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Abstract The aim of the paper is to outline the new trends in modern actuarial
sciences in order to help the researchers to find new domains of activity and univer-
sity professors teaching future actuaries to prepare special courses. The paper begins
by description of actuarial profession and a brief historical sketch. After recalling
the main achievements of the first two periods in actuarial sciences, we describe
the new research directions of the third and fourth periods characterized by inter-
play of insurance and finance, unification of reliability and cost approaches, as well
as, consideration of complex systems. Sophisticated mathematical tools are used for
analysis and optimization of insurance systems including dividend payment, reinsur-
ance, and investment. Discrete-time models turned out to be more realistic in some
situations for investigation of insurance problems.
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1 Introduction

Web site CareerCast.com has ranked actuary the fourth-best job of 2014 taking
into account environment, income, hiring outlook, and stress. Data from the U.S.
Department of Labor and the Bureau of Labor Statistics, as well as other government
agencies, trade associations, and private survey firms were used to evaluate the 200
jobs included in its annual Jobs Rated report. The top three jobs, according to the
report, are mathematician, tenured university professor, and statistician.

Math skills are key in landing some of the best jobs in the nation, according to
CareerCast’s 2015 Jobs Rated report, with four of the nation’s ten best jobs focusing
on mathematics. An actuary—who uses mathematics, statistics, and financial theory
to assess the risk that an event will occur—came in at No. 1 on the list, just ahead of
mathematician (No. 3), statistician (No. 4), and data scientist (No. 6).
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Thus, it is natural to ask the following questions. What is an actuary? What is
actuarial science? One of the answers is given below.

Actuarial science is the discipline that applies mathematical and statistical meth-
ods to assess risk in insurance, finance, andother industries andprofessions.Actuaries
are professionals who are qualified in this field through intense education and expe-
rience. In many countries, actuaries must demonstrate their competence by passing
a series of thorough professional examinations.

Actuarial profession was formally established in 1848, with the formation of In-
stitute of Actuaries, London. The Faculty of Actuaries, Edinburgh, was organized
in 1856, and in 2010 it merged with Institute of Actuaries. The International Ac-
tuarial Association (IAA) is a worldwide association of local professional actuarial
associations. It was established in 1895 as an association of individuals under the
name the “Comité Permanent des Congrés d’Actuaires”, renamed IAA in 1968 and
restructured at the 26th International Congress of Actuaries, held in Birmingham on
7–12 June 1998. Nowadays IAA includes 69 Full Member Associations, represent-
ing 98% of qualified actuaries worldwide, and 28 Associate Member Associations.
It has seven sections.

ASTIN, the section for Actuarial STudies In Non-life insurance, was created in
1957 as the first section of the IAA. ASTIN’s main objective is to promote actuarial
research, particularly in non-life insurance. ASTIN is continually working to further
develop the mathematical foundation of non-life insurance and reinsurance.

Another section of the IAA, created in 1986,wasAFIR, which stands forActuarial
Approach for FInancial Risks. Its objective was defined as promotion of actuarial
research in financial risks and problems, see, e.g., [407]. Effective from 2011, the
section mandate was extended to formally include Enterprise Risk Management
(ERM), hence, the section was named AFIR/ERM. The purpose of this change
was to expand the discussion beyond market risk issues and provide a strong home
for international discussion and research on ERM topics. It is a reflection of the
expanding and developing role of ERM in actuarial practice and the IAA efforts to
provide support for this growing area of actuarial practice. It is a natural extension
and many ERM papers and topics have been presented at past AFIR colloquia, see,
e.g., [135] and references therein.

In November 2009, a group of actuarial professional bodies took the unprece-
dented step of agreeing to collaborate to develop and administer a new qualifica-
tion in enterprise risk management (ERM)—the Chartered Enterprise Risk Actuary
(CERA)—a ground breaking achievement, and the birth of the Global CERA Treaty.
The first nine actuaries received this certificate in July 2010.

We do not consider in this paper the scientific activity of such important IAA
Sections as the Health Section (IAAHS) created in 2003, the Pensions, Benefits
and Social Security Section (PBSS) also started in 2003, and Life Section (IAALS)
created in 2005, although these branches of research deserve a special consideration,
see, e.g., [398].

The Russian Actuarial Society was organized on September 14, 1994, the first
President was Professor A.N. Shiryaev, see [381]. The Russian Guild of Actuaries
was founded in 2002 on the basis of the Society of actuaries, established in 1994.
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OnNovember 4, 2008, the Russian Guild of Actuaries became the full member of the
IAA and was acknowledged as an integral part of international actuarial community.

Actuarial education at the Moscow State University was initiated by Professor
B.V. Gnedenko in 1993, see [91]. It is necessary to mention the achievements of
Russian actuarial science before 1917. The most well-known person is S.E. Savitsch
(1864–1936) who was a vice-president of the first four International Congresses of
Actuaries and a member of Organizing Committee of the 8th Congress which was
planned to take place in St. Petersburg in 1915 (however canceled due towar). Hewas
a permanent member of the Insurance Committee at the Ministry of Internal Affairs,
which carried out insurance supervision in the Russian Empire. For the most part,
he was interested in life insurance, health and pensions (see, e.g., his book [367]).
However, there also exists his paper [368] dealing with premiums in fire insurance.
The worldwide known specialists in probability theory, V.Ya. Bunyakovski [97] and
A.A. Markov ([297], chap. VIII) have also contributed to the development of life
insurance.

This paper is organized as follows. Historical background is provided in Sect. 2. In
particular, we sketch the main steps in the history of actuarial sciences and describe
what is actuary of the fourth kind.General description of applied probabilitymodels is
given in Sect. 3. This description clearly demonstrates the similarity ofmodels arising
in different research domains. It is also useful formodels classification. New research
directions in modern actuarial sciences are presented in Sect. 4 (for continuous-time
models) and in Sect. 5 (for discrete-time models). Three examples are treated in
Sect. 6. Conclusion is given in Sect. 7.

2 Historical Background

The keyword in all definitions of actuarial sciences is risk. According to the Concise
Oxford English Dictionary, “risk is a hazard, a chance of bad consequences, loss or
exposure to mischance” (see also [330]).

There exists the following classification of risks. First of all, risk can be pure or
speculative. Pure risk entails loss only, whereas speculative one can provide gain,
as well as loss. The most known sources of the latter risks are gambling and stock
exchange. In its turn, pure risk is subdivided into physical andmoral. Both are typical
for insurance. Insurance is a means of protection from financial loss. It is a form of
risk management primarily used to hedge against the risk of a contingent, uncertain
loss. Not all pure risks can be insured. To be insurable a risk must be random, not
depend entirely on the will of insured and materialize in the future. Randomness can
be of two types. Either the event under consideration (insured’s death) will happen
with certainty sometimes, however the occurrence time is random, or the event (e.g.,
theft of auto) may not occur at all. In the latter case, the occurrence time is also a
random variable however its distribution is improper. That is one of the reasons for
different approaches in life insurance and non-life insurance.
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Risk is present whenever the outcome is uncertain, whether favorable or unfavor-
able. Traditional actuarial mathematics work best on hazard risks, as they are gen-
erally independent and discontinuous. Actuaries and other risk professionals have
done a remarkably good job assessing and evaluating hazard risks. Organizations
rarely become insolvent due to failure to manage hazard risks.

Financial risks are those that affect assets, including interest rates, inflation, equity
values, and foreign exchange rate. These risks are correlated, continuous, and require
an understanding of stochastic calculus to be measured appropriately. Unlike hazard
risks, financial risks provide the possibility of a gain, not just a loss. The techniques
formanaging financial risks—financial derivatives such as forwards, futures, options,
and swaps—are relatively new.Misuse of these techniques and the resulting financial
debacles they caused have actually led to the need for enterprise risk management
(ERM), see [133].

According to the Casualty Actuarial Society (CAS), enterprise risk management
is defined as: “The process by which organizations in all industries assess, control,
exploit, finance and monitor risks from all sources for the purpose of increasing the
organization’s short and long term value to its stakeholders.”

In other words, ERM is the systematic evaluation of all the significant risks facing
an organization and how they affect the organization in an aggregate way. Hence,
categorizing risks as hazard, financial, operational, or strategic is most useful. Op-
erational risks represent the failure of people, processes, or systems. Strategic risk
reflects the business decisions of an organization or the impact of competition or reg-
ulation. Examples of strategic risk for insurance are the benefits produced for those
first to use credit scoring (see, e.g., [359]) as a rating variable, and the market share
losses of those companies that were slow to adopt this approach. ERM originally fo-
cused on loss prevention, controlling negative surprises, and reducing downside risk.
Now ERM deals with the entire range of potential outcomes, not just downside risk.
Accepting risks where it has a comparative advantage, and transferring or avoiding
risks where it does not, a company is adding value by efficient risk treatment.

Methods for transferring or distributing risk were practiced by Chinese and Baby-
lonian traders as long ago as the 3rd and 2nd millennia BC, respectively. Chinese
merchants traveling treacherous river rapids would redistribute their wares across
many vessels to limit the loss due to any single vessel’s capsizing. The Babylonians
developed a system which was recorded in the famous Code of Hammurabi, c. 1750
BC, and practiced by early Mediterranean sailing merchants. If a merchant received
a loan to fund his shipment, he would pay the lender an additional sum in exchange
for the lender’s guarantee to cancel the loan should the shipment be stolen or lost at
sea. Further history of insurance development is described, e.g., in [381].

Why actuarial science emerged significantly later (in the 17th century) one can
read in the interesting book by P.L. Bernstein [64] written in 1996 about the risk
history.

According to classification given in 1987 by H. Bühlmann [82], there were
three periods in actuarial sciences. However less than two decades later, in 2005,
P. Embrechts declared the beginning of the fourth period, namely, appearance of
actuaries of the fourth kind. S. D’Arcy, in his Presidential address [133] to CAS
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(Casualty Actuarial Society), has told that such a term is applied to actuaries work-
ing in ERM (enterprise risk management) and explained how to become an actuary
of the fourth kind.

Actuaries of the first kind are life actuaries. According to Bühlmann, the primary
methods of life actuaries involve deterministic calculations. Actuaries of the second
kind, the casualty actuaries, develop probabilistic methods for dealing with risky
situations. The actuaries of the third kind deal with the investment side of insurance
and incorporate stochastic processes into actuarial calculations. Nowadays, almost
all aspects of insurance product development and pricing involve a combination of
investment and insurance characteristics. This change requires all actuaries to become
actuaries of the third kind. How to reach this goal one can read in [134]. The actuaries
of the third kind, who were the object of Bühlmann’s editorial, were the investment
actuaries applying stochastic processes, contingent claims, and derivatives to assets
and liabilities. This specialty developed in the 1980s as financial risk became more
important and tools to manage financial risk were created. In order to become the
actuary of the fourth kind, one has to learn to deal not only with hazard and financial
risks but with operational and strategic risks as well, see [130].

According to [133], in ERM, as in traditional risk management, the first step is
risk identification. Focus on the most significant risks an organization faces. Deal
with those first, then in future iterations expand the focus to the next level of risk
elements, as advised one of ERM pioneers, J. Lam (see [248]).

Step two in ERM, as in traditional risk management, is to quantify the risks. Actu-
aries are well skilled in this area, at least for hazard risks, but ERM also requires the
quantification of the correlations among different risks. Two risks can be generally
uncorrelated, but, if an extreme event were to occur, then they could be highly corre-
lated. Techniques for evaluating these forms of correlations, filters, tail dependency,
copulas, and other numerical techniques must be incorporated. Much needs to be
done to be able to quantify operational and strategic risk to the standards common
in hazard and financial risk (see, e.g., [130, 131]).

Step three of the risk management process involves evaluating the different meth-
ods for handling risk. Risks can be assumed, transferred, or reduced. A variety of
methods exist for transferring (subcontracting, insurance, or securitization) or reduc-
ing risk (loss control, contract, or reinsurance).

Step four is to select the best method for handling the risk, which in most cases
will involve a combination of different techniques. Moreover, the organization wants
to make consistent choices about all the risks it faces, how much risk it will accept,
and what return it would require for accepting a particular level of risk.

Step five is to monitor and adjust the risk management approach selected. It is
an iterative process that entails identifying additional significant risks, quantifying
those risks, and improving the quantification of previously identified risks based on
additional information and improved mathematical techniques. It also entails reeval-
uating the different approaches to handle risk, implementing an improved strategy,
and then, once more, monitoring the result.
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In addition to references in [133], the following papers and books may be helpful:
[51, 105, 107, 135, 136, 140, 151, 164, 194, 196, 228, 233, 302, 317, 323, 365,
384, 392, 396, 419].

Thus, the first period in actuarial science development was deterministic, see,
e.g., [398]. It is characterized by E. Haley’s mortality tables which appeared in 1693
and D. Bernoulli’s utility functions introduced in 1738. Although some researchers
claim that idea of mortality tables belongs to Roman juror Ulpian, the first life
tables appeared in the seventeeth century. They were issued by John Graunt in 1662
(some historians attribute them to William Petty, who introduced the new subject
named “political arithmetic”) and Johan de Witt, 1671. However, E. Halley “was the
first individual to describe the principles of actuarial mathematics on scientifically
accurate lines” (see [200]).

The second (stochastic) period is marked by the application of probability theory
and stochastic processes to solving the actuarial problems. The main achievement of
this period is the collective risk theory, in particular, a well-knownCramér–Lundberg
model, see, e.g. [299]. It is worth mentioning that one of widely used in practice
stochastic processes with independent increments, namely, Poisson process was in-
troduced for the first time in the dissertation of F. Lundberg in 1903, see, e.g. [129].
The other process with independent increments called Brownian motion or Wiener
process appeared as a model for stock exchange performance in dissertation of
L. Bachelier “Theory of speculation” in 1900. The results of Lundberg were ex-
plained and further developed by H. Cramér in 1930s. It is said that the reason for
Swedish insurance companies successes was the attention paid to actuarial sciences.
Thus, in 1929, a special chair of Statistics and Actuarial Sciences was created at
Stockholm university for H. Cramér.

The science has gone through revolutionary changes during the last 40 years due
to the proliferation of high-speed computers and the union of stochastic actuarial
models with modern financial theory. Thus, one can call the third period financial.
It was very short, not more than three decades. The fourth (modern) period has
brought, in addition to achievements of previous periods, development of enterprise
risk management.

Hence, the modern period is characterized by strong interaction of insurance
and finance, investigation of complex systems and employment of sophisticated
mathematical tools. The aim of the paper is to outline the new research directions
which emerged during the last two decades. Further on, we are going to focus on
non-life (general) insurance, mentioning in passing that life insurance is thoroughly
treated in the book [234] by M. Koller, see also [165]. The models used in health
insurance can be found in [347] byE. Pitacco. Those interested in the famousWilkie’s
investment model and its generalizations are referred to [420] and original papers
[362, 363, 406, 408, 409].

It is important to underline that the books [127, 158, 195, 217, 232, 237, 241,
326, 329, 341, 348, 352, 361, 383, 413, 421] demonstrate the similarity between
the models arising in insurance, finance, and other research fields. Thus, methods
used in one research field may turn out fruitful in others. The books [71, 73, 83,
126, 141, 142, 145, 208, 221, 231, 300, 304, 349, 370, 375, 380, 420] also can
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be useful, along with traditional textbooks such as [56, 75, 81, 138, 173, 371], for
professors planning the special courses for actuarial students.

Although the bibliography of this paper contains 446 papers and books, almost
all of them published in this century, the list is far from being complete. Further
references can be found in the mentioned books and reviews [8, 28, 40, 202, 272,
379]. The last review was published during the preparation of this paper, so the
material was rearranged in order not to repeat [379]. Thus, the taxation problems
(see, e.g., the loss-carry-forward tax model for Lundberg risk process in [7], or [245]
where general tax processes are investigated for Lévy insurance model, as well as
[305] dealing with a compound Poisson process under absolute ruin) and statistical
estimation (see, e.g., [436] where nonparametric estimation for ruin probability in
Lévy risk model is treated) are only mentioned, the interested reader is referred to
[379].

3 General Description of Applied Probability Models

Not only insurance, but other applied probability research domains such as inventory
and dams, finance, queueing theory, reliability, and some others can be considered as
special cases of decision-making under uncertainty (or risk management) aimed at
the systems performance optimization, thus eliminating or minimizing risk, see, e.g.,
[85, 301]. “The capacity to manage risk, and with it appetite to take risk and make
forward-looking choices, are key elements of the energy that drives the economic
system forward”—one reads in [64]. The ability of businesses to survive and thrive
often requires unconventional thinking and calculated risk taking. The key is to make
the right decisions—even under the most risky, uncertain, and turbulent conditions,
see, e.g., [168].

For correct decision-making, one needs an appropriate mathematical model. For
several centuries, mathematics has been the language of the exact sciences. Only in
the twentieth century has mathematics become predominant in other fields, partic-
ularly economics and finance. Obviously, it is possible to construct a lot of models
describing the same real-life event or process more or less precisely. Furthermore,
the same mathematical model can arise in different research domains.

Constructing an insurance companymodel one has to take into account its twofold
nature. Originally all insurance societies were designed for risk sharing. Hence, their
primary task is policyholders indemnification. Nowadays, for the most part, they
are joint-stock companies. Thus, the secondary but very important task is dividend
payments to shareholders.

It is well known that insurance company performance generates two cash flows.
Namely, the inflow consists of premiums paid by insureds and outflow is determined
by claim process. Premiums are paid by all policyholders (insureds) however reim-
bursement is obtained only by those who suffered from risk realization. Clearly, the
insurance company models are of input–output type. They can be described by the
following six-tuple (T, Z ,Y,U, Ψ,L ).
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Table 1 Interpretation of model parameters for different research domains

Research field Input Output System state

Insurance Premium Indemnity Surplus

Finance Money inflow Money outflow Capital

Inventory Supply Demand Inventory level

Storage Water inflow Water outflow Water level in a dam

Reliability New & repaired Broken elements Working elements

Queueing Customers arrival Served customers Queue length

Population growth Birth and immigration Death and emigration Population size

Here, T is the planning horizon, Z = {Z(t), t ∈ [0, T ]} and Y = {Y (t), t ∈
[0, T ]} being input and output processes, respectively. The next element U =
{U (t), t ∈ [0, T ]} is a control, whereas Ψ represents the system configuration and
operation mode. Hence, X = Ψ (Z ,Y,U ) is the system state, so, X = {X (t), t ∈
[0, T ]}. All the above-mentioned processes may be multidimensional, moreover,
their dimensions may differ. Finally, LT (U ) = L (Z ,Y,U, X, T ) is an objective
function (target, valuation criterion, riskmeasure) evaluating the systemperformance
quality.

Definition 1 A control U ∗
T = {U ∗(t), t ∈ [0, T ]} is called optimal if

LT (U ∗
T ) = inf

UT ∈UT

LT (UT ), (or LT (U ∗
T ) = sup

UT ∈UT

LT (UT )), (1)

whereUT is a class of all feasible controls. Furthermore,U ∗ = {U ∗
T , T ≥ 0} is called

an optimal policy (or strategy).

If the extremum in (1) cannot be attained, one has to use either the ε-optimal or
asymptotic optimal policies.

Giving another interpretation to input and output processes, one can pass (see,
e.g., [90]) from one research field to another as shown in Table1.

3.1 Models Classification

Now, we turn to models classification according to parameters of their general de-
scription.

1. The planning horizon can be finite (T < ∞) or infinite (T = ∞). Furthermore,
one can consider continuous or discrete time. In the first case, the system is observed
at any time t ∈ [0, T ], in the second one, its behavior is known in a finite or countable
set of points belonging to the planning horizon.

2. Input and output processes can be deterministic or stochastic. In the latter
case, their distributions may be known completely, partly (unknown parameters), or
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unknown at all. Thus, a system will be deterministic or stochastic if the same true for
both (input and output) processes. It is called mixed if one process is deterministic
while the other one is stochastic.

3. According to the set of feasible controls, the system can be static (control is
applied only one time) or dynamic (control is applied many times or continuously).
Moreover, one can control input or/and output processes, as well as the system initial
state, configuration, and operationmode. Hence, dimensions of underlying processes
(input, output, control, and system state) can differ and change in course of system
functioning.

4. The last but not least element of systemsdescription is anobjective function (risk
measure). At first, in many research fields, an objective function was not considered
at all. Hence, there was no control and optimization. One can mention here queueing
and dam theory. Nowadays, in all applied probability research fields, one is interested
in the choice of optimal control providing extremum of some prescribed objective
function. Multi-objective optimization (see, [318]) can also be studied.

Themost widely used approaches in choosing the objective function are reliability
and cost ones. It is clear that reliability approach has arisen in reliability theory. The
researcherswere always interested in survival time of the systemunder consideration,
in other words, the time until the system failure, as well as, in survival probability.
The reliability approach was also used in insurance. Since company solvency is very
important for its existence, for a long time the primary task of actuarial sciences was
investigation of ruin time and ruin probability.

On the other hand, the cost approach was applied from the beginning in finance
and inventory theory. The expected (discounted) costs were typical for inventory
models optimization. Mean variance principle was used for portfolio optimization
and capital allocation since 1952 when the seminal paper [298] was published. In-
surance application of this principle is presented, e.g., in [53, 210], whereas optimal
portfolio choice for a loss averse insurer is treated in [192] (see also references
therein). Other well-known financial risk measures, such as VaR (Value at Risk) or
CVaR (Conditional Value at Risk), were widely used in insurance as well. Coherent
risk measures (see, e.g., [22, 162]), deviation measures and expectation bounded risk
measures (see, e.g., [360]) became very popular during the last two decades. Now,
reliability and cost approaches (along with their various combinations) are used in
any applied probability domain.

3.2 New Trends in Actuarial Sciences

Further on, the following characteristics of modern period of actuarial sciences are
treated.

• Interplay of actuarial and finance methods, in particular, unification of reliability
and cost approaches.



358 E. Bulinskaya

• Investigation of complex systems including dividend payment, reinsurance, in-
vestment, and bank loans, as well as taxes. Hence, the necessity of dealing with
more intricate models and processes, application of sophisticated mathematical
tools.

• Consideration of discrete-time models which turned out to be more appropriate
for the description of some aspects of insurance company performance.

Historically, most insurance-related problems deal with jump processes due to
the nature of insurance claims which occur at discrete-time points, whereas many
classical models in financial mathematics rely on continuous processes to reflect
fluctuations in the constantly changing financial markets. Although the two disci-
plines of applied probability have evolved rather independently, there is a common
trend in recent years to incorporate stochastic models with both continuous and jump
components, see, e.g., [385].

For example, on the ruin theory side, in addition to the random jumps which ac-
count for insurance claims, diffusion components have gained increasing popularity
to describe investment returns in sophisticated risk models.

4 New Results for Continuous-Time Insurance Models

It was already mentioned that functioning of insurance company generates two cash
flows. Namely, input Z(t) describes the premiums acquired up to time t , whereas
output Y (t) represents the payments of company to policyholders in order to satisfy
their claims. In other words, Y (t) is the aggregate claim amount up to time t .

Thus, insurance company capital (surplus or reserve) at time t is given by

X (t) = x + Z(t) − Y (t), (2)

where x is the initial capital.
Continuous-timemodels were used during the last century and still are very popu-

lar. The famous Cramér–Lundberg model, which appeared in 1903 (see [129]), has a
mixed type. Its input is deterministic Z(t) = ct , c > 0 is the premium rate, whereas
the output Y (t) is a stochastic process

Y (t) =
N (t)∑

i=1

Yi . (3)

Here, the claim number N (t) is a Poisson process with parameter λ, Yi being the
amount of the i th claim. The sequence {Yi } of i.i.d. r.v.’s and N (t) are supposed inde-
pendent. Thus, Y (t) is a compound Poisson process with intensity λ. It is interesting
to mention that X (t) given by (2) and (3) is a particular case of spectral negative
Lévy process.
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4.1 Decision Problems and Objective Functions

The problems of interest for any insurance company are choice of underwriting
procedure, premium principles (see, e.g., [114, 255, 274, 277, 288, 351, 440,
441]) and reserves (see, e.g., [1, 29, 84, 211, 303, 418]) to ensure the company
solvency. Moreover, very important decisions are dividend payments, reinsurance,
and investment. Hence, very popular research topics are

• calculation of ruin probabilities,
• estimation of ruin severity (Gerber–Shiu function),
• investigation of the rate of capital growth,

as well as, thorough study of models incorporating

• dividends, investment, reinsurance, tax.

4.1.1 Ruin Probability

From the beginning, the ruin probability attracted attention of actuaries occupied
with company solvency. There exists a vast bibliography pertaining to this problem,
see, e.g., [24, 25, 186] and references therein.

Denote by τ = inf{t > 0 : X (t) < 0} the ruin time of the company. Then, finite-
time ruin probability (ruin in interval [0, T]) is defined as follows:

ψ(x, T ) = P(τ ≤ T |X (0) = x) = P( inf
0<t≤T

X (t) < 0),

whereas the probability of ultimate ruin is given by

ψ(x) = P(τ < ∞|X (0) = x) = lim
T→∞ ψ(x, T ).

Much of the literature on ruin theory is concentrated on classical risk model, in
which the insurer starts with an initial surplus, and collects premiums continuously
at a constant rate, while the aggregate claims process follows a compound Poisson
process.

In 1957, Sparre Andersen (see, [19]) let claims occur according to a more gen-
eral renewal process and derived an integral equation for the corresponding ruin
probability. Since then, random walks and queuing theory have provided a more
general framework, which has led to explicit results in the case where the interclaim
times or the claim severities have distributions related to the Erlang or phase-type
distributions.

Some other generalizations of the basic modelwill be outlined in the next subsub-
section. Now, we only mention that ruin probability was investigated under various
assumptions. Thus, the explicit formulas for ruin probability with dependence be-
tween risks, arising due to mixing over simple model parameters, were established
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in [13]. Archimedean dependence structure can be considered as a particular case of
such procedure. Other classes of processes for which explicit expressions for ruin
probability exist can be found in [25]. Estimates of ruin probabilities for Cramér–
Lundberg model with stochastic premiums are established in [20]. Review of fluid
methods in ruin theory is given in [40]. Generalization of De Vylder approximation
for ruin probability is provided in [41].

The author of [80] deals with obtaining the optimal investment policy in a risky as-
set minimizing the ruin probability. The related objective of minimizing the expected
discounted penalty paid at ruin is treated as well. Minimization of ruin probability by
choosing the optimal investment is also the object of [57]. The authors consider an
insurance company whose surplus is represented by the classical Cramér–Lundberg
process. The company can invest its surplus in a risk-free asset and in a risky asset,
governed by the Black–Scholes equation. There is a constraint that the insurance
company can only invest in the risky asset at a limited leveraging level. The minimal
ruin probability as a function of the initial surplus is characterized by a classical solu-
tion to the corresponding Hamilton–Jacobi–Bellman (HJB) equation. It is shown that
the optimal investment policy significantly differs from those established in [203]
for unrestricted case or in [35] for the case of no shortselling and no borrowing.
Minimization of the ruin probability by investment and reinsurance is considered in
[369].

Ruin probabilities with dependent rate interests are treated [99], whereas in [100]
stochastic rates of interest and in [102] Markov Chain interests are assumed. The
bounds for ruin probabilities inmultivariate riskmodel are obtained in [103]. The ruin
for the Erlang(n) risk process is tackled in [266]. Ruin probabilities for two classes
of risk processes are studied in [269]. Ruin theoretical and financial applications of
the first passage time for compound Poisson process perturbed by diffusion are given
in [251]. Lundberg type bounds are obtained in [372] by investigation of renewal
equations.

An important question in insurance is how to evaluate the probabilities of (non-)
ruin of a company over any given horizon of finite length. The paper [261] aims
to present some (not all) useful methods that have been proposed for computing, or
approximating, these probabilities in the case of discrete claim severities. The starting
model is the classical compound Poisson risk model with constant premium and
independent and identically distributed claim severities. Two generalized versions
of the model are then examined. The former incorporates a nonconstant premium
function and a nonstationary claim process. The latter takes into account a possible
interdependence between the successive claim severities. Special attention is paid to
a recursive computational method that enables us to tackle, in a simple and unified
way, the different models under consideration. The approach, still relatively little
known, relies on the use of remarkable families of polynomials which are of Appell
or generalized Appell (Sheffer) types.

Asymptotic behavior and estimates of ruin probabilities are given, e.g., in [26,
63, 123, 159, 187, 235]. Two papers, [321, 322], are devoted to investigation of ruin
probabilities under capital injections. The paper [205] establishes the asymptotics of
ruin probabilities for controlled risk processes in the small claims case.
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A thorough survey of the ruin problem in risk models with investment income
(until 2008) is presented in [333] (see also [331]). In addition to a general presentation
of the problem, topics covered are a presentation of the relevant integro-differential
equations, exact and numerical solutions, asymptotic results, bounds on the ruin
probability and also the possibility of minimizing the ruin probability by investment
and possibly reinsurance control. The main emphasis is on continuous-time models,
but discrete-time models are also covered.

4.1.2 Gerber–Shiu Function

• The ruin probability is a popular but not always a good risk measure. To treat
solvency problems, it is important to know the ruin time distribution and severity
of ruin.

Already in 1988, Dufresne and Gerber (see [154]) in the classical compound Poisson
model of the collective risk theory considered U , the surplus before the claim that
causes ruin, and V , the deficit at the time of ruin. Let f (x; u, v) be their joint density
(x initial surplus) which is a defective probability density (since U and V are only
defined, if ruin takes place). For an arbitrary claim amount distribution, they estab-
lished that f (0; u, v) = ap(u + v), where p(z) is the probability density function of
a claim amount and a is the ratio of the Poisson parameter and the rate of premium
income. After that, the distribution of the surplus prior to ruin and that of the claim
causing ruin were studied in [143, 144], respectively.

During 1997–1998, Gerber and Shiu (see [176, 177]) introduced the expected
discounted penalty function (EDPF) taking into account the surpluses immediately
before and at ruin. Since then, many researchers studied the following function

m(x) = E(e−δτw(X (τ−), |X (τ )|)I (τ < ∞)|X (0) = x),

where δ is the force of interest, I (A) is indicator of event A and w(x1, x2) is a
nonnegative penalty function defined on [0,∞) × [0,∞).

• So one can see the unification of reliability and cost approaches. (The ruin proba-
bility is obtained for δ = 0, w(x1, x2) ≡ 1.)

The joint analysis of these random variables, which had been traditionally studied
separately, allowed to offer an elegant characterization of the ruin event in terms of
a renewal equation.

The function m(x) (called frequently EDPF) is useful whenever one wishes to
place a value on cash flows triggered by the first passage of a process across a given
barrier. Applications of the EDPF are natural not only in the context of solvency
where it can be used to determine the initial capital required by a company to avoid
insolvency with a minimum level of confidence, but in option pricing or dividends
optimization as well. This is the case for credit risky securities, whose cash flows
depend on a firm’s assets falling below its liabilities, or for American options, whose
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exercise is triggered by the underlying security’s market value crossing an exercise
boundary.

By the end of the last century, Gerber and Landry (see [175]) and Gerber and Shiu
(see [178]), for example, used the EDPF to price perpetual American options and
reset guarantees.

The deficit at ruin and surplus before ruin were studied in [43] for a correlated risk
process. Moments of the surplus before ruin and the deficit at ruin are obtained in
[109] for Erlang-2 risk model. Approximations for moments of deficit at ruin for the
case of exponential and sub-exponential claims are given in [110]. The distribution
of the deficit at ruin when claims are phase-type is provided in [153]. The maximum
surplus before ruin in an Erlang(n) risk process is treated in [265]. The moments of
the time of ruin, the surplus before ruin, and the deficit at ruin are tackled in [281].

The ruin probability and the Gerber–Shiu function in a compound renewal (Sparre
Andersen) risk process with interclaim times that have a Kn distribution (i.e., the
Laplace transform of their density function is a ratio of two polynomials of degree at
most n ∈ N ) was studied in [267]. The Laplace transform of the expected discounted
penalty function at ruin is derived. This leads to a generalization of the defective re-
newal equations given in [179, 410]. The explicit results are established for rationally
distributed claim severities. The case of Erlang interclaim times has been studied in
[179, 266].

By now, EDPF is usually called Gerber–Shiu function according to the names of
its inventors. It was investigated in many papers under various assumptions about the
underlying risk model. The almost universal approach of analysis is the derivation
of some (defective) renewal equations, coming from a set of integro-differential
equations which are obtained via Itô’s formula or the infinitesimal generator of the
risk reserve process. There exists already a special book [242] devoted to Gerber–
Shiu risk theory.

Gerber–Shiu function is studied in [247] for the following generalization of
Cramér–Lundberg model. The claim sizes are allowed to take positive as well as
negative values. Depending on the sign of these amounts, they are interpreted either
as claims made by insureds or as income from deceased annuitants, respectively. The
classical risk model with a two-step premium rate is treated in [437]. Gerber–Shiu
analysis in a perturbed risk model with dependence between claim sizes and inter-
claim times is implemented in [435]. A Sparre Andersen risk process perturbed by
diffusion is dealt with in [268]. The Gerber–Shiu discounted penalty functions for a
risk model with two classes of claims is investigated in [438].

In [116], a generalization of the usual penalty function is proposed, and a de-
fective renewal equation is derived for the Gerber–Shiu discounted penalty function
in the classical risk model. This is used to derive the trivariate distribution of the
deficit at ruin, the surplus prior to ruin, and the surplus immediately following the
second last claim before ruin. The marginal distribution of the last interclaim time
before ruin is derived and studied, and its joint distribution with the claim causing
ruin is derived. In [117], the results of previous paper are extended on the Sparre
Andersen models allowing for possible dependence between claim sizes and inter-
claim times. The penalty function is assumed to depend on some or all of the surplus
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immediately prior to ruin, the deficit at ruin, the minimum surplus before ruin, and
the surplus immediately after the second last claim before ruin. Defective joint and
marginal distributions involving these quantities are derived. A discussion of Lund-
berg’s fundamental equation and the generalized adjustment coefficient is given, and
the connection to a defective renewal equation is considered.

The analysis of the Gerber–Shiu discounted penalty function for risk processes
with Markovian arrivals is performed in [2]. The paper [32] concerns an optimal
dividend distribution problem for an insurance company whose risk process evolves
as a spectrally negative Lévy process (in the absence of dividend payments). The
management of the company is assumed to control timing and size of dividend pay-
ments. The objective is to maximize the sum of the expected cumulative discounted
dividend payments received until the moment of ruin and a penalty payment at the
moment of ruin, which is an increasing function of the size of the shortfall at ruin.
Compound geometric residual lifetime distributions and the deficit at ruin are studied
in [411], whereas in [412] the author treats the discounted penalty function in the
renewal risk model with general interclaim times.

The penalty delivered by the classical EDPF has local nature, in the sense that it
only characterizes the surplus in a neighborhood of the ruin time. So, one can explore
the possibility of introducing path-dependent variables in the EDPF such as the last
minimum of the surplus before ruin (see [68]).

A generalized Gerber–Shiu measure for Markov additive risk processes with
phase-type claims and capital injections is studied in [79]. It is supposed that the
arrivals (either claims or capital injections) occur according to a Markovian point
process. Both claim and capital injection sizes are phase-type distributed and the
model allows for possible correlations between these and the interclaim times. The
premium income is modeled by a Markov-modulated Brownian motion which may
depend on the underlying phases of the point arrival process. For this risk reserve
model, the authors derive a generalized Gerber–Shiu measure that is the joint distri-
bution of the time to ruin, the surplus immediately before ruin, the deficit at ruin, the
minimal risk reserve before ruin, and the time until this minimum is attained. The
investigation is based on the results concerning the joint distribution of the space-
time positions of overshoots and undershoots derived in [78] for Markov additive
processes with phase-type jumps.

An explicit characterization of a generalized version of the Gerber–Shiu function
in terms of scale functions is provided in [67] for spectrally negative Lévy insurance
risk processes. The joint analysis of discounted aggregate claim costs until ruin
is carried out in the recent thesis [282], the other ruin-related quantities are also
examined.

• There arose the new research directions in actuarial sciences specific for modern
period. They include, along with dividend payments, reinsurance, and investment
problems.

• Thus, the treatment of complex models and consideration of new classes of
processes, such as Markov-modulated processes, martingales, diffusion, Lévy
processes or generalized renewal ones is needed.
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• Several types of objective functions and various methods are used to implement
the stochastic models optimization.

In order to understand the papers treating the modern actuarial problems, it is nec-
essary to possess solid knowledge in the field of probability theory and stochas-
tic processes. Let us mention Lévy processes (see, e.g., [21, 65, 241, 366]), point
processes [215], Brownian motion and stochastic calculus [156, 227, 230], conver-
gence of probability measures [69], limit theorems for stochastic processes [216]
which are widely used nowadays by researchers. One has to be also acquainted
with stochastic control and dynamic programming (see, e.g., [37, 327, 343, 370]),
Markov decision processes [52] and controlled Markov processes [163]. Among
the others, one finds in [40] fluid flow matrix analytic methods, in [238] Volterra
integro-differential equations, in [309] renewal processes. It is necessary to be able
to deal not only with ordinary differential equations (ODE), see, e.g., [197], but with
SDE (stochastic differential equations), see, e.g. [328]. Very important area is risk
management (see, e.g., [208, 300]). As previously, we stress that it is impossible to
mention all the needed mathematical tools and sources to study them.

4.1.3 Dividends

• Now we turn to the decision problems arising in actuarial sciences.

We briefly recall that a dividend is a distribution of a portion of a company’s earnings,
decided by the board of directors, to a class of its shareholders. Dividends can be
issued as cash payments, as shares of stock, or other property.

The study of dividends in insurance was proposed by B. de Finetti in 1957, see
[139]. He argued that under net profit condition the company surplus could become
infinitely large as time grows that is not realistic. So, it is necessary to decide when
and how much to pay, in other words, to choose a dividend strategy.

There exist a lot of possible dividends strategies. The simplest one is a barrier
strategywith barrier level b. Such a strategymeans that there is no dividends payment
if X (t) < b, whereas the payment intensity equals c (the premium rate), if X (t) = b.

Let V (x, b) = E
[

τ∫

0
e−δt dD(t)

]
be the expected discounted dividends until ruin

time τ under barrier strategywith parameter b, whereas x denotes the initial company
surplus, 0 ≤ x ≤ b. Then, according to [181], V (x, b), as a function of x , satisfies
the following equation

cV ′(x, b) − (λ + δ)V (x, b) + λ

x∫

0

V (y, b)p(x − y)dy = 0, 0 < x < b, (4)

with the boundary condition V ′(b, b) = 1.
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In [11], exact solutions for dividend strategies of threshold and linear barrier type
in a Sparre Andersen model are established. Barrier strategies are studied in, e.g., [4,
9, 287, 291, 378, 429] under various assumptions.

Themain drawback of a barrier strategy is that sooner or later the company surplus
becomes negative bringing the ruin (or bankruptcy).

In a threshold strategy, no dividends are paid when the risk reserve is below a
certain threshold, while above this threshold dividends are paid at a rate that is less
than the rate of premium income, see, e.g., [38, 39, 44, 45, 121, 172, 279, 280, 284,
285, 311, 319, 400]. Such a strategy leads to probability of ruin less than 1.

It is necessary to mention multi-threshold (see, e.g., [6]) and band strategies (see,
e.g., [36] or [370]) as well.

In insurance risk theory, dividend and aggregate claimamount are of great research
interest as they represent the insurance company’s payments to its shareholders and
policyholders, respectively. Since the analyses of these two quantities are performed
separately in the literature, the Gerber–Shiu expected discounted penalty function
was generalized in [120] by further incorporating the moments of the aggregate dis-
counted claims until ruin and the discounted dividends until ruin. While in [120], the
authors considered the compound Poisson model with a dividend barrier in which
ruin occurs almost surely, the paper [115] looks at this generalized Gerber–Shiu
function under a threshold dividend strategy where the insurer has a positive survival
probability. Because the Gerber–Shiu function is only defined for sample paths lead-
ing to ruin, the joint moments of the aggregate discounted claims and the discounted
dividends without ruin occurring are also studied. Some explicit formulas are derived
when the individual claim distribution follows a combination of exponentials. Nu-
merical illustrations involving the correlation between aggregate discounted claims
and discounted dividends are given.

Optimal dividend payments under a time of ruin constraint in case of exponential
claims are considered by the authors of [199]. In [201], optimal dividend payment
is studied under ruin constraint in three cases: de Finetti model in which time and
space are discrete, continuous-time Brownian motion with drift model and Cramér–
Lundberg model with exponential claims. Value function at each time point is sup-
posed to depend on two variables (current surplus and current ruin probability).
Dynamic equations are derived on the base of assumption that ruin probability does
not exceed a given small α. They can be solved numerically in the discrete model
and might be used to identify the optimal strategy in the other cases.

Dividend problems are also discussed in [8, 10, 15, 16, 28, 31, 32, 34, 36, 54,
55, 87, 89, 108, 124, 149, 160, 180, 181, 219, 220, 225, 239, 264, 270, 271, 275,
279, 287, 291, 292, 358, 376, 401, 431, 434, 439].

4.1.4 Investment

• Another notion we are going to use is investment.
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To invest is to allocate money (or sometimes another resource, such as time) in the
expectation of some benefit in the future. In finance, the expected future benefit
from investment is a return. The return may consist of capital gain and/or investment
income, including dividends, interest, rental income, etc.

Investment generally results in acquiring an asset, also called an investment. If the
asset is available at a price worth investing, it is normally expected either to generate
income, or to appreciate in value, so that it can be sold at a higher price (or both).
It is worth mentioning that the Code of Hammurabi provided a legal framework for
investment. Various aspects of investment role in company performance optimization
are studied in many papers. We mention below only some recent results.

The optimal dividend problem for an insurance company whose uncontrolled
reserve process evolves as a classical Cramér–Lundberg process is considered in [36].
The firm has the option of investing part of the surplus in a Black–Scholes financial
market. The objective is to find a strategy consisting of both investment and dividend
payment policies which maximizes the cumulative expected discounted dividend
payouts until the time of bankruptcy. It is shown that the optimal value function
is the smallest viscosity solution of the associated second-order integro-differential
Hamilton–Jacobi–Bellman equation. The regularity of the optimal value function is
studied. It is proved that the optimal dividend payment strategy has a band structure.
A method is found to construct a candidate solution and obtain a verification result
to check optimality. Finally, an example is given where the optimal dividend strategy
is not barrier and the optimal value function is not twice continuously differentiable.

A combination of investment and reinsurance is treated in [66] under assumption
of diffusion approximation. The aim is minimization of the absolute ruin risk (this
notion will be discussed later). The paper [223] addresses the situation where the
reserve of an insurance business is currently invested in an asset that may yield
negative interest. Upper and lower bounds for the probability of ruin are obtained
in the case where the cash flow of premiums less claims and the logarithm of the
asset price are both Lévy processes. These bounds are in general power functions of
the initial reserve. Thus, it is shown that risky investments may impair the insurer’s
solvency just as severely as do large claims. One can also find in this paper references
on previous results concerning ruin problem and investment.

The paper [276] focuses on the optimal investment problem for an insurer and
a reinsurer. The insurer’s and reinsurer’s surplus processes are both approximated
by a Brownian motion with drift and the insurer can purchase proportional reinsur-
ance from the reinsurer. In addition, both the insurer and the reinsurer are allowed to
invest in a risk-free asset and a risky asset. First, the optimization problem of mini-
mizing the ruin probability for the insurer is studied. Then according to the optimal
reinsurance proportion chosen by the insurer, two optimal investment problems for
the reinsurer are investigated, namely, the problem of maximizing the exponential
utility and the problem of minimizing the ruin probability. By solving the corre-
sponding Hamilton–Jacobi–Bellman (HJB) equations, optimal strategies for both
the insurer and the reinsurer are derived explicitly. Furthermore, it is established that
the reinsurer’s optimal strategies in these two cases are equivalent for some special
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parameters. Finally, numerical simulations are presented to illustrate the effects of
model parameters on the optimal strategies.

In [203], the ruin probability of the risk process, modeled as a compound Poisson
process, is minimized by the choice of a suitable investment strategy in a risky asset
(market index) that follows a geometric Brownian motion. The optimal strategy
is computed using the Bellman equation. The existence of a smooth solution and a
verification theoremare proved. The explicit solutions in some caseswith exponential
claim size distribution, as well as numerical results in a case with Pareto claim size,
are given. For this last case, the optimal amount invested will not be bounded.

Optimal investment and proportional reinsurance in the Sparre Andersen model
are treated in [278]. Optimal investment and risk control for an insurer under inside
information are considered in [337]. Optimal investment, consumption, and propor-
tional reinsurance under model uncertainty are studied in [338]. An extension of
Paulsen–Gjessing’s risk model with stochastic return on investments is dealt with
in [430]. Expected utility maximization for insurer by optimal investment and risk
control is provided in [445], see also [446].

Insurance models with stochastic return on investments are also considered in
[57–62, 166, 169–171, 188, 189, 222, 332, 334, 340].

4.1.5 Reinsurance

• Now we have to answer what is reinsurance.

Reinsurance is the practice of insurers transferring portions of risk portfolios to other
parties by some form of agreement in order to reduce the likelihood of having to pay
a large obligation resulting from an insurance claim. The intent of reinsurance is
for an insurance company to reduce the risks associated with underwritten policies
by spreading risks across alternative institutions. It is well known as insurance for
insurers. Legal rights of the policyholders (insureds) are in no way affected by rein-
surance, and the insurer remains liable to the insureds for insurance policy benefits
and claims.

The most popular approach is to minimize some measure of the first insurer’s
risk after reinsurance, although the interests of reinsurer are sometimes also taken
into account. Thus, in [104] a “reciprocal reinsurance” was treated to consider the
objectives of both companies, while in [213], portfolio selection problem for an
insurer as well as a reinsurer aiming at maximizing the probability of survival is
tackled. The authors of [48] propose a risk sharing approach in order to diversify the
risk as much as possible, so as to make the “global market risk” (or systemic risk, in
this paper) as close as possible to the total sum of partial risks. In other words, the
paper deals with “reciprocal reinsurance contracts” involving n companies.

An optimal reinsurance strategy combining a proportional and an excess of loss
reinsurance is obtained in [185] for a collective risk theory model with two classes of
dependent risks. The aim is to maximize the expected utility of the terminal wealth.
Using the control technique, the Hamilton–Jacobi–Bellman equation is written and,
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in the special case of the only excess of loss reinsurance, the optimal strategy and
the corresponding value function are given in a closed form. In [315], more general
case is studied, namely, optimal reinsurance in the model with several risks within
one insurance policy.

A two-dimensional risk model with proportional reinsurance is treated in [47].
A review concerning optimal reinsurance up to year 2009 can be found in [106],
whereas optimal reinsurance under ruin probability constraint is surveyed in [224].
In [49], the authors deal with optimization of reinsurance taking into account not
only risk but uncertainty (or ambiguity) of statistical data possessed by insurer and
reinsurer. The levels of uncertainty of insurer and reinsurer do not have to be iden-
tical. Furthermore, the decision variable is not the retained (or ceded) risk, but its
sensitivity (mathematical derivative) with respect to the total claims. Thus, if one
imposes strictly positive lower bounds for this variable, the reinsurer moral hazard
is totally eliminated. Necessary and sufficient optimality conditions are given. The
optimal reinsurance problem is shown to be equivalent to other linear programming
problem (the double-dual problem), despite the fact that risk and uncertainty (and
many pricing principles) cannot be represented by linear expressions. This fact ex-
plains why the nonlinear optimal reinsurance problemmay be solved by a bang-bang
reinsurance. Optimal investment, consumption, and proportional reinsurance under
model uncertainty is treated in [338].

Optimal control of capital injections by reinsurance in a diffusion approximation
is investigated in [157]. A correlated aggregate claims model with common Pois-
son shocks, which allows the dependence in n (n ≥ 2) classes of business across m
(m ≥ 1) different types of stochastic events is presented in [209]. The dependence
structure between different claim numbers is connected with the thinning procedure.
Under combination of quota-share and excess of loss reinsurance arrangements, the
properties of the proposed risk model are examined. An upper bound for the ruin
probability determined by the adjustment coefficient is established through mar-
tingale approach. Optimal risk control and dividend policies under excess of loss
reinsurance are considered in [313].

Optimal reinsurance under distortion risk measures is treated in [440, 441]. In
the first paper, the authors impose a premium constraint, in the second one, expected
value premiumprinciple is applied for reinsurer. The paper [443] investigates optimal
reinsurance strategies for an insurerwithmultiple lines of business under the criterion
of minimizing its total capital requirement calculated based on the multivariate lower
orthant Value at Risk. The reinsurance is purchased by the insurer for each line
of business separately. The premium principles used to compute the reinsurance
premiums are allowed to differ from one line of business to another, but they all
satisfy three mild conditions: distribution invariance, risk loading and preserving the
convex order, which are satisfied by many popular premium principles. It is shown
that an optimal strategy for the insurer is to buy a two-layer reinsurance policy
for each line of business, and it reduces to be a one-layer reinsurance contract for
premium principles satisfying some additional mild conditions, which are met by the
expected value principle, standard deviation principle, and Wang’s principle among
many others.
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The risk models incorporating reinsurance can be also found in [34, 66, 72, 77,
86, 89, 96, 125, 206, 207, 225, 278, 295, 336, 390, 391].

4.1.6 Solvency

The solvency problems (see, e.g. [339, 365]), a company bankruptcy or liquidation
gave rise to the introduction of new notions of ruin.

• Absolute ruin

Since its practical importance, the absolute ruin problem has attracted growing at-
tention in risk theory. When the surplus is below zero or the insurer is on deficit, the
insurer could borrow money at a debit interest rate to pay claims. Meanwhile, the
insurer will repay the debts from the premium income. The negative surplus may
return to a positive level. However, when the negative surplus is below a certain
critical level, the surplus is no longer able to become positive. Absolute ruin occurs
at this moment. One of the first papers in this direction is [174].

One of the latest is [167] where the dividend payments in a compound Poisson
model with a constant debit interest r are considered. That is to say, the insurer can
borrow an amount of money equal to the deficit at a debit interest force r when
the surplus is negative. Meanwhile, the insurance company will repay the debts
continuously from its premium income (acquired at rate c). Denoting the surplus of
the insurer at time t with the debit interest r by X (t), one easily gets the following
equation satisfied

dX (t) =
{
cdt − dY (t), X (t) ≥ 0,
(c + r X (t))dt − dY (t), −c/r ≤ X (t) < 0,

(5)

where Y (t) is given by (3). It is also assumed that dividends are paid to shareholders
according to a barrier strategy with parameter b > 0. Under the barrier strategy, the
premium incomes are paid out as dividends when the surplus reaches b, that is, when
the value of the surplus hits b, dividends are paid continuously at rate c and the surplus
remains at level b until the next claim occurs. Denote the aggregate dividends paid in
the time interval [0, t] by D(t). So the modified surplus Xb(t) = X (t) − D(t). The
time of absolute ruin is defined as Tb = inf{t > 0 : Xb(t) ≤ −c/r}. Then Dx,b =∫ Tb
0 e−δt dD(t) is the present value of all dividends payable to shareholders, till
absolute ruin time Tb, calculated at a constant force of interest δ > 0, whereas x is
the initial surplus of insurer.

The authors investigate the moment generating function of Dx,b, that is,
M(x, y, b) = E exp(yDx,b). They put M(x, y, b) = M1(x, y, b) for 0 ≤ x ≤ b and
M(x, y, b) = M2(x, y, b) for −c/r ≤ x < 0. Then, assuming the functions to be
smooth in x and y and using the strong Markov property of the surplus process, they
establish the following integro-differential equations. For 0 < x < b
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c(∂/∂x)M1(x, y, b) = δy(∂/∂y)M1(x, y, b) + λM1(x, y, b)

−λ

[∫ x

0
M1(x − u, y, b) dF(u) +

∫ x+c/r

x
M2(x − u, y, b) dF(u) + F̄(x + c/r)

]

and for −c/r < x < 0

(r x + c)(∂/∂x)M2(x, y, b) = δy(∂/∂y)M2(x, y, b) + λM2(x, y, b)

−λ

[∫ x+c/r

0
M2(x − u, y, b) dF(u) + F̄(x + c/r)

]
.

Here, F̄(t) = 1 − F(t) and F is the distribution function of claim size. Additionally,
M(x, y, b) satisfies the following conditions

(∂/∂x)M1(x, y, b) = yM1(x, y, b), x = b, M2(−c/r, y, b) = 1,

right and left limits of M(x, y, b), as x → 0, coincide.
This result allows to establish the equations for the moments of Dx,b and calcu-

late the explicit form of moments and M(x, y, b) for the case of exponential claim
distribution. Thus, it is possible to find the optimal dividend barrier for exponential
claims.

Minimization of the risk of absolute ruin under a diffusion approximation model
with reinsurance and investment is considered in [66]. On the contrary, in [101] it is
assumed that the surplus of an insurer follows a compound Poisson surplus process.
The expected discounted penalty function at absolute ruin is studied. Moreover, it is
shown that when the initial surplus goes to infinity, the absolute ruin probability and
the classical ruin probability are asymptotically equal for heavy-tailed claims, while
the ratio of the absolute ruin probability to the classical ruin probability goes to a
positive constant that is less than one for light-tailed claims. Explicit expressions for
the function in exponential claims case are also given. Absolute ruin probability in
a Markov risk model is treated in [286].

An Ornstein–Uhlenbeck type risk model is considered in [290]. The time value of
absolute ruin in the compound Poisson process with tax is studied in [305]. First, a
system of integro-differential equations satisfied by the expected discounted penalty
function is derived. Second, closed-form expressions for the expected discounted
total sum of tax payments until absolute ruin and the Laplace–Stieltjes transform
(LST) of the total duration of negative surplus are obtained. Third, for exponential
individual claims, closed-form expressions for the absolute ruin probability, the LST
of the time to absolute ruin, the distribution function of the deficit at absolute ruin, and
the expected accumulated discounted tax are given. Fourth, for general individual
claim distributions, when the initial surplus goes to infinity, it is shown that the
ratio of the absolute ruin probability with tax to that without tax goes to a positive
constant which is greater than one. Finally, the asymptotic behavior of the absolute
ruin probability is investigated for a modified risk model where the interest rate on
a positive surplus is involved.
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In [312], the absolute ruin in a Sparre Andersen risk model with constant interest
is considered, whereas in [401, 402], the absolute ruin problems are treated for the
classical risk model.

In the paper [296], it is assumed that the surplus process of an insurance entity
is represented by a pure diffusion. The company can invest its surplus into a Black–
Scholes risky asset and a risk-free asset. The following investment restrictions are
imposed. Only a limited amount is allowed in the risky asset and no short-selling
is allowed. When the surplus level becomes negative, the company can borrow to
continue financing. The ultimate objective is to seek an optimal investment strategy
that minimizes the probability of absolute ruin, i.e., the probability that the lim inf
of the surplus process is −∞. The corresponding Hamilton–Jacobi–Bellman (HJB)
equation is analyzed and a verification theorem is proved. Applying the HJB method
authors obtain explicit expressions for the S-shaped minimal absolute ruin func-
tion and its associated optimal investment strategy. In the second part of the paper,
the optimization problem with both investment and proportional reinsurance con-
trol is studied. There, the minimal absolute ruin function and the feedback optimal
investment-reinsurance control are found explicitly as well.

Absolute ruin probability for amulti-type-insurance riskmodel is treated in [422].

• Parisian ruin

In the last few years, the idea of Parisian ruin has attracted a lot of attention. The
idea comes from Parisian options (see, e.g., [111]), the prices of which depend on the
excursions of the underlying asset prices above or below a barrier. An example is a
Parisian down-and-out option, the owner of which loses the option if the underlying
asset price S reaches the level l and remains constantly below this level for a time
interval longer than d.

In Parisian type ruinmodels, the insurance company is not immediately liquidated
when it defaults: a grace period is granted before liquidation.More precisely, Parisian
ruin occurs if the time spent below a predetermined critical level (red zone) is longer
than the implementation delay, also called the clock. Originally, two types of Parisian
ruin have been considered, one with deterministic delays (see, e.g., [132, 293]) and
another one with stochastic delays ([253, 257]). These two types of Parisian ruin
start a new clock each time the surplus enters the red zone, either deterministic or
stochastic. A third definition of Parisian ruin, called cumulative Parisian ruin, has
been proposed very recently in [191]; in that case, the race is between a single
deterministic clock and the sum of the excursions below the critical level.

In the paper [289], the time of Parisian ruinwith a deterministic delay is considered
for a refracted Lévy insurance risk process.

In [293], for a spectrally negative Lévy process, a compact formula is given for
the Parisian ruin probability, which is defined by the probability that the process
exhibits an excursion below zero, with a length that exceeds a certain fixed period r .
The formula involves only the scale function of the spectrally negative Lévy process
and the distribution of the process at time r .

Another relevant paper is [257]. Here the authors study, for a spectrally negative
Lévy process of bounded variation, a somewhat different type of Parisian stopping
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time, in which, loosely speaking, the deterministic, fixed delay r is replaced by an
independent exponential random variable with a fixed parameter p > 0. To be a lit-
tle bit more precise, each time the process starts a new excursion below zero, a new
independent exponential random variable with parameter p is considered, and the
stopping time of interest, let us denote it by kexp(p), is defined as the first time when
the length of the excursion is bigger than the value of the accompanying exponential
random variable. Although in insurance the stopping time kexp(p) is arguably less
interesting than kr (corresponding to a fixed delay r ), working with exponentially
distributed delays allowed the authors to obtain relatively simple expressions, for
example, the Laplace transform of kexp(p) in terms of the so-called (q-)scale func-
tions of X . In order to avoid a misunderstanding, we emphasize that, in the definition
of kexp(p), by [257], there is not a single underlying exponential random variable,
but a whole sequence (each attached to a separate excursion below zero); therefore
Px (kexp(p) ∈ dz) does not equal

∫ ∞
0 pe−pr Px (kr ∈ dz) dr .

In the paper [137], a single barrier strategy is applied to optimize dividend pay-
ments in the situation where there is a time lag d > 0 between decision and imple-
mentation.Using a classical surplus processwith exponentially distributed jumps, the
optimal barrier b∗ maximizing the expected present value of dividends is established.

Parisian-type ruin is treated in [357] for an insurance ruin model with an adaptive
premium rate, referred to as restructuring/refraction, in which classical ruin and
bankruptcy are distinguished. In this model, the premium rate is increased as soon as
the wealth process falls into the red zone and is brought back to its regular level when
the wealth process recovers. The analysis is focused mainly on the time a refracted
Lévy risk process spends in the red zone (analogous to the duration of the negative
surplus).Building on results from [243], the distribution of various functionals related
to occupation times of refracted spectrally negative Lévy processes is obtained. For
example, these results are used to compute both the probability of bankruptcy and
the probability of Parisian ruin in this model with restructuring.

Other Parisian problems are treated in [414].

• Omega model

In classical risk theory, a company goes out of business as soon as ruin occurs, that
is, when the surplus is negative for the first time. In the Omega model, there is a
distinction between ruin (negative surplus) and bankruptcy (going out of business).
It is assumed that even with a negative surplus, the company can do business as usual
and continue until bankruptcy occurs. The probability for bankruptcy is quantified
by a bankruptcy rate function ω(x), where x is the value of the negative surplus. The
symbol for this function leads to the name Omega model. The idea of distinguishing
ruin from bankruptcy comes from the impression that some companies and certain
industries seem to be able to continue doing business even when they are technically
ruined. This may especially be true for companies that are owned by governments
or other companies. Such a model was introduced in [14]. Assuming that dividends
can only be paid with a certain probability at each point of time, the authors derive
closed-form formulas for the expected discounted dividends until bankruptcy under a
barrier strategy. Subsequently, the optimal barrier is determined, and several explicit
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identities for the optimal value are found. The surplus process of the company is
modeled by a Wiener process (Brownian motion). A similar model was also treated
in [182] where the probability of bankruptcy and the expectation of a discounted
penalty at the time of bankruptcy are determined. Explicit results are derived under
assumption that the surplus process is described by the Brownian motion.

In [403], the Omega model with underlying Ornstein–Uhlenbeck type surplus
process for an insurance company is considered. Explicit expressions for the ex-
pected discounted penalty function at bankruptcy with a constant bankruptcy rate
and linear bankruptcy rate are derived. Based on random observations of the surplus
process, the differentiability for the expected discounted penalty function at bank-
ruptcy, especially at zero, is examined. Finally, the Laplace transforms for occupation
times are given.

• Drawdown analysis

Another important research direction associated with solvency problems is draw-
down analysis. The concept of drawdown is being used increasingly in risk analysis,
as it provides surplus-related information similar to ruin-related quantities. For the
insurer’s surplus {Xt , t ≥ 0}, the drawdown (or reflected) process Yt is defined as
the difference between its running maximum Mt = sup0≤s≤t Xs at time t and Xt .

A new drawdown-based regime-switching (DBRS) Lévy insurance model in
which the underlying drawdown process is used to describe an insurer’s level of
financial distress over time, and to trigger regime-switching transitions is proposed
in [259]. Explicit formulas are derived for a generalized two-sided exit problem. Con-
ditions under which the survival probability is not trivially zero (which corresponds
to the positive security loading conditions of the proposed model) are stated. The
regime-dependent occupation time until ruin is later studied. As a special case of the
general DBRS model, a regime-switching premium model is given further consid-
eration. Connections with other existing risk models (such as the loss-carry-forward
tax model of [7]) are established.

Some drawdown-related quantities in the context of the renewal insurance risk
process with general interarrival times and phase-type distributed jump sizes are
treated in [249]. Some recent results on the two-sided exit problem for the spectrally
negative Markov additive process (see, e.g., [214]) and a fluid flow analogy between
certain queues and risk processes (see, e.g., [4]) are used to solve the two-sided exit
problem of the renewal insurance risk process. The two-sided exit quantities are later
shown to be central to the analysis of such drawdown quantities as the drawdown
time, the drawdown size, the running maximum (minimum) at the drawdown time,
the last running maximum time prior to drawdown, the number of jumps before
drawdown and the number of excursions from running maximum before drawdown.
Finally, another application of this methodology is proposed for the study of the
expected discounted dividend payments until ruin.
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4.2 Generalization of the Classical Cramér–Lundberg Model

Generalization of the model has gone in the following directions.

• Another type of counting process for representation of claim number was intro-
duced (instead of Poisson one).

A well known Sparre Andersen model appeared in 1957, see [19], and was studied
in many papers afterwards. This model has also the mixed type, since the premium is
supposed to be acquired continuously at a constant rate. Thus, the company surplus
is described by (2) with Y (t) given by (3) where N (t) is assumed to be a renewal
process. That means the intervals between the claims are nonnegative independent
identically distributed random variables however their distribution is arbitrary (not
exponential), see, e.g. [11, 146–148, 179, 254, 278, 312, 356, 388, 416].

Polya–Aeppli counting processes are treated in [306]. Generalized renewal
process can be also considered as claim number, see, e.g., [88]. Two classes of
claims were studied in [47, 184, 438], for multivariate case see, e.g., [103].

• Dependence conditions

In previous models, the counting process (number of events) and claim severities
were supposed to be independent. Recently, this restriction was taken away. Various
types of dependence exist between claim amounts and interarrival times.

In [33], a one-dimensional surplus process is considered with a certain Sparre An-
dersen type dependence structure under general interclaim times distribution and cor-
related phase-type claim sizes. The Laplace transform of the time to ruin is obtained
as the solution of a fixed-point problem, under both the zero-delayed and the delayed
cases. An efficient algorithm for solving the fixed-point problem is derived together
with bounds that illustrate the quality of the approximation. A two-dimensional risk
model is analyzed under a bailout-type strategy with both fixed and variable costs
and a dependence structure of the proposed type.

In [46], the authors consider an extension of the Sparre Andersen insurance risk
model by relaxing one of its independence assumptions. The newly proposed de-
pendence structure is introduced through the assumption that the joint distribution
of the interclaim time and the subsequent claim size is bivariate phase-type (see,
e.g. [27, 240]). Relying on the existing connection between risk processes and fluid
flows (see, e.g., [3, 4, 42, 44, 354]), an analytically tractable fluid flow is constructed.
That leads to the analysis of various ruin-related quantities in the aforementioned risk
model. Using matrix analytic methods, an explicit expression for the Gerber–Shiu
discounted penalty function is obtained when the penalty function depends on the
deficit at ruin only. It is investigated how some ruin-related quantities involving the
surplus immediately prior to ruin can also be analyzed via the fluid flowmethodology.

The discounted penalty function in a Markov-dependent risk model is consid-
ered in [5], whereas a correlated aggregate claims model with Poisson and Erlang
risk processes is studied in [432]. Optimal dynamic proportional and excess of loss
reinsurance under dependent risks are obtained in [185].
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Other examples can be found in [13, 43, 74, 117, 128, 193, 198, 209, 252, 256,
258, 260, 274, 342, 350, 374, 389, 424, 432], as well as [119, 268, 283, 377, 423].

Several types of claims to treat heterogeneous insurance portfolios are consid-
ered in [438]. The authors obtain integro-differential equations for the Gerber–Shiu
discounted penalty function, generalized Lundberg equation and Laplace transforms
for the Gerber–Shiu discounted penalty function under assumption that the surplus
process X (t) = x + ct − Y (t), t ≥ 0, is of the Cramér–Lundberg type where the
aggregate claim process Y (t) is generated by two classes of insurance risks, i.e.,

Y (t) = Y1(t) + Y2(t) =
N1(t)∑

i=1

Xi +
N2(t)∑

i=1

Yi , t ≥ 0,

and N1(t) is a Poisson process and N2(t) is Erlang(n).

• The Markovian claim arrivals, Markov additive processes (MAP), and Markov-
modulated risk processes

Beginning with [23, 355], researchers start consideration of risk processes in the
Markovian environment.

Potential measures for spectrally negative Markov additive processes with appli-
cations in ruin theory are studied in [161]. Markovian arrivals were treated in [2,
112], where a unified analysis of claim costs up to ruin is given. In [118], a general-
ization of the risk model with Markovian claim arrivals is introduced. Moments of
the discounted dividends in a threshold-type Markovian risk process are obtained in
[38], whereas a multi-threshold Markovian risk model is analyzed in [45]. Analysis
of a threshold dividend strategy for a MAP risk model is implemented in [44], while
generalized penalty function with the maximum surplus prior to ruin in a MAP risk
model is studied in [113], see also [252], where occupation times in the MAP risk
model are treated.

For a Markov-modulated risk model, probability of ruin is obtained in [294], mo-
ments of the dividend payments and related problems are treated in [270], and de-
compositions of the discounted penalty functions and dividends-penalty identity are
established in [271]. Bounds for the ruin probability in a Markovian modulated risk
model are obtained in [417], while expected discounted penalty function is treated
in [378], under additional assumption of constant barrier and stochastic income.

• Spectrally negative Lévy processes are considered in [31, 67, 132, 244, 253, 291,
293, 387, 429] and many other papers.

• Perturbed and diffusion processes

Ruin theory models incorporating a diffusion term aim to reflect small fluctuations in
the insurance companies’ surplus. Suchfluctuationsmight be due to the uncertainty in
the premium income or in the economic environment as a whole. Extensive research
in this area has been carried out during the past 25 years.
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Wemention just a few papers. Thus, one of the first papers in this direction is [155]
devoted to risk theory for the compound Poisson process perturbed by diffusion.
In [400], dividend payments with a threshold strategy in the compound Poisson
risk model perturbed by diffusion are considered. In [395], a generalized defective
renewal equation for the surplus process perturbed by diffusion is studied, whereas
in [264] the research focuses on the distribution of the dividend payments. The paper
[251] treats the first passage times for compound Poisson processes with diffusion
and provides actuarial and financial applications. The threshold dividend strategy
is dealt with in [121] for a generalized jump-diffusion risk model. Gerber–Shiu
function is investigated in [122] for a classical risk process perturbed by diffusion,
while a linear barrier dividend strategy is a subject of [287]. The perturbed compound
Poisson risk model with constant interest and a threshold dividend strategy is treated
in [172]. The Gerber–Shiu function in a Sparre Andersen risk model perturbed by
diffusion is studied in [268], whereas in [283] a generalized discounted penalty
function is considered. A multi-threshold compound Poisson process perturbed by
diffusion is investigated in [311]. Gerber–Shiu analysis in a perturbed riskmodelwith
dependence between claim sizes and interclaim times is provided in [435]. Absolute
ruin minimization under a diffusion approximation model is carried out in [296].
The optimal dividend strategy in a regime-switching diffusion model is established
in [405]. In contrast to classical case, it is assumed there that the dividends can be
only paid at arrival times of a Poisson process. By solving an auxiliary optimization
problem, it is shown that optimal is a modulated barrier strategy. The value function
can be obtained by iteration or by solving a system of differential equations.

• Stochastic premiums

To reflect the cash flows of the insurance company more realistically, some papers
assumed that the insurer earns random premium income. In the simplest case, the
company surplus at time t is given by (2) where Z(t) and Y (t) are independent
compound Poisson processes (with different intensities and jumps distributions).
An interesting example is presented in the book [237] for modeling the speculative
activity of money exchange point and optimization of its profit by using such a
process.

In [308], the authors consider a generalization of the classical risk model when
the premium intensity depends on the current surplus of an insurance company. All
surplus is invested in the risky asset, the price of which follows a geometric Brownian
motion. An exponential bound is established for the infinite-horizon ruin probability.

Models with stochastic premiums or income were also studied in [20, 76, 183,
195, 246, 288, 378, 393, 394, 444] and many others.

• Dual processes

In amodel dual to classical Cramér–Lundberg one, see, e.g. [12], the surplus (without
dividends) is described by the following equation

X (t) = x − ct + Y (t), (6)
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where c is now the rate of expenses, assumed to be deterministic and fixed. The
process Y (t) is compound Poisson. Such a model is natural for companies that have
occasional gains whose amount and frequency can bemodeled by the process {Y (t)}.
For companies such as pharmaceutical or petroleum companies, the jump should be
interpreted as the net present value of future gains from an invention or discovery.
Other examples are commission-based businesses, such as real estate agent offices
or brokerage firms that sell mutual funds of insurance products with a front-end load.
Last but not least, a model of the form (6) might be appropriate for an annuity or
pension fund. In this context, the probability of ruin has been calculated, see, e.g.,
[371]. The dividend problem for such a model is treated in [12]. A key tool is the
method of Laplace transforms. A more general case where surplus is a skip-free
downwards Lévy process is considered as well. The optimal strategy is of barrier
type, the optimal barrier b∗ is obtained. It is also shown that if the initial surplus is
b∗, the expectation of the discounted dividends until ruin is the present value of a
perpetuity with the payment rate being the drift of the surplus process.

A short proof of the optimality of barrier strategies for all spectrally positive Lévy
processes of bounded or unbounded variation is given in [54]. Moreover, the optimal
barrier is characterized using a functional inverse of the scale functions. A variant of
the dividend payment problem in which the shareholders are expected to give capital
injection in order to avoid ruin is also considered. The form of the value function
for this problem is very similar to the problem in which the horizon is the time of
ruin. The optimal dividend problem for a spectrally positive Lévy process is also
considered in [428].

Optimal dividends in the dual model under transaction costs are treated in [55].
The time value of Parisian ruin in (dual) renewal risk processes with exponential

jumps is considered in [415]. Other dual models are also considered in [108, 284,
319, 320].

• Interest rates

In recent years, the classical risk process has been extended tomore practical and real
situations. Thus, it is very important to deal with the risks that rise from monetary
inflation in the insurance and finance market, and also to consider the operation
uncertainties in administration of financial capital.

An optimal control problem is considered in [204] under assumption that a risky
asset is used for investment, and this investment is financed by initial wealth as well
as by a state dependent income. The objective function is accumulated discounted
expected utility of wealth. Solution of this problem enables the authors to deal with
the problem of optimal investment for an insurer with an insurance business modeled
by a compound Poisson or a compound Cox process, under the presence of constant
as well as (finite state space Markov) stochastic interest rate.

The aim of the paper [351] is to build recursive and integral equations for ruin
probabilities of generalized risk processes under rates of interest with homogenous
Markov chain claims and homogenous Markov chain premiums, while the interest
rates follow a first-order autoregressive process. Generalized Lundberg inequalities



378 E. Bulinskaya

for ruin probabilities of this process are derived by using recursive technique. Interest
bearing surplus model with liquid reserves is considered in [373].

Asymptotic finite-time ruin probability for a two-dimensional renewal risk model
with constant interest force and dependent sub-exponential claims is studied in [424].
The absolute ruin problems taking into account debit and credit interest rates are
investigated, e.g., in [401, 402, 442] under some additional assumptions. A model
with interest is studied in [310].Amulti-threshold compoundPoisson surplus process
is introduced there as follows.When the initial surplus is between any twoconsecutive
thresholds, the insurer has the option to choose the respective premium rate and
interest rate. Also, the model allows for borrowing the current amount of deficit
whenever the surplus falls below zero. Explicit expressions for the Gerber–Shiu
function are obtained if claim sizes are exponentially and phase-type(2) distributed.

5 Discrete-Time Models

A review [272] on discrete-time insurance models appeared in 2009. The authors un-
derline that although most theoretical risk models use the concept of time continuity,
the practical reality is discrete. Thus, dividend payment is usually based on results
of financial year, whereas reinsurance treaties are discussed by the end of a year. It is
important that recursive formulas for discrete-time models can be obtained without
assuming a claim severity distribution and are readily programmable. The models,
techniques used, and results for discrete-time risk models are of independent scien-
tific interest. Moreover, results for discrete-time risk models can give, in addition,
a simpler understanding of their continuous-time analog. For example, these results
can serve as approximations or bounds for the corresponding results in continuous-
time models. The expected discounted penalty functions and their special cases in
the compound binomial model and its extensions are reviewed. In particular, the
discrete-time Sparre Andersen models with Km interclaim times and general inter-
claim times are treated, as well as other extensions to the compound binomial model
including time-correlated claims and general premium rates, the compound Markov
binomial risk model, and the compound binomial model defined in a Markovian
environment.

Two papers [344, 345], not included in [272], deal with finite-time and ultimate
ruin probability, respectively, for the following discrete-time model. It is supposed
that the cumulative loss process has independent and stationary increments, the incre-
ments per unit of time take nonnegative integer values and their distribution {ak}k≥0

has a finite mean ā. The premium receipt process {ck}k≥0 is deterministic, nonneg-
ative, and nonuniform. In addition, it is assumed that there exists a constant c > ā
such that the deviation

∑t
k=0(ck − c) is bounded as the time t varies. In particu-

lar, P(τ = ∞), where τ is the ruin time, is obtained as limt→∞ P(τ > t), first, if
c = d−1 for some positive integer d, then general case if a0 > 0.5.

A class of compound renewal (Sparre Andersen) risk processes with claim wait-
ing times having a discrete Km distribution is studied in [262, 263]. The classical
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compound binomial risk model is a special case when m = 1. A recursive formula
is derived in the former paper for the expected discounted penalty (Gerber–Shiu)
function, which can be used to analyze many quantities associated with the time of
ruin. In the latter paper, an explicit formula for the Gerber–Shiu function is given in
terms of a compound geometric distribution function. The finite-time ruin probability
under the compound binomial model is treated in [273].

Discrete-time multi-risks insurance model is considered in [346]. The model de-
scribes the evolution in discrete time of an insurance portfolio covering several in-
terdependent risks. The main problem under study is the determination of the proba-
bilities of ruin over a finite horizon, for one or more risks. An underlying polynomial
structure in the expression of these probabilities is exhibited. This result is then used
to provide a simple recursive method for their numerical evaluation.

The discounted factorial moments of the deficit in discrete-time renewal risk
model are treated in [50]. The discrete stationary renewal risk model and the Gerber–
Shiu discounted penalty function were considered in [335].

We would also like to mention some papers considering other aspects of discrete-
timemodels. Thus, two discrete-time riskmodels under rates of interest are dealt with
in [98]. Stochastic inequalities for the ruin probabilities are derived by martingales
and renewal recursive techniques.

In [149], the authors discuss a situation in which a surplus process is modified
by the introduction of a constant dividend barrier. They extend some known results
relating to the distribution of the present value of dividend payments until ruin in the
classical risk model by allowing the process to continue after ruin. Moreover, they
show how a discrete-time risk model can be used to provide approximations when
analytic results are unavailable. Discrete-time financial surplus models for insurance
companies are proposed in [218].Ageneralization of the expected discounted penalty
function in a discrete-time insurance risk model is introduced in [250].

Survival probabilities for compound binomial risk model with discrete phase-
type claims are dealt with in [397]. Asymptotic ruin probabilities for a discrete-time
risk model with dependent insurance and financial risks are obtained in [427], the
ruin probability in a dependent discrete-time risk model with insurance and financial
risks is studied in [426], whereas asymptotic results are established for a discrete-
time risk model with Gamma-like insurance risks in [425]. Discrete-time insurance
risk models with dependence structure are treated in the thesis [404]. A thorough
analysis of the generalized Gerber–Shiu function in discrete-time dependent Sparre
Andersen model is presented in the quite recent thesis [350].

Randomized observation periods were considered for compound Poisson risk
model in [16] in connection with dividend payments. The authors study a modifi-
cation of the horizontal dividend barrier strategy by introducing random observa-
tion times at which dividends can be paid and ruin can be observed. This model
contains both the continuous-time and the discrete-time risk model as a limit and
represents a certain type of bridge between them which still enables the explicit cal-
culation of moments of total discounted dividend payments until ruin. In [17] for
Erlang(n) distributed inter-observation times, explicit expressions for the discounted
penalty function at ruin are derived. The resulting model contains both the usual
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continuous-time and the discrete-time risk model as limiting cases, and can be used
as an effective approximation scheme for the latter. Optimal dividend payout in
random discrete time is treated in [15].

In [434], a Markov additive insurance risk process under a randomized dividend
strategy in the spirit of [16] is considered. Decisions on whether to pay dividends
are only made at a sequence of dividend decision time points whose intervals are
Erlang(n) distributed. At a dividend decision time, if the surplus level is larger than a
predetermined dividend barrier, then the excess is paid as a dividend as long as ruin
has not occurred. In contrast to [16], it is assumed that the event of ruin is monitored
continuously (as in [30, 433]), i.e., the surplus process is stopped immediately once
it drops below zero. The quantities of interest include the Gerber–Shiu expected
discounted penalty function and the expected present value of dividends paid until
ruin. Solutions are derived with the use of Markov renewal equations. Numerical
examples are given, and the optimal dividend barrier is identified in some cases.

In [229], the authors focus on the development of a recursive computational pro-
cedure to calculate the finite-time ruin probabilities and expected total discounted
dividends paid prior to ruin associated with a model which generalizes the single
threshold-based risk model introduced in [152]. Namely, a discrete-time dependent
Sparre Andersen risk model with multiple threshold levels is considered in an effort
to characterize an insurer’s minimal capital requirement, dividend paying scenarios,
and external financial activities related to both investment and loan undertakings.

Computational aspects are also treated in [18]. A Sparre Andersen insurance risk
model in discrete time was analyzed there as a doubly infinite Markov chain to
establish a computational procedure for calculating the joint probability distribution
of the time of ruin, the surplus immediately prior to ruin, and the deficit at ruin.
Discounted factorial moments of the deficit in discrete-time renewal risk model are
studied in [50].

Cost approach for solving discrete-time actuarial problemswas introduced in [90],
see also [89, 93–96].

The paper [70] deals with the discrete-time riskmodel with nonidentically distrib-
uted claims. The recursive formula of finite-time ruin probability is obtained, which
enables one to evaluate the probability of ruin with desired accuracy. Rational valued
claims and nonconstant premium payments are considered.

In [226], a discrete-timemodel of insurance company is considered. It is supposed
that the company applies a dividend barrier strategy. The limit distribution for the
time of ruin normalized by its expected value is found. It is assumed that shareholders
cover the deficit at the time of ruin. The barrier strategies maximizing shareholders’
dividends and profit accumulated until ruin are investigated. In case the additional
capital is injected right after the ruin to enable infinite performance of the company,
existence of optimal strategies is proved both for expected discounted dividends and
net profit.

A discrete-time model for the cash flow of an insurance portfolio/business in
which the net losses are random variables, while the return rates are fuzzy numbers
was studied in [399]. The shape of these fuzzy numbers is assumed trapezoidal,
Gaussian or lognormal, the last one having a more flexible shape than the previous
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ones. For the resulting fuzzymodel, the fuzzy present value of its wealth is evaluated.
The authors propose an approximation for the chance of ruin and a ranking criterion
which could be used to compare different risk management strategies. A discrete-
time insurance model with reinvested surplus and a fuzzy number interest rate is
investigated in [307].

The discrete-time risk model with nonidentically distributed claims is studied in
[70]. The recursive formula of finite-time ruin probability is obtained, which enables
one to evaluate the probability of ruin with desired accuracy. Rational valued claims
and nonconstant premium payments are considered. Some numerical examples of
finite-time ruin probability calculation are presented. Ruin probability in the three-
seasonal discrete-time riskmodel is obtained in [190]. It is also interesting tomention
a discrete-time pricing model for individual insurance contracts studied in [325].

6 Examples

Below, we give three simple examples to demonstrate the problems and methods we
did not discuss earlier and present some results of the author. At first, we deal with
dividends optimization by reinsurance treaty with liability constraint, published in
[87]. Then the stability of the periodic review model of insurance company perfor-
mance with capital injections and reinsurance, introduced in [96], is studied. The
full version of this results will be submitted for publication elsewhere. Finally, some
limit theorems for generalized renewal processes introduced in [88] are provided.

6.1 Limited Liability of Reinsurer and Dividends

Below, we give some results proved in [87] concerning the dividend payments under
barrier strategy and excess of loss reinsurance with limited liability of reinsurer in
the framework of Cramér–Lundberg model.

Denote by d the retention level and by l the reinsurer’s liability. Let Y be the initial
claim size of direct insurer. Then, his payment under the above mentioned treaty is
Yl = min(d,Y ) + max(Y − l − d, 0), whereas the reinsurer’s payment is equal to
Y ′
l = min(max(Y − d, 0), l). We assume that X (0) = x ≤ b, hence, the insurer’s

surplus X (t) never exceeds the dividend barrier b.
Let us suppose that direct insurer and reinsurer use for premiums calculation the

expected value principle with loads θ and θ1 respectively (and θ1 > θ > 0). Then
the insurer’s premium net of reinsurance cl has the form

cl = λ(1 + θ)p1 − λ(1 + θ1)

d+l∫

d

(1 − F(y)) dy
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where λ is the intensity of the Poisson process describing claim arrivals, F(y) is
the claim distribution function with density p(y) and the expected claim value p1 =
∞∫

0
yp(y) dy.

Theorem 1 The integro-differential equation for expected total discounted divi-
dends until ruin, under reinsurance treaty, V (x, b, d, l) can be written for 0 < x < d
as follows

c̃lV
′(x, b, d, l) − (1 + α)V (x, b, d, l) +

x∫

0

V (y, b, d, l)p(x − y) dy = 0

and for d ≤ x < b

c̃lV
′(x, b, d, l) − (1 + α)V (x, b, d, l) +

x∫

x−d

V (y, b, d, l)p(x − y) dy

+V (x − d, b, d, l)(F(d + l) − F(d)) +
x−d∫

0

V (y, b, d, l)p(l + x − y) dy = 0

with c̃l = clλ−1, α = δλ−1 and boundary condition V ′(b, b, d, l) = 1.

Turning to exponential claim distribution with parameter β, one obtains the fol-
lowing results.

Theorem 2 For 0 < x < d, the function V (x, b, d, l) satisfies the second-order dif-
ferential equation

c̃lV
′′(x, b, d, l) + (β c̃l − (1 + α))V ′(x, b, d, l) − αβV (x, b, d, l) = 0,

whereas for d ≤ x < b one has

c̃lV
′′(x, b, d, l) + (β c̃l − (1 + α))V ′(x, b, d, l) − αβV (x, b, d, l)

= −e−βd F(l)V ′(x − d, b, d, l).

Here, c̃l = β−1
(
(1 + θ) + (1 + θ1)e−βd(e−βl − 1)

)
.

Theorem 3 For the exponential claim distribution, the optimal dividend barrier, un-
der excess of loss reinsurance treaty with limited liability of reinsurer and assumption
0 < x ≤ b < d, is given by

b∗
l = b∗(rl, sl) = 1

rl − sl
ln

s2l (sl + β)

r2l (rl + β)
.
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Here, rl > 0, sl < 0 are the roots of the characteristic equation

c̃lξ
2 + (β c̃l − (1 + α)) ξ − αβ = 0.

Assume the claims to be uniformly distributed on the interval [0, h]. It is reason-
able to suppose that d + l < h.

Theorem 4 For 0 < x < d, the function V (x, b, d, l) satisfies the second-order dif-
ferential equation

c̃lV
′′(x, b, d, l) − (1 + α)V ′(x, b, d, l) + 1

h
V (x, b, d, l) = 0, (7)

whereas for d ≤ x < h − l one has

c̃l V
′′(x, b, d, l) − (1 + α)V ′(x, b, d, l) + 1

h
V (x, b, d, l) + l

h
V ′(x − d, b, d, l) = 0 (8)

and for h − l ≤ x < b

c̃lV
′′(x, b, d, l) − (1 + α)V ′(x, b, d, l) + 1

h
V (x, b, d, l) (9)

+ l

h
V ′(x − d, b, d, l) − 1

h
V (x − (h − l), b, d, l) = 0.

Here, c̃l = (1 + θ) h2 − l(1 + θ1)(1 − 2d+l
2h ).

Theorem 5 If the claim distribution is uniform on interval [0, h] and the roots
of characteristic equation corresponding to differential equation (7) are real then
the optimal dividend barrier b under assumption 0 < x ≤ b < d is equal to initial
capital of insurance company x.

To calculate V (x, b, d, l) for d ≤ x < b it is possible to use the following algo-
rithm

1. Find expression of V (x, b, d, l) on interval (0, d).
2. Let h − l ∈ (nd, (n + 1)d] for n = 1, 2, . . .. The form of the function on half-

interval [kd, (k + 1)d) for 1 ≤ k ≤ n − 1 can be obtained using its form on
half-interval [(k − 1)d, kd) and Eq. (8), the same is true for the last half-interval
[nd, h − l).

3. For x ∈ [h − l, (n + 1)d) according to (9) the function V (x, b, d, l) depends
on V ′(x − d, b, d, l) and V (x − (h − l), b, d, l). The same is true for x ≥ (n +
1)d. Similarly, for h − l ≤ x < b, we use the expression of the function on two
previous half-intervals.

Thus, for the exponential and uniform claim distributions, we have considered
the barrier dividend strategy and obtained the form of optimal barrier level b∗

l for
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the model with limited reinsurer’s liability l in the excess of loss reinsurance treaty
having retention d.

Some results pertaining to the case of variable barriers which are changed af-
ter each claim arrival are obtained in [316], whereas a generalization of Lundberg
inequality for the case of a joint-stock insurance company one can find in [314].

6.2 Discrete-Time Model with Reinsurance and Capital
Injections

A periodic review insurance model is considered under the following assumptions.
In order to avoid ruin, the insurer maintains the company surplus above a chosen
level a by capital injections at the end of each period. One-period insurance claims
form a sequence {ξn}n≥1 of independent identically distributed nonnegative random
variableswith a knowndistribution function and finitemean. The company concludes
at the end of each period the stop-loss reinsurance treaty. If the retention level is
denoted by z > 0 then c(z) is the insurer premium (net of reinsurance). It is necessary
to choose the sequence of retention levels minimizing the total discounted injections
during n periods.

Let x be the initial surplus of insurance company. One-period minimal capital
injections are defined as follows

h1(x) := inf
z>0

EJ (x, z), where J (x, z) = (min(ξ, z) − (x − a) − c(z))+ .

For the n-step model, n ≥ 1, the company surplus X (n) at time n is given by the
relation

X (n) = max(X (n − 1) + c(z) − min(ξ, z), a), X (0) = x .

It was proved in [96] that the minimal expected discounted costs injected in company
during n years satisfy the following Bellman equation

hn(x) = inf
z>0

(EJ (x, z) + αEhn−1(max(x + c(z) − min(ξ, z), a))), h0(x) = 0,

(10)
where 0 < α < 1 is the discount factor.

Under assumption that premiums of insurer and reinsurer are calculated according
to mean value principle, the optimal reinsurance strategy was established. It turned
out that its character depends on the relationship between the safety loading of insurer
and reinsurer.

An important problem is investigation of the system asymptotic behavior and
its stability with respect to parameters fluctuation and perturbation of underlying
processes. It was established in [96] that hn(x) → h(x) as n → ∞ uniformly in x .
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The analysis of the model sensitivity to cost parameters fluctuations is carried out,
in the same way as in [95], using the results of [92, 324, 364, 386].

To study the perturbations of the processes one has to use the probability metrics,
see, e.g., [353].

Definition 2 For random variables X and Y defined on some probability space
(Ω,F , P) and possessing finite expectations, it is possible to define their distance
on the base of Kantorovich metric in the following way

κ(X,Y ) =
∫ +∞

−∞
|F(t) − G(t)|dt,

where F and G are the distribution functions of X and Y respectively.

This metric coincides (see, e.g. [150] or [382]) with Wasserstein L1 metric defined
as d1(F,G) = inf E|X − Y | where infimum is taken over all jointly distributed X
and Y having marginal distribution functions (d.f.’s) F and G. It is supposed that
both d.f.’s belong to B1 consisting of all F such that

∫ +∞
−∞ |x | dF(x) < ∞.

Lemma 1 The following statements are valid.
1. Let F−1(t) = inf{x : F(x) ≥ t}, then d1(F,G) = ∫ 1

0 |F−1(t) − G−1(t)| dt.
2. (B1, d1) is a complete metric space.

3. For a sequence {Fn}n≥1 from B1 one has d1(Fn, F) → 0 if and only if Fn
d→

Fn and
∫ +∞
−∞ |x | dFn(x) → ∫ +∞

−∞ |x | dF(x), as n → ∞. Here
d→ denotes, as usual,

convergence in distribution.

The proof can be found in [150].

Lemma 2 Let X,Y be nonnegative random variables possessing finite expected val-
ues and κ(X,Y ) ≤ ρ. Assume also that g : R+ → R+ is a nondecreasing Lipschitz
function. Then κ(g(X), g(Y )) ≤ Cρ where C is the Lipschitz constant.

The next result enables us to estimate the difference between infimums of two func-
tions.

Lemma 3 Let functions f1(z), f2(z)be such that | f1(z) − f2(z)| < δ for some δ > 0
and any z > 0. Then | inf z>0 f1(z) − inf z>0 f2(z)| < δ.

Note that we are going to add the label X to all functions depending on ξ if
ξ ∼ law(X).

Putting Δ1 := supu>a |h1X (u) − h1Y (u)|, we prove the following result.

Theorem 6 Let X, Y be nonnegative random variables possessing finite expecta-
tions, moreover κ(X,Y ) ≤ ρ. Then

Δ1 ≤ (1 + l + m)ρ
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where l and m are the safety loading coefficients of insurer and reinsurer premiums,
respectively. Both premiums are calculated according to expected value principle
and 1 < l < m.

For the multistep case, we get the following results.

Lemma 4 Function hn(u) defined by (10) is non-increasing in u.

Lemma 5 For each n ≥ 0 and any u ≥ a, the following inequality is valid

|hn(u + Δu) − hn(u)| ≤ CnΔu,

where Cn = (1 − αn)(1 − α)−1.

To establish the model stability, we put Δn = supu>a |hnX (u) − hnY (u)| and for-
mulate the following result.

Theorem 7 Let X, Y be nonnegative random variables having finite means and
κ(X,Y ) ≤ ρ. Then

Δn ≤
(

n−1∑

i=0

αiCn−i

)
(1 + l + m)ρ,

here 0 < α < 1 is the discount factor, 1 < l < m are the safety loadings of insurer
and reinsurer and Ck, k ≤ n, were defined in Lemma 5.

Furthermore, in practice neither the exact values of parameters nor the processes
distributions are known. Thus, it is important to study the systems behavior under
incomplete information. The estimates of distribution parameters are easily obtained
on the base of previous observations.

If there is no a priori information, it may be useful to employ the empirical
processes, see, e.g., [382].

For each fixed t ∈ R, the difference Hn(ω, t) =: Fn(ω, t) − Gn(ω, t) of two
empirical distribution functions is a real-valued function of the random vector
(X1,Y1, . . . , Xn,Yn) defined on a probability space (Ω,F , P), namely,

Hn(ω, t) = 1

n

n∑

i=1

I {Xi ≤ t} − 1

n

n∑

i=1

I {Yi ≤ t} = 1

n

n∑

i=1

ζi (t),

where ζi (t) = I {Xi ≤ t} − I {Yi ≤ t}, i = 1, n.

According to properties of convergence in distribution, we get immediately the
following result

Lemma 6 For any t ∈ R, as n → ∞,

√
n |Fn(ω, t) − Gn(ω, t) − (F(t) − G(t))| d→

√
F(t) + G(t) − (F2(t) + G2(t))|N (0, 1)|.
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We have also obtained a functional limit theorem. The established results are used to
construct the empirical asymptotically optimal policies for the discrete-time model.
The following three-step algorithm is proposed

1. Find the optimal control for known parameters and distributions.
2. Obtain stationary asymptotically optimal policy.
3. Calculate empirical asymptotically optimal policy using previous observations.

6.3 Generalized Renewal Processes

It is well known that ordinary renewal processes are widely used in various applica-
tions of probability theory not only in insurance, see, e.g., [309]. However, they are
appropriate for the study of systems with time-homogeneous evolution.

In order to take into account the initial phase of a system functioning or its sea-
sonal variations several generalizations of renewal processes are introduced, see, e.g.,
[88]. We focus here on delayed periodic processes and investigate their asymptotic
behavior, in particular, state the strong law of large numbers and functional limit
theorem. Some results concerning the reward-renewal processes are also provided.

Definition 3 Let {Tn}n≥1 be a sequence of independent nonnegative random vari-
ables, Fj , j = 1, . . . , l, being the distribution function of variable Tql+ j for some
fixed integer l ≥ 1, q = 0, 1, . . .. Let {Xi }i=0,...,k−1 be another sequence of nonneg-
ative independent r.v.’s with distribution functions Gi , respectively. The sequences
{Tn} and {Xi } are also supposed to be independent.

The delayed periodical renewal process is formed in the following way: Sn =
X0 + · · · + Xn , 0 ≤ n ≤ k − 1, whereas Sn = Sk−1 + T1 + · · · + Tn−k+1 for n ≥ k.
The partial sums Sn are called the renewals (or renewal epochs) and the summands
X j and Ti are the intervals between the renewals.

It is reasonable to call l the process period and k the length of delay, thus we have,
say (k, l)-process. Taking l = 1, k = 1 and X0 = 0, we obtain the ordinary renewal
process. We can also consider the following types of generalized renewal processes

• generalized delayed process corresponds to l = 1, k > 1,
• putting k = 1, X0 = 0 and leaving l > 1 we obtain a periodic renewal process;
• a special case of the periodic process with l = 2 is a well-known alternating
process.

The asymptotic behavior of ordinary renewal process is thoroughly studied. Cen-
tral limit theorem (CLT), strong law of large numbers (SLLN) and functional limit
theorem (FCLT) are proved for them.

We have proved the same theorems for our generalized processes. In order to
do this, we established that the delay length does not have any influence on the
asymptotic behavior of a renewal process.
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Lemma 7 Let {Tn}n≥1 and {Xi }i≥0 be two independent sequences of independent
r.v.’s. Put S j = ∑ j

i=1 Ti , the delayed sequence {Σn}n≥0 is given byΣn = X0 + · · · +
Xn, 0 ≤ n ≤ k − 1, while Σn = Σk−1 + Sn−k+1 for n ≥ k.

If there exists an almost sure (a.s.) convergence n−1Sn → μ, then for any fixed k
there exists the same limit for the delayed sequence:

n−1Σn → μ a.s. as n → ∞.

Lemma 8 Let {Sn} and {Σn} be the sequences defined in Lemma 7. Assume that
all random variables have finite mathematical expectations. If there exists a number
σ > 0 such that

Sn − ESn
σ
√
n

d→ ξ, as n → ∞,

where ξ has a standardGaussian distribution, then for any fixed k the same statement
is true for Σn, that is,

Σn − EΣn

σ
√
n

d→ ξ as n → ∞.

Symbol
d→ denotes weak convergence of random variables.

Lemma 9 If there exists a finite number μ such that n−1Sn → μ a.s., then there is
an a.s. convergence

t−1Nt → μ−1 as t → ∞.

Lemma 10 If there exist numbers μ and σ such that

Sn − nμ

σ
√
n

d→ ξ as n → ∞,

where ξ is a random variable having a standard Gaussian distribution, then

Nt − tμ−1

σ
√
tμ−3

d→ ξ as t → ∞.

Theorem 8 (SLLN) Let Sn be a delayed periodical renewal process. Suppose that
all the summands Tql+i have finite mathematical expectation μi < ∞, i = 1, . . . , l.
Then a.s.

Nt

t
→ l

μ
as t → ∞.

Here, the counting process Nt is defined as earlier, Nt = min{n ≥ 0 : Sn > t} and
μ = μ1 + · · · + μl .

Theorem 9 (CLT) Suppose that r.v.’s Tlq+i have finite mathematical expectations
μi and variances 0 < σ 2

i < ∞ respectively, i = 1, . . . , l, and r.v. X j has finite



New Research Directions in Modern Actuarial Sciences 389

mathematical expectation ν j , j ≥ 1. Then, as t → ∞, we have

Nt − tlμ−1

σ l
√
tμ−3

d→ ξ

whereμ = μ1 + · · · + μl , σ 2 = σ 2
1 + · · · + σ 2

l and r.v. ξ has the standard Gaussian
distribution.

Next, we state the functional limit theorem for the generalized renewal process
{Sn} treated in Theorem 9.

Theorem 10 (FCLT) Put μ = μ1 + · · · + μl , σ 2 = σ 2
1 + · · · + σ 2

l and

Zn(t, ω) = Nnt (ω) − ntlμ−1

σ l
√
nμ−3

,

Then, Zn
D→ W as n → ∞.

It is interesting to deal with controlled processes introduced in [236].

Definition 4 Xt is a controlled version of Nt if it is formed by the sequence of
S′
n = ∑n

i=0 T
′
i where T ′

i = Ti/v(i), 0 < v(i) < ∞. In other words, the i th inter-
renewal time is scaled by a (deterministic) function of the number of previous times.
The function v is called the speed of the process.

Note that for a constant speed v(i) = c one gets Xt = Ntc.
For controlled versions of renewal processes, one can consider the so-called fluid

(deterministic) and diffusion approximations. More precisely, consider a twice con-
tinuously differentiable function c : (0,∞) → (0,∞), and define the nth approxi-
mation Xn to N as the controlled renewal process with the speed vn(i) = nc(i/n).

Thus, Xn is a point process with points generated by T n
j = Tj/nc( j/n). We

assume Ti to have finite mean and variance denoted by μ and σ 2, respectively.

Theorem 11 (Fluid approximation) Consider the ODE x ′
t = μ−1c(xt ), t ≥ 0, with

x0 = 0 and assume that c is such that xt remains finite for all t > 0. Let xnt = n−1Xn
t .

Then, xn converges to the solution x of the ODE, as n → ∞, in the sense that for
any ε > 0 and any T > 0,

lim
n→∞ P( sup

0≤t≤T
|xnt − xt | > ε) = 0.

Theorem 12 (Diffusion approximation) Consider the process ξ n
t = √

n(xnt − xt ).
Let D[0,∞) denote the space of càdlàg functions endowed with the Skorokhod
topology. Then ξ n converges weakly, as n → ∞, to the solution of the following
SDE

dξt = μ−1c′(xt )ξt dt +
√

μ−3σ 2c(xt )dWt , t ≥ 0,

ξ0 = 0. Here Wt is a Wiener process and xt is the solution of ODE.
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At last, we turn to reward-renewal processes.

Definition 5 Let (Ti ,Yi )i≥0 be a bivariate renewal sequence (vectors are i.i.d. for
i > 0 and Ti ≥ 0). Then, Yt = ∑Nt

i=0 Yi is called a reward-renewal process.

Theorem 13 If there exist ETi = μ and EYi = δ, i ≥ 1, then almost surely

Yt
t

→ δ

μ
, as t → ∞.

Theorem 14 If {Tn}n≥1 and {Yn}n≥1 are periodic renewal sequences with periods l1
and l2 respectively and there exist ETi = μi , EYi = δi , then almost surely

lim
t→∞

Yt
t

= l1
l2

∑l2
i=1 δi∑l1
i=1 μi

.

Note that limt→∞ t−1Yt represents the long-run costs and widely used as objective
function in various applications.

It is possible to consider purely stochastic model (difference of two reward-
renewal processes) generalizing the model introduced in [247].

X (t) = x + Z(t) − Y (t)

where Z(t) = ∑N1(t)
i=1 Zi , N1(t) is generated by l3 periodic process and {Zi } form a

l4 periodic process, the corresponding means being μ′
i and δ′

i . Then

lim
t→∞

X (t)

t
= l1

l2

∑l2
i=1 δi∑l1
i=1 μi

− l3
l4

∑l4
i=1 δ′

i∑l3
i=1 μ′

i

. (11)

The positivity of rhs in (11) is analog of classical net profit condition. Its fulfillment
enables us to state that ultimate ruin probability is less than 1.

Diffusion approximation for insurance models was proposed for the first time by
D.L. Iglehart in 1969, see [212]. It can be useful for estimation of ruin probabilities.

Denote by Wa,σ 2(t) the Wiener process with the mean at and variance σ 2t . This
random process is stochastically equivalent to at + σW (t), whereW (t) is a standard
Wiener process.

The process with stochastic premiums can be approximated (see, e.g., [444]) by
x + Wa,σ 2(t) where ER(t) = at and VarR(t) = σ 2t for R(t) = Z(t) − Y (t). So,
parameters a and σ 2 can be easily calculated.

Hence, ultimate ruin probability is approximated as follows:

ψ(x) ≈ P(inf
t>0

Wa,σ 2(t) < −x) = exp{−2xa/σ 2}

and ruin probability on finite interval
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ψ(x, T ) ≈ P( inf
0<t≤T

Wa,σ 2(t) < −x)

= 1 − Φ

(
aT + x

σ
√
T

)
+ exp{−2xa/σ 2}Φ

(
aT − x

σ
√
T

)
.

We have obtained the diffusion approximation and FLCT for the difference of
two periodic renewal-reward processes to be published elsewhere.

7 Conclusion

Actuarial science is a fast growing research domain, so it turned out impossible even
to include all recent publications. In this review, a classification of existing so far
models is given, emphasizing the role of the new ones. Since some of the models
possess several characteristics such as implementation of investment, reinsurance,
capital injections, and so on, they can be mentioned not only in one group. Summing
up, it is necessary to stress that three new notions of ruin (absolute, Parisian and
Omega) were introduced for treating the solvency and bankruptcy problems. Many
generalizations of Gerber–Shiu function, which unified reliability and cost approach,
allow to investigate more precisely the company surplus behavior in order to control
it avoiding bankruptcy. On the other hand, various extensions of classical Cramér–
Lundberg and Sparre Andersen models aim at better description of reality, although
they demand more profound knowledge of mathematics. So, hopefully, the review
will be useful for the researcher in applied probability and professor teaching future
actuaries, as well as, students themselves.
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