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Abstract. Viewpoint independent 3D object pose estimation is one of the most
fundamental step of position based vision servo, autopilot, medical scans pro-
cess, reverse engineering and many other fields. In this paper, we presents a new
method to estimate 3D pose using the convolutional neural network (CNN),
which can apply to the 3D point cloud arrays. An interest point detector was
proposed and interest points were computed in both source and target point
clouds by region growing cluster method during offline training of CNN. Rather
than matching the correspondences by rejecting and filtering iteratively, a CNN
classification model is designed to match a certain subset of correspondences.
And a 3D shape representation of interest points was projected onto an input
feature map which is amenable to CNN. After aligning point clouds according to
the prediction made by CNN, iterative closest point (ICP) algorithm is used for
fine alignment. Finally, experiments were conducted to show the proposed
method was effective and robust to noise and point cloud partial missing.
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1 Introduction

The scope of object pose estimation ranges from medical data process to automation in
industry. For example, position based vision servo (PBVS) [1] is one of the two basic
approaches in the field of visual servo control, and it necessitates the pose of the robot
with respect to a specific coordinates prior to be known before subsequent execution.
The variation of illumination conditions, background clutter, and occlusion makes
conventional image-based techniques ineffective. Since 3D LIDAR scanner is far more
accessible in recent years, one can obtain the 3D point cloud of an object much easier
than before. It becomes very attractive to do the registration work for 3D point clouds
as well as for images [2-5]. Among plenty of approaches, iterative closest points
(ICP) [6] is a well-known method to solve the registration problem numerically.
However, it always suffers from the local minima because of the non-convex charac-
teristic and the iteration nature of the ICP approach. [4] Provides a globally optimal
ICP solution based on branch-and-bound method, in exchange of time consumption.
Here we focus on coarse registration method to provide initial transformation before
using ICP.

© Springer International Publishing AG 2017
Y. Huang et al. (Eds.): ICIRA 2017, Part III, LNAI 10464, pp. 377-387, 2017.
DOI: 10.1007/978-3-319-65298-6_35



378 S. Ai et al.

Some research focuses on intelligence method for point cloud processing, e.g.
convolutional neural networks (CNN). In most of cases, CNN deals with the feature
maps which have intuitive interpretation, like the image [7]. In order to deal with point
clouds using CNN, an elaborate feature map for point clouds have to be generated. In
[8], a Hough accumulator is designed associated with every points in 3D point cloud for
normal estimation, and the image-like structure of the accumulator is amenable to CNN.

Since massive unstructured point clouds are difficult to find the point-to-point
correspondences between target and source point clouds, point detectors are always
designed for reduction of computation complexity [9]. Interest points are selected by
detectors according to a specific criterion, which is invariant to rigid transformation.
And a correspondence is identified by point descriptor if the similarity between two
points greater than a threshold. Many research focuses on design distinctive point
descriptor for 3D point clouds [3]. In [10], the geodesic graph model (GGM) was
proposed, the method utilized the fact that geodesic-like distance is an invariant
structure feature during non-rigid deformation.

Once the interest points are detected, a typical method for estimating the trans-
formation is Random Sample Consensus (RANSAC) [11]. The RANSAC method
estimates a transformation for a given set of correspondences iteratively, and yields to
the best one that eliminates most of outliers. In this paper, instead of using RANSAC
for transformation estimation, we treat the correspondence matching problem as a
classification task using CNN. Owing to the effectiveness of our designed point
detector, only a few points were efficient for transformation estimation. As mentioned
before, a new feature map associated with interest points is also derived to be fed to
CNN. After matching the correspondences predicted by CNN, singular value decom-
position (SVD) is used for transformation estimation. And ICP is used as fine regis-
tration method.

2 Methodology

2.1 Registration Problem

Given two 3D point clouds, addressed as source point cloud S and target point cloud T
respectively (source point cloud is available as reference, and target point loud is often
acquired by a 3D scanner). We want to find a rigid transformation u(R,p) which
minimize the error E:

ER0) =" |(Rsi+p) -t (1)

where the set {(s;,#;)withs; €S, ,€T,i€1---N} forms the correspondences
between source and target point clouds. In the cases that different number of points in
two point clouds (e.g. partial missing in the target point cloud), only a part of matches
are expected, and a rejection scheme is sometimes desirable that discards the points
without counterparts [9]. In addition, accurate pair-wise matching for all the points is
infeasible in practice due to the high cardinality of point clouds.
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3D interest point detectors are always designed to reduce the complexity in cor-
respondences matching [12—14]. The consistency of detected interest points should be
guaranteed with the presence of noise and outliers during rigid transformation, i.e., the
point detector have to be as discriminative as possible to keep the local shape infor-
mation invariant to rigid transformation and robust to other disturbances. Interest points
are detected in the source and target point cloud respectively, and we obtain interest
points set P = {p},....py } C S, P ={p{,....p,} CT.

A correspondence is identified usually by using point descriptors which describe
local neighborhood of each interest point [15]. A correspondence (a,b) hold if:

1S(D(a)) = S(D®))[| > = (2)

where D is the descriptor function that mapping local neighborhood of a point to a set
of scalar, S is a similarity measurement function, and 7 is a predefined threshold. We do
not require the correspondences identification by descriptor function in this paper, only
interest points are required to match correspondences.

We proposed the interest point detector to denoise the information underlying in
point cloud transformation. To this end, a region growing clustering is implemented to
ensure the consistency of detected interest points.

2.2 Point Detector

A set of interest points are detected to represent the pose of point cloud. As a premise,
sampling strategy is implemented to select the salient points in the model of the point
cloud, thereby the original point cloud is represented by small number of points, a
region growing clustering is carried out and the interest points are designed to be the
center of the clusters with most amount of points. Details are described as follows.

First, we down-sample the source and target point clouds respectively by the
strategy of choosing the salient points with a significance metric proposed by [12].

For every point in the point cloud, the covariance matrix is computed according to
its K nearest neighbors:

CoV(ps) =3 (b =)oy — 1) 3)

the smallest eigenvalue of COV(p;) was chosen to be the significance assigned to each
points, which measures the variance of its neighborhood. And the salient points were
selected to be the top #, X n points among all the points in terms of their significance.
Here 7, is the sampling rate and n is the total number of points. Second, the salient
points were gathered into clusters by a region growing method [16]. A seed point is
randomly chosen which had not been clustered, and its neighbor points are gathered
into a cluster. Intra-cluster distance threshold 7; was set to keep differences between
points in clusters subtle, and inter-cluster distance threshold 7. was set to avoid dif-
ference between clusters too small, thus decrease the ambiguity for correspondences
matching. Finally, the interest points were set to be centers of the L clusters with most
number of points. Note that while increasing the number of interest points can increase
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Fig. 1. Visualization of interest point detection. From left to right: Origin point cloud; salient
points selected; clusters by region growing clustering (shown in colorful blobs) and detected 7
interest points (shown in red crosses). (Color figure online)

the robustness of pose representation to noise and occlusion, but also increase the cost
of computation during registration period. Figure 1 shows the process of interest point
detection.

2.3 Matching with CNN

Because the results of region growing clustering will deviate a bit based on the initial
state of iteration and other disturbances, the final clusters result will not be identical for
the same point cloud in every experiment. Then a deterministic algorithm which sort
interest points into a canonical order for correspondence matching will not work.
Therefore, we proposed the CNN classification model to achieve automatic corre-
spondences matching. The representation of internal relationship of interest points is set
to be the input feature map of CNN. Since the internal relationship between interest
points are invariant to rigid transformation, the CNN helps to recover the complex
mapping from the representation of interest points to correct correspondences.

As for source and target point clouds, interest points were computed in the source
set {p{...py } and target set {p{...pf } respectively. In the training step, K7 interest
points in the source set were randomly selected, and for the chosen K7 points, the
corresponding selection is assigned to a given category, which will be set as the
training set target of the CNN. The categorical procedure is specified as follows.

Assume that every detected points in the target set can be matched to a detected
point in the source set, there will be a total number of C,IES’ possible combinations. Then

the category of one possible combinations is assigned to one of the C,’;T selections, and
the mapping from the selection to the category is trivial. Note that though the rapid
growth of possible combinations against the number of interest points will increase the
complexity of computation incredibly, relatively small number of interest points are
chosen in practice (at least three for rigid transformation) make it feasible for point
cloud registration.

Instead of input the raw point coordinates to the neural networks, the weighted
adjacency matrix of interest points is computed for the input feature map of CNN.
Regarding interest points as vertexes in a complete graph, the K7 interest points were
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then mapped to a weighted adjacency matrix M, using the Euclidian distance between
interest points as weight:

2
M, = (mij)KTxKT7 m,f = (PzT _pjT) (4)

Figure 2 illustrates the matching procedure with CNN.

target interest points weighted adjacency matrix CISO:252 categories source interest points
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Fig. 2. Tllustration of our proposed CNN matching process. 10 and 5 interest points are detected
in the source point cloud and target point cloud respectively. Here mg indicates the weight in
target cloud. The prediction made by CNN is a set of source interest points. We consider the
T

graph as undirected graph and mg =my;.

The reason for this procedure is twofold. First, in order to match the correspon-
dences between the source and target point cloud, the feature map should be invariant
to rigid transformational, and robust to noise and outliers, and Euclidian distance
between points meet the requirements. Second, the dataset can be transfer from raw
arrays of coordinates into an organized feature map, which is amenable for CNN. And
taking advantages of local conjunctions detection and shared weights of CNN, the
point correspondences which woven in a tangle way originally can be found correctly
by the information encoded in the weighted complete graph.

2.4 Pose Estimation

In the online registration step, the weighted adjacency matrix was computed from target
set by the same pipeline. Applying the prediction of CNN, a set of points in the source
set are assigned as correspondences. And the least-square error transformation is
estimated by the SVD method [17], which is used to associate correspondences by all
the possible permutation, and select the one with least error in (1).

After coarse registration computed by SVD, a fine registration is performed by
implementing the ICP method.
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3 Experiments

3.1 Region Growing Cluster

We choose the Stanford happy Buddha and a valve model for evaluation of our
proposed method. Figure 3(b) and (c) show the results of region growing clustering.
The sampling rate for choosing the salient point is set to be 20%, and the thresholds
T;,T, for clustering are defined according to the range R; of point cloud.

Ry = max\/ (pf — pf)’ (5)

®

Fig. 3. Registration result of happy Buddha. (a) Model demonstration. (b) and (c) Interest points
detection of source and target point cloud respectively. Colorful blobs show the result of top 15
clusters, the final interest points were shown in red crosses after rejection. Note that three
correspondences can be found, since interests points can be found in the same region of source
and target point cloud. (d) Initial state before registration, target and source point cloud were
shown in red and green respectively. (e) Estimated coarse registration. (f) Estimated fine
registration using ICP. (Color figure online)

Here we set T; = (1/30)R,, T, = (1/10)R,. Figures 3(b) and (c) show the results
of clustering for happy Buddha, clusters are shown in colorful blobs. The target point
cloud was scanned by laser scanner, and only the points in the front of the model were
present. A rejection scheme is implemented to reject clusters according to two

parameters for any cluster. First one ¢; = Zle (pi — pj)2 which measures the total

distance from other clusters for cluster j, the second is ¥; = max,/ (pm — p,,)2 with
m,n € j, which indicates the diameter of cluster j. We compute the two parameters for

all clusters, and reject the clusters that the ratio /;/¢; are larger than others. After the
rejection, final detected interest points were supposed to be the most distinguishable
points, and were shown in red crosses in Figs. 3(b) and (c).
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3.2 CNN Architecture

The CNN classification model with architecture is shown in Fig. 4. The input to the
network is K7 x Ky weighted adjacency matrix of interest points, we choose Ky = 3
here for preliminary experiment.

Input  Convolutional Convolutional FC Layer FC Layer Output
Feature map  layer layer +RelU +Relu
Interest
e o o

Point

@{’"12 0 '"33}'::) 2><

2X2

Euclidean

m, m, 0
distance 13 2

Softmax
Categorical probability distribution

1@3X3 1@3X%3 10@3%X3 120 120 120

Fig. 4. Architecture of the CNN classification model. Layer’s size may be changed according to
the input size Ky x Kr.

The first hidden layer convolves 10 filters of kernel size 2 x 2 with stride 1 and
zero padding 1 with the input feature map, and then apply a rectified linear unit
(abbreviated as ReLu).

The second layer is a convolutional layer of kernel size 2 x 2 with stride 1 and zero
padding 1. Two fully-connected layer with 120 neurons is followed behind, and the
final layer is a softmax layer.

The training data was generated from source point cloud by randomly choosing
10000 weighted adjacency matrices with corresponding categories mentioned in
Sect. 2.3. A normalization is also implemented to reduce influence of the variations of
scale of point clouds. We implement normalization by multiplying input feature map
by a constant o inverse proportional to R; so that aR; = 200.

3.3 Performance Analysis and Results

The proposed CNN model was trained from scratch, and after applied the proposed
method to the test data, matching accuracy achieves 91%. Figures 3 and 5 shows the
registration result of proposed method on both happy Buddha and the valve model.
Since the number of interest points is relatively small, predicting correspondences from
the CNN require less than 0.1 s on a 3.3 GHz Core i5 machine with 8 GB memory. We
test the samples which have correct prediction by CNN, and reach the final RMS error
0.0082 (divided by R, achieves relative error 4.1%) and angular-axis error 0.0837 in
average without fine registration. Accuracy can be improved conceivably by increasing
the number of interest points, in exchange for more time consumption and complexity
of the CNN model. Tables 1 and 3 present an example of detected interest points in
happy Buddha and valve model respectively, the prediction made by CNN is No.2,
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(b)

Fig. 5. Registration results of valve model. (a) Model demonstration. (b) Interest points
detected, shown in red crosses. (c) Initial state before registration, source and target point cloud
were shown in ‘+’ and ‘o’ respectively. (d) Estimated coarse registration. (¢) Estimated fine
registration using ICP. (Color figure online)

Table 1. Interest points detected in happy Buddha example.

Source | Position Target | Position

1 (-0.0190, 0.0245, -0.0188) | 1 (0.0224, 0.1132, —0.0093)
2 (0.0210, 0.1166, —0.0098) |2 (0.0300, 0.2395, —0.0138)
3 (-0.0074, 0.1880, 0.0004) |3 (-0.0241, 0.0563, 0.0259)
4 (0.0282, 0.1722, -0.0232)

5 (-0.0312, 0.1151, -0.0233)

6 (0.0257, 0.2421, —0.0166)

7 (-0.0112, 0.0885, —0.0179)

8 (-0.0199, 0.0566, 0.0200)

9 (-0.0029, 0.0580, 0.0215)

10 (-0.0190, 0.2448, —0.0188)

Table 2. Weighted adjacency matrices in happy Buddha example. (Predicted points are the
No.2, No.6, and No.8 points in the source set of Table 1).

Source Target
0 0.126 0.078 0 0.127 0.081
0.126 0 0.194 0.127 0 0.195
0.078 0.194 0 0.081 0.195 0

No.6, and No.8 points in the source set for happy Buddha, No.1, No.6, No.8 points for
valve model. Tables 2 and 4 present the corresponding matrices of target set and
predicted points in source set. Comparing with the ground truth rigid transformation,
the computed transformation using SVD is 0.0077 for RMS error, 0.0923 for
angular-axis error.

Research points out that point detectors may have the drawback of being sensitive to
noise [5]. Experiments have been conducted on the valve model. We randomly generate
considerable number of noise in the bounding box of point cloud and Fig. 6 shows the
linear growth of error against noise. The experiments indicate that with the help of CNN,
correspondences matching using local interest points can be robust to noise.
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Table 3. Interest points detected in valve model example.

Source | Position Target | Position

(-18.39, 4.877, 0.1504) |1 (-15.55, 3.789, 11.92)
(-12.17, 1.412, 0.1009) |2 (1.141, —-6.646, —16.45)
(-13.84, 13.76, -0.1177) |3 (20.81, -1.991, 2.022)
(19.02, 5.172, —0.0981)
(9.177, 10.65, —0.0247)
(13.69, 13.85, —0.0095)
(-4.979, -10.49, -0.0814)
(-5.225, -19.22, 0.0657)
(5.080, —19.26, —0.0089)

O 0 N N AW =

Table 4. Weighted adjacency matrices in valve model. (Predicted points are the No.1, No.6, and
No.8 points in the source set of Table 3).

Source Target
0 33.31 38.10 0 34.53 38.12
33.31 0 27.46 34.53 0 27.38
38.10 27.46 0 38.12 27.38 0
0.045 {u 045

0 005 0.1 0.15 02
noise ratio +

(a) (b)

+
¥

Fig. 6. Result of test on sensitivity to noise. (a) RMS error and angle-axis error against noise in
average, bars indicate the range of error. (b) Registration result with 20% of noise.

4 Conclusion

We proposed a 3D point cloud registration method, with convolutional neural network
for correspondences matching. In this method, only interest points are required to be
detected and no requirement for correspondences identification by point descriptors.
The feature map of the CNN is the weighted adjacency matrix of complete graph
generated by detected interest points. Experimental results show the effectiveness of
our proposed method. This method presents a new potential application of CNN in
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correspondences matching, where limitless ground truth data can be generate to be fed
into CNN, and a set of interest points which are detected in target point cloud can be
matched to the correct counterparts. Our future research includes utilizing other local
descriptions, feature map representation, and some strategies focusing on rejecting
interest points.
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