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Abstract The paper contains a complete analysis of theGalton–Watsonmodelswith
immigration, including the processes in the random environment, stationary or non-
stationary ones. We also study the branching random walk on Zd with immigration
and prove the existence of the limits for the first two correlation functions.
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1 Introduction

A problem with many single population models of population dynamics involving
processes of birth, death, and migration is that the populations do not attain steady
states or do so only under critical conditions. One solution is to allow immigration,
which can stabilize the population when the birth rate is less than the mortality rate.

Here, we present analysis of severalmodels that incorporate immigration. The first
two are spatial Galton–Watson processes, the first with no migration and the second
with finite Markov chain spatial dynamics (see Sects. 2 and 3 respectively). The third
model allowsmigration onZd (see Sect. 4). The remainingmodels all involve random
environments in some way (see Sect. 5). Two are again Galton–Watson processes,
the first with a random environment based on population size and the second with
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a random environment given by a Markov chain. The last two models have birth,
death, immigration, and migration in a random environment allowing in some way
nonstationarity in both space and time. We study in this paper only first and second
moments. We will return to the complete analysis of the models with immigration
in another publication. It will include a theorem about the existence of steady states
and an analysis of the stability of these states.

2 Spatial Galton–Watson Process with Immigration. No
Migration and No Random Environment

2.1 Moments

Assume that at each site for each particle we have birth of one new particle with rate
β and death of the particle with rate μ. Also, assume that regardless of the number
of particles at the site we have immigration of one new particle with rate k (this
is a simplified version of the process in [1]). Assume that β < μ, for otherwise the
population will grow exponentially. Assume we start with one particle at each site. In
continuous time, for a given site x , x ∈ Zd , we can obtain all moments recursively by
means of theLaplace transformwith respect ton(t, x), where n(t, x) is the population
size at time t at x

ϕt (λ) = E e−λn(t,x) =
∞∑

j=0

P{n(t, x) = j}e−λ j .

Specifically, for the j th moment, m j

m j (t, x) = (−1) j
∂ jϕ

∂λ j
|λ=0. (2.1)

A partial differential equation for ϕt (λ) can be derived using the forward
Kolmogorov equations

n(t + dt, x) = n(t, x) + ξdt (t, x) (2.2)

where the r.v.ξ is defined

ξdt (t, x) =
⎧
⎨

⎩

+1 βn(t, x)dt + kdt
−1 μn(t, x)dt
0 1 − ((β + μ)n(t, x) + k)dt

(2.3)

In other words, our site (x) in a small time interval (dt) can gain a new particle at
rate β for every particle at the site or through immigration with rate k; it can lose a
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particle at rate μ for every particle at the site; or no change at all can happen. Because
our model is homogeneous in space, we can write n(t) for n(t, x). This leads to the
general differential equation

∂ϕt (λ)

∂t
= ϕt (λ)

(
μn(t)eλ − ((β + μ)n(t) + k) + (βn(t) + k)e−λ

)

ϕ0(λ) = e−λ

from which we can calculate the recursive set of differential equations

∂ϕt (λ)( j)

∂t
= ϕt (λ)( j)

(
μn(t)eλ − ((β + μ)n(t) + k) + (βn(t) + k)e−λ

)+

+
j∑

i=1

(
j

i

)
ϕt (λ)( j−i)

(
μn(t)eλ + (−1)i (βn(t) + k)e−λ

)

ϕ0(λ)( j) = (−1) j e−λ

Applying Eq.2.1, we obtain a set of recursive differential equations for the moments

dm j (t)

dt
=

j∑

i=1

(
j

i

) (
(β + (−1)iμ)m j−i+1 + m j−i

)

= j (β − μ)m j + s j (2.4)

m j (0) = 1

where s j denotes a linear expression involving lower order moments and where
we define m0 = 1. For example, the differential equations for the first and second
moments are

dm1(t)

dt
= (β − μ)m1(t) + k

m1(0) = 1

and

dm2(t)

dt
= 2(β − μ)m2(t) + (β + μ + 2k)m1(t) + k

m2(0) = 1

These have the solutions:

m1(t) = k

μ − β
+
(
1 − k

μ − β

)
e−(μ−β)t
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and

m2(t) =k(k + μ)

(μ − β)2
+ μ2 − 2k2 − β2 + kμ − 3kβ

(μ − β)2
e−(μ−β)t+

+ k2 + 2β2 + 3kβ − 2μβ − 2kμ

(μ − β)2
e−2(μ−β)t

Again, given that we have assumed that μ > β, in other words, the birth rate is
not high enough to maintain the population size, as t → ∞

m1(t) −−−→
t→∞

k

μ − β

m2(t) −−−→
t→∞

k(k + μ)

(μ − β)2

and

Var(n(t)) = m2(t) − m2
1(t) −−−→

t→∞
μk

(μ − β)2
.

Moreover, it is clear from Eq.2.4 that all the moments are finite.
In other words, the population size will approach a finite limit, which can be

regulated by controlling the immigration rate k, and this population sizewill be stable,
as indicated by the fact that the limiting variance is finite.Without immigration, i.e., if
k = 0, the population size will decay exponentially. Another possibility, because all
sites are independent and there are no spatial dynamics, is for there to be immigration
at some sites, which therefore reach stable population levels, and not at others, where
the population thus decreases exponentially. Of course, if the birth rate exceeds the
death rate, β > μ, m1(t) increases exponentially and immigration has negligible
effect, as shown by the solution for m1(t).

2.2 Local CLT

Setting λn = nβ + k, μn = nμ, we see that the model given by Eqs. 2.2 and 2.3 is a
particular case of the general random walk on Z1+ = {0, 1, 2, . . .} with generator

Lψ(n) = ψ(n + 1)λn − (λn + μn)ψ(n) + μnψ(n − 1), n � 0 (2.5)

Lψ(0) = kψ(1) − kψ(0) (2.6)

The theory of such chains has interesting connections to the theory of orthogonal
polynomials, the moments problem, and related topics (see [2]). We recall several
facts of this theory.

a. Equation Lψ = 0, x � 1, (i.e., the equation for harmonic functions) has two
linearly independent solutions:
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ψ1(n) ≡ 1

ψ2(n) =
⎧
⎨

⎩

0 n = 0
1 n = 1
1 + μ1

λ1
+ μ1μ2

λ1λ2
+ · · · + μ1μ2···μn−1

λ1λ2···λn−1
n � 2

(2.7)

b. Denoting the adjoint of L by L∗, equation L∗π = 0 (i.e., the equation for the
stationary distribution, which can be infinite) has the positive solution

π(1) = λ0

μ1
π(0) (2.8)

π(2) = λ0λ1

μ1μ2
π(0) (2.9)

· · · (2.10)

π(n) = λ0λ1 · · ·λn−1

μ1μ2 · · · μn
π(0) (2.11)

This random walk is ergodic (i.e., n(t) converges to a statistical equilibrium, a
steady state) if and only if the series 1 + λ0

μ1
· · · + λ0λ1

μ1μ2
+ · · · + λ0λ1···λn−1

μ1μ2···μn
converges.

In our case,

xn = λ0 · · · λn−1

μ1 · · · μn
= k(k + β) · · · (k + (μ − 1))β

μ(2μ) · · · (nμ)
.

If β > μ, then, for n > n0, for some fixed ε > 0, k+(n−1)β
nμ

> 1 + ε, that is, xn ≥
Cn , for C > 1 and n ≥ n1(ε), and so

∑
xn = ∞. In contrast, if β < μ, then, for

some 0 < ε < 1, k+(n−1)β
nμ

< 1 − ε, and xn ≤ qn , for 0 < q < 1 and n > n1(ε); thus,∑
xn < ∞. In this ergodic case, the invariant distribution of the random walk n(t)

is given by the formula

π(n) = 1

S̃

λ0 · · · λn−1

μ1 · · · μn
,

where

S̃ = 1 + k

μ
+ k(β + k)

μ(2μ)
+ · · · + k(k + β) · · · (β(n − 1) + k)

μ(2μ) · · · (nμ)
+ · · · .

Theorem 2.1 (Local Central Limit theorem) Let β < μ. If l = O(k2/3), then, for
the invariant distribution π(n)

π(n0 + l) ∼ e− l2

2σ2√
2πσ2

as k → ∞ (2.12)

where σ2 = μk
(μ−β)2

, n0 ∼ k
μ−β

.
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The proof, which we omit here, makes use of the fact that S̃ is a degenerate

hypergeometric function and so S̃ =
(
1 − β

μ

)− k
β

. If we define an by setting π(n) =
an

S̃
, then, an0 ∼ k

μ−β
, and, setting l = O(k2/3), straightforward computations yield

an0+l ∼ an0e
− l2

2σ2 . Application of Stirling’s formula leads to the result.

2.3 Global Limit Theorems

A functional Law of Large Numbers follows directly from Theorem 3.1 in Kurtz
(1970 [3]). Likewise, a functional Central Limit Theorem follows from Theorems
3.1 and 3.5 in Kurtz (1971 [4]). We state these theorems here, therefore, without
proof.

Write the population size as nk(t), a function of the immigration rate as well as
time. Set n∗

k = k
μ−β

, the limit of the first moment as t → ∞. Define a new stochastic

process for the population size divided by the immigration rate, Zk(t) := nk (t)
k . Set

z∗ = n∗
k
k = 1

μ−β
.

We define the transition function, fk(
nk
k , j) := 1

k p(nk, nk + j). Thus,

fk(z, j) =
⎧
⎨

⎩

βnk+k
k = βz + 1 j = 1

μnk
k = μz j = −1

(not needed) j = 0

Note that fk(z, j) does not, in fact, depend on k and we write simply f (z, j).

Theorem 2.2 (Functional LLN) Suppose lim
k→∞ Zk(0) = z0. Then, as k → ∞, Zk(t)

→ Z(t) uniformly in probability, where Z(t) is a deterministic process, the solution
of

dZ(t)

dt
= F(Z(t)), Z(0) = z0. (2.13)

where
F(z) :=

∑

j

j f (z, j) = (β − μ)z + 1.

This has the solution

Z(t, z) = 1

μ − β
+
(
z0 − 1

μ − β

)
e−(μ−β)t = z∗ + (z0 − z∗)e−(μ−β)t , t ≥ 0.

Next, define Gk(z) :=
∑

j

j2 fk(z, j) = (b + μ)z + 1. This too does not depend

on k and we simply write G(z).
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Theorem 2.3 (Functional CLT) If lim
k→∞

√
k (Zk(0) − z∗) = ζ0, the processes

ζk(t) := √
k(Zk(t) − Z(t))

converge weakly in the space of cadlag functions on any finite time interval [0, T ]
to a Gaussian diffusion ζ(t) with:

(1) initial value ζ(0) = ζ0,
(2) mean

Eζ(s) = ζ0Ls := ζ0e

s∫

0
F ′(Z(u,z0))du

,

(3) variance

Var(ζ(s)) = L2
s

s∫

0

L−2
u G(Z(u, z0))du.

Suppose, moreover, that F(z0) = 0, i.e., z0 = z∗, the equilibrium point. Then,
Z(t) ≡ z0 and ζ(t) is an Ornstein–Uhlenbeck process (OUP) with initial value ζ0,
infinitesimal drift

q := F ′(z0) = β − μ

and infinitesimal variance

a := G(z0) = 2μ

μ − β
.

Thus, ζ(t) is normally distributed with mean

ζ0e
qt = ζ0e

−(μ−β)t

and variance a

−2q

(
1 − e2qt

) = μ

(μ − β)2

(
1 − e−2(μ−β)t

)
.

3 Spatial Galton–Watson Process with Immigration
and Finite Markov Chain Spatial Dynamics

Let X = {x, y, . . .} be a finite set, and define the following parameters.

β(x) is the rate of duplication at x ∈ X .
μ(x) is the rate of annihilation at x ∈ X .
a(x, y) is the rate of transition x → y.
k(x) is the rate of immigration into x ∈ X .
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We define−→n (t) = {n(t, x), x ∈ X}, the population at moment t ≥ 0, with n(t, x)

the occupation number of site x ∈ X . Letting
−→
λ = {λx ≥ 0, x ∈ X}, we write the

Laplace transform of the random vector −→n (t) ∈ R
N , N = Card(X) as u(t,

−→
λ ) =

E e−(
−→
λ ,

−→n (t)).
Now, we derive the differential equation for u(t,

−→
λ ). Denote the σ-algebra of

events before or including t by F≤t . Setting
−→ε (t, dt)) = −→n (t + dt) − −→n (t)

u(t + dt,
−→
λ ) = E e−(

−→
λ ,

−→n (t+dt)) = E e−(
−→
λ ,

−→n (t))E [e−(
−→
λ ,−→ε (t,dt))|F≤t ] (3.1)

The conditional distribution of (
−→
λ ,−→ε ) under F≤t is given by the formulas

(a) P{(−→λ ,−→ε (t, dt)) = λx |F≤t } = n(t, x)β(x)dt + k(x)dt
(the birth of a new offspring at site x or the immigration of a new particle into
x ∈ X )

(b) P{(−→λ ,−→ε ) = λy|F≤t } = n(t, y)μ(y)dt
(the death of a particle at y ∈ X )

(c) P{(−→λ ,−→ε ) = λx − λz|F≤t } = n(t, x)a(x, z)dt; x, z ∈ X, x �= z
(transition of a single particle from x to z. Then, n(t + dt, x) = n(t, x) − 1,
n(t + dt, z) = n(t, z) + 1.)

(d) P{(−→λ ,−→ε ) = 0|F≤t } = 1 −
(
∑

x∈X
n(t, x)β(x)

)
dt −

(
∑

x∈X
k(x)

)
dt

−
⎛

⎝
∑

y∈X
n(t, y)μ(y)

⎞

⎠ dt −
⎛

⎝
∑

x �=z

n(t, x)a(x, z)

⎞

⎠ dt

After substitution of these expressions intoEq.3.1 and elementary transformations
we obtain

∂u(t,
−→
λ )

∂t
=E

∑

x∈X
(e−λx − 1)e−(

−→
λ ,

−→n (t))(β(x)n(t, x) + k(x))+
∑

y∈X
(eλy − 1)e−(

−→
λ ,

−→n (t))μ(y)n(t, y)

+
∑

x,y;x �=y

(eλx−λy − 1)e−(
−→
λ ,

−→n (t))a(x, y)n(t, x)

But

E e−(
−→
λ ,

−→n (t))n(t, x) = −∂u(t,
−→
λ )

∂λx

I.e., finally
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∂u(t,
−→
λ )

∂t
=
∑

x∈X
(e−λx − 1)

(
−∂u(t,

−→
λ )

∂λx
β(x) + u(t,

−→
λ )k(x)

)

+
∑

y∈X
(eλy − 1)μ(y)

(
−∂u(t,

−→
λ )

∂λy

)

+
∑

x,z;x �=z

(eλx−λz − 1)a(x, z)

(
−∂u(t,

−→
λ )

∂λx

)

(3.2)

The initial condition is
u(0,

−→
λ ) = E e−(

−→
λ ,

−→n (0))

(say, u(0,
−→
λ ) = e−(

−→
λ ,1) = e

∑
x∈X λx for n(0, x) = 1).

Differentiation of Eq.3.2 and the substitution of
−→
λ = 0 leads to the equations for

the correlation functions (moments) of the field n(t, x), x ∈ X . Put

m1(t, v) = E n(t, v) = −∂u(t,
−→
λ )

∂λv

|−→
λ =0

, v ∈ X

Then

∂m1(t, v)

∂t
= k(v) + (β(v) − μ(v))m1(t, v) + ∂

∂λv

⎛

⎝
∑

z:z �=v

(eλv−λz − 1)a(v, z)
∂u

∂λv

⎞

⎠ |−→
λ =0

+ ∂

∂λv

⎛

⎝
∑

z:z �=v

(eλz−λv − 1)a(z, v)
∂u

∂λz

⎞

⎠ |−→
λ =0

= k(v) + (β(v) − μ(v)︸ ︷︷ ︸
V (v)

)m1(t, v) +
∑

a(z, v)m1(t, z)

−
⎛

⎝
∑

z:z �=v

a(v, z)

⎞

⎠m1(t, v)

If a(x, z) = a(z, x) then finally

∂m1(t, x)

∂t
= Am1 + Vm1 + k(x), m1(0, x) = n(0, x)

Here, A is the generator of a Markov chain A = [a(x, y)] = A∗.
By differentiating equation (3.2) over the variables λx , x ∈ X , one can get the

equations for the correlation functions

kl1...lm (t, x1, . . . , xm) = E nl1(t, x1) · · · nlm (t, xm)
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Fig. 1 General random walk with reflection at 0

where x1, . . . , xm are different points of X and l1, . . . , lm ≥ 1 are integers. Of course
kl1...lm (t, x1, . . . , xm) = (−1)l1+···+lm ∂l1+···+lm n(t,−→x )

∂l1λx1 ...∂
lm λxm

|−→
λ =0

. The corresponding equations

will be linear. The central point here is that the factors (eλx−λz − 1), (eλy − 1), and

(e−λx − 1) are equal to 0 for
−→
λ = 0. As a result, the higher order (n > l1 + · · · + lm)

correlation functions cannot appear in the equations for {kl1...lm (·), l1 + · · · + lm =
n}.

Consider, for instance, the correlation function (in fact, matrix- valued function)

k2(t, x1, x2) =
[
E n2(t, x1, x1) E n(t, x1) n(t, x2)
E n(t, x1) n(t, x2) E n2(t, x2, x2)

]

The method based on generating functions is typical for the theory of branching
processes. In the case of processes with immigration, another, Markovian approach
gives new results. Let us start from the simplest case, when there is but one site, i.e.,
X = {x}. Then, the process n(t), t ≥ 0 is a random walk with reflection on the half
axis n ≥ 0.

For a general random walk y(t) on the half axis with reflection in continuous
time, we have the following facts. Let the process be given by the generator G =
(g(w, z)), w, z ≥ 0, where aw = g(w,w + 1), w ≥ 0; bw = g(w,w − 1), w > 0;
g(w,w) = −(aw + bw), w > 0; and g(0, 0) = −a0 (see Fig. 1).

The random walk is recurrent iff the series

S = 1 + b1
a1

+ · · · + b1 · · · bn
a1 · · · an + · · · (3.3)

diverges. It is ergodic (positively recurrent) iff the series

S̃ = 1 + a0
b1

+ · · · + a0 · · · an−1

b1 · · · bn + · · · (3.4)

converges. In the ergodic case, the invariant distribution of the random walk y(t) is
given by the formula

π(n) = 1

S̃

a0 · · · an−1

b1 · · · bn (3.5)

(see [5]).
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For our random walk, n(t)

g(0, 0) = −k, a0 = g(0, 1) = k

and, for n ≥ 1

bn = g(n, n − 1) = μn, g(n, n) = −(μn + βn + k), an = g(n, n + 1) = βn + k.

Proposition 3.1 1. If β > μ the process n(t) is transient and the population n(t)
grows exponentially.

2. If β = μ, k > 0 the process is not ergodic but rather it is zero-recurrent for
k
β

≤ 1 and transient for k
β

> 1.
3. If β < μ the process n(t) is ergodic. The invariant distribution for β < μ is given

by

π(n) = 1

S̃

k(k + β) · · · (k + β(n − 1))

μ · 2μ · · · nμ

= 1

S̃

(
β

μ

)n k
β

(
k
β

+ 1
)

· · ·
(

k
β

+ n − 1
)

n!
= 1

S̃

(
β

μ

)n

(1 + α)
(
1 + α

2

)
· · ·
(
1 + α

n

)
, α = k

β
− 1

= 1

S̃

(
β

μ

)n

exp

⎛

⎝
n∑

j=1

ln (1 + α

j
)

⎞

⎠ ∼ 1

S̃

(
β

μ

)n

nα

where S̃ =
∞∑

j=1

k(k + β) · · · (k + β( j − 1))

μ · 2μ · · · jμ .

Proof 1 and 3 follow from Eqs. 3.3–3.5. If β = μ (but k > 0), i.e., in the critical
case, the process cannot be ergodic because, setting α = k

β
− 1, then α > −1 and as

n → ∞ S̃ ∼
∑

n

nα = +∞. The process is zero-recurrent, however, for 0 < k
β

≤ 1.

In fact, for β = μ

b1 · · · bn
a1 · · · an = β · 2β · · · nβ

(k + β) · · · (k + nβ)
= 1

n∏

i=1

(
1 + k

iβ

)  1

nk/β

and the series inEq.3.4 diverges if 0 < k
β

≤ 1. If, however, k > β the series converges
and the process n(t) is transient. �



422 D. Han et al.

Consider, now, the general case of the finite space X . Let N = Card X and −→n (t)
be the vector of the occupation numbers. The process −→n (t), t ≥ 0 is the random
walk on (Z1+)N = {0, 1, ...)N with continuous time. The generator of this random

walk was already described when we calculated the Laplace transform u(t,
−→
λ ) =

E e−(
−→
λ ,

−→n (t)). If at the moment t we have the configuration−→n (t) = {n(t, x), x ∈ X},
then, for the interval (t, t + dt) only the following events (up to terms of order(dt)2)
can happen:

(a) the birth of a new particle at the site x0 ∈ X , with corresponding probability
n(t, x0)β(x0)dt + k(x0)dt . In this case we have the transition

−→n (t) = {n(t, x), x ∈ X} → −→n (t + dt) =
{
n(t, x), x �= x0
n(t, x0) + 1, x = x0

(b) the death of one particle at the site x0 ∈ X . This has corresponding probability
μ(x0)n(t, x0)dt and the transition

−→n (t) = {n(t, x), x ∈ X} → −→n (t + dt) =
{
n(t, x), x �= x0
n(t, x0) − 1, x = x0

(Of course, here n(t, x0) ≥ 1, otherwise μ(x0)n(t, x0)dt = 0).
(c) the transfer of one particle from site x0 to site y0 ∈ X (jump from x0 to y0), i.e.,

the transition

−→n (t) = {n(t, x), x ∈ X} → −→n (t + dt) =
⎧
⎨

⎩

n(t, x), x �= x0, y0
n(t, x0) − 1, x = x0
n(t, y0) + 1, x = y0

with probability n(t, x0)a(x0, y0)dt for n(t, x0) ≥ 1.

The following theorem gives sufficient conditions for the ergodicity of the process−→n (t).

Theorem 3.2 Assume that for some constants δ > 0, A > 0 and any x ∈ X

μ(x) − β(x) ≥ δ, k(x) ≤ A.

Then, the process −→n (t) is an ergodic Markov chain and the invariant measure of

this process has exponential moments, i.e., E e(
−→
λ ,

−→n (t)) ≤ c0 < ∞ if |−→λ | ≤ λ0 for
appropriate (small) λ0 > 0.

Proof We take on (Z1+)N = {0, 1, . . .)N as a Lyapunov function

f (−→n ) = (
−→n ,

−→
1 ) =

∑

x∈X
nx ,

−→n ∈ (Z1
+)N ,
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Fig. 2 Markov model for immigration process

Then, with G the generator of the process, G f (−→n ) ≤ 0 for large enough (
−→n ,

−→
1 ) =

‖−→n ‖1. In fact

G f =
∑

x∈X
((β(x) − μ(x))nx + k(x)) < 0, for large ‖−→n ‖1.

(The terms concerning transitions of the particles between sitesmake no contribution:
1 − 1 = 0.) �

If β(x) ≡ β < μ ≡ μ(x) and k(x) ≡ k then (
−→n ,

−→
1 ), i.e., the total number of the

particles in the phase space X is also a Galton–Watson process with immigration and
the rates of transition shown in Fig. 2.

If t → ∞ this process has a limiting distribution with invariant measure (in which
Nk replaces k). That is

E (
−→n ,

−→
1 ) −−−→

t→∞
Nk

μ − β

4 Branching Process with Migration and Immigration

We now consider our process with birth, death, migration, and immigration on a
countable space, specifically the lattice Zd . As in the other models, we have β > 0,
the rate of duplication at x ∈ Zd ; μ > 0, the rate of death; and k > 0, the rate of
immigration. Here, we add migration of the particles with rate κ > 0 and probability
kernel a(z), z ∈ Z

d , z �= 0, a(z) = a(−z),
∑
z �=0

a(z) = 1. That is, a particle jumps

from site x to x + z with probability κa(z)dt . Here we put κ = 1 to simplify the
notation.

For n(t, x), the number of particles at x at time t , the forward equation for this
process is given by n(t + dt, x) = n(t, x) + ξ(dt, x), where

ξ(dt, x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 w. pr. n(t, x)βdt + kdt + ∑
z �=0

a(z)n(t, x + z)dt

−1 w. pr. n(t, x)(μ + 1)dt
0 w. pr. 1 − (β + μ + 1)n(t, x)dt − ∑

z �=0
a(z)n(t, x + z)dt − kdt

(4.1)
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Note that ξ(dt, x) is independent onF�t (theσ-algebra of events before or includ-
ing t) and

(a) E[ξ(dt, x)|F�t ] = n(t, x)(β − μ − 1)dt + kdt + ∑
z �=0

a(z)n(t, x + z)dt .

(b) E[ξ2(dt, x)|F�t ] = n(t, x)(β + μ + 1)dt + kdt + ∑
z �=0

a(z)n(t, x + z)dt .

(c) E[ξ(dt, x)ξ(dt, y)|F�t ] = a(x − y)n(t, x)dt + a(y − x)n(t, y)dt .
A single particle jumps from x to y or from y to x . Other possibilities have
probability O((dt)2) ≈ 0. Here, of course, x �= y.

d) If x �= y, y �= z, and x �= z, then E[ξ(dt, x)ξ(dt, y)ξ(dt, z)] = 0.
We will not use property (d) in this paper, but it is crucial for the analysis of
moments of order greater or equal to 3.

From here on, we concentrate on the first two moments.

4.1 First Moment

Due to the fact that β < μ, the system has a short memory, and we can calculate all
the moments under the condition that n(0, x), x ∈ Z

d , is a system of independent
and identically distributed random variables with expectation k

μ−β
. We will select

Poissonian random variables with parameter λ = k
μ−β

. Then,m1(t, x) = k
μ−β

, t � 0,

x ∈ Z
d , and, as a result, Lam1(t, x) = 0. Setting m1(t, x) = E[n(t, x)], we have

m1(t + dt, x) = E[E[n(t + dt, x)|Ft ]] = E[E[n(t, x) + ξ(t, x)|Ft ]]
= m1(t, x) + (β − μ)m1(t, x)dt + kdt +

∑

z �=0

a(z)[m1(t, x + z) − m1(t, x)]dt

(4.2)

Defining the operator La( f (t, x)) = ∑
z �=0

a(z)[ f (t, x + z) − f (t, x)], then, from
Eq.4.2 we get the differential equation

{ ∂m1(t, x)

∂t
= (β − μ)m1(t, x) + k + Lam1(t, x)

m1(0, x) = 0

Because of spatial homogeneity, Lam1(t, x) = 0, giving

{ ∂m1(t, x)

∂t
= (β − μ)m1(t, x) + k

m1(0, x) = 0

which has the solution
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m1(t, x) = k

β − μ
(e(β−μ)t − 1).

Thus, if β ≥ μ, m1(t, x) → ∞, and if μ > β,

lim
t→∞m1(t, x) = k

μ − β
.

4.2 Second Moment

We derive differential equations for the second correlation function m2(t, x, y) for
x = y and x �= y separately, then combine them and use a Fourier transform to prove
a useful result concerning the covariance.

I. x = y

m2(t + dt, x, x) = E[E[(n(t, x) + ξ(dt, x))2|F�t ]]

= m2(t, x, x) + 2E

⎡

⎣n(t, x)[n(t, x)(β − μ − 1)dt + kdt

+
∑

z �=0

a(z)n(t, x + z)]dt
⎤

⎦

+ E

⎡

⎣n(t, x)(β + μ + 1)dt + kdt +
∑

z �=0

a(z)n(t, x + z)dt

⎤

⎦

Denote Laxm2(t, x, y) = ∑
z �=0

a(z)(m2(t, x + z, y) − m2(t, x, y)).

From this follows the differential equation

{ ∂m2(t, x, x)

∂t
= 2(β − μ)m2(t, x, x) + 2Laxm2(t, x, x) + 2k2

μ−β
+ 2k(μ+1)

μ−β

m2(0, x, x) = 0

II. x �= y
Because only one event can happen during dt

P{ξ(dt, x) = 1, ξ(dt, y) = 1} = P{ξ(dt, x) = −1, ξ(dt, y) = −1} = 0,

while the probability that one particle jumps from y to x is

P{ξ(dt, x) = 1, ξ(dt, y) = −1} = a(x − y)n(t, y)dt,
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and the probability that one particle jumps from x to y is

P{ξ(dt, x) = −1, ξ(dt, y) = 1} = a(y − x)n(t, x)dt.

Then, similar to above

m2(t + dt, x, y) = E[E[(n(t, x) + ξ(t, x))(n(t, y) + ξ(t, y))|F�t ]]
= m2(t, x, y) + (β − μ)m2(t, x, y)dt + km1(t, y)dt

+
∑

z �=0

a(z)(m2(t, x + z, y) − m2(t, x, y))dt

+ (β − μ)m2(t, x, y)dt + km1(t, x)dt

+
∑

z �=0

a(z)(m2(t, x, y + z) − m2(t, x, y))dt

+ a(x − y)m1(t, y)dt + a(y − x)m1(t, x)dt

= m2(t, x, y) + 2(β − μ)m2(t, x, y)dt + k(m1(t, y) + m1(t, x))dt

+ (Lax + Lay)m2(t, x, y)dt

+ a(x − y)(m1(t, x) + m1(t, y))dt

The resulting differential equation is

∂m2(t, x, y)

∂t
= 2(β − μ)m2(t, x, y) + (Lax + Lay)m2(t, x, y) + k(m1(t, x)

+ m1(t, y)) + a(x − y)[m1(t, x) + m1(t, y)]
(4.3)

That is

∂m2(t, x, y)

∂t
= 2(β − μ)m2(t, x, y) + (Lax + Lay)m2(t, x, y)

+ 2k2

μ − β
+ 2a(x − y)

k

μ − β

Because, for fixed t , n(t, x) is homogeneous in space, we can writem2(t, x, y) =
m2(t, x − y) = m2(t, u). Then, we can condense the two cases into a single differ-
ential equation

⎧
⎨

⎩

∂m2(t, u)

∂t
= 2(β − μ)m2(t, u) + 2Laum2(t, u) + 2k2

μ−β + 2a(u) k
μ−β + δ0(u)

2k(μ+1)
μ−β

m2(0, u) = En2(0, x)

Here u = x − y �= 0 and a(0) = 0.

We can partition m2(t, u) into m2(t, u) = m21 + m22, where the solution for m21

depends on time but not position and the solution for m22 depends on position but
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not time. Thus, Laum21 = 0 and m21 corresponds to the source 2k2

μ−β
, which gives

∂m21(t, u)

∂t
= 2(β − μ)m21(t, u) + 2k2

μ − β

As t → ∞, m21 → M̄2 = m2
1(t, x) = k2

(μ−β)2
.

For the second part, m22,
∂m22
∂t = 0, i.e.,

∂m22(t, u)

∂t
= 2(β − μ)m22(t, u) + 2Laum22(t, u) + 2a(u)

k

μ − β

+ δ0(u)
2k(μ + 1)

μ − β
= 0

As t → ∞, m22 → M̃2. M̃2 is the limiting correlation function for the particle field
n(t, x), t → ∞. It is the solution of the “elliptic” problem

2Lau M̃2(u) − 2(μ − β)M̃2(u) + δ0(u)
2k(μ + 1)

μ − β
+ 2a(u)

k

μ − β
= 0

Applying the Fourier transform ̂̃M2(θ) = ∑
u∈Zd

M̃2(u)ei(θ,u), θ ∈ T d = [−π,π]d ,
we obtain

̂̃M2(θ) =
k

μ−β
+ kâ(θ)

μ−β

(μ − β) + (1 − â(θ)
.

We have proved the following result.

Theorem 4.1 If t → ∞, then Cov(n(t, x), n(t, y)) = E[n(t, x)n(t, y)] − E[n(t,
x)]E[n(t, y)] = m2(t, x, y) − m1(t, x)m1(t, y), tends to M̃2(x − y) = M̃2(u)

∈ L2(Zd)

The Fourier transform of M̃2(·) is equal to

̂̃M2(θ) = c1 + c2â(θ)

c3 + (1 − â(θ))
∈ C(T d)

where c1 = k
μ−β

, c2 = k
μ−β

, c3 = μ − β

Let us compare our results with the corresponding results for the critical contact
model [6] (where k = 0, μ = β). In the last case, the limiting distribution for the field
n(t, x), t � 0, x ∈ Z

d , exists if and only if the underlying randomwalkwith generator
La is transient. In the recurrent case, we have the phenomenon of clusterization. The
limiting correlation function is always slowly decreasing (like the Green kernel of
La).
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In the presence of immigration, the situation is much better: the limiting corre-
lation function always exists and we believe that the same is true for all moments.
The decay of M̃2(u) depends on the smoothness of â(θ). Under minimal regularity
conditions, correlations have the same order of decay as a(z), z → ∞. For instance,
if a(z) is finitely supported or exponentially decreasing, the correlation also has an
exponential decay. If a(z) has power decay, then the same is true for correlation
M̃2(u), u → ∞.

5 Processes in a Random Environment

Thefinal fourmodels involve a randomenvironment. Two areGalton–Watsonmodels
with immigration and lack a spatial component. In the first, the parameters are random
functions of the population size; in the second, they are random functions of aMarkov
chain on a finite space. The last two models are spatial and feature immigration,
migration, and, most importantly, a random environment in space, still stationary in
time for the third but not stationary in time for the fourth.

5.1 Galton–Watson Processes with Immigration in Random
Environments

5.1.1 Galton–Watson Process with Immigration in Random
Environment Based on Population Size

Assume that rates of mortality μ(·), duplication β(·), and immigration k(·) are ran-
dom functions of the volume of the population x ≥ 0. Namely, the random vectors
(μ,β, k)(x,ω) are i.i.d on the underlying probability space (�e,Fe, Pe) (e: environ-
ment).

The Galton–Watson Process is ergodic (Pe-a.s) if and only if the random series

S =
∞∑

n=1

k(0)(β(1) + k(1))(2β(2) + k(2)) · · · ((n − 1)β(n − 1) + k(n − 1))

μ(1)(2μ(2)) · · · (nμ(n))
< ∞, Pe-a.s.

Theorem 5.1 Assume that the random variables β(x,ω), μ(x,ω), k(x,ω) are
bounded from above and below by the positive constants C±: 0 < C− ≤ β(x,ω) ≤
C+ < ∞. Then, the process n(t,ωe) is ergodic Pe-a.s. if and only if 〈ln β(x,ω)

μ(x,ω)
〉 =

〈ln β(·)〉 − 〈ln(μ(·))〉 < 0

Proof It is sufficient to note that
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k(n − 1,ω) + (n − 1)β(n − 1,ω)

nμ(x,ω)
=

k(n−1,ω)−β(n−1,ω))

n + β(n − 1,ω)

μ(n,ω)

= eln β(n−1)−ln μ(n)+o( 1
n ).

�

It follows from the strong LLN that the series diverges exponentially fast for
〈ln β(·)〉 − 〈ln μ(·)〉 > 0; it converges like a decreasing geometric progression for
〈ln β(·)〉 − 〈ln μ(·)〉 < 0; and it is divergent if 〈ln β(·)〉 = 〈ln μ(·)〉. It diverges even
when β(x,ωe) = μ(x,ωe) due to the presence of k− ≥ C− > 0.

Note that ES < ∞ if and only if 〈λ(x−1)
μ(x) 〉 = 〈λ〉〈 1

μ
〉 < ∞, i.e., the fluctuations of

S, even in the case of convergence, can be very high.

5.1.2 Random Nonstationary (Time Dependent) Environment

Assume that k(t) and � = (μ − β)(t) are stationary random processes on (�m, Pm)

and that k(t) is independent of �. For a fixed environment, i.e., fixed k(·) and �(·),
the equation for the first moment takes the form

dm1(t,ωm)

dt
= −�(t,ωm)m1 + k(t,ωm)

m1(0,ωm) = m1(0)

Then

m1(t,ωm) = m1(0)e
− ∫ t

0 �(u,ωm )du +
∫ t

0
k(s,ωm)e− ∫ t

s �(u,ωm )duds

Assume that 1
δ

� �(·) � δ > 0, 1
δ

� k(·) � δ > 0. Then

m1(t,ωm) =
∫ t

−∞
k(s,ωm)e− ∫ t

s �(u,ωm )duds + O(e−δt ).

Thus, for large t , the processm1(t,ωm) is exponentially close to the stationary process

m̃1(t,ω) =
∫ t

∞
k(s,ωm)e− ∫ t

s �(u,ωm )duds

Assumenow that k(t) and�(s) are independent stationaryprocesses and−�(t) =
V (x(t)), where x(t), t � 0, is a Markov Chain with continuous time and symmet-
ric geometry on the finite set X . (One can also consider x(t), t � 0, as a diffusion
process on a compact Riemannian manifold with Laplace–Beltrami generator �.)
Let
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u(t, x) = Exe
∫ t
0 V (xs )dx f (xt )

= Exe
∫ t
0 −�(xs )dx f (xt )

Then ⎧
⎪⎨

⎪⎩

∂u

∂t
= Lu + Vu = Hu

u(0, x) = f (x)

(5.1)

The operator L is symmetric in L2(x) with dot product ( f, g) = ∑
x∈X

f (x) ¯g(x).

Thus, H = L + V is also symmetric and has real spectrum 0 > −δ � λ0 > λ1 �
· · · with orthonormal eigenfunctions ψ0(x) > 0,ψ1(x) > 0, . . . Inequality λ0 � δ <

0 follows from our assumption on �(·).
The solution of Eq.5.1 is given by

u(t, x) =
N∑

n=1

eλk tψk(x)(t,ψk).

Now, we can calculate < m̃1(t, x,ωm) >.

< m̃ >=
∫ t

−∞
< k(·) >< Eπe

∫ t
s V (xu)du > ds (5.2)

Here, π(x) = 1
N = 1(x)

N is the invariant distribution of xs . Then

< m̃ > =
∫ t

−∞
< k >

k=N∑

k=0

eλk (t−s)(ψkπ)(1ψk)ds

= − < k >

k=N∑

k=0

1

λk
(ψk1)2

1

N

= −< k >

N

N∑

k=0

(ψk1)2

λk

5.1.3 Galton–Watson Process with Immigration in Random
Environment Given by Markov Chain

Let x(t) be an ergodicMCh on the finite space X and let β(x),μ(x), k(x), the rates of
duplication, annihilation, and immigration, be functions from X to R+, and, therefore,
functions of t and ωe. The process (n(t), x(t)) is a Markov chain on Z

1+ × X .
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Let a(x, y), x, y ∈ X , a(x, y) ≥ 0,
∑
y∈X

a(x, y) = 1 for all x ∈ X , be the transition

function for x(t). Consider E(n,x) f (n(t), x(t)) = u(t, (n, x)). Then

u(t + dt, (n, x)) = (1 − (nβ(x) + nμ(x) + k(x) − a(x, x))dt)u(t, x)

+ nβ(x)u(t, (n + 1, x))dt + k(x)u(t, (n + 1, x))dt

+ nμ(x)u(t, (n − 1, x))dt +
∑

y:y �=x

a(x, y)u(t, (n, y))dt

We obtain the backward Kolmogorov equation

∂u

∂t
=
∑

y:y �=z

a(t, y)(u(t, (n, y)) − u(t, (n, x))) + (nβ(x) + k(x))(u(t, (n + 1, x))

− u(t, (n, x))) + nμ(x)(u(t, (n − 1, x)) − u(t, (n, x)))

u(0, (n, x)) = 0

Example. Two-state random environment.
Here, x(t) indicates which one of two possible states, {1, 2} the process is in at time
t . The birth, mortality, and immigration rates are different for each state: β1 and β2,
μ1 and μ2, and k1 and k2. For a process in state 1, at any time the rate of switching to
state 2 is α1, with α2 the rate of the reverse switch. This creates the two-state random
environment. Let G be the generator for the process, as shown in Fig. 3.

The following theorem gives sufficient conditions for the ergodicity of the process
(n(t), x(t)).

Theorem 5.2 Assume that for some constants δ > 0 and A > 0

μi − βi ≥ δ, ki ≤ A, i = 1, 2

Fig. 3 GW process with immigration with random environment as two states
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Then, the process (n(t), x(t)) is an ergodic Markov chain and the invariant mea-
sure of this process has exponential moments, i.e., E eλn(t) ≤ c0 < ∞ if λ ≤ λ0 for
appropriate (small) λ0 > 0.

Proof We take as a Lyapunov function f (n, x) = n.
Then, G f (n(t), x(t)) = (βx − μx )n + kx . So for sufficiently large n, specifically

n > A
δ
, we have G f ≤ 0. �

5.2 Models with Immigration and Migration in a Random
Environment

For this most general case, we have migration and a nonstationary environment in
space and time. The rates of duplication, mortality, and immigration at time t and
position x ∈ Z

d are given by β(t, x), μ(t, x), and k(t, x). As in the above models,
immigration is uninfluenced by the presence of other particles; also set δ1 ≤ k(t, x) ≤
δ2, 0 < δ1 < δ2 < ∞. The rate of migration is given by κ, with the process governed
by the probability kernel a(z), the rate of transition from x to x + z, z ∈ Zd .

If n(t, x) is the number of particles at x ∈ Zd at time t , n(t + dt, x) = n(t, x) +
ξ(t, x), where

ξ(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 w. pr. n(t, x)β(t, x)dt + k(t, x)dt + ∑
z �=0

a(−z)n(t, x + z)dt

−1 w. pr. n(t, x)μ(t, x)dt + ∑
z �=0

a(z)n(t, x)dt

0 w. pr. 1 − (β(t, x) + μ(t, x))n(t, x)dt − ∑
z �=0

a(z)n(t, x + z)dt

−∑
z �=0

a(z)n(t, x)dt − k(t, x)dt

For the first moment, m1(t, x) = E[n(t, x)], we can write

m1(t + dt, x) = E[E[n(t + dt, x)|Ft ]] = E[E[n(t, x) + ε(t, x)|Ft ]]
= m1(t, x) + (β(t, x) − μ(t, x))m1(t, x)dt + k(t, x)dt

+
∑

z �=0

a(z)[m1(t, x + z) − m1(t, x)]dt

and so, defining, as above,La( f (t, x)) = ∑
z �=0

a(z)[ f (t, x + z) − f (t, x)], we obtain

{ ∂m1(t, x)

∂t
= (β(t, x) − μ(t, x))m1(t, x) + k(t, x) + Lam1(t, x)

m1(0, x) = 0
(5.3)
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We consider two cases. The first is where the duplication and mortality rates are
equal, β(t, x) = μ(t, x). Because of the immigration rate bounded above 0, we find
that the expected population size at each site tends to infinity. In the second case,
to simplify, we consider β(t, x) and μ(t, x) to be stationary in time, and assume
the mortality rate to be greater than the duplication rate everywhere by at least a
minimal amount. Here, we show that the interplay between the excess mortality and
the positive immigration results in a finite positive expected population size at each
site.

5.2.1 Case I

If β(t, x) = μ(t, x)

{ ∂m1(t, x)

∂t
= k(t, x) + Lam1(t, x)

m1(0, x) = 0

By taking the Fourier and, then, inverse Fourier transforms, we obtain

m1(t, x) =
∫ t

0
ds
∑

y∈Zd

k(s, y)p(t − s, x − y, 0) ≥
∫ t

0
δ1ds = δ1t

where

p(t, x, y) = 1

(2π)d

∫

T d

e
−t

d∑
j=1

(cos (v j )−1)−i(v,x−y)
dv (5.4)

As t → ∞, δ1t → ∞. Thus,when the birth rate equals the death rate, the expected
population at each site x ∈ Z

d will go to infinity as t → ∞.

5.2.2 Case II

Here, β(t, x) �= μ(t, x). For simplificationwe assume that only immigration, k(t, x),
is not stationary in time. In other words, we assume that the duplication andmortality
rates are stationary in time and depend only on position: β(t, x) = β(x), μ(t, x) =
μ(x) and μ(x) − β(x) � δ1 > 0. From Eq.5.3, we get

{ ∂m1(t, x)

∂t
= k(t, x) + Lam1(t, x) + (β(t, x) − μ(t, x))m1(t, x)

m1(0, x) = 0

This has the solution
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m1(t, x) =
∫ t

0
ds
∑

y∈Zd

k(s, y)q(t − s, x, y)

where q(t − s, x, y) is the solution for

⎧
⎪⎨

⎪⎩

∂q

∂t
= Laq + (β(t, x) − μ(t, x))q

q(0, x, y) = δ(x − y) =
{
1 y = x
0 y �= x

Using the Feynman–Kac formula, we obtain

q(t, x, y) = p(t, x, y)Ex→y[e
∫ t
0 (β(xu)−μ(xu)du]

with p(t, x, y) as in Eq.5.4.
Finally

lim
t→∞m1(t, x) = lim

t→∞

∫ t

0
ds
∑

y∈Zd

k(s, y)Ex→y[e
∫ t−s
0 (β(xu)−μ(xu)du]p(t − s, x, y)

≤ ‖k‖∞
∫ ∞

0
e−δ1wdw

= ‖k‖∞
δ1

.

Thus, when μ(x) − β(x) is bounded above 0, then lim
t→∞m1(t, x) is bounded by 0

and ‖k‖∞
δ1

, so this limit exists and is finite.
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