifier (RRC).
The RRC, originally introduced in [26], is a stochastic classifier defined using a
probability distribution over the set of class labels M. The RRC uses the max-
imum rule (1) and a vector of class supports [δl1(x), δl2(x), . . . , δlM (x)] for the
classification of object x, where the j-th support is a realization of a random
variable (rv) Δlj(x). The probability distributions of the rvs are chosen in such
a way that the following conditions are satisfied:

Δlj(x) ∈ [0, 1],
∑

j∈M
Δlj(x) = 1, (5)

E[Δlj(x)] = dlj(x), j = 1, 2, . . . , M, (6)

where E is the expected value operator. From the above definition it follows that
RRC can be considered as equivalent to the classifier ψl for the feature vector x
since it produces, on average, the same vector of class supports as the modeled
base classifier ψl.



Multiclassifier System Using Class and Interclass Competence 179

Since the RRC performs classification in a stochastic manner, it is possible
to calculate the probability of classifying a validation object xk to the i-th class:

P
(RRC)
l (i|jk, xk) = Pr[∀m=1,...,M, k �=i Δli(xk) > Δlm(xk)]. (7)

The formula (7) denotes class-dependent probability of correct classification (for
i = jk) or misclassification (for i �= jk) of RRC classifier ψ

(RRC)
l at a validation

point xk.
The key element in the modeling presented above is the choice of probability

distributions for rvs Δlj(x), j ∈ M so that the conditions (5)–(6) are satisfied. In
this study, the beta distribution is selected – the justification of such a choice can
be found in [26] and furthermore the MATLAB code for calculating probabilities
(7) was developed and it is freely available for download [28].

Since the RRC can be considered equivalent to the modeled base classifier
ψl, it is justified to use the probability (7) as the competence cijk(ψl|xk) of the
classifier ψl at the validation point xk ∈ V, i.e.

cijk(ψl|xk) ≈ P
(RRC)
l (i|jk, xk). (8)

The competence values for the validation objects xk ∈ V can be then
extended to the entire feature space X . To this purpose the following normalized
Gaussian potential function model was used [26]:

cij(ψl|x) =

∑
xk∈V:jk=j cijk(ψl|xk)exp(−dist(x, xk)2)

∑
xk∈V:jk=j exp(−dist(x, xk)2)

, (9)

where dist(x, xk) is the Euclidean distance between x and xk.

The Method Using Local Fuzzy Confusion Matrix (MC2). In the sec-
ond approach we will use confusion matrix for evaluation of probability (4). A
confusion matrix gives the complete picture of correct and incorrect classification
made by classifiers ψl for separate classes [6]. The rows (columns) correspond
to the true classes (results of classification made by classifier ψl), as shown in
Table 1.

Table 1. The multiclass confusion matrix of classifier ψl.

Classification by ψl

1 2 . . . M

True class 1 ε
(ψl)
11 ε

(ψl)
21 . . . ε

(ψl)
M1

2 ε
(ψl)
12 ε

(ψl)
22 . . . ε

(ψl)
M2

...
...

...
...

M ε
(ψl)
1M ε

(ψl)
2M . . . ε

(ψl)
MM
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The value ε
(ψl)
ij is determined from validation set (2) as the following ratio

(| · | is the cardinality of a set):

ε
(ψl)
ij =

|Vj ∩ Dψl

i |
|Vj | , (10)

where Vj = {xk ∈ V : jk = j} denotes the set of validation objects from the jth
class and Dψl

i = {xk ∈ V : ψl(xk) = i} is the set of validation objects assigned
by ψl to the ith class.

Since we want to estimate probabilities Pl(i|j, x) at a point x, values of con-
fusion matrix ε

(ψl)
ij (x) should be calculated on the base of local (for x) validation

objects. A typical method is to define a neighborhood of an object x and only
validation objects belonging to this neighborhood are used to calculate ε

(ψl)
ij (x).

Such an approach, however, has a major drawback: the method is very sensitive
to the size of the neighborhood. As the neighborhood size increases, the sense of
“locality” concept decreases, and as this size decreases, the risk that ε

(ψl)
ij (x) = 0

increases. In order to avoid this problem, we define validation objects creating
the neighborhood of the point x as a fuzzy set:

V(x) =
{

(x(k), μV(x)(x(k))) : x(k) ∈ V
}

, (11)

whose membership function is equal to 1 for x(k) = x and decreases with increas-
ing the distance between x(k) and x. In the further experimental investigations,
the Gaussian membership function was applied:

μV(x)(x(k)) = c exp(−dist(x, x(k))2), (12)

where dist(x, x(k)) is the Euclidean distance and c denotes normalizing coeffi-
cient.

From (10), (11) and (12) directly results the formula for determining values
of local confusion matrix:

ε
(ψl)
ij (x) =

|Vj ∩ Dψl

i ∩ V(x)|
|Vj ∩ V(x)| , (13)

where | · | is the cardinality of a fuzzy set [17] and Vj and Dψl

i are treated as fuzzy
sets defined in (10) with membership function equal to 1. Finally, normalizing
(13) we get estimation (4):

cij(ψl|x) =
ε
(ψl)
ij (x)

∑
j∈M ε

(ψl)
ij (x)

. (14)

4 Experimental Investigations

4.1 Experimental Setup

Performance of the MC systems developed was evaluated in experiments using
real data. The experiments were conducted in the Matlab environment using
PRTools 4.1 and Signal Processing Toolbox.
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In the recognition process of the grasping movements, 6 types of grips
(tripoid, pinch, power, hook, column and mouse grip) were considered. Our
choice is deliberate one and results from the fact that the control functions of
simple bioprosthesis are hand closing/opening and wrist pronantion/supination,
however for the dexterous hand these functions differ depending on grasped
object [3] (Fig. 1).

Tripoid grip                 Pinch grip              Power grip            Hook grip                Column grip           Mouse grip 

Fig. 1. Types of grips.
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Fig. 2. The layout of the integrated sensors (EMG electrodes and MMG microphones)
on the underside (A) and top side (B) of the forearm. Examples of EMG and MMG
signals from channel 2.

The experiments were carried out on healthy persons. Biosignals were reg-
istered using 8 integrated sensors (containing EMG electrode and MMG micro-
phone in one casing) located on a forearm (vide Fig. 2) and specially designed
16-channel measuring circuit with sampling frequency 1 kHz. For further process-
ing the following sensors (channels) located above the most active muscles during
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grasping movements were selected [4]: 1 (sensors located above pronator quadra-
tus muscle), 2 (flexor digitorium supercialis), 3 (flexor digitorium profundus), 5
(extensor pollicis brevis) and 8 (supinator).

The dataset used to test of proposed classification method consisted of 600
measurements, i.e. pairs EMG and MMG signals segment/movement class. Each
segment lasted 6 s and was preceded with a 10 s break. The coefficients of AR
function for different order of AR model (p = 20, 50, 80 per signal and per
channel) were considered as the primary feature vector. Next, primary features
were subjected to the PCA feature extraction procedure with the number of
PC’s determined by 95% of the total variation rule. The training and testing sets
were extracted from each dataset using two-fold cross-validation. For combining
the MC system, a two-fold stacked generalization method [29] was used. Three
experiments were performed which differ in the biosignals used for classification
(EMG signals, MMG signals, both EMG and MMG signals).

The experiments were conducted using heterogeneous ensemble with the fol-
lowing ten base classifiers [8]: (1–2) linear (quadratic) classifier based on nor-
mal distributions with the same (different) covariance matrix for each class, (3)
nearest mean classifier, (4–6) k-nearest neighbors classifiers with k = 1, 5, 15,
(7) naive Bayes classifier (8) decision-tree classifier with Gini splitting criterion,
(9–10) feed-forward back-propagation neural network with 1 hidden layer (with
2 hidden layers).

In the experiment MC1 and MC2 systems were compared against six state-of-
the-art multiclassifier systems: (1) The single best (SB) classifier in the ensem-
ble [13]; (2) Majority voting (MV) of all classifiers in the ensemble [13]; (3)
Dynamic classifier selection – local accuracy (LA) method [30]; (4) Dynamic
ensemble selection – KNORA method (KE) [12]; (5) Randomized reference classi-
fier (RRC) method [26,27]; (6) Multiclassifier with fuzzy inference system (MCF)
[15].

4.2 Results and Discussion

Classification accuracies (i.e. the percentage of correctly classified objects) for
methods tested in the experiments are listed in Table 2. The accuracies are aver-
age values obtained over 10 runs (5 replications of two-fold cross validation).
Statistical differences between the performances of MC1 and MC2 systems and
the six multiclassifier systems were evaluated using 5x2cv F test [7]. The level
of p < 0.05 was considered statistically significant. In Table 2, statistically sig-
nificant differences are given as upper indices of the method evaluated, e.g. for
the dataset with p = 20 and EMG signals the MC1 system produced statistically
better classification accuracies from SB, MV and LA methods.

Statistical differences in rank between multiclassifier systems were obtained
using Friedman test with Iman and Davenport correction combined with a post
hoc Holm stepdown procedure [5]. The average ranks and a critical rank differ-
ence calculated using a Bonferroni – Dunn test [5] are visualised in Fig. 3. The
level of p < 0.05 was considered as statistically significant.

These results imply the following conclusions:
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Table 2. Classification accuracies of classifiers compared in the experiment (description
in the text). The best score for each dataset is highlighted. (p denotes the order of AR
model).

Classifier/Mean accuracy [%]

p SB MV LA KE RRC MCF MC1 MC2

(1) (2) (3) (4) (5) (6) (7) (8)

EMG signals

20 77.2 75.5 74.3 79.8 81.4 78.8 80.11,2,3 80.81,2,3,6

50 79.9 80.5 80.7 83.8 81.7 80.1 83.21,2,3,5 82.81,2,3,5

80 84.0 83.2 81.7 82.6 85.3 83.1 86.61,2,3,4,6 85.92,3,4,6

Average 80.4 79.7 78.9 82.1 82.5 80.7 83.3 83.2

MMG signals

20 45.8 47.3 48.8 50.9 49.9 48.4 51.41,2,6 51.81,2,3,6

50 47.9 48.8 47.9 51.6 50.6 49.6 52.61,2,3 51.91,2,3

80 52.2 51.2 50.1 57.3 59.9 55.6 58.61,2,3,6 59.11,2,3,6

Average 48.6 48.8 48.9 53.9 52.8 51.2 54.2 54.3

MMG and EMG signals

20 84.5 85.8 84.7 88.2 86.5 85.5 87.81,3 88.01,3,6

50 86.4 87.6 86.9 90.3 89.5 90.2 90.41,3 91.51,2,3

80 90.7 91.1 91.9 92.7 94.6 93.6 94.21,2 94.91,2.3

Average 87.2 88.2 87.8 90.4 89.9 90.1 90.8 91.5

Av. rank 7.0 6.2 6.8 3.4 3.1 5.3 2.2 1.8

1. The MC1 and MC2 systems produced statistically significant higher scores
in 60 out of 108 cases (9 datasets × 6 classifiers compared × 2 MC systems);

2. The MC1 (MC2) classifier:
– for EMG signals outperformed, on average, the SB, MV, LA, KE, RRC

and MCF systems by 2.9%, 3.6%, 4.4%, 1.2%, 0.8% and 2.6% (by 2.8%,
3.5%, 4.3%, 1.1%, 0.7% and 2.5%), respectively;

– for MMG signals outperformed, on average, the SB, MV, LA, KE, RRC
and MCF systems by 5.6%, 5.4% and 5.3%, 0.3%, 1.4% and 3.0% (by
5.7%, 5.5% and 5.4%, 0.4%, 1.5% and 3.1%), respectively;

– for EMG and MMG signals outperformed, on average, the SB, MV, LA,
KE, RRC and MCF systems by 3.6%, 2.6%, 3.0%, 0.4%, 0.9% and 0.7%
(by 4.3%, 3.3%, 3.7%, 1.1%, 1.6% and 1.4%), respectively;

3. MC1 and MC2 methods have statistically higher average rank than MCF,
MV, LA and SB methods;

4. The multiclassifier systems using both EMG and MMG signals achieved the
highest classification accuracy for all datasets;

5. When the order of AR model increases then the accuracy of all methods
investigated also increases.
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3 4 5 6 7

KEMC2 LAMV SBMCF

21

RRCMC1

Fig. 3. Average ranks of multiclassifier systems. Thick interval is the critical rank
difference (2.686) calculated using the Bonferroni – Dunn test (p < 0.05).

5 Conclusion

The classic methods of analysis of biosignals in the bioprostheses control systems
are widely discussed in the literature [10,11,19,24]. However, the classification
stage still poses a challenge for researching new solutions enabling the reliable
recognition of human intention. In this study a novel method for recognition of
grasping movements is proposed. The method, combining base classifiers into
multiclassifier system and taking into account the class and interclass compe-
tence of base classifiers, brings new possibilities to biosignal analysis. Results
obtained in experimental investigations imply that it is worth trying solution
that improves recognition efficiency.

The introduced approach constitutes the general concept of the human-
machine interface, that can be applied for the control of a dexterous hand and
an agile wheelchair as well as other types of prostheses, exoskeletons, etc. This,
however, requires a further study, mainly in the experimental phase, which would
allow to assess and verify the effectiveness of the adopted concept.
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