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Abstract These are lecture notes on the subject defined in the title. As such, they do
not pretend to be really new, perhaps, except for the Sect. 10 about Poisson equations
with potentials; also, the convergence rate shown in (83)–(84) is possibly less known.
Yet, the hope of the author is that these notes may serve as a bridge to the impor-
tant area of Poisson equations ‘in the whole space’ and with a parameter, the latter
theme not being presented here.Why this area is so important was explained in many
papers and books including (Ethier and Kurtz, Markov Processes: Characterization
and Convergence, New Jersey, 2005) [12], (Papanicolaou et al. Statistical Mechan-
ics, Dynamical Systems and the Duke Turbulence Conference, vol. 3. Durham, N.C.,
1977) [34], (Pardoux and Veretennikov, Ann. Prob. 31(3), 1166–1192, 2003) [35]:
it provides one of the main tools in diffusion approximation in the area stochastic
averaging. Hence, the aim of these lectures is to prepare the reader to ‘real’ Pois-
son equations—i.e. for differential operators instead of difference operators—and,
indeed, to diffusion approximation. Among other presented topics, we mention cou-
pling method and convergence rates in the Ergodic theorem.
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1 Introduction

In these lecture notes we will consider the following issues: Ergodic theorem
(in some textbooks called Convergence theorem, while Ergodic would be reserved
for what we call Law of Large Numbers—see below), Law of Large Numbers (LLN),
Central Limit Theorem (CLT), Large Deviations (LDs) forMarkov chains (MC), and
as one of themost important applications, a Poisson equation. LLN, CLT and LDs are
the basis of most of statistical applications. Everything is presented on the simplest
model of a Markov chain with positive transition probabilities on a finite state space,
and in some cases we show a few more general results where it does not require too
much of additional efforts. This simplified version may be regarded as a preparation
to more advanced situations of Markov chains on a more general state space, includ-
ing non-compact ones and including Markov diffusions. A special place in this plan
is occupied by coupling method, a famous idea, which is not necessary for any result
in these lecture notes; yet, it is a rather convenient tool ‘for thinking’, although some-
times not very easy for a rigorous presentation. We show the Ergodic theorem firstly
without and then with coupling method. Poisson equations in this paper are discrete
analogues of ‘real’ Poisson equations for elliptic differential operators of the second
order in mathematical physics. We consider equations without a potential—the most
useful tool in diffusion approximations, cf. [12, 34, 35]—and also with a potential.
The problem of smoothness of solutions with respect to a parameter—which makes
this stuff so important in diffusion approximations and which is one of the main
motivations of the whole theory—is not presented; however, these notes may be
regarded as a bridge to this smoothness issue.

These notes are based on several different courses delivered by the author at
various universities in various years, including Moscow State University, Helsinki
Technical University (now Aalto University), University of Leeds and Magic con-
sortium (http://maths-magic.ac.uk/index.php), and National Research University
Higher School of Economics—Moscow. The author thanks all participants—not
only students—for their interest and patience and for many useful remarks.

The initial plan involved non-compact cases with problems related to stability
or recurrence properties of processes in such spaces. However, this would require
significantly more time and many more pages. Hence, this more ambitious task is
postponed for some future.

Some classical results are given without proofs although they were proved in the
courses delivered. The references on all such ‘missing’ proofs are straightforward.

Finally, let us mention that the following numeration system is accepted here: all
items such as Theorem, Lemma, Remark, Definition and some others are numbered
by a unique sequence of natural numbers. This method was accepted in some well-
known textbooks and the author shares the view about its convenience.
The following notations will be used for a process (Xn, n ≥ 0):

F X
n = σ(Xk : k ≤ n); F X

(n) = σ(Xn).
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The following notations from the theory of Markov processes will be accepted (cf.
[11]): the index x in Ex or Px signifies the expectation or the probability measure
related to the non-random initial state of the process X0. This initial state may be also
random with some distribution μ, in which case notations Eμ or Pμ may be used.

If state space S is finite, then |S| denotes the number of its elements. In the sequel
P denotes the transition matrix

(
pi j

)
1≤i, j≤|S| of the process in the cases where state

space of the process is finite.
Since this is a course about ergodic properties, we do not recall the definitions of

what are Markov, strong Markov, homogeneous Markov processes (MP) which are
assumed to be known to the reader: consult any of the textbooks [4, 10–12, 20, 27,
38, 49] if in doubt.

2 Ergodic Theorem – 1

In this section, we state and prove a simple ergodic theorem for Markov chains on a
finite state space. However, we start with a more general setting because later in the
end of these lecture notes a more general setting will be addressed. Ergodic Theorem
for Markov chains in a simple situation of finite state spaces is due to Markov,
although sometimes it is attributed to Kolmogorov with a reference to Gnedenko’s
textbook, and sometimes to Doeblin (see [9, 15]). We emphasize that this approach
was introduced by Markov himself (see [30, 38, 39]). Kolmogorov, indeed, has
contributed to this area: see, in particular, [23].

Let us consider a homogeneous Markov chain X = (Xn), n = 0, 1, 2, . . . with a
general topological state space (S,S) where S is the family of all Borel sets in S
assuming that S contains all single point subsets. Let Px (A) be the transition kernel,
that is, Px (A) = P(X1 ∈ A|X0 = x) ≡ Px (X1 ∈ A); recall that for any A ∈ S this
function is assumed Borel measurable in x (see [11]) and a measure in A (of course,
for a finite S this is not a restriction). Denote by Px (n, A) the n-step transition kernel,
i.e. Px (n, A) = Px (Xn ∈ A); for a finite Markov chain and if A = j , the notation
p(n)
i j will be used, too. If initial state is random with distribution μ, we will be using a

similar notation Pμ(n, A) for the probability Pμ(Xn ∈ A). Repeat that Pinv(Xn ∈ A)

signifies Pμ(Xn ∈ A) with the (unique) invariant measure μ; naturally, this value
does not depend on n.

Recall the definition of ergodicity for Markov chains (MC).

Definition 1 An MC (Xn) is called Markov ergodic iff the sequence of transition
measures (Px (n, ·))has a limit in total variationmetric,which is a probabilitymeasure
and if, in addition, this limiting measure does not depend on x ,

lim
n→∞Px (n, A) = μ(A), ∀ A ∈ S. (1)

Recall that the total variation distance or metric between two probability measures
may be defined as
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‖μ − ν‖T V := 2 sup
A∈S

(μ(A) − ν(A)).

Definition 2 AnMC (Xn) is called irreducible iff for any x ∈ S and A ∈ S, A 
= ∅,
there exists n such that

Px (Xn ∈ A) > 0.

AnMC (Xn) is called ν-irreducible for a given measure ν on (S,S) iff for any x ∈ S
and A ∈ S, ν(A) > 0 there exists n such that

Px (Xn ∈ A) > 0.

Of course, weaker or stronger ergodicity properties (definitions) may be stated
with weaker, or, respectively, stronger metrics. Yet, in the finite state space case all
of them are equivalent.

Exercise 3 In the case of a finite state space S with S = 2S (all subsets of S) and
a counting measure ν such that ν(A) = |A| := the number of elements in A ⊂ S,
show that ν-irreducibility of a MC is equivalent to the claim that there exists n > 0
such that the n-step transition probability matrix Pn is positive, that is, all elements
of it are strictly positive.

The most standard is the notion of ν-irreducibility of an MC where ν is the unique
invariant measure of the process.

Definition 4 Stationary or invariant probability measure μ for a Markov process X
is a measure on S such that for each A ∈ S and any n,

μ(A) =
∑

x∈S
μ(x)Px (n, A).

Lemma 5 A probability measure μ is stationary for X iff

μP = μ,

where P is the transition probability matrix of X.

Proof is straightforward by induction.

Lemma 6 For any (homogeneous)Markov chain in a finite state space S there exists
at least one stationary measure.

Proof of the Lemma 6. The method is due to Krylov and Bogoliubov (Kryloff and
Bogoliuboff, [26]). Let us fix some (any) i0 ∈ S, and consider Cesàro averages

1

n + 1

n∑

k=0

p(k)
i0, j

, 1 ≤ j ≤ N , n ≥ 1,
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where N = |S|. Due to the boundedness, this sequence of vectors as n → ∞ has a
limit over some subsequence, say, n′ → ∞,

1

n′ + 1

n′∑

k=0

p(k)
i0, j

→ π j , 1 ≤ j ≤ N , n′ → 1,

where by the standard convention, p(0)
i j = δi j (Kronecker’s symbol). Since S is finite,

it follows that (π j , 1 ≤ j ≤ N ) is a probability distribution on S. Finally, stationarity
follows from the following calculus based on Chapman–Kolmogorov’s equations,

1

n′ + 1

n′∑

k=0

p(k)
i0, j

= 1

n′ + 1

n′∑

k=0

N∑

�=1

p(k−1)
i0,�

p�, j + 1

n′ + 1
p(0)
i0, j

=
N∑

�=1

1

n′ + 1

n′−1∑

k=0

p(k)
i0,�

p�, j + 1

n′ + 1
p(0)
i0, j

=
N∑

�=1

1

n′ + 1

n′∑

k=0

p(k)
i0,�

p�, j + 1

n′ + 1
p(0)
i0, j

− 1

n′ + 1

N∑

�=1

p(n′)
i0,�

p�, j .

It follows,

lim
n′→∞

1

n′ + 1

n′∑

k=0

p(k)
i0, j

=
N∑

�=1

π� p�, j .

Hence,

π j =
N∑

�=1

π j p�, j ∼ π = πP.

Hence, the distribution (π j ) is stationary due to the Lemma 5. The Lemma 6 is
proved.

Remark 7 Note that for a finite S the statement of the Lemma, actually, may be
proved much faster by applying the Brouwer fixed-point theorem, as it is done, for
example, in [41]. Yet, the method used in the proof seems deeper, and it can be used
in a much more general situation including ‘non-compact’ cases. (However, we are
not saying that the use of Brouwer’s fixed-point theorem is restricted to finite state
spaces.)

From now on, in this and several following sections we consider the case of
a finite state space S; a more general case will be addressed in the last sections.
The next condition suggested by Markov himself plays a very important role in the
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analysis of asymptotic behaviour of a (homogeneous) Markov chain (MC in the
sequel). Let there exist n0 such that

κn0 := inf
i,i ′

∑

j

min(Pi (n0, j), Pi ′(n0, j)) ≡ inf
i,i ′

∑

j

min(pn0i, j , p
n0
i ′, j ) > 0. (2)

By the suggestion of S. Seneta, this coefficient κn0 (as well as κ in (3) and in (52))
is properly called Markov–Dobrushin’s.

Unlike in the continuous time case, in discrete-time situation there are potential
complications related to possible cycles, that is, to a periodic structure of the process.
A typical example of such a periodic structure is a situation where the state space
is split into two parts, S = S1 ∪ S2, which do not intersect, and X2n ∈ S1, while
X2n+1 ∈ S2 for each n. Then ergodic properties is reasonable to study separately for
Yn := X2n and for Zn := X2n+1. In other words, this complication due to periodicity
does not introduce any real news, and by this reason there is a tradition to avoid this
situation.Hence, in the sequelwewill study our ergodic process under the assumption
n0 = 1 in the condition (2). Similar results could be obtained under a more general
assumption of aperiodicity.

So, here is the simplified version of (2), which will be accepted in the sequel:

κ := inf
i,i ′

∑

j

min(Pi (1, j), Pi ′(1, j)) ≡ inf
i,i ′

∑

j

min(pi j , pi ′ j ) > 0. (3)

Also, to clarify the ideas we will be using in some cases the following stronger
assumption,

κ0 := inf
i j

pi j > 0. (4)

However, eventually, the assumption (4) will be dropped and only (3) will remain in
use.

Theorem 8 Let the assumption (3) hold true. Then the process (Xn) is ergodic, i.e.
there exists a limiting probability measure μ such that (1) holds true. Moreover, the
uniform bound is satisfied for every n,

sup
x

sup
A∈S

|Px (n, A) − μ(A)| ≤ (1 − κ)n, (5)

and the measure μ is a unique invariant one.

Proof of Theorem 8 is classical and may be found in many places, for example, in
[15].

(A) Denote for any A,

m(n)(A) := min
i

Pi (n, A), M (n)(A) := max
i

Pi (n, A).
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By Chapman–Kolmogorov’s equation,

m(n+1)(A) = min
i

Pi (n + 1, A) = min
i

∑

j

pi j Pj (n, A)

≥ min
i

∑

j

pi j min
j ′

Pj ′(n, A) = m(n)(A),

which signifies that the sequence m(n)(A) does not decrease in n. Similarly, the
sequence M (n)(A) does not increase in n. Hence, it suffices to show that

M (n)(A) − m(n)(A) ≤ (1 − κ)n. (6)

(B) Again by Chapman–Kolmogorov’s equation,

M (n)(A) − m(n)(A) = max
i

Pi (n, A) − min
i ′

Pi ′(n, A)

= max
i

∑

j

pi j Pj (n − 1, A) − min
i ′

∑

j

pi ′ j Pj (n − 1, A).

Let maximum here be attained at i+ while minimum at i−. Then,

M (n)(A) − m(n)(A) =
∑

j

pi+ j Pj (n − 1, A) −
∑

j

pi− j Pj (n − 1, A)

=
∑

j

(pi+ j − pi− j )Pj (n − 1, A). (7)

(C) Denote by S+ the part of the sum in the right hand side of (7) with just (pi+ j −
pi− j ) ≥ 0, and by S− the part of the sum with (pi+ j − pi− j ) < 0. Using notations
a+ = a ∨ 0 and a− = a ∧ 0 (where a ∨ b = max(a, b) and a ∧ b = min(a, b)), we
estimate,

S+ ≤
∑

j

(pi+ j − pi− j )+M (n−1)(A) = M (n−1)(A)
∑

j

(pi+ j − pi− j )+,

and
S− ≤

∑

j

(pi+ j − pi− j )−m(n−1)(A).
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Therefore,

M (n)(A) − m(n)(A) = S+ + S−

≤ M (n−1)(A)
∑

j

(pi+ j − pi− j )+ + m(n−1)(A)
∑

j

(pi+ j − pi− j )−.

(D) It remains to notice that

∑

j

(pi+ j − pi− j )− = −
∑

j

(pi+ j − pi− j )+,

and ∑

j

(pi+ j − pi− j )+ ≤ 1 − κ. (8)

The first follows from the normalization condition

∑

j

pi+ j =
∑

j

pi− j = 1,

while the second from (recall that (a − b)+ = a − a ∧ b ≡ a − min(a, b) for any
real values a, b)

∑

j

(pi+ j − pi− j )+ =
∑

j

(pi+ j − min(pi− j , pi+ j ))

= 1 −
∑

j

min(pi− j , pi+ j ) ≤ 1 − κ

(see the definition of κ in (3)). So, we find that

M (n)(A) − m(n)(A) ≤ (1 − κ) (M (n−1)(A) − m(n−1)(A)).

By induction this implies (6). So, (5) and uniqueness of the limits π j = limn→∞ p(n)
i j

follow.

(E) The invariance of the measure μ and uniqueness of the invariant measure fol-
low, in turn, from (5). Indeed, let us start the process from any invariant distribu-
tion μ—which exists due to the Lemma 6—then μ j ≡ Pμ(Xn = j) = ∑

� μ� p
(n)
i j →

π j , n → ∞. However, the left hand side here does not depend on n. Hence,μ j = π j .
The Theorem 8 is proved.

Recall that the total variation distance or metric between two probability measures
may be defined as

‖μ − ν‖T V := 2 sup
A

(μ(A) − ν(A)).
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Hence, the inequality (5) may be rewritten as

sup
x

‖Px (n, ·) − μ(·)‖T V ≤ 2(1 − κ)n. (9)

Corollary 9 Under the assumption of the Theorem8, for any boundedBorel function
f and for any 0 ≤ s < t ,

sup
x

|Ex ( f (Xt )|Xs) − Einv f (Xt )| ≡ sup
x

|Ex ( f (Xt ) − Einv f (Xt )|Xs)| ≤ C f (1 − κ)t−s ,

or, equivalently,

sup
x

|Ex ( f (Xt )|F X
s ) − Einv f (Xt )| ≤ C f (1 − κ)t−s,

where C f = max
j

| f ( j)| ≡ ‖ f ‖B(S).

This useful Corollary follows from the Theorem 8.
It is worth noting that in a general case there is a significantly weaker condition

than (2) (or, in the general case weaker than (52)—see below in the Sect. 11), which
also guarantees an exponential convergence rate to a unique invariant measure. We
will show this condition—called Doeblin-Doob’s one—and state the corresponding
famous Doeblin–Doob’s theorem on convergence, but for the proof we refer the
reader to [10].

Definition 10 (DD-condition) There exist a finite (sigma-additive) measure ν ≥ 0
and ε > 0, s > 0 such that ν(A) ≤ ε implies

sup
x

Px (s, A) ≤ 1 − ε.

Theorem 11 (Doeblin–Doob, without proof) If the DD-condition is satisfied for an
aperiodic MP with a unique class of ergodicity (see [10]) on the state space S, then
there exist C, c > 0 such that

sup
x

sup
A∈S

|Px (n, A) − μ(A)| ≤ C exp(−cn), n ≥ 0. (10)

It turns out that under the assumption (DD), the constants in the upper bound (10)
cannot be effectively computed, i.e. they may be arbitrary even for the same ε and ν,
say. This situation dramatically differs from the case of conditions (4) and (3), where
both constants in the upper bound are effectively and explicitly evaluated.

Open Question 12 It is interesting whether or not there may exist any intermediate
situation with a bound like (10)—in particular, it should be uniform in the initial
state—with computable constants C, c under an assumption lying somewhere in
‘between’ Markov–Dobrushin’s and Doeblin–Doob’s. Apparently, such a condition
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may be artificially constructed from a ‘non-compact’ theory with an exponential
recurrence, but then the bounds would not be uniform in the initial data. In fact,
some relatively simple version of a desired condition will be shown in the end of
this text, see the Theorem 47. However, it does not totally close the problem, e.g. for
non-compact spaces.

3 LLN for Homogeneous MC, Finite S

It may seem as if the Ergodic Theorem with uniform exponential convergence rate
in total variation metric were all we could wish about ergodic features of the process.
Yet, the statement of this theorem itself even does not include the Law of Large
Numbers (LLN), which is not emphasized in most of the textbooks. However, the
situation with LLN (as well as with Central Limit Theorem – CLT) is good enough,
which is demonstrated below. The Theorem 13 under the assumption (4) belongs to
A.A. Markov, see [30, 38].

Theorem 13 (WeakLLN)Under the assumptions of the Theorem 8, for any function
f on a finite state space S,

1

n

n−1∑

k=0

f (Xk)
P→ Einv f (X0), (11)

where Einv stands for the expectation of f (X0) with respect to the invariant prob-
ability measure of the process, while P denotes the measure, which corresponds to
the initial value or distribution of X0: the latter may be, or may be not stationary.

NB. Note that a simultaneous use of stationary and non-stationary measures is not a
contradiction here. The initial state could be either non-random, or it may have some
distribution. At the same time, the process has a unique invariant measure, and the
writing Einv f (X0) = 0 signifies the mere fact that

∑

y∈S
f (y)μ(y) = 0, but it is in no

way in a conflict with a non-stationary initial distribution. In the next proof we use
P and, respectively, E without specifying the initial state or distribution. However,
this initial distribution (possibly concentrated at one single state) exists and it is fixed
throughout the proof.

Proof of the Theorem 13. 1. First of all, note that (11) is equivalent to

1

n

n−1∑

k=0

( f (Xk) − Einv f (X0))
P→ 0,

so, without loss of generality we may and will assume that Einv f (X0) = 0. Now we
estimate with any ε > 0 by the Bienaymé–Chebyshev–Markov inequality,
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P

(

|1
n

n−1∑

k=0

f (Xk)| > ε

)

≤ ε−2n−2
E|

n−1∑

k=0

f (Xk)|2

(12)

= ε−2n−2
E

n−1∑

k=0

f 2(Xk) + 2ε−2n−2
E

∑

0≤k< j≤n−1

f (Xk) f (X j ).

Here the first term, clearly (as f is bounded), satisfies,

ε−2n−2
E

n−1∑

k=0

f 2(Xk) → 0, n → ∞.

Let us transform the second term as follows for k < j :

E f (Xk) f (X j ) = E( f (Xk)E( f (X j )|Xk)),

and recall that due to the Corollary 9 to the Ergodic theorem,

|E( f (X j )|Xk) − Einv f (X j )| ≤ C f (1 − κ) j−k,

where due to our convention Einv f (X j ) = 0. Therefore, we have,

|E
∑

k< j

f (Xk) f (X j )| = |E
∑

k< j

f (Xk)E( f (X j )|Xk)|

≤ C f

∑

k, j : 0≤k< j<n

(1 − κ) j−k ≤ Cn, with C = C f κ
−1.

Thus, the second term in (12) also goes to zero as n → ∞. The Theorem 13 is proved.

Remark 14 Recall that f is bounded and exponential rate of convergence is guar-
anteed by the assumptions. This suffices for a strong LLN via higher moments for
sums. However, it will not be used in the sequel, so we do not show it here.

4 CLT, Finite S

In this section, state space S is also finite. For the function f on S, let

σ2 := Einv( f (X0) − Einv f (X0))
2 + 2

∞∑

k=1

Einv( f (X0)

− Einv f (X0))( f (Xk) − Einv f (Xk)). (13)
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It is known that this definition provides a non-negative value (for completeness, see
the two lemmata below).

Lemma 15 Under our standing assumptions (S is finite and min
i j

pi j > 0),

σ2 ≥ 0, (14)

and, moreover,

n−1
Einv

(
n−1∑

r=0

( f (Xr ) − Einv f (X0))

)2

→ σ2, n → ∞, (15)

where the latter convergence is irrespectively of whether σ2 > 0, or σ2 = 0.

Proof Without loss of generality, we may and will assume now that Einv f (X0) = 0
(otherwise, this mean value can be subtracted from f as in the formula (15)). Note

also that in this case the variance of the random variable n−1/2
n−1∑

r=0

f (Xr ) computed

with respect to the invariant measure coincides in this casewith its secondmoment.
Since Einv f (Xi ) = 0 for any i , this second moment may be evaluated as follows,

n−1
Einv(

n−1∑

r=0

f (Xr ))
2 = Einv f

2(X0) + 2n−1
∑

0≤i< j≤n−1

Einv f (Xi ) f (X j )

= Einv f
2(X0) + 2n−1

n−1∑

r=1

(n − r)Einv f (X0) f (Xr )

clearly→ Einv f
2(X0) + 2

∞∑

r=1

Einv f (X0) f (Xk) = σ2, n → ∞.

Here the left hand side is non-negative, so σ2 is non-negative, too. The Lemma 15 is
proved.

Lemma 16 Under the same assumptions as in the previous Lemma, σ2 < ∞.

Proof Again, without loss of generality, wemay andwill assume f̄ := Einv f (X0) =
0, and ‖ f ‖B ≤ 1. We have, due to the Corollary 9 applied with f̄ = 0,

|Einv f (X0) f (Xk)| = |Einv f (X0)Einv( f (Xk)|X0)| ≤ C fEinv| f (X0)|qk,

with some 0 ≤ q < 1 and C f = ‖ f ‖B ≤ 1. So, the series in (13) does converge and
the Lemma 16 is proved.
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Theorem 17 Let the assumption (3) hold true. Then for any function f on S,

1√
n

n−1∑

k=0

( f (Xk) − Einv f (X0))
P=⇒ η ∼ N (0,σ2), (16)

where =⇒ stands for the weak convergence with respect to the original probability
measure (i.e. generally speaking, non-invariant).

Emphasize that we subtract the expectation with respect to the invariant measure,
while weak convergence holds true with respect to the initial measure, which is not
necessarily invariant. (We could have subtracted the actual expectation instead; the
difference would have been negligible due to the Corollary 9.)

Remark 18 About Markov’s method in CLT the reader may consult the textbook
[41]. Various approaches can be found in [1, 2, 10, 23, 31, 32, 38], et al. For a
historical review see [39]. A nontrivial issue of distinguishing the cases σ2 > 0 and
σ2 = 0 for stationary Markov chains is under discussion in [3] for finite MC where a
criterion has been established for σ2 = 0; this criterion was extended tomore general
cases in [24]. A simple example of irreducible aperiodic MC (with min

i j
pi j = 0) and

a non-constant function f where σ2 = 0 can be found in [41, ch. 6]. Nevertheless,
there is a general belief that ‘normally’ in ‘most of cases’ σ2 > 0. (Recall that zero
(a constant) is regarded as a degenerateGaussian randomvariableN (0, 0).) On using
weaker norms in CLT for Markov chains see [28].

Proof of the Theorem 17. Without loss of generality, assume that ‖ f ‖B ≤ 1, and that

Einv f (X0) = 0.

I. Firstly, consider the case σ2 > 0. We want to check the assertion,

E exp

(

i
λ√
n

n∑

r=0

f (Xr )

)

→ exp(−λ2σ2/2), n → ∞.

In the calculus below therewill be expectationswith respect to themeasureP (denoted
by E) and some other expectations Einv . Note that they are different: the second one
means expectation of a function of a random variable Xk computed with respect to
the invariant measure of this process.

We are going to use Bernstein’s method of ‘corridors and windows’ (cf. [1, 2]). Let
us split the interval [0, n] into partitions of two types: larger ones called ‘corridors’
and smaller ones called ‘windows’. Their sizes will increase with n as follows. Let
k := [n/[n3/4]] be the total number of long corridors of equal length (here [a] is
the integer part of a ∈ R); this length will be chosen shortly as equivalent to n3/4.
The length of each window is w := [n1/5]. Now, the length of each corridor except
the last one is c := [n/k] − w ≡ [n/k] − [n1/5]; the last complementary corridor has
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the length cL := n − k[n/k]; note that cL ≤ [n/k] ∼ n3/4, k ∼ n1/4 (i.e. k/n1/4 →
1, n → ∞), and c ∼ n3/4.

The total length of all windows is then equivalent to w × k ∼ n1/5+1/4 = n9/20;
note for the sequel that n9/20 << n1/2. As was mentioned earlier, the length of the last
corridor does not exceed k, and, hence, asymptotically is no more than n1/4 (which
is much less than the length of any other corridor).

Now, denote all partial sums
n∑

r=0
f (Xr ) over the first k corridors by η j , 1 ≤ j ≤ k.

In particular,

η1 =
c−1∑

r=0

f (Xr ), η2 =
2c+w−1∑

r=c+w

f (Xr ), etc.

Note that

1√
n
|

n∑

r=0

f (Xr ) −
k∑

j=1

η j | ≤ C f
(wk + k)√

n
∼ C f

n9/20 + n1/4√
n

→ 0, n → ∞,

uniformly in ω ∈ �. Hence, it suffices to show that

1√
n

k∑

j=1

η j =⇒ η′ ∼ N (0,σ2).

Note that

n−1
Einvη

2
1 ∼ c

n
σ2, n → ∞,

or,

n−3/4
Einvη

2
1 → σ2, n → ∞, (17)

and the latter convergence is irrespectively of whether σ2 > 0, or σ2 = 0.
Now, to show the desired weak convergence, let us check the behaviour of the

characteristic functions. Due to the Corollary 9, we estimate for any λ ∈ R,

|E(exp(iλη j )|F X
( j−1)[n/k]) − Einv exp(iλη j )| ≤ C(1 − κ)[n

1/5].
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So, by induction,

E exp

⎛

⎝i
λ√
n

k+1∑

j=1

η j

⎞

⎠ = E exp

⎛

⎝i
λ√
n

k∑

j=1

η j

⎞

⎠E

(
exp

(
i

λ√
n

ηk+1

)
|F X

k[n/k]
)

= E exp

⎛

⎝i
λ√
n

k∑

j=1

η j

⎞

⎠
(
Einv

(
exp(i

λ√
n

ηk+1

)
+ O((1 − κ)n

1/5
))

)
= . . .

= Einv

(
exp

(
i

λ√
n

ηk+1 + O((1 − κ)n
1/5

)

)) (

Einv

(
exp

(
i

λ√
n

η1

))k

+ O(k(1 − κ)n
1/5

)

)

.

(18)

Here O(k(1 − κ)n
1/5

) is, generally speaking, random and it is a function of Xk[n/k],
but the modulus of this random variable does not exceed a nonrandom constant
multiplied by k(1 − κ)n

1/5
. We replaced [n1/5] by n1/5, which does not change the

asymptotic (in)equality. Note that

O(k(1 − κ)n
1/5

)) = O(n3/4(1 − κ)n
1/5

)) → 0, n → ∞.

Now the idea is to use Taylor’s expansion

Einv exp

(
i

λ√
n
η1

)
= 1 − λ2

2n
n3/4σ2 + Rn = 1 − λ2

2n1/4
σ2 + Rn. (19)

Here, to prove the desired statement it suffices to estimate accurately the remainder
term Rn , that is, to show that Rn = o(n−1/4), n → ∞.

Since we, actually, transferred the problem to studying an array scheme (as η1
itself changes with n), we have to inspect carefully this remainder Rn . Due to the
Taylor expansion we have,

Reϕ

(
λ√
n

)
= Einv cos

(
λη1√
n

)
= 1 − λ2

2n
Einvη

2
1 + λ̂3

6
√
n3

Einvη
3
1 sin(λ̂η1),

with some λ̂ between 0 and λ, and similarly, with some λ̃ between 0 and λ,

Imϕ

(
λ√
n

)
= Einv sin

(
λη1√
n

)
= − λ̃3

6
√
n3

Einvη
3
1 cos(λ̃η1).

Here in general λ̂ and λ̃ may differ. However, this is not important in our calculus
because in any case |λ̃| ≤ |λ| and |λ̂| ≤ |λ|. All we need to do now is to justify a
bound

|Einvη
3
1| ≤ Kc, (20)
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with some non-random constant K . This is a rather standard estimation and we show
the details only for completeness. (See similar in [14, 18, 22], et al.) It suffices to
consider the case C f ≤ 1, which restriction we assume without loss of generality.

(a) Consider the case E f (Xk)
3. We have, clearly,

|
c∑

k=1

E f (Xk)
3| ≤ c.

(b) For simplicity, denote fk = f (Xk) and consider the case E f j fk f�, � > k > j .
We have,

c−2∑

j=0

c−1∑

k= j+1

c∑

�=k+1

E f j fk f� =
c−2∑

j=0

c−1∑

k= j+1

c∑

�=k+1

E f j fkE( f�|Xk)

=
c−2∑

j=0

c−1∑

k= j+1

c∑

�=k+1

E f j fkψk,�q
�−k (here ψk,� ∈ F X

(k) ≡ σ(Xk) and |ψk,�| ≤ 1).

Note that, with a 0 ≤ q < 1, the expression

ζk :=
c−1∑

�=k+1

ψk,�q
�−k

is a random variable, which modulus is bounded by the absolute constant (1 − q)−1

and which is F X
(k)-measurable, i.e. it may be represented as some Borel function of

Xk . So, we continue the calculus,

c−2∑

j=0

c−1∑

k= j+1

c∑

�=k+1

E f j fk f� =
c−2∑

j=0

c−1∑

k= j+1

c∑

�=k+1

E f j fkζk

=
c−2∑

j=0

c−1∑

k= j+1

c∑

�=k+1

E f j E( fkζk |X j ) =
c−2∑

j=0

c−1∑

k= j+1

E f j (E fkζk + ζ ′
k, j q

k− j )

=
c−2∑

j=0

c−1∑

k= j+1

E f j

c−1∑

k= j+1

ζ ′
k, j q

k− j =
c−2∑

j=0

E f j

c−1∑

k= j+1

ζ ′
k, j q

k− j ,

due to E f jE fkζk = 0, since E f j = 0. Here ζ ′
k, j , in turn, for each k does not exceed

by modulus the value (1 − q)−1 and is F X
( j)-measurable. Therefore, the inner sum in

the last expression satisfies,
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|
c−1∑

k= j+1

ζ ′
k, j q

k− j | ≤
c−1∑

k= j+1

|ζ ′
k, j |qk− j ≤ (1 − q)−1

c−1∑

k= j+1

qk− j ≤ (1 − q)−2.

Thus,

|
c−2∑

j=0

c−1∑

k= j+1

c∑

�=k+1

E f j fk f�| ≤ (1 − q)−2
c−2∑

j=0

E| f j | ≤ c(1 − q)−2,

as required.
(c) Consider the terms with E f (Xk)

2 f (X�), � > k. We estimate, with some (ran-
dom) |ψ′

�,k | ≤ 1 and 0 ≤ q < 1,

|
c−1∑

k<�

E f (Xk)
2
E( f (X�)|Xk)| = |

∑

k<�<c

E f (Xk)
2ψ′

�,kq
�−k | ≤ c

1 − q
.

(d) Consider the case E f (Xk)
2 f (X�), � < k. We have similarly, for � < k,

E f 2k f� = E f�E( f 2k |X�) = E f�(E f 2k + ψ′′
�,kq

k−�), |ψ�,k | ≤ 1,

with some (random) |ψ′′
�,k | ≤ 1. So, again,

|
c−1∑

�<k

E f�E( f 2k |X�)| = |
∑

�<k<c

E f 2k ψ′′
�,kq

k−�| ≤ c

1 − q
.

(e) Finally, collecting all intermediate bounds we obtain the bound (20), as required:

|Eη3
1| ≤ Kc.

This implies the estimate for the remainder term Rn in (19) of the form

|Rn| ≤ c

n3/2
∼ n3/4−3/2 = n−3/4 = o(n−1/4),

as required. The last detail is to consider the term Einv exp(i λ√
n
ηk+1) in (18), for

which we have σ2
k+1 := Eη2

k+1 satisfying

Einvη
2
k+1 = O(n3/4σ2), n → ∞. (21)

This term may be tackled similarly to all others, and, in any case, we get the estimate

Einv exp

(
i

λ√
n
ηk+1

)
= 1 + o(1), n → ∞.
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Hence, we eventually get (recall that c ∼ n3/4),

E exp

(

i
λ√
n

n∑

r=0

f (Xr )

)

=
(
1 − λ2σ2c

2n
+ O(

c

n3/2
)

)n1/4

=
(
1 − λ2σ2

2n1/4
+ O

(
1

n3/4

))n1/4

→ exp(−λ2σ2/2),

which is the characteristic function for the Gaussian distribution N (0,σ2), as
required.

(II) The case σ2 = 0 is considered absolutely similarly. Namely, with a practically
identical arguments we get, now with σ2 = 0,

E exp

(

i
λ√
n

n∑

r=0

f (Xr )

)

=
(
1 − λ2σ2c

2n
+ O

( c

n3/2

))n1/4

=
(
1 + O

(
1

n3/4

))n1/4

→ 1,

which is the characteristic function for the degenerate Gaussian distributionN (0, 0),
as required. Hence, the Theorem 17 is proved.

5 Coupling Method for Markov Chain: Simple Version

Concerning coupling method, it is difficult to say who exactly invented this method.
The common view—shared by the author of these lecture notes—is that it was intro-
duced byW.Doeblin [9], even though he himself refers to some ideas of Kolmogorov
with relation to the study of ergodic properties ofMarkov chains. Leaving this subject
to the historians of mathematics, let us just mention that there are quite a few articles
andmonographs where this method is presented [16, 29, 33, 40], et al. Also there are
many papers and books where this or close method is used for further investigations
without being explicitly named, see, e.g. [4]. This method itself provides ‘another
way’ to establish geometric convergence in the Ergodic theorem. In the simple form
as in this section, this method has limited applications; however, in a more elaborated
version—see the Sect. 13 below—it is most useful, and applicable to a large variety
of Markov processes including rather general diffusions, providing not necessarily
geometric rates of convergence but also much weaker rates in non-compact spaces.

By simple coupling for two random variables X1, X2 we understand the situation
where both X1, X2 are defined on the same probability space and

P(X1 = X2) > 0.
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Consider aMarkov chain (Xn, n = 0, 1, . . .). In fact, this simple ‘Doeblin’s’ version
of coupling provides bounds of convergence which are far from optimal in most
cases. (By ‘far from optimal’ we understand that the constant under the exponential
is too rough.) Yet, its advantage is its simplicity and, in particular, no change of the
initial probability space. From the beginning we need two ‘independent’ probability
spaces, (�1,F1,P1), and (�2,F2,P2), and thewhole construction runs on the direct
product of those two:

(�,F ,P) := (�1,F1,P1) × (�2,F2,P2).

This space (�,F ,P) will remain unchanged in this section. We assume that there
are two Markov processes (X1

n) on (�1,F1,P1) and (X2
n) on (�2,F2,P2), corre-

spondingly, with the same transition probability matrixP = (pi j )i, j∈S satisfying the
‘simple ergodic assumption’,

κ0 := min
i, j

pi j > 0. (22)

Naturally, both processes are defined on (�,F ,P) as follows,

X1
n(ω) = X1

n(ω
1,ω2) := X1

n(ω
1), & X2

n(ω) = X2
n(ω

1,ω2) := X2
n(ω

2).

Wewill need some (well-known) auxiliary results. Recall that given a filtration (Fn),
stopping time is any random variable τ < ∞ a.s. with values in Z+ such that for any
n ∈ Z+,

(ω : τ > n) ∈ Fn.

In most of textbooks on Markov chains the following Lemma may be found (see,
e.g. [49]).

Lemma 19 Any Markov chain (i.e. a Markov process with discrete time) is strong
Markov.

Consider a new process composed of two, Xn := (X1
n, X

2
n), evidently, with two inde-

pendent coordinates. Due to this independence, the following Lemma holds true.

Lemma 20 The (vector-valued) process (Xn) is a (homogeneous) Markov chain;
hence, this chain is also strong Markov.

In the following main result of this section, μ stands for the (unique) stationary
distribution of our Markov chain (X1

n) (as well as of (X2
n)).

Theorem 21 For any initial distribution μ0,

sup
A

|Pμ(n, A) − μ(A)| ≤ (1 − κ0)
n. (23)
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Let us emphasize again that the bound may be not optimal; however, the advantage is
that the construction of coupling here does not require any change of the probability
space.

Proof of Theorem 21. Recall that a new Markov chain Xn := (X1
n, X

2
n) with two

independent coordinates is strong Markov. Let

τ := inf(n ≥ 0 : X1
n = X2

n).

We have seen that P(τ < ∞) = 1. More than that, from Markov property it follows
for any n by induction (with a random variable called indicator, 1(A)(ω) = 1 if
ω ∈ A and 1(A)(ω) = 0 if ω /∈ A),

P(τ > n) = E1(τ > n) = E

n∏

k=1

1(τ > k)

= E

(

E(

n∏

k=1

1(τ > k)|Fn−1)

)

= E

(
n−1∏

k=1

1(τ > k)E(1(τ > n)|Fn−1)

)

≤ E

n−1∏

k=1

1(τ > k)(1 − κ0) = (1 − κ0)E

n−1∏

k=1

1(τ > k) ≤ (induction). . . ≤ (1 − κ0)
n.

(24)

Define
X3
n := X1

n1(n < τ ) + X2
n1(n ≥ τ ).

Due to the strong Markov property, (X3) is also aMarkov chain and it is equivalent
to (X1)—that is, they both have the same distribution in the space of trajectories.
This follows from the fact that at τ which is a stopping time the process follows X3,
so that it uses the same transition probabilities while choosing the next state at τ + 1
and further.

Now, here is the most standard and most frequent calculus in most of works
on coupling method, or where this method is used (recall that all the processes
X1, X2, X3 are defined on the same probability space): for any A ∈ S,
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|P(X1
n ∈ A) − P(X2

n ∈ A)| = |P(X3
n ∈ A) − P(X2

n ∈ A)|

= |E1(X1
n ∈ A) − E1(X2

n ∈ A)| = |E(1(X3
n ∈ A) − 1(X2

n ∈ A))|

= |E(1(X3
n ∈ A) − 1(X2

n ∈ A))1(τ > n) + E(1(X3
n ∈ A) − 1(X2

n ∈ A))1(τ ≤ n)|

(∗)= |E(1(X3
n ∈ A) − 1(X2

n ∈ A))1(τ > n)| ≤ |E(1(X3
n ∈ A) − 1(X2

n ∈ A))1(τ > n)|

≤ E|1(X3
n ∈ A) − 1(X2

n ∈ A)|1(τ > n) ≤ E1(τ > n) = P(τ > n)
(24)≤ (1 − κ0)

n .

Note that the final bound is uniform in A. Here the equality (*) is due to the trivial fact
that since n ≥ τ , the values of X3

n and X2
n coincide, so either 1(X3

n ∈ A) = 1(X2
n ∈

A) = 0, or 1(X3
n ∈ A) = 1(X2

n ∈ A) = 1 simultaneously on each ω, which imme-
diately implies that (1(X3

n ∈ A) − 1(X2
n ∈ A))1(τ ≤ n) = 0. So, the Theorem 21 is

proved.

6 A Bit of Large Deviations

In this section, assume
Einv f (X0) = 0.

We will be interested in the existence and properties of the limit,

lim
n→∞

1

n
lnEx exp

(

β

n−1∑

k=0

f (Xk)

)

=: H(β). (25)

Note that we do not use x in the right hand side because in ‘good cases’—as below—
the limit does not depend on the initial state. Denote

Hn(β, x) := 1

n
lnEx exp

(

β

n−1∑

k=0

f (Xk)

)

,

and define the operator T = T β acting on functions on S as follows,

T βh(x) := exp(β f (x))Exh(X1),

for any function h defined on S. Note that
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Ex exp

(

β

n−1∑

k=0

f (Xk)

)

= (T β)nh(x),

with h(x) ≡ 1. Indeed, for n = 1 this coincides with the definition of T β . Further,
for n > 1 due to the Markov property by induction,

Ex exp

(

β

n−1∑

k=0

f (Xk)

)

= ExEx

(

exp

(

β

n−1∑

k=0

f (Xk)

)

|X1

)

= exp(β f (x))ExEx

(

exp

(

β

n−1∑

k=1

f (Xk)

)

|X1

)

= exp(β f (x))Ex (T
β)nh(x) = T β(T β)n−1h(x) = (T β)nh(x),

as required. So, the function Hn can be rewritten as

Hn(β, x) = 1

n
ln(T β)nh(x),

(h(x) ≡ 1). It is an easy exercise to check that the function Hn(β, x) is convex in β.
Hence, if the limit exists, then the limiting function H is also convex. Now recall the
following classical and basic result about positive matrices.

Theorem 22 (Perron–Frobenius) Any positive quadratic matrix (i.e. with all entries
positive) has a positive eigenvalue r called its spectral radius, which is strictly
greater than the moduli of the rest of the spectrum, this eigenvalue is simple, and its
corresponding eigenfunction (eigenvector) has all positive coordinates.

In fact, this result under the specified conditions is due to Perron, while Frobenius
extended it to non-negative matrices. We do not discuss the details of this difference
and how it can be used. Various presentations may be found, in particular, in [20,
25, 38]. As an easy corollary, the Theorem 22 implies the existence of the limit in
(25)—which, as was promised, does not depend on x—with,

H(β) = ln r(β), (26)

where r(β) is the spectral radius of the operator T β , see, for example, [14, Theorem
7.4.2]. (Emphasize that in the proof of this theorem it is important that the eigen-
vector corresponding to the spectral radius is strictly positive, i.e. it has all positive
components.) More than that, in our case it follows from the theorem about analytic
properties of simple eigenvalues that r(β) is analytic, see, e.g. [21]. Therefore, H(β)

is analytic, too. Also, clearly, analytic is Hn as a function of the variable β. Then
it follows from the properties of analytic (or convex) functions that convergence
Hn(β, x) → H(β) implies that also
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H ′
n(0, x) → H ′(0), n → ∞,

where by H ′
n we understand the derivative with respect to β. On the other hand, we

have,

H ′
n(0, x) = ∂

∂β

(
1

n
lnEx exp(β

n−1∑

k=0

f (Xk))

)

|β=0

= 1

n

Ex

(
n−1∑

k=0
f (Xk) exp(β

n−1∑

k=0
f (Xk))

)

Ex exp(β
∑n−1

k=0 f (Xk))
|β=0 = 1

n
Ex

n−1∑

k=0

f (Xk).

So, due to the Law of Large Numbers,

H ′
n(0, x) = 1

n
Ex

n−1∑

k=0

f (Xk) → Einv f (X0) = 0.

Hence,
H ′(0) = Einv f (X0) = 0.

Also, again due to the analyticity,

H ′′
n (0, x) → H ′′(0), n → ∞.

On the other hand, due to (17),

H ′′
n (0) = 1

n
Ex

(
n−1∑

k=0

f (Xk)

)2

→ σ2, n → ∞.

Hence,
H ′′(0) = σ2.

This last assertion will not be used in the sequel.
Let us state it all as a lemma.

Lemma 23 There exists a limit H(β) in (25). This function H is convex and differ-
entiable, and, in particular,

H ′(0) = 0, H ′′(0) = σ2.

Actually, we will not use large deviations (LDs) in these lecture notes, except
for the Lemma 23, which is often regarded as a preliminary auxiliary result in large
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deviation theory. Yet, once the title of the section uses this term, let us state one
simple inequality of LD type. Recall that Einv f (X0) = 0 in this section.

Proposition 24 Let

L(α) := sup
β

(αβ − H(β)), L̃(α) := lim sup
δ→0

L(α + δ). (27)

Then under the assumptions of the Ergodic Theorem 8 for any ε > 0,

lim sup
n→∞

1

n
lnPx

(
1

n

n−1∑

k=0

f (Xk) ≥ ε

)

≤ −L̃(ε). (28)

The function L is called Legendre transformation of the function H . It is convex
and lower semicontinuous; see [37] about this andmore general transformations (e.g.
where H is convex but not necessarily smooth—in which case L is called Fenchel–
Legendre’s transformation). Notice that ‘usually’ in (28) there is a limit instead of
lim sup, and this limit equals the right hand side, and both L̃(ε) = L(ε) > 0; the latter
is certainly true, at least, for small ε > 0 if σ2 > 0. However, this simple result does
not pretend to be even an introduction to large deviations, about which theory see
[5, 7, 13, 14, 17, 36, 42], et al. In the next sections the Proposition 24 will not be
used: all wewill need is the limit in (25) due to the Lemma 23 and some its properties,
which will be specified.

Proof of Proposition 24.We have for any 0 < δ < ε, by Chebyshev–Markov’s expo-
nential inequality with any λ > 0,

Px

(
1

n

n−1∑

k=0

f (Xk) ≥ ε

)

= Px

(

exp

(

λ

n−1∑

k=0

f (Xk)

)

≥ exp(nλε)

)

≤ exp(−nλε)Ex exp

(

λ

n−1∑

k=0

f (Xk)

)
(25)≤ exp(−n(λ(ε − δ) + H(λ))),

if n is large enough. The first and the last terms here with the inequality between
them can be rewritten equivalently as

1

n
lnPx

(
1

n

n−1∑

k=0

f (Xk) ≥ ε

)

≤ −λ(ε − δ) + H(λ),

for n large enough. So, we have,

lim sup
n→∞

1

n
lnPx

(
1

n

n−1∑

k=0

f (Xk) ≥ ε

)

≤ −(λ(ε − δ) − H(λ)).
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Since this is true for any λ > 0, we also get,

lim sup
n→∞

1

n
lnPx

(
1

n

n−1∑

k=0

f (Xk) ≥ ε

)

≤ − sup
λ>0

(λ(ε − δ) − H(λ)),

However, since H(0) = 0 and H ′(0) = 0 and due to the convexity of H , the supre-
mum on all λ ∈ R here on positive ε − δ is attained at λ > 0, i.e.

sup
λ>0

(λ(ε − δ) − H(λ)) = sup
λ∈R

(λ(ε − δ) − H(λ)) ≡ L(ε − δ).

Thus, the left hand side in (28) does not exceed the value − lim sup
δ↓0

L(ε − δ) ≤
−L̃(ε), as required. The Proposition 24 is proved.

7 Dynkin’s Formulae

Let L be a generator of some Markov chain on a finite state space S, that is, for any
function u on S,

Lu := Exu(X1) − u(x) ≡ Pu(x) − u(x). (29)

Recall that here P is the transition probability matrix of the corresponding Markov
chain (Xn), a function u on S is considered as a column-vector, Pu is this matrix
multiplied by this vector, andPu(x) is the x-component of the resulting vector. Note
that such difference operators are discrete analogues of elliptic differential operators
of the second order studied extensively, in particular, in mathematical physics. What
makes them the analogues is that both are generators of Markov processes, either
in discrete or in continuous time; also, it may be argued about limiting procedures
approximating continuous time processes by discrete ones. Yet, the level of this
comparison here is, of course, intuitive and we will not try to justify in any way, or
to explain it further.

As usual in these lecture notes, we will assume that the corresponding process
(Xn) satisfies the Ergodic Theorem 8. The Poisson equation for the operator L from
(29) is as follows:

Lu(x) = − f (x), x ∈ S. (30)

This equation may be studied with or without some boundary and certain boundary
conditions. The goal of this chapter is to present how such equations may be solved
probabilistically. This simple study may be also considered as an introduction to the
Poisson equations for elliptic differential operators. We start with Dynkin’s formula
or Dynkin’s identity.
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Theorem 25 (Dynkin’s formula 1) On the finite state space S, for any function h
and any n = 1, 2, . . .,

Exh(Xn) = h(x) +
n−1∑

k=0

Ex Lh(Xk), n ≥ 0. (31)

Proof 1. For n = 1 the formula (31) reads,

Exh(X1) = h(x) + Lh(x),

where x is a non-random initial value of the process. Hence, by inspection, the desired
identity for n = 1 is equivalent to the definition of the generator in (29).

2. For the general case n, the desired formula follows by induction. Indeed, assume
that the formula (31) holds true for some n = k and check it for n = k + 1.We have,

Exh(Xn+1) = Exh(Xn+1) − Exh(Xn) + Exh(Xn)

= ExEx (h(Xn+1) − h(Xn)|Xn) + Exh(Xn)

= ExEx (Lh(Xn)|Xn) + h(x) +
n−1∑

k=0

Ex Lh(Xk)

= Ex Lh(Xn) + h(x) +
n−1∑

k=0

Ex Lh(Xk) = h(x) +
n∑

k=0

Ex Lh(Xk).

So, the formula (31) for all values of n follows by induction. The Theorem 25 is
proved.

8 Stopping Times and Martingales: Reminder

Definition 26 Filtration (Fn, n = 0, 1, . . .) is a family of increasing sigma-fields
on a probability space (�,F ,P) completed with respect to the measure P (that is,
each Fn contains each subset of all P-zero sets from F). The process (Mn) is called
a martingale with respect to a filtration (Fn) iff EMn < ∞ and E(Mn+1|Fn) = Mn

(a.s.).

Definition 27 A random variable τ < ∞ a.s. with values in Z+ is called a stop-
ping time with respect to a filtration (Fn) iff for each n ∈ Z+ the event (τ > n) is
measurable with respect to Fn .
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It is recommended to read about simple properties of martingales and stopping times
in one of the textbooks on stochastic processes, e.g. [27]. We will only need the
following classical result about stopped martingales given here without proof.

Theorem 28 (Doob) Let (Mn) be a martingale and let τ be a stopping time with
respect to a filtration (Fn). Then (M̃n := Mn∧τ ) is also a martingale.

In terms of martingales, the first Dynkin’s formula may be re-phrased as follows.

Theorem 29 (Dynkin’s formula 2) On the finite state space S, for any function h
and any n = 1, 2, . . ., the process

Mn := h(Xn) − h(x) −
n−1∑

k=0

Lh(Xk), n ≥ 0, (32)

is a martingales with respect to the natural filtration F X
n ‘generated’ by the process

X. Vice versa, if the process Mn from (32) is a martingale then (31) holds true.

Proof The inverse statement is trivial. The main part follows due to the Markov
property,

E(Mn|Fn−1) = E(h(Xn)|Xn−1) − h(x) −
n−1∑

k=0

Lh(Xk)

= Ph(Xn−1) − Lh(Xn−1) − h(x) −
n−2∑

k=0

Lh(Xk)

= h(Xn−1) − h(x) −
n−2∑

k=0

Lh(Xk) = Mn−1.

The Theorem 29 is thus proved.

Lemma 30 (Dynkin’s formula 3) Let τ be a stopping time with

Exτ < ∞, ∀ x ∈ S.

Then for any function h on S,

Exh(Xτ ) = h(x) + Ex

τ−1∑

k=0

Lh(Xk).

Proof Follows straightforward from the Theorem 29.
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9 Poisson Equation Without a Potential

9.1 Introduction

Here we consider the following discrete Poisson equation without a potential,

Lu(x) ≡ Pu(x) − u(x) = − f (x). (33)

In the next section a similar discrete equation with a potential c = c(x), x ∈ S, will
be studied,

Lcu(x) := exp(−c(x))Pu(x) − u(x) = − f (x), (34)

firstly because it is natural for PDEs—and here we present an easier but similar
discrete-time theory—and secondly with a hope that it may be also useful for some
further extensions, as it already happened with equations without a potential. Let μ
be, as usual, the (unique) invariant probability measure of the process (Xn, n ≥ 0).

9.2 Poisson Equation (33) with a Boundary

Firstly, we consider Poisson equation with a non-empty boundary,

Lu(x) = − f (x), x ∈ S \ �, u(x) = g(x), x ∈ �, (35)

where � ⊂ S, � 
= ∅. If the right hand side equals zero, this equation is called the
Laplace equation with Dirichlet boundary conditions:

Lu(x) = 0, x ∈ S \ �, u(x) = g(x), x ∈ �. (36)

Let
τ := inf(n ≥ 0 : Xn ∈ �),

and denote

v(x) := Ex

(
τ−1∑

k=0

f (Xk) + g(Xτ )

)

. (37)

Recall that under our assumptions on the process, necessarily Exτ < ∞.

For the uniqueness, we would need a maximum principle, which holds true for
the Laplace equation (recall that we always assume min

i, j
pi j > 0):
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Lemma 31 (Maximum principle) If the function u satisfies the Eq. (36), then the
maximal value (as well as minimal) of this function is necessarily attained at the
boundary �.

Proof Since Lu(x) = 0 for any x /∈ �, we have

u(x) = Pu(x), (38)

for such x . In other words, the value u(x) is equal to the average of the values u(y)
at all other y ∈ S with some positive weights, due to the assumption min

i j
pi j > 0.

However, if a maximal value, say, M , is attained by u not at the boundary, say,
u(x0) = M , x0 /∈ �, and if at least one value on � (or, actually, anywhere else) is
strictly less than M , then we get a contradiction, as the equality

∑

y∈S
pxyv(y) = M

with all v(y) ≤ M and with at least one v(y) < M is impossible. Similar arguments
apply to the minimal value of u. This proves the Lemma 31.

Theorem 32 The function v(x) given by the formula (37) is a unique solution of the
Poisson equation (35).

Proof 1. The boundary condition v(x) = g(x) on x ∈ � is trivial because τ = 0 in
this case.
2. Let x /∈ �. Then τ ≥ 1. We have, due to the Markov property,

v(x) = f (x) +
∑

y

Ex1(X1 = y)Ey

(
τ−1∑

k=0

f (Xk) + g(Xτ )

)

= f (x) +
∑

y

pxyv(y) = f (x) + Exv(X1).

From this, it follows clearly the statement about solving the equation,

Lv(x) = Exv(X1) − v(x) = − f (x).

3. Uniqueness follows from the maximum principle. Indeed, let v1 and v2 be two
solutions. Then

u(x) := v1(x) − v2(x) = 0, ∀ x ∈ �.

Also, at any x /∈ �,
Lu(x) = Lv1(x) − Lv2(x) = 0.

Hence, by virtue of the Lemma 31, both maximal and minimal values of the function
u are attained at the boundary �. However, at the boundary both these values are
equal to zero. Therefore,

u(x) = 0, ∀ x ∈ S,
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that is, v1 − v2 ≡ 0, as required. This completes the proof of the Theorem 32.

9.3 Poisson Equation (33) without a Boundary

Consider the equation on the whole S,

Lu(x) = − f (x), x ∈ S. (39)

We will need an additional assumption on f called ‘centering’. This condition is a
close analogue of the subtraction in the standardization for a CLT.

Assumption 33 (Centering) It is assumed that the function f satisfies the condition,

Einv f (X0) ≡
∑

x

f (x)μ(x) = 0, (40)

where μ is the (unique) invariant measure of the process X .

Theorem 34 Under the assumption (40), the Eq. (39) has a solution u, which is
unique up to an additive constant. This solution is given by the formula

u(x) =
∞∑

k=0

Ex f (Xk). (41)

The solution u from (41) itself satisfies the centering condition,

∑
u(x)μ(x) = 0. (42)

Note that the ‘educated guess’ about a solution represented by the formula (41)
may be deduced from the comparison with (37) where, so to say, we want to drop the
terminal summand g as there is no boundary and to replace τ by infinity; naturally,
expectation and summation should be interchanged. Also, in the present setting
the idea based on considering the series for (I − P)−1 on centred functions may
be applied. Yet, we would like to avoid this way because in a more general ‘non-
compact’ situation a polynomial convergence of the series in (41) would also suffice,
and, hence, this approach looks more general.

Proof of Theorem 34. 1. Convergence. Follows straightforward from the Corollary
9. This shows that the function u(x) defined in (41) is everywhere finite.
2. Satisfying the equation. From the Markov property,
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u(x) = f (x) +
∑

y

Ex1(X1 = y)Ey

∞∑

k=0

f (Xk)

= f (x) +
∑

y

pxyv(y) = f (x) + Exu(X1).

From this, it follows clearly the statement,

Lu(x) = Exu(X1) − u(x) = − f (x).

3. Uniqueness. Let u1 and u2 be two solutions both satisfying the moderate growth
and centering. Denote v = u1 − u2. Then

Lv = 0.

By virtue of Dynkin’s formula (31),

Ev(Xn) − v(x) = 0.

However, due to the Corollary 9,

Exv(Xn) → Einvv(X0) = 0.

Hence,
v(x) ≡ 0,

as required.
4. Centering. We have, due to a good convergence—see the Corollary 9—and
Fubini’s theorem, and sincemeasureμ is stationary, andfinally because f is centered,

∑

x

u(x)μ(x) =
∑

x

μ(x)
∞∑

k=0

Ex f (Xk)

=
∞∑

k=0

∑

x

μ(x)Ex f (Xk) =
∞∑

k=0

Einv f (Xk) = 0.

The Theorem 34 is proved.

10 Poisson Equation with a Potential

Let us remind the reader that the case |S| < ∞ is under consideration.
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10.1 Equation (34)

Recall the Eq. (34),

exp(−c(x))Pu(x) − u(x) = − f (x).

A natural candidate for the solution is the function

u(x) :=
∞∑

n=0

Ex exp

(

−
n−1∑

k=0

c(Xk)

)

f (Xk), (43)

provided that this expression is well-defined. Naturally on our finite state space S
both f and c bounded. Denote

ϕn :=
n∑

k=0

c(Xk), ϕ−1 = 0,

and
Lc := exp(−c(x))P − I,

that is,
Lcu(x) := exp(−c(x))Pu(x) − u(x).

We can tackle several cases, and the most interesting one in our view is where c(x) =
εc1(x), ε > 0 small and c̄1 :=

∑

x

c1(x)μ(x) > 0. Denote also c̄ = ∑

x
c(x)μ(x).

10.2 Further Dynkin’s Formulae

Lemma 35 (Dynkin’s formula 4)

Ex exp(−ϕn−1) h(Xn) = h(x) +
n−1∑

k=0

Ex exp(−ϕk−1)L
ch(Xk). (44)

In other words, the process

Mn := exp(−ϕn−1) h(Xn) − h(x) −
n−1∑

k=0

exp(−ϕk−1)L
ch(Xk), n ≥ 0, (45)

is a martingale.
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Proof Let the initial state x be fixed. Let us check the base, n = 0. Note that ϕ0 =
c(x), ϕ−1 = 0, and Lch(x) = exp(−ϕ0)Ph(x) − h(x). So, for n = 0 the formula
(44) reads,

h(x) = h(x) +
−1∑

k=0

Ex L
ch(Xk),

which is true due to the standard convention that
−1∑

k=0
· · · = 0.

Let us check the first step, n = 1:

Ex exp(−c(x)) h(X1) = h(x) +
0∑

k=0

Ex exp(−ϕ−1)L
ch(Xk) ≡ h(x)

+ exp(−c(x))Ph(x) − h(x),

or, equivalently,

Ex exp(−c(x)) h(X1) = exp(−c(x))Ph(x),

which is also true.
The induction stepwith a general n ≥ 1 follows similarly, using theMarkov property.
Indeed, assume that the formula (44) is true for some n ≥ 0. Then, for n + 1we have,

Ex exp(−ϕn) h(Xn+1) − h(x) −
n∑

k=0

Ex exp(−ϕk−1)L
ch(Xk)

= Ex exp(−ϕn) h(Xn+1) − Ex exp(−ϕn−1) h(Xn) + Ex exp(−ϕn−1) h(Xn)

−h(x) −
n−1∑

k=0

Ex exp(−ϕk−1)L
ch(Xk) − Ex exp(−ϕn−1)L

ch(Xn)

= Ex exp(−ϕn) h(Xn+1) − Ex exp(−ϕn−1) h(Xn) − Ex exp(−ϕn−1)L
ch(Xn)

= Ex
[
Ex

(
exp(−ϕn) h(Xn+1) − exp(−ϕn−1) h(Xn) − exp(−ϕn−1)L

ch(Xn)|Fn
)]

= Ex exp(−ϕn−1)
[
Ex

(
exp(−c(Xn)) h(Xn+1) − h(Xn) − Lch(Xn)|Xn

)] = 0,

by definition of Lc. This completes the induction step, so the Lemma 44 is proved.

Lemma 36 (Dynkin’s formula 5) Let τ be a stopping time with

Exe
ατ < ∞, ∀ x ∈ S,
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for some α > 0. Then for any function h on S and if c = εc1 and ε is small enough,

Exe
−ϕτ−1h(Xτ ) = h(x) + Ex

τ−1∑

k=0

e−ϕk−1Lch(Xk).

Recall that for an irreducible Markov chain with values in a finite state space
any hitting time has some finite exponential moment. This will be used in the next
subsection.

Proof We conclude from (44), or (45), due to Doob’s theorem about stopped mar-
tingales,

Exe
−ϕ(τ−1)∧n h(Xτ∧n) = h(x) + Ex

(τ−1)∧n∑

k=0

e−ϕk−1Lch(Xk).

Now if ε is small enough, then we may pass to the limit as n → ∞, due to the
Lebesgue theorem about a limit under the uniform integrability condition. We have,

Exe
−ϕ(τ−1)∧n h(Xτ∧n) → Exe

−ϕτ−1h(Xτ ),

and

h(x) + Ex

(τ−1)∧n∑

k=0

e−ϕk−1Lch(Xk) → h(x) + Ex

τ−1∑

k=0

e−ϕk−1Lch(Xk), n → ∞,

as required. The Lemma 36 is proved.

10.3 Poisson Equation with a Potential with a Boundary

Recall the equation with the boundary:

exp(−c(x))Pu(x) − u(x) = − f (x), x ∈ S \ �, u(x) = g(x), x ∈ �, (46)

with a boundary � 
= ∅. The natural candidate for the solution is the function

u(x) := Ex

(
τ−1∑

n=0

exp (−ϕn−1) f (Xn) + exp (−ϕτ−1) g(Xτ )

)

, (47)

τ = inf(n ≥ 0 : Xn ∈ �). If x ∈ �, then τ = 0, andwe agree that the term
−1∑

k=0
equals

zero.
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Theorem 37 If the expectation in (47) is finite then the function u(x) is a unique
solution of the equation (46).

Recall that τ does have some exponential moment, so if c = εc1 as in the statement
of the Lemma 36, and if ε is small enough, then the expression in (47), indeed,
converges.

The proof of the Theorem 37 can be established similarly to the proof of the Theorem
32. Firstly, if x ∈ �, then clearly τ = 0, so that u(x) = g(x). Secondly, if x /∈ �, then
clearly τ ≥ 1. Then, due to the Markov property and by splitting the sum, i.e. taking

a sum
τ−1∑

k=1
and separately considering the term corresponding to n = 0 which is just

f (x), we have,

u(x) = f (x) + Ex

⎛

⎝
τ−1∑

n=1

exp

⎛

⎝−
n−1∑

k=0

c(Xk )

⎞

⎠ f (Xk ) + exp

⎛

⎝−
τ−1∑

k=0

c(Xk )

⎞

⎠ g(Xτ )

⎞

⎠

= f (x) + ExEx

⎡

⎣
τ−1∑

n=1

exp

⎛

⎝−
n−1∑

k=0

c(Xk )

⎞

⎠ f (Xk ) + exp

⎛

⎝−
τ−1∑

k=0

c(Xk )

⎞

⎠ g(Xτ )|X1

⎤

⎦

= f (x) + Ex exp(−c(x))EX1

⎛

⎝
τ−1∑

n=0

exp

⎛

⎝−
n−1∑

k=0

c(Xk )

⎞

⎠ f (Xk ) + exp

⎛

⎝−
τ−1∑

k=0

c(Xk )

⎞

⎠ g(Xτ )

⎞

⎠

= f (x) + exp(−c(x))Ex u(X1) = f (x) + exp(−c(x))Pu(x),

which shows exactly the Eq. (46), as required. The Theorem 37 is proved.

10.4 Poisson Equation with a Potential Without a Boundary

Recall the Eq. (34):

exp(−c(x))Pu(x) − u(x) = − f (x),

and the natural candidate for the solution ‘in the whole space’ is the function

u(x) :=
∞∑

n=0

Ex exp

(

−
n−1∑

k=0

c(Xk)

)

f (Xk), (48)

The main question here is the question of convergence. As was mentioned earlier, we
are interested in the following case: c(x) = εc1(x), ε > 0 small, and

∑
c1(x)μ(x) >

0, where μ is the unique invariant measure of the Markov chain X .
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10.5 Convergence

The first goal is to justify that u is well-defined. Recall that we want to show conver-
gence of the series,

u(x) =
∞∑

n=0

Ex exp

(

−
n−1∑

k=0

c(Xk)

)

f (Xn),

with c(x) = εc1(x), c̄1 = ∑
c1(x)μ(x) > 0, with ε > 0 small. Denote

Hn(β, x) := n−1 lnEx exp

(

β

n−1∑

k=0

c1(Xk)

)

, β ∈ R
1,

or, equivalently,

Ex exp

(

β

n−1∑

k=0

c1(Xk)

)

= Ex exp(n Hn(β, x)).

(Note that this notation just slightly differs fromhow the function Hn—and in the next
formula also H—was defined in the Sect. 6: now it is constructed via the ‘additive
functional’ related to another function c1. Yet, the meaning is similar, so that there
is no need to change this standard notation.) Let

H(β) := lim
T→∞ HT (β, x), β ∈ R

1.

As we have seen in the Sect. 6, this limit does exist for all values of β. (The fact that
in the Sect. 6 this was shown for another function and under the centering condition
for that function is of no importance because the average may be always subtracted.)

Also, it may be proved—left as an exercise to the reader (here some Lemma from
[25] about estimating the spectral radius may be useful)—that if δ > 0 then there
exists n(δ) such that uniformly in x

sup
|β|≤B

|H(β) − Hn(β, x)| ≤ δ, n ≥ n(δ). (49)

Unlike in the Sect. 6 where it was assumed that f̄ = 0, here we compute,

H ′
n(0, x) = n−1

Ex

n−1∑

k=0

c1(Xk),

where, as usual, the notation H ′
n(0, x) stands for ∂H ′

n(β, x)/∂β|β=0. Now, due to
the Corollary 9 it follows,
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lim
n→∞ n−1

Ex

n−1∑

k=0

c1(Xk) = c̄1 = 〈c1,μ〉 > 0.

This means that in our case
H ′(0) = c̄1 > 0,

and that, at least, in some neighbourhood of zero,

H(β) > 0, β > 0, & H(β) < 0, β < 0. (50)

Now, convergence of the sum defining u for each x for ε > 0 small enough and
uniformly in x—recall that |S| < ∞—follows from (50). Indeed, choose ε > 0
so that H(−ε) < 0 and for a fixed δ = −H(−ε)/2 also choose n0 such that
|Hn(−ε, x) − H(−ε)| < δ, for all n ≥ n0 and any x . We estimate, for ε small and
any x (and with ε independent of x),

|u(x)| ≤ ‖ f ‖B

∞∑

n=0

Ex exp

(

−ε

n−1∑

k=0

c1(Xk)

)

= ‖ f ‖B

∞∑

n=0

exp(nHn(−ε, x))

≤ ‖ f ‖B

∞∑

n=0

exp(n(H(−ε) + δ)) ≤ ‖ f ‖B exp(δ)
∞∑

n=0

exp(nH(−ε)) < ∞.

10.6 u Solves the Equation

Let us argue why the function u solves the Poisson equation (34). By the Markov
property,

u(x) = f (x) + exp(−c(x))
∑

y

Ex1(X1 = y)Ey

∞∑

k=0

exp(−ϕk−1) f (Xk)

= f (x) + exp(−c(x))
∑

y

pxyv(y) = f (x) + exp(−c(x))Exu(X1).

From this, it follows clearly that, as required,

Lcu(x) = exp(−c(x))Exu(X1) − u(x) = − f (x).
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10.7 Uniqueness of Solution

Uniqueness may be shown in a standard manner. For the difference of two solutions
v = u1 − u2 we have Lcv = 0. Therefore, we get,

v(x) = exp(−c(x))Exv(X1).

After iterating this formula by induction n times, we obtain,

v(x) = Ex exp

(

−
n−1∑

k=0

c(Xk)

)

v(Xn).

Recall that the function v is necessarily bounded on a finite state space S. Hence, it
follows that v(x) ≡ 0. Indeed, we estimate,

|v(x)| = |Ex exp

(

−
n−1∑

k=0

c(Xk)

)

v(Xn)| ≤ CEx exp

(

−
n−1∑

k=0

c(Xk)

)

.

Hence, we get, for any n ≥ 0,

|v(x)| ≤ CEx exp

(

−ε

n−1∑

k=0

c1(Xk)

)

= C exp(nHn(−ε, x)). (51)

Recall thatHn(β, x) → H (β), n → ∞, and thatH (−ε) < 0 for ε > 0 small enough.
So, the right hand side in (51) converges to zero exponentially fast with n → ∞.
Since the left hand side does not depend on n, we get |v(x)| = 0, i.e. u1 ≡ u2, as
required.

11 Ergodic Theorem, General Case

Now let us consider a more general construction on a more general state space. It
is assumed that

κ := inf
x,x ′

∫ (
Px ′(1, dy)

Px (1, dy)
∧ 1

)
Px (1, dy) > 0. (52)

Note that here
Px ′(1, dy)

Px (1, dy)
is understood in the sense of the density of the absolute

continuous components. For brevity we will be using a simplified notation Px (dz)
for Px (1, dz). Another slightly less general condition will be accepted in the next
section but it is convenient to introduce it here: suppose that there exists a measure
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� with respect to which each measure Px (1, dz) for any x is absolutely continuous,

Px (1, dz) << �(dz), ∀ x ∈ S. (53)

Under the assumption (53)wehave another representationof the constantκ from (52).

Lemma 38 Under the assumption (53), we have the following representation for
the constant from (52),

κ = inf
x,x ′

∫ (
Px ′(1, dy)

�(dy)
∧ Px (1, dy)

�(dy)

)
�(dy). (54)

Proof Firstly, note that clearly the right hand side in (38) does not depend on any
particularmeasure�, i.e. for any othermeasurewith respect towhich both Px ′(1, dy)
and Px (1, dy) are absolutely continuous the formula (52) gives the same result.
Indeed, it follows straightforward from the fact that if, say, d� << d�̃ and d� =
f d�̃, then we get,

∫ (
Px ′(1, dy)

�(dy)
∧ Px (1, dy)

�(dy)

)
�(dy)

=
∫ (

Px ′(1, dy)

f �̃(dy)
∧ Px (1, dy)

f �̃(dy)

)
f (y)1( f (y) > 0)�̃(dy)

=
∫ (

Px ′(1, dy)

�̃(dy)
∧ Px (1, dy)

�̃(dy)

)
1( f (y) > 0)�̃(dy).

However, Px ′(1, dy) << �(dy) = f (y)�̃(dy), so for any measurable A we have∫
A Px ′(1, dy)1( f (y) = 0) = 0 and the same for Px (1, dy), which means that, actu-

ally,

∫ (
Px ′(1, dy)

�̃(dy)
∧ Px (1, dy)

�̃(dy)

)
1( f (y) > 0)�̃(dy)

=
∫ (

Px ′(1, dy)

�̃(dy)
∧ Px (1, dy)

�̃(dy)

)
�̃(dy).

Respectively, if there are two reference measure � and, say, �′, then we may take
�̃ = � + �′, and the coefficients computed by using each of the two—� and �′—
will be represented via �̃ in the same way.

Secondly, let fx (y) = Px (1, dy)

�(dy)
(y). Then,
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κ = inf
x,x ′

∫ (
Px ′(1, dy)

Px (1, dy)
∧ Px (1, dy)

Px (1, dy)

)
Px (1, dy)

= inf
x,x ′

∫ (
Px ′(1, dy)

fx (y)�(dy)
∧ Px (1, dy)

fx (y)�(dy)

)
fx (y)�(dy)

= inf
x,x ′

∫ (
Px ′(1, dy)

�(dy)
∧ Px (1, dy)

�(dy)

)
�(dy),

as required. The Lemma 38 is proved.

Denote

κ(x, x ′) :=
∫ (

Px ′(1, dy)

Px (1, dy)
∧ 1

)
Px (1, dy)

Clearly, for any x, x ′ ∈ S,
κ(x, x ′) ≥ κ. (55)

Lemma 39 For any x, x ′ ∈ S,

κ(x, x ′) = κ(x ′, x).

Proof Under the more restrictive assumption (54) we have,

κ(x ′, x) =
∫ (

Px ′(1, dy)

Px (1, dy)
∧ 1

)
Px (dy) =

∫ (
Px ′(1, dy)

�(dy)
∧ Px (1, dy)

�(dy)

)
�(dy),

which expression is, apparently, symmetric with respect to x and x ′, as required.
Without assuming (54) we can argue as follows. Denote �x,x ′(dz) = Px (1, dz) +
Px ′(1, dz). Note that by definition, �x,x ′ = �x ′,x . Then we have,

κ(x ′, x) =
∫ (

Px ′(1, dy)

Px (1, dy)
∧ 1

)
Px (1, dy)

=
∫ (

Px ′(1, dy)

Px (1, dy)
∧ 1

)
Px (1, dy)

�x,x ′(dy)
�x,x ′(dy)

=
∫ (

Px ′(1, dy)

�x,x ′(dy)
∧ Px (1, dy)

�x,x ′(dy)

)
�x,x ′(dy). (56)

The latter expression is symmetric with respect to x and x ′, which proves the
Lemma 39.

Definition 40 If an MC (Xn) satisfies the condition (52)—we call it MD-condition
in the sequel—then we call this process Markov–Dobrushin’s or MD-process.

This condition in an easier situation of finite chains was introduced by Markov
himself [30]; later on, for non-homogeneous Markov processes its analogue was
suggested and used by Dobrushin [8]. So, we call it Markov–Dobrushin’s condition,
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as already suggested earlier by Seneta. Note that in all cases κ ≤ 1. The case κ = 1
corresponds to the i.i.d. sequence (Xn). In the opposite extreme situation where
the transition kernels are singular for different x and x ′, we have κ = 0. The MD-
condition (52)—as well as (54)—is most useful because it provides an effective
quantitative upper bound for convergence rate of aMarkov chain towards its (unique)
invariant measure in total variation metric.

Theorem 41 Let the assumption (52) hold true. Then the process (Xn) is ergodic,
i.e. there exists a limiting probability measure μ, which is stationary and such that
(1) holds true. Moreover, the uniform bound is satisfied for every n,

sup
x

sup
A∈S

|Px (n, A) − μ(A)| ≤ (1 − κ)n. (57)

Recall that the total variation distance or metric between two probability measures
may be defined as

‖μ − ν‖T V := 2 sup
A

(μ(A) − ν(A)).

Hence, the inequality (57) may be rewritten as

sup
x

‖Px (n, ·) − μ(·)‖T V ≤ 2(1 − κ)n, (58)

Proof 1. Denote for any measurable A ∈ S,

M (n)(A) := sup
x

Px (n, A), m(n)(A) := inf
x

Px (n, A).

Due to the Chapman–Kolmogorov equation we have,

m(n+1)(A) = inf
x

Px (n + 1, A) = inf
x

∫
Px (dz)Pz(n, A)

≥ inf
x

∫
Px (dz)m

(n)(A) = m(n)(A).

So, the sequence (m(n)(A))does not decrease. Similarly, (M (n)(A))does not increase.
We are going to show the estimate

(0 ≤) M (n)(A) − m(n)(A) ≤ (1 − κ)n. (59)

In particular, it follows that for any x, y ∈ S we have,

|Px (n, A) − Py(n, A)| ≤ (1 − κ)n. (60)

More than that, by virtue of (59) and due to the monotonicity (M (n)(A) decreases,
while m(n)(A) increases) both sequences M (n)(A) and m(n)(A) have limits, which
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limits coincide and are uniform in A:

lim
n→∞ M (n)(A) = lim

n→∞m(n)(A) =: m(A), (61)

and
sup
A

|M (n)(A) − m(A)| ∨ sup
A

|m(n)(A) − m(A)| ≤ (1 − κ)n. (62)

2. Let x, x ′ ∈ S, and let �x,x ′ be some reference measure for both Px (1, dz) and
Px ′(1, dz). Again by virtue of Chapman–Kolmogorov’s equation we have for any
n > 1 (recall that we accept the notations, a+ = a ∨ 0 ≡ max(a, 0), and a− = a ∧
0 ≡ min(a, 0)),

Px (n, A) − Px ′(n, A) =
∫

[Px (1, dz) − Px ′(1, dz)]Pz(n − 1, A)

=
∫ (

Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)
�x,x ′(dz) Pz(n − 1, A)

=
∫ (

Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

+
�x,x ′(dz) Pz(n − 1, A)

+
∫ (

Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

−
�x,x ′(dz) Pz(n − 1, A). (63)

Further, we have,

∫ (
Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

+
�x,x ′(dz) Pz(n − 1, A)

≤
∫ (

Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

+
�x,x ′(dz) M (n−1)(A),

and similarly,

∫ (
Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

−
�x,x ′(dz) Pz(n − 1, A)

≤
∫ (

Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

−
�x,x ′(dz)m(n−1)(A),

On the other hand,
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∫ (
Px (1, dz)

�x,x ′ (dz)
− Px ′(1, dz)

�x,x ′ (dz)

)

+
�x,x ′ (dz) +

∫ (
Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′ (dz)

)

−
�x,x ′ (dz)

=
∫ (

Px (1, dz)

�x,x ′ (dz)
− Px ′(1, dz)

�x,x ′(dz)

)
�x,x ′ (dz) = 1 − 1 = 0.

Thus, we get,

M (n)(A) − m(n)(A) = sup
x

Px (n, A) − inf
x ′ Px ′(n, A)

≤ sup
x,x ′

∫ (
Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

+
�x,x ′(dz) (M (n−1)(A) − m(n)(A)).

It remains to notice that (recall that (a − b)+ = a − a ∧ b ≡ a − min(a, b))

∫ (
Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

+
�x,x ′(dz)

=
∫ (

Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)
∧ Px (1, dz)

�x,x ′(dz)

)
�x,x ′(dz) = 1 − κ(x, x ′) ≤ 1 − κ.

Now the bound (59) follows by induction.
3. Let us establish the existence of at least one stationary distribution. For any x ∈ S
and any measurable A,

m(n)(A) ≤ Px (n, A) ≤ M (n)(A). (64)

Due to (61) and (62), (Px (n, A)) is aCauchy sequencewhich converges exponentially
fast and uniformly with respect to A. Denote

q(A) := lim
n→∞ Px (n, A). (65)

Clearly, due to this uniform convergence, q(·) ≥ 0, q(S) = 1, and the function q is
additive in A. More than that, by virtue of the same uniform convergence in A in
(65), the function q(·) is also ‘continuous at zero’, i.e. it is, actually, a sigma-additive
measure. More than that, the uniform convergence implies that

‖Px (n, ·) − q(·)‖T V → 0, n → ∞. (66)

4. Now, let us show stationarity. We have,

q(A) = lim
n→∞ Px0(n, A) = lim

n→∞

∫
Px0(n − 1, dz)Pz(A)

=
∫

q(dz)Pz(A) + lim
n→∞

∫
(Px0(n − 1, dz) − q(dz))Pz(A).
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Here, in fact, the second term equals zero. Indeed,

|
∫

(Px0(n − 1, dz) − q(dz))Pz(A)| ≤
∫

|Px0(n − 1, dz) − q(dz)|Pz(A)

≤
∫

|Px0(n − 1, dz) − q(dz)| = ‖Px0(n − 1, ·) − q(·)‖T V → 0, n → ∞.

Thus, we find that

q(A) =
∫

q(dz)Pz(A),

which is the definition of stationarity. This completes the proof of the Theorem 41.

Corollary 42 For any bounded Borel function f and any 0 ≤ s < t ,

sup
x

|Ex ( f (Xt )|Xs) − Einv f (Xt )| ≡ sup
x

|Ex ( f (Xt ) − Einv f (Xt )|Xs)| ≤ C f (1 − κ)t−s ,

or, equivalently,

sup
x

|Ex ( f (Xt )|F X
s ) − Einv f (Xt )| ≤ C f (1 − κ)t−s,

12 Coupling Method: General Version

This more general version requires a change of probability space so as to construct
coupling. Results themselves in no way pretend to be new: we just suggest a presen-
tation convenient for the author. In particular, all newly arising probability spaces
on each step (i.e. at each time n) are explicitly shown. By ‘general’ we do not mean
that it is the most general possible: this issue is not addressed here. Just it is more
general that in the Sect. 5, and it is more involved because of the more complicated
probability space, and it provides a better constant in the convergence bound. It turns
out that the general version requires a bit of preparation; hence, we start with the
section devoted to a couple of random variables, while the case of Markov chains
will be considered separately in the next section.

The following folklore yet important lemma answers the following question: sup-
pose we have two distributions, which are not singular, and the ‘common area’ equals
some positive constant κ. Is it possible to realize these two distributions on the same
probability space so that the two corresponding random variables coincide exactly
with probability κ?We call one version of this result ‘the lemma about three random
variables’, and another one ‘the lemma about two random variables’.

Lemma 43 (‘Of three random variables’) Let ξ1 and ξ2 be two random variables on
their (without loss of generality different, and they will be made independent after
we take their direct product!) probability spaces (�1,F1,P1) and (�2,F2,P2) and
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with densities p1 and p2 with respect to some reference measure�, correspondingly.
Then, if Markov–Dobrushin’s condition holds true,

κ :=
∫ (

p1(x) ∧ p2(x)
)
�(dx) > 0, (67)

then there exists one more probability space (�,F ,P) and a random variable on it
ξ3 (and ξ2 also lives on (�,F ,P), clearly, with the same distribution) such that

L(ξ3) = L(ξ1), & P(ξ3 = ξ2) = κ. (68)

Here L denotes the distribution of a random variable under consideration. Note
that in the case κ = 1 we have p1 = p2, so we can just assign ξ3 := ξ2, and then
immediately both assertions of (68) hold. Mention that even if κ were equal to zero
(excluded by the assumption (67)), i.e. the two distributions were singular, we could
have posed ξ3 := ξ1, and again both claims in (68) would have been satisfied trivially.
Hence, in the proof below it suffices to assume

0 < κ < 1.

Proof of the Lemma 43. 1: Construction. Let

A1 := {x : p1(x) ≥ p2(x)}, A2 := {x : p1(x) < p2(x)},

We will need two new independent random variables, ζ ∼ U [0, 1] (uniformly dis-
tributed random variable on [0, 1]) and η with the density

pη(x) := p1 − p1 ∧ p2
∫

(p1 − p1 ∧ p2)(y)�(dy)
(x) ≡ p1 − p1 ∧ p2

∫

A1

(p1 − p1 ∧ p2)(y)�(dy)
(x).

Both ζ and η are assumed to be defined on their own probability spaces. Now let
(on the direct product of all these probability spaces, i.e. of the probability spaces
where the random variables ξ1, ξ2, ζ, η are defined)

ξ3 := ξ21(
p1

p1 ∨ p2
(ξ2) ≥ ζ) + η1(

p1

p1 ∨ p2
(ξ2) < ζ).

We shall see that ξ3 admits all the desired properties. Denote

C := {ω : p1

p1 ∨ p2
(ξ2) ≥ ζ}.

Then ξ3 may be rewritten as
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ξ3 = ξ21(C) + η1(C̄). (69)

2: Verification. BelowP is understood as the probability arising on the direct product
of the probability spaces mentioned earlier. Let

c :=
∫

A1

(p1(x) − p2(x))�(dx) ≡
∫

A2

(p2(x) − p1(x))�(dx).

Due to our assumptions we have,

c + κ =
∫

A1

(p1(x) − p2(x))�(dx) +
∫ (

p1(x) ∧ p2(x)
)
�(dx)

=
∫

A1

(p1(x) − p2(x))�(dx) +
∫

A1

(
p1(x) ∧ p2(x)

)
�(dx) +

∫

A2

(
p1(x) ∧ p2(x)

)
�(dx)

=
∫

A1

p1(x)�(dx) +
∫

A2

p1(x)�(dx) =
∫

A1∪A2

p1(x)�(dx) = 1.

So,
c = 1 − κ ∈ (0, 1).

Also,

pη(x) = p1 − p1 ∧ p2

c
(x).

Also notice that

P(C |ξ2) = p1

p1 ∨ p2
(ξ2),

and recall that on C , ξ3 = ξ2, while on its complement C̄ , ξ3 = η. Now, for any
bounded Borel measurable function g we have,
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Eg(ξ3) = Eg(ξ3)1(C) + Eg(ξ3)1(C̄) = Eg(ξ2)1(C) + Eg(η)1(C̄)

= Eg(ξ2)
p1

p1 ∨ p2
(ξ2) + Eg(η)(1 − p1

p1 ∨ p2
(ξ2))

= Eg(ξ2)
p1

p1 ∨ p2
(ξ2) + Eg(η)E(1 − p1

p1 ∨ p2
(ξ2))

=
∫

A1∪A2

g(x)
p1

p1 ∨ p2
(x)p2(x)�(dx) +

∫

(A1)

g(x)pη(x)�(dx)

×
∫

(A2)

(1 − p1

p1 ∨ p2
(y))p2(y)�(dy)

=
∫

A1

g(x)p2(x)�(dx) +
∫

A2

g(x)p1(x)�(dx) +
∫

A1

g(x)
p1 − p2

c
(x)�(dx)

×
∫

A2

(p2 − p1)(y)�(dy)

=
∫

A1∪A2

g(x)p1(x)�(dx) = Eg(ξ1).

Here (A1) in brackets in
∫

(A1)

g(x)pη(x)�(dx) is used with the following meaning:

the integral is originally taken over the whole domain, but integration outside the set
A1 gives zero; hence, only the integral over this domain remains. The established
equality Eg(ξ3) = Eg(ξ1) means that L(ξ3) = L(ξ1), as required.
Finally, from the definition of ξ3 it is straightforward that

P(ξ3 = ξ2) ≥ P(C).

So,

P(ξ3 = ξ2) ≥ P(C) = E
p1

p1 ∨ p2
(ξ2) =

∫
p1

p1 ∨ p2
(x)p2(x)�(dx)

=
∫

A1

p1

p1 ∨ p2
(x)p2(x)�(dx) +

∫

A2

p1

p1 ∨ p2
(x)p2(x)�(dx)

=
∫

A1

p2(x)�(dx) +
∫

A2

p1

p1 ∨ p2
(x)p1(x)�(dx) =

∫
(p1 ∧ p2)�(dx) = κ.



504 A. Veretennikov

Let us argue why, actually,

P(ξ3 = ξ2) = P(C) = κ,

i.e. why the inequality P(ξ3 = ξ2) ≥ P(C) may not be strict. Indeed, P(ξ3 = ξ2) >

P(C) may only occur if P(η1(C̄) = ξ2) > 0 (cf. with (69)), or, equivalently, if

P

(
η1(

p1

p1 ∨ p2
(ξ2) < ζ) = ξ2

)
> 0. However,

ω ∈ C̄ = {ω : p1

p1 ∨ p2
(ξ2) < ζ}.

implies p1(ξ2) < p2(ξ2), that is, ξ2 ∈ A2.But on this set the density of η equals zero.
Hence,P(ξ3 = ξ2) > P(C) is not possible, whichmeans that, in fact, we have proved
that P(ξ3 = ξ2) = P(C) = κ, as required. The Lemma 43 is proved.

Here is another, ‘symmetric’ version of the latter lemma.

Lemma 44 (‘Of two random variables’) Let ξ1 and ξ2 be two random variables
on their (without loss of generality different, which will be made independent after
we take their direct product!) probability spaces (�1,F1,P1) and (�2,F2,P2) and
with densities p1 and p2 with respect to some reference measure�, correspondingly.
Then, if

κ :=
∫ (

p1(x) ∧ p2(x)
)
�(dx) > 0, (70)

then there exists one more probability space (�,F ,P) and two random variables
on it η1, η2 such that

L(η j ) = L(ξ j ), j = 1, 2, & P(η1 = η2) = κ. (71)

Proof of the Lemma 44. 1: Construction. We will need now four new independent
random variables, Bernoulli random variable γ with P(γ = 0) = κ and ζ0,1,2 with
the densities

pζ1(x) := p1 − p1 ∧ p2
∫

(p1 − p1 ∧ p2)(y)�(dy)
(x),

pζ2(x) := p2 − p1 ∧ p2
∫

(p2 − p1 ∧ p2)(y)�(dy)
(x),

pζ0(x) := p1 ∧ p2
∫

(p1 ∧ p2)(y)�(dy)
(x).
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We may assume that they are all defined on their own probability spaces and eventu-
allywe consider the direct product of these probability spaces denoted as (�,F ,P).
As a result, they are all defined on one unique probability space and they are inde-
pendent there. Now, on the same product of all probability spaces just mentioned,
let

η1 := ζ01(γ = 0) + ζ11(γ 
= 0), & η2 := ζ01(γ = 0) + ζ21(γ 
= 0). (72)

We shall see that η1,2 admit all the desired properties claimed in the Lemma.

2: Verification. From (72), clearly,

P(η1 = η2) ≥ P(γ = 0) = κ.

Yet, we already saw earlier (in slightly different terms) that this may be only an
equality, that is, P(η1 = η2) = P(γ = 0) = κ.

Next, since γ, ζ0 and ζ1 are independent on (�,F ,P), for any bounded measurable
function g we have,

Eg(η1) = Eg(η1)1(γ = 0) + Eg(η1)1(γ 
= 0)

= Eg(ζ0)1(γ = 0) + Eg(ζ1)1(γ 
= 0) = Eg(ζ0)E1(γ = 0) + Eg(ζ1)E1(γ 
= 0)

= κ

∫
g(y)pζ0 (y) �(dy) + (1 − κ)

∫
g(y)pζ1 (y) �(dy)

= κ

∫
p1 ∧ p2

∫
(p1 ∧ p2)�(dy)

(x)�(dx) + (1 − κ)

∫
g(x)

p1 − p1 ∧ p2
∫

(p1 − p1 ∧ p2)(y)�(dy)
(x)�(dx)

=
∫

p1 ∧ p2(x)�(dx) +
∫

g(x)(p1 − p1 ∧ p2)(x)�(dx) =
∫

g(y)p1(y) dy = Eg(ξ1).
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For η2 the arguments are similar, so alsoEg(η2) = Eg(ξ2). The Lemma 44 is proved.

Remark 45 Note that the extended probability space in the proof of the Lemma 44
has the form,

(�,F ,P) = (�1,F1,P1) × (�2,F2,P2) × (�γ,Fγ,Pγ) ×
2∏

k=0

(�ζk ,F ζk ,Pζk ).

13 General Coupling Method for Markov Chains

Throughout this section the assumption (54) is assumed. In this section, it is explained
how to apply general coupling method as in the Sect. 12 to Markov chains in general
state spaces (S,S). Various presentations of this method may be found in [19, 29,
33, 40, 43], et al. This section follows the lines from [6], which, in turn, is based on
[43]. Note that in [6] the state space was R1; however, in Rd all formulae remain the
same. Clearly, this may be further extended to more general state spaces, although,
we will not pursue this goal here.

Let us generalize the Lemma 44 to a sequence of random variables and present our
coupling construction for Markov chains based on [43]. Assume that the process has
a transition density p(x, y) with respect to some reference measure � and consider
two versions (X1

n), (X
2
n) of the same Markov process with two initial distributions,

respectively, which also have densities with respect to this � denoted by pX1
0
and

pX2
0
(of course, this does not exclude the case of non-random initial states). Let

κ(u, v) :=
∫

p(u, t) ∧ p(v, t)�(dt), κ = inf
u,v

κ(u, v), (73)

and

κ(0) :=
∫

pX1
0
(t) ∧ pX2

0
(t)�(dt). (74)

It is clear that 0 ≤ κ(u, v) ≤ 1 for all u, v. Note that κ(0) is not the same as κ0 in
the previous sections. We assume that X1

0 and X2
0 have different distributions, so

κ(0) < 1. Otherwise we obviously have X1
n

d= X2
n (equality in distribution) for all n,

and the coupling can be made trivially, for example, by letting X̃1
n = X̃2

n := X1
n .

Let us introduce a new, vector-valued Markov process
(
η1
n, η

2
n, ξn, ζn

)
. If κ0 = 0

then we set
η1
0 := X1

0, η2
0 := X2

0, ξ0 := 0, ζ0 := 1.

Otherwise, if 0 < κ(0) < 1, then we apply the Lemma 44 to the random variables
X1
0 and X2

0 so as to create the random variables η1
0, η2

0, ξ0 and ζ0 (they corre-
spond to η1, η2, ξ, and ζ in the Lemma). Now, assuming that the random variables(
η1
n, η

2
n, ξn, ζn

)
have been determined for some n, let us show how to construct them
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for n + 1. For this aim, we define the transition probability density ϕ with respect to
the same measure � for this (vector-valued) process as follows,

ϕ(x, y) := ϕ1(x, y
1)ϕ2(x, y

2)ϕ3(x, y
3)ϕ4(x, y

4), (75)

where x = (x1, x2, x3, x4), y = (y1, y2, y3, y4), and if 0 < κ(x1, x2) < 1, then

ϕ1(x, u) := p(x1, u) − p(x1, u) ∧ p(x2, u)

1 − κ(x1, x2)
, ϕ2(x, u) := p(x2, u) − p(x1, u) ∧ p(x2, u)

1 − κ(x1, x2)
,

ϕ3(x, u) := 1(x4 = 1)
p(x1, u) ∧ p(x2, u)

κ(x1, x2)
+ 1(x4 = 0)p(x3, u),

ϕ4(x, u) := 1(x4 = 1)
(
δ1(u)(1 − κ(x1, x2)) + δ0(u)κ(x1, x2)

) + 1(x4 = 0)δ0(u), (76)

where δi (u) is the Kronecker symbol, δi (u) = 1(u = i), or, in other words, the delta
measure concentrated at state i . The case x4 = 0 signifies coupling already realized
at the previous step, and u = 0 means successful coupling at the transition. In the
degenerate cases, if κ(x1, x2) = 0 (coupling at the transition is impossible), then we
may set, e.g.

ϕ3(x, u) := 1(x4 = 1)1(0 < u < 1) + 1(x4 = 0)p(x3, u),

and if κ(x1, x2) = 1, then we may set

ϕ1(x, u) = ϕ2(x, u) := 1(0 < u < 1).

In fact, in both degenerate cases κ(x1, x2) = 0 or κ(x1, x2) = 1, the functions
ϕ3(x, u)1(x4 = 1) (or, respectively, ϕ1(x, u) and ϕ2(x, u)) can be defined more
or less arbitrarily, only so as to keep the property of conditional independence of the
four random variables

(
η1
n+1, η

2
n+1, ξn+1, ζn+1

)
given

(
η1
n, η

2
n, ξn, ζn

)
.

Lemma 46 Let the random variables X̃1
n and X̃2

n, for n ∈ Z+ be defined by the
following formulae:

X̃1
n := η1

n1(ζn = 1) + ξn1(ζn = 0), X̃2
n := η2

n1(ζn = 1) + ξn1(ζn = 0).

Then

X̃1
n

d= X1
n, X̃2

n
d= X2

n, for all n ≥ 0.

Moreover,

X̃1
n = X̃2

n, ∀ n ≥ n0(ω) := inf{k ≥ 0 : ζk = 0},
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and

P(X̃1
n 
= X̃2

n) ≤ (1 − κ(0))E
n−1∏

i=0

(1 − κ(η1
i , η

2
i )). (77)

Moreover,
(
X̃1
n

)
n≥0 and

(
X̃2
n

)
n≥0 are both homogeneous Markov processes, and

(
X̃1
n

)
n≥0

d= (
X1
n

)
n≥0 , &

(
X̃2
n

)
n≥0

d= (
X2
n

)
n≥0 . (78)

Informally, the processes η1
n and η2

n represent X
1
n and X2

n , correspondingly, under
condition that the coupling was not successful until time n, while the process ξn
represents both X1

n and X2
n if the coupling does occur no later than at time n. The

process ζn represents the moment of coupling: the event ζn = 0 is equivalent to the
event that coupling occurs no later than at time n. As it follows from (75) and (76),

P(ζn+1 = 0|ζn = 0) = 1,

P(ζn+1 = 0|ζn = 1, η1
n = x1, η2

n = x2) = κ(x1, x2).

Hence, if two processes were coupled at time n, then they remain coupled at time
n + 1, and if they were not coupled, then the coupling occurs with the probability
κ(η1

n, η
2
n). At each time the probability of coupling at the next step is as large as

possible, given the current states.

For the proof of Lemma 46 see [6].

From the last lemma a new version of the exponential bound in the Ergodic The-
orem may be derived. In general, itmay somehow improve the estimate based on the
constant κ from Markov–Dobrushin’s condition (52) or (54). In the remaining para-
graphs we do not pursue the most general situation restricting ourselves again to
a simple setting of |S| < ∞. Introduce the operator V acting on a (bounded con-
tinuous) function h on the space S × S as follows: for x = (x1, x2) ∈ S × S and
Xn := (X̃1

n, X̃
2
n),

Vh(x) := (1 − κ(x1, x2))Ex1,x2h(X1) ≡ exp(ψ(x))Ex1,x2h(X1), (79)

where in the last expression ψ(x) := ln(1 − κ(x1, x2)). The aim is now to find out
whether the geometric bound (1 − κ)n in (5) under the assumption (3) is the optimal
one, or it could be further improved, let under some additional assumptions. Let us
rewrite the estimate (77) as follows:

P(X̃1
n 
= X̃2

n) ≤ (1 − κ(0))V n1(x). (80)
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Note that by definition (79), for the non-negative matrix V its sup-norm ‖V ‖ =
‖V ‖B,B := sup

|h|B≤1
|Vh|B equals sup

x
V 1(x), where |h|B := max

x
|h(x)| and 1 = 1(x)

is considered as a function on S × S identically equal to one. Note that sup
x

V 1(x) =
1 − κ.
Now the well-known inequality (see, for example, [25, §8]) reads,

r(V ) ≤ ‖V ‖ = (1 − κ). (81)

Further, from the Perron–Frobenius Theorem it follows (see, e.g. [14, (7.4.10)]),

lim
n

1

n
ln V n1(x) = ln r(V ). (82)

The assertions (80) and (82) together lead to the following result.

Theorem 47 Let state space S be finite and let theMarkov condition (3) be satisfied.
Then

lim sup
n→∞

1

n
ln ‖Px (n, ·) − μ(·)‖T V ≤ ln r(V ). (83)

In other words, for any ε > 0 and n large enough,

‖Px (n, ·) − μ(·)‖T V ≤ (r(V ) + ε)n, (84)

which is strictly better than (5) if r(V ) < ‖V ‖ = 1 − κ and ε > 0 is chosen small
enough, i.e. so that r(V ) + ε < 1 − κ. It is also likely to be true in more general
cases for compact operators V where r(V ) + ε < 1 − κ. However, the full problem
remains open.
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