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Abstract This paper is a survey of existing estimation techniques for an unknown
drift parameter in stochastic differential equations driven by fractional Brownian
motion. We study the cases of continuous and discrete observations of the solution.
Special attention is given to the fractional Ornstein–Uhlenbeckmodel.Mixedmodels
involving both standard and fractional Brownian motion are also considered.
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1 Introduction

Stochastic differential equations driven by fractional Brownian motion (fBm) have
been the subject of an active research for the last two decades. Themain reason is that
these equations seem to be one of the most suitable tools to model the so-called long-
range dependence in many applied areas, such as physics, finance, biology, network
studies, etc. In modeling, the problem of statistical estimation of model parameters
is of a particular importance, so the growing number of papers devoted to statistical
methods for equations with fractional noise is not surprising.

In this paper, we concentrate on the estimation of an unknown drift parameter θ

in the fractional diffusion process given as the solution to the equation

Xt = X0 + θ

∫ t

0
a(s, Xs) ds +

∫ s

0
b(s, Xs) d B H

s , (1)
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where B H is a fBm with known Hurst index H . The integral with respect to fBm
is understood in the path-wise sense. Special attention is given to the fractional
Ornstein–Uhlenbeck process, which is a solution of the following Langevin equation

Xt = X0 + θ

∫ t

0
Xs ds + B H

s , (2)

and to its generalizations. This model has been studied since the early 2000s, and
comparing to the general case, it has been well developed for now. The asymptotic
and explicit distributions for various estimators were obtained, and almost sure limit
theorems, large deviation principles, and Berry–Esséen bounds were established for
this model. In the general case, only strong consistency results are known, up to our
knowledge.

Note thatwhen H = 1/2weobtain a diffusionmodel driven by standardBrownian
motion. The statistical inference for suchmodels has been thoroughly studied by now,
presented in many papers, and summarized in several books, see, e.g., [11, 28, 33,
35, 44, 46, 66, 70] and references cited therein. At the same time, we can mention
only the book [67] devoted to fractional diffusions (some fractional models are also
considered in [11, 51]). In the present article, we try to present the most recent
achievements in this field focusing on rather general models.

We also study the following mixed model

Xt = X0 + θ

∫ t

0
a(s, Xs) ds +

∫ s

0
b(s, Xs) d B H

s +
∫ s

0
c(s, Xs) dWs, (3)

which contains both standard and fractional Brownian motion. The motivation to
consider such equations comes, in particular, from financial mathematics. When it
is necessary to model randomness on a financial market, it is useful to distinguish
between two main sources of this randomness. The first source is the stock exchange
itself with thousands of agents. The noise coming from this source can be assumed
white and is best modeled by a Wiener process. The second source has the financial
and economic background. The random noise coming from this source usually has
a long-range dependence property, which can be modeled by a fBm B H with the
Hurst parameter H > 1/2. As examples of the Eq. (3), we consider linear and mixed
Ornstein–Uhlenbeck models.

Note that in the present paper the parameter H is considered to be known. The
problem of the Hurst parameter estimation in stochastic differential equations driven
by fBm was studied in [9, 40, 41], for mixed models see [21].

Let us mention briefly some related models that are not considered in this arti-
cle. First note that if a = b = c ≡ 1, then we get simple models Xt = θ t + B H

t and
Xt = θ t + B H

t + Wt . They were studied in [8, 16, 32], respectively. Recently, a
similar mixed model with two fractional Brownian motions was considered in [52,
56]. Prakasa Rao [67] investigated the equation d Xt = [a(t, Xt ) + θb(t, Xt )] dt +
σ(t) d B H

t . He studied maximum likelihood, Bayes, and instrumental variable esti-
mation in this model. Multiparameter equations with additive fractional noise were
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considered in [18, 71].Multidimensionalmodelwas investigated [60]. In [19, 50], the
so-called sub-fractional Ornstein–Uhlenbeck process was studied, where the process
B H

t in (2) was replaced with a sub-fractional Brownian motion. A model with more
general Gaussian noise was considered in [22]. For the parameter estimation in the
so-called fractional Ornstein–Uhlenbeck process of the second kind, see [1, 2]. Lin-
ear and Ornstein–Uhlenbeck models with multifractional Brownian motion were
studied in [20]. The parameter estimation for partially observed fractional models
related to fractional Ornstein–Uhlenbeck process was investigated in [7, 14, 15, 23].

The paper is organized as follows. In Sect. 2 the basic facts about fBm, path-wise
stochastic integration, pure and mixed stochastic differential equations with fBm are
given. Section3 is devoted to the case of estimation by continuous-time observations
in the fractional model (1), when the whole trajectory of the solution is observed.
In Sect. 4, we consider the discrete-time versions of this model. Mixed models are
discussed in Sect. 5.

2 Basic Facts

In this section, we review basic properties of the fBm (Sect. 2.1), consider the path-
wise integration using the fractional calculus (Sect. 2.2), and give the existence
and uniqueness theorems for stochastic differential equations driven by fBm with
H > 1/2 (Sect. 2.3) and for mixed stochastic differential equations with long-range
dependence, involving both Wiener process and fBm with H > 1/2 (Sect. 2.4).

2.1 Fractional Brownian Motion

Let (Ω,F ,F ,P) be a complete probability space with filtration F = {Ft , t ∈ R
+}

satisfying the standard assumptions. It is assumed that all processes under consider-
ation are adapted to filtration F .

Definition 2.1 Fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1) is a
Gaussian process B H = {

B H
t , t ∈ R

+}
on (Ω,F ,P) featuring the properties

(a) B H
0 = 0;

(b) EB H
t = 0, t ∈ R

+;
(c) EB H

t B H
s = 1

2

(
t2H + s2H − |t − s|2H

)
, s, t ∈ R

+.

It is not hard to see that for H = 1/2 fBm is a Brownian motion. For H �= 1/2
the fBm is neither a semimartingale nor a Markov process.

The fBm was first considered in [37]. Stochastic calculus for fBm was developed
byMandelbrot and vanNess [48],who obtained the following integral representation:

B H
t = aH

{∫ 0

−∞

[
(t − s)H− 1

2 − (−s)H− 1
2

]
dWs +

∫ t

0
(t − s)H− 1

2 dWs

}
,
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whereW = {Wt , t ∈ R} is aWiener process, and aH =
√

2HΓ ( 3
2 −H)

Γ (H+ 1
2 )Γ (2−2H)

,Γ denotes

the Gamma function.
Another representation of the fBm was obtained in [61]:

B H
t =

∫ t

0
gH (t, s) dWs, t ∈ [0, T ],

where W = {Wt , t ≥ 0} is a Wiener process, and

gH (t, s) = aH

[(
t

s

)H− 1
2

(t − s)H− 1
2 − (

H − 1
2

)
s

1
2 −H

∫ t

s
(v − s)H− 1

2 vH− 3
2 dv

]
.

For H > 1/2 this expression can be slightly simplified:

gH (t, s) = (
H − 1

2

)
aH s

1
2 −H

∫ t

s
(v − s)H− 3

2 vH− 1
2 dv.

Definition2.1 implies that the fBm is self-similar with the self-similarity parame-

ter H , that is, {BH (ct)} D= {
cH B H (t)

}
for any c > 0, where

D= denotes the distribu-
tional equivalence.

The fBm has stationary increments in the sense that E
(
B H

t − B H
s

)2 = |t − s|2H .
Taking into account that the process B H is Gaussian, one can deduce from the
Kolmogorov theorem that it has the continuous (and even Hölder continuous up to
order H ) modification. In what follows, we consider this modification of fBm.

The increments of the fBm are independent only in the case H = 1/2. They are
negatively correlated for H ∈ (0, 1/2) and positively correlated for H ∈ (1/2, 1).
Moreover, for H ∈ (1/2, 1) the fBm has the property of long-range dependence.
This means that

∑∞
n=1 |r(n)| = ∞, where r(n) = EB H

1

(
B H

n+1 − B H
n

)
is the autoco-

variance function.
Jost [34] established the formula for the transformation of an fBm with positively

correlated increments into an fBm with negatively correlated increments, and vice
versa. Let B H = {

B H
t , t ∈ [0, T ]} be an fBm with Hurst index H ∈ (0, 1). Then

there exists a unique (up to modification) fBm B1−H = {
B1−H

t , t ∈ [0, T ]} with
Hurst index 1 − H such that

B H
t =

(
2H

Γ (2H)Γ (3 − 2H)

) 1
2
∫ t

0
(t − s)2H−1 d B1−H

s ,

where the integral with respect to fBm is a fractional Wiener integral.
For more details on fBm we refer to the books [10, 51, 62].
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2.2 Elements of Fractional Calculus and Fractional
Integration

In this subsection, we describe a construction of the path-wise integral following the
approach developed by Zähle [76–78]. We start by introducing fractional integrals
and derivatives, see [69] for the details on the concept of fractional calculus.

Definition 2.2 Let f ∈ L1(a, b). The Riemann–Liouville left- and right-sided frac-
tional integrals of order α > 0 are defined for almost all x ∈ (a, b) by

Iα
a+ f (x) := 1

Γ (α)

∫ x

a
(x − y)α−1 f (y) dy,

Iα
b− f (x) := (−1)−α

Γ (α)

∫ b

x
(y − x)α−1 f (y) dy,

respectively, where (−1)−α = e−iπα .

Definition 2.3 For a function f : [a, b] → R the Riemann–Liouville left- and right-
sided fractional derivatives of order α (0 < α < 1) are defined by

Dα
a+ f (x) := 1(a,b)(x)

1

Γ (1 − α)

d

dx

∫ x

a

f (y)

(x − y)α
dy,

Dα
b− f (x) := 1(a,b)(x)

(−1)1+α

Γ (1 − α)

d

dx

∫ b

x

f (y)

(y − x)α
dy.

Denote by Iα
a+(L p) (resp. Iα

b−(L p)) the class of functions f that can be pre-
sented as f = Iα

a+ϕ (resp. f = Iα
b−ϕ) for ϕ ∈ L p(a, b). For f ∈ Iα

a+(L p) (resp.
f ∈ Iα

b−(L p)), p ≥ 1, the corresponding Riemann–Liouville fractional derivatives
admit the following Weyl representation

Dα
a+ f (x) = 1

Γ (1 − α)

(
f (x)

(x − a)α
+ α

∫ x

a

f (x) − f (y)

(x − y)α+1
dy

)
1(a,b)(x),

Dα
b− f (x) = (−1)α

Γ (1 − α)

(
f (x)

(b − x)α
+ α

∫ b

x

f (x) − f (y)

(y − x)α+1
dy

)
1(a,b)(x),

where the convergence of the integrals holds pointwise for a. a. x ∈ (a, b) for p = 1
and in L p(a, b) for p > 1.

Let f, g : [a, b] → R. Assume that the limits

f (u+) := lim
δ↓0 f (u + δ) and g(u−) := lim

δ↓0 f (u − δ)

exist for a ≤ u ≤ b. Denote
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fa+(x) = ( f (x) − f (a+))1(a,b)(x),

gb−(x) = (g(b−) − g(x))1(a,b)(x).

Definition 2.4 ([76]) Assume that fa+ ∈ Iα
a+(L p), gb− ∈ I1−α

b− (Lq) for some
1/p + 1/q ≤ 1, 0 < α < 1. The generalized (fractional) Lebesgue–Stieltjes inte-
gral of f with respect to g is defined by

∫ b

a
f (x) dg(x) :=(−1)α

∫ b

a
Dα

a+ fa+(x)D1−α
b− gb−(x) dx+

+ f (a+)
(
g(b−) − g(a+)

)
.

(4)

Note that this definition is correct, i. e. independent of the choice of α ([76, Propo-
sition2.1]). If αp < 1, then (4) can be simplified to

∫ b

a
f (x) dg(x) := (−1)α

∫ b

a
Dα

a+ f (x)D1−α
b− gb−(x) dx .

In particular, Definition2.4 allows us to integrate Hölder continuous functions.

Definition 2.5 Let 0 < λ ≤ 1. A function f : R → R belongs to Cλ[a, b], if there
exists a constant C > 0 such that for all s, t ∈ [a, b]

| f (s) − f (t)| ≤ C |s − t |λ , s, t ∈ [a, b].

Proposition 2.6 ([76, Theorem4.2.1]) Let f ∈ Cλ[a, b], g ∈ Cμ[a, b] with
λ + μ > 1. Then the assumptions of Definition2.4 are satisfied with any
α ∈ (1 − μ, λ) and p = q = ∞. Moreover, the generalized Lebesgue–Stieltjes inte-
gral

∫ b
a f (x) dg(x) defined by (4) coincides with the Riemann–Stieltjes integral

{R − S}
∫ b

a
f (x) dg(x) := lim|π |→0

∑
i

f (x∗
i )(g(xi+1) − g(xi )),

whereπ ={a = x0 ≤ x∗
0 ≤ x1≤ . . .≤ xn−1 ≤ x∗

n−1 ≤ xn =b}, |π | = maxi |xi+1 − xi |.
Recall that for any μ ∈ (0, H) the trajectories of the fBm B H are μ-Hölder con-

tinuous. Therefore, if Z = {Zt , t ≥ 0} is a stochastic process whose trajectories are
λ-Hölder continuous with λ > 1 − H , then the path-wise integral

∫ T
0 Zt d B H

t is well
defined and coincides with the Riemann–Stieltjes integral.

Remark 2.7 There are many papers devoted to stochastic differential equations with
fBm with different definitions of the stochastic integral. In the present paper, we
concentrate only on the path-wise definition proposed in [76] for H > 1/2. We refer
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to the book [10] (see also [51]) for the extended survey on various approaches on
stochastic integration with respect to fBm and the relations between different types
of integrals.

2.3 Stochastic Differential Equations Driven by fBm

Consider a stochastic differential equation driven by fBm B H = {
B H

t , t ∈ [0, T ]},
H ∈ (1/2, 1) on a complete probability space (Ω,F ,P):

Xt = X0 +
∫ t

0
a(s, Xs)ds +

∫ t

0
b(s, Xs)d B H

s , t ∈ [0, T ]. (5)

Let the function b = b(t, x) : [0, T ] × R → R satisfy the assumptions: b is dif-
ferentiable in x , there exist M > 0, 0 < γ, κ ≤ 1 and for any R > 0 there exists
MR > 0 such that

(A1) b is Lipschitz continuous in x :

|b(t, x) − b(t, y)| ≤ M |x − y|, ∀t ∈ [0, T ], x, y ∈ R;

(A2) x-derivative of b is locally Hölder in x :

|bx (t, x) − bx (t, y)| ≤ MR|x − y|κ , ∀|x |, |y| ≤ R, t ∈ [0, T ];

(A3) b and its spatial derivative are Hölder in time:

|b(t, x) − b(s, x)| + |bx (t, x) − bx (s, x)| ≤ M |t − s|γ , ∀x ∈ R, t, s ∈ [0, T ].

Let the function a = a(t, x) : [0, T ] × R → R satisfy the assumptions

(A4) for any R ≥ 0 there exists L R > 0 such that

|a(t, x) − a(t, y)| ≤ L R|x − y|, ∀|x |, |y| ≤ R,∀t ∈ [0, T ];

(A5) there exists the function a0 ∈ L p[0, T ] and L > 0 such that

|a(t, x)| ≤ L|x | + a0(t), ∀(t, x) ∈ [0, T ] × R.

Fix a parameter α ∈ (0, 1/2). Let W α∞[0, T ] be the space of real-valued measur-
able functions f : [0, T ] → R such that

‖ f ‖∞,α;T = sup
s∈[0,T ]

(
| f (s)| +

∫ s

0
| f (s) − f (u)| (s − u)−1−αdu

)
< ∞.
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Theorem 2.8 ([65]) Let the coefficients a and b satisfy (A1)–(A5) with
p = (1 − H + ε)−1 with some 0 < ε < H − 1/2, γ > 1 − H, κ > H−1 − 1 (the
constants M, MR, R, L R, and the function a0 may depend on ω). Then there exists the
unique solution X = {Xt , t ∈ [0, T ]} of Eq. (5), X ∈ L0(Ω,F ,P, W 1−H+ε∞ [0, T ])
with a.a. trajectories from C H−ε[0, T ].
Remark 2.9 Here we restrict ourselves to the one-dimensional case, but it is worth
mentioning that Theorem2.8 was proved in [65] for the case of multidimensional
processes. It also admits multiparameter [54] and multifractional [68] generaliza-
tions.

When b(t, x) ≡ 1, we obtain the following equation:

Xt = X0 +
∫ t

0
a(s, Xs)ds + B H

t , t ∈ [0, T ]. (6)

Since this equation does not contain integration with respect to fractional Brownian
motion, it can be considered for all H ∈ (0, 1). Nualart and Ouknine [63] proved the
existence and uniqueness of a strong solution to Eq. (6) under the following weak
regularity assumptions on the coefficient a(t, x).

Theorem 2.10 ([63])

(i) If H ≤ 1/2 (singular case), we assume the linear growth condition

|a(t, x)| ≤ C(1 + |x |).

(ii) If H > 1/2 (regular case), we assume that a is Hölder continuous of order
α ∈ (1 − 1/2H, 1) in x and of order γ > H − 1/2 in time:

|a(t, x) − a(s, y)| ≤ C (|x − y|α + |t − s|γ ) .

Then the Eq. (6) has a unique strong solution.

Remark 2.11 The existence and uniqueness of a strong solution to (6) can be
obtained under weaker conditions on a(t, x). In particular, the equations with locally
unbounded drift for H < 1/2 were studied in [64]. For H > 1/2 Hu et al. [31] con-
sidered the case when the coefficient a(t, x) has a singularity at x = 0.

2.4 Mixed Stochastic Differential Equations with
Long-Range Dependence

Let (Ω,F , {Ft }t∈[0,T ] ,P) be a complete probability space equipped with a filtration
satisfying standard assumptions, and W = {Wt , t ∈ [0, T ]} be a standardFt -Wiener
process. In this subsection, we investigate more general model than (3): instead of
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the fBm we consider an Ft -adapted stochastic process Z = {Zt , t ∈ [0, T ]}, which
is almost surely Hölder continuous with exponent γ > 1/2. The processes W and Z
can be dependent. We study a mixed stochastic differential equation

Xt = X0 +
∫ t

0
a(s, Xs) ds +

∫ t

0
b(s, Xs) d Zs +

∫ t

0
c(s, Xs) dWs, t ∈ [0, T ] .

(7)
The integral w.r.t. Wiener process W is the standard Itô integral, and the integral
w.r.t. Z is path-wise generalized Lebesgue–Stieltjes integral, see Definition2.4.

Wewill assume that for some K > 0,β > 1/2, and for any t, s ∈ [0, T ], x, y ∈ R,

(B1) |a(t, x)| + |b(t, x)| + |c(t, x)| ≤ K (1 + |x |),
(B2) |a(t, x) − a(t, y)| + |c(t, x) − c(t, y)| ≤ K |x − y|,
(B3) |a(s, x) − a(t, x)| + |b(s, x) − b(t, x)| + |c(s, x) − c(t, x)|

+ |∂x b(s, x) − ∂x b(t, x)| ≤ K |s − t |β ,
(B4) |∂x b(t, x) − ∂x b(t, y)| ≤ K |x − y|,
(B5) |∂x b(t, x)| ≤ K ,

Theorem 2.12 ([53]) Let α ∈ (1 − γ, 1
2 ∧ β) If the coefficients of equation (7) sat-

isfy conditions (B1)–(B5), then it has a unique solution X such that ‖X‖∞,α,T < ∞
a.s.

Remark 2.13 It was proved in [58] that Eq. (7) is uniquely solvable when assump-
tions (B1)–(B5) hold and if additionally c is bounded as follows:

(B6) |c(t, x)| ≤ K1 for some K1 > 0.

Later, in [53] the existence and uniqueness theorem without assumption (B6) was
obtained. Equation (7) with Z = B H , a fractional Brownian motion, was first con-
sidered in [39], where existence and uniqueness of solution were proved for time-
independent coefficients and zero drift. For inhomogeneous coefficients, unique solv-
ability was established in [51] for H ∈ (3/4, 1) and bounded coefficients, in [27] for
any H > 1/2, but under the assumption that W and B H are independent.

3 Drift Parameter Estimation by Continuous Observations

This section is devoted to the drift parameter estimation in the model (1) by contin-
uous observations of the process X . We discuss the construction of the maximum
likelihood estimator based on the Girsanov transform. Then we study a non-standard
estimator. These results are applied to linear models. In the last subsection of this
section, the various estimators in fractional Ornstein–Uhlenbeck model are consid-
ered.
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3.1 General Fractional Model

Assume that H > 1
2 and consider the equation

Xt = x0 + θ

∫ t

0
a(s, Xs)ds +

∫ t

0
b(s, Xs)d B H

s , t ∈ R
+, (8)

where x0 ∈ R is the initial value, θ is the unknown parameter to be estimated, the first
integral in the right-hand side of (8) is the Lebesgue–Stieltjes integral, and the second
integral is the generalized Lebesgue–Stieltjes integral introduced in Definition2.4.

3.1.1 The Standard Maximum Likelihood Estimator

Let the following assumptions hold:

(C1) Linear growth of a, b in space: for any t ∈ [0, T ] and x ∈ R

|a(t, x)| + |b(t, x)| ≤ K (1 + |x |),

(C2) Lipschitz continuity of a, b in space: for any t ∈ [0, T ] and x, y ∈ R

|a(t, x) − a(t, y)| + |b(t, x) − b(t, y)| ≤ K |x − y|,

(C3) Hölder continuity of a, b, ∂x b in time: there exists β > 1/2 such that for any
t, s ∈ [0, T ] and x ∈ R

|a(s, x) − a(t, x)| + |b(s, x) − b(t, x)| + |∂x b(s, x) − ∂x b(t, x)| ≤ K |s − t |β,

(C4) Hölder continuity of ∂x b in space: there exists such ρ ∈ (3/2 − H, 1) that
for any t ∈ [0, T ] and x, y ∈ R

|∂x b(t, x) − ∂x b(t, y)| ≤ D|x − y|ρ,

Then, according to Theorem2.8, solution for Eq. (8) exists on any interval [0, T ] and
is unique in the class of processes satisfying

‖X‖∞,α,T < ∞ a.s. (9)

for some α > 1 − H .
In addition, suppose that the following assumption holds:

(D1) b(t, Xt ) �= 0, t ∈ [0, T ] and a(t,Xt )

b(t,Xt )
is a.s. Lebesgue integrable on [0, T ] for

any T > 0.

Denote ψ(t, x) = a(t,x)

b(t,x)
, ϕ(t) := ψ(t, Xt ). Also, let the kernel
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lH (t, s) = cH s
1
2 −H (t − s)

1
2 −H1{0<s<t},

with cH =
(

Γ (3−2H)

2HΓ ( 3
2 −H)3Γ (H+ 1

2 )

) 1
2
, and introduce the integral

Jt =
∫ t

0
lH (t, s)ϕ(s)ds = cH

∫ t

0
(t − s)

1
2 −H s

1
2 −Hϕ(s)ds. (10)

Finally, let M H
t = ∫ t

0 lH (t, s)d B H
s be Gaussian martingale with square bracket

〈M H 〉t = t2−2H (Molchan martingale, see [61]).
Consider the following two processes:

Yt =
∫ t

0
b−1(s, Xs)d Xs = θ

∫ t

0
ϕ(s)ds + B H

t

and

Zt =
∫ t

0
lH (t, s)dYs = θ Jt + M H

t .

Remark 3.1 Note that the transformation from X to Z does not lead to loss of
information since we can present Y (consequently, X ) via Z and Volterra kernel
introduced in Theorem5.2 [61]. So, these processes generate the same filtration.

Also, note that we can rewrite process Z as

Zt =
∫ t

0
lH (t, s)b−1(s, Xs)d Xs,

so Z is a functional of the observable process X . The following smoothness condition
for the function ψ (Lemma6.3.2 [51]) ensures the semimartingale property of Z .

Lemma 3.2 Let ψ = ψ(t, x) ∈ C1(R+) × C2(R). Then for any t > 0

J ′(t) = (2 − 2H)CH ψ(0, x0)t
1−2H

+
∫ t

0
lH (t, s)

(
∂ψ

∂t
(s, Xs) + θ

∂ψ

∂x
(s, Xs)a(s, Xs)

)
ds

−
(

H − 1
2

)
cH

∫ t

0
s− 1

2−H (t − s)
1
2−H

∫ s

0

(
∂ψ

∂t
(u, Xu) + θ

∂ψ

∂x
(u, Xu)a(u, Xu)

)
duds

+ (2 − 2H)cH t1−2H
∫ t

0
s2H−3

∫ s

0
u

3
2−H (s − u)

1
2−H ∂ψ

∂x
(u, Xu)b(u, Xu)d B H

u ds

+ cH t−1
∫ t

0
u

3
2−H (t − u)

1
2−H ∂ψ

∂x
(u, Xu)b(u, Xu)d B H

u ,

(11)
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where CH = B( 32 − H, 3
2 − H)cH =

(
Γ ( 3

2 −H)

2HΓ (H+ 1
2 )Γ (3−2H)

) 1
2
, and all of the involved

integrals exists a.s.

Remark 3.3 Suppose thatψ(t, x) ∈ C1(R+) × C2(R) and limitς(0) = lims→0 ς(s)
exists a.s., where ς(s) = s

1
2 −Hϕ(s). In this case J (t) can be presented as

J (t) = cH

∫ t

0
(t − s)

1
2 −Hς(s)ds = cH t

3
2 −H

3
2 − H

ς(0) + cH

∫ t

0

(t − s)
3
2 −H

3
2 − H

ς ′(s)ds,

and J ′(t) from (11) can be simplified to

J ′(t) = cH t
1
2 −Hς(0) +

∫ t

0
lH (t, s)

((
1
2 − H

)
s−1ϕ(s) + ∂ψ

∂t
(s, Xs)

+ θ
∂ψ

∂x
(s, Xs)a(s, Xs)

)
ds +

∫ t

0
lH (t, s)

∂ψ

∂x
(s, Xs)b(s, Xs)d B H

s .

Same way as Z , processes J and J ′ are functionals of X . It is more convenient to
consider process χ(t) = (2 − 2H)−1 J ′(t)t2H−1, so that

Zt = (2 − 2H)θ

∫ t

0
χ(s)s1−2H ds + M H

t = θ

∫ t

0
χ(s)d〈M H 〉s + M H

t .

Suppose that the following conditions hold:

(D2) EIT := E
∫ T
0 χ2

s d〈M H 〉s < ∞ for any T > 0,
(D3) I∞ := ∫ ∞

0 χ2
s d〈M H 〉s = ∞ a.s.

Then we can consider the maximum likelihood estimator (MLE)

θ
(1)
T =

∫ T
0 χsd Zs∫ T

0 χ2
s d〈M H 〉s

= θ +
∫ T
0 χsd M H

s∫ T
0 χ2

s d〈M H 〉s

.

Condition (D2) ensures that process
∫ t
0 χsd M H

s , t > 0 is a square integrable mar-
tingale, and condition (D3) alongside with the law of large numbers for martingales

ensure that
∫ T
0 χs d M H

s∫ T
0 χ2

s d〈M H 〉s
→ 0 a.s. as T → ∞. Summarizing, we arrive at the following

result.

Theorem 3.4 ([51]) Let ψ(t, x) ∈ C1(R+) × C2(R) and assumptions (C1)–(C4)
and (D1)–(D3) hold. Then the estimator θ

(1)
T is strongly consistent as T → ∞.

Remark 3.5 In [57] the explicit form of the likelihood ratio was established. It was
shown that MLE can be presented as a function of the observed process Xt , namely
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θ̂
(1)

t =
∫ t
0

(
ϕ(s) + (H − 1

2 )s
2H−1

∫ s
0

s
1
2 −H

ϕ(s)−u
1
2 −H

ϕ(u)

(s−u)
H+ 1

2
du

)
dỸs

∫ t
0 s2H−1

(
ϕ(s)

s2H−1 + (H − 1
2 )

∫ s
0

s
1
2 −H

ϕ(s)−u
1
2 −H

ϕ(u)

(s−u)
H+ 1

2
du

)2

ds

,

where Ỹs = ∫ s
0 v

1
2 −H (s − v)

1
2 −H b−1(v, Xv) d Xv.

Remark 3.6 Tudor and Viens [74] constructed the MLE for the following model

Xt =
∫ t

0
a(Xs) ds + B H

t , X0 = 0.

Under some regularity conditions on the coefficient a(x) they proved the strong
consistency of the MLE in both cases H < 1/2 and H > 1/2.

3.1.2 A Nonstandard Estimator

It is possible to construct another estimator for parameter θ , preserving the structure
of the standardMLE. Similar approachwas applied in [29] to the fractional Ornstein–
Uhlenbeck processwith constant coefficients (see the estimator (19) below).We shall
use process Y to define the estimator as follows:

θ̂
(2)
T =

∫ T
0 ϕs dYs∫ T
0 ϕ2

s ds
= θ +

∫ T
0 ϕsd B H

s∫ T
0 ϕ2

s ds
. (12)

Theorem 3.7 ([38])Let assumptions (C1)–(C4), (D1), and (D2) hold and let function
ϕ satisfy the following assumption:

(D4) There exists such α > 1 − H and p > 1 that

ρα,p,T := T H+α−1(log T )p
∫ T
0 |(Dα

0+ϕ)(s)|ds∫ T
0 ϕ2

s ds
→ 0 a.s. as T → ∞. (13)

Then estimator θ̂
(2)
T is correctly defined and strongly consistent as T → ∞.

Relation (13) ensures convergence
∫ T
0 ϕs d B H

s∫ T
0 ϕ2

s ds
→ 0 a.s. in the general case. In a

particular case when function ϕ is nonrandom and integral
∫ T
0 ϕs d B H

s is a Wiener
integral w.r.t. the fractional Brownianmotion, conditions for existence of this integral
are simpler since assumption (13) can be simplified.

Theorem 3.8 ([38]) Let assumptions (C1)–(C4), (D1), and (D2) hold and let function
ϕ be nonrandom and satisfy the following assumption:
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(D5) There exists such p > 0 that

lim sup
T →∞

T 2H−1+p

∫ T
0 ϕ2(t)dt

< ∞.

Then estimator θ̂
(2)
T is strongly consistent as T → ∞.

In the next subsection, we consider some examples of ϕ and establish not only
the convergence to zero but the rate of convergence as well.

3.1.3 Examples of the Remainder Terms with the Estimation of the
Rate of Convergence to Zero

We start with the simplest case when ϕ is a power function, ϕ(t) = ta , a ≥ 0,
t ≥ 0. Itmeans that a(t, x) = b(t, x)ta . If the coefficient b(t, x) satisfies assumptions
(C1)–(C4) and b(t, Xt ) �= 0, t ∈ [0, T ], then a(t, x) satisfies assumptions (C1)–(C4)
on any interval [0, T ], condition (D1) holds, then the Eq. (8) has the unique solu-
tion, the estimator θ̂

(2)
T is correctly defined and we can study the properties of the

remainder term ρα,p,T .

Lemma 3.9 ([3]) Let ϕ(t) = ta, a ≥ 0, t ≥ 0. Then ρα,p,T = CaT H−a−1 ×
(log T )p → 0 as T → ∞, where

Ca = (2a + 1)Γ (a + 1)

Γ (a − α + 2)
.

Remark 3.10 As to the rate of convergence to zero, we can say that

ρα,p,T = O
(
T H−1−a+ε

)

as T → ∞ for any ε > 0.

Now, we can consider ϕ that is a polynomial function. In this case, similar to
monomial case, the solution of the Eq. (7) exists and is unique, and the estimator
is correctly defined. As an immediate generalization of the Lemma3.9, we get the
following statement.

Lemma 3.11 ([3])Let N ∈ N \ {0}andϕN (t) =
N∑

k=0

αk tak , t ≥ 0, (ak)be a sequence

of nonnegative power coefficients, 0 ≤ a0 < a1 < . . . < aN , and (αk) be a sequence
of nonnegative coefficients, αN > 0. Then ρα,p,T → 0 as T → ∞, and the rate of
convergence to zero is ρα,p,T = O

(
T H−1−aN +ε

)
for any ε > 0.

Now consider the case of the trigonometric function.
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Lemma 3.12 ([3]) Let ϕ(t) = sin(λt), λ ≥ 0. Then estimator θ̂
(2)
T is strongly con-

sistent as T → ∞.

Remark 3.13 Wesee that in the case of power andpolynomial functions (Remark3.10
and Lemma3.11) we can get not only convergence to zero but also the rate of con-
vergence, but in the case of the trigonometric function, we only get convergence.
The difference can be seen from the following result.

Lemma 3.14 ([3]) Let ϕ(t) = sin(λt), λ ≥ 0. Then

lim
T →+∞ ρα,p,T = lim

T →+∞
T H+α−1(log T )p

∫ T
0 |(Dα

0+ϕ)(x)|dx∫ T
0 ϕ2(x)dx

= +∞.

Remark 3.15 Note for completeness that for
T H+α−1(log T )p

∫ T
0 (Dα

0+ ϕ)(x)dx∫ T
0 ϕ2

x dx
situation is

different, more precisely,

lim
T →+∞

T H+α−1(log T )p
∫ T
0 (Dα

0+ϕ)(x)dx∫ T
0 ϕ2(x)dx

= 0.

Lemma 3.16 ([3]) Let ϕ(t) = exp(−λt), λ > 0. Then

lim
T →+∞ ρα,p,T = lim

T →+∞
T H+α−1(log T )p

∫ T
0 |(Dα

0+ϕ)(x)|dx∫ T
0 ϕ2(x)dx

= 0.

Remark 3.17 It is easy to deduce from the previous calculations that in the latter
case

ρα,p,T = O
(
T H−1+ε

)

as T → ∞ for any ε > 0.

Lemma 3.18 ([3]) Let ϕ(t) = exp(λt), λ > 0. Then

lim
T →+∞ ρα,p,T = lim

T →+∞
T H+α−1(log T )p

∫ T
0 |(Dα

0+ϕ)(x)|dx∫ T
0 ϕ2(x)dx

= 0.

Remark 3.19 In this case

ρα,p,T = O
(
e−(λ−ε)T

) = o
(
T −ε

)

as T → ∞ for any ε > 0.

Lemma 3.20 ([3]) Let ϕ(t) = log(1 + t). Then
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lim
T →+∞ ρα,p,T = lim

T →+∞
T H+α−1(log T )p

∫ T
0 |(Dα

0+ϕ)(x)|dx∫ T
0 ϕ2(x)dx

= 0.

Remark 3.21 In this case
ρα,p,T = O

(
T H−1+ε

)

as T → ∞ for any ε > 0.

3.1.4 Sequential Estimators

Suppose that conditions (D1)–(D3) hold. For any h > 0 consider the stopping time

τ(h) = inf

{
t > 0 :

∫ t

0
χ2

s d〈M H 〉s = h

}
.

Under conditions (D1)–(D2) we have τ(h) < ∞ a.s. and
∫ τ(h)

0 χ2
s d〈M H 〉s = h. The

sequential MLE has a form

θ̂
(1)
τ (h) =

∫ τ(h)

0 χsd Zs

h
= θ +

∫ τ(h)

0 χsd M H
s

h
.

A sequential version of the estimator θ̂
(2)
T has a form

θ̂
(2)
υ(h) = θ +

∫ υ(h)

0 ϕsd B H
s

h
,

where

υ(h) = inf

{
t > 0 :

∫ t

0
ϕ2(s)ds = h

}
.

Theorem 3.22 ([38])

(a) Let assumptions (D1)–(D3) hold. Then the estimator θ̂
(1)
τ (h) is unbiased, efficient,

strongly consistent, E
(
θ̂

(1)
τ (h) − θ

)2 = 1
h , and for any estimator of the form

θ̂τ =
∫ τ

0 χsd Zs∫ τ

0 χ2
s d〈M H 〉s

= θ +
∫ τ

0 χsd M H
s∫ τ

0 χ2
s d〈M H 〉s

with τ < ∞ a.s. and E
∫ τ

0 χ2
s d〈M H 〉s ≤ h we have that

E
(
θ̂

(1)
τ (h) − θ

)2 ≤ E(θ̂τ − θ)2.
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(b) Let function ϕ be separated from zero, |ϕ(s)| ≥ c > 0 a.s. and satisfy the assump-
tion: for some 1 − H < α < 1 and p > 0

∫ υ(h)

0 |(Dα
0+ϕ)(s)|ds

(υ(h))2−α−H−p
→ 0 a.s. (14)

as h → ∞. Then estimator θ̂
(2)
υ(h) is strongly consistent.

Remark 3.23 The assumption (14) holds, for example, for a bounded and Lipschitz
function ϕ.

3.2 Linear Models

Consider the linear version of model (8):

d Xt = θa(t)Xt dt + b(t)Xt d B H
t ,

where a and b are locally bounded nonrandom measurable functions. In this case
solution X exists, it is unique and can be presented in the integral form

Xt = x0 + θ

∫ t

0
a(s)Xsds +

∫ t

0
b(s)Xsd B H

s = x0 exp

{
θ

∫ t

0
a(s)ds +

∫ t

0
b(s)d B H

s

}
.

Suppose that function b is nonzero and note that in this model

ϕ(t) = a(t)

b(t)
.

Suppose thatϕ(t) is also locally bounded and considermaximum likelihood estimator
θ̂

(1)
T . According to (10), to guarantee existence of process J ′, we have to assume that
the fractional derivative of order 3

2 − H for function ς(s) := ϕ(s)s
1
2 −H exists and

is integrable. The sufficient conditions for the existence of fractional derivatives can
be found in [69]. One of these conditions states the following:

(D6) Functions ϕ and ς are differentiable and their derivatives are locally inte-
grable.

So, it is hard to conclude what is the behavior of the MLE for an arbitrary locally
bounded function ϕ. Suppose that condition (D6) holds and limit ς0 = lims→0 ς(s)
exists. In this case, according to Lemma3.2 and Remark3.3, process J ′ admits both
of the following representations:
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J ′(t) = (2 − 2H)CHϕ(0)t1−2H +
∫ t

0
lH (t, s)ϕ′(s)ds

−
(

H − 1

2

)
cH

∫ t

0
s− 1

2 −H (t − s)
1
2 −H

∫ s

0
ϕ′(u)duds

= cHς0t
1
2 −H + cH

∫ t

0
(t − s)

1
2 −Hς ′(s)ds,

and assuming (D3) also holds true, the estimator θ̂
(1)
T is strongly consistent. Let us

formulate some simple conditions sufficient for the strong consistency.

Lemma 3.24 ([38]) If function ϕ is nonrandom, locally bounded, satisfies (D6), limit
ς(0) exists, and one of the following assumptions hold:

(a) function ϕ is not identically zero and ϕ′ is nonnegative and nondecreasing;
(b) derivative ς ′ preserves the sign and is separated from zero;
(c) derivative ς ′ is nondecreasing and has a nonzero limit,

then the estimator θ̂
(1)
T is strongly consistent as T → ∞.

Example 3.25 If the coefficients are constant, a(s) = a �= 0 and b(s) = b �= 0, then

the estimator has a form θ̂
(1)
T = θ + bM H

T
aCH T 2−2H and is strongly consistent. In this case

assumption (a) holds. In addition, power functions ϕ(s) = sρ are appropriate for
ρ > H − 1: this can be verified directly from (10).

Let us now apply estimator θ̂
(2)
T to the same model. It has a form (12). We can use

Theorem3.8 directly and under assumption (D5) estimator θ̂ (2)
T is strongly consistent.

Note that we do not need any assumptions on the smoothness of ϕ, which is a clear
advantage of θ̂

(2)
T . We shall consider two more examples.

Example 3.26 If the coefficients are constant, a(s) = a �= 0 and b(s) = b �= 0, then

the estimator has a form θ̂
(2)
T = θ + bB H

T
aT . In this case both estimators θ̂

(1)
T and θ̂

(2)
T are

strongly consistent and E
(
θ − θ̂

(1)
T

)2 = γ 2T 2H−2

a2C2
H

has the same asymptotic behavior

as E
(
θ − θ̂

(2)
T

)2 = γ 2T 2H−2

a2 .

Example 3.27 If nonrandom functions ϕ and ς are bounded on some fixed interval
[0, t0] but ς is sufficiently irregular on this interval and has no fractional derivative
of order 3

2 − H or higher then we cannot even calculate J ′(t) on this interval and it
is hard to analyze the behavior of the maximum likelihood estimator. However, if we
assume that ϕ(t) ∼ t H−1+ρ at infinity with some ρ > 0, then assumption (D5) holds
and estimator θ̂

(2)
T is strongly consistent as T → ∞. In this sense, the estimator θ̂

(2)
T

is more flexible. The estimator θ̂
(1)
T was considered in [45].
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3.3 Fractional Ornstein–Uhlenbeck Model

3.3.1 General Case

Consider the fractional Ornstein–Uhlenbeck, or Vasicek, model with nonconstant
coefficients. It has a form

d Xt = θ(a(t)Xt + b(t))dt + γ (t)d B H
t , t ≥ 0,

where a, b, and γ are nonrandom measurable functions. Suppose they are locally
bounded and γ = γ (t) > 0. The solution for this equation is a Gaussian process and
has a form

Xt = eθ A(t)
(

x0 + θ

∫ t

0
b(s)e−θ A(s)ds +

∫ t

0
γ (s)e−θ A(s)d B H

s

)
:= E(t) + G(t),

where A(t) = ∫ t
0 a(s)ds, E(t) = eθ A(t)

(
x0 + θ

∫ t
0 b(s)e−θ A(s)ds

)
is a nonrandom

function, G(t) = eθ A(t)
∫ t
0 γ (s)e−θ A(s)d B H

s is a Gaussian process with zero mean.
Denote c(t) = a(t)

γ (t) , d(t) = b(t)
γ (t) . Now we shall state the conditions for strong

consistency of the maximum likelihood estimator.

Theorem 3.28 ([38]) Let functions a, c, d, and γ satisfy the following assumptions:

(D7) −a1 ≤ a(s) ≤ −a2 < 0,−c1 ≤ c(s) ≤ −c2 < 0,0 < γ1 ≤ γ (s) ≤ γ2, func-
tions c and d are continuously differentiable, c′ is bounded, c′(s) ≥ 0, and
c′(s) → 0 as s → ∞.

Then estimator θ̂
(1)
T is strongly consistent as T → ∞.

Remark 3.29 The assumptions of the theorem are fulfilled, for example, if
a(s) = −1, b(s) = b ∈ R and γ (s) = γ > 0. In this case we deal with a standard
Ornstein–Uhlenbeck process X with constant coefficients that satisfies the equation

d Xt = θ(b − Xt )dt + γ d B H
t , t ≥ 0.

3.3.2 The Case of Constant Coefficients

Consider a simple version of the Ornstein–Uhlenbeck model where a = γ = 1,
b = x0 = 0. Corresponding stochastic differential equation has a form

d Xt = θ Xt dt + d B H
t , t ≥ 0

with evident solution Xt = eθ t
∫ t
0 e−θsd B H

s . We start with maximum likelihood esti-

mator θ̂
(1)

T . According to [36], it has the following form
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θ̂
(1)

T =
∫ T
0 Q(s) d Zs∫ T

0 Q2(s) dwH
s

, (15)

wherewH
t = t2−2H Γ (3/2−H)

2HΓ (3−2H)Γ (H+1/2) ,Q(t)= d
dwH

t

∫ t
0 kH (t, s)Xs ds, Zt =

∫ t
0 kH (t, s) d Xs ,

kH (t, s) = s1/2−H (t−s)1/2−H

2HΓ (3/2−H)Γ (H+1/2) .

Theorem 3.30 ([14, 36, 72, 73]) Let H ∈ [ 12 , 1).
1. For any θ ∈ R the estimator θ̂

(1)
T defined by (15) is strongly consistent.

2. Denote B(θ, T ) = E
(
θ̂

(1)
T − θ

)
, V (θ, T ) = E

(
θ̂

(1)
T − θ

)2
. The following prop-

erties hold:

(i) If θ < 0, then, as T → ∞,

B(θ, T ) ∼ −2T −1; V (θ, T ) ∼ 2 |θ | T −1, (16)

(ii) If θ = 0, then, for all T ,

B(0, T ) = B(0, 1)T −1; V (0, T ) = V (0, 1)T −2,

(iii) If θ > 0, then, as T → ∞,

B(θ, T ) ∼ −2
√

π sin π Hθ3/2e−θT
√

T ; (17)

V (θ, T ) ∼ 2
√

π sin π Hθ5/2e−θT
√

T . (18)

3. (i) If θ < 0, then, as T → ∞,

√
T

(
θ̂

(1)
T − θ

) L−→ N (0,−2θ),

(ii) If θ = 0, then, for all T ,

T θ̂
(1)

T
D= θ̂

(1)
1

(iii) If θ > 0, then, as T → ∞,

eθT

2θ

(
θ̂

(1)
T − θ

) L−→ √
sin π H C(1),

where C(1) is the standard Cauchy distribution, and
L−→ denotes the conver-

gence in law.

Remark 3.31 TheMLE for fractional Ornstein–Uhlenbeck process was first studied
in [36]. The authors derived the formula for MLE, proved its strong consistency, and
got the asymptotic properties of the bias and the mean square error. The asymptotic
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normality in the case θ < 0 was established in [14]. The asymptotic distributions
for θ = 0 and θ > 0 were obtained in [72, 73]. The large deviation properties of the
MLE were investigated in [5] (see also [6, 26]). The exact distribution of MLE was
computed in [72, 73].

Remark 3.32 It holds that θ̂
(1)
H,T

D= θ̂
(1)
1−H,T , where θ̂

(1)
H,T is the MLE under the Hurst

parameter H and the time span T (see [14] for θ < 0, [72] for θ = 0, and [73] for
θ > 0). The MLE for H < 1/2 was also considered in [74], where the relations
(16)–(18) was proved for H < 1/2.

Remark 3.33 The properties of estimators in the fractional Ornstein–Uhlenbeck
model substantially depend on the sign of θ . The hypothesis testing of the drift
parameter sign was studied in [43, 59, 72, 73].

Consider for H ∈ ( 12 , 1) the estimator θ̂
(2)
T :

θ̂
(2)
T =

∫ T
0 Xsd Xs∫ T
0 X2

s ds
= θ +

∫ T
0 Xsd B H

s∫ T
0 X2

s ds
. (19)

It admits the following representation

θ̂
(2)
T = X2

T

2
∫ T
0 X2

s ds
. (20)

Note that this form of the estimator is well defined for all H ∈ (0, 1).

Theorem 3.34 ([4, 22]) Let θ > 0, H ∈ (0, 1). Then the estimator θ̂
(2)
T given by

(20) is strongly consistent as T → ∞. Moreover,

eθT
(
θ̂

(2)
T − θ

) L−→ 2θC(1),

as T → ∞, where C(1) is the standard Cauchy distribution.

Remark 3.35 If θ < 0, then θ̂
(2)
T converges to zero in L2(Ω,P) ([29], see the remark

at the end of Sect. 3). If the path-wise integral in (19) is replaced by the divergence-
type integral, then the estimator (19) is strongly consistent and asymptotically normal
[29, Theorems3.2, 3.4]. The divergence-type integral is the limit of the Riemann
sums defined in terms of the Wick product. Since it is not suitable for simulation and
discretization, Hu and Nualart [29] proposed the following estimator for the ergodic
case θ < 0

θ̂
(3)
T = −

(
1

HΓ (2H)T

∫ T

0
X2

s ds

)− 1
2H

.

Theorem 3.36 ([29, 43]) Let θ < 0, H ∈ (0, 1). Then the estimator θ̂
(3)
T is strongly

consistent as T → ∞. If H ∈ ( 12 ,
3
4 ), then
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√
T

(
θ̂

(3)
T − θ

) L−→ N (
0,−θσ 2

H

)
,

as T → ∞, where

σ 2
H = 4H − 1

(2H)2

(
1 + Γ (3 − 4H)Γ (4H − 1)

Γ (2 − 2H)Γ (2H)

)
. (21)

To construct the estimator for all θ ∈ R, Moers [59] combined θ̂
(2)
T and θ̂

(3)
T as

follows (assuming x0 ∈ R is arbitrary):

θ̂
(4)
T = X2

T − x2
0

2
∫ T
0 X2

t dt
−

(
1

HΓ (2H)T

∫ T

0
X2

t dt

)− 1
2H

.

Theorem 3.37 ([59]) Let H ∈ [ 12 , 1). Then the estimator θ̂
(4)
T is strongly consistent

for all θ ∈ R. As T → ∞,

√|θ | T
(
θ̂

(4)
T − θ

) L−→ N (
0, θ2σ 2

H

)
, θ < 0, H ∈ [

1
2 ,

3
4

)
,

T θ̂
(4)
T

L−→ ψH , θ = 0,

eθT
(
θ̂

(4)
T − θ

) L−→ 2θ
η1

η2 + x0bH
, θ > 0,

where σ 2
H is defined in (21), bH = θ H√

HΓ (2H)
,

ψH =
(
B H
1

)2
2

∫ 1
0

(
B H

t

)2
dt

−
(

1

HΓ (2H)

∫ 1

0

(
B H

t

)2
dt

)− 1
2H

,

and η1 and η2 are independent standard normal random variables.

Bishwal [12] studied for H ∈ (1/2, 1) and θ < 0 the followingminimum contrast
estimator

θ̂
(5)
T = − T

2
∫ T
0 Q2(s) dwH

s

, (22)

and proved the same asymptotic normality as the MLE (see statement 3(i) of Theo-
rem3.30). The distribution of θ̂

(5)
T was computed in [72].
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4 Drift Parameter Estimation by Discrete Observations

4.1 General Fractional Model

Consider a stochastic differential equation

Xt = X0 + θ

∫ t

0
a(Xs)ds +

∫ t

0
b(Xs)d B H

s , (23)

where X0 is a nonrandom coefficient. In [47] it is shown that this equation has
a unique solution under the following assumptions: there exist constants K > 0,
L > 0, δ ∈ (1/H − 1, 1], and for every N > 0 there exists RN > 0 such that

(E1) |a(x)| + |b(x)| ≤ K for all x, y ∈ R,
(E2) |a(x) − a(y)| + |b(x) − b(y)| ≤ L |x − y| for all x, y ∈ R,
(E3)

∣∣b′(x) − b′(y)
∣∣ ≤ RN |x − y|δ for all x ∈ [−N , N ], y ∈ [−N , N ].

Ourmain problem is to construct an estimator for θ based on discrete observations
of X . Specifically, we will assume that for some n ≥ 1 we observe values Xtk

n
at the

following uniform partition of [0, 2n]: tn
k = k2−n , k = 0, 1, . . . , 22n .

In order to construct consistent estimators for θ , we need another technical
assumption, in addition to conditions (E1)–(E3):

(E4) a(x) and b(x) are separated from zero.

We now define an estimator, which is a discretized version of a maximum likeli-
hood estimator for F(X), where F(x) = ∫ x

0 b(y)−1dy:

θ̃ (1)
n = 2n

∑22n

k=1

(
tn
k

)−α (
2n − tn

k

)−α
b−1

(
Xtn

k−1

) (
Xtn

k
− Xtn

k−1

)
∑22n

k=1

(
tn
k

)−α (
2n − tn

k

)−α
b−1

(
Xtn

k−1

)
a

(
Xtn

k−1

) .

Theorem 4.1 ([55]) Under conditions (E1)–(E4), θ̃ (1)
n is strongly consistent. More-

over, for any β ∈(1/2, H) and γ > 1/2 there exists a random variable η = ηβ,γ with
all finite moments such that

∣∣θ̃ (1)
n − θ

∣∣ ≤ ηnκ+γ 2−τn, where κ = γ /β,
τ = (1 − H) ∧ (2β − 1).

Consider a simpler estimator:

θ̃ (2)
n = 2n

∑22n

k=1 b−1
(
Xtn

k−1

) (
Xtn

k
− Xtn

k−1

)
∑22n

k=1 b−1
(
Xtn

k−1

)
a

(
Xtn

k−1

) .

This is a discretized maximum likelihood estimator for θ in Eq. (23), where B H is
replaced by Wiener process.

Theorem 4.2 ([55]) Theorem4.1 holds for θ̃ (2)
n .
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Now let us define a discretized version of θ̂
(2)
T defined in (12). Put

θ̃ (3)
n := 2n

∑22n

k=1 a
(
Xtn

k−1

)
b−2

(
Xtn

k−1

) (
Xtn

k
− Xtn

k−1

)
∑22n

k=1 a2
(
Xtn

k−1

)
b−2

(
Xtn

k−1

) .

Let ϕ(t) = a(Xt )

b(Xt )
,

ϕ̂n(t) :=
22n−1∑
k=0

ϕ(tn
k )1[tn

k ,tn
k+1)

(t).

Theorem 4.3 ([57]) Under conditions (E1)–(E4), assume that there exist constants
β > 1 − H and p > 1 such that

2n(H+β)n p
∫ 2n

0

∣∣∣
(

Dβ

0+ϕ̂n

)
(s)

∣∣∣ ds
∑22n

k=1 ϕ2(tn
k−1)

→ 0 a. s. at n → ∞.

Then θ̃ (3)
n is strongly consistent.

4.2 Fractional Ornstein–Uhlenbeck Model

In this subsection, we consider discretized versions of the estimators θ̂
(2)
T and θ̂

(3)
T in

the fractional Ornstein–Uhlenbeck model with constant coefficients

d Xt = θ Xt dt + d B H
t , t ≥ 0.

We start with the case θ > 0. Assume that a trajectory of X = X (t) is observed
at the points tk,n = kΔn , 0 ≤ k ≤ n, n ≥ 1, and Tn = nΔn denotes the length of
“observation window”. Let us consider the following two estimators:

θ̃ (4)
n =

∑n
i=1 Xti−1

(
Xti − Xti−1

)
Δn

∑n
i=1 X2

ti−1

,

θ̃ (5)
n = X2

tn

2Δn
∑n

i=1 X2
ti−1

.

These estimators are discretized versions of θ̂
(2)
T , obtained from representations (19)

and (20).

Theorem 4.4 ([24]) Let θ > 0, H ∈ ( 12 , 1). Suppose that Δn → 0 and nΔ1+α
n → 0

as n → ∞ for some α > 0. Then the estimators θ̃ (4)
n and θ̃ (5)

n are strongly consistent
as n → ∞.
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A similar estimator to θ̃ (4)
n was considered in [42]. Let n ≥ 1, tk,n = k

n ,
0 ≤ k ≤ nm , where m ∈ N is some fixed integer. Suppose that we observe X at
the points {tk,n, n ≥ 1, 0 ≤ k ≤ nm}. Consider the estimator

θ̃ (6)
n (m) =

∑nm−1
k=0 Xk,nΔXk,n

1
n

∑nm−1
k=0 X2

k,n

,

where Xk,n = Xtk,n , ΔXk,n = Xk+1,n − Xk,n .

Theorem 4.5 ([42]) Let θ > 0, H ∈ (0, 1). Then for any m > 1 the estimator
θ̃ (6)

n (m) is strongly consistent.

Now let θ < 0. In [30, 75] the following discretized version of the estimator θ̂
(3)
T

was considered

θ̃ (7)
n = −

(
1

nHΓ (2H)

n∑
k=1

X2
kΔ

)− 1
2H

,

where the process X was observed at the points Δ, 2Δ, . . . , nΔ for some fixed
Δ > 0.

Theorem 4.6 ([30]) Let θ < 0, H ∈ [ 12 , 1). Then the estimator θ̃ (7)
n is strongly con-

sistent as n → ∞. If H ∈ [ 12 , 3
4 ), then

√
n

(
θ̃ (7)

n − θ
) L−→ N

(
0,

θ2

2H 2

)
,

as n → ∞.

Remark 4.7 The discretization of MLE was considered in [74]. Discrete approxi-
mations to the minimum contrast estimator (22) were studied in [12].

Remark 4.8 For the case θ < 0 the drift parameter estimator based on polynomial
variations was proposed in [25].

Remark 4.9 In [13, 79], a more general situation was studied, where the equation
had the form d Xt = θ Xt dt + σd B H

t , t > 0, andϑ = (θ, σ, H) is the unknown para-
meter, θ < 0. Consistent and asymptotically Gaussian estimators of the parameter θ

were proposed using the discrete observations of the sample path
(XkΔn , k = 0, . . . , n) for H ∈ ( 12 ,

3
4 ), where nΔ

p
n → ∞, p > 1, and Δn → 0 as

n → ∞. In [79] the strongly consistent estimator is constructed for the scheme
when H > 1

2 , the time interval [0, T ] is fixed and the process is observed at the
points hn, 2hn, . . . , nhn , where hn = T

n .
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5 Drift Parameter Estimation in Mixed Models

5.1 General Mixed Model

Let us take aWiener process W = {Wt , t ∈ R
+} on probability space (Ω,F ,F , P),

possibly correlated with B H . Assume that H > 1
2 and consider a one-dimensional

mixed stochastic differential equation involving both the Wiener process and the
fractional Brownian motion

Xt = x0 + θ

∫ t

0
a(s, Xs)ds +

∫ t

0
b(s, Xs)d B H

s +
∫ t

0
c(s, Xs)dWs, t ∈ R

+,

(24)
where x0 ∈ R is the initial value, θ is the unknown parameter to be estimated, the
first integral in the right-hand side of (24) is the Lebesgue–Stieltjes integral, the
second integral is the generalized Lebesgue–Stieltjes integral introduced in Defin-
ition2.4, and the third one is the Itô integral. From now on, we shall assume that
the coefficients of equation (24) satisfy the assumptions (B1)–(B6) on any interval
[0, T ]. It was proved in [58] that under these assumptions there exists a solution
X = {Xt ,Ft , t ∈ [0, T ]} for the Eq. (24) on any interval [0, T ] which satisfies (9)
for any α ∈ (1 − H, κ), where κ = 1

2 ∧ β. This solution is unique in the class of
processes satisfying (9) for some α > 1 − H .

Remark 5.1 In case when components W and B H are independent, assumptions
for the coefficients can be relaxed, as it has been shown in [27]. More specifically,
coefficient c can be of linear growth and ∂x b can be Hölder continuous up to some
order less than 1.

If we consider general equation (24) with nonzero c, then it is impossible to
construct reasonable MLE of the parameter θ . Therefore we construct the estimator
of the same type as in (12). More exactly, suppose that the following assumption
holds:

(F1) c(t, Xt ) �= 0, t ∈ [0, T ], a(t,Xt )

c(t,Xt )
is a.s. Lebesgue integrable on [0, T ] for any

T > 0 and there exists generalized Lebesgue–Stieltjes integral
∫ T
0

b(t,Xt )

c(t,Xt )
d B H

t .

Define functions ψ1(t, x) = a(t,x)

c(t,x)
and ψ2(t, x) = b(t,x)

c(t,x)
, processes ϕi (t) =

ψi (t, Xt ), i = 1, 2, and process

Yt =
∫ t

0
c−1(s, Xs)d Xs = θ

∫ t

0
ϕ1(s)ds +

∫ t

0
ϕ2(s)d B H

s + Wt .

Evidently, Y is a functional of X and is observable. Assume additionally that the
generalized Lebesgue–Stieltjes integral

∫ T
0 ϕ1(t)ϕ2(t)d B H

t exists and

(F2) for any T > 0 E
∫ T
0 ϕ2

1(s)ds < ∞.
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Denote ϑ(s) = ϕ1(s)ϕ2(s). We can consider the following estimator of
parameter θ :

θ̂T =
∫ T
0 ϕ1(s)dYs∫ T
0 ϕ2

1(s)ds
= θ +

∫ T
0 ϑ(s)d B H

s∫ T
0 ϕ2

1(s)ds
+

∫ T
0 ϕ1(s)dWs∫ T
0 ϕ2

1(s)ds
. (25)

Estimator θ̂T preserves the traditional form of MLE for diffusion models. The
right-hand side of (25) provides a stochastic representation of θ̂T .

Theorem 5.2 ([38]) Let assumptions (F1) and (F2) hold, and, in addition,

(F3)
∫ T
0 ϕ2

1(s)ds = ∞ a.s.
(F4) There exist such α > 1 − H and p > 1 that

T H+α−1(log T )p
∫ T
0 |(Dα

0+ϑ)(s)|ds∫ T
0 ϕ2

1(s)ds
→ 0 a.s. as T → ∞.

Then the estimator θ̂T is strongly consistent as T → ∞.

Similar to Theorem3.8, conditions stated in Theorem5.2 can be simplified in case
when function ϑ is nonrandom.

Theorem 5.3 ([38]) Let assumptions (F1) and (F2) hold. Then, if functions ϕ1 and
ϕ2 are nonrandom, function ϕ1 satisfies condition (D5), function ϕ2 is bounded, then
estimator θ̂T is strongly consistent as T → ∞.

Sequential version of the estimator θ̂T has a form

θ̂υ1(h) = θ +
∫ υ1(h)

0 ϑ(s)d B H
s

h
+

∫ υ1(h)

0 ϕ1(s)dWs

h
,

where

υ1(h) = inf

{
t > 0 :

∫ t

0
ϕ2
1(s)ds = h

}
.

Theorem 5.4 ([38])

(a) Let function ϕ1 be separated from zero, |ϕ1(s)| ≥ c > 0 a.s. and let function ϑ

satisfy the assumption: for some 1 − H < α < 1 and p > 0

∫ υ1(h)

0 |(Dα
0+ϑ)(s)|ds

(υ1(h))2−α−H−p
→ 0 a.s. (26)

as h → ∞. Then estimator θ̂υ1(h) is strongly consistent.
(b) Let function ϑ be nonrandom, bounded, and positive, ϕ1 be separated from

zero. Then estimator θ̂υ(h) is consistent in the following sense: for any p > 0,

E
∣∣∣θ − θ̂υ1(h)

∣∣∣p → 0 as h → ∞.
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Remark 5.5 The assumption (26) holds, for example, for a bounded and Lipschitz
function ϑ .

5.2 Linear Model

Consider a mixed linear model of the form

d Xt = Xt
(
θa(t)dt + b(t)d B H

t + c(t)dWt
)
, (27)

where a, b, and c are nonrandommeasurable functions. Assume that they are locally
bounded. In this case solution X for Eq. (27) exists, is unique and can be presented
in the integral form

Xt = x0 exp

{
θ

∫ t

0
a(s)ds +

∫ t

0
b(s)d B H

s +
∫ t

0
c(s)dWs − 1

2

∫ t

0
c2(s)ds

}
.

Assume that c(s) �= 0. We have that ϕ1(t) = a(t)
c(t) and ϕ2(t) = b(t)

c(t) . The estimator θ̂T

has a form

θ̂T =
∫ T
0 ϕ1(s)dYs∫ T
0 ϕ2

1(s)ds
= θ +

∫ T
0 ϕ1(s)ϕ2(s)d B H

s∫ T
0 ϕ2

1(s)ds
+

∫ T
0 ϕ1(s)dWs∫ T
0 ϕ2

1(s)ds
.

In accordance with Theorem5.3, assume that function ϕ1 satisfies (D5) and ϕ2 is
bounded. Then the estimator θ̂T is strongly consistent. Evidently, these assumptions
hold for the constant coefficients.

5.3 Mixed Fractional Ornstein–Uhlenbeck Model

Chigansky and Kleptsyna [17] considered the maximum likelihood estimation in the
mixed fractional Ornstein–Uhlenbeck model

Xt = X0 + θ

∫ t

0
Xs ds + Vt

with V = B + B H , where B and B H , H ∈ (0, 1) \ {
1
2

}
are independent standard and

fractional Brownian motions. Let g(s, t) be the solution of the integro-differential
Wiener–Hopf type equation:

g(s, t) + d

ds

∫ t

0
g(r, t)H |s − r |2H−1 sign(s − r) dr = 1, 0 < s �= t ≤ T .
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Then the process Mt = ∫ t
0 g(s, t) dVs , t ∈ [0, T ], is a Gaussian martingale with

quadratic variation 〈M〉t = ∫ t
0 g(s, t) ds, t ∈ [0, T ]. The MLE of θ is given by

θ̂T =
∫ T
0 Qt (X) d Zt∫ T

0 Qt (X)2 d〈M〉t

,

where Qt (X) = d
d〈M〉t

∫ t
0 g(s, t)Xs ds, and Zt = ∫ t

0 g(s, t) d Xs .

Theorem 5.6 ([17]) For θ < 0 the estimator θ̂T is asymptotically normal:

√
T

(
θ̂T − θ

) L−→ N (0,−2θ), as T → ∞.

Large deviation properties of this estimator where investigated in [49].
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