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Abstract. The assignment of disease codes to clinical texts has a wide
range of applications, including epidemiological studies or disease surveil-
lance. We address the task of automatically assigning the ICD-10 codes
for the underlying cause of death, from the free-text descriptions included
in death certificates obtained from the Portuguese Ministry of Health.
We specifically propose to leverage a deep neural network based on a two-
level hierarchy of recurrent nodes together with attention mechanisms.
The first level uses recurrent nodes for modeling the sequences of words
given in individual fields of the death certificates, together with attention
to weight the contribution of each word, producing intermediate repre-
sentations for the contents of each field. The second level uses recurrent
nodes to model a sequence of fields, using the representations produced
by the first level and also leveraging attention in order to weight the
contributions of the different fields. The paper reports on experiments
with a dataset of 115,406 death certificates, presenting the results of an
evaluation of the predictive accuracy of the proposed method, for dif-
ferent ICD-10 levels (i.e., chapter, block, or full code) and for particular
causes of death. We also discuss how the neural attention mechanisms
can help in interpreting the classification results.

Keywords: Classification of death certificates - Clinical text mining -
Deep learning - Natural language processing - Artificial intelligence in
medicine

1 Introduction

The systematic collection of high-quality mortality data is essential in the con-
text of monitoring a population’s health, also serving as a basis for mortality
and epidemiologic studies. For this and other legal purposes, doctors write death
certificates, i.e. reports including the deceased personal data and textual descrip-
tions for the cause of death, as well as any contributing conditions or injuries.
In Portugal, doctors are now submitting death certificates in electronic format,
using a national Death Certificate Information System (SICO [1]) for data collec-
tion and registry purposes. The analysis and classification of causes of death are
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Fig. 1. The form in the SICO platform that is used for coding the death certificates.

based on Revision 10 of the International Classification of Diseases, ICD-10, the
standard medical classification list developed and reviewed by the World Health
Organization. However, the assignment of ICD codes to the death certificates
provided by doctors is is still made manually by mortality coders with specific
expertise, based on the free-text descriptions included in the death certificates.

Figure 1 presents a screenshot of the SICO form used by mortality coders in
Portugal to assign ICD-10 codes to death certificates. The form has two parts
(delimited by the solid lines). Part I has four rows of text, labelled (a), (b), (c)
and (d), for reporting a chain of events leading directly to death. The underlying
causes of death should be provided in the lowest line(s) and the immediate cause
of death in the first one. Part II is filled-in only if necessary for reporting other
significant diseases, conditions or injuries that contributed to death, but are not
part of the main causal sequence leading to it. After the manual review of the
data, the mortality coder should assign the corresponding ICD-10 code, in the
box shown under the dashed line of Fig. 1.

The manual coding of the free-text contents in death certificates is a challeng-
ing, expensive, and time consuming task [2], which slows down the dissemination
of mortality statistics and prevents real time surveillance. However, we believe
that the large number of certificates that have been manually coded in the past
can be used to support supervised machine learning of models for automatically
assigning codes to the certificates. Automated approaches can be used to speed-
up the process of publishing mortality statistics by quickly producing results
that can latter be revised through manual coding. When integrated into exist-
ing platforms, automated approaches can also provide suggestions to assist the
manual coders. If sufficiently accurate, automatic coding also has the potential



A Deep Learning Method for ICD-10 Coding 139

to significantly reduce the costs with human experts, and to increase coding
consistency.

Several previous studies have already addressed the ICD coding of free-text
death certificates [3—6]. Recently, increasing attention has been given to this
problem due to the organization of CLEF eHealth clinical information extraction
tasks in 2016 and 2017, which involved large-scale datasets prepared from French
and English death certificates [7,8]. However, previously published methods are
still relatively simple in comparison to the current state-of-the-art in other text
classification problems, either leveraging dictionary projection methods or super-
vised machine learning with linear models and manual feature engineering.

In this paper, we propose to leverage a neural network based on a two-level
hierarchy of recurrent nodes together with attention mechanisms, inspired on
previous work by Yang et al. [9]. The first level of the model uses Gated Recurrent
Units (GRUs) [10] for modeling the sequences of words given in individual fields
of the death certificates, together with attention to weight the contribution of
each word, producing intermediate representations for the contents of each field.
The second level uses GRUs to model a sequence of fields, using the representa-
tions produced by the first level and also leveraging attention in order to weight
the contributions of the different fields. The representations produced by the sec-
ond level are passed to feed-forward nodes, which leverage a softmax activation
to predict the most likely ICD-10 codes. The entire model can be trained end-
to-end from a set of coded death certificates, leveraging the back-propagation
algorithm in conjunction with the Adam optimization method [11,12].

The paper reports on experiments with a dataset of 115,406 death certificates
from the years of 2013 up to 2015, through which we evaluated the predictive
accuracy of the proposed method. The available data was randomly split into
two subsets (i.e., 75% for model training and 25% for testing), and we measured
results in terms of classification accuracy, as well as macro-averaged precision,
recall, and Fl-scores. Given the hierarchical organization of ICD-10 (i.e., the
codes are organized hierarchically into chapters, blocks and full codes), we also
measured results according to different levels of specialization.

Our best model achieved an accuracy of 86%, 78%, and 75%, respectively
when considering ICD-10 chapters (i.e., a total of 22 different classes appearing
in our dataset), blocks (i.e., 697 different classes) and full codes (i.e., 1,674 differ-
ent classes). Our full model also achieved F1-scores of 96% and 90%, respectively
in terms of correctly identifying causes of mortality related to ICD-10 Chapters
II (i.e., neoplasms) and IX (i.e., diseases of the circulatory system), that together
represent 58.7% of the death causes in the dataset. We argue that the obtained
results indicate that automatic approaches leveraging supervised machine learn-
ing can indeed contribute to a faster processing of death certificates, given the
relatively low classification error. Moreover, although our experiments failed to
show that neural attention mechanisms lead to an increased performance, these
methods can offer much needed model interpretability, by allowing us to see
which parts of the input are attended to when making predictions.
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2 Related Work

Various previous studies have addressed automatic ICD-10 coding. For instance
Koopman et al. described the use of Support Vector Machines (SVMs) for iden-
tifying cancer related causes of death in natural language death certificates [5].
The textual contents were encoded as binary feature vectors (i.e., vectors encod-
ing the presence of terms, term n-grams, and SNOMED CT concepts recognized
by a clinical natural language processing system named Medtex), and these rep-
resentations were used as features to train a two-level hierarchy of SVM models:
the first level was a binary classifier for identifying the presence of cancer, and
the second level consisted of a set of classifiers (i.e., one for each cancer type) for
identifying the type of cancer according to the ICD-10 classification system (i.e.,
according to 85 different ICD-10 blocks, of which 20 instances corresponded to
85% of all cases). The system was highly effective at identifying cancer as the
underlying cause of death (i.e., a macro-averaged Fl-score of 0.94 for the first
level classifier). It was also effective at determining the type of common can-
cers (i.e., a macro-averaged Fl-score of 0.7), although rare cancers, for which
there was little training data, were difficult to classify accurately (i.e., a macro-
averaged Fl-score of 0.12). The principal factors influencing performance were
the amount of training data and certain ambiguous cases (e.g., cancers in the
stomach region).

In a separate study, Koopman et al. described machine learning and rule-
based methods to automatically classify death certificates according to four high
impact diseases of interest, namely diabetes, influenza, pneumonia and HIV [6].
The rule-based method leveraged sets of keyword-matching rules, while the
machine learning method was again based on SVM classifiers, using binary fea-
ture vectors (i.e., presence of terms, term n-grams, and SNOMED CT concepts
recognized by Medtex) for encoding the texts. In the case of the machine learning
approach, a separate model was trained for each of the four diseases of interest,
and the authors also experimented with more fine-grained classifiers trained for
each of the relevant ICD-10 blocks. An empirical evaluation was conducted using
340,142 certificates (i.e., 80% for model training and 20% for testing) covering
deaths from 2000-2007 in New South Wales, Australia. The results showed that
the classification of diabetes, influenza, pneumonia and HIV was highly accu-
rate (i.e., a macro-averaged Fl-score of 0.95 for the rule-based method, and
0.94 when using machine learning). More fine-grained ICD-10 classification had
nonetheless a more variable effectiveness, with less accurate classifications for
blocks with little training data available, although results were still high (i.e.,
a macro-averaged Fl-score of 0.80, when discriminating over 9 different ICD-
10 blocks). The error analysis revealed that word variations (e.g., pneumonitis
or pneumonic as variants for pneumonia) as well as certain word combinations
adversely affected classification. In addition, anomalies in the ground truth likely
led to an underestimation of the effectiveness (i.e., the authors observed some
class confusions, e.g. in ICD blocks E10 versus E11).

Mujtaba et al. tested different text classification methods in the task of coding
death certificates with nine possible ICD-10 codes [4], aiming to assist patholo-



A Deep Learning Method for ICD-10 Coding 141

gists in determining causes of death based on autopsy findings. The dataset used
in these experiments was composed of 2200 autopsy reports obtained from one of
the largest hospitals in Kuala Lumpur, and the methods under study involved
different feature selection schemes, and also five different learning algorithms.
Random forests and J48 decision models, parametrized using expert-driven fea-
ture selection and leveraging a feature subset size of 30, yielded the best results
(e.g., approximately 90% in terms of the macro-averaged F1-score).

Lavergne et al. described a large-scale dataset prepared from French death
certificates, suitable to the application of machine learning methods for ICD-10
coding [8]. The dataset comprised a total of 93,694 death certificates referring to
3,457 unique ICD-10 codes, and it was made available for international shared
tasks organized in the context of CLEF. The 2016 edition of the CLEF eHealth
shared task on ICD-10 coding attracted five participating teams, which presented
systems relying either on dictionary linking or statistical machine learning [7].
The shared task was defined at the level of each statement (i.e., lines varying from
1 to 30 words, with outliers at 120 words and with the most frequent length at 2
tokens) in a death certificate, and statements could be associated with zero, one
or more ICD-10 codes. The best-performing system achieved a micro-averaged
Fl-score (i.e., harmonic mean of precision and recall weighted by the class size)
of 0.848, leveraging dictionaries built from the shared task data.

Leveraging the CLEF eHealth dataset, Zweigenbaum and Lavergne. pre-
sented hybrid methods for ICD-10 coding of death certificates [3], combining
dictionary linking with supervised machine learning (i.e., an SVM classifier lever-
aging tokens, character tri-grams, and the year of the certificate as features).
The best hybrid model corresponded to the union of the results produced by the
dictionary- and learning-based methods, outperforming the best system at the
2016 edition of the CLEF eHealth shared task with a micro-averaged F1-score
of 0.8586.

3 The Proposed Approach

We propose a neural network model for assigning ICD-10 codes to free-text death
certificates, taking inspiration on previous work by Yang et al. [9]. Consider-
ing the SICO platform from the Portuguese Ministry of Health’s Directorate-
General of Health (DGS), illustrated on Fig. 1, we modeled the coding task as
follows: given different textual strings encoding events leading to death, an auto-
mated system should output the ICD-10 code corresponding to the underlying
cause of death. Figure 2 presents the neural network architecture, which is briefly
explained next. For an in-depth introduction to deep neural networks for natural
language processing, the reader can refer to the tutorial by Goldberg [13].
Noting that the certificates can be seen as having a hierarchical structure
(i.e., words form different fields, and the fields from Parts I and II, as shown in
Fig. 1, form the certificate), our model first builds representations of individual
fields, and then aggregates those into a representation for the certificate. Both
hierarchical levels are illustrated in Fig. 2, with the word-level part of the model
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Fig. 2. The proposed neural architecture (with 3 fields instead of 6, for illustration).

shown in the box at the top. A recurrent neural network node known as a Gated
Recurrent Unit (GRU) is used at both levels to build the representations, and
we specifically considered bi-directional GRUs [10]. Notice that the GRUs in the
first level of the model leverage word embeddings as input, whereas the second
level uses as input the field representations generated at the first level.

GRUs model sequential data by having a recurrent hidden state whose acti-
vation at each time is dependent on that of the previous time. A GRU computes
the next hidden state h; given a previous hidden state h;_; and the current
input z; using two gates (i.e., a reset gate r; and an update gate z;), that con-
trol how the information is updated, as shown in Eq. 1. The update gate (Eq. 2)
determines how much past information is kept and how much new information
is added, while the reset gate (Eq.4) is responsible for how much the past state
contributes to the candidate state. In Eqgs. 1 to 4, h: stands for the current new
state, W is the parameter matrix for the actual state, U is the parameter matrix
for the previous state, and b is a bias vector.

ht = (I—Zt)th_l +Zt®ibt (1)
Zt = J(szt + Uzhtfl + bz) (2)
h; = tanh (Whae + 10 © (Uphy—1 + bp)) (3)

Tt = U(Wrxt + Urhtfl + br) (4)

Bi-directional GRUs perceive the context of each input in a sequence by
outlining the information from both directions. Concatenating the output of
processing a sequence forward ﬁit and backwards %Z—t grants a summary of the
information around each position, h;; = [ﬁ)it, (Eit].

Since the different words and fields can be differently informative in specific
contexts, the model also includes two levels of attention mechanisms (i.e., one
at the word level and one at the field level), that let the model pay more or less
attention to individual words/fields when constructing representations.
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For instance, in the case of the word-level part of the network, the outputs h;;
of the bi-directional GRU encoder are provided to a feed-forward node (Eq.5),
resulting in vectors u;; representing words in the input. A normalized importance
a;t (i.e., the attention weights) is calculated as shown in Eq. 6, using a context
vector u,, that is randomly initialized. The importance weights in oy are then
summed over the whole sequence, as shown in Eq. 7.

w;p = tanh (W, hi + by) (5)

exp(uﬁuw)
it = ——— 5 < 6
t Do exp(uluy,) (6)

si= Y aithi (7)
t

The vector s; from Eq.7 is finally taken as the representation of the input.
The part of the network that processes the sequence of fields similarly makes
use of bi-directional GRUs with an attention mechanism, taking as input the
representations produced for each field, as shown in Fig. 2.

The representation resulting from the different fields is finally passed to
two feed-forward nodes with softmax activations, which respectively attempt
to predict the corresponding ICD-10 block and the ICD-10 full-code. The entire
model is trained end-to-end from a set of coded death certificates, leveraging the
back-propagation algorithm [11] in conjunction with the Adam method [12] for
optimizing loss functions corresponding to the categorical cross-entropy (i.e., we
combine loss functions computed from ICD-10 blocks and full-codes, respectively
with weights 0.5 and 1.0). The idea of leveraging two separate outputs relates
to the large number of ICD-10 full-codes that are sparsely used. We expect that
information on ICD-10 blocks can be used to better inform model training.

4 Experimental Evaluation

This section describes the experimental evaluation of the proposed method. We
first present a statistical characterization of the dataset that supported our
tests, together with the considered experimental methodology. Then, Subsect. 4.2
presents and discusses the obtained results, also giving illustrative examples.

4.1 Dataset and Experimental Methodology

The dataset used in our experiments consisted of death certificates emitted from
the years of 2013 to 2015, collected from the SICO platform. We excluded all
instances involving a supplemental autopsy report, mostly corresponding to acci-
dents, suicides, or homicides. Table 1 presents characterization statistics.
Figure 1 already presented the general layout of the SICO online platform
that is currently being used for manually coding the death certificates. For each
certificate, we use the textual contents of fields labeled from (a) to (d) in Part
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Table 1. Statistical characterization of the dataset used in our experiments.

Number of distinct ICD-10 codes 1,674
Number of distinct ICD-10 blocks 697
Number of distinct ICD-10 chapters 22
Number of certificates 115,406
Average number of fields with textual data | 2.3
Average number of words per field 7.5
Maximum number of words per field 71
Vocabulary size 16,778

I, as well as the contents from Part II, in each case concatenating the strings
labeled as Outro, Valor and Tempo (i.e., the fields named Valor and Tempo can
be used to encode the approximated interval between the onset of the respective
condition and the date of death, which can be relevant in cases like a stroke that
occurred much before the time of death). Thus, each instance in the dataset
consists of 6 different strings (i.e., we noticed that the field from Part II often
contained two sentences), some of them possibly empty, padded with special
symbols to encode the beginning/termination of the textual contents, together
with the ICD-10 code corresponding to the main cause of death.

The available data was split into two subsets, with 75% (86,554 death cer-
tificates) for model training and 25% (28,852 certificates) for testing. Table3
presents the distribution of the number of instances associated to each ICD-10
chapter (i.e., the column named percentage gives the fraction of instances, in the
training plus the testing splits, corresponding to each chapter). Notice that some
ICD-10 chapters have no instances in our dataset, given that the corresponding
health problems are seldom related to death (i.e., Chapter VII, corresponding
to diseases of the eye and adnexa), or are instead related to external causes that
require an autopsy report (e.g., Chapter XIX, corresponding to injury, poisoning
and certain other consequences of external causes).

All experiments relied on the keras' deep learning library. The word embed-
ding layer in the first level considered a dimensionality of 50, and the output of
the GRU layers had a dimensionality of 25. Model training was made in batches
of 32 instances, using the Adam optimization algorithm [12] with default para-
meters. Model training considered a stopping criteria based on the training loss,
finishing when the difference between epochs was less than 1076.

For accessing prediction quality, we measured the classification accuracy over
the test split, as well the macro-averaged precision, recall and Fl-scores (i.e.,
macro-averages assign an equal importance to each class, thus providing useful
information in the case of datasets with a highly unbalanced class distribution).

! http://keras.io.
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Given the hierarchical organization of ICD-10, we also measured results accord-
ing to different levels of specialization (i.e., ICD-10 chapters, blocks, and full
codes).

4.2 Experimental Results

Our experiments compared three different neural architectures: (i) a hierarchical
model with two levels of GRUs but without the attention mechanisms, thus using
the hidden states produced at the edges of the sequences in order to build the
representations, an also considering only a single output node for the full ICD-10
code; (ii) a hierarchical attention model that also considers only a single output;
(iii) the full model with two output nodes, as described in Sect. 3. Models (i) and
(ii) correspond to variations were some of the components were removed.

Table 2 presents the results, and Table 3 further details the results obtained
with Model (iii), by showing evaluation scores for each individual ICD-10
chapter. The best values is terms of accuracy were actually obtained with the
simpler model, corresponding to 86%, 78%, and 75%, respectively when consid-
ering ICD-10 chapters, blocks and full-codes. To further access the overall per-
formance of our method, we also computed the Mean Reciprocal Rank (MRR)
of the correct class, when sorting classes according to the probability assigned
prior to performing the softmax operation. Model (iii) has a MRR of 0.795 when
assigning full codes, 0.830 for blocks, and 0.899 for chapters.

ICD Chapters II (i.e., neoplasms) and IV (i.e., diseases of the circulatory
system) correspond to the most common causes of death in our dataset and,
together, they represent approximately 58.1% of the instances. Table4 further
details the results obtained by Model (iii) in these two important chapters. We
can also see that deaths with underlying cause in Chapter X VIII (i.e., symptoms,
signs and abnormal clinical and laboratory findings, not elsewhere classified)
were predicted with high effectiveness (i.e., an Fl-score of 93.925%).

Table 2. Performance metrics for different variants of the neural model.

ICD-10 level | Accuracy | Macro-averages

Precision | Recall | Fl-score
Hierarchical model Chapter 86.417 |60.200 57.893 |58.781
Block 78.459 |35.786 |32.824 32.892
Full code 74.567 | 25.550 |24.727 23.920
+ attention mechanisms | Chapter 85.297 59.133 55.069 |56.319

Block 76.314 30.473 28.642 | 28.579

Full code 72.480 20.760 20.417 |19.471
+ two outputs Chapter 86.372 73.498 69.614|71.031

Block 78.171 33.919 31.614 | 31.658

Full code 73.981 23.360 23.048 |22.057
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Table 3. Number of instances and obtained results for each of the ICD-10 chapters.

Chapter | Occurences Percentage | Precision | Recall | Fl-score
Train | Test

I 1,952 642 | 2.248 65.994 66.199 | 66.096
II 23,971 | 7,921 |27.634 95.608 95.922 | 95.765
111 418 126 | 0.471 36.947 32.540 | 34.599
v 4,836 | 1,567 | 5.453 75.925 66.816 | 71.079
\% 2,386 849 | 2.803 76.162 75.265 | 75.711
VI 3,033 | 1,053 | 3.540 84.747 76.828 | 80.139
VII 0 0 | 0.000 — — —

VIII 8 1| 0.008 100.000 | 100.000 | 100.000
IX 26,773 | 9,036 |31.028 89.982 89.464 | 89.722
X 11,109 | 3,675 |12.810 80.273 86.259 | 83.158
XI 3,970 | 1,334 | 4.596 78.012 80.585 | 79.277
XII 112 36 | 0.128 25.000 11.111| 15.385
XIII 390 112 | 0.435 50.980 46.429 | 48.598
XIV 2,695 905 | 3.119 64.870 69.171 | 66.952
XV 0 0 | 0.000 — — —

XVI 10 1| 0.003 100.000 | 100.000 | 100.000
XVII 105 34 | 0.120 68.421 38.235 | 49.057
XVIIT 3,725 | 1,166 | 4.238 90.778 97.084 | 93.925
XIX 0 0 | 0.000 — — —

XX 1,171 394 | 1.356 66.776 51.523 | 58.166
XXI 0 0 | 0.000 — — —
XXII 0 0 | 0.000 — — —
Total: 86,554 | 28,852 | Average: 73.498 69.614 | 71.031

Some of the previous research on coding death certificates has focused on
deaths related to cancer [5]. When considering the 20 most common ICD can-
cer blocks in our test split, Model (iii) achieves a macro-averaged Fl-score of
90.090%.

Although the results on Table 2 fail to show that neural attention mechanisms
lead to an increased performance, these methods can offer model interpretability,
by allowing us to see which parts of the input (i.e., which fields and which words)
are attended to when making predictions. In Fig. 3, we illustrate the attention
weights calculated as shown in Eq. 6, for the contents of two death certificates.
The certificate in Fig. 3a was correctly assigned to code C719 (i.e., malignant
neoplasm of brain, unspecified) with a confidence of 95.21%, and the figure shows
the words glioblastoma multiforme having a significant impact. The certificate
in Fig.3b was assigned to code J40 (i.e., bronchitis, not specified as acute or
chronic) with a confidence of 92.39%. In this example, the words insuficiéncia
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Table 4. Results for blocks and full codes within ICD Chapters II and IX.

ICD-10 level | Accuracy Macro-averages

Precision | Recall | F1-score

Chapter II | Block 89.673 31.692 27.226 | 28.619
Full code 85.216 26.133 23.877 | 23.960
Chapter IX | Block 76.859 13.596 11.118 | 11.900

Full code 73.683 13.162 10.786 | 11.221

glioblastoma multiforme

pneumonia insuficiéncia  cardiaca descompensada

insuficiencia respiratoria

traqueobronquite

itbsiss sl e prostatica doenga renal cronica agudizada senilidade

(a) (b)

Fig. 3. Examples of the attention weights given at the field and word levels.

AVC demencia

Chapter IX }“—ﬂ‘( Chapter v ’——B—-(
Remaining Chapters i anhed ] | Chapters I——E——{

0.01 0.02 0.03 0.04 0.05 0.06 0.01 0.02 0.03 0.04 0.05 0.06

(a) (b)

Fig. 4. Distribution of attention weights given to tokens AVC and demencia.

cardiaca descompensada in the first field have much less impact than the word
traqueobronquite on the second field. Figure4 instead shows the distribution
of the attention weights for two particular word tokens, contrasting 250 death
certificates from an ICD chapter related to the tokens, against 250 certificates
from the remaining chapters. The token AVC (i.e., abbreviation of acidente
vascular cerebral) is often used to denote a stroke, and the attention weights
in Chapter IX (i.e., diseases of the circulatory system) are generally higher, as
shown in Fig. 4a. Figure4b shows a similar example, with the token demencia
and considering Chapter V (i.e., mental and behavioural disorders).

5 Conclusions and Future Work

In this paper, we proposed a deep learning method for coding the free-text
descriptions of the cause(s) of death, included in death certificates obtained from
the Portuguese Ministry of Health’s Directorate-General of Health, according to
ICD-10. Results show that although IDC coding is a difficult task, due to the
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large number of classes that are sparsely used, we can still obtain a high accu-
racy, particularly in the cases of the more common causes of death. We argue
that our approach can indeed contribute to a faster processing of death certifi-
cates, or it can help in the task of manual coding. The attention mechanisms
used in our complete model also offer the opportunity to interpret and visual-
ize the classification results, as we can check for each input where the model
places more attention and how that impacts the prediction. This last aspect
is particularly important for applications involving a human in-the-loop (i.e., a
health technician with experience in ICD-10 coding), validating the results of
the classifier.

Despite the interesting results, there are still many opportunities for future
work. For instance, although previous studies have advanced methods for ICD
coding of death certificates, their results are not directly comparable to ours,
given the different languages and different formulations of the task — in some
cases, the input was a single text, and the prediction tasks also differed in the
number of classes or in the fact that multiple labels could be given as output.
For future work, we would like to experiment with an adapted version of our
neural architecture, over the French dataset from the CLEF eHealth task [8].

Noting that the inclusion two different model outputs (i.e., the ICD-10 full
code and the ICD-10 block, for the main cause of death) helped to increase accu-
racy, for future work we would like to further pursue related ideas by considering
multiple outputs corresponding to auxiliary causes of death (i.e., in Fig. 1, one
can see that in SICO the input strings (a) to (d) are individually assigned to
ICD-10 codes), also leveraging techniques for exploring class co-occurrences [14].
Given the highly skewed class distribution, we also plan to explore batch train-
ing procedures that, taking inspiration on the SMOTE method [15], over-
sample the minority classes and introduce minor perturbations on these training
instances.

Finally, we have that the current model is only exploring six small strings as
input, although in some circumstances (e.g., accidents, suicide, or homicide) we
could also use the supplemental autopsy report. Currently ongoing efforts, also
taking inspiration on previous work on text classification [16], are exploring the
extension of the deep neural network introduced in Sect.3 with different parts
for encoding the full-text contents of autopsy reports, or the full-text contents
of supplemental clinical information bulletins, when these are available.
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