
Chapter 22
Optimal Dynamic Treatment Rules

Alexander R. Luedtke and Mark J. van der Laan

Suppose we observe n independent and identically distributed observations of a
time-dependent random variable consisting of baseline covariates, initial treatment
and censoring indicator, intermediate covariates, subsequent treatment and censor-
ing indicator, and a final outcome. For example, this could be data generated by
a sequential RCT in which one follows up a group of subjects, and treatment as-
signment at two time points is sequentially randomized, where the probability of
receiving treatment might be determined by a baseline covariate for the first-line
treatment, and time-dependent intermediate covariate (such as a biomarker of in-
terest) for the second-line treatment. Such trials are often called sequential multiple
assignment randomized trials (SMART). A dynamic treatment rule deterministically
assigns treatment as a function of the available history. If treatment is assigned at
two time points, then this dynamic treatment rule consists of two rules, one for each
time point. The mean outcome under a dynamic treatment is a counterfactual quan-
tity of interest representing what the mean outcome would have been if everybody
would have received treatment according to the dynamic treatment rule. The opti-
mal dynamic treatment rule is defined as the dynamic treatment rule that maximizes
the mean outcome.

Previous approaches, described at the end of this chapter, rely on semiparametric
models that make strong assumptions on the data generating process. We instead de-
fine the statistical model for the data distribution as nonparametric, beyond possible
knowledge about the treatment mechanism (e.g., known in a RCT) and censoring
mechanism. In order to not only consider the most ambitious fully optimal rule, we
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define the V-optimal rules as the optimal rule that only uses a user-supplied subset
V of the available covariates. This allows us to consider suboptimal rules that are
easier to estimate and thereby allow for statistical inference for the counterfactual
mean outcome under the suboptimal rule.

In this chapter, we describe how to obtain semiparametric inference about the
mean outcome under the two time point V-optimal rule. We will show that the
mean outcome under the optimal rule is a pathwise differentiable parameter
of the data distribution, indicating that it is possible to develop asymptotically
linear estimators of this target parameter under conditions. In fact, we obtain
the surprising result that the pathwise derivative of this target parameter equals
the pathwise derivative of the mean counterfactual outcome under a given
dynamic treatment rule set at the optimal rule, treating the latter as known. By
a reference to the earlier for double robust and efficient estimation of the mean
outcome under a given rule (see Chap. 4), we then obtain a CV-TMLE for the
mean outcome under the optimal rule. Subsequently, we prove asymptotic
linearity and efficiency of this CV-TMLE, allowing us to construct confidence
intervals for the mean outcome under the optimal dynamic treatment or its
contrast with respect to a standard treatment.

In a SMART the statistical inference would only rely upon a second-order dif-
ference between the estimator of the optimal dynamic treatment and the optimal
dynamic treatment itself to be asymptotically negligible. This is a reasonable con-
dition if we restrict ourselves to rules only responding to a one-dimensional time-
dependent covariate, or if we are willing to make smoothness assumptions. While
this condition appears to be necessary when estimating the optimal mean outcome,
it is not necessary if the parameter of interest is redefined as the average mean out-
come under our cross-validated estimates of the optimal dynamic treatment. This
parameter relies on the data through our estimates of the optimal dynamic treat-
ment, and we thus refer to it as a data-adaptive parameter.

22.1 Optimal Dynamic Treatment Estimation Problem

For the sake of presentation, we focus on two time point treatments in this chapter.
Suppose we observe n i.i.d. copies O1, . . . ,On ∈ O of

O = (L(0), A(0), L(1), A(1),Y) ∼ P0,

where A( j) = (A1( j), A2( j)), A1( j) is a binary treatment and A2( j) is an indicator
of not being right censored at “time” j, j = 0, 1. That is, A2(0) = 0 implies that
(L(1), A1(1),Y) is not observed, and A2(1) = 0 implies that Y is not observed. Each
time point j has covariates L( j) that precede treatment, j = 0, 1, and the outcome of
interest is given by Y and occurs after time point 1. For a time-dependent process
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X(·), we will use the notation X̄(t) = (X(s) : s ≤ t), where X̄(−1) = ∅. Let M be
a statistical model that makes no assumptions on the marginal distribution Q0,L(0)

of L(0) and the conditional distribution Q0,L(1) of L(1), given A(0), L(0), but might
make assumptions on the conditional distributions g0A( j) of A( j), given Ā( j−1), L̄( j),
j = 0, 1. We will refer to g0 as the intervention mechanism, which can be factorized
in a treatment mechanism g01 and censoring mechanism g02 as follows:

g0(O) =
2∏

j=1

g01(A1( j) | Ā( j − 1), L̄( j))g02(A2( j) | A1( j), Ā( j − 1), L̄( j)).

In particular, the data might have been generated by a SMART, in which case g01 is
known.

Let V(1) be a function of (L(0), A(0), L(1)), and let V(0) be a function of L(0).
Let V = (V(0),V(1)). Consider dynamic treatment rules V(0) → dA(0)(V(0)) ∈
{0, 1}×{1} and (A(0),V(1))→ dA(1)(A(0),V(1)) ∈ {0, 1}×{1} for assigning treatment
A(0) and A(1), respectively, where the rule for A(0) is only a function of V(0), and
the rule for A(1) is only a function of (A(0),V(1)). Note that these rules are restricted
to set the censoring indicators A2( j) = 1, j = 0, 1. LetD be the set of all such rules.
We assume that V(0) is a function of V(1) (i.e., observing V(1) includes observing
V(0)), but in the theorem below we indicate an alternative assumption. For d ∈ D,
we let:

d(a(0), v) ≡ (dA(0)(v(0)), dA(1)(a(0), v(1))).

If we assume a structural equation model (Pearl 2009a) for variables stating that

L(0) = fL(0)(UL(0))

A(0) = fA(0)(L(0),UA(0))

L(1) = fL(1)(L(0), A(0),UL(1))

A(1) = fA(1)(L̄(1), A(0),UA(1))

Y = fY (L̄(1), Ā(1),UY ),

where the collection of functions f = ( fL(0), fA(0), fL(1), fA(1)) are unspecified or
partially specified, we can define counterfactuals Yd defined by the modified sys-
tem in which the equations for A(0), A(1) are replaced by A(0) = dA(0)(V(0)) and
A(1) = dA(1)(A(0),V(1)). Denote the distribution of these counterfactual quantities
as P0,d, where we note that P0,d is implied by the collection of functions f and the
joint distribution of exogenous variables (UL(0),UA(0),UL(1),UA(1),UY ). We can now
define the causally optimal rule under P0,d as d∗0 = arg maxd∈D EP0,d Yd. If we assume
a sequential randomization assumption stating that A(0) is independent of UL(1),UY ,
given L(0), and A(1) is independent of UY , given L̄(1), A(0), then we can identify
P0,d with observed data under the distribution P0 using the g-computation formula:

p0,d(L(0), A(0), L(1), A(1),Y)

≡ I(A = d(A(0),V))q0,L(0)(L(0))q0,L(1)(L(1) | L(0), A(0))q0,Y (Y | L̄(1), Ā(1)),
(22.1)
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where p0,d is the density of P0,d and q0,L(0), q0,L(1), and q0,Y are the densities for
Q0,L(0), Q0,L(1), and Q0,Y , where Q0,Y represents the distribution of Y given L̄(1), Ā(1).
We assume that all densities above are absolutely continuous with respect to some
dominating measure μ. We have a similar identifiability result/g-computation for-
mula under the Neyman-Rubin causal model (Robins 1987). More generally, for a
distribution P ∈ M we can define the g-computation distribution Pd as the distribu-
tion with density

pd(L(0), A(0), L(1), A(1),Y)

≡ I(A = d(A(0),V))qL(0)(L(0))qL(1)(L(1) | L(0), A(0))qY (Y | L̄(1), Ā(1)),

where qL(0), qL(1), and qY are the counterparts to q0,L(0), q0,L(1), and q0,Y under P.
For the remainder of this chapter, if for a static or dynamic intervention d, we

use notation Ld (or Yd, Od) we mean the random variable with the probability dis-
tribution Pd in (22.1) so that of all our quantities are statistical parameters. For
example, the quantity E0(Ya(0)a(1) | Va(0)(1)) defined in the next theorem denotes the
conditional expectation of Ya(0)a(1), given Va(0)(1), under the probability distribution
P0,a(0)a(1) (i.e., g-computation formula presented above for the static intervention
(a(0), a(1))). In addition, if we write down these parameters for some Pd, we will
automatically assume the positivity assumption at P required for the g-computation
formula to be well defined. For that it will suffice to assume the following positivity
assumption at P:

PrP

(
0 < min

a1∈{0,1}
g0A(0)(a1, 1|L(0))

)
= 1

PrP

(
0 < min

a1∈{0,1}
g0A(1)(a1, 1 | L̄(1), A(0))

)
= 1. (22.2)

The strong positivity assumption will be defined as the above assumption, but where
the 0 is replaced by a δ > 0.

We now define a statistical parameter representing the mean outcome Yd under
Pd. For any rule d ∈ D, let

Ψd(P) ≡ EPd Yd.

For a distribution P, define the V-optimal rule as

dP = arg max
d∈D

EPd Yd.

For simplicity, we will write d0 instead of dP0 for the V-optimal rule under P0.
Define the parameter mapping Ψ : M → IR as Ψ (P) = EPdP

YdP . The first part of
this chapter is concerned with inference for the parameter

ψ0 ≡ Ψ (P0) = EP0,d0
Yd0 .
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Under our identifiability assumptions, d0 is equal to the causally optimal rule d∗0.
Even if the sequential randomization assumption does not hold, the statistical pa-
rameter ψ0 represents a statistical parameter of interest in its own right. We will not
concern ourselves with the sequential randomization assumption for the remainder
of this paper.

The next theorem presents an explicit form of the V-optimal individualized treat-
ment rule d0 as a function of P0.

Theorem 22.1. Suppose V(0) is a function of V(1). The V-optimal rule d0 can be
represented as the following explicit parameter of P0:

Q̄b,20(a(0), v(1)) = E0(Ya(0),A(1)=(1,1) | Va(0)(1) = v(1))

−E0(Ya(0),A(1)=(0,1) | Va(0)(1) = v(1)),

d0,A(1)(A(0),V(1)) = (I(Q̄b,20(A(0),V(1)) > 0), 1),

Q̄b,10(v(0)) = E0(Y(1,1),d0,A(1) | V(0)) − E0(Y(0,1),d0,A(1) | V(0)),

d0,A(0)(V(0)) = (I(Q̄b,10(V(0)) > 0), 1),

where a(0) ∈ {0, 1} × {1}. If V(1) does not include V(0), but, for all (a(0), a(1)) ∈
{{0, 1} × {1}}2,

E0(Ya(0),a(1) | V(0),Va(0)(1)) = E0(Ya(0),a(1) | Va(0)(1)), (22.3)

then the above expression for the V-optimal rule d0 is still true.

Following Robins (2004), we refer to Q̄b,10 and Q̄b,20 as the (first and second time
point) blip functions.

22.2 Efficient Influence Curve of the Mean Outcome Under
V-Optimal Rule

In this section, we establish the pathwise differentiability of Ψ and give an explicit
expression for the efficient influence curve. Before presenting this result, we give
the efficient influence curve for the parameter Ψ : M → R where Ψd(P) ≡ EPYd

and the rule d = (dA(0), dA(1)) ∈ D is treated as known. This influence curve was
presented in Chap. 4. The parameter mapping Ψd has efficient influence curve

D∗(d, P) =
2∑

k=0

D∗k(d, P),

where

D∗0(d, P) =EP
[
Yd | L(0), A(0) = dA(0)(V(0))

] − EPYd,
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D∗1(d, P) =
I(A(0) = dA(0)(V(0)))

gA(0)(O)
(EP[Y | Ā(1) = d(A(0),V), L̄(1)]

− EP[Yd | L(0), A(0) = dA(0)(V(0))]),

D∗2(d, P) =
I(Ā(1) = d(A(0),V))
∏1

j=0 gA( j)(O)

(
Y − EP

[
Y | Ā(1) = d(A(0),V), L̄(1)

])
. (22.4)

Above (gA(0), gA(1)) is the intervention mechanism under the distribution P. We re-
mind the reader that Yd has the g-computation distribution from (22.1) so that:

EP
[
Yd | L(0), A(0) = dA(0)(V(0))

]

= EP

[
EP

[
Y | Ā(1) = d(A(0),V), L̄(1))

]
| L(0), A(0) = dA(0)(V(0))

]

At times it will be convenient to write D∗k(d,Qd, g) instead of D∗k(d, P), where Qd

represents both of the conditional expectations in the definitions of D∗1 and the
marginal distribution of L(0) under P and g represents the intervention mechanism
under P. We will denote these conditional expectations under P0 for a given rule d
by Qd

0. We will similarly at times denote D∗(d, P) by D∗(d,Qd, g).
Whenever D∗(P) does not contain an argument for a rule d, this D∗(P) refers to

the efficient influence curve of the parameter mapping Ψ for which Ψ (P) = EPYdP ,
where the optimal rule dP under P is not treated as known. Not treating dP as known
means that dP depends on the input distribution P in the mapping Ψ (P). The follow-
ing theorem presents the efficient influence curve of Ψ at a distribution P. The main
condition on this distribution P is that it satisfies the nonexceptional law condition
that

max
a0(0)∈{0,1}

PrP

(
Q̄b,2((a0(0), 1),Va(0)=(a0(0),1)) = 0

)
= 0,

PrP

(
Q̄b,1(V(0)) = 0

)
= 0, (22.5)

where Q̄b,2 and Q̄b,1 are defined analogously to Q̄b,20 and Q̄b,10 in Theorem 22.1 with
the expectations under P0 replaced by expectations under P. That is, we assume that
each of the blip functions under P is nowhere zero with probability 1. Distribu-
tions that do not satisfy this assumption have been referred to as “exceptional laws”
(Robins 2004). These laws are indeed exceptional when one expects that treatment
will have a beneficial or harmful effect in all V-strata of individuals. When one only
expects that treatment will have an effect on outcome in some but not all strata of
individuals then this assumption may be violated. We will make this assumption
about P0 for all subsequent asymptotic linearity results about E0Yd0 , and we will
assume a weaker but still not completely trivial assumption about the consistency of
the optimal rule estimate to some fixed limit for the data-adaptive target parameters
in Sect. 22.3.

Theorem 22.2. Suppose P ∈ M is such that PrP(| Y |< M) = 1 for some M < ∞,
P satisfies the positivity assumption (22.2), and P satisfies the nonexceptional law
condition (22.5). Then the parameter Ψ : M → IR is pathwise differentiable at P
with canonical gradient given by
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D∗(P) ≡ D∗(dP, P) =
2∑

k=0

D∗k(dP, P),

That is, D∗(P) equals the efficient influence curve D∗(dP, P) for the parameter
Ψd(P) ≡ EPYd at the V-optimal rule d = dP, where Ψd treats d as given.

The above theorem is proved as Theorem 8 in van der Laan and Luedtke (2014) so
the proof is omitted here.

We will at times denote D∗(P) by D∗(Q, g), where Q represents QdP , along with
portions of the likelihood that suffice to compute the V-optimal rule dP. We denote
dP by dQ when convenient. We explore which parts of the likelihood suffice to com-
pute the V-optimal rule in our companion paper, though Theorem 22.1 shows that
Q̄b,20 and Q̄b,10 suffice for d0 (and analogous functions suffice for a more general
dP). We have the following property of the efficient influence curve, which will pro-
vide a fundamental ingredient in the analysis of the CV-TMLE presented in the next
section.

Theorem 22.3. Let dQ be the V-optimal rule corresponding with Q. For any Q, g,
we have

P0D∗(Q, g) = Ψ (Q0) − Ψ (Q) + R1dQ (QdQ ,QdQ

0 , g, g0) + R2(Q,Q0)

where, for all d ∈ D,

R1d(Qd,Qd
0, g, g0) ≡ P0D∗(d,Qd, g) − (Ψd(Qd

0) − Ψd(Qd)),

R2(Q,Q0) ≡ ΨdQ (QdQ

0 ) − Ψd0 (Qd0

0 ),

Ψd(P) = EPYd is the statistical target parameter that treats d as known, and
D∗(d,Qd

0, g0) is the efficient influence curve of Ψd at P0 as given in Theorem 22.2.

From the study of the statistical target parameter Ψd in Chap. 4, we know that
P0D∗(d,Qd, g) = Ψd(Qd

0) − Ψd(Qd) + R1d(Qd,Qd
0, g, g0), where R1d is a closed form

second-order term involving integrals of differences Qd−Qd
0 times differences g−g0.

22.3 Statistical Inference for the Average of Sample-Split
Specific Mean Counterfactual Outcomes Under Data
Adaptively Determined Dynamic Treatments

Let d̂ : M → D be an estimator that maps an empirical distribution into an in-
dividualized treatment rule. Let Bn ∈ {0, 1}n denote a random vector for a cross-
validation split, and for a split Bn, let P0

n,Bn
be the empirical distribution of the train-

ing sample {i : Bn(i) = 0} and P1
n,Bn

is the empirical distribution of the validation
sample {i : Bn(i) = 1}. Consider a J-fold cross-validation scheme. In J-fold cross-
validation, the data is split into J mutually exclusive and exhaustive sets of size
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approximately n/J uniformly at random. Each set is then used as the validation set
once, with the union of all other sets serving as the training set. With probability
1/J, Bn has value 1 in all indices in validation set j ∈ {1, . . . , J} and 0 for all indices
not corresponding to training set j.

In this section, we first present a method that provides an estimator and statistical
inference for the data-adaptive target parameter

ψ̃0n = EBnΨd̂(P0
n,Bn

)(P0).

Note that this target parameter is defined as the average of data-adaptive parameters,
where the data-adaptive parameters are learned from the training samples of size
approximately n(J − 1)/J. One applies the estimator d̂ to each of the J training
samples, giving a target parameter value Ψd̂(P0

n,Bn
)(P0), and our target parameter ψ̃0n

is defined as the average across these J target parameters.

22.3.1 General Description of CV-TMLE

Here we give a general overview of the CV-TMLE procedure. In Sect. 22.6 we
present a particular CV-TMLE that satisfies all of the properties described in this
section. Denote the realizations of Bn with j = 1, .., J, and let dn j = d̂(P0

n, j) for some

estimator of the optimal rule d̂. Let

(a(0), l̄(1)) 
→ En j[Y |Ā(1) = dn j(a(0), v), L̄(1) = l̄(1)]

represent an initial estimate of E0[Y | Ā(1) = dn j(A(0),V), L̄(1)] based on the train-
ing sample j. Similarly, let l(0) 
→ En j[Ydn j |L(0) = l(0)] represent an initial estimate
of E0[Ydn j |L(0)] based on the training sample j. Finally, let QL(0),n j represent the
empirical distribution of L(0) in validation smaple j. We then fluctuate these three
regression functions using the following submodels:

{
E(ε2)

n j [Y |Ā(1) = dn j(a(0), v), L̄(1) = l̄(1)] : ε2 ∈ R
}

{
E(ε1)

n j [Ydn j |L(0) = l(0)] : ε1 ∈ R
}

{
Q(ε0)

L(0),n j : ε0 ∈ R}
}
,

where these submodels rely on an estimate gn j of g0 based on training sample j and
are such that:

E(0)
n j [Y |Ā(1) = dn j(a(0), v), L̄(1)] = En j[Y |Ā(1) = dn j(a(0), v), L̄(1)]

E(0)
n j [Ydn j |L(0)] = En j[Ydn j |L(0)]

Q(0)
L(0),n j = QL(0),n j.
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Let Q
dn j

n j (ε) represent the parameter mapping that gives the three regression func-

tions above fluctuated by ε ≡ (ε0, ε1, ε2). For a fixed ε, Q
dn j

n j (ε) only relies on P1
n j

through the empirical distribution of L(0) in validation sample j. Let φ be a valid
loss function for Qd

0 so that Qd
0 = arg minQd P0φ(Qd), and let φ and the submodels

above satisfy

D∗(d,Qd, g) ∈
〈

d
dε
φ(Qd(ε))

∣∣∣∣∣
ε=0

〉
,

where 〈 f 〉 = {∑ j β j f j : β} denotes the linear space spanned by the components of

f . We choose εn to minimize P1
nφ(Q

dn j

n j (ε)) over ε ∈ R3. We then define the targeted

estimate Q
dn j∗
n j ≡ Q

dn j

n j (εn) of Q
dn j

0 . We note that Q
dn j∗
n j maintains the rate of conver-

gence of Qn j under mild conditions that are standard to M-estimator analysis. The

key property that we need from the εn and the corresponding update Q
dn j∗
n j is that it

(approximately) solves the cross-validated empirical mean of the efficient influence
curve:

EBn P1
n,Bn

D∗(dn j,Q
dn j∗
n j , gn j) = oP0 (1/

√
n). (22.6)

The CV-TMLE implementation presented in the appendix satisfies this equation
with oP0 (1/

√
n) replaced by 0. The proposed estimator of ψ̃0n is given by

ψ̃∗n ≡ EBnΨdn j (Q
dn j∗
n j ).

We give a concrete CV-TMLE algorithm for ψ̃∗n in Sect. 22.6, but note that other
CV-TMLE algorithms can be derived using the approach in this section for different
choices of loss function φ and submodels.

22.3.2 Statistical Inference for the Data-Adaptive Parameter ψ̃0n

We now proceed with the analysis of this CV-TMLE ψ̃∗n of ψ̃0n. We first give a
representation theorem for the CV-TMLE.

Theorem 22.4. Let gn j and dn j represent estimates of g0 and d0 based on training

sample j. Let Q
dn j∗
n j represent a targeted estimate of Q

dn j

0 as presented in Sect. 22.3.1

so that Q
dn j∗
n j satisfies (22.6). Let R1d be as in Theorem 22.3. Further suppose that

the supremum norm of max j D∗(dn j,Q
dn j∗
n j , gn j) is bounded by some M < ∞ with

probability tending to 1, and that

max
j∈{1,...,J}

P0{D∗(dn j,Q
dn j∗
n j , gn j) − D∗(d1,Q

d1 , g)}2 → 0 in probability
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for some d1 ∈ D and possibly misspecified Qd1 and g. Finally, suppose that

max
j∈{1,...,J}

∣∣∣∣R1dn j (Q
dn j∗
n j ,Q

dn j

0 , gn j, g0)
∣∣∣∣ = oP0 (n−1/2).

Then,

ψ̃∗n − ψ̃0n =(Pn − P0)D∗(d1,Q
d1 , gd1 ) + oP0 (n−1/2).

Note that d1 in the above theorem need not be the same as the optimal rule d0, though
later we will discuss the desirable special case where d1 = d0. The above theorem
also does not require that g0 is known, or even that the limit of our intervention
mechanisms g is equal to g0.

Note in the above theorem that the condition that, if g0 is known so that all gn j

can be correctly specified, it immediately follows that

max
j∈{1,...,J}

∣∣∣∣R1dn j (Q
dn j∗
n j ,Q

dn j

0 , gn j, g0)
∣∣∣∣ = 0.

In practice we would recommend estimating g0 according to a correctly specified
model even when g0 is known, because this can improve efficiency (see Section
2.3.7 of van der Laan and Robins 2003).

If the conditions of the above theorem hold, the asymptotic linearity result im-
plies that

√
n
[
ψ̃∗n − ψ̃0n

]
→ Normal(0, σ2

0),

where σ2
0 = P0D∗(d1,Qd1 , gd1 )2. Under mild conditions,

σ2
n =

1
J

J∑

j=1

P1
n, j

{
D∗(dn j,Q

dn j∗
n j , gn j)

}2

consistently estimates σ2
0. Under the consistency of σ2

n and the conditions of Theo-
rem 22.4, an asymptotically valid 95% confidence interval for ψ̃0n is given by

[
ψ̃∗n ±

σn√
n

]
. (22.7)

22.3.3 Statistical Inference for the True Optimal Rule ψ0

Suppose now that we are interested in estimating the mean outcome under the opti-
mal rule d0 rather than the data-adaptive parameter ψ̃0n. Note that

√
n
(
ψ̃∗n − ψ0

)
=
√

n
(
ψ̃∗n − ψ̃0n

)
+
√

n
(
ψ̃0n − ψ0

)

=
√

n
(
ψ̃∗n − ψ̃0n

)
+

√
n

J

J∑

j=1

[
Ψdn j (P0) − ψ0

]
.
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If J−1∑J
j=1

[
Ψdn j (P0) − ψ0

]
, then by Slutsky’s theorem the left-hand side has the

same normal limit as
√

n
(
ψ̃∗n − ψ̃0n

)
provided the conditions of Theorem 22.4 hold.

Furthermore, as J is fixed as n→ ∞, J−1∑J
j=1

[
Ψdn j (P0) − ψ0

]
= oP(n−1/2) if

Ψdn j (P0) − ψ0 = oP(n−1/2) for each j. (22.8)

To analyze Ψdn j (P0) − ψ0, we will assume that the user estimates Q̄b,10 and Q̄b,20

using Q̄b,1n j and Q̄b,2n j, and then subsequently uses the plug-in estimators of the
format described in Theorem 22.1. Data-adaptive estimators of Q̄b,10 and Q̄b,20 were
previously described in Luedtke and van der Laan (2016b). While we do not require
that dn j result from a plug-in estimator, this is the estimation scheme we will focus
on analyzing here. Given that the main result needed to show (22.8) for the plug-in
estimator is analytic in nature, we focus on a general Q with corresponding blip
functions Q̄b,1, Q̄b,2 and optimal rule plug-in estimates dQ,A(0), dQ,A(1). One can then
apply this result directly to our fold-specific estimator.

The following result is proved in Sect. 22.5.

Lemma 22.1. Recall the definitions of Q̄b,20 and Q̄b,10 in Theorem 22.1. We can
represent Ψ (P0) = E0Yd0 as follows:

Ψ (P0) = E0Y(0,1),(0,1) + E0

[
d0,A(1)((0, 1),V(0,1)(1))Q̄b,20((0, 1),V(0,1)(1))

]

+ E0d0,A(0)(V(0))Q̄b,10(V(0)).

where V(0,1)(1) is drawn under the g-computation distribution for which treatment
(0, 1) is given at the first time point.

It follows that

R2(Q,Q0) =E0(dQ,A(0) − d0,A(0))(V(0))Q̄b,10(V(0))

+ E0(dQ,A(1) − d0,A(1))((0, 1),V(0,1)(1))Q̄b,20((0, 1),V(0,1)(1))

≡R2,A(0)(Q,Q0) + R2,A(1)(Q,Q0).

We will be able to attain a fast rate on R2(Q,Q0) under margin assumptions. We
start with the assumption that we use to bound R2,A(0)(Q,Q0). Suppose there exist
positive constants C1, β1 such that, for all t > 0,

P0

{
0 <
∣∣∣Q̄b,10(V(0))

∣∣∣ ≤ t
}
≤ C1tβ1 . (MA1)

The above assumption requires that the blip function at the first time point does
not concentrate too much mass near (but not at) the decision boundary (zero). The
assumption is different from the exceptional law condition, since that condition re-
quires that this blip function places no mass exactly at the decision boundary. For
β1 and β2 small, this is a weak assumption, though it may not attain the rates of
convergence needed to satisfy (22.8). These assumptions hold for β1 = 1 if that the
blip functions applied to the data have bounded Lebesgue density in a neighborhood
of zero.
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We make a similar assumption on Q̄b,20. In particular, we assume there exists
some C2, β2 such that, for all t > 0,

P0

{
0 <
∣∣∣Q̄b,20((0, 1),V(0,1)(1))

∣∣∣ ≤ t
}
≤ C2tβ2 . (MA2)

We now show that (MA1) and (MA2) give a β1, β2-specific upper bound of
R2(Q,Q0) by the distance of Q̄b,1 and Q̄b,2 from Q̄b,10 and Q̄b,20.

Theorem 22.5. If (MA1) holds for some C1, β1 > 0, then, for some constant C > 0,

|R2,A(0)(Q,Q0)| ≤ C min
{∥∥∥Q̄b,1 − Q̄b,10

∥∥∥2(1+β1)/(2+β1)

2,P0
,
∥∥∥Q̄b,1 − Q̄b,10

∥∥∥1+β1

∞,P0

}
. (22.9)

If (MA2) holds for some C2, β2 > 0, then, for some constant C > 0,

|R2,A(1)(Q,Q0)| ≤ C min
{∥∥∥Q̄b,2 − Q̄b,20

∥∥∥2(1+β1)/(2+β1)

2,P0,(0,1)
,
∥∥∥Q̄b,1 − Q̄b,10

∥∥∥1+β1

P0,(0,1)

}
, (22.10)

where P0,(0,1) represents the static intervention specific g-computation distribution
where treatment (0, 1) is given at the first time point.

The above analytic result is useful for evaluating the plausibility of (22.8) when dn j

is estimated using a plug-in estimator. In a parametric model, one could typically
estimate Q̄b,10 and Q̄b,20 at n−1/2 rates for both the L2(P0) and the supremum norms
presented above. Hence, if the margin conditions hold with β1 = β2 = 1, the supre-
mum norm result yields n−1 rates on each Ψdn j (P0)−ψ0. In practice we of course do
not expect to be able to correctly specify a parametric model. Rather, we would use
data-adaptive estimators for the blip functions, such as super learning, to make cor-
rect specification of the estimators more likely (Luedtke and van der Laan 2016b).
Under smoothness assumptions on the blip functions, one can ensure nearly para-
metric rates on the L2(P0) norm using smoothing. These rates can, under enough
smoothness, achieve the oP(n−3/8 rate required by the above theorem at β1 = β2 = 1
to show that Ψdn j (P0) − ψ0 = oP(n−1/2). Nonetheless, in general we may not expect
such a fast rate to hold. If this fast rate does not hold, then one can still achieve
inference for the data-adaptive parameter ψ̃0n. If the fast rate does hold, as may be
possible if V is low-dimensional, then the implication is that, under the conditions of
Theorem 22.4 and the consistency of σ2

n, the confidence interval presented in (22.7)
is asymptotically valid for both ψ̃0n and ψ0.

22.4 Discussion

This chapter investigated semiparametric statistical inference for the mean out-
come under the V-optimal rule and statistical inference for the data-adaptive tar-
get parameter defined as the mean outcome under a data adaptively determined
V-optimal rule (treating the latter as given). We proved a surprising and useful result
stating that the mean outcome under the V-optimal rule is represented by a statistical
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parameter whose pathwise derivative is identical to what it would have been if the
unknown rule had been treated as known, under the condition that the data is gen-
erated by a nonexceptional law. As a consequence, the efficient influence curve is
immediately known, and any of the efficient estimators for the mean outcome un-
der a given rule can be applied at the estimated rule. In particular, we demonstrate
a CV-TMLE, and present asymptotic linearity results. However, the dependence of
the statistical target parameter on the unknown rule affects the second-order terms
of the CV-TMLE, and, as a consequence, the asymptotic linearity of the CV-TMLE
requires that a second-order difference between the estimated rule and the V-optimal
rule converges to zero at a rate faster than 1/

√
n. While this can be expected to hold

for rules that are only a function of one continuous score (such as a biomarker), only
strong smoothness assumptions will guarantee this when V is moderate-to-high di-
mensional, so that, even in an RCT, we cannot expect valid statistical inference for
such V-optimal rules.

To account for this challenge, we also described estimation of the average of sam-
ple split specific data-adaptive target parameters, as in general proposed in Hubbard
et al. (2016). Specifically, our data-adaptive target parameter is defined as an average
across J sample splits in training and validation sample of the mean outcome under
the dynamic treatment fitted on the training sample. We presented a CV-TMLE of
this data-adaptive target parameter, and we established an asymptotic linearity theo-
rem that does not require that the estimated rule be consistent for the optimal rule, let
alone at a particular rate. We showed that statistical inference for this data-adaptive
target parameter does not rely on the convergence rate of our estimated rule to the
optimal rule, and in fact only requires that the data adaptively fitted rule converges
to some (possibly suboptimal) fixed rule. As a consequence, in a sequential RCT,
this method provides valid asymptotic statistical inference under very mild condi-
tions, the primary of which is that the estimated rule converges to some (possibly
suboptimal) fixed rule.

Drawing inferences concerning optimal treatment strategies is an important topic
that will hopefully help guide future health policy decisions. We believe that work-
ing with a large semiparametric model is desirable because it helps to ensure that
the projected health benefits from implementing an estimated treatment strategy are
not due to bias from a misspecified model. The CV-TMLEs presented in this chapter
have many desirable statistical properties and allow one to get estimates and make
inference in this large model.

22.5 Proofs

Proof (Theorem 22.1). Let Vd = (V(0),Vd(1)). For a rule inD, we have

EPd Yd = EPd EPd (Yd | Vd)
= EVd

(
E(Ya(0),a(1) | Va(0))I(a(1) = dA(1)(a(0),Va(0)(1)))I(a(0) = dA(0)(V(0))

)
.
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For each value of a(0), Va(0) = (V(0),Va(0)(1)) and dA(0)(V(0)), the inner conditional
expectation is maximized over dA(1)(a(0),Va(0)(1)) by d0,A(1) as presented in the the-
orem, where we used that V(1) includes V(0). This proves that d0,A(1) is indeed the
optimal rule for assignment of A(1). Suppose now that V(1) does not include V(0),
but the stated assumption holds. Then the optimal rule d0,A(1) that is restricted to be
a function of (V(0),V(1), A(0)) is given by I(Q̄b,20(A(0),V(0),V(1)) > 0), where

Q̄b,20(a(0), v(0), v(1)) =
E0(Ya(0),A(1)=(1,1) − Ya(0),A(1)=(0,1) | Va(0)(1) = v(1),V(0) = v(0)).

However, by assumption, the latter function only depends on (a(0), v(0), v(1))
through (a(0), v(1)), and equals Q̄b,20(a(0), v(1)). Thus, we now still have that
d0,A(1)(V) = (I(Q̄b,20(A(0),V(1)) > 0), 1), and, in fact, it is now also an optimal rule
among the larger class of rules that are allowed to use V(0) as well.

Given we found d0,A(1), it remains to determine the rule d0,A(0) that maximizes

EVd

(
EP(Ya(0),d0,A(1) | Va(0))I(a(0) = dA(0)(V(0))

)

= E0E(Ya(0),d0,A(1) | V(0))I(a(0) = dA(0)(V(0)),

where we used the iterative conditional expectation rule, taking the conditional ex-
pectation of Va(0), given V(0). This last expression is maximized over dA(0) by d0,A(0)

as presented in the theorem. This completes the proof.

Proof (Theorem 22.3). By the definition of R1d we have

P0D∗(Q, g) = P0D∗(dQ,Q, g) = ΨdQ (QdQ

0 ) − ΨdQ (QdQ ) + R1dQ (QdQ ,QdQ

0 , g, g0)
= Ψd0 (Qd0

0 ) − ΨdQ (QdQ ) + {ΨdQ (QdQ

0 ) − Ψd0 (Qd0

0 )} + R1dQ (QdQ ,QdQ

0 , g, g0)
= Ψ (Q0) − Ψ (Q) + R2(Q,Q0) + R1dQ (QdQ ,QdQ

0 , g, g0).

Proof (Theorem 22.4). For all j = 1, . . . , J, we have that:

Ψdn j (Q
dn j∗
n j ) − Ψdn j (Q

dn j∗
0 ) = − P0D∗(dn j,Q

dn j∗
n j , gn j)

+ R1dn j (Q
dn j∗
n j ,Q

dn j∗
0 , gn j, g0)

Summing over j and using (22.6) gives:

ψ̃∗n − ψ̃0n =
1
J

J∑

j=1

(
(P1

n, j − P0)D∗(dn j,Q
dn j∗
n j , gn j) + R1dn j (Q

dn j∗
n j ,Q

dn j∗
0 , gn j, g0)

)
.

We also have that:

1
J

J∑

j=1

(P1
n, j − P0)

(
D∗(dn j,Q

dn j∗
n j , gn j) − D∗(d1,Q

d1 , g)
)
= oP0 (n−1/2).

The above follows from the first by applying the law of total expectation conditional
on the training sample, and then noting that each Q̂∗(P0

n,Bn
, εn) only relies on P0

n,Bn
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through the finite dimensional parameter εn. Because GLM-based parametric classes
easily satisfy an entropy integral condition (van der Vaart and Wellner 1996), the
consistency assumption on D∗(dn j,Q

dn j∗
n j , gn j) shows that the above is second order.

We refer the reader to Zheng and van der Laan (2010) for a detailed proof of the
above result for general cross-validation schemes, including J-fold cross-validation.

It follows that:

ψ̃∗n − ψ̃0n =(Pn − P0)D∗(d1,Q
d1 , g)

+
1
J

J∑

j=1

R1dn j (Q
dn j∗
n j ,Q

dn j∗
0 , gn j, g0) + oP0 (n−1/2).

Finally, note that 1
J

∑J
j=1 R1dn j (Q

dn j∗
n j ,Q

dn j∗
0 , gn j, g0) is oP(n−1/2) by the last assumption

of the theorem.

Proof (Lemma 22.1). For a point treatment data structure O = (L(0), A(0),Y) and
binary treatment A(0), we have for a rule V → d(V), E0Yd = E0Y0 + E0d(V)Q̄0(V))
with Q̄0(V) = E0[Y1 − Y0 | V]. This identity is applied twice in the following
derivation:

Ψ (P0) =E0Y(0,1),d0,A(1) + E0d0,A(0)(V(0))Q̄b,10(V(0))

=E0E0[Y(0,1),d0,A(1) | V(0,1)(1)] + E0d0,A(0)(V(0))Q̄b,10(V(0))

=E0E0[Y(0,1),(0,1) | V(0,1)(1)] + E0I(Q̄b,20((0, 1),V(0,1)(1)) > 0)Q̄b,20(0,V(0,1)(1))

+ E0d0,A(0)(V(0))Q̄b,10(V(0))

=E0E0[Y(0,1),(0,1) | V(0,1)(1)] + E0d0,A(1)((0, 1),V(0,1)(1))Q̄b,20(0,V(0,1)(1))

+ E0d0,A(0)(V(0))Q̄b,10(V(0))

=E0Y(0,1),(0,1) + E0d0,A(1)((0, 1),V(0,1)(1))Q̄b,20(0,V(0,1)(1))

+ E0d0,A(0)(V(0))Q̄b,10(V(0)).

Proof (Theorem 22.5). In this proof we will omit the dependence of d0,A(0), dQ,A(0),
Q̄b,10, and Q̄b,1 on V(0) in the notation. This part of the proof mimics the proof of
Lemma 5.2 in Audibert and Tsybakov (2007). For any t > 0,

|R2,A(0)(Q,Q0)| =E0[|Q̄b,10|I(d0,A(0) � dQ,A(0))]

=E0[|Q̄b,10|I(d0,A(0) � dQ,A(0))I(0 < |Q̄b,10| ≤ t)]

+ E0[|Q̄b,10|I(d0,A(0) � dQ,A(0))I(|Q̄b,10| > t)]

≤E0[|Q̄b,1 − Q̄b,10|I(0 < |Q̄b,10| ≤ t)]

+ E0[|Q̄b,1 − Q̄b,10|I(|Q̄b,1 − Q̄b,10| > t)]

≤ ∥∥∥Q̄b,1 − Q̄b,10

∥∥∥
2,P0

Pr(0 < |Q̄b,10| ≤ t)1/2 +

∥∥∥Q̄b,1 − Q̄b,10

∥∥∥2
2,P0

t

≤ ∥∥∥Q̄b,1 − Q̄b,10

∥∥∥
2,P0

C1/2
0 tβ1/2 +

∥∥∥Q̄b,1 − Q̄b,10

∥∥∥2
2,P0

t
,
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where the first inequality holds because d0,A(0) � dQ,A(0) implies that |Q̄b,1 − Q̄b,10| >
|Q̄b,10|, the second inequality holds by the Cauchy-Schwarz and Markov inequalities,
and the third inequality holds by (MA1). The first result follows by optimizing over

t to find that the upper bound is minimized when t = C′
∥∥∥Q̄b,1 − Q̄b,10

∥∥∥2(1+β1)/(2+β1)

2,P0

for a constant C′ that depends on C0 and β1.
We now establish the supremum-norm result. Note that

|R2,A(0)(Q,Q0)| = E0

∣∣∣I(dQ,A(0) � d0,A(0))Q̄b,10

∣∣∣
≤ E0

[
I(0 < |Q̄b,10| ≤ |Q̄b,1 − Q̄b,10|)|Q̄b,10|

]

≤ E0

[
I
(
0 < |Q̄b,10| ≤

∥∥∥Q̄b,1 − Q̄b,10

∥∥∥∞,P0

)
|Q̄b,10|

]

≤ ∥∥∥Q̄b,1 − Q̄b,10

∥∥∥∞,P0
Pr
(
0 < |Q̄b,10| ≤

∥∥∥Q̄b,1 − Q̄b,10

∥∥∥∞,P0

)
.

By (MA1), |ΨdQ,A(0) (P0) − Ψd0,A(0) (P0)| ≤ C1

∥∥∥Q̄b,1 − Q̄b,10

∥∥∥1+β1

∞,P0
. Combining the two

results yields (22.9). The proof of (22.10) is analogous and so is omitted.

22.6 CV-TMLE for the Mean Outcome Under Data-Adaptive
V-Optimal Rule

Let d̂ : M → D be an estimator of the V-optimal rule d0. Firstly, without loss
of generality we can assume that Y ∈ [0, 1]. Denote the realizations of Bn with
j = 1, . . . , J, and let dn j ≡ d̂(P0

n, j) denote the estimated rule on training sample j.
Let

(a(0), l̄(1)) 
→ En j[Y |Ā(1) = dn j(a(0), v), L̄(1) = l̄(1)] (22.11)

represent an initial estimate of E0[Y | Ā(1) = dn j(A(0),V), L̄(1)] based on the
training sample j. Similarly, let gn j represent the estimated intervention mechanism
based on this training sample P0

n, j, j = 1, . . . , J. Consider the fluctuation submodel

logit E(ε2)
n j

[
Y |Ā(1) = dn j(A(0),V), L̄(1)

]
= logit En j

[
Y |Ā(1) = dn j(A(0),V), L̄(1)

]

+ ε2H2(gn j)(O)

where

H2(gn j)(O) =
I(Ā(1) = dn j(A(0),V(1)))
∏1

l=0 gn j,A(l)(O)
.

Note that the fluctuation ε2 does not rely on j. Let

ε2n = arg min
ε2

1
J

J∑

j=1

P1
n, jφ̃(E

(ε2)
n j ),
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where E(ε2)
n j refers to the represents the fluctuated function in (22.11) and

−φ̃( f )(o) = y log f (o) + (1 − y) log (1 − f (o)) . (22.12)

for all f : O → (0, 1). For each i = 1, . . . , n, let j(i) ∈ {1, . . . , J} represent the value
of Bn for which element i is in the validation set. The fluctuation ε2n can be obtained
by fitting a univariate logistic regression of (yi : i = 1, . . . , n) on (H2(gn j(i))(oi) : i =
1, . . . , n) using

(
logit En j(i)

[
Y |Ā(1) = dn j(i)(a(0)i, vi), L̄(1) = l̄(1)i

]
: i = 1, . . . , n

)

as offset. Thus each observation i is paired with nuisance parameters are fit on the
training sample that does not contain observation i. This defines a targeted estimate

E∗n j

[
Y |Ā(1) = dn j(A(0),V), L̄(1)

]
≡ E(ε2n)

n j

[
Y |Ā(1) = dn j(A(0),V), L̄(1)

]
(22.13)

of E0[Y | Ā(1) = dn j(A(0),V), L̄(1)]. We note that this targeted estimate only de-
pends on Pn through the training sample P0

n, j and the one-dimensional ε2n.
We now aim to get a targeted estimate of E0[Ydn j |L(0)]. We can obtain an estimate

(a1(0), l(0)) 
→ En j

[
En j

[
Y | Ā(1) = dn j(A(0),V), L̄(1)

]∣∣∣∣ A(0) = (a1(0), 1), L(0) = l(0)
]

(22.14)

by regressing En j

[
Y | Ā(1) = dn j(A(0)i,Vi), L̄(1)i

]
against A(0)i, L(0)i for all of the

observations i in training sample j. For an estimate En j[Ydn j |L(0)] of E0[Ydn j |L(0)],
we can use the regression function above but with a(0) fixed to dn j,A(0)(v(0)).

Consider the fluctuation submodel

logit E(ε1)
n j

[
Ydn j | L(0)

]
= logit En j

[
Ydn j | L(0)

]
+ εH1(gn j)(O),

where

H1(gn j)(O) =
I(A(0) = dn j,A(0)(V(0)))

gn j,A(0)(O)
.

Again the fluctuation ε1 does not rely on j. Let

ε1n = arg min
ε1

1
J

J∑

j=1

P1
n, jφ̃(E

(ε1)
n j ),

where φ̃ is defined in (22.12). For each i = 1, . . . , n, again let j(i) ∈ {1, . . . , J}
represent the value of Bn for which element i is in the validation set. The fluctuation
ε1n can be obtained by fitting a univariate logistic regression of

(
E∗n j(i)

[
Y |Ā(1) = dn j(i)(a(0)i, vi), l̄(1)i

]
: i = 1, . . . , n

)
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on (H1(gn j(i))(oi) : i = 1, . . . , n) using

(
logit En j(i)

[
Ydn j(i) |L(0) = l(0)i

]
: i = 1, . . . , n

)

as offset. This defines a targeted estimate

E∗n j

[
Ydn j |L(0)

]
≡ E(ε1n)

n j

[
Ydn j |L(0)

]
(22.15)

of E0[Ydn j |L(0)]. We note that this targeted estimate only depends on Pn through the
training sample P0

n, j and the one-dimensional ε1n.

Let QL(0),n j be the empirical distribution of L(0)i for the validation sample P1
n, j.

For all j = 1, . . . , J, let Q
dn j∗
n j be the parameter mapping representing the collection

containing QL(0),n j and the targeted regressions in (22.13) and (22.15). This defines
an estimator ψ∗n j = P1

n, jQ̄
∗
b,1n j of ψdn j0 = Ψdn j (P0) for each j = 1, . . . , J. The cross-

validated TMLE is now defined as ψ∗n =
1
J

∑J
j=1 ψ

∗
n j. This CV-TMLE solves the

cross-validated efficient influence curve equation:

1
J

J∑

j=1

P1
n, jD

∗(dn j,Q
dn j∗
n j , gn j) = 0.

Further, each Q
dn j∗
n j only relies on P1

n, j through the univariate parameters ε1n and ε2n.
This will allow us to use the entropy integral arguments presented in Zheng and
van der Laan (2010) that show that no restrictive empirical process conditions are
needed on the initial estimates in (22.11) and (22.14).

The only modification relative to the original CV-TMLE presented in Zheng and
van der Laan (2010) is that in the above description we change our target on each
training sample into the training sample specific target parameter implied by the fit
d̂(P0

n,Bn
) on the training sample, while in the original CV-TMLE formulation, the

target would still be Ψd0 (P0). With this minor twist, the (same) CV-TMLE is now
used to target the average of training sample specific target parameters averaged
across the J training samples.

22.7 Notes and Further Reading

Examples of multiple time-point dynamic treatment regimes are given in Lavori and
Dawson (2000, 2008); Murphy (2005); Rosthø j et al. (2006); Thall et al. (2002);
Wagner et al. (2001) ranging from rules that change the dose of a drug, change
or augment the treatment, to making a decision on when to start a new treatment,
in response to the history of the subject. For an excellent overview on dynamic
treatments we refer to Chakraborty and Moodie (2013).
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We define the optimal dynamic multiple time-point treatment regime as the rule
that maximizes the mean outcome under the dynamic treatment, where the candi-
date rules are restricted to only respond to a user-supplied subset of the baseline and
intermediate covariates. The literature on Q-learning shows that we can describe
the optimal dynamic treatment among all dynamic treatments in a sequential man-
ner (Murphy 2003; Robins 2004; Murphy 2005). The optimal rule can be learned
through fitting the likelihood and then calculating the optimal rule under this fit of
the likelihood. This approach can be implemented with maximum likelihood esti-
mation based on parametric models. It has been noted (e.g., Robins 2004) that the
estimator of the parameters of one of the regressions (except the first one) when
using parametric regression models is a nonsmooth function of the estimator of the
parameters of the previous regression, and that this results in nonregularity of the
estimators of the parameter vector. This raises challenges for obtaining statistical
inference, even when assuming that these parametric regression models are cor-
rectly specified. Chakraborty and Moodie (2013) discuss various approaches and
advances that aim to resolve this delicate issue such as inverting hypothesis testing
(Robins 2004), establishing nonnormal limit distributions of the estimators (Laber
et al. 2014a), or using the m out of n bootstrap (Chakraborty et al. 2014). The proof
of the fast rate for the estimate of the optimal rule provided in Theorem 22.5 is sim-
ilar to the proofs of the fast classification rates obtained in Audibert and Tsybakov
(2007). It was presented for single time point optimal treatment rules in van der
Laan and Luedtke (2015).

Murphy (2003) and Robins (2004) develop structural nested mean models tai-
lored to optimal dynamic treatments. These models assume a parametric model for
the “blip function” defined as the additive effect of a blip in current treatment on
a counterfactual outcome, conditional on the observed past, in the counterfactual
world in which future treatment is assigned optimally. Statistical inference for the
parameters of the blip function proceeds accordingly, but Robins (2004) points out
the irregularity of the estimator, resulting in some serious challenges for statisti-
cal inference as referenced above. Structural nested mean models have also been
generalized to blip functions that condition on a (counterfactual) subset of the past,
thereby allowing the learning of optimal rules that are restricted to only using this
subset of the past (Robins 2004 and Section 6.5 in van der Laan and Robins 2003).

Each of the above referenced approaches for learning an optimal dynamic treat-
ment that also aims to provide statistical inference relies on parametric assumptions:
obviously, Q-learning based on parametric models, but also the structural nested
mean model rely on parametric models for the blip function. As a consequence,
even in a SMART, the statistical inference for the optimal dynamic treatment heav-
ily relies on assumptions that are generally believed to be false, and will thus be
expected to be biased. To avoid these biases, in this chapter we defined our model as
nonparametric, beyond possible restrictions on the treatment/censoring mechanism.
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