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Abstract. Tethered Space Net (TSN) has been proposed since there is
an increasing threat of space debris to spacecraft and astronauts in recent
years. In this paper, we propose an improved TSN, named Maneuverable-
Net Space Robot (MNSR), which has four maneuvering units in its four
corners (square net). The four maneuverable units make the MNSR con-
trollable. Because of autonomous maneuverability, the attitude dynamics
of the platform, master tether and flexible net are strongly coupled. In
order to design an effective controller to maintain the configuration of
the maneuverable net, an accurate dynamics model of MNSR based on
the Lagrangian method is derived. In our model, we consider the three-
dimensional attitude of the platform, master tether and maneuvering-net
as well. Due to the vibration of the in-plane and out-of-plane angles of
the net tethers, feedback control is employed for MNSR. The simulation
results demonstrate that the proposed control is efficient and suitable for
the MNSR system.

Keywords: Space debris · Maneuverable-net space robot · Dynamics
modeling · Feedback control

1 Introduction

There is an increasing threat of space debris to spacecraft and astronauts since
the first satellite was launched in October 4th, 1957 [1]. Some researchers pro-
posed Tethered Space Capturing System to complete the capturing task which
aimed at space debris removal [2]. Tethered Space Capturing System contains
Tethered Space Robot (TSR) [3] (shown in Fig. 1), Tethered Space Harpoon
(TSH) [4] (shown in Fig. 2) and Tethered Space Net (TSN) [5] (shown in Fig. 3).
Nowadays, Tethered Space Net (TSN) has attracted much attention [5,6]. TSN
consists of platform satellite, tether, space net and four flying weights in each
corner of the net, which is shown in Fig. 3. TSN is a flexible system and it
converts traditional point-to-point capture into surface-to-point capture, which
lowers the requirement on capture precision. Besides, it can be used for uncoop-
erative target capture and long distance capture. So Tethered Space Net (TSN)
is one of the most promising solutions for active space debris removal.
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Fig. 1. Tethered Space Robot (TSR)

Fig. 2. Tethered Space Harpoon (TSH)

Fig. 3. Tethered Space Net (TSN)

Fig. 4. Maneuverable-Net Space Robot (MNSR)
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A lot of studies have been focused on the TSN. Based on the previous studies
of space webs, various dynamics model of TSN have been derived, such as rigid
model [7], mass-spring model [8], absolute nodal coordinate formulation (ANCF)
model [9]. Rigid model is most commonly used in tethered space system. It
can be better used for analyzing in-plane and out-of-plane angles of the tether.
Mass-spring model is always used for establishing a quadrangular mesh net,
while absolute nodal coordinate formulation (ANCF) model can better describe
the flexibility between two nodes on the net and reflect the dynamics of TSN.
However, rigid model always treats the platform satellite as point mass, while
the literatures about ANCF model only demonstrate the dynamics of the net
and neglect the dynamics of platform. Thus, an accurate model for TSN, which
considered the dynamics of platform, is necessary.

Based on the TSN, an improved TSN is proposed, named Maneuverable Net
Space Robot (MNSR), which is shown in Fig. 4. The big difference between TSN
and MNSR is that the MNSR has four maneuvering units in four corners (square
net) instead of the four flying weights located at the four corners of traditional
TSN. The four maneuvering units make the MNSR controllable. So the MNSR
is more preferable for orbital capture. Huang et al. have already studied the
dynamics and configuration control of MNSR in [10,11].

In this paper, an accurate dynamic model of MNSR is derived in Sect. 2.
Then in Sect. 3, a feedback control scheme is proposed for maintaining the con-
figuration of maneuverable net. Some numerical simulations are shown to verify
the control scheme in Sect. 4. Finally, the contribution of this paper is briefly
summarized in Conclusion Sect. 5.

2 Dynamics Model

2.1 Description of the System

The schematic figure of the MNSR and generalized coordinates used to describe
the motion are shown in Fig. 5. The position of the centre of the mass of the
system C in its orbit around the Earth is defined by the true anomaly γ and
the orbit radius Rc. The coordinate system C − xoyozo has zo axis along the
orbit normal, yo axis radially outward away from the Earth along the local
vertical and xo axis along the local horizontal completing the right hand triad.
The six rotating coordinate system (Cp − xpypzp, Ct − xtytzt, Ck − xkykzk, k =
1, 2, 3, 4) for platform, master tether and net tether are used with their origins
at the center of mass of each of them respectively. The coordinate Cp − xpypzp

is obtained by the rotation θ (pitch angle of the platform satellite) about zo

axis, and ψ (roll angle of the platform satellite) about yo axis. The coordinate
system Ct − xtytzt is obtained via the rotation α (the in-plane angle of master
tether) about zo axis, and β (the out-of-plane angle of master tether) about
yo axis. The coordinate Ck − xkykzk is obtained via the rotation αk (the in-
plane angle of net tether) about zo axis, and βk (the out-of-plane angle of net
tether) about yo axis. m0,mt,m are the masses of the platform, master tether
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Fig. 5. Generalized coordinates for MNSR

and maneuverable net tether respectively. l, lw are the length of master tether
and tether net respectively.

2.2 Motion Equations of the System

The following assumptions are made for the dynamic model of MNSR.

1. Four maneuvering units are considered as mass points. Thus, the maneuver-
able net can be considered as four tethers (net tether) and four mass points
(maneuvering unit) (shown in Fig. 5). The effect of the variation of maneuver-
ing unit’s attitude and material damping of the net are ignored. The platform
is considered as rigid body, and tethers are considered as rigid, inextensible
and remaining straight.

2. Gravity is treated to be the only external force acting on the system.
3. The center of mass of the system is assumed to follow a circular Keplerian

orbit.

The position vectors of platform, an elemental mass of master tether and net
tether with respect to the center of the Earth, are respectively

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Rt = R0 + b0 + 1
2rt

R1 = R0 + b0 + rt + r1

R2 = R0 + b0 + rt + r2

R3 = R0 + b0 + rt + r3

R4 = R0 + b0 + rt + r4

(1)

where, R0,Rt,Rk(k = 1, 2, 3, 4) are the position vectors of the mass of platform,
master tether and net tethers respectively. b0 is the offset from center of mass of
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platform to the attachment points on it. rt, rk(k = 1, 2, 3, 4) denote the position
vectors of an elemental mass of master tether and net tether with respect to the
center of mass of the system.

The kinetic energy due to translation of the whole system is derived as

Trans = 1
2m0Ṙ0Ṙ0 + 1

2mtṘtṘt + 1
2m

n=4∑

k=1

(ṘkṘk) (2)

where ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ṙ0 = Ṙc − mt+4m
M ḃo −

1
2mt+4m

M ṙt − m
M

n=4∑

k=1

ṙk

Ṙt = Ṙc + m0
M ḃo +

1
2 (m0−4m)

M ṙt − m
M

n=4∑

k=1

ṙk

Ṙk = Ṙc + m0
M ḃ0 +

m0+
1
2mt

M ṙt − m−M
M ṙk − m

M

1,2,3,4∑

q �=k

ṙq

(3)

and M = m0 + mt + 4m.
The rotational kinetic energy of the whole system is determined via

Trot = 1
2ω0

T I0ω0 (4)

where I0 is the moments inertia of platform, I0 = diag(Ioxx, Ioyy, Iozz)
The potential energy of the system is given by

V = −μm0
1

|R0| − μmt
1

|Rt| − μm

n=4∑

k=1

1
|Rk| (5)

where μ is the gravitational constant of the Earth.
The Lagrangian equation is used to obtain the equations of motion of the

system from the kinetic and potential energy expressions

d

dt

(
∂T

∂q̇i

)

− ∂T

∂q̇i

+
∂V

∂q̇i

= Qi (6)

where T and V are the total kinetic and potential energies of the system; qi are the
generalized coordinates, which are chosen to be qi = {θ ψ α β l αk βk}T , (k =
1, 2, 3, 4). Consequently, generalized forces vector is Qi, which is also the control
force and chosen to be Qi = {Qθ Qψ Qα Qβ Ql Qαk

Qβk
}T .

A set of dimensionless quantities are defined as follows

Λ = l/Lr, τ = γ̇t, ()′ = d ()/dτ (7)

where Lr is the reference length of tether, Λ is the nondimensional tether
length, and τ is the non-dimensional time.
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The non-dimensional equations of MNSR are then given by

θ′′[MAcos2ψ + Ioxx · sin2ψ + Iozz · cos2ψ] + α′′MDΛLr cos ψ cos β

+
n=4∑

k=1

[α′′
kMElw cos ψ cos βk]

−ψ′

⎡

⎢
⎢
⎣

2MA(1 + θ′) cos ψ sin ψ + MDΛLr(1 + α′) sin ψ cos β

+
n=4∑

k=1

[MElw(1 + α′
k) sin ψ cos βk] + 2Ioxx(1 + θ′) sin ψ cos ψ

−2Iozz(1 + θ′) sin ψ cos ψ

⎤

⎥
⎥
⎦

−β′MDΛLr(1 + α′) cos ψ sin β −
n=4∑

k=1

[β′
kMElw(1 + α′

k) cos ψ sinβk]

+Λ′MDLr(1 + α′) cos ψ sinβ + 3MAcos2ψ cos θ sin θ
+MDΛLr (2 sin θ cos ψ cos α cos β + cos θ cos ψ sin α cos β)

+
n=4∑

k=1

[MElw (2 sin θ cos ψ cos αkcosβk + cos θ cos ψ sin αk cos βk)]

−Qθ/Ω2 = 0

(8)

ψ′′ [MA + Ioyy] + β′′MDΛLr +
n=4∑

k=1

[β′′
kMElw] + MDLrΛ′β′ + MA(1 + θ′)2 cos ψ sin ψ

+MDΛLr(1 + θ′)(1 + α′) cos β sin ψ +
n=4∑

k=1

[MElw(1 + θ′)(1 + α′
k) cos βk sin ψ]

+3MAcos2θ cos ψ sin ψ + MDΛLr(2 sin ψ cos θ cos α cos β
− sin ψ sin θ sin α cos β + cos ψ sin β)

+
n=4∑

k=1

[MElw(2 sin ψ cos θ cos αk cos βk − sin ψ sin θ sin αk cos βk + cos ψ sin βk)]

−Ioxx(1 + θ′)2 sin ψ cos ψ + Iozz(1 + θ′)2 sin ψ cos ψ
−Qψ/Ω2 = 0

(9)

α′′MBcos2βΛ2Lr2 + θ′′MDΛLr cosψ cos β +
n=4∑

k=1

[
α′′

kMF lwΛLr cosβ cosβk

]

−β′
[
2MBΛ2Lr2 cosβ sin β · (1 + α′) + MDΛLr(1 + θ′) cosψ sinβ

+
n=4∑

k=1

[
MF lwΛLr(1 + α′

k) sinβ cos βk

]
]

−ψ′MDΛLr(1 + θ′) sinψ cos β −
n=4∑

k=1

[
β′

kMF lwΛLr(1 + α′
k) cos β sinβk

]

+LrΛ′ [2MBΛLr(1 + α′)cos2β + MD(1 + θ′) cosψ cos β

+
n=4∑

k=1

[
MF lw(1 + α′

k) cos β cos βk

]
]

+3MBΛ2Lr2cos2β cosα sinα + MDΛLr(2 sinα cos θ cosψ cos β + cosα sin θ cosψ cos β)

+
n=4∑

k=1
[MF lwΛLr(2 sinα cos β cosαk cosβk + cosα cos β sinαk cosβk)]

−Qα/Ω2 = 0

(10)
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β′′MBΛ2Lr2 + ψ′′MDΛLr +
n=4∑

k=1

[
β′′

k MF lwΛLr
]

+Λ′Lr

[

MDψ′ +
n=4∑

k=1

[
MF lwβ′

k

]
+ 2MBβ′ΛLr

]

+MBΛ2Lr2(1 + α′)2 cos β sinβ + MDΛLr(1 + θ′)(1 + α′) cosψ sinβ

+
n=4∑

k=1

[
MF lwΛLr(1 + α′)(1 + α′

k) cosβk sinβ
]
+ 3MBΛ2Lr2cos2α cos β sinβ

+MDΛLr(2 sinβ cos θ cosψ cosα − sinβ sin θ cosψ sinα + sinψ cos β)

+
n=4∑

k=1
[MF lwΛLr(2 sinβ cosα cosαk cosβk − sin β sinα sinαk cos βk + cos β sinβk)]

−Qβ/Ω2 = 0

(11)

Λ′′LrMB − MBΛLr
[
(1 + α′)2cos2β + β′′

]
− MD [(1 + θ′)(1 + α′) cosψ cos β + ψ′β′]

−
n=4∑

k=1

[
MF lw

[
(1 + α′)(1 + α′

k) cos β cos βk + β′β′
k

]]− 3MBΛLrcos2βcos2α

+MD [−2 cos θ cosψ cosα cosβ + sin θ cosψ sinα cos β + sinψ sinβ]

+
n=4∑

k=1
[MF lw [−2 cosα cos β cosαk cos βk + sinα cos β sinαk cos βk + sinβ sin βk]]

−QΛ/Ω2 = 0

(12)

α′′
kMC lw2cos2βk + θ′′ME lw cosψ cosβk + α′′MF lwΛLr cosβ cosβk

+
1,2,3,4∑

q �=k

[
MGlw2 cosβk cos βq · α′′

q

]

+β′
k

⎡

⎢
⎣

MC lw2(1 + α′
k)2 cos βk(− sinβk) + ME · lw(1 + θ′) cosψ(− sinβk)

+MF lwΛLr(1 + α′) cos β(− sinβk) +
1,2,3,4∑

q �=k

[
MGlw2(1 + α′

q)(− sinβk) cosβq
]

⎤

⎥
⎦

+ψ′ME lw(1 + θ′)(− sinψ) cos βk + Λ′LrMF lw(1 + α′) cosβ cosβk

+β′MF lwΛLr(1 + α′)(− sinβ) cos βk +
1,2,3,4∑

q �=k

[
MGlw2(1 + α′

q) cosβk(− sinβq)β′
q

]

+3MC lw2cos2βk cosαk sinαk + ME lw(2 sinαk cos θ cosψ cosβk + cosαk sin θ cosψ cosβk)
+MF lwΛLr(2 sinαk cosα cosβ cosβk + cosαk sinα cosβ cosβk)

+
1,2,3,4∑

q �=k

[
MGlw2(2 sinαk cos βk cosαq cos βq + cosαk cosβk sinαq cosβq)

]

−Qαk/Ω2 = 0

(13)
β′′

k MC lw2 + ψ′′ME lw + β′′MF lwΛLr

+
1,2,3,4∑

q �=k

[
MGlw2β′′

q

]
+ MC lw2(1 + α′

k)
2 cos βk sinβk

+ME lw(1 + θ′)(1 + α′
k) cosψ sinβk + MF lwΛ′Lrβ′

+MF lwΛLr(1 + α′)(1 + α′
k) cosβ sinβk

+
1,2,3,4∑

q �=k

[
MGlw2(1 + α′

k)(1 + α′
q) cosβq sin βk

]
+ 3MC lw2cos2αk cos βk sinβk

+ME lw(2 sinβk cos θ cosψ cosαk − sinβk sin θ cosψ sinαk + sinψ cos βk)
+MF lwΛLr(2 sinβk cosα cos β cosαk − sinβk sinα cos β sinαk + sinβ cos βk)

+
1,2,3,4∑

q �=k

[
MGlw2(2 sinβk cosαk cosαq cos βq − sinβk sinαk sinαq cos βq + cos βk sin βq)

]

−Qβk
/Ω2 = 0

(14)
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where MA = m0(mt+4m)
M ,MB = m0(

1
2mt+4m)2+ 1

4mt(m0−4m)2+4m(m0+
1
2mt)

2

M2 , MC =
m(M−m)

M ,MD = m0(
1
2mt+4m)

M ,ME = mm0
M ,MF = m(m0+

1
2mt)

M ,MG = −m2

M .

3 Control Scheme

In many studies about the dynamics analysis of tethered space system, we can
see that the in-plane and out-of-plane angles of the tether vibrate with the
frequencies of

√
3 and 2 times the orbital frequency respectively [12], which may

lead to tangle of the master tether with platform and the chaos of the four net
tethers, and lead to the failure of the mission. An appropriate controller for
maintaining the configuration of the net is necessary.

It is clear that the dynamics of MNSR is complex and the state variables are
strongly coupled. Some simplifications are made for the dynamic equations for
the convenience of controller design. Assume that the length of master tether
keeps constant during the station-keeping phase, that is, Λ = 1 and Λ′′ = Λ′ = 0.
And the platform is controllable and keeps constant, and the in-plane and out-
of-plane angles of master tether can be kept in the desired values. Then, we only
need to control the in-plane and out-of-plane angles of net tether, namely, the
configuration of the maneuverable net.

The feedback control laws for MNSR are designed as

Qcαk
= kpαk · (αkd − αk) + kdαk · (α′

kd − α′
k)

Qcβk
= kpβk · (βkd − βk) + kdβk · (β′

kd − β′
k) (15)

where αkd, βkd and α′
kd, β′

kd are the desired values of in-plane and out-of-plane
angles and derivative of in-plane and out-of-plane angles respectively. Thus,
αkd − αk, βkd − βk and α′

kd − α′, β′
kd − β′

k are the error of angles and derivative
of error of angles respectively. kpαk, kpβk and kdαk, kdβk are the parameters of
error and derivative of error.

Then the control inputs Qαk, Qβk(k = 1, 2, 3, 4) can be derived as

Qαk
= (MC lw2cos2βk · Qcαk +

1,2,3,4∑

q �=k

[
MGlw2 cos βk cos βq · Qcαq

]

+β′
k

⎡

⎣

MC lw2(1 + α′
k)2 cos βk(− sin βk) + ME · lw(− sin βk)

+MF lwLr(− sin βk) +
1,2,3,4∑

q �=k

[
MGlw2(1 + α′

q)(− sin βk) cos βq

]

⎤

⎦

+
1,2,3,4∑

q �=k

[
MGlw2(1 + α′

q) cos βk(− sin βq)β′
q

]
+ 3MC lw2cos2βk cos αk sin αk

+MElw(2 sin αk cos βk) + MF lwLr(2 sin αk cos βk)

+
1,2,3,4∑

q �=k

[
MGlw2(2 sin αk cos βk cos αq cos βq + cos αk cos βk sin αq cos βq)

]
) · Ω2

(16)
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Qβk
= (MC lw2 · Qcβk +

1,2,3,4∑

q �=k
MGlw2 · Qcβq + MC lw2(1 + α′

k)
2 cos βk sinβk

+ME lw(1 + α′
k) sinβk + MF lwLr(1 + α′

k) sinβk

+
1,2,3,4∑

q �=k

[
MGlw2(1 + α′

k)(1 + α′
q) cos βq sinβk

]

+3MC lw2cos2αk cos βk sinβk + ME lw(2 sin βk cosαk) + MF lwLr(2 sinβk cosαk)

+
1,2,3,4∑

q �=k

[
MGlw2(2 sinβk cosαk cosαq cos βq − sinβk sinαk sinαq cosβq + cos βk sinβq)

]
) · Ω2

(17)

4 Simulations

4.1 Simulation Environment

The simulations about controlled MNSR are demonstrated as follows and the
simulation parameters are shown in Table 1.

Table 1. Simulation parameters

Property Value

Radial coordinate for center of mass of the system, Rc (km) 6470

Mass of platform, m1 (kg) 5000

Mass of maneuverable net tether, m (kg) 2

Mass of the master tether, mt(kg) 5

Moments inertia of platform, I0(kg · m2) diag(46, 50, 50)

Length of maneuverable net tether, lw (m) 5

Reference length of master tether, Lr (m) 100

The initial values of in-plane and out-of-plane angles of net tethers are αk =
π/18, π/18, −π/18, −π/18 and βk = π/18, −π/18, −π/18, π/18, and
the desired values of in-plane and out-of-plane angles of net tethers are αkd =
π/6, π/6, −π/6, −π/6 and βkd = π/6, π/6, −π/6, π/6 respectively.

4.2 Simulation Results

All the simulation results are shown in Figs. 6 and 7. Figure 6 shows that the
in-plane and out-of-plane angles can be controlled in the desired values and
the configuration of maneuverable net can be maintained in the desired state.
Figure 7 demonstrates that control inputs of maneuvering units. The values of
the control forces are in the acceptable range for spacecraft.
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Fig. 6. Variation of in-plane and out-of-plane angles of net tethers
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Fig. 7. Variation of control forces of MNSR

5 Conclusions

In this paper, an improved Tethered Space Net (TSN) System, named
Maneuverable-Net Space Robot (MNSR), have been proposed for active space
debris removal. In order to maintain the configuration of maneuverable net, it
is necessary to employ a control strategy for MNSR. First, the 3-D dynamics
model of MNSR is derived. Then, a feedback control is employed for maintaining
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the in-plane and out-of-plane angles of the net tethers in the desired angles. The
simulation results show that the proposed control scheme is appropriate for the
MNSR to maintain the configuration of maneuverable net.
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