
Isotropy Analysis of a Stiffness Decoupling
8/4-4 Parallel Force Sensing Mechanism

Jiantao Yao1,2(&), Danlin Wang1, Xueyan Lin1, Hong Zhang1,
Yundou Xu1,2, and Yongsheng Zhao1,2

1 Hebei Provincial Key Laboratory of Parallel Robot and Mechatronic System,
Yanshan University, Qinhuangdao 066004, China

jtyao@ysu.edu.cn
2 Key Laboratory of Advanced Forging and Stamping Technology
and Science, (Yanshan University), Ministry of Education of China,

Qinhuangdao 066004, China

Abstract. A stiffness decoupling 8/4-4 parallel force sensing mechanism
(PFSM) is presented. Its mathematic model is established with screw theory.
The force mapping relation is studied and the stiffness matrix is found to be a
diagonal matrix, which proves the stiffness decoupling characteristics of the
mechanism. According to the concept of fully isotropy, the isotropy conditions
are analyzed, the parameters which meet fully isotropy are given. The 8/4-4
PFSM’s configuration under isotropy parameters is analyzed. Based on this
configuration, an 8/4-4 mechanism cluster which meets the fully isotropy is
presented. The cluster’s configuration is classified and induced into four main
configurations according to the different parameter conditions.
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1 Introduction

Parallel mechanism possesses the distinguishing advantages including high rigidity,
high accuracy and easy decoupling. Due to these advantages, parallel mechanism has
been widely used in many fields of science and engineering, such as micro-manipulators
[1, 2], machine tools [3], wind tunnel experiments [4, 5] and so on.

The force sensing mechanism based on generalized parallel structure has been
widely studied by many scholars. Gaillet and Reboulet [6] firstly proposed the appli-
cation of the Stewart platform to six-axis parallel force sensing mechanism (PFSM).
Kerr [7] considered the axial stiffness of the branch in the studied of Stewart PFSM and
enumerated some design criteria for the sensor structure. Dwarakanath and Venkatesh
[8] presented a six-axis parallel mechanism based force/torque sensor with no
mechanical joint. Yao et al. [9, 10] presented the theoretical analysis and experiment
research of a novel statically indeterminate six-axis PFSM. Zhen Gao and Dan Zhang
[11] designed a multidimensional acceleration sensor based on fully decoupled com-
pliant parallel mechanism. Dwarakanath and Bhutani [12] proposed a beam type PFSM
based on “joint less” connector configuration for the transmission of axial forces.
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Yao et al. [13] presented a novel six-component force sensor based on parallel and
flexible mechanisms and manufactured the sensor prototype with 3-D printing
technology.

As can be seen from the literature survey, isotropy is a very significant principle in
the design of six-axis PFSM. Xiong [14] presented the concept “isotropy” for robot’s
force sensors on the basis of Fisher’s information matrix. A Fattah and AMH Ghasemi
[15] presented the concept of kinematic isotropy and used as a criterion in the design of
various parallel manipulators with ideal kinematic and dynamic performance. JIN
Zhenlin [16] defined the sensitivity isotropy evaluation criteria of the force sensing
mechanism, investigated the relationships between the criteria and the parameters of all
the transducers based on the Stewart platform within the geometric model of the
solution space. Gogu G [17, 18] firstly defined fully isotropy and concluded the
characteristics under the isotropy configuration. Yao et al. [19] defined the modified
isotropy indices which considered stiffness coupling effect. [20] presented four kinds of
redundant six-axis PFSM, analyzed the four mechanisms’ isotropy performance based
on modified isotropy indices.

It is known that stiffness decoupling is the precondition of isotropy, but the current
stiffness decoupling idea is to get the numerical solution when coupled elements all
equal to zero, its decoupled characteristics can only be achieved under certain
parameter conditions, the coupled elements are not eliminated fundamentally. In this
paper, a stiffness decoupling 8/4-4 PFMS without coupled element is proposed, fun-
damentally eliminates the coupled characteristics. Then its isotropy performance and
derivative structure are analyzed. Finally, an 8/4-4 mechanism cluster based on 8/4-4
PFMS is presented.

2 Structure Model and Mathematic Model

2.1 The Structure Characteristics of the Generalized Six-Axis PFSM

Generalized six-axis PFSM is shown in Fig. 1, which is composed of a measuring
platform, a fixed platform, and n flexible measuring branches connecting two platforms
with spherical joints. The measuring coordinate system is in the center of the measuring
platform. In order to ensure the integrity of the measurement model, the number of
branches should be no less than 6. When external force applied on the measuring
platform, ignoring the branches’ weight and spherical joints’ friction, the branches bear
only the force acting along its axis.

Based on the screw theory, the force and moment applied on the measuring plat-
form are distributed on all branches. For the equilibrium of the measuring platform, the
Eq. (1) can be obtained:

ð1Þ

where F and M respectively represent the force vector and moment vector acted on the
measuring platform, fi represents the reacting force produced on the i-th flexible
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measuring branch and $i represents the unit line vector along the axis of the i-th flexible
measuring branch.

Then Eq. (1) can be expressed as

Fw ¼ Gf ð2Þ

where Fw = [F M] = [Fx Fy Fz Mx My Mz]
T is the wrench acted on the measuring

platform, f = [f1 f2 f3 …fn]
T (n � 6) is the vector composed of the axial force of each

branch, G is the force Jacobian matrix which will directly influence the performance of
the force sensing mechanism. G can be expressed as:

G¼ S1 S2 S3 . . . Sn
S01 S02 S03 . . . S0n

� �
ðn� 6Þ ð3Þ

where ðSi; S0iÞ represents the unit line vector along the axis of the i-th branch.

2.2 Structure and Mathematic Model of 8/4-4 PFSM

The structure diagram of the 8/4-4 PFSM is shown in Fig. 2. The mechanism’s model
is composed of three parts, outer platform for fixing, inner platform for measuring and
8 flexible measuring branches connecting between the two platforms. The inner and
outer platforms are coaxial arrangement. O is the geometric center of mechanism, Ai are
the intersections of i-th branches and inner platform, Bi are the intersections of i-th
branches and outer platform. Ai are distributed on the same circumference of the inner
platform. Bi are alternately distributed in two circumferences of the outer platform, the
distance between two circumferences is 2H. The angle between OAi and OBi is h,

fixed platform

spherical joint

flexible 
measuring branch

measuring platform

measuring 
coordinate system

Fig. 1. Generalized six-axis PFSM
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8 branches are radial and tilted to one side, as shown in Fig. 3. According to the
right-hand rule, the references coordinate system in Fig. 2. is established with O as the
origin, OA1 as the positive direction of axis X, and the coordinates of Ai and Bi can be
expressed as

Ai ¼ r cos ai r sin ai 0½ �
Bi ¼ R cosðai þ hÞ R sinðai þ hÞ ð�1ÞiH

� �
ai ¼ p

4
ði� 1Þ

ð4Þ

where r and R represent the inner and outer platform radius respectively, ai is the angle
between Ai and X axis, a + h is the angle between Bi and X axis.

Based on the screw theory, the force Jacobian matrix of the mechanism is obtained:

G ¼
A1�B1
A1�B1j j

A2�B2
A2�B2j j

A3�B3
A3�B3j j . . . A8�B8

A8�B8j j
B1�A1
A1�B1j j

B2�A2
A2�B2j j

B3�A3
A3�B3j j . . . B8�A8

A8�B8j j

" #
ð5Þ
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Fig. 2. Structure diagram of the 8/4-4 g of the 8/4-4 PFSM
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where

Ai � Bi ¼ ½ r cos ai � R cosðai þ hÞ r sin ai � R sinðai þ hÞ ð�1Þi�1H �
Aj � Bj

�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ r2 � 2Rr cos hþH2

p
Bi � Ai ¼ ½ ð�1Þi�1Hr sin ai ð�1ÞiHr cos ai �Rr sin h �

ð6Þ

3 Decoupling Analysis of 8/4-4 PFSM

Under the action of generalized external force Fw, the PFSM will have the corre-
sponding deformation DD, which can be expressed as:

DD ¼ DdT;DhT
� � ¼ Dx;Dy;Dz;Da;Db;Dc½ �T ð7Þ

where, Dd is the resulting linear deformation, Dh is the resulting rotational deformation.
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Fig. 3. Top view of the 8/4-4 PFSM
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Meanwhile under the action of reacting force, the flexible measuring branches of
the PFSM will also produce axial deformation, the relationship between the reacting
force f and the axial deformation Dl can be expressed as:

f ¼ KlDl ð8Þ

where Dl = [Dl1 Dl2 Dl3 Dl4 Dl5 Dl6 Dl7 Dl8]
T is a vector composed of axial defor-

mation of 8 flexible measuring branches. Kl = diag(k1 k2 k3 k4 k5 k6 k7 k8) represents the
stiffness matrix of 8 flexible measuring branches, since the 8 flexible measuring
branches are the same, so we suppose the 8 branches have the same stiffness kl.

By literature [21], the relation between Dl and DD can be expressed as:

Dl ¼ GTDD ð9Þ

Combining Eqs. (2), (8) and (9), the relation between Fw and DD can be obtained:

Fw ¼ KDD ¼ GKGTDD ð10Þ

Substituting Eqs. (5), (6) into Eq. (10), the stiffness matrix Ks and the relation
between Fw and DD of the 8/4-4 PFSM can be obtained:

Fw ¼

Fx

Fy

Fz
Mx

My

Mz

2
666664

3
777775 ¼ KsDD ¼ kl

K1 0 0 0 0 0
0 K1 0 0 0 0
0 0 K2 0 0 0
0 0 0 K3 0 0
0 0 0 0 K3 0
0 0 0 0 0 K4

2
6666664

3
7777775

Dx
Dy
Dz
Da
Db
Dc

2
666664

3
777775 ð11Þ

where

K1 ¼ 4ðR2 þ r2 � 2Rr cos hÞ
K2 ¼ 8H2

K3 ¼ 4H2r2

K4 ¼ 8R2r2 sin2 h

ð12Þ

Equation (11) is the analytical solution of 8/4-4 PFSM. It can be seen that the
stiffness matrix is a diagonal matrix, which proves the decoupled characteristic of the
8/4-4 PFSM. When a certain direction force/moment is applied on the origin of ref-
erence coordinate system, the deformation will also be on this certain direction but will
not interfere with other directions. No matter what the value of the parameters are, as
long as the geometric constraints in the Sect. 2.2 are satisfied, the decoupled charac-
teristics of 8/4-4 PFSM will not be affected.
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4 Isotropy Analysis of 8/4-4 PFSM

Based on the analysis of decoupled performance of 8/4-4 PFSM, it is found that when
the decoupled performance is satisfied, the deformation of each direction is indepen-
dent and easy to compare. Therefore, the decoupled characteristics and its constraints
are considered as the premise and basis of isotropy. In order to obtain better isotropy
properties, the decoupled performance must be considered at the beginning. However,
stiffness decoupling does not mean that the isotropy is satisfied, a parametric model
with isotropy constraints is still needed for the isotropy configuration.

When the force sensing mechanism is fully isotropy, the sensitivity of the
force/moment in the three-dimensional direction is consistent. From this, we can
conclude that the Eq. (13) must be satisfied when 8/4-4 PFSM is fully isotropy.

K1 ¼ K2

K3 ¼ K4

�
ð13Þ

Substituting Eq. (12) into Eq. (13), the parametric equation can be obtained:

4ðR2 þ r2 � 2Rr cos hÞ ¼ 8H2

4H2r2 ¼ 8R2r2 sin2 h

�
ð14Þ

Simplifying Eq. (14), we acquire:

R2 þ r2 � 2Rr cos h ¼ 4R2 sin2 h ð15Þ

Dividing the Eq. (15) with the R2:

1þðr
R
Þ2 � 2ðr

R
Þ cos h ¼ 4 sin2 h ð16Þ

Suppose t = r/R, then Eq. (16) can be simplified to the Eq. (17) which takes h as
the independent variable and t as the dependent variable:

t2 � 2t cos hþ 4 cos2 h� 3 ¼ 0 ð17Þ

Solving Eq. (17) for t, we get:

t ¼ cos h�
ffiffiffi
3

p
sin h ¼ 2 sinðp

6
� hÞ ð18Þ

Substituting t = r/R into Eq. (18), the parameters’ solution for fully isotropy con-
figuration is obtained:

r ¼ 2R sinðp6 � hÞ
H ¼ � ffiffiffi

2
p

R sin h

�
ð19Þ
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According to Eq. (19), the isotropy of 8/4-4 PFSM is determined by r, R, H and h,
and the fully isotropy solution is a set of analytical solutions. In order to express the
parameters’ constraint relation more intuitively, the fully isotropy solution is drawn in
Fig. 4. It can be seen that when R is determined, each h (except at the intersection
point) corresponds to the two groups’ solution of R and H, that is, each h (except the
intersection point) corresponds to the four fully isotropy configurations.

Although all the solutions satisfying the isotropy can be expressed in Fig. 4, there
also exists some repeated solutions due to the strong symmetry and repeatability of the
Fig. 4, and the central symmetry of the 8/4-4 PFSM. It is necessary to simplify the
configuration solutions obtained in Fig. 4. First, parameter H is simplified, because of
the central symmetry of the 8/4-4 PFSM, H ¼ ffiffiffi

2
p

R sin h or H ¼ � ffiffiffi
2

p
R sin h does not

have any real impact on the 8/4-4 PFSM, so H ¼ � ffiffiffi
2

p
R sin h can be simplified as

H ¼ ffiffiffi
2

p
R sin h . Then, parameter r is simplified, according to Fig. 4, we found that for

r = 2Rsin (p/6 + h) and r = 2Rsin (p/6 − h) two cases, the change of r is a completely
opposite process. The change of r = 2Rsin (p/6 + h) from 0 to 2p is actually the same
process of r = 2Rsin (p/6 − h) from 2p to 0, so r = 2Rsin (p/6 ± h) can be simplified
as r = 2Rsin (p/6 + h). The parameters’ solution for fully isotropy configuration is
simplified as:

r ¼ 2R sinðp6 þ hÞ
H ¼ ffiffiffi

2
p

R sin h

�
ð20Þ

Finally, the definition domain of h is simplified, by observing the curves of Eq. (20)
in Fig. 4, it is found that if h = h1, H = H1, r = r1 is the solutions of Eq. (20),
h = h1 + p, H = −H1, r = −r1 is also the solutions of Eq. (20). For the central

2 sin( )
6

2 sin

r R

H R

π θ

θ

= ±

= ±

Fig. 4. The fully isotropy solution
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symmetry structure, h = h1 and h = h1 + p have the same configuration. So the defi-
nition domain of h can be simplified as (0, p).Combined with Eq. (20), the parameters’
solution for fully isotropy configuration after simplification can be expressed as:

r ¼ 2R sinðp6 þ hÞ
H ¼ ffiffiffi

2
p

R sin h

�
h 2 ð0; pÞ ð21Þ

Then, according to Eq. (21), the fully isotropy 8/4-4 mechanism cluster is obtained.
The 8/4-4 mechanism cluster is classified according to the parameters and con-

figuration. First, according to the relationship between R and r, the mechanism cluster
is divided into r < R and r > R two categories. Then subdivide again according to
whether the branches intersect with the smaller platform on the top view. Finally, the
configuration of four groups which can represent the 8/4-4 cluster structure is obtained,
as shown in Table 1. The 8/4-4 PFSM proposed in Sect. 2 is included in the first class.
Compared with the previous 8/4-4 PFSM, the fixed platform of the 8/4-4 mechanism
cluster is the upper and lower platforms, the measuring platform is the middle platform,
the flexible measuring branches interlaced distribute among three platforms. It is worth
mentioning that the 8/4-4 mechanism cluster is a derivative of the previous 8/4-4
PFSM. So the cluster also has the stiffness decoupling characteristics.

The proposal of 8/4-4 PFSM and 8/4-4 mechanism cluster, fundamentally elimi-
nates the interference of coupling elements to isotropy, simplifies constraints and
provides a simple isotropic mechanism cluster for the isotropy design of sensor’s
elastic body.

Table 1. Schematic diagram of 8/4-4 mechanism cluster.

Classifica-
tion

r < R r > R

Structure 
diagram

Top view
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5 Conclusion

This paper presents an 8/4-4 stiffness decoupling PFSM. Its structure model and
mathematic model are analyzed. The physical meaning and constraint conditions of
decoupling are given. The 8/4-4 PFSM’s decoupled characteristics is verified based on
its mathematic model. The fully isotropic constraint conditions of 8/4-4 PFSM are
deduced and analyzed. The parameters’ solution for fully isotropy configuration is
obtained. According to the solution, the fully isotropy 8/4-4 mechanism cluster is
proposed, which enriches and simplifies the isotropy design of sensor’s elastic body.
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