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Abstract. CNC milling is widely used in manufacturing complex parts of
aerospace fields, and the development of the intelligent tool wear monitoring can
improve the utilization of the tool during the milling process while ensuring the
surface quality of the processed parts. In this paper, a novel method based on
wavelet packet analysis and RBF neural network was proposed for monitoring
the tool wear condition during milling. Firstly, cutting force signals were
measured during milling, and filtered by filter function. Secondly, the cutting
vibration signals caused by tool wear were separated by the wavelet packet
decomposition from initial data, and the energy of the reconstructed signals was
characterized for analyzing tool wear during the milling process. Then, the
filtered cutting force and the cutting vibration features were trained by RBF
neural network. Fifteen groups of features were trained by RBF neural network,
and three groups of features were used to test RBF neural network. Finally, the
results show that the method can accurately monitor the flank wear of milling
cutter within a short time, which provides a theoretical basis and experimental
scheme for further implementing the on-line tool wear monitoring.

Keywords: CNC milling -+ Tool wear - Cutting force - Wavelet packet
analysis + RBF neural network

1 Introduction

As an important part of advanced manufacturing technology, online tool condition
monitoring technology has become a research topic in recent years [1]. The tool, a
direct implementation of the cutting process, inevitably exists wear, breakage and other
conditions during the cutting process. Changes in the tool condition directly lead to the
increase of cutting force and cutting temperature, the rise of workpiece surface
roughness, workpiece size out of tolerance, cutting color change and cutting chatter [2].
Therefore, there has an urgent need to monitor the tool wear condition. Tool wear
condition monitoring means that the computer acquires a variety of sensor signal
changes during the product processing process, real-time predicts the tool wear or
breakage through data fusion method, and uses the alarm devices to accurately prompt
the tool change time. Research shows that CNC machine tools with tool monitoring
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system can reduce downtime by 75%, improve production efficiency by 10-60%, and
increase machine tool utilization by 50% [3].

The intelligent monitoring of tool wear condition is generally divided into two
steps: features extraction and features recognition. Referring to the feature extraction
methods there are three types: time domain analysis, frequency domain analysis,
time-frequency domain analysis. Time domain analysis is a method of signal pro-
cessing directly in time domain. Haber et al. [4] extracted the mean and peak value of
the vibration signal as the features, so as to predict the tool wear. However, the use of
time domain signal as features extraction is often affected by the noise signal or the
signal changes. As for frequency domain analysis, it transforms the signal from time
domain to frequency domain by Fourier series or Fourier transform. Kopac and Sali [5]
measured the sound pressure at 0.5 mm from the cutting area by a condenser micro-
phone and analyzed in the frequency domain from O to 22 kHz. However, while
transforming from time domain to frequency domain using Fourier transform, signals
from all the time domain has to be used. The time-frequency domain analysis method
can be used to describe the time domain and frequency domain of the signal, which can
clearly describe the change of signal frequency with time. Zhu et al. [6] introduced the
wavelet analysis method and applied it in tool condition monitoring. Li [7] proposed
the wavelet packet analysis of the AE signal during the rotation of the tool. The above
research has demonstrated that the time-frequency analysis method can accurately be
used for signal time-frequency analysis, the signal in time domain and frequency
domain can achieve high resolution.

In recent years, neural network has been widely used in data fusion and recognition.
Wang [8] proposed a method for monitoring tool wear based on automatic combined
neural network. Elanayar and Shin [9] proposed a dynamic model for tool wear
monitoring. Pai et al. [10] proposed a method using a radial basis function network to
predict the rake wear in end milling operation. It is found that the prediction results for
tool wear using RBF neural network is more robust and high accuracy than resource
allocation network. All of these methods are based on fuzzy algorithm and neural
network algorithm, choosing the appropriate recognition algorithm plays an important
role in improving the recognition convergence speed and improving the local minima
during the fitting process.

The above reference only uses the wavelet packet analysis algorithm to divide the
signal into time-frequency domain, so as to filter out the noise signal or the environ-
mental signal which is not related to the main signal. In this paper, the wavelet packet
analysis algorithm is used to extract the cutting force signals due to vibration which
related to tool wear except the cutting force signal, which is the contribution of this
paper. The wavelet packet is used to segment the frequency of the cutting force signal in
the time-frequency domain. In addition to the cutting force signal at the low frequency,
the reconstructed signal energy value of the intermediate frequency band is also related
to the tool wear, and the signal is extracted as a vibration signal related to the tool wear.
And then this paper adopts RBF neural network to make data fusion for input feature, in
a short period of time to predict the tool wear accurately. In Sect. 2, the mathematical
model of wavelet packet analysis and RBF neural network are discussed. In Sect. 3, the
cutting force signal in the machining process is measured by the milling experiment, and
the signal value of the cutting force signal due to vibration in the cutting force signal is
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separated by wavelet packet as the feature. These two types of characteristic signals are
input into the RBF neural network, and the network output is the tool flank wear. In
Sect. 3.2, from the analysis data, the tool wear monitoring method can accurately
monitor the tool wear in time. Finally, Sect. 4 contains the conclusions.

2 Mathematical Model of Tool Wear Monitoring

In this paper, the theory of wavelet packet analysis and RBF neural network are used to
monitor the tool wear. Firstly, the wavelet packet theory is used to analyze the relevant
signals in the process, and then the signal energy related to tool wear is extracted as
features and input of the RBF neural network model according to the prior knowledge,
so as to effectively identify and predict the tool wear. In this section, the wavelet packet
theory analysis model and RBF neural network model are discussed.

2.1 A Mathematical Model of Energy Feature Extraction Based
on Wavelet Packet Analysis

Wavelet packet theory analysis. In the wavelet packet analysis, the scale function of

a standard orthogonalization ¥/(x) is used, and with the help of two scale difference

recursive equations, functions are generated as formula (1) called orthogonal wavelet
packet of /(x)

{ Won (x) = \/jzkzz thn(zx - k) (1)

W 1(X) = V23, giwa(2x — k)

where wy = Yr(x), Iy, gx are respectively a pair of conjugate quadrature filter coeffi-
cients derived from 1/(x). In theory, according to the observation signal s(¢) € L*(R),
the discrete orthogonal wavelet packet transform is defined as the projection coefficient

of s(z) on the orthogonal wavelet packet base {w, J»k(t)}nez 17~ jezkez 1], namely:
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where {P,(n,j,k)},., is the wavelet packet transform coefficient sequence of s(¢) on
the orthogonal wavelet packet space U}'. In fact, according to a certain observation
signal s(z), set up a group of low and high conjugate quadrature filter coefficients of
{Mt} 1oz and {gx} .. then the wavelet packet transform coefficients can be expressed as
the following recursive formula [11]:

Ps(znajv k) = Zk:z hl—2k : Ps(na] - 17 l) (3)
Pv(2n+ 1;j7 k) = Zk:Z 81-2k * Px(nvj - 1; l)
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In order to overcome the shortcomings of traditional wavelet transform, wavelet
packet transform is used to divide the signal at the time-frequency domain. The wavelet
packet can be improved with the increase of resolution 2/, and the broadened spectrum
window has the fine quality of further segmentation. For a given signal, the signal can
be divided into any frequency band by a group of low- and high-pass combinatorial
quadrature filters H, G, which has high time resolution and frequency resolution in low
frequency and high frequency [11]. Firstly, the three-layer wavelet packet decompo-
sition is carried out to process the cutting force signal. The cutting force signal and the
cutting force signal due to vibration which related to the wear are extracted from the
reconstructed wavelet packet, details about three-layer wavelet packet decomposition
process is shown as follows, j is the number of layers (Fig. 1).

0,0 =0

(1,0) 1,1 j=1

/NN

2 22 23 29 =2

AAWAWA

B.13,2)(3,3) 34 (3,53,6)(3,7)(3,8) =3

Fig. 1. Tree structure of wavelet packet decomposition

Extraction of the signal eigenvalues related to tool wear using wavelet packet
analysis. In the wavelet packet decomposition process, each time the conjugate
quadrature filter is used, the signal length is shortened by half. Suppose that the original
signal s(¢) is decomposed by L-layer wavelet packet. If the original data length is 2%,
after the decomposition of the L layer, the length of each signal becomes 2V~%. Using
the wavelet packet, the signal can be decomposed into the corresponding frequency
band according to the characteristics of any time-frequency resolution (which satisfies
the Heisenberg uncertainty principle), and the signals in different frequency bands are
decomposed into the corresponding frequency range, according to the effective fre-
quency of prior knowledge extraction, the signal is reconstructed to restore the signal
length to 2V. At this point, the energy distribution E(j, n) of the reconstructed signal in
the time-frequency domain is defined as follows:

EGon) =Y, IP(nj )P (4)

In the formula, the discrete numerical calculation of the wavelet packet transform
coefficients Py(n, j, k) is obtained by using the recursive algorithm of formula (3). The
key components of the orthogonal wavelet packet space are selected, the principle of
which is to select the orthogonal wavelet packet space with relatively concentrated
energy. This method can make full use of prior information, so that the main wavelet
packet energy eigenvalues of the original signal can be enhanced, and the dimension of
the eigenvalue can be reduced. Of course, if the prior information is uncertain or the
feature dimension can reduce the classification and recognition ability of the model,
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it is necessary to retain the wavelet packet energy eigenvalue as the final feature vector.
In this paper, the reconstruction signal energies of cutting force signals and the cutting
force signals due to vibration which related to tool wear are extracted as features to
identify subsequent neural network. The cutting force fluctuation signals are decom-
posed from the original cutting force by wavelet packet method.

2.2 A Mathematical Model for Identifying Tool Wear Based on RBF
Neural Network

Artificial neural network (ANN) is a nonlinear dynamic network system which is based
on the research of modern neurophysiology and psychology. As a new method of
knowledge processing, it has been widely used in many fields. Among them, when the
input signal near the radial basis function of the central range, the hidden layer node
will produce a larger output, so the radial basis function neural network (RBFNN) has
the capacity of local approximation, and the response speed and recognition accuracy is
also better than that of BP neural network. Figure 2 is the structure of the RBF neural
network, it is a three-layer feedforward network including the input layer, hidden layer
and output layer [12].

Input layer Implicit layer Output layer

Fig. 2. RBF neural network structure

In the RBF neural network, RBF is used as the excitation function in the hidden
layer and the output layer is a simple linear function [13]. The input layer to the hidden
layer is nonlinear transmission, and the clustering learning algorithm is adopted. The
output layer is trained by least squares algorithm [14—16]. The role of the hidden layer
node is to analyze some local areas of the input signal. The important parameter of the
hidden layer node is the center and the width of the radial basis function, which are
denoted by ¢ and &, as shown in Eq. (5). When the input vector is closest to the center
of a hidden layer node, the output of the hidden layer node is the largest, and the output
of the hidden layer node will decrease with the distance between the vector and the
radial center.

Ri(x)=e ™ (5)
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2 2. . . .
where Hx — ch = 27:1 (x,- — cﬁ) , X is the input vector, ¢; is the clustering center of
the jth Gaussian function in the n-dimensional vector, and can be randomly selected
according to the input vector. ojz is the normalized scale parameter, which is equivalent
to the variance. R; represents the output of the hidden layer function. The output of the
hidden layer node is passed to the output layer linearly by weight m, and the corre-
sponding function expression is shown in formula (6).

n
Y= Zi:l Wik (6)
where w; is the output weight, and y is the expected output of the RBF neural network.
In this paper, the energy value of the reconstructed signal of the cutting force signal and

the cutting force fluctuation signals due to vibration are extracted by wavelet packet
analysis as the input feature vector. The output layer is the tool flank wear.

3 Experimental Validation and Discussion

3.1 Experimental Setup

The experiments were carried out for up milling, and a Kistler 9123C rotating
dynamometer was used to measure the force during the milling process Tool wear was
measured with a non-contact optical measurement equipment Alicona InfiniteFocus.
And the cutting parameters of this experiment are:

Feed per tooth: f, = 0.05mm/t;  Spindle speed: n = 1200 r/min;
Radial cutting depth: @, = 1 mm; Axial cutting depth: @, = 2 mm;

Fig. 3. The experimental setup

To avoid the influence of cutter runout, only one insert was installed, and the
machining process was dry cutting. For each cutting parameters group, the same cutting
experiments were carried out repeatedly until the tool wear reaches 0.3 mm (Fig. 3).
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3.2 Results and Discussion

With the increase of cutting length (L), tool wear gradually increased. In this experi-
ment, 18 appropriate groups are carried out for tool flank wear measurement. The
experimental data are shown in Table 1.

Table 1. The tool flank wear of insert cutter

Number 4L 8L 12L |16L |19L |22L |25L |28L |31L
Tool wear/mm | 0.042 | 0.075|0.098  0.128 | 0.119 | 0.121 | 0.126 | 0.135| 0.181
Number 34L |37L |40L |[43L |46L |59L |52L | 55L |58L
Tool wear/mm | 0.19 | 0.195]0.215/0.232|0.24 |0.242|0.244 | 0.248 | 0.265

Feature extraction of tool wear based on cutting force. In the actual machining
process, the signal of cutting force, vibration and acoustic emission will change sig-
nificantly with the increase of tool wear. However, the acquisition of all relevant
signals will increase the cost and complexity of the device. Therefore, this paper
proposes to collect only the cutting force signal during the cutting process. By ana-
lyzing the original force signal using the wavelet packet analysis, the signal related to
the tool vibration is decomposed. The eigenvalues related to tool wear are extracted
from these two kinds of signals, which are used to identify the tool wear. The following
are specific analysis of how to extract the tool wear eigenvalues.

The spectrum transform of cutting force based on fast Fourier transform. Firstly, the
cutting force of three cycles is described by MATLAB. Secondly, the spectrum
analysis is carried out by Fourier transform to transform the signal from the time
domain to frequency domain. The fast Fourier transform is used to shift the frequency
of unequal Fourier transform data, and the frequency range becomes: —fs/2 ~ fs/2. As
shown in Figs. 4 and 5.

Tangential cutting force Radial cutting force Tangeanlial force of the FFT transform 35aodial force of the FFT transform
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Fig. 4. Three-way cutting force and torque  Fig. 5. Spectrum after fast Fourier transform
signal

Extraction of the cutting force fluctuation energy values related to tool wear.
According to the analysis of the frequency spectrum, the cutting force signal amplitude
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is high at low frequency, and the signal amplitude decreases with the increase of
frequency. When the frequency is greater than 1.2 kHz, the signal amplitude is small
enough to be ignored. According to the experiment, when number N is 8, the time
domain waveform becomes smooth, and the frequency characteristic is also good, so
choosing the db8 as the wavelet packet basis is more appropriate. According to the
results of the spectrum analysis, the 0~ 1.2 kHz signal is decomposed into 8 frequency
bands by using db8 wavelet packet decomposition, and the width of each frequency
band is 150 Hz, and then the signal is reconstructed for each band. Figure 6 shows the
reconstruction of the decomposition of the 8 bands.

Reconstruction of Wavelet Packet Decomposition in Each Band
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Fig. 6. Reconstruction diagram of three-layer wavelet packet decomposition

As shown in Fig. 6, the signal reconstruction of the 0 ~ 150 Hz frequency band is
regarded as cutting force signal. The energy values of these reconstructed signals by
frequency band are analyzed. It is found that except that the energy of the reconstructed
signal in the energy spectrum of 0 ~ 150 Hz is related to the tool wear condition in the
energy spectrum of the tangential force f;, the energy value of the reconstructed signal
of the second band (150~ 300Hz) is also related to the tool wear condition. The
frequency band signal can be identified as the cutting force fluctuation signal energy
value, denoted by V. In the energy spectrum of the radial force f,, the energy value of
the reconstructed signal in the fourth band (450 ~ 600 Hz) is also related to the tool
wear condition. The frequency band is identified as the energy value of the cutting
force fluctuation signal in the radial force, denoted by V,. Figure 7 shows the trend of
changes of the signal energy in the frequency band with the increase of the tool wear.

In order to facilitate the training and testing of RBF neural network model, the
above 18 groups of data need to be normalized.

/ X — Xmin

¥ = 7)

Xmax — Xmin



396 T. Li et al.

\ N

\
fW \\ /
/]

Number of samples’

The energy value of the reconstructed signal
The energy value of the reconstructed signal

Number of samples

a) Tangential force (0~150Hz) band b) Tangentlal force (150~300Hz) band
reconstruction signal energy change reconstruction signal energy change

Frequency(0 ~150Hz)diagram of Radial cutting force signal Frequency(450 ~600Hz)diagram of Radial cutting force signal

]

E asf / \ I~ \\/ % '

3 \ / £

5 \/ s

5 \/ 5

5 v g

E Number of samples 2 ’ Numbdr of simples”

¢) Radial force (0 ~ 150Hz) band d) Radial force (450 ~ 600Hz) band
reconstruction signal energy change reconstruction signal energy change

Fig. 7. Wavelet packet analysis of the relevant band energy value changes with the tool wear

where X, and x,,;,, respectively, are the maximum and minimum values of the data,
and ] is the result of the normalized data.

Tool wear prediction based on RBF neural network. According to the general
description about the mathematical model of RBF neural network in Sect. 2, the number
of neuron nodes at the input of neural network is determined by the type of features. The
number of hidden neuron nodes can be determined by the empirical formula method (8).
The number of output neuron nodes is determined by the expected output value.

m=+vn+l+a (8)

In this paper, the input node are the features associated with the tool wear, and there
are 4 features, which are the tangential and radial cutting forces in the cutting process,
as well as the cutting force fluctuation signals due to vibration peeling off from the
tangential and radial cutting forces (the cutting force fluctuation signal is represented by
the symbol V), and the output node is the tool flank wear (denoted by VB). The cutting
tool is machined 58 times on the workpiece flank side, and the tool flank wear of the 18
groups were measured as the output values of the neural network (L represents the
number of the same tool machined times). The statistics of input vectors and output
data are shown in Table 2.
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Table 2. Tool wear related features

F/N

F,IN

V,/N

V,/N

VB/mm

4L
8L

95.0
131.0

3492.2
3866.5

9.0
14.7

462.3
492.2

0.042
0.075

12L
16L
19L
221
25L
28L
31L
34L
37L
40L
43L
46L
49L
52L
55L
58L

90.8

122.9
115.7
120.8
119.2
1254
137.0
141.2
146.4
131.4
125.5
139.9
134.8
139.5
141.8
145.9

2629.7
3570.3
3476.7
3603.8
3610.4
3537.1
4255.7
4268.7
4363.0
4594.2
4546.4
4687.7
4750.2
4734.3
4869.6
5140.1

14.6
12.9
17.2
16.3
19.8
17.4
16.5
17.8
19.9
20.8
11.4
13.4
18.7
20.2
20.9
20.1

268.7
413.7
592.4
437.0
590.8
484.1
754.2
688.0
573.1
786.1
657.9
733.5
528.5
658.1
817.2
780.5

0.098
0.128
0.119
0.121
0.126
0.135
0.181
0.19

0.195
0.215
0.232
0.24

0.242
0.244
0.248
0.265

397

According to the data of the 18 groups in Table 2, the model is first normalized,
and the model is trained and predicted by MATLAB RBF neural network toolbox. Set
the input layer neural network element number 4. The number of output layer is 1. The
number of hidden layer is automatically selected by the network, and the neural net-
work diffusion coefficient is 0.3. 19L, 31L, 52L three groups are used to test, and the
other tool wear data are for RBF neural network training, as shown in Figs. 8 and 9.

Tool wear amount /mm

[ 5 10

15

Fig. 8. RBF neural network training results

c

022

112 14 16 18

2

22 24 26 28

3

Fig. 9. RBF neural network test results

According to the analysis results of RBF neural network in Sect. 3, the prediction
error of the flank wear is calculated by the formula (9). The error analysis results are

shown in Table 3.
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Table 3. Error analysis of tool flank wear prediction

Tool wear amount/mm | Test groups/group

First group | Second group | Third group
Real value (VB) 0.119 0.181 0.267
Predictive value (VB,,) |0.1135 0.1773 0.244
RBENN predicted error | 4.62% 2.04% 9.43%
8 =|VB — VB,,|/VB x 100 (9)

Among them, VB represents tool flank wear, VB,, on behalf of RBF neural network
predictive value. The error of the tool wear prediction shows that the average error of
the flank wear of the three groups is 5.36%, and the average time used to predict the
three groups using the MATLAB RBF neural network toolbox is 0.13 s. The error can
meet the tool wear monitoring accuracy requirements, and the average time can also
achieve the effect of on-line monitoring of tool flank wear.

4 Conclusions

In this paper, the wavelet packet analysis and RBF neural network are used to monitor
the flank wear of milling cutter. The wavelet packet analysis is used to analyze the
signal features related to tool wear from the original cutting force signal, the cutting
force signal and the cutting vibration signal which related to the tool wear are extracted,
and the energy of the reconstructed signal is taken as the extracted eigenvalue. For the
extracted features, the data fusion is carried out by RBF neural network, and then
accurately identify the flank wear of milling cutter within a short period of time, which
provides theoretical support for the real-time on-line monitoring of the subsequent tool
wear. Based on the above research, the article is summarized as follows:

1. The method of wavelet-packet analysis is used to extract the cutting vibration signal
related to tool wear in the cutting force signal, which is the contribution of this
paper. The wavelet packet is used to segment the frequency of the cutting force
signal in the time-frequency domain. In addition to the cutting force signal at the
low frequency, the reconstructed signal of the intermediate frequency band is also
related to the tool wear, and the signal is extracted as a vibration signal related to the
tool wear. This method avoids the measurement of tool vibration signal in the
process of machining, which reduces the cost and complexity of the experimental.

2. Three groups of data for RBF test are selected during the process of tool wear, and
the collected cutting force signal can be transformed into the input features for RBF
neural network entry through software, and then use the trained RBF neural net-
work to output tool wear, so as to achieve on-line monitoring of tool wear.
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. In this paper, RBF neural network is used to identify two kinds of features of tool

wear. The method can quickly and effectively identify the flank wear of the milling
cutter. The average recognition time can reach 0.13 s, and the average recognition
error is 5.36%, which provides a good theoretical basis and experimental scheme
for further accurate tool wear monitoring.
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