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Abstract This paper is a survey of results on the asymptotics of the exit time from
certain domains and conditioned limit theorems to stay in the same domains for two
type of Markov walks studied in Grama et al. (Prob Theory Rel Fields, 2016, [15])
and Grama et al. (Ann I.H.P, 2016, [16]).
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1 Introduction and Previous Results

Let (Xn)n�1 be independent identically distributed random variables. Consider the
random walk Sn = X1 + · · · + Xn. For a starting point y > 0 denote by τy the exit
time of the process (y + Sn)n�1 from the positive part of the real line. Many authors
have investigated the asymptotic behavior of the probability of the event τy � n andof
the conditional law of y + Sn given τy � n as n → +∞. There is awaste literature on
this subject. We refer the reader to Iglehart [18], Bolthausen [2], Doney [11], Bertoin
and Doney [1], Borovkov [3, 4]. Eichelsbacher and Köning [12], Denisov, Vatutin
and Wachtel [7], Denisov and Wachtel [8, 10] have considered random walks in R

d

and studied the exit times from the cones. Walks with increments forming a Markov
chain have been considered by Presman [21, 22], Varapoulos [23, 24], Dembo [6],
Denisov and Wachtel [9]. Varapoulos [23, 24] studied Markov chains with bounded
increments and obtained lower and upper bounds for the probabilities of the exit time
from cones.

The purpose of this paper is to present some recent results on the asymptotic of
the exit time and on the conditioned law for two particular cases of Markov chains.
In Sect. 2 we treat products of i.i.d. random matrices which lead to the study of a
certain Markov chain. The results of this section have been obtained in collaboration
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with Émile Le Page and Marc Peigné [15]. The second case deals with a Markov
chain defined by affine transformations on the real line. The results of the Sect. 3
have been obtained in collaboration with Ronan Lauvergnat and Émile Le Page [16].
In both cases our proofs rely upon a strong approximation result for Markov chains
established in [14]. A short sketch of the proofs is given in Sect. 4 based on the results
of [15].

2 Products of i.i.d Random Matrices

Let G = GL (d, R) be the general linear group of d × d invertible matrices w.r.t.
ordinarymatrixmultiplication. If g is an element of ofG by ‖g‖wemean the operator
norm and if v is an element of the vector space V = R

d the norm ‖v‖ is Euclidean.
Let μ be a probability measure on G and suppose that on the probability space
(�,F ,Pr) we are given an i.i.d. sequence (gn)n≥1 of G-valued random elements of
the same law Pr (g1 ∈ dg) = μ (dg) . Let Gn = gn . . . g1 and v ∈ V � {0} be a start-
ing point. The object of interest is the size of the vector Gnv which is controlled by
the quantity log ‖Gnv‖ . It follows from the results of Le Page [19] that, under appro-
priate assumptions, the sequence (log ‖Gnv‖)n≥1 behaves like a sum of i.i.d. r.v.’s
and satisfies standard classical properties such as the law of large numbers, law of
iterated logarithm and the central limit theorem.

Introduce the following conditions. Let N (g) = max
{‖g‖ , ‖g‖−1

}
, suppμ be

the support of the measure μ and P (V) be the projective space of V.

P1. There exists δ0 > 0 such that

∫

G

N (g)δ0 μ (dg) < ∞,

The next condition requires, roughly speaking, that the dimension of the support
of suppμ cannot be reduced.

P2 (Strong irreducibility). The support suppμ of μ acts strongly irreducibly on
V, i.e. no proper union of finite vector subspaces of V is invariant with respect to all
elements g of the group generated by suppμ.

The sequence (hn)n≥1 of elements of G is said to be contracting for the pro-
jective space P (V) if limn→∞ log a1(n)

a2(n)
= ∞, where a1 (n) ≥ . . . ≥ ad (n) are the

eigenvalues of the symmetric matrix h′
nhn and h′

n is the transpose of hn.

P3 (Proximality). The closed semigroup generated by suppμ contains a contracting
sequence for the projective space P (V).

For example P3 is satisfied if the closed semigroup generated by suppμ contains
a matrix with a unique simple eigenvalue of maximal modulus. For more details we
refer to Bougerol and Lacroix [5] and to the references therein.
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In the sequel for any v ∈ V � {0} we denote by v = Rv ∈ P (V) its direction and
for any direction v ∈ P (V)we denote by v a vector in V � {0} of direction v.Define
the function ρ : G × P (V) → R called norm cocycle by setting

ρ (g, v) := log
‖gv‖
‖v‖ , for (g, v) ∈ G × P (V) . (1)

It iswell known (seeLePage [19] andBougerol andLacroix [5]) that under conditions
P1–P3 there exists an unique μ-invariant measure ν on P (V) such that, for any
continuous function ϕ on P (V),

(μ ∗ ν) (ϕ) = ν (ϕ) .

Moreover the upper Lyapunov exponent

γ = γμ =
∫

G×P(V)

ρ (g, v) μ (dg)ν (dv)

is finite and there exists a constant σ > 0 such that for any v ∈ V� {0} and any t ∈ R,

lim
n→∞Pr

(
log ‖Gnv‖ − nγ

σ
√
n

≤ t

)
= �(t) ,

where �(·) is the standard normal distribution.
Denote by B the closed unit ball in V and by B

c its complement. For any v ∈ B
c

define the exit time of the random process Gnv from B
c by

τv = min {n ≥ 1 : Gnv ∈ B} .

In the sequel, we consider that the upper Lyapunov exponent γ is equal to 0. The
fact that γ = 0 does not imply that the events

{τv > n} = {
Gkv ∈ B

c : k = 1, . . . , n
}
, n ≥ 1

occur with positive probability for any v ∈ B
c. To ensure this we need the following

additional condition:

P4. There exists δ > 0 such that

inf
s∈Sd−1

μ (g : log ‖gs‖ > δ) > 0.

Our first result gives the asymptotic of the probability of the exit time.

Theorem 2.1 Under conditions P1-P4, for any v ∈ B
c,
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Pr (τv > n) = 2V (v)

σ
√
2πn

(1 + o (1)) as n → ∞,

where V is a positive function on B
c.

Moreover, we prove that the limit law of the quantity 1
σ
√
n
log ‖Gnv‖ , given the

event {τv > n} coincides with the Rayleigh distribution �+ (t) = 1 − exp
(
− t2

2

)
:

Theorem 2.2 Under conditions P1–P4, for any v ∈ B
c and for any t ≥ 0,

lim
n→∞Pr

(
log ‖Gnv‖

σ
√
n

≤ t

∣
∣
∣
∣ τv > n

)
= �+ (t) .

The study of the products of random matrices is reduced to the case of a Markov
chain in the following way. Consider the homogenous Markov chain (Xn)n≥0 with
values in the product space X = G × P (V) and initial value X0 = (g, v) ∈ X by
setting X1 = (g1, g · v) and

Xn+1 = (gn+1, gn . . . g1g · v) , n ≥ 1.

Let v ∈ V� {0} be a starting vector and v be its direction. Iterating the cocycle
property ρ (g2g1, v) = ρ (g2, g1 · v) + ρ (g1, v) one gets the basic representation

log ‖Gngv‖ = y +
n∑

k=1

ρ (Xk) , n ≥ 1,

where y = log ‖gv‖ determines the “size” of the vector gv. We deal with the random
walk (y + Sn)n≥0 associated to the Markov chain (Xn)n≥0 , where X0 = x = (g, v)

is an arbitrary element of X, y is any real number and

S0 = 0, Sn =
n∑

k=1

ρ (Xk) , n ≥ 1.

The results for log ‖Gnv‖ stated in this section are obtained by taking X0 = x =
(I, v) as the initial state of the Markov chain (Xn)n≥0 and setting y = ln ‖v‖ and
V (v) = V ((I, v) , ln ‖v‖) . The function V is the harmonic function related to the
transition probability of the Markov chain (Xn, y + Sn)n≥0.

3 Results for Affine Markov Walks

On the probability space (�,F , P) consider the affine recursion

Xn+1 = an+1Xn + bn+1, n ≥ 0,
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where (ai , bi ), i ≥ 1 is a sequence of independent real random pairs of the same
law as the generic random pair (a, b) and X0 = x ∈ R is a starting point. Denote
by E the expectation pertaining to P. Denote by Px and Ex the probability and
the corresponding expectation generated by the finite dimensional distributions of
(Xn)n≥0 starting at X0 = x .

We make use of the following conditions:

A1. 1. There exists a constant α > 2 such that E (|a|α) < 1 and E (|b|α) < +∞.

2. The random variable b is non-zero with positive probability, P(b �= 0) > 0,
and centered, E(b) = 0.

A2. For all x ∈ R and y > 0,

Px
(
τy > 1

) = P (ax + b > −y) > 0.

A3. For any x ∈ R and y > 0, there exists p0 ∈ (2,α) such that for any constant
c > 0, there exists n0 ≥ 1 such that,

Px
((
Xn0 , y + Sn0

) ∈ Kp0,c , τy > n0
)

> 0,

where
Kp0,c = {

(x, y) ∈ R × R
∗
+, y ≥ c

(
1 + |x |p0)} .

Using the techniques from [17] it can be shown that, under condition A1, the
Markov chain (Xn)n≥0 has a unique invariant measure m and its partial sum Sn
satisfies the central limit theorem

Px

(
Sn − nμ

σ
√
n

≤ t

)
→ � (t) as n → +∞,

with

μ = E(b)

1 − E(a)
= 0

and

σ2 = E(b2)

1 − E(a2)

1 + E(a)

1 − E(a)
> 0.

Moreover, it is easy to see that under A1 the Markov chain (Xn)n≥0 has no fixed
point: P (ax + b = x) < 1, for any x ∈ R.

For any y ∈ R consider the affine Markov walk (y + Sn)n≥0 starting at y and
define its exit time

τy = min{k ≥ 1, y + Sk ≤ 0}.

Our first result gives the asymptotic of the probability of the exit time.
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Theorem 3.1 Assume either conditions A1, A2, A3 and E(a) ≥ 0, or Conditions
A1 and A3. For any x ∈ R and y > 0,

Px
(
τy > n

) = 2V (x, y)√
2πnσ

(1 + o (1)) as n → ∞,

where V is a positive function on R × R
∗+.

As in the previous section the function V is the harmonic function related to the
transition probability of the two dimensional Markov chain (Xn, y + Sn)n≥0.

Our second result gives the asymptotic of the law of (y + Sn)n≥0 conditioned to
stay positive.

Theorem 3.2 Assume either conditions A1, A2, A3 and E(a) ≥ 0, or Conditions
A1 and A3. For any x ∈ R, y > 0 and t > 0,

Px

(
y + Sn
σ
√
n

≤ t
∣
∣
∣τy > n

)
−→
n→+∞ �+(t),

where �+(t) = 1 − e− t2

2 is the Rayleigh distribution function.

4 Sketch of the Proof

We start by giving a sketch of the proof of the results in Sect. 2.
We follow the arguments in [15] (we also refer the reader to the proof in [10]

where the case of sums of independent random variables inR
d is considered). Denote

by Px the probability measure generated by the finite dimensional distributions of
(Xk)k≥0 starting at X0 = x ∈ X and by Ex the corresponding expectation. For any
(x, y) ∈ X × R consider the transition kernel

Q+ (x, y, ·) = 1X×R
∗+ (·)Q (x, y, ·) ,

whereQ
(
x, y, dx ′ × dy′) is the transitionprobability of the twodimensionalMarkov

chain (Xn, y + Sn)n≥0 under the measure Px . A positive Q+-harmonic function V
is any function V : X × R

∗+ → R
∗+ satisfying

Q+V = V . (2)

Extend V by setting V (x, y) = 0 for (x, y) ∈ X × R−.

We first should prove the existence of a positive Q+-harmonic function. For any
y > 0 denote by τy the first time when the Markov walk (y + Sn)n≥0 becomes neg-
ative: τy = min {n ≥ 1 : y + Sn ≤ 0}.
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Theorem 4.1 Assume hypotheses P1–P5.
1. For any x ∈ X and y > 0 the limit

V (x, y) = lim
n→+∞ Ex

(
y + Sn; τy > n

)

exists and satisfies V (x, y) > 0.
2. The function V is Q+-harmonic, i.e., for any x ∈ X and y > 0,

Ex
(
V (X1, y + S1) ; τy > 1

) = V (x, y) .

The proof of this theorem is rather lengthy. Skipping the technical details, the
main difficulty is to show the integrability of the random variable Sτy , i.e., that
for any x ∈ X and y > 0 it holds Ex

(∣∣y + Sτy

∣
∣) ≤ c (1 + y) < +∞. The integra-

bility is obtained by using a martingale approximation (see Gordin [13]) Mn =∑n
k=1 (θ (Xk) − Pθ (Xk−1)), n ≥ 1, where θ is the solution of the Poisson equation

ρ = θ − Pθ and the norm cocycle ρ is defined in (1).

Lemma 4.2 It holds sup
n≥0

|Sn − Mn| ≤ a = 2 ‖Pθ‖∞ . Px -a.s. for any x ∈ X.

Once integrabilty of Sτy established, for any x ∈ X set

V (x, y) =
{−Ex Mτy if y > 0,

0 if y ≤ 0.

The following proposition presents some properties of the function V .

Proposition 4.3 The function V satisfies
1. For any y > 0 and x ∈ X,

V (x, y) = lim
n→+∞ Ex

(
y + Mn; τy > n

) = lim
n→+∞ Ex

(
y + Sn; τy > n

)
.

2. For any y > 0 and x ∈ X,

0 ∨ (y − a) ≤ V (x, y) ≤ c (1 + y) .

3. For any x ∈ X, limy→+∞ V (x,y)
y = 1.

4. For any x ∈ X, the function V (x, ·) is increasing.
The harmonicity of V is established in the following way. Let x ∈ X and y > 0

and set Vn (x, y) = Ex
(
y + Sn; τy > n

)
, for any n ≥ 1. By the Markov property we

have

Vn+1 (x, y) = Ex
(
y + Sn+1; τy > n + 1

)

= Ex
(
(Vn (X1; y + S1)) ; τy > 1

)
.
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Taking the limit as n → +∞, by Lebesgue’s dominated convergence theorem, we
get

V (x, y) = lim
n→+∞ Ex

(
Vn (X1; y + S1) ; τy > 1

)

= Ex

(
lim

n→+∞ Vn (X1; y + S1) ; τy > 1

)

= Ex V (X1, y + S1) 1{τy>1}
= Q+V (x, y) , (3)

which proves that V is harmonic. We refer to [15] for all the details.
We now give some hints how to prove Theorem 4.5. From the strong approxi-

mation result [14] it follows that without loss of generality we can reconstruct the
Markov walk (Sn)n�1 on the same probability space with the standard Brownian
motion (Bt )t≥0 such that for any ε ∈ (0, ε0), x ∈ X and n ≥ 1,

Px

(
sup
0≤t≤1

∣
∣S[nt] − σBnt

∣
∣ > n1/2−2ε

)
≤ cεn

−2ε, (4)

where cε depends on ε and ε0 > 0. Using the strong approximation (4) and the well-
known results on the exit time for standard Brownian motion (see Lévy [20]) we
establish the following:

Lemma 4.4 Let ε ∈ (0, ε0) and (θn)n≥1 be a sequence of positive numbers such that
θn → 0 and θnnε/4 → +∞ as n → +∞. Then
1. There exists a constant c > 0 such that, for n sufficiently large,

sup
x∈X, y∈[n1/2−ε,θnn1/2]

∣
∣
∣
∣
∣
Px

(
τy > n

)

2y√
2πnσ

− 1

∣
∣
∣
∣
∣
≤ cθn.

2. There exists a constant cε > 0 such that for any n ≥ 1 and y ≥ n1/2−ε,

sup
x∈X

Px
(
τy > n

) ≤ cε
y√
n
.

The previous result holds for y in the interval
[
n1/2−ε, θnn1/2

]
. To extend it to a

fixed y > 0 consider the first time νn when |y + Mk | exceeds 2n1/2−ε :

νn = min
{
k ≥ 1 : |y + Mk | ≥ 2n1/2−ε

}
, (5)

where ε > 0 is small enough. Using Markov property and Lemma 4.4 we show that

Px
(
τy > n

) = 2√
2πnσ

Ex
(
y + Sνn ; τy > νn, νn ≤ n1−ε

)
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+o
(
n−1/2

)
.

To end the proof one has to prove that for any x ∈ X and y > 0,

lim
n→+∞ Ex

(
y + Sνn ; τy > νn, νn ≤ n1−ε

) = V (x, y) . (6)

Again, for details, we refer to [15]. Our main result concerning the limit behavior of
the exit time τy is as follows:

Theorem 4.5 Assume hypotheses P1–P5. Then, for any x ∈ X and y > 0,

Px
(
τy > n

) ∼ 2V (x, y)

σ
√
2πn

as n → +∞.

Moreover, there exists a constant c such that for any y > 0 and x ∈ X,

sup
n≥1

√
nPx

(
τy > n

) ≤ c
1 + y

σ
.

The proof of Theorem 2.2 follows the same line using the following:

Lemma 4.6 Let ε ∈ (0, ε0), t > 0 and (θn)n≥1 be a sequence such that θn → 0 and
θnnε/4 → +∞ as n → +∞. Then

lim
n→+∞ sup

∣
∣
∣
∣
∣
∣

Px

(
τy > n − k, y+Sn−k√

n
≤ t

)

2y√
2πn

1
σ3

∫ t
0 u exp

(
− u2

2σ2

)
du

− 1

∣
∣
∣
∣
∣
∣
= 0, (7)

where sup is taken over x ∈ X, k ≤ n1−ε and n1/2−ε ≤ y ≤ θnn1/2.

The results exposed in Sect. 3 are more delicate but can be proved using similar
technics which can be found in [16].
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